FTT1010-M/EG [NXP]

Frame Transfer CCD Image Sensor; 帧转移CCD图像传感器
FTT1010-M/EG
型号: FTT1010-M/EG
厂家: NXP    NXP
描述:

Frame Transfer CCD Image Sensor
帧转移CCD图像传感器

传感器 图像传感器 CD
文件: 总17页 (文件大小:172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IMAGE SENSORS  
FTT1010-M  
Frame Transfer CCD Image Sensor  
Product specification  
1999 September 21  
File under Image Sensors  
Philips  
Semiconductors  
TRAD  
Philips Semiconductors  
Product specification  
Frame Transfer CCD Image Sensor  
FTT1010-M  
1-inch optical format  
1M active pixels (1024H x 1024V)  
Progressive scan  
Excellent anti-blooming  
Variable electronic shuttering  
Square pixel structure  
H and V binning  
100% optical fill factor  
High dynamic range (>72dB)  
High sensitivity  
Description  
The FTT 1010-M is a monochrome progressive-scan frame-transfer  
image sensor offering 1K x 1K pixels at 30 frames per second through  
a single output buffer. The combination of high speed and a high  
linear dynamic range (>12 true bits at room temperature without  
cooling) makes this device the perfect solution for high-end real time  
medical X-ray, scientific and industrial applications. A second output  
can either be used for mirrored images, or can be read out  
simultaneously with the other output to double the frame rate. The  
device structure is shown in figure 1.  
Low dark current and fixed pattern noise  
Low read-out noise  
Data rate up to 2 x 40 MHz  
Mirrored and split read-out  
Device structure  
6 black lines  
Z
Y
Optical size:  
12.288 mm (H) x 12.288 mm (V)  
Chip size:  
Pixel size:  
Active pixels:  
Total no. of pixels:  
Optical black pixels:  
Timing pixels:  
Dummy register cells:  
Optical black lines:  
14.572 mm (H) x 26.508 mm (V)  
12 µm x 12 µm  
1024 (H) x 1024 (V)  
1072 (H) x 1030 (V)  
Image Section  
1024  
active  
lines  
4
4
20  
20  
Left: 20  
Left: 4  
Left: 7  
Right: 20  
Right: 4  
Right: 7  
1024 active pixels  
2060  
lines  
Bottom: 6 Top: 6  
Storage Section  
W
7
X
6 black lines  
1072 cells  
Output  
7
amplifier  
Output register  
Figure 1 - Device structure  
1999 September  
2
Philips Semiconductors  
Product specification  
Frame Transfer CCD Image Sensor  
FTT1010-M  
Architecture of the FTT1010-M  
The FTT1010-M consists of a shielded storage section and an open  
image section. Both sections are electronically the same and have  
the same cell structure with the same properties.The only difference  
between the two sections is the optical light shield.  
The left and the right half of each output register can be controlled  
independently. This enables either single or multiple read-out.  
During vertical transport the C3 gates separate the pixels in the  
register. The letters W, X, Y and Z are used to define the four  
quadrants of the sensor. The central C3 gates of both registers are  
part of the W and Z quadrants of the sensor.  
The optical centres of all pixels in the image section form a square  
grid. The charge is generated and integrated in this section. Output  
registers are located below the storage section.The output amplifiers  
Y and Z are not used in Frame Transfer mode and should be  
connected as not-used amplifiers.  
Both upper and lower registers can be used for vertical binning.  
Both registers also have a summing gate at each end that can be  
used for horizontal binning. Figure 2 shows the detailed internal  
structure.  
After the integration time the charge collected in the image section  
is shifted to the storage section. The charge is read out line by line  
through the lower output register.  
IMAGE SECTION  
Image diagonal (active video only)  
Aspect ratio  
Active image width x height  
Pixel width x height  
17.38 mm  
1:1  
12.288 x 12.288 mm2  
12x12 µm2  
100%  
Geometric fill factor  
Image clock pins  
Capacity of each clock phase  
Number of active lines  
A1, A2, A3, A4  
2.5nF per pin  
1024  
Number of black reference lines  
Number of dummy black lines  
Total number of lines  
2
4
1030  
Number of active pixels per line  
Number of overscan (timing) pixels per line  
Number of black reference pixels per line  
Total number of pixels per line  
1024  
8 (2x4)  
40 (2x20)  
1072  
STORAGE SECTION  
Storage width x height  
Cell width x height  
12.864 x 12.360 mm2  
12x12 µm2  
Storage clock phases  
Capacity of each clock phase  
Number of cells per line  
Number of lines  
B1, B2, B3, B4  
2.5nF per pin  
1072  
1030  
OUTPUT REGISTERS  
Output buffers (three-stage source follower)  
Number of registers  
4 (one on each corner)  
2 (one above, one below)  
14 (2x7)  
Number of dummy cells per register  
Number of register cells per register  
Output register horizontal transport clock pins  
Capacity of each C-clock phase  
Overlap capacity between neighbouring C-clocks  
Output register Summing Gates  
Capacity of each SG  
1072  
C1, C2, C3  
60pF per pin  
20pF  
4 pins (SG)  
15pF  
Reset Gate clock phases  
Capacity of each RG  
4 pins (RG)  
15pF  
1999 September  
3
Philips Semiconductors  
Product specification  
Frame Transfer CCD Image Sensor  
FTT1010-M  
7 dummy  
pixels  
20 black & 4  
timing columns  
1K image  
pixels  
20 black & 4 timing  
columns  
7 dummy  
pixels  
RD  
RD  
RG  
RG  
OG SG C2 C1 C3  
C2 C1 C3 C2 C1 CC33 C2 C1 C3  
C2 C1 C3 C2 C1 C3  
C2 C1 C3 C2 C1 C3  
C2 C1 C3 C2 C1 C3 C2 C1 C3  
C2 C1 SG OG  
A1  
A2  
A3  
A4  
A1  
A2  
A3  
A4  
OUT_Z  
OUT_Y  
(not used)  
(not used)  
6 black  
lines  
A1  
A2  
A3  
A4  
A1  
A2  
A3  
A4  
A1  
A2  
A3  
A4  
A1  
A2  
A3  
A4  
IMAGE  
One Pixel  
1K active  
images lines  
A1  
A2  
A3  
A4  
B1  
B2  
B3  
B4  
A1  
A2  
A3  
A4  
B1  
B2  
B3  
B4  
FT CCD  
SG: summing gate  
OG: output gate  
RG: reset gate  
RD: reset drain  
1K storage  
lines  
AB11  
B2  
B3  
B4  
B1  
B2  
B3  
B4  
AB11  
B2  
B3  
B4  
B1  
B2  
B3  
B4  
STORAGE  
6 black lines  
B1  
B2  
B3  
B4  
B1  
B1  
B2  
B3  
B4  
B1  
OUT_W  
OUT_X  
OG SG C2 C1  
C2 C1  
C2 C1  
C2 C1  
C2 C1  
C2 C1  
C2 C1  
C2 C1  
C2 C1  
C2 C1 SG OG  
C3  
C3  
C3  
C2 C1 C3 C2 C1  
C3  
C3  
C3  
C3  
C3  
C3  
C3  
C3  
C3  
RG  
RD  
RG  
RD  
column  
1
column  
24 + 1  
column  
24 + 1K  
column  
24 + 1K + 24  
A1, A2, A3, A4: clocks of image section  
B1, B2, B3, B4: clocks of storage section  
C1, C2, C3: clocks of horizontal registers  
Figure 2 - Detailed internal structure  
1999 September  
4
Philips Semiconductors  
Product specification  
Frame Transfer CCD Image Sensor  
FTT1010-M  
Specifications  
ABSOLUTE MAXIMUM RATINGS1  
MIN.  
MAX.  
UNIT  
GENERAL:  
storage temperature  
-55  
-40  
-20  
-0.2  
0
+80  
+60  
+20  
+2.0  
10  
°C  
°C  
V
µA  
mA  
ambient temperature during operation  
voltage between any two gates  
DC current through any clock phase (absolute value)  
OUT current (no short circuit protection)  
VOLTAGES IN RELATION TO VPS:  
VNS, SFD, RD  
VCS, SFS  
-0.5  
-8  
-5  
+30  
+5  
+25  
V
V
V
all other pins  
VOLTAGES IN RELATION TO VNS:  
SFD, RD  
VCS, SFS, VPS  
-15  
-30  
-30  
+0.5  
+0.5  
+0.5  
V
V
V
all other pins  
DC CONDITIONS2  
MIN. [V]  
TYPICAL [V]  
MAX. [V]  
MAX. [mA]  
15  
15  
4.5  
1
VNS3  
VPS  
SFD  
SFS  
VCS  
OG  
N substrate  
P substrate  
18  
1
16  
-
24  
3
20  
0
0
6
28  
7
24  
-
Source Follower Drain  
Source Follower Source  
Current Source  
Output Gate  
-5  
4
3
8
-
-
RD  
Reset Drain  
13  
15.5  
18  
-
AC CLOCK LEVEL CONDITIONS2  
MIN.  
TYPICAL  
MAX.  
UNIT  
IMAGE CLOCKS:  
A-clock amplitude during integration and hold  
A-clock amplitude during vertical transport (duty cycle=5/8)4  
A-clock low level  
8
10  
10  
14  
0
V
V
V
V
Charge Reset (CR) level on A-clock 5  
-5  
-5  
STORAGE CLOCKS:  
B-clock amplitude during hold  
B-clock amplitude during vertical transport (duty cycle=5/8)  
8
10  
10  
14  
V
V
OUTPUT REGISTER CLOCKS:  
C-clock amplitude (duty cycle during hor. transport = 3/6)  
C-clock low level  
Summing Gate (SG) amplitude  
Summing Gate (SG) low level  
4.75  
2
5
5.25  
10  
V
V
V
V
3.5  
10  
3.5  
OTHER CLOCKS:  
Reset Gate (RG) amplitude  
Reset Gate (RG) low level  
Charge Reset (CR) pulse on Nsub  
5
0
10  
3
10  
10  
10  
V
V
V
5
1 During Charge Reset it is allowed to exceed maximum rating levels (see note5).  
2 All voltages in relation to SFS.  
3 To set the VNS voltage for optimal Vertical Anti-Blooming (VAB), it should be adjustable between minimum and maximum values.  
4 Three-level clock is preferred for maximum charge; the swing during vertical transport should be 4V higher than the voltage during integration.  
A two level clock (typically 10V) can be used if a lower maximum charge handling capacity is allowed.  
5 Charge Reset can be achieved in two ways:  
• The typical CR level is applied to all image clocks simultaneously (preferred).  
• The typical A-clock low level is applied to all image clocks;for proper CR, an additional Charge Reset pulse on VNS is required.This will also affect  
the charge handling capacity in the storage areas.  
1999 September  
5
Philips Semiconductors  
Product specification  
Frame Transfer CCD Image Sensor  
FTT1010-M  
Timing diagrams (for default operation)  
AC CHARACTERISTICS  
MIN.  
TYPICAL  
18  
MAX.  
UNIT  
MHz  
1
Horizontal frequency (1/Tp)  
0
40  
Vertical frequency  
0
2
10  
10  
3
450  
5
20  
20  
5
1000  
kHz  
µs  
ns  
ns  
ns  
ns  
ns  
Charge Reset (CR) time  
Rise and fall times: image clocks (A)  
storage clocks (B)  
register clocks (C)2  
summing gate (SG)  
reset gate (RG)  
1/6 Tp  
1/6 Tp  
1/6 Tp  
3
3
5
5
1 Tp = 1 clock period  
2 Duty cycle = 50% and phase shift of the C clocks is 120 degrees.  
Line Timing  
H
SSC  
105Tp  
L
H
L
19Tp  
14Tp  
15Tp  
24Tp  
34Tp  
B1  
25Tp  
15Tp  
H
L
B2  
H
L
B3  
H
L
B4  
15Tp  
H
L
2 Tp  
CR  
101Tp  
H
L
*
AHigh  
VD  
105Tp  
H
L
H
L
BLC  
30Tp  
141Tp  
Pixel Timing  
1079 pixels  
1Tp  
H
SSC  
L
H
L
C1  
H
L
C2  
H
L
C3  
H
L
SG  
RG  
Tp / 6  
H
L
Tp = 1 clock period = 1 / 18MHz = 55.56ns  
Pixel output sequence: 7 dummy, 20 black, 4 timing, 1024 active, 4 timing, 20 black  
* During AHigh = H the phiA high level is increased from 10V to 14V  
Line Time: 1184 x Tp = 65.7µs  
VD: Frame pulse  
CR: Charge Reset  
BLC: Black Level Clamp  
B1 to B4: Vertical storage clocks  
C1 to C3: Horizontal register clocks  
SSC: Start-Stop C-clocks  
SG: Summing gate  
RG: Reset gate  
Figure 3 - Line and pixel timing diagrams  
1999 September  
6
Philips Semiconductors  
Product specification  
Frame Transfer CCD Image Sensor  
FTT1010-M  
Frame Timing  
Black  
B
1019 1020 1021 1022 1023 1024  
Sensor Output  
B
B
B
B
1
2
3
4
H
L
SSC  
H
L
A1, A2, A3  
A4  
H
L
H
L
B1  
H
L
B2, B3, B4  
CR  
H
L
Frame Shift  
H
L
*
Ahigh  
H
L
VD  
H
L
BLC  
H
EXT. SHUTTER  
L
Integration Time  
Frame Shift Timing  
1
Tframe shift = 1027 x 8 x N clock periods  
H
A1  
A2  
A3  
A4  
B1  
B2  
B3  
B4  
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
1
8 phases correspond with 2 line shifts  
Horizontal freq.  
18MHz  
450kHz x 8  
N =  
,
for example:  
= 5  
Vertical freq. x 8  
VD: Frame pulse  
CR: Charge Reset  
BLC: Black Level Clamp  
B1 to B4: Vertical storage clocks  
C1 to C3: Horizontal register clocks  
SSC: Start-Stop C-clocks  
SG: Summing gate  
A1 to A4: Vertical image clocks  
RG: Reset gate  
Figure 4 - Frame timing diagrams  
1999 September  
7
Philips Semiconductors  
Product specification  
Frame Transfer CCD Image Sensor  
FTT1010-M  
Line timing  
SSC  
B1  
B2  
B3  
B4  
—> time  
Y / Div.  
: 10V (B1, B2, B3, B4); 5V (SSC)  
Figure 5 - Vertical readout  
Pixel timing  
C1  
C2  
C3  
SG  
RG  
—> time  
Y / Div.  
: 5V (C1, C2, C3); 10V (SG, RG)  
Figure 6 - Start horizontal readout  
1999 September  
8
Philips Semiconductors  
Product specification  
Frame Transfer CCD Image Sensor  
FTT1010-M  
Performance  
The test conditions for the performance characteristics are as follows:  
• All values are measured using typical operating conditions.  
• VNS is adjusted as low as possible while maintaining proper  
Vertical Anti-Blooming.  
Vertical transport frequency = 450kHz (unless specified otherwise).  
• Integration time = 10ms (unless specified otherwise).  
• The light source is a 3200K lamp with neutral density filters and  
a 1.7mm thick BG40 infrared cut-off filter. For Linear Operation  
measurements, a temperature conversion filter (Melles Griot type  
no. 03FCG261, -120 mired, thickness: 2.5mm) is applied.  
• Sensor temperature = 60°C (333K).  
• Horizontal transport frequency = 18MHz.  
LINEAR OPERATION  
MIN.  
4200:1  
TYPICAL  
MAX.  
UNIT  
Linear dynamic range 1  
Charge Transfer Efficiency 2 vertical  
Charge Transfer Efficiency 2 horizontal  
Image lag  
0.999995  
0.999999  
0
0
%
Smear 3  
-39  
dB  
%
Resolution (MTF) @ 42 lp/mm  
Responsivity  
65  
180  
25  
250  
30  
kel/lux·s  
Quantum efficiency @ 530 nm  
White Shading 4  
Random Non-Uniformity (RNU) 5  
VNS required for good Vertical Anti-Blooming (VAB)  
Power dissipation at 15 frames/s  
%
2.5  
5
%
0.3  
24  
%
18  
28  
V
410  
mW  
1
Linear dynamic range is defined as the ratio of Q lin to read-out noise (the latter reduced by Correlated Double Sampling).  
Charge Transfer Efficiency values are tested by evaluation and expressed as the value per gate transfer.  
Smear is defined as the ratio of 10% of the vertical transport time to the integration time. It indicates how visible a spot of 10% of the image  
height would become.  
2
3
4
5
White Shading is defined as the ratio of the one-σ value of the pixel output distribution expressed as a percentage of the mean value output  
(low pass image).  
RNU is defined as the ratio of the one-σ value of the highpass image to the mean signal value at nominal light.  
Linear Dynamic Range  
20,000  
18,000  
35ºC  
16,000  
14,000  
45ºC  
12,000  
55ºC  
10,000  
8,000  
6,000  
4,000  
2,000  
0
0
5
10  
15  
20  
25  
30  
35  
40  
Hor. Frequency (MHz)  
Figure 7 - Typical Linear dynamic range vs. horizontal read-out frequency and sensor temperature  
1999 September  
9
Philips Semiconductors  
Product specification  
Frame Transfer CCD Image Sensor  
FTT1010-M  
Maximum Read-out Speed  
80  
70  
60  
50  
40  
30  
20  
10  
0
2 outputs  
1 output  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Integration time (ms)  
Figure 8 - Maximum number of images/second versus integration time  
Quantum Efficiency  
30  
25  
20  
15  
10  
5
0
400  
450  
500  
550  
600  
650  
700  
750  
800  
Wavelength (nm)  
Figure 9 - Quantum efficiency versus wavelength  
1999 September  
10  
Philips Semiconductors  
Product specification  
Frame Transfer CCD Image Sensor  
FTT1010-M  
LINEAR/SATURATION  
MIN.  
TYPICAL  
MAX.  
UNIT  
Full-well capacity saturation level (Qmax) 1  
Full-well capacity shading (Qmax, shading) 2  
Full-well capacity linear operation (Qlin) 3  
Charge handling capacity 4  
250  
200  
100  
500  
600  
50  
kel.  
%
10  
350  
600  
200  
kel.  
kel.  
Overexposure 5 handling  
x Qmax level  
1 Qmax is determined from the lowpass filtered image.  
2 Qmax, shading is the maximum difference of the full-well charges of all pixels, relative to Qmax.  
3 The linear full-well capacity Qlin is calculated from linearity test (see dynamic range). The evaluation test guarantees 97% linearity.  
4 Charge handling capacity is the largest charge packet that can be transported through the register and read-out through the output buffer.  
5 Overexposure over entire area while maintaining good Vertical Anti-Blooming (VAB). It is tested by measuring the dark line.  
Charge Handling vs. Integration/Transport Voltage  
600  
10V/14V  
500  
9V/13V  
400  
300  
8V/12V  
200  
100  
0
1
2
3
4
5
6
Exposure (arbitrary units)  
Figure 10 - Charge handling versus integration/transport voltage  
1999 September  
11  
Philips Semiconductors  
Product specification  
Frame Transfer CCD Image Sensor  
FTT1010-M  
OUTPUT BUFFERS  
MIN.  
TYPICAL  
MAX.  
UNIT  
Conversion factor  
Mutual conversion factor matching (ACF)1  
6
8
0
4
12  
2
µV/el.  
µV/el.  
mA  
Supply current  
110  
400  
MHz  
Bandwidth  
Output impedance buffer (Rload = 3.3k, Cload = 2pF)  
1 Matching of the four outputs is specified as ACF with respect to reference measured at the operating point (Qlin/2).  
DARK CONDITION  
MIN.  
TYPICAL  
MAX.  
UNIT  
Dark current level @ 30° C  
Dark current level @ 60° C  
Fixed Pattern Noise 1 (FPN) @ 60° C  
20  
30  
0.6  
25  
30  
pA/cm2  
nA/cm2  
el.  
0.3  
15  
25  
el.  
RMS readout noise @ 9MHz bandwidth after CDS  
1 FPN is the one-σ value of the highpass image.  
Dark Current  
1000  
100  
10  
1
0
10  
20  
30  
40  
50  
60  
Temp. (oC)  
Figure 11 - Dark current versus temperature  
1999 September  
12  
Philips Semiconductors  
Product specification  
Frame Transfer CCD Image Sensor  
FTT1010-M  
Application information  
Current handling  
One of the purposes of VPS is to drain the holes that are generated  
during exposure of the sensor to light. Free electrons are either  
transported to the VRD connection and, if excessive (from over-  
exposure), free electrons are drained to VNS. No current should  
flow into anyVPS connection of the sensor.During high overexposure  
a total current 10 to 15mA through all VPS connections together  
may be expected. The PNP emitter follower in the circuit diagram  
(figure 12) serves these current requirements.  
The CCD output buffer can easily be destroyed by ESD. By using  
this emitter follower, this danger is suppressed; do NOT reintroduce  
this danger by measuring directly on the output pin of the sensor  
with an oscilloscope probe. Instead, measure on the output of the  
emitter follower. Slew rate limitation is avoided by avoiding a too-  
small quiescent current in the emitter follower; about 10mA should  
do the job.The collector of the emitter follower should be decoupled  
properly to suppress the Miller effect from the base-collector  
capacitance.  
VNS drains superfluous electrons as a result of overexposure. In  
other words, it only sinks current. During high overexposure a total  
current of 10 to 15mA through all VNS connections together may be  
expected. The NPN emitter follower in the circuit diagram meets  
these current requirements.The clamp circuit, consisting of the diode  
and electrolytic capacitor, enables the addition of a Charge Reset  
(CR) pulse on top of an otherwise stable VNS voltage.To protect the  
CCD, the current resulting from this pulse should be limited. This  
can be accomplished by designing a pulse generator with a rather  
high output impedance.  
A CCD output load resistor of 3.3ktypically results in a bandwidth  
of 110MHz. The bandwidth can be enlarged to about 130MHz by  
using a resistor of 2.2kinstead, which, however, also enlarges the  
on-chip power dissipation.  
Device protection  
The output buffers of the FTT1010-M are likely to be damaged if  
VPS rises above SFD or RD at any time.This danger is most realistic  
during power-on or power-off of the camera.The RD voltage should  
always be lower than the SFD voltage.  
Decoupling of DC voltages  
All DC voltages (not VNS, which has additional CR pulses as  
described above) should be decoupled with a 100nF decoupling  
capacitor. This capacitor must be mounted as close as possible to  
the sensor pin. Further noise reduction (by bandwidth limiting) is  
achieved by the resistors in the connections between the sensor  
and its voltage supplies. The electrons that build up the charge  
packets that will reach the floating diffusions only add up to a small  
current, which will flow throughVRD.Therefore a large series resistor  
in the VRD connection may be used.  
Never exceed the maximum output current. This may damage the  
device permanently. The maximum output current should be limited  
to 10mA. Be especially aware that the output buffers of these image  
sensors are very sensitive to ESD damage.  
Because of the fact that our CCDs are built on an n-type substrate,  
we are dealing with some parasitic npn transistors.To avoid activation  
of these transistors during switch-on and switch-off of the camera,  
we recommend the application diagram of figure 12.  
Outputs  
Unused sections  
To limit the on-chip power dissipation, the output buffers are designed  
with open source outputs. Outputs to be used should therefore be  
loaded with a current source or more simply with a resistance to  
GND. In order to prevent the output (which typically has an output  
impedance of about 400) from bandwidth limitation as a result of  
capacitive loading, load the output with an emitter follower built from  
a high-frequency transistor.Mount the base of this transistor as close  
as possible to the sensor and keep the connection between the  
emitter and the next stage short.  
To reduce power consumption the following steps can be taken.  
Connect unused output register pins (C1...C3, SG, OG) and unused  
SFS pins to zero Volts.  
More information  
Detailed application information is provided in the application note  
AN01 entitled ‘Camera Electronics for the mK x nK CCD Image  
Sensor Family’.  
1999 September  
13  
Philips Semiconductors  
Product specification  
Frame Transfer CCD Image Sensor  
FTT1010-M  
Device Handling  
An image sensor is a MOS device which can be destroyed by electro-  
static discharge (ESD). Therefore, the device should be handled  
with care.  
When cleaning the glass we recommend using ethanol (or possibly  
water). Use of other liquids is strongly discouraged:  
• if the cleaning liquid evaporates too quickly, rubbing is likely to  
cause ESD damage.  
Always store the device with short-circuiting clamps or on conductive  
foam.Always switch off all electric signals when inserting or removing  
the sensor into or from a camera (the ESD protection in the CCD  
image sensor process is less effective than the ESD protection of  
standard CMOS circuits).  
• the cover glass and its coating can be damaged by other liquids.  
Rub the window carefully and slowly.  
Being a high quality optical device, it is important that the cover  
glass remain undamaged.When handling the sensor, use fingercots.  
Dry rubbing of the window may cause electro-static charges or  
scratches which can destroy the device.  
VSFD  
CR pulse  
0
keep short  
<10mm!  
BC  
850C  
-
keep short!  
+
VNS  
SFD  
BFR  
OUT  
92A  
BAT74  
100 Ω  
output for  
preprocessing  
BC  
850C  
BAT74  
27Ω  
BAT74  
Schottky!  
VPS  
VRD  
VCS  
15Ω  
BAT74  
Schottky!  
860C  
10kΩ  
BC  
VOG  
10kΩ  
10kΩ  
Figure 12 - Application diagram to protect the FTT1010-M  
1999 September  
14  
Philips Semiconductors  
Product specification  
Frame Transfer CCD Image Sensor  
FTT1010-M  
Pin configuration  
The FTT1010-M is mounted in a Pin Grid Array (PGA) package with  
76 pins in a 15x13 grid of 40.00 x 40.00 mm2. The position of pin A1  
is marked with a gold dot on top of the package.  
The clock phases of quadrant W are internally connected to X, and  
the clock phases of Y are connected to Z.  
Symbol  
VNS  
Name  
Pin # W  
A12  
D11  
E11  
E12  
-
C11  
A13  
A10  
A11  
B13  
B12  
-
Pin # X  
A3  
B2  
D3  
E2  
E3  
C3  
A1  
B5  
A4  
B1  
B3  
-
Pin # Y  
J2  
F3  
-
Pin # Z  
F11  
H12  
J11  
-
N substrate  
N substrate  
N substrate  
N substrate  
N substrate  
P substrate  
Source Follower Drain  
Source Follower Source  
Current Source  
VNS  
VNS  
VNS  
VNS  
VPS  
SFD  
SFS  
VCS  
OG  
RD  
A1  
A2  
A3  
A4  
B1  
B2  
B3  
B4  
C1  
-
-
-
G3  
J1  
J4  
J3  
H1  
H2  
F1  
G2  
F2  
G1  
-
-
-
-
H5  
H6  
J6  
H4  
J5  
H3  
H7  
G11  
J13  
H9  
J10  
H13  
H11  
F13  
G12  
F12  
G13  
-
Output Gate  
Reset Drain  
Image Clock (Phase 1)  
Image Clock (Phase 2)  
Image Clock (Phase 3)  
Image Clock (Phase 4)  
Storage Clock (Phase 1)  
Storage Clock (Phase 2)  
Storage Clock (Phase 3)  
Storage Clock (Phase 4)  
Register Clock (Phase 1)  
Register Clock (Phase 2)  
Register Clock (Phase 3)  
Summing Gate  
-
-
-
-
-
-
D13  
C12  
D12  
C13  
B9  
B8  
A8  
B10  
A9  
B11  
B7  
D1  
C2  
D2  
C1  
A6  
A7  
B6  
A2  
A5  
B4  
-
-
-
J8  
C2  
C3  
SG  
RG  
OUT  
NC  
J7  
H8  
J12  
J9  
Reset Gate  
Output  
Not connected  
H10  
13 12 11 10  
9
8
7
6
5
4
3
2
1
SFD  
SG  
VNS VCS  
RG  
C1  
C3  
C2  
VCS VNS  
SFD  
OG  
C3  
C2  
RG  
C1  
SFS  
SG  
J
H
G
F
J
H
G
F
OG  
VNS  
RD  
OUT  
SFS  
NC  
OUT  
VPS  
VNS  
RD  
A2  
A3  
VPS  
VNS  
A4  
A1  
A2  
A3  
A4  
A1  
TOP  
IMAGE  
Y
Z
X
W
STORAGE  
FTT1010-M  
VNS VNS  
VNS  
VNS  
E
D
C
B
A
E
D
C
B
A
VNS  
VPS  
VNS  
VPS  
B3  
B2  
B1  
B4  
B3  
B2  
B1  
B4  
NC  
C2  
OG  
RD  
OUT  
SG  
C1  
C2  
C3  
C3  
C1  
SFS OUT  
RD  
VNS  
SG  
OG  
SFD VNS  
VCS SFS  
RG  
RG  
VCS VNS  
SFD  
13 12 11 10  
9
8
7
6
5
4
3
2
1
Figure 13 - FTT1010-M pin configuration (top view)  
1999 September  
15  
Philips Semiconductors  
Product specification  
Frame Transfer CCD Image Sensor  
FTT1010-M  
Package information  
Top cover glass to top chip 2.4 ± 0.25  
Chip - bottom package 1.7 ± 0.15  
Chip - cover glass 1.3 ± 0.20  
Cover glass 1.0 ± 0.05  
SENSOR CRYSTAL  
A ZONE  
COVER GLASS  
Image sensor chip  
1.4 /100  
TOP VIEW  
INDEX  
MARK  
PIN 1  
26  
±
0.15  
40  
COVER GLASS  
±
0.40  
(2.54)  
0.46 0.05  
±
STAND-OFF PIN  
A is the center of the image area.  
Position of A:  
26 ± 0.15 to left edge of package  
20 ± 0.10 to bottom of package  
Angle of rotation: less than ± 10  
Sensor flatness: < 7 µm (P-V)  
BOTTOM VIEW  
Cover glass: Corning 7059  
Thickness of cover glass: 1.00 ± 0.05  
Refractive index: nd = 1.53  
Single sided AR coating inside (430-660 nm)  
All drawing units are in mm  
35.56 ± 0.20  
Figure 14 - Mechanical drawing of the PGA package of the FTT1010-M  
1999 September  
16  
Order codes  
The sensors can be ordered using the following codes:  
FTT1010-M sensors  
Description  
Quality Grade  
Order Code  
FTT1010-M/TG  
FTT1010-M/EG  
FTT1010-M/IG  
FTT1010-M/HG  
Test grade  
9922 157 35031  
9922 157 35051  
9922 157 35021  
9922 157 35011  
Economy grade  
Industrial grade  
High grade  
You can contact the Image Sensors division of Philips  
Semiconductors at the following address:  
Philips Semiconductors  
Image Sensors  
Internal Postbox WAG-05  
Prof. Holstlaan 4  
5656 AA Eindhoven  
The Netherlands  
phone  
fax  
+31 - 40 - 27 44 400  
+31 - 40 - 27 44 090  
www.semiconductors.philips.com/imagers/  
lmtb  
Philips  
Semiconductors  
TRAD  

相关型号:

FTT1010-M/HG

Frame Transfer CCD Image Sensor
NXP

FTT1010-M/IG

Frame Transfer CCD Image Sensor
NXP

FTT1010-M/TG

Frame Transfer CCD Image Sensor
NXP

FTT1010M

Frame Transfer CCD Image Sensor
NXP

FTV

MAGNETIC SWITCHES
SHIELD

FTVACA

Voltage Controlled Crystal Oscillator (VCXO)
VECTRON

FTVACA-1.0

Crystal Oscillator
ETC

FTVACA-52.0

Crystal Oscillator
ETC

FTVACA-52.000MHZ

Quartz Crystal
MICROSEMI

FTVACB

Voltage Controlled Crystal Oscillator (VCXO)
VECTRON

FTVACB-1.0

Crystal Oscillator
ETC

FTVACB-1.000MHZ

Quartz Crystal,
MICROSEMI