DSP56309PV100 [NXP]

IC,DSP,24-BIT,CMOS,QFP,144PIN,PLASTIC;
DSP56309PV100
型号: DSP56309PV100
厂家: NXP    NXP
描述:

IC,DSP,24-BIT,CMOS,QFP,144PIN,PLASTIC

文件: 总132页 (文件大小:1608K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order Number: DSP56309/D  
Rev. 1.0, 8/2001  
MOTOROLA  
Semiconductor Products Sector Technical Data  
DSP56309  
Advance Information  
24-BIT GENERAL PURPOSE DIGITAL SIGNAL PROCESSOR  
The DSP56309 is a member of the DSP56300 core family of programmable CMOS digital signal processors  
(DSPs). This family uses a high performance, single-clock-cycle-per-instruction engine providing a two-fold  
performance increase over Motorola’s popular DSP56000 core, while retaining code compatibility. Significant  
architectural enhancements in the DSP56300 family include a barrel shifter, 24-bit addressing, an instruction  
cache, and direct memory access (DMA). The DSP56309 offers 100 MIPS at 3.0–3.6 V using an internal 100  
MHz clock. The large on-chip memory is ideal for wireless infrastructure and wireless local-loop applications.  
The DSP56300 core family offers a new level of performance in speed and power provided by its rich  
instruction set and low-power dissipation, thus enabling a new generation of wireless, multimedia, and  
telecommunications products.  
16  
6
6
3
Program RAM  
20480 × 24 bit  
or  
19456 × 24 bit  
and 1024 × 24 bit  
Instruction  
Host  
Interface  
(HI08)  
ESSI  
Triple  
Timer  
SCI  
X Data  
RAM  
Y Data  
RAM  
7168 × 24 bit 7168 × 24 bit  
Cache  
Memory  
Expansion  
Area  
Peripheral  
Expansion Area  
YAB  
18  
Address  
Generation  
Unit  
External  
Address  
Bus  
XAB  
PAB  
DAB  
Address  
Switch  
Six Channel  
DMA Unit  
External  
Bus  
24-Bit  
DSP56300  
Core  
13  
Boot-strap  
ROM  
Interface  
&
Control  
I - Cache  
Control  
DDB  
YDB  
XDB  
PDB  
GDB  
External  
Data Bus  
Switch  
24  
Internal  
Data  
Bus  
Data  
Switch  
Power  
Management  
EXTAL  
XTAL  
Clock  
Generator  
Data ALU  
5
Program  
Interrupt  
Controller  
Program  
Decode  
Controller  
Program  
Address  
Generator  
+
24 × 24 56  
56-bit MAC  
JTAG  
Two 56-bit Accumulators  
56-bit Barrel Shifter  
PLL  
OnCE™  
DE  
MODA/IRQA  
MODB/IRQB  
MODC/IRQC  
MODD/IRQD  
2
RESET  
PINIT/NMI  
Figure 1 DSP56309 Block Diagram  
This document contains information on a new product. Specifications and information  
herein are subject to change without notice.  
TM  
© Motorola, Inc. 1998, 2001  
 
 
CONTENTS  
SECTION 1  
SECTION 2  
SECTION 3  
SECTION 4  
APPENDIX A  
SIGNAL/CONNECTION DESCRIPTIONS. . . . . . . . . . . . . . . . . . . . . . . 1-1  
SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
PACKAGING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
DESIGN CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
POWER CONSUMPTION BENCHMARK . . . . . . . . . . . . . . . . . . . . . . . A-1  
INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Index-1  
Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
Used to indicate a signal that is active when pulled low (For example, the RESET pin is active when  
low.)  
“asserted”  
“deasserted”  
Examples:  
Means that a high true (active high) signal is high or that a low true (active low) signal is low  
Means that a high true (active high) signal is low or that a low true (active low) signal is high  
Voltage1  
VIL/VOL  
VIH/VOH  
VIH/VOH  
VIL/VOL  
Signal/Symbol  
Logic State  
Signal State  
PIN  
PIN  
PIN  
PIN  
True  
False  
True  
Asserted  
Deasserted  
Asserted  
False  
Deasserted  
Note:  
Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.  
DSP56309 Technical Data  
ii  
FEATURES  
High Performance DSP56309 Core  
100-million instructions per second (MIPS) with a 100 MHz clock at 3.0–3.6 V  
Object-code compatible with the DSP56000 core  
Highly parallel instruction set  
Data arithmetic logic unit (ALU)  
— Fully pipelined 24 × 24-bit parallel multiplier-accumulator (MAC)  
— 56-bit parallel barrel shifter (fast shift and normalization; bit stream generation and parsing)  
— Conditional ALU instructions  
— 24-bit or 16-bit arithmetic support under software control  
Program control unit (PCU)  
— Position independent code (PIC) support  
— Addressing modes optimized for DSP applications (including immediate offsets)  
— On-chip instruction cache controller  
— On-chip memory-expandable hardware stack  
— Nested hardware DO loops  
— Fast auto-return interrupts  
Direct memory access (DMA)  
— Six DMA channels supporting internal and external accesses  
— One-, two-, and three-dimensional transfers (including circular buffering)  
— End-of-block-transfer interrupts  
— Triggering from interrupt lines, all peripherals, and DMA channels  
Phase-locked loop (PLL)  
— Allows change of low-power divide factor (DF) without loss of lock  
— Output clock with skew elimination  
Hardware debugging support  
— On-Chip Emulation (OnCE ) module  
— Joint Test Action Group (JTAG) test access port (TAP)  
— Address trace mode reflects internal program RAM accesses at the external port  
DSP56309 Technical Data  
iii  
 
 
On-Chip Memory  
Program RAM, Instruction Cache, X data RAM, and Y data RAM size are programmable.  
Instruction  
Cache  
Switch  
Mode  
Program RAM  
Size  
Instruction  
Cache Size  
X Data RAM  
Size  
Y Data RAM  
Size  
disabled  
enabled  
disabled  
enabled  
disabled  
disabled  
enabled  
enabled  
20480 × 24 bits  
19456 × 24 bits  
24576 × 24 bits  
23552 × 24 bits  
0
7168 × 24 bits  
7168 × 24 bits  
5120 × 24 bits  
5120 × 24 bits  
7168 × 24 bits  
7168 × 24 bits  
5120 × 24 bits  
5120 × 24 bits  
1024 × 24 bits  
0
1024 × 24 bits  
192 x 24-bit bootstrap ROM  
Off-Chip Memory Expansion  
External memory expansion port  
Data memory expansion to two 256 K × 24-bit word memory spaces (or up to two 4 M × 24-bit  
word memory spaces by using the address attribute AA0–AA3 signals)  
Program memory expansion to one 256 K × 24-bit words memory space (or up to one 4 M × 24-bit  
word memory space by using the address attribute AA0–AA3 signals)  
Simultaneous glueless interface to four blocks of either SRAM or DRAM through chip select logic  
Supports interleaved, non-interfering access to both types of memory without losing in-page  
DRAM access, including DMA-driven access  
On-Chip Peripherals  
Enhanced DSP56000-like 8-bit parallel host interface (HI08) supports a variety of buses (e.g.,  
industry standard architecture) and provides glueless connection to a number of industry standard  
microcomputers, microprocessors, and DSPs  
Two enhanced synchronous serial interfaces (ESSI0 and ESSI1), each with one receiver and three  
transmitters (allows six-channel home theater)  
Serial communications interface (SCI) with baud rate generator  
Triple timer module  
Up to 34 programmable general purpose input/output (GPIO) pins, depending on which  
peripherals are enabled  
DSP56309 Technical Data  
iv  
 
 
 
 
Reduced Power Dissipation  
Very low-power CMOS design  
Fully-static logic, operation frequency down to 0 Hz (dc)  
Wait and stop low-power standby modes  
Optimized, cycle-by-cycle power management circuitry (instruction-dependent,  
peripheral-dependent, and mode-dependent)  
TARGET APPLICATIONS  
The DSP56309 is intended for applications benefiting from a large amount of on-chip memory, such as  
wireless infrastructure applications.  
PRODUCT DOCUMENTATION  
The three documents listed in the following table are required for a complete description of the DSP56309  
and are necessary to design properly with the part. Chip errata—if any exist—are available at the Motorola  
website. Documentation is available from the following locations:  
A local Motorola distributor  
A Motorola semiconductor sales office  
A Motorola Literature Distribution Center  
The World Wide Web (WWW)  
See the back cover for specific addresses and phone numbers.  
See your Motorola distributor for detailed information about the multiple support options available to you.  
Table 2. DSP56309 Documentation  
Name  
Description  
Order Number  
DSP56300 Family  
Manual  
Detailed description of the DSP56300 family processor core and  
instruction set  
DSP56300FM/AD  
DSP56309 User’s  
Manual  
Detailed functional description of the DSP56309 memory configura- DSP56309UM/D  
tion, operation, and register programming  
DSP56309 Techni-  
cal Data  
DSP56309 features list and physical, electrical, timing, and pack-  
age specifications  
DSP56309/D  
DSP56309 Technical Data  
v
 
 
DSP56309 Technical Data  
vi  
SECTION 1  
Signal/Connection Descriptions  
SIGNAL GROUPINGS  
The DSP56309 input and output signals are organized into functional groups, as shown in Table 1-1 and  
illustrated in Figure 1-1.  
The DSP56309 operates from a 3 V supply; however, some of the inputs can tolerate 5 V. A special notice  
for this feature is added to the signal descriptions of those inputs.  
Table 1-1. DSP56309 Functional Signal Groupings  
Number of  
Signals  
Detailed  
Description  
Functional Group  
Power (VCC  
)
18  
Table 1-3  
Table 1-4  
Ground (GND)  
19 in TQFP  
66 in MAP-BGA  
Clock  
2
Table 1-5  
Table 1-6  
Table 1-7  
Table 1-8  
Table 1-9  
Table 1-10  
Table 1-12  
PLL  
3
Address Bus  
Data Bus  
18  
24  
13  
5
Port A1  
Bus Control  
Interrupt and Mode Control  
Host Interface (HI08)  
Port B2  
16  
12  
Enhanced Synchronous Serial Interface (ESSI)  
Ports C and D3  
Table 1-13 and  
Table 1-14  
Serial Communication Interface (SCI)  
Port E4  
3
3
6
Table 1-15  
Table 1-16  
Table 1-17  
Timer  
JTAG/OnCE Port  
Note: 1. Port A signals define the external memory interface port, including the external address bus, data bus, and  
control signals.  
2. Port B signals are the HI08 port signals multiplexed with the GPIO signals.  
3. Port C and D signals are the two ESSI port signals multiplexed with the GPIO signals.  
4. Port E signals are the SCI port signals multiplexed with the GPIO signals.  
DSP56309 Technical Data  
1-1  
 
 
 
DSP56309  
MODA/IRQA  
MODB/IRQB  
MODC/IRQC  
MODD/IRQD  
RESET  
Interrupt/  
Mode  
Control  
Power Inputs:  
V
V
PLL  
CCP  
4
4
4
2
Internal Logic  
Address Bus  
Data Bus  
CCQ  
V
CCA  
CCD  
CCC  
CCH  
V
V
V
Non-Multiplexed Multiplexed  
Bus  
H[0–7]  
HA0  
HA1  
HA2  
HCS/HCS  
Single DS  
HRW  
HDS/HDS  
Single HR  
HREQ/HREQ  
HACK/HACK  
Port B  
GPIO  
PB[0–7]  
PB8  
PB9  
PB10  
PB13  
Bus Control  
HI08  
Bus  
8
HAD[0–7]  
HAS/HAS  
HA8  
HA9  
HA10  
Double DS  
HRD/HRD  
HWR/HWR  
Double HR  
2
V
ESSI/SCI/Timer  
CCS  
Host  
Interface  
Grounds:  
PLL  
PLL  
1
(HI08) Port  
GND  
GND  
P
P1  
4
PB11  
PB12  
GND  
Internal Logic  
Address Bus  
Data Bus  
Bus Control  
HI08  
Q
4
4
2
GND  
A
D
C
H
GND  
GND  
GND  
HTRQ/HTRQ PB14  
HRRQ/HRRQ PB15  
2
GND  
ESSI/SCI/Timer  
S
Port C GPIO  
PC[0–2]  
PC3  
PC4  
PC5  
3
Enhanced  
SC0[0–2]  
SCK0  
SRD0  
Synchronous Serial  
0
Interface Port  
EXTAL  
XTAL  
2
Clock  
PLL  
(ESSI0)  
STD0  
Port D GPIO  
PD[0–2]  
PD3  
PD4  
PD5  
CLKOUT  
PCAP  
PINIT/NMI  
3
Enhanced  
Synchronous Serial  
Interface Port 1  
SC1[0–2]  
SCK1  
SRD1  
2
(ESSI1)  
STD1  
Port A  
18  
External  
Address Bus  
Port E GPIO  
PE0  
PE1  
A[0–17]  
D[0–23]  
Serial  
RXD  
TXD  
SCLK  
Communications  
24  
4
2
External  
Data Bus  
Interface (SCI) Port  
PE2  
AA[0–3]/RAS[0–3]  
Timer GPIO  
TIO0  
TIO1  
External  
Bus  
Control  
RD  
WR  
TA  
TIO0  
TIO1  
TIO2  
3
Timers  
TIO2  
BR  
BG  
BB  
CAS  
BCLK  
BCLK  
TCK  
TDI  
TDO  
TMS  
TRST  
DE  
JTAG/OnCE  
Port  
Note:  
1. The HI08 port supports a non-multiplexed or a multiplexed bus, single or double Data Strobe (DS), and single or  
double Host Request (HR) configurations. Since each of these modes is configured independently, any combination  
of these modes is possible. These HI08 signals can also be configured as GPIO signals (PB[0–15]). Signals with  
dual designations (for example, HAS/HAS) have configurable polarity.  
2. The ESSI0, ESSI1, and SCI signals are multiplexed with the Port C GPIO signals (PC[0–5]), Port D GPIO signals  
(PD[0–5]), and Port E GPIO signals (PE[0–2]), respectively.  
3. TIO[0–2] can be configured as GPIO signals.  
Figure 1-1. Signals Identified by Functional Group  
1-2  
DSP56309 Technical Data  
 
In the DSP56309, certain pins have weak keeper circuits. For these pins, a tri-stated signal is not  
disconnected electrically during reset; rather, an output is driven by the weak keeper. Consequently, the  
value of pull-up or pull-down resistors on such pins should be taken into account for those signals. Refer to  
Electrical Design Considerations on page 4-2 for recommended resistor values. Table 1-2 lists the pins  
that have weak keeper circuits.  
Table 1-2. Pins with Weak Keeper Circuits  
Block  
Pins  
Port A Data Bus  
D[0–23]  
Host Interface (HI08)  
PB[0–15]  
Enhanced Synchronous Serial Interface (ESSI)  
Synchronous Communication Interface (SCI)  
Timers  
PC[0–5] and PD[0–5]  
PE[0–2]  
TIO[0–2]  
Note: The keeper circuits remain connected even if the pins are configured for peripheral signals instead of GPIO  
signals.  
POWER  
Table 1-3. Power Inputs  
Name  
Description  
VCCP  
PLL Power  
VCC dedicated for use with Phase Lock Loop (PLL). The voltage should be well-regulated and the input  
should be provided with an extremely low impedance path to the VCC power rail.  
VCCQ  
VCCA  
VCCD  
VCCC  
VCCH  
VCCS  
Note:  
Quiet Power  
An isolated power for the internal processing logic. This input must be tied externally to all other chip power  
inputs. The user must provide adequate external decoupling capacitors.  
Address Bus Power  
An isolated power for sections of the address bus I/O drivers. This input must be tied externally to all other  
chip power inputs. The user must provide adequate external decoupling capacitors.  
Data Bus Power  
An isolated power for sections of the data bus I/O drivers. This input must be tied externally to all other chip  
power inputs. The user must provide adequate external decoupling capacitors.  
Bus Control Power  
An isolated power for the bus control I/O drivers. This input must be tied externally to all other chip power  
inputs. The user must provide adequate external decoupling capacitors.  
Host Power  
An isolated power for the HI08 I/O drivers. This input must be tied externally to all other chip power inputs.  
The user must provide adequate external decoupling capacitors.  
ESSI, SCI, and Timer Power  
An isolated power for the ESSI, SCI, and timer I/O drivers. This input must be tied externally to all other chip  
power inputs. The user must provide adequate external decoupling capacitors.  
These designations are package-dependent. Some packages connect all VCC inputs except VCCP to each other  
internally. On those packages, all power input except VCCP are labeled VCC. The total number of VCC  
connections is package-dependent.  
DSP56309 Technical Data  
1-3  
 
 
 
 
GROUND  
Table 1-4. Grounds  
Description  
Ground Name  
GNDP  
PLL Ground  
Ground dedicated for PLL use. The connection should be provided with an extremely  
low-impedance path to ground. VCCP should be bypassed to GNDP by a 0.47 µF capacitor  
located as close as possible to the chip package.  
GNDP1  
GNDQ  
GNDA  
PLL Ground 1  
Ground dedicated for PLL use. The connection should be provided with an extremely  
low-impedance path to ground.  
Quiet Ground  
An isolated ground for the internal processing logic. This connection must be tied externally to all  
other chip ground connections. The user must provide adequate external decoupling capacitors.  
Address Bus Ground  
An isolated ground for sections of the address bus I/O drivers. This connection must be tied  
externally to all other chip ground connections. The user must provide adequate external  
decoupling capacitors.  
GNDD  
Data Bus Ground  
An isolated ground for sections of the data bus  
I/O drivers. This connection must be tied externally to all other chip ground connections. The  
user must provide adequate external decoupling capacitors.  
GNDC  
GNDH  
GNDS  
Bus Control Ground  
An isolated ground for the bus control I/O drivers. This connection must be tied externally to all  
other chip ground connections. The user must provide adequate external decoupling capacitors.  
Host Ground  
An isolated ground for the HI08 I/O drivers. This connection must be tied externally to all other  
chip ground connections. The user must provide adequate external decoupling capacitors.  
ESSI, SCI, and Timer Ground  
An isolated ground for the ESSI, SCI, and timer I/O drivers. This connection must be tied  
externally to all other chip ground connections. The user must provide adequate external  
decoupling capacitors.  
Note:  
These designations are package-dependent. The MAP-BGA package connects all GND inputs except GNDP  
and GNDP1 to each other internally. On the MAP-BGA package, all ground connections except GNDP and  
GNDP1 are labeled GND. The total number of GND connections is package-dependent.  
1-4  
DSP56309 Technical Data  
 
 
CLOCK  
Table 1-5. Clock Signals  
Signal  
Name  
State During  
Reset  
Type  
Signal Description  
EXTAL  
Input  
Input  
External Clock/Crystal Input  
Interfaces the internal crystal oscillator input to an external crystal or an  
external clock.  
XTAL  
Output  
Chip-driven  
Crystal Output  
Connects the internal crystal oscillator output to an external crystal. If an  
external clock is used, leave XTAL unconnected.  
PHASE LOCK LOOP (PLL)  
Table 1-6. Phase Lock Loop Signals  
State During  
Signal Name  
Type  
Signal Description  
Reset  
CLKOUT  
Output  
Chip-driven  
Clock Output  
Provides an output clock synchronized to the internal core clock  
phase.  
If the PLL is enabled and both the multiplication and division factors  
equal one, then CLKOUT is also synchronized to EXTAL.  
If the PLL is disabled, the CLKOUT frequency is half the frequency  
of EXTAL.  
PCAP  
Input  
Input  
Input  
Input  
PLL Capacitor  
Connects an off-chip capacitor to the PLL filter. Connect one  
capacitor terminal to PCAP and the other terminal to VCCP  
.
If the PLL is not used, PCAP can be tied to VCC, GND, or left  
floating.  
PINIT/NMI  
PLL Initial/Non-Maskable Interrupt  
During assertion of RESET, the value of PINIT/NMI is written into  
the PLL Enable (PEN) bit of the PLL control register, determining  
whether the PLL is enabled or disabled. After RESET deassertion  
and during normal instruction processing, the PINIT/NMI  
Schmitt-trigger input is a negative-edge-triggered Non-Maskable  
Interrupt (NMI) request internally synchronized to CLKOUT.  
PINIT/NMI can tolerate 5 V.  
DSP56309 Technical Data  
1-5  
 
EXTERNAL MEMORY EXPANSION PORT (PORT A)  
Note:  
When the DSP56309 enters a low-power standby mode (Stop or Wait), it releases bus mastership  
and tri-states the relevant Port A signals: A[0–17], D[0–23], AA[0–3]//RAS[0–3], RD, WR, BB,  
CAS, BCLK, BCLK.  
EXTERNAL ADDRESS BUS  
Table 1-7. External Address Bus Signals  
State During  
Reset, Stop, or  
Wait  
Signal Name  
Type  
Signal Description  
A[0–17]  
Output  
Tri-stated  
Address Bus  
When the DSP is the bus master, A[0–17] specify the address  
for external program and data memory accesses. Otherwise,  
the signals are tri-stated. To minimize power dissipation,  
A[0–17] do not change state when external memory spaces are  
not being accessed.  
EXTERNAL DATA BUS  
Table 1-8. External Data Bus Signals  
State During  
Reset, Stop, or  
Wait  
Signal Name  
Type  
Signal Description  
D[0–23]  
Input/Output  
Driven by  
Data Bus  
keeper circuit  
When the DSP is the bus master, D[0–23] provide the  
bidirectional data bus for external program and data memory  
accesses. When used as outputs, these signals have a weak  
keeper circuit that maintains the last state externally even if all  
drivers are tri-stated.  
EXTERNAL BUS CONTROL  
Table 1-9. External Bus Control Signals  
State During  
Reset, Stop, or  
Wait  
Signal  
Name  
Type  
Signal Description  
AA[0–3]/  
Output  
Tri-stated  
Address Attribute or Row Address Strobe  
RAS[0–3]  
As AA, these signals function as chip selects or additional address  
lines. Unlike address lines, however, the AA lines do not hold their  
state after a read or write operation. As RAS, these signals can be  
used for Dynamic Random Access Memory (DRAM) interface. These  
signals have programmable polarity.  
1-6  
DSP56309 Technical Data  
 
 
Table 1-9. External Bus Control Signals (Continued)  
State During  
Reset, Stop, or  
Wait  
Signal  
Name  
Type  
Signal Description  
RD  
Output  
Tri-stated  
Read Enable  
When the DSP is the bus master, RD is asserted to read external  
memory on the data bus (D[0–23]). Otherwise, RD is tri-stated.  
WR  
TA  
Output  
Input  
Tri-stated  
Write Enable  
When the DSP is the bus master, WR is asserted to write external  
memory on the data bus (D[0–23]). Otherwise, WR is tri-stated.  
Ignored Input  
Transfer Acknowledge  
If the DSP56309 is the bus master and there is no external bus activity,  
or the DSP56309 is not the bus master, the TA input is ignored. The TA  
input is a Data Transfer Acknowledge (DTACK) function that can  
extend an external bus cycle indefinitely. Any number of wait states (1,  
2,..., infinity) can be added to the wait states inserted by the BCR by  
keeping TA deasserted. In typical operation, TA is deasserted at the  
start of a bus cycle, asserted to enable completion of the bus cycle,  
and deasserted before the next bus cycle. The current bus cycle  
completes one clock period after TA is asserted synchronous to  
CLKOUT. The number of wait states is determined by the TA input or  
by the Bus Control Register (BCR), whichever is longer. The BCR can  
set the minimum number of wait states in external bus cycles.  
To use the TA functionality, the BCR must be programmed to at least  
one wait state. A zero wait state access cannot be extended by TA  
deassertion; otherwise improper operation may result. TA can operate  
synchronously or asynchronously, depending on the setting of the TAS  
bit in the Operating Mode Register (OMR).  
TA functionality cannot be used during DRAM-type accesses;  
otherwise improper operation may result.  
BR  
Output  
Output  
Bus Request  
(deasserted)  
Asserted when the DSP requests bus mastership and deasserted  
when the DSP no longer needs the bus. BR can be asserted or  
deasserted independently of whether the DSP56309 is a bus master  
or a bus slave. Bus “parking” allows BR to be deasserted even though  
the DSP56309 is the bus master (see the description of bus “parking”  
in the BB signal description). The Bus Request Hole (BRH) bit in the  
BCR allows BR to be asserted under software control, even though the  
DSP does not need the bus. BR is typically sent to an external bus  
arbitrator that controls the priority, parking and tenure of each master  
on the same external bus. BR is affected only by DSP requests for the  
external bus, never for the internal bus. During hardware reset, BR is  
deasserted and the arbitration is reset to the bus slave state.  
DSP56309 Technical Data  
1-7  
 
Table 1-9. External Bus Control Signals (Continued)  
State During  
Reset, Stop, or  
Wait  
Signal  
Name  
Type  
Signal Description  
BG  
Input  
Ignored Input  
Bus Grant  
Must be asserted/deasserted synchronous to CLKOUT for proper  
operation. An external bus arbitration circuit asserts BG when the  
DSP56309 becomes the next bus master. When BG is asserted, the  
DSP56309 must wait until BB is deasserted before taking bus  
mastership. When BG is deasserted, bus mastership is typically given  
up at the end of the current bus cycle. This may occur in the middle of  
an instruction that requires more than one external bus cycle for  
execution.  
BB  
Input/  
Input  
Bus Busy  
Output  
Indicates that the bus is active and must be asserted and deasserted  
synchronous to CLKOUT. Only after BB is deasserted can the pending  
bus master become the bus master (and then assert the signal again).  
The bus master can keep BB asserted after ceasing bus activity,  
regardless of whether BR is asserted or deasserted. This is called  
“bus parking” and allows the current bus master to reuse the bus  
without re-arbitration until another device requires the bus. BB is  
deasserted by an “active pull-up” method (that is, BB is driven high  
and then released and held high by an external pull-up resistor).  
BB requires an external pull-up resistor.  
CAS  
Output  
Output  
Output  
Tri-stated  
Tri-stated  
Tri-stated  
Column Address Strobe  
When the DSP is the bus master, DRAM uses CAS to strobe the  
column address. Otherwise, if the Bus Mastership Enable (BME) bit in  
the DRAM Control Register is cleared, the signal is tri-stated.  
BCLK  
BCLK  
Bus Clock  
When the DSP is the bus master, BCLK is active when the OMR[ATE]  
is set. When BCLK is active and synchronized to CLKOUT by the  
internal PLL, BCLK precedes CLKOUT by one-fourth of a clock cycle.  
Bus Clock Not  
When the DSP is the bus master, BCLK is the inverse of the BCLK  
signal. Otherwise, the signal is tri-stated.  
1-8  
DSP56309 Technical Data  
 
INTERRUPT AND MODE CONTROL  
The interrupt and mode control signals select the chip’s operating mode as it comes out of hardware reset.  
After RESET is deasserted, these inputs are hardware interrupt request lines.  
Table 1-10. Interrupt and Mode Control  
State During  
Signal Name  
Type  
Signal Description  
Reset  
MODA/IRQA  
Input  
Input  
Mode Select A/External Interrupt Request A  
Selects the initial chip operating mode during hardware reset and  
becomes a level-sensitive or negative-edge-triggered, maskable  
interrupt request input during normal instruction processing.  
MODA/IRQA MODA, MODB, MODC, and MODD select one of  
sixteen initial chip operating modes, latched into the OMR when the  
RESET signal is deasserted.  
Internally synchronized to CLKOUT. If IRQA is asserted  
synchronous to CLKOUT, multiple processors can be  
re-synchronized using the WAIT instruction and asserting IRQA to  
exit the Wait state. If the processor is in the Stop standby state and  
IRQA is asserted, the processor will exit the Stop state.  
MODA/IRQA can tolerate 5 V.  
MODB/IRQB  
Input  
Input  
Mode Select B/External Interrupt Request B  
Selects the initial chip operating mode during hardware reset and  
becomes a level-sensitive or negative-edge-triggered, maskable  
interrupt request input during normal instruction processing. MODA,  
MODB, MODC, and MODD select one of sixteen initial chip  
operating modes, latched into OMR when the RESET signal is  
deasserted.  
Internally synchronized to CLKOUT. If IRQB is asserted  
synchronous to CLKOUT, multiple processors can be  
re-synchronized using the WAIT instruction and asserting IRQB to  
exit the Wait state.  
MODB/IRQB can tolerate 5 V.  
MODC/IRQC  
Input  
Input  
Mode Select C/External Interrupt Request C  
Selects the initial chip operating mode during hardware reset and  
becomes a level-sensitive or negative-edge-triggered, maskable  
interrupt request input during normal instruction processing. MODA,  
MODB, MODC, and MODD select one of sixteen initial chip  
operating modes, latched into OMR when the RESET signal is  
deasserted.  
Internally synchronized to CLKOUT. If IRQC is asserted  
synchronous to CLKOUT, multiple processors can be  
re-synchronized using the WAIT instruction and asserting IRQC to  
exit the Wait state.  
MODC/IRQC can tolerate 5 V.  
DSP56309 Technical Data  
1-9  
 
Table 1-10. Interrupt and Mode Control (Continued)  
State During  
Signal Name  
Type  
Signal Description  
Reset  
MODD/IRQD  
Input  
Input  
Mode Select D/External Interrupt Request D  
Selects the initial chip operating mode during hardware reset and  
becomes a level-sensitive or negative-edge-triggered, maskable  
interrupt request input during normal instruction processing. MODA,  
MODB, MODC, and MODD select one of sixteen initial chip  
operating modes, latched into OMR when the RESET signal is  
deasserted.  
Internally synchronized to CLKOUT. If IRQD is asserted  
synchronous to CLKOUT, multiple processors can be  
re-synchronized using the WAIT instruction and asserting IRQD to  
exit the Wait state.  
MODD/IRQD can tolerate 5 V.  
RESET  
Input  
Input  
Reset  
Deassertion of RESET is internally synchronized to the clock out  
(CLKOUT). When asserted, the chip is placed in the Reset state and  
the internal phase generator is reset. The Schmitt-trigger input  
allows a slowly rising input (such as a capacitor charging) to reset  
the chip reliably. If RESET is deasserted synchronous to CLKOUT,  
exact start-up timing is guaranteed, allowing multiple processors to  
start and operate synchronously. When the RESET signal is  
deasserted, the initial chip operating mode is latched from the  
MODA, MODB, MODC, and MODD inputs. The RESET signal must  
be asserted after power-up.  
RESET can tolerate 5 V.  
HOST INTERFACE (HI08)  
The HI08 provides a fast, parallel data-to-8-bit port that can directly connect to the host bus. The HI08  
supports a variety of standard buses and can directly connect to a number of industry-standard  
microcomputers, microprocessors, DSPs, and DMA hardware.  
Host Port Usage Considerations  
Careful synchronization is required when the system reads multiple-bit registers that are written by another  
asynchronous system. This is a common problem when two asynchronous systems are connected (as they  
are in the Host port). The considerations for proper operation are discussed in Table 1-11.  
1-10  
DSP56309 Technical Data  
 
 
Table 1-11. Host Port Usage Considerations  
Action  
Description  
Asynchronous read of receive  
byte registers  
When reading the receive byte registers, Receive register High (RXH), Receive  
register Middle (RXM), or Receive register Low (RXL), the host interface programmer  
should use interrupts or poll the Receive register Data Full (RXDF) flag that indicates  
data is available. This assures that the data in the receive byte registers is valid.  
Asynchronous write to transmit  
byte registers  
The host interface programmer should not write to the transmit byte registers, Transmit  
register High (TXH), Transmit register Middle (TXM), or Transmit register Low (TXL),  
unless the Transmit register Data Empty (TXDE) bit is set indicating that the transmit  
byte registers are empty. This guarantees that the transmit byte registers transfer valid  
data to the Host Receive (HRX) register.  
Asynchronous write to host vector The host interface programmer must change the Host Vector (HV) register only when  
the Host Command bit (HC) is clear. This practice guarantees that the DSP interrupt  
control logic receives a stable vector.  
Host Port Configuration  
HI08 signal functions vary according to the programmed configuration of the interface as determined by  
the 16 bits in the HI08 Port Control Register (HPCR). Refer to the DSP56309 User’s Manual for detailed  
descriptions of HI08 configuration registers.  
Table 1-12. Host Interface  
State During  
Signal Name  
Type  
Signal Description  
Reset or Stop1  
H[0–7]  
Input/Output2  
Disconnected Host Data  
internally  
When the HI08 is programmed to interface with a non-multiplexed  
host bus and the HI function is selected, these signals are lines 0–7  
of the Data bus.  
HAD[0–7]  
PB[0–7]  
Input/Output2  
Host Address  
When the HI08 is programmed to interface with a multiplexed host  
bus and the HI function is selected, these signals are lines 0–7 of  
the Address/Data bus.  
Input or  
Output2  
Port B 0–7  
When the HI08 is configured as GPIO through the HPCR, these  
signals are individually programmed through the HI08 Data  
Direction Register (HDDR).  
This input is 5 V tolerant.  
DSP56309 Technical Data  
1-11  
 
 
Table 1-12. Host Interface (Continued)  
State During  
Signal Name  
Type  
Signal Description  
Reset or Stop1  
HA0  
Input  
Disconnected Host Address Input 0  
internally  
When the HI08 is programmed to interface with a non-multiplexed  
host bus and the HI function is selected, this signal is line 0 of the  
Host Address bus.  
HAS/HAS  
Input  
Host Address Strobe  
When the HI08 is programmed to interface with a multiplexed host  
bus and the HI function is selected, this signal is the Host Address  
Strobe (HAS) Schmitt-trigger input. The polarity of the address  
strobe is programmable, but is configured active-low (HAS) following  
reset.  
PB8  
Input or  
Output2  
Port B 8  
When the HI08 is configured as GPIO through the HPCR, this signal  
is individually programmed through the HDDR.  
This input is 5 V tolerant.  
HA1  
HA8  
PB9  
Input  
Input  
Disconnected Host Address Input 1  
internally When the HI08 is programmed to interface with a non-multiplexed  
host bus and the HI function is selected, this signal is line 1 of the  
Host Address bus.  
Host Address 8  
When the HI08 is programmed to interface with a multiplexed host  
bus and the HI function is selected, this signal is line 8 of the Host  
Address bus.  
Input or  
Output2  
Port B 9  
When the HI08 is configured as GPIO through the HPCR, this signal  
is individually programmed through the HDDR.  
This input is 5 V tolerant.  
HA2  
HA9  
PB10  
Input  
Input  
Disconnected Host Address Input 2  
internally When the HI08 is programmed to interface with a non-multiplexed  
host bus and the HI function is selected, this signal is line 2 of the  
Host Address bus.  
Host Address 9  
When the HI08 is programmed to interface with a multiplexed host  
bus and the HI function is selected, this signal is line 9 of the Host  
Address bus.  
Input or  
Output2  
Port B 10  
When the HI08 is configured as GPIO through the HPCR, this signal  
is individually programmed through the HDDR.  
This input is 5 V tolerant.  
1-12  
DSP56309 Technical Data  
 
 
Table 1-12. Host Interface (Continued)  
State During  
Signal Name  
Type  
Signal Description  
Reset or Stop1  
HCS/HCS  
Input  
Disconnected Host Chip Select  
internally  
When the HI08 is programmed to interface with a non-multiplexed  
host bus and the HI function is selected, this signal is the Host Chip  
Select (HCS) input. The polarity of the chip select is programmable,  
but is configured active-low (HCS) after reset.  
HA10  
PB13  
Input  
Host Address 10  
When the HI08 is programmed to interface with a multiplexed host  
bus and the HI function is selected, this signal is line 10 of the Host  
Address bus.  
Input or  
Output2  
Port B 13  
When the HI08 is configured as GPIO through the HPCR, this signal  
is individually programmed through the HDDR.  
This input is 5 V tolerant.  
HRW  
Input  
Input  
Disconnected Host Read/Write  
internally When the HI08 is programmed to interface with a single-data-strobe  
host bus and the HI function is selected, this signal is the Host  
Read/Write input.  
HRD/HRD  
Host Read Data  
When the HI08 is programmed to interface with a  
double-data-strobe host bus and the HI function is selected, this  
signal is the Host Read Data strobe (HRD) Schmitt-trigger input.  
The polarity of the data strobe is programmable, but is configured as  
active-low (HRD) after reset.  
PB11  
Input or  
Output2  
Port B 11  
When the HI08 is configured as GPIO through the HPCR, this signal  
is individually programmed through the HDDR.  
This input is 5 V tolerant.  
DSP56309 Technical Data  
1-13  
 
 
Table 1-12. Host Interface (Continued)  
State During  
Signal Name  
Type  
Signal Description  
Reset or Stop1  
HDS/HDS  
Input  
Disconnected Host Data Strobe  
internally  
When the HI08 is programmed to interface with a single-data-strobe  
host bus and the HI function is selected, this signal is the Host Data  
Strobe (HDS) Schmitt-trigger input. The polarity of the data strobe is  
programmable, but is configured as active-low (HDS) following  
reset.  
HWR/HWR  
Input  
Host Write Data  
When the HI08 is programmed to interface with a  
double-data-strobe host bus and the HI function is selected, this  
signal is the Host Write Data Strobe (HWR) Schmitt-trigger input.  
The polarity of the data strobe is programmable, but is configured as  
active-low (HWR) following reset.  
PB12  
Input or  
Output2  
Port B 12  
When the HI08 is configured as GPIO through the HPCR, this signal  
is individually programmed through the HDDR.  
This input is 5 V tolerant.  
HREQ/HREQ  
Output2  
Disconnected Host Request  
internally When the HI08 is programmed to interface with a single host  
request host bus and the HI function is selected, this signal is the  
Host Request (HREQ) output. The polarity of the host request is  
programmable, but is configured as active-low (HREQ) following  
reset. The host request can be programmed as a driven or  
open-drain output.  
HTRQ/HTRQ  
Output2  
Transmit Host Request  
When the HI08 is programmed to interface with a double host  
request host bus and the HI function is selected, this signal is the  
Transmit Host Request (HTRQ) output. The polarity of the host  
request is programmable, but is configured as active-low (HTRQ)  
following reset. The host request may be programmed as a driven or  
open-drain output.  
PB14  
Input or  
Output2  
Port B 14  
When the HI08 is programmed to interface with a multiplexed host  
bus and the signal is configured as GPIO through the HPCR, this  
signal is individually programmed through the HDDR.  
This input is 5 V tolerant.  
1-14  
DSP56309 Technical Data  
 
 
Table 1-12. Host Interface (Continued)  
State During  
Signal Name  
Type  
Signal Description  
Reset or Stop1  
HACK/HACK  
Input  
Disconnected Host Acknowledge  
internally  
When the HI08 is programmed to interface with a single host  
request host bus and the HI function is selected, this signal is the  
Host Acknowledge (HACK) Schmitt-trigger input. The polarity of the  
host acknowledge is programmable, but is configured as active-low  
(HACK) after reset.  
HRRQ/HRRQ  
Output2  
Receive Host Request  
When the HI08 is programmed to interface with a double host  
request host bus and the HI function is selected, this signal is the  
Receive Host Request (HRRQ) output. The polarity of the host  
request is programmable, but is configured as active-low (HRRQ)  
after reset. The host request may be programmed as a driven or  
open-drain output.  
PB15  
Input or  
Output2  
Port B 15  
When the HI08 is configured as GPIO through the HPCR, this signal  
is individually programmed through the HDDR.  
This input is 5 V tolerant.  
Note: 1. The Wait processing state does not affect the signal state.  
2. When configured as an output, these signals have a weak keeper circuit that maintains the last state externally  
even if all drivers are tri-stated.  
DSP56309 Technical Data  
1-15  
 
 
 
ENHANCED SYNCHRONOUS SERIAL INTERFACE 0 (ESSI0)  
Two synchronous serial interfaces (ESSI0 and ESSI1) provide a full-duplex serial port for serial  
communication with a variety of serial devices, including one or more industry-standard CODECs, other  
DSPs, microprocessors, and peripherals that implement the Motorola Serial Peripheral Interface (SPI).  
Table 1-13. Enhanced Synchronous Serial Interface 0 (ESSI0)  
State During1  
Signal  
Name  
Type  
Signal Description  
Reset  
Stop  
SC00  
Input or Output2  
Input  
Disconnected Serial Control 0  
internally  
Functions in either Synchronous or Asynchronous mode. For  
Asynchronous mode, this signal is the receive clock I/O  
(Schmitt-trigger input). For Synchronous mode, this signal is  
either for Transmitter 1 output or Serial I/O Flag 0.  
PC0  
Port C 0  
The default configuration following reset is GPIO. For PC0,  
signal direction is controlled through the Port Directions  
Register (PRR0). The signal can be configured as ESSI  
signal SC00 through the Port Control Register (PCR0).  
This input is 5 V tolerant.  
SC01  
PC1  
Input/Output2  
Input  
Disconnected Serial Control 1  
internally Functions in either Synchronous or Asynchronous mode. For  
Asynchronous mode, this signal is the receiver frame sync  
I/O. For Synchronous mode, this signal is either Transmitter 2  
output or Serial I/O Flag 1.  
Input or Output2  
Port C 1  
The default configuration following reset is GPIO. For PC1,  
signal direction is controlled through PRR0. The signal can  
be configured as an ESSI signal SC01 through PCR0.  
This input is 5 V tolerant.  
SC02  
Input/Output2  
Input  
Disconnected Serial Control Signal 2  
internally The frame sync for both the transmitter and receiver in  
Synchronous mode, and for the transmitter only in  
Asynchronous mode. When configured as an output, this  
signal is the internally generated frame sync signal. When  
configured as an input, this signal receives an external frame  
sync signal for the transmitter (and the receiver in  
synchronous operation).  
PC2  
Input or Output2  
Port C 2  
The default configuration following reset is GPIO. For PC2,  
signal direction is controlled through PRR0. The signal can  
be configured as an ESSI signal SC02 through PCR0.  
This input is 5 V tolerant.  
1-16  
DSP56309 Technical Data  
 
Table 1-13. Enhanced Synchronous Serial Interface 0 (ESSI0) (Continued)  
State During1  
Signal  
Name  
Type  
Signal Description  
Reset  
Stop  
SCK0  
Input/Output2  
Input  
Disconnected Serial Clock  
internally  
Provides the serial bit rate clock for the ESSI interface for  
both the transmitter and receiver in Synchronous modes, or  
the transmitter only in Asynchronous modes.  
Although an external serial clock can be independent of and  
asynchronous to the DSP system clock, it must exceed the  
minimum clock cycle time of 6 T (that is, the system clock  
frequency must be at least three times the external ESSI  
clock frequency). The ESSI needs at least three DSP phases  
inside each half of the serial clock.  
PC3  
Input or Output2  
Port C 3  
The default configuration following reset is GPIO. For PC3,  
signal direction is controlled through PRR0. The signal can  
be configured as an ESSI signal SCK0 through PCR0.  
This input is 5 V tolerant.  
SRD0  
PC4  
Input/Output2  
Input  
Disconnected Serial Receive Data  
internally Receives serial data and transfers the data to the ESSI  
receive shift register. SRD0 is an input when data is being  
received.  
Input or Output2  
Port C 4  
The default configuration following reset is GPIO. For PC4,  
signal direction is controlled through PRR0. The signal can  
be configured as an ESSI signal SRD0 through PCR0.  
This input is 5 V tolerant.  
STD0  
PC5  
Input/Output2  
Input  
Disconnected Serial Transmit Data  
internally Transmits data from the serial transmit shift register. STD0 is  
an output when data is being transmitted.  
Input or Output2  
Port C 5  
The default configuration following reset is GPIO. For PC5,  
signal direction is controlled through PRR0. The signal can  
be configured as an ESSI signal STD0 through PCR0.  
This input is 5 V tolerant.  
Note: 1. The Wait processing state does not affect the signal state.  
2. When configured as an output, these signals have a weak keeper circuit that maintains the last state  
externally even if all drivers are tri-stated.  
DSP56309 Technical Data  
1-17  
 
 
ENHANCED SYNCHRONOUS SERIAL INTERFACE 1 (ESSI1)  
Table 1-14. Enhanced Synchronous Serial Interface 1 (ESSI1)  
State During1  
Signal  
Name  
Type  
Signal Description  
Reset  
Stop  
SC10  
Input or Output2  
Input  
Disconnected Serial Control 0  
internally  
Selection of Synchronous or Asynchronous mode  
determines function. For Asynchronous mode, this signal is  
the receive clock I/O (Schmitt-trigger input). For  
Synchronous mode, this signal is either Transmitter 1 output  
or Serial I/O Flag 0.  
PD0  
Port D 0  
The default configuration following reset is GPIO. For PD0,  
signal direction is controlled through the Port Directions  
Register (PRR1). The signal can be configured as an ESSI  
signal SC10 through the Port Control Register (PCR1).  
This input is 5 V tolerant.  
SC11  
PD1  
Input/Output2  
Input  
Disconnected Serial Control 1  
internally Selection of Synchronous or Asynchronous mode  
determines function. For Asynchronous mode, this signal is  
the receiver frame sync I/O. For Synchronous mode, this  
signal is either Transmitter 2 output or Serial I/O Flag 1.  
Input or Output2  
Port D 1  
The default configuration following reset is GPIO. For PD1,  
signal direction is controlled through PRR1. The signal can  
be configured as an ESSI signal SC11 through PCR1.  
This input is 5 V tolerant.  
SC12  
Input/Output2  
Input  
Disconnected Serial Control Signal 2  
internally Frame sync for both the transmitter and receiver in  
Synchronous mode, for the transmitter only in Asynchronous  
mode. When configured as an output, this signal is the  
internally generated frame sync signal. When configured as  
an input, this signal receives an external frame sync signal  
for the transmitter (and the receiver in Synchronous  
operation).  
PD2  
Input or Output2  
Port D 2  
The default configuration following reset is GPIO. For PD2,  
signal direction is controlled through PRR1. The signal can  
be configured as an ESSI signal SC12 through PCR1.  
This input is 5 V tolerant.  
1-18  
DSP56309 Technical Data  
 
Table 1-14. Enhanced Synchronous Serial Interface 1 (ESSI1) (Continued)  
State During1  
Signal  
Name  
Type  
Signal Description  
Reset  
Stop  
SCK1  
Input/Output2  
Input  
Disconnected Serial Clock  
internally  
Provides the serial bit rate clock for the ESSI interface. Clock  
input or output can be used by the transmitter and receiver in  
Synchronous modes, by the transmitter only in  
Asynchronous modes.  
Although an external serial clock can be independent of and  
asynchronous to the DSP system clock, it must exceed the  
minimum clock cycle time of 6T (that is, the system clock  
frequency must be at least three times the external ESSI  
clock frequency). The ESSI needs at least three DSP phases  
inside each half of the serial clock.  
PD3  
Input or Output2  
Port D 3  
The default configuration following reset is GPIO. For PD3,  
signal direction is controlled through PRR1. The signal can  
be configured as an ESSI signal SCK1 through PCR1.  
This input is 5 V tolerant.  
SRD1  
PD4  
Input/Output2  
Input  
Disconnected Serial Receive Data  
internally Receives serial data and transfers it to the ESSI receive shift  
register. SRD1 is an input when data is being received.  
Input or Output2  
Port D 4  
The default configuration following reset is GPIO. For PD4,  
signal direction is controlled through PRR1. The signal can  
be configured as an ESSI signal SRD1 through PCR1.  
This input is 5 V tolerant.  
STD1  
PD5  
Input/Output2  
Input  
Disconnected Serial Transmit Data  
internally Transmits data from the serial transmit shift register. STD1 is  
an output when data is being transmitted.  
Input or Output2  
Port D 5  
The default configuration following reset is GPIO. For PD5,  
signal direction is controlled through PRR1. The signal can  
be configured as an ESSI signal STD1 through PCR1.  
This input is 5 V tolerant.  
Note: 1. The Wait processing state does not affect the signal state.  
2. When configured as an output, these signals have a weak keeper circuit that maintains the last state  
externally even if all drivers are tri-stated.  
DSP56309 Technical Data  
1-19  
 
 
SERIAL COMMUNICATION INTERFACE (SCI)  
The Serial Communication interface (SCI) provides a full duplex port for serial communication with other  
DSPs, microprocessors, or peripherals such as modems.  
Table 1-15. Serial Communication Interface (SCI)  
State During1  
Signal  
Name  
Type  
Signal Description  
Reset  
Stop  
RXD  
Input  
Input  
Disconnected Serial Receive Data  
internally  
Receives byte-oriented serial data and transfers it to the SCI  
receive shift register.  
PE0  
Input or Output2  
Port E 0  
The default configuration following reset is GPIO. When  
configured as PE0, signal direction is controlled through the  
SCI Port Directions Register (PRR). The signal can be  
configured as an SCI signal RXD through the SCI Port  
Control Register (PCR).  
This input is 5 V tolerant.  
TXD  
PE1  
Output2  
Input  
Disconnected Serial Transmit Data  
internally Transmits data from SCI transmit data register.  
Input or Output2  
Port E 1  
The default configuration following reset is GPIO. When  
configured as PE1, signal direction is controlled through the  
SCI PRR. The signal can be configured as an SCI signal  
TXD through the SCI PCR.  
This input is 5 V tolerant.  
SCLK  
PE2  
Input/Output2  
Input  
Disconnected Serial Clock  
internally Provides the input or output clock used by the transmitter  
and/or the receiver.  
Input or Output2  
Port E 2  
The default configuration following reset is GPIO. For PE2,  
signal direction is controlled through the SCI PRR. The  
signal can be configured as an SCI signal SCLK through the  
SCI PCR.  
This input is 5 V tolerant.  
Note: 1. The Wait processing state does not affect the signal state.  
2. When configured as an output, these signals have a weak keeper circuit that maintains the last state  
externally even if all drivers are tri-stated.  
1-20  
DSP56309 Technical Data  
 
 
TIMERS  
The DSP56309 has three identical and independent timers. Each can use internal or external clocking,  
interrupt the DSP56309 after a specified number of events (clocks), or signal an external device after  
counting a specific number of internal events.  
Table 1-16. Triple Timer Signals  
State During1  
Signal  
Name  
Type  
Signal Description  
Reset  
Stop  
TIO0  
Input or Output2  
Input  
Disconnected Timer 0 Schmitt-Trigger Input/Output  
internally As an external event counter or in Measurement mode, TIO0  
is input. In Watchdog, Timer, or Pulse Modulation mode, TIO0  
is output.  
The default mode after reset is GPIO input. This can be  
changed to output or configured as a Timer Input/Output  
through the Timer 0 Control/Status Register (TCSR0).  
This input is 5 V tolerant.  
TIO1  
Input or Output2  
Input  
Disconnected Timer 1 Schmitt-Trigger Input/Output  
internally As an external event counter or in Measurement mode, TIO1  
is input. In Watchdog, Timer, or Pulse Modulation mode, TIO1  
is output.  
The default mode after reset is GPIO input. This can be  
changed to output or configured as a Timer Input/Output  
through the Timer 1 Control/Status Register (TCSR1).  
This input is 5 V tolerant.  
TIO2  
Input or Output2  
Input  
Disconnected Timer 2 Schmitt-Trigger Input/Output  
internally As an external event counter or in Measurement mode, TIO2  
is input. In Watchdog, Timer, or Pulse Modulation mode, TIO2  
is output.  
The default mode after reset is GPIO input. This can be  
changed to output or configured as a Timer Input/Output  
through the Timer 2 Control/Status Register (TCSR2).  
This input is 5 V tolerant.  
Note: 1. The Wait processing state does not affect the signal state.  
2. When configured as an output, these signals have a weak keeper circuit that maintains the last state externally  
even if all drivers are tri-stated.  
DSP56309 Technical Data  
1-21  
 
 
JTAG/ONCE INTERFACE  
Table 1-17. JTAG/OnCE Interface  
State During  
Reset  
Signal Name  
Type  
Signal Description  
TCK  
Input  
Input  
Input  
Input  
Test Clock  
A test clock signal for synchronizing JTAG test logic.  
This input is 5 V tolerant.  
TDI  
Test Data Input  
A test data serial signal for test instructions and data. TDI is  
sampled on the rising edge of TCK and has an internal  
pull-up resistor.  
This input is 5 V tolerant.  
TDO  
Output  
Tri-stated  
Test Data Output  
A test data serial signal for test instructions and data. TDO  
can be tri-stated. The signal is actively driven in the shift-IR  
and shift-DR controller states and changes on the falling  
edge of TCK.  
This input is 5 V tolerant.  
TMS  
Input  
Input  
Test Mode Select  
Sequences the test controller’s state machine, is sampled  
on the rising edge of TCK, and has an internal pull-up  
resistor.  
This input is 5 V tolerant.  
TRST  
Input  
Input  
Test Reset  
Asynchronously initializes the test controller, has an internal  
pull-up resistor, and must be asserted after power up.  
This input is 5 V tolerant.  
1-22  
DSP56309 Technical Data  
 
Table 1-17. JTAG/OnCE Interface (Continued)  
State During  
Signal Name  
Type  
Signal Description  
Reset  
DE  
Input/Output  
Input  
Debug Event  
Provides a way to enter Debug mode from an external  
command controller (as input) or to acknowledge that the  
chip has entered Debug mode (as output). When asserted  
as an input, DE causes the DSP56300 core to finish the  
current instruction, save the instruction pipeline information,  
enter Debug mode, and wait for commands from the debug  
serial input line. When a debug request or a breakpoint  
condition cause the chip to enter Debug mode DE is  
asserted as an output for three clock cycles. DE has an  
internal pull-up resistor.  
DE is not a standard part of the JTAG Test Access Port  
(TAP) Controller. It connects to the OnCE module to initiate  
Debug mode directly or to provide a direct external  
indication that the chip has entered the Debug mode. All  
other interface with the OnCE module must occur through  
the JTAG port.  
This input is 5 V tolerant.  
DSP56309 Technical Data  
1-23  
1-24  
DSP56309 Technical Data  
SECTION 2  
Specifications  
INTRODUCTION  
The DSP56309 is fabricated in high density CMOS with transistor-transistor logic (TTL) compatible  
inputs and outputs. The DSP56309 specifications are preliminary, based on design simulations, and may  
not be fully tested or guaranteed at this early stage of the product life cycle. In particular, certain speeds  
may not yet be available at certain power ranges. Finalized specifications will be published after full  
characterization and device qualifications are complete.  
MAXIMUM RATINGS  
CAUTION  
This device contains circuitry protecting  
against damage due to high static voltage or  
electrical fields; however, normal precautions  
should be taken to avoid exceeding maximum  
voltage ratings. Reliability is enhanced if  
unused inputs are tied to an appropriate logic  
voltage level (e.g., either GND or V  
).  
CCx  
Note:  
In the calculation of timing requirements, adding a maximum value of one specification to a  
minimum value of another specification does not yield a reasonable sum. A maximum  
specification is calculated using a worst case variation of process parameter values in one  
direction. The minimum specification is calculated using the worst case for the same parameters in  
the opposite direction. Therefore, a “maximum” value for a specification never occurs in the same  
device that has a “minimum” value for another specification; adding a maximum to a minimum  
represents a condition that can never exist.  
DSP56309 Technical Data  
2-1  
 
 
Table 2-1. Absolute Maximum Ratings1  
Rating  
Symbol  
Value  
Unit  
Supply Voltage  
VCC  
0.3 to +4.0  
GND 0.3 to VCC + 0.3  
GND 0.3 to 5.5  
10  
V
V
All input voltages excluding “5 V tolerant” inputs  
All “5 V tolerant” input voltages2  
VIN  
VIN5  
I
V
Current drain per pin excluding VCC and GND  
Operating temperature range  
mA  
°C  
°C  
TJ  
40 to +100  
Storage temperature  
TSTG  
55 to +150  
Notes: 1. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not  
guaranteed. Stress beyond the maximum rating may affect device reliability or cause permanent damage to  
the device.  
2. At power up, ensure that the voltage difference between the 5 V tolerant pins and the chip VCC never  
exceeds 3.5 V.  
THERMAL CHARACTERISTICS  
Table 2-2. Thermal Characteristics  
TQFP  
Value  
PBGA3  
Value  
PBGA4  
Value  
Characteristic  
Symbol  
Unit  
Junction-to-ambient thermal resistance1  
Junction-to-case thermal resistance2  
Thermal characterization parameter  
R
θJA or θJA  
θJC or θJC  
ΨJT  
49.3  
8.2  
49.4  
12.0  
2.0  
28.5  
°C/W  
°C/W  
°C/W  
R
5.5  
Notes: 1. Junction-to-ambient thermal resistance is based on measurements on a horizontal single-sided printed  
circuit board per JEDEC Specification JESD51-3.  
2. Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-88, with  
the exception that the cold plate temperature is used for the case temperature.  
3. These are simulated values. See note 1 for test board conditions.  
4. These are simulated values. The test board has two 2-ounce signal layers and two 1-ounce solid ground  
planes internal to the test board.  
2-2  
DSP56309 Technical Data  
 
 
 
DC ELECTRICAL CHARACTERISTICS  
Table 2-3. DC Operating Electrical Characteristics6  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Supply voltage  
VCC  
3.0  
3.3  
3.6  
V
Input high voltage  
D(0–23), BG, TA  
BB  
VIH  
VIH  
VIHP  
2.0  
2.3  
2.0  
VCC  
VCC  
5.25  
V
V
V
MOD1/IRQ1, RESET, PINIT/NMI and all  
JTAG/ESSI/SCI/Timer/HI08 pins  
EXTAL8  
VIHX  
0.8 × VCC  
VCC  
V
Input low voltage  
D(0–23), BG, BB, TA, MOD1/IRQ1, RESET, PINIT  
VIL  
VILP  
VILX  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.2 × VCC  
V
V
V
All JTAG/ESSI/SCI/Timer/HI08 pins  
EXTAL8  
Input leakage current  
IIN  
ITSI  
VOH  
–10  
–10  
10  
10  
µA  
µA  
High impedance (off-state) input current (@ 2.4 V / 0.4 V)  
Output high voltage  
TTL (IOH = –0.4 mA)5,7  
2.4  
CC – 0.01  
V
V
CMOS (IOH = –10 µA)5  
V
Output low voltage  
VOL  
TTL (IOL = 1.6 mA, open-drain pins IOL = 6.7 mA)5,7  
0.4  
0.01  
V
V
CMOS (IOL = 10 µA)5  
Internal supply current2:  
In Normal mode  
In Wait mode3  
In Stop mode4  
ICCI  
ICCW  
ICCS  
160  
7.5  
100  
mA  
mA  
µA  
PLL supply current  
Input capacitance5  
1
2.5  
10  
mA  
pF  
CIN  
Notes: 1. Refers to MODA/IRQA, MODB/IRQB, MODC/IRQC, and MODD/IRQD pins.  
2. Power Consumption Considerations on page 4-3 provides a formula to compute the estimated current  
requirements in Normal mode. In order to obtain these results, all inputs must be terminated (that is, not  
allowed to float). Measurements are based on synthetic intensive DSP benchmarks (see Appendix A).  
The power consumption numbers in this specification are 90 percent of the measured results of this  
benchmark. This reflects typical DSP applications. Typical internal supply current is measured with VCC  
3.3 V at TJ = 100°C.  
=
3. In order to obtain these results, all inputs must be terminated (that is, not allowed to float).  
4. In order to obtain these results, all inputs that are not disconnected at Stop mode must be terminated (that  
is, not allowed to float). PLL and XTAL signals are disabled during Stop state.  
5. Periodically sampled and not 100 percent tested.  
6. VCC = 3.3 V ± 0.3 V; TJ = –40°C to +100 °C, CL = 50 pF  
7. This characteristic does not apply to XTAL and PCAP.  
8. Driving EXTAL to the low VIHX or the high VILX value may cause additional power consumption (DC  
current). To minimize power consumption, the minimum VIHX should be no lower than  
0.9 × VCC and the maximum VILX should be no higher than 0.1 × VCC  
.
DSP56309 Technical Data  
2-3  
 
 
AC ELECTRICAL CHARACTERISTICS  
The timing waveforms shown in the AC electrical characteristics section are tested with a V maximum of  
IL  
0.3 V and a V minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels  
IH  
shown in Note 6 of Table 2-3. AC timing specifications, which are referenced to device input and output  
signals, are measured in production with respect to the 50 percent point of the respective signal transition.  
Note:  
Although the minimum value for the frequency of EXTAL is 0 MHz, the device AC test  
conditions are 15 MHz and rated speed.  
All specifications for the high impedance state are guaranteed by design.  
INTERNAL CLOCKS  
Table 2-4. Internal Clocks, CLKOUT  
Expression1, 2  
Typ  
Characteristics  
Symbol  
Min  
Max  
Internal operation frequency and CLKOUT with PLL enabled  
f
f
(Ef × MF)/  
(PDF × DF)  
Internal operation frequency and CLKOUT with PLL disabled  
Internal clock and CLKOUT high period  
Ef/2  
With PLL disabled  
With PLL enabled and MF 4  
TH  
ETC  
0.49 × ETC  
×
0.51 × ETC ×  
PDF × DF/MF  
PDF × DF/MF  
With PLL enabled and MF > 4  
0.47 × ETC  
×
0.53 × ETC  
×
PDF × DF/MF  
PDF × DF/MF  
Internal clock and CLKOUT low period  
With PLL disabled  
With PLL enabled and MF 4  
TL  
ETC  
0.49 × ETC  
×
0.51 × ETC  
×
PDF × DF/MF  
PDF × DF/MF  
With PLL enabled and MF > 4  
0.47 × ETC  
×
0.53 × ETC ×  
PDF × DF/MF  
PDF × DF/MF  
Internal clock and CLKOUT cycle time with PLL enabled  
TC  
ETC × PDF ×  
DF/MF  
Internal clock and CLKOUT cycle time with PLL disabled  
Instruction cycle time  
TC  
2 × ETC  
ICYC  
TC  
Notes: 1. DF = Division Factor; Ef = External frequency; ETC = External clock cycle = 1/Ef;  
MF = Multiplication Factor; PDF = Predivision Factor; TC = Internal clock cycle  
2. See the PLL and Clock Generator section in the DSP56300 Family Manual for a detailed discussion of the  
PLL.  
2-4  
DSP56309 Technical Data  
 
 
 
EXTERNAL CLOCK OPERATION  
The DSP56309 system clock can be derived from the onchip oscillator or it can be externally supplied.  
To use the on-chip oscillator, connect a crystal and associated resistor/capacitor components to EXTAL  
and XTAL; examples are shown in Figure 2-1.  
EXTAL  
XTAL  
R2  
EXTAL  
XTAL  
R
R1  
Note: Make sure that  
in the PCTL Register:  
XTLD (bit 16) = 0  
Note: Make sure that  
in the PCTL Register:  
XTLD (bit 16) = 0  
C
C
C
XTAL1  
C
XTAL1  
If f  
200 kHz,  
If f  
> 200 kHz,  
OSC  
OSC  
XTLR (bit 15) = 1  
XTLR (bit 15) = 0  
Fundamental Frequency  
Fork Crystal Oscillator  
Fundamental Frequency  
Crystal Oscillator  
Suggested Component Values:  
Suggested Component Values:  
OSC  
f
= 20 MHz  
f
= 4 MHz  
f
= 32.768 kHz  
OSC  
OSC  
R = 680 kΩ ± 10%  
C = 56 pF ± 20%  
R = 680 kΩ ± 10%  
C = 22 pF ± 20%  
R1 = 3.9 MΩ ± 10%  
C = 22 pF ± 20%  
R2 = 200 kΩ ± 10%  
Calculations were done for a 4/20 MHz crystal with the  
following parameters:  
Calculations were done for a 32.768 kHz crystal with the  
following parameters:  
C of 30/20 pF,  
L
C of 7/6 pF,  
load capacitance (C ) of 12.5 pF,  
0
L
series resistance of 100/20 , and  
drive level of 2 mW.  
shunt capacitance (C ) of 1.8 pF,  
series resistance of 40 k, and  
drive level of 1 µW.  
0
Figure 2-1. Crystal Oscillator Circuits  
If an externally supplied square wave voltage source is used, disable the internal oscillator circuit during  
bootup by setting XTLD (PCTL Register bit 16 = 1—see Section 4.7 in the DSP56309 User’s Manual).  
The external square wave source connects to EXTAL; XTAL is not physically connected to the board or  
socket. Figure 2-2 shows the relationship between the EXTAL input and the internal clock and CLKOUT.  
VIHX  
Midpoint  
EXTAL  
ETH  
ETL  
VILX  
2
3
Note: The midpoint is 0.5 (VIHX + VILX).  
5
4
ETC  
5
CLKOUT with  
PLL disabled  
7
7
CLKOUT with  
PLL enabled  
6a  
6b  
Figure 2-2. External Clock Timing  
DSP56309 Technical Data  
2-5  
 
 
 
Table 2-5. Clock Operation  
100 MHz  
No.  
Characteristics  
Symbol  
Min  
Max  
1
2
Frequency of EXTAL (EXTAL Pin Frequency)  
The rise and fall time of this external clock should be 3 ns maximum.  
Ef  
0
100.0  
MHz  
EXTAL input high1, 2  
With PLL disabled (46.7%–53.3% duty cycle6)  
With PLL enabled (42.5%–57.5% duty cycle6)  
ETH  
ETL  
ETC  
4.67 ns  
4.25 ns 157.0 µs  
3
4
EXTAL input low1, 2  
With PLL disabled (46.7%–53.3% duty cycle6)  
With PLL enabled (42.5%–57.5% duty cycle6)  
4.67 ns  
4.25 ns 157.0 µs  
EXTAL cycle time2  
With PLL disabled  
With PLL enabled  
10.00 ns  
10.00 ns 273.1 µs  
5
6
CLKOUT change from EXTAL fall with PLL disabled  
4.3 ns  
0.0 ns  
11.0 ns  
1.8 ns  
a. CLKOUT rising edge from EXTAL rising edge with PLL enabled  
(MF = 1, 2, or 4; PDF = 1; Ef > 15 MHz)3,5  
b. CLKOUT falling edge from EXTAL falling edge with PLL enabled  
0.0 ns  
1.8 ns  
(MF 4, PDF 1, Ef / PDF > 15 MHz)3,5  
7
Instruction cycle time = ICYC = TC4 (see Table 2-5) (46.7%–53.3% duty cycle)  
With PLL disabled  
With PLL enabled  
ICYC  
20.0 ns  
10.00 ns 8.53 µs  
Notes: 1. Measured at 50 percent of the input transition  
2. The maximum value for PLL enabled is given for minimum VCO and maximum MF.  
3. Periodically sampled and not 100 percent tested  
4. The maximum value for PLL enabled is given for minimum VCO and maximum DF.  
5. The skew is not guaranteed for any other MF value.  
6. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum  
clock high or low time required for correction operation, however, remains the same at lower operating  
frequencies; therefore, when a lower clock frequency is used, the signal symmetry may vary from the  
specified duty cycle as long as the minimum high time and low time requirements are met.  
2-6  
DSP56309 Technical Data  
 
 
PHASE LOCK LOOP (PLL) CHARACTERISTICS  
Table 2-6. PLL Characteristics  
100 MHz  
Characteristics  
Unit  
Min  
Max  
VCO frequency when PLL enabled (MF × Ef × 2/PDF)  
30  
200  
MHz  
)
PLL external capacitor (PCAP pin to VCCP) (CPCAP  
@ MF 4  
@ MF > 4  
(MF × 580) 100  
MF × 830  
(MF × 780) 140  
MF × 1470  
pF  
pF  
Note:  
CPCAP is the value of the PLL capacitor (connected between the PCAP pin and VCCP). The recommended value  
in pF for CPCAP can be computed from one of the following equations:  
(680 × MF) – 120, for MF 4, or  
1100 × MF, for MF > 4.  
RESET, STOP, MODE SELECT, AND INTERRUPT TIMING  
Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing6  
100 MHz  
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
8
9
Delay from RESET assertion to all pins at reset value3  
Required RESET duration4  
26.0  
ns  
Minimum:  
50 × ETC  
1000 × ETC  
75000 × ETC  
75000 × ETC  
2.5 × TC  
Power on, external clock generator, PLL disabled  
500.0  
10.0  
0.75  
0.75  
25.0  
25.0  
ns  
µs  
ms  
ms  
ns  
Power on, external clock generator, PLL enabled  
Power on, internal oscillator  
During STOP, XTAL disabled (PCTL Bit 16 = 0)  
During STOP, XTAL enabled (PCTL Bit 16 = 1)  
During normal operation  
2.5 × TC  
ns  
10 Delay from asynchronous RESET deassertion to first  
external address output (internal reset deassertion)5  
Minimum  
Maximum  
3.25 × TC + 2.0  
20.25 × TC + 10.0  
34.5  
212.5  
ns  
ns  
11 Synchronous reset setup time from RESET deassertion to  
CLKOUT Transition 1  
Minimum  
Maximum  
5.9  
10.0  
ns  
ns  
TC  
12 Synchronous reset deasserted, delay time from the CLKOUT  
Transition 1 to the first external address output  
Minimum  
Maximum  
3.25 × TC + 1.0  
20.25 × TC + 1.0  
33.5  
207.5  
ns  
ns  
13 Mode select setup time  
14 Mode select hold time  
30.0  
0.0  
ns  
ns  
DSP56309 Technical Data  
2-7  
 
 
 
 
 
 
 
Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing6 (Continued)  
100 MHz  
Min Max  
No.  
Characteristics  
Expression  
Unit  
15 Minimum edge-triggered interrupt request assertion width  
6.6  
ns  
ns  
16 Minimum edge-triggered interrupt request deassertion width  
6.6  
17 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to  
external memory access address out valid  
Minimum:  
Caused by first interrupt instruction fetch  
Caused by first interrupt instruction execution  
4.25 × TC + 2.0  
7.25 × TC + 2.0  
44.5  
74.5  
ns  
ns  
18 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to  
general-purpose transfer output valid caused by first  
interrupt instruction execution  
Minimum:  
10 × TC + 5.0  
105.0  
ns  
19 Delay from address output valid caused by first interrupt  
Maximum:  
instruction execute to interrupt request deassertion for level 3.75 × TC + WS × TC – 10.948  
Note 8 ns  
Note 8 ns  
sensitive fast interrupts1  
20 Delay from RD assertion to interrupt request deassertion for  
level sensitive fast interrupts1  
Maximum:  
3.25 × TC + WS × TC – 10.948  
21 Delay from WR assertion to interrupt request deassertion for  
level sensitive fast interrupts1  
Maximum:  
DRAM for all WS7  
SRAM WS = 1  
(WS + 3.5) × TC – 10.948  
(WS + 3.5) × TC – 10.948  
(WS + 3) × TC – 10.948  
(WS + 2.5) × TC – 10.948  
Note 8 ns  
Note 8 ns  
Note 8 ns  
Note 8 ns  
SRAM WS = 2, 3  
SRAM WS 4  
22 Synchronous interrupt setup time from IRQA, IRQB, IRQC,  
IRQD, NMI assertion to the CLKOUT Transition 2  
5.9  
TC  
ns  
23 Synchronous interrupt delay time from the CLKOUT  
Transition 2 to the first external address output valid caused  
by the first instruction fetch after coming out of Wait  
Processing state  
Minimum  
Maximum  
8.25 × TC + 1.0  
24.75 × TC + 5.0  
83.5  
252.5  
ns  
ns  
24 Duration for IRQA assertion to recover from Stop state  
5.9  
ns  
25 Delay from IRQA assertion to fetch of first instruction (when  
exiting Stop)2, 3  
PLL is not active during Stop (PCTL Bit 17 = 0) and Stop PLC × ETC × PDF + (128 K −  
delay is enabled (OMR Bit 6 = 0) PLC/2) × TC  
1.3  
13.6  
ms  
PLL is not active during Stop (PCTL Bit 17 = 0) and Stop PLC × ETC × PDF + (23.75 ± 232.5 12.3  
delay is not enabled (OMR Bit 6 = 1)  
0.5) × TC  
ns  
ms  
PLL is active during Stop (PCTL Bit 17 = 1) (Implies No  
Stop Delay)  
(9.25 ± 0.5) × TC  
87.5  
97.5  
ns  
2-8  
DSP56309 Technical Data  
Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing6 (Continued)  
100 MHz  
Min Max  
No.  
Characteristics  
Expression  
Unit  
26 Duration of level sensitive IRQA assertion to ensure interrupt  
service (when exiting Stop)2, 3  
Minimum:  
PLL is not active during Stop (PCTL Bit 17 = 0) and Stop  
delay is enabled  
(OMR Bit 6 = 0)  
PLL is not active during Stop (PCTL Bit 17 = 0) and Stop  
delay is not enabled  
(OMR Bit 6 = 1)  
PLC × ETC × PDF +  
(128K PLC/2) × TC  
13.6  
12.3  
55.0  
ms  
ms  
ns  
PLC × ETC × PDF +  
(20.5 ± 0.5) × TC  
PLL is active during Stop (PCTL Bit 17 = 1) (implies no  
Stop delay)  
5.5 × TC  
27 Interrupt Requests Rate  
Maximum:  
12TC  
HI08, ESSI, SCI, Timer  
DMA  
IRQ, NMI (edge trigger)  
IRQ, NMI (level trigger)  
120.0  
80.0  
80.0  
ns  
ns  
ns  
ns  
8TC  
8TC  
12TC  
120.0  
28 DMA Requests Rate  
Maximum:  
6TC  
Data read from HI08, ESSI, SCI  
Data write to HI08, ESSI, SCI  
Timer  
60.0  
70.0  
20.0  
30.0  
ns  
ns  
ns  
ns  
7TC  
2TC  
3TC  
IRQ, NMI (edge trigger)  
29 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to  
external memory (DMA source) access address out valid  
Minimum:  
4.25 × TC + 2.0  
44.5  
ns  
Notes: 1. When fast interrupts are used and IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19  
through 21 apply to prevent multiple interrupt service. To avoid these timing restrictions, the deasserted  
Edge-triggered mode is recommended when using fast interrupts. Long interrupts are recommended when  
Level-sensitive mode is used.  
DSP56309 Technical Data  
2-9  
Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing6 (Continued)  
100 MHz  
Min Max  
No.  
Characteristics  
Expression  
Unit  
2. This timing depends on several settings:  
For PLL disable, using internal oscillator (PLL Control Register (PCTL) Bit 16 = 0) and oscillator disabled  
during Stop (PCTL Bit 17 = 0), a stabilization delay is required to assure the oscillator is stable before  
executing programs. In that case, resetting the Stop delay (OMR Bit 6 = 0) provides the proper delay. While  
it is possible to set OMR Bit 6 = 1, it is not recommended and these specifications do not guarantee timings  
for that case.  
For PLL disable, using internal oscillator (PCTL Bit 16 = 0) and oscillator enabled during Stop (PCTL Bit  
17=1), no stabilization delay is required and recovery time is minimal (OMR Bit 6 setting is ignored).  
For PLL disable, using external clock (PCTL Bit 16 = 1), no stabilization delay is required and recovery time  
is defined by the PCTL Bit 17 and OMR Bit 6 settings.  
For PLL enable, if PCTL Bit 17 is 0, the PLL is shutdown during Stop. Recovering from Stop requires the  
PLL to lock. The PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 0 to 1000  
cycles. This procedure occurs in parallel with the stop delay counter, and stop recovery ends when the last  
of these two events occurs. The stop delay counter completes count or PLL lock procedure.  
PLC value for PLL disable is 0.  
The maximum value for ETC is 4096 (maximum MF) divided by the desired internal frequency (that is, for 66  
MHz it is 4096/66 MHz = 62 µs). During the stabilization period, TC, TH, and TL are not constant, and their  
width may vary, so timing may vary as well.  
3. Periodically sampled and not 100 percent tested  
4. For an external clock generator, RESET duration is measured during the time in which RESET is asserted,  
VCC is valid, and the EXTAL input is active and valid.  
For internal oscillator, RESET duration is measured during the time in which RESET is asserted and VCC is  
valid. The specified timing reflects the crystal oscillator stabilization time after power-up. This number is  
affected both by the specifications of the crystal and other components connected to the oscillator and  
reflects worst case conditions.  
When the VCC is valid, but the other “required RESET duration” conditions (as specified above) are not yet  
met, the device circuitry is in an uninitialized state that can result in significant power consumption and  
heat-up. Designs should minimize this state to the shortest possible duration.  
5. If PLL does not lose lock  
6. VCC = 3.3 V ± 0.3 V; TJ = –40°C to +100°C, CL = 50 pF  
7. WS = number of wait states (measured in clock cycles, number of TC)  
8. Use expression to compute maximum value.  
2-10  
DSP56309 Technical Data  
VIH  
RESET  
9
10  
8
All Pins  
Reset Value  
A[0–17]  
First Fetch  
Figure 2-3. Reset Timing  
CLKOUT  
11  
RESET  
12  
A[0–17]  
Figure 2-4. Synchronous Reset Timing  
DSP56309 Technical Data  
2-11  
 
 
First Interrupt Instruction  
Execution/Fetch  
A[0–17]  
RD  
20  
WR  
21  
19  
17  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O  
18  
IRQA,  
IRQB,  
IRQC,  
IRQD,  
NMI  
b) General Purpose I/O  
Figure 2-5. External Fast Interrupt Timing  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
15  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
16  
Figure 2-6. External Interrupt Timing (Negative Edge-Triggered)  
2-12  
DSP56309 Technical Data  
 
 
CLKOUT  
22  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
23  
A[0–17]  
Figure 2-7. Synchronous Interrupt from Wait State Timing  
VIH  
RESET  
13  
14  
VIH  
VIL  
VIH  
VIL  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
MODA, MODB,  
MODC, MODD,  
PINIT  
Figure 2-8. Operating Mode Select Timing  
24  
IRQA  
25  
First Instruction Fetch  
A[0–17]  
Figure 2-9. Recovery from Stop State Using IRQA  
DSP56309 Technical Data  
2-13  
 
 
 
26  
IRQA  
25  
First IRQA Interrupt  
Instruction Fetch  
A[0–17]  
Figure 2-10. Recovery from Stop State Using IRQA Interrupt Service  
DMA Source Address  
A[0–17]  
RD  
WR  
29  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
First Interrupt Instruction Execution  
Figure 2-11. External Memory Access (DMA Source) Timing  
2-14  
DSP56309 Technical Data  
 
 
EXTERNAL MEMORY EXPANSION PORT (PORT A)  
SRAM Timing  
Table 2-8. SRAM Read and Write Accesses3,5  
100 MHz  
No.  
Characteristics  
Symbol  
Expression1  
Unit  
Min  
Max  
100 Address valid and AA assertion pulse width2  
101 Address and AA valid to WR assertion  
102 WR assertion pulse width  
tRC, tWC  
(WS + 1) × TC 4.0  
[1 WS 3]  
(WS + 2) × TC 4.0  
[4 WS 7]  
(WS + 3) × TC 4.0  
[WS 8]  
16.0  
56.0  
ns  
ns  
ns  
106.0  
tAS  
tWP  
tWR  
0.25 × TC 2.0  
[WS = 1]  
0.75 × TC 2.0  
[2 WS 3]  
1.25 × TC 2.0  
[WS 4]  
0.5  
5.5  
ns  
ns  
ns  
10.5  
1.5 × TC 4.0  
[WS = 1]  
WS × TC 4.0  
[2 WS 3]  
11.0  
16.0  
31.0  
ns  
ns  
ns  
(WS 0.5) × TC 4.0  
[WS 4]  
103 WR deassertion to address not valid  
0.25 × TC 2.0  
[1 WS 3]  
1.25 × TC 4.0  
[4 WS 7]  
2.25 × TC 4.0  
[WS 8]  
0.5  
8.5  
ns  
ns  
ns  
18.5  
104 Address and AA valid to input data valid  
105 RD assertion to input data valid  
t
AA, tAC  
(WS + 0.75) × TC −  
5.0  
12.5  
7.5  
ns  
ns  
[WS 1]  
tOE  
(WS + 0.25) × TC –  
5.0  
[WS 1]  
106 RD deassertion to data not valid (data hold time)  
107 Address valid to WR deassertion2  
tOHZ  
tAW  
0.0  
ns  
ns  
(WS + 0.75) × TC −  
4.0  
13.5  
[WS 1]  
108 Data valid to WR deassertion (data setup time)  
tDS  
(tDW  
(WS 0.25) × TC −  
3.0  
4.5  
ns  
)
[WS 1]  
DSP56309 Technical Data  
2-15  
 
 
Table 2-8. SRAM Read and Write Accesses3,5 (Continued)  
100 MHz  
No.  
Characteristics  
Symbol  
Expression1  
Unit  
Min  
Max  
109 Data hold time from WR deassertion  
tDH  
0.25 × TC 2.0  
[1 WS 3]  
1.25 × TC 2.0  
[4 WS 7]  
2.25 × TC 2.0  
[WS 8]  
0.5  
ns  
ns  
ns  
10.5  
20.5  
110 WR assertion to data active  
0.75 × TC 3.7  
[WS = 1]  
0.25 × TC – 3.7  
[2 WS 3]  
-0.25 × TC 3.7  
[WS 4]  
3.8  
-1.2  
-6.2  
ns  
ns  
ns  
111 WR deassertion to data high impedance  
112 Previous RD deassertion to data active (write)  
113 RD deassertion time  
0.25 × TC + 0.2  
[1 WS 3]  
1.25 × TC + 0.2  
[4 WS 7]  
2.25 × TC + 0.2  
[WS > 8]  
2.7  
ns  
ns  
ns  
12.7  
22.7  
1.25 × TC – 4.0  
[1 WS 3]  
2.25 × TC – 4.0  
[4 WS 7]  
3.25 × TC – 4.0  
[WS > 8]  
8.5  
ns  
ns  
ns  
18.5  
28.5  
0.75 × TC 4.0  
[1 WS 3]  
1.75 × TC 4.0  
[4 WS 7]  
2.75 × TC 4.0  
[WS 8]  
3.5  
ns  
ns  
ns  
13.5  
23.5  
114 WR deassertion time  
0.5 × TC 4.0  
[WS = 1]  
1.0  
6.0  
ns  
ns  
ns  
ns  
TC 4.0  
[2 WS 3]  
2.5 × TC 4.0  
[4 WS 7]  
3.5 × TC 4.0  
[WS 8]  
21.0  
31.0  
115 Address valid to RD assertion  
116 RD assertion pulse width  
0.5 × TC 4.0  
1.0  
8.5  
ns  
ns  
(WS + 0.25) × TC  
4.0  
117 RD deassertion to address not valid  
0.25 × TC 2.0  
[1 WS 3]  
1.25 × TC 2.0  
[4 WS 7]  
2.25 × TC 2.0  
[WS 8]  
0.5  
ns  
ns  
ns  
10.5  
20.5  
2-16  
DSP56309 Technical Data  
Table 2-8. SRAM Read and Write Accesses3,5 (Continued)  
100 MHz  
No.  
Characteristics  
Symbol  
Expression1  
Unit  
Min  
Max  
118 TA setup before RD or WR deassertion4  
0.25 × TC + 2.0  
4.5  
ns  
ns  
119 TA hold after RD or WR deassertion  
0
Notes: 1. WS is the number of wait states specified in the BCR.  
2. Timings 100, 107 are guaranteed by design, not tested.  
3. All timings for 100 MHz are measured from 0.5 · Vcc to 0.5 · Vcc  
4. In the case of TA deassertion, timing 118 is relative to the deassertion edge of RD or WR if TA were to  
remain active  
5.  
VCC = 3.3 V ± 0.3 V; TJ = –40°C to +100°C, CL = 50 pF  
100  
A[0–17]  
AA[0–3]  
117  
106  
113  
116  
RD  
115  
105  
WR  
104  
118  
119  
TA  
Data  
In  
D[0–23]  
Note: Address lines A[0–17] hold their state after a  
read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-12. SRAM Read Access  
DSP56309 Technical Data  
2-17  
 
100  
A[0–17]  
AA[0–3]  
107  
101  
102  
103  
WR  
114  
RD  
TA  
119  
118  
108  
111  
110  
109  
112  
Data  
Out  
D[0–23]  
Note: Address lines A[0–17] hold their state after a  
read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-13. SRAM Write Access  
2-18  
DSP56309 Technical Data  
 
DRAM Timing  
The selection guides in Figure 2-14 and Figure 2-17 are for primary selection only. Final selection should  
be based on the timing values in the following timing tables. For example, the selection guide suggests that  
four wait states be used for 100 MHz operation with Page Mode DRAM. However, a designer can use the  
information in the appropriate table to determine the conditions under which fewer wait states can be used.  
The designer can identify specific timings that prevent operation at 100 MHz and then use one of the  
following methods to adjust the operation:  
Run the chip at a slightly lower frequency (for example, 95 MHz).  
Use faster DRAMs.  
Manipulate control factors such as capacitive and resistive load to improve overall system  
performance.  
DRAM type  
(tRAC ns)  
Note: This figure should be used for primary  
selection. For exact and detailed timings see  
Table 2-9 and Table 2-10.  
100  
80  
70  
60  
50  
Chip frequency  
(MHz)  
120  
40  
66  
80  
100  
1 Wait states  
2 Wait states  
3 Wait states  
4 Wait states  
Figure 2-14. DRAM Page Mode Wait States Selection Guide  
DSP56309 Technical Data  
2-19  
 
 
Table 2-9. DRAM Page Mode Timings, Three Wait States1, 2, 3  
100 MHz  
Min Max  
No.  
Characteristics  
Symbol  
Expression  
Unit  
131 Page mode cycle time for two consecutive accesses of  
the same direction  
4 × TC  
40.0  
35.0  
ns  
ns  
Page mode cycle time for mixed (read and write)  
accesses4  
tPC  
3.5 × TC  
132 CAS assertion to data valid (read)  
tCAC  
tAA  
2 × TC 5.7  
3 × TC 5.7  
14.3  
24.3  
ns  
ns  
ns  
ns  
ns  
ns  
133 Column address valid to data valid (read)  
134 CAS deassertion to data not valid (read hold time)  
135 Last CAS assertion to RAS deassertion  
136 Previous CAS deassertion to RAS deassertion  
137 CAS assertion pulse width  
tOFF  
tRSH  
tRHCP  
tCAS  
tCRP  
0.0  
2.5 × TC 4.0  
4.5 × TC 4.0  
2 × TC 4.0  
21.0  
41.0  
16.0  
138 Last CAS deassertion to RAS assertion5  
BRW[1–0] = 00, 01—not applicable  
BRW[1–0] = 10  
BRW[1–0] = 11  
41.5  
61.5  
ns  
ns  
4.75 × TC 6.0  
6.75 × TC 6.0  
139 CAS deassertion pulse width  
tCP  
tASC  
tCAH  
tRAL  
tRCS  
tRCH  
tWCH  
tWP  
1.5 × TC 4.0  
TC 4.0  
11.0  
6.0  
19.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
140 Column address valid to CAS assertion  
141 CAS assertion to column address not valid  
142 Last column address valid to RAS deassertion  
143 WR deassertion to CAS assertion  
144 CAS deassertion to WR assertion  
145 CAS assertion to WR deassertion  
146 WR assertion pulse width  
2.5 × TC 4.0  
4 × TC 4.0  
21.0  
36.0  
8.5  
1.25 × TC 4.0  
0.75 × TC 4.0  
2.25 × TC 4.2  
3.5 × TC 4.5  
3.75 × TC 4.3  
3.25 × TC 4.3  
0.5 × TC – 4.5  
2.5 × TC 4.0  
1.25 × TC 4.3  
3.5 × TC 4.0  
2.5 × TC 5.7  
3.5  
18.3  
30.5  
33.2  
28.2  
0.5  
147 Last WR assertion to RAS deassertion  
148 WR assertion to CAS deassertion  
149 Data valid to CAS assertion (write)  
150 CAS assertion to data not valid (write)  
151 WR assertion to CAS assertion  
152 Last RD assertion to RAS deassertion  
153 RD assertion to data valid  
tRWL  
tCWL  
tDS  
tDH  
21.0  
8.2  
tWCS  
tROH  
tGA  
31.0  
2-20  
DSP56309 Technical Data  
 
Table 2-9. DRAM Page Mode Timings, Three Wait States1, 2, 3 (Continued)  
100 MHz  
Min Max  
No.  
Characteristics  
Symbol  
Expression  
Unit  
154 RD deassertion to data not valid6  
155 WR assertion to data active  
tGZ  
0.0  
6.0  
ns  
ns  
ns  
0.75 × TC – 1.5  
0.25 × TC  
156 WR deassertion to data high impedance  
2.5  
Notes: 1. The number of wait states for Page mode access is specified in the DCR.  
2. The refresh period is specified in the DCR.  
3. The asynchronous delays specified in the expressions are valid for DSP56309.  
4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (for  
example, tPC equals 4 × TC for read-after-read or write-after-write sequences).  
5. BRW[1–0] (DRAM control register bits) defines the number of wait states that should be inserted in each  
DRAM out-of page-access.  
6. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ  
.
Table 2-10. DRAM Page Mode Timings, Four Wait States1, 2, 3  
100 MHz  
No.  
Characteristics  
Symbol  
Expression4  
Unit  
Min  
Max  
131 Page mode cycle time for two consecutive accesses of  
the same direction  
5 × TC  
50.0  
ns  
ns  
Page mode cycle time for mixed (read and write)  
accesses4  
tPC  
4.5 × TC  
45.0  
132 CAS assertion to data valid (read)  
tCAC  
tAA  
2.75 × TC 5.7  
3.75 × TC 5.7  
21.8  
31.8  
ns  
ns  
ns  
ns  
ns  
ns  
133 Column address valid to data valid (read)  
134 CAS deassertion to data not valid (read hold time)  
135 Last CAS assertion to RAS deassertion  
136 Previous CAS deassertion to RAS deassertion  
137 CAS assertion pulse width  
tOFF  
tRSH  
tRHCP  
tCAS  
tCRP  
0.0  
3.5 × TC 4.0  
6 × TC 4.0  
31.0  
56.0  
21.0  
2.5 × TC 4.0  
138 Last CAS deassertion to RAS assertion5  
BRW[1–0] = 00, 01—Not applicable  
BRW[1–0] = 10  
BRW[1–0] = 11  
46.5  
66.5  
ns  
ns  
5.25 × TC 6.0  
7.25 × TC 6.0  
139 CAS deassertion pulse width  
tCP  
2 × TC 4.0  
TC 4.0  
16.0  
6.0  
ns  
ns  
ns  
140 Column address valid to CAS assertion  
141 CAS assertion to column address not valid  
tASC  
tCAH  
3.5 × TC 4.0  
31.0  
DSP56309 Technical Data  
2-21  
 
Table 2-10. DRAM Page Mode Timings, Four Wait States1, 2, 3 (Continued)  
100 MHz  
Min Max  
No.  
Characteristics  
Symbol  
Expression4  
Unit  
142 Last column address valid to RAS deassertion  
143 WR deassertion to CAS assertion  
144 CAS deassertion to WR assertion  
145 CAS assertion to WR deassertion  
146 WR assertion pulse width  
tRAL  
tRCS  
tRCH  
tWCH  
tWP  
5 × TC 4.0  
1.25 × TC 4.0  
1.25 × TC – 3.7  
3.25 × TC 4.2  
4.5 × TC 4.5  
4.75 × TC 4.3  
3.75 × TC 4.3  
0.5 × TC – 4.5  
3.5 × TC 4.0  
1.25 × TC 4.3  
4.5 × TC 4.0  
3.25 × TC 5.7  
46.0  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8.8  
28.3  
40.5  
43.2  
33.2  
0.5  
147 Last WR assertion to RAS deassertion  
148 WR assertion to CAS deassertion  
149 Data valid to CAS assertion (write)  
150 CAS assertion to data not valid (write)  
151 WR assertion to CAS assertion  
152 Last RD assertion to RAS deassertion  
153 RD assertion to data valid  
tRWL  
tCWL  
tDS  
tDH  
31.0  
8.2  
tWCS  
tROH  
tGA  
41.0  
26.8  
154 RD deassertion to data not valid6  
155 WR assertion to data active  
tGZ  
0.0  
0.75 × TC – 1.5  
0.25 × TC  
6.0  
156 WR deassertion to data high impedance  
2.5  
Notes: 1. The number of wait states for Page mode access is specified in the DCR.  
2. The refresh period is specified in the DCR.  
3. The asynchronous delays specified in the expressions are valid for DSP56309.  
4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (for  
example, tPC equals 3 × TC for read-after-read or write-after-write sequences).  
5. BRW[1–0] (DRAM control register bits) defines the number of wait states that should be inserted in each  
DRAM out-of-page access.  
6. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ  
.
2-22  
DSP56309 Technical Data  
RAS  
CAS  
136  
135  
131  
137  
139  
141  
138  
140  
151  
142  
Column  
Address  
Last Column  
Address  
Column  
Address  
Row  
Add  
A[0–17]  
144  
145  
147  
WR  
RD  
146  
148  
155  
149  
156  
150  
D[0–23]  
Data Out  
Data Out  
Data Out  
Figure 2-15. DRAM Page Mode Write Accesses  
DSP56309 Technical Data  
2-23  
 
RAS  
136  
135  
131  
CAS  
137  
139  
141  
138  
142  
140  
Row  
Add  
Last Column  
Address  
Column  
Address  
Column  
Address  
A[0–17]  
WR  
143  
132  
133  
153  
152  
RD  
134  
154  
D[0–23]  
Data In  
Data In  
Data In  
Figure 2-16. DRAM Page Mode Read Accesses  
2-24  
DSP56309 Technical Data  
 
DRAM Type  
(tRAC ns)  
Note: This figure should be used for primary selection. For exact  
and detailed timings, see Table 2-11 and Table 2-12.  
100  
80  
70  
60  
Chip Frequency  
(MHz)  
50  
120  
40 66  
80  
100  
4 Wait States  
8 Wait States  
11 Wait States  
15 Wait States  
Figure 2-17. DRAM Out-of-Page Wait States Selection Guide  
Table 2-11. DRAM Out-of-Page and Refresh Timings, Eleven Wait States1, 2  
100 MHz  
No.  
Characteristics  
Symbol  
Expression  
Unit  
Min  
Max  
157 Random read or write cycle time  
158 RAS assertion to data valid (read)  
159 CAS assertion to data valid (read)  
160 Column address valid to data valid (read)  
161 CAS deassertion to data not valid (read hold time)  
162 RAS deassertion to RAS assertion  
163 RAS assertion pulse width  
tRC  
tRAC  
tCAC  
tAA  
12 × TC  
120.0  
55.5  
30.5  
38.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6.25 × TC 7.0  
3.75 × TC 7.0  
4.5 × TC 7.0  
tOFF  
tRP  
0.0  
4.25 × TC 4.0  
7.75 × TC 4.0  
5.25 × TC 4.0  
6.25 × TC 4.0  
38.5  
73.5  
48.5  
58.5  
tRAS  
tRSH  
tCSH  
164 CAS assertion to RAS deassertion  
165 RAS assertion to CAS deassertion  
DSP56309 Technical Data  
2-25  
 
 
 
Table 2-11. DRAM Out-of-Page and Refresh Timings, Eleven Wait States1, 2 (Continued)  
100 MHz  
No.  
Characteristics  
Symbol  
Expression  
Unit  
Min  
Max  
166 CAS assertion pulse width  
tCAS  
tRCD  
tRAD  
tCRP  
tCP  
3.75 × TC 4.0  
2.5 × TC ± 4.0  
1.75 × TC ± 4.0  
5.75 × TC 4.0  
4.25 × TC – 6.0  
4.25 × TC 4.0  
1.75 × TC 4.0  
0.75 × TC 4.0  
5.25 × TC 4.0  
7.75 × TC 4.0  
6 × TC 4.0  
33.5  
21.0  
13.5  
53.5  
36.5  
38.5  
13.5  
3.5  
29.0  
21.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
167 RAS assertion to CAS assertion  
168 RAS assertion to column address valid  
169 CAS deassertion to RAS assertion  
170 CAS deassertion pulse width  
171 Row address valid to RAS assertion  
172 RAS assertion to row address not valid  
173 Column address valid to CAS assertion  
174 CAS assertion to column address not valid  
175 RAS assertion to column address not valid  
176 Column address valid to RAS deassertion  
177 WR deassertion to CAS assertion  
178 CAS deassertion to WR3 assertion  
179 RAS deassertion to WR3 assertion  
180 CAS assertion to WR deassertion  
181 RAS assertion to WR deassertion  
182 WR assertion pulse width  
tASR  
tRAH  
tASC  
tCAH  
tAR  
48.5  
73.5  
56.0  
26.0  
13.8  
0.5  
tRAL  
tRCS  
tRCH  
tRRH  
tWCH  
tWCR  
tWP  
3.0 × TC 4.0  
1.75 × TC – 3.7  
0.25 × TC 2.0  
5 × TC 4.2  
45.8  
70.8  
110.5  
113.2  
98.2  
53.5  
48.5  
73.5  
60.7  
11.0  
23.5  
111.0  
7.5 × TC 4.2  
11.5 × TC 4.5  
11.75 × TC 4.3  
10.25 × TC 4.3  
5.75 × TC 4.0  
5.25 × TC 4.0  
7.75 × TC 4.0  
6.5 × TC 4.3  
1.5 × TC 4.0  
2.75 × TC 4.0  
11.5 × TC 4.0  
183 WR assertion to RAS deassertion  
184 WR assertion to CAS deassertion  
185 Data valid to CAS assertion (write)  
186 CAS assertion to data not valid (write)  
187 RAS assertion to data not valid (write)  
188 WR assertion to CAS assertion  
tRWL  
tCWL  
tDS  
tDH  
tDHR  
tWCS  
tCSR  
tRPC  
tROH  
189 CAS assertion to RAS assertion (refresh)  
190 RAS deassertion to CAS assertion (refresh)  
191 RD assertion to RAS deassertion  
2-26  
DSP56309 Technical Data  
Table 2-11. DRAM Out-of-Page and Refresh Timings, Eleven Wait States1, 2 (Continued)  
100 MHz  
No.  
Characteristics  
Symbol  
Expression  
Unit  
Min  
Max  
192 RD assertion to data valid  
tGA  
10 × TC 7.0  
0.0  
6.0  
93.0  
ns  
ns  
ns  
ns  
193 RD deassertion to data not valid4  
194 WR assertion to data active  
tGZ  
0.75 × TC – 1.5  
0.25 × TC  
195 WR deassertion to data high impedance  
2.5  
Notes: 1. The number of wait states for out-of-page access is specified in the DCR.  
2. The refresh period is specified in the DCR.  
3. Either tRCH or tRRH must be satisfied for read cycles.  
4. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ  
.
Table 2-12. DRAM Out-of-Page and Refresh Timings, Fifteen Wait States1, 2  
100 MHz  
No.  
Characteristics  
Symbol  
Expression  
Unit  
Min  
Max  
157 Random read or write cycle time  
158 RAS assertion to data valid (read)  
159 CAS assertion to data valid (read)  
160 Column address valid to data valid (read)  
161 CAS deassertion to data not valid (read hold time)  
162 RAS deassertion to RAS assertion  
163 RAS assertion pulse width  
tRC  
tRAC  
tCAC  
tAA  
16 × TC  
160.0  
76.8  
41.8  
49.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8.25 × TC 5.7  
4.75 × TC 5.7  
5.5 × TC 5.7  
0.0  
tOFF  
tRP  
0.0  
6.25 × TC 4.0  
9.75 × TC 4.0  
6.25 × TC 4.0  
8.25 × TC 4.0  
4.75 × TC 4.0  
3.5 × TC ± 2  
58.5  
93.5  
58.5  
78.5  
43.5  
33.0  
25.5  
73.5  
56.5  
58.5  
23.5  
tRAS  
tRSH  
tCSH  
tCAS  
tRCD  
tRAD  
tCRP  
tCP  
164 CAS assertion to RAS deassertion  
165 RAS assertion to CAS deassertion  
166 CAS assertion pulse width  
167 RAS assertion to CAS assertion  
168 RAS assertion to column address valid  
169 CAS deassertion to RAS assertion  
170 CAS deassertion pulse width  
37.0  
29.5  
2.75 × TC ± 2  
7.75 × TC 4.0  
6.25 × TC – 6.0  
6.25 × TC 4.0  
2.75 × TC 4.0  
171 Row address valid to RAS assertion  
172 RAS assertion to row address not valid  
tASR  
tRAH  
DSP56309 Technical Data  
2-27  
 
Table 2-12. DRAM Out-of-Page and Refresh Timings, Fifteen Wait States1, 2 (Continued)  
100 MHz  
No.  
Characteristics  
Symbol  
Expression  
Unit  
Min  
Max  
173 Column address valid to CAS assertion  
174 CAS assertion to column address not valid  
175 RAS assertion to column address not valid  
176 Column address valid to RAS deassertion  
177 WR deassertion to CAS assertion  
178 CAS deassertion to WR3 assertion  
179 RAS deassertion to WR3 assertion  
180 CAS assertion to WR deassertion  
181 RAS assertion to WR deassertion  
182 WR assertion pulse width  
tASC  
tCAH  
tAR  
0.75 × TC 4.0  
6.25 × TC 4.0  
9.75 × TC 4.0  
7 × TC 4.0  
3.5  
58.5  
93.5  
66.0  
46.2  
13.8  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRAL  
tRCS  
tRCH  
tRRH  
tWCH  
tWCR  
tWP  
5 × TC 3.8  
1.75 × TC – 3.7  
0.25 × TC 2.0  
6 × TC 4.2  
55.8  
90.8  
150.5  
153.2  
138.2  
83.5  
58.5  
93.5  
90.7  
11.0  
43.5  
151.0  
9.5 × TC 4.2  
15.5 × TC 4.5  
15.75 × TC 4.3  
14.25 × TC 4.3  
8.75 × TC 4.0  
6.25 × TC 4.0  
9.75 × TC 4.0  
9.5 × TC 4.3  
1.5 × TC 4.0  
4.75 × TC 4.0  
15.5 × TC 4.0  
14 × TC 5.7  
183 WR assertion to RAS deassertion  
184 WR assertion to CAS deassertion  
185 Data valid to CAS assertion (write)  
186 CAS assertion to data not valid (write)  
187 RAS assertion to data not valid (write)  
188 WR assertion to CAS assertion  
tRWL  
tCWL  
tDS  
tDH  
tDHR  
tWCS  
tCSR  
tRPC  
tROH  
tGA  
189 CAS assertion to RAS assertion (refresh)  
190 RAS deassertion to CAS assertion (refresh)  
191 RD assertion to RAS deassertion  
192 RD assertion to data valid  
134.3  
ns  
ns  
ns  
ns  
193 RD deassertion to data not valid4  
194 WR assertion to data active  
tGZ  
0.0  
6.0  
0.75 × TC – 1.5  
0.25 × TC  
195 WR deassertion to data high impedance  
2.5  
Notes: 1. The number of wait states for out-of-page access is specified in the DCR.  
2. The refresh period is specified in the DCR.  
3. Either tRCH or tRRH must be satisfied for read cycles.  
4. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is tOFF and not tGZ  
.
2-28  
DSP56309 Technical Data  
157  
163  
165  
162  
162  
169  
RAS  
167  
168  
164  
170  
166  
CAS  
171  
173  
174  
175  
Row Address  
172  
Column Address  
176  
A[0–17]  
177  
179  
191  
WR  
RD  
178  
160  
159  
158  
192  
193  
161  
Data  
In  
D[0–23]  
Figure 2-18. DRAM Out-of-Page Read Access  
DSP56309 Technical Data  
2-29  
 
157  
162  
163  
165  
162  
RAS  
167  
168  
164  
169  
166  
170  
CAS  
171  
173  
172  
174  
176  
Row Address  
Column Address  
A[0–17]  
181  
175  
188  
180  
182  
WR  
RD  
184  
183  
187  
186  
195  
185  
194  
Data Out  
D[0–23]  
Figure 2-19. DRAM Out-of-Page Write Access  
2-30  
DSP56309 Technical Data  
 
157  
162  
163  
165  
162  
RAS  
CAS  
190  
170  
189  
177  
WR  
Figure 2-20. DRAM Refresh Access  
DSP56309 Technical Data  
2-31  
 
Synchronous Timings  
Table 2-13. External Bus Synchronous Timings3  
100 MHz  
Min Max  
No.  
Characteristics  
Expression1,2  
Unit  
198 CLKOUT high to address, and AA valid4  
199 CLKOUT high to address, and AA invalid4  
200 TA valid to CLKOUT high (setup time)  
201 CLKOUT high to TA invalid (hold time)  
202 CLKOUT high to data out active  
203 CLKOUT high to data out valid  
0.25 × TC + 4.0  
0.25 × TC  
2.5  
4.0  
0.0  
2.5  
6.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.25 × TC  
0.25 × TC + 4.0  
0.25 × TC  
6.5  
204 CLKOUT high to data out invalid  
205 CLKOUT high to data out high impedance  
206 Data in valid to CLKOUT high (setup)  
207 CLKOUT high to data in invalid (hold)  
208 CLKOUT high to RD assertion  
2.5  
0.25 × TC  
2.5  
4.0  
0.0  
6.7  
0.0  
5.0  
0.75 × TC + 2.5  
10.0  
4.0  
9.3  
209 CLKOUT high to RD deassertion  
210 CLKOUT high to WR assertion2  
0.5 × TC + 4.3  
[WS = 1 or WS 4]  
[2 WS 3]  
0.0  
0.0  
4.3  
3.8  
ns  
ns  
211 CLKOUT high to WR deassertion  
Notes: 1. WS is the number of wait states specified in the BCR.  
2. If WS > 1, WR assertion refers to the next rising edge of CLKOUT.  
3. External bus synchronous timings should be used only for reference to the clock and not for relative  
timings.  
4. T198 and T199 are valid for Address Trace mode if the ATE bit in the OMR is set. Use the status of BR  
(See T212) to determine whether the access referenced by A[0–17] is internal or external, when this mode  
is enabled  
5. Synchronous Bus Arbitration is not recommended. Use Asynchronous mode whenever possible.  
2-32  
DSP56309 Technical Data  
 
CLKOUT  
199  
198  
A[0–17]  
AA[0–3]  
201  
200  
TA  
211  
WR  
210  
205  
203  
202  
204  
D[0–23]  
Data Out  
208  
209  
RD  
207  
206  
D[0–23]  
Data In  
Note: Address lines A[0–17] hold their state after a  
read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-21. Synchronous Bus Timings 1 WS (BCR Controlled)  
DSP56309 Technical Data  
2-33  
 
CLKOUT  
198  
199  
A[0–17]  
AA[0–3]  
201  
201  
200  
200  
TA  
211  
WR  
210  
205  
203  
202  
204  
Data Out  
D[0–23]  
208  
209  
RD  
207  
206  
Data In  
D[0–23]  
Note: Address lines A[0–17] hold their state after a  
read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-22. Synchronous Bus Timings 2 WS (TA Controlled)  
2-34  
DSP56309 Technical Data  
 
Arbitration Timings  
Table 2-14. Arbitration Bus Timings  
100 MHz  
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
212 CLKOUT high to BR assertion/deassertion1  
213 BG asserted/deasserted to CLKOUT high (setup)  
214 CLKOUT high to BG deasserted/asserted (hold)  
215 BB deassertion to CLKOUT high (input setup)  
216 CLKOUT high to BB assertion (input hold)  
217 CLKOUT high to BB assertion (output)  
218 CLKOUT high to BB deassertion (output)  
219 BB high to BB high impedance (output)  
220 CLKOUT high to address and controls active  
221 CLKOUT high to address and controls high impedance  
222 CLKOUT high to AA active  
0.0  
4.0  
0.0  
4.0  
0.0  
0.0  
0.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4.0  
4.0  
4.5  
0.25 × TC  
0.75 × TC  
2.5  
7.5  
0.25 × TC  
2.5  
2.0  
223 CLKOUT high to AA deassertion  
0.25 × TC + 4.0  
0.75 × TC  
6.5  
7.5  
224 CLKOUT high to AA high impedance  
Notes: 1. T212 is valid for Address Trace mode when the ATE bit in the OMR is set. BR is deasserted for internal  
accesses and asserted for external accesses.  
2. Synchronous Bus Arbitration is not recommended. Use Asynchronous mode whenever possible.  
DSP56309 Technical Data  
2-35  
 
 
CLKOUT  
BR  
212  
214  
216  
213  
215  
BG  
BB  
217  
220  
A[0–17]  
RD, WR  
222  
AA[0–3]  
Note: Address lines A[0–17] hold their state after a  
read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-23. Bus Acquisition Timings  
2-36  
DSP56309 Technical Data  
 
CLKOUT  
BR  
212  
214  
213  
BG  
BB  
219  
218  
221  
A[0–17]  
RD, WR  
224  
223  
AA[0–3]  
Note: Address lines A[0–17] hold their state after a  
read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-24. Bus Release Timings Case 1 (BRT Bit in OMR Cleared)  
DSP56309 Technical Data  
2-37  
 
CLKOUT  
BR  
212  
214  
213  
BG  
BB  
219  
218  
221  
A[0–17]  
RD, WR  
224  
223  
AA[0–3]  
Note: Address lines A[0–17] hold their state after a  
read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-25. Bus Release Timings Case 2 (BRT Bit in OMR Set)  
Table 2-15. Asynchronous Bus Arbitration Timing1,3  
100 MHz2  
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
250 BB assertion window from BG input deassertion4  
2.5 x Tc + 5  
30  
ns  
ns  
251 Delay from BB assertion to BG assertion4  
2 x Tc + 5  
25  
Notes: 1. Bit 13 in the OMR register must be set to enter Asynchronous Arbitration mode.  
2. Asynchronous Arbitration mode is recommended for operation at 100 MHz.  
3. If Asynchronous Arbitration mode is active, none of the timings in Table 2-14 is required.  
4. In order to guarantee timings 250, and 251, BG inputs must be asserted to different DSP56300 devices  
on the same bus in the non-overlap manner shown in Figure 2-26.  
2-38  
DSP56309 Technical Data  
 
BG1  
BB  
250  
BG2  
251  
Figure 2-26. Asynchronous Bus Arbitration Timing  
BG1  
BG2  
250+251  
Figure 2-27. Asynchronous Bus Arbitration Timing  
The asynchronous bus arbitration is enabled by internal BB inputs and synchronization circuits on BG.  
These synchronization circuits add delay from the external signal until it is exposed to internal logic. As a  
result of this delay, a DSP56300 part can assume mastership and assert BB, for some time after BG is  
deasserted. Timing 250 defines when BB can be asserted.  
Once BB is asserted, there is a synchronization delay from BB assertion to the time this assertion is  
exposed to other DSP56300 components which are potential masters on the same bus. If BG input is  
asserted before that time, a situation of BG asserted, and BB deasserted, can cause another DSP56300  
component to assume mastership at the same time. Therefore, a non-overlap period between one BG input  
active to another BG input active is required. Timing 251 ensures that such a situation is avoided.  
DSP56309 Technical Data  
2-39  
HOST INTERFACE TIMING  
Table 2-16. Host Interface Timing1, 2  
100 MHz  
Min Max  
No.  
Characteristic10  
Expression  
Unit  
317 Read data strobe assertion width5 HACK assertion width  
TC + 9.0  
19.9  
9.9  
ns  
ns  
ns  
318 Read data strobe deassertion width5 HACK deassertion width  
319 Read data strobe deassertion width5 after “Last Data Register”  
reads8,11, or between two consecutive CVR, ICR, or ISR reads3  
HACK deassertion width after “Last Data Register” reads8,11  
2.5 × TC + 6.6  
31.6  
320 Write data strobe assertion width6  
14.5  
ns  
321 Write data strobe deassertion width8  
HACK write deassertion width  
after HCTR, HCVR and “Last Data Register” writes  
2.5 × TC + 6.6  
31.6  
16.5  
ns  
ns  
after TXH:TXM writes (with HLEND=0)8  
after TXL:TXM writes (with HLEND=1)8  
322 HAS assertion width  
9.9  
0.0  
9.9  
3.3  
3.3  
ns  
ns  
ns  
ns  
ns  
323 HAS deassertion to data strobe assertion4  
324 Host data input setup time before write data strobe deassertion6  
325 Host data input hold time after write data strobe deassertion6  
326 Read data strobe assertion to output data active from high  
impedance5 HACK assertion to output data active from high  
impedance  
327 Read data strobe assertion to output data valid5  
HACK assertion to output data valid  
23.5  
9.9  
ns  
ns  
ns  
328 Read data strobe deassertion to output data high impedance5  
HACK deassertion to output data high impedance  
329 Output data hold time after read data strobe deassertion5  
Output data hold time after HACK deassertion  
3.1  
330 HCS assertion to read data strobe deassertion5  
331 HCS assertion to write data strobe deassertion6  
332 HCS assertion to output data valid  
TC + 9.9  
19.9  
9.9  
ns  
ns  
ns  
ns  
ns  
ns  
16.5  
333 HCS hold time after data strobe deassertion4  
0.0  
4.7  
3.3  
334 Address (HAD[7–0]) setup time before HAS deassertion (HMUX=1)  
335 Address (HAD[7–0]) hold time after HAS deassertion (HMUX=1)  
336 HA[10–8] (HMUX=1), A[2–0] (HMUX=0), HR/W setup time before  
data strobe assertion4  
Read  
Write  
0
4.7  
ns  
ns  
337 HA[10–8] (HMUX=1), A[2–0] (HMUX=0), HR/W hold time after data  
strobe deassertion4  
3.3  
ns  
2-40  
DSP56309 Technical Data  
 
Table 2-16. Host Interface Timing1, 2 (Continued)  
100 MHz  
Min Max  
No.  
Characteristic10  
Expression  
Unit  
338 Delay from read data strobe deassertion to host request assertion  
1.5 × TC + 10  
2.0 × TC + 13  
25.0  
33.0  
ns  
ns  
ns  
ns  
for “Last Data Register” read5, 7, 8  
339 Delay from write data strobe deassertion to host request assertion  
for “Last Data Register” write6, 7, 8  
340 Delay from data strobe assertion to host request deassertion for  
“Last Data Register” read or write (HROD=0)4, 7, 8  
20.2  
300.0  
341 Delay from data strobe assertion to host request deassertion for  
“Last Data Register” read or write (HROD=1, open drain host  
request)4, 7, 8, 9  
Notes: 1. See Host Port Usage Considerations on page 1-10.  
2. In the timing diagrams below, the controls pins are drawn as active low. The pin polarity is programmable.  
3. This timing is applicable only if two consecutive reads from one of these registers are executed.  
4. The data strobe is Host Read (HRD) or Host Write (HWR) in the Dual Data Strobe mode and Host Data  
Strobe (HDS) in the Single Data Strobe mode.  
5. The read data strobe is HRD in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.  
6. The write data strobe is HWR in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.  
7. The host request is HREQ in the Single Host Request mode and HRRQ and HTRQ in the Double Host  
Request mode.  
8. The “Last Data Register” is the register at address $7, which is the last location to be read or written in data  
transfers. This is RXL/TXL in the Little Endian mode (HLEND = 1), or RXH/TXH in the Big Endian mode  
(HLEND = 0).  
9. In this calculation, the host request signal is pulled up by a 4.7 kresistor in the Open-drain mode.  
10. VCC = 3.3 V ± 0.3 V; TJ = 40°C to +100 °C, CL = 50 pF  
11. This timing is applicable only if a read from the “Last Data Register” is followed by a read from the RXL,  
RXM, or RXH registers without first polling RXDF or HREQ bits, or waiting for the assertion of the HREQ  
signal.  
317  
318  
HACK  
328  
327  
326  
329  
HD7–HD0  
HREQ  
Figure 2-28. Host Interrupt Vector Register (IVR) Read Timing Diagram  
DSP56309 Technical Data  
2-41  
HA7–HA0  
336  
337  
333  
330  
HCS  
317  
HRD, HDS  
318  
319  
328  
332  
327  
329  
326  
341  
HD7–HD0  
338  
340  
HREQ, HRRQ, HTRQ  
Figure 2-29. Read Timing Diagram, Non-Multiplexed Bus  
2-42  
DSP56309 Technical Data  
 
HA7–HA0  
337  
333  
336  
331  
HCS  
320  
HWR, HDS  
321  
325  
324  
HD7–HD0  
340  
339  
341  
HREQ, HRRQ, HTRQ  
Figure 2-30. Write Timing Diagram, Non-Multiplexed Bus  
DSP56309 Technical Data  
2-43  
 
HA[10–8]  
336  
337  
322  
HAS  
323  
317  
HRD, HDS  
334  
318  
319  
335  
327  
328  
329  
HAD[7–0]  
Address  
Data  
326  
338  
340  
341  
HREQ, HRRQ, HTRQ  
Figure 2-31. Read Timing Diagram, Multiplexed Bus  
2-44  
DSP56309 Technical Data  
 
HA[10–8]  
336  
322  
HAS  
323  
320  
HWR, HDS  
334  
324  
321  
325  
335  
HAD[7–0]  
Data  
340  
Address  
339  
341  
HREQ, HRRQ, HTRQ  
Figure 2-32. Write Timing Diagram, Multiplexed Bus  
DSP56309 Technical Data  
2-45  
 
SCI TIMING  
Table 2-17. SCI Timing  
100 MHz  
Min Max  
No.  
Characteristics1  
Symbol  
Expression  
Unit  
2
400 Synchronous clock cycle  
401 Clock low period  
tSCC  
8 × TC  
80.0  
30.0  
30.0  
ns  
ns  
ns  
ns  
ns  
ns  
tSCC/2 10.0  
402 Clock high period  
tSCC/2 10.0  
403 Output data setup to clock falling edge (internal clock)  
404 Output data hold after clock rising edge (internal clock)  
t
SCC/4 + 0.5 × TC 17.0 8.0  
tSCC/4 0.5 × TC 15.0  
tSCC/4 + 0.5 × TC + 25.0 50.0  
405 Input data setup time before clock rising edge (internal  
clock)  
406 Input data not valid before clock rising edge (internal  
clock)  
tSCC/4 + 0.5 × TC 5.5  
19.5  
ns  
407 Clock falling edge to output data valid (external clock)  
408 Output data hold after clock rising edge (external clock)  
18.0  
0.0  
32.0  
ns  
ns  
ns  
TC + 8.0  
409 Input data setup time before clock rising edge (external  
clock)  
410 Input data hold time after clock rising edge (external  
clock)  
9.0  
ns  
3
411 Asynchronous clock cycle  
tACC  
64 × TC  
640.0  
310.0  
310.0  
290.0  
290.0  
ns  
ns  
ns  
ns  
ns  
412 Clock low period  
tACC/2 10.0  
413 Clock high period  
t
ACC/2 10.0  
ACC/2 30.0  
tACC/2 30.0  
414 Output data setup to clock rising edge (internal clock)  
415 Output data hold after clock rising edge (internal clock)  
t
Notes: 1.  
VCC = 3.3 V ± 0.3 V; TJ = 40°C to +100 °C, CL = 50 pF  
2. tSCC = synchronous clock cycle time (For internal clock, tSCC is determined by the SCI clock control register  
and TC.)  
3. tACC = asynchronous clock cycle time; value given for 1X Clock mode (For internal clock, tACC is determined  
by the SCI clock control register and TC.)  
2-46  
DSP56309 Technical Data  
 
400  
402  
404  
401  
SCLK  
(Output)  
403  
TXD  
RXD  
Data Valid  
405  
406  
Data  
Valid  
a) Internal Clock  
400  
402  
401  
SCLK  
(Input)  
407  
408  
Data Valid  
TXD  
RXD  
409  
410  
Data Valid  
b) External Clock  
Figure 2-33. SCI Synchronous Mode Timing  
411  
413  
415  
412  
414  
1X SCLK  
(Output)  
TXD  
Data Valid  
Figure 2-34. SCI Asynchronous Mode Timing  
DSP56309 Technical Data  
2-47  
 
 
ESSI0/ESSI1 TIMING  
Table 2-18. ESSI Timings  
100 MHz  
Min Max  
Cond-  
ition6  
No.  
Characteristics4, 5, 7  
Symbol  
Expression  
Unit  
430 Clock cycle1  
tSSICC  
3 × T  
30.0  
40.0  
x ck  
i ck  
ns  
C
4 × T  
C
431 Clock high period  
For internal clock  
For external clock  
2 × T 10.0  
10.0  
15.0  
ns  
ns  
C
1.5 × T  
C
432 Clock low period  
For internal clock  
For external clock  
2 × T 10.0  
10.0  
15.0  
ns  
ns  
C
1.5 × T  
C
433 RXC rising edge to FSR out (bl) high  
434 RXC rising edge to FSR out (bl) low  
435 RXC rising edge to FSR out (wr) high2  
436 RXC rising edge to FSR out (wr) low2  
437 RXC rising edge to FSR out (wl) high  
438 RXC rising edge to FSR out (wl) low  
37.0  
22.0 i ck a  
x ck  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
37.0 x ck  
22.0 i ck a  
39.0 x ck  
37.0 i ck a  
39.0 x ck  
37.0 i ck a  
36.0 x ck  
21.0 i ck a  
37.0 x ck  
22.0 i ck a  
439 Data in setup time before RXC (SCK in Synchronous  
mode) falling edge  
10.0  
19.0  
x ck  
i ck  
440 Data in hold time after RXC falling edge  
441 FSR input (bl, wr) high before RXC falling edge2  
442 FSR input (wl) high before RXC falling edge  
443 FSR input hold time after RXC falling edge  
444 Flags input setup before RXC falling edge  
445 Flags input hold time after RXC falling edge  
446 TXC rising edge to FST out (bl) high  
5.0  
3.0  
x ck  
i ck  
1.0  
23.0  
x ck  
i ck a  
3.5  
23.0  
x ck  
i ck a  
3.0  
0.0  
x ck  
i ck a  
5.5  
19.0  
x ck  
i ck s  
6.0  
0.0  
x ck  
i ck s  
29.0  
15.0  
x ck  
i ck  
447 TXC rising edge to FST out (bl) low  
31.0  
17.0  
x ck  
i ck  
2-48  
DSP56309 Technical Data  
 
Table 2-18. ESSI Timings (Continued)  
100 MHz  
Min Max  
Cond-  
ition6  
No.  
Characteristics4, 5, 7  
Symbol  
Expression  
Unit  
448 TXC rising edge to FST out (wr) high2  
449 TXC rising edge to FST out (wr) low2  
450 TXC rising edge to FST out (wl) high  
451 TXC rising edge to FST out (wl) low  
31.0  
17.0  
x ck  
i ck  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
33.0  
19.0  
x ck  
i ck  
30.0  
16.0  
x ck  
i ck  
31.0  
17.0  
x ck  
i ck  
452 TXC rising edge to data out enable from high  
impedance  
31.0  
17.0  
x ck  
i ck  
453 TXC rising edge to Transmitter #0 drive enable  
assertion  
34.0  
20.0  
x ck  
i ck  
454 TXC rising edge to data out valid  
20.08 x ck  
10.0  
i ck  
455 TXC rising edge to data out high impedance3  
31.0  
16.0  
x ck  
i ck  
456 TXC rising edge to Transmitter #0 drive enable  
deassertion3  
34.0  
20.0  
x ck  
i ck  
457 FST input (bl, wr) setup time before TXC falling edge2  
2.0  
21.0  
x ck  
i ck  
458 FST input (wl) to data out enable from high impedance  
459 FST input (wl) to Transmitter #0 drive enable assertion  
460 FST input (wl) setup time before TXC falling edge  
27.0  
31.0  
ns  
ns  
ns  
2.5  
21.0  
x ck  
i ck  
461 FST input hold time after TXC falling edge  
462 Flag output valid after TXC rising edge  
4.0  
0.0  
x ck  
i ck  
ns  
ns  
32.0  
18.0  
x ck  
i ck  
DSP56309 Technical Data  
2-49  
Table 2-18. ESSI Timings (Continued)  
100 MHz  
Max  
Cond-  
ition6  
No.  
Characteristics4, 5, 7  
Symbol  
Expression  
Unit  
Min  
Notes: 1. For the internal clock, the external clock cycle is defined by ICYC and the ESSI control register.  
2. The word-relative frame sync signal waveform relative to the clock operates in the same manner as the  
bit-length frame sync signal waveform, but spreads from one serial clock before first bit clock (same as Bit  
Length Frame Sync signal), until the one before last bit clock of the first word in frame.  
3. Periodically sampled and not 100 percent tested  
4. VCC = 3.3 V ± 0.3 V; TJ = 40°C to +100 °C, CL = 50 pF  
5. TXC (SCK Pin) = Transmit Clock  
RXC (SC0 or SCK Pin) = Receive Clock  
FST (SC2 Pin) = Transmit Frame Sync  
FSR (SC1 or SC2 Pin) Receive Frame Sync  
6. i ck = Internal Clock  
x ck = External Clock  
i ck a = Internal Clock, Asynchronous Mode  
(Asynchronous implies that TXC and RXC are two different clocks)  
i ck s = Internal Clock, Synchronous Mode  
(Synchronous implies that TXC and RXC are the same clock)  
7. bl = bit length  
wl = word length  
wr = word length relative  
8. If the DSP core writes to the transmit register during the last cycle before causing an underrun error, the  
delay is 20 ns + (0.5 × TC).  
2-50  
DSP56309 Technical Data  
430  
431  
432  
TXC  
(Input/  
Output)  
446  
447  
FST (Bit)  
Out  
450  
451  
FST (Word)  
Out  
454  
452  
454  
455  
Data Out  
First Bit  
Last Bit  
459  
Transmitter  
#0 Drive  
Enable  
457  
453  
456  
461  
460  
FST (Bit) In  
458  
461  
FST (Word)  
In  
462  
See Note  
Flags Out  
Note: In Network mode, output flag transitions can occur at the start of each time slot  
within the frame. In Normal mode, the output flag state is asserted for the entire  
frame period.  
Figure 2-35. ESSI Transmitter Timing  
DSP56309 Technical Data  
2-51  
 
430  
431  
432  
RXC  
(Input/  
Output)  
433  
434  
FSR (Bit)  
Out  
437  
438  
FSR  
(Word)  
Out  
440  
439  
443  
Data In  
Last Bit  
First Bit  
441  
FSR (Bit)  
In  
443  
445  
442  
FSR  
(Word)  
In  
444  
Flags In  
Figure 2-36. ESSI Receiver Timing  
2-52  
DSP56309 Technical Data  
 
TIMER TIMING  
Table 2-19. Timer Timing  
100 MHz  
Min Max  
No.  
Characteristics  
Expression  
Unit  
480  
2 × TC + 2.0  
2 × TC + 2.0  
22.0  
22.0  
9.0  
ns  
ns  
ns  
TIO Low  
481 TIO High  
482 Timer setup time from TIO (Input) assertion to CLKOUT rising  
edge  
10.0  
483 Synchronous timer delay time from CLKOUT rising edge to the  
external memory access address out valid caused by first interrupt  
instruction execution  
10.25 × TC + 1.0  
103.5  
ns  
484 CLKOUT rising edge to TIO (Output) assertion  
Minimum  
Maximum  
0.5 × TC + 0.5  
0.5 × TC + 19.8  
5.5  
24.8  
ns  
ns  
485 CLKOUT rising edge to TIO (Output) deassertion  
Minimum  
Maximum  
0.5 × TC + 0.5  
0.5 × TC + 19.8  
5.5  
24.8  
ns  
ns  
Note:  
VCC = 3.3 V ± 0.3 V; TJ = 40°C to +100 °C, CL = 50 pF  
TIO  
480  
481  
Figure 2-37. TIO Timer Event Input Restrictions  
CLKOUT  
TIO (Input)  
482  
Address  
483  
First Interrupt Instruction Execution  
Figure 2-38. Timer Interrupt Generation  
DSP56309 Technical Data  
2-53  
 
 
 
CLKOUT  
TIO (Output)  
484  
485  
Figure 2-39. External Pulse Generation  
GPIO TIMING  
Table 2-20. GPIO Timing  
100 MHz  
Min Max  
No.  
Characteristics  
Expression  
Unit  
490  
0.0  
8.5  
0.0  
67.5  
8.5  
ns  
ns  
ns  
ns  
ns  
CLKOUT edge to GPIO out valid (GPIO out delay time)  
491 CLKOUT edge to GPIO out not valid (GPIO out hold time)  
492 GPIO In valid to CLKOUT edge (GPIO in set-up time)  
493 CLKOUT edge to GPIO in not valid (GPIO in hold time)  
494 Fetch to CLKOUT edge before GPIO change  
6.75 × TC  
Note:  
VCC = 3.3 V ± 0.3 V; TJ = 40°C to +100 °C, CL = 50 pF  
CLKOUT  
(Output)  
490  
491  
GPIO  
(Output)  
492  
493  
GPIO  
(Input)  
Valid  
A[0–17]  
494  
Fetch the instruction MOVE X0,X:(R0); X0 contains the new value of GPIO  
and R0 contains the address of GPIO data register.  
Figure 2-40. GPIO Timing  
2-54  
DSP56309 Technical Data  
 
JTAG TIMING  
Table 2-21. JTAG Timing  
All frequencies  
Min Max  
No.  
Characteristics1,2  
Unit  
500 TCK frequency of operation (1/(TC × 3); maximum 22 MHz)  
501 TCK cycle time in Crystal mode  
502 TCK clock pulse width measured at 1.5 V  
503 TCK rise and fall times  
0.0  
45.0  
20.0  
0.0  
22.0  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.0  
504 Boundary scan input data setup time  
505 Boundary scan input data hold time  
506 TCK low to output data valid  
5.0  
24.0  
0.0  
40.0  
40.0  
507 TCK low to output high impedance  
508 TMS, TDI data setup time  
0.0  
5.0  
509 TMS, TDI data hold time  
25.0  
0.0  
510 TCK low to TDO data valid  
44.0  
44.0  
511 TCK low to TDO high impedance  
512 TRST assert time  
0.0  
100.0  
40.0  
513 TRST setup time to TCK low  
Notes: 1.  
VCC = 3.3 V ± 0.3 V; TJ = 40°C to +100 °C, CL = 50 pF  
2. All timings apply to OnCE module data transfers because it uses the JTAG port as an interface.  
501  
502  
502  
V
M
V
V
M
TCK  
(Input)  
IH  
V
IL  
503  
503  
Figure 2-41. Test Clock Input Timing Diagram  
DSP56309 Technical Data  
2-55  
 
 
VIH  
505  
TCK  
(Input)  
VIL  
504  
Data  
Inputs  
Input Data Valid  
506  
507  
506  
Data  
Output Data Valid  
Outputs  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
Figure 2-42. Boundary Scan (JTAG) Timing Diagram  
VIH  
509  
Input Data Valid  
TCK  
VIL  
(Input)  
508  
TDI  
TMS  
(Input)  
510  
TDO  
(Output)  
Output Data Valid  
511  
TDO  
(Output)  
510  
TDO  
(Output)  
Output Data Valid  
Figure 2-43. Test Access Port Timing Diagram  
2-56  
DSP56309 Technical Data  
 
 
TCK  
(Input)  
513  
TRST  
(Input)  
512  
Figure 2-44. TRST Timing Diagram  
OnCE MODULE TIMING  
Table 2-22. OnCE Module Timing  
100 MHz  
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
500  
1/(TC × 3),  
max 22.0 MHz  
0.0  
22.0 MHz  
TCK frequency of operation  
514 DE assertion time in order to enter Debug mode  
1.5 × TC + 10.0  
5.5 × TC + 30.0  
25.0  
ns  
ns  
515 Response time when DSP56309 is executing NOP  
instructions from internal memory  
85.0  
516 Debug acknowledge assertion time  
3 × TC – 5.0  
25.0  
ns  
Note:  
VCC = 3.3 V ± 0.3 V; TJ = 40°C to +100 °C, CL = 50 pF  
DE  
514  
515  
516  
Figure 2-45. OnCE—Debug Request  
DSP56309 Technical Data  
2-57  
 
 
 
2-58  
DSP56309 Technical Data  
SECTION 3  
Packaging  
PIN-OUT AND PACKAGE INFORMATION  
This section provides information about the available packages for this product, including diagrams of the  
package pinouts and tables describing how the signals described in DSP56309 User’s Manual, Section 2,  
Signal/Connection Descriptions are allocated for each package.  
The DSP56309 is available in two package types:  
144-pin Thin Quad Flat Pack (TQFP)  
196-pin Molded Array Process-Ball Grid Array (MAP-BGA)  
DSP56309 Technical Data  
3-1  
 
TQFP Package Description  
Top and bottom views of the TQFP package are shown in Figure 3-1. and Figure 3-2. with their pin-outs.  
D7  
D8  
A0  
BG  
109  
(Top View)  
VCCD  
AA0/RAS0  
AA1/RAS1  
RD  
GNDD  
D9  
D10  
D11  
D12  
D13  
D14  
VCCD  
WR  
GNDC  
VCCC  
BB  
BR  
TA  
BCLK  
BCLK  
CLKOUT  
GNDC  
VCCC  
GNDD  
D15  
D16  
D17  
D18  
VCCQL  
EXTAL  
GNDQ  
XTAL  
D19  
VCCQL  
DSP56309  
GNDQ  
D20  
VCCD  
CAS  
AA2/RAS2  
AA3/RAS3  
VCCQH  
GNDP1  
GNDP  
PCAP  
VCCP  
RESET  
HAD0  
HAD1  
HAD2  
HAD3  
GNDH  
VCCH  
GNDD  
D21  
D22  
D23  
MODD/ IRQD  
MODC/ IRQC  
MODB/ IRQB  
MODA/ IRQA  
TRST  
TDO  
TDI  
Orientation Mark  
TCK  
TMS  
SC12  
37  
HAD4  
SC11  
AA1535  
Figure 3-1. DSP56309 Thin Quad Flat Pack (TQFP), Top View  
3-2  
DSP56309 Technical Data  
 
 
D7  
109  
A0  
(Bottom View)  
D8  
VCCD  
BG  
AA0/RAS0  
AA1/RAS1  
RD  
GNDD  
D9  
D10  
D11  
D12  
D13  
D14  
VCCD  
WR  
GNDC  
VCCC  
BB  
BR  
TA  
BCLK  
BCLK  
CLKOUT  
GNDC  
VCCC  
VCCQL  
GNDD  
D15  
D16  
D17  
D18  
D19  
VCCQL  
EXTAL  
GNDQ  
XTAL  
GNDQ  
D20  
VCCD  
CAS  
GNDD  
D21  
AA2/RAS2  
AA3/RAS3  
VCCQH  
D22  
D23  
GNDP1  
GNDP  
MODD/ IRQD  
MODC/ IRQC  
MODB/ IRQB  
MODA/ IRQA  
TRST  
PCAP  
VCCP  
RESET  
HAD0  
HAD1  
HAD2  
TDO  
TDI  
Orientation Mark  
TCK  
TMS  
HAD3  
GNDH  
VCCH  
SC12  
37  
SC11  
HAD4  
1
AA1536  
Figure 3-2. DSP56309 Thin Quad Flat Pack (TQFP), Bottom View  
DSP56309 Technical Data  
3-3  
 
DSP56309 TQFP Signal Identification by Pin Number  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
SRD1 or PD4  
Signal Name  
Signal Name  
AA2/RAS2  
1
26  
GNDS  
TIO2  
TIO1  
TIO0  
51  
2
STD1 or PD5  
SC02 or PC2  
SC01 or PC1  
DE  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
CAS  
3
XTAL  
GNDQ  
EXTAL  
VCCQL  
VCCC  
GNDC  
CLKOUT  
BCLK  
BCLK  
TA  
4
5
HCS/HCS, HA10, or PB13  
HA2, HA9, or PB10  
HA1, HA8, or PB9  
HA0, HAS/HAS, or PB8  
H7, HAD7, or PB7  
H6, HAD6, or PB6  
H5, HAD5, or PB5  
H4, HAD4, or PB4  
VCCH  
6
PINIT/NMI  
SRD0 or PC4  
VCCS  
7
8
9
GNDS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
STD0 or PC5  
SC10 or PD0  
SC00 or PC0  
RXD or PE0  
TXD or PE1  
SCLK or PE2  
SCK1 or PD3  
SCK0 or PC3  
VCCQL  
BR  
GNDH  
BB  
H3, HAD3, or PB3  
H2, HAD2, or PB2  
H1, HAD1, or PB1  
H0, HAD0, or PB0  
RESET  
VCCC  
GNDC  
WR  
RD  
GNDQ  
AA1/RAS1  
AA0/RAS0  
BG  
VCCQH  
VCCP  
HDS/HDS, HWR/HWR, or  
PB12  
PCAP  
22  
23  
HRW, HRD/HRD, or PB11  
47  
48  
GNDP  
72  
73  
A0  
A1  
HACK/HACK,  
GNDP1  
HRRQ/HRRQ, or PB15  
24  
25  
HREQ/HREQ,  
HTRQ/HTRQ, or PB14  
49  
50  
VCCQH  
74  
75  
VCCA  
VCCS  
AA3/RAS3  
GNDA  
3-4  
DSP56309 Technical Data  
 
DSP56309 TQFP Signal Identification by Pin Number (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
76  
A2  
99  
A17  
122 D16  
123 D17  
124 D18  
125 D19  
126 VCCQL  
127 GNDQ  
128 D20  
129 VCCD  
130 GNDD  
131 D21  
132 D22  
133 D23  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
A3  
100 D0  
A4  
101 D1  
A5  
102 D2  
VCCA  
GNDA  
A6  
103 VCCD  
104 GNDD  
105 D3  
A7  
106 D4  
A8  
107 D5  
A9  
108 D6  
VCCA  
GNDA  
A10  
A11  
GNDQ  
VCCQL  
A12  
A13  
A14  
VCCQH  
GNDA  
A15  
A16  
109 D7  
110 D8  
111 VCCD  
112 GNDD  
113 D9  
134 MODD/IRQD  
135 MODC/IRQC  
136 MODB/IRQB  
137 MODA/IRQA  
138 TRST  
114 D10  
115 D11  
116 D12  
117 D13  
118 D14  
119 VCCD  
120 GNDD  
121 D15  
139 TDO  
140 TDI  
141 TCK  
142 TMS  
143 SC12 or PD2  
144 SC11 or PD1  
Note: Signal names are based on configured functionality. Most pins supply a single signal. Some pins  
provide a signal with dual functionality, such as the MODx/IRQx pins that select an operating  
mode after RESET is deasserted, but act as interrupt lines during operation. Some signals have  
configurable polarity; these names are shown with and without overbars, such as HAS/HAS.  
Some pins have two or more configurable functions; names assigned to these pins indicate the  
function for a specific configuration. For example, pin 34 is data line H7 in non-multiplexed bus  
mode, data/address line HAD7 in multiplexed bus mode, or GPIO line PB7 when the GPIO  
function is enabled for this pin.  
DSP56309 Technical Data  
3-5  
DSP56309 TQFP Signal Identification by Name  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
A0  
A1  
72  
73  
88  
89  
92  
93  
94  
97  
98  
99  
76  
77  
78  
79  
82  
83  
84  
85  
70  
69  
51  
50  
64  
60  
61  
BG  
BR  
71  
D7  
109  
110  
113  
5
63  
D8  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A2  
CAS  
CLKOUT  
D0  
52  
D9  
59  
DE  
100  
101  
114  
115  
116  
117  
118  
121  
122  
123  
124  
125  
102  
128  
131  
132  
133  
105  
106  
107  
108  
EXTAL  
GNDA  
GNDA  
GNDA  
GNDA  
GNDC  
GNDC  
GNDD  
GNDD  
GNDD  
GNDD  
GNDH  
GNDP  
GNDP1  
GNDQ  
GNDQ  
GNDQ  
GNDQ  
GNDS  
GNDS  
H0  
55  
D1  
75  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D2  
81  
87  
96  
58  
66  
A3  
104  
112  
120  
130  
39  
A4  
A5  
A6  
A7  
A8  
47  
A9  
D20  
D21  
D22  
D23  
D3  
48  
AA0  
AA1  
AA2  
AA3  
BB  
19  
54  
90  
127  
9
D4  
BCLK  
BCLK  
D5  
26  
D6  
43  
3-6  
DSP56309 Technical Data  
 
DSP56309 TQFP Signal Identification by Name (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
H1  
H2  
42  
41  
40  
37  
36  
35  
34  
33  
32  
30  
31  
32  
31  
23  
43  
42  
41  
40  
37  
36  
35  
34  
33  
30  
21  
HRD/HRD  
HREQ/HREQ  
HRRQ/HRRQ  
HRW  
22  
24  
PB4  
PB5  
PB6  
PB7  
PB8  
PB9  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PCAP  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PE0  
PE1  
PE2  
PINIT  
RAS0  
RAS1  
37  
36  
35  
34  
33  
32  
12  
4
H3  
23  
H4  
22  
H5  
HTRQ/HTRQ  
HWR/HWR  
IRQA  
24  
H6  
21  
H7  
137  
136  
135  
134  
137  
136  
135  
134  
6
HA0  
IRQB  
HA1  
IRQC  
3
HA10  
HA2  
IRQD  
17  
7
MODA  
MODB  
MODC  
MODD  
NMI  
HA8  
10  
46  
11  
144  
143  
16  
1
HA9  
HACK/HACK  
HAD0  
HAD1  
HAD2  
HAD3  
HAD4  
HAD5  
HAD6  
HAD7  
HAS  
PB0  
43  
PB1  
42  
PB10  
31  
PB11  
22  
2
PB12  
21  
13  
14  
15  
6
PB13  
30  
PB14  
24  
PB15  
23  
HCS/HCS  
HDS/HDS  
PB2  
41  
70  
69  
PB3  
40  
DSP56309 Technical Data  
3-7  
DSP56309 TQFP Signal Identification by Name (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
RAS2  
RAS3  
RD  
51  
50  
68  
44  
13  
12  
4
STD1  
TA  
2
VCCD  
VCCD  
VCCD  
VCCH  
VCCP  
111  
119  
129  
38  
45  
20  
49  
95  
18  
56  
91  
126  
8
62  
TCK  
141  
140  
139  
29  
RESET  
RXD  
TDI  
TDO  
TIO0  
TIO1  
TIO2  
TMS  
TRST  
TXD  
VCCA  
VCCA  
VCCA  
VCCC  
VCCC  
VCCD  
SC00  
SC01  
SC02  
SC10  
SC11  
SC12  
SCK0  
SCK1  
SCLK  
SRD0  
SRD1  
STD0  
VCCQH  
VCCQH  
VCCQH  
VCCQL  
VCCQL  
VCCQL  
VCCQL  
VCCS  
28  
3
27  
11  
144  
143  
17  
16  
15  
7
142  
138  
14  
74  
80  
86  
VCCS  
25  
67  
53  
57  
WR  
1
65  
XTAL  
10  
103  
3-8  
DSP56309 Technical Data  
TQFP Package Mechanical Drawing  
0.20 T L-M N  
0.20 T L-M N  
4X  
4X 36 TIPS  
109  
PIN 1  
IDENT  
144  
1
108  
4X  
P
J1  
J1  
M
L
C
L
V
B
X
X=L, M, OR N  
140X  
G
B1  
V1  
VIEW Y  
VIEW Y  
36  
73  
NOTES:  
1. DIMENSIONS AND TOLERANCING PER  
ASME Y14.5, 1994.  
2. DIMENSIONS IN MILLIMETERS.  
3. DATUMS L, M AND N TO BE  
DETERMINED AT THE SEATING PLANE,  
DATUM T.  
4. DIMENSIONS S AND V TO BE  
DETERMINED AT SEATING PLANE,  
DATUM T.  
5. DIMENSIONS A AND B DO NOT  
INCULDE MOLD PROTRUSION.  
ALLOWABLE PROTRUSION IS 0.25 PER  
SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE H.  
6. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLED  
37  
72  
N
A1  
S1  
A
S
VIEW AB  
C
144X  
0.1 T  
θ2  
θ2  
MILLIMETERS  
MIN  
MAX  
DIM  
A
A1  
B
B1  
C
SEATING  
PLANE  
20.00 BSC  
10.00 BSC  
20.00 BSC  
10.00 BSC  
T
1.40  
C1 0.05  
C2 1.35  
1.60  
0.15  
1.45  
0.27  
0.75  
0.23  
PLATING  
D
E
F
0.17  
0.45  
0.17  
J
C2  
AA  
F
0.05  
G
J
0.50 BSC  
R2  
0.09  
0.20  
θ
K
P
0.50 REF  
0.25 BSC  
R1  
R1 0.13  
R2 0.13  
0.20  
0.20  
S
S1  
V
V1  
Y
22.00 BSC  
11.00 BSC  
22.00 BSC  
11.00 BSC  
0.25 REF  
1.00 REF  
BASE  
METAL  
0.25  
GAGE PLANE  
D
M
0.08  
T L-M N  
Z
SECTION J1-J1  
(ROTATED 90)  
144 PL  
(K)  
E
AA 0.09  
θ
θ1  
θ2  
0.16  
C1  
0°  
0°  
7°  
θ 1  
(Y)  
VIEW AB  
11°  
13°  
(Z)  
CASE 918-03  
ISSUE C  
Figure 3-3. DSP56309 Mechanical Information, 144-pin TQFP Package  
DSP56309 Technical Data  
3-9  
 
MAP-BGA Package Description  
Top and bottom views of the MAP-BGA package are shown in Figure 3-4. and Figure 3-5. with their  
pin-outs.  
Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
B
NC  
SC11  
TMS  
TDO  
MODB  
D23  
V
D19  
D16  
D14  
D11  
D9  
D7  
NC  
CCD  
SRD1  
SC02  
PINIT  
STD0  
RXD  
SC12  
STD1  
SC01  
TDI  
TCK  
TRST MODD  
MODA MODC  
D21  
D22  
D20  
D17  
D18  
D15  
D13  
D12  
D10  
D8  
D6  
D5  
D3  
NC  
D4  
V
V
V
CCD  
C
CCQL  
CCD  
DE  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
PB0  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
EXTAL  
CAS  
XTAL  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
BCLK  
BCLK  
TA  
GND  
D1  
D2  
V
D
E
F
CCD  
V
SRD0  
SC00  
TXD  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
WR  
BR  
A17  
A16  
A14  
D0  
CCS  
SC10  
SCLK  
V
A15  
A12  
A11  
A9  
CCQH  
A13  
G
SCK1  
V
CCQL  
V
V
SCK0  
HDS  
V
A10  
H
J
CCQH  
CCQL  
CCA  
HACK HRW  
A8  
A7  
A5  
A3  
A1  
K
V
HREQ TIO2  
V
A6  
CCS  
CCA  
CCA  
HCS  
HA1  
H6  
TIO1  
HA2  
H7  
TIO0  
HA0  
H4  
V
A4  
L
CLK  
OUT  
V
M
V
V
RD  
A2  
CCQH  
AA3  
CCH  
CCP  
N
P
H2  
H1  
RESET GND  
V
V
AA0  
BG  
A0  
P
CCQL  
CCC  
NC  
H5  
H3  
PCAP  
GND  
AA2  
V
BB  
AA1  
NC  
P1  
CCC  
AA1528  
Figure 3-4. DSP56309 Molded Array Process-Ball Grid Array (MAP-BGA), Top View  
3-10  
DSP56309 Technical Data  
 
 
Bottom View  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
A
B
NC  
D7  
D9  
D11  
D14  
D16  
D19  
V
D23  
MODB  
TDO  
TMS  
SC11  
NC  
CCD  
NC  
D4  
D5  
D3  
D8  
D6  
D10  
D13  
D12  
D15  
D17  
D18  
D20  
D21  
D22  
MODD TRST  
TDI  
SC12  
STD1  
SC01  
SRD1  
SC02  
PINIT  
STD0  
RXD  
V
V
V
MODC MODA TCK  
C
CCD  
CCD  
CCQL  
V
D2  
D1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
BCLK  
BCLK  
TA  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
EXTAL  
CAS  
XTAL  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
PB0  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DE  
SRD0  
SC00  
TXD  
SCK0  
HDS  
TIO2  
TIO0  
HA0  
H4  
D
E
F
CCD  
D0  
A16  
A14  
A17  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
WR  
BR  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
NC  
V
CCS  
A15  
A12  
A11  
A9  
V
SC10  
SCLK  
CCQH  
A13  
G
V
SCK1  
CCQL  
V
A10  
V
V
H
J
CCQH  
CCA  
CCQL  
A7  
A5  
A3  
A1  
A8  
HRW  
HACK  
K
A6  
V
HREQ  
TIO1  
HA2  
H7  
V
CCS  
CCA  
CCA  
A4  
V
HCS  
HA1  
H6  
L
CLK  
OUT  
M
A2  
RD  
V
V
CCP  
CCH  
N
P
A0  
AA0  
BG  
V
V
AA3  
AA2  
GND  
RESET  
PCAP  
H2  
CCC  
CCQL  
P
NC  
AA1  
BB  
V
GND  
H1  
H3  
H5  
NC  
CCC  
P1  
AA1529  
Figure 3-5. DSP56309 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View  
DSP56309 Technical Data  
3-11  
 
DSP56309 MAP-BGA Signal Identification by Pin Number  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
A1  
Not Connected (NC),  
reserved  
B12  
D8  
D9  
GND  
A2  
SC11 or PD1  
TMS  
B13  
B14  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
D5  
D10 GND  
D11 GND  
D12 D1  
A3  
NC  
A4  
TDO  
SC02 or PC2  
STD1 or PD5  
TCK  
A5  
MODB/IRQB  
D23  
D13 D2  
A6  
D14 VCCD  
A7  
VCCD  
MODA/IRQA  
MODC/IRQC  
D22  
E1  
STD0 or PC5  
VCCS  
A8  
D19  
E2  
A9  
D16  
E3  
SRD0 or PC4  
GND  
A10  
A11  
A12  
A13  
A14  
B1  
D14  
VCCQL  
E4  
D11  
D18  
E5  
GND  
D9  
VCCD  
E6  
GND  
D7  
C10 D12  
C11 VCCD  
C12 D6  
C13 D3  
C14 D4  
E7  
GND  
NC  
E8  
GND  
SRD1 or PD4  
SC12 or PD2  
TDI  
E9  
GND  
B2  
E10  
E11  
E12  
E13  
E14  
F1  
GND  
B3  
GND  
B4  
TRST  
MODD/IRQD  
D21  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
PINIT/NMI  
A17  
B5  
SC01 or PC1  
DE  
A16  
B6  
D0  
B7  
D20  
GND  
RXD or PE0  
SC10 or PD0  
SC00 or PC0  
GND  
B8  
D17  
GND  
F2  
B9  
D15  
GND  
F3  
B10  
B11  
D13  
GND  
F4  
D10  
GND  
F5  
GND  
3-12  
DSP56309 Technical Data  
 
DSP56309 MAP-BGA Signal Identification by Pin Number (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
SCK0 or PC3  
Signal Name  
F6  
GND  
GND  
GND  
H3  
J14  
A9  
F7  
F8  
H4  
H5  
GND  
GND  
K1  
K2  
VCCS  
HREQ/HREQ,  
HTRQ/HTRQ, or PB14  
F9  
GND  
GND  
GND  
VCCQH  
A14  
H6  
H7  
H8  
H9  
GND  
GND  
GND  
GND  
K3  
TIO2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCA  
F10  
F11  
F12  
F13  
F14  
G1  
K4  
K5  
K6  
H10 GND  
H11 GND  
H12 VCCA  
H13 A10  
H14 A11  
K7  
A15  
K8  
SCK1 or PD3  
SCLK or PE2  
TXD or PE1  
GND  
K9  
G2  
K10  
K11  
K12  
G3  
G4  
J1  
HACK/HACK,  
HRRQ/HRRQ, or PB15  
G5  
G6  
GND  
GND  
J2  
J3  
HRW, HRD/HRD, or PB11  
K13  
K14  
A5  
A6  
HDS/HDS, HWR/HWR, or  
PB12  
G7  
G8  
G9  
GND  
GND  
GND  
J4  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A8  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
HCS/HCS, HA10, or PB13  
J5  
TIO1  
TIO0  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
J6  
G10 GND  
G11 GND  
G12 A13  
G13 VCCQL  
G14 A12  
J7  
J8  
J9  
J10  
J11  
J12  
J13  
H1  
H2  
VCCQH  
VCCQL  
A7  
DSP56309 Technical Data  
3-13  
DSP56309 MAP-BGA Signal Identification by Pin Number (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
L11  
GND  
VCCA  
A3  
M13 A1  
M14 A2  
P1  
NC  
L12  
L13  
L14  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
P2  
H5, HAD5, or PB5  
N1  
N2  
N3  
N4  
N5  
N6  
N7  
N8  
N9  
H6, HAD6, or PB6  
H7, HAD7, or PB7  
P3  
H3, HAD3, or PB3  
A4  
P4  
H1, HAD1, or PB1  
PCAP  
HA1, HA8, or PB9  
HA2, HA9, or PB10  
HA0, HAS/HAS, or PB8  
VCCH  
H4, HAD4, or PB4  
H2, HAD2, or PB2  
RESET  
P5  
P6  
GNDP1  
AA2/RAS2  
XTAL  
P7  
GNDP  
P8  
H0, HAD0, or PB0  
VCCP  
AA3/RAS3  
CAS  
P9  
VCCC  
P10  
P11  
P12  
P13  
P14  
TA  
VCCQH  
VCCQL  
BB  
EXTAL  
N10 BCLK  
N11 BR  
AA1/RAS1  
BG  
CLKOUT  
M10 BCLK  
M11 WR  
M12 RD  
N12 VCCC  
N13 AA0/RAS0  
N14 A0  
NC  
Note: Signal names are based on configured functionality. Most connections supply a single signal.  
Some connections provide a signal with dual functionality, such as the MODx/IRQx pins that  
select an operating mode after RESET is deasserted, but act as interrupt lines during operation.  
Some signals have configurable polarity; these names are shown with and without overbars,  
such as HAS/HAS. Some connections have two or more configurable functions; names assigned  
to these connections indicate the function for a specific configuration. For example, connection  
N2 is data line H7 in non-multiplexed bus mode, data/address line HAD7 in multiplexed bus  
mode, or GPIO line PB7 when the GPIO function is enabled for this pin. Unlike the TQFP  
package, most of the GND pins are connected internally in the center of the connection array and  
act as heat sink for the chip. Therefore, except for GNDP and GNDP1 that support the PLL, other  
GND signals do not support individual subsystems in the chip.  
3-14  
DSP56309 Technical Data  
DSP56309 MAP-BGA Signal Identification by Name  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
A0  
A1  
N14  
M13  
H13  
H14  
G14  
G12  
F13  
F14  
E13  
E12  
M14  
L13  
L14  
K13  
K14  
J13  
J12  
J14  
N13  
P12  
P7  
BG  
BR  
P13  
N11  
N8  
D7  
D8  
A13  
B12  
A12  
D3  
M8  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
E4  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A2  
CAS  
CLKOUT  
D0  
D9  
M9  
DE  
E14  
D12  
B11  
A11  
C10  
B10  
A10  
B9  
EXTAL  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
D1  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D2  
A3  
A4  
A9  
A5  
B8  
A6  
C8  
E5  
A7  
A8  
E6  
A8  
D13  
B7  
E7  
A9  
D20  
D21  
D22  
D23  
D3  
E8  
AA0  
AA1  
AA2  
AA3  
BB  
B6  
E9  
C6  
E10  
E11  
F4  
A6  
N7  
C13  
C14  
B13  
C12  
P11  
M10  
N10  
D4  
F5  
BCLK  
BCLK  
D5  
F6  
D6  
F7  
DSP56309 Technical Data  
3-15  
 
DSP56309 MAP-BGA Signal Identification by Name (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
F8  
F9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GNDP  
GNDP1  
H0  
J9  
J10  
J11  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
L4  
H4  
H5  
N3  
P2  
N1  
N2  
M3  
M1  
L1  
F10  
F11  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
J4  
H6  
H7  
HA0  
HA1  
HA10  
HA2  
M2  
M1  
M2  
J1  
HA8  
HA9  
HACK/HACK  
HAD0  
M5  
P4  
N4  
P3  
N3  
P2  
N1  
N2  
M3  
L1  
L5  
HAD1  
L6  
HAD2  
L7  
HAD3  
L8  
HAD4  
L9  
HAD5  
L10  
L11  
N6  
P6  
M5  
P4  
N4  
P3  
HAD6  
HAD7  
HAS/HAS  
HCS/HCS  
HDS/HDS  
HRD/HRD  
HREQ/HREQ  
HRRQ/HRRQ  
J5  
J3  
J6  
H1  
J2  
J7  
H2  
K2  
J1  
J8  
H3  
3-16  
DSP56309 Technical Data  
DSP56309 MAP-BGA Signal Identification by Name (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
HRW  
HTRQ/HTRQ  
HWR/HWR  
IRQA  
IRQB  
IRQC  
IRQD  
MODA  
MODB  
MODC  
MODD  
NC  
J2  
K2  
J3  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
PB8  
PB9  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PCAP  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PE0  
PE1  
PE2  
PINIT  
N4  
P3  
N3  
P2  
N1  
N2  
M3  
M1  
F3  
D2  
C1  
H3  
E3  
E1  
P5  
F2  
A2  
B2  
G1  
B1  
C2  
F1  
G3  
G2  
D1  
RAS0  
RAS1  
RAS2  
RAS3  
RD  
N13  
P12  
P7  
N7  
M12  
N5  
F1  
C4  
A5  
C5  
B5  
C4  
A5  
C5  
B5  
A1  
A14  
B14  
P1  
P14  
D1  
M5  
P4  
M2  
J2  
RESET  
RXD  
SC00  
SC01  
SC02  
SC10  
SC11  
SC12  
SCK0  
SCK1  
SCLK  
SRD0  
SRD1  
STD0  
STD1  
TA  
F3  
D2  
C1  
F2  
A2  
B2  
H3  
G1  
G2  
E3  
B1  
E1  
C2  
P10  
C3  
B3  
A4  
L3  
NC  
NC  
NC  
NC  
NMI  
PB0  
PB1  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
J3  
TCK  
L1  
TDI  
K2  
J1  
TDO  
TIO0  
DSP56309 Technical Data  
3-17  
DSP56309 MAP-BGA Signal Identification by Name (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
TIO1  
TIO2  
TMS  
TRST  
TXD  
L2  
K3  
VCCC  
VCCD  
VCCD  
VCCD  
VCCD  
VCCH  
VCCP  
VCCQH  
VCCQH  
P9  
A7  
VCCQH  
VCCQL  
VCCQL  
VCCQL  
VCCQL  
VCCS  
M7  
C7  
A3  
C9  
G13  
H2  
B4  
C11  
D14  
M4  
M6  
F12  
H1  
G3  
N9  
VCCA  
VCCA  
VCCA  
VCCC  
H12  
K12  
L12  
N12  
E2  
VCCS  
K1  
WR  
M11  
P8  
XTAL  
3-18  
DSP56309 Technical Data  
MAP-BGA Package Mechanical Drawing  
Figure 3-6. DSP56309 Mechanical Information, 196-pin MAP-BGA Package  
DSP56309 Technical Data  
3-19  
 
3-20  
DSP56309 Technical Data  
SECTION 4  
Design Considerations  
THERMAL DESIGN CONSIDERATIONS  
An estimation of the chip junction temperature, T , in °C can be obtained from this equation:  
J
Equation 1: TJ = TA + (PD × RθJA  
Where:  
)
T
R
=
=
=
ambient temperature °C  
package junction-to-ambient thermal resistance °C/W  
power dissipation in package  
A
θJA  
P
D
Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and  
a case-to-ambient thermal resistance:  
Equation 2: RθJA = RθJC + RθCA  
Where:  
R
R
R
=
=
=
package junction-to-ambient thermal resistance °C/W  
package junction-to-case thermal resistance °C/W  
package case-to-ambient thermal resistance °C/W  
θJA  
θJC  
θCA  
R
is device-related and cannot be influenced by the user. The user controls the thermal environment to  
θJC  
change the case-to-ambient thermal resistance, R  
. For example, the user can change the air flow around  
θCA  
the device, add a heat sink, change the mounting arrangement on the printed circuit board (PCB), or  
otherwise change the thermal dissipation capability of the area surrounding the device on a PCB. This  
model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated  
through the case to the heat sink and out to the ambient environment. For ceramic packages, in situations  
where the heat flow is split between a path to the case and an alternate path through the PCB, analysis of  
the device thermal performance may need the additional modeling capability of a system level thermal  
simulation tool.  
The thermal performance of plastic packages is more dependent on the temperature of the PCB to which  
the package is mounted. Again, if the estimations obtained from R  
do not satisfactorily answer whether  
θJA  
the thermal performance is adequate, a system level model may be appropriate.  
A complicating factor is the existence of three common ways for determining the junction-to-case thermal  
resistance in plastic packages:  
DSP56309 Technical Data  
4-1  
 
To minimize temperature variation across the surface, the thermal resistance is measured from the  
junction to the outside surface of the package (case) closest to the chip mounting area when that  
surface has a proper heat sink.  
To define a value approximately equal to a junction-to-board thermal resistance, the thermal  
resistance is measured from the junction to where the leads are attached to the case.  
If the temperature of the package case (T ) is determined by a thermocouple, the thermal  
T
resistance is computed using the value obtained by the equation (T – T )/P .  
J
T
D
As noted above, the junction-to-case thermal resistances quoted in this data sheet are determined using the  
first definition. From a practical standpoint, that value is also suitable for determining the junction  
temperature from a case thermocouple reading in forced convection environments. In natural convection,  
using the junction-to-case thermal resistance to estimate junction temperature from a thermocouple reading  
on the case of the package will estimate a junction temperature slightly hotter than actual temperature.  
Hence, the new thermal metric, thermal characterization parameter or Ψ , has been defined to be (T –  
JT  
J
T )/P . This value gives a better estimate of the junction temperature in natural convection when using the  
T
D
surface temperature of the package. Remember that surface temperature readings of packages are subject  
to significant errors caused by inadequate attachment of the sensor to the surface and to errors caused by  
heat loss to the sensor. The recommended technique is to attach a 40-gauge thermocouple wire and bead to  
the top center of the package with thermally conductive epoxy.  
ELECTRICAL DESIGN CONSIDERATIONS  
CAUTION  
This device contains protective circuitry to  
guard against damage due to high static  
voltage or electrical fields. However, normal  
precautions are advised to avoid application  
of any voltages higher than maximum rated  
voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage  
level (for example, either GND or V ).  
CC  
Use the following list of recommendations to assure correct DSP operation:  
Provide a low-impedance path from the board power supply to each VCC pin on the DSP and from  
the board ground to each GND pin.  
Use at least six 0.01–0.1 µF bypass capacitors positioned as close as possible to the four sides of  
the package to connect the VCC power source to GND.  
4-2  
DSP56309 Technical Data  
 
Ensure that capacitor leads and associated printed circuit traces that connect to the chip V and  
CC  
GND pins are less than 0.5 in per capacitor lead.  
Use at least a four-layer PCB with two inner layers for VCC and GND.  
Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal.  
This recommendation particularly applies to the address and data buses as well as the IRQA, IRQB,  
IRQC, IRQD, TA, and BG pins. Maximum PCB trace lengths on the order of 6 inches are  
recommended.  
Consider all device loads and parasitic capacitance due to PCB traces when calculating  
capacitance. This is especially critical in systems with higher capacitive loads that could create  
higher transient currents in the VCC and GND circuits.  
All inputs must be terminated (that is, not allowed to float) using CMOS levels, except for the  
three pins with internal pull-up resistors (TRST, TMS, DE).  
Take special care to minimize noise levels on VCCP, GNDP, and GNDP1 pins.  
The following pins must be asserted after power-up: RESET and TRST.  
If multiple DSP56309 devices are on the same board, check for cross-talk or excessive spikes on  
the supplies due to synchronous operation of the devices.  
RESET must be asserted when the chip is powered up. A stable EXTAL signal should be supplied  
before deassertion of RESET.  
The Port A data bus (D[0–23]), HI08, ESSI0, ESSI1, SCI, and timers all use internal keepers to  
maintain the last output value even when the internal signal is tri-stated. Typically, no pull-up or  
pull-down resistors should be used with these signal lines. However, if the DSP is connected to a  
device that requires pull-up resistors (such as an MPC8260), the recommended resistor value is 10  
Kor less. If more than one DSP must be connected in parallel to the other device, the pull-up  
resistor value requirement changes as follows:  
— 2 DSPs = 5 Kor less  
— 3 DSPs = 3 Kor less  
— 4 DSPs = 2 Kor less  
— 5 DSPs = 1.5 Kor less  
— 6 DSPs = 1 Kor less  
POWER CONSUMPTION CONSIDERATIONS  
Power dissipation is a key issue in portable DSP applications. Some of the factors which affect current  
consumption are described in this section. Most of the current consumed by CMOS devices is alternating  
current (ac), which is charging and discharging the capacitances of the pins and internal nodes.  
Current consumption is described by this equation:  
Equation 3: I = C × V × f  
Where:  
DSP56309 Technical Data  
4-3  
 
 
 
 
C
=
node/pin capacitance  
V = voltage swing  
frequency of node/pin toggle  
f
=
4-4  
DSP56309 Technical Data  
Example 4-1. Current Consumption  
For a port A address pin loaded with 50 pF capacitance, operating at 3.3 V, and with a 66 MHz clock, toggling at  
its maximum possible rate (33 MHz), the current consumption is given by this equation:  
Equation 4: I = 50 × 1012 × 3.3 × 33 × 106 = 5.48 mA  
The maximum internal current (I max) value reflects the typical possible switching of the internal buses  
CCI  
on best-case operation conditions, which is not necessarily a real application case. The typical internal  
current (I  
) value reflects the average switching of the internal buses on typical operating conditions.  
CCItyp  
For applications that require very low current consumption, do the following:  
Set the EBD bit when not accessing external memory.  
Minimize external memory accesses, and use internal memory accesses.  
Minimize the number of pins that are switching.  
Minimize the capacitive load on the pins.  
Connect the unused inputs to pull-up or pull-down resistors.  
Disable unused peripherals.  
Disable unused pin activity (for example, CLKOUT and XTAL).  
One way to evaluate power consumption is to use a current per MIPS measurement methodology to  
minimize specific board effects (that is, to compensate for measured board current not caused by the DSP).  
A benchmark power consumption test algorithm is listed in Appendix A of the DSP56309 User’s Manual.  
Use the test algorithm, specific test current measurements, and the following equation to derive the current  
per MIPS value:  
Equation 5: I MIPS = I MHz = (ItypF2 ItypF1) ⁄ (F2 – F1)  
where:  
I
I
F2  
F1  
=
=
=
=
current at F2  
current at F1  
typF2  
typF1  
high frequency (any specified operating frequency)  
low frequency (any specified operating frequency less than F2)  
Note:  
F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33  
MHz. The degree of difference between F1 and F2 determines the amount of precision with which  
the current rating can be determined for an application.  
DSP56309 Technical Data  
4-5  
PLL PERFORMANCE ISSUES  
The following explanations should be considered as general observations on expected PLL behavior.  
There is no testing that verifies these exact numbers. These observations were measured on a limited  
number of parts and were not verified over the entire temperature and voltage ranges.  
Phase Skew Performance  
The phase skew of the PLL is defined as the time difference between the falling edges of EXTAL and  
CLKOUT for a given capacitive load on CLKOUT, over the entire process, temperature, and voltage ranges.  
As defined in Figure 2-2 on page 2-7, for input frequencies greater than 15 MHz and the MF 4, this  
skew is greater than or equal to 0.0 ns and less than 1.8 ns; otherwise, this skew is not guaranteed.  
However, for MF < 10 and input frequencies greater than 10 MHz, this skew is between 1.4 ns and +3.2  
ns.  
Phase Jitter Performance  
The phase jitter of the PLL is defined as the variations in the skew between the falling edges of EXTAL and  
CLKOUT for a given device in specific temperature, voltage, input frequency, MF, and capacitive load on  
CLKOUT. These variations are a result of the PLL locking mechanism. For input frequencies greater than 15  
MHz and MF 4, this jitter is less than ±0.6 ns; otherwise, this jitter is not guaranteed. However, for MF <  
10 and input frequencies greater than 10 MHz, this jitter is less than ±2 ns.  
Frequency Jitter Performance  
The frequency jitter of the PLL is defined as the variation of the frequency of CLKOUT. For small MF  
(MF < 10) this jitter is smaller than 0.5%. For mid-range MF (10 < MF < 500) this jitter is between 0.5%  
and approximately 2%. For large MF (MF > 500), the frequency jitter is 2–3%.  
Input (EXTAL) Jitter Requirements  
The allowed jitter on the frequency of EXTAL is 0.5%. If the rate of change of the frequency of EXTAL is  
slow (that is, it does not jump between the minimum and maximum values in one cycle) or the frequency  
of the jitter is fast (that is, it does not stay at an extreme value for a long time), then the allowed jitter can  
be 2%. The phase and frequency jitter performance results are only valid if the input jitter is less than the  
prescribed values.  
4-6  
DSP56309 Technical Data  
 
 
APPENDIX A  
Power Consumption Benchmark  
The following benchmark program permits evaluation of DSP power usage in a test situation. It enables  
the PLL, disables the external clock, and uses repeated multiply-accumulate (MAC) instructions with a set  
of synthetic DSP application data to emulate intensive sustained DSP operation.  
DSP56309 Technical Data  
A-1  
 
;**********************************************************************  
;*  
*
*
*
;* CHECKS  
;*  
Typical Power Consumption  
;**********************************************************************  
page  
nolist  
200,55,0,0,0  
I_VEC  
equ  
equ  
equ  
equ  
equ  
$000000  
; Interrupt vectors for program debug only  
; MAIN (external) program starting address  
; INTERNAL program memory starting address  
; INTERNAL X-data memory starting address  
; INTERNAL Y-data memory starting address  
START  
$8000  
$100  
$0  
INT_PROG  
INT_XDAT  
INT_YDAT  
$0  
INCLUDE "ioequ.asm"  
INCLUDE "intequ.asm"  
list  
org  
P:START  
;
;
;
movep #$0123FF,x:M_BCR  
; BCR: Area 3 : 1 w.s (SRAM)  
;
;
Area 2 : 0 w.s (SSRAM)  
Default: 1 w.s (SRAM)  
movep  
#$0d0000,x:M_PCTL  
; XTAL disable  
; PLL enable  
; CLKOUT disable  
; Load the program  
;
move  
move  
do  
move  
move  
nop  
#INT_PROG,r0  
#PROG_START,r1  
#(PROG_END-PROG_START),PLOAD_LOOP  
p:(r1)+,x0  
x0,p:(r0)+  
PLOAD_LOOP  
;
; Load the X-data  
;
move  
move  
do  
move  
move  
#INT_XDAT,r0  
#XDAT_START,r1  
#(XDAT_END-XDAT_START),XLOAD_LOOP  
p:(r1)+,x0  
x0,x:(r0)+  
XLOAD_LOOP  
;
; Load the Y-data  
;
move  
move  
do  
move  
move  
#INT_YDAT,r0  
#YDAT_START,r1  
#(YDAT_END-YDAT_START),YLOAD_LOOP  
p:(r1)+,x0  
x0,y:(r0)+  
YLOAD_LOOP  
;
jmp  
PROG_START  
INT_PROG  
move  
#$0,r0  
#$0,r4  
#$3f,m0  
#$3f,m4  
move  
move  
move  
;
clr  
a
b
clr  
move  
move  
move  
move  
bset  
#$0,x0  
#$0,x1  
#$0,y0  
#$0,y1  
#4,omr  
; ebd  
;
sbr  
dor  
mac  
mac  
#60,_end  
x0,y0,a x:(r0)+,x1  
x1,y1,a x:(r0)+,x0  
y:(r4)+,y1  
y:(r4)+,y0  
A-2  
DSP56309 Technical Data  
add  
mac  
mac  
move  
a,b  
x0,y0,a x:(r0)+,x1  
x1,y1,a  
y:(r4)+,y0  
b1,x:$ff  
_end  
bra  
nop  
nop  
nop  
nop  
sbr  
PROG_END  
nop  
nop  
XDAT_START  
org  
;
x:0  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
$262EB9  
$86F2FE  
$E56A5F  
$616CAC  
$8FFD75  
$9210A  
$A06D7B  
$CEA798  
$8DFBF1  
$A063D6  
$6C6657  
$C2A544  
$A3662D  
$A4E762  
$84F0F3  
$E6F1B0  
$B3829  
$8BF7AE  
$63A94F  
$EF78DC  
$242DE5  
$A3E0BA  
$EBAB6B  
$8726C8  
$CA361  
$2F6E86  
$A57347  
$4BE774  
$8F349D  
$A1ED12  
$4BFCE3  
$EA26E0  
$CD7D99  
$4BA85E  
$27A43F  
$A8B10C  
$D3A55  
$25EC6A  
$2A255B  
$A5F1F8  
$2426D1  
$AE6536  
$CBBC37  
$6235A4  
$37F0D  
$63BEC2  
$A5E4D3  
$8CE810  
$3FF09  
$60E50E  
$CFFB2F  
$40753C  
$8262C5  
$CA641A  
$EB3B4B  
$2DA928  
$AB6641  
$28A7E6  
$4E2127  
$482FD4  
$7257D  
DSP56309 Technical Data  
A-3  
dc  
dc  
dc  
$E53C72  
$1A8C3  
$E27540  
XDAT_END  
YDAT_START  
;
org  
y:0  
$5B6DA  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
$C3F70B  
$6A39E8  
$81E801  
$C666A6  
$46F8E7  
$AAEC94  
$24233D  
$802732  
$2E3C83  
$A43E00  
$C2B639  
$85A47E  
$ABFDDF  
$F3A2C  
$2D7CF5  
$E16A8A  
$ECB8FB  
$4BED18  
$43F371  
$83A556  
$E1E9D7  
$ACA2C4  
$8135AD  
$2CE0E2  
$8F2C73  
$432730  
$A87FA9  
$4A292E  
$A63CCF  
$6BA65C  
$E06D65  
$1AA3A  
$A1B6EB  
$48AC48  
$EF7AE1  
$6E3006  
$62F6C7  
$6064F4  
$87E41D  
$CB2692  
$2C3863  
$C6BC60  
$43A519  
$6139DE  
$ADF7BF  
$4B3E8C  
$6079D5  
$E0F5EA  
$8230DB  
$A3B778  
$2BFE51  
$E0A6B6  
$68FFB7  
$28F324  
$8F2E8D  
$667842  
$83E053  
$A1FD90  
$6B2689  
$85B68E  
$622EAF  
$6162BC  
$E4A245  
YDAT_END  
>
;**************************************************************************  
;
;
;
;
EQUATES for DSP56309 I/O registers and ports  
Last update: June 11 1995  
A-4  
DSP56309 Technical Data  
;
;**************************************************************************  
page  
opt  
132,55,0,0,0  
mex  
ioequ  
ident  
1,0  
;------------------------------------------------------------------------  
;
;
;
EQUATES for I/O Port Programming  
;------------------------------------------------------------------------  
;
Register Addresses  
M_HDR EQU $FFFFC9; Host port GPIO data Register  
M_HDDR EQU $FFFFC8; Host port GPIO direction Register  
M_PCRC EQU $FFFFBF; Port C Control Register  
M_PRRC EQU $FFFFBE  
M_PDRC EQU $FFFFBD  
M_PCRD EQU $FFFFAF  
M_PRRD EQU $FFFFAE  
M_PDRD EQU $FFFFAD  
M_PCRE EQU $FFFF9F  
M_PRRE EQU $FFFF9E  
M_PDRE EQU $FFFF9D  
M_OGDB EQU $FFFFFC  
; Port C Direction Register  
; Port C GPIO Data Register  
; Port D Control register  
; Port D Direction Data Register  
; Port D GPIO Data Register  
; Port E Control register  
; Port E Direction Register  
; Port E Data Register  
; OnCE GDB Register  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Host Interface  
;------------------------------------------------------------------------  
;
Register Addresses  
M_HCR EQU $FFFFC2  
M_HSR EQU $FFFFC3  
M_HPCR EQU $FFFFC4  
M_HBAR EQU $FFFFC5  
M_HRX EQU $FFFFC6  
M_HTX EQU $FFFFC7  
; Host Control Register  
; Host Status Rgister  
; Host Polarity Control Register  
; Host Base Address Register  
; Host Receive Register  
; Host Transmit Register  
;
HCR bits definition  
M_HRIE EQU $0  
M_HTIE EQU $1  
M_HCIE EQU $2  
M_HF2 EQU $3  
M_HF3 EQU $4  
; Host Receive interrupts Enable  
; Host Transmit Interrupt Enable  
; Host Command Interrupt Enable  
; Host Flag 2  
; Host Flag 3  
;
HSR bits definition  
M_HRDF EQU $0  
M_HTDE EQU $1  
M_HCP EQU $2  
M_HF0 EQU $3  
M_HF1 EQU $4  
; Host Receive Data Full  
; Host Receive Data Emptiy  
; Host Command Pending  
; Host Flag 0  
; Host Flag 1  
;
HPCR bits definition  
M_HGEN EQU $0  
M_HA8EN EQU $1  
M_HA9EN EQU $2  
M_HCSEN EQU $3  
M_HREN EQU $4  
M_HAEN EQU $5  
M_HEN EQU $6  
M_HOD EQU $8  
M_HDSP EQU $9  
M_HASP EQU $A  
M_HMUX EQU $B  
M_HD_HS EQU $C  
M_HCSP EQU $D  
M_HRP EQU $E  
M_HAP EQU $F  
; Host Port GPIO Enable  
; Host Address 8 Enable  
; Host Address 9 Enable  
; Host Chip Select Enable  
; Host Request Enable  
; Host Acknowledge Enable  
; Host Enable  
; Host Request Open Drain mode  
; Host Data Strobe Polarity  
; Host Address Strobe Polarity  
; Host Multiplexed bus select  
; Host Double/Single Strobe select  
; Host Chip Select Polarity  
; Host Request PolarityPolarity  
; Host Acknowledge Polarity  
DSP56309 Technical Data  
A-5  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Serial Communications Interface (SCI)  
;------------------------------------------------------------------------  
;
Register Addresses  
M_STXH EQU $FFFF97  
M_STXM EQU $FFFF96  
M_STXL EQU $FFFF95  
M_SRXH EQU $FFFF9A  
M_SRXM EQU $FFFF99  
M_SRXL EQU $FFFF98  
M_STXA EQU $FFFF94  
M_SCR EQU $FFFF9C  
M_SSR EQU $FFFF93  
M_SCCR EQU $FFFF9B  
; SCI Transmit Data Register (high)  
; SCI Transmit Data Register (middle)  
; SCI Transmit Data Register (low)  
; SCI Receive Data Register (high)  
; SCI Receive Data Register (middle)  
; SCI Receive Data Register (low)  
; SCI Transmit Address Register  
; SCI Control Register  
; SCI Status Register  
; SCI Clock Control Register  
;
SCI Control Register Bit Flags  
M_WDS EQU $7  
M_WDS0 EQU 0  
M_WDS1 EQU 1  
M_WDS2 EQU 2  
M_SSFTD EQU 3  
M_SBK EQU 4  
; Word Select Mask (WDS0-WDS3)  
; Word Select 0  
; Word Select 1  
; Word Select 2  
; SCI Shift Direction  
; Send Break  
M_WAKE EQU 5  
M_RWU EQU 6  
; Wakeup Mode Select  
; Receiver Wakeup Enable  
; Wired-OR Mode Select  
; SCI Receiver Enable  
; SCI Transmitter Enable  
; Idle Line Interrupt Enable  
; SCI Receive Interrupt Enable  
; SCI Transmit Interrupt Enable  
; Timer Interrupt Enable  
; Timer Interrupt Rate  
; SCI Clock Polarity  
M_WOMS EQU 7  
M_SCRE EQU 8  
M_SCTE EQU 9  
M_ILIE EQU 10  
M_SCRIE EQU 11  
M_SCTIE EQU 12  
M_TMIE EQU 13  
M_TIR EQU 14  
M_SCKP EQU 15  
M_REIE EQU 16  
; SCI Error Interrupt Enable (REIE)  
;
SCI Status Register Bit Flags  
M_TRNE EQU 0  
M_TDRE EQU 1  
M_RDRF EQU 2  
M_IDLE EQU 3  
M_OR EQU 4  
; Transmitter Empty  
; Transmit Data Register Empty  
; Receive Data Register Full  
; Idle Line Flag  
; Overrun Error Flag  
M_PE EQU 5  
; Parity Error  
M_FE EQU 6  
M_R8 EQU 7  
; Framing Error Flag  
; Received Bit 8 (R8) Address  
;
r
SCI Clock Control Registe  
M_CD EQU $FFF  
M_COD EQU 12  
M_SCP EQU 13  
M_RCM EQU 14  
M_TCM EQU 15  
; Clock Divider Mask (CD0-CD11)  
; Clock Out Divider  
; Clock Prescaler  
; Receive Clock Mode Source Bit  
; Transmit Clock Source Bit  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Synchronous Serial Interface (SSI)  
;------------------------------------------------------------------------  
;
;
Register Addresses Of SSI0  
M_TX00 EQU $FFFFBC  
M_TX01 EQU $FFFFBB  
M_TX02 EQU $FFFFBA  
M_TSR0 EQU $FFFFB9  
M_RX0 EQU $FFFFB8  
M_SSISR0 EQU $FFFFB7  
M_CRB0 EQU $FFFFB6  
M_CRA0 EQU $FFFFB5  
M_TSMA0 EQU $FFFFB4  
M_TSMB0 EQU $FFFFB3  
; SSI0 Transmit Data Register 0  
; SSIO Transmit Data Register 1  
; SSIO Transmit Data Register 2  
; SSI0 Time Slot Register  
; SSI0 Receive Data Register  
; SSI0 Status Register  
; SSI0 Control Register B  
; SSI0 Control Register A  
; SSI0 Transmit Slot Mask Register A  
; SSI0 Transmit Slot Mask Register B  
A-6  
DSP56309 Technical Data  
M_RSMA0 EQU $FFFFB2  
M_RSMB0 EQU $FFFFB1  
; SSI0 Receive Slot Mask Register A  
; SSI0 Receive Slot Mask Register B  
;
Register Addresses Of SSI1  
M_TX10 EQU $FFFFAC  
M_TX11 EQU $FFFFAB  
M_TX12 EQU $FFFFAA  
M_TSR1 EQU $FFFFA9  
M_RX1 EQU $FFFFA8  
M_SSISR1 EQU $FFFFA7  
M_CRB1 EQU $FFFFA6  
M_CRA1 EQU $FFFFA5  
M_TSMA1 EQU $FFFFA4  
M_TSMB1 EQU $FFFFA3  
M_RSMA1 EQU $FFFFA2  
M_RSMB1 EQU $FFFFA1  
; SSI1 Transmit Data Register 0  
; SSI1 Transmit Data Register 1  
; SSI1 Transmit Data Register 2  
; SSI1 Time Slot Register  
; SSI1 Receive Data Register  
; SSI1 Status Register  
; SSI1 Control Register B  
; SSI1 Control Register A  
; SSI1 Transmit Slot Mask Register A  
; SSI1 Transmit Slot Mask Register B  
; SSI1 Receive Slot Mask Register A  
; SSI1 Receive Slot Mask Register B  
;
SSI Control Register A Bit Flags  
M_PM EQU $FF  
; Prescale Modulus Select Mask (PM0-PM7)  
; Prescaler Range  
M_PSR EQU 11  
M_DC EQU $1F000  
M_ALC EQU 18  
M_WL EQU $380000  
M_SSC1 EQU 22  
; Frame Rate Divider Control Mask (DC0-DC7)  
; Alignment Control (ALC)  
; Word Length Control Mask (WL0-WL7)  
; Select SC1 as TR #0 drive enable (SSC1)  
;
SSI Control Register B Bit Flags  
M_OF EQU $3  
; Serial Output Flag Mask  
; Serial Output Flag 0  
; Serial Output Flag 1  
M_OF0 EQU 0  
M_OF1 EQU 1  
M_SCD EQU $1C  
M_SCD0 EQU 2  
M_SCD1 EQU 3  
M_SCD2 EQU 4  
M_SCKD EQU 5  
M_SHFD EQU 6  
M_FSL EQU $180  
M_FSL0 EQU 7  
M_FSL1 EQU 8  
M_FSR EQU 9  
M_FSP EQU 10  
M_CKP EQU 11  
M_SYN EQU 12  
M_MOD EQU 13  
M_SSTE EQU $1C000  
M_SSTE2 EQU 14  
M_SSTE1 EQU 15  
M_SSTE0 EQU 16  
M_SSRE EQU 17  
M_SSTIE EQU 18  
M_SSRIE EQU 19  
M_STLIE EQU 20  
M_SRLIE EQU 21  
M_STEIE EQU 22  
M_SREIE EQU 23  
; Serial Control Direction Mask  
; Serial Control 0 Direction  
; Serial Control 1 Direction  
; Serial Control 2 Direction  
; Clock Source Direction  
; Shift Direction  
; Frame Sync Length Mask (FSL0-FSL1)  
; Frame Sync Length 0  
; Frame Sync Length 1  
; Frame Sync Relative Timing  
; Frame Sync Polarity  
; Clock Polarity  
; Sync/Async Control  
; SSI Mode Select  
; SSI Transmit enable Mask  
; SSI Transmit #2 Enable  
; SSI Transmit #1 Enable  
; SSI Transmit #0 Enable  
; SSI Receive Enable  
; SSI Transmit Interrupt Enable  
; SSI Receive Interrupt Enable  
; SSI Transmit Last Slot Interrupt Enable  
; SSI Receive Last Slot Interrupt Enable  
; SSI Transmit Error Interrupt Enable  
; SI Receive Error Interrupt Enable  
;
SSI Status Register Bit Flags  
M_IF EQU $3  
M_IF0 EQU 0  
M_IF1 EQU 1  
M_TFS EQU 2  
M_RFS EQU 3  
M_TUE EQU 4  
M_ROE EQU 5  
M_TDE EQU 6  
M_RDF EQU 7  
; Serial Input Flag Mask  
; Serial Input Flag 0  
; Serial Input Flag 1  
; Transmit Frame Sync Flag  
; Receive Frame Sync Flag  
; Transmitter Underrun Error FLag  
; Receiver Overrun Error Flag  
; Transmit Data Register Empty  
; Receive Data Register Full  
;
SSI Transmit Slot Mask Register A  
M_SSTSA EQU $FFFF  
; SSI Transmit Slot Bits Mask A (TS0-TS15)  
;
SSI Transmit Slot Mask Register B  
M_SSTSB EQU $FFFF  
; SSI Transmit Slot Bits Mask B (TS16-TS31)  
;
SSI Receive Slot Mask Register A  
DSP56309 Technical Data  
A-7  
M_SSRSA EQU $FFFF  
; SSI Receive Slot Bits Mask A (RS0-RS15)  
; SSI Receive Slot Bits Mask B (RS16-RS31)  
;
SSI Receive Slot Mask Register B  
M_SSRSB EQU $FFFF  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Exception Processing  
;------------------------------------------------------------------------  
;
Register Addresses  
M_IPRC EQU $FFFFFF  
M_IPRP EQU $FFFFFE  
; Interrupt Priority Register Core  
; Interrupt Priority Register Peripheral  
;
Interrupt Priority Register Core (IPRC)  
M_IAL EQU $7  
; IRQA Mode Mask  
M_IAL0 EQU 0  
; IRQA Mode Interrupt Priority Level (low)  
; IRQA Mode Interrupt Priority Level (high)  
; IRQA Mode Trigger Mode  
M_IAL1 EQU 1  
M_IAL2 EQU 2  
M_IBL EQU $38  
M_IBL0 EQU 3  
; IRQB Mode Mask  
; IRQB Mode Interrupt Priority Level (low)  
; IRQB Mode Interrupt Priority Level (high)  
; IRQB Mode Trigger Mode  
M_IBL1 EQU 4  
M_IBL2 EQU 5  
M_ICL EQU $1C0  
M_ICL0 EQU 6  
; IRQC Mode Mask  
; IRQC Mode Interrupt Priority Level (low)  
; IRQC Mode Interrupt Priority Level (high)  
; IRQC Mode Trigger Mode  
M_ICL1 EQU 7  
M_ICL2 EQU 8  
M_IDL EQU $E00  
M_IDL0 EQU 9  
; IRQD Mode Mask  
; IRQD Mode Interrupt Priority Level (low)  
; IRQD Mode Interrupt Priority Level (high)  
; IRQD Mode Trigger Mode  
M_IDL1 EQU 10  
M_IDL2 EQU 11  
M_D0L EQU $3000  
M_D0L0 EQU 12  
M_D0L1 EQU 13  
M_D1L EQU $C000  
M_D1L0 EQU 14  
M_D1L1 EQU 15  
M_D2L EQU $30000  
M_D2L0 EQU 16  
M_D2L1 EQU 17  
M_D3L EQU $C0000  
M_D3L0 EQU 18  
M_D3L1 EQU 19  
M_D4L EQU $300000  
M_D4L0 EQU 20  
M_D4L1 EQU 21  
M_D5L EQU $C00000  
M_D5L0 EQU 22  
M_D5L1 EQU 23  
; DMA0 Interrupt priority Level Mask  
; DMA0 Interrupt Priority Level (low)  
; DMA0 Interrupt Priority Level (high)  
; DMA1 Interrupt Priority Level Mask  
; DMA1 Interrupt Priority Level (low)  
; DMA1 Interrupt Priority Level (high)  
; DMA2 Interrupt priority Level Mask  
; DMA2 Interrupt Priority Level (low)  
; DMA2 Interrupt Priority Level (high)  
; DMA3 Interrupt Priority Level Mask  
; DMA3 Interrupt Priority Level (low)  
; DMA3 Interrupt Priority Level (high)  
; DMA4 Interrupt priority Level Mask  
; DMA4 Interrupt Priority Level (low)  
; DMA4 Interrupt Priority Level (high)  
; DMA5 Interrupt priority Level Mask  
; DMA5 Interrupt Priority Level (low)  
; DMA5 Interrupt Priority Level (high)  
;
Interrupt Priority Register Peripheral (IPRP)  
M_HPL EQU $3  
M_HPL0 EQU 0  
M_HPL1 EQU 1  
M_S0L EQU $C  
M_S0L0 EQU 2  
M_S0L1 EQU 3  
M_S1L EQU $30  
M_S1L0 EQU 4  
M_S1L1 EQU 5  
M_SCL EQU $C0  
M_SCL0 EQU 6  
M_SCL1 EQU 7  
M_T0L EQU $300  
M_T0L0 EQU 8  
M_T0L1 EQU 9  
; Host Interrupt Priority Level Mask  
; Host Interrupt Priority Level (low)  
; Host Interrupt Priority Level (high)  
; SSI0 Interrupt Priority Level Mask  
; SSI0 Interrupt Priority Level (low)  
; SSI0 Interrupt Priority Level (high)  
; SSI1 Interrupt Priority Level Mask  
; SSI1 Interrupt Priority Level (low)  
; SSI1 Interrupt Priority Level (high)  
; SCI Interrupt Priority Level Mask  
; SCI Interrupt Priority Level (low)  
; SCI Interrupt Priority Level (high)  
; TIMER Interrupt Priority Level Mask  
; TIMER Interrupt Priority Level (low)  
; TIMER Interrupt Priority Level (high)  
A-8  
DSP56309 Technical Data  
;------------------------------------------------------------------------  
;
;
;
EQUATES for TIMER  
;------------------------------------------------------------------------  
;
Register Addresses Of TIMER0  
M_TCSR0 EQU $FFFF8F  
M_TLR0 EQU $FFFF8E  
M_TCPR0 EQU $FFFF8D  
M_TCR0 EQU $FFFF8C  
; Timer 0 Control/Status Register  
; TIMER0 Load Reg  
; TIMER0 Compare Register  
; TIMER0 Count Register  
;
Register Addresses Of TIMER1  
M_TCSR1 EQU $FFFF8B  
M_TLR1 EQU $FFFF8A  
M_TCPR1 EQU $FFFF89  
M_TCR1 EQU $FFFF88  
; TIMER1 Control/Status Register  
; TIMER1 Load Reg  
; TIMER1 Compare Register  
; TIMER1 Count Register  
;
Register Addresses Of TIMER2  
M_TCSR2 EQU $FFFF87  
M_TLR2 EQU $FFFF86  
; TIMER2 Control/Status Register  
; TIMER2 Load Reg  
M_TCPR2 EQU $FFFF85 ; TIMER2 Compare Register  
M_TCR2 EQU $FFFF84  
M_TPLR EQU $FFFF83  
M_TPCR EQU $FFFF82  
; TIMER2 Count Register  
; TIMER Prescaler Load Register  
; TIMER Prescalar Count Register  
;
Timer Control/Status Register Bit Flags  
M_TE EQU 0  
; Timer Enable  
M_TOIE EQU 1  
M_TCIE EQU 2  
M_TC EQU $F0  
M_INV EQU 8  
M_TRM EQU 9  
M_DIR EQU 11  
M_DI EQU 12  
M_DO EQU 13  
; Timer Overflow Interrupt Enable  
; Timer Compare Interrupt Enable  
; Timer Control Mask (TC0-TC3)  
; Inverter Bit  
; Timer Restart Mode  
; Direction Bit  
; Data Input  
; Data Output  
M_PCE EQU 15 ; Prescaled Clock Enable  
M_TOF EQU 20  
M_TCF EQU 21  
; Timer Overflow Flag  
; Timer Compare Flag  
;
Timer Prescaler Register Bit Flags  
M_PS EQU $600000 ; Prescaler Source Mask  
M_PS0 EQU 21  
M_PS1 EQU 22  
;
Timer Control Bits  
M_TC0 EQU 4  
M_TC1 EQU 5  
M_TC2 EQU 6  
M_TC3 EQU 7  
; Timer Control 0  
; Timer Control 1  
; Timer Control 2  
; Timer Control 3  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Direct Memory Access (DMA)  
;------------------------------------------------------------------------  
;
Register Addresses Of DMA  
M_DSTR EQU FFFFF4 ; DMA Status Register  
M_DOR0 EQU $FFFFF3 ; DMA Offset Register 0  
M_DOR1 EQU $FFFFF2 ; DMA Offset Register 1  
M_DOR2 EQU $FFFFF1 ; DMA Offset Register 2  
M_DOR3 EQU $FFFFF0 ; DMA Offset Register 3  
;
Register Addresses Of DMA0  
M_DSR0 EQU $FFFFEF ; DMA0 Source Address Register  
M_DDR0 EQU $FFFFEE ; DMA0 Destination Address Register  
M_DCO0 EQU $FFFFED ; DMA0 Counter  
DSP56309 Technical Data  
A-9  
M_DCR0 EQU $FFFFEC ; DMA0 Control Register  
Register Addresses Of DMA1  
;
M_DSR1 EQU $FFFFEB ; DMA1 Source Address Register  
M_DDR1 EQU $FFFFEA ; DMA1 Destination Address Register  
M_DCO1 EQU $FFFFE9 ; DMA1 Counter  
M_DCR1 EQU $FFFFE8 ; DMA1 Control Register  
;
Register Addresses Of DMA2  
M_DSR2 EQU $FFFFE7 ; DMA2 Source Address Register  
M_DDR2 EQU $FFFFE6 ; DMA2 Destination Address Register  
M_DCO2 EQU $FFFFE5 ; DMA2 Counter  
M_DCR2 EQU $FFFFE4 ; DMA2 Control Register  
;
Register Addresses Of DMA4  
M_DSR3 EQU $FFFFE3 ; DMA3 Source Address Register  
M_DDR3 EQU $FFFFE2 ; DMA3 Destination Address Register  
M_DCO3 EQU $FFFFE1 ; DMA3 Counter  
M_DCR3 EQU $FFFFE0 ; DMA3 Control Register  
;
Register Addresses Of DMA4  
M_DSR4 EQU $FFFFDF ; DMA4 Source Address Register  
M_DDR4 EQU $FFFFDE ; DMA4 Destination Address Register  
M_DCO4 EQU $FFFFDD ; DMA4 Counter  
M_DCR4 EQU $FFFFDC ; DMA4 Control Register  
;
Register Addresses Of DMA5  
M_DSR5 EQU $FFFFDB ; DMA5 Source Address Register  
M_DDR5 EQU $FFFFDA ; DMA5 Destination Address Register  
M_DCO5 EQU $FFFFD9 ; DMA5 Counter  
M_DCR5 EQU $FFFFD8 ; DMA5 Control Register  
;
DMA Control Register  
M_DSS EQU $3  
M_DSS0 EQU 0  
M_DSS1 EQU 1  
M_DDS EQU $C  
M_DDS0 EQU 2  
M_DDS1 EQU 3  
; DMA Source Space Mask (DSS0-Dss1)  
; DMA Source Memory space 0  
; DMA Source Memory space 1  
; DMA Destination Space Mask (DDS-DDS1)  
; DMA Destination Memory Space 0  
; DMA Destination Memory Space 1  
M_DAM EQU $3f0 ; DMA Address Mode Mask (DAM5-DAM0)  
M_DAM0 EQU 4 ; DMA Address Mode 0  
M_DAM1 EQU 5 ; DMA Address Mode 1  
M_DAM2 EQU 6 ; DMA Address Mode 2  
M_DAM3 EQU 7 ; DMA Address Mode 3  
M_DAM4 EQU 8 ; DMA Address Mode 4  
M_DAM5 EQU 9 ; DMA Address Mode 5  
M_D3D EQU 10  
; DMA Three Dimensional Mode  
M_DRS EQU $F800; DMA Request Source Mask (DRS0-DRS4)  
M_DCON EQU 16 ; DMA Continuous Mode  
M_DPR EQU $60000; DMA Channel Priority  
M_DPR0 EQU 17 ; DMA Channel Priority Level (low)  
M_DPR1 EQU 18 ; DMA Channel Priority Level (high)  
M_DTM EQU $380000; DMA Transfer Mode Mask (DTM2-DTM0)  
M_DTM0 EQU 19 ; DMA Transfer Mode 0  
M_DTM1 EQU 20 ; DMA Transfer Mode 1  
M_DTM2 EQU 21 ; DMA Transfer Mode 2  
M_DIE EQU 22  
M_DE EQU 23  
; DMA Interrupt Enable bit  
; DMA Channel Enable bit  
;
DMA Status Register  
M_DTD EQU $3F ; Channel Transfer Done Status MASK (DTD0-DTD5)  
M_DTD0 EQU 0  
M_DTD1 EQU 1  
M_DTD2 EQU 2  
M_DTD3 EQU 3  
M_DTD4 EQU 4  
M_DTD5 EQU 5  
M_DACT EQU  
; DMA Channel Transfer Done Status 0  
; DMA Channel Transfer Done Status 1  
; DMA Channel Transfer Done Status 2  
; DMA Channel Transfer Done Status 3  
; DMA Channel Transfer Done Status 4  
; DMA Channel Transfer Done Status 5  
; DMA Active State  
8
M_DCH EQU $E00; DMA Active Channel Mask (DCH0-DCH2)  
M_DCH0 EQU  
9
; DMA Active Channel 0  
A-10  
DSP56309 Technical Data  
M_DCH1 EQU 10 ; DMA Active Channel 1  
M_DCH2 EQU 11 ; DMA Active Channel 2  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Phase Locked Loop (PLL)  
;------------------------------------------------------------------------  
;
Register Addresses Of PLL  
M_PCTL EQU $FFFFFD ; PLL Control Register  
PLL Control Register  
;
M_MF EQU $FFF : Multiplication Factor Bits Mask (MF0-MF11)  
M_DF EQU $7000 ; Division Factor Bits Mask (DF0-DF2)  
M_XTLR EQU 15 ; XTAL Range select bit  
M_XTLD EQU 16 ; XTAL Disable Bit  
M_PSTP EQU 17 ; STOP Processing State Bit  
M_PEN EQU 18  
; PLL Enable Bit  
M_PCOD EQU 19 ; PLL Clock Output Disable Bit  
M_PD EQU $F00000; PreDivider Factor Bits Mask (PD0-PD3)  
;------------------------------------------------------------------------  
;
;
;
EQUATES for BIU  
;------------------------------------------------------------------------  
;
Register Addresses Of BIU  
M_BCR EQU $FFFFFB; Bus Control Register  
M_DCR EQU $FFFFFA; DRAM Control Register  
M_AAR0 EQU $FFFFF9; Address Attribute Register 0  
M_AAR1 EQU $FFFFF8; Address Attribute Register 1  
M_AAR2 EQU $FFFFF7; Address Attribute Register 2  
M_AAR3 EQU $FFFFF6; Address Attribute Register 3  
M_IDR EQU $FFFFF5 ; ID Register  
;
Bus Control Register  
M_BA0W EQU $1F ; Area 0 Wait Control Mask (BA0W0-BA0W4)  
M_BA1W EQU $3E0; Area 1 Wait Control Mask (BA1W0-BA14)  
M_BA2W EQU $1C00; Area 2 Wait Control Mask (BA2W0-BA2W2)  
M_BA3W EQU $E000; Area 3 Wait Control Mask (BA3W0-BA3W3)  
M_BDFW EQU $1F0000 ; Default Area Wait Control Mask (BDFW0-BDFW4)  
M_BBS EQU 21  
M_BLH EQU 22  
M_BRH EQU 23  
; Bus State  
; Bus Lock Hold  
; Bus Request Hold  
;
DRAM Control Register  
M_BCW EQU $3  
M_BRW EQU $C  
; In Page Wait States Bits Mask (BCW0-BCW1)  
; Out Of Page Wait States Bits Mask (BRW0-BRW1)  
M_BPS EQU $300 ; DRAM Page Size Bits Mask (BPS0-BPS1)  
M_BPLE EQU 11 ; Page Logic Enable  
M_BME EQU 12  
M_BRE EQU 13  
; Mastership Enable  
; Refresh Enable  
M_BSTR EQU 14 ; Software Triggered Refresh  
M_BRF EQU $7F8000; Refresh Rate Bits Mask (BRF0-BRF7)  
M_BRP EQU 23  
; Refresh prescaler  
;
Address Attribute Registers  
M_BAT EQU $3  
M_BAAP EQU 2  
M_BPEN EQU 3  
M_BXEN EQU 4  
M_BYEN EQU 5  
M_BAM EQU 6  
M_BPAC EQU 7  
; Ext. Access Type and Pin Def. Bits Mask (BAT0-BAT1)  
; Address Attribute Pin Polarity  
; Program Space Enable  
; X Data Space Enable  
; Y Data Space Enable  
; Address Muxing  
; Packing Enable  
M_BNC EQU $F00 ; Number of Address Bits to Compare Mask (BNC0-BNC3)  
M_BAC EQU $FFF000; Address to Compare Bits Mask (BAC0-BAC11)  
DSP56309 Technical Data  
A-11  
;
control and status bits in SR  
M_CP EQU $c00000; mask for CORE-DMA priority bits in SR  
M_CA EQU 0  
M_V EQU 1  
; Carry  
; Overflow  
M_Z EQU 2  
; Zero  
M_N EQU 3  
; Negative  
M_U EQU 4  
; Unnormalized  
M_E EQU 5  
; Extension  
M_L EQU 6  
; Limit  
M_S EQU 7  
; Scaling Bit  
M_I0 EQU 8  
M_I1 EQU 9  
M_S0 EQU 10  
M_S1 EQU 11  
M_SC EQU 13  
M_DM EQU 14  
M_LF EQU 15  
M_FV EQU 16  
M_SA EQU 17  
M_CE EQU 19  
M_SM EQU 20  
M_RM EQU 21  
M_CP0 EQU 22  
M_CP1 EQU 23  
; Interupt Mask Bit 0  
; Interupt Mask Bit 1  
; Scaling Mode Bit 0  
; Scaling Mode Bit 1  
; Sixteen_Bit Compatibility  
; Double Precision Multiply  
; DO-Loop Flag  
; DO-Forever Flag  
; Sixteen-Bit Arithmetic  
; Instruction Cache Enable  
; Arithmetic Saturation  
; Rounding Mode  
; bit 0 of priority bits in SR  
; bit 1 of priority bits in SR  
;
control and status bits in OMR  
M_CDP EQU $300 ; mask for CORE-DMA priority bits in OMR  
M_MA  
M_MB  
M_MC  
M_MD  
equ0  
; Operating Mode A  
equ1  
; Operating Mode B  
equ2  
equ3  
; Operating Mode C  
; Operating Mode D  
M_EBD EQU 4  
M_SD EQU 6  
; External Bus Disable bit in OMR  
; Stop Delay  
M_MS EQU 7  
; Memory Switch bit in OMR  
; bit 0 of priority bits in OMR  
; bit 1 of priority bits in OMR  
M_CDP0 EQU 8  
M_CDP1 EQU 9  
M_BEN  
EQU 10 ; Burst Enable  
M_TAS EQU 11 ; TA Synchronize Select  
M_BRT EQU 12 ; Bus Release Timing  
M_ATE EQU 15  
M_XYS EQU 16  
M_EUN EQU 17  
M_EOV EQU 18  
M_WRP EQU 19  
M_SEN EQU 20  
; Address Tracing Enable bit in OMR.  
; Stack Extension space select bit in OMR.  
; Extensed stack UNderflow flag in OMR.  
; Extended stack OVerflow flag in OMR.  
; Extended WRaP flag in OMR.  
; Stack Extension Enable bit in OMR.  
;*************************************************************************  
;
;
;
;
;
EQUATES for DSP56309 interrupts  
Last update: June 11 1995  
;*************************************************************************  
page  
opt  
132,55,0,0,0  
mex  
intequ ident  
if  
1,0  
@DEF(I_VEC)  
;leave user definition as is.  
else  
I_VEC EQU $0  
endif  
;------------------------------------------------------------------------  
; Non-Maskable interrupts  
A-12  
DSP56309 Technical Data  
;------------------------------------------------------------------------  
I_RESET EQU I_VEC+$00 ; Hardware RESET  
I_STACK EQU I_VEC+$02 ; Stack Error  
I_ILL EQU I_VEC+$04  
I_DBG EQU I_VEC+$06  
I_TRAP EQU I_VEC+$08  
I_NMI EQU I_VEC+$0A  
; Illegal Instruction  
; Debug Request  
; Trap  
; Non Maskable Interrupt  
;------------------------------------------------------------------------  
; Interrupt Request Pins  
;------------------------------------------------------------------------  
I_IRQA EQU I_VEC+$10  
I_IRQB EQU I_VEC+$12  
I_IRQC EQU I_VEC+$14  
I_IRQD EQU I_VEC+$16  
; IRQA  
; IRQB  
; IRQC  
; IRQD  
;------------------------------------------------------------------------  
; DMA Interrupts  
;------------------------------------------------------------------------  
I_DMA0 EQU I_VEC+$18  
I_DMA1 EQU I_VEC+$1A  
I_DMA2 EQU I_VEC+$1C  
I_DMA3 EQU I_VEC+$1E  
I_DMA4 EQU I_VEC+$20  
I_DMA5 EQU I_VEC+$22  
; DMA Channel 0  
; DMA Channel 1  
; DMA Channel 2  
; DMA Channel 3  
; DMA Channel 4  
; DMA Channel 5  
;------------------------------------------------------------------------  
; Timer Interrupts  
;------------------------------------------------------------------------  
I_TIM0C EQU I_VEC+$24 ; TIMER 0 compare  
I_TIM0OF EQU I_VEC+$26; TIMER 0 overflow  
I_TIM1C EQU I_VEC+$28 ; TIMER 1 compare  
I_TIM1OF EQU I_VEC+$2A; TIMER 1 overflow  
I_TIM2C EQU I_VEC+$2C ; TIMER 2 compare  
I_TIM2OF EQU I_VEC+$2E; TIMER 2 overflow  
;------------------------------------------------------------------------  
; ESSI Interrupts  
;------------------------------------------------------------------------  
I_SI0RD EQU I_VEC+$30 ; ESSI0 Receive Data  
I_SI0RDE EQU I_VEC+$32; ESSI0 Receive Data w/ exception Status  
I_SI0RLS EQU I_VEC+$34; ESSI0 Receive last slot  
I_SI0TD EQU I_VEC+$36 ; ESSI0 Transmit data  
I_SI0TDE EQU I_VEC+$38; ESSI0 Transmit Data w/ exception Status  
I_SI0TLS EQU I_VEC+$3A; ESSI0 Transmit last slot  
I_SI1RD EQU I_VEC+$40 ; ESSI1 Receive Data  
I_SI1RDE EQU I_VEC+$42; ESSI1 Receive Data w/ exception Status  
I_SI1RLS EQU I_VEC+$44  
I_SI1TD EQU I_VEC+$46  
; ESSI1 Receive last slot  
; ESSI1 Transmit data  
I_SI1TDE EQU I_VEC+$48; ESSI1 Transmit Data w/ exception Status  
I_SI1TLS EQU I_VEC+$4A; ESSI1 Transmit last slot  
;------------------------------------------------------------------------  
; SCI Interrupts  
;------------------------------------------------------------------------  
I_SCIRD EQU I_VEC+$50  
I_SCIRDE EQU I_VEC+$52  
I_SCITD EQU I_VEC+$54  
I_SCIIL EQU I_VEC+$56  
I_SCITM EQU I_VEC+$58  
; SCI Receive Data  
; SCI Receive Data With Exception Status  
; SCI Transmit Data  
; SCI Idle Line  
; SCI Timer  
;------------------------------------------------------------------------  
; HOST Interrupts  
;------------------------------------------------------------------------  
I_HRDF EQU I_VEC+$60  
I_HTDE EQU I_VEC+$62  
I_HC EQU I_VEC+$64  
; Host Receive Data Full  
; Host Transmit Data Empty  
; Default Host Command  
;------------------------------------------------------------------------  
; INTERRUPT ENDING ADDRESS  
;------------------------------------------------------------------------  
I_INTEND EQU I_VEC+$FF  
; last address of interrupt vector space  
DSP56309 Technical Data  
A-13  
A-14  
DSP56309 Technical Data  
Index  
Direct Memory Access (DMA) iii  
documentation list v  
Double Data Strobe 1-2  
DRAM  
Numerics  
5 V tolerance 1-1  
A
out of page  
read access 2-29  
ac electrical characteristics 2-4  
address bus 1-1  
Address Trace mode iii, 2-32, 2-35  
applications v  
arbitration bus timings 2-35  
Arithmetic Logic Unit (ALU) iii  
wait states selection guide 2-25  
write access 2-30  
out of page and refresh timings  
11 wait states 2-25  
15 wait states 2-27  
Page mode  
read accesses 2-24  
wait states selection guide 2-19  
write accesses 2-23  
Page mode timings  
3 wait states 2-20  
4 wait states 2-21  
refresh access 2-31  
DRAM controller iv  
DSP56300  
B
benchmark test algorithm A-1  
bootstrap ROM iv  
Boundary Scan (JTAG Port) timing diagram 2-56  
bus  
address 1-2  
data 1-2  
external address 1-6  
external data 1-6  
multiplexed 1-2  
core features iii  
Family Manual v  
DSP56309  
non-multiplexed 1-2  
bus acquisition timings 2-36  
bus control 1-1  
block diagram i  
description i  
features iii  
specifications 2-1  
Technical Data v  
User’s Manual v  
bus release timings 2-37, 2-38  
C
clock 1-1, 1-5  
external 2-4  
E
operation 2-6  
clocks  
internal 2-4  
crystal oscillator circuits 2-5  
electrical design considerations 4-2, 4-3  
Enhanced Synchronous Serial Interface (ESSI) 1-1, 1-2,  
1-16, 1-17, 1-18, 1-19  
receiver timing 2-52  
timings 2-48  
transmitter timing 2-51  
D
Enhanced Synchronous Serial Interfaces (ESSI) iv  
external address bus 1-6  
external bus control 1-6, 1-7, 1-8  
external bus synchronous timings (SRAM access) 2-32  
external clock operation 2-4  
Data Arithmetic Logic Unit (Data ALU) iii  
data bus 1-1  
data memory expansion iv  
Data Strobe (DS) 1-2  
dc electrical characteristics 2-3  
Debug support iii  
external data bus 1-6  
external interrupt timing (negative edge-triggered) 2-12  
external level-sensitive fast interrupt timing 2-12  
external memory access (DMA Source) timing 2-14  
External Memory Expansion Port 1-6, 2-15  
description, general i  
design considerations  
electrical 4-2, 4-3  
PLL 4-6  
power consumption 4-3  
thermal 4-1  
DSP56309 Technical Data  
Index-1  
Index  
keeper circuits 1-3, 1-6, 1-15, 1-17, 1-19, 1-20, 1-21, 4-3  
keeper, weak 1-3  
F
functional groups 1-2  
functional signal groups 1-1  
M
MAP-BGA 3-1  
G
ball grid drawing (bottom) 3-11  
ball grid drawing (top) 3-10  
ball list by name 3-15  
ball list by number 3-12  
mechanical drawing 3-19  
maximum ratings 2-1, 2-2  
memory expansion port iv  
mode control 1-9  
general description i  
General-Purpose Input/Output (GPIO) iv, 1-2, 1-21  
Timers 1-2  
General-Purpose Input/Output (GPIO) timing 2-54  
ground 1-1, 1-4  
PLL 1-4  
H
Mode select timing 2-7  
multiplexed bus 1-2  
multiplexed bus timings  
read 2-44  
Host Interface (HI08) iv, 1-1, 1-2, 1-10, 1-11, 1-12,  
1-13, 1-14, 1-15  
Host Interface (HI08) timing 2-40  
host port  
write 2-45  
configuration 1-11  
usage considerations 1-10  
Host Request  
N
non-multiplexed bus 1-2  
non-multiplexed bus timings  
read 2-42  
Double 1-2  
Single 1-2  
write 2-43  
Host Request (HR) 1-2  
O
I
off-chip memory iv  
information sources v  
OnCE  
instruction cache iii  
module timing 2-57  
internal clocks 2-4  
OnCE module 1-22  
interrupt and mode control 1-1, 1-9  
interrupt control 1-9  
Debug request 2-57  
on-chip DRAM controller iv  
On-Chip Emulation (OnCE) module iii  
on-chip memory iii  
operating mode select timing 2-13  
ordering information Back Cover  
interrupt timing 2-7  
external level-sensitive fast 2-12  
external negative edge-triggered 2-12  
synchronous from Wait state 2-13  
J
P
JTAG iii, 1-22  
JTAG Port  
package  
144-pin TQFP 3-1  
196-pin MAP-BGA 3-1  
MAP-BGA description 3-10, 3-11, 3-12, 3-15, 3-19  
TQFP description 3-2, 3-3, 3-4, 3-6, 3-9  
Phase-Lock Loop (PLL) iii, 1-1, 2-7  
Characteristics 2-7  
reset timing diagram 2-57  
timing 2-55, 2-56  
JTAG/OnCE port 1-1, 1-2  
K
keeper circuit  
design considerations 4-6  
performance issues 4-6  
design considerations 4-3  
Phase-Lock Loop (PLL) design considerations 4-6  
DSP56309 Technical Data  
Index-2  
Index  
PLL 1-5  
Port A 1-1, 1-6  
T
Port B 1-1, 1-2, 1-12, 1-13, 1-14, 1-15  
Port C 1-1, 1-2, 1-16, 1-17  
Port D 1-1, 1-2, 1-18, 1-19  
Port E 1-1, 1-20  
target applications v  
Test Access Port (TAP) iii  
timing diagram 2-56  
Test Clock (TCLK) input timing diagram 2-55  
thermal characteristics 2-2  
thermal design considerations 4-1  
Timer  
Power 1-3  
power 1-1  
power consumption benchmark test A-1  
power consumption design considerations 4-3  
power management v  
Program Control Unit (PCU) iii  
program memory expansion iv  
program RAM iv  
event input restrictions 2-53  
interrupt generation 2-53  
timing 2-53  
Timers 1-1, 1-2, 1-21  
timing  
interrupt 2-7  
mode select 2-7  
Reset 2-7  
Stop 2-7  
R
recovery from Stop state using IRQA 2-13, 2-14  
RESET 1-10  
Reset timing 2-7, 2-11  
synchronous 2-11  
TQFP 3-1  
mechanical drawing 3-9  
pin list by name 3-6  
pin list by number 3-4  
pin-out drawing (bottom) 3-3  
pin-out drawing (top) 3-2  
ROM, bootstrap iv  
S
Serial Communication Interface (SCI) 1-1, 1-2, 1-20  
Asynchronous mode timing 2-47  
Synchronous mode timing 2-47  
timing 2-46  
Serial Communications Interface (SCI) iv  
signal groupings 1-1  
W
Wait mode v  
weak keeper 1-3  
World Wide Web v  
signals 1-1  
X
functional grouping 1-2  
Single Data Strobe 1-2  
SRAM  
X data RAM iv  
Y
read access 2-17  
read and write accesses 2-15  
support iv  
Y data RAM iv  
write access 2-18  
Stop mode v  
Stop state  
recovery from 2-13, 2-14  
Stop timing 2-7  
supply voltage 2-2  
Switch mode iv  
synchronous bus timings  
SRAM  
2 wait states 2-34  
SRAM 1 wait state (BCR controlled) 2-33  
synchronous interrupt from Wait state timing 2-13  
synchronous Reset timing 2-11  
DSP56309 Technical Data  
Index-3  
ORDERING INFORMATION  
Consult a Motorola Semiconductor sales office or authorized distributor to determine product availability  
and to place an order.  
Supply  
Voltage  
Pin  
Count  
Frequency  
(MHz)  
Part  
Package Type  
Order Number  
DSP56309  
3.3 V  
Thin Quad Flat Pack (TQFP)  
144  
196  
100  
100  
DSP56309PV100  
DSP56309VF100  
Molded Array Process-Ball Grid Array  
(MAP-BGA)  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,  
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can  
and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must  
be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent  
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems  
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in  
which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or  
use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,  
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or  
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola  
and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. OnCE, DigitalDNA, and the DigitalDNA LOGO are  
trademarks owned by Motorola, Inc. All other products or service names are the property of their respective owners.  
© Motorola, Inc. 2001  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334  
Technical Information Center: 1-800-521-6274  
HOME PAGE: http://www.motorola.com/semiconductors/  
Order Number  
DSP56309/D  

相关型号:

DSP56309UM

24-Bit Digital Signal Processor
MOTOROLA

DSP56309UMAD

DSP56309 Users Manual Addendum
ETC

DSP56309VF100

Digital Signal Processor, 24-Bit Size, 24-Ext Bit, 100MHz, CMOS, PBGA196, MOLD ARRAY PROCESS, BGA-196
MOTOROLA

DSP56311

DSP56311 Device Errata for Mask
MOTOROLA

DSP56311

24-Bit Digital Signal Processor
FREESCALE

DSP56311CE1K34A

DSP56311 Device Errata for Mask
MOTOROLA

DSP56311EVMIG_D

DSP56311EVMIG DSP56311EVM Sample Code
ETC

DSP56311EVMUM

DSP56311 Evaluation Module Hardware Reference Manual
ETC

DSP56311FACT

DSP56311 Higher performance programmable DSP for demanding voice and data applications
ETC

DSP56311UM

DSP56311 24-Bit Digital Signal Processor Users Manual
ETC

DSP56311UMAD

DSP56311 Users Manual Addendum
ETC

DSP56311VF150

24-Bit Digital Signal Processor
FREESCALE