FXLS93333 [NXP]

Dual channel inertial sensor;
FXLS93333
型号: FXLS93333
厂家: NXP    NXP
描述:

Dual channel inertial sensor

文件: 总254页 (文件大小:3592K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FXLS9xxxx  
Dual channel inertial sensor  
Rev. 6 — 8 February 2021  
Product data sheet  
1 General description  
The FXLS9xxxx is a dual channel DSI3, PSI5, SPI, and I2C compatible lateral (X-axis or  
Y-axis) or vertical (Z-axis) inertial sensor.  
2 Features  
Independent X-axis, Y-axis, or Z-axis ranges for each channel  
Medium g ranges from ± 15.5 g to ± 150 g nominal full-scale range  
High g ranges from ± 50 g to ± 500 g nominal full-scale range  
–40 °C to 125 °C operating temperature range  
DSI3 compatible  
Discovery mode for physical location identification  
High side bus switch output driver  
Command and response mode support for device configuration  
Periodic data collection mode support for sensor data transfers.  
Background diagnostic mode support during periodic data collection mode  
PSI5 Version 2.1 compatible  
Compatible modes:  
– P10P-500/3L  
– P10P-500/4H  
– A10P-228/1L  
– P10CRC-xxx/xx  
– P16CRC-xxx/xx  
– and many others  
Programmable time slots with 1 µs resolution  
Selectable baud rate: 125 kBd or 189 kBd  
10- and 16-bit data options  
Selectable error detection: even parity, or 3-bit CRC  
Optional daisy chain with external low side switch  
Two-wire programming mode  
32-bit SPI compatible serial interface  
3.3 V or 5 V single supply operation  
Register read and write commands  
Sensor data transmission commands  
– 12-bit data, left justified in a 16-bit data field  
– Command echo with 3-bit source identification  
– 2-bit basic status and 2-bit detailed status fields  
– 8-bit CRC  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
I2C compatible serial interface (UM10204[1])  
Slave mode operation  
Standard mode, fast mode, and fast mode plus support  
Independent programmable arming functions for each channel  
DSP  
Dual, independent signal chains from ADC to Communications Interface  
Up to a fourth order low-pass filter with rolloff frequency options from 12.5 Hz to 1500  
Hz  
Optional single pole high pass filter with fast startup and output rate  
Limiting  
Optional moving average  
Optional 16 to 1 output interpolation  
Pb-free 16-Pin QFN 4 mm x 4 mm x 1.45 mm package  
3 Applications  
3.1 Automotive  
Airbag, Collision/Crash detection  
Active suspension vibration monitoring  
3.2 Industrial  
Machine condition monitoring  
4 Ordering information  
Table 1.ꢀOrdering information  
Type number  
Package  
Name  
Description  
Version  
Plastic, thermal enhanced low profile quad flat non-leaded package; 16 SOT1688-1(SC)  
terminals; 0.8 mm pitch; 4 mm x 4 mm x 1.45 mm body  
FXLS9xxxxAESR2  
FXLS9xxxxAEBR2  
HLQFN16  
Plastic, thermal enhanced low profile quad flat non-leaded package,  
dimple wettable flank; 16 terminals; 0.8 mm pitch; 4 mm x 4 mm x 1.45  
mm body  
SOT1688-1(DD)  
4.1 Ordering options  
Table 2.ꢀOrdering options  
Device  
Channel 0  
Channel 1  
Protocol  
Axis  
X
Range  
Axis  
Y
Range  
FXLS90322  
FXLS90422  
FXLS90722  
FXLS90333  
FXLS90433  
M
M
M
H
H
M
M
M
H
H
SPI/DSI3  
SPI/DSI3  
SPI/DSI3  
SPI/DSI3  
SPI/DSI3  
X
Z
Y
Z
X
Y
X
Z
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
2 / 254  
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 2.ꢀOrdering options...continued  
Device  
Channel 0  
Channel 1  
Protocol  
Range  
Axis  
Y
Range  
Axis  
Z
FXLS90733  
FXLS93322  
FXLS93422  
FXLS93722  
FXLS93421  
FXLS93333  
FXLS93433  
FXLS93733  
H
M
M
M
M
H
H
H
H
M
M
M
L
SPI/DSI3  
PSI5  
X
Y
X
Z
PSI5  
Y
Z
PSI5  
X
Z
PSI5  
X
Y
H
H
H
PSI5  
X
Z
PSI5  
Y
Z
PSI5  
5 Marking  
Data Code Legend:  
F: ASECL assembly site  
WL: 2 alpha character representation of the wafer lot  
YW: 2 alpha character representation of the year and work week  
Z: Assembly Split  
Fxxxxx  
WLYWZ  
Data Code Legend:  
N: ATBK assembly site  
WL: 2 alpha character representation of the wafer lot  
YW: 2 alpha character representation of the year and work week  
Z: Assembly Split  
Nxxxxx  
WLYWZ  
aaa-030573  
Figure 1.ꢀPart marking  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
3 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
6 Application diagrams  
6.1 DSI3 application diagrams  
6.1.1 DSI3 discovery mode application diagram  
Optional  
Bus Termination  
V
BUS_I  
IDATA  
BUF  
BUSIN  
C2  
R1  
C4  
V
C1  
SS  
BUSRTN  
BUS_O  
BUSRTN  
BUSOUT  
C3  
aaa-030552  
Figure 2.ꢀDSI3 discovery mode application diagram  
Table 3.ꢀDSI3 discovery mode external component recommendations  
Ref  
Des  
Type  
Typical value  
description  
Component value selection and range  
Comment  
R1  
General  
purpose  
330 Ω, 5 %,  
200 PPM  
The system level communication, EMC, and  
ESD testing determine the optimal value of this  
component.  
Optional bus termination for high inductance bus  
wire connections. For optimal EMC performance,  
this component along with C4 are to be placed as  
close to the BUS_I and BUSRTN connector pins  
as possible.  
C1  
C2  
Ceramic  
Ceramic  
220 pF,  
The optimal value of this component should be  
determined by the system level communication,  
EMC, and ESD testing.  
For optimal EMC performance, this component  
along with R1 are to be placed as close to the  
BUS_I and BUSRTN connector pins as possible.  
10 %, 50 V  
minimum,  
X7R  
0.47 µF,  
10 %, 10 V  
minimum,  
X7R  
The optimal value of this component should be  
determined based on the system level micro-cut to be placed as close to the VBUF and BUSRTN  
immunity requirement. To achieve the specified  
power supply rejection, the minimum value  
including all tolerances is 0.22 µF. The maximum  
specified value including all tolerances is 2 µF.  
For optimal EMC performance, this component is  
pins as possible.  
C3  
C4  
Ceramic  
Ceramic  
100 pF,  
The optimal value of this component should be  
determined by the system level communication,  
EMC, and ESD testing.  
For optimal EMC performance, this component  
is to be placed as close to the BUS_O and  
BUSRTN connector pins as possible.  
10 %, 50 V  
minimum,  
X7R  
2.2 nF,  
The optimal value of this component should be  
determined by the system level communication,  
EMC, and ESD testing.  
Optional bus termination for high inductance bus  
wire connections. For optimal EMC performance,  
this component along with R1 are to be placed as  
close to the BUS_I and BUSRTN connector pins  
as possible.  
10 %, 50 V  
minimum,  
X7R  
The total bus capacitance must not exceed the values specified in the DSI3[2] standard.  
Note:  
The external components are dependent on the bus master and bus impedance and may vary from application to application.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
4 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
6.2 PSI5 application diagrams  
6.2.1 PSI5 parallel or universal mode application diagram  
R1  
V
V
V
V
BUF  
CE  
SS  
CC  
R2  
I
DATA  
C4  
C2  
C3  
C1  
V
SS  
aaa-030556  
Figure 3.ꢀPSI5 parallel or universal mode application diagram  
Table 4.ꢀPSI5 parallel or universal mode external component recommendations  
Ref  
Type  
Description Component value selection and range  
Purpose  
Des  
R1  
General  
purpose  
82 Ω, 5 %,  
200 PPM  
The optimal value of this component should be  
determined by the system level communication,  
EMC, and ESD testing.  
VCC filtering and signal damping  
For proper device function, the minimum value  
can be 0 Ω. The maximum value is determined  
by the minimum bus voltage provided at the  
module pin and the minimum operating voltage of  
the device. To meet the minimum PSI5 operating  
voltage at the module pin, the maximum  
resistance including all tolerances is 89.0 Ω.[1]  
R2  
General  
purpose  
27 Ω, 5 %,  
200 PPM  
The optimal value of this component should be  
determined by the system level communication,  
EMC, and ESD testing.  
IDATA filtering and signal damping  
For proper device function, the minimum value  
can be 0 Ω. The maximum value is determined  
by the minimum bus voltage provided at the  
module pin. To meet the minimum PSI5 operating  
voltage at the module pin, the maximum  
resistance including all tolerances is 66.6 Ω. If  
the low response current is used, the maximum  
resistance including all tolerances is 133 Ω.  
C1  
C2  
C3  
Ceramic  
Ceramic  
Ceramic  
2.2 nF, 10  
%, 50 V  
minimum,  
X7R  
The optimal value of this component should be  
determined by the system level communication,  
EMC, and ESD testing  
VCC power supply decoupling and signal  
damping. For optimal EMC performance, this  
component is to be placed as close to the BUS_I  
and BUSRTN connector pins as possible.  
15 nF, 10  
%, 50 V  
minimum,  
X7R  
The optimal value of this component should be  
determined by the system level communication,  
EMC, and ESD testing[2]  
VCC power supply decoupling. For optimal EMC  
performance, this component is to be placed  
as close to the BUS_I and BUSRTN pins as  
possible.  
470 pF, 10  
%, 50 V  
minimum,  
X7R  
The optimal value of this component should be  
determined by the system level communication,  
EMC, and ESD testing  
IDATA Filtering and Signal Damping  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
5 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 4.ꢀPSI5 parallel or universal mode external component recommendations...continued  
Ref  
Type  
Description Component value selection and range  
Purpose  
Des  
C4  
Ceramic  
0.47 µF,  
10 %, 10 V  
minimum,  
X7R  
The optimal value of this component should be  
determined based on the system level micro-cut to be placed as close to the VBUF and BUSRTN  
immunity requirement. To achieve the specified  
power supply rejection, the minimum value  
including all tolerances is 0.22 µF. The maximum  
specified value including all tolerances is 2 µF.  
For optimal EMC performance, this component is  
pins as possible.  
Note:  
The total bus capacitance must not exceed the values specified in the PSI5 standard.  
[1] R1 must be sized to handle both the programming current at the maximum rated temperature for programming and the operating current at the maximum  
rated temperature for operation.  
[2] If the high baud rate is used, NXP recommends reducing the value of C2. The actual value depends on the bus configuration and number of slaves.  
6.2.2 PSI5 daisy chain mode application diagram  
R1  
V
V
CC  
CE  
V
BUF  
R2  
I
DATA  
C2  
R3  
C3  
C1  
C4  
V
V
V
SS  
SS  
R4  
BUSSW_L  
M1  
SS_OUT  
aaa-030558  
Figure 4.ꢀPSI5 daisy chain mode application diagram  
Table 5.ꢀPSI5 daisy chain mode external component recommendations  
Ref  
Des  
Type  
Description Component value selection and range  
Purpose  
VCC filtering and signal damping  
R1  
General  
purpose  
82 Ω, 5 %,  
200 PPM  
The optimal value of this component should be  
determined by the system level communication,  
EMC, and ESD testing.  
For proper device function, the minimum  
value can be 0 Ohms. The maximum value is  
determined by the minimum bus voltage provided  
at the module pin and the minimum operating  
voltage of the device. To meet the minimum  
PSI5 operating voltage at the module pin, the  
maximum resistance including all tolerances is  
89.0 Ohms.  
R2  
General  
purpose  
27 Ω, 5 %,  
200 PPM  
The optimal value of this component should be  
determined by the system level communication,  
EMC, and ESD testing.  
IDATA filtering and signal damping  
For proper device function, the minimum  
value can be 0 Ohms. The maximum value  
is determined by the minimum bus voltage  
provided at the module pin. To meet the minimum  
PSI5 operating voltage at the module pin, the  
maximum resistance including all tolerances is  
66.6 Ohms. If the low response current is used,  
the maximum resistance including all tolerances  
is 133 Ohms.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
6 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 5.ꢀPSI5 daisy chain mode external component recommendations...continued  
Ref  
Type  
Description Component value selection and range  
Purpose  
Des  
R3  
General  
purpose  
20 kΩ, 5 %,  
200 PPM  
The optimal value of this component should be  
determined by the system level communication,  
EMC, and ESD testing.  
Gate resistor for external low side daisy chain  
FET  
C1  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
2.2 nF, 10  
%, 50 V  
minimum,  
X7R  
The optimal value of this component should be  
determined by the system level communication,  
EMC, and ESD testing.  
VCC power supply decoupling and signal  
damping. For optimal EMC performance, this  
component is to be placed as close to the BUS_I  
and BUSRTN connector pins as possible.  
C2  
C3  
C4  
15 nF, 10  
%, 50 V  
minimum,  
X7R  
The optimal value of this component should be  
determined by the system level communication,  
EMC, and ESD testing.  
VCC power supply decoupling. For optimal EMC  
performance, this component is to be placed  
as close to the BUS_I and BUSRTN pins as  
possible.  
470 pF, 10  
%, 50 V  
minimum,  
X7R  
The optimal value of this component should be  
determined by the system level communication,  
EMC, and ESD testing.  
IDATA Filtering and Signal Damping  
0.47 µF,  
10 %, 10 V  
minimum,  
X7R  
The optimal value of this component should be  
determined based on the system level micro-cut to be placed as close to the VBUF and BUSRTN  
immunity requirement. To achieve the specified  
power supply rejection, the minimum value  
including all tolerances is 0.22 µF. The maximum  
specified value including all tolerances is 2 µF.  
For optimal EMC performance, this component is  
pins as possible.  
R4  
General  
purpose  
100 kΩ, 5 %, The optimal value of this component should be  
Gate pulldown resistor for external low side daisy  
chain FET  
200 PPM  
determined by the system level communication,  
EMC, and ESD testing.  
M1  
N-Channel NTR4501NT1GT, he optimal value of this component should be  
Low side daisy chain transistor  
or similar  
determined by the system level communication,  
EMC, and ESD testing.  
MOSFET  
Note:  
The total bus capacitance must not exceed the values specified in the PSI5 standard.  
R1 must be sized to handle both the programming current at the maximum rated temperature for programming and the operating  
current at the maximum rated temperature for operation.  
If the high baud rate is used, NXP recommends reducing the value of C2. The actual value depends on the bus configuration and  
number of slaves.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
7 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
6.3 SPI application diagram  
V
CC  
V
SS_B  
SCLK  
MOSI  
MISO  
CC  
V
CCIO  
C1  
V
SS  
PCM  
aaa-030560  
Figure 5.ꢀSPI application diagram  
Table 6.ꢀSPI external component recommendations  
Ref Des  
Type  
Typical value description  
Comment  
C1  
Ceramic  
0.1 µF, 10 %, 10 V Minimum,  
X7R  
VCC power supply decoupling.  
For optimal EMC performance,  
this component is to be placed  
as close to the VCC and VSS pins  
as possible.  
6.4 I2C application diagram  
V
V
V
CC  
CC  
CC  
V
CC  
R1  
SS_B  
SCL  
R2  
R3  
V
BUF  
C1  
V
SS  
SDA  
aaa-030561  
Figure 6.ꢀI2C application diagram  
Table 7.ꢀI2C external component recommendations  
Ref Des  
Type  
Description  
Purpose  
R1  
General purpose  
General purpose  
General purpose  
Ceramic  
1000 Ω, 5 %, 200 PPM  
1000 Ω, 5 %, 200 PPM  
1000 Ω, 5 %, 200 PPM  
I2C selection pin pull-up resistor  
Serial clock pull-up resistor  
Serial data pull-up resistor  
VCC power supply decoupling  
R2  
R3  
C1  
0.1 µF, 10 %, 10 V Minimum,  
X7R  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
8 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
7 Block diagram  
BUFFER  
VOLTAGE  
REGULATOR  
V
V
BUF  
REF  
BUS_I  
V
BUF  
V
V
REG  
INTERNAL  
VOLTAGE  
REGULATOR  
REGA  
REFERENCE  
VOLTAGE  
BUS_I  
LOW VOLTAGE  
DETECTION  
COMMAND  
DECODER  
V
SS  
OTP  
OSCILLATOR  
PROGRAMMING  
INTERFACE  
OTP  
IDATA  
ARRAY  
SERIAL  
SS_B  
ENCODER  
SPI  
SCLK/SCL  
MOSI  
BUSRTN  
CONTROL  
LOGIC  
IDATA  
MISO/SDA  
2
I C  
R
SENSE  
BUS_O  
ARM AND  
PCM LOGIC  
ARM/PCM0  
ARM/PCM1  
DAISY CHAIN  
SWITCH DRIVER  
ARM AND  
PCM LOGIC  
BUSSW_L  
OFFSET  
DAC  
CH0 DSP  
OVER-  
DAMPED  
G-CELL  
OFFSET  
MONITOR  
SINC  
FILTER  
IIR  
LPF  
USER  
SENSE  
SCALING  
INTERPOLATION  
DIGITAL  
CLIPPING  
OUTPUT  
SCALING  
HPF  
TRIM  
CONVERTER  
SELF TEST  
OFFSET  
DAC  
CH1 DSP  
OVER-  
DAMPED  
G-CELL  
OFFSET  
MONITOR  
SINC  
FILTER  
IIR  
LPF  
USER  
SENSE  
SCALING  
INTERPOLATION  
DIGITAL  
CLIPPING  
OUTPUT  
SCALING  
HPF  
TRIM  
CONVERTER  
SELF TEST  
aaa-030564  
Figure 7.ꢀDual channel internal block diagram  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
9 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
8 Device orientation diagrams  
+1 g  
aaa-030567  
Figure 8.ꢀOrientation diagram  
Table 8.ꢀDual axis device orientation  
Ch0: 0 g  
Ch1: –1 g  
Ch0: 0 g  
Ch1: 0 g  
Ch0: –1 g  
Ch1: 0 g  
Ch0: +1 g  
Ch1: 0 g  
Ch0: +1 g  
Ch1: 0 g  
Ch0: 0 g  
Ch1: 0 g  
Ch0: 0 g  
Ch1: +1 g  
Ch0: 0 g  
Ch1: 0 g  
Ch0: +1 g  
Ch1: 0 g  
Ch0: –1 g  
Ch1: 0 g  
Ch0: –1 g  
Ch1: 0 g  
Ch0: 0 g  
Ch1: 0 g  
Ch0: 0 g  
Ch1: 0 g  
Ch0: 0 g  
Ch1: +1 g  
Ch0: 0 g  
Ch1: +1 g  
Ch0: 0 g  
Ch1: 0 g  
Ch0: 0 g  
Ch1: –1 g  
Ch0: 0 g  
Ch1: –1 g  
XY  
XZ  
YZ  
9 Pinning information  
9.1 Pinning: SPI or I2C mode  
terminal 1  
index area  
16 15 14 13  
17  
FXLS9xxxx  
V
1
2
3
4
12 PCM0/ARM0  
CC  
PCM1/ARM1  
TEST0  
11 MISO/SDA  
10 MOSI  
TEST1  
9
SCLK/SCL  
5
6
7
8
aaa-030596  
Transparent topview  
Figure 9.ꢀDevice pinout: SPI or I2C mode  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
10 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
9.2 Pin description: SPI or I2C mode  
Table 9.ꢀDevice pinout: SPI or I2C mode  
Pin  
Pin Name  
Definition  
Description  
1
VCC  
Supply  
NXP recommends that this pin be connected to VCC. Optionally, this pin can  
be unterminated.  
2
PCM1 / ARM1 Channel 1  
PCM  
This pin has multiplexed functions:  
When the channel 1 arming output is selected, the pin can be configured  
as an open-drain, active low output with a pull-up current; or an open-drain,  
active high output with a pull-down current.  
Channel 1 Arm  
When PCM mode is selected, this pin can be configured as a digital output  
with PCM signal proportional to the channel 1 sensor data.  
If unused, or in I2C mode, NXP recommends that this pin be unterminated.  
3, 4, 5, 6 TEST  
Test Pin  
NXP recommends that these pins be unterminated. Optionally, this pin can be  
tied to VSS  
.
7, 14  
8
VSS  
Supply Return This pin is the supply return node.  
SS_B  
Slave select  
SPI Clock  
In SPI mode, this input pin provides the slave select for the SPI port. An  
internal pull-up device is connected to this pin.  
In I2C mode, this pin must be connected to VBUF with an external pull-up  
resistor as shown in Figure 6.  
9
SCLK/SCL  
MOSI  
In SPI mode, this input pin provides the serial clock. An internal pull-down  
device is connected to this pin.  
In I2C mode, this input pin provides the serial clock. This pin must be  
connected to VBUF with an external pull-up resistor as shown in Figure 6.  
10  
SPI Data In  
SPI Data Out  
In SPI mode, this pin functions as the serial data input to the SPI port. An  
internal pull-down device is connected to this pin.  
In I2C mode, NXP recommends that this pin be unterminated. Optionally, this  
pin can be connected to VSS  
.
11  
12  
MISO/SDA  
In SPI mode, this pin functions as the serial data output.  
In I2C mode, this pin functions as the serial data input/output. This pin must be  
connected to VBUF with an external pull-up resistor as shown in Figure 6.  
PCM0 / ARM0 Channel 0  
PCM  
This pin has multiplexed functions:  
When the channel 0 arming output is selected, the pin can be configured  
as an open-drain, active low output with a pull-up current; or an open-drain,  
active high output with a pull-down current.  
Channel 0 Arm  
When PCM mode is selected, this pin can be configured as a digital output  
with PCM signal proportional to the channel 0 sensor data.  
If unused, or in I2C mode, NXP recommends that this pin be unterminated.  
13, 15, 16 VCC  
Supply  
This pin is connected to the supply for the device. An external capacitor must  
be connected between this pin and VSS as shown in Figure 5 and Figure 6.  
17  
PAD  
Die Attach Pad This pin is the die attach flag, and must be connected to VSS. See Section 16  
for die attach pad connection details.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
11 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
9.3 Pinning: DSI3 or PSI5 mode  
terminal 1  
index area  
16 15 14 13  
17  
BUS_O  
1
2
3
4
12 TEST4  
TEST5  
BUSSW_L  
TEST1  
11 TEST_MISO  
10 TEST_MOSI  
FXLS9xxxx  
9
TEST_SCLK  
5
6
7
8
aaa-030598  
Transparent topview  
Figure 10.ꢀDevice pinout: DSI3 or PSI5 mode pinout  
9.4 Pin description: DSI3 or PSI5 mode  
Table 10.ꢀDevice pinout: DSI3 or PSI5 mode pinout  
Pin  
Pin Name  
Definition  
Description  
1
BUS_O  
Supply Out  
This pin is connected to the IDATA pin through an internal sense resistor  
and provides the supply connection to the next slave in a daisy chain  
configuration.  
In DSI3 mode, an external capacitor must be connected between this pin and  
VSS as shown in Figure 2.  
In PSI5 mode, NXP recommends that this pin be unterminated. Optionally,  
this pin can be connected to IDATA.  
2, 4, 6, 12 TEST  
Test Pin  
NXP recommends that these pins be unterminated. Optionally, this pin can be  
tied to VSS  
.
3, 5  
BUSSW_L  
Low Side Bus In PSI5 daisy chain mode, these pins are connected to the gate of an N-  
Switch Driver  
channel FET which connects BUSRTN to the next slave in the daisy chain.  
An external pulldown resistor is required on the gate of the N-channel FET  
as shown in Figure 4. Note: both pins provide the identical function. It is  
necessary to connect only one pin is to the bus switch gate.  
If unused, or in DSI3 mode, NXP recommends that this pin be unterminated.  
Optionally, this pin can be tied to VSS  
.
7, 14  
8
BUSRTN/VSS Supply Return This pin is the supply return node.  
TEST_SS_B Slave select  
TEST_SCLK SPI Clock  
TEST_MOSI SPI Data In  
TEST_MISO SPI Data Out  
NXP recommends that this pin be unterminated. Optionally, this pin can be  
connected to VBUF  
.
9
NXP recommends that this pin be unterminated. Optionally, this pin can be  
connected to VSS  
.
10  
11  
NXP recommends that this pin be unterminated. Optionally, this pin can be  
connected to VSS  
.
This pin must be left unconnected.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
12 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 10.ꢀDevice pinout: DSI3 or PSI5 mode pinout...continued  
Pin  
Pin Name  
Definition  
Description  
13  
VBUF  
Power  
Supply  
This pin is connected to a buffer regulator for the internal circuitry. The buffer  
regulator supplies the internal regulators to provide immunity from EMC and  
supply dropouts. An external capacitor must be connected between this pin  
and VSS as shown in Figure 2, Figure 3, and Figure 4.  
15  
BUS_I  
Supply and  
This pin is connected to the supply line and supplies power to the device. An  
external filter must be connected between this pin and BUSRTN as shown in  
Figure 2, Figure 3, and Figure 4.  
Communication  
Receiver  
16  
17  
IDATA  
PAD  
Communication This pin modulates the response current for DSI3 and PSI5 communication.  
Transmitter  
An external filter must be connected between this pin and BUSRTN as shown  
in Figure 2, Figure 3, and Figure 4.  
Die Attach Pad This pin is the die attach flag, and must be connected to VSS. See Section 16  
for die attach pad connection details.  
10 Electrical characteristics  
Section 10.1 through Section 10.20 contain tables with "Test notes". The note identifiers  
cross reference to the identifiers and descriptions found in Table 11.  
Table 11.ꢀTest notes legend  
Identifier Description  
*
Indicates critical characteristic.  
1
Parameter tested 100 % at final test. Temperature = –40 °C, 25 °C, and 105 °C, VBUS_I  
= 7 V, Unless otherwise stated  
2
3
4
5
6
7
8
Parameter tested 100 % at final test during safe launch  
Parameter verified by pass/fail testing at final test  
Parameter verified by pass/fail testing at final test during safe launch  
Parameter verified by qualification testing  
Parameter verified by characterization  
Functionality verified by modeling, simulation and/or design verification.  
Circuit integrity assured through IDDQ and scan testing. Timing is determined by  
internal system clock frequency.  
9
Parameter verified by functional evaluation  
10  
Thermal resistance provided with device mounted to a 2 layer, 1.6 mm FR4 PCB as  
documented in AN1902 with 1 signal layer and 1 ground layer.  
11  
Digital low-pass filter characteristics are specified independently and do not include g-  
cell characteristics. Higher frequency filters will have lower system cut-off frequencies  
due to the g-cell damping.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
13 / 254  
 
 
 
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
10.1 Maximum ratings  
Maximum ratings are the extreme limits to which the device can be exposed without  
permanently damaging it.  
Table 12.ꢀMaximum ratings  
#
Rating  
Symbol  
Value  
Unit  
Test  
notes  
Supply Voltage (BUS_I/VCC, IDATA, BUS_O)  
6
6
6
6
6
5
5
9
9
5
3381  
3383  
3384  
3385  
3386  
3387  
3390  
3389  
3388  
3391  
Reverse Current externally limited to ≤ 160 mA, t ≤ 100 ms  
Continuous  
BUS_IREV  
BUS_IMAX  
VBUFMAX  
VIOMAX  
ISUPMAX  
gpms  
–0.7  
+20.0  
V
V
VBUF  
–0.3 to +7.0  
–0.3 to VBUF +0.3  
200  
V
SCLK, SS_B, MOSI, MISO (High Z), PCM0/ARM0, PCM1/ARM1  
BUS_I/VCC, IDATA, and BUS_O Continuous Current  
Powered Shock (six sides, 0.5 ms duration)  
Unpowered Shock (six sides, 0.5 ms duration)  
Powered Shock (six sides, 0.5 ms duration)  
Unpowered Shock (six sides, 0.5 ms duration)  
Drop Shock (to concrete, tile or steel surface, 10 drops, any orientation)  
V
mA  
g
±2000  
gshock  
±2000  
g
gpms  
±4000  
g
gshock  
±4000  
g
hDROP  
1.5  
m
Electrostatic Discharge (per AEC-Q100[4]), External Pins  
3392 BUS_I/VCC, IDATA, BUS_O, BUSRTN, HBM (100 pF, 1.5 kΩ)  
5
VESD  
±4000  
V
Electrostatic Discharge (per AEC-Q100[4]  
)
5
5
3393  
3395  
HBM (100 pF, 1.5 kΩ)  
CDM (R = 0 Ω)  
VESD  
VESD  
±2000  
±750  
V
V
Temperature Range  
5
7
3396  
3397  
3400  
Storage  
Tstg  
TJ  
–55 to +150  
–55 to +150  
47  
°C  
°C  
Junction  
7, 10  
Thermal Resistance  
θJA  
°C/W  
10.2 Operating range - DSI / PSI5  
Table 13.ꢀOperating range - DSI / PSI5  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
*
*
*
5, 6, 7  
3398  
DSI3 Supply Voltage (VHIGH), Measured at BUS_I  
DSI3 Supply Voltage (VLOW) Measured at BUS_I  
PSI5 Supply Voltage (Excluding Sync Pulse)  
Supply Voltage (Undervoltage)  
VHIGH  
V LOW  
V PSI5  
20.0  
V
V
V
V
1
1
10468  
10467  
10466  
4.0  
4.0  
16.5  
3, 6  
V BUS_I_UV VBUS_I_UV_F  
10.0  
VLOW_min  
Programming Voltage (IPP ≤ 5 mA, 10 °C ≤ TA ≤ 40 °C)  
10469 Applied to BUS_I  
3, 6  
7, 9  
VPP  
9.0  
11.0  
V
V
ESD Operating Voltage (No Device Reset, CBUS_IN = 220 pF)  
10470  
Maximum ±15 kV Air Discharge, 330 pF, 2.0 kΩ  
VBUS_I_ESD  
V
10.0  
BUS_I_LOW_min  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
14 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 13.ꢀOperating range - DSI / PSI5...continued  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Operating Temperature Range  
TL  
TH  
1
5, 6, 7  
6
10471  
10490  
10472  
Production Tested Operating Temperature Range  
TA  
TA  
–40  
+105  
°C  
°C  
Guaranteed Operating Temperature Range  
Supply Power On Ramp Rate  
–40  
+125  
10  
VCC_RAMP_SAT 0.00001  
V / µs  
10.3 Operating range - SPI / I2C  
Table 14.ꢀOperating range - SPI / I2C  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
5, 6, 7  
10501  
10502  
10504  
Supply Voltage (VCC = VBUF) Measured at VBUF  
Supply Voltage (VCC = VBUF) Measured at VBUF  
Supply Voltage (Undervoltage)  
VCC_BUF  
VCC_BUF  
5.25  
V
V
V
*
1
3.135  
3, 6  
V
VBUF_UV_F  
VCC_BUF_min  
BUF_UV_OP  
Operating Temperature Range  
TL  
TH  
1
5, 6, 7  
6
10507  
10508  
10509  
Production Tested Operating Temperature Range  
TA  
TA  
–40  
+105  
°C  
°C  
Guaranteed Operating Temperature Range  
Supply Power On Ramp Rate  
–40  
+125  
10  
VCC_RAMP_SPI 0.00001  
V/µs  
10.4 Electrical characteristics - supply and I/O  
Table 15.ꢀElectrical characteristics - supply and I/O  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Quiescent Supply Current  
*
*
*
1
1
39203  
39204  
39205  
VBUS_I = 4 V, DSI, PSI5  
Iq_4_2  
Iq_20_2  
Iq_31_2  
4.0  
4.0  
9.2  
9.2  
10.0  
10.0  
10.0  
mA  
mA  
mA  
VBUS_I = 20 V, DSI / PSI5  
VBUS_I = 3.135 V, SPI, I2C  
3, 6  
Response Current  
*
*
1
1
10515  
10519  
DSI Low  
DSI High  
IR_DSI_1  
IR_DSI_2  
Iq + 10.5  
Iq + 12.0  
Iq + 13.5  
mA  
mA  
IR_DSI_1  
+ 10.5  
IR_DSI_1  
+ 12.0  
IR_DSI_1  
+ 13.5  
*
*
1
6
6
1
10518  
10517  
PSI5 Normal  
IR_PSI5  
IR_PSI5_Low  
tINRUSH  
VBUF  
Iq + 22.0  
Iq + 11.0  
Iq + 26.0  
Iq + 13.0  
Iq + 30.0  
Iq + 15.0  
40  
mA  
mA  
mA  
V
PSI5 Low  
In-Rush Current (No external Components)  
Internally Regulated Voltage (VBUF, VBUS_I = 4 V, VBUS_I = 20 V)  
10522  
2.85  
3.00  
3.15  
Low Voltage Detection Threshold  
*
*
3, 6  
6
10523  
10542  
BUS_I Falling, COMMTYPE = 2, 3, 4, 5, 6, 7  
VBUS_I_UV_F  
VBUS_I_UV_01  
VBUF_UV_F  
3.85  
3.31  
2.64  
3.95  
3.50  
2.74  
4.00  
3.67  
2.84  
V
V
V
BUS_I Falling, COMMTYPE = 0, 1  
VBUF Falling  
3, 6  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
15 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 15.ꢀElectrical characteristics - supply and I/O...continued  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
VBUF External Capacitor  
7, 9  
7, 9  
10525  
10543  
Capacitance  
CVBUF  
ESR  
100  
0
1000  
2000  
200  
nF  
ESR (including interconnect resistance)  
mΩ  
DSI3 VLOW Detection Threshold (Section 12.1.1)  
VLOW_min ≤ (VBUS_I – VSS) ≤ VHIGH_max  
3, 6  
10526  
VLOW Detection Threshold  
*VDELTA_THRESH VHIGH  
– 1.25  
VHIGH  
– 1.0  
VHIGH  
0.75  
V
DSI3 Discovery Mode Current Sense (Section 12.2.3)  
6
10527  
10545  
Sense Resistor  
RSENSE  
1.0  
6
1.3  
12  
3.0  
18  
Ω
3, 6  
IRESP Detection Threshold (IBUS_O_q ≤ 24 mA)  
IRESP_Offset  
mA  
PSI5 Synchronization Pulse  
VPSI5_min ≤ (VBUS_I – VSS) ≤ BUS_IMAX  
3, 6  
7
10528  
10529  
10530  
DC Sync Pulse Detection Threshold  
ΔVSYNC  
ISYNC_PD  
V PSI5+1.0 V PSI5+1.5 V PSI5+2.0  
V
mA  
V
PSI5 Sync Pulse Pulldown Current  
IR_PSI5  
3, 6  
Bus Switch Output High Voltage (BUSSW_L, ILoad = –100 µA)  
VBUSSW_L_OH  
VBUF  
VBUF  
– 0.35  
3, 6  
3, 6  
3, 6  
10546  
10549  
10536  
Bus Switch Output Low Voltage (BUSSW_L, ILoad = 100 µA)  
Open-Drain Output Pulldown Current (ARM0, ARM1, VARM = 1.5 V)  
Open-Drain Output Pullup Current (ARM0, ARM1, VARM = 1.5 V)  
VBUSSW_L_OL  
IODPD  
10  
20  
0.1  
100  
–10  
V
µA  
µA  
IODPU  
–100  
–20  
Output High Voltage (MISO/SDA, PCM0/ARM0, PCM1/ARM1  
3, 6  
3, 6  
21205  
10547  
VBUF = VCC, ILoad = –1 mA  
VOH  
VBUF – 0.2  
VBUF – 0.2  
VBUF  
VBUF  
V
V
VBUF internally regulated, ILoad = –1 mA  
VOH_SAT  
Output Low Voltage (MISO/SDA, PCM0/ARM0, PCM1/ARM1  
3, 6  
3, 7  
3, 7  
7
10547  
10537  
10560  
10561  
10562  
10565  
10563  
ILoad = 2 mA  
VOL  
VIH  
2.0  
0.4  
V
V
Input High Voltage SS_B, SCLK/SCL, MOSI  
Input Low Voltage SS_B, SCLK/SCL, MOSI  
Input Voltage Hysteresis SS_B, SCLK, MOSI  
Input Current High (at VIH) (SCLK/SCL, MOSI)  
Input Current Low (at VIL) (SS_B)  
MISO Output Leakage  
VIL  
1.0  
V
VI_HYST  
IIH  
0.250  
20  
V
6
10  
70  
µA  
µA  
µA  
6
IIL  
–70  
–10  
–20  
–10  
10  
6
IMISO_Lkg  
10.5 Electrical characteristics - temperature sensor signal chain  
Table 16.ꢀElectrical characteristics - temperature sensor signal chain  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
7, 9  
10520  
10559  
Temperature Measurement Range  
Temperature Output at 25 °C  
TRANGE  
T25  
–50  
83  
+160  
103  
°C  
6, 7  
93  
LSB  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
16 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 16.ꢀElectrical characteristics - temperature sensor signal chain...continued  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Range of Output (8 bit)  
7, 8, 9  
6, 7  
10558  
10557  
10556  
Unsigned Temperature  
TRANGE  
TSENSE  
TACC  
0
255  
LSB  
LSB/°C  
°C  
Temperature Output Sensitivity (8 bit)  
Temperature Output Accuracy (8 bit)  
1.10  
6, 7  
–20  
+20  
+2  
Temperature Output Noise RMS (8 bit)  
10555 Standard Deviation of 50 readings, fSamp = 8 kHz  
6, 7  
TRMS  
LSB  
10.6 Electrical characteristics - inertial sensor signal chain: High g  
Table 17.ꢀElectrical characteristics - inertial sensor signal chain: High g  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Sensitivity  
Total Sensitivity Error Including Linearity (From Trim Target, Output @ 0 Hz)  
*
*
1
1
10584  
High g, lateral, or Z-Axis, verified with a 50 g Range  
SENSERRH  
SENS50H  
–5  
+5  
%
High g Standard Trim Range 12-bit Sensitivity Target, lateral, or Z-Axis  
10612  
± 50 g Range (± 2047 LSB, U_SNS_SHIFT = 0x3, U_SNS_MULT = 0xDF)  
38.9157 40.9639 43.0121 LSB/g  
Offset  
Digital Offset Before Offset Cancellation 12 bit, lateral, or Z-Axis  
*
1
10626  
10583  
High g (100 g Range, scales with user sensitivity scaling)  
OFFHigh_1  
–100  
–1  
0
+100  
+1  
LSB  
LSB  
6, 8, 9  
Digital Offset After Offset Cancellation, lateral, or Z-Axis, All Ranges, 12  
bit  
OFFCANC12Bit  
7, 8, 9  
7, 8, 9  
Digital Offset After Offset Cancellation with rate limiter, lateral, or Z-Axis,  
All Ranges, 12 bit  
OFFCANCRL12Bit  
–2  
0
+2  
LSB  
LSB  
Continuous Offset Monitor Limit (U_SNS_SHIFT = 0x2, U_SNS_MULT = 0x00)  
10619  
12 bit: Scales with user gain, High g = ~15 g  
OFFMON  
–164  
+164  
Sensor  
Range of Output (SPI, DSI3, lateral, or Z-Axis, All Ranges)  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
10635  
10628  
10636  
10637  
Signed Sensor Data, 10 bit  
Signed Sensor Data, 12 bit  
Signed Error Code, 10 bit  
Signed Error Code, 12 bit  
RANGESigned_10  
RANGESigned_12  
ERRSigned_10  
–511  
–2047  
+511  
+2047  
LSB  
LSB  
LSB  
LSB  
–512  
–2048  
ERRSigned_12  
Range of Output (SPI, DSI3, lateral, or Z-Axis, All Ranges)  
7, 8, 9  
7, 8, 9  
7, 8, 9  
10638  
10639  
10640  
Unsigned Sensor Data, 10 bit  
Unsigned Sensor Data, 12 bit  
Unsigned Error Code, 10 bit, 12 bit  
RANGEUnsigned_10  
RANGEUnsigned_12  
ERRUnsigned  
1
1
0
1023  
4095  
LSB  
LSB  
LSB  
Range of Output (PSI5, lateral, or Z-Axis, All Ranges)  
10634 Signed Sensor Data, 10 bit  
7, 8, 9  
RANGESigned_10  
–480  
+480  
LSB  
Cross-Axis Sensitivity, lateral, or Z-Axis, All Ranges  
6
6
10645  
10647  
Z-axis to X-Axis, Y-axis to X-Axis, Z-axis to Y-Axis, X-axis to Y-Axis  
X-axis to Z-Axis, Y-axis to Z-Axis  
VZX, VYX  
VXZ, VYZ  
–5  
–5  
+5  
+5  
%
%
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
17 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 17.ꢀElectrical characteristics - inertial sensor signal chain: High g...continued  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Non-Linearity (12 bit, lateral, or Z-Axis, All Ranges)  
*
*
7
6
10669  
10670  
Differential Non-Linearity (No Missing Codes)  
End Point Non-Linearity (Least Squares BFSL)  
DNL  
INL  
+1.0  
LSB  
LSB  
+20.0  
Supply Coupling (CBUF = 1 µf, 12 bit, DSI3, PSI5, lateral, or Z-Axis, All Ranges)  
6
6
6
10663  
10682  
10681  
1 kHz ≤ fn ≤ 10 kHz, BUS_I = 8.0 V ± 2.0 V (Represents PSI5 Sync Pulse)  
10 kHz ≤ fn ≤ 100 kHz, BUS_I = 6.0 V ± 1.0 V (Represents DSI3 BRC)  
PSCPSI5  
PSCDSI3C  
PSCDSI3R  
1
1
1
LSB  
LSB  
LSB  
100 kHz ≤ fn ≤ 1 MHz, BUS_I = 6.0 V ± 0.5 V (Represents DSI3/PSI5  
Response)  
6
10680  
1 MHz ≤ fn ≤ 20 MHz, BUS_I = 6.0 V ± 0.1 V(Represents Response  
Harmonics)  
PSCSATH  
1
LSB  
Supply Coupling (CBUF = 0.1 µf, 12 bit, SPI, lateral, or Z-Axis, All Ranges)  
6
6
10675  
10683  
1 kHz ≤ fn ≤ 20 MHz, VBUF = 5.0 V ± 0.1 V  
1 kHz ≤ fn ≤ 20 MHz, VBUF = 3.3 V ± 0.1 V  
PSCSPI5  
PSCSPI3  
2
2
LSB  
LSB  
Noise: Lateral Sensor  
System Output Noise Peak (12 bit), High g Range = 125 g, Lateral  
*
*
6
1
10653  
Max. Deviation from Mean, Min. 2000 values, Min. fSamp = 2 kHz, LPF =  
400 Hz, 4-Pole  
nPeakX_400C  
–4  
–4  
+4  
+4  
LSB  
LSB  
10655  
Max. Deviation from Mean, Min. 50 values, Min. fSamp = 2 kHz, LPF = 400  
Hz, 4-Pole  
nPeakX_400T  
System Output Noise Average (12 bit), High g Range = 125 g, Lateral  
*
*
6
1
10654  
Standard Deviation, Min. 2000 values, Min. fSamp = 2 kHz, LPF = 400 Hz,  
4-Pole  
nRMSX_400C  
+1.0  
+1.0  
LSB  
LSB  
10656  
Standard Deviation, Min. 50 values, Min. fSamp = 2 kHz, LPF = 400 Hz, 4-  
Pole  
nRMSX_400T  
Noise: Z-Axis Sensor  
System Output Noise Peak (12 bit), High g Range = 125 g, Z-Axis  
*
*
6
1
10659  
Max. Deviation from Mean, Min. 2000 values, Min. fSamp = 2 kHz, LPF =  
400 Hz, 4-Pole  
nPeakZ_400C  
–8  
–8  
+8  
+8  
LSB  
LSB  
10661  
Max. Deviation from Mean, Min. 50 values, Min. fSamp = 2 kHz, LPF = 400  
Hz, 4-Pole  
nPeakZ_400T  
System Output Noise Average (12 bit), High g Range = 125 g, Z-Axis  
*
*
6
1
10660  
Standard Deviation, Min. 2000 values, Min. fSamp = 2 kHz, LPF = 400 Hz,  
4-Pole  
nRMSZ_400C  
+2.0  
+2.0  
LSB  
LSB  
10662  
Standard Deviation, Min. 50 values, Min. fSamp = 2 kHz, LPF = 400 Hz, 4-  
Pole  
nRMSZ_400T  
The offset before offset cancellation scales with the user gain. The higher the gain (lower  
range), the higher the offset. Table 18 lists the adjusted offset specification limits for some  
SPI and DSI3 12-bit user gain settings.  
Table 18.ꢀHigh g adjusted offset specification limits  
User range (g)  
Offset (LSB, 12 bit)  
50  
60  
± 200  
± 167  
± 162  
± 160  
62  
62.5  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
18 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 18.ꢀHigh g adjusted offset specification limits...continued  
User range (g)  
100  
Offset (LSB, 12 bit)  
± 100  
± 96  
± 89  
± 80  
± 79  
± 67  
± 54  
± 40  
± 32  
± 27  
± 20  
105  
112.5  
125  
128  
150  
187  
250  
312.5  
375  
500  
Table 19 lists the offset before offset cancellation limits for some PSI5 10-bit user gain  
settings.  
Table 19.ꢀPSI5, High g offset cancellation limits  
User range (g)  
Offset (LSB, 10 bit)  
60  
± 40  
± 20  
± 10  
± 5  
120  
240  
480  
The signal noise scales with the user gain and with signal bandwidth. The higher the  
gain (lower range), the higher the noise, the wider the bandwidth, the higher the noise.  
Table 20 and Table 21 lists the adjusted specification limits for some user gain settings  
and low-pass filter selections on the lateral, and Z-axis.  
Note: Peak values indicate the maximum deviation from the mean.  
Table 20.ꢀLateral, High g, SPI/DSI3 12-bit noise specification  
LPF 400 Hz, 4p LPF 400 Hz, 3p LPF 180 Hz, 2p LPF 325 Hz, 3p LPF 1500 Hz, 4p LPF 800 Hz, 4p  
User  
range  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
(g)  
50  
62.5  
100  
11  
9
3
3
2
1
1
1
1
11  
9
3
3
2
1
1
1
1
8
6
4
3
2
2
2
2
2
1
1
1
1
1
10  
8
3
2
2
1
1
1
1
21  
17  
11  
8
5
4
3
2
2
1
1
15  
12  
8
4
3
2
2
1
1
1
5
6
5
125  
4
4
4
6
187  
3
3
3
6
4
250  
3
3
2
4
3
312.5  
2
2
2
4
3
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
19 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 20.ꢀLateral, High g, SPI/DSI3 12-bit noise specification...continued  
LPF 400 Hz, 4p LPF 400 Hz, 3p LPF 180 Hz, 2p LPF 325 Hz, 3p LPF 1500 Hz, 4p LPF 800 Hz, 4p  
User  
range  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
(g)  
375  
500  
2
2
1
1
2
2
1
1
1
1
1
1
2
1
1
1
3
2
1
1
2
2
1
1
Table 21.ꢀZ-Axis, High g, SPI/DSI3 12-bit noise specification  
LPF 400 Hz, 4p LPF 400 Hz, 3p LPF 180 Hz, 2p LPF 325 Hz, 3p LPF 1500 Hz, 4p LPF 800 Hz, 4p  
User  
range  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
LSB  
12 bit  
(g)  
50  
62.5  
100  
125  
187  
250  
312.5  
375  
500  
21  
17  
11  
8
6
5
3
2
2
2
1
1
1
22  
18  
11  
9
6
5
3
2
2
2
1
1
1
15  
12  
8
4
3
2
2
1
1
1
1
1
20  
16  
10  
8
5
4
3
2
2
1
1
1
1
41  
33  
21  
16  
11  
9
11  
9
6
4
3
2
2
2
1
30  
24  
15  
12  
8
8
6
4
3
2
2
2
1
1
6
6
6
4
6
5
5
3
4
6
4
3
3
3
7
5
3
3
2
2
6
4
3
3
2
2
5
3
Table 22 and Table 23 list the adjusted specification limits for some PSI5 10-bit user gain  
settings and low-pass filter selections on the lateral, and Z-axis.  
Table 22.ꢀLateral, High g, PSI5 10-bit noise specification  
LPF 400 Hz, 4p  
LPF 400 Hz, 3p  
LPF 800 Hz, 4p  
User  
range  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
(g)  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
60, PSI5  
120, PSI5  
240 PSI5  
480 PSI5  
3
2
1
1
0.6  
0.5  
0.5  
0.5  
3
2
2
2
0.7  
0.6  
0.6  
0.6  
4
2
2
2
0.9  
0.8  
0.8  
0.8  
Table 23.ꢀZ-Axis, High g, PSI5 10-bit noise specification  
LPF 400 Hz, 4p  
LPF 400 Hz, 3p  
LPF 800 Hz, 4p  
User  
range  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
(g)  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
60, PSI5  
5
3
1.1  
0.6  
5
3
1.2  
0.7  
6
4
1.6  
0.9  
120, PSI5  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
20 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 23.ꢀZ-Axis, High g, PSI5 10-bit noise specification...continued  
LPF 400 Hz, 4p LPF 400 Hz, 3p  
LPF 800 Hz, 4p  
User  
range  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
(g)  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
240 PSI5  
480 PSI5  
2
1
0.5  
0.5  
2
2
0.6  
0.6  
2
2
0.8  
0.8  
10.7 Electrical characteristics - inertial sensor signal chain: Medium g  
Table 24.ꢀElectrical characteristics - inertial sensor signal chain: Medium g  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Sensitivity  
Total Sensitivity Error Including Linearity (From Trim Target, Output @ 0 Hz)  
*
*
1
1
10585  
Medium g, lateral, or Z-Axis, Verified with a 15 g Range  
SENSERRM  
SENS016M  
–5  
+5  
%
Medium g Standard Trim Range 12-bit Sensitivity Target, lateral, or Z-Axis  
10602  
± 16 g Range (±2047 LSB, U_SNS_SHIFT = 0x3, U_SNS_MULT = 0xF0)  
121.  
127.  
134.  
LSB/g  
5406  
9375  
3344  
Offset  
Digital Offset Before Offset Cancellation 12 bit, lateral, or Z-Axis  
*
1
10627  
10583  
Medium g (25 g Range, scales with user sensitivity scaling)  
OFFMed_1  
–100  
–1  
0
+100  
+1  
LSB  
LSB  
6, 8, 9  
Digital Offset After Offset Cancellation, lateral, or Z-Axis, All Ranges, 12  
bit  
OFFCANC12Bit  
7, 8, 9  
7, 8, 9  
Digital Offset After Offset Cancellation with rate limiter, lateral, or Z-Axis,  
All Ranges, 12 bit  
OFFCANCRL12Bit  
–2  
0
+2  
LSB  
LSB  
Continuous Offset Monitor Limit (U_SNS_SHIFT = 0x2, U_SNS_MULT = 0x00)  
10619  
12 bit: Scales with user gain, Medium g = ~5 g  
OFFMON  
–164  
+164  
Sensor  
Range of Output (SPI, DSI3, lateral, or Z-Axis, All Ranges)  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
10635  
10628  
10636  
10637  
Signed Sensor Data, 10 bit  
Signed Sensor Data, 12 bit  
Signed Error Code, 10 bit  
Signed Error Code, 12 bit  
RANGESigned_10  
RANGESigned_12  
ERRSigned_10  
–511  
–2047  
+511  
+2047  
LSB  
LSB  
LSB  
LSB  
–512  
–2048  
ERRSigned_12  
Range of Output (SPI, DSI3, lateral, or Z-Axis, All Ranges)  
7, 8, 9  
7, 8, 9  
7, 8, 9  
10638  
10639  
10640  
Unsigned Sensor Data, 10 bit  
Unsigned Sensor Data, 12 bit  
Unsigned Error Code, 10 bit, 12 bit  
RANGEUnsigned_10  
RANGEUnsigned_12  
ERRUnsigned  
1
1
0
1023  
4095  
LSB  
LSB  
LSB  
Range of Output (PSI5, lateral, or Z-Axis, All Ranges)  
10634 Signed Sensor Data, 10 bit  
7, 8, 9  
RANGESigned_10  
–480  
+480  
LSB  
Cross-Axis Sensitivity, lateral, or Z-Axis, All Ranges  
6
6
10645  
10647  
Z-axis to X-Axis, Y-axis to X-Axis, Z-axis to Y-Axis, X-axis to Y-Axis  
X-axis to Z-Axis, Y-axis to Z-Axis  
VZX, VYX  
VXZ, VYZ  
–5  
–5  
+5  
+5  
%
%
Non-Linearity (12 bit, lateral, or Z-Axis, All Ranges)  
*
*
7
6
10669  
10670  
Differential Non-Linearity (No Missing Codes)  
End Point Non-Linearity (Least Squares BFSL)  
DNL  
INL  
+1.0  
LSB  
LSB  
+20.0  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
21 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 24.ꢀElectrical characteristics - inertial sensor signal chain: Medium g...continued  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Supply Coupling (CBUF = 1 µf, 12 bit, DSI3, PSI5, lateral, or Z-Axis, All Ranges)  
6
6
6
10663  
10682  
10681  
1 kHz ≤ fn ≤ 10 kHz, BUS_I = 8.0 V ± 2.0 V (Represents PSI5 Sync Pulse)  
10 kHz ≤ fn ≤ 100 kHz, BUS_I = 6.0 V ± 1.0 V (Represents DSI3 BRC)  
PSCPSI5  
PSCDSI3C  
PSCDSI3R  
1
1
1
LSB  
LSB  
LSB  
100 kHz ≤ fn ≤ 1 MHz, BUS_I = 6.0 V ± 0.5 V (Represents DSI3/PSI5  
Response)  
6
10680  
1 MHz ≤ fn ≤ 20 MHz, BUS_I = 6.0 V ± 0.1 V(Represents Response  
Harmonics)  
PSCSATH  
1
LSB  
Supply Coupling (CBUF = 0.1 µf, 12 bit, SPI, lateral, or Z-Axis, All Ranges)  
6
6
10675  
10683  
1 kHz ≤ fn ≤ 20 MHz, VBUF = 5.0 V ± 0.1 V  
1 kHz ≤ fn ≤ 20 MHz, VBUF = 3.3 V ± 0.1 V  
PSCSPI5  
PSCSPI3  
2
2
LSB  
LSB  
Noise: Lateral Sensor  
System Output Noise Peak (12 bit), Medium g Range = 50 g, Lateral  
6
1
10653  
Max. Deviation from Mean, Min. 2000 values, Min. fSamp = 2 kHz, LPF =  
400 Hz, 4-Pole  
nPeakX_400C  
–4  
–4  
+4  
+4  
LSB  
LSB  
*
*
10655  
Max. Deviation from Mean, Min. 50 values, Min. fSamp = 2 kHz, LPF = 400  
Hz, 4-Pole  
nPeakX_400T  
System Output Noise Average (12 bit), Medium g Range = 50 g, Lateral  
*
*
6
1
10654  
Standard Deviation, Min. 2000 values, Min. fSamp = 2 kHz, LPF = 400 Hz,  
4-Pole  
nRMSX_400C  
+1.0  
+1.0  
LSB  
LSB  
10656  
Standard Deviation, Min. 50 values, Min. fSamp = 2 kHz, LPF = 400 Hz, 4-  
Pole  
nRMSX_400T  
Noise: Z-Axis Sensor  
System Output Noise Peak (12 bit), Medium g Range = 50 g, Z-Axis  
*
*
6
1
10659  
Max. Deviation from Mean, Min. 2000 values, Min. fSamp = 2 kHz, LPF =  
400 Hz, 4-Pole  
nPeakZ_400C  
–8  
–8  
+8  
+8  
LSB  
LSB  
10661  
Max. Deviation from Mean, Min. 50 values, Min. fSamp = 2 kHz, LPF = 400  
Hz, 4-Pole  
nPeakZ_400T  
System Output Noise Average (12 bit), Medium g Range = 50 g, Z-Axis  
*
*
6
1
10660  
Standard Deviation, Min. 2000 values, Min. fSamp = 2 kHz, LPF = 400 Hz,  
4-Pole  
nRMSZ_400C  
+2.0  
+2.0  
LSB  
LSB  
10662  
Standard Deviation, Min. 50 values, Min. fSamp = 2 kHz, LPF = 400 Hz, 4-  
Pole  
nRMSZ_400T  
The offset before offset cancellation scales with the user gain. The higher the gain (lower  
range), the higher the offset. Table 25 lists the adjusted offset specification limits for some  
SPI and DSI3 12-bit user gain settings.  
Table 25.ꢀMedium g, SPI/DSI3 12-bit offset specification  
User range (g)  
Offset (LSB, 12 bit)  
15.5  
16  
± 162  
± 157  
± 126  
± 100  
± 72  
20  
25  
35  
50  
± 50  
60  
± 42  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
22 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 25.ꢀMedium g, SPI/DSI3 12-bit offset specification...continued  
User range (g)  
Offset (LSB, 12 bit)  
62  
62.5  
75  
± 41  
± 41  
± 34  
± 30  
± 25  
± 24  
± 23  
± 21  
± 20  
± 17  
85.3  
100  
105  
112.5  
125  
128  
150  
Table 26 lists the offset before offset cancellation limits for some PSI5 10-bit user gain  
settings.  
Table 26.ꢀMedium g, PSI5 10-bit offset specification  
User range (g)  
Offset (LSB, 10 bit)  
15  
20  
± 40  
± 30  
± 20  
± 10  
± 5  
30  
60  
120  
The signal noise scales with the user gain and with signal bandwidth. The higher the  
gain (lower range), the higher the noise, the wider the bandwidth, the higher the noise.  
Table 27 lists the adjusted specification limits for some user gain settings and low-pass  
filter selections.  
Note: Peak values indicate the maximum deviation from the mean.  
Table 27.ꢀLateral, Medium g, SPI/DSI3 12-bit noise specification  
LPF 400 Hz, 4p  
Peak RMS  
LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit  
LPF 400 Hz, 3p  
LPF 180 Hz, 2p  
LPF 325 Hz, 3p  
LPF 1500 Hz, 4p  
LPF 800 Hz, 4p  
User range  
(g)  
Peak RMS  
Peak RMS  
Peak RMS  
Peak RMS  
Peak RMS  
15.5  
25  
14  
9
4
3
1
1
1
1
1
14  
9
4
3
1
1
1
1
1
10  
6
3
2
1
1
1
1
1
13  
8
4
2
1
1
1
1
1
26  
17  
8
7
4
2
2
1
1
1
20  
12  
6
5
3
2
2
1
1
1
50  
4
5
3
4
62.5  
100  
125  
150  
4
4
3
4
7
5
3
3
2
2
4
3
2
2
2
2
4
3
2
2
1
2
3
2
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
23 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 28.ꢀZ-axis, Medium g, SPI/DSI3 12-bit noise specification  
LPF 400 Hz, 4p  
Peak RMS  
LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit LSB 12 bit  
LPF 400 Hz, 3p  
LPF 180 Hz, 2p  
LPF 325 Hz, 3p  
LPF 1500 Hz, 4p  
LPF 800 Hz, 4p  
User range  
(g)  
Peak RMS  
Peak RMS  
Peak RMS  
Peak RMS  
Peak RMS  
15.5  
25  
27  
17  
8
7
5
2
2
1
1
1
28  
18  
9
7
5
2
2
2
1
1
20  
12  
6
5
3
2
2
1
1
1
25  
16  
8
7
4
2
2
1
1
1
53  
33  
16  
13  
9
14  
9
39  
24  
12  
10  
6
10  
6
50  
4
3
62.5  
100  
125  
150  
7
7
5
7
4
3
5
5
3
4
2
2
4
4
3
4
7
2
5
2
3
3
2
3
6
2
4
1
Table 29 and Table 30 list the adjusted specification limits for some PSI5 10-bit user gain  
settings and low-pass filter selections.  
Table 29.ꢀLateral, Medium g, PSI5 10-bit noise specifications  
LPF 400 Hz, 4p  
LPF 400 Hz, 3p  
LPF 800 Hz, 4p  
User range  
(g)  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
30, PSI5  
60, PSI5  
120, PSI5  
2
1
1
0.5  
0.5  
0.5  
3
2
2
0.6  
0.6  
0.6  
3
2
2
0.8  
0.8  
0.8  
Table 30.ꢀZ-axis, Medium g, PSI5 10-bit noise specification  
LPF 400 Hz, 4p  
User range  
LPF 400 Hz, 3p  
LPF 800 Hz, 4p  
Peak  
RMS  
Peak  
RMS  
Peak  
RMS  
(g)  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
LSB 10 bit  
30, PSI5  
60, PSI5  
120, PSI5  
4
2
1
0.8  
0.5  
0.5  
4
3
2
0.9  
0.6  
0.6  
5
3
2
1.2  
0.8  
0.8  
10.8 Electrical characteristics - inertial sensor self-test  
Table 31.ꢀElectrical characteristics - inertial sensor self-test  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Med g Lateral Self-test, 62 g, U_SNS_SHIFT = 0x2, U_SNS_MULT = 0x00  
ΔSTMIN  
54  
ΔSTNOM  
121  
ΔSTMAX  
188  
7
7
7
7
7
Low self-test, 14.80 g, 10-bit Signed Delta from Offset  
STML_62X_10  
STMH_62X_10  
STML_62X_12  
STMH_62X_12  
STML_62X_16  
LSB  
LSB  
LSB  
LSB  
LSB  
High self-test, 44.50 g, 10-bit Signed Delta from Offset  
Low self-test, 14.80 g, 12-bit Signed Delta from Offset  
High self-test, 44.50 g, 12-bit Signed Delta from Offset  
220  
218  
367  
485  
511  
752  
881  
1470  
7744  
2047  
12032  
Low self-test, 14.80 g, 16-bit SPI/PSI5 Extended Signed Delta from  
Offset  
3456  
7
1
1
High self-test, 44.50 g, 16-bit SPI/PSI5 Extended Signed Delta from  
Offset  
STMH_62X_16  
STML_62X_13  
STMH_62X_13  
14080  
436  
23488  
970  
32767  
1504  
4115  
LSB  
LSB  
LSB  
*
*
10687  
10688  
Low self-test, 14.80 g, 16-bit Signed SNSDATAx Register Delta from  
Offset  
High self-test, 44.50 g, 16-bit Signed SNSDATAx Register Delta from  
Offset  
1763  
2939  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
24 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 31.ꢀElectrical characteristics - inertial sensor self-test...continued  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Med g Z-Axis Self-test, 62 g, U_SNS_SHIFT = 0x2, U_SNS_MULT = 0x00  
ΔSTMIN  
34  
ΔSTNOM  
78  
ΔSTMAX  
121  
7
7
7
7
7
Low self-test, 8.66 g, 10-bit Signed Delta from Offset  
STML_62Z_10  
STMH_62Z_10  
STML_62Z_12  
STMH_62Z_12  
STML_62Z_16  
LSB  
LSB  
LSB  
LSB  
LSB  
High self-test, 21.65 g, 10-bit Signed Delta from Offset  
Low self-test, 8.66 g, 12-bit Signed Delta from Offset  
High self-test, 21.65 g, 12-bit Signed Delta from Offset  
107  
139  
178  
310  
251  
481  
428  
715  
1001  
7744  
Low self-test, 8.66 g, 16-bit SPI/PSI5 Extended Signed Delta from  
Offset  
2176  
4928  
7
1
1
High self-test, 21.65 g, 16-bit SPI/PSI5 Extended Signed Delta from  
Offset  
STMH_62Z_16  
STML_62Z_13  
STMH_62Z_13  
6848  
278  
11392  
620  
16064  
962  
LSB  
LSB  
LSB  
*
*
30134  
30135  
Low self-test, 8.66 g, 16-bit Signed SNSDATAx Register Delta from  
Offset  
High self-test, 21.65 g, 16-bit Signed SNSDATAx Register Delta from  
Offset  
857  
1430  
2002  
High g Lateral Self-test, 187 g, U_SNS_SHIFT = 0x2, U_SNS_MULT = 0x00  
ΔSTMIN  
24  
ΔSTNOM  
55  
ΔSTMAX  
86  
7
7
7
7
7
Low self-test, 18.33 g, 10-bit Signed Delta from Offset  
STHL_187X_10  
STHH_187X_10  
STHL_187X_12  
STHH_187X_12  
STHL_187X_16  
LSB  
LSB  
LSB  
LSB  
LSB  
High self-test, 55.00 g, 10-bit Signed Delta from Offset  
Low self-test, 18.33 g, 12-bit Signed Delta from Offset  
High self-test, 55.00 g, 12-bit Signed Delta from Offset  
90  
99  
150  
220  
212  
341  
361  
1536  
603  
845  
Low self-test, 18.33 g, 16-bit SPI/PSI5 Extended Signed Delta from  
Offset  
3520  
5504  
7
1
1
High self-test, 55.00 g, 16-bit SPI/PSI5 Extended Signed Delta from  
Offset  
STHH_187X_16  
STHL_187X_13  
STHH_187X_13  
5760  
198  
9600  
1206  
440  
13568  
682  
LSB  
LSB  
LSB  
*
*
10685  
10686  
Low self-test, 18.33 g, 16-bit Signed SNSDATAx Register Delta from  
Offset  
High self-test, 55.00 g, 16-bit Signed SNSDATAx Register Delta from  
Offset  
723  
1689  
High g Z-Axis Self-test, 187 g, U_SNS_SHIFT = 0x2, U_SNS_MULT = 0x00  
ΔSTMIN  
31  
ΔSTNOM  
70  
ΔSTMAX  
109  
7
7
7
7
7
Low self-test, 25.40 g, 10-bit Signed Delta from Offset  
STHL_187Z_10  
STHH_187Z_10  
STHL_187Z_12  
STHH_187Z_12  
STHL_187Z_16  
LSB  
LSB  
LSB  
LSB  
LSB  
High self-test, 63.50 g, 10-bit Signed Delta from Offset  
Low self-test, 25.40 g, 12-bit Signed Delta from Offset  
High self-test, 63.50 g, 12-bit Signed Delta from Offset  
104  
125  
173  
279  
244  
433  
417  
695  
974  
Low self-test, 25.40 g, 16-bit SPI/PSI5 Extended Signed Delta from  
Offset  
1984  
4416  
6976  
7
1
1
High self-test, 63.50 g, 16-bit SPI/PSI5 Extended Signed Delta from  
Offset  
STHH_187Z_16  
STHL_187Z_13  
STHH_187Z_13  
6656  
250  
11072  
558  
15616  
866  
LSB  
LSB  
LSB  
*
*
30136  
30137  
Low self-test, 25.40 g, 16-bit Signed SNSDATAx Register Delta from  
Offset  
High self-test, 63.50 g, 16-bit Signed SNSDATAx Register Delta from  
Offset  
834  
1390  
1947  
High self-test Accuracy: Δ from Stored Value, including Sensitivity Error  
(12 bit, Lateral, or Z-Axis, All Ranges)  
*
*
6
1
10678  
25 °C, Post Pre-conditioning  
ΔSTHACC_  
25P  
–2  
+2  
%
%
10690  
–40 °C ≤ TA ≤ 125 °C  
ΔSTHACC_T  
–10  
+10  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
25 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 31.ꢀElectrical characteristics - inertial sensor self-test...continued  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Self-test Delta Offset: Δ Offset from Pre-Self-test to Post Self-test  
(12 bit, Lateral, or Z-Axis, All Ranges)  
1
1
10692  
10692  
25 °C  
ΔSTOFF_25  
ΔSTOFF_T  
–2  
–4  
+2  
+4  
LSB  
LSB  
–40 °C ≤ TA ≤ 125 °C  
Digital Self-test  
7
7
7
7
44629  
44630  
44631  
44632  
Digital Self-test 0xC, 16-bit Signed SNSDATAx Register Value  
DSTC0  
DSTD0  
DSTE0  
DSTF0  
E77F  
0FA3  
EFA2  
07B7  
E780  
0FA4  
EFA3  
07B8  
E781  
0FA5  
EFA4  
07B9  
HEX  
HEX  
HEX  
HEX  
Digital Self-test 0xD, 16-bit Signed SNSDATAx Register Value  
Digital Self-test 0xE, 16-bit Signed SNSDATAx Register Value  
Digital Self-test 0xF, 16-bit Signed SNSDATAx Register Value  
10.9 Electrical characteristics - lateral inertial sensor overload  
Table 32.ꢀElectrical characteristics - lateral inertial sensor overload  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Acceleration Range, Lateral Transducer  
7
7
7
10694  
10693  
21074  
Medium g  
High g  
gg-cell_ClipMedX  
gg-cell_ClipHiX  
gDig_ClipMedXHi  
± 500  
± 2000  
± 400  
g
g
g
Digital Clipping Limit (Medium g Lateral, must clip before transducer  
and ADC)  
7
21082  
Digital Clipping Limit (High g Lateral, must clip before transducer and  
ADC)  
gDig_ClipHiXHi  
± 1500  
g
10.10 Electrical characteristics - Z-axis inertial sensor overload  
Table 33.ꢀElectrical characteristics - Z-axis inertial sensor overload  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Acceleration Range, Z-Axis Transducer  
7
7
7
10698  
10699  
21105  
Medium g  
High g  
gg-cell_ClipMedZ  
gg-cell_ClipHiZ  
gDig_ClipMedZHi  
± 500  
± 2000  
± 400  
g
g
g
Digital Clipping Limit (Medium g Z-Axis, must clip before transducer  
and ADC)  
7
21113  
Digital Clipping Limit (High g Z-Axis, must clip before transducer and  
ADC)  
gDig_ClipHiZHi  
± 1500  
g
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
26 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
10.11 Dynamic electrical characteristics - DSI3  
Table 34.ꢀDynamic electrical characteristics - DSI3  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Command Reception (General)  
7, 9  
7, 9  
7, 9  
10709  
10722  
10721  
VHIGH low-pass filter time constant (Section 12.1.1)  
tVHIGH_RC  
tVHIGH_Delay  
tCmd_Valid  
60  
120  
2
180  
600  
µs  
ns  
µs  
VHIGH Detection Analog Delay (Section 12.1.1)  
Command Valid time (Section 12.1.1)  
Response Transmission (General, Slew Control Enabled, Section 12.3.3)  
1, 7, 9  
1, 7, 9  
7, 9  
10710  
10726  
10725  
10724  
10723  
Response Slew Time: 2.0 mA to 10.0 mA, 10.0 mA to 2.0 mA  
Response Slew Time: 4.0 mA to 20.0 mA, 20.0 mA to 4.0 mA  
tSLEW1_RESP – tSLEW2_RESP  
tSLEW1_RESP  
tSLEW2_RESP  
ΔtSLEW  
350  
350  
400  
400  
500  
500  
100  
250  
400  
ns  
ns  
ns  
ns  
ns  
–100  
–250  
200  
7, 9  
tSLEW1_RESP_Rise – tSLEW2_RESP_Fall  
ΔtSLEW_rf  
3, 7, 9  
Response Current Activation Time: Current Activated to 50 %  
tACT_RESP  
Response Transmission (General, Slew Control Disabled, Section 12.3.3)  
7, 9  
7, 9  
7, 9  
7, 9  
7, 9  
10727  
10728  
10729  
10730  
10731  
Response Slew Time: 2.0 mA to 10.0 mA, 10.0 mA to 2.0 mA  
Response Slew Time: 4.0 mA to 20.0 mA, 20.0 mA to 4.0 mA  
tSLEW1_RESP – tSLEW2_RESP  
tnSLEW1_RESP  
tnSLEW2_RESP  
ΔtnSLEW  
300  
300  
300  
300  
300  
ns  
ns  
ns  
ns  
ns  
–300  
–300  
tSLEW1_RESP_Rise – tSLEW2_RESP_Fall  
ΔtnSLEW_rf  
tnACT_RESP  
Response Current Activation Time: Current Activated to 50 %  
Command Reception (Discovery Mode)  
10719  
10734  
Command Start Time (Section 12.2)  
Command Bit Time (Section 12.2)  
tSTART_DISC  
tDISC_BitTime  
tPOR_DSI  
14  
13.5  
18  
ms  
µs  
7, 8, 9  
7, 8, 9  
16  
7, 8, 9  
7, 8, 9  
10733  
10732  
Command Transmission Period (Section 12.2)  
tPER_DISC  
125  
µs  
µs  
Command Blocking Time, Discovery Mode (Section 12.1.1)  
tCmdBlock_DISC  
80  
Response Transmission (Discovery Mode)  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
30078  
30079  
10718  
10738  
10737  
10736  
10735  
30081  
30080  
Idle Current Sample Delay (Section 12.2)  
Idle Current Sample Time (Section 12.2)  
Response Start Delay (Section 12.2)  
Response Ramp Time (Section 12.2)  
Response Ramp Rate (Section 12.2)  
Response Idle Time (Section 12.2)  
tDISC_DLY  
tDISC_ICCQ_SAMP  
tSTART_DISC_RSP  
tDISC_Ramp_RSP  
IDISC_Ramp  
48  
15  
µs  
µs  
64  
µs  
16  
µs  
1.5  
16  
mA/µs  
µs  
tDISC_Idle_RSP  
IDISC_Peak  
tIDISC_Samp_Dly  
tIDISC_Samp  
Response Peak Current (Section 12.2)  
Response Current Sample Delay (Section 12.2)  
Response Current Sample Time (Section 12.2)  
2*IRESP  
65  
mA  
µs  
31  
µs  
Command Reception (Command and Response Mode)  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
10717  
10741  
10740  
10739  
Command Bit Time (Section 12.3)  
tCmd_BitTime  
tPER_CRM  
tCmdBlock_CRM  
tCmdBlock_ST_CRM  
475  
8
µs  
µs  
µs  
µs  
Command Transmission Period (Section 12.3)  
Command Blocking Time, CRM (Section 12.1.1)  
Command Blocking Start Time, CRM (Section 12.1.1)  
455  
290  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
27 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 34.ꢀDynamic electrical characteristics - DSI3...continued  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Response Transmission (Command and Response Mode)  
7, 8, 9  
7, 8, 9  
10716  
10742  
Response Chip Time  
tCHIP_CRM  
5
µs  
µs  
Response Start Time (Section 12.3)  
tSTART_CRM  
295  
Command Reception (Periodic Data Collection Mode)  
7, 8, 9  
7, 8, 9  
10715  
10743  
Command Bit Time (Section 12.4)  
tCmd_BitTime  
tPER_PDCM  
8
µs  
µs  
Command Transmission Period (Section 12.4)  
50  
Response Transmission (Periodic Data Collection Mode)  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
10714  
10746  
10745  
10744  
Response Chip Time Typical (Section 11.2.15.4)  
Min Programmed Start Time: PDCM_RSPSTx < 0x0015  
Min Programmed Start Time: BDM Enabled  
tCHIP_PDCM  
1.0  
20  
5.0  
µs  
µs  
µs  
µs  
tSTART_PDCM_Min  
tSTART_PDCMBDMMin  
tSTART_PDCM_Max  
51  
Max Programmed Start Time: PDCM_RSPSTx = 0x1FFF  
8191  
Response Transmission (Background Diagnostic Mode)  
7, 8, 9  
7, 8, 9  
7, 8  
49314  
10747  
10712  
Response Chip Time  
tCHIP_BDM  
tSTART_BDM  
tLAT_DSI  
0
tCHIP_PDCM  
µs  
µs  
µs  
Response Start Time (Section 12.4)  
DSI Data Latency  
20  
2.00  
OTP Program Timing  
10711 Time to program an OTP User Region  
7, 8, 9  
tOTP_WRITE_MAX  
10  
ms  
10.12 Dynamic electrical characteristics - PSI5  
Table 35.ꢀDynamic electrical characteristics - PSI5  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Initialization Timing  
7, 8, 9  
7, 8, 9  
7, 8, 9  
10748  
10758  
10757  
Phase 1  
tPSI5_INIT1  
133  
ms  
s
Phase 2 (Synchronous Mode, k = 4, tS-S = 500 µs)  
Phase 2 (Asynchronous Mode, k = 8)  
tPSI5_INIT2_10s  
tPSI5_INIT2_10a  
256 * tS-S  
512 *  
s
tASYNC  
7, 8, 9  
7, 8, 9  
7, 8  
10756  
10755  
10754  
10753  
41756  
Phase 3 (Synchronous Mode, tS-S = 500 µs)  
Phase 3 (Asynchronous Mode)  
tPSI5_INIT3_10s  
tPSI5_INIT3_10a  
tPSI5ST_START  
tST  
2 * tS-S  
2 * tASYNC  
30  
s
s
PSI5 Self-test Start Time  
ms  
ms  
ms  
7, 8  
PSI5 Self-test Time, including Post OC Startup Offset  
Programming Mode Entry Window  
223  
7, 8, 9  
tPME  
127  
Synchronization Pulse  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 9  
10759  
10779  
10778  
10777  
10776  
Reset to first sync pulse (Program Mode Entry)  
tRS_PM  
tRS  
6
tPSI5_INIT1  
175  
ms  
s
Reset to first sync pulse (Normal Mode)  
Sync Pulse Period  
tS-S  
µs  
µs  
µs  
Sync Pulse Width  
tSYNC  
tSYNC_LPF  
9
Sync Pulse Reference LPF time constant  
120  
280  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
28 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 35.ꢀDynamic electrical characteristics - PSI5...continued  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
7, 9  
10775  
10774  
10773  
10772  
10771  
10770  
10769  
10768  
10767  
Sync Pulse Reference Discharge Start Time  
Sync Pulse Reference Discharge Activation Time  
Sync Pulse Detection Disable Time (PDCM_CMD_B = 0)  
Analog Delay of Sync Pulse Detection  
tSYNC_LPF_RST_ST  
tSYNC_LPF_RST  
tSYNC_OFF_500  
tA_SYNC_DLY  
tPD_DLY  
50  
0
9.0  
154  
450  
µs  
µs  
µs  
ns  
µs  
µs  
µs  
µs  
µs  
7, 9  
7, 8, 9  
7, 9  
600  
7, 9  
Sync Pulse Pulldown Function Delay Time  
Sync Pulse Pulldown Function Activate Time  
Sync Pulse Detection Jitter  
9.0  
16  
7, 8  
tPD_ON  
7, 8  
tSYNC_JIT  
0.5  
7, 8, 9  
7, 8, 9  
Data Transmission Single Bit Time (PSI5 Standard Bit Rate)  
Data Transmission Single Bit Time (PSI5 High Bit Rate)  
tBIT_Standard  
tBIT_HI  
8.00  
5.30  
Response Current Transmission (No external Components)  
1 ,7, 9  
8, 9  
10766  
10765  
10780  
10764  
Response Slew Time: 20 % to 80 % of IR_PSI5  
Position of bit transition (All except 5.3 µs)  
Position of bit transition (5.3 us)  
tSLEW1_RESP  
tBittrans_LowBaud  
tBittrans_HighBaud  
tASYNC  
350  
49  
49  
400  
50  
500  
51  
51  
ns  
%
8, 9  
%
7, 8, 9  
Asynchronous Response Time  
228  
µs  
Time Slots  
Min Programmed Time Slot: PDCM_RSPSTx < 0x0014  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8, 9  
7, 8  
10763  
10790  
10789  
10788  
10787  
10786  
10785  
10784  
10783  
10782  
10781  
10762  
tTIMESLOTx_MIN  
tTIMESLOTx_MAX  
tTIMESLOT_DFLT  
tTIMESLOTx_RES  
tTIMESLOT_DC0  
tTIMESLOT_DC1_L  
tTIMESLOT_DC2_L  
tTIMESLOT_DC1_H  
tTIMESLOT_DC2_H  
tTIMESLOT_DC3_H  
tTIMESLOT_DCP  
tLAT_PSI5  
0
20  
8191  
20  
µs  
µs  
Max Programmed Time Slot: PDCM_RSPSTx = 0x1FFF  
Default Time Slot (PDCM_RSPSTx = 0x0000)  
Time Slot Resolution  
µs  
1.0  
µs/LSB  
µs  
Sync pulse to Daisy Chain Default Time Slot 0  
Sync pulse to Daisy Chain Default Time Slot 1 (Low)  
Sync pulse to Daisy Chain Default Time Slot 2 (Low)  
Sync pulse to Daisy Chain Default Time Slot 1 (High)  
Sync pulse to Daisy Chain Default Time Slot 2 (High)  
Sync pulse to Daisy Chain Default Time Slot 3 (High)  
Sync pulse to Daisy Chain Programming Time Slot  
PSI5 Data Latency  
46.5  
192  
350  
150  
260  
380  
46.5  
µs  
µs  
µs  
µs  
µs  
µs  
1.00  
µs  
Bus Switch Output Activation Time (C = 50 pF)  
10761 From last bit of "SetAdr" Response to 80 % of VBUS_SW_OH  
7
tBUS_SW  
300  
µs  
PSI5 Programming Mode Sync Pulse Period  
7, 8, 9  
7, 8, 9  
10760  
The user must provide a sync pulse period within this range to  
guarantee Programming Mode communications  
tS-S_PM  
245  
250  
200  
255  
µs  
µs  
PSI5 Programming Mode Command Blanking Time  
tSYNC_OFF_250  
Daisy Chain Mode Sync Pulse Period  
39810 The user must provide a sync pulse period within this range to  
7, 8, 9  
7, 8, 9  
tS-S_DC  
490  
500  
510  
10  
µs  
guarantee communications  
OTP Program Timing  
10793  
Time to program one OTP User Region  
tOTP_WRITE_MAX  
ms  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
29 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
10.13 Dynamic electrical characteristics - SPI  
Table 36.ꢀDynamic electrical characteristics - SPI  
VCC_BUF_min ≤ (VBUS_I – VSS) ≤ VCC_BUF_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Serial Interface Timing (See Figure 97, CMISO ≤ 80 pF, RMISO ≥ 10 kΩ)  
10794 Clock (SCLK) period (10 % of VCC to 10 % of VCC  
6
)
tSCLK  
88  
ns  
Serial Interface Timing (See Figure 97, CMISO ≤ 80 pF, RMISO ≥ 10 kΩ)  
6
6
10801  
10802  
Clock (SCLK) high time (90 % of VCC to 90 % of VCC  
)
tSCLKH  
tSCLKL  
30  
30  
ns  
ns  
Clock (SCLK) low time (10 % of VCC to 10 % of VCC  
)
Serial Interface Timing (See Figure 97, CMISO ≤ 80 pF, RMISO ≥ 10 kΩ)  
7
7
10800  
10803  
Clock (SCLK) rise time (10 % of VCC to 90 % of VCC  
)
tSCLKR  
tSCLKF  
10  
10  
25  
25  
ns  
ns  
Clock (SCLK) fall time (90 % of VCC to 10 % of VCC  
)
Serial Interface Timing (See Figure 97, CMISO ≤ 80 pF, RMISO ≥ 10 kΩ)  
10799 SS_B asserted to SCLK high (SS_B = 10 % of VCC to SCLK = 10 % of  
6
6
6
tLEAD  
tACCESS  
tSETUP  
50  
20  
50  
ns  
ns  
ns  
VCC  
Serial Interface Timing (See Figure 97, CMISO ≤ 80 pF, RMISO ≥ 10 kΩ)  
10798 SS_B asserted to MISO valid (SS_B = 10 % of VCC to MISO = 10/90 %  
)
of VCC  
Serial Interface Timing (See Figure 97, CMISO ≤ 80 pF, RMISO ≥ 10 kΩ)  
10797 Data setup time (MOSI = 10/90 % of VCC to SCLK = 10 % of VCC  
)
)
Serial Interface Timing (See Figure 97, CMISO ≤ 80 pF, RMISO ≥ 10 kΩ)  
6
6
10796  
10804  
MOSI Data hold time (SCLK = 90 % of VCC to MOSI = 10/90 % of VCC  
)
)
tHOLD_IN  
10  
0
ns  
ns  
MISO Data hold time (SCLK = 90 % of VCC to MISO = 10/90 % of VCC  
tHOLD_OUT  
Serial Interface Timing (See Figure 97, CMISO ≤ 80 pF, RMISO ≥ 10 kΩ)  
10795 SCLK low to data valid (SCLK = 10 % of VCC to MISO = 10/90 % of  
6
tVALID  
30  
ns  
VCC  
Serial Interface Timing (See Figure 97, CMISO ≤ 80 pF, RMISO ≥ 10 kΩ)  
10807 SCLK low to SS_B high (SCLK = 10 % of VCC to SS_B = 90 % of VCC  
)
6
6
)
tLAG  
60  
ns  
ns  
Serial Interface Timing (See Figure 97, CMISO ≤ 80 pF, RMISO ≥ 10 kΩ)  
10806 SS_B high to MISO disable (SS_B = 90 % of VCC to MISO = High Z)  
tDISABLE  
60  
Serial Interface Timing (See Figure 97, CMISO ≤ 80 pF, RMISO ≥ 10 kΩ)  
SS_B high to SS_B low (SS_B = 90 % of VCC to SS_B = 90 % of VCC  
)
6
6
6
6
10805  
10813  
10812  
10810  
Following Sensor Data Request Commands  
Following Register Reads/Writes Registers  
tSSN_SENSE  
tSSN_R  
tSSN_UF01  
tACC_REQ_x  
500  
500  
50  
ns  
ns  
µs  
µs  
Following Register Write to the UF_REGION_W Register  
Time Between Sensor Data Requests (Same Channel, SPI Only, Arm  
Enabled)  
15  
Arming Output Activation Time (ARM0, ARM1, IARM = 200 µA)  
6
6
6
10809  
10817  
10816  
Moving Average and Count Arming Modes  
Unfiltered Mode Activation Delay  
tARM  
0
0
1.50  
1.50  
6.00  
µs  
µs  
µs  
tARM_UF_DLY  
tARM_UF_ASSERT  
Unfiltered Mode Arm Assertion Time  
5.00  
Serial Interface Timing (See Figure 97, CMISO ≤ 80 pF, RMISO ≥ 10 kΩ)  
6
10808  
SCLK low to SS_B low (SCLK = 10 % of VCC to SS_B = 90 % of VCC  
)
tCLKSS  
50  
ns  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
30 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 36.ꢀDynamic electrical characteristics - SPI...continued  
VCC_BUF_min ≤ (VBUS_I – VSS) ≤ VCC_BUF_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Serial Interface Timing (See Figure 97, CMISO ≤ 80 pF, RMISO ≥ 10 kΩ)  
7
7, 8  
7
10815  
10818  
SS_B high to SCLK high (SS_B = 90 % of VCC to SCLK = 90 % of VCC  
)
tSSCLK  
tLAT_SPI  
CSPI_PIN  
50  
1
ns  
µs  
pF  
SPI Data Latency  
Pin Capacitance (MISO, MOSI, SCLK, SS_B to VSS)  
10  
10.14 Dynamic electrical characteristics - I2C  
Table 37.ꢀDynamic electrical characteristics - I2C  
VCC_BUF_min ≤ (VBUS_I – VSS) ≤ VCC_BUF_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Clock (SCL) Period (30 % of VCC to 30 % of VCC  
)
6
6
6
10819  
10820  
10821  
100 kHz Mode  
400 kHz Mode  
1000 kHz Mode  
tSCLK_100  
tSCLK_400  
tSCLK_1000  
9.50  
2.37  
1.00  
µs  
µs  
µs  
Clock (SCL) High Time (70 % of VCC to 70 % of VCC  
)
6
6
6
10823  
10837  
10836  
100 kHz Mode  
400 kHz Mode  
tSCLH_100  
tSCLH_400  
tSCLH_1000  
4.00  
0.60  
0.50  
µs  
µs  
µs  
1000 kHz Mode (note: not compliant with UM10204[1]  
Clock (SCL) Low Time (30 % of VCC to 30 % of VCC  
)
6
6
6
10835  
10839  
10838  
100 kHz Mode  
400 kHz Mode  
1000 kHz Mode  
tSCLL_100  
tSCLL_400  
tSCLL_1000  
4.70  
1.30  
0.50  
µs  
µs  
µs  
Clock (SCL) and Data (SDA) Rise Time (30 % of VCC to 70 % of VCC  
)
6
6
6
10834  
10841  
10840  
100 kHz Mode  
400 kHz Mode  
1000 kHz Mode  
tSRISE_100  
tSRISE_400  
tSRISE_1000  
1000  
300  
ns  
ns  
ns  
120  
Clock (SCL) and Data (SDA) Fall Time (70 % of VCC to 30 % of VCC  
)
6
6
6
10833  
10844  
10843  
100 kHz Mode  
400 kHz Mode  
1000 kHz Mode  
tSFALL_100  
tSFALL_400  
tSFALL_1000  
300  
300  
120  
ns  
ns  
ns  
Data Input Setup Time (SDA = 30/70 % of VCC to SCL = 30 % of VCC  
)
6
6
6
10832  
10846  
10845  
100 kHz Mode  
400 kHz Mode  
1000 kHz Mode  
tSETUP_100  
tSETUP_400  
tSETUP_1000  
250  
100  
50  
ns  
ns  
ns  
Data Input Hold Time (SCL = 70 % of VCC to SDA = 30/70 % of VCC  
)
6
10831  
100 kHz Mode  
tHOLD_100  
0
900  
ns  
10848  
10847  
400 kHz Mode  
1000 kHz Mode  
tHOLD_400  
0
0
900  
300  
ns  
ns  
6
6
tHOLD_1000  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
31 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 37.ꢀDynamic electrical characteristics - I2C...continued  
VCC_BUF_min ≤ (VBUS_I – VSS) ≤ VCC_BUF_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Start Condition Setup Time (SDA = 30/70 % of VCC to SCL = 30 % of VCC  
)
6
6
6
10830  
10851  
10850  
100 kHz Mode  
400 kHz Mode  
1000 kHz Mode  
tSTARTSETUP_100  
tSTARTSETUP_400  
tSTARTSETUP_1000  
4.70  
0.60  
0.26  
µs  
µs  
µs  
Start Condition Hold Time (SCL = 70 % of VCC to SDA = 30/70 % of VCC  
)
6
6
6
10829  
10853  
10852  
100 kHz Mode  
400 kHz Mode  
1000 kHz Mode  
tSTARTHOLD_100  
tSTARTHOLD_400  
tSTARTHOLD_1000  
4.00  
0.60  
0.26  
µs  
µs  
µs  
Stop Condition Setup Time (SDA = 30/70 % of VCC to SCL = 30 % of VCC  
)
6
6
6
10828  
10855  
10854  
100 kHz Mode  
400 kHz Mode  
1000 kHz Mode  
tSTOPSETUP_100  
tSTOPSETUP_400  
tSTOPSETUP_1000  
4.00  
0.60  
0.26  
µs  
µs  
µs  
SCLK low to data valid (SCL = 30 % of VCC to SDA = 30/70 % of VCC  
)
6
6
6
10827  
10857  
10856  
100 kHz Mode  
400 kHz Mode  
1000 kHz Mode  
tVALID_100  
tVALID_400  
tVALID_1000  
3.45  
0.90  
0.45  
µs  
µs  
µs  
Bus Free Time (SDA = 70 % of VCC to SDA = 70 % of VCC  
)
6
6
10826  
10859  
10859  
10825  
100 kHz Mode  
tFREE_100  
tFREE_400  
tFREE_1000  
CBUS  
4.00  
1.30  
0.50  
µs  
µs  
µs  
pF  
400 kHz Mode  
6
1000 kHz Mode  
Bus Capacitive Load  
7, 9  
400  
10.15 Dynamic electrical characteristics - signal chain, low-pass filter  
Table 38.ꢀDynamic electrical characteristics - signal chain, low-pass filter  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_min, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test notes  
DSP Low-Pass Filters Sample Times  
*
7, 8, 9  
10872  
SAMPLERATE = 00, 01  
tSigChain00  
,
16  
µs  
tSigChain01  
*
*
7, 8, 9  
7, 8, 9  
10872  
10871  
SAMPLERATE = 10  
SAMPLERATE = 11  
tSigChain10  
32  
64  
µs  
µs  
tSigChain11  
DSP Low-Pass Filters (Signal Chain Sample Time = 16 µs)  
*
*
*
*
*
*
*
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
21379  
21380  
21381  
21382  
21383  
21384  
21385  
Cutoff Frequency, Filter Option #0, and #2, 4-Pole  
Cutoff Frequency, Filter Option #1, and #3, 3-Pole  
Cutoff Frequency, Filter Option #4, 3-Pole  
Cutoff Frequency, Filter Option #5, 2-Pole  
Cutoff Frequency, Filter Option #6, 2-Pole  
Cutoff Frequency, Filter Option #7, 2-Pole  
Cutoff Frequency, Filter Option #8, 4-Pole  
fc0_16, fc2_16  
fc1_16, fc3_16  
fc4_16  
400  
400  
325  
370  
180  
100  
1500  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
fc5_16  
fc6_16  
fc7_16  
fc8_16  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
32 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 38.ꢀDynamic electrical characteristics - signal chain, low-pass filter...continued  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_min, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test notes  
*
*
*
*
*
*
*
7, 8, 9, 11  
26413  
Cutoff Frequency, Filter Option #9, 4-Pole  
fc9_16  
500  
Hz  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
10860  
10870  
10869  
Cutoff Frequency, Filter Option #10, 4-Pole  
Cutoff Frequency, Filter Option #11, 3-Pole  
Cutoff Frequency, Filter Option #12, 3-Pole  
Cutoff Frequency, Filter Option #13, 3-Pole  
Cutoff Frequency, Filter Option #14, 2-Pole  
Cutoff Frequency, Filter Option #15, 2-Pole  
fc10_16  
fc11_16  
fc12_16  
fc13_16  
fc14_16  
fc15_16  
800  
1200  
120  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
20,000  
120  
10868  
38364  
50  
DSP Low-Pass Filters (Signal Chain Sample Time = 32 µs)  
*
*
*
*
*
*
*
*
*
*
*
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
38378  
38379  
38380  
38381  
38382  
38383  
38384  
38385  
38386  
38387  
38388  
Cutoff Frequency, Filter Option #0, and #2, 4-Pole  
Cutoff Frequency, Filter Option #1, and #3, 3-Pole  
Cutoff Frequency, Filter Option #4, 3-Pole  
Cutoff Frequency, Filter Option #5, 2-Pole  
Cutoff Frequency, Filter Option #6, 2-Pole  
Cutoff Frequency, Filter Option #7, 2-Pole  
Cutoff Frequency, Filter Option #8, 4-Pole  
Cutoff Frequency, Filter Option #9, 3-Pole  
Cutoff Frequency, Filter Option #10, 4-Pole  
Cutoff Frequency, Filter Option #11, 4-Pole  
Cutoff Frequency, Filter Option #12, 3-Pole  
Cutoff Frequency, Filter Option #13, 2-Pole  
Cutoff Frequency, Filter Option #14, 2-Pole  
Cutoff Frequency, Filter Option #15, 4-Pole  
fc0_32, fc2_32  
fc1_32, fc3_32  
fc4_32  
200  
200  
162.5  
185  
90  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
fc5_32  
fc6_32  
fc7_32  
50  
fc8_32  
750  
250  
400  
600  
60  
fc9_32  
fc10_32  
fc11_32  
fc12_32  
fc13_32  
fc14_32  
fc15_32  
10,000  
60  
*
*
38389  
38390  
25  
DSP Low-Pass Filters (Signal Chain Sample Time = 64 µs)  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
7, 8, 9, 11  
38365  
38366  
38367  
38368  
38369  
38370  
38371  
38372  
38373  
38374  
38375  
Cutoff Frequency, Filter Option #0, and #2, 4-Pole  
Cutoff Frequency, Filter Option #1, and #3, 3-Pole  
Cutoff Frequency, Filter Option #4, 3-Pole  
Cutoff Frequency, Filter Option #5, 2-Pole  
Cutoff Frequency, Filter Option #6, 2-Pole  
Cutoff Frequency, Filter Option #7, 2-Pole  
Cutoff Frequency, Filter Option #8, 4-Pole  
Cutoff Frequency, Filter Option #9, 3-Pole  
Cutoff Frequency, Filter Option #10, 4-Pole  
Cutoff Frequency, Filter Option #11, 4-Pole  
Cutoff Frequency, Filter Option #12, 3-Pole  
Cutoff Frequency, Filter Option #13, 2-Pole  
Cutoff Frequency, Filter Option #14, 2-Pole  
Cutoff Frequency, Filter Option #15, 4-Pole  
fc0_64, fc2_64  
fc1_64, fc3_64  
fc4_64  
100  
100  
81.25  
92.75  
45  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
fc5_64  
fc6_64  
fc7_64  
25  
fc8_64  
375  
125  
200  
300  
30  
fc9_64  
fc10_64  
fc11_64  
fc12_64  
fc13_64  
fc14_64  
fc15_64  
5,000  
30  
38376  
38377  
12.5  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
33 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
10.16 Dynamic electrical characteristics - signal chain  
Table 39.ꢀDynamic electrical characteristics - signal chain  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_min, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Offset Cancellation Low-Pass Filter  
7, 8  
7, 8  
7, 8  
10863  
10874  
10875  
Sample Time, Phase 0  
Cutoff Frequency, Phase 0, 1-Pole  
Time in Phase 0  
t0CSAMP0  
fOC0  
256  
µs  
Hz  
ms  
163.8  
4.096  
tOC0  
Offset Cancellation Low-Pass Filter  
7, 8  
7, 8  
7, 8  
10888  
10889  
10890  
Sample Time, Phase 1  
Cutoff Frequency, Phase 1, 1-Pole  
Time in Phase 1  
t0CSAMP1  
fOC1  
256  
µs  
Hz  
ms  
40.96  
4.096  
tOC1  
Offset Cancellation Low-Pass Filter  
7, 8  
7, 8  
7, 8  
10885  
10886  
10887  
Sample Time, Phase 2  
Cutoff Frequency, Phase 2, 1-Pole  
Time in Phase 2  
t0CSAMP2  
fOC2  
256  
µs  
Hz  
ms  
10.24  
16.388  
tOC2  
Offset Cancellation Low-Pass Filter  
7, 8  
7, 8  
7, 8  
10900  
10901  
10902  
Sample Time, Phase 3  
Cutoff Frequency, Phase 3, 1-Pole  
Time in Phase 3  
t0CSAMP3  
fOC3  
256  
µs  
Hz  
ms  
2.560  
65.53  
tOC3  
Offset Cancellation Low-Pass Filter  
7, 8  
7, 8  
7, 8  
10897  
10898  
10899  
Sample Time, Phase 4  
Cutoff Frequency, Phase 4, 1-Pole  
Time in Phase 4  
t0CSAMP4  
fOC4  
256  
µs  
Hz  
ms  
0.6400  
262.19  
tOC4  
Offset Cancellation Low-Pass Filter  
7, 8  
7, 8  
7, 8  
10894  
10895  
10896  
Sample Time, Phase 5  
Cutoff Frequency, Phase 5, 1-Pole  
Time in Phase 5  
t0CSAMP5  
fOC5  
256  
0.1600  
1049  
µs  
Hz  
ms  
tOC5  
Offset Cancellation Low-Pass Filter  
7, 8  
7, 8  
39811  
39812  
Sample Time, Phase 6a  
t0CSAMP6a  
fOC6a  
256  
µs  
*
*
Cutoff Frequency, Phase 6a, 1-Pole  
0.0400  
Hz  
Offset Cancellation Low-Pass Filter  
7, 8  
7, 8  
39813  
39814  
Sample Time, Phase 6b  
t0CSAMP6b  
fOC6b  
1024  
µs  
Cutoff Frequency, Phase 6b, 1-Pole  
0.005  
Hz  
Offset Cancellation Output Rate Limiting (0.04 Hz Offset LPF only)  
7, 8, 9  
7, 8, 9  
7, 8  
10882  
10903  
Rate Limiting Output Update Time  
tRL_Rate  
OFFStep10  
OFFStep16  
2
s
Rate Limiting Output Step Size (10 bit)  
Rate Limiting Output Step Size (16 bit, PSI5, SPI)  
0.5  
32  
LSB  
LSB  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
34 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 39.ꢀDynamic electrical characteristics - signal chain...continued  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_min, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Offset Monitor  
7, 8  
7, 8  
7, 8  
7, 8  
10883  
10905  
10904  
10881  
Update Rate  
OFFMONOSC  
OFFMONCNTLIMIT  
OFFMONCNTSIZE  
tSigDelay  
0.5  
4096  
8192  
ms  
1
Count Limit  
Counter Size  
1
Signal Delay (Sinc Filter to Output Delay, excluding LPF)  
128  
µs  
Interpolation  
7, 8  
7, 8  
7, 8  
7, 8  
20923  
20922  
20921  
10877  
tSigChain = tSigChain00, tSigChain01  
tINTERP_00, 01  
tINTERP_02  
1
µs  
µs  
µs  
tSigChain = tSigChain02  
tSigChain = tSigChain03  
Interpolation Latency  
2
4
tINTERP_03  
tLAT_INTERP  
tSigChainxx  
s
10.17 Dynamic electrical characteristics - analog self-test response time  
Table 40.ꢀDynamic electrical characteristics - analog self-test response time  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_min, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Medium g, Lateral  
Self-test Response Time: Self-test Activation/Deactivation to 99 %/1 % gST  
7, 8  
7, 8  
10878  
44634  
Medium g Lateral, LPF = 800 Hz, 4-Pole  
Medium g Lateral, LPF = 1500 Hz, 4-Pole  
tST_Resp_MedX_800_4  
tST_Resp_MedX_1500_4  
750  
395  
795  
415  
1020  
725  
µs  
µs  
Self-test Response Time: Self-test Activation/Deactivation to 99 % / 1 % gST  
7, 8  
7, 8  
7, 8  
38147  
38151  
38150  
Medium g Lateral, LPF = 400 Hz, 4-Pole  
Medium g Lateral, LPF = 400 Hz, 3-Pole  
Medium g Lateral, LPF = 180 Hz, 2-Pole  
tST_Resp_MedX_400_4  
tST_Resp_MedX_400_3  
tST_Resp_MedX_180_2  
1510  
1420  
3030  
1590  
1490  
3190  
1810  
1710  
3470  
µs  
µs  
µs  
Self-test Response Time: Self-test Activation/Deactivation to 99 % / 1 % gST  
38149 Medium g Lateral, LPF = 300 Hz, 4-Pole  
7, 8  
7, 8  
tST_Resp_MedX_300_4  
2010  
3210  
2120  
3380  
2360  
3680  
µs  
µs  
Self-test Response Time: Self-test Activation/Deactivation to 99 % / 1 % gST  
38148 Medium g Lateral, LPF = 188 Hz, 4-Pole  
tST_Resp_MedX_188_4  
High g, Lateral  
Self-test Response Time: Self-test Activation/Deactivation to 99 % / 1 % gST  
7, 8  
7, 8  
38152  
44636  
High g Lateral, LPF = 800 Hz, 4-Pole  
High g Lateral, LPF = 1500 Hz, 4-Pole  
tST_Resp_HiX_800_4  
tST_Resp_HiX_1500_4  
750  
395  
795  
415  
892  
490  
µs  
µs  
Self-test Response Time: Self-test Activation/Deactivation to 99 % / 1 % gST  
7, 8  
7, 8  
7, 8  
38153  
38154  
38155  
High g Lateral, LPF = 400 Hz, 4-Pole  
High g Lateral, LPF = 400 Hz, 3-Pole  
High g Lateral, LPF = 180 Hz, 2-Pole  
tST_Resp_HiX_400_4  
tST_Resp_HiX_400_3  
tST_Resp_HiX_180_2  
1510  
1420  
3030  
1590  
1490  
3190  
1720  
1620  
3400  
µs  
µs  
µs  
Self-test Response Time: Self-test Activation/Deactivation to 99 % / 1 % gST  
7, 8  
38156  
High g Lateral, LPF = 300 Hz, 4-Pole  
tST_Resp_HiX_300_4  
2010  
2120  
2280  
µs  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
35 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 40.ꢀDynamic electrical characteristics - analog self-test response time...continued  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_min, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Self-test Response Time: Self-test Activation/Deactivation to 99 % / 1 % gST  
38157 High g Lateral, LPF = 188 Hz, 4-Pole  
7, 8  
tST_Resp_HiX_188_4  
3210  
3380  
3600  
µs  
Medium g, Z-Axis  
Self-test Response Time: Self-test Activation/Deactivation to 99 % / 1 % gST  
7, 8  
7, 8  
38158  
44637  
Medium g Z-Axis, LPF = 800 Hz, 4-Pole  
Medium g Z-Axis, LPF = 1500 Hz, 4-Pole  
tST_Resp_MedZ_800_4  
tST_Resp_MedZ_1500_4  
750  
395  
795  
415  
1010  
710  
µs  
µs  
Self-test Response Time: Self-test Activation/Deactivation to 99 % / 1 % gST  
7, 8  
7, 8  
7, 8  
38159  
38160  
38161  
Medium g Z-Axis, LPF = 400 Hz, 4-Pole  
Medium g Z-Axis, LPF = 400 Hz, 3-Pole  
Medium g Z-Axis, LPF = 180 Hz, 2-Pole  
tST_Resp_MedZ_400_4  
tST_Resp_MedZ_400_3  
tST_Resp_MedZ_180_2  
1510  
1420  
3030  
1590  
1490  
3190  
1810  
1700  
3470  
µs  
µs  
µs  
Self-test Response Time: Self-test Activation/Deactivation to 99 % / 1 % gST  
38162 Medium g Z-Axis, LPF = 300 Hz, 4-Pole  
7, 8  
7, 8  
tST_Resp_MedZ_300_4  
2010  
3210  
2120  
3380  
2360  
3680  
µs  
µs  
Self-test Response Time: Self-test Activation/Deactivation to 99 % / 1 % gST  
38163 Medium g Z-Axis, LPF = 188 Hz, 4-Pole  
tST_Resp_MedZ_188_4  
High g, Z-Axis  
Self-test Response Time: Self-test Activation/Deactivation to 99 % / 1 % gST  
7, 8  
7, 8  
38164  
44638  
High g Z-Axis, LPF = 800 Hz, 4-Pole  
High g Z-Axis, LPF = 1500 Hz, 4-Pole  
tST_Resp_HiZ_800_4  
tST_Resp_HiZ_1500_4  
750  
395  
795  
415  
994  
675  
µs  
µs  
Self-test Response Time: Self-test Activation/Deactivation to 99 % / 1 % gST  
7, 8  
7, 8  
7, 8  
38165  
38166  
38167  
High g Z-Axis, LPF = 400 Hz, 4-Pole  
High g Z-Axis, LPF = 400 Hz, 3-Pole  
High g Z-Axis, LPF = 180 Hz, 2-Pole  
tST_Resp_HiZ_400_4  
tST_Resp_HiZ_400_3  
tST_Resp_HiZ_180_2  
1510  
1420  
3030  
1590  
1490  
3190  
1800  
1690  
3470  
µs  
µs  
µs  
Self-test Response Time: Self-test Activation/Deactivation to 99 % / 1 % gST  
38168 High g Z-Axis, LPF = 300 Hz, 4-Pole  
7, 8  
7, 8  
tST_Resp_HiZ_300_4  
2010  
3210  
2120  
3380  
2360  
3680  
µs  
µs  
Self-test Response Time: Self-test Activation/Deactivation to 99 % / 1 % gST  
38169 High g Z-Axis, LPF = 188 Hz, 4-Pole  
tST_Resp_HiZ_188_4  
10.18 Dynamic electrical characteristics - digital self-test response time  
Table 41.ꢀDynamic electrical characteristics - digital self-test response time  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_min, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Self-test Response Time: Self-test Activation/Deactivation to Final Value  
44639 LPF ≤ 60 Hz  
7, 8  
7, 8  
tDST_Resp_50  
50  
25  
ms  
ms  
Self-test Response Time: Self-test Activation/Deactivation to Final Value  
44641 60 Hz ≤ LPF ≤ 200 Hz  
tDST_Resp_100  
Self-test Response Time: Self-test Activation/Deactivation to Final Value  
7, 8  
7, 8  
44640  
38176  
300 Hz ≤ LPF ≤ 1500 Hz  
tDST_Resp_400  
tST_FP_Resp  
12  
ms  
µs  
Fixed Pattern Response Time: Self-test Activation/Deactivation  
100  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
36 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
10.19 Dynamic electrical characteristics - transducer  
Table 42.ꢀDynamic electrical characteristics - transducer  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_min, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Lateral Transducer Rolloff Frequency (–3 db)  
7
7
10917  
10915  
Medium g  
High g  
fgcell_3dB_mid  
fgcell_3dB_hi  
1500  
4000  
2500  
7000  
4500  
Hz  
Hz  
13000  
Lateral Transducer Delay (@100 Hz)  
7
7
10921  
10919  
Medium g  
High g  
fgcell_delay100_mid  
fgcell_delay100_hi  
250  
250  
µs  
µs  
Z-Axis Transducer Rolloff Frequency (–3 db)  
7
7
10923  
10925  
Medium g  
High g  
fgcell_3dB_mid  
fgcell_3dB_hi  
1500  
1500  
2500  
2500  
4500  
7500  
Hz  
Hz  
Z-Axis Transducer Delay (@100 Hz)  
7
7
7
10927  
10929  
10912  
Medium g  
fgcell_delay100_mid  
fgcell_delay100_hi  
fPackage  
250  
250  
µs  
µs  
High g  
Package Resonance Frequency  
100  
kHz  
10.20 Dynamic electrical characteristics - supply and support circuitry  
Table 43.ꢀDynamic electrical characteristics - supply and support circuitry  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_min, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Reset Recovery (All Modes, excluding VBUS_I voltage ramp time)  
7, 8, 9  
7, 8, 9  
7, 8  
10930  
10939  
10938  
10937  
10936  
10935  
VCC = VCCMIN to POR Release  
tVCC_POR  
tPOR_DSI  
1
6
ms  
ms  
ms  
ms  
ms  
ms  
POR to first DSI Command (Section 12.1)  
POR to PSI5 Initialization Phase 1 Start (Section 13.4)  
POR to first SPI Command  
tPOR_PSI5  
6
7, 8, 9  
7, 8, 9  
7, 8, 9  
tPOR_SPI  
0.400  
0.700  
30  
6
POR to Sensor Data Valid  
tPOR_DataValid  
tRANGE_DataValid  
DSP Setting Change to Sensor Data Valid: DS3, SPI, I2C  
Soft Reset Activation Time  
7, 8  
7, 8  
7, 8  
7, 8  
10934  
30152  
30151  
41495  
SPI: SS_B high to Reset  
tSOFT_RESET_SPI  
tSOFT_RESET_I2C  
tSOFT_RESET_DSI  
tSOFT_RESET_PSI  
700  
700  
11  
ns  
ns  
µs  
µs  
I2C: Command Complete to Reset (No ACK follows)  
DSI3: Command/Response Complete to Reset  
PSI5: Command/Response Complete to Reset  
120  
Internal Oscillator Period  
*
1, 7, 8, 9  
7, 8, 9  
10933  
10940  
Untrained  
fOSC  
9.560  
9.900  
10.000  
10.000  
10.440  
10.100  
MHz  
MHz  
With Oscillator Training  
fOSC_TRAIN  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
37 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 43.ꢀDynamic electrical characteristics - supply and support circuitry...continued  
VBUS_I_L_min ≤ (VBUS_I – VSS) ≤ VBUS_I_H_min, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Test  
notes  
Oscillator Training (Section 11.5.1)  
7, 8  
7, 8  
7, 8  
7, 8  
7, 8  
7, 9  
10932  
10942  
10944  
10943  
10941  
10946  
Oscillator Training Time  
tOscTrain  
nOSC_4ms_TYP  
OscTrainWIN  
OscTrainADJ  
OscTrainRES  
tSET  
4
40000  
ms  
Oscillator Cycles in Training Time  
1/fOSC  
1/fOSC  
1/fOSC  
1/fOSC  
ms  
Oscillator Training Window  
38000  
–400  
42000  
400  
Oscillator Training Adjustment Threshold  
Oscillator Training Step Size  
250  
Quiescent Current Settling Time (Power Applied to Iq = IIDLE ± 2 mA)  
4
BUS_I Micro-cut  
7, 9  
7, 9  
7, 9  
7, 9  
10931  
10952  
10953  
10954  
Survival Time (BUS_I disconnect without Reset, CBUF=1 µF, Bus with 1  
slave)  
tBUS_I_MICROCUT  
30  
15  
1000  
µs  
µs  
µs  
µs  
Reset Time (BUS_I disconnect time to Reset, CBUF=1 µF, Bus with 1  
slave)  
tBUS_I_RESET  
Survival Time (BUS_I disconnect without Reset, CBUF=470 nF, Bus with  
1 slave)  
tBUS_I_MICROCUT  
Reset Time (BUS_I disconnect time to Reset, CBUF=470 nF, Bus with 1  
slave)  
tBUS_I_RESET  
1000  
BUS_I Undervoltage Detection Delay  
7
10947  
BUS_I < VBUS_I_UV_F to IRESP Deactivation  
tBUS_I_POR  
5
µs  
VBUF Undervoltage Detection Delay  
7
7
10958  
10957  
VBUF < VBUF_UV_F to IRESP Deactivation  
Undervoltage/Overvoltage Recovery Delay  
tVBUF_POR  
tUVOV_RCV  
5
µs  
µs  
100  
VBUF Capacitor Monitor  
7
7
7
7
36817  
36821  
36823  
36822  
DSI Command Start to Capacitor Test  
tD_CAPTEST  
tP_CAPTEST  
tA_CAPTEST  
tCAPTST_TIME  
3.0  
9.2  
µs  
µs  
µs  
µs  
PSI5 Synchronous Command Start to Capacitor Test  
PSI5 Asynchronous Response Start to Capacitor Test  
Capacitor Test Disconnect Time  
179.2  
1
11 Functional description  
11.1 User accessible data array  
A user accessible data array allows for each device to be customized. The array consists  
of an OTP factory programmable block, an OTP user programmable block, and read-  
only registers for data and device status. The OTP blocks incorporate independent data  
verification.  
11.1.1 User accessible data - general device information  
Table 44.ꢀUser accessible data - general device information  
Bit  
Type  
R
Address  
$00  
Register  
7
6
5
4
3
2
1
0
COUNT  
COUNT[7:0]  
R
$01  
DEVSTAT  
DEVSTAT1  
DEVSTAT2  
CH0_ERR  
VBUFUV_ERR  
F_OTP_ERR  
CH1_ERR  
BUSINUV_ERR  
U_OTP_ERR  
COMM_ERR  
VBUFOV_ERR  
U_RW_ERR  
MEMTEMP_ERR  
RESERVED  
SUPPLY_ERR  
INTREGA_ERR  
TEMP1_ERR  
TESTMODE  
INTREG_ERR  
TEMP0_ERR  
DEVRES  
INTREGF_ERR  
RESERVED  
DEVINIT  
R
$02  
CONT_ERR  
RESERVED  
R
$03  
U_W_ACTIVE  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
38 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 44.ꢀUser accessible data - general device information...continued  
Bit  
Type  
R
Address  
$04  
Register  
7
6
OSCTRAIN_ERR  
0
5
4
3
2
1
0
DEVSTAT3  
COMMREV  
MREAD_STAT  
RESERVED  
TEMPERATURE  
RESERVED  
MISO_ERR  
0
RESERVED  
0
RESERVED  
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
$05  
COMMREV[3:0]  
RESERVED MARGIN_RD_ACT MARGIN_RD_ERR  
R
$06  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
$07 - $0D  
$0E  
RESERVED  
TEMP[7:0]  
R
R
$0F  
RESERVED  
11.1.2 User accessible data - communication information  
Table 45.ꢀUser accessible data - communication information  
Bit  
Type[1] Address Register  
7
6
5
4
3
2
1
0
R/W  
R/W  
$10  
$11  
DEVLOCK_WR  
ENDINIT  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
SUP_ERR_DIS  
RESERVED  
EX_PADDR  
RESET[1:0]  
WRITE_OTP_  
EN  
UOTP_  
WR_INIT  
MARGIN_  
RD_EN  
EX_  
COMMTYPE  
UOTP_REGION[1:0]  
R/W  
R/W  
R/W  
R
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
$1B  
$1C  
$1D  
BUSSW_CTRL  
PSI5_TEST  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
BUSSW_CTRL[1:0]  
RESERVED  
RESERVED  
RESERVED  
PSI5_TEST  
UF_REGION_W  
UF_REGION_R  
COMMTYPE  
RESERVED  
REGION_LOAD[3:0]  
REGION_ACTIVE[3:0]  
RESERVED RESERVED  
0
0
0
0
0
0
0
0
UF2  
UF2  
UF2  
UF2  
UF2  
UF2  
UF2  
UF2  
RESERVED  
0
RESERVED  
RESERVED  
COMMTYPE[2:0]  
RESERVED  
PHYSADDR  
0
0
0
PADDR[3:0]  
RESERVED  
RESERVED  
SOURCEID_0  
SOURCEID_1  
SOURCEID_2  
SOURCEID_3  
SID0_EN  
SID1_EN  
SID2_EN  
SID3_EN  
PDCMFORMAT[2:0]  
RESERVED  
SOURCEID_0[3:0]  
SOURCEID_1[3:0]  
SOURCEID_2[3:0]  
SOURCEID_3[3:0]  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
UF2 $1E - $21 RESERVED  
RESERVED  
UF2  
UF2  
UF2  
$22  
$23  
$24  
TIMING_CFG  
PDCM_PER[2:0]  
OSCTRAIN_  
SEL  
CK_CAL_RST  
CRM_PER[1:0]  
CHIPTIME[3:0]  
CK_CAL_EN  
CHIPTIME  
ST_RPT[1:0]  
PSI5_  
ERRLATCH  
SS_EN  
TIMING_CFG2  
PSI5_CFG  
PSI5_  
INIT2_D19  
OSCTRAIN_ERRCNT[2:0]  
CAPTEST_OFF  
EMSG_EXT  
RESERVED  
P_CRC  
BDM_  
FRAGSIZE  
BDM_EN  
ASYNC  
UF2  
UF2  
$25  
$26  
SYNC_PD  
DAISY_CHAIN  
PSI5_ILOW  
RESERVED  
DUALTRANS  
INIT2_EXT  
PDCM_  
RSPST0_L  
PDCM_RSPST0[7:0]  
PDCM_RSPST1[7:0]  
PDCM_RSPST2[7:0]  
PDCM_RSPST3[7:0]  
UF2  
UF2  
UF2  
UF2  
UF2  
UF2  
UF2  
$27  
$28  
$29  
$2A  
$2B  
$2C  
$2D  
PDCM_  
RSPST0_H  
BRC_RSP0[1:0]  
PDCM_RSPST0[12:8]  
PDCM_RSPST1[12:8]  
PDCM_RSPST2[12:8]  
PDCM_RSPST3[12:8]  
PDCM_  
RSPST1_L  
PDCM_  
RSPST1_H  
BRC_RSP1[1:0]  
BRC_RSP2[1:0]  
BRC_RSP3[1:0]  
RESERVED  
RESERVED  
RESERVED  
PDCM_  
RSPST2_L  
PDCM_  
RSPST2_H  
PDCM_  
RSPST3_L  
PDCM_  
RSPST3_H  
UF2 $2E - $37 RESERVED  
RESERVED  
UF2  
$38  
PDCM_CMD_  
B_L  
PDCM_CMD_B[7:0]  
UF2  
$39  
PDCM_CMD_  
B_H  
RESERVED  
RESERVED  
RESERVED  
PDCM_CMD_B[12:8]  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
39 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 45.ꢀUser accessible data - communication information...continued  
Bit  
Type[1] Address Register  
7
6
5
4
3
2
1
0
UF2  
$3A -  
$3C  
RESERVED  
RESERVED  
UF2  
UF2  
UF2  
$3D  
$3E  
$3F  
SPI_CFG  
SPI_STATUS  
DATASIZE  
SPI_CRC_LEN[1:0]  
SPICRCSEED[3:0]  
WHO_AM_I  
I2C_ADDRESS  
WHO_AM_I[7:0]  
I2C_ADDRESS[7:0]  
[1] Memory Type Codes  
R - Readable Register with No OTP  
F – User Readable Register with OTP  
UF0 – One Time User Programmable OTP Location Region 0  
UF1 – One Time User Programmable OTP Location Region 1  
UF2 – One Time User Programmable OTP Location Region 2  
R/W – User Writable Register  
11.1.3 User accessible data - sensor specific information  
Table 46.ꢀUser accessible data - sensor specific information  
Bit  
Type[1] Address Register  
7
6
5
4
3
2
1
0
UF2  
UF2  
UF2  
$40  
$41  
$42  
CH0_CFG_U1  
CH0_CFG_U2  
CH0_CFG_U3  
LPF[3:0]  
SAMPLERATE[1:0]  
USER_SNS_SHIFT[1:0]  
U_SNS_MULT[7:0]  
UNSIGN  
EDDATA  
DATATYPE0[1:0]  
DATATYPE1[2:0]  
MOVEAVG[1:0]  
UF2  
UF2  
UF2  
$43  
$44  
$45  
CH0_CFG_U4  
CH0_CFG_U5  
RESET_OC  
INVERT  
OC_FILT[1:0]  
ARM_PS[1:0]  
PCM  
ARM_CFG[2:0]  
ST_CTRL[3:0]  
OC_LIMIT[2:0]  
ARM_WS_N[1:0]  
DSP_DIS  
ARM_WS_P[1:0]  
CH0_ARM_  
CFG  
ARM_DS[1:0]  
UF2  
UF2  
UF2  
UF2  
UF2  
$46  
$47  
$48  
$49  
$4A  
CH0_ARM_T_P  
CH0_ARM_T_N  
CH1_CFG_U1  
CH1_CFG_U2  
CH1_CFG_U3  
ARM_T_P[7:0]  
ARM_T_N[7:0]  
LPF[3:0]  
SAMPLERATE[1:0]  
U_SNS_MULT[7:0]  
DATATYPE1[2:0]  
USER_SNS_SHIFT[1:0]  
MOVEAVG[1:0]  
UNSIGN  
EDDATA  
DATATYPE0[1:0]  
UF2  
UF2  
UF2  
$4B  
$4C  
$4D  
CH1_CFG_U4  
CH1_CFG_U5  
RESET_OC  
INVERT  
ST_CTRL[3:0]  
OC_FILT[1:0]  
ARM_PS[1:0]  
PCM  
ARM_CFG[2:0]  
OC_LIMIT[2:0]  
ARM_WS_N[1:0]  
DSP_DIS  
ARM_WS_P[1:0]  
CH1_ARM_  
CFG  
ARM_DS[1:0]  
UF2  
UF2  
UF2  
$4E  
$4F  
$50  
CH1_ARM_T_P  
CH1_ARM_T_N  
ARM_T_P[7:0]  
ARM_T_N[7:0]  
RESERVED RESERVED  
OC_PHASE_  
CFG  
CH0_OCFINAL CH1_OCFINAL  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
UF2  
UF2  
$51-$54 RESERVED  
RESERVED  
$55  
CH0_U_  
CH0_U_OFFSET[7:0]  
OFFSET_L  
UF2  
$56  
CH0_U_  
CH0_U_OFFSET[15:8]  
OFFSET_H  
UF2  
UF2  
$57-$5C RESERVED  
RESERVED  
$5D  
CH1_U_  
CH1_U_OFFSET[7:0]  
OFFSET_L  
UF2  
$5E  
CH1_U_  
CH1_U_OFFSET[15:8]  
OFFSET_H  
F
R
R
$5F  
$60  
$61  
CRC_UF2  
CH0_STAT  
LOCK_UF2  
SIGNALCLIP  
CH0_ERR  
0
0
0
CRC_UF2[3:0]  
OCPHASE[2:0]  
COMM_ERR  
ST_INCMPLT  
SUPPLY_ERR  
ST_ACTIVE  
TESTMODE  
OFFSET_ERR  
DEVRES  
ST_ERROR  
DEVINIT  
DEVSTAT_  
COPY  
CH1_ERR  
MEMTEMP_  
ERR  
R
$62  
CH0_  
CH0_SNSDATA0[7:0]  
SNSDATA0_L  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
40 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 46.ꢀUser accessible data - sensor specific information...continued  
Bit  
Type[1] Address Register  
7
6
5
4
3
2
1
0
R
R
R
$63  
$64  
$65  
CH0_  
SNSDATA0_H  
CH0_SNSDATA0[15:8]  
CH0_SNSDATA1[7:0]  
CH0_SNSDATA1[15:8]  
RESERVED  
CH0_  
SNSDATA1_L  
CH0_  
SNSDATA1_H  
R
R
R
R
$66-$6F RESERVED  
$70  
$71  
$72  
CH1_STAT  
SIGNALCLIP  
OCPHASE[2:0]  
ST_INCMPLT  
ST_ACTIVE  
OFFSET_ERR  
ST_ERROR  
RESERVED  
RESERVED  
CH1_  
CH1_SNSDATA0[7:0]  
SNSDATA0_L  
R
R
R
R
$73  
$74  
$75  
CH1_  
SNSDATA0_H  
CH1_SNSDATA0[15:8]  
CH1_SNSDATA1[7:0]  
CH1_SNSDATA1[15:8]  
RESERVED  
CH1_  
SNSDATA1_L  
CH1_  
SNSDATA1_H  
$76-$9F RESERVED  
[1] Memory Type Codes  
R - Readable Register with No OTP  
F – User Readable Register with OTP  
UF0 – One Time User Programmable OTP Location Region 0  
UF1 – One Time User Programmable OTP Location Region 1  
UF2 – One Time User Programmable OTP Location Region 2  
R/W – User Writable Register  
11.1.4 User accessible data - sensor specific information  
Table 47.ꢀUser accessible data - sensor specific information  
Bit  
Type[1Address Register  
7
6
5
4
3
2
1
0
F
F
F
F
F
F
F
F
F
F
F
$A0  
$A1  
$A2  
$A3  
$A4  
$A5  
$A6  
$A7  
$A8  
$A9  
CH0_CFG_F  
DEV_RANGE[3:0]  
RESERVED  
RESERVED  
RESERVED  
AXIS[1:0]  
RESERVED  
CH0_STL_P_L  
CH0_STL_P_H  
CH0_STH_P_L  
CH0_STH_P_H  
CH0_STL_N_L  
CH0_STL_N_H  
CH0_STH_N_L  
CH0_STH_N_H  
RESERVED  
CH0_STL_P[7:0]  
CH0_STL_P[15:8]  
CH0_STH_P[7:0]  
CH0_STH_P[15:8]  
CH0_STL_N[7:0]  
CH0_STL_N[15:8]  
CH0_STH_N[7:0]  
CH0_STH_N[15:8]  
RESERVED  
$AA-  
$AE  
F
F
F
F
F
F
F
F
F
F
F
$AF  
$B0  
$B1  
$B2  
$B3  
$B4  
$B5  
$B6  
$B7  
$B8  
$B9  
CRC_F_A  
LOCK_F_A  
REGA_BLOCKID[2:0]  
CRC_F_A[3:0]  
RESERVED  
CH1_CFG_F  
DEV_RANGE[3:0]  
RESERVED  
RESERVED  
AXIS[1:0]  
RESERVED  
CH1_STL_P_L  
CH1_STL_P_H  
CH1_STH_P_L  
CH1_STH_P_H  
CH1_STL_N_L  
CH1_STL_N_H  
CH1_STH_N_L  
CH1_STH_N_H  
CH1_STL_P[7:0]  
CH1_STL_P[15:8]  
CH1_STH_P[7:0]  
CH1_STH_P[15:8]  
CH1_STL_N[7:0]  
CH1_STL_N[15:8]  
CH1_STH_N[7:0]  
CH1_STH_N[15:8]  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
41 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 47.ꢀUser accessible data - sensor specific information...continued  
Bit  
Type[1] Address Register  
7
6
5
4
3
2
1
0
F
$BA-  
$BE  
RESERVED  
RESERVED  
F
$BF  
CRC_F_B  
LOCK_F_B  
REGB_BLOCKID[2:0]  
CRC_F_B[3:0]  
[1] Memory Type Codes  
R - Readable Register with No OTP  
F – User Readable Register with OTP  
UF0 – One Time User Programmable OTP Location Region 0  
UF1 – One Time User Programmable OTP Location Region 1  
UF2 – One Time User Programmable OTP Location Region 2  
R/W – User Writable Register  
11.1.5 User accessible data - traceability information  
Table 48.ꢀUser accessible data - traceability information  
Bit  
Type[1] Address Register  
7
6
5
4
3
2
1
0
F
F
$C0  
$C1  
$C2  
$C3  
$C4  
$C5  
$C6  
$C7  
$C8  
$C9  
$CA  
$CB  
$CC  
$CD  
$CE  
$CF  
$D0  
$D1  
$D2  
$D3  
$D4  
$D5  
ICTYPEID  
ICREVID  
ICTYPEID[7:0]  
ICREVID[7:0]  
ICMFGID[7:0]  
RESERVED  
PN0[7:0]  
F
ICMFGID  
RESERVED  
PN0  
F
F
F
PN1  
PN1[7:0]  
F
SN0  
SN[7:0]  
F
SN1  
SN[15:8]  
F
SN2  
SN[23:16]  
SN[31:24]  
F
SN3  
F
SN4  
SN[39:36] = DEVICE_REV[3:0]  
SN[35:32]  
F
ASICWFR#  
ASICWFR_X  
ASICWFR_Y  
RESERVED  
CRC_F_C  
ASICWLOT_L  
ASICWLOT_H  
TRNS1WFR_X  
TRNS1WFR_Y  
TRNS1LOT_L  
TRNS1LOT_H  
ASICWFR#[7:0]  
F
ASICWFR_X[7:0]  
ASICWFR_Y[7:0]  
RESERVED  
F
F
F
LOCK_F_C  
REGC_BLOCKID[2:0]  
CRC_F_C[3:0]  
F
ASICWLOT_L[7:0]  
ASICWLOT_H[7:0]  
TRNS1WFR_X[7:0]  
TRNS1WFR_Y[7:0]  
TRNS1LOT_L[7:0]  
TRNS1LOT_H[7:0]  
RESERVED  
F
F
F
F
F
F
$D6-$D9 RESERVED  
$DA TRNS1WFR#  
$DB-$DE RESERVED  
F
TRNS_ASSY_REV[2:0]  
REGD_BLOCKID[2:0]  
TRNS1WFR#[4:0]  
F
RESERVED  
F
$DF  
$E0  
$E1  
$E2  
$E3  
$E4  
$E5  
$E6  
$E7  
$E8  
CRC_F_D  
LOCK_F_D  
CRC_F_D[3:0]  
UF0  
UF0  
UF0  
UF0  
UF0  
UF0  
UF0  
UF0  
UF0  
USERDATA_0  
USERDATA_1  
USERDATA_2  
USERDATA_3  
USERDATA_4  
USERDATA_5  
USERDATA_6  
USERDATA_7  
USERDATA_8  
USERDATA_0[7:0]  
USERDATA_1[7:0]  
USERDATA_2[7:0]  
USERDATA_3[7:0]  
USERDATA_4[7:0]  
USERDATA_5[7:0]  
USERDATA_6[7:0]  
USERDATA_7[7:0]  
USERDATA_8[7:0]  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
42 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 48.ꢀUser accessible data - traceability information...continued  
Bit  
Type[1] Address Register  
7
6
5
4
3
2
1
0
UF0  
UF0  
UF0  
UF0  
UF0  
UF0  
F
$E9  
$EA  
$EB  
$EC  
$ED  
$EE  
$EF  
$F0  
$F1  
$F2  
$F3  
$F4  
$F5  
$F6  
$F7  
$F8  
$F9  
$FA  
$FB  
$FC  
$FD  
$FE  
$FF  
USERDATA_9  
USERDATA_A  
USERDATA_B  
USERDATA_C  
USERDATA_D  
USERDATA_E  
CRC_UF0  
USERDATA_9[7:0]  
USERDATA_A[7:0]  
USERDATA_B[7:0]  
USERDATA_C[7:0]  
USERDATA_D[7:0]  
USERDATA_E[7:0]  
LOCK_UF0  
REGE_BLOCKID[2:0]  
CRC_UF0[3:0]  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
F
USERDATA_10  
USERDATA_11  
USERDATA_12  
USERDATA_13  
USERDATA_14  
USERDATA_15  
USERDATA_16  
USERDATA_17  
USERDATA_18  
USERDATA_19  
USERDATA_1A  
USERDATA_1B  
USERDATA_1C  
USERDATA_1D  
USERDATA_1E  
CRC_UF1  
USERDATA_10[7:0]  
USERDATA_11[7:0]  
USERDATA_12[7:0]  
USERDATA_13[7:0]  
USERDATA_14[7:0]  
USERDATA_15[7:0]  
USERDATA_16[7:0]  
USERDATA_17[7:0]  
USERDATA_18[7:0]  
USERDATA_19[7:0]  
USERDATA_1A[7:0]  
USERDATA_1B[7:0]  
USERDATA_1C[7:0]  
USERDATA_1D[7:0]  
USERDATA_1E[7:0]  
LOCK_UF1  
REGF_BLOCKID[2:0]  
CRC_UF1[3:0]  
[1] Memory Type Codes  
R - Readable Register with No OTP  
F – User Readable Register with OTP  
UF0 – One Time User Programmable OTP Location Region 0  
UF1 – One Time User Programmable OTP Location Region 1  
UF2 – One Time User Programmable OTP Location Region 2  
R/W – User Writable Register  
11.2 Register definitions  
11.2.1 Rolling counter register (COUNT)  
The count register is a read-only register which provides the current value of a free-  
running 8-bit counter derived from the primary oscillator. A 10-bit prescaler divides the  
primary oscillator frequency by 1000. Thus, the value in the register increases by one  
count every 100 µs and the counter rolls over every 25.6 ms.  
This register is readable in DSI3 mode, SPI mode, I2C mode or PSI5 Programming  
Mode.  
Table 49.ꢀRolling counter register (COUNT)  
Location  
Bit  
Address Register  
7
6
5
4
3
2
1
0
$00  
COUNT  
COUNT[7:0]  
Reset Value  
0
0
0
0
0
0
0
0
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
43 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.2 Device status registers (DEVSTATx)  
The device status registers are read-only registers which contain device status  
information.  
These registers are readable in DSI3 mode, SPI mode, I2C mode or PSI5 Programming  
Mode.  
Table 50.ꢀDevice status registers (DEVSTATx)  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$01  
DEVSTAT  
CH0_ERR  
CH1_ERR  
COMM_ERR  
MEMTEMP_  
ERR  
SUPPLY_ERR  
TESTMODE  
DEVRES  
DEVINIT  
Reset Value  
DEVSTAT1  
Reset Value  
DEVSTAT2  
Reset Value  
DEVSTAT3  
1
1
0
0
x
0
1
1
$02  
$03  
$04  
VBUFUV_ERR BUSINUV_ERR VBUFOV_ERR  
RESERVED  
INTREGA_ERR INTREG_ERR  
INTREGF_ERR  
CONT_ERR  
x
x
x
x
x
x
x
0
F_OTP_ERR  
0
U_OTP_ERR  
0
U_RW_ERR  
0
U_W_ACTIVE  
0
TEMP1_ERR  
0
TEMP0_ERR  
0
RESERVED  
x
RESERVED  
x
MISO_ERR  
OSCTRAIN_  
ERR  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Reset Value  
0
0
x
x
x
x
x
x
11.2.2.1 Channel 0 error flag (CH0_ERR)  
The channel 0 error flag is set if a channel 0 specific error is present in the channel 0  
DSP:  
CH0_ERR = CH0_STAT[SIGNALCLIP] | CH0_STAT[ST_INCMPLT] |  
CH0_STAT[OFFSET_ERR] | CH0_STAT[ST_ERROR]  
11.2.2.2 Channel 1 error flag (CH1_ERR)  
The channel 1 error flag is set if a channel 1 specific error is present in the channel 1  
DSP:  
CH1_ERR = CH1_STAT[SIGNALCLIP] | CH1_STAT[ST_INCMPLT] |  
CH1_STAT[OFFSET_ERR] | CH1_STAT[ST_ERROR]  
11.2.2.3 Communication error flag (COMM_ERR)  
The communication error flag is set if any bit in DEVSTAT3 is set:  
COMM_ERR = MISO_ERR | OSCTRAIN_ERR  
11.2.2.4 Memory or temperature error flag (MEMTEMP_ERR)  
The memory error flag is set if any bit in DEVSTAT2 is set:  
MEMTEMP_ERR = F_OTP_ERR | U_OTP_ERR | U_RW_ERR | U_W_ACTIVE |  
TEMP1_ERR | TEMP0_ERR  
11.2.2.5 Supply error flag (SUPPLY_ERR)  
The supply error flag is set if any bit in DEVSTAT1 is set:  
SUPPLY_ERR = VBUFUV_ERR | BUSINUV_ERR | VBUFOV_ERR | INTREG_ERR |  
INTREGA_ERR | INTREGF_ERR | CONT_ERR  
A common timer is used for all error bits in the DEVSTAT1 register. If any bit in  
DEVSTAT1 is set, the timer is reset to tUVOV_RCV. When no supply errors are present, the  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
44 / 254  
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
timer is decremented until it reaches zero. This error is cleared based on the state of the  
SUP_ERR_DIS bit in the DEVLOCK_WR register as shown in Table 51.  
Table 51.ꢀSupply error flag (SUPPLY_ERR)  
SUP_  
DSI3 and SPI operating modes  
(COMMTYPE =0, 2, 3 and 4)  
PSI5 operating modes  
(COMMTYPE =1 and 5)  
I2C operating modes  
(COMMTYPE =6, 7)  
ERR_DIS  
0
No Response until the supply  
monitor timer expires. The  
Sensor Data Field Error Code is  
transmitted for one response after normal transmissions resume.  
the supply monitor timer expires.  
No transmissions occur if the timer No response until the supply  
is non-zero. The error is cleared  
when the timer reaches zero and  
monitor timer expires.  
A read of the DEVSTAT1 register  
clears all supply errors.  
A read of the DEVSTAT1 register  
clears all supply errors, using any  
communication interface or on a  
data transmission that includes the  
error in the status field, if and only if  
the timer has reached zero.  
1
No transmissions occur if the timer  
is non-zero. The error is cleared  
when the timer reaches zero and  
normal transmissions resume.  
11.2.2.6 Test mode (TESTMODE)  
The test mode bit is set if the device is in test mode. The TESTMODE bit can be cleared  
by a test mode operation or by a power cycle.  
Table 52.ꢀTest mode (TESTMODE)  
TESTMODE  
Operating mode  
0
1
Test mode is not active  
Test mode is active  
11.2.2.7 Device reset (DEVRES)  
The device reset bit is set following a device reset. This error is cleared by a read of the  
DEVSTAT register through any communication interface or on a data transmission that  
includes the error in the status field.  
Table 53.ꢀDevice reset (DEVRES)  
DEVRES  
Error condition  
0
1
Normal operation  
Device reset occurred  
11.2.2.8 Device initialization (DEVINIT)  
The device initialization bit is set following either a device reset or a change to any of the  
following bits: CHx_CFG_U1[7:2] or CHx_CFG_U3[1:0]. The bit is cleared once sensor  
data is valid for read through one of the device communication inter-faces (tPOR_DataValid).  
Note: Some LPF selections have a step response time longer than the tPOR_DataValid  
delay. If any of these filters are used, the filter may not have achieved the final value once  
DEVINIT is cleared.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
45 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 54.ꢀDevice initialization (DEVINIT)  
DEVINIT  
Condition  
0
1
Normal operation  
Device Initialization in Process  
11.2.2.9 VBUF under-voltage error (VBUFUV_ERR)  
The VBUF under-voltage error bit is set if the VBUF voltage falls below the voltage  
specified in Section 10.4. See Section 11.4 for details on the VBUF under-voltage monitor.  
A common timer is used for all error bits in the DEVSTAT1 register. If any supply error  
is present, the timer is reset to tUVOV_RCV. This bit is cleared based on the state of the  
SUP_ERR_DIS bit in the DEVLOCK_WR register as shown in Section 11.2.2.5.  
Table 55.ꢀVBUF under-voltage error (VBUFUV_ERR)  
VBUFUV_ERR  
Error condition  
No error detected  
VBUF Voltage Low  
0
1
11.2.2.10 BUS IN under-voltage error (BUSINUV_ERR)  
The BUS IN under-voltage error bit is set if the BUS_IN voltage falls below the voltage  
specified in Section 10.4. See Section 11.4 for details on the BUS IN under-voltage  
monitor. A common timer is used for all error bits in the DEVSTAT1 register. If any supply  
error is present, the timer is reset to tUVOV_RCV. This bit is cleared based on the state of  
the SUP_ER-R_DIS bit in the DEVLOCK_WR register as shown in Section 11.2.2.5.  
Table 56.ꢀBUS IN under-voltage error (BUSINUV_ERR)  
BUSINUV_ERR  
Error condition  
0
1
No error detected  
BUS_IN Voltage Low  
11.2.2.11 VBUF over-voltage error (VBUFOV_ERR)  
The VBUF over-voltage error bit is set if the VBUF voltage rises above the voltage  
specified in Section 10.4. See Section 11.4 for details on the VBUF over-voltage monitor.  
A common timer is used for all error bits in the DEVSTAT1 register. If any supply error  
is present, the timer is reset to tUVOV_RCV. This bit is cleared based on the state of the  
SUP_ERR_DIS bit in the DEVLOCK_WR register as shown in Section 11.2.2.5.  
Table 57.ꢀVBUF over-voltage error (VBUFOV_ERR)  
VBUFUV_ERR  
Error condition  
No error detected  
VBUF Voltage High  
0
1
11.2.2.12 Internal analog regulator voltage out of range error (INTREGA_ERR)  
The internal analog regulator voltage out of range error bit is set if the internal analog  
regulator voltage falls outside expected limits. A common timer is used for all error bits  
in the DEVSTAT1 register. If any supply error is present, the timer is reset to tUVOV_RCV  
This bit is cleared based on the state of the SUP_ERR_DIS bit in the DEVLOCK_WR  
register as shown in Section 11.2.2.5.  
.
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
46 / 254  
 
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 58.ꢀInternal analog regulator voltage out of range error (INTREGA_ERR)  
INTREGA_ERR  
Error condition  
0
1
No error detected  
Internal Analog Regulator Voltage Out of Range  
11.2.2.13 Internal digital regulator voltage out of range error (INTREG_ERR)  
The internal digital regulator voltage out of range error bit is set if the internal digital  
regulator voltage falls outside expected limits. A common timer is used for all error bits  
in the DEVSTAT1 register. If any supply error is present, the timer is reset to tUVOV_RCV  
This bit is cleared based on the state of the SUP_ERR_DIS bit in the DEVLOCK_WR  
register as shown in Section 11.2.2.5.  
.
Table 59.ꢀInternal digital regulator voltage out of range error (INTREG_ERR)  
INTREG_ERR  
Error condition  
0
1
No error detected  
Internal Digital Regulator Voltage Out of Range  
11.2.2.14 Internal OTP regulator voltage out of range error (INTREGF_ERR)  
The internal OTP regulator voltage out of range error bit is set if the internal OTP  
regulator voltage falls outside expected limits. A common timer is used for all error bits  
in the DEVSTAT1 register. If any supply error is present, the timer is reset to tUVOV_RCV  
This bit is cleared based on the state of the SUP_ERR_DIS bit in the DEVLOCK_WR  
register as shown in Section 11.2.2.5.  
.
Table 60.ꢀInternal OTP regulator voltage out of range error (INTREGF_ERR)  
INTREGF_ERR  
Error condition  
0
1
No error detected  
Internal OTP Regulator Voltage Out of Range  
11.2.2.15 Continuity monitor error (CONT_ERR)  
The continuity monitor passes a low current through a connection around the perimeter  
of the device and monitors the continuity of the connection. The error bit is set if a  
discontinuity is detected in the connection. A common timer is used for all error bits in the  
DEVSTAT1 register. If the CONT_ERR bit is set, the timer is reset to tUVOV_RCV. This bit  
is cleared based on the state of the SUP_ERR_DIS bit in the DEVLOCK_WR register as  
shown in Section 11.2.2.5.  
Table 61.ꢀContinuity monitor error (CONT_ERR)  
CONT_ERR  
Error condition  
0
1
No error detected  
Error detected in the continuity of the monitor circuit  
11.2.2.16 NXP OTP array error (F_OTP_ERR)  
The factory OTP array error bit is set if a fault is detected in the factory OTP array. This  
error is cleared by a device reset. See Section 11.2.15.2 for details on a method to  
disable the automatic clearing of this error in PSI5 mode.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
47 / 254  
 
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 62.ꢀNXP OTP array error (F_OTP_ERR)  
F_OTP_ERR  
Error condition  
0
1
No error detected  
Error Detected in the Factory OTP Array  
11.2.2.17 User OTP array error (U_OTP_ERR)  
The user OTP array error bit is set if a fault is detected in the user OTP array. This error  
is cleared by a device reset. See Section 11.2.15.2 for details on a method to disable the  
automatic clearing of this error in PSI5 mode.  
Table 63.ꢀUser OTP array error (U_OTP_ERR)  
U_OTP_ERR  
Error condition  
0
1
No error detected  
Error Detected in the User OTP Array  
11.2.2.18 User read/write array error (U_RW_ERR)  
When ENDINIT is set, an error detection is enabled for all user writable registers. The  
error detection code is continuously calculated on the user writable registers and verified  
against a previously calculated error detection code. If a mismatch is detected in the error  
detection, the U_RW_ERR bit is set. This error is cleared by a read of the DEVSTAT2  
register through any communication interface or on a data transmission that includes  
the error in the status field. See Section 11.2.15.2 for details on a method to disable the  
automatic clearing of this error in PSI5 mode.  
Table 64.ꢀUser read/write array error (U_RW_ERR)  
U_RW_ERR  
Error condition  
0
1
No error detected  
Error Detected in the User Read/Write Array  
11.2.2.19 User OTP write in process status bit (U_W_ACTIVE)  
The user OTP write in process status bit is set if a user initiated write to OTP is currently  
in process. The U_W_ACTIVE bit is automatically cleared once the write to OTP is  
complete.  
Table 65.ꢀUser OTP write in process status bit (U_W_ACTIVE)  
U_W_ACTIVE  
Status condition  
0
1
No OTP Write in Process  
OTP Write in Process  
11.2.2.20 Channel 1 temperature sensor error (TEMP1_ERR)  
The channel 1 temperature error bit is set if an over or under temperature condition exists  
on channel 1. This error is cleared by a read of the DEVSTAT2 register through any  
communication interface or on a data transmission that includes the error in the status  
field. See Section 11.2.15.2 for details on a method to disable the automatic clearing of  
this error in PSI5 mode.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
48 / 254  
 
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 66.ꢀChannel 1 temperature sensor error (TEMP1_ERR)  
TEMP1_ERR  
Error condition  
0
1
No error detected  
Over- or Under-Temperature error condition detected  
11.2.2.21 Channel 0 temperature sensor error (TEMP0_ERR)  
The channel 0 temperature error bit is set if an over or under temperature condition exists  
on channel 0. This error is cleared by a read of the DEVSTAT2 register through any  
communication interface or on a data transmission that includes the error in the status  
field. See Section 11.2.15.2 for details on a method to disable the automatic clearing of  
this error in PSI5 mode.  
Table 67.ꢀChannel 0 temperature sensor error (TEMP0_ERR)  
TEMP0_ERR  
Error condition  
0
1
No error detected  
Over- or Under-Temperature error condition detected  
11.2.2.22 SPI MISO data mismatch error flag (MISO_ERROR)  
In SPI mode, the MISO data mismatch flag is set when a MISO Data mismatch fault  
occurs as specified in Section 14.5.7. The MISO_ERROR bit is cleared by a read of the  
DEVSTAT3 register through any communication interface, or by a status transmission  
including the error status through the SPI.  
Table 68.ꢀSPI MISO data mismatch error flag (MISO_ERROR)  
MISO_ERROR  
Error condition  
0
1
Normal operation  
MISO Data Mismatch  
11.2.2.23 Oscillator training error (OSCTRAIN_ERR)  
The oscillator training error bit is set if an error detected in either the oscillator  
training settings, or the master communication timing. See Section 11.5.2. Once the  
error condition is corrected, the OSCTRAIN_ERR bit is cleared after a read of the  
OSCTRAIN_ERR bit through any communication interface, or by a status transmission  
including the error status through any communication interface.  
Table 69.ꢀOscillator training error (OSCTRAIN_ERR)  
OSCTRAIN_ERR  
Error condition  
0
1
No error detected  
Oscillator Training Error. See Section 11.5.2  
11.2.3 Communication protocol revision register (COMMREV)  
The communication protocol revision register is a read-only register which contains the  
revision for the communication protocol used.  
This register is readable in DSI3 mode, SPI mode, I2C mode or PSI5 Programming  
Mode.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
49 / 254  
 
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 70.ꢀCommunication protocol revision register (COMMREV)  
Location  
Bit  
Address  
$05  
Register  
7
0
0
0
0
0
6
0
0
0
0
0
5
0
0
0
0
0
4
0
0
0
0
0
3
2
1
0
COMMREV  
COMMREV[3:0]  
Reset Value for DSI3  
Reset Value for PSI5  
Reset Value for SPI  
Reset Value for I2C  
0
0
0
0
0
1
0
1
0
1
0
0
1
0
0
1
Note: The response to a register write of the COMMREV register is a valid response  
with the register contents equal to 0x00.  
11.2.4 Margin read status register (MREAD_STAT)  
The Margin Read Status register is a read-only register which contains the status for the  
user enabled OTP margin read test.  
This register is readable in DSI3 mode, SPI mode, I2C mode or PSI5 Programming  
Mode.  
Table 71.ꢀMargin read status register (MREAD_STAT)  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$06  
MREAD_  
STAT  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
MARGIN_  
RD_ACT  
MARGIN_  
RD_ERR  
Reset Value  
0
0
0
0
0
0
0
0
Note: The user enabled OTP margin read test is not intended for use in normal  
operation. It is intended for use only after user OTP programming during manufacturing.  
11.2.4.1 Margin read active status (MARGIN_RD_ACT)  
The margin read active status bit is set if a user enabled OTP margin read test is in  
process. The status bit is automatically cleared when the OTP margin read test is  
complete. See Section 11.2.7.1 for details regarding the user enabled OTP margin read  
test.  
Table 72.ꢀMargin read active status (MARGIN_RD_ACT)  
MARGIN_RD_ACT  
Condition  
0
1
No Margin Read Test is in Process  
Margin Read Test is in Process  
11.2.4.2 Margin read error status (MARGIN_RD_ERR)  
The margin read error status bit is set if a user enabled OTP margin read test has failed.  
The margin read error status bit is cleared on a read of the MREAD_STAT register. The  
margin read error status bit has no impact on device operation or performance. See  
Section 11.2.7.1 for details regarding the user enabled OTP margin read test.  
Table 73.ꢀMargin read error status (MARGIN_RD_ERR)  
MARGIN_RD_ERR  
Condition  
0
1
No Margin Read Test Failure  
Margin Read Test Failure  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
50 / 254  
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.5 Temperature register (TEMPERATURE)  
The temperature register is a read-only register which provides a temperature value from  
the channel 0 temperature sensor. The temperature value is specified in Section 10.5.  
Note, the device is only guaranteed to operate within the temperature limits specified in  
Section 10. This includes the performance of the temperature register values.  
This register is readable in DSI3 mode, SPI mode, I2C mode or PSI5 Programming  
Mode.  
Table 74.ꢀTemperature register (TEMPERATURE)  
Location  
Bit  
Address  
$0E  
Register  
7
6
5
4
3
2
1
0
TEMPE  
TEMP[7:0]  
RATURE  
Reset Value  
0
0
0
0
0
0
0
0
11.2.6 Device lock register (DEVLOCK_WR)  
The device lock register is a user programmed read/write register which contains the  
ENDINIT bit and reset control bits.  
This register is readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
Programming Mode.  
Table 75.ꢀDevice lock register (DEVLOCK_WR)  
Location  
Bit  
Address  
Register  
7
ENDINIT  
0
6
5
4
3
2
1
0
$10  
DEVLOCK_WR  
RESERVED  
0
RESERVED  
0
RESERVED  
0
SUP_ERR_DIS  
0
RESERVED  
0
RESET[1:0]  
Reset Value  
0
0
11.2.6.1 End initialization bit (ENDINIT)  
The ENDINIT bit is a control bit used to indicate that the user has completed all device  
and system level initialization tests. Once the ENDINIT bit is set, writes to all writable  
register bits are inhibited except for the DEVLOCK_WR register. Once set, the ENDINIT  
bit can only be cleared by a device reset.  
When ENDINIT is set, the following occurs:  
An error detection is enabled for all user writable registers. The error detection code is  
continuously calculated on the user writable registers and verified against a previously  
calculated error detection code.  
The offset cancellation filter is forced to its final stage.  
Self-test is disabled and inhibited.  
Register Writes are inhibited with the exception of the RESET[1:0] bits in the  
DEVLOCK_WR register.  
In DSI3 mode, when the ENDINIT bit is set, the device is forced to PDCM according to  
the device settings and no longer responds to CRM commands.  
In PSI5 mode, the ENDINIT bit is automatically set when the device exits Initialization  
Phase 3.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
51 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.6.2 Supply error reporting disable bit (SUP_ERR_DIS)  
The supply error disable bit allows the user to disable reporting of the supply errors in the  
DSI3 PDCM and SPI status fields. See Section 11.2.2.5.  
11.2.6.3 Reset control bits (RESET[1:0])  
In DSI3 mode, SPI mode, I2C mode or PSI5 mode, a series of three consecutive register  
write operations to the reset control bits results in a device reset. To reset the device, the  
following register write operations must be performed in consecutive commands and in  
the order shown in Table 76 or the device will reset.  
Table 76.ꢀReset control bits (RESET[1:0])  
Register write to DEVLOCK_WR  
Register Write 1  
RES_1  
RES_0  
Effect  
0
1
0
0
1
1
No Effect  
No Effect  
Device RESET  
Register Write 2  
Register Write 3  
The response to a register write returns the new register value, including the values  
written to the RESET[1:0] bits. After the third Register Write command, the device  
initiates a reset and therefore does not transmit a response to this command or an  
Acknowledge in I2C mode. The response to a register read returns '00' for RESET[1:0]  
and terminates the reset sequence. The reset control bits are not included in the read/  
write array error detection.  
11.2.7 Write OTP enable register  
The write OTP enable register is a user programmed read/write register that allows the  
user to write the contents of the user programmed OTP array mirror registers to the OTP  
registers. This register is included in the user read/write array error detection.  
This register is readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
Programming Mode.  
Table 77.ꢀWrite OTP enable register  
Location  
Address  
$11  
Bit  
Register  
7
6
5
4
3
2
1
0
WRITE_OTP_EN UOTP_WR_  
INIT  
MARGIN_RD_  
EN  
RESERVED  
RESERVED  
EX_  
COMMTYPE  
EX_PADDR  
UOTP_REGION[1:0]  
Reset Value  
0
0
0
0
0
0
0
0
11.2.7.1 Margin read enable bit (MARGIN_RD_EN)  
The margin read enable bit initiates an OTP margin read test for all user programmable  
OTP regions: UF2, UF0, and UF1. The user enabled OTP margin read test is not  
intended for use in normal operation. It is intended for use only after user OTP  
programming during manufacturing.  
The procedure for completing an OTP margin read test is shown in step 1 through step 7:  
1. Read the MREAD_STAT register to confirm that the MARGIN_RD_ACT and  
MARGIN_RD_ERR bits are both cleared.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
52 / 254  
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
2. Write 0x40 to the WRITE_OTP_EN register to set the MARGIN_RD_EN bit. This  
initiates the OTP margin read test which completes the sequence listed in steps a  
through i.  
a. The UF2 block is read. The ECC is checked for double bit errors and the CRC  
is verified. If an ECC error or CRC error exists or if UF2 block is unlocked, the  
MARGIN_RD_ERR bit is set and the test is terminated.  
b. A margin read low test is run with the read threshold reduced by 25 %. The data  
is checked against the expected values in the mirror registers. If a double bit ECC  
error or data comparison mismatch occurs, the MARGIN_RD_ERR bit is set and  
the test is terminated.  
c. A margin read high test is run with the read threshold increased by 25 %. The data  
is checked against the expected values in the mirror registers. If a double bit error  
or data comparison mismatch occurs, the MARGIN_RD_ERR bit is set and the test  
is terminated.  
d. The UF0 block is read. The ECC is checked for double bit errors and the CRC  
is verified. If an ECC error or CRC error exists or if UF0 block is unlocked, the  
MARGIN_RD_ERR bit is set and the test is terminated.  
e. A margin read low test is run with the read threshold reduced by 25 %. The data  
is checked against the expected values in the mirror registers. If a double bit ECC  
error or data comparison mismatch occurs, the MARGIN_RD_ERR bit is set and  
the test is terminated.  
f. A margin read high test is run with the read threshold increased by 25 %. The data  
is checked against the expected values in the mirror registers. If a double bit error  
or data comparison mismatch occurs, the MARGIN_RD_ERR bit is set and the test  
is terminated.  
g. The UF1 block is read. The ECC is checked for double bit errors and the CRC  
is verified. If an ECC error or CRC error exists or if UF1 block is unlocked, the  
MARGIN_RD_ERR bit is set and the test is terminated.  
h. A margin read low test is run with the read threshold reduced by 25 %. The data  
is checked against the expected values in the mirror registers. If a double bit ECC  
error or data comparison mismatch occurs, the MARGIN_RD_ERR bit is set and  
the test is terminated.  
i. A margin read high test is run with the read threshold increased by 25 %. The data  
is checked against the expected values in the mirror registers. If a double bit error  
or data comparison mismatch occurs, the MARGIN_RD_ERR bit is set and the test  
is terminated.  
3. Read the MREAD_STAT register to confirm that the MARGIN_RD_ACT bit is set and  
the MARGIN_RD_ERR bit is cleared.  
4. Delay 1.5 ms minimum.  
5. Read the MREAD_STAT register to confirm that the MARGIN_RD_ACT bit is cleared.  
Check the state of the MARGIN_RD_ERR bit.  
If the MARGIN_RD_ERR bit is cleared, the margin read test passed.  
If the MARGIN_RD_ERR bit is set, the margin read test failed.  
6. When the test is complete, the MARGIN_RD_EN bit is cleared.  
7. When the test is complete and the MREAD_STAT register has been read, the  
MARGIN_RD_ACT and the MARGIN_RD_ERR bit are cleared.  
The user enabled OTP margin read test can only be enabled when the ENDINIT bit is not  
set.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
53 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.7.2 Write OTP enable and programming bits  
Register writes executed by the user to the user programmed OTP array only update  
the mirror register contents for the OTP array, not the actual OTP registers. To copy the  
values to the actual OTP registers, a write must be executed to the WRITE_OTP_EN  
register with the UOTP_WR_INIT bit set. The state of the UOTP_REGION[1:0], the  
EX_COMMTYPE, and the EX_PADDR bits in the command determine which region of  
OTP are written as shown in Table 78.  
Table 78.ꢀWrite OTP enable and programming bits  
EX_  
EX_PADDR  
UOTP_  
UOTP_  
OTP write operation  
Special  
COMMTYPE  
REGION[1] REGION[0]  
conditions  
x
x
0
x
x
0
0
0
1
0
1
0
Write the current contents of the UF0 registers  
to OTP  
Write the current contents of the UF1 registers  
to OTP  
Write the current contents of the UF2 registers  
to OTP, including the COMMTYPE register and  
the PHYSADDR register  
0
1
1
1
0
1
1
1
1
0
0
0
Write the current contents of the UF2 registers PHYSADDR =  
to OTP, including COMMTYPE and excluding 0x00 after OTP  
PHYSADDR.  
Write  
Write the current contents of the UF2 registers User must  
to OTP, excluding COMMTYPE and including not overwrite  
PHYSADDR.  
COMMTYPE  
Write the current contents of the UF2 registers User must  
to OTP, excluding COMMTYPE and excluding not overwrite  
PHYSADDR.  
COMMTYPE  
PHYSADDR =  
0x00 after OTP  
Write  
x
x
1
1
Reserved for Future Use  
The UF0 and UF1 user OTP regions as well as the NXP programmed F OTP regions  
share common mirror registers. For this reason, writes to the OTP for each region must  
be completed independently according to the procedure below.  
Depending upon the operating mode used, the user needs to write the UF2 values  
to OTP either with or without the PHYSADDR register and the COMMTYPE register  
being written. If Discovery Mode or switch connected daisy chain mode is used, the  
PHYSADDR register must remain un-programmed (0x0000). If a pre-programmed bus  
mode is used, the PHYSADDR register must be programmed to a non-zero value. To  
support these two user modes, the EX_PADDR bit is used as described in Table 78.  
Once a region is written using the OTP Write sequence, the LOCK_Uxx bit in the  
appropriate CRC_xxx register is automatically set, locking the array from future writes.  
Once a region is locked, an error detection is activated to detect changes to the register  
values. Register values in the UF2 region can be over-written using register write  
commands, but no new values can be written to the OTP.  
The procedure for writing to the user OTP array UF0 and UF1 regions is:  
1. Read the appropriate CRC_UFx register and confirm the LOCK_Uxx bit is not set.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
54 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
2. Write the desired values to the user array registers for only the region to be written  
using the procedures in Section 11.2.10.  
The user must take care to ensure that the proper data is written to each region.  
If a register write is executed to a new region, the base address changes to the  
new region. The previous data written to the register block remains in the shared  
registers and is written to OTP if the Write OTP sequence is completed.  
3. Execute a write to the WRITE_OTP_EN register with the appropriate bits set for the  
desired region to program.  
Once the WRITE_OTP_EN register write is completed, a CRC is calculated for  
the data to be written to the region, the register values are written to OTP and the  
region is locked from future writes. The UOTP_WR_INIT bit remains set.  
4. Delay tOTP_WRITE_MAX to allow the device to complete the writes to OTP.  
5. Verify that the OTP write successfully completed by reading back all of the OTP  
registers using Register Read commands as defined in Section 11.2.10.  
6. Repeat steps 1 through 4 for all regions to be programmed.  
The procedure for writing to the user OTP array UF2 region is:  
1. Read the CRC_UF2 register and confirm the LOCK_UF2 bit is not set.  
2. Write the desired values to the user array registers.  
3. Execute a write to the WRITE_OTP_EN register with region 2 selected and the  
EX_COMMTYPE and EX_PADDR bit set as desired.  
Once the WRITE_OTP_EN register write is completed, a CRC is calculated for  
the data to be written to the region, the register values are written to OTP and the  
region is locked from future writes. The UOTP_WR_INIT bit remains set.  
4. Delay tOTP_WRITE_MAX to allow the device to complete the writes to OTP and an  
automatic read of the UF2 registers from OTP.  
5. Verify that the OTP write successfully completed by reading back all of the OTP  
registers using Register Read commands.  
11.2.8 Bus switch control register (BUSSW_CTRL)  
The bus switch control register is a user programmed read/write register which controls  
the state of the bus switch output driver. This register is included in the user read/write  
array error detection.  
This register is readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
Programming Mode.  
Table 79.ꢀBus switch control register (BUSSW_CTRL)  
Location  
Bit  
Address  
Register  
BUSSW_CTRL  
Reset Value  
7
6
5
4
3
2
1
0
$12  
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
0
BUSSW_CTRL[1:0]  
0
0
The BUSSW_CTRL bit controls the state of the BUSSW_L pin.  
Table 80.ꢀBUSSW_L pin state  
BUSSW_CTRL[1] BUSSW_CTRL[0] BUSSW_L Pin State  
0
0
High Impedance. An external pullup or pulldown resistor  
is required if an external switch is connected  
0
1
High Impedance. An external pullup or pulldown resistor  
is required if an external switch is connected  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
55 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 80.ꢀBUSSW_L pin state...continued  
BUSSW_CTRL[1] BUSSW_CTRL[0] BUSSW_L Pin State  
1
1
0
1
Active Low.  
Active High.  
Note: In DSI3 and PSI5 DPM modes, the bus switch is activated upon receipt of the  
register write command. The bus switch activation may impact the current on the bus and  
cause corruption of the register write response.  
11.2.9 PSI5 test register (PSI5_TEST)  
The PSI5 test register is a user read/write register that contains the PSI5 test control.  
This register is included in the user read/write array error detection.  
This register is readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
Programming Mode.  
Table 81.ꢀPSI5 test register (PSI5_TEST)  
Location  
Register  
PSI5_TEST  
Reset Value  
Bit  
Address  
7
6
5
4
3
2
1
0
$13  
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
0
PSI5_TEST  
0
11.2.9.1 PSI5 test bit (PSI5_TEST)  
If PSI5 mode is not enabled in the COMMTYPE, the PSI5 test bit enables a single PSI5  
command receive and response transmission to allow for the PSI5 transceiver to be  
tested in other modes.  
When the PSI5_TEST bit is set, the device and system proceed through following  
process.  
1. The device switches the BUS_I transceiver to PSI5 mode.  
2. The system holds the BUS_I node constant for 2 ms minimum to allow the BUS_I  
command receiver to capture the average voltage.  
3. The system must transmit a sync pulse meeting the specifications in Section 10.  
4. The device transmits a response to the sync pulse with the following configuration:  
a. The sync pulse is pulled down as configured by the SYNC_PD bit in the  
PSI5_CFG register.  
b. The response starts in the time slot selected in the PDCM_RSPST0 register.  
c. The response bit time is configured in the CHIPTIME register.  
d. The response current is configured by the PSI5_ILOW bit in the PSI5_CFG  
register.  
e. Two start bits are transmitted as specified in Section 13.3.2.  
f. 10-bits of data equal to 0x2AA are transmitted.  
g. Error checking bits are transmitted as configured by the P_CRC bit in the  
PSI5_CFG register.  
5. Once the transmission is complete, the PSI5_TEST bit is cleared and the device  
returns to the communication mode as defined in the COMMTYPE register.  
If the bit is set from DSI3 mode, this process occurs once the device has replied to the  
write message, regardless of whether or not the reply attempted was successful.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
56 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
If the bit is set from SPI mode, the process occurs once the PSI5_TEST bit is set with no  
SPI reply necessary.  
If the bit is set from I2C mode, the process occurs once the PSI5_TEST bit is set with no  
I2C reply necessary.  
If PSI5 mode is enabled in the COMMTYPE register, this bit has no impact on device  
operation or performance.  
11.2.10 UF region selection registers (UF_REGION_x)  
The UF region load register is a user read/write register that contains the control bits for  
the UF0 and UF1 regions to be accessed. This register is included in the user read/write  
array error detection. The UF region active register is a read-only register that contains  
the status bits for the UF0 and UF1 regions to be accessed.  
The UF_REGION_W register is readable and writable in DSI3 mode, SPI mode, I2C  
mode or PSI5 Programming Mode. The UF_REGION_R register is readable in DSI3  
mode, SPI mode, I2C mode or PSI5 Programming Mode.  
Table 82.ꢀUF region selection registers (UF_REGION_x)  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$14  
UF_  
REGION_LOAD[3:0]  
0
0
0
0
REGION_W  
$15  
UF_REGION_R  
REGION_ACTIVE[3:0]  
0
0
0
0
0
0
0
0
Reset Value  
1
1
1
0
The user OTP regions UF0, UF1, and F share a block of 16 registers. Prior to reading the  
registers via any communication interface, the user must ensure that the desired OTP  
registers are loaded into the readable registers. To ensure proper reading of the UF0,  
UF1 and F registers, follow this procedure:  
1. Write the desired address range to be read to the REGION_LOAD[3:0] bits in the  
UF_REGION_W register using one of the communication interfaces available via the  
COMMTYPE register.  
Table 83.ꢀRegion load bits  
REGION_LOAD[3:0]  
OTP register addresses loaded into the readable  
registers  
0
0
0
0
0
0
0
1
Not Applicable  
Not Applicable  
0010 through 1001  
RESERVED  
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
Address Range $A0 through $AF  
Address Range $B0 through $BF  
Address Range $C0 through $CF  
Address Range $D0 through $DF  
Address Range $E0 through $EF  
Address Range $F0 through $FF  
2. Delay a minimum of tSSN_UF01  
.
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
57 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
3. Optional: Execute a register read of the UF_REGION_R register and confirm the  
REGION_ACTIVE[3:0] bits match the values written to the REGION_LOAD[3:0] bits in  
the UF_REGION_W register.  
Table 84.ꢀRegion active bits  
REGION_ACTIVE[3:0]  
OTP register addresses loaded into the readable  
registers  
0
0
0
0
0
0
0
1
Load of OTP registers is in process  
The contents of the shared registers has been over-written  
by the user  
0010 through 1001  
Not Applicable  
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
Address Range $A0 through $AF  
Address Range $B0 through $BF  
Address Range $C0 through $CF  
Address Range $D0 through $DF  
Address Range $E0 through $EF  
Address Range $F0 through $FF  
4. Execute a Register Read of the desired registers from the UF0, UF1, or F register  
section. Complete all desired Register Reads of the selected UF Region.  
5. Repeat steps 1 through 4 for the next desired UF region to read.  
Notes:  
The user must take care to ensure that the desired registers are addressed. For  
example, if the REGION_LOAD bits are set to 0xA and the user executes a read  
of address $C2, the contents of registers $A2 are transmitted. No error detection is  
included other than a read of the REGION_ACTIVE bits.  
For COMMTYPE options with multiple protocol options (COMMTYPE = '000' or '001'),  
no error detection is included other than a read of the REGION_ACTIVE bits. The user  
must take care to ensure that the REGION_LOAD, bits are not inadvertently changed  
by an alternative protocol while executing register reads.  
In DSI3, BDM, writes to registers are inhibited. For this reason, reads of the UF0, UF1,  
and F registers will only be possible for the region selected by the REGION_ACTIVE  
bits at the time ENDINIT is set.  
In SPI and I2C mode, once the ENDINIT bit is set, writes to registers other than the  
RESET[1:0] bits are inhibited. For this reason, reads of the UF0, UF1, and F registers  
will only be possible for the region selected by the REGION_ACTIVE bits at the time  
ENDINIT is set.  
11.2.11 Communication type register (COMMTYPE)  
The communication type register is a user programmed read/write register which  
contains user-specific configuration information for communication type. This register is  
included in the read/write array error detection.  
This register is readable and writable in DSI3 mode, SPI mode, and I2C mode. In PSI5  
Programming Mode, the value of this register must not be changed or a U_OTP Memory  
occurs.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
58 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 85.ꢀCommunication type register (COMMTYPE)  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$16  
COMMTYPE  
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
0
COMMTYPE[2:0]  
0
Unprogrammed OTP  
Value: FXLS90xxx  
0
0
0
1
Programmed OTP  
Value: FXLS93xxx  
0
0
0
0
0
0
11.2.11.1 Communication type (COMMTYPE[2:0])  
The communication type bits select the available protocols for the device as shown in  
Table 86.  
Table 86.ꢀCommunication type (COMMTYPE[2:0])  
COMMTYPE  
[2:0]  
Available communication protocols  
Arming function availability  
BUS_I  
undervoltage  
detection  
DSI3[1]  
PSI5[2]  
32-bit SPI[3]  
I2C[4]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
X
X
X
X
Enabled based on ARM_CFG[2:0]  
Enabled based on ARM_CFG[2:0]  
Enabled based on ARM_CFG[2:0]  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Disabled  
X
X
X
Enabled based on ARM_CFG[2:0]  
Disabled  
X
X
X
Disabled  
Disabled  
[1] See Section 12 "DSI3 protocol"  
[2] See Section 13 "PSI5 protocol"  
[3] See Section 14 "Standard 32-bit SPI protocol"  
[4] See Section 15 "Inter-integrated circuit (I2C) interface"  
When writing to this register, care must be taken to prevent from inadvertently disabling  
the desired communication mode. Communication mode register value changes which  
disable a protocol, including writes to OTP, will not take effect until a device reset to  
prevent from disabling a necessary communication method. Table 87 describes how  
communication mode register changes are handled.  
Table 87.ꢀCOMMTYPEs and effect on device  
Original  
New  
Device effect  
COMMTYPE  
COMMTYPE  
0 (DSI3 / SPI)  
1 (PSI5 / SPI) A protocol change does not occur until a device reset (assuming the OTP is  
programmed).  
0 (DSI3 / SPI) 2, 3, 4, 5 (SPI, A protocol change does not occur until a device reset (assuming the OTP is  
DSI3 or PSI5) programmed).  
0 (DSI3 / SPI)  
6, 7 (I2C)  
A protocol change does not occur until a device reset (assuming the OTP is  
programmed).  
1 (PSI5 / SPI)  
5 (PSI5)  
A protocol change does not occur until a device reset (assuming the OTP is  
programmed).  
2, 3, 4, 5 (SPI)  
6, 7 (I2C)  
Any  
Any  
No protocol change occurs.  
No protocol change occurs.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
59 / 254  
 
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Notes:  
In PSI5 / SPI mode (COMMTYPE = 1), SPI transactions are ignored by the device until  
PSI5 initialization 3 is complete. SPI Test Mode Entry is not restricted.  
In PSI5 / SPI mode (COMMTYPE = 1), only SPI read register transactions are  
available.  
In DSI3 / SPI mode (COMMTYPE = 0) and PSI5 / SPI mode (COMMTYPE = 1),  
registers accesses by protocol are completed in the order received. Care must be  
taken to prevent from incorrect addressing of the F, UF0, and UF1 registers.  
In SPI only mode and in I2C only mode, the BUS_I undervoltage detection is disabled  
to allow for 3.3 V system operation. the VBUF undervoltage detection replaces the  
BUS_I undervoltage detection.  
If the COMMTYPE register is pre-programmed in OTP to a specific communication  
type, the user must prevent writes to this register when writing the UF2 register to OTP.  
If a pre-programmed COMMTYPE register is over-written and then written to OTP, the  
UF2 CRC verification will fail.  
11.2.12 Physical address register (PHYSADDR)  
The physical address register is a user programmed OTP register which contains the  
physical address of the slave for use in DSI3. This register is included in the read/write  
array error detection. If the physical address stored in the OTP array is zero, the address  
is assigned either during Discovery Mode or during Command and Response Mode.  
If the physical address stored in the OTP array is non-zero, the device ignores Discovery  
Mode and uses the programmed physical address for Command and Response Mode.  
The physical address register value can be changed by a Command and Response  
Mode register write command. However, if the UF2 region is locked, the value will always  
be reset to the OTP array value after a reset.  
In SPI mode, I2C mode and PSI5 mode, the PHYSADDR register is readable and  
writable, but has no impact on device operation or performance.  
Table 88.ꢀPhysical address register (PHYSADDR)  
Location  
Bit  
Address Register  
7
6
5
4
3
2
1
0
$18  
PHYS  
ADDR  
0
0
0
0
PADDR[3:0]  
Unprogrammed  
OTP Value  
0
0
0
0
0
0
0
0
11.2.13 Source identification registers (SOURCEID_x)  
The source identification registers are user programmed read/write registers which  
contain the source identification information used for DSI3 PDCM, PSI5 mode, and SPI  
Mode. These registers are included in the read/write array error detection.  
These registers are readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
Programming Mode.  
Table 89.ꢀSource identification registers (SOURCEID_x)  
Location  
Bit  
Address  
Register  
SOURCEID_0  
7
6
5
4
3
2
1
0
$1A  
SID0_EN  
PDCMFORMAT[2:0]  
SOURCEID_0[3:0]  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
60 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 89.ꢀSource identification registers (SOURCEID_x)...continued  
Location  
Bit  
Address  
Register  
7
0
1
6
0
1
5
0
0
4
0
0
3
0
0
2
0
0
1
0
0
0
0
0
Unprogrammed OTP Value  
FXLS93xxx  
Unprogrammed  
Default PSI5 Mode  
$1B  
Unprogrammed OTP Value  
$1C SOURCEID_2  
SOURCEID_1  
SID1_EN  
RESERVED  
RESERVED  
RESERVED  
SOURCEID_1[3:0]  
0
0
0
0
0
0
0
0
SID2_EN  
RESERVED  
RESERVED  
RESERVED  
SOURCEID_2[3:0]  
Unprogrammed OTP Value  
FXLS93xxx  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Unprogrammed  
Default PSI5 Mode  
$1D  
SOURCEID_3  
SID3_EN  
0
RESERVED  
0
RESERVED  
0
RESERVED  
0
SOURCEID_3[3:0]  
Unprogrammed OTP Value  
0
0
0
0
11.2.13.1 Data source enable bits (SIDx_EN)  
The SIDx_EN bits enable the data source for the associated source identification as  
described in Section 11.2.13.3.  
11.2.13.2 PDCM format control bits (PDCMFORMAT[2:0])  
In DSI3 mode, the PDCM format control bits set the PDCM field sizes as shown in  
Table 90. See Section 12.4.2 for PDCM response format details.  
Table 90.ꢀPDCM format control bits (PDCMFORMAT[2:0])  
PDCMFORMAT[2:0]  
Source ID field  
size (Bits)  
Keep alive  
counter field  
size (Bits)  
Status field size  
(Bits)  
Data field size  
(Bits)  
Total  
including CRC  
(Bits)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
4
0
4
0
0
0
4
2
2
0
0
2
0
0
0
4
4
4
4
0
0
4
4
10  
10  
12  
12  
10  
16  
16  
16  
24  
28  
24  
28  
20  
24  
28  
32  
In PSI5 mode, the PDCM format control bits set the PSI5 response format as shown  
in Table 91. See Section 13.3.2 for PSI5 response format details. Note: the data field  
size applies to all modes except Programming Mode which has a fixed size of 10 bits.  
The user must take care to prevent from combining incompatible data field sizes and  
transmission times.  
Table 91.ꢀPDCM format control bits  
PDCMFORMAT[2:0]  
Data field size (Bits)  
0
1
x
x
x
x
10  
16  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
61 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
In SPI and I2C mode, the PDCMFORMAT bits are readable and writable, but have no  
impact on device operation or performance.  
11.2.13.3 Source identification (SOURCEID_x)  
In SPI mode, the SOURCEID field in the SPI command is compared against the values  
in the SOURCEID_x registers. If the SOURCEID field matches one of the values in the  
SOURCEID_x registers and the SIDx_EN bit is set for that register, the sensor data  
for that SOURCEID is transmitted as shown in Table 92. If more than one enabled  
SOURCEID_x register value matches the SOURCEID field in the SPI command a SPI  
sensor data request error response is transmitted. If no enabled SOURCEID_X register  
value matches the SOURCEID field in the SPI command a SPI sensor data request error  
response is transmitted.  
Table 92.ꢀSPI source identification (SOURCEID_x)  
Source ID  
Source ID enable (SIDx_EN) Transmitted data  
SOURCEID_0  
0
1
0
1
0
1
0
1
SPI Error Response  
CH0_SNSDATA0  
SPI Error Response  
CH0_SNSDATA1  
SPI Error Response  
CH1_SNSDATA0  
SPI Error Response  
CH1_SNSDATA1  
SOURCEID_1  
SOURCEID_2  
SOURCEID_3  
In DSI3 mode, if the SIDx_EN bit in the SOURCEID_x register is set, the associated  
SOURCEID value is transmitted in the SOURCEID field of PDCM mode using the  
associated transmission time shown in Table 93.  
Table 93.ꢀDSI3 source identification (SOURCEID_x)  
Source ID  
Source ID enable Transmission time[1]  
(SIDx_EN)  
Transmitted data[2]  
SOURCEID_0  
0
1
0
1
0
1
0
1
NA  
NA  
PDCM_RSPST0  
NA  
CH0_SNSDATA0  
NA  
SOURCEID_1  
SOURCEID_2  
SOURCEID_3  
PDCM_RSPST1  
NA  
CH0_SNSDATA1  
NA  
PDCM_RSPST2  
NA  
CH1_SNSDATA0  
NA  
PDCM_RSPST3  
CH1_SNSDATA1  
[1] See Section 11.2.18.1 "Periodic data collection mode response start time (PDCM_RSPSTx[12:0])"  
[2] See Section 11.2.25.2 "Channel data type 0 selection bits (CHxDATATYPE0)" and See Section 11.2.25.3 "Channel data  
type 1 selection bits (CHxDATATYPE1)"  
In PSI5 mode, the SOURCEID_x register SIDx_EN bit values control data transmissions  
as shown in Table 94. The SOURCEID_x bits have no effect in PSI5 mode.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
62 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 94.ꢀPSI5 source identification (SOURCEID_x)  
Source ID  
Source  
ID enable  
(SIDx_EN)  
Asynchronous mode  
Synchronous mode  
Daisy chain mode  
Dual transmission mode  
Transmission Transmission  
Transmission  
Transmitted  
data[2]  
Transmission  
time  
Transmitted  
data  
Transmission  
Transmitted  
data  
time data  
time[1]  
time  
SOURCEID_  
0
0
1
tASYNC  
CH0_SNSDATA0  
NA  
NA  
See  
CH0_SNSDATA0  
PDCM_  
RSPST0  
CH1_  
SNSDATA0,  
Section 13.8  
PDCM_RSPST0  
CH0_SNSDATA0  
CH0_SNSDATA0  
See  
Section 13.7  
SOURCEID_  
1
0
1
0
1
0
1
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
CH1_SNSDATA0  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
PDCM_RSPST1  
NA  
CH0_SNSDATA1  
NA  
SOURCEID_  
2
See  
Section 13.8  
PDCM_RSPST2  
NA  
CH1_SNSDATA0  
NA  
SOURCEID_  
3
NA  
PDCM_RSPST3  
CH1_SNSDATA1  
[1] See Section 11.2.18.1 "Periodic data collection mode response start time (PDCM_RSPSTx[12:0])"  
[2] See Section 11.2.25.2 "Channel data type 0 selection bits (CHxDATATYPE0)" and Section 11.2.25.3 "Channel data type 1 selection bits  
(CHxDATATYPE1)"  
In I2C mode, the SOURCEID_x registers are readable and writable. See Section 15.6.3,  
for details regarding the effect of the SIDx_EN bits.  
11.2.14 Communication timing register (TIMING_CFG)  
The communication timing configuration register is a user programmed read/write  
register which contains user-specific con-figuration information for protocol timing. This  
register is included in the read/write array error detection.  
This register is readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
Programming Mode.  
Table 95.ꢀCommunication timing register (TIMING_CFG)  
Location  
Address  
$22  
Bit  
Register  
7
6
5
4
3
2
1
0
TIMING_CFG  
PDCM_PER[2:0]  
OSCTRAIN_  
SEL  
CK_CAL_RST  
CRM_PER[1:0]  
CK_CAL_EN  
Unprogrammed OTP Value  
0
0
0
0
0
0
0
0
11.2.14.1 Periodic data collection mode period (PDCM_PER[3:0])  
The periodic data collection mode period selection bits set the data collection mode  
period to be used by the DSI3, SPI, PSI5, or I2C master as shown in Table 96. This value  
is only necessary for oscillator training and is only used if the CK_CAL_EN bit is set in  
the TIMING_CFG register.  
Table 96.ꢀPeriodic data collection mode period (PDCM_PER[3:0])  
PDCM_PER[2] PDCM_PER[1] PDCM_PER[0]  
Periodic data collection mode period  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
100 µs  
125 µs  
250 µs  
333 µs  
500 µs  
800 µs  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
63 / 254  
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 96.ꢀPeriodic data collection mode period (PDCM_PER[3:0])...continued  
PDCM_PER[2] PDCM_PER[1] PDCM_PER[0]  
Periodic data collection mode period  
1
1
1
1
0
1
1000 µs  
2000 µs  
In DSI3 mode, PDCM, and BDM commands are decoded and responded to regardless  
of the value of this register as long as the general PDCM timing parameters specified in  
Section 10.11 are met. See Section 11.5.1 for details regarding oscillator training.  
In PSI5 synchronous mode, sync pulses are decoded and responded to regardless of the  
value of this register as long as the general timing parameters specified in Section 10.12  
are met. See Section 11.5.1 for details regarding oscillator training.  
In PSI5 asynchronous mode, oscillator training is not applicable.  
In PSI5 Programming Mode, oscillator training is not applicable.  
In PSI5 Daisy Chain command phase, oscillator training is not applicable.  
In SPI mode, sensor data requests are decoded and responded to regardless of the  
value of this register as long as the general timing parameters specified in Section 10.13  
are met. See Section 11.5.1 for details regarding oscillator training.  
In I2C mode, sensor data register reads are decoded and responded to regardless of the  
value of this register as long as the general timing parameters specified in Section 10.14  
are met. See Section 11.5.1 for details regarding oscillator training.  
11.2.14.2 Oscillator training protocol selection bit (OSCTRAIN_SEL)  
The oscillator training selection bit selects the protocol to use for oscillator training for the  
COMMTYPE values that enable multiple protocols as shown in Table 97.  
Table 97.ꢀOscillator training protocol selection bit (OSCTRAIN_SEL)  
COMMTYPE  
OSCTRAIN_SEL  
Protocol to use for oscillator training  
0
0
1
0
1
x
x
x
x
x
x
DSI3  
SPI  
1
PSI5  
SPI  
2
3
4
5
6
7
SPI  
DSI3  
SPI  
PSI5  
I2C  
I2C  
11.2.14.3 Clock calibration value reset (CK_CAL_RST)  
The clock calibration reset bit controls the state of the oscillator training when the  
CK_CAL_EN bit is cleared as described in the table in Section 11.2.14.5. See  
Section 11.5.1 for details regarding oscillator training.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
64 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.14.4 Command and response mode period (CRM_PER[1:0])  
In DSI3 mode, the command and response mode period bits set the period for command  
and response mode commands in increments of the periodic data collection mode period  
(PDCM_PER). This value is only necessary for DSI3 oscillator training and is only used  
if the CK_CAL_EN bit is set in the TIMING_CFG register. command and response mode  
commands will be decoded and responded to regardless of the value of this register  
as long as the general command and response mode timing parameters specified in  
Section 10.11 are met. See Section 11.5.1 for details regarding oscillator training.  
In SPI and I2C mode, the CRM_PER[1:0] bits are readable and writable, but have no  
impact on device operation or performance.  
In PSI5 mode, the CRM_PER[1:0] bits are readable and writable, but have no impact on  
device operation or performance.  
Table 98.ꢀCommand and response mode period (CRM_PER[1:0])  
CRM_PER[1]  
CRM_PER[0]  
Command and response mode period  
(Multiples of the periodic data collection mode period)  
0
0
1
1
0
1
0
1
1
2
4
8
11.2.14.5 Clock calibration enable (CK_CAL_EN)  
The clock calibration enable bit enables oscillator training over the DSI3, PSI5, SPI, or  
I2C communication interface. See Section 11.5.1 for details regarding oscillator training.  
Table 99.ꢀClock calibration enable (CK_CAL_EN)  
CK_CAL_EN CK_CAL_RST Oscillator training  
0
0
1
0
1
x
The oscillator value is maintained at the last trained value prior  
to clearing the CK_CAL_RST bit.  
The oscillator value is reset to the untrained value with a  
tolerance specified in Section 10.20.  
Oscillator is trained as specified in Section 11.5.1  
11.2.15 Chip time and bit time register (CHIPTIME)  
The chip time and bit time register is a user programmed read/write register which  
contains user-specific configuration information. This register is included in the read/write  
array error detection.  
This register is readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
Programming Mode.  
Table 100.ꢀChip time and bit time register (CHIPTIME)  
Location  
Register  
CHIPTIME  
Bit  
Address  
7
6
5
4
3
2
1
0
$23  
ST_RPT[1:0]  
PSI5_  
SS_EN  
CHIPTIME[3:0]  
ERRLATCH  
Unprogrammed OTP Value  
0
0
0
0
0
0
0
0
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
65 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 100.ꢀChip time and bit time register (CHIPTIME)...continued  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
FXLS93xxx  
0
0
0
0
1
0
0
0
Unprogrammed  
Default PSI5 Mode  
11.2.15.1 PSI5 self-test repetition bits (ST_RPT[1:0])  
In PSI5 mode, the PSI5 self-test repetition bits set the maximum number of PSI5 self-test  
repetitions that the device will run before setting the ST_ERROR bit. See Section 6.6.2.5  
for details regarding the PSI5 startup self-test.  
Table 101.ꢀPSI5 self-test repetition bits (ST_RPT[1:0])  
ST_RPT[1]  
ST_RPT[0]  
Maximum PSI5 self-test repetitions  
0
0
1
1
0
1
0
1
8
1
4
2
11.2.15.2 PSI5 error latching enable bit (PSI5_ERRLATCH)  
In PSI5 mode, the PSI5 error latching enable bit allows for users to disable the automatic  
error clearing mechanism for internal faults. When this bit is set, internal errors are  
latched until reset. See Section 13.9.4 and Section 13.9.5 for details regarding internal  
error handling.  
Table 102.ꢀPSI5 error latching enable bit (PSI5_ERRLATCH)  
PSI5_  
PSI5 error handling  
ERRLATCH  
0
1
Error handling is as specified in Section 11.2.2 and Section 13.9.4  
Automatic error clearing is disabled and internal errors are latched until reset as  
specified in Section 13.9.5  
11.2.15.3 Simultaneous sampling enable (SS_EN)  
In DSI3 mode, the simultaneous sampling enable bit selects between one of two data  
latency methods. See Section 12.4.7 for details regarding sample timing.  
Table 103.ꢀDSI3 simultaneous sampling enable (SS_EN)  
SS_EN  
Data latency  
0
Synchronous Sampling Mode: Latency relative to transmission start time (PDCM_  
RSPST)  
1
Simultaneous Sampling Mode: Latency relative to the start of the Periodic Data  
Collection Mode command (falling edge)  
In PSI5 mode, the simultaneous sampling enable bit selects between one of two data  
latency methods to accommodate synchronized sampling or simultaneous sampling.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
66 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 104.ꢀPSI5 simultaneous sampling enable (SS_EN)  
SS_EN Data latency  
0
1
Synchronous Sampling Mode (Latency relative to Time Slot)  
Simultaneous Sampling Mode (Latency relative to sync pulse)  
In SPI mode, the simultaneous sampling enable bit selects between one of two data  
latency methods.  
Table 105.ꢀSPI simultaneous sampling enable (SS_EN)  
SS_EN  
Data latency  
0
Synchronous sampling mode: The data for all sources is latent relative to the  
falling edge of slave select for the response to the Sensor Data Request for the  
corresponding SOURCEID.  
1
Simultaneous sampling mode: The data for all sources is latent relative to the falling  
edge of slave select for the response to the Sensor Data Request for SOURCEID_0.  
If SOURCEID_0 is disabled, then the data for all SOURCEIDs is latent relative to the  
falling edge of slave select for the response to the Sensor Data Request for lowest  
enabled SOURCEID register address.  
Note: If multiple SOURCEIDs are enabled, sensor data for the higher SOURCEID  
register addresses only changes on a sensor data request for the lowest enabled  
SOURCEID register address. If continuous sensor data requests occur without  
sensor data requests for the lowest SOURCEID register address, sensor data  
will not be updated. Care must be taken by the user to ensure proper data  
transmissions.  
In I2C mode, the simultaneous sampling enable bit is readable and writable but has no  
impact on device operation or performance.  
11.2.15.4 Chip time (CHIPTIME)  
In DSI3 mode, the CHIPTIME bits set the chip time for Periodic Data Collection Mode  
as described in Table 106. The chip time for Command and Response Mode and  
Background Diagnostic Mode is always set to 5 µs with slew control enabled.  
In PSI5 mode, the CHIPTIME bits set the bit time for the PSI5 response data as  
described in Table 106.  
Table 106.ꢀChip time (CHIPTIME)  
CHIPTIME[3]  
CHIPTIME[2]  
CHIPTIME[1]  
CHIPTIME[0]  
PSI5  
Baud rate  
189 kHz  
189 kHz  
189 kHz  
189 kHz  
189 kHz  
189 kHz  
189 kHz  
189 kHz  
125 kHz  
125 kHz  
125 kHz  
125 kHz  
125 kHz  
DSI3  
Period time  
5.3 µs  
5.3 µs  
5.3 µs  
5.3 µs  
5.3 µs  
5.3 µs  
5.3 µs  
5.3 µs  
8.0 µs  
8.0 µs  
8.0 µs  
8.0 µs  
8.0 µs  
Slew control  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Chip time  
1.0 µs  
2.0 µs  
2.5 µs  
2.6 µs  
2.6 µs  
2.7 µs  
2.8 µs  
2.9 µs  
3.0 µs  
3.1 µs  
3.2 µs  
3.3 µs  
3.5 µs  
Chip rate  
1000 kHz  
500.0 kHz  
400.0 kHz  
384.6 kHz  
384.6 kHz  
370.3 kHz  
357.1 kHz  
344.8 kHz  
333.3 kHz  
322.6 kHz  
312.5 kHz  
303.0 kHz  
294.1 kHz  
Slew control  
Disabled  
Disabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
67 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 106.ꢀChip time (CHIPTIME)...continued  
CHIPTIME[3]  
CHIPTIME[2]  
CHIPTIME[1]  
CHIPTIME[0]  
PSI5  
DSI3  
Period time  
8.0 µs  
Baud rate  
125 kHz  
125 kHz  
125 kHz  
Slew control  
Enabled  
Chip time  
4.0 µs  
Chip rate  
250.0 kHz  
222.2 kHz  
200.0 kHz  
Slew control  
Enabled  
1
1
1
1
1
1
0
1
1
1
0
1
8.0 µs  
Enabled  
4.5 µs  
Enabled  
8.0 µs  
Enabled  
5.0 µs  
Enabled  
In SPI and I2C mode, the CHIPTIME bits are readable and writable but have no impact  
on device operation or performance.  
11.2.16 Timing configuration #2 register (TIMING_CFG2)  
The timing configuration #2 register is a user programmed read/write register which  
contains user-specific timing configuration information. This register is included in the  
read/write array error detection. See Section 12.4 for details regarding Background  
Diagnostic Mode.  
This register is readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
Programming Mode.  
Table 107.ꢀTiming configuration #2 register (TIMING_CFG2)  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$24  
TIMING_CFG2  
PSI5_  
OSCTRAIN_ERRCNT[2:0]  
CAPTEST_OFF  
RESERVED  
BDM_  
BDM_EN  
INIT2_D19  
FRAGSIZE  
Unprogrammed OTP Value  
0
0
0
0
0
0
0
0
11.2.16.1 PSI5 initialization phase 2 D19 and D20 change bit (PSI5_INIT2_D19)  
The PSI5 initialization phase 2 D19 and D20 change bit provides the option to change  
the data transmitted in PSI5 Initialization Phase 2 nibbles D19 and D20 as shown in  
Table 108.  
Table 108.ꢀPSI5 initialization phase 2 D19 and D20 change bit (PSI5_INIT2_D19)  
PSI5_INIT2_  
D19  
Initialization phase 2 data  
Reference  
D19  
D20  
0
1
SN4[7:4]  
SN4[3:0]  
Section 11.2.42, Section 13.4.2.1  
USERDATA_6[7:4] USERDATA_E[7:4] Section 11.2.45.1, Section 13.4.2.1  
In DSI3 mode, SPI mode, and I2C mode, the PSI5_INIT2_D19 bit is readable and  
writable, but has no impact on device operation or performance.  
11.2.16.2 Oscillator training error counter (OSCTRAIN_ERRCNT[2:0])  
The oscillator training error counter bits use the number of 4 ms periods used to  
determine the error detection time for oscillator training as shown in Table 109. See  
Section 11.5.2 for details regarding oscillator training error detection.  
Table 109.ꢀOscillator training error counter (OSCTRAIN_ERRCNT[2:0])  
OSCTRAIN_ERRCNT[2:0]  
4 ms periods counted  
before the OSCTRAIN  
error flag is set  
Minimum time for  
error detection  
(ms)  
0
0
0
64  
256  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
68 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 109.ꢀOscillator training error counter (OSCTRAIN_ERRCNT[2:0])...continued  
OSCTRAIN_ERRCNT[2:0]  
4 ms periods counted  
before the OSCTRAIN  
error flag is set  
Minimum time for  
error detection  
(ms)  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
1
2
4
8
4
16  
8
32  
16  
32  
64  
64  
128  
256  
11.2.16.3 Capacitor test disable bit (CAPTEST_OFF)  
The capacitor test disable bit provides the option to disable the VBUF capacitor test in  
DSI3 mode as shown in Table 110.  
Table 110.ꢀCapacitor test disable bit (CAPTEST_OFF)  
CAPTEST_OFF Capacitor test status  
0
1
Capacitor test is operational as specified in Section 11.4.1  
Capacitor test will not run  
If a capacitor error is present, the VBUFUV_ERR bit is set in the DEVSTAT1 register as  
specified in Section 11.4.1. The presence of the VBUFUV_ERR will prevent the user from  
writing to the TIMING_CFG2 register to disable the capacitor test unless and until the  
capacitor error recovers.  
In SPI and I2C mode, the CAPTEST_OFF bit is readable and writable, but has no impact  
on device operation or performance.  
In PSI5 mode, the CAPTEST_OFF bit is readable and writable, but has no impact on  
device operation or performance.  
11.2.16.4 Background diagnostic mode fragment size (BDM_FRAGSIZE)  
The background diagnostic mode fragment size bit sets the number of background  
diagnostic command bits and response chips to be sent per Periodic Data Collection  
Mode sampling period.  
Table 111.ꢀBackground diagnostic mode fragment size (BDM_FRAGSIZE)  
BDM_  
FRAGSIZE  
BDM command fragment size  
(Bits)  
BDM response fragment size  
(Chips)  
0
1
2
4
3
6
In SPI and I2C mode, the BDM_FRAGSIZE bit is readable and writable, but has no  
impact on device operation or performance.  
In PSI5 mode, the BDM_FRAGSIZE bit is readable and writable, but has no impact on  
device operation or performance.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
69 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.16.5 Background diagnostic mode enable (BDM_EN)  
The background diagnostic mode enable bit enables background diagnostic mode as  
described in Table 112. See Section 12.4 for details regarding background diagnostic  
mode.  
Table 112.ꢀBackground diagnostic mode enable (BDM_EN)  
BDM_EN  
Background diagnostic mode  
0
1
Disabled  
Enabled  
In SPI and I2C mode, the BDM_EN bit is readable and writable, but has no impact on  
device operation or performance.  
In PSI5 mode, the BDM_EN bit is readable and writable, but has no impact on device  
operation or performance.  
11.2.17 PSI5 configuration register (PSI5_CFG)  
The PSI5 configuration register is a user programmable OTP register that contains PSI5  
specific configuration information. This register is included in the read/write array error  
detection.  
This register is readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
programming mode.  
Table 113.ꢀPSI5 configuration register (PSI5_CFG)  
Location  
Register  
PSI5_CFG  
Bit  
Address  
7
6
5
4
3
2
1
0
$25  
SYNC_PD  
DAISY_CHAIN  
PSI5_ILOW  
DUALTRANS  
EMSG_EXT  
P_CRC  
INIT2_EXT  
ASYNC  
Unprogrammed OTP Value  
FXLS93xxx  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
Unprogrammed  
Default PSI5 Mode  
11.2.17.1 Sync pulse pull-down enable bit (SYNC_PD)  
In PSI5 mode, the sync pulse pull-down enable bit selects if the Sync pulse pull-down  
is enabled once a sync pulse is detected. See Section 11.2.18.1 for more information  
regarding the sync pulse pulldown.  
Table 114.ꢀSync pulse pull-down enable bit (SYNC_PD)  
SYNC_PD  
Sync pulse pull-down  
Disabled  
0
1
Enabled for all PSI5 operating modes  
In DSI3 mode, the SYNC_PD bit is readable and writable, but has no impact on device  
operation or performance.  
In SPI and I2C mode, the SYNC_PD bit is readable and writable, but has no impact on  
device operation or performance.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
70 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.17.2 PSI5 daisy chain selection bit (DAISY_CHAIN)  
In PSI5 mode, the transmission mode selection bits select the PSI5 transmission mode  
as shown in Table 115.  
Table 115.ꢀPSI5 daisy chain selection bit (DAISY_CHAIN)  
DAISY_ Operating mode  
CHAIN  
Response (PDCM_ Reference  
RSTST0)  
0
Normal Mode (Asynchronous or Parallel,  
SNSDATA0  
Section 13.5  
Synchronous)  
1
Daisy Chain Mode  
SNSDATA0  
Section 13.8  
In DSI3 mode, the DAISY_CHAIN bit is readable and writable, but has no impact on  
device operation or performance.  
In SPI and I2C mode, the DAISY_CHAIN bit is readable and writable, but has no impact  
on device operation or performance.  
11.2.17.3 PSI5 low response current selection bit (PSI5_ILOW)  
In PSI5 mode, the PSI5 low response current selection bit selects the low PSI5 response  
current specified in Section 10.4 as shown in Table 116.  
Table 116.ꢀPSI5 low response current selection bit (PSI5_ILOW)  
PSI5_ILOW  
PSI5 response current  
Normal Response Current  
Low Response Current  
0
1
In DSI3 mode, the PSI5_ILOW bit is readable and writable, but has no impact on device  
operation or performance.  
In SPI and I2C mode, the PSI5_ILOW bit is readable and writable, but has no impact on  
device operation or performance.  
11.2.17.4 Dual transmission mode (DUALTRANS)  
In PSI5 mode, the dual transmission mode bit enables dual data transmission as  
described in Section 13.7 only if the DAI-SY_CHAIN bit is not set and the ASYNC bit is  
not set.  
Table 117.ꢀDual transmission mode (DUALTRANS)  
DUALT  
RANS  
SID3_EN SID2_EN SID1_EN SID0_EN  
Operating mode  
Response  
Response  
Response  
Response  
Refer  
ence  
PDCM_RSPST0 PDCM_RSPST1 PDCM_RSPST2 PDCM_RSPST3  
0
1
As specified in  
Normal Mode  
CH0_  
SNSDATA0  
CH0_  
SNSDATA1  
CH1_  
SNSDATA0  
CH1_  
SNSDATA1  
Section 13.5,  
Section 13.8  
Section 11.2.13.3  
Asynchronous or Synchronous,  
Parallel, Daisy Chain  
x
x
x
x
0
0
0
1
No Transmission  
None  
None  
None  
None  
None  
None  
None  
Section 13.7  
Dual Data Transmission  
Mode, Single Transmission  
CONCATENATE  
(CH1_SNSDA-  
TA0, CH0_  
SNS-DATA0)  
x
x
x
x
1
1
0
1
Dual Data Transmission  
Mode, Single Transmission  
None  
CONCATENATE  
(CH1_SNSDA-  
TA1, CH0_  
None  
None  
None  
None  
SNS-DATA1)  
Dual Data Transmission  
CONCATENATE CONCATENATE  
Mode, Double Transmission  
(CH1_SNSDA-  
TA0, CH0_  
(CH1_SNSDA-  
TA1, CH0_  
SNS-DATA0)  
SNS-DATA1)  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
71 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
In DSI3 mode, the DUALTRANS mode is readable and writable, but has no impact on  
device operation or performance.  
In SPI and I2C mode, the DUALTRANS bits are readable and writable, but has no impact  
on device operation or performance.  
11.2.17.5 Error message information extension bit (EMSG_EXT)  
In PSI5 mode, the error message information extension bit enables or disables additional  
PSI5 error message information as shown in Table 118.  
Table 118.ꢀError message information extension bit (EMSG_EXT)  
EMSG_EXT Description  
0
1
All internal Errors map to 0x1F4 (See Section 13.3.4)  
Additional PSI5 reserved codes are used for internal error distinction (See  
Section 13.3.4)  
In DSI3 mode, the EMSG_EXT bit is readable and writable, but has no impact on device  
operation or performance.  
In SPI and I2C mode, the EMSG_EXT bit is readable and writable, but has no impact on  
device operation or performance.  
11.2.17.6 PSI5 response message error detection selection bit (P_CRC)  
In PSI5 mode, the response message error detection selection bit selects either  
even parity, or a 3-bit CRC for error detection of the PSI5 response message. See  
Section 11.2.18.1 for details regarding response message error detection.  
Table 119.ꢀPSI5 response message error detection selection bit (P_CRC)  
P_CRC  
Parity or CRC  
Parity  
0
1
CRC  
In DSI3 mode, the P_CRC bit is readable and writable, but has no impact on device  
operation or performance.  
In SPI and I2C mode, the P_CRC bit is readable and writable, but has no impact on  
device operation or performance.  
11.2.17.7 Initialization phase 2 data extension bit (INIT2_EXT)  
In PSI5 mode, the initialization phase 2 data extension bit enables or disables data  
transmission in data fields D33 through D48 of PSI5 initialization phase 2 as shown in  
Table 120.  
Table 120.ꢀInitialization phase 2 data extension bit (INIT2_EXT)  
INIT2_EXT Description  
0
1
D33 through D48 are not transmitted  
D33 through D48 are transmitted as defined in Section 13.4.2.1  
In DSI3 mode, the INIT2_EXT bit is readable and writable, but has no impact on device  
operation or performance.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
72 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
In SPI and I2C mode, the INIT2_EXT bit is readable and writable, but has no impact on  
device operation or performance.  
11.2.17.8 Asynchronous mode bit (ASYNC)  
In PSI5 mode, the asynchronous mode bit enables asynchronous data transmission as  
described in Section 11.2.18.1 only if the DAISY_CHAIN bit is not set.  
In DSI3 mode, the ASYNC bit is readable and writable, but has no impact on device  
operation or performance.  
In SPI and I2C mode, the ASYNC bit is readable and writable, but has no impact on  
device operation or performance.  
11.2.18 DSI3 and PSI5 start time registers (PDCM_RSPSTx_x)  
The DSI3 and PSI5 start time registers are user programmed read/write registers which  
contain user-specific configuration information for DSI3 periodic data collection mode  
and PSI5 synchronous mode. These registers are included in the read/write array error  
detection.  
These registers are readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
Programming Mode.  
Table 121.ꢀDSI3 and PSI5 start time registers (PDCM_RSPSTx_x)  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$26  
PDCM_  
PDCM_RSPST0[7:0]  
RSPST0_L  
Unprogrammed OTP Value  
FXLS93xxx  
0
0
0
0
0
1
0
0
0
1
0
1
0
1
0
1
Unprogrammed  
Default PSI5 Mode  
$27  
PDCM_  
RSPST0_H  
BRC_RSP0[1:0]  
BRC_RSP1[1:0]  
BRC_RSP2[1:0]  
RESERVED  
PDCM_RSPST0[12:8]  
Unprogrammed OTP Value  
FXLS93xxx  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Unprogrammed  
Default PSI5 Mode  
$28  
PDCM_  
RSPST1_L  
PDCM_RSPST1[7:0]  
Unprogrammed OTP Value  
FXLS93xxx  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Unprogrammed  
Default PSI5 Mode  
$29  
PDCM_  
RSPST1_H  
RESERVED  
PDCM_RSPST1[12:8]  
Unprogrammed OTP Value  
FXLS93xxx  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Unprogrammed  
Default PSI5 Mode  
$2A  
PDCM_  
RSPST2_L  
PDCM_RSPST2[7:0]  
Unprogrammed OTP Value  
FXLS93xxx  
0
1
0
1
0
1
0
1
0
0
0
1
0
0
0
0
Unprogrammed  
Default PSI5 Mode  
$2B  
PDCM_  
RSPST2_H  
RESERVED  
0
PDCM_RSPST2[12:8]  
0
Unprogrammed OTP Value  
0
0
0
0
0
0
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
73 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 121.ꢀDSI3 and PSI5 start time registers (PDCM_RSPSTx_x)...continued  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
FXLS93xxx  
0
0
0
0
0
0
0
0
Unprogrammed  
Default PSI5 Mode  
$2C  
PDCM_  
RSPST3_L  
PDCM_RSPST3[7:0]  
Unprogrammed OTP Value  
FXLS93xxx  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Unprogrammed  
Default PSI5 Mode  
$2D  
PDCM_  
BRC_RSP3[1:0]  
RESERVED  
PDCM_RSPST3[12:8]  
RSPST3_H  
Unprogrammed OTP Value  
FXLS93xxx  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Unprogrammed  
Default PSI5 Mode  
11.2.18.1 Periodic data collection mode response start time (PDCM_RSPSTx[12:0])  
The periodic data collection mode response start time registers set the DSI3 periodic  
data collection mode or PSI5 synchronous mode response start time for the associated  
data and SOURCEID. The value is stored in 1.0 µs increments.  
Table 122.ꢀPeriodic data collection mode response start time  
(PDCM_RSPSTx[12:0])  
PDCM_RSPSTx[12:0]  
0
Periodic data collection mode response start time  
See Table 123  
0 < PDCM_RSPSTx[12:0] < 20  
20 < PDCM_RSPSTx[12:0]  
20.0 µs  
PDCM response start = PDCM_RSPST x 1.0 µs  
Table 123 shows the relationship of the SOURCEID, the transmitted data, the response  
start times, and the default states for each set of registers in DSI3 periodic data collection  
mode. Care must be taken to prevent from programming response start times which  
cause data contention in the system.  
Table 123.ꢀSynchronous mode: Source ID response start time  
SOURCEID register  
SOURCEID_0  
SOURCEID_1  
SOURCEID_2  
SOURCEID_3  
Transmitted data  
CH0_SNSDATA0  
CH0_SNSDATA1  
CH1_SNSDATA0  
CH1_SNSDATA1  
Start time registers  
PDCM_RSPST0[12:0]  
PDCM_RSPST1[12:0]  
PDCM_RSPST2[12:0]  
PDCM_RSPST3[12:0]  
Default start (PDCM_RSPSTx[12:0] = 0x00)  
Transmit Data with a start time of 20 µs  
Transmit Data with a start time of 20 µs  
Transmit Data with a start time of 20 µs  
Transmit Data with a start time of 20 µs  
Table 124 shows the PSI5 data transmission start times based on the values in the  
PDCM_RSPSTx registers and the value of the ASYNC bit. Care must be taken to  
prevent from programming time slots which violate the PSI5 Version 1.3 specification, or  
time slots which will cause data contention.  
Table 124.ꢀAsynchronous mode: Source ID response start time  
ASYNC bit  
SOURCEID  
register  
Transmitted data  
Time slot  
start time  
Default start (PDCM_  
RSPSTx[12:0] = 0x00)  
1
SOURCEID_0  
CH0_SNSDATA0  
Asynchronous  
Mode  
tASYNC  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
74 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 124.ꢀAsynchronous mode: Source ID response start time...continued  
ASYNC bit  
SOURCEID  
register  
Transmitted data  
CH0_SNSDATA0  
CH0_SNSDATA1  
CH1_SNSDATA0  
CH1_SNSDATA1  
Time slot  
start time  
Default start (PDCM_  
RSPSTx[12:0] = 0x00)  
0
SOURCEID_0  
SOURCEID_1  
SOURCEID_2  
SOURCEID_3  
PDCM_  
RSPST0[12:0]  
Transmit Data with a start time of 20 µs  
Transmit Data with a start time of 20 µs  
Transmit Data with a start time of 20 µs  
Transmit Data with a start time of 20 µs  
PDCM_  
RSPST1[12:0]  
PDCM_  
RSPST2[12:0]  
PDCM_  
RSPST3[12:0]  
In SPI and I2C mode, the PDCM_RSPSTx registers are readable and writable, but have  
no impact on device operation or performance.  
11.2.18.2 Broadcast read command type selection bits (BRC_RSP[1:0])  
The broadcast read command type selection bits select the broadcast read command  
types that the device responds to for each Source ID as shown in Table 125:  
Table 125.ꢀBroadcast read command type selection bits (BRC_RSP[1:0])  
BRC_RSP[1]  
BRC_RSP[0]  
Response  
0
0
1
1
0
1
0
1
Respond to all Broadcast Read Commands  
Respond to Broadcast Read Command 0 only  
Respond to Broadcast Read Command 1 only  
Respond to all Broadcast Read Commands  
If a device is programmed to respond only to BRC0 or BRC1 commands, it will  
synchronize to alternate responses when BDM commands are received.  
If the last command prior to a BDM command is a BRC0, a device programmed to  
respond only to BRC0 commands will not respond to the first BDM command and will  
then respond to every other BDM command until the next BRC command is received.  
If the last command prior to a BDM command is a BRC0, a device programmed to  
respond only to BRC1 commands will respond to the first BDM command, and will then  
response to every other BDM command until the next BRC command is received.  
If the last command prior to a BDM command is a BRC1, a device programmed to  
respond only to BRC0 commands will respond to the first BDM command, and will then  
response to every other BDM command until the next BRC command is received.  
If the last command prior to a BDM command is a BRC1, a device programmed to  
respond only to BRC1 commands will not respond to the first BDM command and will  
then respond to every other BDM command until the next BRC command is received.  
In PSI5 mode, the BRC_RSP[1:0] bits are readable and writable, but have no impact on  
device operation or performance.  
In SPI and I2C mode, the BRC_RSP[1:0] bits are readable and writable, but have no  
impact on device operation or performance.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
75 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.19 DSI3 and PSI5 command blocking time registers (PDCM_CMD_B_x)  
The DSI3 and PSI5 command blocking registers are user programmed read/write  
registers which contain user-specific con-figuration information for DSI3 mode and PSI5  
mode. These registers are included in the read/write array error detection.  
These registers are readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
programming mode.  
Table 126.ꢀDSI3 and PSI5 command blocking time registers (PDCM_CMD_B_x)  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$38  
PDCM_  
PDCM_CMD_B[7:0]  
CMD_B_L  
$39  
PDCM_  
CMD_B_H  
RESERVED  
0
RESERVED  
0
RESERVED  
0
PDCM_CMD_B[12:8]  
0
Unprogrammed OTP Value  
0
0
0
0
In DSI3 mode, the DSI3 periodic data collection mode command blocking time bits  
set the periodic data collection mode command blocking time in 1.0 µs increments,  
with zero as the default value of 450 µs. For proper communication, the command  
blocking time must exceed the completion of the last source response transmission. See  
Section 12.1.1 for details regarding the command receiver and command blocking.  
Care must be taken to prevent from programming command blocking times which  
prevent proper command decoding in the system and to ensure proper sampling of the  
VHIGH voltage. As shown in Section 12.1.1, Figure 63, the VHIGH voltage is initially  
captured at the end of the command blocking time and then filtered. The user must  
ensure that the command blocking end time is set for a time when no command or  
response transmissions are occurring to provide the most stable BUS_I voltage.  
Table 127.ꢀDSI3 mode: Command blocking time bits  
PDCM_CMD_B[12:0] Sync pulse blocking time  
0
450 µs  
Non-Zero  
Sync Pulse Blocking Time = PDCM_CMD_B x 1 µs  
In PSI5 mode, the command blocking time bits set the PSI5 sync pulse blocking time in  
1.0 µs increments, with zero as the default value of 450 µs. See Section 13.2.1 for details  
regarding the PSI5 sync pulse receiver and command blocking.  
Care must be taken to prevent from programming command blocking times which  
prevent proper sync pulse decoding in the system and to ensure proper sampling of the  
PSI5 voltage.  
Table 128.ꢀPSI5 mode: Command blocking time bits  
PDCM_CMD_B[12:0] Sync pulse blocking time  
0, 1, 2, 3, 4, 5, 6, 7, 8, 9 450 µs  
10 - 8191  
Sync Pulse Blocking Time = PDCM_CMD_B x 1 µs  
In SPI and I2C mode, the PDCM_CMD_B bits are readable and writable, but have no  
impact on device operation or performance.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
76 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.20 SPI configuration control register  
In SPI mode, the SPI configuration control register is a user programmed read/write  
register which contains the SPI protocol configuration information. This register is  
included in the read/write array error detection.  
This register is readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
programming mode.  
Table 129.ꢀSPI configuration control register  
Location  
Register  
SPI_CFG  
Bit  
Address  
7
6
DATASIZE  
0
5
4
3
2
1
0
$3D  
SPI_STATUS  
0
SPI_CRC_LEN[1:0]  
SPICRCSEED[3:0]  
Unprogrammed OTP Value  
0
0
0
0
0
0
11.2.20.1 SPI status reporting selection bit (SPI_STATUS)  
The SPI status reporting bit controls the reporting of the SPI basic status as shown in  
Table 130. See Section 14.5.  
Table 130.ꢀSPI status reporting selection bit (SPI_STATUS)  
SPI_STATUS  
SPI basic status reporting  
0
1
As documented in Section 14.5.1  
As documented in Section 14.5.2  
In DSI3 mode, the SPI_STATUS bit is readable and writable, but has no impact on device  
operation or performance.  
In PSI5 mode, the SPI_STATUS bit is readable and writable, but has no impact on device  
operation or performance.  
In I2C mode, the SPI_STATUS bit is readable and writable, but has no impact on device  
operation or performance.  
11.2.20.2 SPI data field size bit (DATASIZE)  
The SPI data field size bit controls the size of the SPI data field as shown in Table 131.  
See Section 11.6.4.9.  
Table 131.ꢀSPI data field size bit (DATASIZE)  
DATASIZE  
SPI data field size  
12-bits  
0
1
16-bits  
In DSI3 mode, the DATASIZE bit is readable and writable, but has no impact on device  
operation or performance.  
In PSI5 mode, the DATASIZE bit is readable and writable, but has no impact on device  
operation or performance.  
In I2C mode, the DATASIZE bit is readable and writable, but has no impact on device  
operation or performance.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
77 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.20.3 SPI CRC length and seed bits (SPI_CRC_LEN[1:0], SPICRCSEED[3:0])  
The SPI_CRC_LEN[1:0] bits select the CRC length for SPI mode as shown in Table 132.  
The SPI CRC seed bits contain the seed used for the SPI Mode. The default SPI CRC is  
an 8-bit. When the SPI_CRC_LEN[1:0] bits are set to a non-zero value using a register  
write command, the SPI CRC changes as defined in the table. The new polynomial value  
is enabled for both MISO and MOSI on the next SPI mode command.  
The default seed (SPICRCSEED[3:0] = 0x0) is 0xFF for an 8-bit CRC. When the value  
is changed to a non-zero value using a register write command, the SPI CRC seed  
changes to the value programmed as shown in the table. The new seed value is enabled  
for both MISO and MOSI on the next SPI mode command.  
Table 132.ꢀSPI CRC length and seed bits (SPI_CRC_LEN[1:0], SPICRCSEED[3:0])  
SPI_CRC_  
LEN[1:0]  
SPICR  
CSEED  
CRC polynomial  
CRC seed  
0
0
0
x8 + x5 + x3 + x2 + x + 1  
1111, 1111  
Non-Zero  
1111,  
SPICRCSEED[3:0]  
0
1
1
1
0
1
0
x4 + 1  
1010  
SPICRCSEED[3:0]  
111  
Non-Zero  
0
x3 + x + 1  
x3 + x + 1  
Non-Zero  
0
SPICRCSEED[2:0]  
111  
Non-Zero  
SPICRCSEED[2:0]  
In PSI5 mode, the SPI CRC bits are readable and writable, but have no impact on device  
operation or performance.  
In DSI3 mode, the SPI CRC bits are readable and writable, but have no impact on device  
operation or performance.  
In I2C mode, the SPI CRC bits are readable and writable, but have no impact on device  
operation or performance.  
11.2.21 Who Am I register  
The Who Am I register is a user programmed read/write register which contains the  
unique product identifier for I2C mode. The register is readable in all modes. This register  
is included in the read/write array error detection.  
This register is readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
Programming Mode.  
Table 133.ꢀWho Am I register  
Location  
Bit  
Address Register  
7
6
5
4
3
2
1
0
$3E  
WHO_  
AM_I  
WHO_AM_I[7:0]  
Unprogrammed  
OTP Value  
0
0
0
0
0
0
0
0
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
78 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 133.ꢀWho Am I register...continued  
Location  
Bit  
Address Register  
7
6
5
4
3
2
1
0
Unprogrammed  
Read Value  
1
1
0
0
0
1
0
0
The default register value is 0x00. If the register value is 0x00, a value of 0xC4 is  
transmitted in response to a read command. For all other register values, the actual  
register value is transmitted in response to a read command.  
Table 134.ꢀWHO_AM_I bits  
WHO_AM_I Register Value (HEX)  
0X00  
Response to a register read command  
0xC4  
0X01 Through 0xFF  
Actual register value  
11.2.22 I2C slave address register  
The I2C slave address register is a user programmed read/write register which contains  
the unique I2C slave address. The register is readable in all modes. This register is  
included in the read/write array error detection.  
This register is readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
Programming Mode.  
Table 135.ꢀI2C slave address register  
Location  
Register  
I2C_ADDRESS  
Bit  
Address  
7
6
5
4
3
2
1
0
$3F  
I2C_ADDRESS[7:0]  
Unprogrammed OTP Value  
Unprogrammed Read Value  
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
The default register value is 0x00. If the register value is 0x00, the I2C slave address is  
0x60 and a value of 0x60 is transmitted in response to a read command. For all other  
register values, the I2C slave address is the lower 7 bits of the actual register value and  
the actual register value is transmitted in response to a read command.  
Table 136.ꢀI2C_ADDRESS bits  
I2C_ADDRESS  
register value (HEX)  
Response to a register  
read command  
I2C slave address  
0x00, 0x80  
0x60  
0x60  
0x01 Through 0x7F,  
0x81 Through 0xFF  
Actual Register Value  
I2C_ADDRESS[6:0]  
11.2.23 Channel 0 and Channel 1 user configuration #1 registers (CH0_CFG_U1,  
CH1_CFG_U1)  
The Channel 0 and Channel 1 user configuration #1 registers are user programmable  
read/write registers which contain channel-specific configuration information. These  
registers are included in the read/write array error detection.  
These registers are readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
programming mode.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
79 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 137.ꢀChannel 0 and Channel 1 user configuration #1 registers (CH0_CFG_U1, CH1_CFG_U1)  
Location  
Bit  
Address  
$40  
Register  
7
6
5
4
3
2
1
0
CH0_CFG_U1  
CH1_CFG_U1  
LPF[3:0]  
LPF[3:0]  
SAMPLERATE[1:0]  
SAMPLERATE[1:0]  
USER_SNS_SHIFT[1:0]  
USER_SNS_SHIFT[1:0]  
$48  
Unprogrammed OTP Value  
0
0
0
0
0
0
0
0
11.2.23.1 Low-pass filter and sample rate selection bits (LPF[3:0], SAMPLERATE[1:0])  
The low-pass filter selection bits and sample rate bits select the low-pass filter for the  
associated channel. See Section 11.6.4.4 for details regarding the low-pass filter.  
Table 138.ꢀLow-pass filter and sample rate selection bits (LPF[3:0], SAMPLERATE[1:0])  
LPF[3]  
LPF[2]  
LPF[1]  
LPF[0]  
Low-pass filter type  
SAMPLERATE = 10  
32 µs  
SAMPLERATE = 00, 01  
16 µs  
SAMPLERATE = 11  
64 µs  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
400 Hz, 4-Pole  
400 Hz, 3-Pole  
400 Hz, 4-Pole  
400 Hz, 3-Pole  
325 Hz, 3-Pole  
370 Hz, 2-Pole  
180 Hz, 2-Pole  
100 Hz, 2-Pole  
1500 Hz, 4-Pole  
500 Hz, 3-Pole  
800 Hz, 4-Pole  
1200 Hz, 4-Pole  
120 Hz, 3-Pole  
20 kHz, 2-Pole  
120 Hz, 2-Pole  
50 Hz, 4-Pole  
200 Hz, 4-Pole  
200 Hz, 3-Pole  
200 Hz, 4-Pole  
200 Hz, 3-Pole  
162.5 Hz, 3-Pole  
185 Hz, 2-Pole  
90 Hz, 2-Pole  
50 Hz, 2-Pole  
750 Hz, 4-Pole  
250 Hz, 3-Pole  
400 Hz, 4-Pole  
600 Hz, 4-Pole  
60 Hz, 3-Pole  
10 kHz, 2-Pole  
60 Hz, 2-Pole  
25 Hz, 4-Pole  
100 Hz, 4-Pole  
100 Hz, 3-Pole  
100 Hz, 4-Pole  
100 Hz, 3-Pole  
81.25 Hz, 3-Pole  
92.5 Hz, 2-Pole  
45 Hz, 2-Pole  
25 Hz, 2-Pole  
375 Hz, 4-Pole  
125 Hz, 3-Pole  
200 Hz, 4-Pole  
300 Hz, 4-Pole  
30 Hz, 3-Pole  
5 kHz, 2-Pole  
30 Hz, 2-Pole  
12.5 Hz, 4-Pole  
Changes to these register bits reset the DSP data path. The contents of the SNSDATA_x  
registers are not guaranteed until the DSP has completed initialization as specified in  
Section 10.20. Reads of the SNSDATA_x registers and Sensor Data requests should be  
prevented during this time.  
11.2.23.2 User sensitivity shift selection bits (U_SNS_SHIFT[1:0])  
The user sensitivity selection bits are used along with the user sensitivity multiplier bits to  
scale the output sensitivity of the device. See Section 11.2.24.1 for details.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
80 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.24 Channel 0 and Channel 1 user configuration #2 registers (CH0_CFG_U2,  
CH1_CFG_U2)  
The Channel 0 and Channel 1 user configuration #2 registers are user programmable  
read/write registers which contain channel-specific configuration information. The  
registers are included in the read/write array error detection.  
These registers are readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
programming mode.  
Table 139.ꢀChannel 0 and Channel 1 user configuration #2 registers (CH0_CFG_U2, CH1_CFG_U2)  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$41  
CH0_CFG_U2  
CH1_CFG_U2  
U_SNS_  
MULT[7]  
U_SNS_  
MULT[6]  
U_SNS_  
MULT[5]  
U_SNS_  
MULT[4]  
U_SNS_  
MULT[3]  
U_SNS_  
MULT[2]  
U_SNS_  
MULT[1]  
U_SNS_  
MULT[0]  
$49  
U_SNS_  
MULT[7]  
U_SNS_  
MULT[6]  
U_SNS_  
MULT[5]  
U_SNS_  
MULT[4]  
U_SNS_  
MULT[3]  
U_SNS_  
MULT[2]  
U_SNS_  
MULT[1]  
U_SNS_  
MULT[0]  
Unprogrammed OTP Value  
0
0
0
0
0
0
0
0
11.2.24.1 User sensitivity multiplier bits (U_SNS_MULT[7:0])  
The user sensitivity multiplier bits are used along with the user sensitivity shift bits to  
scale the output sensitivity of the device. Equation 1 describes the scaling:  
(1)  
Where:  
TrimSensitivity  
= The default trimmed sensitivity of the device, as specified in  
Section 10.6  
SensitivityMultiplier  
= The unsigned multiplier value contained in the U_SNS_MULT[7:0] bits  
SensitivityShiftFactor = The Shift Factor selected by the U_SNS_SHIFT[1:0] bits as described  
in Table 140  
Table 140.ꢀSensitivity shift factors  
Device Type  
U_SNS_SHIFT[1]  
U_SNS_SHIFT[0]  
Sensitivity  
shift factor  
Normal Range  
Normal Range  
Normal Range  
Normal Range  
0
0
1
1
0
1
0
1
0.25  
0.50  
1
2
Table 141 shows some example user shift and multiplier values for typical full scale  
ranges (± 2047, 12 bit):  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
81 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 141.ꢀExample user shift and multiplier configuration for typical scale range  
Device  
type  
Desired  
range  
Desired  
NXP trim  
User sensitivity  
shift factor  
User multiplier value  
Actual  
Actual  
Actual  
Actual  
sensitivity  
(12 bit,  
LSB/g)  
sensitivity  
sensitivity  
sensitivity  
sensitivity  
(g)  
(12 bit,  
LSB/g)  
16 bit register 10 bit Sensor 12 bit Sensor 16 bit Sensor  
Chx_SNS-  
DATAx LSB/g)  
U_SNS_  
Shift  
U_SNS_-  
Multiplier  
value  
data request, data request, data request,  
SHIFT (HEX)  
MULT (HEX)  
Factor  
LSB/g  
LSB/g  
LSB/g  
(Dec)  
255  
182  
127  
255  
182  
153  
127  
51  
Low g  
1.50  
1.75  
2.00  
3.00  
3.50  
3.75  
4.00  
5.00  
5.98  
6.00  
7.50  
8.00  
10.00  
12.00  
15.00  
20.00  
23.95  
15.5  
16  
1364.6667  
1169.7143  
1023.5000  
682.3333  
584.8571  
545.8667  
511.7500  
409.4000  
341.8343  
341.1667  
272.9333  
255.8750  
204.7000  
170.5833  
136.4667  
102.3500  
85.4586  
131.7246  
127.9375  
102.3500  
81.8800  
58.4857  
40.9400  
34.1167  
33.0161  
32.7520  
27.2933  
24.0000  
20.4700  
19.5000  
18.2000  
16.3760  
16.0000  
13.6467  
40.9400  
34.1167  
33.0161  
32.7520  
20.4700  
19.5000  
18.2000  
16.3760  
16.0000  
13.6467  
10.9465  
8.1880  
341.8343  
341.8343  
341.8343  
341.8343  
341.8343  
341.8343  
341.8343  
341.8343  
341.8343  
341.8343  
341.8343  
341.8343  
341.8343  
341.8343  
341.8343  
341.8343  
341.8343  
33.0161  
33.0161  
33.0161  
33.0161  
33.0161  
33.0161  
33.0161  
33.0161  
33.0161  
33.0161  
33.0161  
33.0161  
33.0161  
33.0161  
33.0161  
33.0161  
33.0161  
10.9465  
10.9465  
10.9465  
10.9465  
10.9465  
10.9465  
10.9465  
10.9465  
10.9465  
10.9465  
10.9465  
10.9465  
10.9465  
10.9465  
0x3  
0x3  
0x3  
0x2  
0x2  
0x2  
0x2  
0x2  
0x2  
0x1  
0x1  
0x1  
0x1  
0x0  
0x0  
0x0  
0x0  
0x3  
0x3  
0x3  
0x3  
0x2  
0x2  
0x2  
0x2  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x0  
0x0  
0x0  
0x3  
0x3  
0x3  
0x3  
0x2  
0x2  
0x2  
0x2  
0x2  
0x2  
0x2  
0x1  
0x1  
0x0  
2
2
0xFF  
0xB6  
0x7F  
0xFF  
0xB6  
0x99  
0x7F  
0x33  
0x00  
0xFF  
0x99  
0x7F  
0x33  
0xFF  
0x99  
0x33  
0x00  
0xFF  
0xF0  
0x8D  
0x3D  
0xC5  
0x3D  
0x09  
0x00  
0xFC  
0xA7  
0x74  
0x3D  
0x2E  
0x1A  
0xFC  
0xF0  
0xA7  
0xDF  
0x8F  
0x82  
0x7F  
0xDF  
0xC8  
0xAA  
0x7F  
0x76  
0x3F  
0x00  
0x7F  
0x32  
0xFF  
2729.333  
2339.429  
2045.665  
1364.667  
1169.714  
1092.267  
1022.832  
819.8682  
683.6686  
682.3334  
546.1338  
511.4162  
409.9342  
341.1666  
273.0668  
204.9670  
170.9170  
263.6130  
255.8748  
204.8030  
163.5328  
116.8460  
81.7664  
68.3536  
66.0322  
65.5164  
54.5540  
47.9766  
40.8832  
38.9486  
36.3692  
32.7582  
31.9844  
27.2770  
81.9278  
68.2446  
66.0210  
65.5080  
40.9638  
38.9970  
36.4314  
32.7540  
31.9844  
27.2808  
21.8930  
16.3770  
13.0844  
10.9252  
341.1667  
292.4286  
255.7081  
170.5833  
146.2143  
136.5334  
127.8541  
102.4835  
85.4586  
85.2917  
68.2667  
63.9270  
51.2418  
42.6458  
34.1333  
25.6209  
21.3646  
32.9516  
31.9844  
25.6004  
20.4416  
14.6058  
10.2208  
8.5442  
1364.6667  
1169.7143  
1022.8324  
682.3333  
584.8571  
546.1337  
511.4162  
409.9341  
341.8343  
341.1667  
273.0669  
255.7081  
204.9671  
170.5833  
136.5334  
102.4835  
85.4586  
131.8065  
127.9374  
102.4015  
81.7664  
58.4230  
40.8832  
34.1768  
33.0161  
32.7582  
27.2770  
23.9883  
20.4416  
19.4743  
18.1846  
16.3791  
15.9922  
13.6385  
40.9639  
34.1223  
33.0105  
32.7540  
20.4819  
19.4985  
18.2157  
16.3770  
15.9922  
13.6404  
10.9465  
8.1885  
21834.67  
18715.43  
16365.32  
10917.33  
9357.714  
8738.139  
8182.659  
6558.946  
5469.349  
5458.667  
4369.070  
4091.330  
3279.474  
2729.333  
2184.534  
1639.736  
1367.338  
2108.904  
2046.998  
1638.424  
1308.262  
934.7680  
654.1312  
546.8288  
528.2576  
524.1312  
436.4320  
383.8128  
327.0656  
311.5888  
290.9536  
262.0656  
255.8752  
218.2160  
655.4224  
545.9568  
528.1680  
524.0640  
327.7104  
311.9760  
291.4512  
262.0320  
255.8752  
218.2464  
175.1440  
131.0160  
104.6752  
87.4016  
2
1
1
1
1
1
1
0
0.5  
0.5  
0.5  
0.5  
0.25  
0.25  
0.25  
0.25  
2
255  
153  
127  
51  
255  
153  
51  
0
Medium  
g
255  
240  
141  
61  
2
20  
2
25  
2
35  
1
197  
61  
50  
1
60  
1
9
62  
1
0
8.2540  
62.5  
75  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.25  
0.25  
0.25  
2
252  
167  
116  
61  
8.1896  
6.8193  
85.3  
100  
105  
112.5  
125  
128  
150  
50  
5.9971  
5.1104  
46  
4.8686  
26  
4.5462  
252  
240  
167  
223  
143  
130  
127  
223  
200  
170  
127  
118  
63  
4.0948  
3.998  
3.4096  
High g  
10.2410  
8.5306  
60  
2
62  
2
8.2526  
62.5  
100  
105  
112.5  
125  
128  
150  
187  
250  
312.5  
375  
2
8.1885  
1
5.1205  
1
4.8746  
1
4.5539  
1
4.0943  
1
3.9981  
1
3.4101  
1
0
2.7366  
0.5  
0.5  
0.25  
127  
50  
2.0471  
6.5504  
1.6356  
6.5422  
5.4587  
255  
1.3657  
5.4626  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
82 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 141.ꢀExample user shift and multiplier configuration for typical scale range...continued  
Device  
type  
Desired  
range  
Desired  
NXP trim  
User sensitivity  
shift factor  
User multiplier value  
Actual  
Actual  
Actual  
Actual  
sensitivity  
(12 bit,  
LSB/g)  
sensitivity  
sensitivity  
sensitivity  
sensitivity  
(g)  
(12 bit,  
LSB/g)  
16 bit register 10 bit Sensor 12 bit Sensor 16 bit Sensor  
Chx_SNS-  
DATAx LSB/g)  
U_SNS_  
Shift  
U_SNS_-  
MULT (HEX)  
Multiplier  
value  
data request, data request, data request,  
SHIFT (HEX)  
Factor  
LSB/g  
LSB/g  
LSB/g  
(Dec)  
500  
4.0940  
10.9465  
0x0  
0.25  
0x7F  
127  
8.1884  
1.0236  
4.0942  
65.5072  
Note:  
Table 141 includes some typical device ranges. Other ranges are possible with the user-selected shift and multiplier values.  
Table 142 shows some example user shift and multiplier values for typical PSI5 full scale  
ranges (± 480, 10 bit):  
Table 142.ꢀExample user shift and multiplier configuration for typical psi5 scale range  
Device  
type  
Desired  
range  
Desired  
sensitivity (10  
bit, LSB/g)  
NXP trim  
NXP trim  
User sensitivity shift factor  
User multiplier value  
Actual  
Actual  
(10 bit, LSB/g) (16 bit, LSB/g)  
sensitivity  
sensitivity  
U_SNS_  
Shift Factor  
U_SNS_ Multiplier  
(g)  
(PSI5 10  
bit, LSB/g)  
(PSI5 16  
bit, LSB/g)  
SHIFT (HEX)  
MULT (HEX)  
value  
(Dec)  
Medium g  
15  
20  
32.0000  
24.0000  
16.0000  
8.0000  
4.0000  
8.0000  
4.0000  
2.0000  
1.0000  
8.2540  
8.2540  
8.2540  
8.2540  
8.2540  
2.7366  
2.7366  
2.7366  
2.7366  
528.256  
528.256  
528.256  
528.256  
528.256  
175.142  
175.142  
175.142  
175.142  
0x3  
0x3  
0x2  
0x1  
0x0  
0x3  
0x2  
0x1  
0x0  
2
2
0xF0  
0x74  
0xF0  
0xF0  
0xF0  
0x76  
0x76  
0x76  
0x76  
240  
116  
240  
240  
240  
118  
118  
118  
118  
31.9844  
23.9883  
15.9922  
7.9961  
3.9980  
7.9961  
3.9980  
1.9990  
0.9995  
2047.00  
1535.25  
1023.50  
511.500  
255.875  
511.749  
255.874  
127.937  
63.9686  
30  
1
60  
0.5  
0.25  
2
120  
60  
High g  
120  
240  
480  
1
0.5  
0.25  
Note:  
Table 142 includes some typical device ranges. Other ranges are possible with the user-selected shift and multiplier values.  
11.2.25 Channel 0 and Channel 1 user configuration #3 registers (CH0_CFG_U3,  
CH1_CFG_U3)  
The Channel 0 and Channel 1 user configuration #3 registers are user programmable  
read/write registers which contain channel-specific configuration information. The  
registers are included in the read/write array error detection.  
These registers are readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
Programming Mode.  
Table 143.ꢀChannel 0 and Channel 1 user configuration #3 registers (CH0_CFG_U3, CH1_CFG_U3)  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$42  
CH0_CFG_U3  
CH1_CFG_U3  
UNSIGN  
EDDATA  
DATATYPE0[1:0]  
DATATYPE1[2:0]  
DATATYPE1[2:0]  
0
MOVEAVG[1:0]  
MOVEAVG[1:0]  
$4A  
UNSIGN  
EDDATA  
DATATYPE0[1:0]  
Unprogrammed OTP Value  
0
0
0
0
0
0
0
11.2.25.1 Unsigned data select bit (UNSIGNEDDATA)  
The unsigned data selection bit selects signed or unsigned data for the register and  
sensor data transmissions as shown in Table 144.  
Table 144.ꢀUnsigned data select bit (UNSIGNEDDATA)  
UNSIGN  
EDDATA  
Register values  
CHx_SNSDATA0 CHx_SNSDATA1  
Channel Sensor Data  
DATATYPE transmissions  
Sensor data (DSI, SPI) Sensor data (PSI5)  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
83 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 144.ꢀUnsigned data select bit (UNSIGNEDDATA)...continued  
UNSIGN  
EDDATA  
Register values  
DATATYPE transmissions  
CHx_SNSDATA0  
CHx_SNSDATA1  
Signed Data  
Sensor data (DSI, SPI)  
Signed Data  
Sensor data (PSI5)  
0
1
Signed Data  
Signed Data  
Unsigned Data  
Unsigned Data  
Unsigned Data  
Temperature Sensor Data  
As specified in Section 11.7.2  
0
1
11.2.25.2 Channel data type 0 selection bits (CHxDATATYPE0)  
The Channel Data Type 0 selection bits select the type of data to be included in the  
SNSDATA0_L and SNSDATA0_H registers for each channel.  
Table 145.ꢀChannel data type 0 selection bits (CHxDATATYPE0)  
CHxDATA  
TYPE0[1]  
CHxDATA  
TYPE0[0]  
Data transmitted  
Data transmitted  
Offset  
Moving  
Interpo  
lation?  
canceled?  
average?  
0
0
CHx Sensor Data Selected by  
OC_-FILT[1:0]  
Selected by  
Selected by  
MOVEA  
VG[1:0]  
MOVEA  
VG[1:0]  
0
1
1
1
0
1
CHx Sensor Data  
No  
Temperature Sensor Data (As specified in Section 11.7.2)  
11.2.25.3 Channel data type 1 selection bits (CHxDATATYPE1)  
The Channel data type 1 selection bits select the type of data to be included in the  
SNSDATA1_L and SNSDATA1_H registers for each channel.  
Table 146.ꢀChannel data type 1 selection bits (CHxDATATYPE1)  
CHxDATA  
TYPE1[2]  
CHxDATA  
TYPE1[1]  
CHxDATA  
TYPE1[0]  
Data transmitted  
Data transmitted  
Offset  
Moving  
Interpolation?  
canceled?  
average?  
0
0
0
0
0
1
CHx Sensor Data  
Selected by  
OC_-FILT[1:0]  
Selected by  
No  
MOVEA  
VG[1:0]  
CHx Sensor Data  
No  
Selected by  
No  
MOVEA  
VG[1:0]  
0
0
1
1
1
0
0
1
0
Temperature Sensor Data (As specified in Section 11.7.2)  
CHx Sensor Data  
CHx Sensor Data  
Selected by  
OC_-FILT[1:0]  
No  
No  
No  
1
0
1
No  
Selected by  
MOVEA  
VG[1:0]  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
84 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 146.ꢀChannel data type 1 selection bits (CHxDATATYPE1)...continued  
CHxDATA  
TYPE1[2]  
CHxDATA  
TYPE1[1]  
CHxDATA  
TYPE1[0]  
Data transmitted  
Data transmitted  
Offset  
Moving  
Interpolation?  
canceled?  
average?  
1
1
1
1
0
1
Temperature Sensor Data (As specified in Section 11.7.2)  
11.2.25.4 Signal chain moving average selection bits (MOVEAVG[1:0])  
The signal chain moving average selection bits determine the input sample period to be  
used for the signal chain moving average filter.  
Table 147.ꢀSignal chain moving average selection bits (MOVEAVG[1:0])  
MOVEAVG[1] MOVEAVG[0]  
Typical signal  
Signal chain  
Interpolation  
sampling period  
moving average  
(Dependent on oscillator)  
(µs)  
0
0
1
1
0
1
0
1
Determined by LPF  
Bypassed  
Enabled  
Disabled  
Disabled  
Disabled  
32  
64  
8 Sample Moving Average  
8 Sample Moving Average  
8 Sample Moving Average  
128  
Changes to these register bits reset the DSP data path. The contents of the SNSDATA_x  
registers are not guaranteed until the DSP has completed initialization as specified in  
Section 10.20. Reads of the SNSDATA_x registers and Sensor Data requests should be  
prevented during this time.  
11.2.26 Channel 0 and Channel 1 user configuration #4 registers (CH0_CFG_U4,  
CH1_CFG_U4)  
The Channel 0 and Channel 1 user configuration #4 registers are user programmable  
read/write registers which contain channel-specific configuration information. These  
registers are included in the read/write array error detection.  
These registers are readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
Programming Mode.  
Table 148.ꢀChannel 0 and Channel 1 user configuration #4 registers (CH0_CFG_U4, CH1_CFG_U4)  
Location  
Bit  
Address  
$43  
Register  
7
6
5
4
3
2
1
0
CH0_CFG_U4  
CH1_CFG_U4  
RESET_OC  
RESET_OC  
0
INVERT  
INVERT  
0
OC_FILT[1:0]  
OC_FILT[1:0]  
PCM  
PCM  
0
ARM_CFG[2:0]  
ARM_CFG[2:0]  
0
$4B  
Unprogrammed OTP Value  
0
0
0
0
11.2.26.1 Reset offset cancellation startup bit (RESET_OC)  
When the reset offset cancellation startup bit is written to logic 1, the offset cancellation  
startup is forced to phase 0 and follows the phase advancement as documented in  
Section 11.6.4.6. The RESET_OC bit is cleared when the offset cancellation phase  
reaches phase 1.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
85 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.26.2 Signal inversion bit (INVERT)  
The signal inversion bit provides the option to invert the polarity of the sensor signals as  
shown in Table 149.  
Table 149.ꢀSignal inversion bit (INVERT)  
INVERT Acceleration Fixed pattern  
sensor data self-test  
Digital self-test  
Analog self-test  
Positive Delta from Offset as  
Temperature  
0
As shown in As specified in  
Digital Self-Test  
Activation results in Self-Test:  
the values specified  
in Section 10.8.  
Self-Test:  
As specified in  
Section 11.7.2  
Section 8.  
specified in Section 10  
Section 11.2.27.1  
Negative  
Delta from Offset inverted  
from the specified values  
in Section 10.8 (Negative  
Values)  
1
Inverted  
Digital Self-  
Positive  
Self-Test:  
Delta from Offset inverted  
from the specified values  
in Section 10.8 (Negative  
Values)  
polarity from  
that shown  
in Section 8  
Test Activation  
results in the two's  
complement of the  
values specified in  
Section 10.8.  
Negative  
Self-Test:  
Delta from Offset as  
specified in Section 10  
11.2.26.3 Offset cancellation filter selection bits (OC_FILT[1:0])  
The offset cancellation filter selection bits provide the option to bypass the offset  
cancellation filter and the rate limiting for the associated channel. See Section 11.6.4.6  
for details regarding offset cancellation.  
Table 150.ꢀOffset cancellation filter selection bits (OC_FILT[1:0])  
Offset cancellation  
OC_FILT[1]  
OC_FILT[0]  
Offset cancellation IIR filter  
rate limiting  
0
0
1
1
0
1
0
1
0.04 Hz  
0.04 Hz  
Enabled  
Bypassed  
Bypassed  
Bypassed  
0.005 Hz  
Bypassed  
11.2.26.4 Arming pin configuration bits (ARM_CFG[2:0]) and PCM range selection bit (PCM)  
The ARM configuration bits (ARM_CFG[2:0]) select the mode of operation for the arming  
pins.  
Table 151.ꢀArming pin configuration bits (ARM_CFG[2:0]) and PCM range selection bit (PCM)  
ARM_  
CFG[2]  
ARM_  
CFG[1]  
ARM_  
CFG[0]  
PCM  
Operating mode  
Output type  
High Impedance  
Driven Low  
Reference  
0
0
0
x
Arm/PCM Output  
Disabled  
0
0
1
0
Arm/PCM Output  
Disabled  
0
0
0
1
1
0
1
x
PCM Output  
Digital Output  
Section 11.8  
Moving Average  
Mode  
Open-Drain, Active High with  
Pull-down Current  
Section 11.9.1  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
86 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 151.ꢀArming pin configuration bits (ARM_CFG[2:0]) and PCM range selection bit (PCM)...continued  
ARM_  
ARM_  
ARM_  
PCM  
Operating mode  
Output type  
Reference  
CFG[2]  
CFG[1]  
CFG[0]  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
x
x
x
x
x
Moving Average  
Mode  
Open-Drain, Active Low with  
Pull-up Current  
Section 11.9.1  
Section 11.9.2  
Section 11.9.2  
Section 11.9.3  
Section 11.9.3  
Count Mode  
Open-Drain, Active High with  
Pull-down Current  
Count Mode  
Open-Drain, Active Low with  
Pull-up Current  
Unfiltered Mode  
Unfiltered Mode  
Open-Drain, Active High with  
Pull-down Current  
Open-Drain, Active Low with  
Pull-up Current  
Note: The arming function is reset on a change to the ARM_CFG bits. This includes the  
downsampling state and all history registers.  
When the PCM output is enabled, a Pulse Code Modulated signal proportional to the  
data selected by the DATATYPE0 selection bits is output on the ARM/PCM pin. See  
Section 11.8 for more information regarding the PCM output.  
11.2.27 Channel 0 and Channel 1 user configuration #5 register (CH0_CFG_U5,  
CH1_CFG_U5)  
The Channel 0 and Channel 1 user configuration #5 registers are user programmable  
read/write registers which contain channel-specific configuration information. These  
registers are included in the read/write array error detection.  
These registers are readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
Programming Mode.  
Table 152.ꢀChannel 0 and Channel 1 user configuration #5 register (CH0_CFG_U5, CH1_CFG_U5)  
Location  
Bit  
Address  
$44  
Register  
7
6
5
4
3
2
1
0
CH0_CFG_U5  
CH1_CFG_U5  
ST_CTRL[3:0]  
ST_CTRL[3:0]  
OC_LIMIT[2:0]  
OC_LIMIT[2:0]  
0
DSP_DIS  
DSP_DIS  
0
$4C  
Unprogrammed OTP Value  
0
0
0
0
0
0
11.2.27.1 Self-test control bits (ST_CTRL[3:0])  
The self-test control bits select one of the various analog and digital self-test features of  
the device as shown in Table 153.  
The self-test control bits are writable in DSI3 command and response mode.  
The self-test control bits are writable in SPI Mode.  
The self-test control bits are writable in I2C Mode.  
The self-test control bits are writable in PSI5 programming mode.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
87 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 153.ꢀSelf-test control bits (ST_CTRL[3:0])  
ST_  
ST_  
ST_  
ST_  
Function  
16-bit  
Effect on  
Effect on  
CTRL[3] CTRL[2] CTRL[1] CTRL[0]  
SNSDATAx  
ST_  
ST_ACTIVE  
Register  
value  
INCMPLT  
bit in Chx_  
STAT  
bit in Chx_  
STAT  
signed  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
DSP writes to the SNS_DATAx_  
X registers as configured in the  
ChxDATATYPEx registers.  
Sensor Data  
No Effect  
Clear when  
Active  
Clear on  
Activation  
Set When  
Active  
Clear on  
Activation  
Set When  
Active  
Clear on  
Activation  
Set When  
Active  
DSP write to registers inhibited.  
0x0000  
0xAAAA  
Clear on  
Activation  
Set When  
Active  
Clear on  
Activation  
Set When  
Active  
0x5555  
Clear on  
Activation  
Set When  
Active  
0xFFFF  
Clear on  
Activation  
Set When  
Active  
Positive Analog Self-test - Low  
Negative Analog Self-test - Low  
Positive Analog Self-test - High  
Negative Analog Self-test - High  
Digital Self-test  
Sensor Data  
Clear on  
Activation  
Set When  
Active  
Clear on  
Activation  
Set When  
Active  
Clear on  
Activation  
Set When  
Active  
Clear on  
Activation  
Set When  
Active  
Reference  
Clear on  
Activation  
Set When  
Active  
Section 10.8  
Clear on  
Activation  
Set When  
Active  
Clear on  
Activation  
Set When  
Active  
Clear on  
Activation  
Set When  
Active  
11.2.27.2 Offset cancellation test limit bits (OC_LIMIT[2:0])  
The offset cancellation test limit bits set the offset limits for the offset test at the end of  
the PSI5 self-test documented in Section 11.6.2.5. The test limits are set as shown in  
Table 154.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
88 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 154.ꢀOffset cancellation test limit bits (OC_LIMIT[2:0])  
OC_LIMIT[2:0]  
Post PSI5 self-test offset limits  
The post PSI5 self-test offset test is disabled.  
± 2 LSB, 10-bit  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
± 4 LSB, 10-bit  
± 6 LSB, 10-bit  
± 8 LSB, 10-bit  
± 10 LSB, 10-bit  
± 12 LSB, 10-bit  
± 14 LSB, 10-bit  
11.2.27.3 DSP disable bit (DSP_DIS)  
The DSP disable bit provides the option for the user to disable the clocking to the DSP if  
sensor data from the associated channel is not used.  
Table 155.ꢀDSP disable bit (DSP_DIS)  
DSP_DIS  
DSP status  
0
1
DSP operational as specified  
DSP clocking disabled. Sensor data is readable but will not be updated by the DSP  
even when self-test is enabled  
Care must be taken to ensure the DSP is not disabled for sources that are enabled.  
11.2.28 Channel 0 and Channel 1 arming configuration registers (CH0_ARM_CFG,  
CH1_ARM_CFG)  
The arming configuration registers contain configuration information for the arming  
function. The values in these registers are only relevant if the arming function is operating  
in moving average mode, or count mode.  
Note: The arming function is reset on a change to the CHx_ARM_CFG bits. This  
includes the downsampling state and all history registers.  
These registers can be written during initialization but are locked once the ENDINIT bit  
is set. Refer to Section 11.2.6. The registers are included in the read/write array error  
detection.  
Table 156.ꢀChannel 0 and Channel 1 arming configuration registers (CH0_ARM_CFG, CH1_ARM_CFG)  
Location  
Bit  
Address  
$45  
Register  
7
6
5
4
3
2
1
0
CH0_ARM_CFG  
CH1_ARM_CFG  
ARM_DS[1:0]  
ARM_DS[1:0]  
ARM_PS[1:0]  
ARM_PS[1:0]  
ARM_WS_N[1:0]  
ARM_WS_N[1:0]  
ARM_WS_P[1:0]  
ARM_WS_P[1:0]  
$4D  
Unprogrammed OTP Value  
0
0
0
0
0
0
0
0
11.2.28.1 Arming function down sampling selection bits (ARM_DS[1:0])  
The arming function down sampling selection bits select the down sample rate for the  
arming function. See Section 11.9.4.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
89 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 157.ꢀArming function down sampling selection bits (ARM_DS[1:0])  
ARM_  
DS[1]  
ARM_  
DS[0]  
Down sampling  
0
0
1
1
0
1
0
1
Provide every Sensor Data Request sample to the arming function for the relevant channel.  
Provide every other Sensor Data Request sample to the arming function for the relevant channel.  
Provide every fourth Sensor Data Request sample to the arming function for the relevant channel.  
Provide every eighth Sensor Data Request sample to the arming function for the relevant channel.  
11.2.28.2 Arming pulse stretch (ARM_PS[1:0])  
The ARM_PS[1:0] bits set the programmable pulse stretch time for the arming outputs.  
See Section 11.9 for more details regarding the arming function. Pulse stretch times are  
derived from the internal oscillator, so the tolerance on this oscillator applies.  
Table 158.ꢀArming pulse stretch (ARM_PS[1:0])  
ARM_PS[1]  
ARM_PS[0]  
Pulse stretch time (typical oscillator)  
0 ms  
0
0
1
1
0
1
0
1
128.000 ms - 130.048 ms  
512.000 ms - 514.048 ms  
2048.000 ms - 2050.048 ms  
11.2.28.3 Arming window size (ARM_WS_N[1:0], A_WS_P[1:0])  
The ARM_WS_N[1:0] and ARM_WS_P[1:0] bits have a different function depending on  
the state of the ARM_CFG bits in the CHx_CFG_U4 registers. See Section 11.9 for more  
details regarding the arming function. If the arming function is set to moving average  
mode, the ARM_WS bits set the number of sensor samples used for the arming function  
moving aver-age. The number of samples is set independently for each channel and  
polarity. If the arming function is set to count mode, the ARM_WS bits set the sample  
count limit for the arming function. The sample count limit is set independently for each  
channel.  
Table 159.ꢀPositive arming window size definitions (moving average mode)  
ARM_WS_P[1]  
ARM_WS_P[0]  
Positive window size  
0
0
1
1
0
1
0
1
2
4
8
16  
Table 160.ꢀNegative arming window size definitions (moving average mode)  
ARM_WS_N[1]  
ARM_WS_N[0]  
Negative window size  
0
0
1
1
0
1
0
1
2
4
8
16  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
90 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 161.ꢀArming count limit definitions (count mode)  
ARM_WS_N[1]  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
ARM_WS_N[0]  
Don't Care  
Don't Care  
Don't Care  
Don't Care  
ARM_WS_P[1]  
ARM_WS_P[0]  
Sample count limit  
0
0
1
1
0
1
0
1
1
3
7
15  
11.2.29 Arming threshold registers (CHx_ARM_T_P, CHx_ARM_T_N)  
The arming threshold registers contain the positive and negative thresholds to be used  
by the arming function for each channel. Refer to Section 11.9 for more details regarding  
the arming function.  
These registers can be written during initialization but are locked once the ENDINIT bit  
is set. Refer to Section 11.2.6. The registers are included in the read/write array error  
detection.  
Table 162.ꢀArming threshold registers (CHx_ARM_T_P, CHx_ARM_T_N)  
Location  
Bit  
Address  
$46  
Register  
7
6
5
4
3
2
1
0
CH0_ARM_T_P  
CH0_ARM_T_N  
CH1_ARM_T_P  
CH1_ARM_T_N  
ARM_T_P[7:0]  
ARM_T_N[7:0]  
ARM_T_P[7:0]  
ARM_T_N[7:0]  
$47  
$4E  
$4F  
Unprogrammed OTP Value  
0
0
0
0
0
0
0
0
The values programmed into the threshold registers are the threshold values used for the  
arming function as described in Section 11.9. The threshold registers hold independent  
unsigned 8-bit values for each channel and polarity. Each threshold increment is  
equivalent to 1 output LSB, 10-bit. Table 163 shows examples of some threshold register  
values and the corresponding threshold.  
Table 163.ꢀExample threshold register values and corresponding threshold  
Device  
Range  
Sensitivity Arming  
Range  
of arm  
Programmed thresholds  
thresh-old  
resolution threshold  
(12 bit,  
LSB/g)  
Positive  
Negative  
(Decimal)  
Positive  
threshold  
Negative  
threshold  
(g)  
(Decimal)  
(10 bit,  
LSB/g)  
(g)  
(g)  
(g)  
125  
62  
50  
25  
16  
16.3760  
33.0161  
40.9400  
81.8800  
127.9375  
4.0940  
8.2540  
62.2863  
30.8940  
24.9145  
12.4573  
7.9726  
40  
12  
24  
61  
61  
95  
10  
15  
24  
12  
7
–3  
–3  
–6  
–3  
–3  
123  
245  
245  
223  
10.2350  
20.4700  
31.9844  
If either the positive or negative threshold for one channel is programmed to 0x00,  
comparisons are disabled for only that polarity. The arming function still operates for the  
opposite polarity. If both the positive and negative arming thresholds for one channel are  
programmed to 0x00, the arming function for the associated channel is disabled and the  
output pin is set to high impedance, regardless of the value of the ARM_CFG bits in the  
CHx_CFG_U4 register.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
91 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.30 Offset cancellation user configuration register (OC_PHASE_CFG)  
The offset cancellation user configuration register is a user programmable read/write  
register which contains offset cancellation configuration information. The register is  
included in the read/write array error detection.  
This register is readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
Programming Mode.  
Table 164.ꢀOffset cancellation user configuration register (OC_PHASE_CFG)  
Location  
Register  
OC_PHASE_CFG CH0_OCFINAL CH1_OCFINAL  
Bit  
Address  
7
6
5
4
3
2
1
0
$50  
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
0
Unprogrammed OTP Value  
0
0
11.2.30.1 Channel 0 and Channel 1 offset cancellation final phase control bit (CH0_OCFINAL,  
CH1_OCFINAL)  
The channel 0 offset cancellation final phase control bit provides the option for the user to  
control the final offset cancellation phase for normal mode as shown in Table 165.  
Table 165.ꢀChannel 0 offset cancellation final phase control bit (CH0_OCFINAL,  
CH1_OCFINAL)  
CH0_  
Channel 0 offset cancellation final phase for normal mode  
OCFINAL  
0
1
Phase 6 (a or b) as specified in the table in Section 11.6.4.6  
Phase 5 as specified in the table in Section 11.6.4.6  
(Rate Limiting is always bypassed)  
The channel 1 offset cancellation final phase control bit provides the option for the user to  
control the final offset cancellation phase for normal mode as shown in Table 166.  
Table 166.ꢀChannel 1 offset cancellation final phase control bit (CH0_OCFINAL,  
CH1_OCFINAL)  
CH1_  
Channel 1 offset cancellation final phase for normal mode  
OCFINAL  
0
1
Phase 6 (a or b) as specified in the table in Section 11.6.4.6  
Phase 5 as specified in the table in Section 11.6.4.6  
(Rate Limiting is always bypassed)  
11.2.31 User offset calibration registers (Chx_U_OFFSET_L, Chx_U_OFFSET_H)  
The user offset calibration registers contain a user programmable 16-bit signed offset  
correction value for the sensor data.  
These registers can be written during initialization but are locked once the ENDINIT bit  
is set. Refer to Section 11.2.6. The registers are included in the read/write array error  
detection.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
92 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 167.ꢀUser offset calibration registers (Chx_U_OFFSET_L, Chx_U_OFFSET_H)  
Location  
Bit  
Address  
$55  
Register  
7
6
5
4
3
2
1
0
CH0_U_OFFSET_L  
CH0_U_OFFSET_H  
CH1_U_OFFSET_L  
CH1_U_OFFSET_H  
CH0_U_OFFSET[7:0]  
CH0_U_OFFSET[15:8]  
CH1_U_OFFSET[7:0]  
CH1_U_OFFSET[15:8]  
$56  
$5D  
$5E  
Unprogrammed OTP Value  
0
0
0
0
0
0
0
0
The value programmed into the user offset calibration register is directly added to the  
sensor data after the user sensitivity scaling but before the offset cancellation. See  
Section 11.6.4.9 for scaling of the CHx_U_OFFSET value. The CHx-_U_OFFSET  
register has the same resolution as the sensor value in the SNSDATAx registers. A 1  
LSB change in the CHx-_U_OFFSET register will result in a 1 LSB change to the value in  
the SNSDATAx registers.  
Note: The user offset calibration register range is larger than the full scale range of the  
output. The user must take care to ensure that the value stored in this register does not  
result in a compressed output range or a railed output.  
11.2.32 Channel-specific status register (CH0_STAT, CH1_STAT)  
The channel-specific status registers are read-only registers which contain sensor data-  
specific status information.  
These registers are readable in DSI3 mode, SPI mode, I2C mode or PSI5 programming  
mode.  
Table 168.ꢀChannel-specific status register (CH0_STAT, CH1_STAT)  
Location  
Bit  
Address  
$60  
Register  
7
6
5
4
3
2
1
0
CH0_STAT  
CH1_STAT  
SIGNALCLIP  
SIGNALCLIP  
0
OCPHASE[2:0]  
OCPHASE[2:0]  
0
ST_INCMPLT  
ST_INCMPLT  
1
ST_ACTIVE  
ST_ACTIVE  
0
OFFSET_ERR  
OFFSET_ERR  
0
ST_ERROR  
ST_ERROR  
0
$70  
Reset Value  
0
0
11.2.32.1 Signal clipped status bit (SIGNALCLIP)  
In DSI3 mode, SPI mode, and I2C mode, the signal clipped status bit is set if the output  
of the sinc filter reaches either the maximum or minimum value. The SIGNALCLIP bit is  
cleared on a read of the CHx_STAT register through any communication interface or on a  
data transmission that includes the error in the status field.  
In PSI5 mode, the SIGNALCLIP bit has no impact on device operation or performance.  
11.2.32.2 Offset cancellation phase status (OCPHASE[2:0])  
The offset cancellation phase status bits indicate the current phase of the offset  
cancellation filter as described in Section 11.6.4.6.  
Table 169.ꢀOffset cancellation phase status (OCPHASE[2:0])  
OCPHA  
SE[2:0]  
Offset cancellation startup phase  
Offset low-pass filter frequency  
(Hz)  
000  
001  
010  
Phase 0  
Phase 1  
Phase 2  
163.8  
40.96  
10.24  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
93 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 169.ꢀOffset cancellation phase status (OCPHASE[2:0])...continued  
OCPHA  
SE[2:0]  
Offset cancellation startup phase  
Offset low-pass filter frequency  
(Hz)  
2.560  
0.640  
0.160  
0.04  
011  
100  
101  
110  
111  
Phase 3  
Phase 4  
Phase 5  
Phase 6 / Normal Mode  
Not Applicable  
11.2.32.3 Self-test incomplete (ST_INCMPLT)  
The self-test incomplete bit is set after a device reset and is cleared when one of the  
analog or digital self-tests modes are enabled in the ST_CTRL register (ST_CTRL[3] =  
logic 1 | ST_CTRL[2] = logic 1 | | ST_CTRL[1] = logic 1 | | ST_CTRL[0] = logic 1) or the  
PSI5 internal self-test procedure has started.  
Table 170.ꢀSelf-test incomplete (ST_INCMPLT)  
ST_  
Condition  
INCMPLT  
0
1
An Analog or Digital Self-test has been activated since the last reset  
No Analog or Digital Self-test has not been activated since the last reset AND the PSI5 internal self-test  
procedure has not completed  
11.2.32.4 Self-test active flag (ST_ACTIVE)  
The self-test active bit is set if any self-test mode is currently active, including the PSI5  
internal self-test or a self-test voltage is applied to the transducer. The self-test active  
bit is cleared when no self-test mode is active and no self-test voltage is applied to the  
transducer.  
ST_ACTIVE = ST_CTRL[3] | ST_CTRL[2] |ST_CTRL[1] | ST_CTRL[0] | (self-test voltage  
applied to transducer)  
11.2.32.5 Offset error flag (OFFSET_ERR)  
The offset error flag is set if the sensor signal reaches the offset limit specified in  
Section 10.6. The OFFSET_ERR bit is cleared on a read of the CHx_STAT register  
through any communication interface or on a data transmission that includes the error in  
the status field. See Section 11.2.15.2 for details on a method to disable the automatic  
clearing of this error in PSI5 mode.  
Table 171.ꢀOffset error flag (OFFSET_ERR)  
OFFSET_ERR  
Error condition  
0
1
No error detected  
Offset error detected  
11.2.32.6 Self-test error flag (ST_ERROR)  
The self-test error flag is set if the PSI5 startup self-test fails as described in Section  
6.6.2.5. This bit can only be cleared by a device reset.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
94 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.33 Device status copy register (DEVSTAT_COPY)  
The device status copy register is a read-only register which contains a copy of the  
device status information contained in the DEVSTAT register. See Section 11.2.2 for  
details regarding the DEVSTAT register contents.  
This register is readable in DSI3 mode, SPI mode, I2C mode or PSI5 programming mode.  
A read of the DEVSTAT_COPY register has the same effect as a read of the DEVSTAT  
register.  
Table 172.ꢀDevice status copy register (DEVSTAT_COPY)  
Location  
Register  
DEVSTAT_COPY  
Bit  
Address  
7
6
5
4
3
2
1
0
$61  
CH0_ERR  
CH1_ERR  
COMM_ERR  
MEMTEMP_  
ERR  
SUPPLY_ERR  
TESTMODE  
DEVRES  
DEVINIT  
11.2.34 Sensor data #0 registers (CHx_SNSDATA0_L, CHx_SNSDATA0_H)  
The sensor data #0 registers are read-only registers which contain the 16-bit sensor  
data. The data type for the sensor data #0 registers is selected by the DATATYPE0 bits  
in the CHx_CFG_U3 register. See Section 11.2.25.2. See Section 11.6.4.9 for details  
regarding the 16-bit sensor data.  
These registers are readable in DSI3 mode, SPI mode, I2C mode or PSI5 Programming  
Mode. In I2C mode, the SNSDA-TA0_H register value is latched on a read of the  
SNSDATA0_L register value until the SNSDATA0_H register is read. To avoid  
data mismatch, it is required that the user always read the registers in sequence,  
SNSDATA0_L register first, followed by the SNSDATA0_H register.  
Table 173.ꢀSensor data #0 registers (CHx_SNSDATA0_L, CHx_SNSDATA0_H)  
Location  
Bit  
Address  
$62  
Register  
7
6
5
4
3
2
1
0
CH0_SNSDATA0_L  
CH0_SNSDATA0_H  
CH1_SNSDATA0_L  
CH1_SNSDATA0_H  
Reset Value  
CH0_SNSDATA0[7:0]  
CH0_SNSDATA0[15:8]  
CH1_SNSDATA0[7:0]  
CH1_SNSDATA0[15:8]  
$63  
$72  
$73  
0
0
0
0
0
0
0
0
11.2.35 Sensor data #1 registers (CHx_SNSDATA1_L, CHx_SNSDATA1_H)  
The sensor data #1 registers are read-only registers which contain the 16-bit sensor  
data. The data type for the sensor data #1 registers is selected by the DATATYPE1 bits  
in the CHx_CFG_U3 register. See Section 11.2.25.3. See Section 11.6.4.9 for details  
regarding the 16-bit sensor data.  
These registers are readable in DSI3 mode, SPI mode, I2C mode or PSI5 programming  
mode. In I2C mode, the SNSDA-TA1_H register value is latched on a read of the  
SNSDATA1_L register value until the SNSDATA1_H register is read. To avoid  
data mismatch, it is required that the user always read the registers in sequence,  
SNSDATA1_L register first, followed by the SNSDATA1_H register.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
95 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 174.ꢀSensor data #1 registers (CHx_SNSDATA1_L, CHx_SNSDATA1_H)  
Location  
Bit  
Address  
$64  
Register  
7
6
5
4
3
2
1
0
CH0_SNSDATA1_L  
CH0_SNSDATA1_H  
CH1_SNSDATA1_L  
CH1_SNSDATA1_H  
Reset Value  
CH0_SNSDATA1[7:0]  
CH0_SNSDATA1[15:8]  
CH1_SNSDATA1[7:0]  
CH1_SNSDATA1[15:8]  
$65  
$74  
$75  
0
0
0
0
0
0
0
0
11.2.36 Channel-specific factory configuration register (CHx_CFG_F)  
The channel-specific configuration registers are factory programmable OTP registers  
which contain channel specific configuration information. These registers are included in  
the factory programmed OTP array error detection.  
These registers are readable in DSI3 mode, SPI mode, I2C mode or PSI5 Programming  
Mode when ENDINIT is not set. See Section 11.2.10 for details on the register read  
process for this register.  
Table 175.ꢀChannel-specific factory configuration register (CHx_CFG_F)  
Location  
Bit  
Address Register  
7
6
5
4
3
2
1
0
$A0  
CH0_  
CFG_F  
DEV_RANGE[3:0]  
RESE  
RVED  
RESE  
RVED  
AXIS[1:0]  
AXIS[1:0]  
$B0  
CH1_  
CFG_F  
DEV_RANGE[3:0]  
RESE  
RVED  
RESE  
RVED  
11.2.36.1 Range indication bits (RANGE[3:0])  
The range indication bits indicate the full scale range of the channel as shown in  
Table 176.  
Table 176.ꢀRange indication bits (RANGE[3:0])  
RANGE[3]  
RANGE[2]  
RANGE[1]  
RANGE[0]  
Acceleration range  
RESERVED  
RESERVED  
Medium  
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
RESERVED  
High  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
96 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 176.ꢀRange indication bits (RANGE[3:0])...continued  
RANGE[3]  
RANGE[2]  
RANGE[1]  
RANGE[0]  
Acceleration range  
RESERVED  
1
1
1
1
1
1
0
1
1
1
0
1
RESERVED  
RESERVED  
11.2.36.2 Axis indication bits (AXIS[1:0])  
The axis indication bits indicate the axes of sensitivity for the channel as shown in  
Table 177.  
Table 177.ꢀAxis indication bits (AXIS[1:0])  
AXIS[1]  
AXIS[0]  
Axis of sensitivity  
0
0
1
1
0
1
0
1
X
Y
Z
RESERVED  
11.2.37 Self-test deflection storage registers  
The self-test deflection registers are factory programmable OTP registers which contain  
the nominal self-test values for the various self-tests at 25 °C. These registers are  
included in the factory programmed OTP array error detection.  
These registers are readable in DSI3 mode, SPI mode, I2C mode or PSI5 Programming  
Mode when ENDINIT is not set. See Section 11.2.10 for details on the register read  
process for these registers.  
Table 178.ꢀSelf-test deflection storage registers  
Location  
Bit  
Address  
$A2  
$A3  
$A4  
$A5  
$A6  
$A7  
$A8  
$A9  
$B2  
$B3  
$B4  
$B5  
$B6  
$B7  
$B8  
$B9  
Register  
7
6
5
4
3
2
1
0
CH0_STL_P_L  
CH0_STL_P_H  
CH0_STH_P_L  
CH0_STH_P_H  
CH0_STL_N_L  
CH0_STL_N_H  
CH0_STH_N_L  
CH0_STH_N_H  
CH1_STL_P_L  
CH1_STL_P_H  
CH1_STH_P_L  
CH1_STH_P_H  
CH1_STL_N_L  
CH1_STL_N_H  
CH1_STH_N_L  
CH1_STH_N_H  
CH0_STL_P[7:0]  
CH0_STL_P[15:8]  
CH0_STH_P[7:0]  
CH0_STH_P[15:8]  
CH0_STL_N[7:0]  
CH0_STL_N[15:8]  
CH0_STH_N[7:0]  
CH0_STH_N[15:8]  
CH1_STL_P[7:0]  
CH1_STL_P[15:8]  
CH1_STH_P[7:0]  
CH1_STH_P[15:8]  
CH1_STL_N[7:0]  
CH1_STL_N[15:8]  
CH1_STH_N[7:0]  
CH1_STH_N[15:8]  
The self-test values are positive and negative deflection values, measured at the factory,  
and factory programmed for each device. The stored value is equal to one half of the  
absolute value of the difference be tween the factory measured Chx-_SNSDATA0  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
97 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
register value with the analog self-test active and the factory measured CHx_SNSDATA0  
register value for off-set at nominal temperature (Data is aligned to the 12-bit sensor  
data). Both the self-test and offset values are measured with the user scaling set to 1:  
U_SNS_SHIFT[1:0] = 0x2 and U_SNS_MULT[7:0] = 0x00.  
CH0_STL_P = 0.5 * [CH0_SNSDATA0ST_CTRL=0x8 - CH0_SNSDATA0ST_CTRL=0x0  
CH0_STL_N = 0.5 * [CH0_SNSDATA0ST_CTRL=0x0 - CH0_SNSDATA0ST_CTRL=0x9  
CH0_STH_P = 0.5 * [CH0_SNSDATA0ST_CTRL=0xA - CH0_SNSDATA0ST_CTRL=0x0  
CH0_STH_N = 0.5 * [CH0_SNSDATA0ST_CTRL=0x0 - CH0_SNSDATA0ST_CTRL=0xB  
CH1_STL_P = 0.5 * [CH1_SNSDATA0ST_CTRL=0x8 - CH1_SNSDATA0ST_CTRL=0x0  
]
]
]
]
]
CH1_STL_N = 0.5 * [CH1_SNSDATA0ST_CTRL=0x0 - CH1_SNSDATA0ST_CTRL=0x9  
]
CH1_STH_P = 0.5 * [CH1_SNSDATA0ST_CTRL=0xA - CH1_SNSDATA0ST_CTRL=0x0  
]
CH1_STH_N = 0.5 * [CH1_SNSDATA0ST_CTRL=0x0 - CH1_SNSDATA0ST_CTRL=0xB  
]
Two self-test values are stored and available for comparison: a high self-test value and a  
low self-test value. The self-test value is controlled by the user via the ST_CTRL[3:0] bits  
in the CHx_CFG_U5 registers as described in Section 11.2.27.1.  
When self-test is activated, the sensor data can be compared to the values in the  
appropriate registers. The difference from the measured deflection value, and the  
nominal deflection value stored in the register shall not fall outside the self-test accuracy  
limits specified in Section 10.7 (ΔSTACC). See Section 11.6.2 for more details on  
calculating the self-test limits.  
11.2.38 IC type register  
The IC type register is a factory programmable OTP register which contains the IC type  
as defined in Table 179. This register is included in the factory programmed OTP array  
error detection.  
Table 179.ꢀIC type register  
Location  
Bit  
Address  
Register  
ICTYPEID  
7
6
5
4
3
2
1
0
$C0  
0
0
0
0
0
0
1
1
11.2.39 IC revision register  
The IC revision register is a factory programmable OTP register which contains the IC  
revision. The upper nibble contains the main IC revision. The lower nibble contains the  
sub IC revision. This register is included in the factory programmed OTP array error  
detection.  
This register is readable in DSI3 mode, SPI mode, I2C mode or PSI5 programming mode  
when ENDINIT is not set. See Section 11.2.10 for details on the register read process for  
this register.  
Table 180.ꢀIC revision register  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$C1  
ICREVID  
ICREVID[7:0]  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
98 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.40 IC manufacturer identification register  
The IC manufacturer identification register is a factory programmable OTP register  
which identifies NXP as the IC manufacturer. This register is included in the factory  
programmed OTP array error detection.  
This register is readable in DSI3 mode, SPI mode, I2C mode or PSI5 Programming Mode  
when ENDINIT is not set. See Section 11.2.10 for details on the register read process for  
this register.  
Table 181.ꢀIC manufacturer identification register  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$C2  
ICMFGID  
0
0
0
0
0
0
1
0
11.2.41 Part number register  
The part number registers are factory programmed OTP registers which include the  
numeric portion of the device part number. These registers are included in the factory  
programmed OTP array error detection.  
These registers are readable in DSI3 mode, SPI mode, I2C mode or PSI5 Programming  
Mode when ENDINIT is not set. See Section 11.2.10 for details on the register read  
process for these registers.  
Table 182.ꢀPart number register  
Location  
Bit  
Address  
$C4  
Register  
PN0  
7
6
5
4
3
2
1
0
PN0[7:0]  
PN1[7:0]  
$C5  
PN1  
Table 183.ꢀPart number: Protocol type  
PN1[7:4]  
Pinout  
Protocol type  
User Selectable  
SPI32  
0
Standard  
1
2
3
DSI3  
PSI5  
4
I2C  
5 - 7  
8
RESERVED  
User Selectable  
SPI32  
Alternative  
9
10  
DSI3  
11  
PSI5  
12  
I2C  
13 - 15  
RESERVED  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
99 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 184.ꢀPart number: Axis  
PN1[3:0]  
Channel 0 axis  
Channel 1 axis  
0
RESERVED  
1
RESERVED  
RESERVED  
2
3
X
X
Y
Z
4
5
6
RESERVED  
RESERVED  
7
Y
Z
8 - 15  
RESERVED  
Table 185.ꢀPart number: Channel 0 range  
PN0[7:4]  
Channel 0 range  
0
RESERVED  
RESERVED  
Medium g  
High g  
1
2
3
4 - 15  
RESERVED  
Table 186.ꢀPart number: Channel 1 range  
PN0[3:0]  
Channel 1 range  
RESERVED  
RESERVED  
Medium g  
0
1
2
3
High g  
4 - 15  
RESERVED  
11.2.42 Device serial number registers  
The serial number registers are factory programmed OTP registers which include the  
unique serial number of the device. Serial numbers begin at 1 for all produced devices  
in each lot and are sequentially assigned. Lot numbers begin at 1 and are sequentially  
assigned. No lot will contain more devices than can be uniquely identified by the 14-bit  
serial number. Depending on lot size and quantities, all possible lot numbers and serial  
numbers may not be assigned. These registers are included in the factory programmed  
OTP array error detection.  
These registers are readable in DSI3 mode, SPI mode, I2C mode or PSI5 programming  
mode when ENDINIT is not set. See Section 11.2.10 for details on the register read  
process for these registers.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
100 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 187.ꢀDevice serial number registers  
Location  
Bit  
Address  
$C6  
Register  
SN0  
7
6
5
4
3
2
1
0
SN[7:0]  
SN[15:8]  
SN[23:16]  
SN[31:24]  
$C7  
SN1  
$C8  
SN2  
$C9  
SN3  
$CA  
SN4  
SN[39:36] = DEVICE_REV[3:0]  
SN[35:32]  
Table 188 shows an example serial number decoding:  
Table 188.ꢀExample serial number decoding  
Serial number  
Full serial number  
Stored Data Format  
Serial Number Mapping  
Example SN (Hex)  
SN4  
SN3  
SN2  
SN1  
SN0  
Serial Number within a lot  
Test ID  
1
Lot Number  
0
0
0
5
2
0
0
5
0
Example SN (Binary)  
Example Device Rev  
Example Lot Number  
Example Serial Number  
00  
01  
00  
00  
00  
00  
00  
00  
01  
01  
00  
10  
00  
00  
00  
00  
01  
01  
00  
00  
4'b0000 = 0x0 = 0d  
4'b00 00 00 00 00 00 01 01 00 10 00 = 0x000148 = 328d  
14'b00 00 00 01 01 00 00 = 0x0050 = 80d  
11.2.43 ASIC wafer ID registers  
The ASIC wafer ID registers are factory programmed OTP registers which include the  
wafer number, wafer X, and Y coordinates and the wafer lot number for the device ASIC.  
These registers are included in the factory programmed OTP array error detection.  
These registers are readable in DSI3 mode, SPI mode, I2C mode or PSI5 programming  
mode when ENDINIT is not set. See Section 11.2.10 for details on the register read  
process for these registers.  
Table 189.ꢀASIC wafer ID registers  
Location  
Bit  
Address  
$CB  
Register  
7
6
5
4
3
2
1
0
ASICWFR#  
ASICWFR_X  
ASICWFR_Y  
ASICWLOT_L  
ASICWLOT_H  
ASICWFR#[7:0]  
$CC  
ASICWFR_X[7:0]  
ASICWFR_Y[7:0]  
ASICWLOT_L[7:0]  
ASICWLOT_H[7:0]  
$CD  
$D0  
$D1  
11.2.44 Transducer wafer ID registers  
The transducer wafer ID registers are factory programmed OTP registers which include  
the wafer number, wafer X, and Y coordinates and the wafer lot number for the device  
transducers. The upper 3 bits of the TRNSWFR# register include a transducer and  
assembly revision counter. These registers are included in the factory programmed OTP  
array error detection.  
These registers are readable in DSI3 mode, SPI mode, I2C mode or PSI5 programming  
mode when ENDINIT is not set. See Section 11.2.10 for details on the register read  
process for these registers.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
101 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 190.ꢀTransducer wafer ID registers  
Location  
Bit  
Address  
$D2  
Register  
7
6
5
4
3
2
1
0
TRNS1WFR_X  
TRNS1WFR_Y  
TRNS1LOT_L  
TRNS1LOT_H  
TRNS1WFR#  
TRNS1WFR_X[7:0]  
TRNS1WFR_Y[7:0]  
TRNS1LOT_L[7:0]  
TRNS1LOT_H[7:0]  
$D3  
$D4  
$D5  
$DA  
TRNS_ASSY_REV[2:0]  
TRNS1WFR#[4:0]  
11.2.45 User data registers (USERDATA_0 - USERDATA_E)  
User data registers are user programmable OTP registers which contain user-specific  
information. These registers are included in the user programmed OTP array error  
detection.  
These registers are readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
Programming Mode when ENDINIT is not set. See Section 11.2.10 for details on the  
register read process for these registers.  
Table 191.ꢀUser data registers (USERDATA_0 - USERDATA_E)  
Location  
Bit  
Address  
$E0  
Register  
7
6
5
4
3
2
1
0
USERDATA_0  
USERDATA_1  
USERDATA_2  
USERDATA_3  
USERDATA_4  
USERDATA_5  
USERDATA_6  
USERDATA_7  
USERDATA_8  
USERDATA_9  
USERDATA_A  
USERDATA_B  
USERDATA_C  
USERDATA_D  
USERDATA_E  
USERDATA_0[7:0]  
USERDATA_1[7:0]  
USERDATA_2[7:0]  
USERDATA_3[7:0]  
USERDATA_4[7:0]  
USERDATA_5[7:0]  
USERDATA_6[7:0]  
USERDATA_7[7:0]  
USERDATA_8[7:0]  
USERDATA_9[7:0]  
USERDATA_A[7:0]  
USERDATA_B[7:0]  
USERDATA_C[7:0]  
USERDATA_D[7:0]  
USERDATA_E[7:0]  
$E1  
$E2  
$E3  
$E4  
$E5  
$E6  
$E7  
$E8  
$E9  
$EA  
$EB  
$EC  
$ED  
$EE  
Unprogrammed OTP Value  
0
0
0
0
0
0
0
0
11.2.45.1 PSI5 initialization phase 2 data transmissions of user data  
In PSI5 Mode, the values of the user data registers are transmitted in Initialization phase  
2 as shown in Table 192. See Section 13.4.2.1 for details on the PSI5 Initialization Phase  
2 Transmissions.  
Table 192.ꢀPSI5 initialization phase 2 data transmissions of user data  
Location  
Bit  
Address  
$E0  
Register  
7
6
5
4
3
2
1
0
USERDATA_0  
USERDATA_1  
USERDATA_2  
USERDATA_3  
USERDATA_4  
USERDATA_5  
Channel 1 F1: D1  
Channel 0 F1: D1  
$E1  
Channel 0 F3: D5  
Channel 0 F4: D7  
Channel 0 F5: D9  
Channel 0 F6: D11  
Channel 0 F7: D13  
Channel 0 F3: D4  
Channel 0 F4: D6  
Channel 0 F5: D8  
Channel 0 F6: D10  
Channel 0 F7: D12  
$E2  
$E3  
$E4  
$E5  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
102 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 192.ꢀPSI5 initialization phase 2 data transmissions of user data...continued  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$E6  
USERDATA_6  
USERDATA_7  
USERDATA_8  
PSI5_INIT2_D19 = 0, Channel 0 F9: D32  
Channel 0 F7: D14  
PSI5_INIT2_D19 = 1, Ch 0 F9: D32 = Ch 0 F9: D19 = Ch 1 F9: D19  
$E7  
$E8  
Channel 0 F8: D16  
Channel 0 F8: D15 = Channel 1 F8: D15  
Channel 0 F8: D17 = Channel 1 F8: D17  
Channel 0 F8: D16 = Channel 1 F8: D16  
Channel 0 F8: D18  
Channel 0 F8: D18 = Channel 1 F8: D18  
$E9  
$EA  
$EB  
$EC  
$ED  
$EE  
USERDATA_9  
USERDATA_A  
USERDATA_B  
USERDATA_C  
USERDATA_D  
USERDATA_E  
Channel 1 F3: D5  
Channel 1 F4: D7  
Channel 1 F5: D9  
Channel 1 F6: D11  
Channel 1 F7: D13  
Channel 1 F3: D4  
Channel 1 F4: D6  
Channel 1 F5: D8  
Channel 1 F6: D10  
Channel 1 F7: D12  
Channel 1 F7: D14  
PSI5_INIT2_D19 = 0, Channel 1 F9: D32  
PSI5_INIT2_D19 = 1, Ch 1 F9: D32 = Ch 0 F9: D20 = Ch 1 F9: D20  
Unprogrammed OTP Value  
0
0
0
0
0
0
0
0
11.2.46 User data registers (USERDATA_10 - USERDATA_1E)  
User data registers are user programmable OTP registers which contain user-specific  
information. These registers are included in the user programmed OTP array error  
detection.  
These registers are readable and writable in DSI3 mode, SPI mode, I2C mode or PSI5  
programming mode when ENDINIT is not set. See Section 11.2.10 for details on the  
register read process for these registers.  
Table 193.ꢀUser data registers (USERDATA_10 - USERDATA_1E)  
Location  
Bit  
Address  
$F0  
Register  
7
6
5
4
3
2
1
0
USERDATA_10  
USERDATA_11  
USERDATA_12  
USERDATA_13  
USERDATA_14  
USERDATA_15  
USERDATA_16  
USERDATA_17  
USERDATA_18  
USERDATA_19  
USERDATA_1A  
USERDATA_1B  
USERDATA_1C  
USERDATA_1D  
USERDATA_1E  
USERDATA_10[7:0]  
USERDATA_11[7:0]  
USERDATA_12[7:0]  
USERDATA_13[7:0]  
USERDATA_14[7:0]  
USERDATA_15[7:0]  
USERDATA_16[7:0]  
USERDATA_17[7:0]  
USERDATA_18[7:0]  
USERDATA_19[7:0]  
USERDATA_1A[7:0]  
USERDATA_1B[7:0]  
USERDATA_1C[7:0]  
USERDATA_1D[7:0]  
USERDATA_1E[7:0]  
$F1  
$F2  
$F3  
$F4  
$F5  
$F6  
$F7  
$F8  
$F9  
$FA  
$FB  
$FC  
$FD  
$FE  
Unprogrammed OTP Value  
0
0
0
0
0
0
0
0
11.2.47 Lock and CRC registers  
The lock and CRC registers are automatically programmed OTP registers which include  
the lock bit, the block identifier, and the block OTP array CRC use for error detection.  
These registers are automatically programmed when the corresponding data array  
is programmed to OTP using the Write OTP Enable register as documented in  
Section 11.2.7.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
103 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 194.ꢀLock and CRC registers  
Location  
Bit  
Address  
Register  
7
6
0
0
5
4
0
0
3
2
1
0
$5F  
CRC_UF2  
LOCK_UF2  
0
CRC_UF2[3:0]  
Unprogrammed OTP Value  
0
0
0
0
0
0
$AF  
$BF  
$CF  
$DF  
$EF  
CRC_F_A  
Reset Value  
CRC_F_B  
Reset Value  
CRC_F_C  
Reset Value  
CRC_F_D  
Reset Value  
CRC_F_E  
LOCK_F_A  
REGA_BLOCKID[2:0]  
CRC_F_A[3:0]  
Varies  
1
0
0
0
1
0
0
0
1
0
1
0
0
0
LOCK_F_B  
REGB_BLOCKID[2:0]  
CRC_F_B[3:0]  
Varies  
1
1
LOCK_F_C  
REGC_BLOCKID[2:0]  
CRC_F_C[3:0]  
Varies  
1
1
LOCK_F_D  
REGD_BLOCKID[2:0]  
CRC_F_D[3:0]  
Varies  
1
0
LOCK_F_E  
REGE_BLOCKID[2:0]  
CRC_F_E[3:0]  
Unprogrammed OTP Value  
$FF CRC_F_F  
Unprogrammed OTP Value  
0
0
0
0
0
0
0
0
0
0
LOCK_F_F  
0
REGF_BLOCKID[2:0]  
0
CRC_F_F[3:0]  
Table 195 shows the state of the lock bits, the block identifiers, and the CRC for each  
register block before and after programming.  
Table 195.ꢀLock bit, block identifier, and CRC states  
Register  
Lock bit  
Block identifier  
CRC  
block address  
bit[7]  
bits[6:4]  
bits[3:0]  
Before  
After  
Before  
After  
Before  
After  
programming  
programming  
programming  
programming  
programming  
programming  
UF2  
$Ax  
$Bx  
$Cx  
$Dx  
$Ex  
$Fx  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
000  
N/A  
N/A  
N/A  
N/A  
000  
000  
000  
001  
010  
011  
100  
101  
110  
0000  
Varies  
Varies  
Varies  
Varies  
Varies  
Varies  
Varies  
N/A  
N/A  
N/A  
N/A  
0000  
0000  
11.2.48 Reserved registers  
A register read command to a reserved register or a register with reserved bits will result  
in a valid response. The data for reserved bits may be logic 0 or logic 1.  
A register write command to a reserved register or a register with reserved bits will  
execute and result in a valid response. The data for the reserved bits may be logic 0 or  
logic 1. A write to the reserved bits must always be '0' for normal device operation and  
performance.  
11.2.49 Invalid register addresses  
A register read command to a register address outside the addresses listed in  
Section 11.1 will result in a valid response. The data for the registers will be '0x00'.  
A register write command to a register address outside the addresses listed in  
Section 11.1 will not execute, but will result in a valid response. The data for the registers  
will be '0x00'.  
A register write command to a read-only register will not execute, but will result in a valid  
response. The data for the registers will be the current contents of the register.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
104 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.3 OTP and read/write register array CRC verification  
11.3.1 NXP OTP registers  
The following registers are internal OTP registers. These registers are verified by the  
OTP ECC as well as an independent 4-bit CRC for each 16 byte block.  
Table 196.ꢀMemory type code: NXP OTP register  
Memory type codes  
F
User readable register with OTP  
11.3.2 User OTP only registers  
The following registers are user OTP registers. These registers are verified by the OTP  
ECC as well as an independent 4-bit CRC for each 16 byte block. The CRC verification  
uses a generator polynomial of g(x) = X4 + X3 + 1, with a seed value = '0000'. The bits  
are fed into the CRC calculation from right to left (MSB first) and from top to bottom  
(lowest address first) in the register map.  
Table 197.ꢀMemory type code: User OTP register  
Memory type codes  
UF0  
UF1  
One time user programmable OTP region 0  
One time user programmable OTP region 1  
11.3.3 OTP modifiable registers  
The following registers are user read/write registers as well as OTP registers with  
writable mirror registers. The OTP registers are verified by the OTP ECC as well as an  
independent 4-bit CRC stored in the CRC_UF2 register.  
The values read from OTP can be over-written while ENDINIT is not set. Once ENDINIT  
is set, the writable registers (all registers in the R/W and UF2 regions with the exception  
of the DEVLOCK_WR register) are verified by an additional continuous 4-bit CRC that is  
calculated on the entire array. The CRC verification uses a generator polynomial of g(x) =  
X4+X3+1, with a seed value = '0000'. The bits are fed into the CRC calculation from right  
to left (MSB first) and from top to bottom (lowest address first) in the register map.  
Registers verified by the OTP CRC:  
Table 198.ꢀMemory type code: CRC verified OTP registers  
Memory type codes  
UF2  
One time user programmable OTP region 3 with modifiable mirror registers  
Registers verified by the ENDINIT calculated CRC:  
Table 199.ꢀMemory type code: ENDINIT CRC verified OTP registers  
Memory type codes  
UF2  
R/W  
One time user programmable OTP region 3 with modifiable mirror registers  
User writable register, with the exception of the DEVLOCK_WR register  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
105 / 254  
 
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.4 Voltage regulators  
The device derives its internal supply voltage from the VCC/BUS_I and VSS pins. The  
internal regulators are supplied by a buffer regulator (VBUF) to provide immunity from  
EMC and supply dropouts on BUS_I. An external filter capacitor is required for VBUF, as  
shown in Section 6.  
The voltage regulator module includes voltage monitoring circuitry which holds the  
device in reset following power-on until the internal voltages have increased above the  
under-voltage detection thresholds. The voltage monitor asserts internal reset when the  
external supply or internally regulated voltages fall below the under-voltage detection  
thresholds. A reference generator provides a reference voltage for the ΣΔ converter.  
BUS_I  
V
V
BUF  
REF  
VOLTAGE  
REGULATOR  
V
BUF  
V
REGA  
VOLTAGE  
REGULATOR  
V
REGA  
BIAS  
GENERATOR  
OSCILLATOR  
TRIM  
TRIM  
V
REF  
BANDGAP  
REFERENCE  
TRIM  
C2V  
V
REF_MOD  
REFERENCE  
GENERATOR  
Σ
CONVERTER  
V
BUF  
OTP  
ARRAY  
V
V
REG  
REF  
VOLTAGE  
REGULATOR  
DIGITAL  
LOGIC  
DSP  
BUS_I  
COMPARATOR  
BUSI_UV_ERR  
VBUF_UV_ERR  
V
BUF  
COMPARATOR  
COMPARATOR  
COMPARATOR  
V
REG  
POR  
V
REGA  
V
REF  
aaa-030605  
Figure 11.ꢀVoltage regulation and monitoring  
11.4.1 VBUF regulator capacitor and capacitor monitor  
In DSI3 and PSI5 modes, the buffer regulator requires an external capacitor between the  
VBUF pin and the VSS pin. Section 6 shows the recommended types and values for each  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
106 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
of these capacitors. A monitor circuit is incorporated to ensure predict-able operation if  
the connection to the external VBUF capacitor becomes open. If the external capacitor is  
not present, the regulator voltage will fall below the threshold specified in Section 10.4  
causing the VBUF_ERR bit to be set in the DEVSTAT1 register.  
The VBUF capacitor is tested synchronous to the protocol transmissions as shown in the  
diagrams in Figure 12, Figure 13, and Figure 14.  
11.4.1.1 VBUF capacitance monitor timing, DSI3  
t
t
D_CAPTEST  
D_CAPTEST  
BUS_I  
t
t
CAPTST_TIME  
CAPTST_TIME  
Cap_Test  
capacitor present  
capacitor open  
V
BUF  
BUF_UV_f  
VBUF_ERR  
V
time  
aaa-030606  
Figure 12.ꢀVBUF capacitor monitor timing, DSI3  
11.4.1.2 VBUF capacitance monitor timing, PSI5  
t
t
P_CAPTEST  
P_CAPTEST  
BUS_I  
t
t
CAPTST_TIME  
CAPTST_TIME  
Cap_Test  
capacitor present  
capacitor open  
V
BUF  
BUF_UV_f  
VBUF_ERR  
V
time  
aaa-030607  
Figure 13.ꢀVBUF capacitor monitor timing, PSI5 synchronous mode  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
107 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.4.1.3 VBUF capacitance monitor timing, PSI5 asynchronous mode  
t
t
A_CAPTEST  
A_CAPTEST  
I
BUS_I  
t
t
CAPTST_TIME  
CAPTST_TIME  
Cap_Test  
capacitor present  
capacitor open  
V
BUF  
BUF_UV_f  
VBUF_ERR  
V
time  
aaa-030608  
Figure 14.ꢀVBUF capacitor monitor timing, psi5 asynchronous mode  
11.4.2 BUS_I, VBUF, VREG, VREGA, undervoltage monitor  
A circuit is incorporated to monitor the BUS_I supply voltage and the internally regulated  
voltages, VBUF, VREG, and VREGA. If any of the voltages fall below the specified under-  
voltage thresholds in Section 10.4, the device reacts as described:  
DSI3  
If any supply falls below the specified threshold during a command transmission in  
Command and Response Mode, the command is ignored, and no DSI3 response  
transmission occurs. Once the supply returns above the threshold, the device will  
resume decoding commands as specified in Section 11.2.2.5.  
If any supply falls below the specified threshold during a response transmission in  
Command and Response Mode, the response is terminated. No attempt is made to  
resend the response. Once the supply returns above the threshold, the device will  
resume decoding commands as specified in Section 11.2.2.5.  
If any supply falls below the specified threshold during a command transmission in  
Periodic Data Collection Mode, the command is ignored and no periodic response  
occurs during that period. Once the supply returns above the threshold, the device  
will resume periodic transmissions in response to commands as specified in  
Section 11.2.2.5. Any partially received Background Diagnostic Mode command  
is flushed and the device will begin decoding a new Background Diagnostic Mode  
command.  
If any supply falls below the specified threshold during a periodic response  
transmission in Periodic Data Collection Mode, the response is terminated. No  
attempt is made to resend the response. Once the supply returns above the  
threshold, the device will resume periodic transmissions in response to commands  
as specified in Section 11.2.2.5. Any partially received Background Diagnostic  
Mode command is flushed and the device will begin decoding a new Background  
Diagnostic Mode command.  
If any supply falls below the specified threshold during a Background Diagnostic  
Mode response transmission in Periodic Data Collection Mode, the response is  
terminated. No attempt is made to resend the response. Once the supply returns  
above the threshold, the device will resume periodic transmissions in response  
to commands as specified in Section 11.2.2.5. Any partially received Background  
Diagnostic Mode command is flushed and the device will begin decoding a new  
Background Diagnostic Mode command.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
108 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
PSI5  
If any supply falls below the specified threshold, all PSI5 transmissions are  
terminated for the present sync pulse or asynchronous transmission cycle. Once the  
supply returns above the threshold, the device will resume responses as specified in  
Section 11.2.2.5.  
SPI  
If any supply falls below the specified threshold, SPI responses are terminated. Once  
the supply returns above the threshold, the device will resume command decode and  
response transmissions as specified in Section 11.2.2.5.  
I2C  
If any supply falls below the specified threshold, I2C transactions are terminated.  
Once the supply returns above the threshold, the device will resume responses as  
specified in Section 11.2.2.5.  
See Figure 15 for an example of a supply line interruption during a DSI3 or PSI5  
response.  
BUS_I micro-cut occurs  
BUS_I  
BUS_I undervoltage detected  
V
BUF  
V
REG  
V
REGA  
response terminated  
I
BUS_I  
POR  
time  
aaa-030609  
Figure 15.ꢀBUS_I micro-cut response (DSI3 or PSI5)  
11.5 Internal oscillator  
The device includes a factory trimmed oscillator as specified in Section 10.20.  
11.5.1 Oscillator training  
The device includes a feature to train the oscillator to a tighter accuracy than the factory  
trimmed capability assuming the system master has a tighter oscillator accuracy than the  
slave factory trimmed capability. This feature can be enabled for all modes: DSI3, PSI5,  
SPI, and I2C.  
Note: Do not use oscillator training in systems that employ spread spectrum  
communication methods to reduce emissions.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
109 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.5.1.1 DSI3 oscillator training  
Oscillator training is enabled if the CK_CAL_EN bit is set in the TIMING_CFG register  
and is accomplished by verifying the timing of periodic transmissions from the master  
against the values stored in the CRM_PER[1:0] and PDCM_PER[2:0] bits of the user  
read/write register array. The master programs the intended Periodic Data Collection  
Mode command period into the PDCM_PER[2:0] bits and the intended Command  
and Response Mode command period into the CRM_PER[1:0] bits. The device then  
calculates the number of transmission periods for every 4 ms (nCRM_PER_4ms_TYP and  
nPDCM_PER_4ms_ TYP).  
-
In Command and Response Mode, oscillator training is completed over 4 ms periods  
if and only if the CK_CAL_EN bit is set and the Command and Response Mode period  
is between 500 µs and 4 ms, inclusive. The following procedure is used to train the  
oscillator (See Figure 16):  
1. The device counts the number of oscillator cycles in nCRM_PER_4ms_TYP periods  
(nOSC_4ms).  
2. nOSC_4ms is compared to nOSC_4ms_TYP. If the value is within the acceptable training  
window (OscTrainWIN) specified in Section 10.20, an oscillator adjustment is made.  
Otherwise, no adjustment is made.  
a. If nOSC_4ms is greater than nOSC_4ms_TYP + OscTrainADJ, the oscillator frequency  
target is decreased by OscTrainRES  
b. If nOSC_4ms is less than nOSC_4ms_TYP - OscTrainADJ, the oscillator frequency target  
is increased by OscTrainRES  
.
.
c. The oscillator frequency target value is changed at the end of the command  
blocking time for the command ending the nCRM_PER_OSC calculation.  
If the CK_CAL_EN bit is cleared after oscillator training has already been initiated,  
the state of the oscillator is determined by the state of the CK_CAL_RST bit in the  
TIMING_CFG register. If the CK_CAL_RST bit is cleared, the last adjustment value for  
the oscillator is maintained. If the CK_CAL_RST bit is set, the oscillator is reset to its  
untrained value with the untrained tolerance specified in Section 10.20.  
Command  
t
CmdBlock_CRM  
Response  
one CRM period  
4 ms = n  
CRM_PER_4ms_TYP  
oscillator  
adjustment  
new oscillator  
count starts  
n
OSC_4ms  
time  
aaa-030610  
Figure 16.ꢀCommand and response mode oscillator training timing diagram  
In Periodic Data Collection Mode, oscillator training is completed over 4 ms periods if  
the CK_CAL_EN bit is set. The following procedure is used to train the oscillator (See  
Figure 17):  
1. The device counts the number of oscillator cycles in nPDCM_PER_4ms_TYP periods  
(nOSC_4ms).  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
110 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
2. nOSC_4ms is compared to nOSC_4ms_TYP. If the value is within the acceptable training  
window (OscTrainWIN) specified in Section 10.20, an oscillator adjustment is made.  
Otherwise, no adjustment is made.  
a. If nOSC_4ms is greater than nOSC_4ms_TYP + OscTrainADJ, the oscillator frequency  
target is decreased by OscTrainRES  
b. If nOSC_4ms is less than nOSC_4ms_TYP - OscTrainADJ, the oscillator frequency target  
is increased by OscTrainRES  
.
.
c. The oscillator frequency target value is changed at the end of the command  
blocking time for the command ending the nPDCM_PER_OSC calculation.  
Command  
t
CmdBlock_PDCM  
Response  
one PDCM period  
4 ms = n  
PDCM_PER_4ms_TYP  
oscillator  
adjustment  
new oscillator  
count starts  
n
OSC_4ms  
time  
aaa-030611  
Figure 17.ꢀPeriodic data collection mode oscillator training timing diagram  
11.5.1.2 PSI5 oscillator training  
Oscillator training is enabled if the CK_CAL_EN bit is set in the TIMING_CFG register  
and is accomplished by verifying the timing of periodic transmissions from the master  
against the values stored in the PDCM_PER[2:0] bits of the user read/write register array.  
The sync pulse period is pre-programmed into the PDCM_PER[2:0] bits. The device then  
calculates the number of transmission periods for every 4 ms (nPSI5_PER_4ms_TYP).  
Oscillator training is completed over 4 ms periods if the CK_CAL_EN bit is set. The  
following procedure is used to train the oscillator (see Figure 18):  
1. The device counts the number of oscillator cycles in nPSI5_PER_4ms_TYP periods  
(nOSC_4ms).  
2. nOSC_4ms is compared to nOSC_4ms_TYP. If the value is within the acceptable training  
window (OscTrainWIN) specified in Section 10.20, an oscillator adjustment is made.  
Otherwise, no adjustment is made.  
a. If nOSC_4ms is greater than nOSC_4ms_TYP + OscTrainADJ, the oscillator frequency  
target is decreased by OscTrainRES  
b. If nOSC_4ms is less than nOSC_4ms_TYP - OscTrainADJ, the oscillator frequency target  
is increased by OscTrainRES  
.
.
c. The oscillator frequency target value is changed at the end of the command  
blocking time for the command ending the nPDCM_PER_OSC calculation.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
111 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Command  
t
PDCM_CMD_B  
Response  
one PSI5 period  
4 ms = n  
PDCM_PER_4ms_TYP  
oscillator  
adjustment  
new oscillator  
count starts  
n
OSC_4ms  
time  
aaa-030612  
Figure 18.ꢀPSI5 oscillator training timing diagram  
Notes:  
In order to benefit from the PSI5 oscillator training accuracy improvements, the  
oscillator must be trained prior to data transmissions in Initialization phase 2. For this  
reason, if oscillator training is enabled in PSI5 mode, the device will not respond to  
sync pulses during initialization phase 1, but oscillator training will be enabled tRS_PM  
after reset.  
11.5.1.3 SPI oscillator training  
Oscillator training is enabled if the CK_CAL_EN bit is set in the TIMING_CFG register  
and is accomplished by verifying the timing of periodic SOURCEID_0 sensor data  
request SPI commands from the master against the value stored in the PDC-M_PER[2:0]  
bits of the user read/write register array. The master programs the intended command  
period into the PDC-M_PER[2:0] bits. The device then calculates the number of  
transmission periods for every 4 ms (nSPI_PER_4ms_TYP).  
In SPI Mode, oscillator training is completed over 4 ms periods if the CK_CAL_EN bit is  
set. The following procedure is used to train the oscillator:  
1. The device counts the number of oscillator cycles in nSPI_PER_4ms_TYP periods  
(nOSC_4ms).  
2. nOSC_4ms is compared to nOSC_4ms_TYP. If the value is within the acceptable training  
window (OscTrainWIN) specified in Section 10.20, an oscillator adjustment is made.  
Otherwise, no adjustment is made.  
a. If nOSC_4ms is greater than nOSC_4ms_TYP + OscTrainADJ, the oscillator frequency  
target is decreased by OscTrainRES  
b. If nOSC_4ms is less than nOSC_4ms_TYP - OscTrainADJ, the oscillator frequency target  
is increased by OscTrainRES  
c. The oscillator frequency target value is changed.  
.
.
11.5.1.4 I2C oscillator training  
Oscillator training is enabled if the CK_CAL_EN bit is set in the TIMING_CFG register  
and is accomplished by verifying the timing of periodic I2C reads of the SNSDATA0_L  
register from the master against the value stored in the PDCM_PER[2:0] bits of the user  
read/write register array. The master programs the intended command period into the  
PDCM_PER[2:0] bits. The device then calculates the number of transmission periods for  
every 4 ms (nSPI_PER_4ms_TYP).  
In I2C mode, oscillator training is completed over 4 ms periods if the CK_CAL_EN bit is  
set. The following procedure is used to train the oscillator:  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
112 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
1. The device counts the number of oscillator cycles in nI2C_PER_4ms_TYP periods  
(nOSC_4ms).  
2. nOSC_4ms is compared to nOSC_4ms_TYP. If the value is within the acceptable training  
window (OscTrainWIN) specified in Section 10.20, an oscillator adjustment is made.  
Otherwise, no adjustment is made.  
a. If nOSC_4ms is greater than nOSC_4ms_TYP + OscTrainADJ, the oscillator frequency  
target is decreased by OscTrainRES  
b. If nOSC_4ms is less than nOSC_4ms_TYP - OscTrainADJ, the oscillator frequency target  
is increased by OscTrainRES  
c. The oscillator frequency target value is changed.  
.
.
11.5.2 Oscillator training error handling  
If oscillator training is enabled by the user, but the conditions are not correct to complete  
oscillator training, the OSC-TRAIN_ERR bit is set in the DEVSTAT register. The following  
conditions will result in the OSCTRAIN_ERR bit being set.  
The CLK_CAL_EN bit in the TIMING_CFG register is set and the measured period  
(nOSC_4ms) for any mode is outside the Oscillator Training Window (OscTrainWIN).  
The result of the comparison is filtered with an up and down counter.  
If nOSC_4ms is outside the oscillator training window, the counter is incremented.  
If nOSC_4ms is inside the oscillator training window, the counter is decremented.  
If the counter reaches the OSCTRAIN_ERRCNT setting in the TIMING_CFG2 register,  
the OSCTRAIN_ERR bit is set.  
The up and down counter has a maximum value of 127 and a minimum value of 0.  
The Command and Response Mode period established by the PDCM_PER and  
CRM_PER settings does not fall within the 500 µs to 4 ms window.  
The Command and Response Mode period established by the PDCM_PER and  
CRM_PER settings is not a whole number divisor of 4 ms.  
11.6 Inertial sensor signal path  
11.6.1 Inertial sensor transducer  
The device transducer is an overdamped mass-spring-damper system defined by the  
following transfer function:  
(2)  
Where:  
ζ
=
=
Damping Ratio  
ωn  
Natural Frequency =  
f
2∗Π∗ n  
See Section 10.19 for transducer parameters.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
113 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.6.2 Inertial sensor self-test interface  
The analog self-test interface applies a voltage to the g-cell, causing deflection of the  
proof mass. The resulting sensor data can be compared against the values stored in the  
Self-test Deflection Registers (See Section 11.2.37). The self-test interface is controlled  
through register write operations to the ST_CTRL[3:0] bits in the CHx_CFG_U5 register  
described in Section 11.2.27. A diagram of the self-test interface is shown in Figure 19.  
The following signals are all  
selected by the ST_CTRL[3:0] bits  
SELFTEST ENABLE  
- SELFTEST ENABLE  
SELFTEST POLARITY  
- SELFTEST POLARITY  
- High/Low Self Test Select  
High/Low Self Test Select  
+
STV_HIGH  
STV_LOW  
SELFTEST  
VOLTAGE  
TRANSDUCER  
GENERATOR  
-
ENDINIT  
SELFTEST ENABLE  
SELFTEST POLARITY  
aaa-030613  
Figure 19.ꢀSelf-test interface  
Two self-test voltages are available for each device range. The self-test voltage is  
selected via the ST_CTRL[3:0] bits.  
Self-test can be verified via the following methods:  
11.6.2.1 Raw self-test deflection verification  
In DSI3 mode, SPI mode or I2C mode, the raw self-test deflection can be verified against  
raw self-test limits in Section 10.7.  
11.6.2.2 Delta self-test deflection verification  
In DSI3 mode, SPI mode or I2C mode, the raw self-test deflection can be verified against  
the nominal temperature self-test deflection value recorded at the time the device was  
produced. The production self-test deflection is stored in the CHx-_STy_z register as  
defined in Section 11.2.37. The Delta Self-test Deflection limits can then be determined  
by Equation 3 and Equation 4:  
(3)  
Note: This value is truncated.  
(4)  
Note: This value is rounded up.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
114 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Where:  
ΔSTACC  
=
=
The accuracy of the self-test deflection relative to the stored deflection as  
specified in Section 10.8.  
STDATA  
The value stored in the appropriate CHx_STy_z register as defined in  
Section 11.2.37.  
11.6.2.3 Startup digital self-test  
In DSI3 mode, SPI mode or I2C mode, during device initialization (ENDINIT not set),  
the user can activate a digital self-test by writing to the ST_CTRL[3:0] bits in the  
CHx_CFG_U5 register. The digital self-test inputs a known signal stream into the front  
end of the DSP. After a delay defined by the low-pass filter selected, the output sensor  
data reaches a fixed value which can be verified by the user. The digital self-test values  
are listed in Section 11.2.27.1.  
11.6.2.4 Fixed pattern self-test  
In DSI3 mode, SPI mode or I2C mode, during device initialization (ENDINIT not set),  
the user can activate a fixed pattern self-test by writing to the ST_CTRL[3:0] bits in the  
CHx_CFG_U5 register. Fixed pattern self-tests force the DSP output to a set of known  
values, enabling the user to verify each bit of the sensor data. The fixed pattern self-test  
values are listed in Section 11.2.27.1.  
11.6.2.5 PSI5 automatic startup self-test procedure  
Figure 20 shows the PSI5 self-test procedure which is run automatically at startup on  
each channel if the device is a PSI5 device. The minimum gain settings are used for this  
procedure: U_SNS_SHIFT = '00', U_SNS_MULT = 0x00.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
115 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
PS15 Internal self-test  
Complete Internal Fixed  
Capacitor self-test  
no  
Self-test failed.  
SET ST_ERROR  
Fixed Cap Test Pass?  
yes  
Delay t  
PSI5ST_START  
Exit  
Suspend the Offset  
Cancellation Filter  
ST Disabled  
Sample DSP Output  
yes  
no  
Enable Positive self-test  
Delay 8.192 ms  
Captured 16 Sensor  
Readings?  
Delay 512 µs  
Sample DSP Output  
no  
Captured 16 Sensor  
Readings?  
Delay 512 µs  
yes  
ST+ within  
Specification Limits?  
no  
Calculate ST+ =  
Set REPEAT_ST  
STPOS  
- Offset  
AVG  
AVG  
yes  
Disable self-test  
Delay 8.192 ms  
Sample DSP Output  
yes  
no  
Enable Negative self-test  
Delay 8.192 ms  
Captured 16 Sensor  
Readings?  
Delay 512 µs  
Sample DSP Output  
no  
Captured 16 Sensor  
Readings?  
Delay 512 µs  
yes  
ST- within  
Specification Limits?  
no  
Calculate ST- =  
Set REPEAT_ST  
STNEG  
- Offset  
AVG  
AVG  
yes  
no  
yes  
REPEAT_ST  
Set?  
Increment ST_RPT  
ST_RPT at max?  
yes  
no  
Self-test failed.  
SET ST_ERROR  
Disable self-test  
Delay 8.192 ms  
Sample DSP Output  
Exit  
yes  
Captured 16  
Sensor Readings?  
no  
Enable Digital self-test  
Delay 19.5 ms  
Delay 512 µs  
Sample DSP Output  
no  
DST  
within Specification  
Limits?  
no  
yes  
Disable self-test  
Reset Offset Cancellation  
Increment ST_RPT  
ST_RPT at max?  
yes  
Increment ST_RPT  
Delay 106 ms  
Self-test failed.  
SET ST_ERROR  
no  
no  
OC - within  
ST_RPT at max?  
yes  
Programmed Limits?  
Exit  
yes  
Self-test failed.  
SET ST_ERROR  
Self-test passed.  
Clear ST_ERROR  
Exit  
Exit  
aaa-030615  
Figure 20.ꢀPSI5 self-test procedure  
If the ST_ERROR flag in the CHx_STAT register is set once this test is complete, the  
device will exit PSI5 initialization phase 2 with a self-test error and the self-test error  
message are transmitted instead of sensor data. In this case, the ST_ER-ROR bit can  
only be cleared by a device reset.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
116 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.6.3 Inertial sensor ΣΔ converter  
A second order sigma delta modulator converts the differential capacitance of the  
transducer to a data stream that is input to the DSP. The sigma delta modulator operates  
at a frequency of 1 MHz. A simplified block diagram is shown in Figure 6.  
first  
integrator  
second  
integrator  
1-Bit  
quantizer  
transducer  
V
X
α
1 =  
α
C
TOP  
BOT  
2
-1  
Z
-1  
Z
C
INT1  
+
Y(Z) = {0, 1}  
+
-1  
-1  
1 - Z  
1 - Z  
C
-
-
ADC  
DAC  
β
1
β
2
V = 0 V, V  
REF  
aaa-030616  
Figure 21.ꢀΣΔ converter block diagram  
11.6.4 Inertial sensor digital signal processor  
A digital signal processor (DSP) is used to perform signal filtering and compensation. A  
diagram illustrating the signal processing flow within the DSP is shown in Figure 22.  
selectable output types  
data type 0  
data type 1  
- F with interpolation  
- F without interpolation  
- M with interpolation  
yes (01)  
no  
no  
no  
yes (100)  
no  
- M without interpolation  
- F - K with interpolation  
- F - K without interpolation  
- M - K with interpolation  
- M - K without interpolation  
- F - L with interpolation  
- F - L without interpolation  
- M - L with interpolation  
- M - L without interpolation  
yes (01)  
yes (00)  
no  
yes (001)  
no  
yes (000)  
no  
yes (000)  
no  
yes (100)  
no  
no  
yes (01)  
yes (01)  
no  
no  
yes (01)  
yes (000)  
OUT  
A
SINC  
FILTER  
IIR  
LPF  
USER  
SENSE  
SCALING  
B
C
D
E
F
DIGITAL  
CLIPPING  
TRIM  
Q
INTERPOLATION  
M
MOVING  
AVERAGE  
DSP  
R
OUT  
OUTPUT  
SCALING  
+
-
P
OFFSET  
CANCELLATION  
RATE LIMIT  
H
J
K
DOWN  
SAMPLE  
DOWN  
SAMPLE  
OFFSET  
LPF  
OFFSET  
ARMING  
MONITOR  
FUNCTION  
aaa-030617  
Figure 22.ꢀSignal chain diagram  
Table 200.ꢀSignal chain diagram legend  
Description  
Sample Time Data  
Sign  
Over Signal Signal  
range width margin  
Typical  
block  
Reference  
width  
(µs)  
(Bits)  
(Bits)  
(Bits) (Bits)  
(Bits)  
NA  
NA  
11  
latency  
2.5 µs  
22.5 µs  
N/A  
A
B
C
D
E
ΣΔ  
1
1
1
1
1
1
1
NA  
NA  
2
1
Section 11.6.3  
SINC Filter  
Trim  
16, 32, 64  
16, 32, 64  
16, 32, 64  
16, 32, 64  
23  
32  
32  
32  
21  
18  
18  
18  
Section 11.6.4.1  
Section 11.6.4.2  
Section 11.6.4.3  
Section 11.6.4.4  
Digital Clipping  
Low-pass filter  
2
11  
N/A  
2
11  
Filter  
Dependent  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
117 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 200.ꢀSignal chain diagram legend...continued  
Description  
Sample Time Data  
Sign  
Over Signal Signal  
range width margin  
Typical  
block  
Reference  
width  
(µs)  
(Bits)  
(Bits)  
(Bits) (Bits)  
(Bits)  
latency  
F
H
J
User Scaling  
16, 32, 64  
32, 64, 128  
256  
32  
32  
32  
16  
16  
24  
1
1
1
1
1
1
2
NA  
NA  
2
18  
31  
31  
11  
11  
18  
11  
N/A  
Section 11.6.4.5  
Section 11.6.4.7  
Section 11.6.4.6  
Section 11.6.4.6  
Section 11.6.4.6  
Section 11.6.4.7  
Down Sample  
NA  
NA  
2
N/A  
Secondary Down Sample  
Offset low-pass filter  
Offset Rate Limiting  
N/A  
K
L
256  
N/A  
256  
2
2
N/A  
M Moving Average Filter  
32, 64, 128  
2
3
Filter  
Dependent  
P
Offset Subtraction  
32, 64, 128  
1, 2, 4  
24  
24  
18  
1
1
2
2
18  
18  
3
3
N/A  
Section 11.6.4.6  
Q Interpolation  
tSigChainXX Section 11.6.4.8  
N/A Section 11.6.4.9  
R
Output Range Selection  
1, 2, 4  
User Selectable  
11.6.4.1 Decimation sinc filter  
The output of the ΣΔ modulator is decimated and converted to a parallel value by a third  
order Sinc Filter with a decimation ratio of 16.  
(5)  
aaa-030618  
0
magnitude  
(dB)  
-20  
-40  
frequency: 64.08691  
magnitude: -96.35657  
-60  
-80  
-100  
0
200  
400  
600  
800  
1000  
frequency (kHz)  
Figure 23.ꢀSinc filter response 3rd order sinc filter magnitude response  
11.6.4.2 Signal trim and compensation  
The device includes digital trim to compensate for sensor offset, sensitivity, and non-  
linearity over temperature. Equation 6, Equation 7, Equation 8, and Equation 9 are used  
for the trim compensation.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
118 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
(6)  
(7)  
(8)  
(9)  
Table 201.ꢀSignal trim and compensation variable descriptions  
Variable Description  
name  
Range  
Variable Resolution  
size  
(Real)  
(Real)  
(Bits)  
A0  
Offset Compensation  
–1.0 to +1.0  
–1.0 to +1.0  
–1.0 to +1.0  
–1.0 to +1.0  
–1.0 to +1.0  
–1.0 to +1.0  
–1.0 to +1.0  
–1.0 to +1.0  
12  
12  
12  
12  
12  
12  
12  
12  
4.8852e–04  
4.8852e–04  
4.8852e–04  
4.8852e–04  
4.8852e–04  
4.8852e–04  
4.8852e–04  
4.8852e–04  
B2  
Offset Compensation with First Order Temperature Compensation  
Offset Compensation with Second Order Temperature Compensation  
Sensitivity Compensation  
C22  
B1  
C12  
C11  
T
Sensitivity Compensation with First Order Temperature Compensation  
Linearity Compensation  
Temperature Sensor Digital Output Value  
T25  
TrimIn  
Temperature Sensor Output Value stored at the Ambient Test Insertion  
Output of the Sinc Filter  
TrimOut Output of the Trim Block  
11.6.4.3 Digital clipping  
The device includes a digital clipping block to maximize the symmetry between the  
positive and negative electrical dynamic range of the device. Digital clipping values are  
specified in Section 10.9 and Section 10.10.  
11.6.4.4 Low-pass filter  
Data from the Sinc filter is processed by an infinite impulse response (IIR) low-pass filter.  
(10)  
The device provides the option for one of several low-pass filters. The filter coefficients  
are selected with the LPF[3:0] bits in the CHx_CFG_U1 registers.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
119 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
The filter selection options are listed in Section 11.2.23.1. Response parameters for the  
low-pass filter are specified in Section 10.18. Filter characteristics for the highest sample  
rate are illustrated in Figure 24 through Figure 49.  
Table 202.ꢀLPF #0 and LPF #2  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
–3 dB  
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(Hz)  
(dB)  
(ms)  
0, 2  
0000  
or  
00 or 01  
10  
400  
16  
32  
4
839  
–19.5  
1.59  
a0 0.003143225986084408  
n11 0.0009951105668343345 d11  
n12 0.002003487780064749 d12  
n13 0.001008466113720278 d13  
1
0010  
200  
1678  
3356  
–42.3  
–66.0  
3.18  
6.36  
–1.892328151433503  
0.8954713774195870  
1
n21  
n22  
n23  
0.2516720624825626  
0.4999888752940916  
0.2483390622233452  
d21  
d22  
d23  
11  
100  
64  
–1.918978239761011  
0.9229853042218408  
Table 203.ꢀLPF #1 and LPF #3  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
–3 dB  
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(Hz)  
(dB)  
(ms)  
1, 3  
0001  
or  
00 or 01  
10  
400  
16  
32  
3
697  
–16.6  
1.49  
a0  
0.05189235225042199  
n11 0.001629077582099646 d11  
n12 0.001630351547919014 d12  
1
0011  
200  
1394  
2788  
–33.5  
–51.5  
2.98  
5.96  
–0.9481076477495780  
n13  
n21  
n22  
n23  
0
d13  
d21  
d22  
d23  
0
0.2500977520825902  
0.4999999235890745  
0.2499023243303036  
1
11  
100  
64  
–1.915847097557409  
0.9191065266874253  
Table 204.ꢀLPF #4  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
–3 dB  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(Hz)  
(dB)  
(ms)  
4
0100  
00 or 01  
10  
325  
16  
32  
4
856  
–21.4  
1.84  
a0 0.0424754749983549118  
n11 0.0010903775691986084 d11  
1
162.5  
1712  
3424  
–38.7  
–56.8  
3.68  
7.36  
n12  
0.001089394  
09255981445  
d12  
–0.957524538  
04016113281  
n13  
n21  
0
d13  
d21  
0
1
0.249887526  
03530883789  
11  
81.25  
5
64  
n22  
0.499999895  
69187164307  
d22  
–1.931408762  
93182373047  
n23 0.2501125633716583252 d23  
0.933588504  
79125976562  
Table 205.ꢀLPF #5  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
–3 dB  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(Hz)  
(dB)  
(ms)  
5
0101  
00 or 01  
370  
16  
2
586  
–14.1  
1.55  
a0  
0.002209828  
58445495367  
n11  
0.25  
d11  
1
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
120 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 205.ꢀLPF #5...continued  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
–3 dB  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(Hz)  
(dB)  
(ms)  
10  
11  
185  
32  
1172  
–25.2  
3.10  
n12  
n13  
0.499999985  
09883880615  
d12  
d13  
–1.918031513  
69094848633  
0.25  
0.920241355  
89599609375  
n21  
n22  
n23  
1
0
0
d21  
d22  
d23  
1
0
0
92.5  
64  
2344  
–37.2  
6.20  
Table 206.ꢀLPF #6  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
–3 dB  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(Hz)  
(dB)  
(ms)  
6
0110  
00 or 01  
10  
180  
90  
16  
32  
2
1187  
–25.6  
3.19  
a0  
0.000534069  
20051202178  
n11  
n12  
0.25  
d11  
d12  
1
2374  
4748  
–37.5  
–49.7  
6.38  
12.8  
0.50  
–1.959839582  
44323730469  
n13  
0.25  
d13  
0.960373640  
06042480469  
n21  
n22  
n23  
1
0
0
d21  
d22  
d23  
1
0
0
11  
45  
64  
Table 207.ꢀLPF #7  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
–3 dB  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(Hz)  
(dB)  
(ms)  
7
0111  
00 or 01  
10  
100  
50  
16  
32  
2
2167  
–35.7  
4
a0  
0.000166309  
83736831695  
5.75  
n11  
n12  
0.25  
0.5  
d11  
d12  
1
4334  
8668  
–47.7  
11.5  
23.0  
–1.977621793  
74694824219  
n13  
0.25  
d13  
0.977788090  
70587158203  
n21  
n22  
n23  
1
0
0
d21  
d22  
d23  
1
0
0
11  
25  
64  
–60.0  
5
Table 208.ꢀLPF #8  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
–3 dB  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(Hz)  
(dB)  
(ms)  
8
1000  
00 or 01  
1500  
16  
32  
4
223  
–1.26  
0.420  
a0  
0.038343372  
95612844088  
n11  
n12  
n13  
0.012602858  
55167835381  
d11  
d12  
d13  
1
10  
750  
446  
–5.70  
0.840  
0.025205812  
95635351826  
–1.621822061  
87479138748  
0.012602841  
71453899225  
0.660165434  
83091971734  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
121 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 208.ꢀLPF #8...continued  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
–3 dB  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(Hz)  
(dB)  
(ms)  
n21  
n22  
n23  
0.250000391  
85483757809  
d21  
d22  
d23  
1
11  
375  
64  
892  
–21.7  
1.68  
0.499998882  
29656874739  
–1.691365664  
38039781524  
0.250000725  
84865173919  
0.741777177  
60299266558  
Table 209.ꢀLPF #9  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
–3 dB  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(HZ)  
(dB)  
(ms)  
9
1001  
00 or 01  
500  
16  
32  
3
558  
–12.0  
1.18  
a0  
0.064615703  
92887561187  
n11  
n12  
0.002532283  
58602412005  
d11  
d12  
1
10  
250  
1116  
2232  
–27.9  
–45.8  
2.36  
4.72  
0.002533824  
55746249506  
–0.935384296  
07112438813  
n13  
n21  
0.0  
d13  
d21  
0.0  
1
0.250076066  
29379214302  
11  
125  
64  
n22  
n23  
0.499999953  
72560029905  
d22  
d23  
–1.894618878  
39771225828  
0.249923979  
97755622097  
0.899684986  
54120099278  
Table 210.ꢀLPF #A  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
–3 dB  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(Hz)  
(dB)  
(ms)  
A
1010  
00 or 01  
800  
16  
32  
4
419  
–4.92  
0.795  
a0  
0.011904109  
84205714229  
n11  
n12  
n13  
n21  
n22  
n23  
0.003841581  
86528944052  
d11  
d12  
d13  
d21  
d22  
d23  
1
10  
400  
838  
–19.5  
–42.3  
1.59  
3.18  
0.007683254  
14507123675  
–1.790004627  
19285069468  
0.003841554  
98534484614  
0.801908737  
03490794799  
0.250001033  
66513437564  
1
11  
200  
64  
1676  
0.499996183  
39874751793  
–1.836849434  
91757790568  
0.250002782  
93126343421  
0.852215825  
91330946599  
Table 211.ꢀLPF #B  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
–3 dB  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(Hz)  
(dB)  
(ms)  
B
1011  
00 or 01  
1200  
16  
4
279  
–2.00  
0.530  
a0  
0.025461958  
27091324651  
n11  
0.008307694  
58672901175  
d11  
1
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
122 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 211.ꢀLPF #B...continued  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
–3 dB  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(Hz)  
(dB)  
(ms)  
10  
11  
600  
32  
558  
–9.30  
1.06  
n12  
n13  
n21  
n22  
n23  
0.016615493  
41945577768  
d12  
d13  
d21  
d22  
d23  
–1.692260733  
94381204551  
0.008307673  
73784346147  
0.717722692  
21472528855  
0.250000627  
40839573694  
1
300  
64  
1116  
–28.8  
2.12  
0.499998117  
78583796995  
–1.753850626  
39799738093  
0.250001254  
80314383530  
0.787081488  
14205258770  
Table 212.ꢀLPF #C  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
–3 dB  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(Hz)  
(dB)  
(ms)  
C
1100  
or  
00 or 01  
120  
16  
32  
3
2325  
–46.5  
5.00  
a0  
0.015895001  
45947964072  
1101  
n11  
n12  
0.000151619  
88544501960  
d11  
d12  
1
10  
60  
4650  
9300  
–64.5  
–82.8  
10.0  
20.0  
0.000152009  
54845361584  
–0.984104998  
54052035928  
n13  
n21  
0.0  
d13  
d21  
0.0  
1
0.250321249  
94306603760  
11  
30  
64  
n22  
n23  
0.499999175  
53953604488  
d22  
d23  
–1.974640453  
92631648568  
0.249679574  
70143059551  
0.974944083  
36020621508  
Table 213.ꢀLPF #D  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
–3 dB  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(kHz)  
(dB)  
(ms)  
D
1100  
or  
00 or 01  
20  
16  
32  
2
< 50  
0
< 0.100  
a0  
0.462284907  
69863128662  
1101  
n11  
n12  
n13  
1.032979726  
79138183594  
d11  
d12  
d13  
1
10  
10  
< 100  
< 200  
–0.01  
–0.04  
< 0.200  
< 0.400  
2.065959453  
58276367188  
0.723919987  
67852783203  
1.032979726  
79138183594  
0.186203718  
18542480469  
n21  
n22  
n23  
1
0
0
d21  
d22  
d23  
1
0
0
11  
5
64  
Table 214.ꢀLPF #E  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
–3 dB  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(Hz)  
(dB)  
(ms)  
E
1110  
00 or 01  
120  
16  
2
1804  
–32.8  
4.85  
a0  
0.000238952  
80210650682  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
123 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 214.ꢀLPF #E...continued  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
–3 dB  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(Hz)  
(dB)  
(ms)  
n11  
n12  
0.25  
0.50  
d11  
d12  
1
10  
11  
60  
30  
32  
64  
3608  
–44.7  
9.70  
–1.973166250  
13962188007  
n13  
0.25  
d13  
0.973405202  
94172827587  
n21  
n22  
n23  
1
0
0
d21  
d22  
d23  
1
0
0
7216  
–57.0  
19.4  
Table 215.ꢀLPF #F  
Filter LPF[3:0] SAMPLERATE[1:0]  
Typical  
–3 dB  
Sample  
time  
(µs)  
Filter  
order  
Group  
delay  
1000 Hz  
Step response  
Filter coefficients  
#
Atten  
uation  
Activation  
to 99 %  
(µs)  
Frequency  
(Hz)  
(dB)  
(ms)  
F
1111  
00 or 01  
50  
16  
32  
4
6726  
–89.7  
12.8  
a0  
0.000051373  
22664827693  
n11  
n12  
n13  
n21  
n22  
n23  
0.000015041  
24143177110  
d11  
d12  
d13  
d21  
d22  
d23  
1
10  
25  
13,452  
26,904  
–114  
–138  
25.6  
51.2  
0.000032261  
11162087577  
–1.986263192  
05697576820  
0.000017387  
20648386979  
0.986314565  
28362415614  
0.268800639  
11477075633  
1
11  
12.5  
64  
0.498663181  
55607519680  
–1.989975680  
35769623052  
0.232535878  
66496652770  
0.990040369  
88244481510  
aaa-030619  
10  
magnitude  
(dB)  
0
-10  
-20  
-30  
-40  
-50  
-60  
minimum oscillator  
typical oscillator  
maximum oscillator  
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 24.ꢀ400 Hz, 4-pole low-pass filter response magnitude  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
124 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
aaa-030688  
1000  
delay  
(µs)  
800  
600  
400  
200  
minimum oscillator  
typical oscillator  
maximum oscillator  
0
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 25.ꢀ400 Hz, 4-pole low-pass filter response signal delay  
aaa-030620  
10  
magnitude  
(dB)  
0
-10  
-20  
-30  
-40  
minimum oscillator  
typical oscillator  
-50  
maximum oscillator  
-60  
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 26.ꢀ400 Hz, 3-pole low-pass filter response magnitude  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
125 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
aaa-030689  
1000  
delay  
(µs)  
800  
600  
400  
200  
minimum oscillator  
typical oscillator  
maximum oscillator  
0
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 27.ꢀ400 Hz, 3-pole low-pass filter response signal delay  
aaa-030621  
10  
magnitude  
(dB)  
0
-10  
-20  
-30  
-40  
minimum oscillator  
typical oscillator  
-50  
maximum oscillator  
-60  
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 28.ꢀ325 Hz, 3-pole low-pass filter response magnitude  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
126 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
aaa-030690  
1000  
delay  
(µs)  
800  
600  
400  
200  
minimum oscillator  
typical oscillator  
maximum oscillator  
0
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 29.ꢀ325 Hz, 3-pole low-pass filter response signal delay  
aaa-030622  
10  
magnitude  
(dB)  
0
-10  
-20  
-30  
-40  
minimum oscillator  
typical oscillator  
maximum oscillator  
-50  
-60  
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 30.ꢀ370 Hz, 2-pole low-pass filter response magnitude  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
127 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
aaa-030691  
1000  
delay  
(µs)  
800  
600  
400  
200  
minimum oscillator  
typical oscillator  
maximum oscillator  
0
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 31.ꢀ370 Hz, 2-pole low-pass filter response signal delay  
aaa-030623  
10  
magnitude  
(dB)  
0
-10  
-20  
-30  
-40  
minimum oscillator  
typical oscillator  
-50  
maximum oscillator  
-60  
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 32.ꢀ180 Hz, 2-pole low-pass filter response magnitude  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
128 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
aaa-030692  
4000  
delay  
(µs)  
3000  
2000  
1000  
minimum oscillator  
typical oscillator  
maximum oscillator  
0
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 33.ꢀ180 Hz, 2-pole low-pass filter response signal delay  
aaa-030624  
10  
magnitude  
(dB)  
0
-10  
-20  
-30  
-40  
minimum oscillator  
typical oscillator  
-50  
maximum oscillator  
-60  
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 34.ꢀ100 Hz, 2-pole low-pass filter response magnitude  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
129 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
aaa-030693  
4000  
delay  
(µs)  
3000  
2000  
1000  
minimum oscillator  
typical oscillator  
maximum oscillator  
0
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 35.ꢀ100 Hz, 2-pole low-pass filter response signal delay  
aaa-030625  
10  
magnitude  
(dB)  
0
-10  
-20  
-30  
-40  
minimum  
typical  
-50  
maximum  
-60  
2
10  
3
4
1
10  
10  
10  
frequency (Hz)  
Figure 36.ꢀ1500 Hz, 4-pole low-pass filter response magnitude  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
130 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
aaa-030890  
400  
delay  
(µs)  
300  
200  
100  
minimum  
typical  
maximum  
0
1
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 37.ꢀ1500 Hz, 4-pole low-pass filter response signal delay  
aaa-030626  
10  
magnitude  
(dB)  
0
-10  
-20  
-30  
-40  
minimum  
typical  
-50  
maximum  
-60  
2
3
4
1
10  
10  
10  
10  
frequency (Hz)  
Figure 38.ꢀ500 Hz, 3-pole low-pass filter response magnitude  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
131 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
aaa-030891  
1000  
delay  
(µs)  
800  
600  
400  
200  
minimum  
typical  
maximum  
0
1
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 39.ꢀ500 Hz, 3-pole low-pass filter response signal delay  
aaa-030627  
10  
magnitude  
(dB)  
0
-10  
-20  
-30  
-40  
minimum  
typical  
-50  
maximum  
-60  
2
10  
3
4
1
10  
10  
10  
frequency (Hz)  
Figure 40.ꢀ800 Hz, 4-pole low-pass filter response magnitude  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
132 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
aaa-030892  
1000  
delay  
(µs)  
800  
600  
400  
200  
minimum  
typical  
maximum  
0
1
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 41.ꢀ800 Hz, 4-pole low-pass filter response signal delay  
aaa-030628  
10  
magnitude  
(dB)  
0
-10  
-20  
-30  
-40  
minimum  
typical  
-50  
maximum  
-60  
2
3
4
1
10  
10  
10  
10  
frequency (Hz)  
Figure 42.ꢀ1200 Hz, 4-pole low-pass filter response magnitude  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
133 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
aaa-030893  
400  
delay  
(µs)  
300  
200  
100  
minimum  
typical  
maximum  
0
1
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 43.ꢀ1200 Hz, 4-pole low-pass filter response signal delay  
aaa-030629  
10  
magnitude  
(dB)  
0
-10  
-20  
-30  
-40  
minimum  
typical  
-50  
maximum  
-60  
2
3
4
1
10  
10  
10  
10  
frequency (Hz)  
Figure 44.ꢀ120 Hz, 3-pole low-pass filter response magnitude  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
134 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
aaa-030894  
5000  
delay  
(µs)  
4000  
3000  
2000  
1000  
minimum  
typical  
maximum  
0
1
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 45.ꢀ120 Hz, 3-pole low-pass filter response signal delay  
aaa-038941  
10  
magnitude  
(dB)  
0
-10  
-20  
-30  
-40  
minimum  
typical  
-50  
maximum  
-60  
2
3
4
1
10  
10  
10  
10  
frequency (Hz)  
Figure 46.ꢀ120 Hz, 2-pole low-pass filter output magnitude response  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
135 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
aaa-038942  
5000  
delay  
(µs)  
4000  
3000  
2000  
1000  
minimum  
typical  
maximum  
0
1
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 47.ꢀ120 Hz, 2-pole low-pass filter output magnitude response  
aaa-030632  
40  
magintude  
(dB)  
0
-40  
-80  
-120  
minimum  
typical  
maximum  
-160  
2
3
4
1
10  
10  
10  
10  
frequency (Hz)  
Figure 48.ꢀ50 Hz, 4-pole low-pass filter response magnitude  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
136 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
aaa-030896  
10000  
delay  
(µs)  
8000  
6000  
4000  
2000  
minimum  
typical  
maximum  
0
2
3
4
10  
10  
10  
10  
frequency (Hz)  
Figure 49.ꢀ50 Hz, 4-pole low-pass filter response signal delay  
11.6.4.5 User sensitivity scaling  
The device includes a user controlled sensitivity scaling as described in  
Section 11.2.24.1.  
11.6.4.6 Offset cancellation  
The device provides an optional offset cancellation circuit to remove internal offset error.  
A simplified block diagram of the offset cancellation is shown in Figure 50.  
rate limit select  
HIGH PASS FILTER DATAPATH  
OFFSET RATE LIMITED DATAPATH  
+
OC_Out  
-
OFFSET RATE LIMITING  
OFFSET  
CANCELLATION  
LOW PASS FILTER  
INC/DEC  
OUT  
OC_Input  
DOWN  
SAMPLE  
UP/DOWN  
COUNTER  
n
0
-1  
1 - (d x z  
)
1
CLK  
0.5 Hz  
OFFSET MONITOR  
OFFMON  
OFFMON  
NEG  
CHx_OFFSET_ERR  
POS  
aaa-030633  
Figure 50.ꢀOffset cancellation block diagram  
The transfer function for the offset low-pass filter is:  
(11)  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
137 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Response parameters are specified in Section 10 and the offset low-pass filter  
coefficients are specified in Table 216.  
During startup, multiple phases of the offset low-pass filter are used to allow for fast  
convergence of the internal offset error during initialization. The offset rate limiting is also  
bypassed regardless of the state of the OC_FILT bits in the CHx_CFG_U4 register. The  
low-pass filter details and timing for the startup phases is shown in Table 216.  
In normal mode, the offset low-pass filter frequency can be selected and output rate  
limiting can be applied to the output of the offset low-pass filter via the OC_FILT bits in  
the CHx_CFG_U4 register. Rate limiting can only be enabled if the 0.04 Hz offset LPF is  
selected. If rate limiting is enabled, the offset cancellation output is updated by OFFStep  
LSB every tRL_Rate seconds.  
The offset cancellation circuit output value is frozen when analog or digital self-test is  
active (ST_CTRL = 0x8 - 0xF) regard-less of the offset cancellation phase. When analog  
or digital self-test is deactivated, the offset cancellation output value freeze is extended  
for 15 ms before continuing updates.  
Table 216.ꢀOffset cancellation phases and times: DSI3, SPI, and I2C modes  
Offset LPF  
startup phase to start of phase  
Time from reset  
Sample  
Time  
Coefficients (24 bit)  
LPF corner  
frequency (-3 dB)  
Time constant (τ)  
(ms)  
Rate limiting  
(ms)  
(us)  
(Hz)  
0
1
0
256  
a0  
n0  
d0  
a0  
n0  
d0  
a0  
n0  
d0  
a0  
n0  
d0  
a0  
n0  
d0  
a0  
n0  
d0  
0.234051465988159  
163.8  
0.9714  
3.886  
15.54  
62.17  
248.7  
994.7  
3979  
Bypassed  
0.49999988079071  
1.0  
n1  
d1  
0.49999988079071  
–0.765948414802551  
4.096  
8.192  
24.58  
90.11  
352.3  
1401  
1401  
256  
256  
256  
256  
256  
256  
1024  
0.063805103302002  
0.49999988079071  
1.0  
40.96  
10.24  
Bypassed  
Bypassed  
Bypassed  
Bypassed  
Bypassed  
n1  
d1  
0.49999988079071  
–0.936194777488708  
2
0.0163367986679077  
0.49999988079071  
1.0  
n1  
d1  
0.49999988079071  
–0.983663082122802  
3
0.00410926342010498  
0.49999988079071  
1.0  
2.560  
n1  
d1  
0.49999988079071  
–0.995890617370605  
4
0.00102889537811279  
0.49999988079071  
1.0  
0.6400  
0.1600  
0.0400  
0.005  
n1  
d1  
0.49999988079071  
–0.998970985412597  
5
0.000257253646850586  
0.49999988079071  
1.0  
n1  
d1  
0.49999988079071  
–0.999742627143859  
6a  
6b  
a0 0.0000643377478321934  
Controlled by  
OC_FILT[1:0]  
n0  
d0  
a1  
0.49999988079071  
1.0  
n1  
d1  
0.49999988079071  
–0.9999356623  
0.000032169  
39131789331  
32000  
Bypassed  
n10  
d10  
0.5  
1
n11  
d11  
0.5  
–0.999967830  
25562763214  
Self-test Active  
Output Frozen  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
138 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 217.ꢀOffset cancellation phases and times: PSI5 modes  
Offset LPF  
startup  
phase  
Time from reset  
to start of phase  
LPF corner  
frequency  
(–3 dB)  
Time  
constant (τ)  
Rate limiting  
(ms)  
(ms)  
(Hz)  
163.8  
40.96  
10.24  
2.560  
0.6400  
0.0400  
0
1
0
0.9714  
3.886  
15.54  
62.17  
248.7  
3979  
Bypassed  
Bypassed  
Bypassed  
Bypassed  
Bypassed  
4.096  
8.192  
24.58  
90.11  
2
3
4
6a  
End of Initialization  
Phase 3  
Controlled by  
OC_FILT[1:0]  
6b  
End of Initialization  
Phase 3  
0.005  
32000  
Bypassed  
aaa-030634  
10  
magintude  
(dB)  
0
-10  
-20  
-30  
-40  
-50  
-60  
minimum oscillator  
typical oscillator  
maximum oscillator  
-3  
-2  
-1  
10  
10  
10  
1
10  
frequency (Hz)  
aaa-030897  
6000  
delay  
(ms)  
4000  
2000  
0
minimum oscillator  
typical oscillator  
maximum oscillator  
-3  
-2  
-1  
10  
10  
10  
1
10  
frequency (Hz)  
Figure 51.ꢀ0.04 Hz offset cancellation low–pass filter characteristics  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
139 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
aaa-030635  
40  
magintude  
(dB)  
0
-40  
-80  
-120  
-160  
minimum  
typical  
maximum  
-4  
-3  
-2  
-1  
2
10  
10  
10  
10  
1
10  
10  
frequency (Hz)  
aaa-030698  
50  
40  
30  
20  
10  
0
delay  
(s)  
minimum  
typical  
maximum  
-4  
-3  
-2  
-1  
2
10  
10  
10  
10  
10  
1
10  
frequency (Hz)  
Figure 52.ꢀ0.005 Hz offset cancellation low-pass filter characteristics  
11.6.4.7 Moving average  
The device includes an optional moving average function. See Section 11.2.25.4 for  
details regarding the moving aver-age function. If the moving average function is  
enabled, interpolation is disabled.  
11.6.4.8 Data interpolation  
The device includes 16 to 1 linear data interpolation to minimize the system sample jitter.  
Each result produced by the digital signal processing chain is delayed one sample time.  
Transmitted data is interpolated from the 2 previous samples, resulting in a latency of one  
sample time, and a maximum signal jitter of 1/16 of the sample time. The device uses the  
following functions for calculating the interpolation:  
(12)  
(13)  
An example of the output interpolation is shown in Figure 53.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
140 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
aaa-030636  
40000  
available  
output value  
(LSB)  
30000  
20000  
10000  
0
0
100  
200  
300  
400  
500  
600  
output sample #  
DSP output value (LSB)  
available output value (LSB)  
Figure 53.ꢀOutput interpolation example: Linear interpolation (16 to 1)  
11.6.4.9 Output scaling  
Table 218 shows the output scaling for each output data type and protocol.  
Table 218.ꢀOutput scaling  
Data Type  
16-bit Register Read  
16-bit  
PCM  
SPI  
DSI  
PSI5  
I2C  
D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
x
x
x
x
x
16-bit  
x
x
x
12-bit  
x
x
x
10-bit  
x
x
x
x
CHx_U_OFFSET  
x
x
Readable Data  
Noise Bits  
Clipped Bits  
Equation 14 is used to convert sensor data readings to acceleration using the variables  
specified in Table 219.  
Note: The values listed apply for a user gain of 1x (U_SNS_SHIFT = '10' and  
U_SNS_MULT = 0x00).  
(14)  
Where:  
Acceleration g  
=
=
=
=
The acceleration output in g  
SensorDataLSB  
SensorDataOFFLSB  
SENSEACCEL  
The acceleration output in LSB  
The acceleration output value at 0 g in LSB  
The expected sensitivity in LSB/g  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
141 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 219.ꢀSensor data variables  
g Range Data reading  
type  
Typical  
SENSEACCEL Minimum sensor  
Maximum sensor  
data value  
data value  
SensorDa  
taOFFLSB  
(LSB/g)  
(Signed LSB)  
(Signed LSB)  
(LSB)  
Medium g 16-bit Register Read  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
66.0322  
66.0322  
528.258  
528.258  
33.0161  
33.0161  
8.25403  
8.25403  
21.8930  
21.8930  
175.144  
175.144  
10.9465  
10.9465  
2.73663  
2.73663  
0x8000 (–32768)  
0x8001 (–32767)  
0x8010 (–32752)  
0x8800 (–30720)  
0x801 (–2047)  
0x801 (–2047)  
0x201 (–511)  
0x7FFF (+32767)  
0x7FFF (+32767)  
0x7FFF (+32767)  
0x7800 (+30720)  
0x7FF (+2047)  
0x7FF (+2047)  
0x1FF (+511)  
16-bit DSI3 PDCM Sensor Data  
16-bit SPI Sensor Data  
16-bit PSI5 Sensor Data  
12-bit DSI3 PDCM Sensor Data  
12-bit SPI Sensor Data  
10-bit DSI3 PDCM Sensor Data  
10-bit PSI5 Sensor Data  
16-bit Register Read  
0x220 (–480)  
0x1E0 (+480)  
High g  
0x8000 (–32768)  
0x8001 (–32767)  
0x8010 (–32752)  
0x8800 (–30720)  
0x801 (–2047)  
0x801 (–2047)  
0x201 (–511)  
0x7FFF (+32767)  
0x7FFF (+32767)  
0x7FFF (+32767)  
0x7800 (+30720)  
0x7FF (+2047)  
0x7FF (+2047)  
0x1FF (+511)  
16-bit DSI3 PDCM Sensor Data  
16-bit SPI Sensor Data  
16-bit PSI5 Sensor Data  
12-bit DSI3 PDCM Sensor Data  
12-bit SPI Sensor Data  
10-bit DSI3 PDCM Sensor Data  
10-bit PSI5 Sensor Data  
0x220 (–480)  
0x1E0 (+480)  
11.7 Temperature sensor  
11.7.1 Temperature sensor signal chain  
The device includes an independent temperature sensor for each channel for signal  
compensation. The output of the channel 0 temperature sensor is provided for user  
readability. A simplified block diagram is shown in Figure 54. Temperature sensor  
parameters are specified in Section 10.5 and Section 10.18.  
SINC  
FILTER  
MOVING  
AVERAGE  
TEMPERATURE  
Σ
CONVERTER  
OFFSET  
AND  
GAIN TRIM  
temperature  
sensor  
to temperature  
output  
aaa-030637  
Figure 54.ꢀTemperature sensor signal chain block diagram  
11.7.2 Temperature sensor output scaling equations  
Equation 15 is used to convert temperature readings with the variables as specified.  
(15)  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
142 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Where:  
TDEGC  
TLSB  
=
=
=
=
The temperature output in degrees C  
The temperature output in LSB  
T0LSB  
TSENSE  
The expected temperature output in LSB at 0 C  
The expected temperature sensitivity in LSB/C  
Table 220.ꢀTemperature sensor output scaling equation variables  
Data reading  
T0LSB  
TSENSE  
(LSB)  
(LSB/C)  
8-bit Register Read  
68  
TSENSE  
16-bit Register Read  
17408  
17408  
17408  
–1728  
1100  
1100  
276  
TSENSE * 256  
TSENSE * 256  
TSENSE * 256  
TSENSE * 64  
TSENSE * 16  
TSENSE * 16  
16-bit DSI3 PDCM Sensor Data  
16-bit SPI Sensor Data  
16-bit PSI5 Sensor Data  
12-bit DSI3 PDCM Sensor Data  
12-bit SPI Sensor Data  
10-bit DSI3 PDCM Sensor Data  
10-bit PSI5 Sensor Data  
TSENSE *  
TSENSE  
4
–27  
11.8 PCM output function  
The device provides the option for a PCM output function. The PCM output is enabled  
if the ARM_CFG bits in the CHx_CF-G_U4 registers are configured for PCM output.  
Selecting the PCM output enables the following functions:  
The non-interpolated sensor data output as defined in the DATATYPE0 bits in the  
Chx_CFG_U3 register is saturated to 10-bits as shown in Section 11.6.4.9 and  
converted to an unsigned value.  
The 10-bit sensor value is input into a summer clocked at 10 MHz.  
The carry from the summer circuit is output to the PCM pin.  
A block diagram of the PCM output is shown in Figure 55.  
10  
DSP [20:11]  
out  
as defined in DATATYPE0  
A
CARRY  
10 bit ADDER  
SUM  
PCM  
10  
B
D
Q
Q
f
CLK  
FF  
CLK  
10  
aaa-030638  
Figure 55.ꢀPCM output function block diagram  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
143 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.9 Arming function  
When SPI mode is enabled via the COMMTYPE register, the device provides the option  
for an arming function with 3 modes of operation. The operation of the arming function is  
selected by the state of the ARM_CFG bits in the CHx_CFG_U4 registers.  
See Section 14.5 for the operation of the Arming function with exception conditions. Error  
conditions do not impact prior arming function responses. If an error occurs after an  
arming activation, the corresponding pulse stretch for the existing arming condition will  
continue. However, new sensor reads will not update the arming function regardless of  
the sensor value.  
11.9.1 Arming function: moving average mode  
In moving average mode, the arming function runs a moving average on the offset  
canceled output of the associated sensor channel DATATYPE0. The number of samples  
used for the moving average (k) is programmable via the ARM_WS[1:0] bits in the  
CHx_ARM_CFG registers. See Section 11.2.28.3 for register details.  
(16)  
Where n is the current sample.  
The sample rate for each channel is determined by the rate of the SPI sensor data  
requests. At the falling edge of SS_B for a sensor data SPI response for SOURCEID_0  
(channel 0) or SOURCEID_2 (channel 1), the moving average for the associated channel  
is updated with a new sample. See Figure 56. The arming function input data rate can  
be down sampled as described in Section 11.9.4. The SPI sensor data sample rate must  
meet the minimum time between requests (tACC_REQ_x) specified in Section 10.13.  
The moving average output is compared against positive and negative thresholds that  
are individually programmed for each channel via the CHx_ARMT_x registers. See  
Section 11.2.29 for register details. If the moving average equals or exceeds either  
threshold, an arming condition is indicated, the arming pin output is asserted for the  
associated channel, and the pulse stretch counter is set as described in Section 11.9.5.  
The arming pin output is deasserted only when the pulse stretch counter expires.  
Figure 56 shows the arming output operation for different SPI conditions.  
ARM_T_P[7:0]  
ARM_WS_P[1:0]  
OC_out[12:3]  
POSITIVE  
MOVING AVERAGE  
PULSE STRETCH  
GATING  
I/O  
ARM  
NEGATIVE  
MOVING AVERAGE  
ARM_WS_N[1:0]  
ARM_T_N[7:0]  
ARM_PS[3:0]  
aaa-030639  
Figure 56.ꢀArming function block diagram - moving average mode  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
144 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.9.2 Arming function: count mode  
In count mode, the arming function compares each offset canceled sample against  
positive and negative thresholds that are individually programmed for each channel  
via the CHx_ARMT_x_x and CHx_ARMT_x_x registers. See Section 11.2.29 for  
register details. If the sample equals or exceeds either threshold, a sample counter is  
incremented. If the sample does not exceed either threshold, the sample counter is reset  
to zero.  
The sample rate for each channel is determined by the SPI sensor data sample rate.  
At the falling edge of SS_B for a sensor data SPI response for SOURCEID_0 (channel  
0) or SOURCEID_2 (channel 1), a new sample for the associated channel is compared  
against the thresholds. See Figure 57. The arming function input data rate can be down  
sampled as described in Section 11.9.4. The SPI sensor data sample rate must meet the  
minimum time between requests (tACC_REQ_x) specified in Section 10.13.  
A sample count limit is programmable via the ARM_WS[1:0] bits in the CHx_ARM_CFG  
registers. If the sample count reaches the programmable sample count limit, an arming  
condition is indicated, the associated arm pin output is asserted, and the pulse stretch  
counter is set as described in Section 11.9.5.  
The associated arm pin output is deasserted only when the pulse stretch counter expires.  
Figure 58 shows the arming output operation for different SPI conditions.  
ARM_WS_P[1:0]  
ARM_T_P[7:0]  
SAMPLE  
COUNTER  
PULSE  
STRETCH  
OC_out[12:3]  
GATING  
I/O  
ARM  
ARM_T_N[7:0]  
ARM_PS[1:0]  
aaa-030640  
Figure 57.ꢀArming function block diagram - count mode  
SCLK  
SS_B  
MOSI  
request SnsData  
SnsData resp  
request SnsData  
SnsData resp  
request SnsData  
SnsData resp  
request SnsData  
SnsData resp  
MISO  
ARM  
arming  
condition  
not present  
arming  
condition  
present  
arming  
condition  
not present  
arming  
condition  
not present  
data latched for  
arm function and SPI  
t
ARM  
pulse stretch time  
aaa-030641  
Figure 58.ꢀArming condition, moving average and count mode  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
145 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.9.3 Arming function: unfiltered mode  
At the falling edge of SS_B for a sensor data SPI response for SOURCEID_0 (channel  
0) or SOURCEID_2 (channel 1), the most recent available offset canceled sample for  
the requested channel is compared against positive and negative thresholds that are  
individually programmed for each channel via the CHx_ARM_T_x and CHx_ARM_T_x  
registers. See Section 11.2.29 for register details. If the sample equals or exceeds either  
threshold, an arming condition is indicated.  
Once an arming condition is indicated for the associated channel, the arm pin output for  
that channel is asserted when SS_B is asserted and the MISO data includes a sensor  
data response for that channel. The pulse stretch function is not applied in Unfiltered  
mode.  
Figure 59 contains a block diagram of the Arming Function operation in Unfiltered Mode.  
Figure 60 shows the Arming output operation under the different SPI request conditions.  
ARM_CFG[2]  
ARM_CFG[1]  
SS_B  
ch select  
I/O  
ARM  
ARMING FUNCTION  
INTERPOLATED SAMPLE RATE  
aaa-030642  
Figure 59.ꢀArming function block diagram - unfiltered mode  
SCLK  
SS_B  
MOSI  
request SnsData  
SnsData resp  
request SnsData  
SnsData resp  
request SnsData  
SnsData resp  
request SnsData  
SnsData resp  
MISO  
ARM  
arming  
condition  
not present  
arming  
condition  
present  
arming  
condition  
not present  
arming  
condition  
not present  
data latched for  
arm function and SPI  
t
ARM_UF_DLY  
aaa-030643  
t
ARM_UF_ASSERT  
Figure 60.ꢀArming condition, unfiltered mode  
11.9.4 Arming function down sampling  
The data provided to the arming function can be down sampled using the ARM_DS[1:0]  
bits in the CHx_ARM_CFG registers.  
The initial value of the counter is zero. At the falling edge of SS_B for a sensor data  
SPI response, if the counter value is equal to '00', the arming function is updated with  
the new sample as described in Section 11.9.1 or Section 11.9.2. The counter is then  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
146 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
incremented by one. The counter rolls over to '00' after the maximum value specified in  
the ARM_DS[1:0] bits is reached.  
11.9.5 Arming pulse stretch function  
A pulse stretch function can be applied to the arming outputs in moving average mode, or  
count mode.  
If the pulse stretch function is not used (ARM_PS[1:0] = '00'), the arming output is  
asserted if and only if an arming condition exists for the associated channel after the  
most recent evaluated sample. The arming output is deasserted if and only if an arming  
condition does not exist for the associated channel after the most recent evaluated  
sample.  
If the pulse stretch function is used (ARM_PS[1:0] not equal '00'), the arming output is  
controlled only by the value of the pulse stretch timer value. If the pulse stretch timer  
value is non-zero, the arming output is asserted. If the pulse stretch timer is zero, the  
arming output is deasserted. The pulse stretch counter continuously decrements until it  
reaches zero. The pulse stretch counter is reset to the programmed pulse stretch value  
if and only if an arming condition exists for the associated channel after the most recent  
evaluated sample. See Figure 58.  
Exception conditions listed in Section 14.5 do not impact prior arming function responses.  
If an exception occurs after an arming activation, the corresponding pulse stretch for  
the existing arming condition will continue. However, new sensor reads will not reset the  
pulse stretch counter regardless of the sensor value.  
11.9.6 Arming pin output structure  
The arming output pin structure can be set to active high, or active low with the  
ARM_CFG bits in the CHx_CFG_U4 registers as described in Section 11.2.26.4. The  
active high and active low pin output structures are shown in Figure 61.  
open drain, active high  
open drain, active low  
VCC  
VCC  
ARM  
ARM FUNCTION  
GATING  
ARM FUNCTION  
GATING  
ARM  
aaa-030644  
Figure 61.ꢀArming function - pin output structure  
12 DSI3 protocol  
The DSI3[2] standard describes two function classes: Signal Function Class and  
Power Function Class. The device is a slave conforming to the Signal Function Class  
requirements. The device does not support Power Function Class. The following sections  
describe the DSI3 Signal Function Class features supported by the device.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
147 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
12.1 DSI3 physical layer  
12.1.1 Command receiver  
The command receive block converts voltage transitions on the BUS_I pin to a digital  
pulse train for decoding by the DSI data link layer.  
The supply voltage can vary throughout the specified range, so the communication high  
voltage (VHIGH) must be sampled and averaged with a low-pass filter. The communication  
low voltage is then determined by comparing the supply voltage to the sampled and  
averaged VHIGH voltage. Figure 62 shows a block diagram of the command receiver  
physical layer.  
bus in  
DSI3  
cmd_block  
Vbufa  
DSI/PSI  
41.66 mV 83.33 mV  
DSI3  
-
-
+
+
DSI3/PSI5  
11 R  
command_detect  
R
D
2.2 MΩ  
2.8 MΩ  
count  
command  
COUNTER  
f
OSC  
lpf_reset  
cmd_start  
CONTROL  
LOGIC  
cmd_valid  
Vhigh_sample  
command_detect  
R
54 pF  
aaa-030645  
Figure 62.ꢀCommand receiver physical layer  
The start of a command is detected when the comparator output (Command_Detect) is  
low. The comparator output is input to a counter that is updated at the internal oscillator  
frequency. Control logic monitors the counter output and generates the necessary  
internal signals for the logic.  
Figure 63 shows a timing diagram of the command receiver when a valid command is  
received, and Figure 64 shows a timing diagram of the command receiver when a micro-  
cut is received during the command window. Voltage values and timing parameters are  
specified in Section 10.4 and Section 10.20.  
BUS_I  
Cmd_Start  
t
Cmd_Valid  
Cmd_Valid  
t
CmdBlock_CRM  
t
CmdBlock_ST_CRM  
Cmd_Block  
VHigh_Samp  
time  
aaa-030646  
Figure 63.ꢀDSI3 command receiver timing diagram: valid command  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
148 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
BUS_I  
Cmd_Start  
Cmd_Valid  
t
Cmd_Valid  
Cmd_Block  
VHigh_Samp  
time  
aaa-030647  
Figure 64.ꢀDSI3 command receiver timing diagram: micro-cut  
12.1.2 Response transmitter  
The response transmitter block converts two digital signals into two supply modulation  
current. The response currents are generated such that the rise and fall times are the  
same whether the IRESP current is being transmitted or the 2 x IRESP cur-rent is being  
transmitted. A diagram of the response transmitter is shown in Figure 63. Current values  
and timing parameters are specified in Section 10.4 and Section 10.11.  
BUS_I  
transmit level `0'  
MAGNITUDE  
CONTROL  
transmit level `1'  
SLEW  
CONTROL  
transmit level `2'  
V
SS  
aaa-030648  
Figure 65.ꢀDSI3 transmitter block diagram  
12.1.3 Discovery mode current sense  
The current sense circuit is used during discovery mode to determine if any additional  
slaves are connected to the BUS_O pin of the device. A diagram of the current sense  
circuit is shown in Figure 66. Current values and timing parameters are specified in  
Section 10.4 and Section 10.11. Details regarding discovery mode are included in  
Section 12.2.3.  
I
REF  
IDATA  
AddrCount  
LastDevice  
-
-
I
I
>0?  
OUT  
DISC  
+
R
SENSE  
BUS_O  
Disc_Compare  
I
CCQ  
amp  
I
sample  
CCQ  
CCQ  
CONTROL  
LOGIC  
I
SAMPLE AND HOLD  
Disc_Command_Rcvd  
aaa-030649  
Figure 66.ꢀDiscovery mode current sense circuit block diagram  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
149 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
V
HIGH  
V
LOW  
t
t
DISC_ICCQ_Samp  
DISC_Dly  
I
_SAMPLE  
Activation  
CCQ  
t
DISC_Idle_RSP  
t
DISC_Ramp_RSP  
t
START_DISC_RSP  
I
RESP  
t
t
IDISC_Samp_Dly  
IDISC_Samp  
Disc_Compare  
t
IDISC_CMD_BLK  
CmdBlock_DISC  
time  
aaa-030650  
Figure 67.ꢀDSI3 discovery mode sensing timing diagram  
12.2 Address assignment  
The device supports all three address assignment methods described in the DSI3[2]  
standard as described in Section 12.2.1, Section 12.2.2, and Section 12.2.3.  
12.2.1 Address assignment method for parallel connected slaves  
Devices connected in parallel must have pre-programmed addresses by storing a  
non-zero value into the PADDR[3:0] bits of the PHYSADDR OTP register. If a non-  
zero value is stored in this OTP register, The device does not participate in any other  
address assignment method and waits for Command and Response Mode for further  
configuration. See Section 12.3 for details regarding Command and Response Mode.  
12.2.2 Address assignment method for bus switch connected daisy chain devices  
A device connected in daisy chain by a bus switch may have either a pre-programmed  
address as described in Section 12.2.1, or an un-programmed address.  
If the address is pre-programmed, the device does not participate in any other  
address assignment method and waits for Command and Response Mode for further  
configuration information, including activating the bus switch to connect the next device  
on the bus. See Section 12.3 for details regarding Command and Response Mode.  
If the address is un-programmed, once power is applied, the device is the only device  
on the segment which requires an address assignment. The device will accept a  
Command and Response Mode register write command addressed to Address $0 (global  
command), which writes the PADDR[3:0] bits to a non-zero value. Once a physical  
address is assigned to the device, Command and Response Mode is used with the  
assigned physical address for further configuration.  
On power up, the device bus switch output defaults to deactivated.  
12.2.3 DSI3 discovery mode: Address assignment method for resistor connected  
daisy chain devices  
A device connected in daisy chain via a resistor has an un-programmed address and  
uses Discovery Mode to obtain its physical address (PADDR[3:0]).  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
150 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
The master device must initiate Discovery Mode automatically after power is applied  
to the bus segment by sending a sequence of Discovery Commands. Discovery mode  
timing is defined in Section 10.11. If the ENDINIT bit is not set and the PADDR[3:0] field  
is set to '0000', the device will detect a Discovery Command tSTART_DISC after a power-on  
reset and for intervals of tPER_Disc until Discovery Mode has ended (the maximum value  
of tSTART_DISC).  
Discovery Mode follows the sequence listed here. Figure 68 shows a timing diagram of  
the Discover Protocol for a 4 device segment.  
1. The master powers up the bus segment to a known state.  
2. The master transmits the Discovery Command.  
3. After a predetermined delay (tSTART_DISC_RSP), all devices without a physical address  
activate a current ramp to the 2x response current at a ramp rate of iDISC_RAMP  
.
4. Each device monitors the current through its sense resistor (ΔiSENSE).  
a. If the current is above iRESP, the device disables its response current, increments  
its physical address counter, and waits for the next Discovery Command.  
b. If the current is low (ΔiSENSE less than iRESP), the device continues to ramp its  
response current to 2* iRESP in time tDISC_RAMP_RSP and maintains the current at 2*  
iRESP for time tDISC_IDLE_RSP  
.
c. After time tDISC_IDLE_RSP, if a device has not detected a current through its current  
sense resistor of iRESP, the device accepts physical address '1' and disables its  
response current.  
5. After a pre-defined period (tPER_DISC), the master transmits another Discovery  
Command.  
6. Steps 3 and 4 are repeated, with the device accepting the address in its address  
assignment counter if the sense current is low.  
7. The master repeats step 5 until it has transmitted Discovery Commands for all the  
devices it expects on the bus.  
8. Device initialization can now begin using Command and Response Mode.  
Once the Discovery Mode is complete, a physical address is assigned to the device, and  
Command and Response Mode is used with the assigned physical address for further  
configuration.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
151 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
0
0
0
0
Voltage  
t
DISC_Bittime  
V
LOW  
t
PER_DISC  
current sensed,  
at master  
t
START_DISC_RSP  
2*I  
= i  
DISC_Peak  
RESP  
4*I  
4*I  
q
q
slave 1 accepts addr `0100'  
2*I  
current  
transmitted  
slave 1  
RESP  
t
+ t  
DISC_Idle_RSP  
DISC_Ramp_RSP  
current sensed,  
slave 1  
2*I  
2*I  
RESP  
3*I  
3*I  
q
q
current  
transmitted  
slave 2  
2*I  
RESP  
slave 2 accepts addr `0011'  
t
DISC_Ramp_RSP  
current sensed,  
slave 2  
RESP  
2*I  
2*I  
q
q
current  
transmitted  
slave 3  
2*I  
RESP  
slave 3 accepts addr `0010'  
current sensed,  
slave 3  
2*I  
2*I  
RESP  
RESP  
I
RESP  
I
I
q
q
current  
transmitted  
slave 4  
slave 4 accepts addr `0001'  
current sensed,  
slave 4  
0
aaa-030652  
Figure 68.ꢀDSI3 discovery mode timing diagram  
12.3 DSI3 command and response mode  
DSI3 command and response mode is the main communication method used for  
initialization of the device.  
12.3.1 DSI3 command and response mode command reception  
Command and response mode data packets are exchanged between a single master  
and a single slave. The primary purpose of command and response transactions are to  
read from and write to registers within the device memory structure.  
An example command and response mode command is shown in Figure 69. The  
command consists of 32 bits of data broken up into multiple fields as described in  
Section 12.3.1.2.  
BUS_I  
PA  
[3]  
PA CMD  
[0] [3]  
CMD ED  
[0] [7]  
ED RD  
[0] [7]  
RD CRC  
[0] [7]  
CRC  
[0]  
PA[3:0]  
CMD[3:0]  
ED[7:0]  
RD[7:0]  
CRC[7:0]  
aaa-030653  
Figure 69.ꢀCommand and response mode example command  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
152 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 221.ꢀCommand and response mode example command descriptions  
Physical address  
Command  
Extended data  
Register data  
Error checking  
PA3 PA2 PA1 PA0  
C3  
C2  
C1  
C0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
E0  
0
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
0
0
0
1
1
0
1
1
0
12.3.1.1 Bit encoding  
Figure 70 shows the bit encoding used for Command and Response Mode Commands  
from the Master device.  
0
0
0
1
1
0
1
1
V
HIGH  
V
LOW  
aaa-030654  
Figure 70.ꢀCommand and response mode command bit encoding  
12.3.1.2 Command message format  
The command and response mode command format is shown in Table 222.  
Table 222.ꢀCommand and response mode - command format  
Physical address  
Command  
Extended data  
Register data  
CRC  
PA[3:0]  
CMD[3:0]  
ED[7:0]  
RD[7:0]  
CRC[7:0]  
Table 223.ꢀCommand and response mode - field definitions  
Field  
Length Definition  
(Bits)  
PA[3:0]  
4
Physical Address. The physical address must match the value in the PADDR[3:0] of the PHYSADDR  
register  
CMD[3:0]  
ED[7:0]  
4
8
8
8
Command (see Section 12.3.4)  
Extended Data (see Section 12.3.4)  
Register Data (see Section 12.3.4)  
Error Checking (see Section 12.3.1.3)  
RD[7:0]  
CRC[7:0]  
12.3.1.3 Error checking  
The device calculates an 8-bit CRC on the entire 32-bits of each command. Message  
data is entered into the CRC calculator MSB first, consistent with the transmission  
order of the message. If the calculated CRC does not match the transmitted CRC, the  
command is ignored and the device does not respond.  
The CRC decoding procedure is:  
1. A seed value is preset into the least significant bits of the shift register.  
2. Using a serial CRC calculation method, the receiver rotates the received message  
and CRC into the least significant bits of the shift register in the order received (MSB  
first).  
3. When the calculation on the last bit of the CRC is rotated into the shift register, the  
shift register contains the CRC check result.  
4. If the shift register contains all zeros, the CRC is correct.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
153 / 254  
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
5. If the shift register contains a value other than zero, the CRC is incorrect.  
The CRC polynomial and seed for Command and Response Mode are shown in  
Table 224 .  
Table 224.ꢀCommand and response mode command CRC  
Mode  
Default polynomial  
Non-direct seed  
Command and Response Mode  
x8 + x5 + x3 + x2 + x + 1  
1111 1111  
Some example CRC calculations are shown in Table 225 .  
Table 225.ꢀCommand and response mode - CRC calculation examples  
Physical address  
Command  
0x08  
Extended data  
0x11  
Register data  
0x86  
Non-direct seed  
0xFF  
8-bit CRC  
0xB0  
0x01  
0x02  
0x03  
0x04  
0x01  
0x25  
0xFF  
0xFF  
0x38  
0x0F  
0x1A  
0x41  
0xFF  
0x2C  
0x01  
0x01  
0x01  
0xFF  
0xD4  
12.3.2 DSI3 command and response mode response transmission  
An example command and response mode response is shown in Figure 71. The  
response consists of 32 bits of data broken up into multiple fields as described in  
Section 12.3.2.2.  
st  
1
symbol  
response  
current  
aaa-030655  
Figure 71.ꢀCommand and response mode response example  
Table 226.ꢀCommand and response mode response example  
Physical address  
Command  
Extended data  
Register data  
Error checking  
PA3 PA2 PA1 PA0 C3 C2 C1 C0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 E7 E6 E5 E4 E3 E2 E1 E0  
0
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
0
0
0
1
1
0
1
1
0
12.3.2.1 Symbol encoding  
The device response to a Command and Response Mode Command uses multi-level  
source coding where data nibbles are first encoded into symbols and then the symbols  
are encoded into current levels. The symbols are assembled from three consecutive  
three-level current pulses called chips. Within a symbol there are 3 consecutive chips  
that can assume one of three discrete current levels as described in Section 10.5: iq, iq +  
iRESP, and iq + 2 x iRESP. Figure 72 shows the chip trans-missions and an example of a 3  
symbol (9 chip), 12-bit data packet.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
154 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
response data bit encoding  
symbol  
1
1
0
2
0
2
2
1
2
+2*I  
+I  
RESP  
RESP  
I
q_all  
st nd rd  
1
2
3
0 mA  
chips  
each symbol encodes four data bits  
aaa-030656  
Figure 72.ꢀResponse symbol encoding  
Of the 27 possible combinations for three consecutive tri-level chips, the combinations  
that begin with the null current level (iq) are discarded. Of the remaining 18 symbols,  
the two symbols that contain the same value for all three chips are also dis-carded.  
The remaining 16 symbols all begin with a non-null current level and have at least one  
transition. These characteristics guarantee that any response packet has a transition at  
the beginning of a packet and at least one transition in every symbol. Each 3-chip symbol  
encodes the information of 4-bits. Table 227 shows the symbol encoding used by the  
device.  
Table 227.ꢀSymbol mapping  
Encoded data (4 Bits)  
Binary HEX  
0000  
Symbol transmitted  
1st Chip  
2nd Chip  
3rd Chip  
0
1
2
1
2
1
2
1
2
2
2
1
2
1
2
1
1
1
0
0
0
1
1
0
2
1
2
2
2
0
0
0
1
2
2
0
2
2
1
0
0
2
1
0
0
1
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
155 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 227.ꢀSymbol mapping...continued  
Encoded data (4 Bits)  
Binary HEX  
1111  
Symbol transmitted  
2nd Chip  
1st Chip  
3rd Chip  
F
1
2
1
Where:  
0 = iq  
1 = iRESP  
2 = 2 x iRESP  
12.3.2.2 Response message format  
The command and response mode response format is shown in Table 228.  
Table 228.ꢀCommand and response mode - response format  
Physical address  
Command  
Register + 1 data  
Register data  
CRC  
PA[3:0]  
CMD[3:0]  
RD1[7:0]  
RD[7:0]  
CRC[7:0]  
Table 229.ꢀCommand and response mode - field definitions  
Field  
Length (Bits)  
Definition  
PA[3:0]  
4
Physical Address  
Matches the value in the PADDR[3:0] of the PHYSADDR register  
CMD[3:0]  
ED[7:0]  
4
8
An echo of the received command  
The data contained in the register addressed by RA[7:1] + 1 (High Byte, see  
Section 12.3.4)  
RD[7:0]  
8
8
The data contained in the register addressed by RA[7:1] + 0 (Low Byte, see  
Section 12.3.4)  
CRC[7:0]  
Error Checking (see Section 12.3.2.3)  
12.3.2.3 Error checking  
The device calculates a CRC on the entire 32-bits of each response. Message data is  
entered into the CRC calculator MSB first, consistent with the transmission order of the  
message.  
The CRC Encoding procedure is:  
1. A seed value is preset into the least significant bits of the shift register.  
2. Using a serial CRC calculation method, the transmitter rotates the transmitted  
message into the least significant bits of the shift register, MSB first.  
3. Following the transmitted message, the transmitter feeds eight zeros into the shift  
register, to match the length of the CRC.  
4. When the last zero is fed into the input adder, the shift register contains the CRC.  
5. The CRC is transmitted.  
The CRC polynomial and seed for Command and Response Mode are shown in  
Table 230.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
156 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 230.ꢀCommand and response mode response CRC  
Mode  
Default polynomial  
x8 + x5 + x3 + x2 + x + 1  
Non-direct seed  
Command and Response Mode  
1111 1111  
Some example CRC calculations are shown in Table 225.  
12.3.3 DSI3 command and response mode timing  
A timing diagram for command and response mode is shown in Figure 73. Timing  
parameters are specified in Section 10.11.  
CMD_Start  
st  
nd  
32 bit  
1
bit  
BUS_I  
t
ACT_RESP  
t
CMD_BitTime  
t
POR_DSI  
t
START_CRM  
V
BUS_I_UV_F + VHYST  
t
PER_CRM  
st  
th  
8
1
symbol  
symbol  
t
CHIP_CRM  
I
+ 2 x I  
q
RESP  
RESP  
response  
current  
I
+ I  
q
I
q
t
t
SLEW2_RESP  
aaa-030657  
SLEW1_RESP  
Figure 73.ꢀCommand and response mode timing diagram  
12.3.4 DSI3 command and response mode command summary  
Table 231.ꢀDSI3 command and response mode command summary  
Command  
Data  
C3 C2 C1 C0 Hex Description  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
x
D7  
x
D6  
x
D5  
x
D4  
x
D3  
x
D2  
x
D1  
x
D0  
x
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
$E  
$F  
Register Read  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Register Write  
Reserved  
Reserved  
Enter PDCM  
Reserved  
Reserved  
Reserved  
Reserved  
RA[7] RA[6] RA[5] RA[4] RA[3] RA[2] RA[1]  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
RA[7] RA[6] RA[5] RA[4] RA[3] RA[2] RA[1] RA[0] RD[7] RD[6] RD[5] RD[4] RD[3] RD[2] RD[1] RD[0]  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
12.3.4.1 Register read command  
The device supports the Register Read command as a device address specific command  
only. If the PA[3:0] field in the command matches the value in the PADDR[3:0] bits of  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
157 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
the PHYSADDR register and a valid CRC is calculated, the device responds to the  
command.  
The device ignores the Register Read command if the command is sent to any other  
physical address, including the DSI Global Device Address of '0000'.  
The Register Read command uses the byte address definitions shown in Section 11.1.  
The Register Read response includes the register contents at the time the Register Read  
command decode is complete. Readable registers along with their byte addresses are  
shown in Section 11.1. If an attempt is made to read a register that is not readable, the  
device will respond with all zero data.  
Table 232.ꢀRegister read command format  
Address  
Command  
Data  
CRC  
PA3 PA2 PA1 PA0  
PA[3] PA[2] PA[1] PA[0]  
C3  
C2  
C1  
C0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
RA[7] RA[6] RA[5] RA[4] RA[3] RA[2] RA[1]  
x
0
0
0
0
0
0
0
0
8 bits  
Table 233.ꢀRegister read command format description  
Bit field  
Definition  
PA[3:0]  
DSI physical address. This field contains the physical address. This field must match the PADDR[3:0] bits  
in the PHYSADDR register. Otherwise, the command is ignored.  
C[3:0]  
Register Read Command = '0000'  
RA[7:1]  
RA[7:1] contains the upper 7 bits of the byte address for the register to be read.  
Table 234.ꢀRegister read command: response format  
Address  
Command  
Data  
CRC  
PA3 PA2 PA1 PA0  
PA[3] PA[2] PA[1] PA[0]  
C3  
C2  
C1  
C0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
RD[15] RD[14] RD[13] RD[12] RD[11] RD[10] RD[9] RD[8] RD[7] RD[6] RD[5] RD[4] RD[3] RD[2] RD[1] RD[0] 8 bits  
Table 235.ꢀRegister read command: response format description  
Bit field  
PA[3:0]  
C[3:0]  
Definition  
DSI physical address. This field contains the PADDR[3:0] bits in the PHYSADDR register.  
Register Read Command = '0000'  
RD[15:8]  
RD[7:0]  
The data contained in the register addressed by RA[7:1] + 1 (High Byte)  
The data contained in the register addressed by RA[7:1] + 0 (Low Byte)  
A register read command to a register address outside the addresses listed in  
Section 11.1 will result in a valid response. The data for the registers will be '0x0000'.  
12.3.4.2 Register write command  
The device supports the Register Write command as a device address specific  
command. If the PA[3:0] field in the command matches the value in the PADDR[3:0] bits  
of the PHYSADDR register, the device will execute the register write and respond to the  
command.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
158 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
The device ignores the Register Write command if the command is sent to any other  
physical address, including the DSI Global Device Address of '0000', with one exception  
as explained in Section 12.3.4.3.  
The Register Write command uses the byte address definitions shown in Section 11.1.  
Writable registers along with their Byte addresses are shown in Section 11.1.  
Table 236.ꢀRegister write command format  
Address  
Command  
Data  
CRC  
PA3  
PA2  
PA[2]  
PA1  
PA0  
C3  
C2  
C1  
C0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PA[3]  
PA[1]  
PA[0]  
1
0
0
0
RA[7] RA[6] RA[5] RA[4] RA[3] RA[2] RA[1] RA[0] RD[7] RD[6] RD[5] RD[4] RD[3] RD[2] RD[1] RD[0] 8 bits  
Table 237.ꢀRegister write command format description  
Bit field  
Definition  
PA[3:0]  
DSI physical address. This field contains the physical address. This field must match the PADDR[3:0] bits  
in the PHYSADDR register. Otherwise, the command is ignored.  
C[3:0]  
Register Write Command = 1000'  
RA[7:0]  
RD[7:0]  
RA[7:0] contains the byte address of the register to be read.  
RD[7:0] contains the data to be written to the register addressed by RA[7:0].  
Table 238.ꢀRegister write command: response format  
Address  
Command  
Data  
CRC  
PA3  
PA2  
PA[2]  
PA1  
PA0  
C3  
C2  
C1  
C0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PA[3]  
PA[1]  
PA[0]  
1
0
0
0
RD[15] RD[14] RD[13] RD[12] RD[11] RD[10] RD[9] RD[8] RD[7] RD[6] RD[5] RD[4] RD[3] RD[2] RD[1] RD[0] 8 bits  
Table 239.ꢀRegister write command: response format description  
Bit field  
PA[3:0]  
C[3:0]  
Definition  
DSI physical address. This field contains the PADDR[3:0] bits in the PHYSADDR register.  
Register Write Command = '1000'  
RD[15:8]  
The data contained in the register addressed by RA[7:1] + 1 (High Byte) (after the register write is  
executed)  
RD[7:0]  
The data contained in the register addressed by RA[7:1] + 0 (Low Byte) (after the register write is  
executed)  
A register write command to a register address outside the addresses listed in  
Section 11.1 will not execute, but will result in a valid response. The data for the registers  
will be '0x0000'.  
A register write command to a read-only register will not execute, but will result in a valid  
response. The data for the registers will be the current contents of the register.  
12.3.4.3 Global register write command to the PHYSADDR register  
The device supports the Register Write command as a global address under the  
following conditions:  
1. The Register Write command is written to the PHYSADDR register.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
159 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
2. The PADDR[3:0] bits of the PHYSADDR register are equal to '0000' prior to the  
register write being executed.  
If these conditions are met, the device will execute the register write and respond to the  
command.  
Table 240.ꢀGlobal register write command format  
Address  
Command  
Data  
CRC  
PA3 PA2 PA1 PA0  
C3  
C2  
C1  
C0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
RD[3] RD[2] RD[1] RD[0] 8 bits  
Table 241.ꢀGlobal register write command format description  
Bit field  
PA[3:0]  
C[3:0]  
Definition  
The DSI Global address of '0000'.  
Register Write Command = '1000'  
RA[7:0]  
RD[3:0]  
RA[7:0] must be set to the PHYSADDR register address.  
RD[3:0] contains the new physical address for the device.  
Table 242.ꢀGlobal register write command: response format  
Address  
Command  
Data  
CRC  
PA3 PA2 PA1 PA0  
PA[3] PA[2] PA[1] PA[0]  
C3  
C2  
C1  
C0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
0
0
RD[15] RD[14] RD[13] RD[12] RD[11] RD[10] RD[9] RD[8] RD[7] RD[6] RD[5] RD[4] RD[3] RD[2] RD[1] RD[0] 8 bits  
Table 243.ꢀGlobal register write command: response format description  
Bit field  
PA[3:0]  
C[3:0]  
Definition  
The new DSI physical address programmed to the PADDR[3:0] bits in the PHYSADDR register.  
Register Write Command = '1000'  
RD[15:8]  
RD[7:0]  
The data contained in register after PHYSADDR  
The data contained in the PHYSADDR register after the register write is executed.  
12.3.4.4 Enter periodic data collection mode command  
The device supports an Enter PDCM command as a device address specific command  
and as a Global Command.  
If the PA[3:0] field in the command matches the value in the PADDR[3:0] bits of the  
PHYSADDR register, the device will set the ENDINIT bit in the DEVLOCK_WR register,  
enter Periodic Data Collection Mode, and respond to the command as shown in  
Table 247. If the PA[3:0] field in the command matches the Global address of '0000',  
the device will set the ENDINIT bit in the DEVLOCK_RW register and enter Periodic  
Data Collection Mode regardless of the value of the PADDR[3:0] bits in the PHYSADDR  
register (this includes PADDR = 0x0). No response is transmitted for a global command.  
The device ignores the Enter PDCM command if the command is sent to any other  
physical address.  
The various DSI3 communication modes are controlled by the PDCM enable command  
and the BDM_EN bit in the TIMING_CFG2 register as shown in Table 244.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
160 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 244.ꢀPDCM enable command and BDM_EN bit status  
PDCM  
BDM_EN  
Command and  
Periodic Data  
Background  
Enabled?  
Response Mode  
Collection Mode  
Diagnostic Mode  
No  
No  
0
1
0
1
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Enabled  
Yes  
Yes  
Once the ENDINIT bit is set, the registers listed in Section 11.3.3 are locked and the  
user array read/write register array verification is enabled. The ENDINIT bit can only be  
cleared by a device reset.  
Table 245.ꢀEnter periodic data collection mode command format  
Address  
Command  
Data  
CRC  
PA3 PA2 PA1 PA0  
PA[3] PA[2] PA[1] PA[0]  
C3  
C2  
C1  
C0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8 bits  
Table 246.ꢀEnter periodic data collection mode command format description  
Bit field  
Definition  
PA[3:0]  
DSI physical address. This field contains the physical address. This field must match the PADDR[3:0] bits  
in the PHYSADDR register or the Global Address of '0000'. Otherwise, the command is ignored.  
C[3:0]  
Enter PDCM Command = '1011'  
Table 247.ꢀEnter periodic data collection mode command: response format  
Address  
Command  
Data  
CRC  
PA3 PA2 PA1 PA0  
PA[3] PA[2] PA[1] PA[0]  
C3  
C2  
C1  
C0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
1
1
0
0
0
0
Ch[3] Ch[2] Ch[1] Ch[0]  
0
0
0
0
0
0
0
0
8 bits  
Table 248.ꢀEnter periodic data collection mode command: response format description  
Bit field  
PA[3:0]  
Ch[3:0]  
C[3:0]  
Definition  
DSI physical address. This field contains the PADDR[3:0] bits in the PHYSADDR register.  
CHIPTIME[3:0] in the CHIPTIME register  
Enter Periodic Data Collection Mode Command = '1011'  
12.3.4.5 Reserved commands  
If the PA[3:0] field in the command matches the value in the PADDR[3:0] bits of the  
PHYSADDR register and a valid CRC is calculated, the device will respond to reserved  
commands. The physical address and command will be echoed and the correct CRC are  
transmitted. The data included in the response is undefined.  
Table 249.ꢀReserved commands  
Address  
Command  
Data  
CRC  
PA3  
PA[3]  
PA[3]  
PA2  
PA1  
PA[1]  
PA[1]  
PA0  
PA[0]  
PA[0]  
C3  
0
C2  
0
C1  
0
C0  
1
D15  
D14  
D13  
D12  
D11  
D10  
D9  
x
D8  
x
D7  
x
D6  
x
D5  
x
D4  
x
D3  
x
D2  
x
D1  
x
D0  
x
PA[2]  
PA[2]  
x
x
x
x
x
x
x
x
x
x
x
x
8 bits  
8 bits  
0
0
1
0
x
x
x
x
x
x
x
x
x
x
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
161 / 254  
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 249.ꢀReserved commands...continued  
Address  
Command  
Data  
CRC  
PA3  
PA2  
PA1  
PA0  
C3  
0
C2  
0
C1  
1
C0  
1
D15  
x
D14  
x
D13  
x
D12  
x
D11  
x
D10  
x
D9  
x
D8  
x
D7  
x
D6  
x
D5  
x
D4  
x
D3  
x
D2  
x
D1  
x
D0  
x
PA[3]  
PA[3]  
PA[3]  
PA[3]  
PA[3]  
PA[3]  
PA[3]  
PA[3]  
PA[3]  
PA[3]  
PA[3]  
PA[2]  
PA[2]  
PA[2]  
PA[2]  
PA[2]  
PA[2]  
PA[2]  
PA[2]  
PA[2]  
PA[2]  
PA[2]  
PA[1]  
PA[1]  
PA[1]  
PA[1]  
PA[1]  
PA[1]  
PA[1]  
PA[1]  
PA[1]  
PA[1]  
PA[1]  
PA[0]  
PA[0]  
PA[0]  
PA[0]  
PA[0]  
PA[0]  
PA[0]  
PA[0]  
PA[0]  
PA[0]  
PA[0]  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
0
1
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
1
0
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
1
1
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
1
1
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
0
0
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
0
1
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
1
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
1
0
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
1
1
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
1
1
1
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Table 250.ꢀReserved commands description  
Bit field  
Definition  
PA[3:0]  
DSI physical address. This field contains the physical address. This field must match the PADDR[3:0] bits  
in the PHYSADDR register. Otherwise, the command is ignored.  
C[3:0]  
x
Invalid Commands  
Don't Care  
Table 251.ꢀReserved command response format  
Address  
Command  
Data  
CRC  
PA3 PA2 PA1 PA0  
C3  
C2 C1  
C0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PA[3] PA[2] PA[1] PA[0] C[3] C[2] C[1] C[0]  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
8 bits  
Table 252.ꢀReserved command response format description  
Bit field  
PA[3:0]  
C[3:0]  
Definition  
DSI physical address. This field contains the PADDR[3:0] bits in the PHYSADDR register.  
Reserved Command Echo  
12.4 DSI3 periodic data collection mode and background diagnostic mode  
When the ENDINIT bit in the DEVLOCK_WR register is set, periodic data collection  
mode is enabled and the optional background diagnostic mode is enabled.  
12.4.1 DSI3 periodic data collection mode and background diagnostic mode  
command reception  
When periodic data collection mode is enabled, the device will decode the DSI3  
broadcast read command as well as background diagnostic mode command fragments  
as described below.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
162 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
12.4.1.1 Bit encoding  
The Command Bit encoding for Periodic Data Collection Mode and Background  
Diagnostic Mode is the same as the bit encoding for Command and Response Mode, as  
described in Section 12.3.1.1.  
12.4.1.2 Command message format  
The command message format for Periodic Data Collection Mode and Background  
Diagnostic Mode is the same as the command message format for Command and  
Response Mode, as described in Section 12.3.1.2.  
If Background Diagnostic Mode is disabled, then the device responds with the Periodic  
Data Collection Mode response only if the command is the single bit Broadcast Read  
Command. A Broadcast Read Command may be either a '1' or a '0'. Figure 74 shows the  
Broadcast Read Commands supported by the device.  
BRC 0  
BRC 1  
V
HIGH  
V
LOW  
aaa-030658  
Figure 74.ꢀBackground diagnostic mode command bit encoding  
If Background Diagnostic Mode is enabled:  
Background Diagnostic Mode commands are transmitted and decoded in 2- or 4-bit  
fragments depending on the state of the BDM_FRAGSIZE bit in the TIMING_CFG2  
register.  
The device responds with the Periodic Data Collection Mode response if and only if the  
command is a Broadcast Read Command or a command fragment.  
A Broadcast Read Command or any command length other than 2 or 4 bits resets the  
Background Diagnostic Mode command decode.  
The device responds with a Background Diagnostic Mode response only when a full  
32-bit command is received and the decoded command is a valid Command and  
Response Mode command.  
See Section 12.4.4 for additional details on Background Diagnostic Mode timing.  
12.4.1.3 Error checking  
The error checking for Background Diagnostic Mode commands is the same as the error  
checking for Command and Response Mode, and described in Section 12.3.1.3.  
No error checking is employed for the Broadcast Read Commands.  
12.4.2 DSI3 periodic data collection mode response transmission  
When periodic data collection mode is enabled and the device receives either a  
broadcast read or background diagnostic command, the device will respond with periodic  
data as shown in Figure 75 and described in the following sections.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
163 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
BUS_I  
slave A  
slave B  
slave C  
Response  
Current  
t
PDCM_RSPST[12:0], slave A  
START_PDCM,  
t
PDCM_RSPST[12:0], slave B  
START_PDCM,  
PDCM_RSPST[12:0] on slave C device  
t
PER_PDCM  
CmdBlock_PDCM  
t
t
command blocking time is independently  
programmed in each slave.  
CmdBlock_ST_PDCM  
Command  
Block  
aaa-030659  
Figure 75.ꢀPeriodic data mode response transmission  
12.4.2.1 Symbol encoding  
The symbol encoding used for Periodic Data Collection Mode Responses is the same as  
for Command and Response Mode responses, and described in Section 12.3.2.1.  
12.4.2.2 Response message format  
The Periodic Data Collection Mode response format is shown in Table 253 and  
Table 254. Field sizes are defined by the PDCMFORMAT[2:0] bits in the SOURCEID_x  
register in Section 11.2.13.  
Table 253.ꢀPeriodic data collection mode response format  
Source ID  
Keep alive counter  
Status  
Sensor data  
CRC  
SOURCEID  
KAC  
S
D
CRC[7:0]  
If enabled in the PDCMFORMAT[2:0] bits, the SOURCEID field includes the value  
stored in the SOURCEID_x[3:0] bits of the SOURCEID_x register.  
If enabled in the PDCMFORMAT[2:0] bits, the Keep Alive Counter field is a 2-bit rolling  
message counter that is independently incremented for each SOURCEID. The initial  
value of the counter is '00'.  
If enabled, the status field is transmitted as listed in Table 254. See Section 12.7 for  
details on exception handling.  
The Sensor Data field includes the sensor data as selected by the DATATYPEx bits for  
the SOURCEID.  
The CRC field includes an 8-bit CRC as defined in Section 12.4.2.3.  
Table 254.ꢀPeriodic data collection mode status field definition  
s[3:0]  
Description  
DEVSTAT state  
SUP_ER-R_DIS state  
Error Sensor data field value  
priority  
STATUS field size = 4  
STATUS field size = 0  
0
0
0
0
0
0
0
1
Normal Mode  
N/A  
N/A  
N/A  
N/A  
16  
15  
Sensor Data  
Sensor Data  
Normal Mode, User  
Array Not Locked  
The Sensor Data Field Error Code is transmitted for  
a minimum of one transmission  
(UF2 region has not  
been locked)  
0
0
1
0
Self-test Incomplete or  
Self-test Active or Self-  
test Error Present  
Bit set in  
CHx_STAT:  
N/A  
14  
Sensor Data  
The Sensor Data Field Error Code is transmitted for  
a minimum of one transmission  
ST_INCMPLT  
or ST_ACTIVE  
or ST_ERROR  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
164 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 254.ꢀPeriodic data collection mode status field definition...continued  
s[3:0]  
Description  
DEVSTAT state  
SUP_ER-R_DIS state  
Error Sensor data field value  
priority  
STATUS field size = 4  
STATUS field size = 0  
0
0
0
1
1
0
1
0
Oscillator Training Error  
Offset Error  
Bit set in  
DEVSTAT3  
N/A  
N/A  
13  
12  
Sensor Data  
The Sensor Data Field Error Code is transmitted for  
a minimum of one transmission  
Bit set in  
CHx_STAT:  
Sensor Data  
The Sensor Data Field Error Code is transmitted for  
a minimum of one transmission  
SIGNALCLIP or  
OFFSET_ERR  
0
1
0
1
Temperature Error  
Bit set in  
DEVSTAT2  
N/A  
N/A  
N/A  
11  
9.10  
8
Sensor Data  
Sensor Data  
The Sensor Data Field Error Code is transmitted for  
a minimum of one transmission  
0110 to 0111 RESERVED  
N/A  
The Sensor Data Field Error Code is transmitted for  
a minimum of one transmission  
1
0
0
0
User OTP Memory Error U_OTP_ERR set  
The Sensor Data Field Error Code is transmitted for a minimum of one  
transmission  
in DEVSTAT2  
(UF2)  
1
1
1
1
0
0
0
1
0
1
1
0
1
0
1
0
User R/W Memory Error  
(UF2)  
U_RW_ERR set  
in DEVSTAT2  
N/A  
N/A  
N/A  
0
7
6
5
4
The Sensor Data Field Error Code is transmitted for a minimum of one  
transmission  
NXP OTP Memory Error  
Test Mode Active  
Supply Error  
F_OTP_ERR set  
in DEVSTAT2  
The Sensor Data Field Error Code is transmitted for a minimum of one  
transmission  
TESTMODE bit  
set in DEVSTAT  
The Sensor Data Field Error Code is transmitted for a minimum of one  
transmission  
Bit set in  
No Response until the supply monitor timer expires  
DEVSTAT1  
The Sensor Data Field Error Code is transmitted for a minimum of one  
transmission  
(See Section 11.2.2.5)  
1
No Response until the supply monitor timer expires  
(See Section 11.2.2.5)  
1
1
0
1
Reset Error  
DEVRES Set  
N/A  
N/A  
N/A  
3
The Sensor Data Field Error Code is transmitted for a minimum of one  
transmission  
1110 to 1111 RESERVED  
1, 2  
The Sensor Data Field Error Code is transmitted for a minimum of one  
transmission  
12.4.2.3 Error checking  
The device calculates a CRC on the entire response. Message data is entered into the  
CRC calculator MSB first, consistent with the transmission order of the message.  
The CRC Encoding procedure is:  
1. A seed value is preset into the least significant bits of the shift register.  
2. Using a serial CRC calculation method, the transmitter rotates the transmitted  
message into the least significant bits of the shift register, MSB first.  
3. Following the transmitted message, the transmitter feeds eight zeros into the shift  
register, to match the length of the CRC.  
4. When the last zero is fed into the input adder, the shift register contains the CRC.  
5. The CRC is transmitted.  
The CRC polynomial and seed for periodic data collection mode are shown in Table 255.  
Table 255.ꢀPeriodic data collection mode response CRC  
Mode  
Default polynomial  
Non-direct seed  
Periodic Data Collection Mode  
x8 + x5 + x3 + x2 + x + 1  
0000, SOURCEID_x[3:0]  
Some example CRC calculations are shown in Table 256.  
Table 256.ꢀPeriodic data collection mode - CRC calculation examples  
Source  
identification  
(4 Bits)  
Keep alive  
counter (2 Bits)  
Status (4 Bits)  
Sensor data  
(10 Bits)  
Non-direct seed  
8-bit CRC  
0x1  
0x3  
0x0  
0x1FF  
0x01  
0xD6  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
165 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 256.ꢀPeriodic data collection mode - CRC calculation examples...continued  
Source  
identification  
(4 Bits)  
Keep alive  
counter (2 Bits)  
Status (4 Bits)  
Sensor data  
(10 Bits)  
Non-direct seed  
8-bit CRC  
0x2  
0x3  
0x4  
0x2  
0x1  
0x0  
0x0  
0x0  
0x0  
0x1FE  
0x20D  
0x1EA  
0x02  
0x03  
0x04  
0x70  
0xB0  
0x5F  
12.4.3 DSI3 periodic data collection mode timing  
A timing diagram for periodic data collection mode is shown in Figure 76. Timing  
parameters are specified in Section 10.11.  
CMD_Start  
BUS_I  
t
CMD_BitTime  
t
PER_PDCM  
t
PDCM_RSPT[12;0]  
START_PDCM,  
st  
1
symbol  
th  
24  
symbol  
t
CHIP_PDCM  
I
+ 2 x I  
q
RESP  
RESP  
response  
current  
I
+ I  
q
I
q
t
t
SLEW2_RESP  
aaa-030660  
SLEW1_RESP  
Figure 76.ꢀPeriodic data collection mode timing diagram  
12.4.4 Background diagnostic mode response transmission  
12.4.4.1 Symbol encoding  
The Background Diagnostic Mode response symbol encoding is the same as the symbol  
encoding used for Command and Response Mode responses and is described in  
Section 12.3.2.1.  
12.4.4.2 Response message format  
The Background Diagnostic Mode response message format is the same as the format  
used for Command and Response Mode responses and is described in Section 12.3.2.2.  
If a complete 32-bit command is received and decoded to a valid Command and  
Response Mode command, the device provides a Background Diagnostic Mode  
response.  
Responses are initiated by the master transmitting 1-bit Broadcast Read Commands  
following a completed Background Diagnostic Mode command transmission.  
Responses are transmitted in one or two symbol fragments (depending on the state  
of the BDM_FRAGSIZE bit) following the 1-bit Broadcast Read Command, using the  
same timing window within the frame that the Background Diagnostic Mode Command  
used.  
Responses are transmitted if and only if Broadcast Read Commands are received.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
166 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Four or eight consecutive Broadcast Read Commands are required following a  
valid Background Diagnostic Mode command to complete a response transmission  
(depending on the state of the BDM_FRAGSIZE bit).  
If any command other than the Broadcast Read Command is received, no response  
is transmitted and the remainder of the Broadcast Read Command response is  
terminated.  
The data to be transmitted in the response is latched just before the first symbol of the  
background diagnostic mode response.  
See Figure 77 for Background Diagnostic Mode timing.  
12.4.4.3 Error checking  
The error checking for Background Diagnostic Mode responses is the same as used for  
Command and Response Mode, and described in Section 12.3.1.3.  
12.4.5 DSI3 background diagnostic mode timing  
An example timing diagram for background diagnostic mode is shown in Figure 77. In  
this example, BDM_FRAGSIZE is set to '1' (4 bits). Timing parameters are specified in  
Section 10.11.  
CMD_start  
PA[3:0]  
CMD[3:0]  
t
PDCM_RSPST[12:0]  
START_PDCM,  
ED[7:3]  
CRC[3:0]  
broadcast read  
0
broadcast read  
1
BDM response data latched  
t
START_BDM  
1-2-1  
1-2-0  
aaa-030661  
Figure 77.ꢀBackground diagnostic mode timing diagram  
12.4.6 DSI3 periodic data collection mode and background diagnostic mode  
command summary  
When periodic data collection mode is enabled, the background diagnostic mode  
supports the register read command as described in the command and response mode  
command summary, Section 12.3.4.1. The register write command is not supported in  
background diagnostic mode.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
167 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
12.4.7 DSI3 PDCM data transmission modes  
12.4.7.1 Simultaneous sampling mode (SS_EN = 1)  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Time (µs)  
t
+ t  
LAT_INTERP  
LAT_DSI  
t
PDCM_RSPSTx  
interpolated  
samples  
broadcast read  
command  
response  
transmission  
transmitted  
data value  
aaa-030662  
Figure 78.ꢀSimultaneous sampling mode  
12.4.7.2 Synchronous sampling mode with minimum latency (SS_EN = 0)  
0
100  
t
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Time (µs)  
t
+ t  
LAT_DSI  
LAT_INTERP  
PDCM_RSPSTx  
interpolated  
samples  
broadcast read  
command  
response  
transmission  
transmitted  
data value  
aaa-030663  
Figure 79.ꢀSynchronous sampling mode with minimum latency  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
168 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
12.5 Initialization timing  
offset  
cancellation  
normal  
t
DSP_POR  
offset cancellation low pass filter  
startup  
t
OC_START  
periodic  
data  
POR  
internal  
delay  
user set up and self test control through CRM  
collection  
read status registers  
self test  
enter  
mode  
(DEVSTAT, DEVSTAT2)  
initialize signal chain  
verification  
PDCM  
command  
initialize communication  
discovery  
mode  
t
START_DISC  
t
POR_DSI  
POR  
aaa-030664  
Figure 80.ꢀInitialization timing  
12.6 Maximum number of devices on a network  
The theoretical maximum number of devices on a DSI3 network is 16: 1 master and  
15 slaves. The practical limit for the number of devices on a bus is dependent on the  
minimum common capability of the devices on the bus. The capability of the device  
is different depending on the bus configuration and operating mode. The impact of  
the device capability on the practical limit for the number of devices on the network is  
described in this section.  
12.6.1 Pre-configured, parallel connected network  
The number of devices in a pre-configured, parallel connected network is not directly  
limited by the capability of the device. The practical limit is determined by a combination  
of the following:  
The capability of the master device, including, but not limited to:  
The bus operating voltage  
The bus supply current  
The bus current limit  
The bit rate  
The response current detection capability (distinguishing response current from  
quiescent current)  
The total quiescent current of all slaves on the network.  
12.6.2 Bus switch connected daisy chain network  
The number of devices in a bus switch connected daisy chain network is not directly  
limited by the capability of the device. The practical limit is determined by a combination  
of the following:  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
169 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
The capability of the master device, including, but not limited to:  
The bus operating voltage  
The bus supply current  
The bus current limit  
The bit rate  
The response current detection capability (distinguishing response current from  
quiescent current)  
The total quiescent current of all slaves on the network.  
The current handling capability and resulting voltage drop of the external bus switches  
in the network.  
12.6.3 Resistor connected daisy chain network using discovery mode  
The number of devices in a resistor connected daisy chain network is limited by the  
capability of the device. The maximum number of equivalent devices connected to the  
BUS_O pin of a device is 3. This is limited by the total quiescent current drawn from the  
BUS_O pin during Discovery Mode (IBUS_O_q).  
The practical limit is determined by a combination of the above restriction and the  
following:  
The capability of the master device, including, but not limited to:  
The bus operating voltage  
The bus supply current  
The bus current limit  
The bit rate  
The response current detection capability (distinguishing response current from  
quiescent current)  
The total quiescent current of all slaves on the network.  
The maximum allowed quiescent current drawn from the BUS_O pin of other slaves in  
the system.  
The resulting voltage drop of the Discovery Mode resistors in all slaves in the network.  
12.7 DSI3 exception handling  
Table 257 summarizes the exception conditions detected by the device and the response  
for each exception.  
Table 257.ꢀException conditions and response  
Condition  
exception  
Description  
Device response  
PDCM  
enabled?  
Power-On Reset  
VBUS_I Error  
N/A  
Power Applied  
See Section 12.5  
ST_INCMPLT set, PDCM disabled. The device must be  
reinitialized  
N/A  
VBUS_I < VBUS_I_UV_F  
Response Current Deactivated  
BUSIN_UV_ERR set, PDCM Status set as specified in  
Section 12.4.2.2  
The device ignores commands in CRM  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
170 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 257.ꢀException conditions and response...continued  
Condition  
exception  
Description  
Device response  
PDCM  
enabled?  
VBUF Error  
N/A  
VBUF < VBUF_UV_F  
Response Current Deactivated  
VBUFUV_ERR set, PDCM Status set as specified in  
Section 12.4.2.2  
The device ignores commands in CRM  
Internal Regulator  
Error  
N/A  
Internal regulator under-  
voltage condition  
The device is held in Reset  
No response to DSI commands  
If activated, BUSSW_L is deactivated  
The device must be reinitialized when the internal  
regulator returns above the threshold  
OTP Error  
Detection Fault  
N/A  
N/A  
Error detected in factory  
programmed OTP array.  
Periodic Data Collection Mode response data set to  
error response  
F_OTP_ERR set, PDCM Status set as specified in  
Section 12.4.2.2  
(Factory Array)  
OTP Error  
Detection Fault  
Error detected in User  
programmed OTP array and  
the LOCK_U bit is set.  
Periodic Data Collection Mode response data set to  
error response  
U_OTP_ERR set, PDCM Status set as specified in  
(User Array)  
Section 12.4.2.2  
User R/W Array  
Error Detection  
Fault  
No  
N/A  
N/A  
Yes  
Error detected in user read  
write registers and the  
ENDINIT bit is set.  
Periodic Data Collection Mode response data set to  
error response  
U_RW_ERR set, PDCM Status set as specified in  
Section 12.4.2.2  
Self-test  
No  
ST activated during  
initialization  
Internal self-test circuitry enabled  
Self-test Activation Incomplete status cleared  
Activated  
Sensor Data Registers (SNSDATAx_x) contain self-test  
active data  
ST_ACTIVE set  
Yes  
ST activated in Periodic Data Periodic Data Collection Mode sensor response data  
Collection Mode  
normal  
Self-test Activation ignored  
Self-test Never  
Activated after  
Reset  
No  
In initialization, before Self-  
test  
Normal Responses to Command and Response Mode  
Yes  
In PDCM, Self-test  
incomplete  
Periodic Data Collection Mode sensor response data  
normal  
ST_INCMPLT set, PDCM Status set as specified in  
Section 12.4.2.2  
12.7.1 Daisy chain and discovery mode error handling  
Table 258 shows the effect of internal failure modes on the discovery and daisy chain  
initialization procedures.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
171 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 258.ꢀDSI3 error handling - discovery mode and daisy chain mode  
Error condition  
Effect on discovery mode  
Effect on daisy chain  
Supply Error  
Discovery Commands Ignored. The device  
does not participate in Discovery Mode  
Daisy Chain Commands Ignored. The device  
will not participate in Daisy Chain  
Memory Error  
No Effect. The device attempts to participate in No Effect. The device will attempt to participate  
Discovery Mode as programmed. in Daisy Chain as programmed.  
Temperature Error  
No Effect. The device will attempt to participate No Effect. The device will attempt to participate  
in Discovery Mode as programmed. in Daisy Chain as programmed.  
Communication Error  
(Internal)  
No Effect. The device participates in Discovery No Effect. The device will participate in Daisy  
Mode as programmed.  
Chain as programmed.  
Offset Error  
No Effect. The device will participate in  
Discovery Mode as programmed.  
No Effect. The device will participate in Daisy  
Chain as programmed.  
Self-test Incomplete or  
Self-test Active  
Not Applicable.  
Not Applicable.  
Device Not Locked  
No Effect. The device will participate in  
Discovery Mode as programmed.  
No Effect. The device will participate in Daisy  
Chain as programmed.  
13 PSI5 protocol  
13.1 Communication interface overview  
The communication interface between a master device and this slave device in PSI5  
mode is established via a PSI5 compatible 2-wire interface, with parallel or serial (daisy-  
chain) connections to the satellite modules. Figure 81 shows one possible system  
configuration for multiple satellite modules in parallel.  
Master Device  
Slave Module #1  
V
CC  
V
CC  
DISCRETE  
COMPONENTS  
V
SS  
CC_OUT  
I
Data  
V
V
SS  
V
SS_OUT  
Slave Module #2  
V
CC  
V
CC  
DISCRETE  
COMPONENTS  
V
SS  
CC_OUT  
I
Data  
V
V
SS  
V
SS_OUT  
aaa-030665  
Figure 81.ꢀPSI5 satellite interface diagram  
13.2 Data transmission physical layer  
This device uses a two wire interface for both its power supply (VCC), and data  
transmission (IDATA). The PSI5 master sup-plies a pre-regulated voltage to this device.  
Data transmissions and synchronization control from the PSI5 master to this device are  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
172 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
accomplished via modulation of the supply voltage. Data transmissions from this device  
to the PSI5 master are accomplished via modulation of the current on the power supply  
line.  
13.2.1 Synchronization pulse  
The PSI5 master modulates the supply voltage in the positive direction to provide  
synchronization of the satellite sensor data. Upon reception of a synchronization pulse,  
this device delays a specified period of time, called a time slot, before transmitting sensor  
data. For more details regarding time slots, refer to Section 11.2.18, and Section 10.12.  
sync pulses  
V
IDLE  
SYNC  
V
IDLE  
ground  
IR_PSI5  
I
q
+ I  
I
q
aaa-030667  
Figure 82.ꢀSynchronous communication overview  
13.2.1.1 Synchronization pulse detection  
The Synchronization (Sync) pulse detection block generates a valid synchronization  
pulse signal following the detection of an externally generated Sync pulse. This signal  
resets the Sync pulse time reference (tTRIG), and initiates the timers associated with  
response messages.  
The supply voltage can vary throughout the specified range, so the external Sync pulses  
may have different absolute volt-age levels. Thus, the Sync pulse detection threshold  
(VCC_SYNC) is dependent not only on the Sync pulse absolute voltage, but also on the  
supply voltage. Figure 83 shows a block diagram of the Sync pulse detection circuit.  
bus in  
DSI3  
cmd_block  
Vbufa  
DSI/PSI  
41.66 mV 83.33 mV  
DSI3  
-
-
+
+
DSI3/PSI5  
11 R  
command_detect  
R
D
2.2 MΩ  
2.8 MΩ  
count  
command  
COUNTER  
f
OSC  
lpf_reset  
cmd_start  
CONTROL  
LOGIC  
cmd_valid  
Vhigh_sample  
command_detect  
R
54 pF  
aaa-030668  
Figure 83.ꢀSynchronization pulse detection circuit  
The start of a Sync pulse is detected when the comparator output is set. The comparator  
output is input into a counter, and the counter is updated at a fixed frequency. At a fixed  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
173 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
time after the initial sync pulse detection, the counter is compared against a limit (the  
minimum value of tSYNC). If the counter is above the limit, a valid sync pulse is detected.  
If the Sync pulse is valid, the following occur:  
1. The valid Sync pulse detection signal is set.  
2. The detection counter is reset and disabled for tSYNC_OFF (referenced from tTRIG).  
tSYNC_OFF can be programmed by the user via the PDCM_CMD_B_x registers. See  
Section 11.2.19 for details on the programmable option, and Section 10.12 for timing  
specifications for each option.  
3. The Sync pulse detection low-pass filter is reset for a specified time (tSYNC_LPF_RESET).  
If the Sync pulse is invalid, all timers are reset, and the detector becomes sensitive within  
2 µs.  
The output of the comparator is monitored at the SampCLK frequency. Once the  
comparator output goes high, all of the internal timers are started, so that the tTRIG jitter is  
minimized.  
sync pulse  
V
SYNC_COMP  
sync_LPF_reset  
sync off  
sync_pulse_PD  
Response  
t
A_SYNC_DLY  
t
PD_DLY  
t
PD_ON  
t
SYNC_LPF_RST_ST  
t
TRIG  
t
SYNC_LPF_RST  
t
SYNC_OFF_xxx  
t
TIMESLOTx  
aaa-030669  
Figure 84.ꢀSynchronization pulse detection timing  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
174 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
t
t
S-S  
RS  
t
SYNC  
V
SYNC  
V
IDLE  
V
SYNC  
V
CC  
GND  
aaa-030670  
Figure 85.ꢀSync pulse characteristics  
13.2.1.2 Synchronization pulse pulldown function  
The device includes an optional Sync pulse pulldown function for systems in which  
the master device does not include an active pull-down function. The device uses the  
modulation current pulldown circuit, which sinks IR_PSI5 additional current from the BUS_I  
pin. The pulldown current is activated after tPD_DLY (referenced to tTRIG), and is activated  
for tPD_ON  
.
The Sync pulse pulldown function is disabled in Programming Mode, in Initialization  
Phase 1, and in Daisy Chain Mode until the Run Command is received.  
13.3 Data transmission data link layer  
13.3.1 Bit encoding  
The device outputs data by modulation of the VCC current using Manchester Encoding.  
Data is stored in a transition occur-ring in the middle of the bit time. The signal idles at  
the normal quiescent supply current. A logic low is defined as an increase in current at  
the middle of a bit time. A logic high is defined as a decrease in current at the middle of a  
bit time. There is always a transition in the middle of the bit time. If consecutive "1" or "0"  
data are transmitted, a transition occurs at the start of a bit time.  
`0'  
`1'  
I
current  
R_PSI5  
idle current  
t
BIT  
consecutive  
`0'data bits  
consecutive  
`1' data bits  
aaa-030671  
Figure 86.ꢀManchester data bit encoding  
13.3.2 PSI5 data transmission  
PSI5 data transmission frames are composed of two start bits, a 10-bit data word, and  
error detection bit(s). Data words are transmitted least significant bit (LSB) first. A typical  
Manchester-encoded transmission frame is illustrated in Figure 87.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
175 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
data bit  
SB1  
`0'  
SB0  
`0'  
D0  
`1'  
D1  
`1'  
D2  
`1'  
D3  
`0'  
D4  
`0'  
D5  
`1'  
D6  
`1'  
D7  
`1'  
D8  
`1'  
D9  
`0'  
PAR  
`1'  
SB1  
I
R_PSI5  
bit value  
t
BIT  
t
= t  
BIT  
* (2+DATASIZE+(P_CRC?3:1))  
TRAN  
t
aaa-030672  
FRAME  
Figure 87.ꢀExample Manchester encoded data transfer - PSI5-x10x  
13.3.2.1 PSI5-x10P transmission mode  
The device can be configured to transmit 10-bit data with parity by setting the  
PDCMFORMAT bits in the SOURCEID_x registers and the P_CRC bit in the PSI5_CFG  
register.  
Table 259.ꢀPSI5-x10P transmission mode  
Start Bits  
S2 S1  
Sensor data (See Section 11.6.4.9)  
D2 D3 D4 D5 D6 D7  
Parity  
D0  
D1  
D8  
D9  
P
13.3.2.2 PSI5-x10C transmission mode  
The device can be configured to transmit 10-bit data with 3-bit CRC by setting the  
PDCMFORMAT bits in the SOURCEID_x registers and the P_CRC bit in the PSI5_CFG  
register.  
Table 260.ꢀPSI5-x10C transmission mode  
Start bits  
S2 S1  
Sensor data (See Section 11.6.4.9)  
D2 D3 D4 D5 D6 D7  
CRC  
D0  
D1  
D8  
D9  
C2  
C1  
C0  
13.3.2.3 PSI5-x16P transmission mode  
The device can be configured to transmit 16-bit data with parity by setting the  
PDCMFORMAT bits in the SOURCEID_x registers and the P_CRC bit in the PSI5_CFG  
register. In 16-bit mode, the 10-bit initialization data is transmitted in the upper 10-bits of  
the data packet and the lower 6-bits are all zeros.  
Table 261.ꢀPSI5-x16P transmission mode  
Start bits  
S2 S1  
Init Data  
Sensor data (See Section 11.6.4.9)  
Parity  
D0  
0
D1  
0
D2  
0
D3  
0
D4  
0
D5  
0
D6  
D7  
D8  
D9 D10 D11 D12 D13 D14 D15  
P
P
10-bit Initialization Data as specified in Section 13.4.2.1  
13.3.2.4 PSI5-x16C transmission mode  
The device can be configured to transmit 16-bit data with 3-bit CRC by setting the  
PDCMFORMAT bits in the SOURCEID_x registers and the P_CRC bit in the PSI5_CFG  
register. In 16-bit mode, the 10-bit initialization data is transmitted in the upper 10-bits of  
the data packet and the lower 6-bits are all zeros.  
Table 262.ꢀPSI5-x16C transmission mode  
Start bits Sensor data (See Section 11.6.4.9)  
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 C2 C1 C0  
CRC  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
176 / 254  
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 262.ꢀPSI5-x16C transmission mode...continued  
Start bits  
Sensor data (See Section 11.6.4.9)  
10-bit Initialization Data as specified in Section 13.4.2.1  
CRC  
Init Data  
0
0
0
0
0
0
C2 C1 C0  
13.3.3 Error detection  
Error detection of the transmitted data is accomplished via either a parity bit, or a 3-bit  
CRC. The type of error detection used is selected by the P_CRC bit in the PSI5_CFG  
register.  
13.3.3.1 Parity error detection  
When parity error detection is selected, even parity is employed. The number of logic '1'  
bits in the transmitted message must be an even number.  
13.3.3.2 3-bit CRC error detection  
When CRC error detection is selected, a 3-bit CRC is appended to each response  
message. The 3-bit CRC uses a generator polynomial of g(x) = X3+X+1, with a non-direct  
seed value = '111'. Message data from the transmitted message is read into the CRC  
calculator LSB first, and the data is augmented with '000'. Start bits are not used in the  
CRC calculation. Table 263 shows some example CRC calculation values for 10-bit data  
transmissions.  
Table 263.ꢀPSI5 3-bit CRC calculation examples  
Data transmitted  
CRC  
C1  
1
HEX  
0x000  
0x0CC  
0x151  
0x1E0  
0x1F4  
0x220  
0x275  
0x333  
0x3FF  
D9  
0
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
C2  
1
C0  
0
0
0
1
1
0
0
1
1
0
0
0
1
1
0
1
0
1
0
1
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
1
1
1
1
1
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
0
0
1
0
0
1
0
0
1
1
1
0
1
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
13.3.4 PSI5 data field and data range values  
Table 264 shows the details for each data range. The PSI5 data field size is defined by  
the PDCMFORMAT bits in the SOURCEID_x registers as described in Section 11.2.13.2.  
Table 264.ꢀPSI5 data values  
16-bit data values  
10-bit data value  
Binary Hex  
Description  
Description  
(EMSG_EXT = 1 in PSI5_CFG)  
(EMSG_EXT = 0 in  
PSI5_CFG)  
Dec  
Hex  
Dec  
+32704  
+32640  
7FC0  
7F80  
+511  
+510  
1FF Reserved  
1FE  
Reserved  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
177 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 264.ꢀPSI5 data values...continued  
16-bit data values  
10-bit data value  
Binary  
Description  
(EMSG_EXT = 1 in PSI5_CFG)  
Description  
(EMSG_EXT = 0 in  
PSI5_CFG)  
Dec  
Hex  
Dec  
Hex  
+32576  
+32512  
+32448  
+32384  
+32320  
+32256  
+32192  
+32128  
+32064  
+32000  
7F40  
7F00  
7EC0  
7E80  
7E40  
7E00  
7DC0  
7D80  
7D40  
7D00  
+509  
+508  
+507  
+506  
+505  
+504  
+503  
+502  
+501  
+500  
1FD  
1FC  
1FB  
1FA  
1F9  
1F8  
1F7  
1F6  
1F5  
1F4 Reserved  
Sensor Defect  
Error  
+31936  
+31872  
+31808  
+31744  
+31680  
7CC0  
7C80  
7C40  
7C00  
7BC0  
+499  
+498  
+497  
+496  
+495  
1F3 Reserved  
Reserved  
1F2  
1F1  
1F0  
1EF Communication Error (OSCTRAIN_ERR Reserved (Error  
bit)  
Mapped to 0x1F4)  
+31616  
+31552  
7B80  
7B40  
+494  
+493  
1EE Test Mode Enabled (TESTMODE bit set)  
1ED Offset Error (CH0 or CH1 OFFSET_  
ERR bit set)  
+31488  
+31424  
+31360  
7B00  
7AC0  
7A80  
+492  
+491  
+490  
1EC Temperature Error (TEMP0_ERR or  
TEMP1_ERR bit set)  
1EB Memory Error (F_OTP_ERR, U_OTP_  
ERR or U_RW_ERR set)  
1EA Sensor Self-test Error (CH0 or CH1 ST_ Sensor Self-test  
ERROR bit set)  
Error  
+31296  
+31232  
+31168  
+31104  
7A40  
7A00  
79C0  
7980  
+489  
+488  
+487  
+486  
1E9 Reserved  
Reserved  
Sensor Busy  
Sensor Ready  
1E8 Sensor Busy  
1E7 Sensor Ready  
1E6 Sensor Ready, but Unlocked  
Sensor Ready, but  
Unlocked  
+31040  
+30976  
+30912  
NA  
7940  
7900  
78C0  
NA  
+485  
+484  
+483  
+482  
1E5 Reserved  
Reserved  
1E4  
1E3  
1E2 Bidirectional Communication: RC "Error" Bidirectional  
Communication:  
RC "Error"  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
178 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 264.ꢀPSI5 data values...continued  
16-bit data values  
10-bit data value  
Binary Hex  
Description  
(EMSG_EXT = 1 in PSI5_CFG)  
Description  
(EMSG_EXT = 0 in  
PSI5_CFG)  
Dec  
Hex  
Dec  
NA  
NA  
+481  
1E1 Bidirectional Communication: RC "OK"  
1E0 Maximum positive sensor value  
Bidirectional  
Communication:  
RC "OK"  
+30720  
7800  
+480  
Maximum positive  
sensor value  
Positive sensor values  
Positive sensor  
values  
+129 to +192 0081 to 00C0  
+3  
+2  
+1  
0
003  
002  
001  
+65 to +128  
+1 to +64  
0
0041 to 0080  
0001 to 0040  
0000  
000 Zero  
Zero  
–1 to –64  
FFFF to FFC0  
–1  
–2  
–3  
3FF Negative sensor values  
Negative sensor  
values  
–65 to –128 FFBF to FF80  
–129 to –192 FF7F to FF40  
3FE  
3FD  
–30720  
8800  
–480  
220 Maximum negative sensor value  
Maximum negative  
sensor value  
–30784  
87C0  
–481 1000011111 21F Initialization Data Codes  
10-bit Status Data Nibble 1 - 16 (0000 - 1111) (Dx)  
–31744  
–31808  
8400  
83C0  
–496 1000010000 210  
–497 1000001111 20F Initialization Data IDs  
Block ID 1 - 16 (10-bit Mode) (IDx)  
–32767  
8000  
–512 1000000000 200  
13.4 Initialization  
Following power-up, the device proceeds through an initialization process which is  
divided into 3 phases:  
Initialization Phase 1: No Data transmissions occur  
Initialization Phase 2: Sensor self-test and transmission of configuration information  
Initialization Phase 3: Transmission of the "Sensor Busy" and / or "Sensor Ready" /  
"Sensor Defect" messages  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
179 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Once initialization is completed the device begins normal mode operation, which  
continues as long as the supply voltage remains within the specified limits.  
In asynchronous mode, initialization data is transmitted for Source ID 0 only.  
In synchronous mode, the initialization data is transmitted independently for each  
channel.  
In daisy chain mode, initialization data is transmitted in the Source ID 0 and Source ID 2  
time slot as defined by the sensor address as documented in Section 13.8.  
In Dual Transmission mode, initialization data is transmitted for both Source ID 0 and  
Source ID 2 in the Source ID 0 timeslot as documented in Section 13.7.  
sync pulses ignored or  
program mode entry  
normal mode  
sync pulses  
V
IDLE  
SYNC  
V
IDLE  
ground  
I
+ I  
R_PSI5  
q
I
q
POR  
init 2  
normal mode  
init 1  
init 3  
aaa-030673  
Figure 88.ꢀPSI5 sensor 10-bit initialization  
During PSI5 initialization, the device completes an internal initialization process  
consisting of the following:  
Power-on reset  
Device Initialization  
Program mode entry verification  
Offset cancellation low-pass filter initialization  
Self-test  
Figure 89 shows the timing for internal and external initialization in synchronous mode.  
Figure 90 shows the timing for internal and external initialization in asynchronous mode.  
Timing parameters are specified in Section 10.12.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
180 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
external  
PSI5 initialization  
phase 1  
PSI5 initialization  
phase 2  
PSI5 initialization  
phase 3  
PSI5  
normal mode  
t
PSI5Delay_Before_MasterSync_Pulses  
t
t
t
PSI5_INIT1  
PSI5_INIT2  
PSI5_INIT3  
sync. pulses ignored  
self test  
repeat  
offset cancellation LPF init  
self test  
(if necessary)  
ST_RPT * t  
ST  
t
t
PSI5ST_START  
ST  
programming mode entry  
no  
PM  
entry  
1) Min. 31 sync pulses  
2) PME command  
otherwise  
sync  
pulses  
ignored  
sync pulses ignored  
PM  
entry  
t
t
RS_PM  
PME  
programming  
mode  
aaa-030674  
Figure 89.ꢀPSI5 initialization timing, synchronous mode  
PSI5 initialization  
phase 1  
PSI5 initialization  
phase 2  
PSI5 initialization  
phase 3  
PSI5  
normal mode  
t
ASYNC  
t
t
t
PSI5_INIT1  
PSI5_INIT2  
PSI5_INIT3  
self test  
repeat  
offset cancellation LPF init  
self test  
(if necessary)  
t
t
ST_RPT * t  
PSI5ST_START  
ST  
ST  
programming mode entry  
no  
PM  
entry  
1) Min. 31 sync pulses  
2) PME command  
otherwise  
sync  
pulses  
ignored  
sync pulses ignored  
PM  
entry  
t
t
RS_PM  
PME  
programming  
mode  
aaa-030675  
Figure 90.ꢀPSI5 initialization timing, asynchronous mode  
13.4.1 PSI5 initialization phase 1  
During PSI5 initialization phase 1, the device begins internal initialization and self-checks,  
but transmits no data. Initialization begins with this sequence, shown in Figure 89:  
1. Internal delay to ensure analog circuitry has stabilized (tPOR_PSI5  
2. Offset cancellation low-pass filter initialization begins (tPSI5ST_START  
3. Monitor for the Programming Mode Entry Sequence (tPME  
4. If the Programming Mode Entry Sequence is not detected, the device enters  
)
)
)
Initialization Phase 2 (tPSI5_INIT2  
)
13.4.2 PSI5 initialization phase 2  
During PSI5 initialization phase 2, the device continues its internal selfchecks and  
transmits the PSI5 initialization phase 2 data. Initialization data is transmitted using  
the initialization data codes and IDs specified in Table 264, and in the order shown in  
Table 265.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
181 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 265.ꢀPSI5 initialization phase 2 data transmission order  
D1  
D2  
...  
...  
...  
D32  
ID11  
D11  
ID12  
D12  
...  
ID1k  
D1k  
ID21  
D21  
ID22  
D22  
...  
ID2k  
D2k  
ID321 D321 ID322 D322  
Repeat k times  
...  
ID32k D32k  
Repeat k times  
Repeat k times  
The Initialization phase 2 time is calculated using Equation 17.  
(17)  
Where:  
TransNibble  
=
# of Transmissions per Data Nibble  
2: 1 for ID, and 1 for Data  
k
=
=
=
The repetition rate for the data fields  
32 data fields or 48 data fields (if INIT2_EXT is set)  
Sync Pulse Period  
Data Fields  
tS-S  
13.4.2.1 PSI5 initialization phase 2 data transmissions  
In PSI5 initialization phase 2, the device transmits a sequence of sensor specific  
configuration and serial number information. The transmission data is in conformance  
with the PSI5[5] specification, and AKLV27[3]. Unique data content is transmitted for each  
channel. The data content and transmission format is shown in Table 267 and Table 268.  
Table 266 shows the phase 2 timing for different operating modes. Times are calculated  
using the equation in Section 13.4.2.  
Table 266.ꢀInitialization phase 2 time  
Operating mode  
Repetition rate (k)  
# of transmissions  
Nominal phase 2 time  
116.7 ms  
Asynchronous Mode (228 µs)  
Synchronous Mode (500 µs)  
8
4
512  
256  
128.0 ms  
Table 267.ꢀChannel 0 PSI5 initialization phase 2 data  
PSI5  
PSI5  
Page  
PSI5 nibble address  
Register address  
PSI5 description  
Value  
field ID #  
nibble ID #  
address  
F1  
F2  
D1  
0
0000  
USERDATA_0[3:0]  
NA  
User Specific Data  
User  
D2, D3  
0001, 0010  
Number of Data Blocks: 32: INIT2_EXT = 0, 48:  
INIT2_EXT = 1  
0010 0000  
or  
0011 0000  
F3  
F4  
F5  
D4, D5  
D6, D7  
D8  
0011, 0100  
0101, 0110  
0111  
USERDATA_1[3:0], USERDATA_1[7:4]  
USERDATA_2[3:0], USERDATA_2[7:4]  
USERDATA_3[3:0]  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User  
User  
User  
User  
User  
User  
User  
User  
User  
User  
User  
User  
User  
D9  
1000  
USERDATA_3[7:4]  
F6  
F7  
D10  
D11  
1001  
USERDATA_4[3:0]  
1010  
USERDATA_4[7:4]  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
1011  
USERDATA_5[3:0]  
1100  
USERDATA_5[7:4]  
1101  
USERDATA_6[3:0]  
F8  
1110  
USERDATA_7[3:0]  
1111  
USERDATA_7[7:4]  
1
0000  
USERDATA_8[3:0]  
0001  
USERDATA_8[7:4]  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
182 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 267.ꢀChannel 0 PSI5 initialization phase 2 data...continued  
PSI5  
PSI5  
Page  
PSI5 nibble address  
Register address  
PSI5 description  
Value  
field ID #  
nibble ID #  
address  
F9  
D19  
D20  
0010  
0011  
SN4[7:4] or USERDATA_6[7:4]  
SN4[3:0] or USERDATA_E[7:4]  
Data determined by PSI5_INIT2_D19 in  
TIMING_CFG2 register  
User  
User  
Data determined by PSI5_INIT2_D19 in  
TIMING_CFG2 register  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
D32  
D33  
D34  
D35  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0001  
0010  
SN3[7:4]  
SN3[3:0]  
Device Serial Number  
Device Serial Number  
Device Serial Number  
Device Serial Number  
Device Serial Number  
Device Serial Number  
Device Serial Number  
Device Serial Number  
Device Part Number  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
User  
SN2[7:4]  
SN2[3:0]  
SN1[7:4]  
SN1[3:0]  
SN0[7:4]  
SN0[3:0]  
PN1[3:0]  
PN0[7:4]  
Device Part Number  
PN0[3:0]  
Device Part Number  
USERDATA_6[7:4]  
CH0_STAVG_P[7:4]  
CH0_STAVG_P[3:0]  
CH0_STOFFSET_P[7:4]  
User Specific Data  
F10  
2
Channel 0 Positive Self-test, High Nibble  
Channel 0 Positive Self-test, Low Nibble  
Varies  
Varies  
Channel 0 Post Positive Self-test Offset, High  
Nibble  
Varies  
D36  
0011  
CH0_STOFFSET_P[3:0]  
Channel 0 Post Positive Self-test Offset, Low  
Nibble  
Varies  
D37  
D38  
D39  
0100  
0101  
0110  
CH0_STAVG_N[7:4]  
CH0_STAVG_N[3:0]  
Channel 0 Negative Self-test, High Nibble  
Channel 0 Negative Self-test, Low Nibble  
Varies  
Varies  
Varies  
CH0_STOFFSET_N[7:4]  
Channel 0 Post Negative Self-test Offset, High  
Nibble  
D40  
0111  
CH0_STOFFSET_N[3:0]  
Channel 0 Post Negative Self-test Offset, Low  
Nibble  
Varies  
D41  
D42  
D43  
1000  
1001  
1010  
CH1_STAVG_P[7:4]  
CH1_STAVG_P[3:0]  
Channel 1 Positive Self-test, High Nibble  
Channel 1 Positive Self-test, Low Nibble  
Varies  
Varies  
Varies  
CH1_STOFFSET_P[7:4]  
Channel 1 Post Positive Self-test Offset, High  
Nibble  
D44  
1011  
CH1_STOFFSET_P[3:0]  
Channel 1 Post Positive Self-test Offset, Low  
Nibble  
Varies  
D45  
D46  
D47  
1100  
1101  
1110  
CH1_STAVG_N[7:4]  
CH1_STAVG_N[3:0]  
Channel 1 Negative Self-test, High Nibble  
Channel 1 Negative Self-test, Low Nibble  
Varies  
Varies  
Varies  
CH1_STOFFSET_N[7:4]  
Channel 1 Post Negative Self-test Offset, High  
Nibble  
D48  
1111  
CH1_STOFFSET_N[3:0]  
Channel 1 Post Negative Self-test Offset, Low  
Nibble  
Varies  
Table 268.ꢀChannel 1 PSI5 Initialization Phase 2 Data  
PSI5  
PSI5  
Page  
PSI5 nibble address  
Register address  
Description  
Value  
field ID #  
nibble ID #  
address  
F1  
F2  
D1  
0
0000  
USERDATA_0[7:4]  
NA  
User Specific Data  
User  
D2, D3  
0001, 0010  
Number of Data Blocks: 32: INIT2_EXT = 0, 48:  
INIT2_EXT = 1  
0010 0000  
or  
0011 0000  
F3  
F4  
F5  
D4, D5  
D6, D7  
D8  
0011, 0100  
0101, 0110  
0111  
USERDATA_9[3:0], USERDATA_9[7:4]  
USERDATA_A[3:0], USERDATA_A[7:4]  
USERDATA_B[3:0]  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User  
User  
User  
User  
User  
User  
D9  
1000  
USERDATA_B[7:4]  
F6  
D10  
1001  
USERDATA_C[3:0]  
D11  
1010  
USERDATA_C[7:4]  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
183 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 268.ꢀChannel 1 PSI5 Initialization Phase 2 Data...continued  
PSI5  
PSI5  
Page  
PSI5 nibble address  
Register address  
Description  
Value  
field ID #  
nibble ID #  
address  
F7  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
1011  
1100  
1101  
1110  
1111  
0000  
0001  
0010  
USERDATA_D[3:0]  
USERDATA_D[7:4]  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User Specific Data  
User  
User  
User  
User  
User  
User  
User  
USERDATA_E[3:0]  
F8  
USERDATA_7[3:0]  
USERDATA_7[7:4]  
1
USERDATA_8[3:0]  
USERDATA_8[7:4]  
F9  
SN4[7:4] or USERDATA_6[7:4]  
Data determined by PSI5_INIT2_D19 in  
TIMING_CFG2 register  
User  
D20  
0011  
SN4[3:0] or USERDATA_E[7:4]  
Data determined by PSI5_INIT2_D19 in  
TIMING_CFG2 register  
User  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
D31  
D32  
D33  
D34  
D35  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0001  
0010  
SN3[7:4]  
SN3[3:0]  
Device Serial Number  
Device Serial Number  
Device Serial Number  
Device Serial Number  
Device Serial Number  
Device Serial Number  
Device Serial Number  
Device Serial Number  
Device Part Number  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
Factory  
User  
SN2[7:4]  
SN2[3:0]  
SN1[7:4]  
SN1[3:0]  
SN0[7:4]  
SN0[3:0]  
PN1[3:0]  
PN0[7:4]  
Device Part Number  
PN0[3:0]  
Device Part Number  
USERDATA_E[7:4]  
CH0_STAVG_P[7:4]  
CH0_STAVG_P[3:0]  
CH0_STOFFSET_P[7:4]  
User Specific Data  
F10  
2
Channel 0 Positive Self-test, High Nibble  
Channel 0 Positive Self-test, Low Nibble  
Varies  
Varies  
Channel 0 Post Positive Self-test Offset, High  
Nibble  
Varies  
D36  
0011  
CH0_STOFFSET_P[3:0]  
Channel 0 Post Positive Self-test Offset, Low  
Nibble  
Varies  
D37  
D38  
D39  
0100  
0101  
0110  
CH0_STAVG_N[7:4]  
CH0_STAVG_N[3:0]  
Channel 0 Negative Self-test, High Nibble  
Channel 0 Negative Self-test, Low Nibble  
Varies  
Varies  
Varies  
CH0_STOFFSET_N[7:4]  
Channel 0 Post Negative Self-test Offset, High  
Nibble  
D40  
0111  
CH0_STOFFSET_N[3:0]  
Channel 0 Post Negative Self-test Offset, Low  
Nibble  
Varies  
D41  
D42  
D43  
1000  
1001  
1010  
CH1_STAVG_P[7:4]  
CH1_STAVG_P[3:0]  
Channel 1 Positive Self-test, High Nibble  
Channel 1 Positive Self-test, Low Nibble  
Varies  
Varies  
Varies  
CH1_STOFFSET_P[7:4]  
Channel 1 Post Positive Self-test Offset, High  
Nibble  
D44  
1011  
CH1_STOFFSET_P[3:0]  
Channel 1 Post Positive Self-test Offset, Low  
Nibble  
Varies  
D45  
D46  
D47  
1100  
1101  
1110  
CH1_STAVG_N[7:4]  
CH1_STAVG_N[3:0]  
Channel 1 Negative Self-test, High Nibble  
Channel 1 Negative Self-test, Low Nibble  
Varies  
Varies  
Varies  
CH1_STOFFSET_N[7:4]  
Channel 1 Post Negative Self-test Offset, High  
Nibble  
D48  
1111  
CH1_STOFFSET_N[3:0]  
Channel 1 Post Negative Self-test Offset, Low  
Nibble  
Varies  
Note: Offset and self-test data in Field ID #10 is only transmitted if the internal self-  
test for the associated channel has completed and has passed before F10, D33 is to be  
transmitted. This can only occur if the internal self-test sequence passes the first time.  
If F10, D33 is to be transmitted before the internal self-test has completed for a specific  
channel, the latest self-test, and offset values are transmitted.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
184 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Note: If self-test has completed all retries and has failed before F10, D33 is to be  
transmitted, F10, D33 - D48 will include self-test data from the last failed attempt.  
Note: In PSI5 asynchronous mode, self-test will not be complete prior to the  
transmission of the F10. Setting the INIT2_EXT bit will result in invalid self-test data in  
D33 and D34 (0x0 values).  
Note: Constant values are transmitted for all fields marked as "RESERVED"  
13.4.3 Internal self-test  
Once Initialization Phase 1 completes, the device begins its internal self-test as  
described in Section 11.6.2.5. If self-test fails, the device repeats self-test up to ST_RPT  
times.  
13.4.4 Initialization phase 3  
During PSI5 initialization phase 3, the device completes its internal self-checks, and  
transmits a combination of "Sensor Busy" or "Sensor Ready" messages as defined in  
Table 264. The number of "Sensor Busy" messages transmitted in initialization phase  
3 varies depending on the mode of operation, and the number of self-test repetitions.  
Self-test is repeated on failure up to ST_RPT times to provide immunity to misuse  
inputs during initialization. Self-test terminates successfully after one successful self-test  
sequence.  
Once internal self-test is completed, the device transmits 2 "Sensor Ready" commands.  
Note: Self-test repeats are handled independently for each channel. However, both  
channels will exit initialization phase 3 simultaneously. If only one channel is repeating  
self-tests, both channels transmit "Sensor Busy" commands until either self-test has  
passed on both channels or the total number of repeats have completed.  
The ENDINIT bit is automatically set when the device exits Initialization Phase 3.  
13.5 Normal mode  
13.5.1 Asynchronous mode  
The device can be programmed to respond in asynchronous mode as specified in  
Section 11.2.18.1.  
In asynchronous mode, the device transmits data at a fixed rate (tASYNC) and will not  
respond to normal sync pulses. However, during initialization phase 1, the device will  
monitor sync pulses to decode the programming mode entry command and allow entry  
into programming mode.  
13.5.2 Simultaneous sampling mode  
The device can be programmed to respond in simultaneous sampling mode by  
programming the SS_EN bit to "Simultaneous Sampling Mode".  
In simultaneous sampling mode, the most recent interpolated sensor data sample  
is latched at tTRIG (rising edge of Sync Pulse) and transmitted starting at the time  
programmed in the PDCM_RSPSTx registers, relative to tTRIG  
.
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
185 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Time (µs)  
t
+ t  
LAT_INTERP  
LAT_DSI  
t
PDCM_RSPSTx  
aaa-030676  
Figure 91.ꢀSimultaneous sampling mode  
13.5.3 Synchronous sampling mode with minimum latency  
The device can be programmed to respond in synchronous sampling mode with  
minimum latency by programming the SS_EN bit to "Synchronous Sampling Mode".  
In synchronous sampling mode, the most recent interpolated sensor data sample is  
latched at the time programmed in the PDCM_RSPSTx registers, relative to tTRIG (rising  
edge of Sync pulse). The data is transmitted starting at the time programmed in the  
PDCM_RSPSTx registers, relative to tTRIG  
.
0
100  
t
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Time (µs)  
t
+ t  
LAT_PSI5  
LAT_INTERP  
PDCM_RSPSTx  
aaa-030677  
Figure 92.ꢀSynchronous sampling mode with minimum latency  
13.6 PSI5 default mode (un-programmed PSI5 device)  
Un-programmed FXLS93xxx PSI5 devices include a default PSI5 transmission mode.  
The devices will respond to PSI5 sync pulses and transmit data in PSI5-P16C-500/2L  
mode with the minimum user gain and the default 400 Hz, 4-Pole low-pass filter.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
186 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 269 shows the default PSI5 response transmission, Table 270 shows the PSI5  
timing parameters, and Table 271 and Table 272 show the sensor data configuration  
details for each channel.  
The default settings apply until the UF2 user OTP memory is written and the UF2 block is  
locked.  
500 µs  
Ch1 Response  
47 µs  
Ch0 Response  
Ch0 Response  
244 µs  
aaa-038810  
Figure 93.ꢀ PSI5 default mode transmission  
Table 269.ꢀDefault PSI5-P16C transmission mode  
Start bits Sensor data (See Section 11.6.4.9)  
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 C2 C1 C0  
Init Data 10-bit Initialization Data as specified in Section 13.4.2.1 C2 C1 C0  
CRC  
0
0
0
0
0
0
Table 270.ꢀDefault PSI5-P16C transmission mode timing parameters  
Parameter  
Default typical value  
Default register bit values  
Ch0 Time Slot  
Ch1 Time Slot  
Data Size  
47 µs  
$27, $26: $PDCM_RSPST0 = 0x002F  
$2B, $2A: $PDCM_RSPST1 = 0x00F4  
$1A: SOURCEID_0[6:4] = 3'b100  
$25: PSI5_CFG[2] = 1'b1  
244 µs  
16-bit  
Error Checking  
Baud Rate  
3-bit CRC  
Low Baud Rate: 125 kB/s, Bit Time = 8.0 µs  
$23: CHIPTIME[3:0] = 3'b1000  
Table 271.ꢀDefault PSI5-P16C transmission mode, High g sensor data configuration  
Parameter  
Value  
Default register bit values  
Sensor Data Range  
Sensor Data Sensitivity  
Sensor data low-pass filter  
702.6 g  
$40, $48: CHx_CFG_U1[1:0] = 2'b00  
$41, $49: CHx_CFG_U2[7:0] = 0x00  
$40, $48: CHx_CFG_U1[7:4] = 4'b0000  
$43, $4B: CHx_CFG_U4[5:4] = 2'b00  
43.79 LSB/g  
400 Hz, 4-Pole LPF  
Sensor data offset cancellation 0.04 Hz, 1-Pole HPF with Rate Limiting  
Enabled  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
187 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 272.ꢀDefault PSI5-P16C transmission mode, Medium g sensor data configuration  
Parameter  
Value  
Default register bit values  
Sensor data range  
Sensor data sensitivity  
Sensor data low-pass filter  
232.6 g  
$40, $48: CHx_CFG_U1[1:0] = 2'b00  
$41, $49: CHx_CFG_U2[7:0] = 0x00  
$40, $48: CHx_CFG_U1[7:4] = 4'b0000  
$43, $4B: CHx_CFG_U4[5:4] = 2'b00  
132.06 LSB/g  
400 Hz, 4-Pole LPF  
Sensor data offset cancellation 0.04 Hz, 1-Pole HPF with Rate Limiting  
Enabled  
13.7 Dual transmission mode  
The device can be programmed to transmit both channel 0 and channel 1 data in one  
data packet if the DUALTRANS bit is set in the PSI5_CFG register. In dual transmission  
mode, the source identification settings specified in Section 11.2.17.4 determine the data  
transmitted as shown in Table 273 through Table 276.  
Table 273.ꢀDual transmission mode 10-bit transmission data with parity  
SID1_EN SID0_EN Response start time  
Response format  
No Transmission  
No Transmission  
0
0
PDCM_RSTST0  
PDCM_RSTST1  
PDCM_RSTST0  
0
1
Start Bits  
CH1_SNSDATA0  
CH0_SNSDATA0  
Parity  
P
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9  
PDCM_RSTST1  
PDCM_RSTST0  
PDCM_RSTST1  
No Transmission  
No Transmission  
1
1
0
1
Start Bits  
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9  
Start Bits CH1_SNSDATA0 CH0_SNSDATA0  
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9  
Start Bits CH1_SNSDATA1 CH0_SNSDATA1  
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9  
CH1_SNSDATA1  
CH0_SNSDATA1  
Parity  
P
PDCM_RSTST0  
PDCM_RSTST1  
Parity  
P
Parity  
P
Table 274.ꢀDual transmission mode 10-bit transmission data with CRC  
SID1_EN SID0_EN Response start time  
Response format  
0
0
PDCM_RSTST0  
PDCM_RSTST1  
PDCM_RSTST0  
No Transmission  
No Transmission  
0
1
Start Bits  
CH1_SNSDATA0  
CH0_SNSDATA0  
CRC  
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 C2 C1 C0  
PDCM_RSTST1  
PDCM_RSTST0  
PDCM_RSTST1  
No Transmission  
No Transmission  
1
1
0
1
Start Bits  
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 C2 C1 C0  
Start Bits CH1_SNSDATA0 CH0_SNSDATA0 CRC  
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 C2 C1 C0  
Start Bits CH1_SNSDATA1 CH0_SNSDATA1 CRC  
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 C2 C1 C0  
CH1_SNSDATA1  
CH0_SNSDATA1  
CRC  
PDCM_RSTST0  
PDCM_RSTST1  
Table 275.ꢀDual transmission mode 16-bit transmission data with parity  
SID1_EN SID0_EN Response start time  
Response format  
0
0
PDCM_RSTST0  
PDCM_RSTST1  
No Transmission  
No Transmission  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
188 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 275.ꢀDual transmission mode 16-bit transmission data with parity...continued  
SID1_EN SID0_EN Response start time  
Response format  
0
1
1
1
0
1
PDCM_RSTST0  
Start  
CH1_SNSDATA0  
CH0_SNSDATA0  
P
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15 P  
PDCM_RSTST1  
PDCM_RSTST0  
PDCM_RSTST1  
No Transmission  
No Transmission  
Start  
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15 P  
Start CH1_SNSDATA0 CH0_SNSDATA0  
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15 P  
Start CH1_SNSDATA1 CH0_SNSDATA1  
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10D11D12D13D14D15 P  
CH1_SNSDATA1  
CH0_SNSDATA1  
P
PDCM_RSTST0  
PDCM_RSTST1  
P
P
Table 276.ꢀDual transmission mode 16-bit transmission data with CRC  
SID1_EN SID0_EN Response start  
time  
Response format  
0
0
0
1
PDCM_RSTST0  
PDCM_RSTST1  
PDCM_RSTST0  
No Transmission  
No Transmission  
Start  
CH1_SNSDATA0  
CH0_SNSDATA0  
CRC  
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9D10D11D12D13D14D15D0 D1 D2 D3 D4 D5 D6 D7 D8 D9D10D11D12D13D14D15C2 C1 C0  
PDCM_RSTST1  
PDCM_RSTST0  
PDCM_RSTST1  
No Transmission  
No Transmission  
1
1
0
1
Start  
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9D10D11D12D13D14D15D0 D1 D2 D3 D4 D5 D6 D7 D8 D9D10D11D12D13D14D15C2 C1 C0  
Start CH1_SNSDATA0 CH0_SNSDATA0 CRC  
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9D10D11D12D13D14D15D0 D1 D2 D3 D4 D5 D6 D7 D8 D9D10D11D12D13D14D15C2 C1 C0  
Start CH1_SNSDATA1 CH0_SNSDATA1 CRC  
S2 S1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9D10D11D12D13D14D15D0 D1 D2 D3 D4 D5 D6 D7 D8 D9D10D11D12D13D14D15C2 C1 C0  
CH1_SNSDATA1  
CH0_SNSDATA1  
CRC  
PDCM_RSTST0  
PDCM_RSTST1  
13.8 Daisy chain mode  
The device can be programmed to operate in daisy chain mode by setting the  
DAISY_CHAIN bit in the PSI5_CFG register. Daisy chain mode can be programmed to  
operate in either "Simultaneous Sampling Mode", or "Synchronous Sampling Mode" by  
setting the SS_EN bit to the desired operating mode. In simultaneous sampling mode,  
the most recent interpolated sensor data sample is latched at tTRIG (rising edge of Sync  
Pulse). In synchronous sampling mode, the most recent interpolated sensor data sample  
is latched at the transmission time associated with the programmed sensor address,  
relative to tTRIG (rising edge of Sync pulse).  
When programmed to operate in daisy chain mode, the device follows the procedure:  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
189 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
1. After a power on delay of tRS_PM, the device waits for a PSI5 "Set Address" command  
defined in Table 278 and Table 279.  
a. The Set Address command must be preceded by at least 31 and no more than  
60 consecutive sync pulses. All other commands must be preceded by either 31  
consecutive sync pulses or 5 consecutive missing sync pulses.  
b. The Daisy Chain Programming command and response formats are defined in  
Section 13.10.2 using a sync pulse period of ts-s_DC. The response settings are  
defined in Table 292, with the exception of the time slot.  
c. The response to the PSI5 Set Address command and all other valid commands  
uses the Source ID 0, address-based time slot specified in Table 280.  
d. If a framing error or CRC error is detected on a received command, the device  
does not respond.  
2. After receiving a valid address and completing the response, the device will decode  
and respond to all Table 278 commands sent to the sensor address it is set to. All  
responses are transmitted in the address-based time slot specified in Table 280.  
3. When the "Run Mode" command is received, the device responds to the command  
using the address-based time slot(s) specified in Table 280. The device then ignores  
all commands and proceeds through Initialization Phase 2 and Initialization Phase 3  
in response to sync pulses. The following response format is used, regardless of the  
state of the relevant bits in the Device Configuration Registers:  
Table 277.ꢀDaisy chain: Run mode configuration  
Parameter  
Time Slot  
Reference  
Value  
Section 11.2.18.1  
Section 11.2.13.2  
Section 11.2.17.6  
Section 11.2.15.4  
Address-based time slot(s) specified in Table 280  
Data size controlled by the PDCMFORMAT bits  
Even Parity  
Data Size  
Error Checking  
Baud Rate  
Baud Rate controlled by the CHIPTIME bits  
Upon completion of Initialization Phase 3, the ENDINIT bit is set, the device enters  
normal mode and responds to all sync pulses with sensor data according to  
Table 278,Table 279, and Table 280.  
Table 278.ꢀDaisy chain programming commands and responses  
CMD  
type  
SAdr  
A1  
0
FC  
Command  
Response (OK)  
A2  
0
A0  
0
F2 F1 F0  
RC  
OK  
OK  
OK  
OK  
OK  
RD1  
SAdr  
Short  
Short  
Short  
Short  
Short  
A2 A1 A0 Set Sensor Address (Daisy Chain)  
1
1
1
0
0
1
0
0
1
0
0
1
Broadcast Message - "Run Mode"  
Activate Low Side Bus Switch  
Deactivate Low Side Bus Switch  
0x000  
0x000  
0x111  
SAdr  
SAdr = 1, 2, 3, 4, 5, 6  
SAdr = 1, 2, 3, 4, 5, 6  
SAdr = 1, 2, 3, 4, 5, 6  
A2 A1 A0 Set Sensor Address (Daisy Chain)  
Table 279.ꢀDaisy chain programming response code definitions  
Response code  
RC = OK  
Definition  
Value  
0x1E1  
0x1E2  
Command Message Received Properly.  
Error during transmission of Command Message.  
RC = Error  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
190 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 279.ꢀDaisy chain programming response code definitions...continued  
Response code  
Definition  
Value  
SAdr  
Programmed Sensor Address, prepended with logic zeros.  
Varies  
Table 280.ꢀValid daisy chain addresses  
Sensor address (SAdr) Description  
Time slot source ID 0  
Time slot source ID 2  
A2  
0
A1  
0
A0  
0
Un-programmed sensor N/A  
N/A  
0
0
1
Sensor Address 1  
Sensor Address 2  
Sensor Address 3  
Sensor Address 4  
Sensor Address 5  
Sensor Address 6  
N/A  
tTIMESLOT_DC0  
tTIMESLOT_DC1_L  
tTIMESLOT_DC2_L  
tTIMESLOT_DC1_H  
tTIMESLOT_DC2_H  
tTIMESLOT_DC3_H  
N/A  
tTIMESLOT_DC1_L  
tTIMESLOT_DC2_L  
tTIMESLOT_DC0  
tTIMESLOT_DC2_H  
tTIMESLOT_DC3_H  
tTIMESLOT_DC0  
N/A  
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Note: Writes to Sensor Address 7 are ignored.  
Note: If a successful programming mode entry command is received prior to a set  
address, daisy chain mode is disabled.  
13.9 Error handling  
13.9.1 Daisy chain error handling  
Table 281 shows the effect of internal failure modes on the daisy chain initialization  
procedure.  
Table 281.ꢀDaisy chain error handling  
Error condition  
Supply Error  
Effect on daisy chain  
Daisy chain commands ignored. The device will not participate in daisy chain.  
No effect. The device will participate in Daisy Chain as programmed.  
Daisy chain commands ignored. The device will not participate in daisy chain.  
No effect. The device will participate in daisy chain as programmed.  
No effect. The device will participate in daisy chain as programmed.  
No effect. The device will participate in daisy chain as programmed.  
No effect. The device will participate in daisy chain as programmed.  
No effect. The device will participate in daisy chain as programmed.  
Communication Error  
Test Mode Enabled  
Offset Error  
Temperature Error  
Memory Error  
Self-test Error  
Device Not Locked  
13.9.2 Initialization phase 2 error handling  
Table 282 shows the effect of internal failure modes on the initialization phase 2  
transmissions. Some errors occurring in initialization phase 2 will prevent entry into  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
191 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
initialization phase 3. Once the error is no longer present, the device will complete  
initialization phase 2 as necessary and then transition to initialization phase 3.  
Table 282.ꢀInitialization phase 2 error handling  
Error condition  
Supply Error  
Effect on initialization phase 2  
Temporary, Sync Pulses Ignored  
Communication Error  
Test Mode Enabled  
Offset Error  
No Effect  
No Effect  
No Effect  
Temperature Error  
Memory Error  
No Effect. The device will attempt to transmit Initialization Phase 2 data.  
No Effect. The device will attempt to transmit Initialization Phase 2 data.  
Self-test Error  
No Effect  
No Effect  
Device Not Locked  
13.9.3 Initialization phase 3 error handling  
Table 283 shows the effect of internal failure modes on the initialization phase 3  
procedures. Some errors occurring in initialization phase 3 will prevent entry into run  
mode until the error is no longer present. Once the error is no longer present, one or  
more Sensor Ready commands are transmitted before entering Run Mode.  
Table 283.ꢀInitialization phase 3 error handling  
Error condition  
Supply Error  
Effect on initialization phase 3  
Temporary, Sync Pulses Ignored  
Communication Error  
Test Mode Enabled  
Offset Error  
No Effect  
No Effect  
No Effect  
Temperature Error  
Memory Error  
No Effect. The device will attempt to transmit Initialization Phase 3 data.  
No Effect. The device will attempt to transmit Initialization Phase 3 data.  
No Effect  
Self-test Error  
Device Not Locked  
Sensor Ready replaced with Sensor Ready, but Not Locked Transmission (UF2 Region is  
un-programmed)  
13.9.4 Normal mode error handling with internal error automatic clearing  
Section 13.9.4.1 and Section 13.9.4.2 summarize the error reporting if the  
PSI5_ERRLATCH bit is not set. A single error transmission clears the device status  
allowing for temporary error conditions to be cleared once the error condition is removed.  
13.9.4.1 Standard error reporting  
Table 284 summarizes the error reporting in normal mode if the PSI5 error extension  
option is disabled.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
192 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 284.ꢀStandard error reporting  
Error condition  
Supply Error  
Error code Error response  
NA  
Temporary (Normal transmissions continue once condition is removed)  
Communication Error  
Test Mode Enabled  
Offset Error  
Temporary (Normal transmissions continue once condition is removed)  
Temporary (Normal transmissions continue once condition is removed)  
Temporary (Normal transmissions continue once condition is removed)[1]  
Temporary (Normal transmissions continue once condition is removed)  
Latched until reset  
0x1F4  
Temperature Error  
Memory Error  
Self-test Error  
0x1EA  
NA  
Latched until reset[2]  
Device Not Locked  
NA  
[1] An offset error on either channel results in an offset error response from both channels.  
[2] A self-test error on either channel results in a self-test error response from both channels.  
13.9.4.2 PSI5 error extension option  
If the PSI5 error extension option is enabled, additional error reporting is available as  
shown in Table 285.  
Table 285.ꢀPSI5 error extension option  
Error condition  
Supply Error  
Error code Error response  
NA  
Temporary (Normal transmissions continue once condition is removed)  
Communication Error  
Test Mode Enabled  
Offset Error  
0x1EF  
0x1EE  
0x1ED  
0x1EC  
0x1EB  
0x1EA  
NA  
Temporary (Normal transmissions continue once condition is removed)  
Temporary (Normal transmissions continue once condition is removed)  
Temporary (Normal transmissions continue once condition is removed)[1]  
Temporary (Normal transmissions continue once condition is removed)  
Latched until reset  
Temperature Error  
Memory Error  
Self-test Error  
Latched until reset[2]  
Device Not Locked  
NA  
[1] An offset error on either channel results in an offset error response from both channels.  
[2] A self-test error on either channel results in a self-test error response from both channels.  
13.9.5 Normal mode error handling with internal error latching  
Section 13.9.5.1 and Section 13.9.5.2 summarize the error reporting if the  
PSI5_ERRLATCH bit is set. Internal errors are latched until reset.  
13.9.5.1 Standard error reporting  
Table 286 summarizes the error reporting in normal mode if the PSI5 Error Extension  
option is disabled.  
Table 286.ꢀStandard error reporting  
Error condition  
Supply Error  
Error code Error response  
NA  
Temporary (Normal transmissions continue once condition is removed)  
Temporary (Normal transmissions continue once condition is removed)  
Communication Error  
0x1F4  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
193 / 254  
 
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 286.ꢀStandard error reporting...continued  
Error condition  
Test Mode Enabled  
Offset Error  
Error code Error response  
Latched until reset  
Latched until reset.[1]  
Latched until reset  
Latched until reset  
Latched until reset.[2]  
NA  
Temperature Error  
Memory Error  
Self-test Error  
0x1EA  
NA  
Device Not Locked  
[1] An offset error on either channel results in an offset error response from both channels.  
[2] A self-test error on either channel results in a self-test error response from both channels.  
13.9.5.2 PSI5 error extension option  
If the PSI5 error extension option is enabled, additional error reporting is available as  
shown in Table 287.  
Table 287.ꢀPSI5 error extension option  
Error condition  
Supply Error  
Error code Error response  
NA  
Temporary (Normal transmissions continue once condition is removed)  
Communication Error  
Test Mode Enabled  
Offset Error  
0x1EF  
0x1EE  
0x1ED  
0x1EC  
0x1EB  
0x1EA  
NA  
Temporary (Normal transmissions continue once condition is removed)  
Latched until reset  
Latched until reset.[1]  
Latched until reset  
Latched until reset  
Latched until reset.[2]  
NA  
Temperature Error  
Memory Error  
Self-test Error  
Device Not Locked  
[1] An offset error on either channel results in an offset error response from both channels.  
[2] A self-test error on either channel results in a self-test error response from both channels.  
13.10 PSI5 programming mode  
PSI5 Programming mode is a synchronous communication mode that allows for  
bidirectional communication with the device. Programming mode is intended for factory  
programming of the OTP array and reading of diagnostic information. It is not intended  
for use in normal operation.  
13.10.1 PSI5 programming mode entry  
The device enters programming mode if and only if the following sequence occurs:  
1. At least 31 sync pulses are detected, directly preceding the Programming Mode Entry  
Short Command during the Programming Mode Entry Window shown in Figure 89.  
The window timing is defined in Section 10.12 (tPME).  
The Sync pulses and Programming Mode Entry command must be received with a  
sync pulse period of tS-S_PM  
If the Programming Mode entry requirement is not met:  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
194 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
1. Programming Mode Entry is blocked until the device is reset.  
2. The device proceeds with PSI5 Initialization Phase 2, and PSI5 Initialization Phase 3.  
3. The device enters normal mode, and responds as programmed to normal sync  
pulses.  
If the Programming Mode entry requirement is met:  
1. Normal transmissions to sync pulses are terminated.  
2. The device will detect commands if the start condition is met as described in  
Section 13.10.2.2.  
3. The device responds only to valid PSI5 Short and XLong Commands addressed to  
Sensor Address '001', as defined in Section 13.10.3.  
13.10.2 PSI5 programming mode - data link layer  
13.10.2.1 PSI5 programming mode - command bit encoding  
Commands messages are transmitted via the modulation of the supply voltage. The  
presence of a sync pulse is a logic '1' and the absence of a sync pulse is a logic '0'. Sync  
pulses are expected at a rate of tS-S_PM  
.
13.10.2.2 PSI5 programming mode - command message format  
Once programming mode is enabled, command message data frames consist of a start  
condition, 3 Start Bits (S[2:0]), a 3-bit sensor address (SAdr[2:0]), a 3-bit function code  
(FC[2:0]), an optional register address (RAdr[7:0]), an optional data field (D[7:0]), and a  
3-bit CRC (C[2:0]. The start condition consists of one of the following:  
1. A minimum of 5 consecutive logic '0's (with no sync bits)  
2. A minimum of 31 consecutive logic '1's (this includes logic '1's transmitted for the  
previous response)  
The command message format is shown in Table 289.  
Table 288.ꢀProgramming mode via PSI5 command data format  
Start bits  
Sensor Addr  
Function code  
Register address  
Data  
CRC  
C1  
0
S2  
S1  
S0  
SA0  
SA1  
SA2  
FC0  
FC1  
FC2  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
C2  
0
C0  
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
CRC  
Data to be written to register (optional)  
Register Address (optional)  
Function Codes (See Section 13.10.3)  
Sensor Address - Fixed at 001  
Start Bit Sequence = 010  
Table 289.ꢀProgramming mode via PSI5 command data format - response  
Response  
RC  
RD1  
RD0  
$3FF  
$3FF  
$3FF  
Bit stuffing is necessary to maintain a synchronized timebase between the command  
master and the device. A logic '1' Sync bit is added every fourth bit in the command  
message to ensure that there will never be more than 3 logic '0' bits in a row.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
195 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 290.ꢀProgramming mode via PSI5 XLONG command data format with sync bits  
Start bits  
Sensor  
address  
Function  
code  
Register address  
Data  
CRC  
S2 S1 S0 Sy SA0 SA1 SA2 Sy FC0 FC1 FC2 Sy RA0 RA1 RA2 Sy RA3 RA4 RA5 Sy RA6 RA7 D0 Sy D1 D2 D3 Sy D4 D5 D6 Sy D7 C2 C1 Sy C0  
0
1
0
1
1
0
0
1
0
1
0
1
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
0
Table 291.ꢀProgramming mode via PSI5 XLONG command data format with sync bits - response  
Response  
RC  
RD1  
RD0  
$1E2  
$3FF  
$3FF  
Once a command is received and verified, the device expects 2 to 3 consecutive sync  
pulses (depending upon the command message lengths described in Table 292). There  
is no delay restriction between the command and the first sync pulse for the response.  
Once the first sync pulse for the response is received, each successive response sync  
pulse must be received within the programming mode sync pulse period specified (tS-  
S_PM) or a framing error may occur.  
For each of these sync pulses, The device will respond with the following settings:  
Table 292.ꢀProgramming mode via PSI5 response message settings  
Parameter  
Value  
Time Slot  
tTIMESLOT_DC0  
10-bit data  
Even Parity  
125 kBd  
Data Size  
Error Checking  
Baud Rate  
Sync Pulse Pulldown  
Disabled  
13.10.2.3 Short frame command and response format  
Short frames are the simplest type of command message. No data is transmitted in a  
short frame command. Only specific instructions are performed in response to short  
frame commands. The short frame format is shown in Table 293. Short frame commands  
and responses are defined in Section 13.10.3.  
The device only supports a short command for programming mode entry.  
Table 293.ꢀProgramming mode via PSI5 short command  
Start bits  
Sensor address  
Function code  
CRC  
C1  
0
S2  
S1  
S0  
Sy  
SA0  
SA1  
SA2  
Sy  
FC0  
FC1  
FC2  
Sy  
C2  
C0  
0
1
0
1
1
0
0
1
0
0
1
1
0
0
Table 294.ꢀResponse format  
Response  
RC  
$1E2  
RD1  
$3FF  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
196 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
13.10.2.4 Long frame command and response format  
Long frames allow for the transmission of data nibbles for register writes. The device  
can provide register data in response to a read or write request. the long frame format is  
shown in Table 295. The device does not support the long frame command.  
Table 295.ꢀProgramming mode via PSI5 long command  
Start Bits  
Sensor Address  
Function Code  
Register Address  
Data  
CRC  
S2 S1 S0 Sy SA0 SA1 SA2 Sy FC0 FC1 FC2 Sy RA0 RA1 RA2 Sy RA3 RA4 RA5 Sy D0 D1 D2 Sy D3 C2 C1 Sy C0  
0
1
0
1
1
0
0
1
0
1
0
1
0
0
0
1
0
0
0
1
1
1
1
1
1
0
0
1
0
Table 296.ꢀResponse format  
Response  
RD1  
RC  
RD0  
$1E2  
$3FF  
$3FF  
13.10.2.5 Extra long frame command and response format  
Extra long frames allow for the transmission of address and data bytes for register reads  
and writes. The device can provide register data in response to a read or write request.  
The extra long frame format is shown in Table 297. Extra long frame commands and  
responses are defined in Section 13.10.3.  
The device supports register read and register write extra long commands.  
Table 297.ꢀProgramming mode via PSI5 long command  
Start Bits  
Sensor  
Address  
Function  
Code  
Register Address  
Data  
CRC  
S2 S1 S0 Sy SA0 SA1 SA2 Sy FC0 FC1 FC2 Sy RA0 RA1 RA2 Sy RA3 RA4 RA5 Sy RA6 RA7 D0 Sy D1 D2 D3 Sy D4 D5 D6 Sy D7 C2 C1 Sy C0  
0
1
0
1
1
0
0
1
0
1
0
1
0
0
0
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
0
Table 298.ꢀResponse format  
Response  
RD1  
RC  
RD0  
$1E2  
$3FF  
$3FF  
13.10.2.6 Command message CRC  
Programming mode command error checking is accomplished by a 3-bit CRC. The 3-  
bit CRC is calculated using all message bits except start bits and sync bits. The CRC  
verification uses a generator polynomial of g(x) = X3+X+1, with a non-direct seed value  
= '111'. The message data is provided to the CRC calculator in the order received (LSB  
first, SAdr, FC, RAdr, Data), and then augmented with '000'. Table 263 shows some  
example CRC calculation values for 10-bit data transmissions.  
The calculated CRC is then compared against the received 3-bit CRC (received MSB  
first). If a CRC mismatch is detected, the device responds with a CRC Error response as  
defined in Section 13.10.4.  
13.10.2.7 Command sync pulse blanking time  
In programming mode and programming mode entry, the device employs a fixed sync  
pulse blanking time of tSYNC_OFF_250 regardless of the state of the PDCM_CMD_B  
register value.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
197 / 254  
 
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
13.10.2.8 Command timeout  
In the event that the device does not detect a sync pulse within a 4-bit window time, the  
command reception will be terminated and the device will respond to the next sync pulse  
with a Short Frame Framing Error response as defined in Section 13.10.4.  
13.10.3 PSI5 programming mode command and response summary  
Table 299.ꢀProgramming mode via PSI5 commands and responses  
CMD type  
SAdr  
FC  
Command  
Register Data field  
address  
Response (OK)  
RD1  
Response (Error)  
FC[2:0]  
RC  
RD0  
RC  
RD1  
RD0  
Short  
Short  
Short  
Short  
Long  
001  
100  
101  
110  
111  
010  
011  
000  
001  
Invalid Command  
N/A  
N/A  
N/A  
N/A  
No Response  
No Response  
No Response  
0x0CA  
No Response  
No Response  
No Response  
No Response  
No Response  
No Response  
ErrN  
Invalid Command  
Invalid Command  
N/A  
N/A  
Enter Programming Mode  
Invalid Command  
N/A  
N/A  
OK  
N/A  
N/A  
N/A  
No Response  
No Response  
RData  
Long  
Invalid Command  
N/A  
N/A  
XLong  
XLong  
Read register located at address RA7:RA0  
Write WData to register RA7:RA0  
Varies  
Varies  
Varies  
Varies  
OK  
OK  
RData+1  
RA7:RA0  
Error  
Error  
0x000  
0x000  
WData  
ErrN  
Table 300.ꢀProgramming mode via PSI5 response code definitions  
Response code  
RC = OK  
Definition  
Value  
0x1E1  
0x1E2  
Varies  
Varies  
Varies  
Command Message Received Properly  
Error during transmission of Command Message  
RC = Error  
RData  
Byte Contents of Register located at address RA7:RA1 with RA0 = 0 (Low Byte)  
Byte Contents of Register located at address RA7:RA1 with RA0 = 1 (High Byte)  
Byte Contents of Register located at address RA7:RA0  
RData + 1  
WData  
13.10.4 Programming mode via PSI5 error response summary  
Table 301.ꢀError response summary  
ErrN  
Mnemon Description  
ic  
Supported  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
General  
Framing  
CRC  
General Error  
No  
Framing Error (4 consecutive zeros) Yes  
CRC Error on Received Message  
Sensor Address Not Supported  
Function Code Not Supported  
Yes  
Address  
FC  
No (Invalid Address is ignored)  
No (N/A)  
Reserved Reserved  
No  
Reserved Reserved  
No  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
198 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 301.ꢀError response summary...continued  
ErrN  
Mnemon Description  
ic  
Supported  
1100  
1101  
1110  
1111  
ErrN is transmitted in the 4 LSBs of RD1. All other bits in the response data field are set  
to '0'.  
13.11 PSI5 OTP programming procedure  
1. Enter programming mode.  
2. Set VCC = VPP  
3. Load desired data into the desired registers using PSI5 Write commands.  
4. Write the necessary OTP program sequence to the WRITE_OTP_EN register for the  
desired OTP region to be written.  
5. Delay tPROG_TIME after the completion of the Write OTP program to allow for  
completion of the OTP writes.  
6. Read the DEVSTAT and DEVSTAT2 registers to confirm that no errors occurred  
during the OTP writes.  
7. Read back the register values that were written and compare to the desired values to  
confirm successful OTP writes.  
Refer to the PSI5 OTP Programming Procedure Application Note for further details on  
OTP programming.  
14 Standard 32-bit SPI protocol  
The device includes a standard SPI protocol requiring 32-bit data packets. The device is  
a slave device requires that the base clock value be low (CPOL = 0) with data captured  
on the rising edge of the clock and data propagated on the falling edge of the clock  
(CPHA = 0). The most significant bit is transferred first (MSB first). SPI transfers are  
completed through a sequence of two phases. During the first phase, the command is  
transmitted from the SPI master to the device. During the second phase, response data  
is transmitted from the slave device. MOSI and SCLK transitions are ignored when SS_B  
is not asserted.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
199 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
SCLK  
SS_B  
MOSI  
phase one: command  
phase one: response - previous command  
phase two: response  
MISO  
SCLK  
SS_B  
MOSI  
T1  
T2  
R1  
T3  
R2  
R3  
MISO  
aaa-030678  
Figure 94.ꢀStandard 32-bit SPI protocol timing diagram  
14.1 SPI command format  
Table 302.ꢀSPI command format  
MSB  
LSB  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Register Access Command  
Command  
C[3:0]  
Fixed Bits:  
Must = 0x0  
Register Address  
RA[7:1]  
Register Data  
RD[7:0]  
8-bit CRC  
CRC[7:0]  
0
0
0
0
0
0
RA[0]  
Sensor Data Command  
Command  
C[3:0]  
Fixed Bits: Must = 0x00000  
8-bit CRC  
CRC[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
14.2 SPI response format  
Table 303.ꢀSPI response format  
MSB  
LSB  
0
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Response to Register Request  
Command  
Basic  
Unused  
Data = 0x0  
Register Data: Contents of RA[7:1] High Byte  
Register Data: Contents of RA[7:1] Low Byte  
8-bit CRC  
CRC[7:0]  
Status  
C[0] C[3] C[2] C[1]  
ST[1:0]  
0
0
RD[15:8]  
RD[7:0]  
Response to Sensor Data Request  
Sensor Data  
Command  
Basic  
Detail  
8-bit CRC  
CRC[7:0]  
Status  
Status  
C[0] C[3] C[2] C[1]  
ST[1:0]  
SD[11:0]  
Optional SD resolution  
Error Response to Register Request  
SF[1:0]  
Command  
Basic  
Unused  
Data = 0x0  
Register Data: Contents of RA[7:1] High Byte  
Register Data: Contents of RA[7:1] Low Byte  
8-bit CRC  
CRC[7:0]  
Status  
0
0
0
0
1
1
0
0
RD[15:8]  
RD[7:0]  
Error Response to Sensor Data Request With Sensor Data  
Sensor Data  
Command  
Basic  
Detail  
8-bit CRC  
Status  
Status  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
200 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 303.ꢀSPI response format...continued  
MSB  
LSB  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
C[0] C[3] C[2] C[1]  
1
1
SD[11:0]  
Optional SD resolution  
SF[1:0]  
CRC[7:0]  
Error Response to Sensor Data Request Without Sensor Data  
Unused Data = 0x0000  
Command  
Basic  
Status  
x
x
Detail  
8-bit CRC  
CRC[7:0]  
Status  
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SF[1:0]  
14.3 Command summary  
Table 304.ꢀCommand summary  
C[3:0] Command type  
Data source  
Reference  
SOURCEID[2:0] = C[3:1]  
0
0
0
0
Unused Command (Reserved for Error  
Response)  
Not Applicable  
Not Applicable  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Sensor Data Request  
Reserved Command  
Sensor Data Request  
Reserved Command  
Sensor Data Request  
Reserved Command  
Sensor Data Request  
Register Write Request  
Sensor Data Request  
Reserved Command  
Sensor Data Request  
Register Read Request  
Sensor Data Request  
Reserved Command  
Sensor Data Request  
SOURCEID[3:0] = 0x0  
Not Applicable  
Section 14.3.3  
Not Applicable  
Section 14.3.3  
Not Applicable  
Section 14.3.3  
Not Applicable  
Section 14.3.3  
Section 14.3.2  
Section 14.3.3  
Not Applicable  
Section 14.3.3  
Section 14.3.1  
Section 14.3.3  
Not Applicable  
Section 14.3.3  
SOURCEID[3:0] = 0x1  
Not Applicable  
SOURCEID[3:0] = 0x2  
Not Applicable  
SOURCEID[3:0] = 0x3  
Not Applicable  
SOURCEID[3:0] = 0x4  
Not Applicable  
SOURCEID[3:0] = 0x5  
Not Applicable  
SOURCEID[3:0] = 0x6  
Not Applicable  
SOURCEID[3:0] = 0x7  
14.3.1 Register read command  
The device supports a Register Read command. The Register Read command uses the  
upper 7 bits of the addresses defined in Section 11.1 to address two 8-bit registers in the  
register map. The response to the command includes the con-tents of RA[7:1] high byte  
(RA[0] = 1) in the upper byte and the contents of RA[7:1] low byte (RA[0] = 0) in the lower  
byte.  
The response to a register read command is shown in Section 14.3.1.2. The response is  
transmitted on the next SPI message if and only if all of the following conditions are met:  
No SPI Error is detected (See Section 14.5.6)  
No MISO Error is detected (See Section 14.5.7)  
If the conditions are met, the device responds to the register read request as shown in  
Section 14.3.1.2. Otherwise, the device responds with the Error Response as defined in  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
201 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Section 14.5.4. The Register Read response includes the register contents at the rising  
edge of SS_B for the Register Read command.  
14.3.1.1 Register read command message format  
Table 305.ꢀRegister read command message format  
MSB  
LSB  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Command C[3:0]  
Fixed Bits:  
Must = 0x0  
Register Address  
Register Data  
8-bit CRC  
1
1
0
0
0
0
0
0
RA[7:1]  
RA[0]  
0
0
0
0
0
0
0
0
CRC[7:0]  
Table 306.ꢀRegister read command message format description  
Bit field  
C[3:0]  
Definition  
Register Read Command = '1100'  
RA[7:1]  
CRC[7:0]  
RA[7:1] contains the word address of the register to be read.  
CRC. See Section 14.4  
14.3.1.2 Register read response message format  
Table 307.ꢀRegister read response message format  
MSB  
LSB  
0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Command C[0], [3:1]  
Basic  
Unused  
Data  
= 0x0  
Register Data: Contents  
of RA[7:1] High Byte  
Register Data: Contents  
of RA[7:1] Low Byte  
8-bit CRC  
Status  
0
1
1
0
0
0
RD[15:8]  
RD[7:0]  
CRC[7:0]  
Table 308.ꢀRegister read response message format description  
Bit field  
C[0], [3:1]  
ST[1:0]  
Definition  
Register Read Command = '0110'  
Status. See Section 14.5.1  
RD[15:8]  
RD[7:0]  
The contents of the register addressed by RA[7:1] High Byte (RA[0] = 1)  
The contents of the register addressed by RA[7:1] Low Byte (RA[0] = 0)  
CRC. See Section 14.4  
CRC[7:0]  
14.3.2 Register write command  
The device supports a Register Write command. The Register Write command writes  
the value specified in RD[7:0] to the register addressed by RA[7:0]. The response to the  
command includes the new contents of RA[7:1] high byte (RA[0] = 1) in the upper byte  
and the contents of RA[7:1] low byte (RA[0] = 0) in the lower byte.  
The response to a register write command is shown in Section 14.3.2.2. The register  
write is executed and a response is transmitted on the next SPI message if and only if all  
of the following conditions are met:  
No SPI Error is detected (See Section 14.5.6)  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
202 / 254  
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
The ENDINIT bit is cleared  
This applies to all registers with the exception of the RESET[1:0] bits in the  
DEVLOCK_WR register  
If the conditions are met, the register write is executed and the device responds to the  
register write request as shown in Section 14.3.2.2. Otherwise, no register is written and  
the device responds with the Error Response as defined in Section 14.2. The register  
is not written until the transfer during which the register write was requested has been  
completed.  
A register write command to a read-only register will not execute, but will result in a valid  
response.  
14.3.2.1 Register write command message format  
Table 309.ꢀRegister write command message format  
MSB  
LSB  
0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Command C[3:0]  
Fixed Bits:  
Must = 0x0  
Register Address  
Register Data  
8-bit CRC  
1
0
0
0
0
0
0
0
RA[7:1]  
RA[0]  
RD[7:0]  
CRC[7:0]  
Table 310.ꢀRegister write command message format description  
Bit field  
C[3:0]  
Definition  
Register Write Command = '1000'  
RA[7:0]  
RD[7:0]  
CRC[7:0]  
RA[7:1] contains the byte address of the register to be written.  
RD[7:0] contains the data byte to be written to address RA[7:0]  
CRC. See Section 14.4  
14.3.2.2 Register write response message format  
Table 311.ꢀRegister write response message format  
MSB  
LSB  
0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Command C[0], [3:1]  
Basic  
Unused  
Data  
= 0x0  
Register Data: Contents  
of RA[7:1] High Byte  
Register Data: Contents  
of RA[7:1] Low Byte  
8-bit CRC  
Status  
0
1
0
0
ST[1:0]  
0
0
RD[15:8]  
RD[7:0]  
CRC[7:0]  
Table 312.ꢀRegister write response message format description  
Bit field  
C[0], [3:1]  
ST[1:0]  
Definition  
Register Write Command = '0100'  
Status. See Section 14.5.1  
RD[15:8]  
RD[7:0]  
The contents of the register addressed by RA[7:1] High Byte (RA[0] = 1)  
The contents of the register addressed by RA[7:1] Low Byte (RA[0] = 0)  
CRC. See Section 14.4  
CRC[7:0]  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
203 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
14.3.3 Sensor data request commands  
The device supports standard sensor data request commands. The sensor data request  
command format is described in Section 14.3.3.1. The response to a sensor data request  
is shown in Section 14.3.3.2. The response is transmitted on the next SPI message  
subject to the error handling conditions specified in Section 14.5. The sensor data  
included in the response is the sensor data at the falling edge of SS_B for the Sensor  
Data Request response.  
14.3.3.1 Sensor data request command message format  
Table 313.ꢀSensor data request command message format  
MSB  
LSB  
0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11  
10  
9
8
7
6
5
4
3
2
1
Command  
C[3:0]  
Fixed Bits: Must = 0x00000  
8-bit CRC  
CRC[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Table 314.ꢀSensor data request command message format description  
Bit field  
Definition  
C[0]  
Sensor Data Request Command = '1'  
C[3:1] = SOURCEID[2:0]  
CRC[7:0]  
Source Identification code for the requested sensor data. See Section 11.2.13.  
CRC. See Section 14.4  
14.3.3.2 Sensor data request response message format  
Table 315.ꢀSensor data request response message format  
MSB  
LSB  
0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Command C[0], [3:1]  
Basic  
Sensor Data  
Detail  
8-bit CRC  
Status  
Status  
1
C[3] C[2] C[1] ST[1:0]  
SD[11:0]  
Optional SD  
resolution  
SF[1:0]  
CRC[7:0]  
Table 316.ꢀSensor data request response message format description  
Bit field  
Definition  
C[0]  
Sensor Data Request Command = '1'  
C[3:1] = SOURCEID[2:0]  
ST[1:0]  
Source Identification code for the requested sensor data. See Section 11.2.13.  
Basic Status. See Section 14.5.1  
SD[11:0]  
Sensor Data. See Section 11.6.4.9  
Optional SD Resolution  
SF[1:0]  
Optional for 16-bit Sensor Data. See Section 11.6.4.9  
Detailed Status. See Section 14.5.3  
CRC[7:0]  
CRC. See Section 14.4  
14.3.4 Reserved commands  
The device responds to reserved commands on the next SPI message subject to the  
error handling conditions specified in Section 14.5.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
204 / 254  
 
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
14.3.4.1 Reserved command message format  
MSB  
LSB  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
x
x
x
x
x
x
x
8
x
x
x
x
x
x
x
7
6
5
4
3
2
1
0
Command  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
8-bit CRC  
CRC[7:0]  
CRC[7:0]  
CRC[7:0]  
CRC[7:0]  
CRC[7:0]  
CRC[7:0]  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
1
1
0
0
0
0
0
0
Bit field  
Definition  
Reserved Command  
CRC. See Section 14.4  
C[3:0]  
CRC[7:0]  
14.3.4.2 Reserved command response message format  
Table 317.ꢀReserved command response message format  
MSB  
LSB  
0
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Command Echo  
Data  
8-bit CRC  
CRC[7:0]  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Table 318.ꢀReserved command response message format description  
Bit field  
Definition  
Command Echo  
Data  
Reserved Command Echo - Undefined  
Response Data - Undefined  
CRC. See Section 14.4  
CRC[7:0]  
14.4 Error checking  
14.4.1 Default 8-bit CRC  
14.4.1.1 Command error checking  
The device calculates an 8-bit CRC on the entire 32-bits of each command. Message  
data is entered into the CRC calculator MSB first, consistent with the transmission  
order of the message. If the calculated CRC does not match the transmitted CRC, the  
command is ignored and the device responds with the SPI Error response.  
The CRC decoding procedure is:  
1. A seed value is preset into the least significant bits of the shift register.  
2. Using a serial CRC calculation method, the receiver rotates the received message  
and CRC into the least significant bits of the shift register in the order received (MSB  
first).  
3. When the calculation on the last bit of the CRC is rotated into the shift register, the  
shift register contains the CRC check result.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
205 / 254  
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
4. If the shift register contains all zeros, the CRC is correct.  
5. If the shift register contains a value other than zero, the CRC is incorrect.  
The CRC polynomial and seed are shown in Table 319.  
Table 319.ꢀSPI command message CRC  
SPICRCSEED[3:0]  
0000  
Default polynomial  
Default non-direct seed  
1111 1111  
x8 + x5 + x3 + x2 + x + 1  
x8 + x5 + x3 + x2 + x + 1  
Non-Zero  
1111 SPICRCSEED[3:0]  
Some example CRC calculations are shown in Table 321.  
14.4.1.2 Response error checking  
The device calculates a CRC on the entire 32-bits of each response. Message data is  
entered into the CRC calculator MSB first, consistent with the transmission order of the  
message.  
The CRC Encoding procedure is:  
1. A seed value is preset into the least significant bits of the shift register.  
2. Using a serial CRC calculation method, the transmitter rotates the transmitted  
message into the least significant bits of the shift register, MSB first.  
3. Following the transmitted message, the transmitter feeds eight zeros into the shift  
register, to match the length of the CRC.  
4. When the last zero is fed into the input adder, the shift register contains the CRC.  
5. The CRC is transmitted.  
The CRC polynomial and seed are shown in Table 320.  
Table 320.ꢀSPI CRC polynomial and seed  
SPICRCSEED[3:0]  
0000  
Default polynomial  
Default non-direct seed  
1111 1111  
x8 + x5 + x3 + x2 + x + 1  
x8 + x5 + x3 + x2 + x + 1  
Non-Zero  
1111 SPICRCSEED[3:0]  
Some example CRC calculations are shown in Table 321.  
Table 321.ꢀSPI 8-bit CRC calculation examples  
Polynomial  
Seed  
Bits[31:28]  
Command  
0x8  
Bits[27:24]  
0x0  
Bits[23:16]  
Bits[15:8]  
Bits[7:0]  
Register address Register data  
8-bit CRC  
0xBD  
0x57  
x8 + x5 + x3 + x2 + x + 1  
x8 + x5 + x3 + x2 + x + 1  
x8 + x5 + x3 + x2 + x + 1  
x8 + x5 + x3 + x2 + x + 1  
x8 + x5 + x3 + x2 + x + 1  
x8 + x5 + x3 + x2 + x + 1  
x8 + x5 + x3 + x2 + x + 1  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
0x0  
22  
1F  
22  
1F  
FF  
3E  
FF  
C1  
C1  
00  
C1  
5A  
00  
5A  
0x4  
0x0  
0xC  
0x0  
0x66  
0x6  
0x0  
0xB8  
0x4  
0x0  
0xE5  
0xC  
0x0  
0x13  
0x6  
0x0  
0x0A  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
206 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
14.4.2 Selectable 4-bit CRC  
The user can select a 4-bit CRC instead of the default 8-bit CRC for the SPI by  
programming the SPI_CFG register as described in Section 11.2.20.  
14.4.2.1 SPI command format with 4-bit CRC  
Table 322.ꢀSPI command format with 4-bit CRC  
MSB  
LSB  
0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
0
0
6
5
4
0
0
3
2
1
Register Access Command  
Command  
C[3:0]  
Fixed Bits:  
Must = 0x0  
Register Address  
RA[7:1]  
Register Data  
RD[7:0]  
Fixed Bits:  
Must = 0x0  
4-bit CRC  
CRC[3:0]  
0
0
0
0
0
0
0
0
RA[0]  
0
0
Sensor Data Command  
Command  
C[3:0]  
Fixed Bits: Must = 0x00000  
Fixed Bits:  
Must = 0x0  
4-bit CRC  
CRC[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
14.4.2.2 SPI response format with 4-bit CRC  
Table 323.ꢀSPI response format with 4-bit CRC  
MSB  
LSB  
0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Response to Register Request  
Command  
Basic  
Unused  
Data  
= 0x0  
Register Data: Contents  
of RA[7:1] High Byte  
Register Data: Contents  
of RA[7:1] Low Byte  
Unused Data = 0x0  
4-bit CRC  
CRC[3:0]  
Status  
C[0] C[3] C[2] C[1] ST[1:0]  
0
0
RD[15:8]  
RD[7:0]  
0
0
0
0
Response to Sensor Data Request  
Sensor Data  
Command  
Basic  
Detail  
KAC  
4-bit CRC  
CRC[3:0]  
Status  
Status  
C[0] C[3] C[2] C[1] ST[1:0]  
SD[11:0]  
Optional SD  
resolution  
SF[1:0]  
KAC[3:0]  
Error Response to Register Request  
Command  
Basic  
Unused  
Data  
= 0x0  
Register Data: Contents  
of RA[7:1] High Byte  
Register Data: Contents  
of RA[7:1] Low Byte  
Unused Data = 0x0  
4-bit CRC  
CRC[3:0]  
Status  
0
0
0
0
1
1
0
0
RD[15:8]  
RD[7:0]  
0
0
0
0
Error Response to Sensor Data Request With Sensor Data  
Sensor Data  
Command  
Basic  
Detail  
KAC  
4-bit CRC  
CRC[3:0]  
Status  
Status  
C[0] C[3] C[2] C[1]  
Command  
1
1
SD[11:0]  
Optional SD  
resolution  
SF[1:0]  
KAC[3:0]  
Error Response to Sensor Data Request Without Sensor Data  
Unused Data = 0x0000  
Basic  
x
x
Detail  
Unused Data = 0x0  
4-bit CRC  
CRC[3:0]  
Status  
Status  
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SF[1:0]  
0
0
0
0
14.4.2.3 Command error checking with 4-bit CRC  
The device calculates a 4-bit CRC on the entire 32-bits of each command. Message data  
is entered into the CRC calculator MSB first, consistent with the transmission order of the  
message. If the calculated CRC does not match the transmitted CRC, the command is  
ignored and the device responds with the SPI Error response.  
The CRC decoding procedure is:  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
207 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
1. A seed value determined by the SPICRCSEED[3:0] value in the SPI_CFG register is  
preset into the least significant bits of the shift register.  
2. Using a serial CRC calculation method, the receiver rotates the received message  
and CRC into the least significant bits of the shift register in the order received (MSB  
first).  
3. When the calculation on the last bit of the CRC is rotated into the shift register, the  
shift register contains the CRC check result.  
4. If the shift register contains all zeros, the CRC is correct.  
5. If the shift register contains a value other than zero, the CRC is incorrect.  
The CRC polynomial and seed are shown in Table 324.  
Table 324.ꢀSPI command message CRC, 4 bit  
Default polynomial  
Non-direct seed  
x4 + 1  
SPICRCSEED[3:0]  
14.4.2.4 Response error checking with 4-bit CRC  
The device calculates a CRC on the entire 32-bits of each response. Message data is  
entered into the CRC calculator MSB first, consistent with the transmission order of the  
message.  
The CRC Encoding procedure is:  
1. A seed value determined by the SPICRCSEED[3:0] value is preset into the least  
significant bits of the shift register.  
2. Using a serial CRC calculation method, the transmitter rotates the transmitted  
message into the least significant bits of the shift register, MSB first.  
3. Following the transmitted message, the transmitter feeds four zeros into the shift  
register, to match the length of the CRC.  
4. When the last zero is fed into the input adder, the shift register contains the CRC.  
5. The CRC is transmitted.  
The CRC polynomial and seed are shown in Table 325.  
Table 325.ꢀSPI response message CRC, 4-bit  
Default polynomial  
Non-direct seed  
x4 + 1  
SPICRCSEED[3:0]  
14.4.2.5 Message counter (KAC) with 4-bit CRC  
If the 4-bit CRC is enabled, a 4-bit message counter field (KAC) is added to the Sensor  
Data Request Response. The message counter field is a 4-bit rolling message counter  
that is independently incremented for each SOURCEID. The initial value of the counter is  
'0001'.  
14.4.2.6 Example 4-bit CRC calculations  
Some example CRC calculations for 32-bit SPI commands are shown in Table 326.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
208 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 326.ꢀSPI 4-bit CRC calculation examples  
Polynomial  
Seed  
Bits[31:28]  
Command  
0x8  
Bits[27:24]  
0x0  
Bits[23:16]  
Bits[15:8]  
Bits[7:4]  
0x0  
Bits[3:0]  
4-bit CRC  
0xF  
Register address Register data  
x4 + 1  
x4 + 1  
x4 + 1  
x4 + 1  
x4 + 1  
x4 + 1  
x4 + 1  
1010  
1010  
1010  
1010  
1010  
1010  
1010  
0x0  
22  
1F  
22  
1F  
FF  
3E  
FF  
C1  
C1  
00  
C1  
5A  
00  
5A  
0x0  
0x4  
0x0  
0x0  
0xD  
0xC  
0x0  
0x0  
0x6  
0x6  
0x0  
0x0  
0xF  
0x4  
0x0  
0x0  
0x1  
0xC  
0x0  
0x0  
0xB  
0x6  
0x0  
0x0  
0x3  
14.4.3 Selectable 3-bit CRC  
The user can select a 3-bit CRC instead of the default 8-bit CRC for the SPI by  
programming the SPI_CFG register as described in Section 11.2.20.  
14.4.3.1 SPI command format with 3-bit CRC  
Table 327.ꢀSPI command format with 3-bit CRC  
MSB  
LSB  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Register Access Command  
Command  
C[3:0]  
Fixed Bits:  
Must = 0x0  
Register Address  
RA[7:1]  
Register Data  
RD[7:0]  
Fixed Bits: Must = 0x00  
3-bit CRC  
CRC[2:0]  
0
0
0
0
0
0
RA[0]  
0
0
0
0
0
Sensor Data Command  
Command  
C[3:0]  
Fixed Bits: Must = 0x00000  
Fixed Bits: Must = 0x00  
3-bit CRC  
CRC[2:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
14.4.3.2 SPI response format with 3-bit CRC  
Table 328.ꢀSPI response format with 3-bit CRC  
MSB  
LSB  
0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Response to Register Request  
Command  
Basic  
Unused  
Data  
= 0x0  
Register Data: Contents  
of RA[7:1] High Byte  
Register Data: Contents  
of RA[7:1] Low Byte  
Unused Data = 0x00  
3-bit CRC  
CRC[2:0]  
Status  
C[0] C[3] C[2] C[1] ST[1:0]  
0
0
RD[15:8]  
RD[7:0]  
0
0
0
0
0
Response to Sensor Data Request  
Sensor Data  
Command  
Basic  
Detail  
KAC  
1
1
3-bit CRC  
CRC[2:0]  
Status  
Status  
C[0] C[3] C[2] C[1] ST[1:0]  
SD[11:0]  
Optional SD  
resolution  
SF[1:0]  
KAC[3:0]  
Error Response to Register Request  
Command  
Basic  
Unused  
Data  
= 0x0  
Register Data: Contents  
of RA[7:1] High Byte  
Register Data: Contents  
of RA[7:1] Low Byte  
Unused Data = 0x00  
3-bit CRC  
CRC[2:0]  
Status  
0
0
0
0
1
1
0
0
RD[15:8]  
RD[7:0]  
0
0
0
0
0
Error Response to Sensor Data Request With Sensor Data  
Sensor Data  
Command  
Basic  
Detail  
KAC  
1
1
3-bit CRC  
CRC[2:0]  
Status  
Status  
C[0] C[3] C[2] C[1]  
1
1
SD[11:0]  
Optional SD  
resolution  
SF[1:0]  
KAC[3:0]  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
209 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 328.ꢀSPI response format with 3-bit CRC...continued  
MSB  
LSB  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Error Response to Sensor Data Request Without Sensor Data  
Command  
Basic  
x
x
Unused Data = 0x0000  
Detail  
Unused Data = 0x00  
3-bit CRC  
CRC[2:0]  
Status  
Status  
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SF[1:0]  
0
0
0
0
0
14.4.3.3 Command error checking with 3-bit CRC  
The device calculates a 3-bit CRC on the entire 32-bits of each command. Message data  
is entered into the CRC calculator MSB first, consistent with the transmission order of the  
message. If the calculated CRC does not match the transmitted CRC, the command is  
ignored and the device responds with the SPI Error response.  
The CRC decoding procedure is:  
1. A seed value determined by the SPICRCSEED[2:0] value in the SPI_CFG register is  
preset into the least significant bits of the shift register.  
2. Using a serial CRC calculation method, the receiver rotates the received message  
and CRC into the least significant bits of the shift register in the order received (MSB  
first).  
3. When the calculation on the last bit of the CRC is rotated into the shift register, the  
shift register contains the CRC check result.  
4. If the shift register contains all zeros, the CRC is correct.  
5. If the shift register contains a value other than zero, the CRC is incorrect.  
The CRC polynomial and seed are shown in Table 329.  
Table 329.ꢀSPI command message CRC, 3 bit  
Default polynomial  
Non-direct seed  
x3 + x + 1  
SPICRCSEED[2:0]  
Some example CRC calculations are shown in Table 263.  
14.4.3.4 Response error checking with 3-bit CRC  
The device calculates a CRC on the entire 32-bits of each response. Message data is  
entered into the CRC calculator MSB first, consistent with the transmission order of the  
message.  
The CRC encoding procedure is:  
1. A seed value determined by the SPICRCSEED[2:0] value is preset into the least  
significant bits of the shift register.  
2. Using a serial CRC calculation method, the transmitter rotates the transmitted  
message into the least significant bits of the shift register, MSB first.  
3. Following the transmitted message, the transmitter feeds three zeros into the shift  
register, to match the length of the CRC.  
4. When the last zero is fed into the input adder, the shift register contains the CRC.  
5. The CRC is transmitted.  
The CRC polynomial and seed are shown in Table 330.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
210 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 330.ꢀSPI response message CRC, 3-bit  
Default polynomial  
x3 + x + 1  
Non-direct seed  
SPICRCSEED[2:0]  
14.4.3.5 Message (KAC) with 3-bit CRC  
If the 3-bit CRC is enabled, a 4-bit message counter field (KAC) is added to the Sensor  
Data Request Response. The message counter field is a 4-bit rolling message counter  
that is independently incremented for each SOURCEID. The initial value of the counter is  
'0001'.  
14.4.3.6 Example 3-bit CRC calculations  
Some example CRC calculations for 32-bit SPI commands are shown in Table 331.  
Table 331.ꢀSPI 3-bit CRC calculation examples  
Polynomial  
Seed  
Bits[31:28]  
Bits[27:24]  
Bits[23:16]  
Bits[15:8]  
Bits[7:3]  
Bits[2:0]  
Command  
(Hex)  
0x0  
Register address Register data  
0b00000  
(Binary)  
3-bit CRC  
(Binary)  
(Hex)  
(Hex)  
22  
(Hex)  
C1  
C1  
00  
x3 + x + 1  
x3 + x + 1  
x3 + x + 1  
x3 + x + 1  
x3 + x + 1  
x3 + x + 1  
x3 + x + 1  
111  
111  
111  
111  
111  
111  
111  
0x8  
0x4  
0xC  
0x6  
0x4  
0xC  
0x6  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0b00000  
0b00000  
0b00000  
0b00000  
0b00000  
0b00000  
0b00000  
0b100  
0b010  
0b001  
0b000  
0b000  
0b101  
0b010  
1F  
22  
1F  
C1  
5A  
FF  
3E  
FF  
00  
5A  
14.5 Exception handling  
14.5.1 Standard basic status reporting field  
All responses include a basic status field (ST[1:0]) that includes the general status of the  
device and transmitted data as described in Table 332 and Table 333. The contents of  
the basic status field is a representation of the device status at the rising edge of SS_B  
for the previous SPI command.  
14.5.1.1 Basic status field for responses to register commands  
Table 332.ꢀBasic status field for responses to register commands  
ST[1:0]  
Status  
Description  
Priority  
0
0
1
0
1
Device in Initialization  
Normal Mode  
Self-test  
ENDINIT Not Set  
3
4
2
1
0
1
1
ENDINIT Set  
ST_CTRL[3:0] not equal to '0000' for any channel  
See Figure 95  
Internal Error Present  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
211 / 254  
 
 
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
14.5.1.2 Basic status field for responses to sensor data request commands  
Table 333.ꢀBasic status field for responses to sensor data request commands  
ST[1:0] Status  
Description  
SF[1:0]  
Sensor data field Priority  
0
0
1
0
1
0
Device in Initialization  
Normal Mode  
Self-test  
ENDINIT Not Set  
ENDINIT Set  
0
0
0
0
0
0
Sensor Data  
Sensor Data  
Sensor Data  
3
4
2
ST_CTRL[3:0] not equal  
to '0000' for the associated  
channel  
1
1
Internal Error Present  
See Section 14.5.3  
See Section 14.5.3 See Section 14.5.3  
1
14.5.2 Alternative basic status reporting field  
If the SPI_STATUS bit is set in the SPI_CFG register, the basic status reporting is as  
shown in Table 334.  
Table 334.ꢀAlternative basic status reporting field  
ST[1:0] Status  
Description  
SF[1:0]  
Sensor data field Priority  
0
0
1
0
1
0
Device in Initialization  
Normal Mode  
Self-test  
ENDINIT Not Set  
ENDINIT Set  
0
0
0
0
0
0
Sensor Data  
Sensor Data  
Sensor Data  
3
4
2
ST_CTRL[3:0] not equal  
to '0000' for the associated  
channel for dual axis  
1
1
Internal Error Present  
See Section 14.5.4  
See Section 14.5.4 See Section 14.5.4  
1
Figure 95 shows the internal device status mapping by register and the basic status field  
contents by response type.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
212 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
CH0_ERR  
CH1_ERR  
COMM_ERR  
MEMTEMP_ERR  
SUPPLY_ERR  
TESTMODE  
DEVRES  
DEVINIT  
BIT 7  
BIT 6  
CH0_ERR  
CH1_ERR  
Device in Test Mode  
CHx_STAT  
Device Reset Occured  
BIT 7  
BIT 6  
BIT 5  
OC_PHASE  
N/A  
BIT 4  
BIT 3  
ST_INC  
00, 01  
00, 01  
BIT 2  
ST_ACT  
10  
BIT 1  
OFF_ERR  
00, 01  
11  
BIT 0  
ST_ERR  
00, 01  
SIGCLIP  
Basic Status, Register Command  
00, 01  
11  
DSP in initialization Data not Valid  
00, 01  
Basic Status, Sensor Data Command  
N/A  
10  
BIT 5  
COMM_ERR  
DEVSTAT3  
BIT 7  
BIT 6  
BIT 5  
RSVD  
N/A  
BIT 4  
RSVD  
BIT 3  
RSVD  
N/A  
BIT 2  
RSVD  
N/A  
BIT 1  
BIT 0  
RSVD  
N/A  
MISO_ERR OSC TRAIN  
RSVD  
N/A  
Basic Status, Register Command  
11  
11  
00, 01  
11  
N/A  
N/A  
N/A  
N/A  
Basic Status, Sensor Data Command  
N/A  
N/A  
N/A  
BIT 4  
MEMTEMP_ERR  
DEVSTAT2  
BIT 7  
BIT 6  
U_OTP_E  
00, 01  
11  
BIT 5  
BIT 4  
U_W_ACT  
00, 01  
BIT 3  
TEMP1  
00, 01  
11  
BIT 2  
TEMP0  
00, 01  
11  
BIT 1  
RSVD  
N/A  
BIT 0  
RSVD  
N/A  
F_OTP_E  
00, 01  
11  
U_RW_E  
00, 01  
11  
Basic Status, Register Command  
N/A  
N/A  
Basic Status, Sensor Data Command  
11  
BIT 3  
SUPPLY_ERR  
DEVSTAT1  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
INTREG  
11  
BIT 1  
INTREGF  
BIT 0  
VBUFUV  
BUSINUV  
VBUFOV  
RSVD  
N/A  
INTREGA  
CONT_ERR  
Basic Status, Register Command  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
Basic Status, Sensor Data Command  
N/A  
11  
aaa-030679  
Figure 95.ꢀInternal status mapping and SPI basic status content  
14.5.3 Standard detailed status field reporting  
The response to sensor data requests includes a detailed status field (SF[1:0]). If the  
Basic Status indicates an internal error, the contents of the detailed status field provide  
additional information regarding the error status. The contents of the detailed status field  
is a representation of the device status at the rising edge of SS_B for the previous SPI  
command.  
Table 335.ꢀSPI error response status field definition  
ST[1:0]  
SF[1:0] Status sources  
DEVSTAT state  
SUPERR_  
DIS state  
Error  
priority  
Command echo  
field (Source ID)  
Sensor data request commands  
Sensor data field value  
PCM  
Oscillator Training Error  
Bit set in DEVSTAT3  
Bit set in CHx_STAT:  
N/A  
N/A  
11  
10  
C[0], C[3:1]  
C[0], C[3:1]  
Sensor Data  
Sensor Data  
No Effect  
No Effect  
Offset Error  
1
1
0
0
SIGNALCLIP or OFF-  
SET_ERR  
Temperature Error  
Bit set in DEVSTAT2  
N/A  
N/A  
9
8
C[0], C[3:1]  
0x0  
Sensor Data  
No Effect  
No Effect  
User OTP Memory Error  
(UF0 or UF1)  
U_OTP_ERR set in  
DEVSTAT2  
The Sensor Data Field Error Code  
is transmitted for a minimum of one  
transmission  
User R/W Memory Error  
(UF2)  
U_RW_ERR set in  
DEVSTAT2  
N/A  
N/A  
7
6
0x0  
0x0  
The Sensor Data Field Error Code  
is transmitted for a minimum of one  
transmission  
No Effect  
No Effect  
1
1
0
1
NXP OTP Memory Error  
F_OTP_ERR set in  
DEVSTAT2  
The Sensor Data Field Error Code  
is transmitted for a minimum of one  
transmission  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
213 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 335.ꢀSPI error response status field definition...continued  
ST[1:0]  
SF[1:0] Status sources  
DEVSTAT state  
SUPERR_  
DIS state  
Error  
priority  
Command echo  
field (Source ID)  
Sensor data request commands  
PCM  
Sensor data field value  
Test Mode Active  
Supply Error  
TESTMODE bit set in  
DEVSTAT  
N/A  
0
5
4
0x0  
0x0  
All zero response  
No Effect  
Disabled  
Bit set in DEVSTAT1  
All zero response until the supply monitor  
timer expires  
An Error Code is transmitted for a minimum of  
one transmission  
(See Section 11.2.2.5)  
1
1
1
0
1
4
0x0  
All zero response until the supply monitor  
timer expires  
(See Section 11.2.2.5)  
Reset Error  
MISO Error  
SPI Error  
DEVRES set  
Bit set in DEVSTAT3  
N/A  
N/A  
N/A  
N/A  
3
2
1
0x0  
0x0  
0x0  
The Sensor Data Field Error Code  
is transmitted for a minimum of one  
transmission  
No Effect  
No Effect  
No Effect  
The Sensor Data Field Error Code  
is transmitted for a minimum of one  
transmission  
1
1
1
1
The Sensor Data Field Error Code  
is transmitted for a minimum of one  
transmission  
14.5.4 Alternative detailed status field reporting  
The response to sensor data requests includes a detailed status field (SF[1:0]). If the  
Basic Status indicates an internal error, the contents of the detailed status field provide  
additional information regarding the error status. The contents of the detailed status field  
is a representation of the device status at the rising edge of SS_B for the previous SPI  
command.  
If the SPI_STATUS bit is set in the SPI_CFG register, the basic status reporting is shown  
in Table 336.  
Table 336.ꢀAlternate SPI error response status field definition  
ST[1:0]  
SF[1:0] Status sources  
DEVSTAT state  
SUPERR_  
DIS state  
Error  
priority  
Command echo  
field (Source ID)  
Sensor data request commands  
Sensor data field value  
PCM  
Oscillator Training Error  
Bit set in DEVSTAT3  
N/A  
N/A  
11  
10  
C[0], C[3:1]  
C[0], C[3:1]  
Sensor Data  
Sensor Data  
No Effect  
No Effect  
Offset Error  
Bit set in CHx_STAT:  
OFFSET_ERR  
1
1
0
0
Temperature Error  
Bit set in DEVSTAT2  
N/A  
N/A  
9
8
C[0], C[3:1]  
0x0  
Sensor Data  
No Effect  
No Effect  
User OTP Memory Error  
(UF0 or UF1)  
U_OTP_ERR set in  
DEVSTAT2  
The Sensor Data Field Error Code  
is transmitted for a minimum of one  
transmission  
User R/W Memory Error  
(UF2)  
U_RW_ERR set in  
DEVSTAT2  
N/A  
N/A  
7
6
0x0  
0x0  
The Sensor Data Field Error Code  
is transmitted for a minimum of one  
transmission  
No Effect  
No Effect  
1
1
0
1
NXP OTP Memory Error  
F_OTP_ERR set in  
DEVSTAT2  
The Sensor Data Field Error Code  
is transmitted for a minimum of one  
transmission  
Test Mode Active  
Supply Error  
TESTMODE bit set in  
DEVSTAT  
N/A  
0
5
4
0x0  
0x0  
All zero response  
No Effect  
Disabled  
Bit set in DEVSTAT1  
All zero response until the supply monitor  
timer expires  
An Error Code is transmitted for a minimum of  
one transmission  
(See Section 11.2.2.5)  
1
1
1
0
1
4
3
0x0  
0x0  
All zero response until the supply monitor  
timer expires  
(See Section 11.2.2.5)  
Reset Error  
DEVRES set  
N/A  
The Sensor Data Field Error Code  
is transmitted for a minimum of one  
transmission  
No Effect  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
214 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 336.ꢀAlternate SPI error response status field definition...continued  
ST[1:0]  
SF[1:0] Status sources  
DEVSTAT state  
SUPERR_  
DIS state  
Error  
priority  
Command echo  
field (Source ID)  
Sensor data request commands  
PCM  
Sensor data field value  
MISO Error  
Bit set in DEVSTAT3  
N/A  
N/A  
2
1
0x0  
0x0  
The Sensor Data Field Error Code  
is transmitted for a minimum of one  
transmission  
No Effect  
1
1
1
1
SPI Error  
N/A  
The Sensor Data Field Error Code  
is transmitted for a minimum of one  
transmission  
No Effect  
14.5.5 Error responses  
Table 337.ꢀError responses  
MSB  
LSB  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Error Response to Register Request  
Command  
Basic  
Unused  
Data  
= 0x0  
Register Data: Contents  
of RA[7:1] High Byte  
Register Data: Contents  
of RA[7:1] Low Byte  
8-bit CRC  
CRC[7:0]  
Status  
0
0
0
0
1
1
0
0
RD[15:8]  
RD[7:0]  
Error Response to Sensor Data Request With Sensor Data  
Sensor Data  
Command  
Basic  
Detail  
8-bit CRC  
CRC[7:0]  
Status  
Status  
C[0] C[3] C[2] C[1]  
Command  
1
1
SD[11:0]  
Optional SD  
resolution  
SF[1:0]  
Error Response to Sensor Data Request Without Sensor Data  
Unused Data = 0x0000  
Basic  
x
x
Detail  
8-bit CRC  
CRC[7:0]  
Status  
Status  
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SF[1:0]  
Table 338.ꢀError response description  
Bit field  
C[3:0]  
Definition  
Command bits: all 0s or a command echo  
Sensor Data or the Sensor Data Field Error Code.  
SD[11:0]  
For unsigned data, the Sensor Data Field Error Code is 0x000  
For signed data, the Sensor Data Field Error Code is 0x800  
See Section 14.5.3 for Sensor Data Request commands.  
For all other commands, all bits are '0'.  
SF[3:0]  
Status. See Section 14.5.3  
14.5.6 SPI error  
The following external SPI conditions result in a SPI error:  
SCLK is high when SS_B is asserted  
The number of SCLK rising edges detected while SS_B is asserted is not equal to 0 or  
32  
SCLK is high when SS_B is deasserted  
A command message CRC error is detected (MOSI)  
A Sensor Data Request is received for a SOURCEID that is not enabled  
A Register Write command to any register other than the DEVLOCK_WR register is  
received while ENDINIT is set.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
215 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
If a SPI error is detected, the device responds with the Error Response as described  
in Section 14.5.4 with the Detailed Status Field set to "SPI Error" as defined in  
Section 14.5.3.  
14.5.7 SPI data output verification error  
The device includes a function to verify the integrity of the data output to the MISO pin.  
The function compares the data transmitted on the MISO pin to the data intended to be  
transmitted. If any one bit doesn't match, a SPI MISO Mismatch Fault is detected and the  
MISO_ERR flag in the DEVSTAT3 register is set.  
If a valid sensor data request message is received during the SPI transfer with the  
MISO mismatch failure, the request is ignored and the device responds with the Error  
Response as described in Section 14.5.4 with the Detailed Status Field set to "SPI Error"  
as defined in Section 14.5.3. during the subsequent SPI message.  
If a valid register write request message is received during the SPI transfer with the  
MISO mismatch failure, the register write is completed as requested, but the device  
responds with the Error Response as described in Section 14.5.4 with the Detailed  
Status Field set to "SPI Error" as defined in Section 14.5.3. during the subsequent SPI  
message.  
If a valid register read request message is received during the SPI transfer with the MISO  
mismatch failure, the register read is ignored and the device responds with the Error  
Response as described in Section 14.5.4 with the Detailed Status Field set to "SPI Error"  
as defined in Section 14.5.3. during the subsequent SPI message.  
SPI data out shift register  
data out buffer  
MISO  
D
Q
D
Q
R
MISO ERR  
D
Q
SCLK  
R
aaa-030680  
Figure 96.ꢀSPI data output verification  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
216 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
14.6 SPI timing diagram  
DSP Out  
t
LAT  
SS_B  
t
t
SCLKR  
SCLK  
t
SSN  
t
LEAD  
t
SCLKH  
t
t
SSCLK  
SCLKF  
SCLK  
t
SCLKL  
t
LAG  
t
CLKSS  
t
ACCESS  
t
t
t
HOLD_OUT  
DISABLE  
VALID  
MISO  
t
t
SETUP  
HOLD_IN  
MOSI  
aaa-030681  
Figure 97.ꢀSPI timing diagram  
15 Inter-integrated circuit (I2C) interface  
The device includes an interface compliant to the NXP I2C bus specification UM10204[1].  
The device operates in slave mode and includes support for Standard Mode, Fast Mode,  
and Fast Mode Plus although the maximum practical operating frequency for I2C in a  
given system implementation depends on several factors including the pull-up resistor  
values and the total bus capacitance.  
15.1 I2C bit transmissions  
The state of SDA when SCL is high determines the bit value being transmitted. SDA  
must be stable when SCL is high and change when SCL is low as shown in Figure 99.  
After the START signal has been transmitted by the master, the bus is considered busy.  
Timing for the start condition is specified in Section 10.14.  
SDA  
SCL  
SDA stable  
SDA = `1'  
SDA stable  
SDA = `0'  
SDA  
changes  
aaa-030682  
Figure 98.ꢀI2C bit transmissions  
15.2 I2C start condition  
A bus operation is always started with a start condition (START) from the master.  
A START is defined as a high to low transition on SDA while SCL is high as shown  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
217 / 254  
 
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
in Figure 99. After the START signal has been transmitted by the master, the bus is  
considered busy. Timing for the start condition is specified in Section 10.14.  
A start condition (START) and a repeat START condition (rSTART) are identical.  
SDA  
SCL  
START  
aaa-030683  
Figure 99.ꢀI2C start condition  
15.3 I2C byte transmissions  
Data transfers are completed in byte increments. The number of bytes that can be  
transmitted per transfer is unrestricted. Each byte must be followed by an Acknowledge  
bit (Section 15.4) from the receiver. Data is transferred with the Most Significant Bit  
(MSB) first (Figure 100). The master generates all clock pulses, including the ninth clock  
for the Acknowledge bit. Timing for the byte transmissions is specified in Section 10.14.  
All functions for this device are completed within the Acknowledge clock pulse. Clock  
Stretching is not used.  
SDA  
SCL  
START  
ACK  
ACK  
STOP  
from slave  
from receiver  
aaa-030684  
Figure 100.ꢀI2C byte transmissions  
15.4 I2C acknowledge and not acknowledge transmissions  
Each byte must be followed by an Acknowledge bit (ACK) from the receiver. For an ACK,  
the transmitter releases SDA during the acknowledge clock pulse and the receiver pulls  
SDA low during the high portion of the clock pulse. Set-up and hold times as specified in  
Section 10.14 must also be taken into account.  
For a Not Acknowledge bit (NACK), SDA remains high during the entire acknowledge  
clock pulse. Five conditions lead to a NACK:  
1. No receiver is present on the bus with the transmitted address.  
2. The addressed receiver is unable to receive or transmit because it is performing some  
real-time function and is not ready to start communication with the master.  
3. The receiver receives unrecognized data or commands.  
4. The receiver cannot receive any more data bytes.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
218 / 254  
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
5. The master-receiver signals the end of the transfer to the slave transmitter.  
Following a Not Acknowledge bit, the master can transmit either a STOP to terminate the  
transfer, or a repeated START to initiate a new transfer.  
An example ACK and NACK are shown in Figure 101.  
SDA  
SCL  
ACK  
NACK  
9th clock pulse  
9th clock pulse  
aaa-030685  
Figure 101.ꢀI2C acknowledge and not acknowledge transmission  
15.5 I2C stop condition  
A bus operation is always terminated with a stop condition (STOP) from the master.  
A STOP is defined as a Low to high transition on SDA while SCL is high as shown in  
Figure 102. After the STOP has been transmitted by the master, the bus is considered  
free. Timing for the stop condition is specified in Section 10.14.  
SDA  
SCL  
STOP  
aaa-030686  
Figure 102.ꢀI2C stop condition  
15.6 I2C register transfers  
15.6.1 Register write transfers  
The device supports I2C register write data transfers. Register write data transfers are  
constructed as follows:  
1. The master transmits a START condition  
2. The master transmits the 7-bit slave address  
3. The master transmits a '0' for the Read/Write Bit to indicate a Write operation  
4. The slave transmits an ACK  
5. The master transmits the register address to be written  
6. The slave transmits an ACK  
7. The master transmits the data byte to be written to the register address  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
219 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
8. The slave transmits an ACK  
9. The master transmits a STOP condition  
S
Slave address  
W
A
Register address  
A
REGISTER DATA  
A
P
Master transmission  
Slave transmission  
The device automatically increments the register address allowing for multiple register  
writes to be completed in one trans-action. In this case, the register write data transfers  
are constructed as follows:  
1. The master transmits a START condition  
2. The master transmits the 7-bit slave address  
3. The master transmits a '0' for the Read/Write Bit to indicate a Write operation  
4. The slave transmits an ACK  
5. The master transmits the register address to be written  
6. The slave transmits an ACK  
7. The master transmits the data byte to be written to the register address  
8. The slave transmits an ACK  
9. The master transmits the data byte to be written to the register address +1  
10.The slave transmits an ACK  
11.Repeat step 9 and step 10 until all registers are written  
12.The master transmits a STOP condition  
15.6.2 Register read transfers  
The device supports I2C register read data transfers. Register read data transfers are  
constructed as follows:  
1. The master transmits a START condition  
2. The master transmits the 7-bit slave address  
3. The master transmits a '0' for the Read/Write Bit to indicate a Write operation  
4. The slave transmits an ACK  
5. The master transmits the register address to be read  
6. The slave transmits an ACK  
7. The master transmits a repeat START condition  
8. The master transmits the 7-bit slave address  
9. The master transmits a '1' for the Read/Write Bit to indicate a Read operation  
10.The slave transmits an ACK  
11.The slave transmits the data from the register addressed  
12.The master transmits a NACK  
13.The master transmits a STOP condition  
S
Slave address  
W
A
Register address  
A
rSTART  
Slave address  
R
A
Register data  
N
P
Master transmission  
Slave transmission  
The device automatically increments the register address allowing for multiple register  
reads to be completed in one trans-action. In this case, the register read data transfers  
are constructed as follows:  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
220 / 254  
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
1. The master transmits a START condition  
2. The master transmits the 7-bit slave address  
3. The master transmits a '0' for the Read/Write Bit to indicate a Write operation  
4. The slave transmits an ACK  
5. The master transmits the register address to be read  
6. The slave transmits an ACK  
7. The master transmits a repeat START condition  
8. The master transmits the 7-bit slave address  
9. The master transmits a '1' for the Read/Write Bit to indicate a Read operation  
10.The slave transmits an ACK  
11.The slave transmits the data from the register addressed  
12.The master transmits an ACK  
13.The slave transmits the data byte from register address +1  
14.Repeat step 12 and step 13 until all registers are read  
15.The master transmits a NACK  
16.The master transmits a STOP condition  
15.6.3 Sensor data register read wrap around options  
The device includes automatic sensor data register read wrap around features to  
optimize the number of I2C transactions necessary for continuous reads of sensor data.  
15.6.3.1 Single channel register read wrap around  
Depending on the state of the SIDx_EN bits in the channel 0 and channel 1  
SOURCEID_0 and SOURCEID_1 registers, the register address automatically wraps  
back to the DEVSTAT_COPY register as shown in .  
Table 339.ꢀDual channel register read wrap around  
Ch1  
Ch1  
Ch0  
Ch0  
Address increment and wrap around effect  
Optimized register  
read sequence  
SID1_EN SID0_EN  
SID1_EN SID0_EN  
0
0
0
0
0
0
0
1
Address wraps around from $FF to $00  
None  
Address wraps from $63 (CH0_SNSDATA0_H) DEVSTAT_COPY,  
to $61 (DEVSTAT_COPY)  
CH0_SNSDATA0_L,  
CH0_SNSDATA0_H  
0
0
0
1
1
x
x
x
Address wraps from $65 (CH0_SNSDATA1_H) DEVSTAT_COPY,  
to $61 (DEVSTAT_COPY)  
CH0_SNSDATA0_L,  
CH0_SNSDATA0_H,  
CH0_SNSDATA1_L,  
CH0_SNSDATA1_H  
Address jumps from $65 (CH0_SNSDATA1_H) DEVSTAT_COPY,  
to $72 (CH1_SNSDATA0_L)  
Address wraps from $73 (CH1_SNSDATA1_H) CH0_SNSDATA0_H,  
CH0_SNSDATA0_L,  
to $61 (DEVSTAT_COPY)  
CH0_SNSDATA1_L,  
CH0_SNSDATA1_H,  
CH1_SNSDATA0_L,  
CH1_SNSDATA0_H  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
221 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Table 339.ꢀDual channel register read wrap around...continued  
Ch1  
Ch1  
Ch0  
Ch0  
Address increment and wrap around effect  
Optimized register  
read sequence  
SID1_EN SID0_EN  
SID1_EN SID0_EN  
1
x
x
x
Address jumps from $65 (CH0_SNSDATA1_H) DEVSTAT_COPY,  
to $72 (CH1_SNSDATA0_L)  
CH0_SNSDATA0_L,  
Address wraps from $75 (CH1_SNSDATA1_H) CH0_SNSDATA0_H,  
to $61 (DEVSTAT_COPY)  
CH0_SNSDATA1_L,  
CH0_SNSDATA1_H,  
CH1_SNSDATA0_L,  
CH1_SNSDATA0_H,  
CH1_SNSDATA1_L,  
CH1_SNSDATA1_H  
15.7 I2C timing diagram  
t
t
SRISE  
t
SFALL  
SETUP  
70 %  
30 %  
70 %  
30 %  
. . .  
cont  
SDA  
SCL  
t
VALID  
t
SCLH  
t
t
HOLD  
t
SRISE  
SFALL  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
. . .  
cont  
t
SCLL  
th  
t
9
clock  
STARTHOLD  
t
SCL  
S
st  
1
clock cycle  
t
FREE  
. . .  
SDA  
t
STARTSETUP  
t
VALID  
t
t
STOPSETUP  
STARTHOLD  
t
REJ  
70 %  
30 %  
. . .  
SCL  
Sr  
P
S
th  
9
clock  
aaa-030687  
Figure 103.ꢀI2C timing diagram  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
222 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
16 Package outline  
Figure 104.ꢀPackage outline for LQFN16 (SOT1688-1(SC))  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
223 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Figure 105.ꢀPackage outline detail for LQFN16 (SOT1688-1(SC))  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
224 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Figure 106.ꢀPackage outline notes for LQFN16 (SOT1688-1(SC))  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
225 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Figure 107.ꢀPackage outline for LQFN16 (SOT1688-1(DD))  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
226 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Figure 108.ꢀPackage outline detail for LQFN16 (SOT1688-1(DD))  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
227 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Figure 109.ꢀPackage outline notes for LQFN16 (SOT1688-1(DD))  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
228 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
17 Soldering  
Figure 110.ꢀReflow soldering footprint part 1 for HLQFN16 (SOT1688-1(SC))  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
229 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Figure 111.ꢀReflow soldering footprint part 2 for HLQFN16 (SOT1688-1(SC))  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
230 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Figure 112.ꢀReflow soldering footprint part 3 for HLQFN16 (SOT1688-1(SC))  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
231 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Figure 113.ꢀReflow soldering footprint part 4 for HLQFN16 (SOT1688-1(SC))  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
232 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Figure 114.ꢀReflow soldering footprint part 5 for HLQFN16 (SOT1688-1(SC))  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
233 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Figure 115.ꢀReflow soldering footprint part 1 for HLQFN16 (SOT1688-1(DD))  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
234 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Figure 116.ꢀReflow soldering footprint part 2 for HLQFN16 (SOT1688-1(DD))  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
235 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Figure 117.ꢀReflow soldering footprint part 3 for HLQFN16 (SOT1688-1(DD))  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
236 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Figure 118.ꢀReflow soldering footprint part 4 for HLQFN16 (SOT1688-1(DD))  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
237 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Figure 119.ꢀReflow soldering footprint part 5 for HLQFN16 (SOT1688-1(DD))  
18 References  
[1] UM10204 - I2C-bus specification and user manual, Revision 6  
https://www.nxp.com/docs/en/user-guide/UM10204.pdf  
[2] DSI3 Standard Revision 1.0, Dated February 16, 2011  
https://www.dsiconsortium.org/downloads/DSI3_%20Bus_Standard_r1.00.pdf  
[3]p AKLV27 V1.40, Revision 1.20  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
238 / 254  
 
 
 
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
[4] AEC - Q100 - Rev-H, September 11, 2014 - Failure Mechanism Based Stress Test Qualification for Integrated Circuits  
http://www.aecouncil.com/Documents/AEC_Q100_Rev_H_Base_Document.pdf  
AECQ100, Revision H, AEC-Q006  
http://www.aecouncil.com/Documents/AEC_Q100_Rev_H_Base_Document.pdf  
[5] PSI5 Technical Specification Version 2.1, Dated October 8, 2012  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
239 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
19 Revision history  
Table 340.ꢀRevision history  
Document ID  
FXLS9xxxx v.6  
Modifications  
Release date  
20210208  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
FXLS9xxxx v.5.15  
This data sheet has been formatted to comply with the identity guidelines of NXP Semiconductors,  
N.V.  
FXLS9xxxx, v.6, Dual Channel Inertial Sensor, supercedes and replaces FXLS9xxxx, v.5.15, Dual  
Channel Inertial Sensor.  
Global changes:  
Performed minor grammatical and typographic revisions throughout.  
Updated all images to comply with NXP image standards.  
FXLS9xxxx v.5.15  
20201208  
Product data sheet  
FXLS9xxxx v.5.14  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
240 / 254  
 
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
20 Legal information  
20.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Definition  
Objective [short] data sheet  
Development  
This document contains data from the objective specification for product  
development.  
Preliminary [short] data sheet  
Product [short] data sheet  
Qualification  
Production  
This document contains data from the preliminary specification.  
This document contains the product specification.  
[1] Please consult the most recently issued document before initiating or completing a design.  
[2] The term 'short data sheet' is explained in section "Definitions".  
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple  
devices. The latest product status information is available on the Internet at URL http://www.nxp.com.  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
20.2 Definitions  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes  
no representation or warranty that such applications will be suitable  
for the specified use without further testing or modification. Customers  
are responsible for the design and operation of their applications and  
products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications  
and products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with  
their applications and products. NXP Semiconductors does not accept any  
liability related to any default, damage, costs or problem which is based  
on any weakness or default in the customer’s applications or products, or  
the application or use by customer’s third party customer(s). Customer is  
responsible for doing all necessary testing for the customer’s applications  
and products using NXP Semiconductors products in order to avoid a  
default of the applications and the products or of the application or use by  
customer’s third party customer(s). NXP does not accept any liability in this  
respect.  
Draft — A draft status on a document indicates that the content is still  
under internal review and subject to formal approval, which may result  
in modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included in a draft version of a document and shall have no  
liability for the consequences of use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is  
intended for quick reference only and should not be relied upon to contain  
detailed and full information. For detailed and full information see the  
relevant full data sheet, which is available on request via the local NXP  
Semiconductors sales office. In case of any inconsistency or conflict with the  
short data sheet, the full data sheet shall prevail.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product  
is deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those  
given in the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
20.3 Disclaimers  
Limited warranty and liability — Information in this document is believed  
to be accurate and reliable. However, NXP Semiconductors does not  
give any representations or warranties, expressed or implied, as to the  
accuracy or completeness of such information and shall have no liability  
for the consequences of use of such information. NXP Semiconductors  
takes no responsibility for the content in this document if provided by an  
information source outside of NXP Semiconductors. In no event shall NXP  
Semiconductors be liable for any indirect, incidental, punitive, special or  
consequential damages (including - without limitation - lost profits, lost  
savings, business interruption, costs related to the removal or replacement  
of any products or rework charges) whether or not such damages are based  
on tort (including negligence), warranty, breach of contract or any other  
legal theory. Notwithstanding any damages that customer might incur for  
any reason whatsoever, NXP Semiconductors’ aggregate and cumulative  
liability towards customer for the products described herein shall be limited  
in accordance with the Terms and conditions of commercial sale of NXP  
Semiconductors.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or  
the grant, conveyance or implication of any license under any copyrights,  
patents or other industrial or intellectual property rights.  
Suitability for use in automotive applications — This NXP  
Semiconductors product has been qualified for use in automotive  
applications. Unless otherwise agreed in writing, the product is not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
Right to make changes — NXP Semiconductors reserves the right to  
make changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
241 / 254  
 
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer's own  
risk.  
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation,  
reporting, and solution release to security vulnerabilities of NXP products.  
Suitability for use in automotive applications — This NXP product has  
been qualified for use in automotive applications. It has been developed in  
accordance with ISO 26262, and has been ASIL-classified accordingly. If  
this product is used by customer in the development of, or for incorporation  
into, products or services (a) used in safety critical applications or (b) in  
which failure could lead to death, personal injury, or severe physical or  
environmental damage (such products and services hereinafter referred  
to as “Critical Applications”), then customer makes the ultimate design  
decisions regarding its products and is solely responsible for compliance with  
all legal, regulatory, safety, and security related requirements concerning  
its products, regardless of any information or support that may be provided  
by NXP. As such, customer assumes all risk related to use of any products  
in Critical Applications and NXP and its suppliers shall not be liable for  
any such use by customer. Accordingly, customer will indemnify and hold  
NXP harmless from any claims, liabilities, damages and associated costs  
and expenses (including attorneys’ fees) that NXP may incur related to  
customer’s incorporation of any product in a Critical Application.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
Security — Customer understands that all NXP products may be subject  
to unidentified or documented vulnerabilities. Customer is responsible  
for the design and operation of its applications and products throughout  
their lifecycles to reduce the effect of these vulnerabilities on customer’s  
applications and products. Customer’s responsibility also extends to other  
open and/or proprietary technologies supported by NXP products for use  
in customer’s applications. NXP accepts no liability for any vulnerability.  
Customer should regularly check security updates from NXP and follow up  
appropriately. Customer shall select products with security features that best  
meet rules, regulations, and standards of the intended application and make  
the ultimate design decisions regarding its products and is solely responsible  
for compliance with all legal, regulatory, and security related requirements  
concerning its products, regardless of any information or support that may  
be provided by NXP. NXP has a Product Security Incident Response Team  
20.4 Trademarks  
Notice: All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
NXP — wordmark and logo are trademarks of NXP B.V.  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
242 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Tables  
Tab. 1.  
Tab. 2.  
Tab. 3.  
Ordering information ..........................................2  
Ordering options ................................................2  
DSI3 discovery mode external component  
recommendations ..............................................4  
PSI5 parallel or universal mode external  
component recommendations ........................... 5  
PSI5 daisy chain mode external component  
recommendations ..............................................6  
SPI external component recommendations .......8  
I2C external component recommendations .......8  
Dual axis device orientation ............................ 10  
Device pinout: SPI or I2C mode ......................11  
Tab. 38. Dynamic electrical characteristics - signal  
chain, low-pass filter ....................................... 32  
Tab. 39. Dynamic electrical characteristics - signal  
chain ................................................................34  
Tab. 40. Dynamic electrical characteristics - analog  
self-test response time ....................................35  
Tab. 41. Dynamic electrical characteristics - digital  
self-test response time ....................................36  
Tab. 42. Dynamic electrical characteristics -  
transducer ........................................................37  
Tab. 43. Dynamic electrical characteristics - supply  
and support circuitry ........................................37  
Tab. 44. User accessible data - general device  
information .......................................................38  
Tab. 45. User accessible data - communication  
information .......................................................39  
Tab. 46. User accessible data - sensor specific  
information .......................................................40  
Tab. 47. User accessible data - sensor specific  
information .......................................................41  
Tab. 48. User accessible data - traceability  
information .......................................................42  
Tab. 49. Rolling counter register (COUNT) ................... 43  
Tab. 50. Device status registers (DEVSTATx) ...............44  
Tab. 51. Supply error flag (SUPPLY_ERR) ................... 45  
Tab. 52. Test mode (TESTMODE) ................................ 45  
Tab. 53. Device reset (DEVRES) ..................................45  
Tab. 54. Device initialization (DEVINIT) ........................ 46  
Tab. 55. VBUF under-voltage error (VBUFUV_ERR) ....46  
Tab. 56. BUS IN under-voltage error (BUSINUV_  
ERR) ................................................................46  
Tab. 57. VBUF over-voltage error (VBUFOV_ERR) ......46  
Tab. 58. Internal analog regulator voltage out of  
range error (INTREGA_ERR) ..........................47  
Tab. 59. Internal digital regulator voltage out of  
range error (INTREG_ERR) ............................47  
Tab. 60. Internal OTP regulator voltage out of range  
error (INTREGF_ERR) ....................................47  
Tab. 61. Continuity monitor error (CONT_ERR) ............47  
Tab. 62. NXP OTP array error (F_OTP_ERR) .............. 48  
Tab. 63. User OTP array error (U_OTP_ERR) ..............48  
Tab. 64. User read/write array error (U_RW_ERR) .......48  
Tab. 65. User OTP write in process status bit (U_  
W_ACTIVE) .....................................................48  
Tab. 66. Channel 1 temperature sensor error  
Tab. 4.  
Tab. 5.  
Tab. 6.  
Tab. 7.  
Tab. 8.  
Tab. 9.  
Tab. 10. Device pinout: DSI3 or PSI5 mode pinout ....... 12  
Tab. 11. Test notes legend ............................................13  
Tab. 12. Maximum ratings .............................................14  
Tab. 13. Operating range - DSI / PSI5 ..........................14  
Tab. 14. Operating range - SPI / I2C ............................ 15  
Tab. 15. Electrical characteristics - supply and I/O ........15  
Tab. 16. Electrical characteristics - temperature  
sensor signal chain ......................................... 16  
Tab. 17. Electrical characteristics - inertial sensor  
signal chain: High g ........................................ 17  
Tab. 18. High g adjusted offset specification limits ........18  
Tab. 19. PSI5, High g offset cancellation limits ............. 19  
Tab. 20. Lateral, High g, SPI/DSI3 12-bit noise  
specification .....................................................19  
Tab. 21. Z-Axis, High g, SPI/DSI3 12-bit noise  
specification .....................................................20  
Tab. 22. Lateral, High g, PSI5 10-bit noise  
specification .....................................................20  
Tab. 23. Z-Axis, High g, PSI5 10-bit noise  
specification .....................................................20  
Tab. 24. Electrical characteristics - inertial sensor  
signal chain: Medium g ................................... 21  
Tab. 25. Medium g, SPI/DSI3 12-bit offset  
specification .....................................................22  
Tab. 26. Medium g, PSI5 10-bit offset specification .......23  
Tab. 27. Lateral, Medium g, SPI/DSI3 12-bit noise  
specification .....................................................23  
Tab. 28. Z-axis, Medium g, SPI/DSI3 12-bit noise  
specification .....................................................24  
Tab. 29. Lateral, Medium g, PSI5 10-bit noise  
specifications ...................................................24  
Tab. 30. Z-axis, Medium g, PSI5 10-bit noise  
specification .....................................................24  
Tab. 31. Electrical characteristics - inertial sensor  
self-test ............................................................24  
Tab. 32. Electrical characteristics - lateral inertial  
sensor overload ...............................................26  
Tab. 33. Electrical characteristics - Z-axis inertial  
sensor overload ...............................................26  
Tab. 34. Dynamic electrical characteristics - DSI3 ........ 27  
Tab. 35. Dynamic electrical characteristics - PSI5 ........ 28  
Tab. 36. Dynamic electrical characteristics - SPI .......... 30  
Tab. 37. Dynamic electrical characteristics - I2C ...........31  
(TEMP1_ERR) .................................................49  
Tab. 67. Channel 0 temperature sensor error  
(TEMP0_ERR) .................................................49  
Tab. 68. SPI MISO data mismatch error flag (MISO_  
ERROR) .......................................................... 49  
Tab. 69. Oscillator training error (OSCTRAIN_ERR) .....49  
Tab. 70. Communication protocol revision register  
(COMMREV) ................................................... 50  
Tab. 71. Margin read status register (MREAD_  
STAT) ...............................................................50  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
243 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Tab. 72. Margin read active status (MARGIN_RD_  
ACT) ................................................................ 50  
Tab. 73. Margin read error status (MARGIN_RD_  
ERR) ................................................................50  
Tab. 74. Temperature register (TEMPERATURE) ......... 51  
Tab. 75. Device lock register (DEVLOCK_WR) .............51  
Tab. 76. Reset control bits (RESET[1:0]) ...................... 52  
Tab. 77. Write OTP enable register ...............................52  
Tab. 78. Write OTP enable and programming bits ........ 54  
Tab. 79. Bus switch control register (BUSSW_  
CTRL) ..............................................................55  
Tab. 80. BUSSW_L pin state ........................................ 55  
Tab. 81. PSI5 test register (PSI5_TEST) ...................... 56  
Tab. 82. UF region selection registers (UF_  
REGION_x) ..................................................... 57  
Tab. 83. Region load bits .............................................. 57  
Tab. 84. Region active bits ............................................58  
Tab. 85. Communication type register  
(COMMTYPE) ................................................. 59  
Tab. 86. Communication type (COMMTYPE[2:0]) .........59  
Tab. 87. COMMTYPEs and effect on device .................59  
Tab. 88. Physical address register (PHYSADDR) ......... 60  
Tab. 89. Source identification registers  
Tab. 112. Background diagnostic mode enable  
(BDM_EN) ....................................................... 70  
Tab. 113. PSI5 configuration register (PSI5_CFG) ......... 70  
Tab. 114. Sync pulse pull-down enable bit (SYNC_  
PD) .................................................................. 70  
Tab. 115. PSI5 daisy chain selection bit (DAISY_  
CHAIN) ............................................................ 71  
Tab. 116. PSI5 low response current selection bit  
(PSI5_ILOW) ................................................... 71  
Tab. 117. Dual transmission mode (DUALTRANS) ......... 71  
Tab. 118. Error message information extension bit  
(EMSG_EXT) ...................................................72  
Tab. 119. PSI5 response message error detection  
selection bit (P_CRC) ......................................72  
Tab. 120. Initialization phase 2 data extension bit  
(INIT2_EXT) .................................................... 72  
Tab. 121. DSI3 and PSI5 start time registers (PDCM_  
RSPSTx_x) ......................................................73  
Tab. 122. Periodic data collection mode response  
start time (PDCM_RSPSTx[12:0]) ...................74  
Tab. 123. Synchronous mode: Source ID response  
start time ......................................................... 74  
Tab. 124. Asynchronous mode: Source ID response  
start time ......................................................... 74  
Tab. 125. Broadcast read command type selection  
bits (BRC_RSP[1:0]) ....................................... 75  
Tab. 126. DSI3 and PSI5 command blocking time  
registers (PDCM_CMD_B_x) .......................... 76  
Tab. 127. DSI3 mode: Command blocking time bits ....... 76  
Tab. 128. PSI5 mode: Command blocking time bits ........76  
Tab. 129. SPI configuration control register .................... 77  
Tab. 130. SPI status reporting selection bit (SPI_  
STATUS) ..........................................................77  
Tab. 131. SPI data field size bit (DATASIZE) .................. 77  
Tab. 132. SPI CRC length and seed bits (SPI_CRC_  
LEN[1:0], SPICRCSEED[3:0]) .........................78  
Tab. 133. Who Am I register ...........................................78  
Tab. 134. WHO_AM_I bits .............................................. 79  
Tab. 135. I2C slave address register .............................. 79  
Tab. 136. I2C_ADDRESS bits .........................................79  
Tab. 137. Channel 0 and Channel 1 user  
(SOURCEID_x) ............................................... 60  
Tab. 90. PDCM format control bits  
(PDCMFORMAT[2:0]) ......................................61  
Tab. 91. PDCM format control bits ................................61  
Tab. 92. SPI source identification (SOURCEID_x) ........62  
Tab. 93. DSI3 source identification (SOURCEID_x) ......62  
Tab. 94. PSI5 source identification (SOURCEID_x) ......63  
Tab. 95. Communication timing register (TIMING_  
CFG) ................................................................63  
Tab. 96. Periodic data collection mode period  
(PDCM_PER[3:0]) ........................................... 63  
Tab. 97. Oscillator training protocol selection bit  
(OSCTRAIN_SEL) ...........................................64  
Tab. 98. Command and response mode period  
(CRM_PER[1:0]) ..............................................65  
Tab. 99. Clock calibration enable (CK_CAL_EN) ..........65  
Tab. 100. Chip time and bit time register (CHIPTIME) .... 65  
Tab. 101. PSI5 self-test repetition bits (ST_RPT[1:0]) .....66  
Tab. 102. PSI5 error latching enable bit (PSI5_  
configuration #1 registers (CH0_CFG_U1,  
ERRLATCH) .................................................... 66  
Tab. 103. DSI3 simultaneous sampling enable (SS_  
EN) .................................................................. 66  
Tab. 104. PSI5 simultaneous sampling enable (SS_  
EN) .................................................................. 67  
Tab. 105. SPI simultaneous sampling enable (SS_  
EN) .................................................................. 67  
Tab. 106. Chip time (CHIPTIME) .................................... 67  
Tab. 107. Timing configuration #2 register (TIMING_  
CFG2) ..............................................................68  
Tab. 108. PSI5 initialization phase 2 D19 and D20  
change bit (PSI5_INIT2_D19) ......................... 68  
Tab. 109. Oscillator training error counter  
CH1_CFG_U1) ................................................80  
Tab. 138. Low-pass filter and sample rate selection  
bits (LPF[3:0], SAMPLERATE[1:0]) .................80  
Tab. 139. Channel 0 and Channel 1 user  
configuration #2 registers (CH0_CFG_U2,  
CH1_CFG_U2) ................................................81  
Tab. 140. Sensitivity shift factors .....................................81  
Tab. 141. Example user shift and multiplier  
configuration for typical scale range ................82  
Tab. 142. Example user shift and multiplier  
configuration for typical psi5 scale range ........ 83  
Tab. 143. Channel 0 and Channel 1 user  
configuration #3 registers (CH0_CFG_U3,  
(OSCTRAIN_ERRCNT[2:0]) ............................68  
Tab. 110. Capacitor test disable bit (CAPTEST_OFF) .... 69  
Tab. 111. Background diagnostic mode fragment size  
(BDM_FRAGSIZE) .......................................... 69  
CH1_CFG_U3) ................................................83  
Tab. 144. Unsigned data select bit  
(UNSIGNEDDATA) .......................................... 83  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
244 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Tab. 145. Channel data type 0 selection bits  
(CHxDATATYPE0) ...........................................84  
Tab. 146. Channel data type 1 selection bits  
(CHxDATATYPE1) ...........................................84  
Tab. 147. Signal chain moving average selection bits  
(MOVEAVG[1:0]) ............................................. 85  
Tab. 148. Channel 0 and Channel 1 user  
Tab. 175. Channel-specific factory configuration  
register (CHx_CFG_F) .................................... 96  
Tab. 176. Range indication bits (RANGE[3:0]) ................96  
Tab. 177. Axis indication bits (AXIS[1:0]) ........................ 97  
Tab. 178. Self-test deflection storage registers ............... 97  
Tab. 179. IC type register ................................................98  
Tab. 180. IC revision register ..........................................98  
Tab. 181. IC manufacturer identification register .............99  
Tab. 182. Part number register ....................................... 99  
Tab. 183. Part number: Protocol type ............................. 99  
Tab. 184. Part number: Axis ......................................... 100  
Tab. 185. Part number: Channel 0 range ......................100  
Tab. 186. Part number: Channel 1 range ......................100  
Tab. 187. Device serial number registers ......................101  
Tab. 188. Example serial number decoding ..................101  
Tab. 189. ASIC wafer ID registers ................................ 101  
Tab. 190. Transducer wafer ID registers .......................102  
Tab. 191. User data registers (USERDATA_0 -  
configuration #4 registers (CH0_CFG_U4,  
CH1_CFG_U4) ................................................85  
Tab. 149. Signal inversion bit (INVERT) ......................... 86  
Tab. 150. Offset cancellation filter selection bits (OC_  
FILT[1:0]) ......................................................... 86  
Tab. 151. Arming pin configuration bits (ARM_  
CFG[2:0]) and PCM range selection bit  
(PCM) .............................................................. 86  
Tab. 152. Channel 0 and Channel 1 user  
configuration #5 register (CH0_CFG_U5,  
CH1_CFG_U5) ................................................87  
Tab. 153. Self-test control bits (ST_CTRL[3:0]) ...............88  
Tab. 154. Offset cancellation test limit bits (OC_  
LIMIT[2:0]) ....................................................... 89  
Tab. 155. DSP disable bit (DSP_DIS) .............................89  
Tab. 156. Channel 0 and Channel 1 arming  
USERDATA_E) ..............................................102  
Tab. 192. PSI5 initialization phase 2 data  
transmissions of user data ............................ 102  
Tab. 193. User data registers (USERDATA_10 -  
USERDATA_1E) ............................................103  
configuration registers (CH0_ARM_CFG,  
Tab. 194. Lock and CRC registers ................................104  
Tab. 195. Lock bit, block identifier, and CRC states ...... 104  
Tab. 196. Memory type code: NXP OTP register .......... 105  
Tab. 197. Memory type code: User OTP register ..........105  
Tab. 198. Memory type code: CRC verified OTP  
registers .........................................................105  
Tab. 199. Memory type code: ENDINIT CRC verified  
OTP registers ................................................105  
CH1_ARM_CFG) .............................................89  
Tab. 157. Arming function down sampling selection  
bits (ARM_DS[1:0]) ......................................... 90  
Tab. 158. Arming pulse stretch (ARM_PS[1:0]) ...............90  
Tab. 159. Positive arming window size definitions  
(moving average mode) .................................. 90  
Tab. 160. Negative arming window size definitions  
(moving average mode) .................................. 90  
Tab. 161. Arming count limit definitions (count mode) .....91  
Tab. 162. Arming threshold registers (CHx_ARM_T_  
P, CHx_ARM_T_N) ......................................... 91  
Tab. 163. Example threshold register values and  
corresponding threshold ..................................91  
Tab. 164. Offset cancellation user configuration  
register (OC_PHASE_CFG) ............................92  
Tab. 165. Channel 0 offset cancellation final  
phase control bit (CH0_OCFINAL, CH1_  
OCFINAL) ........................................................92  
Tab. 166. Channel 1 offset cancellation final  
phase control bit (CH0_OCFINAL, CH1_  
OCFINAL) ........................................................92  
Tab. 167. User offset calibration registers (Chx_U_  
OFFSET_L, Chx_U_OFFSET_H) ................... 93  
Tab. 168. Channel-specific status register (CH0_  
STAT, CH1_STAT) ...........................................93  
Tab. 169. Offset cancellation phase status  
Tab. 200. Signal chain diagram legend .........................117  
Tab. 201. Signal trim and compensation variable  
descriptions ................................................... 119  
Tab. 202. LPF #0 and LPF #2 ...................................... 120  
Tab. 203. LPF #1 and LPF #3 ...................................... 120  
Tab. 204. LPF #4 ...........................................................120  
Tab. 205. LPF #5 ...........................................................120  
Tab. 206. LPF #6 ...........................................................121  
Tab. 207. LPF #7 ...........................................................121  
Tab. 208. LPF #8 ...........................................................121  
Tab. 209. LPF #9 ...........................................................122  
Tab. 210. LPF #A .......................................................... 122  
Tab. 211. LPF #B .......................................................... 122  
Tab. 212. LPF #C ..........................................................123  
Tab. 213. LPF #D ..........................................................123  
Tab. 214. LPF #E .......................................................... 123  
Tab. 215. LPF #F .......................................................... 124  
Tab. 216. Offset cancellation phases and times:  
DSI3, SPI, and I2C modes ............................138  
(OCPHASE[2:0]) ..............................................93  
Tab. 170. Self-test incomplete (ST_INCMPLT) ............... 94  
Tab. 171. Offset error flag (OFFSET_ERR) .................... 94  
Tab. 172. Device status copy register (DEVSTAT_  
COPY) ............................................................. 95  
Tab. 173. Sensor data #0 registers (CHx_  
Tab. 217. Offset cancellation phases and times: PSI5  
modes ............................................................139  
Tab. 218. Output scaling ............................................... 141  
Tab. 219. Sensor data variables ................................... 142  
Tab. 220. Temperature sensor output scaling  
equation variables ......................................... 143  
SNSDATA0_L, CHx_SNSDATA0_H) ...............95  
Tab. 174. Sensor data #1 registers (CHx_  
Tab. 221. Command and response mode example  
command descriptions .................................. 153  
SNSDATA1_L, CHx_SNSDATA1_H) ...............96  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
245 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Tab. 222. Command and response mode - command  
format ............................................................ 153  
Tab. 223. Command and response mode - field  
definitions ...................................................... 153  
Tab. 224. Command and response mode command  
CRC ...............................................................154  
Tab. 225. Command and response mode - CRC  
calculation examples .....................................154  
Tab. 226. Command and response mode response  
example .........................................................154  
Tab. 227. Symbol mapping ........................................... 155  
Tab. 228. Command and response mode - response  
format ............................................................ 156  
Tab. 229. Command and response mode - field  
definitions ...................................................... 156  
Tab. 230. Command and response mode response  
CRC ...............................................................157  
Tab. 231. DSI3 command and response mode  
command summary .......................................157  
Tab. 232. Register read command format .....................158  
Tab. 233. Register read command format description ...158  
Tab. 234. Register read command: response format .... 158  
Tab. 235. Register read command: response format  
description ..................................................... 158  
Tab. 236. Register write command format .................... 159  
Tab. 237. Register write command format description .. 159  
Tab. 238. Register write command: response format ....159  
Tab. 239. Register write command: response format  
description ..................................................... 159  
Tab. 240. Global register write command format ...........160  
Tab. 241. Global register write command format  
description ..................................................... 160  
Tab. 242. Global register write command: response  
format ............................................................ 160  
Tab. 243. Global register write command: response  
format description ..........................................160  
Tab. 244. PDCM enable command and BDM_EN bit  
status .............................................................161  
Tab. 245. Enter periodic data collection mode  
command format ........................................... 161  
Tab. 246. Enter periodic data collection mode  
command format description .........................161  
Tab. 247. Enter periodic data collection mode  
command: response format ...........................161  
Tab. 248. Enter periodic data collection mode  
command: response format description ........ 161  
Tab. 249. Reserved commands .................................... 161  
Tab. 250. Reserved commands description .................. 162  
Tab. 251. Reserved command response format ........... 162  
Tab. 252. Reserved command response format  
description ..................................................... 162  
Tab. 253. Periodic data collection mode response  
format ............................................................ 164  
Tab. 254. Periodic data collection mode status field  
definition ........................................................ 164  
Tab. 255. Periodic data collection mode response  
CRC ...............................................................165  
Tab. 256. Periodic data collection mode - CRC  
calculation examples .....................................165  
Tab. 257. Exception conditions and response ...............170  
Tab. 258. DSI3 error handling - discovery mode and  
daisy chain mode ..........................................172  
Tab. 259. PSI5-x10P transmission mode ......................176  
Tab. 260. PSI5-x10C transmission mode ......................176  
Tab. 261. PSI5-x16P transmission mode ......................176  
Tab. 262. PSI5-x16C transmission mode ......................176  
Tab. 263. PSI5 3-bit CRC calculation examples ............177  
Tab. 264. PSI5 data values ...........................................177  
Tab. 265. PSI5 initialization phase 2 data  
transmission order .........................................182  
Tab. 266. Initialization phase 2 time ..............................182  
Tab. 267. Channel 0 PSI5 initialization phase 2 data .... 182  
Tab. 268. Channel 1 PSI5 Initialization Phase 2 Data ...183  
Tab. 269. Default PSI5-P16C transmission mode ......... 187  
Tab. 270. Default PSI5-P16C transmission mode  
timing parameters ..........................................187  
Tab. 271. Default PSI5-P16C transmission mode,  
High g sensor data configuration .................. 187  
Tab. 272. Default PSI5-P16C transmission mode,  
Medium g sensor data configuration ............. 188  
Tab. 273. Dual transmission mode 10-bit  
transmission data with parity .........................188  
Tab. 274. Dual transmission mode 10-bit  
transmission data with CRC ..........................188  
Tab. 275. Dual transmission mode 16-bit  
transmission data with parity .........................188  
Tab. 276. Dual transmission mode 16-bit  
transmission data with CRC ..........................189  
Tab. 277. Daisy chain: Run mode configuration ............190  
Tab. 278. Daisy chain programming commands and  
responses ......................................................190  
Tab. 279. Daisy chain programming response code  
definitions ...................................................... 190  
Tab. 280. Valid daisy chain addresses ..........................191  
Tab. 281. Daisy chain error handling ............................ 191  
Tab. 282. Initialization phase 2 error handling ...............192  
Tab. 283. Initialization phase 3 error handling ...............192  
Tab. 284. Standard error reporting ................................193  
Tab. 285. PSI5 error extension option ...........................193  
Tab. 286. Standard error reporting ................................193  
Tab. 287. PSI5 error extension option ...........................194  
Tab. 288. Programming mode via PSI5 command  
data format ....................................................195  
Tab. 289. Programming mode via PSI5 command  
data format - response ..................................195  
Tab. 290. Programming mode via PSI5 XLONG  
command data format with sync bits .............196  
Tab. 291. Programming mode via PSI5 XLONG  
command data format with sync bits -  
response ........................................................196  
Tab. 292. Programming mode via PSI5 response  
message settings .......................................... 196  
Tab. 293. Programming mode via PSI5 short  
command .......................................................196  
Tab. 294. Response format ...........................................196  
Tab. 295. Programming mode via PSI5 long  
command .......................................................197  
Tab. 296. Response format ...........................................197  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
246 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Tab. 297. Programming mode via PSI5 long  
Tab. 317. Reserved command response message  
command .......................................................197  
Tab. 298. Response format ...........................................197  
Tab. 299. Programming mode via PSI5 commands  
and responses ...............................................198  
Tab. 300. Programming mode via PSI5 response  
code definitions ............................................. 198  
Tab. 301. Error response summary ...............................198  
Tab. 302. SPI command format .................................... 200  
Tab. 303. SPI response format ..................................... 200  
Tab. 304. Command summary ......................................201  
Tab. 305. Register read command message format ......202  
Tab. 306. Register read command message format  
description ..................................................... 202  
Tab. 307. Register read response message format .......202  
Tab. 308. Register read response message format  
description ..................................................... 202  
Tab. 309. Register write command message format ..... 203  
Tab. 310. Register write command message format  
description ..................................................... 203  
Tab. 311. Register write response message format ...... 203  
Tab. 312. Register write response message format  
description ..................................................... 203  
Tab. 313. Sensor data request command message  
format ............................................................ 204  
Tab. 314. Sensor data request command message  
format description ..........................................204  
Tab. 315. Sensor data request response message  
format ............................................................ 204  
Tab. 316. Sensor data request response message  
format description ..........................................204  
format ............................................................ 205  
Tab. 318. Reserved command response message  
format description ..........................................205  
Tab. 319. SPI command message CRC ....................... 206  
Tab. 320. SPI CRC polynomial and seed ......................206  
Tab. 321. SPI 8-bit CRC calculation examples ............. 206  
Tab. 322. SPI command format with 4-bit CRC ............ 207  
Tab. 323. SPI response format with 4-bit CRC ............. 207  
Tab. 324. SPI command message CRC, 4 bit ...............208  
Tab. 325. SPI response message CRC, 4-bit ............... 208  
Tab. 326. SPI 4-bit CRC calculation examples ............. 209  
Tab. 327. SPI command format with 3-bit CRC ............ 209  
Tab. 328. SPI response format with 3-bit CRC ............. 209  
Tab. 329. SPI command message CRC, 3 bit ...............210  
Tab. 330. SPI response message CRC, 3-bit ............... 211  
Tab. 331. SPI 3-bit CRC calculation examples ............. 211  
Tab. 332. Basic status field for responses to register  
commands .....................................................211  
Tab. 333. Basic status field for responses to sensor  
data request commands ................................212  
Tab. 334. Alternative basic status reporting field ...........212  
Tab. 335. SPI error response status field definition .......213  
Tab. 336. Alternate SPI error response status field  
definition ........................................................ 214  
Tab. 337. Error responses .............................................215  
Tab. 338. Error response description ............................ 215  
Tab. 339. Dual channel register read wrap around ....... 221  
Tab. 340. Revision history .............................................240  
Figures  
Fig. 1.  
Fig. 2.  
Fig. 3.  
Part marking ......................................................3  
DSI3 discovery mode application diagram ........ 4  
PSI5 parallel or universal mode application  
diagram ..............................................................5  
PSI5 daisy chain mode application diagram ......6  
SPI application diagram .................................... 8  
I2C application diagram .................................... 8  
Dual channel internal block diagram ................. 9  
Orientation diagram .........................................10  
Device pinout: SPI or I2C mode ......................10  
Fig. 20. PSI5 self-test procedure ................................116  
Fig. 21. ΣΔ converter block diagram .......................... 117  
Fig. 22. Signal chain diagram .....................................117  
Fig. 23. Sinc filter response 3rd order sinc filter  
magnitude response ......................................118  
Fig. 24. 400 Hz, 4-pole low-pass filter response  
magnitude ......................................................124  
Fig. 25. 400 Hz, 4-pole low-pass filter response  
signal delay ................................................... 125  
Fig. 26. 400 Hz, 3-pole low-pass filter response  
magnitude ......................................................125  
Fig. 27. 400 Hz, 3-pole low-pass filter response  
signal delay ................................................... 126  
Fig. 28. 325 Hz, 3-pole low-pass filter response  
magnitude ......................................................126  
Fig. 29. 325 Hz, 3-pole low-pass filter response  
signal delay ................................................... 127  
Fig. 30. 370 Hz, 2-pole low-pass filter response  
magnitude ......................................................127  
Fig. 31. 370 Hz, 2-pole low-pass filter response  
signal delay ................................................... 128  
Fig. 32. 180 Hz, 2-pole low-pass filter response  
magnitude ......................................................128  
Fig. 4.  
Fig. 5.  
Fig. 6.  
Fig. 7.  
Fig. 8.  
Fig. 9.  
Fig. 10. Device pinout: DSI3 or PSI5 mode pinout ....... 12  
Fig. 11. Voltage regulation and monitoring .................106  
Fig. 12. VBUF capacitor monitor timing, DSI3 ............107  
Fig. 13. VBUF capacitor monitor timing, PSI5  
synchronous mode ........................................107  
Fig. 14. VBUF capacitor monitor timing, psi5  
asynchronous mode ......................................108  
Fig. 15. BUS_I micro-cut response (DSI3 or PSI5) .... 109  
Fig. 16. Command and response mode oscillator  
training timing diagram ..................................110  
Fig. 17. Periodic data collection mode oscillator  
training timing diagram ..................................111  
Fig. 18. PSI5 oscillator training timing diagram .......... 112  
Fig. 19. Self-test interface .......................................... 114  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
247 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Fig. 33. 180 Hz, 2-pole low-pass filter response  
signal delay ................................................... 129  
Fig. 34. 100 Hz, 2-pole low-pass filter response  
magnitude ......................................................129  
Fig. 35. 100 Hz, 2-pole low-pass filter response  
signal delay ................................................... 130  
Fig. 36. 1500 Hz, 4-pole low-pass filter response  
magnitude ......................................................130  
Fig. 37. 1500 Hz, 4-pole low-pass filter response  
signal delay ................................................... 131  
Fig. 38. 500 Hz, 3-pole low-pass filter response  
magnitude ......................................................131  
Fig. 39. 500 Hz, 3-pole low-pass filter response  
signal delay ................................................... 132  
Fig. 40. 800 Hz, 4-pole low-pass filter response  
magnitude ......................................................132  
Fig. 41. 800 Hz, 4-pole low-pass filter response  
signal delay ................................................... 133  
Fig. 42. 1200 Hz, 4-pole low-pass filter response  
magnitude ......................................................133  
Fig. 43. 1200 Hz, 4-pole low-pass filter response  
signal delay ................................................... 134  
Fig. 44. 120 Hz, 3-pole low-pass filter response  
magnitude ......................................................134  
Fig. 45. 120 Hz, 3-pole low-pass filter response  
signal delay ................................................... 135  
Fig. 46. 120 Hz, 2-pole low-pass filter output  
magnitude response ......................................135  
Fig. 47. 120 Hz, 2-pole low-pass filter output  
magnitude response ......................................136  
Fig. 48. 50 Hz, 4-pole low-pass filter response  
magnitude ......................................................136  
Fig. 49. 50 Hz, 4-pole low-pass filter response  
signal delay ................................................... 137  
Fig. 50. Offset cancellation block diagram ................. 137  
Fig. 51. 0.04 Hz offset cancellation low–pass filter  
characteristics ................................................139  
Fig. 52. 0.005 Hz offset cancellation low-pass filter  
characteristics ................................................140  
Fig. 53. Output interpolation example: Linear  
interpolation (16 to 1) ....................................141  
Fig. 54. Temperature sensor signal chain block  
diagram ..........................................................142  
Fig. 55. PCM output function block diagram .............. 143  
Fig. 56. Arming function block diagram - moving  
average mode ............................................... 144  
Fig. 57. Arming function block diagram - count  
mode ..............................................................145  
Fig. 58. Arming condition, moving average and  
count mode ................................................... 145  
Fig. 59. Arming function block diagram - unfiltered  
mode ..............................................................146  
Fig. 60. Arming condition, unfiltered mode .................146  
Fig. 61. Arming function - pin output structure ........... 147  
Fig. 62. Command receiver physical layer ................. 148  
Fig. 63. DSI3 command receiver timing diagram:  
valid command .............................................. 148  
Fig. 64. DSI3 command receiver timing diagram:  
micro-cut ........................................................149  
Fig. 65. DSI3 transmitter block diagram .....................149  
Fig. 66. Discovery mode current sense circuit block  
diagram ..........................................................149  
Fig. 67. DSI3 discovery mode sensing timing  
diagram ..........................................................150  
Fig. 68. DSI3 discovery mode timing diagram ............152  
Fig. 69. Command and response mode example  
command .......................................................152  
Fig. 70. Command and response mode command  
bit encoding ...................................................153  
Fig. 71. Command and response mode response  
example .........................................................154  
Fig. 72. Response symbol encoding .......................... 155  
Fig. 73. Command and response mode timing  
diagram ..........................................................157  
Fig. 74. Background diagnostic mode command bit  
encoding ........................................................163  
Fig. 75. Periodic data mode response transmission ...164  
Fig. 76. Periodic data collection mode timing  
diagram ..........................................................166  
Fig. 77. Background diagnostic mode timing  
diagram ..........................................................167  
Fig. 78. Simultaneous sampling mode ....................... 168  
Fig. 79. Synchronous sampling mode with minimum  
latency ........................................................... 168  
Fig. 80. Initialization timing .........................................169  
Fig. 81. PSI5 satellite interface diagram .....................172  
Fig. 82. Synchronous communication overview ......... 173  
Fig. 83. Synchronization pulse detection circuit ......... 173  
Fig. 84. Synchronization pulse detection timing ......... 174  
Fig. 85. Sync pulse characteristics .............................175  
Fig. 86. Manchester data bit encoding ....................... 175  
Fig. 87. Example Manchester encoded data  
transfer - PSI5-x10x ...................................... 176  
Fig. 88. PSI5 sensor 10-bit initialization ..................... 180  
Fig. 89. PSI5 initialization timing, synchronous  
mode ..............................................................181  
Fig. 90. PSI5 initialization timing, asynchronous  
mode ..............................................................181  
Fig. 91. Simultaneous sampling mode ....................... 186  
Fig. 92. Synchronous sampling mode with minimum  
latency ........................................................... 186  
Fig. 93. PSI5 default mode transmission ....................187  
Fig. 94. Standard 32-bit SPI protocol timing  
diagram ..........................................................200  
Fig. 95. Internal status mapping and SPI basic  
status content ................................................213  
Fig. 96. SPI data output verification ........................... 216  
Fig. 97. SPI timing diagram ........................................217  
Fig. 98. I2C bit transmissions .....................................217  
Fig. 99. I2C start condition .........................................218  
Fig. 100. I2C byte transmissions ..................................218  
Fig. 101. I2C acknowledge and not acknowledge  
transmission .................................................. 219  
Fig. 102. I2C stop condition ......................................... 219  
Fig. 103. I2C timing diagram ........................................222  
Fig. 104. Package outline for LQFN16  
(SOT1688-1(SC)) .......................................... 223  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
248 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Fig. 105. Package outline detail for LQFN16  
(SOT1688-1(SC)) .......................................... 224  
Fig. 106. Package outline notes for LQFN16  
(SOT1688-1(SC)) .......................................... 225  
Fig. 107. Package outline for LQFN16  
(SOT1688-1(DD)) ..........................................226  
Fig. 108. Package outline detail for LQFN16  
(SOT1688-1(DD)) ..........................................227  
Fig. 109. Package outline notes for LQFN16  
(SOT1688-1(DD)) ..........................................228  
Fig. 110. Reflow soldering footprint part 1 for  
HLQFN16 (SOT1688-1(SC)) .........................229  
Fig. 111. Reflow soldering footprint part 2 for  
HLQFN16 (SOT1688-1(SC)) .........................230  
Fig. 112. Reflow soldering footprint part 3 for  
HLQFN16 (SOT1688-1(SC)) .........................231  
Fig. 113. Reflow soldering footprint part 4 for  
HLQFN16 (SOT1688-1(SC)) .........................232  
Fig. 114. Reflow soldering footprint part 5 for  
HLQFN16 (SOT1688-1(SC)) .........................233  
Fig. 115. Reflow soldering footprint part 1 for  
HLQFN16 (SOT1688-1(DD)) .........................234  
Fig. 116. Reflow soldering footprint part 2 for  
HLQFN16 (SOT1688-1(DD)) .........................235  
Fig. 117. Reflow soldering footprint part 3 for  
HLQFN16 (SOT1688-1(DD)) .........................236  
Fig. 118. Reflow soldering footprint part 4 for  
HLQFN16 (SOT1688-1(DD)) .........................237  
Fig. 119. Reflow soldering footprint part 5 for  
HLQFN16 (SOT1688-1(DD)) .........................238  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
249 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
Contents  
1
2
3
3.1  
3.2  
4
4.1  
5
General description ............................................ 1  
10.20  
Dynamic electrical characteristics - supply  
and support circuitry ........................................ 37  
Functional description ......................................38  
User accessible data array ..............................38  
User accessible data - general device  
information ....................................................... 38  
User accessible data - communication  
information ....................................................... 39  
User accessible data - sensor specific  
information ....................................................... 40  
User accessible data - sensor specific  
information ....................................................... 41  
User accessible data - traceability  
Features ............................................................... 1  
Applications .........................................................2  
Automotive .........................................................2  
Industrial ............................................................ 2  
Ordering information .......................................... 2  
Ordering options ................................................ 2  
Marking .................................................................3  
Application diagrams ..........................................4  
DSI3 application diagrams .................................4  
DSI3 discovery mode application diagram .........4  
PSI5 application diagrams .................................5  
PSI5 parallel or universal mode application  
11  
11.1  
11.1.1  
11.1.2  
11.1.3  
11.1.4  
11.1.5  
6
6.1  
6.1.1  
6.2  
6.2.1  
diagram ..............................................................5  
PSI5 daisy chain mode application diagram ...... 6  
SPI application diagram .....................................8  
I2C application diagram .....................................8  
Block diagram ..................................................... 9  
Device orientation diagrams ............................10  
Pinning information .......................................... 10  
Pinning: SPI or I2C mode ................................10  
Pin description: SPI or I2C mode .................... 11  
Pinning: DSI3 or PSI5 mode ........................... 12  
Pin description: DSI3 or PSI5 mode ................ 12  
Electrical characteristics ..................................13  
Maximum ratings ............................................. 14  
Operating range - DSI / PSI5 .......................... 14  
Operating range - SPI / I2C .............................15  
Electrical characteristics - supply and I/O ........ 15  
Electrical characteristics - temperature  
sensor signal chain ..........................................16  
Electrical characteristics - inertial sensor  
signal chain: High g .........................................17  
Electrical characteristics - inertial sensor  
signal chain: Medium g ....................................21  
Electrical characteristics - inertial sensor  
self-test ............................................................ 24  
Electrical characteristics - lateral inertial  
information ....................................................... 42  
Register definitions .......................................... 43  
Rolling counter register (COUNT) ....................43  
Device status registers (DEVSTATx) ............... 44  
6.2.2  
6.3  
6.4  
7
8
9
9.1  
9.2  
9.3  
9.4  
10  
10.1  
10.2  
10.3  
10.4  
10.5  
11.2  
11.2.1  
11.2.2  
11.2.2.1 Channel 0 error flag (CH0_ERR) .....................44  
11.2.2.2 Channel 1 error flag (CH1_ERR) .....................44  
11.2.2.3 Communication error flag (COMM_ERR) ........ 44  
11.2.2.4 Memory or temperature error flag  
(MEMTEMP_ERR) ...........................................44  
11.2.2.5 Supply error flag (SUPPLY_ERR) ................... 44  
11.2.2.6 Test mode (TESTMODE) .................................45  
11.2.2.7 Device reset (DEVRES) .................................. 45  
11.2.2.8 Device initialization (DEVINIT) .........................45  
11.2.2.9 VBUF under-voltage error (VBUFUV_ERR) .... 46  
11.2.2.10 BUS IN under-voltage error (BUSINUV_  
ERR) ................................................................ 46  
11.2.2.11 VBUF over-voltage error (VBUFOV_ERR) ...... 46  
11.2.2.12 Internal analog regulator voltage out of  
range error (INTREGA_ERR) ..........................46  
11.2.2.13 Internal digital regulator voltage out of  
range error (INTREG_ERR) ............................ 47  
11.2.2.14 Internal OTP regulator voltage out of range  
error (INTREGF_ERR) .................................... 47  
11.2.2.15 Continuity monitor error (CONT_ERR) ............ 47  
11.2.2.16 NXP OTP array error (F_OTP_ERR) ...............47  
11.2.2.17 User OTP array error (U_OTP_ERR) .............. 48  
11.2.2.18 User read/write array error (U_RW_ERR) ....... 48  
11.2.2.19 User OTP write in process status bit (U_W_  
ACTIVE) ...........................................................48  
11.2.2.20 Channel 1 temperature sensor error  
10.6  
10.7  
10.8  
10.9  
10.10  
sensor overload ............................................... 26  
Electrical characteristics - Z-axis inertial  
sensor overload ............................................... 26  
Dynamic electrical characteristics - DSI3 .........27  
Dynamic electrical characteristics - PSI5 .........28  
Dynamic electrical characteristics - SPI ...........30  
Dynamic electrical characteristics - I2C ...........31  
Dynamic electrical characteristics - signal  
chain, low-pass filter ........................................32  
Dynamic electrical characteristics - signal  
chain ................................................................ 34  
Dynamic electrical characteristics - analog  
10.11  
10.12  
10.13  
10.14  
10.15  
(TEMP1_ERR) .................................................48  
11.2.2.21 Channel 0 temperature sensor error  
(TEMP0_ERR) .................................................49  
11.2.2.22 SPI MISO data mismatch error flag (MISO_  
ERROR) ...........................................................49  
11.2.2.23 Oscillator training error (OSCTRAIN_ERR) ..... 49  
10.16  
10.17  
10.18  
10.19  
11.2.3  
Communication protocol revision register  
(COMMREV) ....................................................49  
Margin read status register (MREAD_STAT) ... 50  
self-test response time .................................... 35  
Dynamic electrical characteristics - digital  
self-test response time .................................... 36  
Dynamic electrical characteristics -  
11.2.4  
11.2.4.1 Margin read active status (MARGIN_RD_  
ACT) .................................................................50  
11.2.4.2 Margin read error status (MARGIN_RD_  
ERR) ................................................................ 50  
transducer ........................................................37  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
250 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.5  
11.2.6  
Temperature register (TEMPERATURE) ..........51  
Device lock register (DEVLOCK_WR) .............51  
11.2.17.3 PSI5 low response current selection bit  
(PSI5_ILOW) ....................................................71  
11.2.17.4 Dual transmission mode (DUALTRANS) ..........71  
11.2.17.5 Error message information extension bit  
(EMSG_EXT) ...................................................72  
11.2.17.6 PSI5 response message error detection  
selection bit (P_CRC) ......................................72  
11.2.17.7 Initialization phase 2 data extension bit  
(INIT2_EXT) .....................................................72  
11.2.17.8 Asynchronous mode bit (ASYNC) ................... 73  
11.2.18 DSI3 and PSI5 start time registers (PDCM_  
RSPSTx_x) ...................................................... 73  
11.2.18.1 Periodic data collection mode response  
start time (PDCM_RSPSTx[12:0]) ................... 74  
11.2.18.2 Broadcast read command type selection  
bits (BRC_RSP[1:0]) ........................................75  
11.2.19 DSI3 and PSI5 command blocking time  
registers (PDCM_CMD_B_x) ...........................76  
11.2.20 SPI configuration control register .....................77  
11.2.20.1 SPI status reporting selection bit (SPI_  
STATUS) .......................................................... 77  
11.2.20.2 SPI data field size bit (DATASIZE) ...................77  
11.2.20.3 SPI CRC length and seed bits (SPI_CRC_  
LEN[1:0], SPICRCSEED[3:0]) ......................... 78  
11.2.21 Who Am I register ........................................... 78  
11.2.22 I2C slave address register ...............................79  
11.2.23 Channel 0 and Channel 1 user  
11.2.6.1 End initialization bit (ENDINIT) ........................ 51  
11.2.6.2 Supply error reporting disable bit (SUP_  
ERR_DIS) ........................................................ 52  
11.2.6.3 Reset control bits (RESET[1:0]) .......................52  
11.2.7  
11.2.7.1 Margin read enable bit (MARGIN_RD_EN) ..... 52  
11.2.7.2 Write OTP enable and programming bits .........54  
11.2.8  
Write OTP enable register ...............................52  
Bus switch control register (BUSSW_  
CTRL) .............................................................. 55  
PSI5 test register (PSI5_TEST) .......................56  
11.2.9  
11.2.9.1 PSI5 test bit (PSI5_TEST) ...............................56  
11.2.10 UF region selection registers (UF_  
REGION_x) ......................................................57  
11.2.11 Communication type register  
(COMMTYPE) ..................................................58  
11.2.11.1 Communication type (COMMTYPE[2:0]) ......... 59  
11.2.12 Physical address register (PHYSADDR) ......... 60  
11.2.13 Source identification registers  
(SOURCEID_x) ................................................60  
11.2.13.1 Data source enable bits (SIDx_EN) .................61  
11.2.13.2 PDCM format control bits  
(PDCMFORMAT[2:0]) ...................................... 61  
11.2.13.3 Source identification (SOURCEID_x) .............. 62  
11.2.14 Communication timing register (TIMING_  
CFG) ................................................................ 63  
11.2.14.1 Periodic data collection mode period  
(PDCM_PER[3:0]) ............................................63  
11.2.14.2 Oscillator training protocol selection bit  
(OSCTRAIN_SEL) ........................................... 64  
11.2.14.3 Clock calibration value reset (CK_CAL_  
RST) .................................................................64  
11.2.14.4 Command and response mode period  
(CRM_PER[1:0]) ..............................................65  
11.2.14.5 Clock calibration enable (CK_CAL_EN) .......... 65  
11.2.15 Chip time and bit time register (CHIPTIME) .....65  
11.2.15.1 PSI5 self-test repetition bits (ST_RPT[1:0]) ..... 66  
11.2.15.2 PSI5 error latching enable bit (PSI5_  
ERRLATCH) .....................................................66  
11.2.15.3 Simultaneous sampling enable (SS_EN) .........66  
11.2.15.4 Chip time (CHIPTIME) .....................................67  
11.2.16 Timing configuration #2 register (TIMING_  
CFG2) .............................................................. 68  
11.2.16.1 PSI5 initialization phase 2 D19 and D20  
change bit (PSI5_INIT2_D19) ..........................68  
11.2.16.2 Oscillator training error counter  
(OSCTRAIN_ERRCNT[2:0]) ............................ 68  
11.2.16.3 Capacitor test disable bit (CAPTEST_OFF) .....69  
11.2.16.4 Background diagnostic mode fragment size  
(BDM_FRAGSIZE) ...........................................69  
11.2.16.5 Background diagnostic mode enable  
(BDM_EN) ........................................................70  
11.2.17 PSI5 configuration register (PSI5_CFG) ..........70  
11.2.17.1 Sync pulse pull-down enable bit (SYNC_  
PD) ...................................................................70  
11.2.17.2 PSI5 daisy chain selection bit (DAISY_  
CHAIN) .............................................................71  
configuration #1 registers (CH0_CFG_U1,  
CH1_CFG_U1) ................................................ 79  
11.2.23.1 Low-pass filter and sample rate selection  
bits (LPF[3:0], SAMPLERATE[1:0]) ................. 80  
11.2.23.2 User sensitivity shift selection bits (U_SNS_  
SHIFT[1:0]) ...................................................... 80  
11.2.24 Channel 0 and Channel 1 user  
configuration #2 registers (CH0_CFG_U2,  
CH1_CFG_U2) ................................................ 81  
11.2.24.1 User sensitivity multiplier bits (U_SNS_  
MULT[7:0]) ....................................................... 81  
11.2.25 Channel 0 and Channel 1 user  
configuration #3 registers (CH0_CFG_U3,  
CH1_CFG_U3) ................................................ 83  
11.2.25.1 Unsigned data select bit (UNSIGNEDDATA) ... 83  
11.2.25.2 Channel data type 0 selection bits  
(CHxDATATYPE0) ........................................... 84  
11.2.25.3 Channel data type 1 selection bits  
(CHxDATATYPE1) ........................................... 84  
11.2.25.4 Signal chain moving average selection bits  
(MOVEAVG[1:0]) ..............................................85  
11.2.26 Channel 0 and Channel 1 user  
configuration #4 registers (CH0_CFG_U4,  
CH1_CFG_U4) ................................................ 85  
11.2.26.1 Reset offset cancellation startup bit  
(RESET_OC) ................................................... 85  
11.2.26.2 Signal inversion bit (INVERT) ..........................86  
11.2.26.3 Offset cancellation filter selection bits (OC_  
FILT[1:0]) ..........................................................86  
11.2.26.4 Arming pin configuration bits (ARM_  
CFG[2:0]) and PCM range selection bit  
(PCM) ...............................................................86  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
251 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
11.2.27 Channel 0 and Channel 1 user  
11.2.49 Invalid register addresses ..............................104  
configuration #5 register (CH0_CFG_U5,  
11.3  
OTP and read/write register array CRC  
CH1_CFG_U5) ................................................ 87  
11.2.27.1 Self-test control bits (ST_CTRL[3:0]) ...............87  
11.2.27.2 Offset cancellation test limit bits (OC_  
LIMIT[2:0]) ........................................................88  
11.2.27.3 DSP disable bit (DSP_DIS) ............................. 89  
11.2.28 Channel 0 and Channel 1 arming  
verification ......................................................105  
NXP OTP registers ........................................105  
User OTP only registers ................................105  
OTP modifiable registers ............................... 105  
Voltage regulators ..........................................106  
VBUF regulator capacitor and capacitor  
11.3.1  
11.3.2  
11.3.3  
11.4  
11.4.1  
configuration registers (CH0_ARM_CFG,  
monitor ...........................................................106  
CH1_ARM_CFG) .............................................89  
11.2.28.1 Arming function down sampling selection  
bits (ARM_DS[1:0]) ..........................................89  
11.2.28.2 Arming pulse stretch (ARM_PS[1:0]) ...............90  
11.2.28.3 Arming window size (ARM_WS_N[1:0], A_  
WS_P[1:0]) .......................................................90  
11.2.29 Arming threshold registers (CHx_ARM_T_  
P, CHx_ARM_T_N) ..........................................91  
11.2.30 Offset cancellation user configuration  
register (OC_PHASE_CFG) ............................ 92  
11.2.30.1 Channel 0 and Channel 1 offset  
11.4.1.1 VBUF capacitance monitor timing, DSI3 ........107  
11.4.1.2 VBUF capacitance monitor timing, PSI5 ........107  
11.4.1.3 VBUF capacitance monitor timing, PSI5  
asynchronous mode ...................................... 108  
11.4.2  
BUS_I, VBUF, VREG, VREGA,  
undervoltage monitor .....................................108  
Internal oscillator ............................................109  
Oscillator training ...........................................109  
11.5  
11.5.1  
11.5.1.1 DSI3 oscillator training ...................................110  
11.5.1.2 PSI5 oscillator training ...................................111  
11.5.1.3 SPI oscillator training .....................................112  
11.5.1.4 I2C oscillator training .....................................112  
cancellation final phase control bit (CH0_  
OCFINAL, CH1_OCFINAL) ............................. 92  
11.2.31 User offset calibration registers (Chx_U_  
OFFSET_L, Chx_U_OFFSET_H) ....................92  
11.2.32 Channel-specific status register (CH0_  
STAT, CH1_STAT) ........................................... 93  
11.2.32.1 Signal clipped status bit (SIGNALCLIP) ...........93  
11.2.32.2 Offset cancellation phase status  
(OCPHASE[2:0]) ..............................................93  
11.2.32.3 Self-test incomplete (ST_INCMPLT) ................94  
11.2.32.4 Self-test active flag (ST_ACTIVE) ................... 94  
11.2.32.5 Offset error flag (OFFSET_ERR) .....................94  
11.2.32.6 Self-test error flag (ST_ERROR) ..................... 94  
11.2.33 Device status copy register (DEVSTAT_  
COPY) ..............................................................95  
11.2.34 Sensor data #0 registers (CHx_  
11.5.2  
11.6  
11.6.1  
11.6.2  
Oscillator training error handling ....................113  
Inertial sensor signal path ..............................113  
Inertial sensor transducer .............................. 113  
Inertial sensor self-test interface ....................114  
11.6.2.1 Raw self-test deflection verification ................114  
11.6.2.2 Delta self-test deflection verification .............. 114  
11.6.2.3 Startup digital self-test ...................................115  
11.6.2.4 Fixed pattern self-test ....................................115  
11.6.2.5 PSI5 automatic startup self-test procedure ....115  
11.6.3  
11.6.4  
Inertial sensor ΣΔ converter .......................... 117  
Inertial sensor digital signal processor ...........117  
11.6.4.1 Decimation sinc filter ..................................... 118  
11.6.4.2 Signal trim and compensation ....................... 118  
11.6.4.3 Digital clipping ............................................... 119  
11.6.4.4 Low-pass filter ............................................... 119  
11.6.4.5 User sensitivity scaling .................................. 137  
11.6.4.6 Offset cancellation ......................................... 137  
11.6.4.7 Moving average ............................................. 140  
11.6.4.8 Data interpolation ...........................................140  
11.6.4.9 Output scaling ................................................141  
SNSDATA0_L, CHx_SNSDATA0_H) ............... 95  
11.2.35 Sensor data #1 registers (CHx_  
SNSDATA1_L, CHx_SNSDATA1_H) ............... 95  
11.2.36 Channel-specific factory configuration  
register (CHx_CFG_F) .....................................96  
11.2.36.1 Range indication bits (RANGE[3:0]) ................ 96  
11.2.36.2 Axis indication bits (AXIS[1:0]) ........................ 97  
11.2.37 Self-test deflection storage registers ................97  
11.2.38 IC type register ................................................98  
11.2.39 IC revision register .......................................... 98  
11.2.40 IC manufacturer identification register ............. 99  
11.2.41 Part number register ........................................99  
11.2.42 Device serial number registers ...................... 100  
11.2.43 ASIC wafer ID registers .................................101  
11.2.44 Transducer wafer ID registers ....................... 101  
11.2.45 User data registers (USERDATA_0 -  
11.7  
11.7.1  
11.7.2  
Temperature sensor .......................................142  
Temperature sensor signal chain ...................142  
Temperature sensor output scaling  
equations ....................................................... 142  
PCM output function ......................................143  
Arming function ..............................................144  
Arming function: moving average mode ........ 144  
Arming function: count mode .........................145  
Arming function: unfiltered mode ...................146  
Arming function down sampling .....................146  
Arming pulse stretch function ........................ 147  
Arming pin output structure ........................... 147  
DSI3 protocol ...................................................147  
DSI3 physical layer ........................................148  
Command receiver ........................................ 148  
Response transmitter .....................................149  
Discovery mode current sense ...................... 149  
Address assignment ...................................... 150  
11.8  
11.9  
11.9.1  
11.9.2  
11.9.3  
11.9.4  
11.9.5  
11.9.6  
12  
USERDATA_E) .............................................. 102  
11.2.45.1 PSI5 initialization phase 2 data  
transmissions of user data .............................102  
11.2.46 User data registers (USERDATA_10 -  
USERDATA_1E) ............................................ 103  
11.2.47 Lock and CRC registers ................................ 103  
11.2.48 Reserved registers .........................................104  
12.1  
12.1.1  
12.1.2  
12.1.3  
12.2  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
252 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
12.2.1  
12.2.2  
12.2.3  
Address assignment method for parallel  
12.6.3  
Resistor connected daisy chain network  
connected slaves ...........................................150  
Address assignment method for bus switch  
connected daisy chain devices ......................150  
DSI3 discovery mode: Address assignment  
method for resistor connected daisy chain  
devices ...........................................................150  
DSI3 command and response mode ............. 152  
DSI3 command and response mode  
using discovery mode ....................................170  
DSI3 exception handling ................................170  
Daisy chain and discovery mode error  
handling ......................................................... 171  
PSI5 protocol ...................................................172  
Communication interface overview ................172  
Data transmission physical layer ................... 172  
Synchronization pulse ....................................173  
12.7  
12.7.1  
13  
13.1  
13.2  
13.2.1  
12.3  
12.3.1  
command reception ....................................... 152  
13.2.1.1 Synchronization pulse detection .................... 173  
13.2.1.2 Synchronization pulse pulldown function ....... 175  
12.3.1.1 Bit encoding ...................................................153  
12.3.1.2 Command message format ........................... 153  
12.3.1.3 Error checking ............................................... 153  
13.3  
Data transmission data link layer ...................175  
Bit encoding ...................................................175  
PSI5 data transmission ..................................175  
13.3.1  
13.3.2  
12.3.2  
DSI3 command and response mode  
response transmission ...................................154  
13.3.2.1 PSI5-x10P transmission mode ...................... 176  
13.3.2.2 PSI5-x10C transmission mode ...................... 176  
13.3.2.3 PSI5-x16P transmission mode ...................... 176  
13.3.2.4 PSI5-x16C transmission mode ...................... 176  
12.3.2.1 Symbol encoding ........................................... 154  
12.3.2.2 Response message format ............................156  
12.3.2.3 Error checking ............................................... 156  
12.3.3  
12.3.4  
DSI3 command and response mode timing ...157  
DSI3 command and response mode  
command summary ....................................... 157  
13.3.3  
Error detection ............................................... 177  
13.3.3.1 Parity error detection ..................................... 177  
13.3.3.2 3-bit CRC error detection .............................. 177  
12.3.4.1 Register read command ................................ 157  
12.3.4.2 Register write command ................................158  
12.3.4.3 Global register write command to the  
PHYSADDR register ......................................159  
12.3.4.4 Enter periodic data collection mode  
13.3.4  
13.4  
13.4.1  
13.4.2  
PSI5 data field and data range values ...........177  
Initialization .................................................... 179  
PSI5 initialization phase 1 ............................. 181  
PSI5 initialization phase 2 ............................. 181  
13.4.2.1 PSI5 initialization phase 2 data  
transmissions .................................................182  
13.4.3  
13.4.4  
13.5  
13.5.1  
13.5.2  
13.5.3  
command ....................................................... 160  
12.3.4.5 Reserved commands .....................................161  
Internal self-test ............................................. 185  
Initialization phase 3 ......................................185  
Normal mode .................................................185  
Asynchronous mode ......................................185  
Simultaneous sampling mode ........................185  
Synchronous sampling mode with minimum  
12.4  
DSI3 periodic data collection mode and  
background diagnostic mode .........................162  
DSI3 periodic data collection mode and  
12.4.1  
background diagnostic mode command  
reception ........................................................ 162  
12.4.1.1 Bit encoding ...................................................163  
12.4.1.2 Command message format ........................... 163  
12.4.1.3 Error checking ............................................... 163  
latency ............................................................186  
PSI5 default mode (un-programmed PSI5  
13.6  
device) ........................................................... 186  
Dual transmission mode ................................188  
Daisy chain mode ..........................................189  
Error handling ................................................ 191  
Daisy chain error handling .............................191  
Initialization phase 2 error handling ...............191  
Initialization phase 3 error handling ...............192  
Normal mode error handling with internal  
12.4.2  
DSI3 periodic data collection mode  
13.7  
13.8  
13.9  
13.9.1  
13.9.2  
13.9.3  
13.9.4  
response transmission ...................................163  
12.4.2.1 Symbol encoding ........................................... 164  
12.4.2.2 Response message format ............................164  
12.4.2.3 Error checking ............................................... 165  
12.4.3  
12.4.4  
DSI3 periodic data collection mode timing .....166  
Background diagnostic mode response  
transmission ...................................................166  
error automatic clearing .................................192  
12.4.4.1 Symbol encoding ........................................... 166  
12.4.4.2 Response message format ............................166  
12.4.4.3 Error checking ............................................... 167  
13.9.4.1 Standard error reporting ................................ 192  
13.9.4.2 PSI5 error extension option ...........................193  
13.9.5  
Normal mode error handling with internal  
12.4.5  
12.4.6  
DSI3 background diagnostic mode timing ......167  
DSI3 periodic data collection mode and  
background diagnostic mode command  
error latching ..................................................193  
13.9.5.1 Standard error reporting ................................ 193  
13.9.5.2 PSI5 error extension option ...........................194  
summary ........................................................ 167  
DSI3 PDCM data transmission modes .......... 168  
12.4.7.1 Simultaneous sampling mode (SS_EN = 1) ...168  
12.4.7.2 Synchronous sampling mode with minimum  
latency (SS_EN = 0) ......................................168  
13.10  
PSI5 programming mode ...............................194  
12.4.7  
13.10.1 PSI5 programming mode entry ......................194  
13.10.2 PSI5 programming mode - data link layer ......195  
13.10.2.1 PSI5 programming mode - command bit  
encoding ........................................................ 195  
12.5  
12.6  
12.6.1  
12.6.2  
Initialization timing ......................................... 169  
Maximum number of devices on a network ....169  
Pre-configured, parallel connected network ...169  
Bus switch connected daisy chain network ....169  
13.10.2.2 PSI5 programming mode - command  
message format .............................................195  
13.10.2.3 Short frame command and response format ..196  
13.10.2.4 Long frame command and response format .. 197  
FXLS9xxxx  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 6 — 8 February 2021  
253 / 254  
NXP Semiconductors  
FXLS9xxxx  
Dual channel inertial sensor  
13.10.2.5 Extra long frame command and response  
format .............................................................197  
13.10.2.6 Command message CRC ..............................197  
13.10.2.7 Command sync pulse blanking time .............. 197  
13.10.2.8 Command timeout ......................................... 198  
13.10.3 PSI5 programming mode command and  
response summary ........................................ 198  
13.10.4 Programming mode via PSI5 error  
14.5.5  
14.5.6  
14.5.7  
14.6  
15  
15.1  
15.2  
15.3  
15.4  
Error responses ............................................. 215  
SPI error ........................................................ 215  
SPI data output verification error ................... 216  
SPI timing diagram ........................................ 217  
Inter-integrated circuit (I2C) interface ........... 217  
I2C bit transmissions ..................................... 217  
I2C start condition ......................................... 217  
I2C byte transmissions .................................. 218  
I2C acknowledge and not acknowledge  
response summary ........................................ 198  
13.11  
14  
14.1  
14.2  
14.3  
14.3.1  
PSI5 OTP programming procedure ............... 199  
Standard 32-bit SPI protocol ..........................199  
SPI command format .....................................200  
SPI response format ......................................200  
Command summary ...................................... 201  
Register read command ................................ 201  
transmissions .................................................218  
I2C stop condition ..........................................219  
I2C register transfers .....................................219  
Register write transfers ..................................219  
Register read transfers ..................................220  
Sensor data register read wrap around  
15.5  
15.6  
15.6.1  
15.6.2  
15.6.3  
14.3.1.1 Register read command message format ......202  
14.3.1.2 Register read response message format .......202  
options ........................................................... 221  
15.6.3.1 Single channel register read wrap around ..... 221  
14.3.2  
Register write command ................................202  
15.7  
16  
17  
18  
19  
I2C timing diagram ........................................ 222  
Package outline ...............................................223  
Soldering ..........................................................229  
References .......................................................238  
Revision history .............................................. 240  
Legal information ............................................241  
14.3.2.1 Register write command message format ......203  
14.3.2.2 Register write response message format .......203  
14.3.3  
14.3.3.1 Sensor data request command message  
format .............................................................204  
14.3.3.2 Sensor data request response message  
format .............................................................204  
Sensor data request commands ....................204  
20  
14.3.4  
Reserved commands .....................................204  
14.3.4.1 Reserved command message format ............205  
14.3.4.2 Reserved command response message  
format .............................................................205  
14.4  
14.4.1  
Error checking ............................................... 205  
Default 8-bit CRC .......................................... 205  
14.4.1.1 Command error checking .............................. 205  
14.4.1.2 Response error checking ...............................206  
14.4.2  
Selectable 4-bit CRC .....................................207  
14.4.2.1 SPI command format with 4-bit CRC .............207  
14.4.2.2 SPI response format with 4-bit CRC ..............207  
14.4.2.3 Command error checking with 4-bit CRC .......207  
14.4.2.4 Response error checking with 4-bit CRC .......208  
14.4.2.5 Message counter (KAC) with 4-bit CRC ........ 208  
14.4.2.6 Example 4-bit CRC calculations .................... 208  
14.4.3  
Selectable 3-bit CRC .....................................209  
14.4.3.1 SPI command format with 3-bit CRC .............209  
14.4.3.2 SPI response format with 3-bit CRC ..............209  
14.4.3.3 Command error checking with 3-bit CRC .......210  
14.4.3.4 Response error checking with 3-bit CRC .......210  
14.4.3.5 Message (KAC) with 3-bit CRC .....................211  
14.4.3.6 Example 3-bit CRC calculations .................... 211  
14.5  
14.5.1  
Exception handling ........................................ 211  
Standard basic status reporting field ............. 211  
14.5.1.1 Basic status field for responses to register  
commands ..................................................... 211  
14.5.1.2 Basic status field for responses to sensor  
data request commands ................................212  
14.5.2  
14.5.3  
14.5.4  
Alternative basic status reporting field ........... 212  
Standard detailed status field reporting ......... 213  
Alternative detailed status field reporting ....... 214  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section 'Legal information'.  
© NXP B.V. 2021.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 8 February 2021  
Document identifier: FXLS9xxxx  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY