FS32V232CKN1CUBR [NXP]

ARM Cortex-M4, 32-bit CPU 16 KB/16 KB I-/D- L1 Cache;
FS32V232CKN1CUBR
型号: FS32V232CKN1CUBR
厂家: NXP    NXP
描述:

ARM Cortex-M4, 32-bit CPU 16 KB/16 KB I-/D- L1 Cache

文件: 总90页 (文件大小:1889K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number S32V234  
Rev. 9, 03/2020  
NXP Semiconductors  
Data Sheet: Technical Data  
S32V234  
S32V234 Data Sheet  
Features  
• Safety concept  
– ISO 26262, ASIL level target  
• ARM® Cortex®-A53, 64-bit CPU  
– Up to 1000 MHz Quad ARM Cortex-A53  
– 32 KB/32 KB I-/D- L1 Cache  
– NEON MPE co-processor  
– Measures to detect faults in memory and logic  
– Measures to detect single point and latent faults  
– Quantitative out of context analysis of functional  
safety (FMEDA) tailored to application specifics  
– Safety manual and FMEDA report available  
– Dual precision FPU  
– 2 clusters with 2 CPUs and 256 KB L2 cache each  
– Memory Management Unit  
• Security  
– GIC Interrupt Controller  
– ECC/parity error support for its memories  
– Generic timers  
– Fault encapsulation by hardware for redundant  
executed application software on multiple core  
cluster  
– CSE with 16 KB of on-chip Secure RAM and ROM.  
– ARM TrustZone (TZ) architecture support  
– Boot from NOR flash with AES-128 (CTR)  
– On-Chip One-Time Programmable element  
Controller (OCOTP_CTRL) with on chip electrical  
fuse array.  
– System JTAG Controller (SJC)  
• ARM Cortex-M4, 32-bit CPU  
– Up to 133 MHz  
• Debug functionality  
– 16 KB/16 KB I-/D- L1 Cache  
– 32+32 KB tightly coupled memory (TCM)  
– ECC/parity support for its memories  
– Standard JTAG and Compact JTAG  
– 16-bit Trace port, Serial Wire Output port  
• Timers  
• Clocks  
– General purpose timers (FTM)  
– Two Periodic Interrupt Timer (PIT)  
– IEEE 1588 Timers (part of Ethernet Subsystem)  
– Phase Locked Loops (PLLs)  
– 1 external crystal oscillator (FXOSC)  
– 1 FIRC oscillator  
• Analog  
• System protection and power management features  
– Flexible run modes to consume low power based on  
application needs  
– 1x 12-bit 1.8 V SAR ADC with self-test  
• Communications  
– UART(w/ LIN2.1l)  
– Serial peripheral interface (SPI)  
– I2C blocks  
– PCI express 2.0 with endpoint and root complex  
support  
– LFAST serial link  
– 1 GBit Ethernet with PTP IEEE 1588  
– FD-CAN  
– FlexRay Dual Channel, Version 2.1 RevA  
– Peripheral clock enable register can disable clocks to  
unused modules, thereby reducing currents  
– Power gating of unused A53 cores and GPU  
– Low and high voltage warning and detect  
– Hardware CRC module to support fast cyclic  
redundancy checks (CRC)  
– 120-bit unique chip identifier  
– Hardware watchdog  
– eDMA controller with 32 channels (with  
DMAMUX)  
– Extended Resource Domain Controller  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
• Memory interfaces  
– 32-bit DRAM Controller with support for LPDDR2/DDR3/DDR3L - Data rate of up to 1066 MT/s at 533 MHz clock  
frequency with ECC (SEC-DED-TED) triple error detection support for subregion  
– QuadSPI supporting Execute-In-Place (XIP)  
– Boot flash fault detection and correction using two-dimensional parity.  
– Triple fault detection and single fault correction scheme for external DDR-RAM including address/page fault detection.  
• Video input interfaces, Image processing, graphics processing, display  
– Display Control Unit (2D-ACE) with 24-bit RGB, GPU frame buffer decoding  
– GPU GC3000 with frame buffer compression  
– 2x VIU (Video interface unit) for camera input  
– 2x MIPICSI2 with four lanes for camera input (support 1080 pixel @ 30 fps)  
– Image signal processor (ISP), supporting 2x1 or 1x2 megapixel @ 30 fps and 4x2 megapixel for subset of functions  
(exposure control, gamma correction)  
– 2x APEX2-CL Image cognition processor. APEX-642CL comprises two Array Processing Unit (APU) cores  
configurable as single SIMD engine with 64 16-bit Computational Units (CU), or configurable as two core MIMD  
engines with 32 16-bit CUs each.  
– CUs are comprised of four Functional Units: 16-bit Multiplier, Load Store Unit, ALU, and Shifter  
– JPEG video decoder (8/12-bit)  
– H.264 video decoder (8/10/12-bit), High-intra and constrained baseline formats  
– H.264 video encode (8/10/12-bit), High-intra only  
– Fast DMA for data transfers between DRAM and System RAM with CRC  
• Human-Machine Interface (HMI)  
– GPIO pins with interrupt support, DMA request capability, digital glitch filter  
– Configurable slew rate and drive strength on all output pins  
• System RAM  
– 4 MB On-Chip System RAM with ECC  
S32V234 Data Sheet, Rev. 9, 03/2020  
2
NXP Semiconductors  
Table of Contents  
1
2
Block diagram.................................................................................... 5  
6.3 Memory interfaces...................................................................26  
6.3.1 QuadSPI AC specifications....................................... 26  
6.4 DDR SDRAM Specific Parameters (DDR3, DDR3L, and  
LPDDR2)................................................................................ 31  
6.4.1 DDR3 and DDR3L timing parameters .....................31  
6.4.2 DDR3 and DDR3L read cycle...................................33  
6.4.3 DDR3 and DDR3L write cycle................................. 34  
6.4.4 LPDDR2 timing parameter........................................35  
6.4.5 LPDDR2 read cycle...................................................37  
6.4.6 LPDDR2 write cycle................................................. 38  
6.5 Communication modules.........................................................39  
6.5.1 DSPI timing...............................................................39  
6.5.2 Ultra High Speed SD/SDIO/MMC Host Interface  
(uSDHC)....................................................................43  
Family comparison.............................................................................5  
2.1 Feature Set...............................................................................5  
Ordering parts.....................................................................................8  
3.1 Ordering information...............................................................8  
General............................................................................................... 8  
4.1 Operation above maximum operating conditions................... 8  
4.2 Recommended operating conditions....................................... 9  
4.3 Power Management Controller (PMC) electrical  
3
4
specifications...........................................................................10  
4.4 Power consumption.................................................................11  
4.5 Electrostatic discharge (ESD) specifications.......................... 13  
4.6 Electromagnetic Compatibility (EMC) specifications............ 13  
4.7 PCB routing guidelines........................................................... 13  
I/O parameters....................................................................................15  
5.1 General purpose I/O parameters..............................................15  
5.1.1 GPIO speed at various voltage levels........................15  
5.1.2 DC electrical specifications.......................................17  
5.2 DDR pads................................................................................ 18  
5.2.1 DDR3 mode...............................................................18  
5
6.5.2.1  
6.5.2.2  
SDR mode timing specifications........... 43  
DDR mode timing specifications...........45  
6.5.3 LFAST electrical characteristics............................... 48  
6.5.3.1  
6.5.3.2  
LFAST interface timing diagrams.........48  
LFAST Interface electrical  
characteristics........................................ 49  
5.2.1.1  
DDR3 mode DC electrical  
6.5.4 FlexRay......................................................................50  
specifications......................................... 18  
6.5.4.1  
6.5.4.2  
6.5.4.3  
6.5.4.4  
FlexRay timing parameters....................50  
TxEN......................................................50  
TxD........................................................51  
RxD........................................................52  
5.2.2 DDR3L mode............................................................ 18  
5.2.2.1  
DDR3L mode DC electrical  
specifications......................................... 18  
5.2.3 LPDDR2 mode.......................................................... 19  
6.5.5 Ethernet Controller (ENET) Parameters................... 53  
5.2.3.1  
LPDDR2 mode DC electrical  
6.5.5.1  
6.5.5.2  
Ethernet Switching Specifications.........53  
Receive and Transmit signal timing  
specifications......................................... 19  
5.3 Boot Configuration Pins Specification....................................20  
Peripheral operating requirements and behaviors..............................20  
6.1 Analog modules.......................................................................20  
6.1.1 ADC electrical specifications....................................20  
specifications for RMII interfaces......... 53  
Receive and Transmit signal timing  
6
6.5.5.3  
6.5.5.4  
6.5.5.5  
specifications for MII interfaces............54  
Receive and Transmit signal timing  
6.1.1.1  
Input equivalent circuit..........................21  
specifications for RGMII interfaces...... 56  
MII/RMII Serial Management channel  
timing (MDC/MDIO)............................ 57  
6.1.2 Thermal Monitoring Unit (TMU)..............................23  
6.2 Clocks and PLL interfaces modules........................................23  
6.2.1 Main oscillator electrical characteristics................... 23  
6.2.2 48 MHz FIRC electrical characteristics.................... 24  
6.2.3 PLL electrical specifications..................................... 24  
6.2.4 DFS electrical specifications..................................... 25  
6.2.5 LFAST PLL Electrical Specifications.......................25  
6.5.6 PCI Express specifications........................................ 58  
6.5.7 IIC timing.................................................................. 59  
6.5.8 LINFlex timing..........................................................60  
6.6 Display modules......................................................................61  
6.6.1 Display Control Unit (2D-ACE) Parameters.............61  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
3
6.6.1.1  
6.6.1.2  
Interface to TFT panels..........................61  
Interface to TFT LCD Panels—Pixel  
Level Timings........................................62  
Interface to TFT LCD panels—access  
level........................................................63  
6.10 External interrupt timing (IRQ pin)........................................ 74  
Thermal attributes.............................................................................. 75  
7.1 Thermal attributes................................................................... 75  
Dimensions.........................................................................................76  
8.1 Obtaining package dimensions ...............................................76  
Pinouts................................................................................................76  
9.1 Package pinouts and signal descriptions................................. 76  
7
8
9
6.6.1.3  
6.6.2 Video input unit (VIU) timing specifications............64  
6.6.3 MIPICSI2 D-PHY electrical and timing parameters.65  
6.6.3.6  
NOTICE OF DISCLAIMER................. 68  
10 Reset sequence................................................................................... 76  
10.1 Reset sequence duration..........................................................76  
10.2 Boot performance matrix........................................................ 77  
10.3 Reset sequence description......................................................78  
11 Power sequencing requirements.........................................................80  
12 Revision history................................................................................. 81  
6.7 Debug specifications............................................................... 69  
6.7.1 JTAG interface timing...............................................69  
6.7.2 Debug trace timing specifications............................. 73  
6.8 Wakeup Unit (WKPU) AC specifications.............................. 74  
6.9 RESET pin glitch filter specifications.....................................74  
S32V234 Data Sheet, Rev. 9, 03/2020  
4
NXP Semiconductors  
Block diagram  
1 Block diagram  
GIC-400  
Core0  
Debug Core1  
1000MHz  
Cortex-A53  
NEON/FPU  
32KB 32KB  
Debug  
Core2  
Debug Core3  
1000MHz  
Cortex-A53  
NEON/FPU  
32KB 32KB  
Debug  
1000MHz  
Cortex-A53  
1000MHz  
Cortex-A53  
NEON/FPU  
32KB 32KB  
NEON/FPU  
32KB 32KB  
256KB  
L2-  
Cache  
256KB  
L2-  
Cache  
I-Cache D-Cache I-Cache D-Cache  
I-Cache D-Cache I-Cache D-Cache  
CRC  
Debug  
Debug  
Display  
Control  
Unit  
NVIC  
APEX-2_0  
(2xAPU)  
APEX-2_1  
(2xAPU)  
Fast  
DMA  
64KB  
TCM  
CoreP  
133MHz  
Cortex-  
M4  
CSE-FL Security  
GPU  
GC3000  
Engine  
CMEM  
16x 2Kx64  
CMEM  
16x 2Kx64  
(2D-ACE)  
16KB  
DRAM  
SCU  
SCU  
Debug  
16KB  
I-Cache D-Cache  
32KB  
32KB  
32KB  
32KB  
128-bits  
128-bits  
1KB  
FUSE IF  
ROM  
IMEM  
MEMIF  
BlkDMA  
DMEM  
IMEM  
Seq  
DMEM  
DMA  
MEM  
eDMA  
16KB  
CCI-400 incl. EDC  
Debug  
Concentrator  
Seq  
DMA  
MEMIF  
DMA  
CDC420  
Encoder  
DEC200 DEC200  
Decoder Encoder  
Sideband  
Outputs  
BIU  
MC  
BlkDMA  
128-bits  
128-bits  
SRAM - all others  
64-bits AHB  
Cortex-A53  
128-  
bits  
128-  
bits  
64-  
bits  
64-  
bits  
128-  
bits  
64-bits  
AHB  
64-bits  
AHB  
64-bits  
AHB  
32-bits 64-bits  
64-bits 64-bits  
64-bits  
64-  
bits  
MC  
MC  
AHB  
AHB  
AHB  
AHB  
Hierarchical NIC 301 AXI Bus System incl. EDC  
AXBS Bus System incl. EDC  
XRDC  
XRDC  
128-bits  
XRDC  
XRDC  
XRDC  
32-bits  
128-  
bits  
128-  
bits  
SEQ  
64-bits  
64-bits  
64-bits  
AHB  
64-bits  
64-bits  
DRAM -  
all others all others  
64-bits  
64-bits  
SRAM -  
OTFAD  
QoS 301 incl. EDC  
XRDC  
Debug  
Peripheral  
Bridge 1  
Peripheral  
Bridge 0  
QuadSPI  
NOR Flash Ctrl  
ROM  
Ctrl  
MIPI-CSI2  
MIPI-CSI2  
ISP0  
Debug  
32-bits  
2x4-bits  
32-bits  
32-bits  
4KB  
DRAM-ECC  
DRAM-ECC  
SWT_0  
SWT_1  
STM_0  
PIT_0  
STCU  
MC  
ISP1  
ISP2  
• • •  
ISPN  
H.264 Encoder  
H.264 Decoder  
JPEG Decoder  
PRAM  
SRAM Controller  
Multi Ported  
Multi Banked  
64KB  
CRAM  
16KB  
KRAM  
4/2x4/8-bits  
QSPI Flash  
64 KB  
ROM  
(boot)  
32-bit MMDC_0  
LPDDR2  
32-bit MMDC_1  
LPDDR2  
DDR3(L)  
DDR3(L)  
External NOR Flash  
Off-Chip  
DDR-PHY  
DDR-PHY  
MC  
CGM, RGM,  
PCU, ME  
533 MHz  
1066 MT/s  
DDR  
533 MHz  
1066 MT/s  
DDR  
4MB SRAM  
24+Banks  
ECC x64 Internal  
Figure 1. Block diagram  
2 Family comparison  
2.1 Feature Set  
This family of devices supports the following features:  
Table 1. Feature Set  
Feature  
S32V234  
S32V232  
ARM Cortex-A53 Core  
• Up to 1000 MHz Quad ARM Cortex-A53  
• 32 KB/32 KB I-/D- L1 Cache  
• NEON MPE co-processor  
• Dual precision FPU  
• Up to 1000 MHz Dual ARM Cortex-A53  
(single cluster)  
• The remaining features are same as  
S32V234  
• 256 KB L2 Cache per cluster  
• MMU  
• GIC interrupt controller  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
5
Family comparison  
Feature  
Table 1. Feature Set (continued)  
S32V234  
S32V232  
• ECC/parity error support for its  
memories  
• Generic timers  
ARM Cortex-M4 Core  
• Up to 133 MHz  
• Same as S32V234  
• 16 KB/16 KB I-/D- L1 Cache  
• 32+32 KB tightly coupled memory  
(TCM)  
• ECC/parity support for its memories  
Clocks  
• Phase Locked Loops (PLLs)  
• 1 external crystal ocillators (FXOSC)  
• 1 FIRC  
• Same as S32V234  
System, protection and power  
management features  
• Flexible run modes to consume lower  
power based on application needs.  
• Peripheral clock enable registers can  
disable clocks to unused modules,  
thereby reducing currents  
• Same as S32V234  
• Low and high voltage warning and  
detect  
• Hardware CRC module to support fast  
cyclic redundancy checks (CRC)  
• 120-bit unique chip identifier  
• Hardware watchdog  
• Safe eDMA controller with 32 channels  
(with DMAMUX)  
• Extended Resource Domain Controller  
Safety concept  
• ISO 26262, ASIL level target as per  
safety concept  
• Same as S32V234  
• Measures detecting faults in memory  
and logic  
• Measures to detect single point and  
latent faults  
• Quantitative out of context analysis of  
functional safety (FMEDA) tailored to  
application specifics  
• Safety manual and FMEDA report  
available  
• Boot flash authentication and fault  
detection and correction using AES-128  
and two-dimensional parity.  
• Double and triple fault detection and  
single fault correction scheme for  
external DDR-RAM including address/  
page fault detection.  
• Fault encapsulation by hardware for  
redundant executed application  
software on multiple core cluster.  
• Structural software based self test  
routines providing high diagnostic  
coverage.  
Debug  
Timers  
• Standard JTAG  
• 16-bit Trace port, Serial Wire Output  
port  
• Same as S32V234  
• Same as S32V234  
• General purpose timers (FTM)  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
6
NXP Semiconductors  
Family comparison  
Table 1. Feature Set (continued)  
Feature  
S32V234  
S32V232  
• Two Periodic Interrupt Timer (PIT)  
• IEEE 1588 Timers (part of Ethernet  
Subsystem)  
Communications  
• UART(w/ LIN2.1l)  
• Same as S32V234  
• Serial peripheral interface (SPI)  
• I2C blocks  
• PCI express 2.0 with endpoint and root  
complex support  
• LFAST serial link  
• 1 GBit Ethernet with PTP IEEE 1588  
• FD-CAN  
• Flexray Dual Channel, Version 2.1  
RevA  
Memory Interfaces  
• 32-bit DRAM Controller with support for  
LPDDR2/DDR3/DDR3L - Data rate of  
up to 1066 MT/s at 533 MHz clock  
frequency with ECC (SEC-DED-TED)  
single error correction, double error  
detection, and triple error detection  
support for subregion  
• Same as S32V234  
• Dual QuadSPI supporting Execute-In-  
Place (XIP)  
Video input interfaces, Image  
processing, graphics  
processing, display  
• Display Control Unit (2D-ACE) with 24-  
bit RGB, GPU framebuffer decoding  
• GPU GC3000 with frame buffer  
compression  
• Same as S32V234  
• 2x Video interface unit (VIU) for camera  
input  
• 2x CSI with 4 lanes for camera input  
(support 1080p @ 30fps)  
• Image signal processor (ISP),  
supporting 2x1 or 1x2 MPixel @ 30fps  
and 4x1 MPixel for subset of functions  
(exposure control, gamma correction)  
• 2x APEX2-CL Image cognition  
processor (dual 32-bit array processor)  
• JPEG video decoder (8/12-bit)  
• H.264 video decoder (8/10/12-bit), High-  
intra and constrained baseline formats  
• H.264 video encoder (8/10/12-bit), I-  
frames only  
• Safe Fast DMA for data transfers  
between DRAM and System RAM with  
CRC  
Analog  
• 1x 12-bit SAR ADC with self-test  
• Same as S32V234  
• Same as S32V234  
Human-Machine Interface  
(HMI)  
• SIUL, GPIO pins with interrupt support,  
DMA request capability, digital glitch  
filter.  
• Configurable slew rate and drive  
strength on all output pins  
System RAM  
• 4 MB On-Chip System RAM with ECC  
• Run modes:  
• 3 MB On-Chip System RAM with ECC  
• Same as S32V234  
Power Consumption  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
7
Ordering parts  
Table 1. Feature Set  
Feature  
S32V234  
S32V232  
• Frequency scaling and clock  
gating for processing blocks and  
peripherals in run mode  
3 Ordering parts  
3.1 Ordering information  
K N1 V UB R  
B
FS32V23  
4
Device Family  
Core configuration  
Speed configuration  
Device configuration  
Temeprature options  
Shipping method  
Speed configuration  
Temperature options  
Core configuration  
Shipping method  
R = Tape and reel  
(blank) = Trays  
B = Arm Cortex - A53 @800 MHz  
C = Arm Cortex - A53 @1 GHz  
C = -40 to 105°C  
V = -40 to 125 °C  
2 = Dual Arm Cortex - A53  
4 = Quad Arm Cortex - A53  
Device configuration*  
ISP  
Low power  
3D GPU CSE  
eIQ Auto  
(leakage based)  
No  
Yes  
No  
K
L
Yes  
Yes  
No  
No  
Yes  
Yes  
No  
K becomes Q  
L becomes R  
M becomes S  
O becomes T  
J becomes U  
M
O
J
Yes Yes  
Yes Yes  
Yes  
No  
No  
Yes  
Yes  
No  
* All combinations are not orderable  
NOTE  
Not all combinations are orderable. For the latest information  
on orderable parts check https:// www.nxp.com/s32v234 Buy/  
Parametrics section.  
4 General  
4.1 Operation above maximum operating conditions  
S32V234 Data Sheet, Rev. 9, 03/2020  
8
NXP Semiconductors  
General  
Table 2. Operation above maximum operating conditions  
1.8 V DGO Voltage Domain  
Electrical Specifications  
Value  
Conditions  
< 60 s  
Junct Temp  
25 °C  
Absolute Maximum Supply 3.0 V  
Voltage  
Absolute Maximum Supply 2.3 V  
Voltage  
< 10 hr  
25 °C  
Core Voltage Domain  
Electrical Specifications  
Value  
Conditions  
< 60 s  
Junct Temp  
25 °C  
Absolute Maximum Supply 1.29 V  
Voltage  
Absolute Maximum Supply 1.1 V  
Voltage  
< 10 hr  
25 °C  
3.3 V DGO Voltage Domain  
Electrical Specifications  
Value  
Conditions  
< 60 s  
Junct Temp  
25 °C  
Absolute Maximum Supply 4.95 V  
Voltage  
Absolute Maximum Supply 4.29 V  
Voltage  
< 10 hr  
25 °C  
4.2 Recommended operating conditions  
Table 3. Recommended operating conditions  
Symbol  
VDD_GPIO0  
Parameter  
3.3 V I/O segment GPIO0 supply voltage  
1.8 V input/output supply voltage  
3.3 V input/output supply voltage  
Conditions  
Min  
Max  
Unit  
3.15  
1.71  
3.15  
3.6  
V
V
V
VDD_GPIO<n=1,2>  
VDD_HV_IO_VIU0  
VDD_HV_IO_VIU1  
VDD_HV_IO_DIS  
VDD_HV_IO_FLA  
VDD_HV_IO_ETH  
1.95  
3.6  
1.5 V I/O supply voltage  
1.8 V I/O supply voltage  
2.5 V I/O supply voltage  
3.3 V I/O supply voltage  
Common ground voltage1  
1.0 V core domain supply voltage2  
1.425  
1.71  
2.375  
3.15  
0
1.575  
1.95  
2.625  
3.6  
V
V
V
V
V
V
VSS  
0
VDD_LV_CORE_SOC  
,
0.95  
1.05  
VDD_LV_CORE_ARM  
VDD_LV_CORE_GPU  
,
VDD_HV_CSI  
VDD_LV_CSI  
VDD_HV_PLL  
1.8 V supply voltage (for MIPICSI2 D PHY)  
1.0 V supply voltage (for MIPICSI2 D PHY)  
1.8 V supply voltage (for analog circuits, PLLs)  
1.71  
0.95  
1.71  
1.95  
1.05  
1.95  
V
V
V
,
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
9
General  
Table 3. Recommended operating conditions (continued)  
Symbol  
VDD_HV_LFASTPLL  
VDD_HV_FXOSC  
Parameter  
Conditions  
Min  
Max  
Unit  
,
,
VDD_HV_PMC  
,
,
VDDIO_LFAST  
VDD_HV_EFUSE  
VDD_HV_DDR  
VDD_LV_PLL  
VDD_LV_POST  
VREFH_ADC  
VDD_HV_ADV  
VSS_HV_ADV  
VREFL_ADC  
,
1.0 V supply voltage (for analog circuits, PLLs)  
0.95  
1.05  
V
1.8 V ADC high reference voltage  
1.8 V ADC supply voltage  
1.71  
1.71  
0
1.95  
1.95  
0
V
V
ADC ground and low reference voltage  
1.8 V ADC supply ground  
V
0
0
V
VDD_DDR_IO  
DDR I/O supply voltage LPDDR2  
DDR I/O supply voltage DDR3  
DDR I/O supply voltage DDR3L  
PCIe supply voltages  
1.14  
1.425  
1.283  
0.95  
1.71  
-40  
1.30  
1.575  
1.45  
1.05  
1.95  
1053  
125  
25  
V
V
V
PCIE_VP  
PCIE_VPH  
TA  
V
V
Ambient temperature  
°C  
°C  
TJ  
Junction temperature under bias  
Supply ramp rate for all supplies on the device  
-40  
TVDD  
0.05  
V/ms  
1. All the grounds viz. VSS, VSS_FXOSC, and VSS_HV_ADV are tied together at the package level.  
2. VDD_LV_CORE_SOC, VDD_LV_CORE_ARM, and VDD_LV_CORE_GPU supply balls should all be connected together to one power  
plane and one regulator to avoid voltage level differences. If the GPU is power gated as it is not used, the  
VDD_LV_CORE_GPU supply balls have to be statically connected to the ground plane. If the second ARM CPUs per cluster is  
power gated as they are not used, the VDD_LV_CORE_ARM supply balls have to be statically connected to the ground plane.  
3. Maximum ambient temperature requires management of the heat dissipation to ensure the device junction temperature  
does not exceed the maximum.  
4.3 Power Management Controller (PMC) electrical specifications  
PMC is composed of the following blocks:  
• Low voltage detector (LVD_33_PMC) for 3.3 V VDD_GPIO0 supply (GPIO  
segment and PMC) and Low Voltage Detector for FIRC (VDD_HV_FXOSC)  
• Low voltage detector (LVD_18) for VDD_HV_PMC  
• Low voltage detector (LVD_18) for VDD_HV_FXOSC  
• High voltage detector (HVD_18) for VDD_HV_PMC  
• Low voltage detector (LVD_CORE) for VDD_LV_CORE_SOC  
• High voltage detector (HVD_CORE) for VDD_LV_CORE_SOC  
• Power on Reset (POR)  
S32V234 Data Sheet, Rev. 9, 03/2020  
10  
NXP Semiconductors  
General  
Unit  
Table 4. PMC electrical specifications  
Supply  
Parameter Conditions Threshold  
Min  
Typical  
Max  
Status  
during  
power-up  
VDD_LV_CORE_SOC  
low voltage Native  
monitoring  
VTL1  
VTH2  
VTL  
836  
880  
924  
Enabled  
mV  
850  
895  
940  
Trimmed  
896  
910  
924  
VTH  
VTL  
911  
925  
946  
VDD_LV_CORE_SOC  
VDD_HV_PMC  
high  
voltage  
monitoring  
Trimmed  
1049  
1064  
1065  
1080  
1093  
1093  
Disabled  
Enabled  
mV  
mV  
VTH  
PMC  
Native  
VTL  
VTH  
VTL  
VTH  
VTL  
VTH  
1511  
1525  
1620  
1635  
2004  
2019  
1590  
1605  
1650  
1665  
2045  
2060  
1670  
1685  
1680  
1695  
2086  
2101  
supply low  
voltage  
monitor  
Trimmed  
Trimmed  
VDD_HV_PMC  
VDD_GPIO0  
PMC  
Disabled  
Enabled  
mV  
mV  
supply high  
voltage  
monitor  
low voltage Native  
monitor  
VTL  
VTH  
VTL  
VTH  
VTL  
VTH  
VTL  
VTH  
2727  
2746  
2857  
2876  
1511  
1525  
1620  
1635  
1176  
2870  
2890  
2915  
2935  
1590  
1605  
1650  
1665  
1200  
3014  
3035  
2973  
2994  
1670  
1685  
1680  
1695  
1224  
Trimmed  
VDD_HV_FXOSC  
PMC_BGREF  
FXOSC  
supply low  
voltage  
Native  
Enabled  
Enabled  
mV  
mV  
Trimmed  
monitor  
PMC Band Trimmed  
Gap  
Reference  
value  
1. Lower threshold/assert point  
2. Upper threshold/release point  
4.4 Power consumption  
The following table shows the power consumption data. These specifications are subject  
to change per device characterization.  
Table 5. Power consumption  
Parameter  
Description  
Max Values  
125C Tj  
105C Tj  
VDD_LV_CORE (Static)1, 2  
32V234BL Device in reset  
3 A  
2.3 A  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
11  
General  
Table 5. Power consumption (continued)  
Parameter  
Description  
Max Values  
125C Tj  
6.0 A  
6.4 A  
4.8 A  
2.7 A  
4.4 A  
105C Tj  
S32V232BM Device in reset  
S32V234CO Device in reset  
S32V234CK Device in reset  
S32V232BL Device in reset  
S32V232CK Device in reset  
4.5 A  
4.8 A  
3.5 A  
2.0 A  
3.2 A  
VDD_LV_CORE (Dynamic)  
VDD_HV_CSI  
4x A53 CPU with Dhrystone  
MIPS running on each CPU  
@1 GHz3  
1.4 A  
Current for both MIPICSI2  
interfaces operating as per  
1) 10 mA  
2) 1 mA  
1) RX Operation at 1.5 Gbps  
per MIPICSI2  
2) MIPICSI2 not used (IP  
Powered and Disabled)  
VDD_LV_CSI  
Current for both MIPICSI2  
interfaces operating as per  
1) 40 mA  
2) 13 mA  
1) RX Operation at 1.5 Gbps  
per MIPICSI2  
2) MIPICSI2 not used (IP  
Powered and Disabled)  
VDD_HV_PLL  
All five PLLs operating at 1  
GHz VCO frequency  
35 mA  
VDD_HV_LFASTPLL  
Use case:  
1) 26 mA  
2) .1 mA  
1) PLL operating with 320  
MHz (LFAST used)  
2) PLL not operational  
(LFAST not used)  
VDD_HV_FXOSC  
Shared supply for FXOSC  
operating with 40 MHz crystal  
and FIRC oscillator  
5 mA  
VDD_HV_PMC  
As per default usage (no use  
case differentiation)  
10 mA  
VDD_HV_EFUSE  
Use case:  
1) 10 mA  
1) eFuse programming  
happening  
VDD_LV_PLL  
PCIE_VP  
All five PLLs operating at 1  
GHz VCO frequency  
80 mA  
Use case:  
1) 80 mA  
2) 30 mA  
1) 5 GHz operation (PCIe 2.0)  
2) Reset/idle  
PCIE_VPH  
Use case:  
1) 50 mA  
2) 20 mA  
1) 5 GHz operation (PCIe 2.0)  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
12  
NXP Semiconductors  
General  
Table 5. Power consumption (continued)  
Parameter  
Description  
Max Values  
125C Tj  
105C Tj  
2) Reset/idle  
VDD_HV_ADV  
VDD_REFH_ADC  
ADC operational  
1 mA  
Voltage reference for ADC  
80 μA  
1. Data represented is at 125 °C Tj and 1.01 V vdd conditions  
2. Includes SoC, GPU, and ARM supply combinations depending on use case description.  
3. Adder to the static idd current component. 4xCortex A53 executing Dhrystone MIPS in AArch64 and the interconnect,  
System RAM, FastDMA, Cortex M4, peripheral bridges, FCCU, CSE, MEMU, PCIe, and STCU are clocked - static power  
consumption excluded.  
4.5 Electrostatic discharge (ESD) specifications  
Electrostatic discharges are applied to the pins of each sample in conformity with AEC-  
Q100-002/-011 to meet the HBM and CDM ratings described below.  
Table 6. ESD ratings1  
Symbol  
VESD(HBM)  
Parameter  
Conditions  
Class  
Max value2  
2000  
Unit  
Electrostatic discharge  
(Human Body Model)  
TA = 25 °C conforming to AEC- H1C  
Q100-002  
V
V
VESD(CDM)  
Electrostatic discharge  
(Charged Device Model)  
TA = 25 °C conforming to AEC- C3A  
Q100-011  
500  
1. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification  
requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at  
room temperature followed by hot temperature, unless specified otherwise in the device specification.  
2. Data based on characterization results, not tested in production.  
4.6 Electromagnetic Compatibility (EMC) specifications  
EMC measurements to IC-level IEC standards are available from NXP on request.  
4.7 PCB routing guidelines  
DDR3/DDR3L PCB design  
• CLK/Addess/Commands  
• Route with 50 ohm controlled impedance and differential pair (CLK) with 100  
ohm controlled impedance  
• Use Fly by topology in case of multiple memory components  
• Address and command lines Terminated to VTT with 50 ohm  
• To be referenced with Power, not Ground  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
13  
General  
• Address/Cmd to be routed within 66 mils with respect to CLK and to be matched  
from controller to memory; memory to memory as well  
• All traces to be routed in internal layers  
• Preference is to use only two layers for routing this group  
• Limit the via number to less than three  
NOTE  
The differential clock lines on the DDR3 interface should  
use AC termination scheme, with a 0.1 µF series capacitor  
and referenced to DDR IO supply (VDD_DDR_IO).  
• Data/Strobe  
• Route with 50 ohm controlled impedance and differential pair (DQS strobe) with  
100 ohm controlled impedance  
• Data to be routed within 33 mils with respect to respective strobe  
• To be referenced with Ground  
• All traces to be routed in internal layers  
• Strictly to be routed in only two layers  
• Avoid more than two vias  
LPDDR2 PCB design  
• CLK/Addess/Commands  
• Route with 50 ohm controlled impedance and differential pair (CLK) with 100  
ohm controlled impedance  
• To be referenced with Power, not Ground  
• Address/Cmd to be routed within 66 mils with respect to CLK and to be matched  
from controller to memory  
• All traces to be routed in internal layers and delay should be less than 150 ps  
• Preference is to use only two layers for routing this group  
• Limit the via number to less than three  
• Data/Strobe  
• Route with 50 ohm controlled impedance and differential pair (DQS strobe) with  
100 ohm controlled impedance  
• Data to be routed within 33 mils with respect to respective strobe  
• To be referenced with Ground  
• All traces to be routed in internal layers and delay should be less than 150 ps  
• Strictly to be routed in only two layers  
• Avoid more than two vias  
GPIO Interfaces  
• QuadSPI  
• Put 22 ohm series termination on board when operating with  
SIUL2_MSCRn[DSE] 111  
S32V234 Data Sheet, Rev. 9, 03/2020  
14  
NXP Semiconductors  
I/O parameters  
• TRACE  
• Put 22 ohm series termination on board when operating with  
SIUL2_MSCRn[DSE] 111  
• ENET  
• Put 22 ohm series termination on board when operating with  
SIUL2_MSCRn[DSE] 111  
5 I/O parameters  
5.1 General purpose I/O parameters  
5.1.1 GPIO speed at various voltage levels  
NOTE  
Rise/fall times numbers in Datasheet are guaranteed by design;  
to obtain actual rise/fall times parameters with specific  
packages and boards, use appropriate I/O IBIS model.  
Table 7. GPIO rise/fall times (1.8 V range)  
Parameter  
Symbol  
Drive strength  
SIUL2_MSCRn[D  
SE]  
Slew  
rate  
Test  
conditions  
Typ  
Max  
Unit  
IO output  
tpr  
001  
slow  
15 pF Cload  
on pad  
7.17/7.55  
7.13/7.52  
3.14/3.31  
2.66/3.04  
2.56/2.51  
1.97/2.20  
3.08/3.02  
2.59/2.58  
2.56/2.42  
1.84/1.96  
1.82/1.67  
1.13/1.24  
ns  
transition  
fast  
time, rise/fall1  
010  
011  
100  
101  
111  
slow  
fast  
slow  
fast  
slow  
fast  
slow  
fast  
slow  
fast  
1. Max condition: wcs model, 0.9 V vddi, 1.62 V ovdd, and 125 °C. Input transition time is 120 ps.  
Slow slew rate means SIUL2_MSCRn[SRE] = ‘00’, fast slew rate means SIUL2_MSCRn[SRE] = ‘11’  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
15  
General purpose I/O parameters  
Table 8. GPIO rise/fall times (2.5 V range)  
Parameter  
Symbol  
Drive strength  
SIUL2_MSCRn[D  
SE]  
Slew  
rate  
Test  
conditions  
Typ  
Max  
Unit  
IO output  
tpr  
001  
slow  
15 pF Cload  
on pad  
7.41/8.22  
7.36/8.16  
3.30/3.74  
2.76/3.38  
3.44/3.04  
2.75/2.55  
4.05/3.54  
3.56/2.97  
3.39/2.93  
2.72/2.47  
2.31/2.03  
1.80/1.75  
ns  
transition  
fast  
time, rise/fall1  
010  
011  
100  
101  
111  
slow  
fast  
slow  
fast  
slow  
fast  
slow  
fast  
slow  
fast  
1. Max condition for tpr: wcs model, 0.9 V vddi, 2.25 V ovdd, and 125 °C. Input transition time is 125 ps. Slow slew rate  
means SIUL2_MSCRn[SRE] = ‘00’, fast slew rate means SIUL2_MSCRn[SRE] = ‘11’  
Table 9. GPIO rise/fall times (3.3 V range)  
Parameter  
Symbol  
Drive strength  
SIUL2_MSCRn[D  
SE]  
Slew  
rate  
Test  
conditions  
Typ  
Max  
Unit  
IO output  
tpr  
001  
slow  
15 pF Cload  
on pad  
7.75/8.45  
7.65/8.39  
3.49/3.89  
2.84/3.52  
3.47/3.16  
2.90/2.73  
4.09/3.58  
3.73/3.07  
3.29/3.00  
2.68/2.37  
2.23/2.18  
1.47/1.57  
ns  
transition  
fast  
time, rise/fall1  
010  
011  
100  
101  
111  
slow  
fast  
slow  
fast  
slow  
fast  
slow  
fast  
slow  
fast  
1. Max condition for tpr: wcs model, 0.9 V vddi, 2.97 V ovdd, and 125 °C. Input transition time is 120 ps.  
slow slew rate means SIUL2_MSCRn[SRE] = ‘00’, fast slew rate means SIUL2_MSCRn[SRE] = ‘11’  
S32V234 Data Sheet, Rev. 9, 03/2020  
16  
NXP Semiconductors  
General purpose I/O parameters  
NOTE  
The maximum rise time for all GPIO pins is 1 ms. Input pins do  
not support hysteresis, therefore very slow ramps (like the ones  
generated by an RC circuit with a large RC value) can induce  
bounces in the input read state during the transition from logic  
low to logic high or vice versa.  
5.1.2 DC electrical specifications  
Table 10. DC electrical specifications  
Symbol  
Parameter  
Test conditions  
Ioh=-100 μA  
Min  
Typ  
Max  
Unit  
Voh  
Vol  
Vihf  
Vil  
High-level output voltage  
Low-level output voltage  
High-Level DC input voltage  
Low-Level DC input voltage  
ovdd1-0.15 —  
V
Iol=100 μA  
0.15  
V
0.7*ovdd  
ovdd  
V
0
0.2*ovdd  
V
Iin2  
Input current (no pull-up/down) Vin = ovdd or 0  
8
μA  
μA  
Iin_33pu2  
Iin_50pu2  
Iin_100pu2  
Iin_100pd2  
Input current (33 kilohm PU)  
Input current (50 kilohm PU)  
Vin = 0  
220  
6
Vin = ovdd  
Vin = 0  
150  
6
μA  
μA  
μA  
Vin = ovdd  
Input current (100 kilohm PU) Vin = 0  
Vin = ovdd  
Input current (100 kilohm PD) Vin = 0  
Vin = ovdd  
60  
6
8
50  
1. ovdd is the IO supply for the pads.  
2. Max condition: bcs model, 3.6 V, and 125 °C. These values are for I/O buffers.  
NOTE  
After bootup, application software should switch to manual  
voltage detect mode using VSEL_x settings of SRC_GPR14  
register to ensure optimum performance of the GPIO pads.  
Please refer to SRC chapter in the Reference Manual for the  
register details.  
Table 11. Current-draw Characteristics for DDR_VREF  
Symbol  
Parameter  
Min  
Max  
Unit  
DDR_VREF  
Current-draw characteristics for  
DDR_VREF  
1
mA  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
17  
General purpose I/O parameters  
5.2 DDR pads  
5.2.1 DDR3 mode  
5.2.1.1 DDR3 mode DC electrical specifications  
Table 12. DDR3 mode DC electrical specifications  
Parameter  
Symbol  
Test  
Min  
Typ  
Max  
Unit  
conditions  
High-level output voltage  
Low-level output voltage  
High-level DC input voltage  
High-level DC input voltage  
Input reference voltage  
Voh  
Vol  
Ioh=-100 μA  
0.8*ovdd  
0.2*ovdd  
ovdd  
V
V
Iol=100 μA  
Vih (DC)  
Vil (DC)  
Vref  
Vref + 0.2  
ovss  
V
Vref - 0.2  
0.51*ovdd  
V
0.49*ovdd 0.5*ovdd  
V
Termination voltage1  
Input current (no pullup/pulldown)3  
Vtt2  
0.5*ovdd  
V
Iin  
Vi = 0 or ovdd  
5
μA  
%
Pullup/pulldown impedance  
mismatch  
MMpupd  
34 Ohm full  
strength driver  
-10  
+10  
Driver 240 Ohm unit calibration  
resolution  
Rres  
10  
50  
Ω
Rkeep4  
Pad keeper  
resistance  
20  
kΩ  
1. Vtt is expected to track ovdd/2.  
2. Vtt is not applied directly to the device. Minimum and Maximum values are system dependant.  
3. Typ condition: typ model, 1.5V, and 25 °C. Max condition: bcs model, 1.575V, and -40 °C. Min condition: wcs model,  
1.425V, and 125 °C.  
4. Typ condition: typ model, 1.5 V, and 25 °C, max condition: wcs model, 1.425 V, and 125 °C, min condition: bcs model,  
1.575 V, and -40 °C.  
5.2.2 DDR3L mode  
5.2.2.1 DDR3L mode DC electrical specifications  
Table 13. DDR3L mode DC electrical specifications  
Parameter  
Symbol  
Voh  
Test conditions  
Ioh = -100 μA  
Iol = 100 μA  
Min  
0.8*ovdd  
Typ  
Max  
Unit  
V
High-level output voltage  
Low-level output voltage  
High-level DC input voltage  
Vol  
0.2*ovdd  
ovdd  
V
Vih (DC)  
Vref + 0.2  
V
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
18  
NXP Semiconductors  
LPDDR2 mode  
Table 13. DDR3L mode DC electrical specifications (continued)  
Parameter  
High-level DC input voltage  
Input reference voltage  
Vref current draw  
Symbol  
Vil (DC)  
Vref  
Test conditions  
Min  
Typ  
Max  
Unit  
V
ovss  
Vref - 0.2  
0.49*ovdd 0.5*ovdd  
0.51*ovdd  
V
Icc-vref  
Vtt1  
0.5*ovdd  
1
5
mA  
V
Termination voltage  
Vi = 0 or ovdd  
Input current (no pullup/pulldown)  
Iin  
μA  
%
Pullup/pulldown impedance  
mismatch (full strength driver)  
MMpupd  
-10  
+10  
Driver unit (240 Ohm) calibration  
resolution  
Rres  
10  
50  
Ω
Rkeep  
Pad keeper  
resistance  
20  
kΩ  
1. Vtt is not applied directly to the device. Minimum and Maximum values are system dependant.  
5.2.3 LPDDR2 mode  
5.2.3.1 LPDDR2 mode DC electrical specifications  
Table 14. LPDDR2 mode DC electrical specifications  
Parameter  
Symbol  
Voh  
Test conditions  
Min  
0.9*ovdd  
Typ  
Max  
Unit  
High-level output voltage  
Low-level output voltage  
Input reference voltage  
High-level DC input voltage  
High-level DC input voltage  
Ioh = -100 μA  
V
V
Vol  
Iol = 100 μA  
0.1*ovdd  
Vref  
0.49*ovdd 0.5*ovdd 0.51*ovdd  
V
Vih (DC)  
Vil (DC)  
Iin  
Vref + 0.17  
ovss  
ovdd  
Vref - 0.17  
5
V
V
Input current (no pullup/  
pulldown)1  
Vi = ovdd or 0  
μA  
Pullup/pulldown impedance  
mismatch  
MMpupd  
Rres  
34 Ohm full strength  
driver  
-15  
+15  
10  
%
Ω
Driver 240 Ohm unit  
calibration resolution  
Rkeep2  
Pad keeper  
resistance  
20  
50  
kΩ  
1. Typ condition: typ model, 1.2 V, and 25 °C. Max condition: bcs model, 1.32 V, and -40 °C. Min condition: wcs model, 1.14  
V, and 125 °C.  
2. Typ condition: typ model, 1.2 V, and 25 °C, max condition: wcs model, 1.14 V, and 125 °C, min condition: bcs model, 1.32  
V, and -40 °C.  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
19  
Peripheral operating requirements and behaviors  
5.3 Boot Configuration Pins Specification  
Value driven on RCON and BOOTMOD pins should be stable for at least 1 µs after  
RESET pin is deasserted.  
NOTE  
External pull up/down resistors must be used on the  
BOOTMOD pins in order to ensure latching at the correct state.  
NOTE  
NXP would anticipate that most customers would use the boot  
from fuses option in a production environment. However, there  
is no reliability impact if the device is configured by RCON  
rather than fuses.  
6 Peripheral operating requirements and behaviors  
6.1 Analog modules  
6.1.1 ADC electrical specifications  
The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-  
Digital Converter.  
S32V234 Data Sheet, Rev. 9, 03/2020  
20  
NXP Semiconductors  
Analog modules  
Offset Error OSE Gain Error GE  
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
1 LSB ideal = (VrefH-VrefL)/4096 = 1.8V/4096 =  
. 439mV  
Total Unadjusted Error TUE = +/-10 LSB =  
+/-4.39 mV  
code out7  
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(5)  
4
3
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer  
curve  
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
4089 4090 4091 4092 4093 4094 4095  
Vin(A) (LSBideal  
)
Offset Error OSE  
Figure 2. ADC characteristics and error definitions  
NOTE  
While measuring scaled supply voltages on ADC Channels,  
Maximum (+5/-10%) variation can be expected .  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
21  
Analog modules  
6.1.1.1 Input equivalent circuit  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Sampling  
Selection  
Source  
Filter  
Current Limiter  
R
R
R
R
R
S
F
L
SW1  
AD  
C
V
C
C
P1  
C
S
A
F
P2  
R
Source Impedance  
Filter Resistance  
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance  
Sampling Switch Impedance  
S
F
F
L
R
C
R
R
R
C
C
SW1  
AD  
P
Pin Capacitance (two contributions, C and C  
Sampling Capacitance  
)
P1  
P2  
S
Figure 3. Input equivalent circuit  
Table 15. ADC conversion characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
MHz  
fCK  
ADC Input Clock frequency  
(Bus clock)  
20  
20  
80  
40  
fAD_clk  
ADC Conversion clock  
frequency1  
MHz  
fs  
Sampling frequency  
Sample time2  
Conversion time3  
0.5  
5
MHz  
ns  
tsample  
tconv  
CS  
500  
1400  
ns  
ADC input sampling  
capacitance  
pF  
CP1  
ADC input pin capacitance 1  
ADC input pin capacitance 2  
5
pF  
pF  
Ω
CP2  
0.8  
875  
RSW1  
Internal resistance of analog  
source  
RAD  
Internal resistance of analog  
source  
825  
Ω
INL4  
DNL  
OFS  
GNE  
Integral non linearity  
Differential non linearity  
Offset error  
–3  
–2  
–6  
–6  
3
2
6
6
LSB  
LSB  
LSB  
LSB  
nA  
Gain error  
Input (single ADC Max leakage  
channel)  
125C  
2000  
TUE  
Total unadjusted error  
–8  
8
LSB  
S32V234 Data Sheet, Rev. 9, 03/2020  
22  
NXP Semiconductors  
Clocks and PLL interfaces modules  
1. Please see description of Clock & reset section in ADC chapter in Reference Manual for details. User need to generate  
AD_clk = 40 MHz for 0.5 MSPS operation. For example, if fck = 80 MHz, configure MCR[8].ADCLKSE = 0 and  
MCR[4].ADCLKDIV = 0 (default).  
2. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tsample. After the end of the  
sample time tsample, changes of the analog input voltage have no effect on the conversion result. Values for the sample  
clock tsample depend on programming. For internal ADC channels, the minimum sampling time required is 3 microsecond.  
3. This parameter does not include the sample time tsample, but only the time for determining the digital result and the time to  
load the result register with the conversion result.  
4. Specifications are quoted here for input signal ranging from 150 mV to VDD_HV_ADC - 150 mV. For signals outside this  
range, the Specifications may degrade beyond limits specified in this table.  
6.1.2 Thermal Monitoring Unit (TMU)  
The following table describes TMU electrical characteristics.  
Table 16. TMU electrical characteristics  
Symbol  
Parameter  
Conditions  
Value  
Typ  
Unit  
Min  
Max  
Tj  
Temperature monitoring  
range  
-40  
125  
°C  
TSENS  
TACC  
Sensitivity  
Accuracy  
2.5  
mV/°C  
°C  
TJ = -40 °C to 40 °C  
TJ = 40 °C to 125 °C  
-10  
-6  
+10  
+6  
°C  
6.2 Clocks and PLL interfaces modules  
6.2.1 Main oscillator electrical characteristics  
The device provides an oscillator/resonator driver of a Pierce-type structure.  
Table 17. Main oscillator electrical characteristics  
Symbol  
Parameter  
Conditions  
Value  
Typ  
40.0  
Unit  
Min  
Max  
fFXOSCHS  
TFXOSCHSSU  
VIH  
Oscillator frequency  
n/a  
21  
MHz  
ms  
Oscillator start-up time  
fFXOSCHS = 40 MHz  
Input high level CMOS  
Schmitt Trigger  
Vref =  
Vref+0.5  
0
VDD_HV_FXOS V  
C
0.5*VDD_HV_FXOSC  
where VDD_HV_FXOSC  
is FXOSC HV Supply  
VIL  
Input low level CMOS  
Schmitt Trigger  
Vref =  
Vref – 0.5  
V
0.5*VDD_HV_FXOSC  
where VDD_HV_FXOSC  
is FXOSC HV Supply  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
23  
Clocks and PLL interfaces modules  
1. The start-up time is dependent upon crystal characteristics, board leakage, etc, high ESR and excessive capacitive loads  
can cause long start-up time  
Following crystals are used in internal crystal oscillator validation:  
• NX3225 – 40 MHz; Load capacitance = 8 pF  
• NX5032 – 40 MHz; Load capacitance = 8 pF  
6.2.2 48 MHz FIRC electrical characteristics  
Table 18. FIRC electrical specifications  
Symbol  
Parameter  
Conditions  
Value  
Typ  
Unit  
Min  
Max  
FTarget  
FIRC target  
frequency  
(trimmed)  
48  
MHz  
%
δFvar_T  
FIRC frequency  
variation with  
respect to  
-10  
+10  
supply and  
temperature  
after process  
trimming  
6.2.3 PLL electrical specifications  
Table 19. PLL electrical characteristics 1  
Symbol  
Parameter  
Conditions  
Value  
Typ  
Unit  
Min  
Max  
fPLLIN  
PLL input clock2  
PLL input clock duty cycle 2  
203  
403  
60  
MHz  
%
ΔPLLIN  
40  
tPLLLOCK  
ΔPLLT  
PLL lock time  
100  
150  
560  
32  
µs  
Period jitter  
ps  
ΔPLLTIE  
fPLLMOD  
δPLLMOD  
TIE  
ps  
SSCG modulation frequency  
kHz  
%
SSCG modulation depth (Down —  
Spread)  
0.50  
2.74  
1. The jitter values are gauranteed for following conditions:  
1. Measurement being done on LFAST TX pad with observed frequency greater than 250 M and less than 320 M  
2. Minimum SOC activity - Operations required to observe clock must be functional.  
3. Maximum frequency change in SSCG modulation is limited by following relation: Modulation Depth * VCO Frequency  
< PLL Reference (PFD) Frequency  
2. PLL0IN clock retrieved from either internal RCOSC or external FXOSC clock. Input characteristics are granted when using  
internal RCOSC or external oscillator is used in functional mode.  
3. The PLLIN clock is the frequency after the PREDIV(Pre-divider) value division, and before the Phase detector block.  
Please refer to the PLLs section of clocking chapter in the Reference Manual.  
S32V234 Data Sheet, Rev. 9, 03/2020  
24  
NXP Semiconductors  
Clocks and PLL interfaces modules  
4. STEPSIZE x STEPNO < 18432  
For the PLL frequencies supported by this device, refer to the Table - "PLL frequencies"  
in the "Clocking" chapter of the Reference Manual.  
6.2.4 DFS electrical specifications  
DFS takes input clock from PLL output. Here is relation between input and output clock  
of each phase divider:  
F(dfsclkout) = F(dfsclkin)/[mfi+(mfn/256)]  
mfi : integer part of division [1:255]  
mfn: Fractional part of division [1:255]  
Table 20. DFS electrical specification1  
Parameter  
Input Frequency  
Period jitter  
TIE  
Min  
Typical  
Max  
Unit  
800  
1066  
300  
MHz  
ps  
600  
ps  
1. DFSes mfi, mfn and frequencies are defined and restricted as per Reference Manual. See the table "DFS (mfi, mfn)  
settings" in the "Clocking" chapter of the Reference Manual for the supported mfi and mfn combinations.  
6.2.5 LFAST PLL Electrical Specifications  
The following table lists AC specification of the LFAST PLL block.  
Table 21. LFAST PLL Interface AC  
Specifications  
Parameter  
PLL input clock  
Min  
Typical  
Max  
Unit  
10  
312  
84  
26  
MHz  
MHz  
µs  
PLL VCO Frequency  
Phase Lock time  
RMS Period Jitter  
Long Term Jitter2  
Random Jitter  
320  
50  
401  
ps  
ps  
Deterministic Jitter  
Total Jitter @ BER 10-9  
80  
1.313  
ps  
ns  
1.09  
1. When SysClk = 26 MHz  
2. VCO clock measured over 100 µs acquisition at ZipWire TX LVDS across 100 ohm load  
3. Only Total Jitter is given a maximum specification as variation of Random and Deterministic jitter is not critical. Any  
combined Random and Deterministic jitter yielding a Total Jitter @ 10-9 BER is within maximum specification and is  
acceptable  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
25  
Memory interfaces  
6.3 Memory interfaces  
6.3.1 QuadSPI AC specifications  
• Measurements are with a load of 35 pF on output pins. Input slew: 1 ns,  
SIUL2_MSCRn[DSE] = 111, and SIUL2_MSCRn[SRE] = 11  
• QuadSPI input timing is with 15 pF load on flash output.  
• QuadSPI_MCR[DQS_EN] must be set as 1 for SDR READ  
NOTE  
These are not necessarily the default configuration after chip  
resets. You must ensure the above chip configuration to match  
the measurements in this section.  
The following table lists various QuadSPI modes and their corresponding configurations.  
Please refer to the device Reference Manual for register and bit descriptions.  
Table 22. QuadSPI read/write settings  
Modes supported by QuadSPI_ QuadSPI_ QuadS Quad QuadSP QuadSPI_SO QuadSPI_SO QuadSPI_  
QuadSPI  
MCR[DDR MCR[DQS PI_MC SPI_M I_MCR  
CCR  
CCR  
[FDCC_FA]  
FLSHCR[  
TDH]  
_EN]  
_EN]  
R
CR  
[DQS_M [FDCC_FB]  
DSL]  
[DQS_ [REF  
CD]  
000  
CLK_  
SEL]  
SDR mode Internal  
0
1
1
1
1
1
1
1
39h @ 3.3 V  
3Fh @ 1.8 V  
39h @ 3.3 V  
3Fh @ 1.8 V  
00  
DQS mode  
DDR mode Internal  
DQS mode  
000  
000  
0
0
1
0
4Ah @ 3.3 V 4Ah @ 3.3 V  
01  
01  
50h @ 1.8 V  
00h  
50h @ 1.8 V  
00h  
External  
DQS mode  
(supported  
by  
HyperFlas  
h)  
SDR mode  
For SDR mode, QuadSPI_MCR[DQS_EN] must be set as '1'.  
S32V234 Data Sheet, Rev. 9, 03/2020  
26  
NXP Semiconductors  
Memory interfaces  
1
2
3
Clock  
SCK  
CS  
Tck  
Tih  
Tis  
Data in  
Figure 4. QuadSPI input timing (SDR mode) diagram  
NOTE  
• A negative time indicates the actual capture edge inside the  
device is earlier than clock appearing at pad.  
• All board delays need to be added appropriately  
• Input hold time being negative does not have any  
implication or max achievable frequency  
Table 23. QuadSPI input timing (SDR mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Tis  
Setup time for incoming data  
Hold time for incoming data  
SCK clock frequency  
2.5  
1
ns  
Tih  
ns  
FSCK  
104  
MHz  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
27  
Memory interfaces  
1
2
3
Clock  
SCK  
CS  
Tck  
Tcsh  
Tcss  
Toh  
Tov  
Data out  
Figure 5. QuadSPI output timing (SDR mode) diagram  
Table 24. QuadSPI output timing (SDR mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Tov  
Output Data Valid  
Output Data Hold  
1.5  
ns  
Toh  
–1.5  
2
ns  
FSCK  
Tcss  
Tcsh  
SCK clock frequency  
104  
MHz  
ns  
Chip select output setup time  
Chip select output hold time  
1
ns  
NOTE  
For any frequency setup and hold specifications of the memory  
should be met.  
DDR mode  
1
2
3
Clock  
SCK  
CS  
Tck  
Tih  
Tis  
Data in  
Figure 6. QuadSPI input timing (DDR mode) diagram  
S32V234 Data Sheet, Rev. 9, 03/2020  
28  
NXP Semiconductors  
Memory interfaces  
Configuration  
Table 25. QuadSPI input timing (DDR mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
2.5 @ 3.3 V  
2 @ 1.8 V  
1.5  
Max  
Tis  
Setup time for incoming data  
ns  
Tih  
Hold time for incoming data  
SCK Clock Frequency  
ns  
FSCK  
50 (Internal DQS) MHz  
@ 3.3 V  
See Table 22  
56 (Internal DQS)  
@ 1.8 V  
1
2
3
Clock  
SCK  
CS  
Tck  
Tov  
Toh  
Data out  
Figure 7. QuadSPI output timing (DDR mode) diagram  
Table 26. QuadSPI output timing (DDR mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
1/(4*FSCK) + 1.5  
Tov  
Toh  
Output Data Valid  
Output Data Hold  
ns  
ns  
1/(4*FSCK) —  
- 1.5  
HyperFlash mode  
Maximum clock frequency = 100 MHz.  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
29  
Memory interfaces  
RDS  
TsMIN  
ThMIN  
DI[7:0]  
Figure 8. QuadSPI input timing (HyperFlash mode) diagram  
Table 27. QuadSPI input timing (HyperFlash mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
0.950  
0.950  
Max  
TsMIN  
ThMIN  
Setup time for incoming data  
Hold time for incoming data  
ns  
ns  
CK  
CK 2  
TclkSKMAX  
TclkSKMIN  
THO  
TDVO  
Output Invalid Data  
Figure 9. QuadSPI output timing (HyperFlash mode) diagram  
Table 28. QuadSPI output timing (HyperFlash mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
TdvMAX  
Tho  
Output Data Valid  
Output Data Hold  
1
3.7  
ns  
ns  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
30  
NXP Semiconductors  
Memory interfaces  
Table 28. QuadSPI output timing (HyperFlash mode) specifications (continued)  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
T/4 + 0.150 ns  
T/4 – 0.150 — ns  
TclkSKMAX  
TclkSKMIN  
Ck to Ck2 skew max  
Ck to Ck2 skew min  
6.4 DDR SDRAM Specific Parameters (DDR3, DDR3L, and  
LPDDR2)  
6.4.1 DDR3 and DDR3L timing parameters  
NOTE  
Operating voltages of DDR3 and DDR3L are different.  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
31  
Memory interfaces  
Figure 10. DDR3 and DDR3L command and address timing parameters  
NOTE  
RESET pin has an external weak pull DOWN requirement if  
DDR3 memory is NOT required to support content retention in  
the device low power modes where core voltage is off but  
DRAM voltage is on.  
NOTE  
RESET pin has an external weak pull UP requirement if DDR3  
memory is required to support content retention in the device  
low power modes where core voltage is off but DRAM voltage  
is on.  
NOTE  
CKE pin has an external weak pull down requirement.  
S32V234 Data Sheet, Rev. 9, 03/2020  
32  
NXP Semiconductors  
Memory interfaces  
NOTE  
DDR3 and DDR3L timing parameters are compliant with  
JESD79-3F and JESD79-3-1A.01 specifications respectively.  
Table 29. DDR3 and DDR3L timing parameter  
ID  
Parameter  
Symbol  
CK = 533 MHz  
Unit  
Min  
Max  
DDR1  
DDR2  
DDR4  
CK clock high-level  
width  
tCH  
tCL  
tIS  
0.47  
0.53  
tCK (avg)  
tCK (avg)  
ps  
CK clock low-level  
width  
0.47  
280  
0.53  
CS, RAS, CAS,  
CKE, WE, ODT  
setup time  
DDR5  
CS, RAS, CAS,  
CKE, WE, ODT  
hold time  
tIH  
300  
ps  
DDR6  
DDR7  
Address output  
setup time  
tIS  
tIH  
280  
300  
ps  
ps  
Address output  
hold time  
NOTE  
All measurements are in reference to Vref level.  
NOTE  
Measurements were done using balanced load and 25 ohms  
resistor from outputs to VDD_REF.  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
33  
Memory interfaces  
6.4.2 DDR3 and DDR3L read cycle  
Figure 11. DDR3 and DDR3L read cycle  
Table 30. DDR3 and DDR3L read cycle  
ID  
Parameter  
Symbol  
CK = 533 MHz  
Unit  
Min  
Max  
DDR26  
Minimum required DQ valid  
window width  
563  
ps  
NOTE  
To receive the reported setup and hold values, read calibration  
should be performed in order to locate the DQS in the middle of  
DQ window.  
NOTE  
All measurements are in reference to Vref level.  
NOTE  
Measurements were done using balanced load and 25 ohms  
resistor from outputs to VDD_REF  
S32V234 Data Sheet, Rev. 9, 03/2020  
34  
NXP Semiconductors  
Memory interfaces  
6.4.3 DDR3 and DDR3L write cycle  
Figure 12. DDR3 and DDR3L write cycle  
Table 31. DDR3 and DDR3L write cycle  
ID  
Parameter  
Symbol  
CK = 533 MHz  
Unit  
Min  
Max  
DDR17  
DDR18  
DDR21  
DQ and DQM setup time to DQS  
(differential strobe)  
tDS  
tDH  
206  
ps  
ps  
DQ and DQM hold time to DQS  
(differential strobe)  
280  
DQS latching rising transitions to  
associated clock edges  
tDQSS  
-0.25  
+0.25  
tCK (avg)  
DDR22  
DDR22  
DQS high level width  
DQS low level width  
tDQSH  
tDQSL  
0.45  
0.45  
0.55  
0.55  
tCK (avg)  
tCK (avg)  
NOTE  
To receive the reported setup and hold values, write calibration  
should be performed in order to locate the DQS in the middle of  
DQ window.  
NOTE  
All measurements are in reference to Vref level.  
NOTE  
Measurements were done using balanced load and 25 ohms  
resistor from outputs to VDD_REF.  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
35  
Memory interfaces  
6.4.4 LPDDR2 timing parameter  
Figure 13. LPDDR2 command and address timing parameter  
NOTE  
RESET pin has a external weak pull DOWN requirement if  
LPDDR2 memory is NOT required to support content retention  
in the device low power modes where core voltage is off but  
DRAM voltage is on.  
NOTE  
RESET pin has a external weak pull UP requirement if  
LPDDR2 memory is required to support content retention in the  
device low power modes where core voltage is off but DRAM  
voltage is on.  
NOTE  
CKE pin has a external weak pull down requirement.  
NOTE  
LPDDR2 timing parameters are compliant with JESD209-2B  
specification.  
Table 32. LPDDR2 timing parameter  
ID  
Parameter  
Symbol  
CK = 533 MHz  
Min  
Unit  
Max  
0.55  
0.55  
LP1  
LP2  
LP3  
LP4  
LP3  
LP4  
SDRAM clock high-level width  
SDRAM clock LOW-level width  
CS, CKE setup time  
CS, CKE hold time  
tCH (avg)  
tCL (avg)  
tIS  
0.45  
0.45  
235  
250  
235  
250  
tCK (avg)  
tCK (avg)  
ps  
ps  
ps  
ps  
tIH  
CA setup time  
tIS  
CA hold time  
tIH  
S32V234 Data Sheet, Rev. 9, 03/2020  
36  
NXP Semiconductors  
Memory interfaces  
NOTE  
All measurements are in reference to Vref level.  
NOTE  
Measurements were done using balanced load and 25 ohms  
resistor from outputs to VDD_REF.  
6.4.5 LPDDR2 read cycle  
Figure 14. LPDDR2 read cycle  
Table 33. LPDDR2 read cycle  
ID  
Parameter  
Symbol  
CK = 533 MHz  
Unit  
Min  
Max  
LP26  
Minimum required DQ valid  
window width for LPDDR2  
364  
ps  
NOTE  
To receive the reported setup and hold values, read calibration  
should be performed in order to locate the DQS in the middle of  
DQ window.  
NOTE  
All measurements are in reference to Vref level.  
NOTE  
Measurements were done using balanced load and 25 ohms  
resistor from outputs to VDD_REF  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
37  
Memory interfaces  
6.4.6 LPDDR2 write cycle  
Figure 15. LPDDR2 write cycle  
Table 34. LPDDR2 write cycle  
ID  
Parameter  
Symbol  
CK = 533 MHz  
Unit  
Min  
Max  
LP17  
LP18  
LP21  
DQ and DQM setup time to DQS  
(differential strobe)  
tDS  
tDH  
280  
ps  
ps  
DQ and DQM hold time to DQS  
(differential strobe)  
220  
DQS latching rising transitions to  
associated clock edges  
tDQSS  
0.75  
1.25  
tCK (avg)  
LP22  
LP23  
DQS high level width  
DQS low level width  
tDQSH  
tDQSL  
0.4  
0.4  
tCK (avg)  
tCK (avg)  
NOTE  
To receive the reported setup and hold values, write calibration  
should be performed in order to locate the DQS in the middle of  
DQ window.  
NOTE  
All measurements are in reference to Vref level.  
NOTE  
Measurements were done using balanced load and 25 ohms  
resistor from outputs to VDD_REF.  
S32V234 Data Sheet, Rev. 9, 03/2020  
38  
NXP Semiconductors  
Communication modules  
6.5 Communication modules  
6.5.1 DSPI timing  
Measurements are with a load of 45 pF on output pins. Input slew = 1 ns,  
SIUL2_MSCRn[DSE] = 101, and SIUL2_MSCRn[SRE] = 11.  
NOTE  
These are not necessarily the default configuration after chip  
resets. You must ensure the above chip configuration to match  
the measurements in this section.  
Table 35. DSPI timing  
No.  
Symbol  
tSCK  
Parameter  
Conditions  
Min  
Max  
Unit  
1
DSPI cycle time  
Master (MTFE = 0)  
401  
40  
-
-
-
-
-
ns  
Slave (MTFE = 0)  
Slave Receive Only Mode2  
16  
2
3
4
5
6
tCSC  
tASC  
tSDC  
tA  
PCS to SCK delay  
After SCK delay  
SCK duty cycle  
-
163  
164  
ns  
ns  
ns  
ns  
ns  
-
-
tSCK/2 - 1.5  
tSCK/2 + 1.5  
Slave access time  
SS active to SOUT valid  
-
-
40  
15  
tDIS  
Slave SOUT disable  
time  
SS inactive to SOUT High-Z  
or invalid  
7
8
9
tPCSC  
tPASC  
tSUI  
PCSx to PCSS time  
PCSS to PCSx time  
-
13  
13  
15  
2
-
ns  
ns  
ns  
-
-
Data setup time for  
inputs  
Master (MTFE = 0)  
Slave  
-
-
Master (MTFE = 1, CPHA = 0) 6  
Master (MTFE = 1, CPHA = 1) 20  
-
-
10  
11  
12  
tHI  
Data hold time for  
inputs  
Master (MTFE = 0)  
Slave  
-4  
4
-
ns  
ns  
ns  
-
Master (MTFE = 1, CPHA = 0) 11  
Master (MTFE = 1, CPHA = 1) -4  
-
-
tSUO  
Data valid (after SCK  
edge)  
Master (MTFE = 0)  
Slave  
-
-
4
16  
12  
4
-
Master (MTFE = 1, CPHA = 0) -  
Master (MTFE = 1, CPHA = 1) -  
tHO  
Data hold time for  
outputs  
Master (MTFE = 0)  
Slave  
-2  
3
-
Master (MTFE = 1, CPHA = 0) 5  
Master (MTFE = 1, CPHA = 1) -2  
-
-
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
39  
Communication modules  
1. SMPL_PTR should be set to 1. For SPI_CTARn[BR] - 'Baud Rate Scaler' configuration is >= 3.  
2. Slave Receive Only Mode can operate at a maximum frequency of 60 MHz. In this mode, the DSPI can receive data on  
SIN, but no valid data is transmitted on SOUT.  
3. This value of 16 ns is with the configuration prescaler values: SPI_CTARn[PCSSCK] - "PCS to SCK Delay Prescaler"  
configuration is "3" (01h) and SPI_CTARn[CSSCK] - "PCS to SCK Delay Scaler" configuration is "2" (0000h).  
4. This value of 16 ns is with the configuration prescaler values: SPI_CTARn[PASC] - "After SCK Delay Prescaler"  
configuration is "3" (01h) and SPI_CTARn[ASC] - "After SCK Delay Scaler" configuration is "2" (0000h).  
NOTE  
DSPI Timing specs on this chip are valid with Slave in Classic  
Mode only.  
2
3
PCSx  
1
4
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL =1)  
10  
9
Last Data  
SIN  
First Data  
Data  
Data  
12  
11  
First Data  
Last Data  
SOUT  
Figure 16. DSPI classic SPI timing — master, CPHA = 0  
S32V234 Data Sheet, Rev. 9, 03/2020  
40  
NXP Semiconductors  
Communication modules  
PCSx  
SCK Output  
(CPOL=0)  
10  
SCK Output  
(CPOL =1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Figure 17. DSPI classic SPI timing — master, CPHA = 1  
3
2
SS  
1
4
SCK Input  
(CPOL=0)  
4
SCK Input  
(CPOL=1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Figure 18. DSPI classic SPI timing — slave, CPHA = 0  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
41  
Communication modules  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Figure 19. DSPI classic SPI timing — slave, CPHA = 1  
3
PCSx  
4
1
2
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
9
10  
SIN  
First Data  
12  
Last Data  
Last Data  
Data  
11  
SOUT  
First Data  
Data  
Figure 20. DSPI modified transfer format timing — master, CPHA = 0  
S32V234 Data Sheet, Rev. 9, 03/2020  
42  
NXP Semiconductors  
Communication modules  
PCSx  
SCK Output  
(CPOL=0)  
SCK Output  
(CPOL=1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Figure 21. DSPI modified transfer format timing — master, CPHA = 1  
8
7
PCSS  
PCSx  
Figure 22. DSPI PCS strobe (PCSS) timing  
6.5.2 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC)  
Booting from eMMC must be at voltage of 3.3 V. The operation at 1.8 V is possible only  
during run-time, that is after the boot has completed. This voltage restriction during  
booting does not apply to SD/SDIO/SDHC/SDXC modes.  
Measurements are with a load of 40 pF on output pins. Input slew = 1 ns,  
SIUL2_MSCRn[DSE] = 101, and SIUL2_MSCRn[SRE] = 11.  
uSDHC_VEND_SPEC[CMD_OE_PRE_EN] field should be programmed to 1 for proper  
functioning of uSDHC external interface.  
NOTE  
These are not necessarily the default configuration after chip  
resets. You must ensure the above chip configuration to match  
the measurements in this section.  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
43  
Communication modules  
6.5.2.1 SDR mode timing specifications  
Figure 23. SDR CMD-DATx Read Timing  
Figure 24. SDR CMD-DATx Write Timing  
Table 36. SDR mode timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
1
2
SD1  
Clock Frequency (Low  
Speed)  
fPP  
fPP  
0
0
400  
kHz  
Clock Frequency (SD/  
SDIO Full Speed/High  
Speed)  
25/50  
MHz  
3
Clock Frequency (MMC  
Full Speed/High Speed)  
fPP  
0
20/52  
400  
55  
MHz  
kHz  
%
Clock Frequency  
(Identification Mode)  
fOD  
100  
SD2  
Clock Duty Cycle  
tDC  
45  
eSDHC Output/Card Inputs CMD, DAT (Reference to CLK)  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
44  
NXP Semiconductors  
Communication modules  
Table 36. SDR mode timing specification (continued)  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
SD3  
SD4  
CLK to Data/CMD Valid  
tDVO  
3.2  
ns  
ns  
CLK to Data/CMD Invalid tHO  
-6.3  
eSDHC Input/Card Outputs CMD, DAT (Reference to CLK)  
SD5  
SD6  
DATA/CMD Input Setup  
time  
tSUI  
4.5  
ns  
ns  
DATA/CMD Input Hold  
time  
tHI  
0
1. In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.  
2. In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz. In high-speed mode,  
clock frequency can be any value between 0–50 MHz.  
3. In normal (full) speed mode for MMC card, clock frequency can be any value between 0–20 MHz. In high-speed mode,  
clock frequency can be any value between 0–52 MHz.  
6.5.2.2 DDR mode timing specifications  
Figure 25. DDR Data Read timing  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
45  
Communication modules  
Figure 26. DDR DATA Write timing  
Figure 27. DDR CMD Read Timing  
Figure 28. DDR CMD Write Timing  
S32V234 Data Sheet, Rev. 9, 03/2020  
46  
NXP Semiconductors  
Communication modules  
Unit  
Table 37. DDR mode timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Card Input Clock  
DD1  
DD1  
DD2  
Clock Frequency  
(eMMC4.4 DDR)  
fPP  
fPP  
tDC  
0
52  
50  
55  
MHz  
MHz  
%
Clock Frequency (SD3.0  
DDR)  
0
Clock Duty Cycle  
45  
uSDHC Output/Card Inputs CMD, DAT (Reference to CLK)  
DD3  
DD4  
DD5  
DD6  
CLK to Data Valid  
CLK to Data Invalid  
CLK to CMD Valid  
CLK to CMD Invalid  
tDVO  
tHO  
tDVO  
tHO  
6.2  
ns  
ns  
ns  
ns  
2.5  
3.25  
–6.2  
uSDHC Input/Card Outputs CMD, DAT (Reference to CLK)  
DD7  
DD8  
DD9  
DD10  
Data Input Setup Time  
Data Input Hold Time  
CMD Input Setup Time  
CMD Input Hold Time  
tSUI  
tHI  
tSUI  
tHI  
2.3  
1.5  
4.5  
0
ns  
ns  
ns  
ns  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
47  
LFAST electrical characteristics  
6.5.3 LFAST electrical characteristics  
6.5.3.1 LFAST interface timing diagrams  
Figure 29. LFAST timing definition  
S32V234 Data Sheet, Rev. 9, 03/2020  
48  
NXP Semiconductors  
LFAST electrical characteristics  
VIH  
Differential TX  
Data Lines  
90%  
10%  
pad_p/pad_n  
VIL  
Tfall  
Trise  
Figure 30. Rise/fall time  
6.5.3.2 LFAST Interface electrical characteristics  
Table 38. LFAST electrical characteristics  
Symbol  
Parameter  
Conditions  
Value1  
Unit  
Min  
1.71  
Typ  
Max  
1.95  
VDDIO_LFAST  
Data Rate  
Operating supply conditions  
Data rate  
V
DATARATE  
STARTUP  
TSTRT_BIAS  
TRANSMITTER  
VOS_DRF  
312/320  
0.5  
Typ+0.1% Mbps  
Bias startup time2  
3
µs  
Common mode voltage  
1.1  
1.2  
1.475  
450  
V
|ΔVOD_DRF  
|
Differential output voltage  
swing (terminated)  
250  
350  
mV  
TTR_DRF  
Rise/Fall time (20% - 80% of  
swing)3  
Capacitance4  
0.1  
0.73  
5
ns  
COUT_DRF  
pF  
RECEIVER  
VICOM_DRF  
Common mode voltage  
Differential input voltage  
0.155  
150  
100  
80  
1.56  
V
|ΔVI_DRF  
|
VICOM_DRF>1.4 V  
mV  
mV  
Ω
VICOM_DRF<= 1.4 V  
RIN_DRF  
CIN_DRF  
LIN_DRF  
Terminating resistance  
Capacitance7  
Parasitic Inductance8  
100  
3.5  
5
150  
6
pF  
nH  
10  
LFAST Clock characteristics  
FRF_REF  
ERRREF  
DCREF  
SysClk Frequency  
10  
-1  
26  
1
MHz  
%
SysClk Frequency Error  
SysClk Duty Cycle  
45  
55  
%
1. All values need to be confirmed during device characterization.  
2. Startup time is defined as the time taken by LFAST current reference block for settling bias current after its pwr_down  
(power down) has been deasserted. LFAST functionality is guaranteed only after the startup time.  
3. Rise/fall time is defined for 20 to 80% signal voltage levels, at 2pF Cload and 100 Ohm termination resistor load.  
4. Total lumped capacitance including silicon, package pin and bond wire. Application board simulation needed to verify  
LFAST template compliancy.  
5. Absolute min = 0.15 V - (250 mV/2) = 0.025 V  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
49  
FlexRay  
6. Absolute max = 1.5 V + (450 mV/2) = 1.725 V  
7. Total capacitance including silicon, package pin and bond wire  
8. Total inductance including silicon, package pin and bond wire  
6.5.4 FlexRay  
6.5.4.1 FlexRay timing parameters  
This section provides the FlexRay interface timing characteristics for the input and output  
signals. These numbers are recommended per the FlexRay Electrical Physical Layer  
Specification, Version 3.0.1, and subject to change per the final timing analysis of the  
device.  
6.5.4.2 TxEN  
TxEN  
80 %  
20 %  
dCCTxEN  
dCCTxEN  
FALL  
RISE  
Figure 31. TxEN signal  
Table 39. TxEN output characteristics1  
Name  
dCCTxENRISE25  
Description  
Min  
Max  
Unit  
Rise time of TxEN signal at CC  
Fall time of TxEN signal at CC  
-
-
-
9
ns  
ns  
ns  
dCCTxENFALL25  
dCCTxEN01  
9
Sum of delay between Clk to Q of  
the last FF and the final output  
buffer, rising edge  
25  
dCCTxEN10  
Sum of delay between Clk to Q of  
the last FF and the final output  
buffer, falling edge  
-
25  
ns  
1. TxEN pin load maximum 25 pF.  
S32V234 Data Sheet, Rev. 9, 03/2020  
50  
NXP Semiconductors  
FlexRay  
PE_Clk  
TxEN  
dCCTxEN10  
dCCTxEN01  
Figure 32. TxEN signal propagation delays  
6.5.4.3 TxD  
TxD  
dCCTxD50%  
80 %  
50 %  
20 %  
dCCTxDRISE  
dCCTxDFALL  
Figure 33. TxD signal  
Table 40. TxD output characteristics  
Name  
Description1  
Min  
Max  
Unit  
dCCTxAsym  
Asymmetry of sending CC @ 25 pF -2.45  
load (=dCCTxD50% - 100 ns)  
2.45  
ns  
ns  
dCCTxDRISE25+dCCTxDFALL25  
Sum of Rise and Fall time of TxD  
signal at the output  
-
9
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
51  
FlexRay  
Table 40. TxD output characteristics (continued)  
Name  
Description1  
Min  
Max  
Unit  
dCCTxD01  
dCCTxD10  
Sum of delay between Clk to Q of  
the last FF and the final output  
buffer, rising edge  
-
-
25  
25  
ns  
ns  
Sum of delay between Clk to Q of  
the last FF and the final output  
buffer, falling edge  
1. TxD pin load maximum 25 pF.  
PE_Clk*  
TxD  
dCCTxD  
10  
dCCTxD  
01  
*FlexRay Protocol Engine Clock  
Figure 34. TxD signal propagation delays  
6.5.4.4 RxD  
Table 41. RxD input characteristics  
Name  
C_CCRxD  
Description  
Input capacitance on RxD pin  
Threshold for detecting logic high  
Threshold for detecting logic low  
Min  
Max  
Unit  
-
7
pF  
%
uCCLogic_1  
uCCLogic_0  
dCCRxD01  
35  
30  
-
70  
65  
10  
%
Sum of delay from actual input to the D input of  
the first FF, rising edge  
ns  
dCCRxD10  
Sum of delay from actual input to the D input of  
the first FF, falling edge  
-
10  
ns  
S32V234 Data Sheet, Rev. 9, 03/2020  
52  
NXP Semiconductors  
Ethernet Controller (ENET) Parameters  
6.5.5 Ethernet Controller (ENET) Parameters  
6.5.5.1 Ethernet Switching Specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface. For MII and  
RMII mode, output load is equal to 25 pF and pad settings are SIUL2_MSCRn[DSE] =  
101 and SIUL2_MSCRn[SRE] = 11. For RGMII, output load is 5 pF and pad settings are  
SIUL2_MSCRn[DSE] = 111 and SIUL2_MSCRn[SRE] = 11.  
NOTE  
These are not necessarily the default configuration after chip  
resets. You must ensure the above chip configuration to match  
the measurements in this section.  
6.5.5.2 Receive and Transmit signal timing specifications for RMII  
interfaces  
This section provides timing specifications that meet the requirements for RMII  
interfaces for a range of transceiver devices.  
Table 42. Receive signal timing for RMII interfaces  
Symbol  
Characteristic  
RMII Mode  
Min Max  
Unit  
EXTAL frequency (RMII input clock RMII_CLK)  
RMII_CLK pulse width high  
35%  
35%  
4
50  
MHz  
E3, E7  
E4, E8  
E1  
65%  
65%  
RMII_CLK period  
RMII_CLK pulse width low  
RMII_CLK period  
RXD[1:0], CVS_DV, RXER to RMII_CLK setup  
RMII_CLK to RXD[1:0], CRS_DV, RXER hold  
RMII_CLK to TXD[1:0], TXEN valid  
RMII_CLK to TXD[1:0], TXEN invalid  
ns  
ns  
ns  
ns  
E2  
2
E6  
2
14  
E5  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
53  
Ethernet Controller (ENET) Parameters  
Figure 35. RMII receive signal timing diagram  
Figure 36. RMII transmit signal timing diagram  
6.5.5.3 Receive and Transmit signal timing specifications for MII  
interfaces  
This section provides timing specifications that meet the requirements for MII interfaces  
for a range of transceiver devices.  
S32V234 Data Sheet, Rev. 9, 03/2020  
54  
NXP Semiconductors  
Ethernet Controller (ENET) Parameters  
t
CYC  
t
PWH  
RX_CLK  
(Input)  
t
t
S
H
RXDn,  
RX_DV,  
RX_ER  
(Input)  
(n = 0-3)  
Figure 37. MII receive signal timing diagram  
Table 43. Receive signal timing for MII interfaces  
Characteristic  
Symbol  
MII Mode  
Unit  
Min  
-
Typ  
Max  
RX_CLK clock period (100/10 MBPS)  
RX_CLK duty cycle, tPWH/tCYC  
Input setup time before RX_CLK  
Input hold time after RX_CLK  
tCYC  
-
40/400  
-
65  
-
ns  
%
35  
5
50  
-
tS  
ns  
ns  
tH  
5
-
-
t
CYC  
t
PWH  
TX_CLK  
(Input)  
t
D
TXDn,  
TX_EN,  
TX_ER  
(Output)  
t
HO  
Note: Device pins applicable to MII interface are applicable to TMII interface,  
and operates at 50 MHz reference clock.  
Figure 38. MII transmit signal timing diagram  
Table 44. Transmit signal timing for MII interfaces  
Characteristic  
Symbol  
MII Mode  
Unit  
Min  
Typ  
Max  
-
TX_CLK clock period (100/10 MBPS)  
TX_CLK duty cycle, tPWH/tCYC  
TX_CLK to Output Valid  
tCYC  
-
-
35  
-
40/400  
ns  
%
50  
-
65  
25  
-
tD  
ns  
ns  
TX_CLK to Output Invalid  
tHO  
2
-
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
55  
Ethernet Controller (ENET) Parameters  
6.5.5.4 Receive and Transmit signal timing specifications for RGMII  
interfaces  
This section provides timing specs that meet the requirements for RGMII interfaces for a  
range of transceiver devices.  
Table 45. Receive signal timing for RGMII interfaces  
Characteristic  
Symbol  
RGMII Mode  
Typ  
Unit  
Min  
7.2  
Max  
8.8  
500  
, 1  
Clock cycle duration  
Tcyc  
ns  
ps  
ns  
%
, 2  
3
Data to clock output skew at transmitter TskewT  
-500  
1
Data to clock input skew at receiver  
Duty cycle for Gigabit  
TskewR  
2.6  
55  
Duty_G 3  
Duty_T3  
Tr/Tf  
45  
40  
-
Duty cycle for 10/100T  
60  
%
Rise/fall time (20–80%)  
0.75  
ns  
1. For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns 40 ns and 40 ns 4 ns respectively.  
2. For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an  
additional delay of greater than 1.5 ns and less than 2 ns will be added to the associated clock signal. For 10/100, the max  
value is unspecified.  
3. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as  
long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed  
transitioned between.  
RGMII_TXC (at transmitter)  
TskewT  
RGMII_TXDn (n = 0 to 3)  
TXEN  
TXERR  
RGMII_TX_CTL  
Figure 39. RGMII Transmit signal timing diagram original  
RGMII_RXDn (n = 0 to 3)  
RXERR  
RXDV  
RGMII_RX_CTL  
TskewR  
RGMII_RXC (at receiver)  
Figure 40. RGMII Receive signal timing diagram original  
S32V234 Data Sheet, Rev. 9, 03/2020  
56  
NXP Semiconductors  
Ethernet Controller (ENET) Parameters  
6.5.5.5 MII/RMII Serial Management channel timing (MDC/MDIO)  
Output load is equal to 45 pF and pad settings are SIUL2_MSCRn[DSE] = 101 and  
SIUL2_MSCRn[SRE] = 11.  
NOTE  
These are not necessarily the default configuration after chip  
resets. You must ensure the above chip configuration to match  
the measurements in this section.  
Ethernet works with a maximum frequency of MDC at 2.5 MHz. ENET_MSCR  
[HOLDTIME] should be set to 010 when Module Clock = 133 MHz. MDIO pin must  
have external pull up.  
Figure 41. MDIO input timing  
Figure 42. MDIO output timing  
Table 46. MDIO interface timing specification  
ID  
Parameter  
Clock Duty Cycle  
Symbols  
Min  
Max  
Unit  
MDCO  
tMDC  
Table continues on the next page...  
40  
60  
%
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
57  
Ethernet Controller (ENET) Parameters  
Table 46. MDIO interface timing specification (continued)  
ID  
Parameter  
Symbols  
MDIO Output Timing  
Min  
Max  
Unit  
MDC1  
MDC2  
MDC to MDIO Valid  
tDVO  
50  
ns  
ns  
MDC to MDIO Invalid  
tHO  
10  
MDIO Input Timing  
MDC3  
MDC4  
MDIO Input Setup time  
MDIO Input Hold time  
tSUI  
tHI  
50  
0
ns  
ns  
6.5.6 PCI Express specifications  
The PCI Express link conforms to the PCI Express Base Specification, Revision 2.1. The  
following summary of Transmitter and Receiver specifications are copied directly from  
the Base Specification. Consult the Base Specification for additional details.  
Table 47. PCI Express transmitter specifications1  
Symbol  
UI  
Parameter  
2.5 GT/s  
5.0 GT/s  
Units  
ps  
Unit Interval  
199.94 (min) 200.06  
(max)  
399.88 (min)  
400.12 (max)  
VTX-DIFF-PP  
Differential p-p Tx  
voltage swing  
V
0.8 (min)  
1.2 (max)  
0.8 (min)  
1.2 (max)  
VTX-DE-RATIO-3.5dB  
VTX-DE-RATIO-6dB  
TMIN-PULSE  
Tx de-emphasis level  
ratio  
dB  
dB  
UI  
UI  
3.0 (min)  
4.0 (max)  
3.0 (min)  
4.0 (max)  
Tx de-emphasis level  
N/A  
5.5 (min)  
6.5 (max)  
Instantaneous lone  
pulse width  
Not specified  
0.75 (min)  
0.9 (min)  
TTX-EYE  
Transmitter Eye  
including all jitter  
sources  
0.75 (min)  
TTX-EYE-MEDIAN-to-MAX-  
Maximum time between 0.125 (max)  
the jitter median and  
max deviation from the  
median  
Not specified  
0.15 (max)  
UI  
JITTER  
TTX-HF-DJ-DD  
Tx deterministic jitter > Not specified  
1.5 MHz  
UI  
TTX-LF-RMS  
BWTX-PLL  
Tx RMS jitter < 1.5 MHz Not specified  
3.0  
ps RMS  
MHz  
Maximum Tx PLL  
bandwidth  
22 (max)  
16 (max)  
BWTX-PLL-LO-3dB  
BWTX-PLL-LO-1dB  
PKGTX-PLL2  
Minimum Tx PLL BW  
for 3 dB peaking  
1.5 (min)  
8 (min)  
MHz  
MHz  
dB  
Minimum Tx PLL BW  
for 1 dB peaking  
Not specified  
5 (min)  
Tx PLL peaking with 5 Not specified  
MHz min BW  
1.0 (max)  
S32V234 Data Sheet, Rev. 9, 03/2020  
58  
NXP Semiconductors  
Ethernet Controller (ENET) Parameters  
1. See Table 4-9 2.5 and 5.0 GT/s Transmitter Specifications in PCI Express Base Specification for further details.  
Table 48. PCI Express receiver specifications1  
Symbol  
Parameter  
Unit Interval  
2.5 GT/s  
5.0 GT/s  
Units  
UI  
ps  
V
399.88 (min)  
400.12 (max)  
199.94 (min)  
200.06 (max)  
VRX-DIFF-PP-CC  
Differential Rx peak-  
peak voltage for  
common Refclk Rx  
architecture  
0.175 (min)  
1.2 (max)  
0.120 (min)  
1.2 (max)  
TRX-EYE  
Receiver eye time  
opening  
0.40 (min)  
N/A  
UI  
UI  
UI  
TRX-TJ-CC  
TRX-DJ-DD-CC  
Max Rx inherent timing N/A  
error  
0.40 (max)  
0.30 (max)  
Max Rx inherent  
deterministic timing  
error  
N/A  
1. See Table 4-12 2.5 and 5.0 GT/s Receiver Specifications in PCI Express Base Specification for further details.  
6.5.7 IIC timing  
Table 49. IIC SCL and SDA input timing specifications  
Number  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
1
D
Start condition  
hold time  
2
IP bus cycle1  
2
4
6
7
D
D
D
D
Clock low time  
Data hold time  
Clock high time  
8
IP bus cycle1  
25  
4
ns  
IP bus cycle1  
Data setup time 250 (standard  
ns  
mode); 100 (fast  
mode)2  
8
9
D
D
Start condition  
setup time (for  
repeated start  
condition only)  
2
2
IP bus cycle1  
IP bus cycle1  
Stop condition  
setup time  
1. Inter Peripheral Clock is the clock at which the IIC peripheral is working in the device  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
59  
Ethernet Controller (ENET) Parameters  
2. pg_clk frequency should be greater than 5 MHz for standard mode and 20 MHz for fast mode.  
Table 50. IIC SCL and SDA output timing specifications  
Number  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
11  
D
Start condition  
hold time  
6
IP bus cycle2  
21  
33  
D
D
Clock low time  
10  
IP bus cycle1  
ns  
SCL/SDA rise  
time  
99.6  
41  
51  
D
D
Data hold time  
7
IP bus cycle1  
ns  
SCL/SDA fall  
time  
99.5  
61  
71  
81  
D
D
D
Clock high time 10  
IP bus cycle1  
IP bus cycle1  
IP bus cycle1  
Data setup time  
2
Start condition  
setup time (for  
repeated start  
condition only)  
20  
91  
D
Stop condition  
setup time  
11  
IP bus cycle1  
1. Programming IBFD (I2C bus Frequency Divider) with the maximum frequency results in the minimum output timings listed.  
The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual  
position is affected by the prescale and division values programmed in IFDR.  
2. Inter Peripheral Clock is the clock at which the I2C peripheral is working in the device.  
3. Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time SCL or SDA  
takes to reach a high level depends on external signal capacitance and pullup resistor values.  
Figure 43. IIC input/output timing  
6.5.8 LINFlex timing  
The maximum bit rate is 1.875 MBit/s.  
S32V234 Data Sheet, Rev. 9, 03/2020  
60  
NXP Semiconductors  
Display modules  
6.6 Display modules  
6.6.1 Display Control Unit (2D-ACE) Parameters  
6.6.1.1 Interface to TFT panels  
This section provides the LCD interface timing for a generic active matrix color TFT  
panel.  
Measurements are with a load of 20 pF on output pins. Input slew = 1 ns,  
SIUL2_MSCRn[DSE] = 111, and SIUL2_MSCRn[SRE] = 11.  
NOTE  
These are not necessarily the default configuration after chip  
resets. You must ensure the above chip configuration to match  
the measurements in this section.  
In the figure below1, signals are shown with positive polarity. The sequence of events for  
active matrix interface timing:  
• PCLK latches data into the panel on its positive edge (when positive polarity is  
selected). In active mode, PCLK runs continuously. This signal frequency could be  
from 5 to 150 MHz depending on the panel type.  
• HSYNC causes the panel to start a new line. It always encompasses at least one  
PCLK pulse.  
• VSYNC causes the panel to start a new frame. It always encompasses at least one  
HSYNC pulse.  
• DE acts like an output enable signal to the LCD panel. This output enables the data  
to be shifted onto the display. When disabled, the data is invalid and the trace is off.  
1. LD[23:0]” signal is “line data,” an aggregation of the 2D-ACE’s RGB signals—R[0:7], G[0:7] and B[0:7].  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
61  
Display modules  
VSYNC  
LINE  
n-1  
HSYNC  
LINE 1  
LINE 2  
LINE 3  
LINE 4  
LINE n  
HSYNC  
DE  
1
2
3
m-1  
m
PCLK  
LD[23:0]  
Figure 44. TFT LCD interface timing overview  
6.6.1.2 Interface to TFT LCD Panels—Pixel Level Timings  
This section provides the horizontal timing (timing of one line), including both the  
horizontal sync pulse and data. All parameters shown in the figure below are  
programmable. This timing diagram corresponds to positive polarity of the PCLK signal  
(meaning the data and sync signals change on the rising edge) and active-high polarity of  
the HSYNC, VSYNC and DE signals. The user can select the polarity of the HSYNC and  
VSYNC signals via the SYN_POL register, whether active-high or active-low. The  
default is active-high. The DE signal is always active-high. Pixel clock inversion and a  
flexible programmable pixel clock delay are also supported. They are programmed via  
the clock divide . The DELTA_X and DELTA_Y parameters are programmed via the  
DISP_SIZE register. The PW_H, BP_H and FP_H parameters are programmed via the  
HSYN PARA register. The PW_V, BP_V and FP_V parameters are programmed via the  
VSYN_PARA register.  
Table 51. LCD interface timing parameters—horizontal and vertical  
Symbol  
tPCP  
Characteristic  
Display pixel clock period  
Unit  
6.66  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tPWH  
tBPH  
tFPH  
tSW  
HSYNC pulse width  
HSYNC back porch width  
HSYNC front porch width  
Screen width  
PW_H * tPCP  
BP_H * tPCP  
FP_H * tPCP  
DELTA_X * tPCP  
(PW_H + BP_H + FP_H + DELTA_X ) * tPCP  
PWV * tHSP  
tHSP  
tPWV  
tBPV  
tFPV  
HSYNC (line) period  
VSYNC pulse width  
VSYNC back porch width  
VSYNC front porch width  
BP_V * tHSP  
FP_V * tHSP  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
62  
NXP Semiconductors  
Display modules  
Table 51. LCD interface timing parameters—horizontal and vertical (continued)  
Symbol  
tSH  
tVSP  
Characteristic  
Unit  
Screen height  
VSYNC (frame) period  
DELTA_Y * tHSP  
ns  
ns  
(PW_V + BP_V + FP_V + DELTA_Y ) * tHSP  
tHSP  
tPWH  
tPCP  
tBPH  
tSW  
tFPH  
Start  
of line  
PCLK  
LD[23:0]  
HSYNC  
DE  
Invalid Data  
1
2
3
Invalid Data  
DELTA_X  
Figure 45. Horizontal sync timing  
tVSP  
tPWV  
tHCP  
tBPV  
tSH  
tFPV  
Start of  
Frame  
HSYNC  
LD[23:0]  
(Line Data)  
Invalid Data  
1
2
3
Invalid Data  
DELTA_Y  
HSYNC  
DE  
Figure 46. Vertical sync pulse  
6.6.1.3 Interface to TFT LCD panels—access level  
This section provides the access level timing parameters of the LCD interface.  
Table 52. LCD Interface Timing Parameters—Access Level  
Symbol  
tCKP  
tDV  
Description  
Min  
Max  
Unit  
Pixel Clock Period  
6.66  
_
_
3
3
ns  
TFT interface data valid after pixel clock  
TFT interface HSYNC valid after pixel clock  
ns  
ns  
tDV  
_
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
63  
Display modules  
Table 52. LCD Interface Timing Parameters—Access Level (continued)  
Symbol  
tDV  
tDV  
tHO  
Description  
Min  
Max  
Unit  
TFT interface VSYNC valid after pixel clock  
TFT interface DE valid after pixel clock  
TFT interface output hold time for data and control bits  
Relative skew between the data bits  
_
_
0
_
3
ns  
ns  
ns  
ns  
3
_
1.5  
Figure 47. LCD Interface Timing Parameters—Access Level  
6.6.2 Video input unit (VIU) timing specifications  
Clock  
fPIX_CLK  
tDHD  
tDSU  
Data/Hsync/Vsync  
Figure 48. VIU timing diagram  
Table 53. VIU timing parameters  
Parameter  
fPIX_CK  
Description  
Min  
Typ  
Max  
Unit  
VIU pixel clock  
frequency  
3
100  
MHz  
ns  
tDSU  
tDHD  
VIU Data/Hsync/  
Vsync setup time  
VIU Data/Hsync/  
Vsync hold time  
1
ns  
S32V234 Data Sheet, Rev. 9, 03/2020  
64  
NXP Semiconductors  
Display modules  
6.6.3 MIPICSI2 D-PHY electrical and timing parameters  
The MIPICSI2 D-PHY2 is compliant with MIPICSI2 version 1.0, D-PHY specification  
Rev. 1.01.00 (for MIPICSI2 sensor port x4 lanes)  
6.6.3.1 Electrical and timing Information  
Table 54. Electrical and timing Information  
Symbol  
HS Line Receiver DC Specifications  
VIDTH Differential input high voltage  
Parameters  
Test conditions  
Min  
Typ  
Max  
Unit  
-
-
-
70  
-
mV  
mV  
threshold  
VIDTL  
Differential input low voltage  
threshold  
-70  
VIHHS  
Single ended input high voltage  
Single ended input low voltage  
Input common mode voltage  
-
-
-
-
-
460  
-
mV  
mV  
mV  
mV  
VILHS  
-40  
70  
-
VCMRXDC  
VTERM-EN  
330  
450  
Single-ended threshold for HS  
termination enable  
ZID  
Differential input impedance  
80  
-
125  
ohm  
LP Line Receiver DC Specifications  
VILLP  
Input low voltage  
Input high voltage  
-
-
-
-
550  
-
mV  
mV  
mV  
VIHLP  
880  
-
VIL-ULPS  
Input low voltage (ultra low power  
state)  
300  
VHYST  
Input hysteresis  
25  
-
-
mV  
2. All rights reserved. This material is reprinted with the permission of the MIPI Alliance, Inc. No part(s) of this document may  
be disclosed, reproduced or used for any purpose other than as needed to support the use of the products of NXP Inc.  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
65  
Display modules  
6.6.3.2 D-PHY signaling levels  
The signal levels are different for differential HS mode and single-ended LP mode. The  
figure below shows both the HS and LP signal levels on the left and right sides,  
respectively. The HS signaling levels are below the LP low-level input threshold such  
that LP receiver always detects low on HS signals.  
Table 55. D-PHY RX calibrator specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
REXT  
T cal  
External reference  
resistor, 1%  
accuracy, for  
-
-
15  
2
-
-
KΩ  
µs  
autocalibration  
Time from when  
PD_RX signal goes  
low to when  
CALCOMPL goes  
high  
Figure 49. D-PHY signaling levels  
6.6.3.3 D-PHY switching characteristics  
Table 56. D-PHY switching characteristics  
Symbol  
Parameters  
Test  
Min  
Typ  
Max  
Unit  
conditions  
HS Line Receiver AC Specifications  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
66  
NXP Semiconductors  
Display modules  
Table 56. D-PHY switching characteristics (continued)  
Symbol  
Parameters  
Test  
Min  
Typ  
Max  
Unit  
conditions  
-
Maximum serial data rate  
On  
80  
-
1500  
Mbps  
DATAP/N  
inputs. 80  
OHM<= RL  
<= 125  
OHM  
Δ
Common mode interference beyond 450  
VCMRX(HF) MHz  
-
-
-
-
100  
50  
mVpp  
mVpp  
pF  
Δ
Common mode interference between 50  
-50  
-
VCMRX(LF) MHz and 450 MHz  
CCM  
Common mode termination  
60  
LP Line Receiver AC Specification  
eSPIKE  
TMIN  
VINT  
Input pulse rejection  
-
-
-
-
-
300  
Vps  
ns  
Minimum pulse response  
Pk-to-Pk interference voltage  
Interference frequency  
20  
-
-
200  
-
mV  
MHz  
fINT  
450  
6.6.3.4 Low-Power Receiver timing  
Figure 50. Input Glitch Rejection of Low-Power Receivers  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
67  
Display modules  
6.6.3.5 Data to Clock timing  
Figure 51. Data to Clock timing definition  
Table 57. Data to Clock timing specifications  
Symbol  
TCLKP  
Parameters  
Clock Period  
Test conditions  
Min  
1.33  
Typ  
Max  
Unit  
25  
ns  
ns  
UIINST  
UI Instantaneuous  
.667  
0.21  
0.152  
0.21  
12.5  
TSETUP  
Data to Clock Setup Time  
UIINST  
UIINST  
UIINST  
UIINST  
THOLD  
Clock to Data Hold Time  
0.152  
1. when D-PHY is supporting maximum data rate > 1 Gbps.  
2. when D-PHY is supporting maximum data rate = 1 Gbps.  
6.6.3.6 NOTICE OF DISCLAIMER  
The material contained herein is not a license, either expressly or impliedly, to any IPR  
owned or controlled by any of the authors or developers of this material or MIPI®. The  
material contained herein is provided on an “AS IS” basis and to the maximum extent  
permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS,  
and the authors and developers of this material and MIPI hereby disclaim all other  
warranties and conditions, either express, implied or statutory, including, but not limited  
to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a  
particular purpose, of accuracy or completeness of responses, of results, of workmanlike  
effort, of lack of viruses, and of lack of negligence.  
S32V234 Data Sheet, Rev. 9, 03/2020  
68  
NXP Semiconductors  
Debug specifications  
All materials contained herein are protected by copyright laws, and may not be  
reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise  
exploited in any manner without the express prior written permission of MIPI Alliance.  
MIPI, MIPI Alliance and the dotted rainbow arch and all related trademarks, trade names,  
and other intellectual property are the exclusive property of MIPI Alliance and cannot be  
used without its express prior written permission.  
ALSO, THERE IS NO WARRANTY OF CONDITION OF TITLE, QUIET  
ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR  
NON-INFRINGEMENT WITH REGARD TO THIS MATERIAL OR THE CONTENTS  
OF THIS DOCUMENT. IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF  
THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT OR MIPI BE  
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE  
GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY  
INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES  
WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE,  
ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT,  
SPECIFICATION OR DOCUMENT RELATING TO THIS MATERIAL, WHETHER  
OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF  
SUCH DAMAGES.  
Without limiting the generality of this Disclaimer stated above, the user of the contents of  
this Document is further notified that MIPI: (a) does not evaluate, test or verify the  
accuracy, soundness or credibility of the contents of this Document; (b) does not monitor  
or enforce compliance with the contents of this Document; and (c) does not certify, test,  
or in any manner investigate products or services or any claims of compliance with the  
contents of this Document. The use or implementation of the contents of this Document  
may involve or require the use of intellectual property rights ("IPR") including (but not  
limited to) patents, patent applications, or copyrights owned by one or more parties,  
whether or not Members of MIPI. MIPI does not make any search or investigation for  
IPR, nor does MIPI require or request the disclosure of any IPR or claims of IPR as  
respects the contents of this Document or otherwise.  
6.7 Debug specifications  
6.7.1 JTAG interface timing  
Measurements are with a load of 45 pF on output pins. Input slew = 1 ns,  
SIUL2_MSCRn[DSE] = 101, and SIUL2_MSCRn[SRE] = 11.  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
69  
Debug specifications  
NOTE  
These are not necessarily the default configuration after chip  
resets. You must ensure the above chip configuration to match  
the measurements in this section.  
Table 58. JTAG pin AC electrical characteristics1  
#
Symbol  
Characteristic  
JTAG/SWD TCK Cycle Time2  
CJTAG TCK Cycle Time  
Min  
Max  
Unit  
1
tJCYC  
253  
504  
40  
-
-
ns  
ns  
%
-
2
tJDC  
TCK Clock Pulse Width  
60  
3
tTCKRISE  
tTMSS, tTDIS  
tTMSH, tTDIH  
tTDOV  
TCK Rise and Fall Times (40% - 70%)  
TMS, TDI Data Setup Time  
TMS, TDI Data Hold Time  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
5
-
5
5
-
6
TCK Low to TDO Data Valid  
TCK Low to TDO Data Invalid  
TCK Low to TDO High Impedance  
JCOMP Assertion Time  
-
185  
7
tTDOI  
0
-
8
tTDOHZ  
-
18  
-
9
tJCMPPW  
tJCMPS  
100  
40  
-
10  
11  
12  
JCOMP Setup Time to TCK Low  
TCK Falling Edge to Output Valid  
-
tBSDV  
6006  
tBSDVZ  
TCK Falling Edge to Output Valid out of High  
Impedance  
-
600  
13  
14  
15  
tBSDHZ  
tBSDST  
tBSDHT  
TCK Falling Edge to Output High Impedance  
Boundary Scan Input Valid to TCK Rising Edge  
-
600  
ns  
ns  
ns  
15  
-
-
TCK Rising Edge to Boundary Scan Input Invalid 15  
1. These specifications apply to boundary scan, JTAG and CJTAG, and serial wire debug modes.  
2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions.  
Refer to pad specification for allowed transition frequency  
3. Cycle time is 25 ns assuming full cycle timing. Cycle time is 50 ns assuming half cycle timing  
4. Cycle time is 50 ns assuming full cycle timing. Cycle time is 100 ns assuming half cycle timing  
5. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.  
6. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.  
Table 59. PCIe JTAG AC electrical characteristics1  
#
Symbol  
Characteristic  
Min  
Max  
Unit  
1
2
3
4
5
6
7
8
9
tJCYC  
tJDC  
TCK Cycle Time2  
253  
40  
-
-
ns  
%
TCK Clock Pulse Width  
60  
1
tTCKRISE  
tTMSS, tTDIS  
tTMSH, tTDIH  
tTDOV  
TCK Rise and Fall Times (40% - 70%)  
TMS, TDI Data Setup Time  
TMS, TDI Data Hold Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
-
5
-
TCK Low to TDO Data Valid  
TCK Low to TDO Data Invalid  
TCK Low to TDO High Impedance  
JCOMP Assertion Time  
-
214  
tTDOI  
0
-
tTDOHZ  
-
21  
-
tJCMPPW  
100  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
70  
NXP Semiconductors  
Debug specifications  
Table 59. PCIe JTAG AC electrical characteristics1 (continued)  
#
Symbol  
tJCMPS  
Characteristic  
JCOMP Setup Time to TCK Low  
TCK Falling Edge to Output Valid  
Min  
Max  
Unit  
10  
11  
12  
40  
-
-
ns  
ns  
ns  
tBSDV  
6005  
tBSDVZ  
TCK Falling Edge to Output Valid out of High  
Impedance  
-
600  
13  
14  
15  
tBSDHZ  
tBSDST  
tBSDHT  
TCK Falling Edge to Output High Impedance  
Boundary Scan Input Valid to TCK Rising Edge  
-
600  
ns  
ns  
ns  
15  
-
-
TCK Rising Edge to Boundary Scan Input Invalid 15  
1. These specifications apply to boundary scan, JTAG and CJTAG, and serial wire debug modes.  
2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions.  
Refer to pad specification for allowed transition frequency  
3. Cycle time is 25 ns assuming full cycle timing. Cycle time is 50 ns assuming half cycle timing.  
4. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.  
5. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.  
TCK  
2
3
2
1
3
Figure 52. JTAG test clock input timing  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
71  
Debug specifications  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 53. JTAG test access port timing  
TCK  
10  
JCOMP  
9
Figure 54. JTAG JCOMP timing  
S32V234 Data Sheet, Rev. 9, 03/2020  
72  
NXP Semiconductors  
Debug specifications  
TCK  
11  
13  
Output  
Signals  
12  
Output  
Signals  
14  
15  
Input  
Signals  
Figure 55. JTAG boundary scan timing  
6.7.2 Debug trace timing specifications  
Measurements are with a load of 20 pF on output pins. Input slew = 1 ns,  
SIUL2_MSCRn[DSE] = 111, and SIUL2_MSCRn[SRE] = 11.  
NOTE  
These are not necessarily the default configuration after chip  
resets. You must ensure the above chip configuration to match  
the measurements in this section.  
Table 60. Debug trace operating behaviors  
Symbol  
Tcyc  
Description  
Min.  
Max.  
150  
Typical  
Unit  
MHz  
ns  
Clock frequency  
Low pulse width  
Twl  
2.8  
2.95  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
73  
Debug specifications  
Table 60. Debug trace operating behaviors (continued)  
Symbol  
Twh  
Description  
Min.  
2.8  
Max.  
Typical  
2.95  
Unit  
ns  
High pulse width  
Data output valid  
Data output hold  
tDV  
2.2  
1.3  
0
ns  
tHO  
0
ns  
Figure 56. TRACE_CLKOUT specifications  
6.8 Wakeup Unit (WKPU) AC specifications  
Table 61. WKPU glitch filter specifications  
Symbol  
WFNMI  
WNFNMI  
Parameter  
Min  
Typ  
Max  
Unit  
NMI pulse width that is rejected  
NMI pulse width that is passed  
-
-
-
20  
-
ns  
ns  
400  
6.9 RESET pin glitch filter specifications  
Table 62. RESET pin glitch filter specifications  
Symbol  
WFRESET  
Parameter  
Min  
Typ  
Max  
Unit  
RESET pulse width that is  
rejected  
-
-
-
20  
-
ns  
ns  
WNFRESET  
RESET pulse width that is passed 400  
6.10 External interrupt timing (IRQ pin)  
Table 63. External interrupt timing  
No.  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
1
tIPWL  
IRQ pulse width low  
-
3
-
tCYC  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
74  
NXP Semiconductors  
Thermal attributes  
Table 63. External interrupt timing (continued)  
No.  
Symbol  
Parameter  
IRQ pulse width high  
IRQ edge to edge time1  
Conditions  
Min  
Max  
Unit  
tCYC  
tCYC  
2
3
tIPWH  
tICYC  
-
-
3
6
-
-
1. Applies when IRQ pins are configured for rising edge or falling edge events, but not both.  
IRQ  
1
2
3
Figure 57. External interrupt timing  
7 Thermal attributes  
7.1 Thermal attributes  
Table 64. Thermal Resistance Data  
Symbol  
Parameter  
Conditions  
Estimate  
s (w/  
Unit  
Lid)  
RθJA  
Junction to Ambient Natural Convection1 Single layer board (1s)  
Junction to Ambient Natural Convection1 Four layer board (2s2p)  
29  
18  
20  
13  
6
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
RθJMA  
RθJMA  
RθJB  
Junction to Ambient (@200 ft/min)1  
Junction to Ambient (@200 ft/min)1  
Junction to Board2  
Single layer board (1s)  
Four layer board (2s2p)  
Four layer board (2s2p)  
Four layer board (2s2p)  
Four layer board (2s2p)  
RθJCtop  
Junction to Case (Top)2  
1
Junction to Lid Top3  
0.32  
1. Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets  
JEDEC specification for this package.  
2. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is  
used for the case temperature. Reported value includes the thermal resistance of the interface layer.  
3. Junction-to-Lid-Top thermal resistance determined using the using MIL-STD 883 Method 1012.1. However, instead of the  
cold plate, the lid top temperature is used here for the reference case temperature. Reported value does not include the  
thermal resistance of the interface layer between the package and cold plate.  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
75  
Dimensions  
8 Dimensions  
8.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing’s document number:  
Package  
Body size  
Pitch  
NXP document number  
621 FC-BGA  
17 mm x 17 mm  
0.65 mm  
98ASA00819D  
9 Pinouts  
9.1 Package pinouts and signal descriptions  
For package pinouts and signal descriptions, refer to the Reference Manual.  
10 Reset sequence  
This section describes different reset sequences and details the duration for which the  
device remains in reset condition in each of those conditions.  
10.1 Reset sequence duration  
Table 65 specifies the minimum and the maximum reset sequence duration for the five  
different reset sequences described in Reset sequence description.  
Table 65. RESET sequences1  
No. Symbol  
Parameter  
TReset  
Typ  
Unit  
Min  
25  
Max  
~50  
90  
1
2
3
TDRB  
TDR  
Destructive Reset Sequence, All LBIST/MBIST enabled  
Destructive Reset Sequence, BIST disabled  
ms  
µs  
50  
TERLB External Reset Sequence Long, Unsecure Boot, BIST enabled  
25  
~50  
ms  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
76  
NXP Semiconductors  
Reset sequence  
Table 65. RESET sequences1 (continued)  
No. Symbol  
Parameter  
TReset  
Unit  
Min  
50  
2
Typ  
Max  
90  
7
4
5
TFRL  
TFRS  
Functional Reset Sequence Long, Unsecure Boot, BIST disabled  
Functional Reset Sequence Short, Unsecure Boot, BIST disabled  
µs  
µs  
1. All the Reset durations assume boot code execution time for Execute-in-place for QuadSPI booting, Unsecure mode with  
Trimmed FIRC module. Boot code is using execution using PLL and no DCD download is assumed. Secure Boot duration  
and DCD download time is dependent on the given application image. DCD downloads and application image download/  
authentication times will be over and above these durations.  
10.2 Boot performance matrix  
Total Boot execution time will be the addition of DCD execution time to configure DDR  
and application image download time.  
Table 66. Boot execution time  
Boot QSPI_ CSE_  
sourc CLOC CLOC clock config (FAST execut AST  
CM4  
QSPI SRAM DCD DDR(F DDR(F DDR(F DDR(F Authe Authe Authe  
AST AST AST nticati nticati nticati  
BOOT) BOOT) BOOT) BOOT)  
e
K
K
(core uratio BOOT)  
count  
er  
regist  
er  
ion  
time  
for  
on  
on  
on  
n
Non  
secur  
e
time  
from  
DDR  
time  
from  
DDR  
time  
from  
DDR  
DDR  
clock)  
Boot  
Length MHz  
in bytes  
100  
133  
MHz  
133  
MHz  
HyperFl 4Mbyte NA  
ash  
4 MB  
NA  
256 KB 128 KB 32 KB NA  
NA  
NA  
s
Authent 100  
ication MHz  
Length  
133  
MHz  
133  
MHz  
HyperFl NA  
ash  
NA  
NA  
NA  
NA  
256 KB 128 KB 32 KB  
in bytes  
Time in 100  
133  
MHz  
133  
MHz  
HyperFl 27.302 3.47  
ash  
25.347 1.63  
0.819 0.211 7.4165 4.15405 1.7064  
25 075  
ms  
MHz  
5
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
77  
Reset sequence  
JUMPTO  
APPLICATION  
CODE  
CLOCK  
INITIALIZATION  
AND  
QSPI INIT  
RESET  
AFTER SELF  
TEST  
DCD EXECUTION  
TO CONFIGURE  
DDR  
APPLICATION IMAGE DOWNLOAD  
CSE FIRMWARE DOWNLOAD +  
APPLICATION IMAGE AUTHENTICATION  
(SECURE BOOT)  
25.3  
7.4  
1.6  
DDR(FASTBOOT)  
0.82  
CSEAUTHENTICATIONTIME  
4.1  
3.47 ms  
FROM DDR  
1.7  
0.2  
0
5
10  
Time inms  
Time inms  
256 kB  
128 kB  
32 kB  
4 MB  
256 kB  
128 kB  
32kB  
Figure 58. Boot diagram  
10.3 Reset sequence description  
The figures in this section show the internal states of the device during the five different  
reset sequences. The doted lines in the figures indicate the starting point and the end point  
for which the duration is specified in Table 65.  
The application code execution starts when boot code has finished all the mandatory  
tasks and jumps over the downloaded image. The download time and authentication time  
will vary as per Application code image size.  
"EXT_POR" pin (Active Low) is recommended to be de-asserted after external supplies  
became stable. Deassertion of EXT_POR pin triggers the start of reset sequence.  
The following figures show the internal states of the device during the execution of the  
reset sequence and the possible states of the RESET (Active-low) signal pin.  
NOTE  
RESET (Active-low) is a bidirectional pin. The voltage level on  
this pin can either be driven low by an external reset generator  
or by the device internal reset circuitry. A high level on this pin  
can only be generated by an external pullup resistor (10-15  
kiloohm) which is strong enough to overdrive the weak internal  
pulldown resistor. The rising edge on RESET (Active-low) in  
the following figures indicates the time when the device stops  
S32V234 Data Sheet, Rev. 9, 03/2020  
78  
NXP Semiconductors  
Reset sequence  
driving it low. The reset sequence durations given in Table 65  
are applicable only if the internal reset sequence is not  
prolonged by an external reset generator keeping RESET  
(Active-low) asserted low beyond the last Phase3.  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET  
PHASE0  
PHASE1,2  
PHASE3  
BIST  
PHASE1,2  
PHASE3  
DRUN  
Boot Code Self-test  
Execution Setup  
Establish  
FIRC and  
PWR  
Fuse  
Init  
Fuse  
Init  
MBIST  
LBIST  
Device  
Config  
Device  
Config  
Application  
Execution  
Boot  
Code  
Execution  
T
< T  
< T  
RESET DRB, max  
DRB, min  
Figure 59. Destructive reset sequence, BIST enabled  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET  
PHASE0  
PHASE1,2  
PHASE3  
DRUN  
Establish  
FIRC and  
PWR  
Fuse  
Init  
Device  
Config  
Application  
Execution  
Boot  
Code  
Execution  
T
< T  
< T  
RESET DR, max  
DR, min  
Figure 60. Destructive reset sequence, BIST disabled  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET  
PHASE1,2  
PHASE3  
BIST  
PHASE1,2  
PHASE3  
DRUN  
Fuse  
Init  
Fuse  
Init  
Device  
config  
Boot  
Code  
execution  
Device  
Config  
Application  
Execution  
Self-test  
Setup  
LBIST  
MBIST  
Boot  
code  
execution  
T
< T  
RESET  
< T  
ERLB, max  
ERLB, min  
Figure 61. External reset sequence long, BIST enabled  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
79  
Power sequencing requirements  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET  
PHASE1,2  
PHASE3  
DRUN  
Fuse  
Init  
Device  
Config  
Application  
Boot Ex ecut ion  
code  
execution  
T
< T  
< T  
RESET FRL, max  
FRL, min  
Figure 62. Functional reset sequence long  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET  
PHASE3  
DRUN  
Boot  
code  
Application  
Execution  
execution  
T
< T  
< T  
RESET FRS, max  
FRS, min  
Figure 63. Functional reset sequence short  
The reset sequences shown in Figure 62 and Figure 63 are triggered by functional reset  
events. RESET (Active-low) is driven low during these two reset sequences only if the  
corresponding functional reset source (which triggered the reset sequence) was enabled to  
drive RESET (Active-low) low for the duration of the internal reset sequence. See the  
RGM_FBRE register in the device reference manual for more information.  
11 Power sequencing requirements  
While designing the system, it is important to take care of following constraints:  
• PCIE_VP and PCIE_VPH supplies should be powered up within 50 ms of each other.  
• VDD_HV_CSI and VDD_LV_CSI supplies should be powered up within 50 ms of each  
other.  
• VREFH_ADC should never differ from VDD_HV_ADV by more than 100 mV at any time  
including during power-up or power-down.  
S32V234 Data Sheet, Rev. 9, 03/2020  
80  
NXP Semiconductors  
Revision history  
• DDR0_VREF0 and DDR1_VREF0 supplies are expected to be 0.5 of VDD_DDR0_IO  
and VDD_DDR1_IO supplies and are to track VDD_HV_DDR0 and VDD_HV_DDR1 supply  
variations as measured at the receiver. Peak-to-Peak noise on DDR0_VREF0 and  
DDR1_VREF0 supplies should be between +/- 15 mV.  
• The maximum rise time for the POR and RESET signal is 1 ms. Very slow ramps  
can induce bounces in the input read state during the transition from logic low to  
logic high, which causes the part getting locked in a self-reset loop. Any external  
noise on this pin can increase the problem.  
NOTE  
VDD_HV_ADV must be powered for using LFAST interface.  
Each supply group mentioned in the table below can be independently powered up/down  
from the other supply groups. Power supplies in the same group must be powered up/  
down together. Supply groups belonging to the same supply domain can be ganged  
together on board level (with appropriate noise isolation) to allow these groups to power  
up/down together. Following supply groups have been tested for power sequencing tests:  
Table 67. Supply groups tested for power sequencing  
Supply Group No.  
Voltage domain  
3.3 V  
S32V234 power supplies  
VDD_GPIO0  
1
2
3
4
5
6
7
8
9
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.8 V/3.3 V  
1.5 V/1.8 V/2.5 V/3.3 V  
1.8 V  
VDD_GPIO1  
VDD_GPIO2  
VDD_HV_IO_VIU0  
VDD_HV_IO_VIU1  
VDD_HV_DIS  
VDD_HV_IO_FLA  
VDD_HV_IO_ETH  
VDD_HV_PLL, VDD_HV_LFASTPLL, VDD_HV_FXOSC  
,
VDD_HV_PMC, VDD_HV_EFUSE, VDD_HV_DDR  
PCIE_VPH, VDD_HV_CSI, VDDIO_LFAST  
,
10  
1.0 V  
VDD_LV_CORE_SOC, VDD_LV_CORE_ARM, VDD_LV_GPU  
VDD_LV_PLL, PCIE_VP, VDD_LV_CSI  
,
11  
12  
1.8 V  
VDD_HV_ADV, VREFH_ADC  
VDD_DDR_IO  
1.2 V/1.35 V/1.5 V  
12 Revision history  
Table 68. Revision history  
Revision  
Date  
Description of changes  
1
03/2015 Initial release.  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
81  
Revision history  
Table 68. Revision history (continued)  
Revision  
Date  
06/2015 Overall:  
• Editorial changes.  
Description of changes  
2
Added topic PCB routing guideliness.  
Added topic RESET pin glitch filter specifications.  
In Table 15, added the sentence "For internal ADC channels, the minimum sampling time required  
is 3 microsecond" in the foot note on "Sample time".  
In Power Management Controller (PMC) electrical specifications, changed the introductory  
paragraph. Added Low Voltage Detector for IRC (VDD_HV_OSC).  
In Table 3, modified minimum value of 3.3 V input/output supply voltage.  
In Reset sequence description, updated both "External reset sequence long, BIST enabled" and  
"Destructive reset sequence, BIST enabled" images.  
In Table 17, updated the condition of Oscillator start-up time from fOSC = 24,40 MHz to fFXOSCHS  
24,40 MHz.  
=
In Power sequencing requirements, changed VREFL_ADC to VREFH_ADC, VDD_HV_CSI1/2 to  
VDD_HV_CSI, and VDD_LV_CSI1/2 to VDD_LV_CSI.  
In Table 10, added footnote in ovdd.  
In Table 5, changed VS4 to S32V234 and VS2 to S32V232.  
Made extensive changes in QuadSPI AC specifications.  
In Table 3, added Supply ramp rate specifications.  
In Table 5, changed maximum value of vdd_hv_pll from 30 mA to 35 mA and maximum value of  
vdd_lv_pll from 55 mA to 80 mA.  
In DDR3 and DDR3L timing parameters , added a note.  
In Table 29, updated the table title to include DDR3L. Also updated minimum value of DDR4. DDR5,  
DDR6, and DDR7 and changed units of DDR1 and DDR2.  
In Table 30, updated the table title to include DDR3L. Also updated minimum value of DDR26.  
In Table 31, updated the table title to include DDR3L. Updated minimum values of DDR17 and  
DDR18, and units of DDR21 and DDR22.  
In Table 32, updated LP1 and LP2 symbols and units.  
In Figure 15, changed figure title from “LPDDR3 write cycle” to “LPDDR2 write cycle”.  
In Table 34, updated minimum value of LP18, and minimum and maximum value of LP21. Also  
updated units of LP21, LP22, and LP23.  
Updated topic titles DDR SDRAM Specific Parameters (DDR3, DDR3L, and LPDDR2), DDR3 and  
DDR3L timing parameters , DDR3 and DDR3L read cycle, and DDR3 and DDR3L write cycle.  
Updated figure titles Figure 10, Figure 11, and Figure 12.  
In Reset sequence description, added value of external pull up resistor as 10-15 kiloohm.  
In Table 18, modified the parameter "IRCOSC frequency variation afterprocess trimming" to  
"IRCOSC frequency variation with respect to supply and temperature after process trimming".  
Updated Table 16.  
In Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC), added the sentence  
"uSDHC_VEND_SPEC[CMD_OE_PRE_EN] field should be programmed to 1 for proper functioning  
of uSDHC external interface".  
In Table 59, updated maximum value of TCK Rise and Fall Times.  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
82  
NXP Semiconductors  
Revision history  
Table 68. Revision history (continued)  
Revision  
Date  
Description of changes  
In Table 58, updated minimum value of TCK Cycle Time and the footnote. Also, added CJTAG TCK  
Cycle Time and updated maximum value of TCK Rise and Fall Times.  
Added DDR3L mode and DDR3L mode DC electrical specifications.  
Removed LPDDR2 I/O AC specifications.  
Deleted the word "Dual" from "Dual QuadSPI supporting Execute-In-Place (XIP)" in "Features"  
section as there is only one QuadSPI.  
Changed all instances of XOSC to FXOSC throughout the document.  
Changed all instances of MIPI-CSI2, MIPI, and CSI2 to MIPICSI2 throughout the document.  
2.1  
3
06/2015 Overall:  
• Editorial changes.  
04/2017  
• Editorial changes.  
• Updated Figure 1.  
• Modified Figure 4.  
• Modified Figure 6.  
• Modified Figure 7.  
• Updated Figure 29.  
• Updated Figure 38.  
• Updated Figure 43.  
• Updated Figure 48.  
• Removed Figure "DSPI modified transfer format timing – slave, CPHA = 0" and Figure "DSPI  
modified transfer format timing — slave, CPHA = 1".  
• In Table 1, updated ARM Cortex-A53 Core feature for S32V232 from “Up to 600 MHz Quad  
ARM Cortex-A53” to “Up to 800 MHz Dual ARM Cortex-A53 (single cluster)”.  
• In Table 3 :  
• added the footnote "All the grounds viz. VSS, VSS_XOSC,VSS_PMC and  
VSS_HV_ADV are tied together at the package level” in Common ground voltage.  
• minimum operating voltage of VDD_HV_IO_ETH has been changed from 1.71 V to 1.5 V,  
and maximum value of DDR I/O supply voltage LPDDR2 changed from 1.26 V to 1.30  
V.  
• parameter “Supply ramp rate” has been changed to “Supply ramp rate for all supplies  
on the device”  
• added LFAST IO bank supply (VDDIO_LFAST) in the list of symbols for "1.8 V supply  
voltage (for analog circuits, PLLs)"  
• In Table 4 :  
• added Band Gap Reference value of PMC.  
• maximum value of trimmed VTH threshold of VDD_LV_CORE_SOC (low voltage  
monitoring) has been changed from 939 to 946 mV, and maximum values of trimmed  
VTL and VTH threshold of VDD_LV_CORE_SOC (high voltage monitoring) have been  
changed from 1081 to 1093, and 1096 to 1093 mV, respectively.  
• In Table 5 :  
• modified table footnotes to clarify that power numbers are estimated for 1.01 V and 125  
°C.  
• VDD_HV_LFASTPLL Simulation values (Maximum) and Maximum Values of Use cases  
"PLL operating with 320 MHz (LFAST used)” and "PLL not operational (LFAST not  
used)” have been modified.  
• use case “eFuse reading happening” of VDD_HV_EFUSE and its specifications are  
removed.  
• max simulation values of MIPICSI2 interface operating as per MIPICSI not used (not  
powered?) in VDD_HV_CSI and VDD_LV_CSI have been changed from .1 mA to 1.6  
mA and 11 mA to 15 mA.  
• for PCIE_VP and PCIE_VPH, Powered down (leakage only) use case has been  
changed to Reset/idle. Max simulation values for PCIE_VP and PCIE_VPH (Reset/idle)  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
83  
Revision history  
Table 68. Revision history  
Revision  
Date  
Description of changes  
use cases are removed, and PCIE_VPH (5 GHz operation) use case has been changed  
from 30 to 32 mA. Max values of both PCIE_VP and PCIE_VPH (for both cases) have  
been included.  
• modified the table heading. Removed Front Camera (w power binning) from  
VDD_LV_CORE and updated max values for “Adder 4x A53 CPU with Dhrystone MIPS  
running on each CPU @1 GHz” from 1.0 A to 1.4 A.  
• removed "Simulation values" column.  
• PCIE_VPH limits changed for “5 GHz operation (PCIe 2.0)” from 40 mA to 50 mA and  
“Reset/Idle” from 11 mA to 20 mA.  
• minimum and maximum values of PMC Band Gap Reference value have been changed  
from 1185 to 1176 mV, and 1215 to 1224 mV respectively.  
• In Table 10 :  
• added the note ”After bootup, application software should switch to manual voltage  
detect mode using VSEL_x settings of SRC_GPR14 register to ensure optimum  
performance of the GPIO pads. Please refer to SRC chapter in the Reference Manual  
for the register details.”  
• changed the maximum value of Input current (no pull-up/down) from 1 to 8 μA.  
• removed “Input Hysteresis”  
• maximum value of parameter “Input current (50 kilohm PU)” has been changed from  
100 to 150 μA.  
• maximum value of parameter “Input current (100 kilohm PU)” has been changed from  
50 to 60 μA.  
• removed parameter “pad keeeper resistance” and "maximum external resistor value  
that is guaranteed to overdrive the pad keeper".  
• maximum value of parameter “Input current (50 kilohm PD)” with test condition Vin=0  
has been changed from 1 to 8 μA. Also, when Vin = Vdd, maximum value of Input  
current (33 kilohm PU), Input current (50 kilohm PU), and Input current (100 kilohm PU)  
have been changed from 1 to 6 μA.  
• test conditions "Ioh=-1 mA" changed to "Ioh=-100 μA" and "Ioh= 1 mA" changed to  
"Ioh=-100 μA".  
• In Table 12, Table 13, and Table 14,  
• Added Vih (DC) and Vil (DC) specifications .  
• All tri-state supply current items are removed and updated test conditions of "High-level  
output voltage" and "Low-level output voltage".  
• Maximum value of parameter “ Input current (no pullup/pulldown)” has been changed  
from 3 to 5 μA, 3 to 5 μA, and 2.5 to 5 μA, respectively.  
• In Table 12, removed parameter “Rod_keep”. Updated minimum, typical, and maximum value  
of parameter Rkeep.  
• In Table 13, removed parameter “Rod_keep”.  
• In Table 14, removed parameter “Rod_keep” and deleted footnote “Note that the Jedec  
LPDDR2 specification (JESD209-2B) supersedes any specification in this document”.  
• In Table 15  
• updated ADC Input Clock frequency  
• added ADC Conversion clock frequency  
• removed conditions of Sample time and Conversion time  
• removed all information about parameter “Max positive/negative injection” and modified  
“Total unadjusted error” in “TUE”.  
• In Table 17, modified the minimum and maximum values of VIH and VIL.  
• In Table 19 :  
• Changed maximum value of SSCG modulation depth from -6% to -5.4%, and added  
condition STEPSIZE x STEPNO < 18432.  
• Removed “PLL VCO frequency” and “PLL output clock PHI0”, and deleted footnote "All  
PLLs have same specifications. PLL programming should take maximum clock  
frequencies as per Reference Manual recommendation”.  
• Added Table 19.  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
84  
NXP Semiconductors  
Revision history  
Table 68. Revision history  
Revision  
Date  
Description of changes  
• In Table 21 :  
• unit for Total Jitter has been changed from ps to ns.  
• removed max Deterministic and max Random jitter specifications; added footnote in  
max Total Jitter.  
• In Table 22 :  
• Made modification in DDR mode.  
• Updated values of QuadSPI_SOCCR[FDCC_FB] and QuadSPI_SOCCR[FDCC_FA] for  
SDR and DDR mode (internal DQS Mode) and added footnote “Device qualification is  
not complete.”  
• Deleted Table "QuadSPI input timing (DDR mode) specifications with learning"  
• In Table 24 changed Minimum value of Chip select output setup time and Chip select output  
hold time.  
• In Table 25  
• changed maximum value of SCK Clock Frequency and updated configuration. Also,  
changed table caption  
• changed the minimum value of "Setup time for incoming data".  
• In Table 26 :  
• deleted "Chip select output setup time" and "Chip select output hold time".  
• changed the maximum value of "Output Data Valid" and minimum value of "Output Data  
Hold".  
• In Table 27, updated minimum value of parameters “Setup time for incoming data” and “Hold  
time for incoming data”.  
• In Table 28, updated maximum value of “Ck to Ck2 skew max” and minimum value of “Ck to  
Ck2 skew min”.  
• In Table 29 changed symbol and minimum value of DDR4, DDR5, DDR6, and DDR7.  
• In Table 30 modified minimum value of DDR26 from 540 to 563 ps.  
• In Table 31 changed the symbol and minimum value of DDR17 and DDR18.  
• In Table 32 changed the symbol and minimum value of parameters CKE setup time, CKE hold  
time, CA setup time, and CA hold time.  
• In Table 33 changed the minimum value of LP26.  
• In Table 34 changed the symbol and minimum value of LP17 and LP18.  
• In Table 35 :  
• Updated footnotes to include changes in PCSSCK, CSSCK, PASC, ASC values.  
• Updated footnotes in minimum timing of parameter DSPI cycle time, PCS to SCK delay,  
and After SCK delay.  
• In Table 36 changed the heading of table from "SD/eMMC4.3 interface timing specification" to  
"SDR mode timing specification".  
• In Table 37 changed the heading of table from "SD3.0/eMMC4.5 interface timing  
specification" to "DDR mode timing specification" and updated parameter "Clock Frequency  
(eMMC4.5 DDR)" to "Clock Frequency (eMMC4.4 DDR)".  
• In Table 38 :  
• updated min, typ, and max values of VOS_DRF and |ΔVOD_DRF  
• deleted ROUT_DRF and VHYS_DRF  
|
• modified RIN_DRF  
• added LFAST Clock characteristics  
• parameter Rise/Fall time (10% - 90% of swing) is changed to Rise/Fall time (20% - 80%  
of swing) and minimum and maximum values of the parameter have been changed from  
0.26 to 0.1 ns and 1.5 to 0.73 ns.  
• added footnote “Rise/fall time is defined for 20 to 80% signal voltage levels, at 2pF  
Cload and 100 Ohm termination resistor load”.  
• Updated minimum and maximum value of “Common mode voltage” (Transmitter) from  
1.125 to 1.1 V and 1.375 to 1.475 V.  
• Updated maximum value of “Common mode voltage” (Receiver) from 1.6 to 1.5 V.  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
85  
Revision history  
Table 68. Revision history  
Revision  
Date  
Description of changes  
• Updated the footnote in minimum and maximum values of “Common mode voltage”  
(Receiver).  
• Changed minimum value of “Differential input voltage” (Receiver) from 100 to 150 mV.  
• In Table 43 changed minimum and maximum value of RX_CLK duty cycle.  
• In Table 44 :  
• changed minimum and maximum value of TX_CLK duty cycle and minimum value of  
Out delay from TX_CLK.  
• included "TX_CLK to Output Valid" and "TX_CLK to Output Invalid".  
• In Table 45 removed the foot note from "Characteristic".  
• In Table 49 :  
• Changed minimum value of “Data hold time0” and “Data setup time” from 0 to 25 ns,  
and 0 to 250 (standard mode); 100 (fast mode) respectively  
• Added note "ipg_clk frequency should be greater than 5 MHz for standard mode and 20  
MHz for fast mode" to minimum value of “Data setup time”  
• Updated the column "Number"  
• In Table 50, minimum value of “Stop condition setup time” has been changed from 10 to 11  
IPS bus cycle.  
• In Table 51, changed Display pixel clock period from 6.4 to 6.66 ns.  
• In Table 52, changed pixel clock period from 6.36 to 6.66 ns.  
• In Table 53, changed description "VIU data setup time" to "VIU Data/Hsync/Vsync setup time"  
and "VIU data hold time" to "VIU Data/Hsync/Vsync hold time".  
• In Table 54, removed "Contention Line Receiver DC Specifications".  
• In Table 57, Data to Clock Setup Time and Clock to Data Hold Time are updated to include  
condition where the PHY is used to a maximum data rate of 1.0Gbps and data rates greater  
than 1.0Gbps.  
• In Table 60, updated Clock frequency.  
• In Table 65 :  
• changed minimum and maximum values of “Destructive Reset Sequence, BIST  
disabled” from 5 ms to 50 µs and 10 ms to 90 µs  
• changed minimum and maximum values of “Functional Reset Sequence Long,  
Unsecure Boot, BIST disabled” from 5 ms to 50 µs and 10 ms to 90 µs  
• changed minimum and maximum values of ”Functional Reset Sequence Short,  
Unsecure Boot, BIST disabled” from 5 ms to 2 µs and 6 ms to 7 µs.  
• Added Table 67 and a paragraph preceding it “Each supply group mentioned in the table  
below can be independently powered up/down from the other supply groups. Supply domains  
belonging to the same supply group are supposed to be ganged together on board level (with  
appropriate noise isolation) to allow this group to power up/down together”.  
• All IRC and IRCOSC in the document changed to FIRC.  
• In Features, modified JPEG and H.264 information.  
• Removed hysteresis information from Features, Table 1, and from Table 10.  
• Modified content in Family comparison.  
• Added topic Operation above maximum operating conditions.  
• Updated Ordering information  
• In Power consumption, modified the statement “These specifications are design targets and  
are subject to change per device characterization” to “These specifications are subject to  
change per device characterization.”  
• In PCB routing guidelines changed the subheading from "DDR3 PCB design" to "DDR3/  
DDR3L PCB design".  
• Added topic GPIO speed at various voltage levels.  
• In DDR pads, deleted table "DDR operating conditions".  
• In ADC electrical specifications, Updated the note to “While measuring scaled supply voltages  
on ADC Channels, Maximum (+5/-10%) variation can be expected .”  
• In Main oscillator electrical characteristics, added crystal information.  
• In ADC electrical specifications added the note “While measuring scaled supply voltages on  
ADC Channels, Maximum 10% variation can be expected”.  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
86  
NXP Semiconductors  
Revision history  
Table 68. Revision history (continued)  
Revision  
Date  
Description of changes  
• In Thermal Monitoring Unit (TMU), changed all occurrences of “Temperature Sensor” to  
“Thermal Monitoring Unit”.  
• In 48 MHz FIRC electrical characteristics, min and max value of “IRCOSC frequency variation  
with respect to supply and temperature after process trimming” has been changed from -5 to  
-10 and +5 to +10 %.  
• In QuadSPI AC specifications deleted sentence "DDR configurations are applicable when  
used without learning enabled."  
• Added a note in DSPI timing.  
• In Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) changed the introductory  
paragraph.  
• Renamed topic "SD/eMMC4.3 (Single Data Rate) AC Timing" to "SDR Mode Timing  
Specifications". In this topic SDR mode timing specifications deleted the introductory  
paragraph and deleted the existing figure. Two new figures Figure 23 and Figure 24 are  
added. Modified Table 36.  
• Renamed topic "SD/eMMC4.4/5.0 (Dual Data Rate) eSDHCv3 AC Timing" to "DDR Mode  
Timing Specifications". In this topic DDR mode timing specifications, deleted the introductory  
paragraph and replaced the existing figure with four new figures (Figure 25, Figure 26, Figure  
27, Figure 28).  
• In DSPI timing changed the note from "DSPI on this chip neither supports interaction with a  
Slave in MTFE mode nor acts as one" to "DSPI Timing specs on this chip are valid with Slave  
in Classic Mode only."  
• In Ethernet Switching Specifications, ” statement "For RGMI, output load is 15 pF and pad  
settings are DSE[2:0] = 111 and FSEL[1:0] = 11" is changed to "For RGMII, output load is 5  
pF and pad settings are DSE[2:0] = 111 and FSEL[1:0] = 11."  
• Added topic MII/RMII Serial Management channel timing (MDC/MDIO).  
• In Video input unit (VIU) timing specifications heading "Video input unit (VIU) electrical  
specifications" changed to "Video input unit (VIU) timing specifications".  
• Added topic Boot performance matrix.  
• In Power sequencing requirements :  
• added note "VDD_HV_ADV must be powered for using LFAST interface". Changed  
“VREFH_ADC should never be more than 100 mV above VDD_HV_ADV” to  
“VREFH_ADC should never differ from VDD_HV_ADV by more than 100 mV at any  
time including during power-up or power-down”.  
• Changed the sentence from "DDR0_VREF0 and DDR1_VREF0 supplies are expected  
to be 0.5 of VDD_HV_DDR0 and VDD_HV_DDR1 I/O supplies and are to track  
VDD_HV_DDR0 and VDD_HV_DDR1 supply variations as measured at the receiver” to  
"DDR0_VREF0 and DDR1_VREF0 supplies are expected to be 0.5 of VDD_DDR0_IO  
and VDD_DDR1_IO supplies and are to track VDD_HV_DDR0 and VDD_HV_DDR1  
supply variations as measured at the receiver”.  
• Updated the statement "VDD_HV_CSI and VDD_LV_CSI should be powered up  
together on board to prevent any electrical crossover currents" to "VDD_HV_CSI and  
VDD_LV_CSI supplies should be powered up within 50 ms of each other".  
3.1  
4
07/2017  
11/2017  
• The only changes between S32V234 Rev 3.1 and Rev 3 is the removal of "Confidential  
Proprietary" from the footer.  
• In Ordering information, added a table mentioning the production part numbers with  
respective feature configurations.  
• In Table 19, updated SSCG modulation depth values.  
• In Features, updated the statement for "APEX2-CL Image cognition processor" to remove the  
mention of OpenCL 1.2 support.  
• In Features, updated the first statement under "Memory interfaces" with the correct LPDDR2/  
DDR3/DDR3L operating specs.  
• Updated LPDDR2 and DDR3 operating clock rate and data rate in Figure 1.  
• In Feature Set, updated the "Memory Interfaces" entry for the correct operating data rate and  
clock rate of LPDD2 and DDR3.  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
87  
Revision history  
Table 68. Revision history (continued)  
Revision  
Date  
Description of changes  
• In PCB routing guidelines, added a note under the "CLK/Addess/Commands" section. And  
updated the third point under the section for clarification.  
• In Table 3, row 2 and 3 has been split into sub-sections for different I/O voltages.  
• In Table 5, updated max value for VDD_HV_LFASTPLL when "PLL operating with 320 MHz  
(LFAST used)". Value is changed from 24 mA to 26 mA.  
• In Table 16, updated TADC at TJ = 40 °C to 125 °C, from +/- 5 °C to +/- 6 °C.  
• In Table 5, updated descriptions for VDD_HV_CSI and VDD_LV_CSI. The string "not  
powered?" is changed to "IP Powered and Disabled".  
• In Main oscillator electrical characteristics, updated the section to remove references of 24  
MHz FXOSC support.  
• In Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC), updated the topic title and  
added a paragraph describing voltage restriction with eMMC booting.  
• In Table 5, removed the footnotes from the "Max Values" column, and added one to the  
VDD_LV_CORE entry.  
• In Table 19, updated the frequency values for "PLL input clock".  
• In Table 20, updated the "Input Frequency" values.  
• Updated the specs in following tables:  
Table 29  
Table 31  
Table 32  
Table 34  
• Removed the table "PLL maximum frequencies" from the section PLL electrical specifications.  
• In DFS electrical specifications, updated mfn division factor from [0:255] to [1:255], and  
updated the footnote from the Table 20.  
5
6
03/2018  
08/2018  
• This device is qualified now, so removed the footnote from Table 22 that said "Device  
qualification is not complete.".  
• Corrected "Operating Max Supply Voltage" for "3.3 V DGO Voltage Domain" in Table 2 to 3.6  
V.  
• Corrected Block diagram to add DRAM-ECC to MMDC_1 block, similar to it was with  
MMDC_0.  
• Updated the specs for VDD_LV_CORE in Table 5.  
• Updated max values for TDRB and TERLB in Table 65.  
GPIO speed at various voltage levels - Added a note at the end of the section.  
Power sequencing requirements - Added one new point to the bullet list mentioning the  
maximum rise time for POR signal.  
Boot Configuration Pins Specification - Added two notes in this section.  
Table 56 - Updated "Maximum serial data rate" spec from "80 to 1.5 Gbps" to "80 to 1500  
Mbps".  
• Following changes are made throughout the document for better clarification:  
• DSE[2:0] changed to SIUL2_MSCRn[DSE].  
• ipp_dse<1:0> changed to SIUL2_MSCRn[DSE].  
• FSEL[1:0] changed to SIUL2_MSCRn[SRE].  
• ipp_fsel changed to SIUL2_MSCRn[SRE].  
• Deleted the test condition about ipp_do.  
• Added a note to the following sections to clarify that to match with the measurements given in  
the section you must ensure the configuration mentioned. That may not be the default  
configuration of the chip after reset.  
QuadSPI AC specifications  
DSPI timing  
Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC)  
Ethernet Switching Specifications  
MII/RMII Serial Management channel timing (MDC/MDIO)  
Interface to TFT panels  
Table continues on the next page...  
S32V234 Data Sheet, Rev. 9, 03/2020  
88  
NXP Semiconductors  
Revision history  
Table 68. Revision history (continued)  
Revision  
Date  
Description of changes  
JTAG interface timing  
Debug trace timing specifications  
Electrostatic discharge (ESD) specifications - Removed the VESD(CDM) specs for corner  
pins.  
7
8
08/2018  
12/2018  
GPIO speed at various voltage levels - Added the text "The maximum rise time for all GPIO  
pins is 1 ms" to the existing note.  
Power sequencing requirements - Updated the last bullet to "The maximum rise time for the  
POR and RESET.........this pin can increase the problem.".  
• Changed all instances of XOSC to FXOSC throughout the document.  
• In Table 1 - For S32V232 changed "Up to 800 MHz Dual ARM Cortex-A53 (single cluster)" to  
"Up to 1000 MHz Dual ARM Cortex-A53 (single cluster)" and in communications row removed  
all the text and added text "Same as S32V234" for S32V232.  
• In Ordering information - Changed text from "The orderable part numbers of this chip are in  
the table below" to "An example of orderable part numbers of this chip are in the table below".  
• In GPIO speed at various voltage levels - Added the Drive Strength "001" and "010" in the  
"GPIO rise/fall times (1.8 V range)", "GPIO rise/fall times (2.5 V range)" and "GPIO rise/fall  
times (3.3 V range)" tables.  
• In Features - Removed the text "ARM TrustZone (TZ) architecture support" and added text  
"Secure vs non-secure applications separation supported via ARM v8 exception level support  
in the ARM Cortex A53 clusters and its extension via XRDC on SoC level".  
• In Table 5 updated the following:  
• Replaced descriptive text with orderable part number.  
• Removed @ 125 C from each row.  
• Split the row "DD_LV_CORE" into "DD_LV_CORE (static)" and "DD_LV_CORE  
(dynamic)" into separate rows.  
• Added "Tj" as the temperature in the footnote.  
• Added further static power entries. Added values for 125 Tj and 105 Tj for  
VDD_LV_CORE (Static).  
• Added parameters "VDD_HV_ADV" and "VDD_REFH_ADC".  
• In DDR3 and DDR3L timing parameters added Note "DDR3 and DDR3L timing parameters  
are compliant with JESD79-3F and JESD79-3-1A.01 specifications respectively".  
• In LPDDR2 timing parameter added Note "LPDDR2 timing parameters are compliant with  
JESD209-2B specification".  
9
01/2020  
• In Ordering information :  
• Added Figure 1.  
• Added a note "For the latest information on orderable parts please check https://  
www.nxp.com/s32v234 Buy/Parametrics section".  
• In Features changed the text from "Secure vs non-secure applications separation supported  
via ARM v8 exception level support in the ARM Cortex A53 clusters and its extension via  
XRDC on chip level" to "ARM TrustZone (TZ) architecture support".  
• In Table 2 removed the "Operating Max Supply Voltage" rows.  
• Removed the Maximum and Minimum values of Vtt and added a footnote in Table 13 and  
Table 12.  
• Updated the text from "Supply domains belonging to the same supply group are supposed to  
be ganged together on board level (with appropriate noise isolation) to allow this group to  
power up/down together" to "Power supplies in the same group must be powered up/down  
together. Supply groups belonging to the same supply domain can be ganged together on  
board level (with appropriate noise isolation) to allow these groups to power up/down  
together" in Power sequencing requirements.  
• In Table 38 for |ΔVI_DRF|added the conditions "VICOM_DRF>1.4 V" and "VICOM_DRF<= 1.4 V".  
S32V234 Data Sheet, Rev. 9, 03/2020  
NXP Semiconductors  
89  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including “typicals,” must be validated for each customer application  
by customerʼs technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,  
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,  
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS  
are trademarks of NXP B.V. All other product or service names are the property of their respective  
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,  
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,  
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,  
ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its  
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of  
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered  
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the  
Power and Power.org logos and related marks are trademarks and service marks licensed by  
Power.org.  
© 2020 NXP B.V.  
Document Number S32V234  
Revision 9, 03/2020  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY