FS32K216BUTXMLQTR [NXP]

Low-power Arm Cortex-M4F/M0 core with excellent energy efficiency;
FS32K216BUTXMLQTR
型号: FS32K216BUTXMLQTR
厂家: NXP    NXP
描述:

Low-power Arm Cortex-M4F/M0 core with excellent energy efficiency

文件: 总100页 (文件大小:1594K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number S32K1XX  
Rev. 12, 02/2020  
NXP Semiconductors  
Data Sheet: Technical Data  
S32K1XX  
S32K1xx Data Sheet  
Notes  
• Power management  
– Low-power Arm Cortex-M4F/M0+ core with  
excellent energy efficiency  
• Supports S32K116, S32K118, S32K142, S32K142W,  
S32K144, S32K144W, S32K146, and S32K148  
– Technical information for S32K142W and  
S32K144W device families is preliminary until  
these devices achieve qualification  
– Power Management Controller (PMC) with multiple  
power modes: HSRUN, RUN, STOP, VLPR, and  
VLPS. Note: CSEc (Security) or EEPROM writes/  
erase will trigger error flags in HSRUN mode (112  
MHz) because this use case is not allowed to  
execute simultaneously. The device will need to  
switch to RUN mode (80 MHz) to execute CSEc  
(Security) or EEPROM writes/erase.  
• The following two attachments are available with the  
Datasheet:  
– S32K1xx_Orderable_Part_Number_ List.xlsx  
– S32K1xx_Power_Modes_Configuration.xlsx  
– Clock gating and low power operation supported on  
specific peripherals.  
Key Features  
• Operating characteristics  
• Memory and memory interfaces  
– Voltage range: 2.7 V to 5.5 V  
– Up to 2 MB program flash memory with ECC  
– 64 KB FlexNVM for data flash memory with ECC  
and EEPROM emulation. Note: CSEc (Security) or  
EEPROM writes/erase will trigger error flags in  
HSRUN mode (112 MHz) because this use case is  
not allowed to execute simultaneously. The device  
will need to switch to RUN mode (80 MHz) to  
execute CSEc (Security) or EEPROM writes/erase.  
– Up to 256 KB SRAM with ECC  
– Ambient temperature range: -40 °C to 105 °C for  
HSRUN mode, -40 °C to 150 °C for RUN mode  
• Arm™ Cortex-M4F/M0+ core, 32-bit CPU  
– Supports up to 112 MHz frequency (HSRUN mode)  
with 1.25 Dhrystone MIPS per MHz  
– Arm Core based on the Armv7 Architecture and  
Thumb®-2 ISA  
– Integrated Digital Signal Processor (DSP)  
– Configurable Nested Vectored Interrupt Controller  
(NVIC)  
– Up to 4 KB of FlexRAM for use as SRAM or  
EEPROM emulation  
– Single Precision Floating Point Unit (FPU)  
– Up to 4 KB Code cache to minimize performance  
impact of memory access latencies  
– QuadSPI with HyperBus™ support  
• Clock interfaces  
– 4 - 40 MHz fast external oscillator (SOSC) with up  
to 50 MHz DC external square input clock in  
external clock mode  
– 48 MHz Fast Internal RC oscillator (FIRC)  
– 8 MHz Slow Internal RC oscillator (SIRC)  
– 128 kHz Low Power Oscillator (LPO)  
– Up to 112 MHz (HSRUN) System Phased Lock  
Loop (SPLL)  
• Mixed-signal analog  
– Up to two 12-bit Analog-to-Digital Converter  
(ADC) with up to 32 channel analog inputs per  
module  
– One Analog Comparator (CMP) with internal 8-bit  
Digital to Analog Converter (DAC)  
• Debug functionality  
– Up to 20 MHz TCLK and 25 MHz SWD_CLK  
– 32 kHz Real Time Counter external clock  
(RTC_CLKIN)  
– Serial Wire JTAG Debug Port (SWJ-DP) combines  
– Debug Watchpoint and Trace (DWT)  
– Instrumentation Trace Macrocell (ITM)  
– Test Port Interface Unit (TPIU)  
– Flash Patch and Breakpoint (FPB) Unit  
• Human-machine interface (HMI)  
– Up to 156 GPIO pins with interrupt functionality  
– Non-Maskable Interrupt (NMI)  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
• Communications interfaces  
– Up to three Low Power Universal Asynchronous Receiver/Transmitter (LPUART/LIN) modules with DMA support  
and low power availability  
– Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA support and low power availability  
– Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and low power availability  
– Up to three FlexCAN modules (with optional CAN-FD support)  
– FlexIO module for emulation of communication protocols and peripherals (UART, I2C, SPI, I2S, LIN, PWM, etc).  
– Up to one 10/100Mbps Ethernet with IEEE1588 support and two Synchronous Audio Interface (SAI) modules.  
• Safety and Security  
– Cryptographic Services Engine (CSEc) implements a comprehensive set of cryptographic functions as described in the  
SHE (Secure Hardware Extension) Functional Specification. Note: CSEc (Security) or EEPROM writes/erase will  
trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The  
device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.  
– 128-bit Unique Identification (ID) number  
– Error-Correcting Code (ECC) on flash and SRAM memories  
– System Memory Protection Unit (System MPU)  
– Cyclic Redundancy Check (CRC) module  
– Internal watchdog (WDOG)  
– External Watchdog monitor (EWM) module  
• Timing and control  
– Up to eight independent 16-bit FlexTimers (FTM) modules, offering up to 64 standard channels (IC/OC/PWM)  
– One 16-bit Low Power Timer (LPTMR) with flexible wake up control  
– Two Programmable Delay Blocks (PDB) with flexible trigger system  
– One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels  
– 32-bit Real Time Counter (RTC)  
• Package  
– 32-pin QFN, 48-pin LQFP, 64-pin LQFP, 100-pin LQFP, 100-pin MAPBGA, 144-pin LQFP, 176-pin LQFP package  
options  
• 16 channel DMA with up to 63 request sources using DMAMUX  
S32K1xx Data Sheet, Rev. 12, 02/2020  
2
NXP Semiconductors  
Table of Contents  
1
2
3
Block diagram.................................................................................... 4  
6.2.5 SPLL electrical specifications .....................................42  
6.3 Memory and memory interfaces................................................42  
6.3.1 Flash memory module (FTFC/FTFM) electrical  
Feature comparison............................................................................ 5  
Ordering information......................................................................... 8  
3.1 Selecting orderable part number ...............................................8  
3.2 Ordering information ................................................................9  
General............................................................................................... 10  
4.1 Absolute maximum ratings........................................................10  
4.2 Voltage and current operating requirements..............................12  
4.3 Thermal operating characteristics..............................................13  
4.4 Power and ground pins.............................................................. 15  
4.5 LVR, LVD and POR operating requirements............................17  
4.6 Power mode transition operating behaviors.............................. 18  
4.7 Power consumption................................................................... 20  
4.8 ESD handling ratings.................................................................27  
4.9 EMC radiated emissions operating behaviors........................... 27  
I/O parameters....................................................................................28  
5.1 AC electrical characteristics...................................................... 28  
5.2 General AC specifications......................................................... 28  
5.3 DC electrical specifications at 3.3 V Range.............................. 29  
5.4 DC electrical specifications at 5.0 V Range.............................. 31  
5.5 AC electrical specifications at 3.3 V range .............................. 32  
5.6 AC electrical specifications at 5 V range ................................. 33  
5.7 Standard input pin capacitance.................................................. 34  
5.8 Device clock specifications....................................................... 35  
Peripheral operating requirements and behaviors..............................36  
6.1 System modules.........................................................................36  
6.2 Clock interface modules............................................................ 36  
6.2.1 External System Oscillator electrical specifications....36  
6.2.2 External System Oscillator frequency specifications . 38  
6.2.3 System Clock Generation (SCG) specifications..........40  
specifications................................................................42  
6.3.1.1  
Flash timing specifications —  
4
commands................................................ 42  
Reliability specifications..........................49  
6.3.1.2  
6.3.2 QuadSPI AC specifications..........................................49  
6.4 Analog modules.........................................................................54  
6.4.1 ADC electrical specifications...................................... 54  
6.4.1.1  
6.4.1.2  
12-bit ADC operating conditions.............54  
12-bit ADC electrical characteristics....... 57  
6.4.2 CMP with 8-bit DAC electrical specifications............ 59  
6.5 Communication modules...........................................................65  
6.5.1 LPUART electrical specifications............................... 65  
6.5.2 LPSPI electrical specifications.................................... 65  
6.5.3 LPI2C electrical specifications.................................... 71  
6.5.4 FlexCAN electical specifications.................................72  
6.5.5 SAI electrical specifications........................................ 72  
6.5.6 Ethernet AC specifications.......................................... 74  
6.5.7 Clockout frequency......................................................77  
6.6 Debug modules.......................................................................... 77  
6.6.1 SWD electrical specofications .................................... 77  
6.6.2 Trace electrical specifications......................................79  
6.6.3 JTAG electrical specifications..................................... 80  
Thermal attributes.............................................................................. 84  
7.1 Description.................................................................................84  
7.2 Thermal characteristics..............................................................84  
7.3 General notes for specifications at maximum junction  
5
6
7
temperature................................................................................ 89  
Dimensions.........................................................................................90  
8.1 Obtaining package dimensions .................................................90  
Pinouts................................................................................................91  
9.1 Package pinouts and signal descriptions....................................91  
6.2.3.1  
Fast internal RC Oscillator (FIRC)  
8
9
electrical specifications............................ 40  
Slow internal RC oscillator (SIRC)  
6.2.3.2  
electrical specifications ........................... 41  
6.2.4 Low Power Oscillator (LPO) electrical specifications  
......................................................................................41  
10 Revision History.................................................................................91  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
3
Block diagram  
1 Block diagram  
Following figures show superset high level architecture block diagrams of S32K14x,  
S32K14xW and S32K11x series respectively. Other devices within the family have a  
subset of the features. See Feature comparison for chip specific values.  
Arm Cortex M4F  
MCM  
Core  
Async  
Trace  
port  
TPIU  
PPB  
NVIC  
ITM  
AWIC  
JTAG &  
SWJ-DP  
AHB-AP  
Serial Wire  
FPU  
FPB  
Clock generation  
DSP DWT  
DMA  
MUX  
SOSC  
4-40 MHz  
FIRC  
48 MHz  
SIRC  
8 MHz  
LPO  
128 kHz  
8-40 MHz  
Mux  
SPLL  
eDMA  
TCD  
512B  
LMEM  
2
Main SRAM  
LMEM  
controller  
Upper region  
Lower region  
EIM  
Code Cache  
ENET  
M3  
M2  
M1  
M0  
S2  
S3  
S1  
Crossbar switch (AXBS-Lite)  
S0  
1
1
1
System MPU  
System MPU  
System MPU  
Mux  
QuadSPI  
GPIO  
Flash memory  
controller  
Peripheral bus controller  
FlexRAM/  
SRAM  
Low Power  
Timer  
LPIT  
ERM  
WDOG  
12-bit ADC  
LPI2C  
FlexIO  
Code flash  
memory  
Data flash  
memory  
CMP  
8-bit DAC  
EWM  
CRC  
LPUART  
LPSPI  
FlexCAN  
FlexTimer  
QSPI  
3
CSEc  
TRGMUX  
PDB  
RTC
SAI  
1: On this device, NXP’s system MPU implements the safety mechanisms to prevent masters from  
accessing restricted memory regions. This system MPU provides memory protection at the  
level of the Crossbar Switch. Each Crossbar master (Core, DMA, Ethernet) can be assigned  
different access rights to each protected memory region. The Arm M4 core version in this family  
does not integrate the Arm Core MPU, which would concurrently monitor only core-initiated memory  
accesses. In this document, the term MPU refers to NXP’s system MPU.  
Device architectural IP  
on all S32K devices  
Key:  
Peripherals present  
on all S32K devices  
2: For the device-specific sizes, see the "On-chip SRAM sizes" table in the "Memories and Memory Interfaces"  
chapter of the S32K1xx Series Reference Manual.  
Peripherals present  
on selected S32K devices  
(see the "Feature Comparison"  
section)  
3: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this  
use case is not allowed to execute simultaneously. The device need to switch to RUN mode (80 MHz) to  
execute CSEc (Security) or EEPROM writes/erase.  
Figure 1. High-level architecture diagram for the S32K14x and S32K14xW family  
S32K1xx Data Sheet, Rev. 12, 02/2020  
4
NXP Semiconductors  
Feature comparison  
IO PORT  
Arm Cortex M0+  
Clock generation  
FIRC  
IO PORT  
SOSC  
4-40 MHz  
NVIC  
PPB  
LPO  
128 kHz  
SIRC  
8 MHz  
Serial Wire  
SW-DP  
AHB-AP  
48 MHz  
AWIC  
DMA  
MUX  
BPU  
MTB+DWT  
eDMA  
M2  
M0  
Crossbar switch (AXBS-Lite)  
S1  
S0  
S2  
1
1
System MPU  
System MPU  
EIM  
Flash memory  
controller  
2
SRAM  
FlexRAM/  
2
SRAM  
Peripheral bus controller  
Code flash  
memory  
Data flash  
memory  
Low Power  
Timer  
ERM  
WDOG  
12-bit ADC  
LPI2C  
FlexIO  
LPIT  
CSEc  
CMP  
8-bit DAC  
CMU  
LPUART  
FlexCAN  
FlexTimer  
GPIO  
CRC  
TRGMUX  
LPSPI  
PDB  
RTC
1: On this device, NXP’s system MPU implements the safety mechanisms to prevent masters from  
accessing restricted memory regions. This system MPU provides memory protection at the  
level of the Crossbar Switch. Crossbar master (Core, DMA) can be assigned  
different access rights to each protected memory region. The Arm M0+ core version in this family  
does not integrate the Arm Core MPU, which would concurrently monitor only core-initiated memory  
accesses. In this document, the term MPU refers to NXP’s system MPU.  
Device architectural IP  
on all S32K devices  
Peripherals present  
on all S32K devices  
Key:  
Peripherals present  
on selected S32K devices  
(see the "Feature Comparison"  
section)  
2: For the device-specific sizes, see the "On-chip SRAM sizes" table in the "Memories and Memory Interfaces"  
chapter of the S32K1xx Series Reference Manual.  
Figure 2. High-level architecture diagram for the S32K11x family  
2 Feature comparison  
The following figure summarizes the memory, peripherals and packaging options for the  
S32K1xx and S32K14xW devices. All devices which share a common package are pin-  
to-pin compatible.  
NOTE  
Availability of peripherals depends on the pin availability in a  
particular package. For more information see IO Signal  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
5
Feature comparison  
Description Input Multiplexing sheet(s) attached with  
Reference Manual.  
S32K11x  
S32K14x  
Parameter  
K116  
K118  
K142  
K144  
K146  
K148  
®
®
Core  
Arm Cortex-M0+  
48 MHz  
Arm Cortex-M4F  
Frequency  
IEEE-754 FPU  
80 MHz (RUN mode) or 112 MHz (HSRUN mode)1  
1
Cryptographic Services Engine (CSEc)  
CRC module  
1x  
1x  
capable up to ASIL-B  
capable up to ASIL-B  
ISO 26262  
Peripheral speed  
Crossbar  
up to 48 MHz  
up to 112 MHz (HSRUN)  
DMA  
External Watchdog Monitor (EWM)  
Memory Protection Unit (MPU)  
FIRC CMU  
Watchdog  
1x  
1x  
Low power modes  
HSRUN mode1  
Number of I/Os  
Single supply voltage  
up to 43  
up to 58  
up to 89  
up to 128  
2.7 - 5.5 V  
-40oC to +105oC / +125oC  
up to 156  
2.7 - 5.5 V  
-40oC to +105oC / +125oC  
Ambient Operation Temperature (T  
Flash  
)
a
2
128 KB  
256 KB  
256 KB  
32 KB  
512 KB  
1 MB  
2 MB  
Error Correcting Code (ECC)  
System RAM (including FlexRAM and MTB)  
FlexRAM (also available as system RAM)  
Cache  
17 KB  
25 KB  
64 KB  
128 KB  
256 KB  
2 KB  
4 KB  
4 KB  
1
EEPROM emulated by FlexRAM  
2 KB (up to 32 KB D-Flash)  
4 KB (up to 64 KB D-Flash)  
See footnote 3  
QuadSPI incl.  
HyperBus™  
External memory interface  
Low Power Interrupt Timer (LPIT)  
1x  
2x (16)  
1x  
1x  
FlexTimer (16-bit counter) 8 channels  
Low Power Timer (LPTMR)  
Real Time Counter (RTC)  
4x (32)  
6x (48)  
8x (64)  
1x  
1x  
1x  
Programmable Delay Block (PDB)  
Trigger mux (TRGMUX)  
1x  
2x  
1x (43)  
1x (13)  
1x (45)  
1x (16)  
1x (64)  
1x (73)  
2x (24)  
1x (81)  
2x (32)  
12-bit SAR ADC (1 Msps each)  
Comparator with 8-bit DAC  
2x (16)  
1x  
1x  
10/100 Mbps IEEE-1588 Ethernet MAC  
Serial Audio Interface (AC97, TDM, I2S)  
1x  
2x  
Low Power UART/LIN (LPUART)  
2x  
1x  
2x  
2x  
3x  
3x  
(Supports LIN protocol versions 1.3, 2.0, 2.1, 2.2A, and SAE J2602)  
Low Power SPI (LPSPI)  
Low Power I2C (LPI2C)  
1x  
2x  
1x  
3x  
2x  
FlexCAN  
(CAN-FD ISO/CD 11898-1)  
1x  
2x  
3x  
3x  
(1x with FD)  
(1x with FD)  
(1x with FD)  
(2x with FD)  
(3x with FD)  
FlexIO (8 pins configurable as UART, SPI, I2C, I2S)  
Debug & trace  
1x  
1x  
SWD, JTAG  
(ITM, SWV,  
SWO), ETM  
4
SWD, JTAG (ITM, SWV, SWO)  
SWD, MTB (1 KB), JTAG  
Ecosystem  
(IDE, compiler, debugger)  
NXP S32 Design Studio (GCC) + SDK,  
IAR, GHS, Arm®, Lauterbach, iSystems  
NXP S32 Design Studio (GCC) + SDK,  
IAR, GHS, Arm®, Lauterbach, iSystems  
100-pin MAPBGA  
64-pin LQFP 100-pin MAPBGA 100-pin LQFP6  
48-pin LQFP  
64-pin LQFP  
48-pin LQFP  
64-pin LQFP  
100-pin LQFP  
32-pin QFN  
48-pin LQFP  
48-pin LQFP  
64-pin LQFP  
Packages5  
100-pin LQFP  
100-pin MAPBGA 144-pin LQFP  
144-pin LQFP  
176-pin LQFP  
100-pin LQFP  
LEGEND:  
Not implemented  
Available on the device  
1 No write or erase access to Flash module, including Security (CSEc) and EEPROM commands, are allowed when  
device is running at HSRUN mode (112MHz) or VLPR mode.  
2 Available when EEEPROM, CSEc and Data Flash are not used. Else only up to 1,984 KB is available for Program Flash.  
3 4 KB (up to 512 KB D-Flash as a part of 2 MB Flash). Up to 64 KB of flash is used as EEPROM backup and the remaining 448 KB  
of the last 512 KB block can be used as Data flash or Program flash. See chapter FTFC for details.  
4 Only for Boundary Scan Register  
5 See Dimensions section for package drawings  
6 QuadSPI is not supported for S32K148 in 100-pin LQFP  
Figure 3. S32K1xx product series comparison  
S32K1xx Data Sheet, Rev. 12, 02/2020  
6
NXP Semiconductors  
Feature comparison  
S32K14xW  
Parameter  
S32K144W  
S32K142W  
Arm Cortex-M4F  
up to 80 MHz  
®
Core  
Frequency  
IEEE-754 FPU  
Cryptographic Services Engine (CSEc)  
CRC module  
1x  
capable up to ASIL-B  
ISO 26262  
Peripheral speed  
Crossbar  
up to 80 MHz  
DMA  
External Watchdog Monitor (EWM)  
Memory Protection Unit (MPU)  
FIRC CMU  
Watchdog  
Low power modes  
HSRUN mode  
Number of I/Os  
Single supply voltage  
43 (48-pin LQFP)  
58 (64-pin LQFP)  
3.13 - 5.5 V  
-40oC to +150oC  
Ambient Operation Temperature (T  
)
a
Flash  
512 KB  
256 KB  
32 KB  
Error Correcting Code (ECC)  
System RAM (including FlexRAM)  
FlexRAM  
64 KB  
4 KB  
4 KB  
Cache  
4 KB (up to 64 KB D-Flash)  
EEPROM emulated by FlexRAM  
External memory interface  
Low Power Interrupt Timer (LPIT)  
1x  
48-pin LQFP: 4x (26 channels)  
64-pin LQFP: 4x (30 channels)  
FlexTimer (16-bit counter) 8 channels  
Low Power Timer (LPTMR)  
Real Time Counter (RTC)  
1x  
1x  
Programmable Delay Block (PDB)  
Trigger mux (TRGMUX)  
2x  
1x (59)  
48-pin LQFP: 1x (14 channels), 1x(9 channels)  
64-pin LQFP: 1x (16 channels), 1x(13 channels)  
12-bit SAR ADC (1 Msps each)  
48-pin LQFP: 1x (6 channels) 64-pin LQFP: 1x (8 channels)  
Comparator with 8-bit DAC  
10/100 Mbps IEEE-1588 Ethernet MAC  
Serial Audio Interface (AC97, TDM, I2S)  
Low Power UART/LIN (LPUART)  
64-pin LQFP: 3x  
64-pin LQFP: 3x  
48-pin LQFP: 2x  
48-pin LQFP: 2x  
(Supports LIN protocol versions 1.3, 2.0, 2.1, 2.2A, and SAE J2602)  
Low Power SPI (LPSPI)  
Low Power I2C (LPI2C)  
1x  
FlexCAN  
(CAN-FD ISO/CD 11898-1)  
48-pin LQFP: 2x(2x FD)  
1x  
64-pin LQFP: 2x(2x FD)  
FlexIO (8 pins configurable as UART, SPI, I2C, I2S)  
Debug & trace  
SWD, JTAG (ITM, SWV, SWO)  
Ecosystem  
(IDE, compiler, debugger)  
NXP S32 Design Studio (GCC) + SDK,  
IAR, GHS, Arm®, Lauterbach, iSystems  
Packages1  
48-pin LQFP 64-pin LQFP  
LEGEND:  
Not implemented  
Available on the device  
See Dimensions section of Datasheet for package drawings  
1
Figure 4. S32K14xW product series comparison  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
7
Ordering information  
3 Ordering information  
3.1 Selecting orderable part number  
Not all part number combinations are available. See the attachment  
S32K1xx_Orderable_Part_Number_ List.xlsx attached with the Datasheet for a list of  
standard orderable part numbers.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
8
NXP Semiconductors  
Ordering information  
3.2 Ordering information  
F/P S32 K 1 0 0 X Y T0 M LH R  
Product status  
Product type/brand  
Product line  
Series/Family  
(including generation)  
Core platform/  
Performance  
Memory size  
Ordering option 1: Letter  
Ordering option 2: Letter  
Wafer Fab and  
revision  
Temperature  
Package  
Tape and Reel  
Temperature  
Ordering option  
X: Speed  
L: 48 MHz with DMA (S32K11x only)  
H: 80 MHz  
Product status  
P: Prototype  
F: Qualified  
V: -40C to 105C  
M: -40C to 125C  
W: -40 to 150C  
U1: 112 MHz (Not valid with M temperature/125C)  
W: 80 MHz (S32K14xW only)  
Product type/brand  
S32: Automotive 32-bit MCU  
Package  
Y: Optional feature  
Product line  
K: Arm Cortex MCUs  
V: NFC Stack License  
F: CAN FD, FlexIO  
A1: CAN FD, FlexIO, Security  
LQFP  
Pins  
32  
QFN  
BGA  
-
-
FM  
-
LF  
X1: CAN FD, FlexIO, Security with NFC Stack License  
E: Ethernet, Serial Audio Interface (S32K148 only)  
J1: Ethernet, Serial Audio Interface, CAN FD,  
FlexIO, Security (S32K148 only)  
I: ISELED, FlexIO  
L1: ISELED, CAN FD, FlexIO, Security  
G1: ISELED, Ethernet, Serial Audio Interface, CAN FD,  
FlexIO, Security (S32K148 only)  
Series/Family  
1: 1st product series  
2: 2nd product series  
-
-
48  
64  
-
LH  
LL  
MH  
100  
144  
-
-
-
-
-
LQ  
LU  
Core platform/Performance  
1: Arm Cortex M0+  
4: Arm Cortex M4F  
176  
Tape and Reel  
T: Trays/Tubes  
Memory size  
R: Tape and Reel  
2
4
8
6
Wafer Fab and Mask revision identifier  
Tx: Wafer Fab identifier  
x0: Mask Revision identifier  
S32K11x  
128K 256K  
1M  
2M  
S32K14x/  
S32K14xW  
256K  
512K  
1. CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to  
execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.  
2. Part numbers no longer offered as standard include:  
Ordering Option X  
M: 64MHz  
B: 48 MHz without DMA (S32K11x only)  
Ordering Option Y  
N: limited RAM. 16KB for K142, 48KB for K144, 96KB for K146, 192KB for K148  
R: Basic feature set  
S: Security  
B: CAN FD, FlexIO, limited RAM (S32K14x only)  
C: CAN FD, FlexIO, Security, limited RAM (S32K14x only)  
Temperature  
C: -40C to 85C  
NOTE  
Not all part number combinations are available. See S32K1xx_Orderable_Part_Number_List.xlsx  
attached with the Datasheet for list of standard orderable parts.  
Figure 5. Ordering information  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
9
General  
4 General  
4.1 Absolute maximum ratings  
NOTE  
• Functional operating conditions appear in the DC electrical  
characteristics. Absolute maximum ratings are stress  
ratings only, and functional operation at the maximum  
values is not guaranteed. See footnotes in the following  
table for specific conditions.  
• Stress beyond the listed maximum values may affect device  
reliability or cause permanent damage to the device.  
• All the limits defined in the datasheet specification must be  
honored together and any violation to any one or more will  
not guarantee desired operation.  
• Unless otherwise specified, all maximum and minimum  
values in the datasheet are across process, voltage, and  
temperature.  
Table 1. Absolute maximum ratings for S32K1xx series  
Symbol  
Parameter  
Conditions1  
Min  
-0.3  
-0.3  
-3  
Max  
5.8 3  
5.8 3  
+3  
Unit  
V
2
VDD  
2.7 V - 5. 5V input supply voltage  
3.3 V / 5.0 V ADC high reference voltage  
VREFH  
V
4
IINJPAD_DC_ABS  
Continuous DC input current (positive /  
negative) that can be injected into an I/O  
pin  
mA  
VIN_DC  
Continuous DC Voltage on any I/O pin  
with respect to VSS  
-0.8  
5.85  
30  
V
IINJSUM_DC_ABS  
Sum of absolute value of injected currents  
on all the pins (Continuous DC limit)  
mA  
6
Tramp  
ECU supply ramp rate  
MCU supply ramp rate  
Ambient temperature  
Storage temperature  
0.5 V/min  
0.5 V/min  
-40  
500 V/ms  
100 V/ms  
125  
°C  
°C  
V
7
Tramp_MCU  
8
TA  
TSTG  
-55  
165  
6.8 9  
VIN_TRANSIENT  
Transient overshoot voltage allowed on  
I/O pin beyond VIN_DC limit  
1. All voltages are referred to VSS unless otherwise specified.  
2. As VDD varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the  
ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.  
3. 60 seconds lifetime – No restrictions i.e. the part is not held in reset and can switch.  
10 hours lifetime – The part is held in reset by an external circuit i.e. the part cannot switch.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
10  
NXP Semiconductors  
General  
The supply should be kept in operating conditions and once out of operating conditions, the device should be either reset  
or powered off.  
Operation with supply between 5.5 V and 5.8 V not in reset condition is allowed for 60 seconds cumulative over lifetime,  
the part will operate with reduced functionality.  
Operation with supply between 5.5 V and 5.8 V but held in reset condition by external circuit is allowed for 10 hours  
cumulative over lifetime.  
If the given time limits or supply levels are exceeded, the device may get damaged.  
4. When input pad voltage levels are close to VDD or VSS, practically no current injection is possible.  
5. While respecting the maximum current injection limit  
6. This is the Electronic Control Unit (ECU) supply ramp rate and not directly the MCU ramp rate. Limit applies to both  
maximum absolute maximum ramp rate and typical operating conditions.  
7. This is the MCU supply ramp rate and the ramp rate assumes that the S32K1xx HW design guidelines in AN5426 are  
followed. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.  
8. TJ (Junction temperature)=135 °C. Assumes TA=125 °C for RUN mode  
TJ (Junction temperature)=125 °C. Assumes TA=105 °C for HSRUN mode  
• Assumes maximum θJA for 2s2p board. See Thermal characteristics  
9. 60 seconds lifetime; device in reset (no outputs enabled/toggling)  
Table 2. Absolute maximum ratings for S32K14xW series  
Symbol  
Parameter  
Conditions1  
Min  
-0.3  
-0.3  
-3  
Max  
5.8 3  
5.8 3  
+3  
Unit  
V
2
VDD  
2.7 V - 5. 5V input supply voltage  
3.3 V / 5.0 V ADC high reference voltage  
VREFH  
V
4
IINJPAD_DC_ABS  
Continuous DC input current (positive /  
negative) that can be injected into an I/O  
pin  
mA  
VIN_DC  
Continuous DC Voltage on any I/O pin  
with respect to VSS  
-0.8  
5.85  
30  
V
IINJSUM_DC_ABS  
Sum of absolute value of injected currents  
on all the pins (Continuous DC limit)  
mA  
6
Tramp  
ECU supply ramp rate  
MCU supply ramp rate  
Ambient temperature  
Storage temperature  
0.5 V/min  
0.5 V/min  
-40  
500 V/ms  
100 V/ms  
150  
°C  
°C  
V
7
Tramp_MCU  
8
TA  
TSTG  
-55  
165  
6.8 9  
VIN_TRANSIENT  
Transient overshoot voltage allowed on  
I/O pin beyond VIN_DC limit  
1. All voltages are referred to VSS unless otherwise specified.  
2. As VDD varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the  
ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.  
3. 60 seconds lifetime – No restrictions i.e. the part is not held in reset and can switch.  
10 hours lifetime – The part is held in reset by an external circuit i.e. the part cannot switch.  
The supply should be kept in operating conditions and once out of operating conditions, the device should be either reset  
or powered off.  
Operation with supply between 5.5 V and 5.8 V not in reset condition is allowed for 60 seconds cumulative over lifetime,  
the part will operate with reduced functionality.  
Operation with supply between 5.5 V and 5.8 V but held in reset condition by external circuit is allowed for 10 hours  
cumulative over lifetime.  
If the given time limits or supply levels are exceeded, the device may get damaged.  
4. When input pad voltage levels are close to VDD or VSS, practically no current injection is possible.  
5. While respecting the maximum current injection limit  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
11  
General  
6. This is the Electronic Control Unit (ECU) supply ramp rate and not directly the MCU ramp rate. Limit applies to both  
maximum absolute maximum ramp rate and typical operating conditions.  
7. This is the MCU supply ramp rate and the ramp rate assumes that the S32K1xx HW design guidelines in AN5426 are  
followed. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.  
8. TJ (Junction temperature)=TBD. Assumes TA=150 °C for RUN mode  
• Assumes maximum θJA for 2s2p board. See Thermal characteristics  
9. 60 seconds lifetime; device in reset (no outputs enabled/toggling)  
4.2 Voltage and current operating requirements  
NOTE  
Device functionality is guaranteed up to the LVR assert level,  
however electrical performance of 12-bit ADC, CMP with 8-bit  
DAC, IO electrical characteristics, and communication modules  
electrical characteristics would be degraded when voltage drops  
below 2.7 V  
Table 3. Voltage and current operating requirements for S32K1xx series 1  
Symbol  
Description  
Min.  
2.73  
0
Max.  
5.5  
Unit  
V
Notes  
2
VDD  
Supply voltage  
4
VDD_OFF  
Voltage allowed to be developed on VDD  
pin when it is not powered from any  
external power supply source.  
0.1  
V
VDDA  
VDD – VDDA  
VREFH  
Analog supply voltage  
2.7  
– 0.1  
2.7  
5.5  
0.1  
V
V
4
4
5
VDD-to-VDDA differential voltage  
ADC reference voltage high  
ADC reference voltage low  
Open drain pullup voltage level  
VDDA + 0.1  
0.1  
V
VREFL  
-0.1  
VDD  
-3  
V
VODPU  
VDD  
V
6
7
IINJPAD_DC_OP  
Continuous DC input current (positive /  
negative) that can be injected into an I/O  
pin  
+3  
mA  
IINJSUM_DC_OP  
Continuous total DC input current that can  
be injected across all I/O pins such that  
there's no degradation in accuracy of  
analog modules: ADC and ACMP (See  
section Analog Modules)  
30  
mA  
1. Typical conditions assumes VDD = VDDA = VREFH = 5 V, temperature = 25 °C and typical silicon process unless otherwise  
stated.  
2. As VDD varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the  
ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.  
3. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to  
operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.  
4. VDD and VDDA must be shorted to a common source on PCB. The differential voltage between VDD and VDDA is for RF-AC  
only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for  
reference supply design for SAR ADC.  
5. VREFH should always be equal to or less than VDDA + 0.1 V and VDD + 0.1 V  
6. Open drain outputs must be pulled to VDD  
.
7. When input pad voltage levels are close to VDD or VSS, practically no current injection is possible.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
12  
NXP Semiconductors  
General  
Table 4. Voltage and current operating requirements for S32K14xW series 1  
Symbol  
Description  
Min.  
3.13  
0
Max.  
5.5  
Unit  
V
Notes  
2
VDD  
Supply voltage  
3
VDD_OFF  
Voltage allowed to be developed on VDD  
pin when it is not powered from any  
external power supply source.  
0.1  
V
VDDA  
VDD – VDDA  
VREFH  
Analog supply voltage  
3.13  
– 0.1  
3.13  
-0.1  
VDD  
-3  
5.5  
0.1  
V
V
3
3
4
VDD-to-VDDA differential voltage  
ADC reference voltage high  
ADC reference voltage low  
Open drain pullup voltage level  
VDDA + 0.1  
0.1  
V
VREFL  
V
VODPU  
VDD  
V
5
6
IINJPAD_DC_OP  
Continuous DC input current (positive /  
negative) that can be injected into an I/O  
pin  
+3  
mA  
IINJSUM_DC_OP  
Continuous total DC input current that can  
be injected across all I/O pins such that  
there's no degradation in accuracy of  
analog modules: ADC and ACMP (See  
section Analog Modules)  
30  
mA  
1. Typical conditions assumes VDD = VDDA = VREFH = 5 V, temperature = 25 °C and typical silicon process unless otherwise  
stated.  
2. As VDD varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the  
ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.  
3. VDD and VDDA must be shorted to a common source on PCB. The differential voltage between VDD and VDDA is for RF-AC  
only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for  
reference supply design for SAR ADC.  
4. VREFH should always be equal to or less than VDDA + 0.1 V and VDD + 0.1 V  
5. Open drain outputs must be pulled to VDD  
.
6. When input pad voltage levels are close to VDD or VSS, practically no current injection is possible.  
4.3 Thermal operating characteristics  
Table 5. Thermal operating characteristics for S32K1xx series  
Symbol  
Parameter  
Value  
Typ.  
Unit  
Min.  
−40  
−40  
−40  
−40  
−40  
−40  
Max.  
851  
TA C-Grade Part  
TJ C-Grade Part  
TA V-Grade Part  
TJ V-Grade Part  
TA M-Grade Part  
TJ M-Grade Part  
Ambient temperature under bias  
Junction temperature under bias  
Ambient temperature under bias  
Junction temperature under bias  
Ambient temperature under bias  
Junction temperature under bias  
1051  
1051  
1251  
1252  
1352  
1. Values mentioned are measured at ≤ 112 MHz in HSRUN mode.  
2. Values mentioned are measured at ≤ 80 MHz in RUN mode.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
13  
General  
Table 6. Thermal operating characteristics for S32K14xW series  
Symbol  
Parameter  
Value  
Typ.  
Unit  
Min.  
−40  
−40  
−40  
−40  
−40  
−40  
−40  
-40  
Max.  
85  
TA C-Grade Part  
TJ C-Grade Part  
TA V-Grade Part  
TJ V-Grade Part  
TA M-Grade Part  
TJ M-Grade Part  
TA W-Grade Part  
TJ W-Grade Part  
Ambient temperature under bias  
Junction temperature under bias  
Ambient temperature under bias  
Junction temperature under bias  
Ambient temperature under bias  
Junction temperature under bias  
Ambient temperature under bias  
Junction temperature under bias  
105  
105  
125  
1251  
1351  
1501  
TBD1  
1. Values mentioned are measured at ≤ 80 MHz in RUN mode.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
14  
NXP Semiconductors  
General  
4.4 Power and ground pins  
VDD  
VDD  
VSS  
32 QFN  
Package  
VDD  
VSS  
VREFH/VDDA  
/
VDD  
48 LQFP  
Package  
V
/V  
REFH DDA  
VREFL/VSSA/VSS  
VREFL/VSSA/VSS  
C
DEC  
VDD  
VDD  
VDDA  
VDD  
VSS  
VDD  
VSS  
VDDA  
64 LQFP  
Package  
100 LQFP  
Package  
VREFH  
VREFL  
VREFH  
VREFL/VSSA/VSS  
VSSA/VSS  
C
DEC  
C
C
C
DEC  
DEC  
DEC  
VDD  
VSS  
VDD  
VSS  
VDD  
VDDA  
VREFH  
VDDA  
VREFH  
VSS  
VDD  
VSS  
VDD  
VSS  
144 LQFP  
Package  
176 LQFP  
Package  
VREFL  
VSSA/VSS  
VREFL  
VSSA/VSS  
VDD  
VDD  
VSS  
VSS  
C
C
C
C
DEC  
DEC  
DEC  
DEC  
NOTE: VDD and VDDA must be shorted to a common source on PCB  
Figure 6. Pinout decoupling  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
15  
General  
Table 7. Supplies decoupling capacitors 1, 2  
Symbol  
Description  
Min. 3  
70  
Typ.  
100  
100  
Max.  
Unit  
nF  
, 4  
5
CREF  
,
ADC reference high decoupling capacitance  
Recommended decoupling capacitance  
CDEC5, 6, 7  
70  
nF  
1. VDD and VDDA must be shorted to a common source on PCB. The differential voltage between VDD and VDDA is for RF-AC  
only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for  
reference supply design for SAR ADC. All VSS pins should be connected to common ground at the PCB level.  
2. All decoupling capacitors must be low ESR ceramic capacitors (for example X7R type).  
3. Minimum recommendation is after considering component aging and tolerance.  
4. For improved performance, it is recommended to use 10 μF, 0.1 μF and 1 nF capacitors in parallel.  
5. All decoupling capacitors should be placed as close as possible to the corresponding supply and ground pins.  
6. Contact your local Field Applications Engineer for details on best analog routing practices.  
7. The filtering used for decoupling the device supplies must comply with the following best practices rules:  
• The protection/decoupling capacitors must be on the path of the trace connected to that component.  
• No trace exceeding 1 mm from the protection to the trace or to the ground.  
• The protection/decoupling capacitors must be as close as possible to the input pin of the device (maximum 2 mm).  
• The ground of the protection is connected as short as possible to the ground plane under the integrated circuit.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
16  
NXP Semiconductors  
General  
V
OSC  
= 3.3 V nominal  
FIRC  
SIRC  
SPLL  
SOSC  
ADC  
CMP  
V
= 1.2 V/1.4 V nominal  
CORE  
V
Flash  
= 3.3 V nominal  
PMC  
Pads  
System RAM  
TCD RAM  
I/D Cache  
EEE RAM  
Flash  
LV SOG  
GPIO  
*Note: VSSA and VSS are shorted at package level  
Figure 7. Power diagram  
4.5 LVR, LVD and POR operating requirements  
Table 8. VDD supply LVR, LVD and POR operating requirements for S32K1xx series  
Symbol  
VPOR  
Description  
Min.  
1.1  
Typ.  
1.6  
Max.  
2.0  
Unit  
V
Notes  
Rising and falling VDD POR detect voltage  
VLVR  
LVR falling threshold (RUN, HSRUN, and  
STOP modes)  
2.50  
2.58  
2.7  
V
LVR hysteresis  
45  
mV  
1
1
VLVR_HYST  
VLVR_LP  
VLVD  
LVR falling threshold (VLPS/VLPR modes)  
Falling low-voltage detect threshold  
LVD hysteresis  
1.97  
2.8  
2.22  
2.875  
50  
2.44  
3
V
V
mV  
VLVD_HYST  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
17  
General  
Table 8. VDD supply LVR, LVD and POR operating requirements for S32K1xx series  
(continued)  
Symbol  
VLVW  
Description  
Min.  
4.19  
Typ.  
4.305  
75  
Max.  
4.5  
Unit  
V
Notes  
Falling low-voltage warning threshold  
LVW hysteresis  
VLVW_HYST  
VBG  
mV  
V
1
Bandgap voltage reference  
0.97  
1.00  
1.03  
1. Rising threshold is the sum of falling threshold and hysteresis voltage.  
Table 9. VDD supply LVR, LVD and POR operating requirements for S32K14xW series  
Symbol  
VPOR  
Description  
Min.  
1.1  
Typ.  
1.6  
Max.  
2.0  
Unit  
V
Notes  
Rising and falling VDD POR detect voltage  
VLVR  
LVR falling threshold (RUN and STOP  
modes)  
2.97  
3.02  
3.07  
V
LVR hysteresis  
45  
mV  
1
1
VLVR_HYST  
2
VLVR_LP  
LVR falling threshold (VLPS/VLPR modes)  
Falling low-voltage warning threshold  
LVW hysteresis  
2.06  
4.19  
2.26  
4.305  
75  
2.46  
4.5  
V
V
VLVW  
VLVW_HYST  
VBG  
mV  
V
Bandgap voltage reference  
0.97  
1.00  
1.03  
1. Rising threshold is the sum of falling threshold and hysteresis voltage.  
2. An internal monitor could reset the chip at a higher supply level, but 3.13 V onward the chip is fully functional.  
4.6 Power mode transition operating behaviors  
All specifications in the following table assume this clock configuration:  
Table 10. Clock configuration  
S32K1xx  
S32K14xW  
RUN mode  
Clock source  
SYS_CLK/CORE_CLK  
BUS_CLK  
FIRC  
FIRC  
48 MHz  
48 MHz  
24 MHz  
48 MHz  
48 MHz  
16 MHz  
FLASH_CLK  
HRUN mode  
Clock source  
SYS_CLK/CORE_CLK  
BUS_CLK  
SPLL  
NA  
NA  
NA  
NA  
112 MHz  
56 MHz  
28 MHz  
FLASH_CLK  
VLPR mode  
Clock source  
SIRC  
SIRC  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
18  
NXP Semiconductors  
General  
Table 10. Clock configuration (continued)  
S32K1xx  
S32K14xW  
SYS_CLK/CORE_CLK  
BUS_CLK  
4 MHz  
4 MHz  
1 MHz  
1 MHz  
1 MHz  
0.25  
FLASH_CLK  
STOP1/STOP2 mode  
Clock source  
FIRC  
FIRC  
SYS_CLK/CORE_CLK  
BUS_CLK  
48 MHz  
48 MHz  
24 MHz  
48 MHz  
48 MHz  
16 MHz  
FLASH_CLK  
VLPS mode  
All clock source disabled 1  
1.  
• For S32K11x – FIRC/SOSC  
• For S32K14x, S32K14xW – FIRC/SOSC/SPLL  
Table 11. Power mode transition operating behaviors for S32K1xx series  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 2.7 V to execution of the first instruction  
across the operating temperature range of the chip.  
325  
μs  
VLPS RUN  
8
0.075  
0.075  
17  
0.08  
0.08  
26  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
STOP1 RUN  
0.07  
0.07  
19  
STOP2 RUN  
VLPR RUN  
VLPR VLPS  
5.1  
18.8  
0.72  
0.3  
0.35  
0.2  
0.3  
3.5  
105  
1
5.7  
6.5  
VLPS VLPR  
23  
27.75  
0.77  
0.35  
0.4  
RUN Compute operation  
HSRUN Compute operation  
RUN STOP1  
0.75  
0.31  
0.38  
0.23  
0.35  
3.8  
RUN STOP2  
0.25  
0.4  
RUN VLPS  
RUN VLPR  
5
VLPS Asynchronous DMA Wakeup  
STOP1 Asynchronous DMA Wakeup  
STOP2 Asynchronous DMA Wakeup  
Pin reset Code execution  
110  
1.1  
125  
1.3  
1
1.1  
1.3  
214  
NOTE  
HSRUN should only be used when frequencies in excess of 80  
MHz are required. When using 80 MHz and below, RUN mode  
is the recommended operating mode.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
19  
General  
Table 12. Power mode transition operating behaviors for S32K14xW series  
Symbol  
tPOR  
Description  
Min.  
Typ.  
Max.  
Unit  
After a POR event, amount of time from the point VDD  
reaches 3.13 V to execution of the first instruction  
across the operating temperature range of the chip.  
TBD  
μs  
VLPS RUN  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
STOP1 RUN  
TBD  
TBD  
STOP2 RUN  
VLPR RUN  
VLPR VLPS  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
VLPS VLPR  
RUN Compute operation  
RUN STOP1  
RUN STOP2  
RUN VLPS  
RUN VLPR  
VLPS Asynchronous DMA Wakeup  
STOP1 Asynchronous DMA Wakeup  
STOP2 Asynchronous DMA Wakeup  
Pin reset Code execution  
4.7 Power consumption  
The following table shows the power consumption targets for the device in various mode  
of operations. Attached S32K1xx_Power_Modes _Configuration.xlsx details the modes  
used in gathering the power consumption data stated in the following table Table 13. For  
full functionality refer to table: Module operation in available power modes of the  
Reference Manual.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
20  
NXP Semiconductors  
Table 13. Power consumption (Typicals unless stated otherwise) 1  
STOP1 STOP2  
RUN@48  
MHz (mA)  
RUN@64 MHz RUN@80 MHz HSRUN@112  
VLPS (μA) 2  
VLPR (mA)  
(mA)  
(mA)  
(mA)  
(mA)  
MHz (mA) 3  
S32K116  
S32K118  
S32K142  
25  
85  
Typ  
Typ  
Max  
Typ  
Max  
Typ  
Max  
26  
76  
40  
93  
1.05 1.07 1.70  
6.3  
6.6  
8
7.2  
7.5  
11.8 20.3  
NA  
245  
251  
279  
255  
302  
NA  
1.1  
1.11 1.77  
1.4 NA  
12  
20.6  
287  
139  
590  
NA  
891  
300  
164  
603  
NA  
904  
1.39  
8.9  
13.4 22.1  
12.3 20.8  
14.5 23.1  
105  
125  
1.15 1.16 1.81  
6.8  
9.2  
NA  
10.4  
7.7  
1.68 1.69  
NA NA  
2.02 2.04  
NA  
1.96  
NA  
10.1  
NA  
NA  
NA  
11.3  
15.6 24.1  
325  
25  
85  
Typ  
Typ  
Max  
Typ  
Max  
Typ  
Max  
27  
81  
40  
1.15 1.16 1.76  
1.20 1.21 1.82  
6.4  
6.7  
8
7.3  
7.6  
9
12.8 21.5  
13.2 21.8  
14.5 23.4  
13.4 22.1  
15.4 24.2  
NA  
268  
274  
301  
279  
320  
NA  
100  
323  
175  
637  
NA  
304  
149  
606  
NA  
1.46 1.47  
1.27 1.28 1.89  
NA  
105  
125  
6.9  
9.3  
NA  
11.0  
7.9  
10.4  
NA  
11.9  
1.76 1.77  
NA NA  
NA  
2.03  
NA  
NA  
NA  
1111  
1126 2.32 2.33  
17.1 25.9  
357  
25  
85  
Typ  
Typ  
Max  
29  
40  
1.17 1.21 2.19  
1.48 1.51 2.31  
6.4  
7
7.4  
8
17.3 24.6  
17.6 24.9  
24.5  
25  
31.3  
28.8  
29.1  
32  
37.5  
40.5  
41.1  
44  
52.2  
52.5  
55.6  
360  
364  
400  
128  
335  
137  
360  
31.6  
33.5  
37.7  
40  
1.87 1.89  
NA  
8.6  
9.4  
22  
28.2  
26.9  
Table continues on the next page...  
Table 13. Power consumption (Typicals unless stated otherwise) 1 (continued)  
STOP1 STOP2  
RUN@48  
MHz (mA)  
RUN@64 MHz RUN@80 MHz HSRUN@112  
(mA) (mA)  
MHz (mA) 3  
VLPS (μA) 2  
VLPR (mA)  
(mA)  
(mA)  
105  
125  
Typ  
Max  
Typ  
Max  
240  
740  
NA  
257  
791  
NA  
1.58 1.61 2.44  
7.6  
9.9  
8.3  
10.9  
NA  
18.3 25.7  
23.1 30.2  
25.5  
27.8  
NA  
31.9  
29.8  
33.8  
NA  
38  
41.5  
44.9  
53.1  
57.4  
373  
423  
NA  
2.32 2.34  
NA  
2.84  
NA  
35.3  
NA  
40.7  
NA  
NA  
3.1  
NA  
NA  
NA  
25  
NA  
NA  
NA  
1637  
1694  
3.21  
12.7  
13.7  
32.9  
30.7  
38.8  
36  
43.8  
450  
S32K144  
25  
85  
Typ  
Typ  
Max  
Typ  
Max  
Typ  
Max  
29.8  
150  
359  
256  
850  
NA  
42  
1.48 1.50 2.91  
1.72 1.85 3.08  
7
7.7  
8.1  
19.7 26.9  
20.4 27.1  
23.2 29.6  
20.6 27.4  
23.9 30.6  
25.1  
26.1  
29.3  
26.6  
30.3  
NA  
33.3  
33.5  
36.2  
33.8  
37.3  
NA  
30.2  
30.5  
34.8  
31.2  
35.6  
NA  
39.6  
40  
43.3  
43.9  
46.3  
44.8  
47.9  
55.6  
56.1  
59.7  
57.1  
61.3  
378  
381  
435  
390  
445  
NA  
159  
384  
273  
900  
NA  
7.2  
9.2  
7.8  
10.3  
NA  
2.60 2.65  
1.80 2.10 3.23  
NA  
9.9  
42.1  
40.5  
43.5  
NA  
105  
125  
8.5  
2.65 2.70  
NA NA  
NA  
3.65  
NA  
11.1  
NA  
NA  
NA  
NA  
NA  
1960  
1998 3.18 3.25  
12.9  
13.8  
26.9 33.6  
35  
40.3  
38.7  
46.8  
484  
S32K14xW  
25  
85  
Typ  
Typ  
Max  
Typ  
Max  
Typ  
35  
48  
TBD TBD TBD TBD  
TBD TBD TBD NA  
TBD TBD TBD TBD  
TBD TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
NA  
TBD  
TBD  
TBD  
TBD  
TBD  
NA  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
NA  
TBD  
TBD  
TBD  
TBD  
TBD  
NA  
TBD  
TBD  
TBD  
TBD  
TBD  
NA  
TBD  
TBD  
TBD  
TBD  
TBD  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
TBD  
TBD  
TBD  
TBD  
TBD  
NA  
TBD  
TBD  
TBD  
TBD  
NA  
105  
125  
TBD TBD TBD  
NA NA NA  
NA  
NA  
NA  
NA  
Table continues on the next page...  
Table 13. Power consumption (Typicals unless stated otherwise) 1 (continued)  
STOP1 STOP2  
RUN@48  
MHz (mA)  
RUN@64 MHz RUN@80 MHz HSRUN@112  
VLPS (μA) 2  
VLPR (mA)  
(mA)  
(mA)  
(mA)  
(mA)  
MHz (mA) 3  
Max  
Typ  
Max  
TBD  
TBD  
TBD  
TBD TBD TBD  
NA  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD TBD  
TBD TBD  
TBD TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
NA  
NA  
NA  
TBD  
NA  
150  
TBD TBD TBD TBD  
TBD  
TBD  
NA  
70  
TBD TBD  
8
NA  
3.3  
TBD  
S32K146  
25  
85  
Typ  
Typ  
Max  
Typ  
Max  
Typ  
Max  
37  
207  
974  
419  
2004  
NA  
47  
1.57 1.61  
8
9.2  
10.1  
13.9  
11  
23.4 31.4  
24.4 32.4  
29.3 37.9  
25.3 33.4  
34.1 42.6  
30.5  
31.5  
36.7  
32.5  
41.3  
NA  
40.2  
41.3  
47  
36.2  
37.2  
42.4  
38.1  
46.9  
NA  
47.6  
48.7  
54.4  
49.6  
58.8  
NA  
52  
68.3  
69.8  
78  
452  
465  
530  
477  
587  
NA  
209  
981  
422  
1.79 1.83 3.54  
3.32 3.38 NA  
1.99 2.04 3.78  
8.9  
53.3  
60.3  
54.4  
65.7  
12.7  
9.8  
105  
125  
42.2  
51.4  
NA  
70.8  
82.8  
2017 4.06 4.13  
NA NA NA  
3380 5.28 5.38  
NA  
4.44  
NA  
17.1  
NA  
18.3  
NA  
NA  
NA  
NA  
NA  
3358  
22.6  
23.7  
40.2 48.8  
47.3  
57.4  
52.8  
64.8  
660  
S32K1488  
25  
85  
Typ  
Typ  
Max  
Typ  
Max  
Typ  
Max  
38  
54  
2.17 2.20 3.45  
2.30 2.35 3.74  
8.5  
10.1  
14.5  
10.9  
18.0  
NA  
9.6  
11.1  
15.6  
11.9  
19.0  
NA  
27.6 34.9  
29.1 37.0  
34.8 43.6  
29.8 37.8  
38.4 46.8  
35.5  
36.8  
41.9  
37.6  
44.9  
NA  
45.3  
46.6  
53.9  
47.5  
55.3  
NA  
42.1  
43.4  
48.7  
45.2  
51.6  
NA  
57.7  
59.9  
65.1  
61.5  
66.8  
NA  
60.3  
62.9  
70.4  
63.8  
73.6  
83.3  
88.7  
96.1  
89.1  
97.4  
526  
543  
609  
565  
645  
NA  
336  
357  
1660  
560  
1736 3.48 3.55  
577 2.49 2.54 4.03  
2970 4.40 4.47  
NA NA NA  
4166 6.00 6.08  
NA  
105  
125  
2945  
NA  
NA  
4.85  
NA  
NA  
NA  
NA  
NA  
3990  
23.4  
24.5  
44.3 52.5  
50.9  
61.3  
57.5  
71.6  
719  
1. Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration. Typical conditions assumes  
VDD = VDDA = VREFH = 5 V, temperature = 25 °C and typical silicon process unless otherwise stated. All output pins are floating and On-chip pulldown is enabled for  
all unused input pins.  
2. Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation.  
3. HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.  
4. Values mentioned for S32K14x devices are measured at RUN@80 MHz with peripherals disabled and values mentioned for S32K11x devices are measured at  
RUN@48 MHz with peripherals disabled.  
5. With PMC_REGSC[CLKBIASDIS] set to 1. See Reference Manual for details.  
6. Data collected using RAM  
7. Numbers on limited samples size and data collected with Flash  
8. The S32K148 data points assume that ENET/QuadSPI/SAI etc. are inactive.  
Table 14. VLPS additional use-case power consumption at typical conditions 1, 2, 3  
Use-case  
Description  
Temp.  
Device  
Unit  
S32K116  
S32K118  
S32K142  
S32K144  
S32K14x  
W
S32K146  
S32K148  
VLPS and RTC  
• Clock source: LPO or  
RTC_CLKIN  
25  
85  
30  
96  
30  
102  
189  
327  
187  
244  
325  
551  
107  
157  
223  
405  
600  
712  
852  
1251  
260  
308  
367  
543  
2.94  
3.09  
3.21  
3.53  
114  
164  
223  
408  
30  
148  
280  
570  
230  
320  
490  
890  
135  
170  
260  
530  
670  
880  
1080  
1970  
260  
340  
430  
740  
2.99  
3.26  
3.5  
31  
170  
290  
680  
230  
400  
550  
1070  
138  
240  
400  
580  
690  
960  
1250  
1980  
260  
340  
430  
760  
3.19  
3.7  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
38  
227  
460  
810  
250  
410  
600  
1250  
146  
280  
480  
1000  
820  
1220  
1660  
2860  
270  
410  
610  
1170  
3.75  
4.35  
4.93  
5.97  
120  
260  
440  
910  
40  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
mA  
mA  
μA  
μA  
μA  
μA  
356  
105  
125  
25  
179  
281  
179  
235  
304  
499  
107  
149  
199  
347  
600  
696  
815  
1152  
260  
293  
339  
478  
2.51  
2.67  
2.83  
3.34  
114  
158  
210  
371  
600  
1250  
250  
VLPS and  
LPUART TX/RX  
• Clock source: SIRC  
• Transmiting or receiving  
continuously using DMA  
• Baudrate: 19.2 kbps  
85  
490  
105  
125  
25  
850  
1960  
146  
VLPS and  
LPUART wake-up  
• Clock source: SIRC  
• Wake-up address feature  
enabled  
85  
350  
105  
125  
25  
600  
• Baudrate: 19.2 kbps  
1280  
900  
VLPS and LPI2C  
master  
• Clock Source: SIRC  
• Transmit/receive using DMA  
• Baudrate: 100 kHz  
85  
1370  
2060  
3690  
280  
105  
125  
25  
VLPS and LPI2C  
slave wake-up  
• Clock source: SIRC  
• Wake-up address feature  
enabled  
85  
510  
105  
125  
25  
810  
• Baudrate: 100 kHz  
1540  
4.11  
4.93  
5.74  
7.38  
130  
VLPS and LPSPI  
master 4  
• Clock source: SIRC  
• Transmit/receive using DMA  
• Baudrate: 500 kHz  
85  
105  
125  
25  
4.2  
3.93  
114  
190  
310  
640  
4.63  
114  
250  
410  
750  
VLPS and LPIT  
• Clock source: SIRC  
• 1 channel enable  
• Mode: 32-bit periodic counter  
85  
320  
105  
125  
570  
1280  
1. All power numbers listed in this table are typical power numbers  
2. Current numbers are quoted for a certain application code and may vary on user configuration and silicon process variation.  
3. The power numbers are not strictly for the VLPS mode operation alone, but also includes power due to periodic wakeup. The power therefore includes wakeup  
plus VLPS mode activity. This leads to greater dependence of power numbers on application code.  
4. The single LPSPI used is LPSPI1 in S32K14X devices but LPSPI0 in S32K11x devices.  
General  
The following table shows the power consumption targets for S32K148 in various mode  
of operations measure at 3.3 V.  
Table 15. Power consumption at 3.3 V  
Chip/Device  
Ambient  
Temperature  
(°C)  
RUN@80 MHz (mA)  
HSRUN@112 MHz (mA)1  
Peripherals  
enabled +  
QSPI  
Peripherals  
enabled +  
Peripherals  
enabled +  
QSPI  
Peripherals  
enabled +  
ENET + SAI  
ENET + SAI  
S32K148  
25  
85  
Typ  
Typ  
Max  
Typ  
Max  
Max  
67.3  
67.4  
82.5  
68.0  
80.3  
83.5  
79.1  
79.2  
88.2  
79.8  
89.1  
94.7  
89.8  
95.6  
105.5  
105.9  
117.4  
106.7  
119.0  
109.7  
96.6  
105  
125  
109.0  
NA  
1. HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.  
4.8 ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
Max.  
Unit  
Notes  
Electrostatic discharge voltage, human body model  
Electrostatic discharge voltage, charged-device model  
All pins except the corner pins  
− 4000  
4000  
V
1
2
VCDM  
− 500  
− 750  
− 100  
500  
750  
100  
V
V
Corner pins only  
ILAT  
Latch-up current at ambient temperature of 125 °C  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
4.9 EMC radiated emissions operating behaviors  
EMC measurements to IC-level IEC standards are available from NXP on request.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
27  
I/O parameters  
5 I/O parameters  
5.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
Figure 8. Input signal measurement reference  
5.2 General AC specifications  
These general purpose specifications apply to all signals configured for GPIO, UART,  
and timers.  
Table 16. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1, 2  
GPIO pin interrupt pulse width (digital glitch filter  
50  
ns  
3
disabled, passive filter disabled) — Asynchronous path  
WFRST  
RESET input filtered pulse  
10  
ns  
ns  
4
5
WNFRST RESET input not filtered pulse  
Maximum of  
(100 ns, bus  
clock period)  
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In Stop and VLPS modes, the synchronizer is bypassed so shorter pulses can be recognized in  
that case.  
2. The greater of synchronous and asynchronous timing must be met.  
3. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be recognized.  
4. Maximum length of RESET pulse which will be the filtered by internal filter only if PCR_PTA5[PFE] is at its reset value of  
1'b1.  
5. Minimum length of RESET pulse, guaranteed not to be filtered by the internal filter only if PCR_PTA5[PFE] is at its reset  
value of 1'b1. This number depends on the bus clock period also. In this case, minimum pulse width which will cause reset  
is 250 ns. For faster clock frequencies which have clock period less than 100 ns, the minimum pulse width not filtered will  
S32K1xx Data Sheet, Rev. 12, 02/2020  
28  
NXP Semiconductors  
I/O parameters  
be 100 ns. After this filtering mechanism, the software has an option to put additional filtering in addition to this, by means  
of PCM_RPC register and/or PORT_DFER register for PTA5.  
5.3 DC electrical specifications at 3.3 V Range  
NOTE  
For details on the pad types defined in Table 17 and Table 19,  
see Reference Manual section IO Signal Table and IO Signal  
Description Input Multiplexing sheet(s) attached with  
Reference Manual.  
Table 17. DC electrical specifications at 3.3 V Range for S32K1xx series  
Symbol  
Parameter  
Value  
Typ.  
3.3  
Unit  
Notes  
Min.  
2.7  
Max.  
VDD  
Vih  
I/O Supply Voltage  
4
VDD + 0.3  
0.3 × VDD  
V
V
1
2
3
Input Buffer High Voltage  
Input Buffer Low Voltage  
Input Buffer Hysteresis  
0.7 × VDD  
VSS − 0.3  
0.06 × VDD  
3.5  
Vil  
V
Vhys  
V
IohGPIO  
I/O current source capability measured when  
pad Voh = (VDD − 0.8 V)  
mA  
IohGPIO-HD_DSE_0  
IolGPIO  
IolGPIO-HD_DSE_0  
IohGPIO-HD_DSE_1  
I/O current sink capability measured when  
pad Vol = 0.8 V  
3
mA  
I/O current source capability measured when  
pad Voh = (VDD − 0.8 V)  
14  
12  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
4
4
5
5
5
5
IolGPIO-HD_DSE_1  
I/O current sink capability measured when  
pad Vol = 0.8 V  
IohGPIO-FAST_DSE_0 I/O current sink capability measured when  
pad Voh=VDD-0.8 V  
9.5  
10  
IolGPIO-FAST_DSE_0 I/O current sink capability measured when  
pad Vol = 0.8 V  
IohGPIO-FAST_DSE_1 I/O current sink capability measured when  
pad Voh=VDD-0.8 V  
16  
IolGPIO-FAST_DSE_1 I/O current sink capability measured when  
pad Vol = 0.8 V  
15.5  
IOHT  
IIN  
Output high current total for all ports  
100  
Input leakage current (per pin) for full temperature range at VDD = 3.3 V  
6
All pins other than high drive port pins  
High drive port pins 7  
0.005  
0.010  
0.5  
0.5  
60  
μA  
μA  
kΩ  
kΩ  
RPU  
RPD  
Internal pullup resistors  
20  
20  
8
9
Internal pulldown resistors  
60  
1. S32K148 will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged S32K148 is guaranteed to  
operate from 2.97 V. All other S32K family devices operate from 2.7 V in all modes.  
2. For reset pads, same Vih levels are applicable  
3. For reset pads, same Vil levels are applicable  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
29  
I/O parameters  
4. The value given is measured at high drive strength mode. For value at low drive strength mode see the Ioh_Standard  
value given above.  
5. For refernce only. Run simulations with the IBIS model and custom board for accurate results.  
6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All  
other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the  
Reference Manual.  
7. When using ENET and SAI on S32K148, the overall device limits associated with high drive pin configurations must be  
respected i.e. On 144-pin LQFP the general purpose pins: PTA10, PTD0, and PTE4 must be set to low drive.  
8. Measured at input V = VSS  
9. Measured at input V = VDD  
Table 18. DC electrical specifications at 3.3 V Range for S32K14xW series  
Symbol  
Parameter  
Value  
Typ.  
3.3  
Unit  
Notes  
Min.  
3.13  
Max.  
VDD  
Vih  
I/O Supply Voltage  
4
VDD + 0.3  
0.3 × VDD  
V
V
Input Buffer High Voltage  
Input Buffer Low Voltage  
Input Buffer Hysteresis  
0.7 × VDD  
VSS − 0.3  
0.06 × VDD  
3.5  
1
2
Vil  
V
Vhys  
V
IohGPIO  
I/O current source capability measured when  
pad Voh = (VDD − 0.8 V)  
mA  
IohGPIO-HD_DSE_0  
IolGPIO  
IolGPIO-HD_DSE_0  
IohGPIO-HD_DSE_1  
I/O current sink capability measured when  
pad Vol = 0.8 V  
3
mA  
I/O current source capability measured when  
pad Voh = (VDD − 0.8 V)  
14  
12  
mA  
mA  
mA  
3
3
IolGPIO-HD_DSE_1  
I/O current sink capability measured when  
pad Vol = 0.8 V  
IOHT  
IIN  
Output high current total for all ports  
100  
Input leakage current (per pin) for full temperature range at VDD = 3.3 V  
4
All pins other than high drive port pins  
High drive port pins  
0.005  
0.010  
0.5  
0.5  
60  
μA  
μA  
kΩ  
kΩ  
RPU  
RPD  
Internal pullup resistors  
20  
20  
5
6
Internal pulldown resistors  
60  
1. For reset pads, same Vih levels are applicable  
2. For reset pads, same Vil levels are applicable  
3. The value given is measured at high drive strength mode. For value at low drive strength mode see the Ioh_Standard  
value given above.  
4. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All  
other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the  
Reference Manual.  
5. Measured at input V = VSS  
6. Measured at input V = VDD  
S32K1xx Data Sheet, Rev. 12, 02/2020  
30  
NXP Semiconductors  
I/O parameters  
5.4 DC electrical specifications at 5.0 V Range  
Table 19. DC electrical specifications at 5.0 V Range for S32K1xx series  
Symbol  
Parameter  
Value  
Typ.  
Unit  
Notes  
Min.  
Max.  
5.5  
VDD  
Vih  
I/O Supply Voltage  
4
V
V
Input Buffer High Voltage  
0.65 x  
VDD  
VDD + 0.3  
1
2
Vil  
Input Buffer Low Voltage  
Input Buffer Hysteresis  
VSS − 0.3  
0.35 x VDD  
V
V
Vhys  
0.06 x  
VDD  
IohGPIO  
I/O current source capability measured  
when pad Voh= (VDD - 0.8 V)  
5
mA  
mA  
IohGPIO-HD_DSE_0  
IolGPIO  
IolGPIO-HD_DSE_0  
IohGPIO-HD_DSE_1  
I/O current sink capability measured  
when pad Vol= 0.8 V  
5
I/O current source capability measured  
when pad Voh = VDD - 0.8 V  
20  
20  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
3
3
4
4
4
4
IolGPIO-HD_DSE_1  
IohGPIO-FAST_DSE_0  
IolGPIO-FAST_DSE_0  
IohGPIO-FAST_DSE_1  
IolGPIO-FAST_DSE_1  
I/O current sink capability measured  
when pad Vol = 0.8 V  
I/O current sink capability measured  
when pad Voh = VDD - 0.8 V  
14.0  
14.5  
21  
I/O current sink capability measured  
when pad Vol= 0.8 V  
I/O current sink capability measured  
when pad Voh = VDD - 0.8 V  
I/O current sink capability measured  
when pad Vol= 0.8 V  
20.5  
IOHT  
IIN  
Output high current total for all ports  
100  
Input leakage current (per pin) for full temperature range at VDD = 5.5 V  
5
All pins other than high drive port pins  
High drive port pins  
0.005  
0.010  
0.5  
0.5  
50  
μA  
μA  
kΩ  
kΩ  
RPU  
RPD  
Internal pullup resistors  
20  
20  
6
7
Internal pulldown resistors  
50  
1. For reset pads, same Vih levels are applicable  
2. For reset pads, same Vil levels are applicable  
3. The strong pad I/O pin is capable of switching a 50 pF load up to 40 MHz.  
4. For refernce only. Run simulations with the IBIS model and custom board for accurate results.  
5. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All  
other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the  
Reference Manual.  
6. Measured at input V = VSS  
7. Measured at input V = VDD  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
31  
I/O parameters  
Table 20. DC electrical specifications at 5.0 V Range for S32K14xW series  
Symbol  
Parameter  
Value  
Typ.  
Unit  
Notes  
Min.  
Max.  
5.5  
VDD  
Vih  
I/O Supply Voltage  
4
V
V
Input Buffer High Voltage  
0.65 x  
VDD  
VDD + 0.3  
-1  
1
Vil  
Input Buffer Low Voltage  
Input Buffer Hysteresis  
VSS − 0.3  
0.35 x VDD  
V
V
Vhys  
0.06 x  
VDD  
IohGPIO  
I/O current source capability measured  
when pad Voh= (VDD - 0.8 V)  
5
mA  
mA  
IohGPIO-HD_DSE_0  
IolGPIO  
IolGPIO-HD_DSE_0  
IohGPIO-HD_DSE_1  
I/O current sink capability measured  
when pad Vol= 0.8 V  
5
I/O current source capability measured  
when pad Voh = VDD - 0.8 V  
20  
20  
mA  
mA  
mA  
2
2
IolGPIO-HD_DSE_1  
I/O current sink capability measured  
when pad Vol = 0.8 V  
IOHT  
IIN  
Output high current total for all ports  
100  
Input leakage current (per pin) for full temperature range at VDD = 5.5 V  
3
All pins other than high drive port pins  
High drive port pins  
0.005  
0.010  
0.5  
0.5  
50  
μA  
μA  
kΩ  
kΩ  
RPU  
RPD  
Internal pullup resistors  
20  
20  
4
5
Internal pulldown resistors  
50  
1. For reset pads, same Vil levels are applicable  
2. The strong pad I/O pin is capable of switching a 50 pF load up to 40 MHz.  
3. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All  
other GPIOs are normal drive only. For details see IO Signal Description Input Multiplexing sheet(s) attached with the  
Reference Manual  
4. Measured at input V = VSS  
5. Measured at input V = VDD  
5.5 AC electrical specifications at 3.3 V range  
Table 21. AC electrical specifications at 3.3 V Range for S32K1xx series  
Symbol  
DSE  
Rise time (nS) 1  
Fall time (nS) 1  
Capacitance (pF) 2  
Min.  
Max.  
14.5  
23.7  
80.0  
14.5  
23.7  
80.0  
Min.  
Max.  
15.7  
26.2  
88.4  
15.7  
26.2  
88.4  
tRFGPIO  
NA  
3.2  
5.7  
3.4  
6.0  
25  
50  
20.0  
3.2  
20.8  
3.4  
200  
25  
tRFGPIO-HD  
0
5.7  
6.0  
50  
20.0  
20.8  
200  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
32  
NXP Semiconductors  
I/O parameters  
Table 21. AC electrical specifications at 3.3 V Range for S32K1xx series (continued)  
Symbol  
DSE  
Rise time (nS) 1  
Fall time (nS) 1  
Capacitance (pF) 2  
Min.  
Max.  
5.8  
Min.  
Max.  
6.1  
1
1.5  
2.4  
6.3  
0.6  
3.0  
12.0  
0.4  
1.5  
7.4  
1.7  
2.6  
25  
50  
8.0  
8.3  
22.0  
2.8  
6.0  
23.8  
2.8  
200  
25  
tRFGPIO-FAST  
0
1
0.5  
7.1  
2.6  
7.5  
50  
27.0  
1.3  
10.3  
0.38  
1.4  
26.8  
1.3  
200  
25  
3.8  
3.9  
50  
14.9  
7.0  
15.3  
200  
1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.  
2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be  
different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.  
Table 22. AC electrical specifications at 3.3 V Range for S32K14xW series  
Symbol  
DSE  
Rise time (nS) 1  
Fall time (nS) 1  
Capacitance (pF) 2  
Min.  
Max.  
14.5  
23.7  
80.0  
14.5  
23.7  
80.0  
5.8  
Min.  
Max.  
15.7  
26.2  
88.4  
15.7  
26.2  
88.4  
6.1  
tRFGPIO  
NA  
3.2  
5.7  
3.4  
6.0  
25  
50  
20.0  
3.2  
20.8  
3.4  
200  
25  
tRFGPIO-HD  
0
1
5.7  
6.0  
50  
20.0  
1.5  
20.8  
1.7  
200  
25  
2.4  
8.0  
2.6  
8.3  
50  
6.3  
22.0  
6.0  
23.8  
200  
1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.  
2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be  
different. For protocol specific AC specifications, see respective sections.  
5.6 AC electrical specifications at 5 V range  
Table 23. AC electrical specifications at 5 V Range for S32K1xx series  
Symbol  
DSE  
Rise time (nS)1  
Fall time (nS) 1  
Capacitance (pF) 2  
Min.  
Max .  
9.4  
Min.  
Max.  
10.7  
17.4  
59.7  
tRFGPIO  
NA  
2.8  
5.0  
2.9  
5.1  
25  
50  
15.7  
54.8  
17.3  
17.6  
200  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
33  
I/O parameters  
Table 23. AC electrical specifications at 5 V Range for S32K1xx series (continued)  
Symbol  
DSE  
Rise time (nS)1  
Fall time (nS) 1  
Capacitance (pF) 2  
Min.  
Max .  
9.4  
Min.  
Max.  
10.7  
17.4  
59.7  
5.0  
tRFGPIO-HD  
0
2.8  
5.0  
2.9  
5.1  
25  
50  
15.7  
54.8  
4.6  
17.3  
1.1  
17.6  
1.1  
200  
25  
1
0
1
2.0  
5.7  
2.0  
5.8  
50  
5.4  
16.0  
2.2  
5.0  
16.0  
2.2  
200  
25  
tRFGPIO-FAST  
0.42  
2.0  
0.37  
1.9  
5.0  
5.2  
50  
9.3  
18.8  
0.9  
8.5  
19.3  
0.9  
200  
25  
0.37  
1.2  
0.35  
1.2  
2.7  
2.9  
50  
6.0  
11.8  
6.0  
12.3  
200  
1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.  
2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be  
different, for example for ENET, QSPI etc. . For protocol specific AC specifications, see respective sections.  
Table 24. AC electrical specifications at 5 V Range for S32K14xW series  
Symbol  
DSE  
Rise time (nS)1  
Fall time (nS) 1  
Capacitance (pF) 2  
Min.  
Max .  
9.4  
Min.  
Max.  
10.7  
17.4  
59.7  
10.7  
17.4  
59.7  
5.0  
tRFGPIO  
NA  
2.8  
5.0  
2.9  
5.1  
25  
50  
15.7  
54.8  
9.4  
17.3  
2.8  
17.6  
2.9  
200  
25  
tRFGPIO-HD  
0
1
5.0  
15.7  
54.8  
4.6  
5.1  
50  
17.3  
1.1  
17.6  
1.1  
200  
25  
2.0  
5.7  
2.0  
5.8  
50  
5.4  
16.0  
5.0  
16.0  
200  
1. For reference only. Run simulations with the IBIS model and your custom board for accurate results.  
2. Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be  
different. For protocol specific AC specifications, see respective sections.  
5.7 Standard input pin capacitance  
Table 25. Standard input pin capacitance  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance: digital pins  
7
pF  
S32K1xx Data Sheet, Rev. 12, 02/2020  
34  
NXP Semiconductors  
I/O parameters  
NOTE  
Please refer to External System Oscillator electrical  
specifications for EXTAL/XTAL pins.  
5.8 Device clock specifications  
Table 26. Device clock specifications 1  
Symbol  
Description  
Min.  
Max.  
Unit  
High Speed run mode2  
fSYS  
fBUS  
System and core clock  
Bus clock  
112  
56  
MHz  
MHz  
MHz  
fFLASH  
Flash clock  
28  
Normal run mode (S32K11x series)  
Normal run mode (S32K14x series) 3  
Normal run mode (S32K14xW series) 5  
VLPR mode (S32K1xx series)6  
fSYS  
fBUS  
System and core clock  
Bus clock  
48  
48  
24  
MHz  
MHz  
MHz  
fFLASH  
Flash clock  
fSYS  
fBUS  
System and core clock  
Bus clock  
80  
404  
MHz  
MHz  
MHz  
fFLASH  
Flash clock  
26.67  
fSYS  
fBUS  
System and core clock  
Bus clock  
80  
404  
20  
MHz  
MHz  
MHz  
fFLASH  
Flash clock  
fSYS  
fBUS  
fFLASH  
fERCLK  
System and core clock  
Bus clock  
4
4
MHz  
MHz  
MHz  
MHz  
Flash clock  
1
External reference clock  
16  
VLPR mode (S32K14xW series)6  
fSYS  
fBUS  
fFLASH  
fERCLK  
System and core clock  
Bus clock  
1
MHz  
MHz  
MHz  
MHz  
1
Flash clock  
0.25  
TBD  
External reference clock  
1. Refer to the section Feature comparison for the availability of modes and other specifications.  
2. Only available on some devices. See section Feature comparison.  
3. With SPLL as system clock source.  
4. 48 MHz when fSYS is 48 MHz  
5. With SPLL as system clock source.  
6. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any  
other module.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
35  
Peripheral operating requirements and behaviors  
6 Peripheral operating requirements and behaviors  
6.1 System modules  
There are no electrical specifications necessary for the device's system modules.  
6.2 Clock interface modules  
6.2.1 External System Oscillator electrical specifications  
S32K1xx Data Sheet, Rev. 12, 02/2020  
36  
NXP Semiconductors  
Clock interface modules  
Single input comparator  
(EXTAL WAVE)  
ref_clk  
Mux  
Differential input comparator  
(HG/LP mode)  
Peak detector  
LP mode  
Driver  
(HG/LP mode)  
Pull down resistor (OFF)  
ESD PAD  
280 ohms  
ESD PAD  
40 ohms  
XTAL pin  
EXTAL pin  
Series resistor for current  
limitation  
1M ohms Feedback Resistor  
Crystal or resonator  
C1  
C2  
Figure 9. Oscillator connections scheme  
Table 27. External System Oscillator electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
gmXOSC Crystal oscillator transconductance  
SCG_SOSCCFG[RANGE]=2'b10 for 4-8 MHz  
SCG_SOSCCFG[RANGE]=2'b11 for 8-40 MHz  
2.2  
16  
13.7  
47  
mA/V  
mA/V  
V
VIL  
VIH  
Input low voltage — EXTAL pin in external clock mode  
VSS  
1.15  
VDD  
Input high voltage — EXTAL pin in external clock  
mode  
0.7 * VDD  
V
C1  
C2  
RF  
EXTAL load capacitance  
XTAL load capacitance  
Feedback resistor  
1
1
2
Low-gain mode (HGO=0)  
MΩ  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
37  
Clock interface modules  
Table 27. External System Oscillator electrical specifications  
(continued)  
Symbol Description  
High-gain mode (HGO=1)  
Series resistor  
Min.  
Typ.  
Max.  
Unit  
Notes  
1
MΩ  
3
RS  
Low-gain mode (HGO=0)  
High-gain mode (HGO=1)  
0
0
kΩ  
kΩ  
Vpp_XTAL Peak-to-peak amplitude of oscillation (oscillator mode) at XTAL  
4
4
4
Low-gain mode (HGO=0)  
High-gain mode (HGO=1)  
1.0  
3.3  
V
V
Vpp_EXTAL Peak-to-peak amplitude of oscillation (oscillator mode) at EXTAL  
Low-gain mode (HGO=0)  
0.8  
1.7  
V
V
High-gain mode (HGO=1), VDD= 4.0 V to 5.5 V  
VSOSCOP Oscillation operating point  
High-gain mode (HGO=1)  
1.15  
V
1. Crystal oscillator circuit provides stable oscillations when gmXOSC > 5 * gm_crit. The gm_crit is defined as:  
gm_crit = 4 * (ESR + RS) * (2πF)2 * (C0 + CL)2  
where:  
• gmXOSC is the transconductance of the internal oscillator circuit  
• ESR is the equivalent series resistance of the external crystal  
• RS is the series resistance connected between XTAL pin and external crystal for current limitation  
• F is the external crystal oscillation frequency  
• C0 is the shunt capacitance of the external crystal  
• CL is the external crystal total load capacitance. CL = Cs+ [C1*C2/(C1+C2)]  
• Cs is stray or parasitic capacitance on the pin due to any PCB traces  
• C1, C2 external load capacitances on EXTAL and XTAL pins  
See manufacture datasheet for external crystal component values  
2.  
• When low-gain is selected, internal RF will be selected and external RF should not be attached.  
• When high-gain is selected, external RF (1 M Ohm) needs to be connected for proper operation of the crystal. For  
external resistor, up to 5% tolerance is allowed.  
3. RS should be selected carefully to have appropriate oscillation amplitude for both protecting crystal or resonator device and  
satisfying proper oscillation startup condition.  
4. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any  
other devices.  
6.2.2 External System Oscillator frequency specifications  
S32K1xx Data Sheet, Rev. 12, 02/2020  
38  
NXP Semiconductors  
Table 28. External System Oscillator frequency specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
S32K14x/  
S32K14xW  
S32K11x  
S32K14x/  
S32K14xW  
S32K11x  
S32K14x/  
S32K14xW  
S32K11x  
fosc_hi  
fec_extal  
tdc_extal  
tcst  
Oscillator crystal or resonator  
frequency  
4
50  
40 1, 2  
MHz  
MHz  
%
Input clock frequency (external clock  
mode)  
48  
50  
48  
3
3
Input clock duty cycle (external clock  
mode)  
52  
Crystal Start-up Time  
8 MHz low-gain mode (HGO=0)  
8 MHz high-gain mode (HGO=1)  
40 MHz low-gain mode (HGO=0)  
40 MHz high-gain mode (HGO=1)  
1.5  
2.5  
2
ms  
4
2
1. For an ideal clock of 40 MHz, if permitted by application requirements, an error of +/- 5% is supported with 50% duty cycle.  
2. In S32K14xW, when sourcing ADC clock from oscillator, a better duty cycle is expected.  
3. Frequencies below 40 MHz can be used for degraded duty cycle upto 40-60%. In S32K14xW, when sourcing ADC clock from oscillator, a better duty cycle is  
expected. To cater for the duty cycle requirement or to limit the ADC clock to ≤ fADCK, the divider ADCn.ADC_CFG1[ADICLK] for the specific ADC instance can be  
used.  
4. Proper PC board layout procedures must be followed to achieve specifications.  
System Clock Generation (SCG) specifications  
6.2.3 System Clock Generation (SCG) specifications  
6.2.3.1 Fast internal RC Oscillator (FIRC) electrical specifications  
Table 29. Fast internal RC Oscillator electrical specifications for S32K1xx series  
Symbol  
Parameter1  
Value  
Typ.  
48  
Unit  
Min.  
Max.  
FFIRC  
FIRC target frequency  
MHz  
ΔF  
Frequency deviation across process, voltage, and  
temperature < 105°C  
0.5  
0.5  
1
%FFIRC  
ΔF125  
Frequency deviation across process, voltage, and  
temperature < 125°C  
1.1  
%FFIRC  
TStartup  
Startup time  
3.4  
300  
0.04  
5
µs2  
ps  
, 3  
TJIT  
Cycle-to-Cycle jitter  
Long term jitter over 1000 cycles  
500  
0.1  
3
TJIT  
%FFIRC  
1. With FIRC regulator enable  
2. Startup time is defined as the time between clock enablement and clock availability for system use.  
3. FIRC as system clock  
Table 30. Fast internal RC Oscillator electrical specifications for S32K14xW series  
Symbol  
Parameter1  
Value  
Typ.  
48  
Unit  
Min.  
Max.  
FFIRC  
FIRC target frequency  
MHz  
ΔF  
Frequency deviation across process, voltage, and  
temperature  
0.5  
1.4  
%FFIRC  
TStartup  
Startup time  
3.4  
300  
0.04  
5
µs2  
ps  
, 3  
TJIT  
Cycle-to-Cycle jitter  
Long term jitter over 1000 cycles  
500  
0.1  
3
TJIT  
%FFIRC  
1. With FIRC regulator enable  
2. Startup time is defined as the time between clock enablement and clock availability for system use.  
3. FIRC as system clock  
NOTE  
Fast internal RC oscillator is compliant with LIN when device  
is used as a slave node.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
40  
NXP Semiconductors  
System Clock Generation (SCG) specifications  
6.2.3.2 Slow internal RC oscillator (SIRC) electrical specifications  
Table 31. Slow internal RC oscillator (SIRC) electrical specifications for S32K1xx series  
Symbol  
Parameter  
Value  
Typ.  
8
Unit  
Min.  
Max.  
FSIRC  
SIRC target frequency  
MHz  
ΔF  
Frequency deviation across process, voltage, and  
temperature < 105°C  
3
%FSIRC  
ΔF125  
Frequency deviation across process, voltage, and  
temperature < 125°C  
9
3.3  
%FSIRC  
µs1  
TStartup  
Startup time  
12.5  
1. Startup time is defined as the time between clock enablement and clock availability for system use.  
Table 32. Slow internal RC oscillator (SIRC) electrical specifications for S32K14xW series  
Symbol  
Parameter  
Value  
Typ.  
8
Unit  
Min.  
Max.  
FSIRC  
SIRC target frequency  
MHz  
ΔF  
Frequency deviation across process, voltage, and  
temperature  
3.3  
%FSIRC  
TStartup  
Startup time  
9
12.5  
µs1  
1. Startup time is defined as the time between clock enablement and clock availability for system use.  
6.2.4 Low Power Oscillator (LPO) electrical specifications  
Table 33. Low Power Oscillator (LPO) electrical specifications  
Symbol  
Parameter  
Value  
Unit  
Min.  
Typ.  
Max.  
S32K14xW  
S32K1xx/  
S32K1xx/  
S32K1xx  
S32K14xW  
S32K14xW  
FLPO  
Internal low power oscillator  
frequency  
113  
128  
139  
141  
kHz  
µs  
Tstartup Startup Time  
20  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
41  
Memory and memory interfaces  
6.2.5 SPLL electrical specifications  
Table 34. SPLL electrical specifications  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
S32K1xx/  
S32K1xx/  
S32K1xx  
S32K14xW  
S32K14xW  
S32K14xW  
1
2
FSPLL_REF  
PLL Reference Frequency Range  
8
8
16  
MHz  
MHz  
MHz  
MHz  
FSPLL_Input PLL Input Frequency  
FVCO_CLK VCO output frequency  
FSPLL_CLK PLL output frequency  
JCYC_SPLL PLL Period Jitter (RMS)3  
at FVCO_CLK 180 MHz  
40  
48  
180  
90  
320  
160  
120  
75  
ps  
ps  
at FVCO_CLK 320 MHz  
JACC_SPLL PLL accumulated jitter over 1µs (RMS)3  
at FVCO_CLK 180 MHz  
1350  
600  
ps  
ps  
%
s
at FVCO_CLK 320 MHz  
DUNL  
Lock exit frequency tolerance  
TSPLL_LOCK Lock detector detection time4  
4.47  
5.97  
150 × 10-6 + 1075(1/FSPLL_REF  
)
1. FSPLL_REF is PLL reference frequency range after the PREDIV. For PREDIV and MULT settings refer SCG_SPLLCFG  
register of Reference Manual.  
2. FSPLL_Input is PLL input frequency range before the PREDIV must be limited to the range 8 MHz to 40 MHz. This input  
source could be derived from a crystal oscillator or some other external square wave clock source using OSC bypass  
mode. For external clock source settings refer SCG_SOSCCFG register of Reference Manual.  
3. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each  
PCB and results will vary  
4. Lock detector detection time is defined as the time between PLL enablement and clock availability for system use.  
6.3 Memory and memory interfaces  
6.3.1 Flash memory module (FTFC/FTFM) electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
6.3.1.1 Flash timing specifications — commands  
Table 35. Flash command timing specifications for S32K14x series  
Symbol  
Description1  
S32K142  
Typ Max  
S32K144  
Typ Max  
S32K146  
Typ Max  
S32K148  
Typ Max Unit Notes  
trd1blk  
Read 1 Block  
execution time  
32 KB flash  
64 KB flash  
ms  
0.5  
0.5  
0.5  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
42  
NXP Semiconductors  
Memory and memory interfaces  
Table 35. Flash command timing specifications for S32K14x series (continued)  
Symbol  
Description1  
S32K142  
Typ Max  
128 KB flash —  
S32K144  
Typ Max  
S32K146  
Typ Max  
S32K148  
Typ Max Unit Notes  
2
2
256 KB flash —  
512 KB flash —  
75  
100  
95  
1.8  
75  
100  
95  
2
trd1sec  
Read 1 Section 2 KB flash  
75  
100  
95  
75  
100  
100  
µs  
execution time  
4 KB flash  
tpgmchk  
tpgm8  
Program Check  
execution time  
µs  
µs  
ms  
Program Phrase —  
execution time  
90  
225  
90  
225  
90  
225  
90  
225  
tersblk  
Erase Flash  
Block execution  
time  
32 KB flash  
64 KB flash 30  
128 KB flash —  
256 KB flash 250  
512 KB flash —  
2
2
550  
30  
550  
30  
550  
2125  
250  
12  
4250  
130  
250  
12  
4250 250  
4250  
130  
tersscr  
Erase Flash  
Sector execution  
time  
12  
130  
130  
12  
ms  
ms  
ms  
tpgmsec1k  
Program Section —  
execution time  
(1KB flash)  
5
5
5
5
trd1all  
Read 1s All  
Block execution  
time  
2.8  
2.3  
5.2  
8.2  
trdonce  
tpgmonce  
tersall  
Read Once  
execution time  
30  
30  
30  
30  
µs  
µs  
Program Once  
execution time  
90  
250  
90  
90  
700  
90  
Erase All Blocks —  
execution time  
2800 400  
35  
4900  
35  
10000 1400 17000 ms  
35 35 µs  
2
tvfykey  
Verify Backdoor  
Access Key  
execution time  
tersallu  
Erase All Blocks —  
Unsecure  
execution time  
250  
70  
2800 400  
4900  
700  
70  
10000 1400 17000 ms  
2
3
tpgmpart  
Program  
32 KB  
70  
ms  
Partition for  
EEPROM  
EEPROM  
backup  
execution time  
64 KB  
71  
71  
71  
150  
0.08  
EEPROM  
backup  
tsetram  
Set FlexRAM  
Function  
Control  
Code 0xFF  
0.08  
0.08  
0.08  
ms  
3
execution time  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
43  
Memory and memory interfaces  
Table 35. Flash command timing specifications for S32K14x series (continued)  
Symbol  
Description1  
S32K142  
Typ Max  
S32K144  
Typ Max  
S32K146  
Typ Max  
S32K148  
Typ Max Unit Notes  
32 KB  
EEPROM  
backup  
0.8  
1.2  
1.5  
1.9  
0.8  
1.2  
0.8  
1.2  
1.3  
48 KB  
EEPROM  
backup  
1
1
1.5  
1
1.5  
64 KB  
EEPROM  
backup  
1.3  
385  
430  
475  
385  
430  
475  
360  
1.3  
1.9  
1.3  
385  
430  
475  
385  
430  
475  
360  
1.9  
1.9  
teewr8b  
Byte write to  
FlexRAM  
32 KB  
EEPROM  
backup  
1700 385  
1850 430  
2000 475  
1700 385  
1850 430  
2000 475  
2000 360  
1700  
1850  
2000  
1700  
1850  
2000  
2000  
1700  
1850  
µs  
3,4  
execution time  
48 KB  
EEPROM  
backup  
64 KB  
EEPROM  
backup  
2000 475  
4000  
teewr16b  
16-bit write to  
FlexRAM  
32 KB  
EEPROM  
backup  
1700  
1850  
µs  
3,4  
execution time  
48 KB  
EEPROM  
backup  
64 KB  
EEPROM  
backup  
2000 475  
2000 360  
4000  
2000  
teewr32bers  
32-bit write to  
erased FlexRAM  
location  
µs  
µs  
execution time  
teewr32b  
32-bit write to  
FlexRAM  
execution time  
32 KB  
EEPROM  
backup  
630  
720  
810  
200  
2000 630  
2125 720  
2250 810  
2000  
2125  
2250  
630  
720  
810  
2000  
2125  
3,4  
48 KB  
EEPROM  
backup  
64 KB  
EEPROM  
backup  
2250 810  
4500  
tquickwr  
32-bit Quick  
Write execution write  
time: Time from  
CCIF clearing  
(start the write)  
until CCIF  
1st 32-bit  
550  
550  
200  
150  
550  
550  
200  
150  
550  
550  
200  
150  
1100  
550  
µs  
4,5,6  
2nd through 150  
Next to Last  
(Nth-1) 32-  
bit write  
setting (32-bit  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
44  
NXP Semiconductors  
Memory and memory interfaces  
Table 35. Flash command timing specifications for S32K14x series (continued)  
Symbol  
Description1  
S32K142  
Typ Max  
S32K144  
Typ Max  
S32K146  
Typ Max  
S32K148  
Typ Max Unit Notes  
write complete,  
ready for next  
32-bit write)  
Last (Nth)  
32-bit write  
(time for  
200  
550  
200  
550  
200  
550  
200  
550  
write only,  
not cleanup)  
tquickwrClnup Quick Write  
Cleanup  
(# of  
(# of  
(# of  
(# of  
ms  
7
Quick  
Writes  
) * 2.0  
Quick  
Writes )  
* 2.0  
Quick  
Writes  
) * 2.0  
Quick  
Writes  
) * 2.0  
execution time  
1. All command times assumes 25 MHz or greater flash clock frequency (for synchronization time between internal/external  
clocks).  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may  
be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM  
issues detected.  
4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2× the  
times shown.  
5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur  
after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record  
set will still be valid and the new records will be discarded.  
6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.  
7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes,  
assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.  
Table 36. Flash command timing specifications for S32K14xW series  
S32K142W  
Typ Max  
S32K144W  
Typ Max  
Symbol  
Description-1  
64 KB flash  
Unit  
ms  
Notes  
trd1blk  
Read 1 Block  
execution time  
0.5  
2.5  
0.5  
256 KB flash  
512 KB flash  
2 KB flash  
4 KB flash  
2.5  
95  
trd1sec  
Read 1 Section  
execution time  
95  
µs  
125  
125  
125  
125  
tpgmchk  
tpgm8  
Program Check  
execution time  
µs  
µs  
ms  
Program Phrase  
execution time  
100  
250  
100  
250  
tersblk  
Erase Flash Block  
execution time  
64 KB flash  
256 KB flash  
512 KB flash  
35  
140  
610  
2340  
35  
610  
-1  
280  
15  
4675  
150  
tersscr  
tpgmsec  
trd1all  
Erase Flash Sector  
execution time  
15  
150  
ms  
ms  
ms  
-1  
Program Section  
execution time  
1 KB flash  
5.5  
5.5  
Read 1s All Block  
execution time  
3.5  
4.5  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
45  
Memory and memory interfaces  
Table 36. Flash command timing specifications for S32K14xW series (continued)  
S32K142W  
Typ Max  
S32K144W  
Typ Max  
Symbol  
Description-1  
Unit  
Notes  
trdonce  
tpgmonce  
tersall  
Read Once  
execution time  
38  
38  
µs  
µs  
Program Once  
execution time  
100  
160  
100  
310  
Erase All Blocks  
execution time  
2700  
45  
5300  
45  
ms  
µs  
-1  
tvfykey  
Verify Backdoor  
Access Key  
execution time  
tersallu  
Erase All Blocks  
Unsecure execution  
time  
160  
2700  
310  
5300  
ms  
ms  
-1  
-1  
tpgmpart  
Program Partition for 32 KB EEPROM  
EEPROM execution backup  
time  
77  
78  
77  
78  
64 KB EEPROM  
backup  
tsetram  
Set FlexRAM  
Function execution  
time  
Control Code 0xFF 0.10  
0.10  
1.0  
ms  
-1  
32 KB EEPROM  
backup  
1.0  
1.5  
1.5  
48 KB EEPROM  
backup  
1.2  
1.8  
1.2  
1.8  
64 KB EEPROM  
backup  
1.4  
2.1  
1.4  
2.1  
teewr32b  
32-bit write to  
FlexRAM execution backup  
time  
32 KB EEPROM  
690  
790  
890  
220  
2200  
2350  
2500  
690  
790  
890  
2200  
2350  
2500  
µs  
µs  
-1,-1  
48 KB EEPROM  
backup  
64 KB EEPROM  
backup  
tquickwr  
32-bit Quick Write  
execution time: Time  
from CCIF clearing  
(start the write) until  
CCIF setting (32-bit  
write complete,  
1st 32-bit write  
600  
600  
220  
165  
600  
600  
-1,-1,-1  
2nd through Next 165  
to Last (Nth-1) 32-  
bit write  
Last (Nth) 32-bit  
write (time for write  
only, not cleanup)  
220  
600  
220  
600  
ready for next 32-bit  
write)  
tquickwrClnup  
Quick Write Cleanup —  
execution time  
(# of  
(# of  
ms  
-1  
Quick  
Writes ) *  
2.0  
Quick  
Writes ) *  
2.0  
S32K1xx Data Sheet, Rev. 12, 02/2020  
46  
NXP Semiconductors  
Memory and memory interfaces  
Table 37. Flash command timing specifications for S32K11x series  
Symbol  
Description1  
S32K116  
Typ Max  
S32K118  
Max  
Typ  
Unit  
ms  
Notes  
trd1blk  
Read 1 Block execution 32 KB flash  
0.36  
0.36  
time  
64 KB flash  
128 KB flash  
256 KB flash  
512 KB flash  
1.2  
2
trd1sec  
Read 1 Section  
execution time  
2 KB flash  
4 KB flash  
75  
75  
µs  
100  
100  
100  
100  
tpgmchk  
tpgm8  
Program Check  
execution time  
µs  
µs  
ms  
Program Phrase  
execution time  
90  
225  
90  
225  
tersblk  
Erase Flash Block  
execution time  
32 KB flash  
64 KB flash  
128 KB flash  
256 KB flash  
512 KB flash  
15  
300  
15  
300  
2
120  
1100  
250  
2125  
tersscr  
Erase Flash Sector  
execution time  
12  
130  
12  
130  
ms  
ms  
2
tpgmsec1k  
Program Section  
execution time (1 KB  
flash)  
5
5
trd1all  
Read 1s All Block  
execution time  
1.7  
30  
2.8  
30  
ms  
µs  
trdonce  
tpgmonce  
tersall  
Read Once execution  
time  
Program Once execution —  
time  
90  
90  
µs  
Erase All Blocks  
execution time  
150  
1500  
35  
230  
2500  
35  
ms  
µs  
2
tvfykey  
tersallu  
tpgmpart  
Verify Backdoor Access  
Key execution time  
Erase All Blocks  
Unsecure execution time  
150  
1500  
230  
71  
2500  
ms  
ms  
2
3
Program Partition for  
32 KB EEPROM 71  
EEPROM execution time backup  
64 KB EEPROM  
backup  
tsetram  
Set FlexRAM Function  
execution time  
Control Code  
0xFF  
0.08  
0.08  
0.8  
ms  
3
32 KB EEPROM 0.8  
backup  
1.2  
1.2  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
47  
Memory and memory interfaces  
Table 37. Flash command timing specifications for S32K11x series (continued)  
Symbol  
Description1  
S32K116  
Typ Max  
S32K118  
Max  
Typ  
Unit  
Notes  
48 KB EEPROM  
backup  
64 KB EEPROM  
backup  
teewr8b  
Byte write to FlexRAM  
execution time  
32 KB EEPROM 385  
backup  
1700  
385  
1700  
µs  
3,4  
48 KB EEPROM  
backup  
64 KB EEPROM  
backup  
teewr16b  
16-bit write to FlexRAM 32 KB EEPROM 385  
1700  
385  
1700  
µs  
3,4  
execution time  
backup  
48 KB EEPROM  
backup  
64 KB EEPROM  
backup  
teewr32bers  
32-bit write to erased  
FlexRAM location  
execution time  
360  
2000  
360  
2000  
µs  
µs  
teewr32b  
32-bit write to FlexRAM 32 KB EEPROM 630  
execution time  
2000  
630  
2000  
3,4  
backup  
48 KB EEPROM  
backup  
64 KB EEPROM  
backup  
tquickwr  
32-bit Quick Write  
1st 32-bit write  
200  
550  
550  
200  
150  
550  
550  
µs  
4,5,6  
execution time: Time  
from CCIF clearing (start  
the write) until CCIF  
setting (32-bit write  
complete, ready for next  
32-bit write)  
2nd through Next 150  
to Last (Nth-1)  
32-bit write  
Last (Nth) 32-bit 200  
write (time for  
write only, not  
cleanup)  
550  
200  
550  
tquickwrClnup  
Quick Write Cleanup  
execution time  
(# of  
(# of Quick  
Writes ) * 2.0  
ms  
7
Quick  
Writes ) *  
2.0  
1. All command times assume 25 MHz or greater flash clock frequency (for synchronization time between internal/external  
clocks).  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may  
be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 - No EEPROM  
issues detected.  
4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2x the  
times shown.  
5. Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur  
after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record  
set will still be valid and the new records will be discarded.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
48  
NXP Semiconductors  
Memory and memory interfaces  
6. Quick Write times may take up to 550 µs, as additional cleanup may occur when crossing sector boundaries.  
7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes,  
assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.  
NOTE  
Under certain circumstances FlexMEM maximum times may be  
exceeded. In this case the user or application may wait, or assert  
reset to the FTFC/FTFM macro to stop the operation.  
6.3.1.2 Reliability specifications  
Table 38. NVM reliability specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
When using as Program and Data Flash  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
20  
years  
1
1 K  
cycles  
2, 3  
When using FlexMemory feature : FlexRAM as Emulated EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
5
years  
years  
1, 4  
1
20  
Write endurance  
nnvmwree16  
5, 6, 7  
100 K  
1.6 M  
writes  
writes  
• EEPROM backup to FlexRAM ratio = 16  
nnvmwree256  
• EEPROM backup to FlexRAM ratio = 256  
1. Data retention period per block begins upon initial user factory programming or after each subsequent erase.  
2. Program and Erase for PFlash and DFlash are supported across product temperature specification in Normal Mode (not  
supported in HSRUN mode).  
3. Cycling endurance is per DFlash or PFlash Sector.  
4. Background maintenance operations during normal FlexRAM usage extend effective data retention life beyond 5 years.  
5. FlexMemory write endurance specified for 16-bit and/or 32-bit writes to FlexRAM and is supported across product  
temperature specification in Normal Mode (not supported in HSRUN mode). Greater write endurance may be achieved  
with larger ratios of EEPROM backup to FlexRAM.  
6. For usage of any EEE driver other than the FlexMemory feature, the endurance spec will fall back to the specified  
endurance value of the D-Flash specification (1K).  
7. FlexMemory calculator tool is available at NXP web site for help in estimation of the maximum write endurance achievable  
at specific EEPROM/FlexRAM ratios. The “In Spec” portions of the online calculator refer to the NVM reliability  
specifications section of data sheet. This calculator is only applies to the FlexMemory feature.  
6.3.2 QuadSPI AC specifications  
The following table describes the QuadSPI electrical characteristics.  
• Measurements are with maximum output load of 25 pF, input transition of 1 ns and  
pad configured with fastest slew settings (DSE = 1'b1).  
• I/O operating voltage ranges from 2.97 V to 3.6 V  
• While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the  
interface should be OFF.  
• Add 50 ohm series termination on board in QuadSPI SCK for Flash A to avoid loop  
back reflection when using in Internal DQS (PAD Loopback) mode.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
49  
Memory and memory interfaces  
• QuadSPI trace length should be 3 inches.  
• For non-Quad mode of operation if external device doesn’t have pull-up feature,  
external pull-up needs to be added at board level for non-used pads.  
• With external pull-up, performance of the interface may degrade based on load  
associated with external pull-up.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
50  
NXP Semiconductors  
Table 39. QuadSPI electrical specifications  
FLASH PORT  
Sym Unit  
FLASH A  
FLASH B  
RUN1  
SDR  
HSRUN1  
SDR  
RUN/HSRUN2  
QuadSPI Mode  
SDR  
DDR3  
Internal  
Internal DQS  
Internal  
Internal DQS  
Internal  
External DQS  
Sampling  
Sampling  
Sampling  
N1  
PAD  
Internal  
N1  
PAD  
Internal  
N1  
External DQS  
Loopback  
Loopback  
Loopback  
Loopback  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Register Settings  
MCR[DDR_EN]  
MCR[DQS_EN]  
-
-
-
-
-
-
-
-
-
0
0
-
0
1
1
1
-
0
1
0
0
-
0
0
-
0
1
1
1
-
0
1
0
0
-
0
0
-
1
1
-
MCR[SCLKCFG[0]]  
MCR[SCLKCFG[1]]  
MCR[SCLKCFG[2]]  
MCR[SCLKCFG[3]]  
MCR[SCLKCFG[5]]  
SMPR[FSPHS]  
-
-
-
-
-
-
-
0
0
1
0
0
-
-
-
-
-
-
-
-
0
0
0
-
0
1
0
0
0
0
0
23  
0
0
0
-
0
1
0
0
0
0
0
30  
0
0
0
-
SMPR[FSDLY]  
SOCCR  
[SOCCFG[7:0]]  
SOCCR[SOCCFG[15:8]]  
FLSHCR[TDH]  
-
-
-
-
-
-
-
-
-
30  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
Timing Parameters  
SCK Clock Frequency  
SCK Clock Period  
fSCK  
tSCK  
MHz  
ns  
-
38  
-
-
64  
-
-
48  
-
-
40  
-
-
80  
-
-
50  
-
-
20  
-
-
204  
-
50.0  
50.04  
Table continues on the next page...  
Table 39. QuadSPI electrical specifications (continued)  
FLASH PORT  
Sym Unit  
FLASH A  
FLASH B  
RUN1  
SDR  
HSRUN1  
SDR  
RUN/HSRUN2  
QuadSPI Mode  
SDR  
DDR3  
Internal  
Internal DQS  
Internal  
Internal DQS  
Internal  
External DQS  
Sampling  
Sampling  
Sampling  
N1  
PAD  
Internal  
N1  
PAD  
Internal  
N1  
External DQS  
Loopback  
Loopback  
Loopback  
Loopback  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
SCK Duty Cycle  
tSDC  
ns  
Data Input Setup Time  
Data Input Hold Time  
Data Output Valid Time  
tIS  
tIH  
ns  
ns  
ns  
ns  
15  
0
-
-
-
2.5  
-
-
10  
1
-
-
-
14  
0
-
-
-
1.6  
-
-
9
1
-
-
-
25  
0
-
-
-
2
20  
-
-
-
1
-
1
-
tOV  
tIV  
4.5  
5
4.5  
5
4.5  
5
4
5
4
35  
4
5
10  
5
10  
-
Data Output In-Valid  
Time  
-
-
-
-
-
-
-
5
CS to SCK Time 6  
SCK to CS Time 7  
Output Load  
tCSSCK  
tSCKCS  
ns  
ns  
pf  
5
5
-
-
5
5
-
-
5
5
-
-
5
5
-
-
5
5
-
-
5
5
-
-
10  
5
-
-
10  
5
-
-
25  
25  
25  
25  
25  
25  
25  
25  
1. See Reference Manual for details on mode settings  
2. See Reference Manual for details on mode settings  
3. Valid for HyperRAM only  
4. RWDS(External DQS CLK) frequency  
5. For operating frequency ≤ 64 Mhz,Output invalid time is 5 ns.  
6. Program register value QuadSPI_FLSHCR[TCSS] = 4`h2  
7. Program register value QuadSPI_FLSHCR[TCSH] = 4`h1  
Memory and memory interfaces  
1
2
3
Clock  
SCK  
CS  
tSCK  
tSDC  
tSDC  
tIH  
tIS  
Data in  
Figure 10. QuadSPI input timing (SDR mode) diagram  
1
2
3
Clock  
SCK  
CS  
tSCK  
tSDC  
tSDC  
tSCKCS  
tCSSCK  
tIV  
tOV  
Invalid  
Data out  
Figure 11. QuadSPI output timing (SDR mode) diagram  
TIS  
TIS  
TIH  
TIH  
invalid  
invalid  
D1  
invalid  
invalid  
D4  
D5  
D2  
D3  
TIS– Setup Time  
T
I
H
H
old Time  
Figure 12. QuadSPI input timing (HyperRAM mode) diagram  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
53  
Analog modules  
SCK  
tIV  
tOV  
Output Invalid Data  
Figure 13. QuadSPI output timing (HyperRAM mode) diagram  
6.4 Analog modules  
6.4.1 ADC electrical specifications  
6.4.1.1 12-bit ADC operating conditions  
S32K1xx Data Sheet, Rev. 12, 02/2020  
54  
NXP Semiconductors  
Table 40. 12-bit ADC operating conditions  
Min.  
Typ.1  
Max.  
S32K14xW  
Symbol  
Description  
Conditions  
Unit  
Notes  
S32K1xx/  
S32K14xW  
S32K1xx/  
S32K14xW  
S32K1xx  
VREFH  
ADC reference voltage high  
See Voltage  
and current  
operating  
VDDA  
See Voltage and current  
operating requirements for  
values  
V
2
requirements  
for values  
VREFL  
ADC reference voltage low  
See Voltage  
and current  
operating  
0
See Voltage and current  
operating requirements for  
values  
mV  
2
requirements  
for values  
VADIN  
RS  
Input voltage  
VREFL  
VREFH  
V
kΩ  
Source impedendance  
fADCK < 4 MHz  
5
1.2  
5
RSW1  
RAD  
CP1  
Channel Selection Switch Impedance  
Sampling Switch Impedance  
Pin Capacitance  
0.75  
2
kΩ  
kΩ  
10  
4
pF  
CP2  
Analog Bus Capacitance  
Sampling capacitance  
pF  
CS  
4
5
pF  
fADCK  
fCONV  
ADC conversion clock frequency  
ADC conversion frequency  
Normal usage  
2
40  
928  
50  
40  
MHz  
Ksps  
3, 4  
6, 7  
No ADC hardware averaging.5  
Continuous conversions  
enabled, subsequent conversion  
time  
46.4  
1160  
ADC hardware averaging set to  
32. 5 Continuous conversions  
enabled, subsequent conversion  
time  
1.45  
29  
36.25  
Ksps  
6, 7  
1. Typical values assume VDDA = 5 V, Temp = 25 °C, fADCK = 40 MHz, RAS=20 Ω, and CAS=10 nF unless otherwise stated. Typical values are for reference only, and  
are not tested in production.  
2. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to VSS. To get maximum performance, reference  
supply quality should be better than SAR ADC. See application note AN5032 for details.  
3. Clock and compare cycle need to be set according to the guidelines mentioned in the Reference Manual .  
4. ADC conversion will become less reliable above maximum frequency.  
5. When using ADC hardware averaging, see the Reference Manual to determine the most appropriate setting for AVGS.  
6. Numbers based on the minimum sampling time of 275 ns.  
7. For guidelines and examples of conversion rate calculation, see the Reference Manual section 'Calibration function'  
ADC electrical specifications  
Figure 14. ADC input impedance equivalency diagram  
6.4.1.2 12-bit ADC electrical characteristics  
NOTE  
• ADC performance specifications are documented using a  
single ADC. For parallel/simultaneous operation of both  
ADCs, either for sampling the same channel by both ADCs  
or for sampling different channels by each ADC, some  
amount of decrease in performance can be expected. Care  
must be taken to stagger the two ADC conversions, in  
particular the sample phase, to minimize the impact of  
simultaneous conversions.  
• On reduced pin packages where ADC reference pins are  
shared with supply pins, ADC analog performance  
characteristics may be impacted. The amount of variation  
will be directly impacted by the external PCB layout and  
hence care must be taken with PCB routing. See AN5426  
for details  
• All accuracy numbers assume the ADC is calibrated with  
VREFH=VDDA=VDD, with the calibration frequency set to  
less than or equal to half of the maximum specified ADC  
clock frequency.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
57  
ADC electrical specifications  
Table 41. 12-bit ADC characteristics (2.7 V to 3 V) (VREFH = VDDA, VREFL = VSS) 1  
Symbol  
VDDA  
Description  
Min.  
2.7  
Typ.2  
Max.  
3
Unit  
V
Notes  
Supply voltage  
IDDA_ADC  
Supply current per ADC  
0.6  
mA  
ns  
3
SMPLTS Sample Time  
275  
Refer to the  
Reference  
Manual  
TUE4  
DNL  
INL  
Total unadjusted error  
4
8
LSB5  
LSB5  
LSB5  
6, 7, 8, 9  
6, 7, 8, 9  
6, 7, 8, 9  
Differential non-linearity  
Integral non-linearity  
1.0  
2.0  
1. This table is not applicable to S32K14xW.  
2. Typical values assume VDDA = 3 V, Temp = 25 °C, fADCK = 40 MHz, RAS=20 Ω, and CAS=10 nF.  
3. The ADC supply current depends on the ADC conversion rate.  
4. Represents total static error, which includes offset and full scale error.  
5. 1 LSB = (VREFH - VREFL)/2N  
6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device  
use case scenario. When using ADC averaging, refer to the Reference Manual to determine the most appropriate settings  
for AVGS.  
7. For ADC signals adjacent to VDD/VSS or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC  
performance may be observed.  
8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the  
internal analog parameters, assume minor degradation.  
9. All the parameters in the table are given assuming system clock as the clocking source for ADC.  
Table 42. 12-bit ADC characteristics (3 V to 5.5 V)(VREFH = VDDA, VREFL = VSS)  
Symbol Description  
Min.  
S32K14xW  
3.13  
Typ.1  
Max.  
Unit  
Notes  
S32K1xx/  
S32K14xW  
S32K1xx/  
S32K14xW  
S32K1xx  
VDDA  
Supply voltage  
3
1
5.5  
V
IDDA_ADC Supply current per ADC  
SMPLTS Sample Time  
mA  
ns  
2
275  
Refer to the  
Reference  
Manual  
TUE3  
DNL  
INL  
Total unadjusted error  
Differential non-linearity  
Integral non-linearity  
4
8
LSB4  
LSB4  
LSB4  
5, 6, 7, 8  
5, 6, 7, 8  
5, 6, 7, 8  
0.7  
1.0  
1. Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK = 40 MHz, RAS=20 Ω, and CAS=10 nF unless otherwise stated.  
2. The ADC supply current depends on the ADC conversion rate.  
3. Represents total static error, which includes offset and full scale error.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device  
use case scenario. When using ADC averaging, refer to the Reference Manual to determine the most appropriate settings  
for AVGS.  
6. For ADC signals adjacent to VDD/VSS or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC  
performance may be observed.  
7. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the  
internal analog parameters, assume minor degradation.  
8. All the parameters in the table are given assuming system clock as the clocking source for ADC.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
58  
NXP Semiconductors  
ADC electrical specifications  
NOTE  
• Due to triple bonding in lower pin packages like 32-QFN,  
48-LQFP, and 64-LQFP degradation might be seen in ADC  
parameters.  
• When using high speed interfaces such as the QuadSPI,  
SAI0, SAI1 or ENET there may be some ADC degradation  
on the adjacent analog input paths. See following table for  
details.  
Pin name  
PTE8  
TGATE purpose  
CMP0_IN3  
PTC3  
ADC0_SE11/CMP0_IN4  
ADC0_SE10/CMP0_IN5  
CMP0_IN6  
PTC2  
PTD7  
PTD6  
CMP0_IN7  
PTD28  
PTD27  
ADC1_SE22  
ADC1_SE21  
6.4.2 CMP with 8-bit DAC electrical specifications  
Table 44. Comparator with 8-bit DAC electrical specifications for S32K1xx series  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDDHS  
Supply current, High-speed mode1  
μA  
-40 - 125 ℃  
230  
300  
IDDLS  
Supply current, Low-speed mode1  
-40 - 105 ℃  
μA  
6
6
11  
13  
-40 - 125 ℃  
VAIN  
VAIO  
Analog input voltage  
Analog input offset voltage, High-speed mode  
-40 - 125 ℃  
0
0 - VDDA  
VDDA  
V
mV  
-25  
-40  
1
4
25  
40  
VAIO  
Analog input offset voltage, Low-speed mode  
mV  
ns  
-40 - 125 ℃  
tDHSB  
Propagation delay, High-speed mode2  
-40 - 105 ℃  
35  
35  
200  
300  
-40 - 125 ℃  
tDLSB  
Propagation delay, Low-speed mode2  
µs  
ns  
-40 - 105 ℃  
0.5  
0.5  
2
3
-40 - 125 ℃  
Propagation delay, High-speed mode3  
tDHSS  
-40 - 105 ℃  
70  
400  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
59  
ADC electrical specifications  
Table 44. Comparator with 8-bit DAC electrical specifications for S32K1xx series  
(continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
-40 - 125 ℃  
70  
500  
tDLSS  
Propagation delay, Low-speed mode3  
µs  
-40 - 105 ℃  
1
1
5
5
-40 - 125 ℃  
tIDHS  
Initialization delay, High-speed mode4  
μs  
μs  
-40 - 125 ℃  
1.5  
10  
0
3
tIDLS  
Initialization delay, Low-speed mode4  
-40 - 125 ℃  
30  
VHYST0  
Analog comparator hysteresis, Hyst0  
-40 - 125 ℃  
mV  
mV  
VHYST1  
Analog comparator hysteresis, Hyst1, High-speed  
mode  
-40 - 125 ℃  
19  
15  
34  
23  
46  
32  
66  
40  
Analog comparator hysteresis, Hyst1, Low-speed  
mode  
-40 - 125 ℃  
VHYST2  
VHYST3  
IDAC8b  
Analog comparator hysteresis, Hyst2, High-speed  
mode  
mV  
mV  
-40 - 125 ℃  
133  
80  
Analog comparator hysteresis, Hyst2, Low-speed  
mode  
-40 - 125 ℃  
Analog comparator hysteresis, Hyst3, High-speed  
mode  
-40 - 125 ℃  
200  
120  
Analog comparator hysteresis, Hyst3, Low-speed  
mode  
-40 - 125 ℃  
8-bit DAC current adder (enabled)  
3.3V Reference Voltage  
6
9
16  
μA  
μA  
LSB6  
LSB6  
μs  
5V Reference Voltage  
10  
INL5  
DNL  
tDDAC  
8-bit DAC integral non-linearity  
8-bit DAC differential non-linearity  
Initialization and switching settling time  
–0.75  
–0.5  
0.75  
0.5  
30  
1. Difference at input > 200mV  
2. Applied (100 mV + VHYST0/1/2/3+ max. of VAIO) around switch point.  
3. Applied (30 mV + 2 × VHYST0/1/2/3+ max. of VAIO) around switch point.  
4. Applied (100 mV + VHYST0/1/2/3).  
5. Calculation method used: Linear Regression Least Square Method  
6. 1 LSB = Vreference/256  
S32K1xx Data Sheet, Rev. 12, 02/2020  
60  
NXP Semiconductors  
ADC electrical specifications  
Table 45. Comparator with 8-bit DAC electrical specifications for S32K14xW series  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDDHS  
Supply current, High-speed mode1  
μA  
-40 - 125 ℃  
230  
230  
300  
300  
-40 - 150 ℃  
IDDLS  
Supply current, Low-speed mode-1  
μA  
-40 - 105 ℃  
0
6
11  
13  
-40 - 125 ℃  
6
6
-40 - 150 ℃  
13  
VAIN  
VAIO  
Analog input voltage  
Analog input offset voltage, High-speed mode  
-40 - 125 ℃  
0 - VDDA  
VDDA  
V
mV  
-25  
-50  
1
1
25  
50  
-40 - 150 ℃  
VAIO  
Analog input offset voltage, Low-speed mode  
-40 - 125 ℃  
mV  
ns  
-40  
-50  
4
4
40  
50  
-40 - 150 ℃  
Propagation delay, High-speed mode2  
tDHSB  
-40 - 105 ℃  
35  
35  
35  
200  
300  
400  
-40 - 125 ℃  
-40 - 150 ℃  
tDLSB  
tDHSS  
tDLSS  
Propagation delay, Low-speed mode2  
µs  
ns  
µs  
-40 - 105 ℃  
0.5  
0.5  
0.5  
2
3
3
-40 - 125 ℃  
-40 - 150 ℃  
Propagation delay, High-speed mode3  
-40 - 105 ℃  
70  
70  
70  
400  
500  
600  
-40 - 125 ℃  
-40 - 150 ℃  
Propagation delay, Low-speed mode3  
-40 - 105 ℃  
1
1
1
5
5
5
-40 - 125 ℃  
-40 - 150 ℃  
tIDHS  
Initialization delay, High-speed mode4  
μs  
μs  
-40 - 125 ℃  
1.5  
1.5  
3
3
-40 - 150 ℃  
Initialization delay, Low-speed mode4  
tIDLS  
-40 - 125 ℃  
10  
10  
30  
30  
-40 - 150 ℃  
VHYST0  
Analog comparator hysteresis, Hyst0  
-40 - 125 ℃  
mV  
0
0
-40 - 150 ℃  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
61  
ADC electrical specifications  
Table 45. Comparator with 8-bit DAC electrical specifications for S32K14xW series  
(continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
VHYST1  
Analog comparator hysteresis, Hyst1, High-speed  
mode  
mV  
-40 - 125 ℃  
-40 - 150 ℃  
19  
19  
66  
90  
Analog comparator hysteresis, Hyst1, Low-speed  
mode  
-40 - 125 ℃  
-40 - 150 ℃  
15  
15  
40  
40  
VHYST2  
Analog comparator hysteresis, Hyst2, High-speed  
mode  
mV  
-40 - 125 ℃  
-40 - 150 ℃  
34  
34  
133  
186  
Analog comparator hysteresis, Hyst2, Low-speed  
mode  
-40 - 125 ℃  
-40 - 150 ℃  
23  
23  
80  
80  
VHYST3  
Analog comparator hysteresis, Hyst3, High-speed  
mode  
mV  
-40 - 125 ℃  
-40 - 150 ℃  
46  
46  
200  
280  
Analog comparator hysteresis, Hyst3, Low-speed  
mode  
-40 - 125 ℃  
32  
32  
120  
120  
-40 - 150 ℃  
IDAC8b  
8-bit DAC current adder (enabled)  
3.3V Reference Voltage  
5V Reference Voltage  
8-bit DAC integral non-linearity  
-40 - 125 ℃  
6
9
μA  
μA  
10  
16  
INL5  
LSB6  
–0.75  
-2  
0.75  
2
-40 - 150 ℃  
DNL  
8-bit DAC differential non-linearity  
Initialization and switching settling time  
–0.5  
0.5  
30  
LSB-1  
μs  
tDDAC  
1. Difference at input > 200mV  
2. Applied (100 mV + VHYST0/1/2/3+ max. of VAIO) around switch point.  
3. Applied (30 mV + 2 × VHYST0/1/2/3+ max. of VAIO) around switch point.  
4. Applied (100 mV + VHYST0/1/2/3).  
5. Calculation method used: Linear Regression Least Square Method  
6. 1 LSB = Vreference/256  
NOTE  
For comparator IN signals adjacent to VDD/VSS or XTAL/  
EXTAL or switching pins cross coupling may happen and  
S32K1xx Data Sheet, Rev. 12, 02/2020  
62  
NXP Semiconductors  
ADC electrical specifications  
hence hysteresis settings can be used to obtain the desired  
comparator performance. Additionally, an external capacitor  
(1nF) should be used to filter noise on input signal. Also, source  
drive should not be weak (Signal with < 50 K pull up/down is  
recommended).  
Figure 15. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 0)  
Figure 16. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 1)  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
63  
ADC electrical specifications  
Figure 17. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 0)  
Figure 18. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 1)  
S32K1xx Data Sheet, Rev. 12, 02/2020  
64  
NXP Semiconductors  
Communication modules  
6.5 Communication modules  
6.5.1 LPUART electrical specifications  
Refer to General AC specifications for LPUART specifications.  
6.5.1.1 Supported baud rate  
Baud rate = Baud clock / ((OSR+1) * SBR).  
For details, see section: 'Baud rate generation' of the Reference Manual.  
6.5.2 LPSPI electrical specifications  
The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus  
with master and slave operations. Many of the transfer attributes are programmable. The  
following tables provide timing characteristics for classic LPSPI timing modes.  
• All timing is shown with respect to 20% VDD and 80% VDD thresholds.  
• All measurements are with maximum output load of 50 pF, input transition of 1 ns  
and pad configured with fastest slew setting (DSE = 1).  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
65  
Table 46. LPSPI electrical specifications1  
Run Mode2  
5.0 V IO 3.3 V IO  
Min Max Min Max Min  
HSRUN Mode2  
VLPR Mode (S32K1xx)  
5.0 V IO 3.3 V IO  
Min Max Min Max Min  
VLPR Mode (S32K14xW)  
5.0 V IO 3.3 V IO  
Max Min Max  
Descripti  
on  
Un  
it  
Conditions  
5.0 V IO 3.3 V IO  
Max  
56  
Min  
Max  
56  
,
fpe3r,ip4h Peripheral Slave  
-
-
-
40  
40  
40  
-
-
-
40  
40  
48  
-
-
-
-
-
-
-
-
-
4
4
4
-
-
-
4
4
4
-
-
-
1
1
1
-
-
-
1
1
1
MH  
z
Frequency  
Master  
56  
56  
Master  
48  
48  
Loopback5  
Master  
-
48  
-
48  
-
48  
-
48  
-
4
-
4
-
1
-
1
Loopback(sl  
ow)6  
1
2
3
fop  
Frequency Slave  
-
-
-
10  
10  
20  
-
-
-
10  
10  
12  
-
-
-
14  
14  
24  
-
-
-
14 7  
14 7  
12  
-
-
-
2
2
2
-
-
-
2
2
2
-
-
-
0.5  
0.5  
0.5  
-
-
-
0.5  
0.5  
0.5  
MH  
z
of  
Master  
operation  
Master  
Loopback5  
Master  
-
12  
-
12  
-
12  
-
12  
-
2
-
2
-
0.5  
-
0.5  
Loopback(sl  
ow)6  
tSPSCK SPSCK  
period  
Slave  
100  
100  
50  
-
-
-
100  
100  
83  
-
-
-
72  
72  
42  
-
-
-
72  
72  
83  
-
-
-
500  
500  
500  
-
-
-
500  
500  
500  
-
-
-
-
-
-
2000  
2000  
2000  
-
-
-
2000 ns  
2000  
Master  
Master  
2000  
Loopback5  
Master  
83  
-
-
-
83  
-
-
-
83  
-
-
-
83  
-
-
-
500  
-
-
-
500  
-
-
-
-
-
2000  
-
-
-
2000  
Loopback(sl  
ow)6  
8
tLead Enable  
Slave  
-
ns  
lead time  
(PCS to  
SPSCK  
delay)  
Table continues on the next page...  
Table 46. LPSPI electrical specifications1 (continued)  
Run Mode2  
5.0 V IO 3.3 V IO  
Min Max Min Max Min  
HSRUN Mode2  
5.0 V IO 3.3 V IO  
Min Max  
VLPR Mode (S32K1xx)  
5.0 V IO 3.3 V IO  
Min Max Min Max Min  
VLPR Mode (S32K14xW)  
5.0 V IO 3.3 V IO  
Max Min Max  
Descripti  
on  
Un  
it  
Conditions  
Max  
Master  
-
-
-
-
-
-
-
-
Master  
Loopback5  
Master  
Loopback(sl  
ow)6  
9
4
tLag  
Enable lag Slave  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
time (After  
SPSCK  
Master  
Master  
delay)  
Loopback5  
Master  
Loopback(sl  
ow)6  
5
tWSPSC Clock(SPS Slave  
ns  
10  
CK) high  
or low time  
(SPSCK  
K
Master  
Master  
Loopback5  
duty cycle)  
Master  
Loopback(sl  
ow)6  
6
tSU Data setup Slave  
3
-
-
5
-
-
3
-
-
5
-
-
18  
72  
-
-
18  
78  
-
-
55  
-
-
55  
-
-
ns  
time(input  
Master  
29  
38  
26  
3711  
32 12  
145  
145  
s)  
Table continues on the next page...  
Table 46. LPSPI electrical specifications1 (continued)  
Run Mode2  
5.0 V IO 3.3 V IO  
Min Max Min Max Min  
HSRUN Mode2  
5.0 V IO 3.3 V IO  
Min Max  
VLPR Mode (S32K1xx)  
5.0 V IO 3.3 V IO  
Min Max Min Max Min  
VLPR Mode (S32K14xW)  
5.0 V IO 3.3 V IO  
Max Min Max  
60  
Descripti  
on  
Un  
it  
Conditions  
Max  
Master  
7
-
8
-
5
-
7
-
20  
-
20  
-
60  
-
-
Loopback5  
Master  
8
-
10  
-
7
-
9
-
20  
-
20  
-
61  
-
61  
-
Loopback(sl  
ow)6  
7
tHI  
Data hold Slave  
3
0
3
-
-
-
3
0
3
-
-
-
3
0
2
-
-
-
3
0
3
-
-
-
14  
0
-
-
-
14  
0
-
-
-
27  
0
-
-
-
27  
0
-
-
-
ns  
time(input  
s)  
Master  
Master  
11  
11  
26  
26  
Loopback5  
Master  
3
-
-
3
-
-
3
-
-
3
-
-
12  
-
-
12  
-
-
20  
-
-
20  
-
-
Loopback(sl  
ow)6  
8
9
ta  
Slave  
access  
time  
Slave  
Slave  
50  
50  
50  
50  
50  
50  
50  
50  
100  
100  
100  
100  
180  
180  
180  
180  
ns  
ns  
tdis  
Slave  
MISO  
(SOUT)  
disable  
time  
-
-
-
-
-
-
-
-
10  
tv  
Data valid Slave  
(after  
-
30  
-
39  
-
26  
-
36 11  
31 12  
15  
-
92  
-
96  
-
190  
-
190  
ns  
SPSCK  
edge)  
Master  
-
-
12  
12  
-
-
16  
16  
-
-
11  
11  
-
-
-
-
47  
47  
-
-
48  
48  
-
-
113  
112  
-
-
113  
112  
Master  
15  
Loopback5  
Master  
-
8
-
10  
-
7
-
9
-
44  
-
44  
-
99  
-
99  
Loopback(sl  
ow)6  
11  
tHO Data hold Slave  
4
-
-
4
-
-
4
-
-
4
-
-
4
-
-
4
-
-
4
-
-
4
-
-
ns  
time(outpu  
Master  
-15  
-22  
-15  
-23  
-22  
-29  
-30  
-30  
ts)  
Table continues on the next page...  
Table 46. LPSPI electrical specifications1 (continued)  
Run Mode2  
5.0 V IO 3.3 V IO  
Min Max Min Max Min  
HSRUN Mode2  
5.0 V IO 3.3 V IO  
Min Max  
VLPR Mode (S32K1xx)  
5.0 V IO 3.3 V IO  
Min Max Min Max Min  
VLPR Mode (S32K14xW)  
5.0 V IO 3.3 V IO  
Max Min Max  
-19  
Descripti  
on  
Un  
it  
Conditions  
Max  
Master  
-10  
-
-14  
-
-10  
-
-14  
-
-14  
-
-19  
-
-19  
-
-
Loopback5  
Master  
-15  
-
-22  
-
-15  
-
-22  
-
-21  
-
-27  
-
-30  
-
-30  
-
Loopback(sl  
ow)6  
12  
tRI/FI Rise/Fall Slave  
-
-
-
1
-
-
-
1
-
-
-
1
-
-
-
1
-
-
-
1
-
-
-
1
-
-
-
1
-
-
-
1
ns  
time input  
Master  
Master  
Loopback5  
Master  
-
-
-
-
-
-
-
-
Loopback(sl  
ow)6  
13 tRO/FO Rise/Fall Slave  
-
-
-
25  
-
-
-
25  
-
-
-
25  
-
-
-
25  
-
-
-
25  
-
-
-
25  
-
-
-
25  
-
-
-
25  
ns  
time  
output  
Master  
Master  
Loopback 5  
Master  
-
-
-
-
-
-
-
-
Loopback(sl  
ow) 6  
1. Trace length should not exceed 11 inches for SCK pad when used in Master loopback mode.  
2. While transitioning from HSRUN mode to RUN mode, LPSPI output clock should not be more than 14 MHz.  
3. fperiph = LPSPI peripheral clock  
4. tperiph = 1/fperiph  
5. Master Loopback mode - In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1.  
Clock pads used are PTD15 and PTE0. Applicable only for LPSPI0.  
6. Master Loopback (slow) - In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1.  
Clock pad used is PTB2. Applicable only for LPSPI0.  
7. This is the maximum operating frequency (fop) for LPSPI0 with GPIO-HD PAD type only. Otherwise, the maximum operating frequency (fop) is 12 Mhz.  
8. Set the PCSSCK configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where PCSSCK ranges from 0 to 255.  
9. Set the SCKPCS configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where SCKPCS ranges from 0 to 255.  
10. While selecting odd dividers, ensure Duty Cycle is meeting this parameter.  
11. Maximum operating frequency (fop ) is 12 MHz irrespective of PAD type and LPSPI instance.  
12. Applicable for LPSPI0 only with GPIO-HD PAD type, with maximum operating frequency (fop) as 14 MHz.  
Communication modules  
1
SS  
(OUTPUT)  
3
2
12  
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
MSB IN  
LSB IN  
10  
11  
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 19. LPSPI master mode timing (CPHA = 0)  
1
SS  
(OUTPUT)  
2
12  
12  
13  
13  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
11  
BIT 6 . . . 1  
10  
MOSI  
(OUTPUT)  
2
PORT DATA  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 20. LPSPI master mode timing (CPHA = 1)  
S32K1xx Data Sheet, Rev. 12, 02/2020  
70  
NXP Semiconductors  
Communication modules  
SS  
(INPUT)  
2
12  
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
See  
note1  
See  
MISO  
BIT 6 . . . 1  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE MSB  
SLAVE LSB OUT  
SLAVE LSB OUT  
LSB IN  
note 1  
(OUTPUT)  
CFGR1[OUTCFG]=1  
MISO  
(OUTPUT)  
CFGR1[OUTCFG]=0  
See  
note 1  
See  
note1  
SLAVE MSB  
7
6
MOSI  
(INPUT)  
MSB IN  
Notes:  
1.The bus is driven but may not be equal to the valid serial data being sent.  
Figure 21. LPSPI slave mode timing (CPHA = 0)  
Figure 22. LPSPI slave mode timing (CPHA = 1)  
6.5.3 LPI2C electrical specifications  
See General AC specifications for LPI2C specifications.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
71  
Communication modules  
For supported baud rate see section 'Chip-specific LPI2C information' of the Reference  
Manual.  
6.5.4 FlexCAN electical specifications  
For supported baud rate, see section 'Protocol timing' of the Reference Manual.  
6.5.5 SAI electrical specifications  
The following table describes the SAI electrical characteristics.  
• Measurements are with maximum output load of 50 pF, input transition of 1 ns and  
pad configured with fastest slew settings (DSE = 1'b1).  
• I/O operating voltage ranges from 2.97 V to 3.6 V  
• While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the  
interface should be OFF.  
Table 47. Master mode timing specifications  
Symbol  
Description  
Operating voltage  
Min.  
2.97  
40  
Max.  
3.6  
Unit  
V
S1  
SAI_MCLK cycle time  
ns  
MCLK period  
ns  
S2  
SAI_MCLK pulse width high/low  
SAI_BCLK cycle time  
45%  
80  
55%  
S3  
S4  
SAI_BCLK pulse width high/low  
45%  
28  
55%  
BCLK period  
ns  
S5  
SAI_RXD input setup before  
SAI_BCLK  
S6  
S7  
SAI_RXD input hold after  
SAI_BCLK  
0
-2  
28  
0
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SAI_BCLK to SAI_TXD output  
valid  
S8  
SAI_BCLK to SAI_TXD output  
invalid  
8
S9  
SAI_FS input setup before  
SAI_BCLK  
S10  
S11  
S12  
SAI_FS input hold after  
SAI_BCLK  
SAI_BCLK to SAI_FS output  
valid  
-2  
SAI_BCLK to SAI_FS output  
invalid  
S32K1xx Data Sheet, Rev. 12, 02/2020  
72  
NXP Semiconductors  
Communication modules  
S1  
S2  
S2  
SAI_MCLK (output)  
SAI_BCLK (output)  
SAI_FS (output)  
SAI_FS (input)  
SAI_TXD  
S3  
S4  
S4  
S11  
S12  
S10  
S9  
S7  
S8  
S7  
S8  
S5  
S6  
SAI_RXD  
Figure 23. SAI Timing — Master modes  
Table 48. Slave mode timing specifications  
Symbol  
Description  
Min.  
2.97  
80  
Max.  
3.6  
Unit  
Operating voltage  
V
ns  
S13  
SAI_BCLK cycle time (input)  
S141  
SAI_BCLK pulse width high/low  
(input)  
45%  
55%  
BCLK period  
S15  
S16  
S17  
S18  
S19  
SAI_RXD input setup before  
SAI_BCLK  
8
2
28  
ns  
ns  
ns  
ns  
ns  
SAI_RXD input hold after  
SAI_BCLK  
SAI_BCLK to SAI_TXD output  
valid  
0
SAI_BCLK to SAI_TXD output  
invalid  
SAI_FS input setup before  
SAI_BCLK  
8
S20  
S21  
S22  
SAI_FS input hold after SAI_BCLK  
SAI_BCLK to SAI_FS output valid  
2
0
28  
ns  
ns  
ns  
SAI_BCLK to SAI_FS output  
invalid  
1. The slave mode parameters (S15 - S22) assume 50% duty cycle on SAI_BCLK input. Any change in SAI_BCLK duty cycle  
input must be taken care during the board design or by the master timing.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
73  
Communication modules  
S13  
S14  
SAI_BCLK (input)  
SAI_FS (output)  
SAI_FS (input)  
SAI_TXD  
S14  
S21  
S22  
S19  
S20  
S17  
S18  
S17  
S18  
S15  
S16  
SAI_RXD  
Figure 24. SAI Timing — Slave modes  
6.5.6 Ethernet AC specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
The following table describes the MII electrical characteristics.  
• Measurements are with maximum output load of 25 pF, input transition of 1 ns and  
pad configured with fastest slew settings (DSE = 1'b1).  
• I/O operating voltage ranges from 2.97 V to 3.6 V  
• While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the  
interface should be OFF.  
Table 49. MII signal switching specifications  
Symbol  
Description  
Min.  
Max.  
25  
Unit  
RXCLK frequency  
MHz  
MII1  
MII2  
MII3  
MII4  
RXCLK pulse width high  
35%  
35%  
5
65%  
65%  
RXCLK period  
RXCLK pulse width low  
RXCLK period  
RXD[3:0], RXDV, RXER to RXCLK setup  
RXCLK to RXD[3:0], RXDV, RXER hold  
TXCLK frequency  
ns  
5
ns  
25  
MHz  
TXCLK period  
TXCLK period  
ns  
MII5  
MII6  
MII7  
MII8  
TXCLK pulse width high  
35%  
35%  
2
65%  
65%  
TXCLK pulse width low  
TXCLK to TXD[3:0], TXEN, TXER invalid  
TXCLK to TXD[3:0], TXEN, TXER valid  
25  
ns  
S32K1xx Data Sheet, Rev. 12, 02/2020  
74  
NXP Semiconductors  
Communication modules  
MII2  
MII3  
MII1  
MII4  
RXCLK (input)  
RXD[n:0]  
RXDV  
Valid data  
Valid data  
Valid data  
RXER  
Figure 25. MII receive diagram  
MII6  
MII5  
TXCLK (input)  
TXD[n:0]  
TXEN  
MII8  
MII7  
Valid data  
Valid data  
Valid data  
TXER  
Figure 26. MII transmit signal diagram  
The following table describes the RMII electrical characteristics.  
• Measurements are with maximum output load of 25 pF, input transition of 1 ns and  
pad configured with fastest slew settings (DSE = 1'b1).  
• I/O operating voltage ranges from 2.97 V to 3.6 V  
• While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the  
interface should be OFF.  
Table 50. RMII signal switching specifications  
Symbol  
Description  
Min.  
Max.  
50  
Unit  
RMII input clock RMII_CLK Frequency  
MHz  
RMII1, RMII5 RMII_CLK pulse width high  
35%  
65%  
RMII_CLK  
period  
RMII2, RMII6 RMII_CLK pulse width low  
35%  
65%  
RMII_CLK  
period  
RMII3  
RMII4  
RXD[1:0], CRS_DV, RXER to RMII_CLK setup  
RMII_CLK to RXD[1:0], CRS_DV, RXER hold  
Table continues on the next page...  
4
2
ns  
ns  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
75  
Communication modules  
Table 50. RMII signal switching specifications  
(continued)  
Symbol  
RMII7  
Description  
Min.  
2
Max.  
Unit  
ns  
RMII_CLK to TXD[1:0], TXEN invalid  
RMII_CLK to TXD[1:0], TXEN valid  
RMII8  
15  
ns  
RMII2  
RMII3  
RMII1  
RMII4  
RMII_CLK(input)  
RXD[n:0]  
Valid data  
Valid data  
Valid data  
CRS_DV  
RXER  
Figure 27. RMII receive diagram  
RMII6  
RMII5  
RMII_CLK (input)  
TXD[n:0]  
RMII8  
RMII7  
Valid data  
Valid data  
TXEN  
Figure 28. RMII transmit diagram  
The following table describes the MDIO electrical characteristics.  
• Measurements are with maximum output load of 25 pF, input transition of 1 ns and  
pad configured with fastest slew settings (DSE = 1'b1).  
• I/O operating voltage ranges from 2.97 V to 3.6 V  
• While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the  
interface should be OFF.  
• MDIO pin must have external Pull-up.  
Table 51. MDIO timing specifications  
Symbol  
Description  
MDC Clock Frequency  
Min.  
Max.  
Unit  
2.5  
MHz  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
76  
NXP Semiconductors  
Debug modules  
Table 51. MDIO timing specifications (continued)  
Symbol  
MDC1  
MDC2  
MDC3  
MDC4  
MDC5  
Description  
MDC pulse width high  
Min.  
40%  
40%  
25  
Max.  
60%  
60%  
Unit  
MDC period  
MDC pulse width low  
MDC period  
MDIO (input) to MDC rising edge setup  
MDIO (input) to MDC rising edge hold  
ns  
ns  
ns  
0
MDC falling edge to MDIO output valid  
(maximum propagation delay)  
25  
MDC6  
MDC falling edge to MDIO output invalid  
(minimum propagation delay)  
-10  
ns  
MDC1  
MDC2  
MDC (output)  
MDC6  
MDIO (output)  
MDIO (input)  
MDC5  
MDC3  
MDC4  
Figure 29. MII/RMII serial management channel timing diagram  
6.5.7 Clockout frequency  
Maximum supported clock out frequency for this device is 20 MHz  
6.6 Debug modules  
6.6.1 SWD electrical specofications  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
77  
Table 52. SWD electrical specifications  
Symbo  
l
Description  
Run Mode  
HSRUN Mode  
VLPR Mode (S32K1xx)  
VLPR Mode  
(S32K14xW)  
Unit  
5.0 V IO 3.3 V IO  
5.0 V IO  
3.3 V IO  
5.0 V IO  
3.3 V IO  
5.0 V IO  
3.3 V IO  
Min.  
Max.  
Min.  
Max.  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.  
S1  
SWD_CLK frequency of  
operation  
-
25  
-
25  
-
25  
-
-
25  
-
-
10  
-
-
10  
-
-
1
-
-
1
-
MHz  
S2  
S3  
SWD_CLK cycle period  
1/S1  
-
1/S1  
-
1/S1  
1/S1  
1/S1  
1/S1  
1/S1  
1/S1  
ns  
ns  
SWD_CLK clock pulse  
width  
S4  
S9  
SWD_CLK rise and fall  
times  
-
4
3
-
1
-
-
4
3
-
1
-
-
4
3
-
1
-
-
4
3
-
1
-
-
16  
10  
-
1
-
-
16  
10  
-
1
-
-
30  
19  
-
1
-
30  
19  
-
1
ns  
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup  
time to SWD_CLK rise  
-
-
-
-
S10 SWD_DIO input data hold  
time after SWD_CLK rise  
-
-
-
-
-
-
S11 SWD_CLK high to  
SWD_DIO data valid  
28  
28  
-
38  
38  
-
28  
28  
-
38  
38  
-
70  
70  
-
77  
77  
-
180  
180  
-
180  
180  
-
S12 SWD_CLK high to  
SWD_DIO high-Z  
-
-
-
-
-
-
-
-
S13 SWD_CLK high to  
SWD_DIO data invalid  
0
0
0
0
0
0
0
0
Debug modules  
S2  
S4  
S3  
S3  
SWD_CLK (input)  
S4  
Figure 30. Serial wire clock input timing  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
S9  
S10  
Input data valid  
S11  
S13  
Output data valid  
S12  
Figure 31. Serial wire data timing  
6.6.2 Trace electrical specifications  
The following table describes the ETM Trace electrical characteristics.  
• Measurements are with maximum output load of 50 pF, input transition of 1 ns and  
pad configured with fastest slew settings (DSE = 1'b1).  
• While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN ), the  
interface should be OFF.  
NOTE  
ETM trace is supported only on S32K148.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
79  
Debug modules  
Table 53. ETM Trace specifications  
Symbol  
Description  
RUN Mode  
HSRUN Mode  
VLPR  
Mode  
Unit  
Fsys  
System frequency  
Max Trace frequency  
Data Output Valid  
Data Output Invalid  
80  
80  
48  
48  
4
40  
40  
4
112  
74.667  
4
80  
80  
4
4
4
MHz  
MHz  
ns  
fTRACE  
tDVO  
tDIV  
4
20  
-10  
-2  
-2  
-2  
-2  
-2  
ns  
fTRACE  
tDVO  
tDIV  
Max Trace frequency  
Data Output Valid  
Data Output Invalid  
22.86  
24  
8
20  
8
22.4  
8
22.86  
8
4
MHz  
ns  
8
20  
-10  
-4  
-4  
-4  
-4  
-4  
ns  
Figure 32. TRACE CLKOUT specifications  
6.6.3 JTAG electrical specifications  
S32K1xx Data Sheet, Rev. 12, 02/2020  
80  
NXP Semiconductors  
Table 54. JTAG electrical specifications  
Symb  
ol  
Description  
Run Mode  
HSRUN Mode  
5.0 V IO 3.3 V IO  
Max. Min. Max. Min.  
VLPR Mode (S32K1xx)  
5.0 V IO 3.3 V IO  
Max. Min. Max. Min  
VLPR Mode (S32K14xW)  
5.0 V IO 5.0 V IO  
Min Max  
Unit  
5.0 V IO  
Min. Max.  
TCLK frequency of operation  
3.3 V IO  
Min. Max.  
Min.  
Max  
JI  
MHz  
Boundary Scan  
JTAG  
-
-
20  
20  
-
-
-
20  
20  
-
-
-
20  
20  
-
-
-
20  
20  
-
-
-
10  
10  
-
-
-
10  
10  
-
-
-
1
1
-
-
-
1
1
-
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
Boundary Scan  
JTAG  
1/JI  
1/JI  
1/JI  
1/JI  
1/JI  
1/JI  
1/J1  
1/J1  
ns  
ns  
J4  
J5  
TCLK rise and fall  
times  
-
1
-
-
1
-
-
1
-
-
1
-
-
1
-
-
1
-
-
1
-
-
1
-
ns  
ns  
Boundary scan input  
data setup time to  
TCLK rise  
5
5
5
5
15  
15  
23  
23  
J6  
Boundary scan input  
data hold time after  
TCLK rise  
5
-
5
-
5
-
5
-
8
-
8
-
20  
-
20  
-
ns  
ns  
J7  
J8  
J9  
TCLK low to boundary  
scan output data valid  
-
28  
-
-
32  
-
-
0
-
28  
-
-
32  
-
-
0
80  
-
-
0
80  
-
-
0
184  
-
0
184  
TCLK low to boundary  
scan output data invalid  
0
-
0
-
0
-
-
-
TCLK low to boundary  
scan output high-Z  
28  
-
32  
-
28  
-
32  
-
-
80  
-
-
80  
-
-
184  
-
184  
ns  
ns  
ns  
J10 TMS, TDI input data  
setup time to TCLK rise  
3
2
3
2
3
2
3
2
15  
8
15  
8
23  
20  
-
-
23  
20  
-
-
J11 TMS, TDI input data  
hold time after TCLK  
rise  
-
-
-
-
-
-
J12 TCLK low to TDO data  
valid  
-
28  
-
-
32  
-
-
28  
-
-
32  
-
-
80  
-
-
80  
-
-
184  
-
-
184  
-
ns  
ns  
J13 TCLK low to TDO data  
invalid  
0
0
0
0
0
0
0
0
Table continues on the next page...  
Table 54. JTAG electrical specifications (continued)  
Symb  
ol  
Description  
Run Mode  
HSRUN Mode  
5.0 V IO 3.3 V IO  
Max. Min. Max. Min.  
28 32  
VLPR Mode (S32K1xx)  
5.0 V IO 3.3 V IO  
Max. Min. Max. Min  
80 80  
VLPR Mode (S32K14xW)  
Unit  
5.0 V IO  
Min. Max.  
28  
3.3 V IO  
5.0 V IO 5.0 V IO  
Min. Max.  
Min.  
Max  
Min  
Max  
J14 TCLK low to TDO high-  
Z
-
-
32  
-
-
-
-
-
184  
-
184  
ns  
Debug modules  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 33. Test clock input timing  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
J7  
J8  
Output data valid  
Data outputs  
Data outputs  
J9  
Figure 34. Boundary scan (JTAG) timing  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
83  
Thermal attributes  
TCLK  
J10  
J11  
Input data valid  
TDI/TMS  
J12  
J13  
Output data valid  
TDO  
TDO  
J14  
Figure 35. Test Access Port timing  
7 Thermal attributes  
7.1 Description  
The tables in the following sections describe the thermal characteristics of the device.  
NOTE  
Junction temperature is a function of die size, on-chip power  
dissipation, package thermal resistance, mounting side (board)  
temperature, ambient temperature, air flow, power dissipation  
or other components on the board, and board thermal resistance.  
7.2 Thermal characteristics  
S32K1xx Data Sheet, Rev. 12, 02/2020  
84  
NXP Semiconductors  
Table 55. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package  
Rating  
Conditions Symbol  
Package  
Values (in °C/W)  
S32K116 S32K118 S32K142 S32K142 S32K144 S32K144 S32K146 S32K148  
W
NA  
69  
W
NA  
69  
Thermal resistance, Junction to Single layer  
Ambient (Natural Convection)1, 2 board (1s)  
RθJA  
32  
48  
93  
79  
NA  
71  
NA  
70  
NA  
69  
NA  
NA  
59  
NA  
NA  
NA  
46  
64  
NA  
NA  
NA  
NA  
50  
62  
61  
60  
61  
60  
100  
144  
176  
32  
NA  
NA  
NA  
NA  
50  
53  
NA  
NA  
NA  
NA  
48  
52  
NA  
NA  
NA  
NA  
48  
51  
NA  
NA  
NA  
49  
NA  
NA  
NA  
48  
51  
44  
NA  
NA  
NA  
44  
42  
Thermal resistance, Junction to  
Ambient (Natural Convection)1  
Two layer  
board  
RθJA  
NA  
NA  
NA  
36  
48  
58  
(1s1p)  
64  
NA  
NA  
NA  
NA  
32  
46  
45  
45  
45  
45  
100  
144  
176  
32  
NA  
NA  
NA  
NA  
47  
42  
NA  
NA  
NA  
NA  
45  
42  
NA  
NA  
NA  
NA  
45  
40  
NA  
NA  
NA  
46  
NA  
NA  
NA  
45  
44  
37  
NA  
NA  
NA  
41  
36  
Thermal resistance, Junction to  
Ambient (Natural Convection)1, 2  
Four layer  
board  
RθJA  
NA  
NA  
NA  
34  
48  
55  
(2s2p)  
64  
NA  
NA  
NA  
NA  
77  
44  
43  
42  
43  
42  
100  
144  
176  
32  
NA  
NA  
NA  
NA  
58  
40  
NA  
NA  
NA  
NA  
56  
40  
NA  
NA  
NA  
NA  
56  
39  
NA  
NA  
NA  
57  
NA  
NA  
NA  
57  
42  
36  
NA  
NA  
NA  
48  
35  
Thermal resistance, Junction to Single layer  
RθJMA  
NA  
NA  
NA  
37  
Ambient (@200 ft/min)1, 3  
board (1s)  
48  
66  
64  
NA  
NA  
NA  
NA  
43  
50  
49  
49  
49  
49  
100  
144  
176  
32  
NA  
NA  
NA  
NA  
43  
43  
NA  
NA  
NA  
NA  
41  
42  
NA  
NA  
NA  
NA  
41  
41  
NA  
NA  
NA  
42  
NA  
NA  
NA  
41  
42  
36  
NA  
NA  
NA  
37  
34  
Thermal resistance, Junction to  
Ambient (@200 ft/min)1  
Two layer  
board  
RθJMA  
NA  
NA  
NA  
48  
51  
(1s1p)  
64  
NA  
39  
38  
38  
38  
38  
Table continues on the next page...  
Table 55. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package  
(continued)  
Rating  
Conditions Symbol  
Package  
Values (in °C/W)  
S32K116 S32K118 S32K142 S32K142 S32K144 S32K144 S32K146 S32K148  
W
NA  
NA  
NA  
NA  
39  
W
NA  
NA  
NA  
NA  
39  
100  
144  
176  
32  
NA  
NA  
NA  
26  
NA  
NA  
NA  
NA  
41  
35  
NA  
NA  
NA  
40  
35  
NA  
NA  
NA  
39  
34  
37  
30  
31  
30  
NA  
NA  
NA  
28  
30  
29  
NA  
NA  
NA  
19  
24  
24  
NA  
NA  
NA  
9
NA  
NA  
NA  
35  
Thermal resistance, Junction to  
Ambient (@200 ft/min)1, 3  
Four layer  
board  
(2s2p)  
RθJMA  
48  
48  
64  
NA  
NA  
NA  
NA  
11  
37  
36  
36  
36  
36  
100  
144  
176  
32  
NA  
NA  
NA  
NA  
24  
34  
NA  
NA  
NA  
NA  
22  
34  
NA  
NA  
NA  
NA  
22  
33  
NA  
NA  
NA  
23  
NA  
NA  
NA  
23  
36  
NA  
NA  
NA  
23  
Thermal resistance, Junction to  
Board4  
RθJB  
48  
33  
64  
NA  
NA  
NA  
NA  
NA  
23  
26  
25  
24  
25  
24  
100  
144  
176  
32  
NA  
NA  
NA  
NA  
19  
25  
NA  
NA  
NA  
NA  
16  
25  
NA  
NA  
NA  
NA  
16  
24  
NA  
NA  
NA  
17  
NA  
NA  
NA  
17  
30  
NA  
NA  
NA  
11  
Thermal resistance, Junction to  
Case 5  
RθJC  
48  
64  
NA  
NA  
NA  
NA  
1
14  
13  
12  
12  
12  
100  
144  
176  
32  
NA  
NA  
NA  
13  
NA  
NA  
NA  
12  
NA  
NA  
NA  
11  
NA  
NA  
NA  
NA  
NA  
12  
9
NA  
9
Thermal resistance, Junction to  
Case (Bottom) 6  
RθJCBottom  
48  
NA  
64  
100  
144  
Table continues on the next page...  
Table 55. Thermal characteristics for 32-pin QFN and 48/64/100/144/176-pin LQFP package  
(continued)  
Rating  
Conditions Symbol  
Package  
Values (in °C/W)  
S32K116 S32K118 S32K142 S32K142 S32K144 S32K144 S32K146 S32K148  
W
W
176  
32  
Thermal resistance, Junction to  
Package Top7  
Natural  
Convection  
ψJT  
1
NA  
2
NA  
2
NA  
2
NA  
2
NA  
2
NA  
NA  
2
NA  
NA  
NA  
1
48  
4
64  
NA  
NA  
NA  
NA  
2
2
2
2
2
100  
144  
176  
NA  
NA  
NA  
2
NA  
NA  
NA  
2
NA  
NA  
NA  
2
NA  
NA  
NA  
NA  
2
1
NA  
1
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air  
flow, power dissipation of other components on the board, and board thermal resistance.  
2. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.  
3. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the  
package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
6. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.  
7. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek  
letters are not available, the thermal characterization parameter is written as Psi-JT.  
Table 56. Thermal characteristics for the 100 MAPBGA package  
Rating  
Conditions  
Symbol  
Values  
S32K144  
61.0  
Unit  
S32K146  
S32K148  
Thermal resistance, Junction to Ambient (Natural  
Convection) 1, 2  
Single layer board (1s)  
RθJA  
RθJA  
57.2  
52.5  
°C/W  
°C/W  
Thermal resistance, Junction to Ambient (Natural  
Convection) 1, 2, 3  
Four layer board  
(2s2p)  
32.1  
35.6  
27.5  
Thermal resistance, Junction to Ambient (@200 ft/min) 1, 2, 3 Single layer board (1s)  
RθJMA  
RθJMA  
44.1  
27.2  
46.6  
30.9  
39.0  
22.8  
°C/W  
°C/W  
Thermal resistance, Junction to Ambient (@200 ft/min)1, 3  
Two layer board  
(2s2p)  
Thermal resistance, Junction to Board4  
Thermal resistance, Junction to Case 5  
RθJB  
RθJC  
ψJT  
15.3  
10.2  
0.2  
18.9  
14.2  
0.4  
11.2  
7.5  
°C/W  
°C/W  
°C/W  
Thermal resistance, Junction to Package Top outside  
center6  
0.2  
Thermal resistance, Junction to Package Bottom outside  
center7  
ψJB  
12.2  
15.9  
18.3  
°C/W  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air  
flow, power dissipation of other components on the board, and board thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the  
package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek  
letters are not available, the thermal characterization parameter is written as Psi-JT.  
7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12.  
When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.  
Thermal attributes  
7.3 General notes for specifications at maximum junction  
temperature  
An estimation of the chip junction temperature, TJ, can be obtained from this equation:  
where:  
• TA = ambient temperature for the package (°C)  
• RθJA = junction to ambient thermal resistance (°C/W)  
• PD = power dissipation in the package (W)  
The junction to ambient thermal resistance is an industry standard value that provides a  
quick and easy estimation of thermal performance. Unfortunately, there are two values in  
common usage: the value determined on a single layer board and the value obtained on a  
board with two planes. For packages such as the PBGA, these values can be different by  
a factor of two. Which value is closer to the application depends on the power dissipated  
by other components on the board. The value obtained on a single layer board is  
appropriate for the tightly packed printed circuit board. The value obtained on the board  
with the internal planes is usually appropriate if the board has low power dissipation and  
the components are well separated.  
When a heat sink is used, the thermal resistance is expressed in the following equation as  
the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:  
where:  
• RθJA = junction to ambient thermal resistance (°C/W)  
• RθJC = junction to case thermal resistance (°C/W)  
• RθCA = case to ambient thermal resistance (°C/W)  
RθJC is device related and cannot be influenced by the user. The user controls the thermal  
environment to change the case to ambient thermal resistance, RθCA. For instance, the  
user can change the size of the heat sink, the air flow around the device, the interface  
material, the mounting arrangement on printed circuit board, or change the thermal  
dissipation on the printed circuit board surrounding the device.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
89  
Dimensions  
To determine the junction temperature of the device in the application when heat sinks  
are not used, the Thermal Characterization Parameter (ΨJT) can be used to determine the  
junction temperature with a measurement of the temperature at the top center of the  
package case using this equation:  
where:  
• TT = thermocouple temperature on top of the package (°C)  
ΨJT = thermal characterization parameter (°C/W)  
• PD = power dissipation in the package (W)  
The thermal characterization parameter is measured per JESD51-2 specification using a  
40 gauge type T thermocouple epoxied to the top center of the package case. The  
thermocouple should be positioned so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over  
about 1 mm of wire extending from the junction. The thermocouple wire is placed flat  
against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
8 Dimensions  
8.1 Obtaining package dimensions  
Package dimensions are provided in the package drawings.  
To find a package drawing, go to http://www.nxp.com and perform a keyword search for  
the drawing’s document number:  
Package option  
32-pin QFN  
Document Number  
SOT617-3 1  
48-pin LQFP  
98ASH00962A  
98ASS23234W  
98ASS23308W  
98ASA00802D  
98ASS23177W  
98ASS23479W  
64-pin LQFP  
100-pin LQFP  
100-pin MAPBGA  
144-pin LQFP  
176-pin LQFP  
1. 5x5 mm package  
S32K1xx Data Sheet, Rev. 12, 02/2020  
90  
NXP Semiconductors  
Pinouts  
9 Pinouts  
9.1 Package pinouts and signal descriptions  
For package pinouts and signal descriptions, refer to the Reference Manual.  
10 Revision History  
The following table provides a revision history for this document.  
Table 57. Revision History  
Rev. No.  
Date  
Substantial Changes  
1
2
12 Aug 2016  
03 March 2017  
Initial release  
• Updated descpition of QSPI and Clock interfaces in Key Features section  
• Updated figure: High-level architecture diagram for the S32K1xx family  
• Updated figure: S32K1xx product series comparison  
• Added note in section Selecting orderable part number  
• Updated figure: Ordering information  
• In table: Absolute maximum ratings :  
• Added footnote to IINJPAD_DC  
• Updated min and max value of IINJPAD_DC  
• Updated description, max and min values for IINJSUM  
• Updated VIN_TRANSIENT  
• In table: Voltage and current operating requirements :  
• Renamed VSUP_OFF  
• Updated max value of VDD_OFF  
• Removed VINA and VIN  
• Added VREFH and VREFL  
• Updated footnote "Typical conditions assumes VDD = VDDA = VREFH = 5  
V ...  
• Removed INJSUM_AF  
• Updated footnotes in table Table 7  
• Updated section Power mode transition operating behaviors  
• In table: Power consumption  
• Added footnote "With PMC_REGSC[CLKBIASDIS] ... "  
• Updated conditions for VLPR  
• Removed Idd/MHz for S32K144  
• Updated numbers for S32K142 and S32K148  
• Removed use case footnotes  
• In section Modes configuration :  
• Replaced table "Modes configuration" with spreadsheet attachment:  
'S32K1xx_Power_Modes _Master_configuration_sheet'  
• In table: DC electrical specifications at 3.3 V Range :  
• Added footnotes to Vih Input Buffer High Voltage and Vih Input Buffer  
Low Voltage  
• Added footnote to High drive port pins  
• In table: DC electrical specifications at 5.0 V Range :  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
91  
Revision History  
Rev. No.  
Table 57. Revision History  
Date  
Substantial Changes  
• Added footnotes Vih Input Buffer High Voltage and Vih Input Buffer Low  
Voltage  
• Updated table: AC electrical specifications at 3.3 V range  
• Updated table: AC electrical specifications at 5 V range  
• In table: Standard input pin capacitance  
• Added footnote to Normal run mode (S32K14x series)  
• Removed note from 1M ohms Feedback Resistor in figure Oscillator  
connections scheme  
• In table: External System Oscillator electrical specifications  
• Updated typical of IDDOSC Supply current — low-gain mode (low-power  
mode) (HGO=0) 1 for 4 and 8 MHz  
• Removed rows for Ilk_ext EXTAL/XTAL impedence High-frequency, low-  
gain mode (low-power mode) and high-frequency, high-gain mode and  
VEXTAL  
• Updated Typ. of RS low-gain mode  
• Updated description of RF, RS, and VPP  
• Removed footnote from RF Feedback resistor  
• Updated footnote for C1 C2 and RF  
• In table: Table 28  
• Removed mention of high-frequency  
• Added HGO 0, 1 information  
• In table: Fast internal RC Oscillator electrical specifications  
• Updated FFIRC  
• Updated description of ΔF  
• Updated typ and max values of TJIT cycle-to-cycle jitter and TJIT Long  
term jitter over 1000 cycles  
• Added footnotes to TJIT cycle-to-cycle jitter and TJIT Long term jitter  
over 1000 cycles  
• Updated naming convention of IDDFIRC Supply current  
• Added footnote to IDDFIRC Supply current  
• Added footnote to column Parameter  
• In table: Slow internal RC oscillator (SIRC) electrical specifications  
• Removed VDD Supply current in 2 MHz Mode  
• Removed footnote and updated description of ΔF  
• Updated footnote to FSIRC and IDDSIRC  
• In table: SPLL electrical specifications  
• Added row for FSPLL_REF PLL Reference  
• Updated naming convention throughout the table  
• Updated the max value of TSPLL_LOCK Lock detector detection time  
• In table: Flash timing specifications — commands  
• Added footnotes:  
• All command times assumes ...  
• For all EEPROM Emulation terms ...  
• 'First time' EERAM writes after a POR ...  
• Removed footnote 'Assumes 25 MHz or ...'  
• Updated Max of teewr32bers  
• Added parameters tquickwr and tquickwrClnup  
• In table: Reliability specifications  
• Removed Typ. values for all parameters  
• Removed footnote 'Typical values represent ... '  
• Added footnote 'Any other EEE driver usage ... '  
• Updated QuadSPI AC specifications  
• Removed topic: Reliability, Safety and Security modules  
• In table: 12-bit ADC operating conditions  
• Updated VDDA  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
92  
NXP Semiconductors  
Revision History  
Table 57. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
• Updated values for VREFH and VREFL to add refernce to the section  
"voltage and current operating requirments" for Min and Max valaues  
• Updated footnote to Typ.  
• Removed footnote from RAS Analog source resistance  
• Updated figure: ADC input impedance equivalency diagram  
• In table: 12-bit ADC characteristics (2.7 V to 3 V) (VREFH = VDDA, VREFL  
=
VSS  
)
• Removed rows for VTEMP_S and VTEMP25  
• Updated footnote to Typ.  
• In table: 12-bit ADC characteristics (3 V to 5.5 V)(VREFH = VDDA, VREFL  
=
VSS  
)
• Removed rows for VTEMP_S and VTEMP25  
• Removed number for TUE  
• Updated footnote to Typ.  
• In table: Comparator with 8-bit DAC electrical specifications  
• Updated Typ. of IDDLS Supply current, Low-speed mode  
• Updated Typ. of tDLSB Propagation delay, Low-speed mode  
• Updated Typ. of tDHSS Propagation delay, High-speed mode  
• Updated tDLSS Propagation delay  
• Added row for tDDAC Initialization and switching settling time  
• Updated footnote  
• Updated section LPSPI electrical specifications  
• Added section: SAI electrical specifications  
• Updated section: Ethernet AC specifications  
• Added section: Clockout frequency  
• Added section: Trace electrical specifications  
• Updated table: Table 55 : Updated numbers for S32K142 and S32K148  
• Updated table: Table 56 : Updated numbers for S32K148  
• Updated Document number for 32-pin QFN in topic Obtaining package  
dimensions  
3
14 March 2017  
• In Table 3  
• Updated min. value of VDD_OFF  
• Added parameter IINJSUM_AF  
• Updated Power mode transition operating behaviors  
• Updated Power consumption  
• Updated footnote to TSPLL_LOCK in SPLL electrical specifications  
• In 12-bit ADC electrical characteristics  
• Updated table: 12-bit ADC characteristics (2.7 V to 3 V) (VREFH =  
VDDA, VREFL = VSS)  
• Added typ. value to IDDA_ADC, TUE, DNL, and INL  
• Added min. value to SMPLTS  
• Removed footnote 'All the parameters in this table ... '  
• Updated table: 12-bit ADC characteristics (3 V to 5.5 V) (VREFH =  
VDDA, VREFL = VSS)  
• Added typ. value to IDDA_ADC  
• Removed footnote 'All the parameters in this table ... '  
• In Flash timing specifications — commands updated Max. value of tvfykey to  
33 μs  
4
02 June 2017  
• In section: Block diagram, added block diagram for S32K11x series.  
• Updated figure: S32K1xx product series comparison.  
• In section: Selecting orderable part number , added reference to attachement  
S32K_Part_Numbers.xlsx.  
• In section: Ordering information  
• Updated figure: Ordering information.  
• In Table 1,  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
93  
Revision History  
Rev. No.  
Table 57. Revision History (continued)  
Date  
Substantial Changes  
• Updated note 'All the limits defined ... '  
• Updated parameter 'IINJPAD_DC_ABS', 'VIN_DC', IINJSUM_DC_ABS  
• In Table 3,  
• Updated parameter IINJPAD_DC_OP and IINJSUM_DC_OP  
.
.
• In Table 8, updated TBDs for VLVR_HYST, VLVD_HYST, and VLVW_HYST  
• In Power mode transition operating behaviors,  
• Added VLPR VLPS  
• Added VLPS VLPR  
• Updated TBDs for VLPS Asynchronous DMA Wakeup, STOP1 →  
Asynchronous DMA Wakeup, and STOP2 Asynchronous DMA  
Wakeup  
• In Table 13, updated the specifications for S32K144.  
• Updated the attachment S32K1xx_Power_Modes _Configuration.xlsx.  
• In Table 25, removed CIN_A  
• In Table 27,  
.
• Updated specificatins for gmXOSC  
• Removed IDDOSC  
.
• In Table 29,  
• Added parameter ΔF125.  
• Removed IDDFIRC  
• In Table 31,  
• Added parameter ΔF125.  
• Removed IDDSIRC  
• In Table 33, removed ILPO  
• Updated section: Flash memory module (FTFC/FTFM) electrical  
specifications  
• In section: 12-bit ADC operating conditions,  
• Updated TBDs for IDDA_ADC and TUE in Table 41  
• Updated TBDs for IDDA_ADC and TUE in Table 42  
• In section: QuadSPI AC specifications, updated figure 'QuadSPI output  
timing (HyperRAM mode) diagram'.  
• In section: 12-bit ADC operating conditions, updated Table 40.  
• In section: CMP with 8-bit DAC electrical specifications, added note 'For  
comparator IN signals adjacent ... '  
• In table: Table 46, minor update in footnote 6.  
• In table: Table 55, updated specifications for S32K146.  
5
06 Dec 2017  
• Removed S32K148 from 'Caution'  
• Updated figure: S32K1xx product series comparison for  
• 'EEPROM emulated by FlexRAM' of S32K148 (Added content to  
footnote)  
• Added support for LIN protocol version 2.2 A  
• In Absolute maximum ratings :  
• Added note 'Unless otherwise ... '  
• Added parameter 'Added note 'Tramp_MCU  
'
• Updated footnote for 'Tramp  
'
• In Voltage and current operating requirements :  
• Added footnote 'VDD and VDDA must be shorted ... ' against parameter  
'VDD– VDDA  
'
• Updated footnote 'VDD and VDDA must be shorted ...'  
• In Power and ground pins  
• Added diagrams for 32-QFN and 48-LQFP and footnote below the  
diagrams.  
• Updated footnote 'VDD and VDDA must be shorted ...'  
• In Power mode transition operating behaviors :  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
94  
NXP Semiconductors  
Revision History  
Table 57. Revision History  
Rev. No.  
Date  
Substantial Changes  
• Added footnote 'For S32K11x – FIRC/SOSC/FIRC/LPO; For S32K14x  
– FIRC/SOSC/FIRC/LPO/SPLL' to 'VLPS Mode: All clock sources  
disabled'  
• Updated numbers for:  
• VLPR VLPS  
• VLPS VLPR  
• 'RUN Compute operation'  
• RUN VLPS  
• RUN VLPR  
• In Power consumption :  
• Updated specs for S32K142, S32K144, and S32K148  
• Updated footnote 'Typical current numbers are indicative ...'  
• Updated footnote 'The S32K148 data ...'  
• Removed footnote 'Above S32K148 data is preliminary targets only'  
• Added new table 'Power consumption at 3.3 V'  
• In General AC specifications :  
• Updated max value and footnote of WFRST  
• Updated symbol for not filtered pulse to 'WNFRST', updated min value,  
removed max. value, and added footnote  
• Fixed naming conventions to align with DS in DC electrical specifications at  
3.3 V Range and DC electrical specifications at 5.0 V Range  
• Updated specs for AC electrical specifications at 3.3 V range and AC  
electrical specifications at 5 V range  
• In Device clock specifications :  
• Updated fBUS to 48 for 11x  
• Added footnote to fBUS for 14x  
• In External System Oscillator frequency specifications :  
• Added specs for S32K11x  
• Updated 'tdc_extal' for S32K14x  
• Added footnote 'Frequecies below ... ' to 'fec_extal' and 'tdc_extal  
'
• Splitted Flash timing specifications — commands for S32K14x and S32K11x  
• Updated Flash timing specifications — commands for S32K14x  
• In Reliability specifications :  
• Added footnote 'Data retention period ... ' for 'tnvmretp1k' and  
'tnvmretee'  
• Minor update in footnote for 'nnvmwree16' 'nnvmwree256'  
• In QuadSPI AC specifications :  
• Updated 'MCR[SCLKCFG[5]]' value to 0  
• Updated 'Data Input Setup Time' HSRUN Internal DQS PAD Loopback  
value to 1.6  
• Updated 'Data Input Setup Time' DDR External DQS min. value to 2  
• Updated 'Data Input Hold Time' DDR External DQS min. value to 20  
• Upadted figure 'QuadSPI output timing (SDR mode) diagram' and  
'QuadSPI input timing (HyperRAM mode) diagram'  
• In 12-bit ADC electrical characteristics :  
• Added note 'On reduced pin packages where ... '  
• Removed max. value of 'IDDA_ADC  
• Added note 'Due to triple ... '  
'
• In 12-bit ADC operating conditions, removed parameter 'ΔVDDA  
'
• In CMP with 8-bit DAC electrical specifications :  
• Updated Typ. and Max. values of 'IDDLS  
• Upadted Typ. value of 'tDHSB  
'
'
• Updated Typ. value of 'VHYST1' , 'VHYST2', and 'VHYST3  
• In LPSPI electrical specifications :  
'
• Updated 'fperiph' and 'fop', and 'tSPSCK  
'
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
95  
Revision History  
Rev. No.  
Table 57. Revision History (continued)  
Date  
Substantial Changes  
• Updated 3.3 V numbers and added footnote against fop, tSU, ans tV in  
HSRUN Mode  
• Added footnote to 'tWSPSCK  
'
• Updated Thermal characteristics for S32K11x  
6
31 Jan 2018  
• Changed the representation of ARM trademark throughout.  
• Removed S32K142 from 'Caution'  
• In 'Key features', added the following note under 'Power management',  
'Memory and memory interfaces', and 'Reliability, safety and security':  
• No write or erase access to ...  
• In High-level architecture diagram for the S32K14x family, added the  
following footnote:  
• No write or erase access to ...  
• In High-level architecture diagram for the S32K11x family :  
• Minor editorial update: Fixed the placement of SRAM, under 'Flash  
memory controller' block  
• Updated figure: S32K1xx product series comparison :  
• Updated footnote 1, and added against 'HSRUN' in addition to 'HW  
security module (CSEc)' and 'EEPROM emulated by FlexRAM'.  
• Updated 'System RAM (including FlexRAM and MTB)' row for  
S32K144, S32K146, and S32K148.  
• Updated channel count for S32K116 in row '12-bit SAR ADC (1 MSPS  
each)'.  
• Updated Ordering information  
• Updated Flash timing specifications — commands for S32K148, S32K142,  
S32K146, S32K116, and S32K118.  
7
19 April 2018  
• Changed Caution to Notes  
• Updated the wordings of Notes and removed S32K146  
• Added 'Following two are the available ...'  
• In 'Key features' :  
• Editorial updates  
• Updated the note under Power management, Memory and memory  
interfaces, and Safety and security.  
• Updated FlexIO under Communications interfaces  
• Added ENET and SAI under Communications interfaces  
• Updated Cryptographic Services Engine (CSEc) under 'Safety and  
security'  
• In High-level architecture diagram for the S32K14x family :  
• Minor editorial updates  
• Updated note 3  
• In High-level architecture diagram for the S32K11x family :  
• Minor editorial updates  
• In figure: S32K1xx product series comparison :  
• Editorial updates  
• Updated Frequency for S32K14x  
• Updated footnote 4  
• Added footnote 5  
• In Ordering information :  
• Renamed section, updated the starting paragraph  
• Updated the figure  
• In Voltage and current operating requirements, updated the note  
• In Power consumption :  
• Updated specs for S32K146  
• Removed section 'Modes configuration', amd moved its content under  
the fisrt paragraph.  
• In 12-bit ADC operating conditions :  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
96  
NXP Semiconductors  
Revision History  
Table 57. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
• Fixed the typo in RSW1  
• In LPSPI electrical specifications :  
• Updated tLead and tLag  
• Added footnote in Figure: LPSPI slave mode timing (CPHA = 0) and  
Figure: LPSPI slave mode timing (CPHA = 1)  
• In Thermal characteristics :  
• Updated the name of table: Thermal characteristics for 32-pin QFN  
and 48/64/100/144/176-pin LQFP package  
• Deleted specs for RθJC for 32 QFN package  
• Added 'RθJCBottom  
'
8
18 June 2018  
• In attachement 'S32K1xx_Power_Modes _Configuration':  
• Updated VLPR peripherals disabled and Peripherals Enabled use case  
#1, using 4 Mhz for System clock, 2 Mhz for bus clock, and 1Mhz for  
flash.  
• Removed S32K116 from Notes  
• In figure: S32K1xx product series comparison :  
• Added note 'Availability of peripherals depends on the pin  
availability ...'  
• Updated 'Ambient Operation Temperature' row  
• Updated 'System RAM (including FlexRAM and MTB)' row for  
S32K144, S32K146, and S32K148  
• In Ordering information :  
• Updated figure for 'Y: Optional feature'  
• Updated footnote 3  
• In Power and ground pins :  
• In figure 'Power diagram', updtaed VFlash frequency to 3.3 V  
• In Power mode transition operating behaviors :  
• Updated footnote for 'VLPS Mode: All clock sources disabled'  
• In Power consumption :  
• Added IDDs for S32K116  
• Added VLPR Peripherals enabled use case 2 at 125 °C/Typicals  
• Renamed VLPR 'Peripherals enabled' to 'Peripherals enabled use  
case 1'  
• Added footnote 'Data collected using RAM' to VLPR 'Peripherals  
disabled' and VLPR 'Peripherals enabled use case 1'  
• Updated VLPS Peripherals enabled at 25 °C/Typicals for S32K142 and  
S32K144 to 40 μA and 42 μA respectively  
• Added table 'VLPS additional use-case power consumption at typical  
conditions'  
• In DC electrical specifications at 3.3 V Range :  
• Updated naming conventions  
• Added specs for GPIO-FAST pad  
• In DC electrical specifications at 5.0 V Range :  
• Updated naming conventions  
• Added specs for GPIO-FAST pad  
• In AC electrical specifications at 3.3 V range :  
• Updated naming conventions  
• Added specs for GPIO-FAST pad  
• In AC electrical specifications at 5 V range :  
• Updated naming conventions  
• Added specs for GPIO-FAST pad  
• In External System Oscillator electrical specifications :  
• Clarified description of gmXOSC  
• Updated VIL max. to 1.15 V  
• In Fast internal RC Oscillator (FIRC) electrical specifications :  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
97  
Revision History  
Rev. No.  
Table 57. Revision History (continued)  
Date  
Substantial Changes  
• Updated specs for TJIT Cycle-to-Cycle jitter to 300 ps  
• In QuadSPI AC specifications :  
• Updated specs for Tiv Data Output In-Valid Time  
• In figure 'QuadSPI output timing (SDR mode) diagram', marked Invalid  
area  
• In CMP with 8-bit DAC electrical specifications :  
• Removed '(VAIO)' from decription of VHYST0  
• In LPSPI electrical specifications :  
• Added note 'Undefined' in figures 'LPSPI slave mode timing (CPHA =  
0)' and 'LPSPI slave mode timing (CPHA = 1)'  
9
18 Sep 2018  
• In attachment 'S32K1xx_Power_Modes _Configuration':  
• Added separate sheet for S32K14x and S32K11x devices  
• Renamed VLPS (Peripherals Enabled) to VLPS (LPTMR enabled)  
• Removed Note "Technical information ..."  
• In Features:  
• Updated Clock interfaces for '4 – 40 MHz fast external oscillator  
(SOSC)' and 'Real Time Counter'  
• Added 'Up to 20 MHz TCLK and 25 MHz SWD_CLK'  
• In Absolute maximum ratings : Updated footnote 3 '60 seconds lifetime ... '  
• Updated title of table Thermal operating characteristics  
• In Ordering information :  
• Updated 'Temperature'  
• Updated 'Wafer Fab and Mask revision identifier'  
• In Power consumption :  
• Renamed 'VLPS Peripheral enabled' to 'LPTMR enabled'  
• Added IDDs for S32K118 for 85 °C, 105 °C and 125 °C  
• Updated IDDs for S32K118 for 25 °C  
• Added IDDs for VLPR Peripherals enabled use case 2 for S32K116  
• Updated IDDs and added footnotes in table 'VLPS additional use-case  
power consumption at typical conditions'  
• In General AC specifications :  
• Updated footnote of WFRST and WNFRST  
• In External System Oscillator electrical specifications :  
• Added footnote to RS  
• Renamed Vpp to Vpp_XTAL and updated the description accordingly  
• Added Vpp_EXTAL  
• Added VSOSCOP  
• Updated equation 'gm_crit = 4 ...' in footnote 1  
• In External System Oscillator frequency specifications :  
• Added footnote "For an ideal clock of 40 MHz, if permitted ..." to fosc_hi  
max.  
• In Fast internal RC Oscillator (FIRC) electrical specifications :  
• Updated note "Fast internal ... "  
• In LPSPI electrical specifications :  
• Updated figures 'LPSPI slave mode timing (CPHA = 0)' and 'LPSPI  
slave mode timing (CPHA = 1)'  
10  
09 May 2019  
• In Notes: Added note 'Technical information for the S32K148 ... '  
• In attachment 'S32K1xx_Orderable_Part_Number_List':  
• Added ISELED PN  
• Added PN for new package offering (48-pin LQFP S32K142; 48-pin  
LQFP S32K144; 100-pin LQFP S32K148)  
• Added NFC PN  
• Added UA as S32K148 Standard PN  
• Updated Standard Base Feature Offer  
• In figure 'S32K1xx product series comparison' :  
Table continues on the next page...  
S32K1xx Data Sheet, Rev. 12, 02/2020  
98  
NXP Semiconductors  
Revision History  
Table 57. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
• Added 48-pin LQFP for S32K142 and S32K144  
• Added 100-pin LQFP for S32K148, along with footnote  
• In Ordering information :  
• Updated 'Ordering option'  
• Updated note 2  
• In Thermal characteristics :  
• Added values for 48-pin LQFP for S32K142 and S32K144  
• Added values for 100-pin LQFP for S32K148  
11  
12  
27 June 2019  
04 Feb 2020  
• In Notes: Removed note 'Technical information for the S32K148 ... '  
• In Notes: Added note: 'Technical information for ...'  
• Added S32K14xW information throughout  
• Removed "Under development" from the footnote number 6 in Figure 3.  
• Updated Trace electrical specifications to clarify that the section applies only  
for ETM Trace and is supported only by S32K148.  
• In Table 28, added a new footnote from fosc_hi Max entry.  
• Updated Figure 21 for number 8.  
• In Reliability specifications, tnvmretee is changed to tnvmretee100, and added a  
new row for the parameter tnvmretee10. And footnotes are updated in this topic.  
S32K1xx Data Sheet, Rev. 12, 02/2020  
NXP Semiconductors  
99  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including “typicals,” must be validated for each customer application  
by customerʼs technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,  
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,  
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS  
are trademarks of NXP B.V. All other product or service names are the property of their respective  
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,  
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,  
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,  
ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its  
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of  
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered  
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the  
Power and Power.org logos and related marks are trademarks and service marks licensed by  
Power.org.  
© 2015–2020 NXP B.V.  
Document Number S32K1XX  
Revision 12, 02/2020  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY