FXPS7115D4 [NXP]

Digital absolute pressure sensor, 40 kPa to 115 kPa;
FXPS7115D4
型号: FXPS7115D4
厂家: NXP    NXP
描述:

Digital absolute pressure sensor, 40 kPa to 115 kPa

文件: 总72页 (文件大小:1041K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Rev. 3 — 5 December 2019  
Product data sheet  
1 General description  
The FXPS7115D4 high-performance, high-precision barometric absolute pressure (BAP)  
sensor consists of a compact capacitive micro-electro-mechanical systems (MEMS)  
device coupled with a digital integrated circuit (IC) producing a fully calibrated digital  
output.  
The sensor is based on NXP's high-precision capacitive pressure cell technology. The  
architecture benefits from redundant pressure transducers as an expanded quality  
measure. This sensor delivers highly accurate pressure and temperature readings  
through either a serial peripheral interface (SPI) or an inter-integrated circuit (I2C)  
interface. The FXPS7115D4 uses either a 3.3 V or 5.0 V power supply. Furthermore,  
the sensor employs an on-demand digital self-test for the digital IC and the MEMS  
transducers.  
The sensor operates over a pressure range of 40 kPa to 115 kPa and over a wide  
temperature range of −40 ºC to 130 ºC.  
The sensor comes in an industry-leading 4 mm x 4 mm x 1.98 mm, restriction of  
hazardous substances (RoHS) compliant, high power quad flat no lead (HQFN)  
package[1] suitable for small PCB integration. Its AEC-Q100[2] compliance, high  
accuracy, reliable performance, and high media resistivity make it ideal for use in  
automotive, industrial, and consumer applications.  
2 Features and benefits  
Absolute pressure range: 40 kPa to 115 kPa  
Operating temperature range: –40 °C to 130 °C  
Pressure transducer and digital signal processor (DSP)  
Digital self-test  
I2C compatible serial interface  
Slave mode operation  
Standard mode, fast mode, and fast-mode plus support  
32-bit SPI compatible serial interface  
Sensor data transmission commands  
12-bit data for absolute pressure  
8-bit data for temperature  
2-bit basic status and 2-bit detailed status fields  
3, 4, or 8-bit configurable CRC  
Capacitance to voltage converter with anti-aliasing filter  
Sigma delta ADC plus sinc filter  
800 Hz or 1000 Hz low-pass filter for absolute pressure  
Lead-free, 16-pin HQFN, 4 mm x 4 mm x 1.98 mm package  
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
3 Applications  
3.1 Automotive  
Engine management digital BAP  
Small engine control  
3.2 Industrial  
Compressed air  
Manufacturing line control  
Gas metering  
Weather stations  
3.3 Medical/Consumer  
Blood pressure monitor  
Medicine dispensing systems  
White goods  
4 Ordering information  
Table 1.ꢀOrdering information  
Type number  
Package  
Name  
Description  
Version  
FXPS7115DI4  
FXPS7115DS4  
HQFN16  
HQFN16, plastic, thermal enhanced quad flat pack; no leads; 16 terminals; 0.8 mm  
pitch; 4 mm x 4 mm x 1.98 mm body  
SOT1573-1  
4.1 Ordering options  
Table 2.ꢀOrdering options  
Device  
Range [kPa]  
Packing  
Interface  
I2C  
Temperature range  
–40 °C to 130 °C  
–40 °C to 130 °C  
FXPS7115DI4T1  
FXPS7115DS4T1  
40 kPa to 115 kPa  
40 kPa to 115 kPa  
Tape and reel  
Tape and reel  
SPI  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
2 / 72  
 
 
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
5 Block diagram  
V
CC  
V
V
REG  
INTERNAL VOLTAGE  
REGULATOR  
REGA  
V
SS  
LOW VOLTAGE  
DETECTION  
V
REF  
REFERENCE  
VOLTAGE  
OSCILLATOR  
LOW VOLTAGE  
DETECTION  
OTP  
ARRAY  
CONTROL  
LOGIC  
SS_B  
SCLK/SCL  
MOSI  
SPI/I2C  
MISO/SDA  
INT  
V
V
V
REG  
REF  
REF  
P-CELL 0  
P-CELL 1  
USER  
OFFSET  
ADJUST  
SINC  
FILTER  
IIR  
LPF  
P
ABS  
P
Σ
ABS  
CONVERTER  
C2V  
GAIN  
AAF  
TRIM  
COMMON  
MODE  
ERROR  
DETECTION  
DSP  
aaa-029726  
Figure 1.ꢀBlock diagram of FXPS7115D4  
6 Pinning information  
6.1 Pinning  
terminal 1  
index area  
V
1
2
3
4
12 TEST6  
11 MISO  
10 MOSI  
CC  
17  
TEST  
INT  
V
9
SCLK  
SS  
aaa-029729  
Transparent top view  
Figure 2.ꢀPin configuration for 16-pin HQFN  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
3 / 72  
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
6.2 Pin description  
Table 3.ꢀPin description  
Pin  
Pin name  
Description  
3
INT  
Interrupt output  
The output can be configured to be active low or active high. If unused, NXP  
recommends pin 3 be unterminated. Optionally, pin 3 can be tied to VSS  
.
1, 16  
VCC  
Power supply  
Supply return (ground)  
Test pin  
4, 15  
VSS  
2, 5, 12  
TESTx  
NXP recommends pins 2, 5, and 12 be unterminated. Optionally, these pins can  
be tied to VSS  
6, 7, 14  
8
NC  
No connect  
SS_B  
Slave / Device select  
In I2C mode, input pin 8 must be connected to VCC with an external pull-up  
resistor, as shown in the application diagram.  
In SPI mode, input pin 8 provides the slave select for the SPI port. An internal  
pull-up device is connected to this pin.  
9
SCLK/SCL  
In I2C mode, input pin 9 provides the serial clock. This pin must be connected to  
VCC with an external pull-up resistor, as shown in the application diagram.  
In SPI mode, input pin 9 provides the serial clock. An internal pull-down device is  
connected to this pin.  
10  
11  
MOSI  
SPI data in  
In SPI mode, pin 10 functions as the serial data input to the SPI port. An internal  
pull-down device is connected to this pin.  
MISO/SDA  
SPI/I2C data out  
In I2C mode, pin 11 functions as the serial data input/output. Pin 11 must be  
connected to VCC with an external pull-up resistor, as shown in the application  
diagram.  
In SPI mode, pin 11 functions as the serial data output.  
13  
17  
VCCIO  
PAD  
I/O supply  
Pin 13 must be connected to VCC, the device supply.  
Die attach pad  
Pin 17 is the die attach flag, and must be connected to VSS  
.
7 Functional description  
7.1 Voltage regulators  
The device derives its internal supply voltage from the VCC and VSS pins. An external  
filter capacitor is required for VCC, as shown in Figure 25 and Figure 26.  
A reference generator provides a reference voltage for the ΣΔ converter.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
4 / 72  
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
V
CC  
V
REGA  
V
V
REGA  
REF  
BANDGAP  
VOLTAGE  
REFERENCE  
REGULATOR  
BIAS  
GENERATOR  
OSCILLATOR  
TRIM  
TRIM  
TRIM  
C2V  
V
REG_MOD  
REFERENCE  
GENERATOR  
Σ
CONVERTER  
OTP  
ARRAY  
V
CC  
V
REG  
VOLTAGE  
REGULATOR  
DIGITAL  
LOGIC  
V
REF  
DSP  
V
CC  
COMPARATOR  
COMPARATOR  
COMPARATOR  
VCC_UV_ERR  
V
REG  
POR  
V
REGA  
V
REF  
aaa-029736  
Figure 3.ꢀVoltage regulation and monitoring  
7.1.1 VCC, VREG, VREGA, undervoltage monitor  
A circuit is incorporated to monitor the VCC supply voltage and the internally regulated  
voltages VREG and VREGA. If any of the voltages fall below the specified undervoltage  
thresholds in Table 101, SPI and I2C transactions are terminated. Once the supply  
returns above the threshold, the device resumes responses.  
7.2 Internal oscillator  
The device includes a factory trimmed oscillator as specified in Table 102.  
7.3 Pressure sensor signal path  
7.3.1 Transducer  
See Table 101 and Table 102 for transducer parameters.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
5 / 72  
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.3.2 Self-test functions  
The device includes analog and digital self-test functions to verify the functionality of the  
transducer and the signal chain. The self-test functions are selected by writing to the  
ST_CTRL[3:0] bits in the DSP_CFG_U1 register. The ST_CTRL bits select the desired  
self-test connection.  
Once the ENDINIT bit is set, the ST_CTRL bits are forced to '0000'. Future writes to the  
ST_CTRL bits are disabled until a device reset.  
7.3.2.1 PABS common mode verification  
When the PABS common mode self-test is selected, the ST_ACTIVE bit is set, the  
ST_ERROR is cleared, and the device begins an internal measurement of the common  
mode signal of the P-cells and compares the result against a predetermined limit. If the  
result exceeds the limit, the ST_ERROR bit is set. The PABS common mode self-test  
repeats continuously every tST_INIT when the ST_CTRL bits are set to the specified value.  
Once the test is disabled, the ST_ERROR bit updates with the final test result within  
tST_INIT of disabling the test. The ST_ACTIVE bit remains set until the final test result is  
reported. Figure 4 is an example of a user-controlled self-test procedure.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
6 / 72  
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Write ST_CTRL = 0x1  
Enable PABS  
Common Mode Self Test  
Delay < t  
from Self Test  
ST_INIT  
Activation  
Write ST_CTRL = 0x0  
Disable PABS  
Common Mode Self Test  
Delay > t  
from Self Test  
ST_INIT  
Activation  
Read the DSP_STAT Register  
yes  
ST_ACTIVE Set?  
no  
User Determined Options:  
1) Repeat Self-Test xx times  
2) Set error status and continue  
3) Set error status and ignore sensor data  
yes  
ST_ERROR Set?  
no  
END  
aaa-023443  
Figure 4.ꢀUser-controlled PABS common mode self-test flowchart  
7.3.2.2 Startup digital self-test verification  
Four unique fixed values can be forced at the output of the sinc filter by writing to the  
ST_CTRL bits as shown in Table 4. The digital self-test values result in a constant value  
at the output of the signal chain. After a specified time period, the SNS_DATAx register  
value can be verified against the specified values in the table below. The values listed  
below are for the PABS signal. When any of these self-test functions are selected, the  
ST_ACTIVE bit is set. These signals can only be selected when the ENDINIT bit is not  
set.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
7 / 72  
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 4.ꢀSelf-test control register  
ST_CTRL[3]  
ST_CTRL[2]  
ST_CTRL[1]  
ST_CTRL[0]  
Function  
SNS_DATAx  
register contents  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
Digital self-test #1  
Digital self-test #2  
Digital self-test #3  
Digital self-test #4  
8171h  
6C95h  
807Ah  
78ACh  
7.3.2.3 Startup sense data fixed value verification  
Four unique fixed values can be forced to the SNS_DATAX_x registers by writing to  
the ST_CTRL bits as shown in Table 5. When any of these values are selected, the  
ST_ACTIVE bit is set. These signals can only be selected when the ENDINIT bit is not  
set.  
Table 5.ꢀSelf-test control bits for sense data fixed value verification  
ST_CTRL[3]  
ST_CTRL[2]  
ST_CTRL[1]  
ST_CTRL[0]  
Function  
SNS_DATAx  
register  
contents  
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
DSP write to SNS_DATAx_  
X registers inhibited.  
0000h  
AAAAh  
5555h  
FFFFh  
DSP write to SNS_DATAx_  
X registers inhibited.  
DSP write to SNS_DATAx_  
X registers inhibited.  
DSP write to SNS_DATAx_  
X registers inhibited.  
7.3.3 ΣΔ converter  
A second order sigma delta modulator converts the voltage from the analog front end to a  
data stream that is input to the DSP. A simplified block diagram is shown in Figure 5.  
1 - bit  
quantizer  
transducer  
first  
integrator  
second  
integrator  
V
X
α
1
=
C
C
TOP  
C
INT1  
α = 1  
2
-1  
z
-1  
z
Y(Z) = {0,1}  
BOT  
-1  
-1  
1 - z  
1 - z  
C = C  
TOP  
- C  
BOT  
ADC  
DAC  
β
1
= 1  
β = 1  
2
V = +V  
, 0 V, -V  
REF  
REF  
V = C x V /C  
INT1  
x
aaa-023446  
Figure 5.ꢀΣΔ converter block diagram  
The sigma delta modulator operates at a frequency of 1 MHz, with the transfer function in  
Equation 1.  
(1)  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
8 / 72  
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.3.4 Digital signal processor (DSP)  
A DSP is used to perform signal filtering and compensation. A diagram illustrating the  
signal processing flow within the DSP is shown in Figure 6.  
USER OFFSET  
AND  
SINC  
FILTER  
IIR  
LPF  
Σ
= Y(Z)  
TRIM  
P
ABS  
OUT  
GAIN ADJUST  
aaa-029737  
Figure 6.ꢀSignal chain diagram  
7.3.4.1 Decimation sinc filter  
In Equation 2, the output of the ΣΔ modulator is decimated and converted to a parallel  
value by two third-order sinc filters; the first with a decimation ratio of 24 and the second  
with a decimation ratio of 4.  
(2)  
aaa-023449  
20  
magnitude  
(dB)  
0
-20  
-40  
-60  
-80  
minimum  
typical  
-100  
maximum  
-120  
3
4
5
10  
10  
10  
frequency (Hz)  
Figure 7.ꢀSinc filter response  
7.3.4.2 Signal trim and compensation  
The device includes digital trim to compensate for sensor offset, sensitivity, and  
nonlinearity over temperature.  
7.3.4.3 Low-pass filter  
Data from the sinc filter is processed by an infinite impulse response (IIR) low-pass filter  
with the transfer function and coefficients shown in Equation 3.  
(3)  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
9 / 72  
 
 
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 6.ꢀIIR low pass filter coefficients  
Filter  
number  
Typical –3 dB  
frequency  
Filter  
order  
Filter coefficients (24 bit)  
Group  
delay (μs)  
Typical  
attenuation @  
1000 Hz (dB)  
1
800 Hz  
4
a0  
0.088642612609670  
418  
4.95  
n11  
n12  
n13  
n21  
n22  
n23  
a0  
0.029638050039039  
0.087543281056143  
0.029695285913601  
0.250241278804809  
0.499999767379068  
0.249758953816089  
0.129604264748411  
0.043719804402508  
0.087543281056143  
0.043823599710731  
0.250296586927511  
0.499999648540934  
0.249703764531484  
d11  
d12  
d13  
d21  
d22  
d23  
1
–1.422792640957290  
0.511435253566960  
1
–1.503329908017845  
0.621996524706640  
2
1000 Hz  
4
333  
2.99  
n11  
n12  
n13  
n21  
n22  
n23  
d11  
d12  
d13  
d21  
d22  
d23  
1
–1.300502656562698  
0.430106921311110  
1
–1.379959571988366  
0.555046257157745  
aaa-029738  
0
magnitude  
(dB)  
-20  
-40  
-60  
-80  
minimum  
typical  
maximum  
-100  
2
3
4
1
10  
10  
10  
10  
frequency (Hz)  
Figure 8.ꢀ 800 Hz, 4-pole, low-pass filter response  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
10 / 72  
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
aaa-029891  
1000  
delay  
(µs)  
800  
600  
400  
200  
0
minimum  
typical  
maximum  
2
3
4
1
10  
10  
10  
10  
frequency (Hz)  
Figure 9.ꢀ800 Hz, 4-pole output signal delay  
aaa-029739  
0
magnitude  
(dB)  
-20  
-40  
-60  
-80  
minimum  
typical  
maximum  
-100  
2
3
4
1
10  
10  
10  
10  
frequency (Hz)  
Figure 10.ꢀ 1000 Hz, 4-pole, low-pass filter response  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
11 / 72  
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
aaa-029892  
1000  
delay  
(µs)  
800  
600  
400  
200  
0
minimum  
typical  
maximum  
2
3
4
1
10  
10  
10  
10  
frequency (Hz)  
Figure 11.ꢀ1000 Hz, 4-pole output signal delay  
7.3.4.4 Absolute pressure output data scaling equation  
Equation 4 is used to convert absolute pressure readings with the variables as specified  
in the tables below. Note, the specified values apply only if the P_CAL_ZERO value is  
set to 0000h.  
(4)  
Where:  
PABSkPa = The absolute pressure output in kPa  
PABSLSB = The absolute pressure output in LSB  
PABSOFFLSB = The internal trimmed absolute pressure output value at 0 kPa in LSB  
PABSSENSE = The trimmed absolute pressure sensitivity in LSB/kPa  
Range  
Data reading  
PABSOffLSB (LSB)  
PABSSENSE (LSB/kPa)  
40 - 115 kPa  
12-bit output  
–1566.6  
25538.8  
25538  
0
34.98  
69.96  
69.96  
69.96  
16-bit output  
Interrupt threshold registers  
P-zero calibration registers  
7.3.5 Temperature sensor  
7.3.5.1 Temperature sensor signal chain  
The device includes a temperature sensor for signal compensation and user readability.  
Figure 12 shows a simplified block diagram. Temperature sensor parameters are  
specified in Table 101 and Table 102.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
12 / 72  
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
TEMPERATURE  
SINC  
FILTER  
MOVING  
AVERAGE  
OFFSET  
AND  
to temperature output  
temperature sensor  
CONVERTER  
GAIN TRIM  
aaa-023461  
Figure 12.ꢀTemperature sensor signal chain block diagram  
7.3.5.2 Temperature sensor output scaling equation  
Equation 5 is used to convert temperature readings with the variables specified in  
Table 7.  
(5)  
where:  
TDEGC = The temperature output in degrees C  
TLSB = The temperature output in LSB  
T0LSB = The expected temperature output in LSB at 0 °C  
TSENSE = The expected temperature sensitivity in LSB/°C  
Table 7.ꢀTemperature conversion variables  
Data reading  
T0LSB (LSB)  
TSENSE LSB/C)  
8-bit register read  
68  
1
7.3.6 Common mode error detection signal chain  
The device includes a continuous pressure transducer common mode error detection.  
A simplified block diagram is shown in Figure 13. The common mode error signal is  
compared against the normal absolute pressure signal. If the comparison falls outside  
of pre-determined limits, the CM_ERROR bit in the DSP_STAT register is set. Once the  
error condition is removed, the CM_ERROR bit is cleared as specified in Section 7.7.16  
"DSP_STAT - DSP-specific status register (address 60h)".  
common mode  
signal from ADC  
common mode  
error signal  
SINC  
FILTER  
LOW PASS  
FILTER  
COMPENSATION  
aaa-023462  
Figure 13.ꢀCommon mode error detection signal chain block diagram  
7.4 Inter-integrated circuit (I2C) interface  
The device includes an interface compliant to the NXP I2C-bus specification[3]. The  
device operates in slave mode and includes support for standard mode, fast mode, and  
fast mode plus, although the maximum practical operating frequency for I2C in a given  
system implementation depends on several factors including the pull-up resistor values  
and the total bus capacitance.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
13 / 72  
 
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.4.1 I2C bit transmissions  
The state of SDA when SCL is high determines the bit value being transmitted. SDA  
must be stable when SCL is high and change when SCL is low as shown in Figure 14.  
After the START signal has been transmitted by the master, the bus is considered busy.  
Timing for the start condition is specified in Table 102.  
SDA  
SCL  
SDA stable  
SDA = `1'  
SDA stable  
SDA = `0'  
SDA  
changes  
aaa-029746  
Figure 14.ꢀI2C bit transmissions  
7.4.2 I2C start condition  
A bus operation is always started with a start condition (START) from the master.  
A START is defined as a high to low transition on SDA while SCL is high as shown  
in Figure 15. After the START signal has been transmitted by the master, the bus is  
considered busy. Timing for the start condition is specified in Table 102.  
A start condition (START) and a repeat START condition (rSTART) are identical.  
SDA  
SCL  
START  
aaa-029747  
Figure 15.ꢀI2C start condition  
7.4.3 I2C byte transmission  
Data transfers are completed in byte increments. The number of bytes that can be  
transmitted per transfer is unrestricted. Each byte must be followed by an acknowledge  
bit (Section 7.4.4 "I2C acknowledge and not acknowledge transmissions") from the  
receiver. Data is transferred with the most significant bit (MSB) first (see Figure 16).  
The master generates all clock pulses, including the ninth clock for the acknowledge bit.  
Timing for the byte transmissions is specified in Section 7.4.4 "I2C acknowledge and  
not acknowledge transmissions". All functions for this device are completed within the  
acknowledge clock pulse. Clock stretching is not used.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
14 / 72  
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
SDA  
SCL  
START  
ACK  
ACK  
STOP  
from slave  
from receiver  
aaa-029748  
Figure 16.ꢀI2C byte transmissions  
7.4.4 I2C acknowledge and not acknowledge transmissions  
Each byte must be followed by an acknowledge bit (ACK) from the receiver. For an ACK,  
the transmitter releases SDA during the acknowledge clock pulse and the receiver pulls  
SDA low during the high portion of the clock pulse. Set up and hold times as specified in  
Table 102 must also be taken into account.  
For a not acknowledge bit (NACK), SDA remains high during the entire acknowledge  
clock pulse. Five conditions lead to a NACK:  
1. No receiver is present on the bus with the transmitted address.  
2. The addressed receiver is unable to receive or transmit because it is performing some  
real-time function and is not ready to start communication with the master.  
3. The receiver receives unrecognized data or commands.  
4. The receiver cannot receive any more data bytes.  
5. The master-receiver signals the end of the transfer to the slave transmitter.  
Following a NACK, the master can transmit either a STOP to terminate the transfer, or a  
repeated START to initiate a new transfer.  
An example ACK and NACK are shown in Figure 17.  
SDA  
SCL  
ACK  
ACK  
ninth clock pulse  
ninth clock pulse  
aaa-029749  
Figure 17.ꢀI2C acknowledge and not acknowledge transmission  
7.4.5 I2C stop condition  
A bus operation is always terminated with a stop condition (STOP) from the master.  
A STOP is defined as a low to high transition on SDA while SCL is high as shown in  
Figure 18. After the STOP has been transmitted by the master, the bus is considered  
free. Timing for the stop condition is specified in Table 102.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
15 / 72  
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
SDA  
SCL  
STOP  
aaa-029750  
Figure 18.ꢀI2C stop condition  
7.4.6 I2C register transfers  
7.4.6.1 Register write transfers  
The device supports I2C register write data transfers. Register write data transfers are  
constructed as follows:  
1. The master transmits a START condition.  
2. The master transmits the 7-bit slave address.  
3. The master transmits a '0' for the read/write bit to indicate a write operation.  
4. The slave transmits an ACK.  
5. The master transmits the register address to be written.  
6. The slave transmits an ACK.  
7. The master transmits the data byte to be written to the register address.  
8. The slave transmits an ACK.  
9. The master transmits a STOP condition.  
S
SLAVE ADDRESS  
W
A
REGISTER ADDRESS  
A
REGISTER DATA  
A
P
Master transmission  
Slave transmission  
aaa-029920  
The device automatically increments the register address allowing for multiple register  
writes to be completed in one transaction. In this case, the register write data transfers  
are constructed as follows:  
1. The master transmits a START condition.  
2. The master transmits the 7-bit slave address.  
3. The master transmits a '0' for the read/write bit to indicate a write operation.  
4. The slave transmits an ACK.  
5. The master transmits the register address to be written.  
6. The slave transmits an ACK.  
7. The master transmits the data byte to be written to the register address.  
8. The slave transmits an ACK.  
9. The master transmits the data byte to be written to the register address +1.  
10.The slave transmits an ACK.  
11.Repeat steps 9 and 10 until all registers are written.  
12.The master transmits a STOP condition.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
16 / 72  
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.4.6.2 Register read transfers  
The device supports I2C register read data transfers. Register read data transfers are  
constructed as follows:  
1. The master transmits a START condition.  
2. The master transmits the 7-bit slave address.  
3. The master transmits a '0' for the read/write bit to indicate a write operation.  
4. The slave transmits an ACK.  
5. The master transmits the register address to be read.  
6. The slave transmits an ACK.  
7. The master transmits a repeat START condition.  
8. The master transmits the 7-bit slave address.  
9. The master transmits a '1' for the read/write bit to indicate a read operation.  
10.The slave transmits an ACK.  
11.The slave transmits the data from the register addressed.  
12.The master transmits a NACK.  
13.The master transmits a STOP condition.  
S
SLAVE ADDRESS  
W
A
REGISTER ADDRESS  
A
rSTART  
SLAVE ADDRESS  
R
A
REGISTER DATA  
N
P
Master transmission  
Slave transmission  
aaa-029919  
7.4.6.3 Sensor data register read wrap around  
The device includes automatic sensor data register read wrap-around features to  
optimize the number of I2C transactions necessary for continuous reads of sensor data.  
Depending on the state of the SIDx_EN bits in the SOURCEID_0 and SOURCEID_1  
registers, the register address automatically wraps back to the DEVSTAT_COPY register  
as shown in Table 8.  
Table 8.ꢀSensor data register read wrap-around description  
SID1_EN  
SID0_EN  
Address increment and wrap-around effect  
Optimized register-read sequence  
None  
0
0
0
1
Address wraps around from $FF to $00  
Address wraps from $63 (SNSDATA0_H) to $61  
(DEVSTAT_COPY)  
DEVSTAT_COPY, SNSDATA0_L, SNSDATA0_H  
1
1
0
1
Address wraps from $65 (SNSDATA1_H) to $61  
(DEVSTAT_COPY)  
DEVSTAT_COPY, SNSDATA0_L, SNSDATA0_H,  
SNSDATA1_L, SNSDATA1_H  
Address wraps from $69 (SNSDATA0_TIME3) to $61  
(DEVSTAT_COPY)  
DEVSTAT_COPY, SNSDATA0_L, SNSDATA0_H,  
SNSDATA1_L, SNSDATA1_H, SNSDATA0_TIME0,  
SNSDATA0_TIME1, SNSDATA0_TIME2, SNSDATA0_  
TIME3  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
17 / 72  
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.4.7 I2C timing diagram  
t
f
t
r
t
SU;DAT  
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
... cont.  
t
VD;DAT  
t
t
t
r
HD;DAT  
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
... cont.  
th  
9
clock  
t
t
HD;STA  
1 / f  
1
LOW  
SCL  
clock cycle  
S
st  
t
BUF  
... SDA  
... SCL  
t
SU;STA  
t
VD;ACK  
t
t
SU;STO  
t
SP  
HD;STA  
70 %  
30 %  
Sr  
P
S
th  
9
clock  
aaa-029751  
Figure 19.ꢀI2C timing diagram  
7.5 Standard 32-bit SPI protocol  
The device includes a standard SPI protocol requiring 32-bit data packets. The device  
is a slave device and requires that the base clock value be low (CPOL = 0) with data  
captured on the rising edge of the clock and data propagated on the falling edge of the  
clock (CPHA = 0). The most significant bit is transferred first (MSB first). SPI transfers are  
completed through a sequence of two phases. During the first phase, the command is  
transmitted from the SPI master to the device. During the second phase, response data  
is transmitted from the slave device. MOSI and SCLK transitions are ignored when SS_B  
is not asserted.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
18 / 72  
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
SCLK  
SS_B  
MOSI  
phase one: command  
phase two response  
phase one: response-previous command  
MISO  
SCLK  
SS_B  
MOSI  
T1  
T2  
R1  
T3  
R2  
R3  
MISO  
aaa-023747  
Figure 20.ꢀStandard 32 Bit SPI protocol timing diagram  
7.5.1 SPI command format  
Table 9.ꢀSPI command format  
MSB: bit 31; LSB: bit 0  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17  
16  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Register access command  
Command  
Fixed bits:  
must = 0h  
Register address  
Register data  
8-bit CRC  
C[3:0]  
0
0
0
0
0
0
RA[7:1]  
RA[0]  
Sensor data command  
Fixed bits: must = 0 0000h  
RD[7:0]  
CRC[7:0]  
Command  
8-bit CRC  
C[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CRC[7:0]  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
19 / 72  
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 10.ꢀSPI command bit allocation  
C[3:0]  
Command type  
Data source SOURCEID[2:0] = C[3:1]  
Reference  
0
0
0
0
Unused Command  
Not applicable  
Not applicable  
(reserved for error response)  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Sensor Data Request  
reserved Command  
Sensor Data Request  
reserved Command  
Sensor Data Request  
reserved Command  
Sensor Data Request  
Register Write Request  
Sensor Data Request  
reserved Command  
Sensor Data Request  
Register Read Request  
Sensor Data Request  
Reserved Command  
Sensor Data Request  
SOURCEID = 0h  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
SOURCEID = 1h  
Not applicable  
SOURCEID = 2h  
Not applicable  
SOURCEID = 3h  
Not applicable  
SOURCEID = 4h  
Not applicable  
Not applicable  
Not applicable  
SOURCEID = 5h  
Not applicable  
SOURCEID = 6h  
Not applicable  
SOURCEID = 7h  
7.5.2 SPI response format  
Table 11.ꢀSPI response format  
MSB: bit 31; LSB: bit 0  
31  
30  
29  
28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
Response to Register Request  
9
8
7
6
5
4
3
2
1
0
Command  
Basic Unused  
Register data: contents  
of RA[7:1] high byte  
Register data: contents  
of RA[7:1] low byte  
8-bit CRC  
Status  
Data  
0h  
C[0], [3:1]  
ST[1:0]  
0
0
0
0
RD[15:8]  
RD[7:0]  
CRC[7:0]  
Response to Sensor Data Request  
Sensor Data  
Command  
Basic  
Status  
Detail  
Status  
8-bit CRC  
C[0], [3:1]  
ST[1:0]  
SD[11:0]  
0
0
0
0
0
0
SF[1:0]  
CRC[7:0]  
Error Response to Register Request  
Unused Data = 0000h  
Command  
Basic  
Status  
Detail  
Status  
8-bit CRC  
C[0], [3:1]  
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
SF[1:0]  
CRC[7:0]  
Error Response to Sensor Data Request With Sensor Data  
Sensor Data  
Command  
Basic  
Status  
Detail  
Status  
8-bit CRC  
C[0] C[3] C[2] C[1]  
1
1
SD[11:0]  
0
0
0
0
SF[1:0]  
CRC[7:0]  
Error Response to Sensor Data Request Without Sensor Data  
Unused Data = 0000h  
Command  
Basic  
Status  
x
Detail  
Status  
8-bit CRC  
0
0
0
0
1
1
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SF[1:0]  
CRC[7:0]  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
20 / 72  
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.5.3 Command summary  
7.5.3.1 Register read command  
The device supports a register read command. The register read command uses the  
upper 7 bits of the addresses defined in Section 7.6 "User-accessible data array" to  
address 8-bit registers in the register map.  
The response to a register read command is shown in Section 7.5.3.1.2 "Register read  
response message format". The response is transmitted on the next SPI message if and  
only if all of the following conditions are met:  
No SPI error is detected (see Section 7.5.5.3 "SPI error" )  
No MISO error is detected (see Section 7.5.5.4 "SPI data output verification error")  
If these conditions are met, the device responds to the register read request as shown  
in Section 7.5.3.1.2 "Register read response message format". Otherwise, the device  
responds with the error response as defined in Section 7.5.5.2 "Error responses". The  
register read response includes the register contents at the rising edge of SS_B for the  
register read command.  
7.5.3.1.1 Register read command message format  
Table 12.ꢀRegister read command message format  
MSB: bit 31; LSB: bit 0  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17  
Register access command  
Register address  
16  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Command  
C[3:0]  
Fixed bits:  
must = 0h  
Register data  
8-bit CRC  
1
1
0
0
0
0
0
0
RA[7:1]  
RA[0]  
0
0
0
0
0
0
0
0
CRC[7:0]  
Table 13.ꢀRegister read command message bit field descriptions  
Bit field  
Definition  
C[3:0]  
Register read command = '1100'  
RA[7:0]  
CRC[7:0]  
RA[7:1] contains the word address of the register to be read.  
Read CRC Section  
7.5.3.1.2 Register read response message format  
Table 14.ꢀRegister read response message format  
MSB: bit 31; LSB: bit 0  
31 30 29 28 27  
26  
25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Register access command  
Command  
C[0], [3:1]  
Basic  
Status  
Unused  
Data 0h  
Register data: contents  
of RA[7:1] high byte  
Register data: contents  
of RA[7:1] low byte  
8-bit CRC  
0
1
1
0
ST[1:0]  
0
0
RD[15:8]  
RD[7:0]  
CRC[7:0]  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
21 / 72  
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 15.ꢀRegister read response message bit field descriptions  
Bit field  
C[0], [3:1]  
ST[1:0]  
Definition  
Register Read Command = '0110'  
Status  
RD[15:8]  
RD[7:0]  
The contents of the register addressed by RA[7:1] high byte (RA[0] = 1)  
The contents of the register addressed by RA[7:1] low byte (RA[0] = 0)  
8-bit CRC  
CRC[7:0]  
7.5.3.2 Register write command  
The device supports a register write command. The register write command writes the  
value specified in RD[7:0] to the register addressed by RA[7:0].  
The response to a register write command is shown in Section 7.5.3.2.2 "Register write  
response message format". The register write is executed and a response is transmitted  
on the next SPI message if and only if all of the following conditions are met:  
No SPI error is detected (see Section 7.5.5.3 "SPI error")  
No MISO error is detected (see Section 7.5.5.4 "SPI data output verification error")  
The ENDINIT bit is cleared  
This applies to all registers with the exception of the RESET[1:0] bits in the  
DEVLOCK_WR register  
No invalid register request is detected as described below  
If these conditions are met, the register write is executed and the device responds to the  
register write request as shown in Section 7.5.3.2.2 "Register write response message  
format". Otherwise, no register is written and the device responds with the error response  
as defined in Section 7.5.2 "SPI response format". The register is not written until the  
transfer during which the register write was requested has been completed.  
A register write command to a read-only register will not execute, but will result in a valid  
response.  
7.5.3.2.1 Register write command message format  
Table 16.ꢀRegister write command message format  
MSB: bit 31; LSB: bit 0  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17  
Register access command  
Register address  
16  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Command  
C[3:0]  
Fixed bits:  
must = 0h  
Register data  
8-bit CRC  
1
0
0
0
0
0
0
0
RA[7:1]  
RA[0]  
RD[7:0]  
CRC[7:0]  
Table 17.ꢀRegister write command message bit field descriptions  
Bit field  
Definition  
C[3:0]  
Register write command = '1000'  
RA[7:0]  
RD[7:0]  
CRC[7:0]  
RA[7:1] contains the byte address of the register to be written  
RD[7:0] contains the data byte to be written to address RA[7:0]  
8-bit CRC  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
22 / 72  
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.5.3.2.2 Register write response message format  
Table 18.ꢀRegister write response message format  
MSB: bit 31; LSB: bit 0  
31 30 29 28 27  
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
Register access command  
Register data: contents Register data: contents  
9
8
7
6
5
4
3
2
1
0
Command  
Basic  
Unused  
Data  
0h  
8-bit CRC  
C[0], [3:1]  
Status  
of RA[7:1] high byte  
of RA[7:1] low byte  
0
1
0
0
ST[1:0]  
0
0
RD[15:8]  
RD[7:0]  
CRC[7:0]  
Table 19.ꢀRegister write response message bit field descriptions  
Bit field  
C[0], [3:1]  
ST[1:0]  
Definition  
Register Read Command = '0100'  
Status  
RD[15:8]  
RD[7:0]  
The contents of the register addressed by RA[7:1] high byte (RA[0] = 1)  
The contents of the register addressed by RA[7:1] low byte (RA[0] = 0)  
8-bit CRC  
CRC[7:0]  
7.5.3.3 Sensor data request commands  
The device supports standard sensor data request commands. The sensor data request  
command format is described in Section 7.5.3.3.1 "Sensor data request command  
message format". The response to a sensor data request is shown in Section 7.5.3.3.2  
"Sensor data request response message format". The response is transmitted on the  
next SPI message subject to the error handling conditions specified in Section 7.5.5  
"Exception handling". The sensor data included in the response is the sensor data at the  
falling edge of SS_B for the sensor data request response.  
7.5.3.3.1 Sensor data request command message format  
Table 20.ꢀSensor data request command message format  
MSB: bit 31; LSB: bit 0  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Command  
Fixed bits: must = 0 0000h  
8-bit CRC  
C[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CRC[7:0]  
Table 21.ꢀSensor data request command message bit field descriptions  
Bit field  
Definition  
C[0]  
Sensor data request command = '1'  
Source identification code for the requested sensor data  
8-bit CRC  
C[3:1] = SOURCEID[2:0]  
CRC[7:0]  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
23 / 72  
 
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.5.3.3.2 Sensor data request response message format  
Table 22.ꢀSensor data request response message format  
MSB: bit 31; LSB: bit 0  
31 30 29 28 27  
26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Command  
Basic Sensor Data  
Detail  
8-bit CRC  
Status  
Status  
C[0], [3:1]  
ST[1:0]  
SD[11:0]  
0
0
0
0
SF[1:0]  
CRC[7:0]  
Table 23.ꢀSensor data request response message bit field descriptions  
Bit field  
Definition  
C[0]  
Sensor data request command = '1'  
C[3:1] = SOURCEID[2:0]  
ST[1:0]  
Source identification code for the requested sensor data  
Basic Status  
Sensor data  
Detailed status  
8-bit CRC  
SD[11:0]  
SF[1:0]  
CRC[7:0]  
7.5.3.4 Reserved commands  
The device responds to reserved commands on the next SPI message subject to the  
error handling conditions specified in Section 7.5.5 "Exception handling".  
7.5.3.4.1 Reserved command message format  
Table 24.ꢀReserved command message format  
MSB: bit 31; LSB: bit 0  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
x
x
x
x
x
x
x
8
x
x
x
x
x
x
x
7
6
5
4
3
2
1
0
Command  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
8-bit CRC  
CRC[7:0]  
CRC[7:0]  
CRC[7:0]  
CRC[7:0]  
CRC[7:0]  
CRC[7:0]  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
1
1
0
0
0
0
0
0
Table 25.ꢀReserved command message bit field descriptions  
Bit field  
Definition  
C[3:0]  
Reserved command  
8-bit CRC  
CRC[7:0]  
7.5.3.4.2 Reserved command response message format  
Table 26.ꢀReserved command response message format  
MSB: bit 15; LSB: bit 0  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Command Echo  
Data  
8-bit CRC  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
CRC[7:0]  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
24 / 72  
 
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 27.ꢀReserved command response message bit field descriptions  
Bit field  
Definition  
Command echo  
Data  
Reserved command echo. Undefined  
Response data. Undefined  
8-bit CRC  
CRC[7:0]  
7.5.4 Error checking  
7.5.4.1 Default 8-bit CRC  
7.5.4.1.1 Command error checking  
The device calculates an 8-bit CRC on the entire 32 bits of each command. Message  
data is entered into the CRC calculator MSB first, consistent with the transmission  
order of the message. If the calculated CRC does not match the transmitted CRC, the  
command is ignored and the device responds with the SPI error response.  
The CRC decoding procedure is as follows:  
1. A seed value is preset into the LSB of the shift register.  
2. Using a serial CRC calculation method, the receiver rotates the received message  
and CRC into the LSB of the shift register in the order received (MSB first).  
3. When the calculation on the last bit of the CRC is rotated into the shift register, the  
shift register contains the CRC check result.  
4. If the shift register contains all zeros, the CRC is correct.  
5. If the shift register contains a value other than zero, the CRC is incorrect.  
The CRC polynomial and seed are shown in Table 28.  
Table 28.ꢀSPI Command Message CRC  
SPICRCSEED[3:0]  
Default Polynomial  
x8+ x5+ x3+ x2+ x + 1  
x8+ x5+ x3+ x2+ x + 1  
Default non-direct Seed  
1111 1111  
0000  
non-zero  
1111 SPICRCSEED[3:0]  
7.5.4.1.2 Response error checking  
The device calculates a CRC on the entire 32 bits of each response. Message data is  
entered into the CRC calculator MSB first, consistent with the transmission order of the  
message.  
The CRC encoding procedure is as follows:  
1. A seed value is preset into the LSB of the shift register.  
2. Using a serial CRC calculation method, the transmitter rotates the transmitted  
message and CRC into the LSB of the shift register (MSB first).  
3. Following the transmitted message, the transmitter feeds 8 zeros into the shift  
register, to match the length of the CRC.  
4. When the last zero is fed into the input adder, the shift register contains the CRC.  
5. The CRC is transmitted.  
The CRC polynomial and seed are shown in Table 29.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
25 / 72  
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 29.ꢀSPI Response Message CRC  
SPICRCSEED[3:0]  
Default Polynomial  
x8+ x5+ x3+ x2+ x + 1  
x8+ x5+ x3+ x2+ x + 1  
Default non-direct Seed  
1111 1111  
0000  
nonzero  
1111 SPICRCSEED[3:0]  
7.5.5 Exception handling  
7.5.5.1 Basic status field  
All responses include a status field (ST[1:0]) that includes the general status of the  
device and transmitted data as described below. The contents of the status field is  
a representation of the device status at the rising edge of SS_B for the previous SPI  
command.  
Table 30.ꢀBasic status field for responses to register commands  
ST[1:0]  
Status  
Description  
SF[1:0]  
Priority  
0
0
Device in Initialization  
Device in initialization (ENDINIT not  
set)  
0
0
3
0
1
1
0
Normal Mode  
Self-test  
Normal mode(ENDINIT set)  
0
0
0
0
4
2
Self-test(ST_CTRL[3:0] not equal to  
'0000')  
1
1
Internal Error Present  
Detailed Status Field  
Detailed  
1
Status Field  
7.5.5.2 Error responses  
Table 31.ꢀError responses bit field descriptions  
SF[1:0]  
Status Sources  
DEVSTAT State  
Bit set in DEVSTAT3  
0
0
Oscillator training error (OSCTRAIN_ERR)  
Offset error (PABS_HIGH or PABS_LOW or CM_ Bit set in DSP_STAT  
ERROR)  
Bit set in DEVSTAT2  
Temperature error  
0
1
1
1
0
1
User OTP memory error (UF2 or UF1)  
User R/W memory error (UF2)  
NXP OTP Memory error  
U_OTP_ERR set in DEVSTAT2  
U_RW_ERR set in DEVSTAT2  
F_OTP_ERR set in DEVSTAT2  
Test Mode active  
Supply error  
TESTMODE bit set in DEVSTAT  
bit set in DEVSTAT1  
DEVRES set  
Reset error  
MISO error  
SPI error  
Bit set in DEVSTAT3  
N/A  
7.5.5.3 SPI error  
The following external SPI conditions result in a SPI error:  
SCLK is high when SS_B is asserted  
The number of SCLK rising edges detected while SS_B is asserted is not equal to 16  
SCLK is high when SS_B is deasserted  
CRC error is detected (MOSI)  
A register write command to any register other than the DEVLOCK_WR register is  
received while ENDINIT is set  
If a SPI error is detected, the device responds with the error response as described  
in Section 7.5.5.2 "Error responses" with the detailed status field set to “SPI Error” as  
defined in Section 7.5.5.1 "Basic status field".  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
26 / 72  
 
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.5.5.4 SPI data output verification error  
The device includes a function to verify the integrity of the data output to the MISO pin.  
The function compares the data transmitted on the MISO pin to the data intended to be  
transmitted. If any one bit does not match, a SPI MISO mismatch fault is detected and  
the MISO_ERR flag in the DEVSTAT2 register is set.  
If a valid sensor data request message is received during the SPI transfer with the MISO  
mismatch failure, the request is ignored and the device responds with the error response  
as described in Section 7.5.5.2 "Error responses" with the detailed status field set to  
“SPI Error” as defined in Section 7.5.5.1 "Basic status field" during the subsequent SPI  
message.  
If a valid register write request message is received during the SPI transfer with the  
MISO mismatch failure, the register write is completed as requested, but the device  
responds with the error response as described in Section 7.5.5.2 "Error responses" with  
the detailed status field set to “SPI Error” as defined in Section 7.5.5.1 "Basic status field"  
during the subsequent SPI message.  
If a valid register read request message is received during the SPI transfer with the MISO  
mismatch failure, the register read is ignored and the device responds with the error  
response as described in Section 7.5.5.2 "Error responses" with the detailed status field  
set to “SPI Error” as defined in Section 7.5.5.1 "Basic status field", during the subsequent  
SPI message.  
SPI DATA OUT SHIFT REGISTER  
DATA OUT BUFFER  
MISO  
D
Q
D
Q
R
MISO ERR  
D
Q
SCLK  
R
aaa-023748  
Figure 21.ꢀSPI data output verification  
7.5.6 SPI timing diagram  
DSP Out  
t
LAT  
SS_B  
t
t
t
t
SSN  
LEAD  
SCLKR  
SCLKF  
t
t
SSCLK  
t
SCLKH  
SCLK  
SCLK  
t
t
t
CLKSS  
SCLKL  
LAG  
t
ACCESS  
t
t
HOLD_OUT  
t
VALID  
DISABLE  
MISO  
t
HOLD_IN  
t
SETUP  
MOSI  
aaa-023749  
Figure 22.ꢀSPI timing diagram  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
27 / 72  
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.6 User-accessible data array  
A user-accessible data array allows each device to be customized. The array consists  
of a one time programmable (OTP) factory-programmable block, an OTP user-  
programmable block, and read-only registers for data and device status. The OTP blocks  
incorporate independent data verification.  
Table 32.ꢀUser-accessible data — sensor specific information  
Address Register  
Type[1]  
Bit  
7
6
5
4
3
2
1
0
General device information  
$00  
$01  
COUNT  
R
R
COUNT[7:0]  
DEVSTAT  
DSP_ERR  
reserved  
reserved  
COMM_ERR MEMTEMP_  
ERR  
SUPPLY_  
ERR  
TESTMODE  
DEVRES  
DEVINIT  
CONT_ERR  
reserved  
$02  
$03  
$04  
$05  
DEVSTAT1  
DEVSTAT2  
DEVSTAT3  
R
VCCUV_  
ERR  
VCCOV_  
ERR  
reserved  
INTREGA_  
ERR  
INTREG_  
ERR  
INTREGF_  
ERR  
R
R
F_OTP_ERR  
U_OTP_  
ERR  
U_RW_ERR  
U_W_  
reserved  
TEMP0_  
ERR  
reserved  
ACTIVE  
MISO_ERR OSCTRAIN_  
ERR  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
R
R
reserved  
$06 to  
$0D  
reserved  
$0E  
$0F  
TEMPERATURE  
reserved  
R
R
TEMP[7:0]  
reserved  
Communication information  
$10  
DEVLOCK_WR  
R/W  
R/W  
ENDINIT  
reserved  
reserved  
reserved  
SUP_  
ERR_DIS  
reserved  
RESET[1:0]  
$11 to  
$13  
reserved  
reserved  
$14  
$15  
$16  
UF_REGION_W R/W  
REGION_LOAD[3:0]  
REGION_ACTIVE[3:0]  
0
0
0
0
0
0
0
UF_REGION_R  
COMMTYPE  
reserved  
R
0
UF2  
UF2  
reserved  
reserved  
reserved  
reserved  
reserved  
COMMTYPE[2:0]  
$17 to  
$19  
reserved  
$1A  
$1B  
SOURCEID_0  
SOURCEID_1  
reserved  
UF2  
UF2  
UF2  
SID0_EN  
SID1_EN  
reserved  
reserved  
SOURCEID_0[3:0]  
SOURCEID_1[3:0]  
$1C to  
$21  
reserved  
$22  
TIMING_CFG  
reserved  
UF2  
UF2  
reserved  
OSCTRAIN_  
SEL  
CK_CAL_  
RST  
reserved  
reserved  
CK_CAL_EN  
$23 to  
$3C  
reserved  
$3D  
$3E  
$3F  
SPI_CFG  
UF2  
UF2  
UF2  
reserved  
DATASIZE  
SPI_CRC_LEN[1:0]  
SPICRCSEED[3:0]  
WHO_AM_I  
I2C_ADDRESS  
WHO_AM_I[7:0]  
I2C_ADDRESS[7:0]  
Sensor specific information  
$40  
$41  
$42  
$43  
$44  
DSP_CFG_U1  
DSP_CFG_U2  
DSP_CFG_U3  
DSP_CFG_U4  
DSP_CFG_U5  
UF2  
UF2  
UF2  
UF2  
UF2  
LPF[3:0]  
reserved  
reserved  
reserved  
USER_RANGE[1:0]  
reserved  
reserved  
reserved  
reserved  
reserved  
A_OUT  
INT_OUT  
reserved  
reserved  
reserved  
reserved  
reserved  
ST_CTRL[3:0]  
reserved  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
28 / 72  
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Address Register  
Type[1]  
Bit  
7
6
5
4
3
2
1
0
$45  
INT_CFG  
UF2  
reserved  
INT_PS[1:0]  
INT_  
reserved  
POLARITY  
$46  
$47  
$48  
$49  
$4A  
$4B  
$4C  
$4D  
$4E  
P_INT_HI_L  
P_INT_HI_H  
P_INT_LO_L  
P_INT_LO_H  
reserved  
UF2  
UF2  
UF2  
UF2  
UF2  
UF2  
P_INT_HI_L[7:0]  
P_INT_HI_H[15:8]  
P_INT_LO_L[7:0]  
P_INT_LO_H[15:8]  
reserved  
reserved  
reserved  
P_CAL_ZERO_L UF2  
P_CAL_ZERO_H UF2  
P_CAL_ZERO_L[7:0]  
P_CAL_ZERO_H[15:8]  
reserved  
reserved  
reserved  
UF2  
UF2  
$4F to  
$5E  
reserved  
$5F  
$60  
CRC_UF2  
F
LOCK_UF2  
reserved  
0
0
0
CRC_UF2[3:0]  
ST_ACTIVE CM_ERROR ST_ERROR  
DSP_STAT  
R
PABS_HIGH PABS_LOW  
reserved  
ST_  
INCMPLT  
$61  
DEVSTAT_  
COPY  
R
DSP_ERR  
reserved  
COMM_ERR MEMTEMP_  
ERR  
SUPPLY_  
ERR  
TESTMODE  
DEVRES  
DEVINT  
$62  
$63  
$64  
$65  
$66  
SNSDATA0_L  
SNSDATA0_H  
SNSDATA1_L  
SNSDATA1_H  
R
R
R
R
R
SNSDATA0_L[7:0]  
SNSDATA0_H[15:8]  
SNSDATA1_L[7:0]  
SNSDATA1_H[15:8]  
SNSDATA0_TIME[7:0]  
SNSDATA0_  
TIME0  
$67  
$68  
$69  
$6A  
$6B  
SNSDATA0_  
TIME1  
R
R
R
R
R
SNSDATA0_TIME[15:8]  
SNSDATA0_TIME[23:16]  
SNSDATA0_TIME[31:24]  
SNSDATA0_TIME[39:32]  
SNSDATA0_TIME[47:40]  
SNSDATA0_  
TIME2  
SNSDATA0_  
TIME3  
SNSDATA0_  
TIME4  
SNSDATA0_  
TIME5  
$6C  
$6D  
$6E  
$6F  
P_MAX_L  
P_MAX_H  
P_MIN_L  
P_MIN_H  
reserved  
R
R
R
R
R
P_MAX[7:0]  
P_MAX[15:8]  
P_MIN[7:0]  
P_MIN[15:8]  
reserved  
$70 to  
$77  
$78  
$79  
$7A  
$7B  
$7C  
$7D  
FRT0  
FRT1  
FRT2  
FRT3  
FRT4  
FRT5  
reserved  
R
R
R
R
R
R
R
FRT[7:0]  
FRT[15:8]  
FRT[23:16]  
FRT[31:24]  
FRT[39:32]  
FRT[47:40]  
reserved  
$7E to  
$9F  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
29 / 72  
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Address Register  
Type[1]  
Bit  
7
6
5
4
3
2
1
0
Sensor Specific Information - User Readable Registers with OTP  
$A0  
DSP_CFG_F  
reserved  
F
F
DEV_RANGE[3:0]  
reserved  
reserved  
reserved  
reserved  
$A1 to  
$AE  
reserved  
$AF  
CRC_F_A  
reserved  
F
F
LOCK_F_A  
LOCK_F_B  
REGA_BLOCKID[2:0]  
CRC_F_A[3:0]  
$B0 to  
$BE  
reserved  
$BF  
CRC_F_B  
F
REGB_BLOCKID[2:0]  
CRC_F_B[3:0]  
Traceability Information  
$C0  
$C1  
$C2  
$C3  
$C4  
$C5  
$C6  
$C7  
$C8  
$C9  
$CA  
$CB  
$CC  
$CD  
$CE  
$CF  
$D0  
$D1  
$D2  
$D3  
$D4  
$D5  
ICTYPEID  
ICREVID  
ICMFGID  
reserved  
PN0  
F
ICTYPEID[7:0]  
ICREVID[7:0]  
ICMFGID[7:0]  
reserved  
F
F
F
F
PN0[7:0]  
PN1  
F
PN1[7:0]  
SN0  
F
SN[7:0]  
SN1  
F
SN[15:8]  
SN2  
F
SN[23:16]  
SN3  
F
SN[31:24]  
SN4  
F
SN[39:32]  
ASICWFR#  
ASICWFR_X  
ASICWFR_Y  
reserved  
CRC_F_C  
ASICWLOT_L  
ASICWLOT_H  
reserved  
reserved  
reserved  
reserved  
reserved  
F
ASICWFR#[7:0]  
ASICWFR_X[7:0]  
ASICWFR_Y[7:0]  
reserved  
F
F
F
F
LOCK_F_C  
REGC_BLOCKID[2:0]  
CRC_F_C[3:0]  
F
ASICWLOT_L[7:0]  
ASICWLOT_H[7:0]  
reserved  
F
F
reserved  
reserved  
reserved  
$D6 to  
$DE  
reserved  
$DF  
$E0  
$E1  
$E2  
$E3  
$E4  
$E5  
$E6  
$E7  
$E8  
$E9  
$EA  
$EB  
CRC_F_D  
F
LOCK_F_D  
REGD_BLOCKID[2:0]  
CRC_F_D[3:0]  
USERDATA_0  
USERDATA_1  
USERDATA_2  
USERDATA_3  
USERDATA_4  
USERDATA_5  
USERDATA_6  
USERDATA_7  
USERDATA_8  
USERDATA_9  
USERDATA_A  
USERDATA_B  
UF2  
UF2  
UF2  
UF2  
UF2  
UF2  
UF2  
UF2  
UF2  
UF2  
UF2  
UF2  
USERDATA_0[7:0]  
USERDATA_1[7:0]  
USERDATA_2[7:0]  
USERDATA_3[7:0]  
USERDATA_4[7:0]  
USERDATA_5[7:0]  
USERDATA_6[7:0]  
USERDATA_7[7:0]  
USERDATA_8[7:0]  
USERDATA_9[7:0]  
USERDATA_A[7:0]  
USERDATA_B[7:0]  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
30 / 72  
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Address Register  
Type[1]  
Bit  
7
6
5
4
3
2
1
0
$EC  
$ED  
$EE  
$EF  
$F0  
$F1  
$F2  
$F3  
$F4  
$F5  
$F6  
$F7  
$F8  
$F9  
$FA  
$FB  
$FC  
$FD  
$FE  
$FF  
USERDATA_C  
UF2  
UF2  
UF2  
F
USERDATA_C[7:0]  
USERDATA_D[7:0]  
USERDATA_E[7:0]  
USERDATA_D  
USERDATA_E  
CRC_UF0  
LOCK_UF0  
REGE_BLOCKID[2:0]  
CRC_UF0[3:0]  
USERDATA_10  
USERDATA_11  
USERDATA_12  
USERDATA_13  
USERDATA_14  
USERDATA_15  
USERDATA_16  
USERDATA_17  
USERDATA_18  
USERDATA_19  
USERDATA_1A  
USERDATA_1B  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
UF1  
USERDATA_10[7:0]  
USERDATA_11[7:0]  
USERDATA_12[7:0]  
USERDATA_13[7:0]  
USERDATA_14[7:0]  
USERDATA_15[7:0]  
USERDATA_16[7:0]  
USERDATA_17[7:0]  
USERDATA_18[7:0]  
USERDATA_19[7:0]  
USERDATA_1A[7:0]  
USERDATA_1B[7:0]  
USERDATA_1C[7:0]  
USERDATA_1D[7:0]  
USERDATA_1E[7:0]  
USERDATA_1C UF1  
USERDATA_1D UF1  
USERDATA_1E  
CRC_UF1  
UF1  
F
LOCK_UF1  
REGF_BLOCKID[2:0]  
CRC_UF1[3:0]  
[1] Memory type codes  
R — Readable register with no OTP  
F — User readable register with OTP  
UF2 — One time user programmable OTP location region 2  
7.7 Register information  
7.7.1 COUNT - rolling counter register (address 00h)  
The count register is a read-only register that provides the current value of a free-running  
8-bit counter derived from the primary oscillator. A 10-bit prescaler divides the primary  
oscillator frequency by 1000. Thus, the value in the register increases by one count every  
100 μs and the counter rolls over every 25.6 ms.  
Table 33.ꢀCOUNT - rolling counter register (address 00h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
COUNT[7:0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
7.7.2 Device status registers  
The device status registers are read-only registers that contain device status information.  
These registers are readable in SPI or I2C mode.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
31 / 72  
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.7.2.1 DEVSTAT - device status register (address 01h)  
Table 34.ꢀDEVSTAT - device status register (address 01h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
DSP_ERR  
reserved  
COMM_ MEMTEMP_ SUPPLY_  
TEST  
DEVRES  
DEVINIT  
ERR  
ERR  
ERR  
MODE  
Reset  
1
reserved  
R
0
0
x
0
1
1
Access  
R
R
R
R
R
R
R
Table 35.ꢀDEVSTAT - device status register (address 01h) bit description  
Bit  
Symbol  
Description  
7
DSP_ERR  
The DSP error flag is set if a DSP-specific error is present in the pressure signal DSP:  
DSP_ERR = DSP_STAT[PABS_HIGH] | DSP_STAT[PABS_LOW] | DSP_STAT[ST_  
INCMPLT] | DSP_STAT[CM_ERROR] | DSP_STAT[ST_ERROR]  
5
4
COMM_ERR  
The communication error flag is set if any bit in DEVSTAT3 is set:  
COMM_ERR = MISO_ERR  
MEMTEMP_ERR  
The memory error flag is set if any bit in DEVSTAT2 is set:  
MEMTEMP_ERR = F_OTP_ERR | U_OTP_ERR | U_RW_ERR | U_W_ACTIVE |  
TEMP0_ERR  
3
2
SUPPLY_ERR  
TESTMODE  
The supply error flag is set if any bit in DEVSTAT1 is set:  
SUPPLY_ERR = VCCUV_ERR | VCCOV_ER | INTREG_ERR | INTREGA_ERR |  
INTREGF_ERR  
The test mode bit is set if the device is in test mode. The TESTMODE bit can be cleared by  
a test mode operation or by a power cycle.  
0 — Test mode is not active  
1 — Test mode is active  
1
0
DEVRES  
DEVINIT  
The device reset bit is set following a device reset. This error is cleared by a read of the  
DEVSTAT register through any communication interface or on a data transmission that  
includes the error in the status field.  
0 — Normal operation  
1 — Device reset occurred  
The device initialization bit is set following a device reset. The bit is cleared once sensor data  
is valid for read through one of the device communication interfaces (tPOR_DataValid).  
0 — Normal operation  
1 — Device initialization in process  
7.7.2.2 DEVSTAT1 - device status register (address 02h)  
Table 36.ꢀDEVSTAT1 - device status register (address 02h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
VCCUV_  
ERR  
reserved  
VCCOV_  
ERR  
reserved  
INTREGA_  
ERR  
INTREG_  
ERR  
INTREGF_ CONT_ERR  
ERR  
Reset  
x
x
x
x
x
x
x
0
Access  
R
R
R
R
R
R
R
R
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
32 / 72  
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 37.ꢀDEVSTAT1 - device status register (address 02h) bit description  
Bit  
Symbol  
Description  
7
VCCUV_ERR  
The VCC undervoltage error bit is set if the VCC voltage falls below the voltage specified in  
Table 101. See Section 7.1 for details on the VCC undervoltage monitor. This bit is cleared  
once sensor data is valid for read through one of the device communication interfaces  
(tPOR_DataValid).  
0 — No error detected  
1 — VCC voltage low  
5
VCCOV_ERR  
The VCC overvoltage error bit is set if the VCC voltage rises above the voltage specified in  
Table 101. See Section 7.1 for details on the VCC overvoltage monitor. A common timer is  
used for all error bits in the DEVSTAT1 register. If any supply error is present, the timer is  
reset to tUVOV_RCV. This bit is cleared once sensor data is valid for read through one of the  
device communication interfaces (tPOR_DataValid).  
0 — No error detected  
1 — VCC voltage high  
3
2
1
0
INTREGA_ERR  
INTREG_ERR  
INTREGF_ERR  
CONT_ERR  
The internal analog regulator voltage out-of-range error bit is set if the internal analog  
regulator voltage falls outside of expected limits. This bit is cleared once sensor data is valid  
for read through one of the device communication interfaces (tPOR_DataValid).  
0 — No error detected  
1 — Internal analog regulator voltage out of range  
The internal digital regulator voltage out-of-range error bit is set if the internal digital regulator  
voltage falls outside of expected limits. This bit is cleared once sensor data is valid for read  
through one of the device communication interfaces (tPOR_DataValid).  
0 — No error detected  
1 — Internal digital regulator voltage out of range  
The internal OTP regulator voltage out-of-range error bit is set if the internal OTP regulator  
voltage falls outside of expected limits. This bit is cleared once sensor data is valid for read  
through one of the device communication interfaces (tPOR_DataValid).  
0 — No error detected  
1 — Internal OTP regulator voltage out of range  
The continuity monitor passes a low current through a connection around the perimeter of  
the device and monitors the continuity of the connection. The error bit is set if a discontinuity  
is detected in the connection. A common timer is used for all error bits in the DEVSTAT1  
register. If any supply error is present, the timer is reset to tUVOV_RCV. This bit is cleared  
based on the state of the SUP_ERR_DIS bit in the DEVLOCK_WR register as shown in  
Section 7.7.4.  
0 — No error detected  
1 — Error detected in the continuity of the edge seal monitor circuit  
7.7.2.3 DEVSTAT2 - device status register (address 03h)  
Table 38.ꢀDEVSTAT2 - device status register (address 03h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
F_OTP_  
ERR  
U_OTP_  
ERR  
U_RW_ERR  
U_W_  
ACTIVE  
reserved  
TEMP0_  
ERR  
reserved  
reserved  
Reset  
0
0
0
0
reserved  
R
0
reserved  
R
reserved  
R
Access  
R
R
R
R
R
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
33 / 72  
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 39.ꢀDEVSTAT2 - device status register (address 03h) bit description  
Bit  
Symbol  
Description  
7
F_OTP_ERR  
The NXP factory OTP array error bit is set if a fault is detected in the factory OTP array.  
This error is cleared by a read of the DEVSTAT2 register through any communication  
interface or on a data transmission that includes the error in the status field.  
0 — No error detected  
1 — Error detected in the NXP factory OTP array  
6
5
U_OTP_ERR  
U_RW_ERR  
The user OTP array error bit is set if a fault is detected in the user OTP array. This error is  
cleared by a read of the DEVSTAT2 register through any communication interface or on a  
data transmission that includes the error in the status field.  
0 — No error detected  
1 — Error detected in the user OTP array  
When ENDINIT is set, an error detection is enabled for all user writable registers. The  
error detection code is continuously calculated on the user writable registers and verified  
against a previously calculated error detection code. If a mismatch is detected in the error  
detection, the U_RW_ERR bit is set. This error is cleared by a read of the DEVSTAT2  
register through any communication interface or on a data transmission that includes the  
error in the status field.  
0 — No error detected  
1 — Error detected in the user read/write array  
4
2
U_W_ACTIVE  
TEMP0_ERR  
The user OTP write in process status bit is set if a user initiated write to OTP is currently  
in process. The U_W_ACTIVE bit is automatically cleared once the write to OTP is  
complete.  
0 — No OTP write in process  
1 — OTP write in process  
The temperature error bit is set if an overtemperature or undertemperature condition  
exists. This error is cleared by a read of the DEVSTAT2 register through any  
communication interface or on a data transmission that includes the error in the status  
field.  
0 — No error detected  
1 — Overtemperature or undertemperature error condition detected  
7.7.2.4 DEVSTAT3 - device status register (address 04h)  
Table 40.ꢀDEVSTAT3 - device status register (address 04h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol MISO_ERR OSCTRAIN_  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
ERR  
Reset  
0
0
reserved  
R
reserved  
R
reserved  
R
reserved  
R
reserved  
R
reserved  
R
Access  
R
R
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
34 / 72  
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 41.ꢀDEVSTAT3 - device status register (address 04h) bit description  
Bit  
Symbol  
Description  
7
MISO_ERR  
In SPI mode, the MISO data mismatch flag is set when a MISO Data mismatch fault  
occurs. The MISO_ERROR bit is cleared by a read of the DEVSTAT3 register through any  
communication interface, or by a status transmission including the error status through the  
SPI.  
0 — No error detected  
1 — MISO data mismatch  
6
OSCTRAIN_ERR  
The oscillator training error bit is set if an error detected in either the oscillator training  
settings, or the master communication timing. Once the error condition is corrected, the  
OSCTRAIN_ERR bit is cleared after a read of the OSCTRAIN_ERR bit through any  
communication interface, or by a status transmission including the error status through any  
communication interface.  
0 — No error detected  
1 — Oscillator training error  
7.7.3 TEMPERATURE - temperature register (address 0Eh)  
The temperature register is a read-only register that provides a temperature value for the  
IC. The temperature value is specified in the temperature sensor signal chain section of  
Table 101.  
Note: The device is only guaranteed to operate within the temperature limits specified in  
Section 10 "Static characteristics ".  
Table 42.ꢀTEMPERATURE - temperature register (address 0Eh) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
TEMP[7:0]  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
7.7.4 DEVLOCK_WR - lock register writes register (address 10h)  
The lock register writes register is a read/write register that contains the ENDINIT bit and  
reset control bits.  
Table 43.ꢀDEVLOCK_WR - lock register writes register (address 10h) bit allocation  
Bit  
7
ENDINIT  
0
6
reserved  
0
5
reserved  
0
4
reserved  
0
3
2
reserved  
0
1
0
Symbol  
Factory default  
Access  
SUP_ERR_DIS  
RESET[1:0]  
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
35 / 72  
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 44.ꢀDEVLOCK_WR - lock register writes register (address 10h) bit description  
Bit  
Symbol  
Description  
7
ENDINIT  
The ENDINIT bit is a control bit used to indicate that the user has completed all device and  
system level initialization tests. Once the ENDINIT bit is set, writes to all writable register bits  
are inhibited except for the DEVLOCK_WR register. Once set, the ENDINIT bit can only be  
cleared by a device reset.  
When ENDINIT is set, the following occurs:  
An error detection is enabled for all user writable registers. The error detection code is  
continuously calculated on the user writable registers and verified against a previously  
calculated error detection code.  
Self-test is disabled and inhibited.  
Register writes are inhibited with the exception of the RESET[1:0] bits in the DEVLOCK_WR  
register.  
3
SUP_ERR_DIS  
The supply error disable bit allows the user to disable reporting of the supply errors in the SPI  
status fields.  
1 to 0 RESET[1:0]  
To reset the device, three consecutive register write operations must be performed in the  
order shown in Table 45, or the device will not reset.  
The response to a register write returns the new register value, including the values written  
to the RESET[1:0] bits. After the third register write command, the device initiates a reset  
and thus does not transmit an acknowledge. The response to a register read returns '00' for  
RESET[1:0] and terminates the reset sequence. The reset control bits are not included in the  
read/write array error detection.  
Table 45.ꢀDevice reset command sequence  
Register write to DEVLOCK_WR  
Register write 1  
RESET[0]  
RESET[1]  
Effect  
0
1
0
0
1
1
No effect  
No effect  
Device RESET  
Register write 2  
Register write 3  
7.7.5 UF_REGION_W, UF_REGION_R - UF region selection registers (address  
14h, 15h)  
The UF region load register is a user read/write register that contains the control bits for  
the UF0 and UF1 regions to be accessed. This register is included in the user read/write  
array error detection. The UF region active register is a read-only register that contains  
the status bits for the UF0 and UF1 regions to be accessed. This register is included in  
the user read/write array error detection.  
The UF_REGION_W register is readable and writable in SPI mode or I2C mode. The  
UF_REGION_R register is readable in SPI mode or I2C mode.  
Table 46.ꢀUF_REGION_W - UF region selection register (address 14h) bit allocation  
Bit  
7
6
5
4
3
2
0
1
0
0
0
Symbol  
Factory default  
Access  
REGION_LOAD[3:0]  
0
1
1
1
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
36 / 72  
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 47.ꢀUF_REGION_R - UF region selection register (address 15h) bit allocation  
Bit  
7
6
5
4
3
2
0
1
0
0
0
Symbol  
Factory default  
Access  
REGION_ACTIVE[3:0]  
0
1
1
1
0
0
0
0
0
R
R
R
R
R
R
R
R
The user OTP regions UF0, UF1, and F share a block of 16 registers. Prior to reading the  
registers via any communication interface, the user must ensure that the desired OTP  
registers are loaded into the readable registers. Below is the necessary procedure to  
ensure proper reading of the UF0, UF1, and F registers.  
1. Write the desired address range to be read to the REGION_LOAD[3:0] bits in the  
UF_REGION_W register using one of the communication interfaces available via the  
COMMTYPE register.  
Table 48.ꢀREGION_LOAD Bit Definitions  
REGION_LOAD[3:0]  
OTP register addresses loaded into the readable registers  
not applicable  
0
0
0
0
0
0
0
1
not applicable  
0010 through 1001  
reserved  
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
Address Range $A0 through $AF  
Address Range $B0 through $BF  
Address Range $C0 through $CF  
Address Range $D0 through $DF  
Address Range $E0 through $EF  
Address Range $F0 through $FF  
2. Add a delay (Refer to appropriate Application Note for specific communication  
protocol for delay values)  
3. Optional: Execute a register read of the UF_REGION_R register and confirm the  
REGION_ACTIVE[3:0] bits match the values written to the REGION_LOAD[3:0] bits in  
the UF_REGION_W register.  
Table 49.ꢀREGION_ACTIVE Bit Definitions  
REGION_ACTIVE[3:0]  
OTP register addresses loaded into the readable registers  
0
0
0
0
0
0
0
1
Load of OTP registers is in process  
The contents of the shared registers has been over-written by  
the user  
0010 through 1001  
not applicable  
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
Address Range $A0 through $AF  
Address Range $B0 through $BF  
Address Range $C0 through $CF  
Address Range $D0 through $DF  
Address Range $E0 through $EF  
Address Range $F0 through $FF  
4. Execute a Register Read of the desired registers from the UF0, UF1 or F register  
section. Complete all desired Register Reads of the selected UF Region.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
37 / 72  
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
5. Repeat steps 1 through 4 for the next desired UF region to read.  
Notes:  
The user must take care to ensure that the desired registers are addressed. For  
example, if the REGION_LOAD bits are set to Ah and the user executes a read of  
address $C2, the contents of registers $A2 will be transmitted. No error detection is  
included other than a read of the REGION_ACTIVE bits.  
For COMMTYPE options with multiple protocol options (COMMTYPE = '000' or '001'),  
no error detection is included other than a read of the REGION_ACTIVE bits. The user  
must take care to ensure that the REGION_LOAD bits are not inadvertently changed  
by an alternative protocol while executing register reads.  
In SPI and I2C modes, once the ENDINIT bit is set, writes to registers other than the  
RESET[1:0] bits are inhibited. For this reason, reads of the UF0, UF1, and F registers  
will only be possible for the region selected by the REGION_ACTIVE bits at the time  
ENDINIT is set.  
7.7.6 COMMTYPE - communication type register (address 16h)  
When writing to this register, care must be taken to prevent from inadvertently disabling  
the desired communication mode. Communication mode register value changes, that  
disable a protocol, including writes to OTP, will not take effect until a device reset occurs  
to prevent disabling a necessary communication method.  
Table 50.ꢀCOMMTYPE - communication type register (address 16h) bit allocation  
Bit  
7
reserved  
R/W  
6
reserved  
R/W  
5
reserved  
R/W  
4
reserved  
R/W  
3
reserved  
R/W  
2
1
0
Symbol  
Access  
Reset  
COMMTYPE[2:0]  
R/W  
0
R/W  
0
R/W  
0
0
0
0
0
0
Table 51.ꢀCOMMTYPE - communication type register (address 16h) bit description  
Bit  
Symbol  
Description  
2 to 0  
COMMTYPE[2:0}  
Communication protocol selection  
000  
001  
010  
011  
100  
101  
110  
111  
32-bit SPI (no internal self-test, debug mode)  
32-bit SPI (with startup internal self-test)  
32-bit SPI (no internal self-test, debug mode)  
reserved  
32-bit SPI (no internal self-test, debug mode)  
reserved  
I2C (pin 3 acts as an Interrupt)  
I2C (pin 3 acts as an interrupt)  
7.7.7 SOURCEID_x - source identification registers (address 1Ah, 1Bh)  
The source identification registers are user programmed read/write registers that contain  
the source identification information used in SPI Mode. These registers are included in  
the read/write array error detection. These registers are readable and writable in SPI  
mode or I2C mode.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
38 / 72  
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 52.ꢀSOURCEID_0 - source identification register (address 1Ah) bit allocation  
Bit  
7
SID0_EN  
0
6
reserved  
0
5
reserved  
0
4
reserved  
0
3
2
1
0
Symbol  
Factory default  
Access  
SOURCEID_0[3:0]  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 53.ꢀSOURCEID_1 - source identification register (address 1Bh) bit allocation  
Bit  
7
SID1_EN  
0
6
reserved  
0
5
reserved  
0
4
reserved  
0
3
2
1
0
Symbol  
Factory default  
Access  
SOURCEID_1[3:0]  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7.7.8 TIMING_CFG - communication timing register (address 22h)  
The communication timing configuration register is a user programmed read/write  
register that contains user-specific configuration information for protocol timing. This  
register is included in the read/write array error detection. This register is readable and  
writable in SPI mode or I2C mode.  
Table 54.ꢀTIMING_CFG - communication timing register (address 22h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
reserved  
OSCTRAIN_  
SEL  
CK_CAL_  
RST  
reserved  
reserved  
CK_CAL_EN  
Factory default  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7.7.9 SPI Configuration Control Register (SPI_CFG, Address 3Dh)  
In SPI mode, the SPI configuration control register is a user programmed read/write  
register that contains the SPI protocol configuration information. This register is included  
in the read/write array error detection. This register is readable and writable in SPI mode  
or I2C mode  
Table 55.ꢀSPI_CFG Register (address 3Dh) bit allocation  
Bit  
7
reserved  
0
6
DATASIZE  
0
5
4
3
2
1
0
Symbol  
Factory default  
Access  
SPI_CRC_LEN[1:0]  
SPICRCSEED[3:0]  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7.7.9.1 SPI Data Field Size (DATASIZE)  
The SPI data field size bit controls the size of the SPI data field as shown in Table 56.  
Table 56.ꢀDATASIZE Bit Definition  
DATASIZE  
SPI Data Field Size  
12-Bits  
0
1
16-Bits  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
39 / 72  
 
 
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.7.9.2 SPI CRC Length and Seed Bits  
The SPI_CRC_LEN[1:0] bits select the CRC length for SPI Mode as shown in the table  
below. The SPI CRC seed bits contain the seed used for the SPI Mode. The default SPI  
CRC is an 8-bit. When the SPI_CRC_LEN[1:0] bits are set to a non-zero value using  
a Register Write command, the SPI CRC changes as defined in the table. The new  
polynomial value is enabled for both MISO and MOSI on the next SPI Mode command.  
The default seed (SPICRCSEED[3:0] = 0h) is FFh for an 8-bit CRC. When the value  
is changed to a non-zero value using a Register Write command, the SPI CRC seed  
changes to the value programmed as shown in the table. The new seed value is enabled  
for both MISO and MOSI on the next SPI Mode command.  
Table 57.ꢀSPI CRC Definition  
SPI_CRC_LEN[1:0]  
SPICRCSEED  
CRC Polynomial  
x8 + x5 + x3 + x2 + x + 1  
x8 + x5 + x3 + x2 + x + 1  
x4 + 1  
CRC Seed  
1111, 1111  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
non-zero  
0
0000, SPICRCSEED[3:0]  
1010  
non-zero  
0
x4 + 1  
SPICRCSEED[3:0]  
111  
x3 + x + 1  
non-zero  
0
x3 + x + 1  
SPICRCSEED[2:0]  
111  
x3 + x + 1  
non-zero  
x3 + x + 1  
SPICRCSEED[2:0]  
7.7.10 WHO_AM_I - who am I register (address 3Eh)  
The WHO_AM_I register is a user programmed read/write register that contains the  
unique product identifier. This register is included in the read/write array error detection.  
Table 58.ꢀWHO_AM_I - device identification register (address 3Eh) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
WHO_AM_I[7:0]  
Factory default (stored value)  
Factory default (read value)  
Access  
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The default register value is 00h. If the register value is 00h, a value of C4h is transmitted  
in response to a read command. For all other register values, the actual register value is  
transmitted in response to a read command.  
Table 59.ꢀWHO_AM_I register values  
WHO_AM_I register value (hex)  
Response to a register read command  
00h  
C4h  
01h to FFh  
Actual register value  
7.7.11 I2C_ADDRESS - I2C slave address register (address 3Fh)  
The I2C slave address register is a user programmed read/write register that contains the  
unique I2C slave address. The register is readable in all modes. This register is included  
in the read/write array error detection.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
40 / 72  
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 60.ꢀI2C_ADDRESS - I2C slave address register (address 3Fh) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
I2C_ADDRESS[7:0]  
Factory Default (stored value)  
Factory Default (read value)  
Access  
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The default register value is 00h. If the register value is 00h, the I2C slave address is  
60h and a value of 60h is transmitted in response to a read command. If the register is  
written to a value other than 00h, the I2C slave address is the lower seven bits of the  
actual register value and the actual register value is transmitted in response to a read  
command.  
7.7.12 DSP Configuration Registers (DSP_CFG_Ux)  
The DSP Configuration registers (DSP_CFG_Ux) are a series of registers that affect the  
DSP data path.  
There are 5 DSP Configuration registers, however, only DSP_CFG_U1, DSP_CFG_U4  
and DSP_CFG_U5 are used when the device is in SPI or I2C mode. The DSP_CFG_U2  
and DSP_CFG_U3 registers are for factory use only and are used for internal tests.  
7.7.12.1 Self-test control bits  
The self-test control bits select one of the various analog and digital self-test features of  
the device as shown in the table below. The self-test control bits are not included in the  
read/write array error detection.  
Table 61.ꢀSelf-Test Control Bits (ST_CTRL[3:0])  
ST_  
ST_  
ST_  
ST_  
Function  
SNS_DATAx_X Contents (16-bit data)  
CTRL[3]  
CTRL[2]  
CTRL[1]  
CTRL[0]  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Normal Pressure Signal  
16-bit Absolute Pressure Data  
16-bit Absolute Pressure Data  
reserved  
P-Cell Common Mode Verification  
reserved  
reserved  
DSP write to SNS_DATAx_X registers inhibited.  
DSP write to SNS_DATAx_X registers inhibited.  
DSP write to SNS_DATAx_X registers inhibited.  
DSP write to SNS_DATAx_X registers inhibited.  
reserved  
reserved  
0000h  
AAAAh  
5555h  
FFFFh  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
Digital Self-Test 0  
Digital Self-Test Output  
Digital Self-Test Output  
Digital Self-Test Output  
Digital Self-Test Output  
Digital Self-Test 1  
Digital Self-Test 2  
Digital Self-Test 3  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
41 / 72  
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.7.12.2 DSP_CFG_U1 - DSP user configuration #1 register (address 40h)  
The DSP user configuration register #1 is a user programmable read/write register that  
contains DSP-specific configuration information. This register is included in the read/write  
array error detection.  
Changes to this register reset the DSP data path. The contents of the SNSDATA_x  
registers are not guaranteed until the DSP has completed initialization as specified in  
Table 102. Reads of the SNSDATA_x registers and sensor data requests should be  
prevented during this time.  
Table 62.ꢀDSP_CFG_U1 - DSP user configuration #1 register (address 40h) bit allocation  
Bit  
7
6
5
4
3
reserved  
0
2
reserved  
0
1
0
Symbol  
Factory default  
Access  
LPF[3:0]  
USER_RANGE[1]  
USER_RANGE[0]  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 63.ꢀLow-pass filter selection bits (LPF[3:0])  
LPF[3]  
LPF[2]  
LPF[1]  
LPF[0]  
Low Pass Filter Type  
0
0
0
0
0
0
0
1
1
0
0
0
1
1
1
1
0
x
0
0
1
0
0
1
1
0
x
0
1
0
0
1
0
1
0
x
370 Hz, 2-Pole  
400 Hz, 3 Pole  
800 Hz, 4-Pole  
1000 Hz, 4-Pole  
reserved  
reserved  
reserved  
reserved  
reserved  
Table 64.ꢀUser range selection bits (USER_RANGE[1:0])  
USER_RANGE[1]  
USER_RANGE[0]  
Absolute Pressure Range  
Notes  
0
0
1
1
0
1
0
1
reserved  
reserved  
reserved  
reserved  
For Internal use Only  
For Internal use Only  
For Internal use Only  
For Internal use Only  
7.7.12.3 DSP_CFG_U4 - DSP user configuration #4 register (address 43h)  
The DSP user configuration register #4 is a user programmable read/write register that  
contains DSP-specific configuration information. This register is included in the read/write  
array error detection.  
Table 65.ꢀDSP_CFG_U4 - DSP user configuration #4 register (address 43h) bit allocation  
Bit  
7
reserved  
0
6
reserved  
0
5
reserved  
0
4
reserved  
0
3
reserved  
0
2
INT_OUT  
0
1
reserved  
0
0
reserved  
0
Symbol  
Reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
42 / 72  
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 66.ꢀDSP_CFG_U4 - DSP user configuration #4 register (address 43h) bit description  
Bit  
7 to 4  
2
Symbol  
reserved  
INT_OUT  
Description  
These bits are reserved.  
The interrupt pin configuration bit selects the mode of operation for the interrupt pin.  
0 — Open drain, active high with pull-down current  
1 — Open drain, active low with pullup current  
1 to 0  
reserved  
These bits are reserved.  
7.7.12.4 DSP_CFG_U5 - DSP user configuration #5 register (address 44h)  
The DSP user configuration register #5 is a read/write register that contains DSP-specific  
configuration information. This register is included in the read/write array error detection.  
Table 67.ꢀDSP_CFG_U5 - DSP user configuration #5 register (address 44h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Factory default  
Access  
ST_CTRL[3:0]  
reserved  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 68.ꢀDSP_CFG_U5 - DSP user configuration #5 register (address 44h) bit description  
Bit  
Symbol  
Description  
7 to 4  
ST_CTRL[3:0]  
The self-test control bits select one of the various analog and digital self-test features of the device as shown in  
Table 69. The self-test control bits are not included in the read/write array error detection.  
3 to 0  
reserved  
These bits are reserved.  
Table 69.ꢀSelf-test control bits  
ST_CTRL[3] ST_CTRL[2] ST_CTRL[1] ST_CTRL[0] Function  
SNS_DATAx_X contents  
16-bit data  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Normal pressure signal  
P-cell common mode verification  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
DSP write to SNS_DATAx_X registers inhibited. 0000h  
DSP write to SNS_DATAx_X registers inhibited. AAAAh  
DSP write to SNS_DATAx_X registers inhibited. 5555h  
DSP write to SNS_DATAx_X registers inhibited. FFFFh  
reserved  
reserved  
reserved  
reserved  
reserved  
8171h  
reserved  
reserved  
reserved  
Digital self-test 0  
Digital self-test 1  
Digital self-test 2  
Digital self-test 3  
6C95h  
807Ah  
78ACh  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
43 / 72  
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.7.13 INT_CFG - interrupt configuration register (address 45h)  
The interrupt configuration register contains configuration information for the interrupt  
output. This register can be written during initialization but is locked once the ENDINIT bit  
is set (see Section 7.7.4 "DEVLOCK_WR - lock register writes register (address 10h)").  
The register is included in the read/write array error detection.  
Table 70.ꢀINT_CFG - interrupt configuration register (address 45h) bit allocation  
Bit  
7
6
5
4
3
2
1
reserved  
0
0
Symbol  
Reset  
Access  
reserved  
INT_PS[1:0]  
INT_POLARITY  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 71.ꢀINT_CFG - interrupt configuration register (address 45h) bit description  
Bit  
Symbol  
Description  
5 to 4  
INT_PS[1:0]  
The INT_PS[1:0] bits set the programmable pulse stretch time for the interrupt output. Pulse stretch times are derived  
from the internal oscillator, so the tolerance on this oscillator applies.  
00 — 0 ms  
01 —16.000 ms to 16.512 ms  
10 — 64.000 ms to 64.512 ms  
11 — 256.000 ms to 256.512 ms  
If the pulse stretch function is programmed to '00', the interrupt pin is asserted if and only if the interrupt condition exists  
after the most recent evaluated sample. The interrupt pin is deasserted if and only if an interrupt condition does not  
exist after the most recent evaluated sample.  
If the pulse stretch function is programmed to a non-zero value, the interrupt pin is controlled only by the value of the  
pulse stretch timer value. If the pulse stretch timer value is non-zero, the interrupt pin is asserted. If the pulse stretch  
timer is zero, the interrupt pin is deasserted. The pulse stretch counter continuously decrements until it reaches zero.  
The pulse stretch counter is reset to the programmed pulse stretch value if and only if an interrupt condition exists after  
the most recent evaluated sample.  
3
INT_POLARITY  
The interrupt polarity bit controls whether the interrupt is activated for values within or outside of the window selected  
by the high and low threshold registers. With this bit and the programmable thresholds, a window comparator can be  
programmed for activation either within or outside of a window.  
0 — Interrupt activated, if the value is outside the window  
1 — Interrupt activated, if the value is inside the window  
7.7.14 P_INT_HI, P_INT_LO - interrupt window comparator threshold registers  
(address 46h to 49h)  
The interrupt threshold registers contain the high and low window comparator thresholds  
for pressure to be used to activate and deactivate the interrupt output. These registers  
can be written during initialization but are locked once the ENDINIT bit is set (see  
Section 7.7.4 "DEVLOCK_WR - lock register writes register (address 10h)"). The register  
is included in the read/write array error detection.  
Table 72.ꢀP_INT_HI, P_INT_LO - interrupt window comparator threshold registers (address 46h to 49h) bit allocation  
Location  
Address  
46h  
Bit  
Register  
8
7
6
5
4
3
2
1
0
PIN_INT_HI_L  
PIN_INT_HI_H  
PIN_INT_LO_L  
PIN_INT_LO_H  
PIN_INT_HI[7:0]  
PIN_INT_HI[15:8]  
PIN_INT_LO[7:0]  
PIN_INT_LO[15:8]  
0
47h  
48h  
49h  
Reset  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
44 / 72  
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
The pressure threshold registers hold independent unsigned 16-bit values for a high and  
a low threshold. The window comparator threshold alignment is shown in Section 7.3.4.4  
"Absolute pressure output data scaling equation".  
If either the high or low threshold is programmed to 0000h, comparisons are disabled for  
that threshold only. The interrupt comparison still functions for the opposite threshold.  
If both the high and low thresholds are programmed to 0000h, the interrupt output is  
disabled.  
7.7.15 P_CAL_ZERO - pressure calibration registers (address 4Ch, 4Dh)  
The pressure calibration registers contain user programmable values to adjust the offset  
of the absolute pressure.  
These registers can be written during initialization but are locked once the ENDINIT bit  
is set (see Section 7.7.4 "DEVLOCK_WR - lock register writes register (address 10h)").  
These registers are included in the read/write array error detection. Changes to these  
registers reset the DSP data path. The contents of the SNSDATA_x registers are not  
guaranteed until the DSP has completed initialization, as specified in Table 102. Reads  
of the SNSDATA_x registers and sensor data requests should be prevented during this  
time.  
Table 73.ꢀP_CAL_ZERO - pressure calibration registers (address 4Ch, 4Dh) bit allocation  
Location  
Address  
4Ch  
Bit  
Register  
7
6
5
4
3
2
1
0
P_CAL_ZERO_L  
P_CAL_ZERO_H  
P_CAL_ZERO[7:0]  
P_CAL_ZERO[15:8]  
4Dh  
Reset  
0
0
0
0
0
0
0
0
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
The P_CAL_ZERO register value is a signed 16-bit value that is directly added to the  
internally calibrated pressure signal value as shown in Equation 6. The equation applies  
to the values in the 16-bit SNSDATA registers.  
(6)  
Where:  
PABSkPa = The absolute pressure output in kPa  
PABSLSB = The internal trimmed absolute pressure output in LSB  
PABSOFFLSB = The internal trimmed absolute pressure output value at 0 kPa in LSB  
PABSSENSE = The trimmed absolute pressure sensitivity in LSB/kPa  
UserOffset = The 16-bit signed value programmed into the P_CAL_ZERO register  
Note: The pressure calibration registers enable range and resolution options beyond the  
specified values of the device. The user must take care to ensure that the value stored in  
this register does not result in a compressed output range or a railed output.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
45 / 72  
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.7.16 DSP_STAT - DSP-specific status register (address 60h)  
The DSP status register is a read-only register that contains sensor data-specific status  
information.  
Table 74.ꢀDSP_STAT - DSP-specific status register (address 60h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Factory default  
Access  
reserved  
PABS_HIGH  
PABS_LOW  
reserved  
ST_INCMPLT  
ST_ACTIVE  
CM_ERROR  
ST_ERROR  
0
0
0
0
1
0
0
0
R
R
R
R
R
R
R
R
Table 75.ꢀDSP_STAT - DSP-specific status register (address 60h) bit description  
Bit  
Symbol  
Description  
6
PABS_HIGH  
The absolute pressure out-of-range high status bit is set if the absolute pressure exceeds the absolute pressure out-  
of-range high limit. The PABS_HIGH bit is cleared on a read of the DSP_STAT register through any communication  
interface or on a data transmission that includes the error in the status field.  
5
3
PABS_LOW  
The absolute pressure out-of-range low status bit is set if the absolute pressure exceeds the absolute pressure out-  
of-range low limit. The PABS_LOW bit is cleared on a read of the DSP_STAT register through any communication  
interface or on a data transmission that includes the error in the status field.  
ST_INCMPLT  
The self-test incomplete bit is set after a device reset and is only cleared when one of the analog or digital self-test  
modes is enabled in the ST_CTRL register (ST_CTRL[3] = '1' | ST_CTRL[2] = '1' | | ST_CTRL[1] =  
'1' | | ST_CTRL[0] = '1').  
0 — An analog or digital self-test has been activated since the last reset.  
1 — No analog or digital self-test has been activated since the last reset.  
2
ST_ACTIVE  
The self-test active bit is set if any self-test mode is currently active. The self-test active bit is cleared when no self-test  
mode is active.  
ST_ACTIVE= ST_CTRL[3] | ST_CTRL[2] | ST_CTRL[1] | ST_CTRL[0]  
1
0
CM_ERROR  
ST_ERROR  
The absolute pressure common mode error status bit is set if the common mode value of the analog front end exceeds  
predetermined limits. The CM_ERROR bit is cleared on a read of the DSP_STAT register through any communication  
interface or on a data transmission that includes the error in the status field.  
The self-test error flag is set if an internal self-test fails as described in Section 7.3.2. This bit can only be cleared by a  
device reset.  
7.7.17 DEVSTAT_COPY - device status copy register (address 61h)  
The device status copy register is a read-only register that contains a copy of the device  
status information contained in the DEVSTAT register. See Section 7.7.2.1 "DEVSTAT  
- device status register (address 01h)" for details regarding the DEVSTAT register  
contents. A read of the DEVSTAT_COPY register has the same effect as a read of the  
DEVSTAT register.  
Table 76.ꢀDEVSTAT_COPY - device status copy register (address 61h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
DSP_ERR  
reserved  
COMM_ERR  
MEMTEMP_ERR SUPPLY_ERR  
TESTMODE  
DEVRES  
DEVINIT  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
7.7.18 SNSDATA0_L, SNSDATA0_H - sensor data #0 registers (address 62h, 63h)  
The sensor data #0 registers are read-only registers that contain the 16-bit sensor  
data. See Section 7.3.4.4 "Absolute pressure output data scaling equation" for details  
regarding the 16-bit sensor data.  
The SNSDATA0_H register value is latched on a read of the SNSDATA0_L register  
value until the SNSDATA0_H register is read. To avoid data mismatch, the user is  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
46 / 72  
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
required to always read the registers in sequence, SNSDATA0_L register first, followed  
by the SNSDATA0_H register.  
Table 77.ꢀSNSDATA0_L, SNSDATA0_H - sensor data #0 registers (addresses 62h, 63h) bit allocation  
Location  
Address  
62h  
Bit  
Symbol  
7
6
5
4
3
2
1
0
SNSDATA0_L  
SNSDATA0_H  
SNSDATA0_L[7:0]  
SNSDATA0_H[15:8]  
63h  
Factory default  
Access  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
7.7.19 SNSDATA1_L, SNSDATA1_H - sensor data #1 registers (address 64h, 65h)  
The sensor data #1 registers are read-only registers that contain the 16-bit sensor  
data. See Section 7.3.4.4 "Absolute pressure output data scaling equation" for details  
regarding the 16-bit sensor data.  
The SNSDATA1_H register value is latched on a read of the SNSDATA1_L register  
value until the SNSDATA1_H register is read. To avoid data mismatch, the user is  
required to always read the registers in sequence, SNSDATA1_L register first, followed  
by the SNSDATA1_H register.  
Table 78.ꢀSNSDATA1_L, SNSDATA1_H - sensor data #1 registers (address 64h, 65h) bit allocation  
Location  
Address  
64h  
Bit  
Symbol  
7
6
5
4
3
2
1
0
SNSDATA1_L  
SNSDATA1_H  
SNSDATA1_L[7:0]  
SNSDATA1_H[15:8]  
65h  
Factory default  
Access  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
7.7.20 SNSDATA0_TIMEx - time stamp registers (address 66h to 6Bh)  
The sensor data 0 time stamp registers are read-only registers that contain a 48-bit time  
stamp.  
The value of the 48-bit free running timer register is copied to the sensor data 0 time  
stamp registers each time sensor data 0 data is latched for transmission. The time stamp  
is updated at the start of the sensor data 0 register value transmission for a register read  
of the SNSDATA0_L register.  
The time stamp register is organized to allow for optimized reading of the time stamp in  
I2C automatic sensor data register read wrap-around mode as documented in Table 8.  
The sensor data 0 time stamp registers are read-only registers that contain a 48-bit time  
stamp.  
The value of the 48-bit free running timer register is copied to the sensor data 0 time  
stamp registers each time sensor data 0 data is latched for transmission via SPI.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
47 / 72  
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 79.ꢀSNSDATA0_TIMEx - time stamp register (address 66h to 6Bh) bit allocation  
Location  
Address  
66h  
Bit  
Symbol  
7
6
5
4
3
2
1
0
SNSDATA0_TIME0  
SNSDATA0_TIME1  
SNSDATA0_TIME2  
SNSDATA0_TIME3  
SNSDATA0_TIME4  
SNSDATA0_TIME5  
SNSDATA0_TIME[7:0]  
SNSDATA0_TIME[15:8]  
SNSDATA0_TIME[23:16]  
SNSDATA0_TIME[31:24]  
SNSDATA0_TIME[39:32]  
SNSDATA0_TIME[47:40]  
67h  
68h  
69h  
6Ah  
6Bh  
Factory default  
Access  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
7.7.21 P_MAX, P_MIN - maximum and minimum absolute pressure value registers  
(address 6Ch to 6Fh)  
The minimum and maximum absolute pressure value registers are read-only registers  
that contain a sample-by-sample continuously updated minimum and maximum 16-  
bit absolute pressure value. The value is reset to 0000h on a write to a DSP_CFG_U1  
register that changes the value of the LPF[2:0] or ST_CTRL[3:0].  
These registers are readable in SPI mode or I2C mode. In I2C mode the P_xxx_H  
register value is latched on a read of the P_xxx_L register value until the P_xxx_H  
register is read. To avoid data mismatch, the user is required to always read the registers  
in sequence, P_xxx_L register first, followed by the P_xxx_H register.  
Table 80.ꢀP_Max and P_Min registers (address 6Ch to 6Fh) bit allocation  
Location  
Bit  
Address  
6Ch  
Symbol  
7
6
5
4
3
2
1
0
P_MAX_L  
P_MAX_H  
P_MIN_L  
P_MIN_H  
P_MAX[7:0]  
6Dh  
P_MAX[15:8]  
P_MIN[7:0]  
P_MIN[15:8]  
6Eh  
6Fh  
Factory default  
Access  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
7.7.22 FRT - free running timer registers (addresses 78h to 7Dh)  
The free running timer registers are read-only registers that contain a 48-bit free running  
timer. The free running timer is clocked by the main oscillator frequency and increments  
every 100 ns.  
Table 81.ꢀFRT - free running timer registers (addresses 78h to 7Dh) bit allocation  
Location  
Address  
78h  
Bit  
Symbol  
FRT0  
FRT1  
FRT2  
FRT3  
FRT4  
FRT5  
7
6
5
4
3
2
1
0
FRT[7:0]  
FRT[15:8]  
FRT[23:16]  
FRT[31:24]  
FRT[39:32]  
FRT[47:40]  
79h  
7Ah  
7Bh  
7Ch  
7Dh  
Access  
R
R
R
R
R
R
R
R
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
48 / 72  
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.7.23 DSP_CFG_F Register  
The DSP configuration register is a factory programmable OTP register that contains  
DSP-specific configuration information. This register is included in the factory  
programmed OTP array error detection. This register is readable in SPI mode or I2C  
mode when ENDINIT is not set.  
Table 82.ꢀRange Indication Bits (RANGE[3:0])  
RANGE[3]  
RANGE[2]  
RANGE[1]  
RANGE[0]  
Absolute Pressure Range (kPa)  
Rated Pressure Range  
reserved  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
7.7.24 IC type register (Address C0h)  
The IC type register is a factory programmable OTP register that contains the IC type  
as defined below. This register is included in the factory programmed OTP array error  
detection. This register is readable in SPI mode or I2C mode when ENDINIT is not set.  
Table 83.ꢀIC TYPE REGISTER (ICTYPEID address C0h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
ICTYPEID[7:0]  
0
0
0
0
0
0
1
0
R
R
R
R
R
R
R
R
7.7.25 IC manufacturer revision register (Address C1h)  
The IC manufacturer revision register is a factory programmable OTP register that  
contains the IC revision. The upper nibble contains the main IC revision. The lower nibble  
contains the sub IC revision. This register is included in the factory programmed OTP  
array error detection. This register is readable in SPI mode or I2C mode when ENDINIT is  
not set.  
Table 84.ꢀIC MANUFACTURER REVISION REGISTER (ICREVID address C1h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
ICREVID[7:0]  
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
49 / 72  
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.7.26 IC manufacturer identification register (address C2h)  
The IC manufacturer identification register is a factory programmable OTP register  
that identifies NXP as the IC manufacturer. This register is included in the factory  
programmed OTP array error detection. This register is readable in SPI mode or I2C  
mode when ENDINIT is not set.  
Table 85.ꢀIC MANUFACTURER IDENTIFICATION REGISTER (ICMFGID address C2h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
ICMFGID[7:0]  
0
0
0
0
0
0
1
0
R
R
R
R
R
R
R
R
7.7.27 Part number register (address C4h, C5h)  
The part number registers are factory programmed OTP registers that include the  
numeric portion of the device part number. These registers are included in the factory  
programmed OTP array error detection. These registers are readable in SPI mode or I2C  
mode when ENDINIT is not set.  
Table 86.ꢀPN0 Register (address C4h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
PN0[7:0]  
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
Table 87.ꢀPN1 Register (address C5h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
PN1[7:0]  
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
7.7.28 Device serial number registers  
The serial number registers are factory programmed OTP registers that include the  
unique serial number of the device. Serial numbers begin at 1 for all produced devices  
in each lot and are sequentially assigned. Lot numbers begin at 1 and are sequentially  
assigned. No lot will contain more devices than can be uniquely identified by the 14-bit  
serial number. Depending on lot size and quantities, all possible lot numbers and serial  
numbers might not be assigned. These registers are included in the factory programmed  
OTP array error detection. These registers are readable in SPI mode or I2C mode when  
ENDINIT is not set.  
Table 88.ꢀSN0 Register (address C6h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
SN[7:0]  
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
50 / 72  
 
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 89.ꢀSN1 Register (address C7h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
SN[7:0]  
SN[7:0]  
SN[7:0]  
SN[7:0]  
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
Table 90.ꢀSN2 Register (address C8h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
Table 91.ꢀSN3 Register (address C9h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
Table 92.ꢀSN4 Register (address CAh) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
7.7.29 ASIC wafer ID registers  
The ASIC wafer ID registers are factory programmed OTP registers that include the  
wafer number, wafer X and Y coordinates and the wafer lot number for the device ASIC.  
These registers are included in the factory programmed OTP array error detection. These  
registers are readable in SPI mode or I2C mode when ENDINIT is not set.  
Table 93.ꢀASICWFR# Register (address CBh) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
ASICWFR#[7:0]  
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
Table 94.ꢀASICWFR_X Register (address CCh) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
ASICWFR_X[7:0]  
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
51 / 72  
 
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 95.ꢀASICWFR_Y Register (address CDh) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
ASICWFR_Y[7:0]  
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
Table 96.ꢀASICWLOT_L Register (address D0h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
ASICWLOT_L[7:0]  
N/A N/A  
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
R
R
Table 97.ꢀASICWLOT_H Register (address D1h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
ASICWLOT_H[7:0]  
N/A N/A  
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
N/A  
R
R
R
7.7.30 USERDATA_0 to USERDATA_E - user data registers  
User data registers are user programmable OTP registers that contain user-specific  
information. These registers are included in the user programmed OTP array error  
detection. These registers are readable and writable in SPI mode or I2C mode when  
ENDINIT is not set.  
7.7.31 USERDATA_10 to USERDATA_1E - user data registers  
User data registers are user programmable OTP registers that contain user-specific  
information. These registers are included in the user programmed OTP array error  
detection. These registers are readable and writable in SPI mode or I2C mode when  
ENDINIT is not set.  
7.7.32 Lock and CRC Registers  
The lock and CRC Registers are automatically programmed OTP registers that include  
the lock bit, the block identifier, and the block OTP array CRC use for error detection.  
These registers are automatically programmed when the corresponding data array is  
programmed to OTP using the Write OTP Enable register.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
52 / 72  
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Table 98.ꢀLock and CRC Register bit definitions  
Location  
Bit  
Address  
$5F  
Register  
7
6
0
0
5
4
0
0
3
2
1
0
CRC_UF2  
LOCK_UF2  
0
CRC_UF2[3:0]  
Factory Default  
$AF  
0
0
0
0
0
0
CRC_F_A  
CRC_F_B  
CRC_F_C  
CRC_F_D  
CRC_F_E  
CRC_F_F  
LOCK_F_A  
REGA_BLOCKID[2:0]  
CRC_F_A[3:0]  
varies  
Factory Default  
$BF  
1
0
0
0
1
0
0
0
1
0
1
1
0
0
LOCK_F_B  
REGB_BLOCKID[2:0]  
CRC_F_B[3:0]  
varies  
Factory Default  
$CF  
1
1
LOCK_F_C  
REGC_BLOCKID[2:0]  
CRC_F_C[3:0]  
varies  
Factory Default  
$DF  
1
1
LOCK_F_D  
REGD_BLOCKID[2:0]  
CRC_F_D[3:0]  
varies  
Factory Default  
$EF  
1
0
LOCK_F_E  
REGE_BLOCKID[2:0]  
CRC_F_E[3:0]  
Factory Default  
$FF  
0
0
0
0
0
0
0
0
0
0
LOCK_F_F  
0
REGF_BLOCKID[2:0]  
0
CRC_F_F[3:0]  
Factory Default  
7.7.33 Reserved registers  
A register read command to a reserved register or a register with reserved bits results in  
a valid response. The data for reserved bits may be '0' or '1'.  
A register write command to a reserved register or a register with reserved bits executes  
and results in a valid response. The data for the reserved bits may be '0' or '1'. A write to  
the reserved bits must always be '0' for normal device operation and performance.  
7.7.34 Invalid register addresses  
A register read command to a register address outside of the addresses listed in  
Section 7.6 "User-accessible data array" results in a valid response. The data for the  
registers will be '00h'.  
A register write command to a register address outside of the addresses listed in  
Section 7.6 "User-accessible data array" will not execute, but results in a valid response.  
The data for the registers will be '00h'.  
A register write command to a read-only register will not execute, but results in a valid  
response. The data for the registers is the current content of the registers.  
7.8 Read/write register array CRC verification  
The writable registers (all registers with the exception of the DEVLOCK_WR register) are  
verified by a continuous 4-bit CRC that is calculated on the entire array once ENDINIT is  
set. The CRC verification uses a generator polynomial of g(x) = X4 + X3 + 1, with a seed  
value = '0000'.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
53 / 72  
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
8 Maximum ratings  
Absolute maximum ratings are the limits the device can be exposed to without  
permanently damaging it. Absolute maximum ratings are stress ratings only; functional  
operation at these ratings is not guaranteed. Exposure to absolute maximum ratings  
conditions for extended periods might affect device reliability.  
This device contains circuitry to protect against damage due to high static voltage or  
electrical fields. NXP advises that normal precautions be taken to avoid application of any  
voltages higher than maximum-rated voltages to this high-impedance circuit.  
Table 99.ꢀMaximum ratings  
Symbol  
VCCMAX  
hDROP  
Parameter  
Conditions  
Min  
Max  
+6.0  
1.2  
Unit  
V
[1]  
[2]  
Supply Voltage  
Drop shock  
VCC, VCCIO  
To concrete, tile or steel surface, 10 drops,  
any orientation  
m
[2]  
[2] [3]  
[1]  
Tstg  
Temperature range  
Storage  
–40  
–40  
+130  
+150  
150  
345  
40  
°C  
TJ  
Junction  
°C  
PMAX  
PBURST  
PMIN  
fSEAL  
θJA  
Maximum absolute pressure  
Continuous (tested at 10 s)  
Burst (tested at 100 ms)  
Continuous  
kPa  
kPa  
kPa  
N
[1]  
[1]  
Minimum absolute pressure  
Pressure sealing force  
Thermal resistance  
[1]  
Applied to top face of package  
10  
[4]  
120  
°C/W  
ESD and latch-up protection characteristics  
[2]  
VESD  
VESD  
Electrostatic discharge (per  
AEC-Q100, Rev H)  
Human body model (HBM)  
Charge device model (CDM)  
–2000  
–500  
2000  
500  
V
V
[2] [5]  
[1] Parameter verified by parametric and functional validation.  
[2] Parameter verified by qualification testing (Per AEC-Q100 Rev H or per NXP specification).  
[3] Functionality verified by modeling, simulation and/or design verification.  
[4] Thermal resistance provided with device mounted to a two-layer, 1.6 mm FR-4 PCB as documented in AN1902 with one signal layer and one ground  
layer.  
[5] CDM tested at ±750 V for corner pins and ±500 V for all other pins.  
Caution  
This device is sensitive to mechanical shock. Improper handling can cause permanent damage to the part.  
Caution  
This is an ESD sensitive device. Improper handling can cause permanent damage to the part.  
msc896  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
54 / 72  
 
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
9 Operating range  
Table 100.ꢀElectrical characteristics — supply and I/O  
VCC_min ≤ (VCC - VSS) ≤ VCC_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified.  
Symbol  
VCC  
Parameter  
Conditions  
Min  
Max  
Units  
[1]  
[1]  
Supply voltage  
Measured at VCC  
3.10  
5.25  
V
TA  
Operating temperature range VCC = 5.0 V, unless otherwise stated.  
TL  
TH  
Production tested operating temperature  
range  
–40  
+130  
°C  
[1]  
[2]  
TA  
Guaranteed operating temperature range  
Supply power on ramp rate  
–40  
+130  
10  
°C  
VCC_RAMP_SPI  
0.00001  
V/μs  
[1] Parameter tested 100 % at final test.  
[2] Parameter verified by parametric and functional validation.  
10 Static characteristics  
Table 101.ꢀStatic characteristics  
VCC_min ≤ (VCC - VSS) ≤ VCC_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified.  
Symbol  
Supply and I/O  
IIH  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
[1]  
[1]  
[1]  
[1]  
[1]  
[2]  
[1]  
[1]  
[3]  
[3]  
[1]  
Input current high  
At VIH; SCLK/SCL  
At VIL; SS_B  
10  
20  
–20  
70  
μA  
μA  
μA  
mA  
V
IIL  
Input current low  
–70  
–5  
–10  
5
IMISO_Lkg  
Iq  
MISO output leakage  
Quiescent supply current  
Low-voltage detection threshold  
Input voltage hysteresis  
Input high voltage (at VCC = 3.3 V  
Input low voltage  
VCC = 5.0 V  
8.0  
2.84  
0.500  
VCC_UV_F  
VI_HYST  
VIH  
VCC falling  
2.64  
0.125  
2.0  
2.74  
SCLK/SCL, SS_B, MOSI  
SCLK/SCL, SS_B, MOSI  
SCLK/SCL, SS_B, MOSI  
I Load = –100 μA  
V
V
VIL  
1.0  
VCC  
0.1  
V
VINT_OH  
VINT_OL  
VOH  
Output high voltage  
VCC – 0.35  
V
Output low voltage  
I Load = 100 μA  
V
Output high voltage  
MISO/SDA,  
VCC – 0.2  
V
I Load = –1 mA  
Temperature sensor signal chain  
TRANGE Temperature measurement range  
T25  
[3]  
[3]  
[3]  
–50  
83  
0
93  
+160  
103  
°C  
Temperature output  
At 25 °C  
LSB  
LSB  
TRANGE  
Range of output  
(8-bit)  
Unsigned temperature  
255  
[4]  
[4]  
[4]  
TSENSE  
TACC  
Temperature output sensitivity (8-bit)  
Temperature output accuracy (8-bit)  
1.00  
LSB/°C  
°C  
–10  
+10  
+2  
TRMS  
Temperature output noise RMS (8-bit) Standard deviation of 50  
readings,  
LSB  
fSamp = 8 kHz  
Absolute pressure sensor signal chain  
[2]  
[5]  
PABS  
Absolute pressure range  
Absolute pressure output sensitivity  
40  
115  
kPa  
PSENS  
P_CAL_ZERO = 0h  
46.64  
LSB/k  
Pa  
Temperature = –40 °C and  
130 °C, VCC = 5.0 V.  
12-bit at 0 Hz, tested at  
PABS = 100 kPa ± 10 %  
and 110 kPa ± 10 %  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
55 / 72  
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
[5] [7]  
[5] [7]  
[5] [7]  
[5] [7]  
PACC_LoT1  
Absolute pressure accuracy[6]  
VCC = 5.0 V  
–2.0  
+2.0  
kPa  
–40 °C ≤ TA < –20 °C  
PACC_LoT2  
PACC_Typ  
PACC_HiT  
Absolute pressure accuracy[6]  
Absolute pressure accuracy[6]  
Absolute pressure accuracy[6]  
VCC = 5.0 V  
–1.75  
–1.25  
–2.0  
+1.75  
+1.25  
+2.0  
kPa  
kPa  
kPa  
–20 °C ≤ TA < 0 °C  
VCC = 5.0 V  
0 °C ≤ TA≤ 85 °C  
VCC = 5.0 V  
85 °C < TA ≤ 130 °C  
[2]  
[2]  
[2]  
[3]  
PABS_DErr  
PABS_DRng  
PABS_DRng  
PABSDNL  
Absolute pressure output range  
Absolute pressure output range  
Absolute pressure output range  
Absolute pressure nonlinearity  
Digital error response  
Digital, 12-bit  
1
0
LSB  
LSB  
LSB  
LSB  
0
4095  
Digital error response  
Absolute pressure DNL,  
12-bit monotonic with no  
missing codes  
+1  
[3]  
[1]  
PABSINL  
Absolute pressure nonlinearity  
Absolute pressure INL, 12-  
bit (least squares BFSL)  
+20  
+8  
LSB  
LSB  
PABSPeak  
Absolute pressure noise peak (12-bit)  
Temperature = –40 °C and  
130 °C, VCC = 5.0 V.  
–8  
Maximum deviation from  
mean, 50 readings, fSamp  
= 8 kHz, LPF = 800 Hz, 4-  
pole  
[5]  
[5]  
PABSRMS  
Absolute pressure noise RMS (12-bit)  
Absolute pressure offset  
Temperature = –40 °C and  
130 °C, VCC = 5.0 V.  
+2  
LSB  
LSB  
Standard deviation of 50  
readings, fSamp = 8 kHz,  
LPF = 800 Hz, 4-pole  
POFF_D12  
At minimum rated  
pressure, P_CAL_ZERO =  
0h,  
299  
Temperature = –40 °C and  
130 °C, VCC = 5.0 V,  
12-bit  
[3]  
[3]  
PSC3PSCSPI3  
PSC5PSCSPI5  
Digital power supply coupling  
Digital power supply coupling  
CVCC = 0.1 μf, 12-bit data  
2
2
LSB  
LSB  
1 kHz ≤ fn ≤ 100 MHz, VCC  
= 3.3 V ± 0.1 V  
CVCC = 0.1 μf, 12-bit data  
1 kHz ≤ fn ≤ 100 MHz, VCC  
= 5.0 V ± 0.1 V  
[1] Parameter verified by pass/fail testing at final test.  
[2] Functionality verified by modeling, simulation and/or design verification.  
[3] Parameter verified by parametric and functional validation.  
[4] Parameter verified by characterization.  
[5] Parameter tested at final test.  
[6] See Section 13 for accuracy over temperature and life, including nonlinearity, full scale = PABS range.  
[7] Parameter does not include lifetime drift. For complete pressure drift over temperature and life, review Section 13.  
11 Dynamic characteristics  
Table 102.ꢀDynamic characteristics  
VCC_min ≤ (VCC – VSS) ≤ VCC_max, TL ≤ TA ≤ TH, ΔT ≤ 25 °C/min, unless otherwise specified.  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
I2C  
[1]  
[1]  
[1]  
tSCL_100  
Clock (SCL) period  
100 kHz mode  
400 kHz mode  
1000 kHz mode  
9.50  
2.37  
1.00  
μs  
μs  
μs  
tSCLK_400  
tSCLK_1000  
(30 % of VCC to 30 % of VCC)  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
56 / 72  
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
[1]  
[1]  
[1]  
tSCLH_100  
tSCLH_400  
tSCLH_1000  
Clock (SCL) high time  
100 kHz mode  
400 kHz mode  
4.00  
0.60  
0.50  
μs  
μs  
μs  
(70 % of VCC to 70 % of VCC  
)
1000 kHz mode (not  
compliant with UM10204,  
rev.6)  
[1]  
[1]  
[1]  
tSCLL_100  
tSCLL_400  
tSCLL_1000  
Clock (SCL) low time  
100 kHz mode  
400 kHz mode  
1000 kHz mode  
4.70  
1.30  
0.50  
μs  
μs  
μs  
(30 % of VCC to 30 % of VCC  
)
[1]  
[1]  
[1]  
tSRISE_100  
tSRISE_400  
tSRISE_1000  
Clock (SCL) and data (SDA) rise time  
(30 % of VCC to 70 % of VCC  
100 kHz mode  
400 kHz mode  
1000 kHz mode  
1000  
300  
ns  
ns  
ns  
)
120  
[1]  
[1]  
[1]  
tSFALL_100  
tSFALL_400  
tSFALL_1000  
Clock (SCL) and data (SDA) fall time  
300  
300  
120  
ns  
ns  
ns  
100 kHz mode  
400 kHz mode  
1000 kHz mode  
(70 % of VCC to 30 % of VCC  
)
[1]  
[1]  
[1]  
tSETUP_100  
tSETUP_400  
tSETUP_1000  
Data input setup time  
100 kHz mode  
250  
100  
50  
ns  
ns  
ns  
(SDA = 30/70 % of VCC to SCL = 30 % 400 kHz mode  
of VCC  
)
1000 kHz mode  
[1]  
[1]  
[1]  
tHOLD_100  
tHOLD_400  
tHOLD_1000  
Data input hold time  
100 kHz mode  
0
0
0
900  
900  
300  
ns  
ns  
ns  
(SCL = 70 % of VCC to SDA = 30/70 % 400 kHz mode  
of VCC  
)
1000 kHz mode  
[1]  
[1]  
[1]  
tSTARTSETUP_100  
tSTARTSETUP_400  
tSTARTSETUP_1000  
Start condition setup time  
100 kHz mode  
4.70  
0.60  
0.26  
μs  
μs  
μs  
(SDA = 30/70 % of VCC to SCL = 30 % 400 kHz mode  
of VCC  
)
1000 kHz mode  
[1]  
[1]  
[1]  
tSTARTHOLD_100  
tSTARTHOLD_400  
tSTARTHOLD_1000  
Start condition hold time  
100 kHz mode  
4.00  
0.60  
0.26  
μs  
μs  
μs  
(SCL = 70 % of VCC to SDA = 30/70 % 400 kHz mode  
of VCC  
)
1000 kHz mode  
[1]  
[1]  
[1]  
tSTOPSETUP_100  
tSTOPSETUP_400  
tSTOPSETUP_1000  
Stop condition setup time  
100 kHz mode  
4.00  
0.60  
0.26  
μs  
μs  
μs  
(SDA = 30/70 % of VCC to SCL = 30 % 400 kHz mode  
of VCC  
)
1000 kHz mode  
[1]  
[1]  
[1]  
tVALID_100  
tVALID_400  
tVALID_1000  
SCLK low to data valid  
100 kHz mode  
3.45  
0.90  
0.45  
μs  
μs  
μs  
(SCL = 30 % of VCC to SDA = 30/70 % 400 kHz mode  
of VCC  
)
1000 kHz mode  
[1]  
[1]  
[1]  
tFREE_100  
tFREE_400  
tFREE_1000  
Bus free time  
100 kHz mode  
4.00  
1.30  
0.50  
μs  
μs  
μs  
(SDA = 70 % of VCC to SDA = 70 % of 400 kHz mode  
VCC  
)
1000 kHz mode  
[2]  
CBUS  
SPI  
Bus capacitive load  
400  
pF  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
tSCLK  
Serial interface timing[3]  
Serial interface timing[3]  
Clock (SCLK) period (10 %  
90  
30  
30  
10  
10  
50  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
of VCC to 10 % of VCC  
)
tSCLKH  
tSCLKL  
tSCLKR  
tSCLKF  
tLEAD  
Clock (SCLK) period (90 %  
of VCC to 90 % of VCC  
)
Clock (SCLK) period (10 %  
of VCC to 10 % of VCC  
)
Serial interface timing[3]  
Clock (SCLK) period (10 %  
of VCC to 90 % of VCC  
)
Clock (SCLK) period (90 %  
of VCC to 10 % of VCC  
)
Serial interface timing[3]  
Serial interface timing[3]  
Serial interface timing[3]  
SS_B asserted to SCLK  
high (SS_B = 10 % of VCC  
to SCLK = 10 % of VCC  
)
[1]  
[1]  
tACCESS  
SS_B asserted to SCLK  
high (SS_B = 10 % of VCC  
to MISO = 10/90 % of VCC  
50  
ns  
ns  
)
tSETUP  
SS_B asserted to SCLK  
high (MOSI = 10/90 % of  
VCC to SCLK = 10 % of  
20  
VCC  
)
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
57 / 72  
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
tHOLD_IN  
Serial interface timing[3]  
MOSI data hold time  
(SCLK = 90 % of VCC to  
MOSI = 10/90 % of VCC  
10  
ns  
)
tHOLD_OUT  
MOSI data hold time  
(SCLK = 90 % of VCC to  
MISO = 10/90 % of VCC  
0
30  
60  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
)
tVALID  
Serial interface timing[3]  
Serial interface timing[3]  
Serial interface timing[3]  
Serial interface timing[3]  
Serial interface timing[3]  
Serial interface timing[3]  
SCLK low to data valid  
(SCLK = 10 % of VCC to  
MISO = 10/90 % of VCC  
)
tLAG  
SCLK low to SS_B high  
(SCLK = 10 % of VCC to  
60  
SS_B = 90 % of VCC  
)
tDISABLE  
SS_B high to MISO disable  
(SS_B = 90 % of VCC to  
MISO = Hi Z)  
tSSN  
SS_B high to SS_B low  
(SS_B = 90 % of VCC to  
500  
50  
50  
SS_B = 90 % of VCC  
)
tSLKSS  
SCLK low to SS_B low  
(SCLK = 10 % of VCC to  
SS_B = 90 % of VCC  
)
tSSCLK  
SS_B high to SCLK high  
(SS_B = 90 % of VCC to  
SCLK = 90 % of VCC  
)
tLAT_SPI  
Signal chain  
tSigChain  
fc0  
Data latency  
[4]  
PABS low-pass filter  
Signal chain sample time  
48  
μs  
[2] [4]  
Cutoff frequency, filter  
option #0, 4-pole  
800  
Hz  
[2] [4]  
[4]  
fc1  
Cutoff frequency, filter  
option #1, 4-pole  
1000  
Hz  
μs  
tSigDelay  
Signal delay (sinc filter to output delay,  
excluding the PABS LPF)  
128  
[4]  
fPackage  
Package resonance frequency  
27.1  
kHz  
Supply and support circuitry  
[2]  
tVCC_POR  
Reset recovery (all modes, excluding  
VCC voltage ramp time)  
VCC = VCCMIN to POR  
release  
1
ms  
[4]  
[4]  
[2]  
tPOR_I2C/POR_SPI  
tPOR_DataValid  
POR to first SPI command  
POR to sensor data valid  
0.400  
0.700  
ms  
ms  
ms  
6
6
tRANGE_DataValid  
DSP setting change to  
sensor data valid  
[4]  
[4]  
tSOFT_RESET_I2C  
Soft reset activation time, command  
complete to reset (no ACK follows)  
700  
700  
ns  
ns  
tSOFT_RESET_SPI  
Soft reset activation time, SS_B high to  
reset  
[4]  
[4]  
tCC_POR  
VCC undervoltage detection delay  
5
μs  
μs  
tUVOV_RCV  
Undervoltage/overvoltage recovery  
delay  
100  
[1] Parameter verified by characterization.  
[2] Parameter verified by functional evaluation.  
[3] See Section 7.5.6, CMISO ≤ 80 pF, RMISO ≥ 10 kΩ  
[4] Functionality verified by modeling, simulation and/or design verification.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
58 / 72  
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
12 Media compatibility—pressure sensors only  
For more information regarding media compatibility information, contact your local sales  
representative.  
13 Pressure sensor accuracy (drift over temperature and life)  
The absolute pressure accuracy is specified in Figure 23 and Figure 24.  
Figure 23 shows the absolute pressure drift over the entire specified temperature range.  
The absolute pressure drift over temperature is guaranteed by production testing.  
Figure 24 shows a multiplying factor that accounts for the life time drift of the pressure  
sensor. The results in Figure 24 have been obtained by qualification testing to conform to  
the AEC-Q100[2] (Rev-H) standards.  
As an example, at room temperature, the worst case drift that the pressure sensor might  
have after accounting for lifetime performance is (1 kPa × multiplying factor) = 2 kPa.  
Figure 23.ꢀAbsolute pressure accuracy as a function of temperature  
Figure 24.ꢀAbsolute pressure accuracy multiplier over life  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
59 / 72  
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
14 Application information  
The FXPS7115D4 sensor can operate in two modes: I2C and SPI. The application  
diagrams in Figure 25 and Figure 26 show the modes and their respective biasing and  
bypass components.  
The sensor can be configured to operate in SPI mode to read the user registers, self-test  
and diagnostics information. The application diagram in Figure 26 shows the SPI and the  
respective biasing and bypass components.  
Note: A gel is used to provide media protection against corrosive elements which  
may otherwise damage metal bond wires and/or IC surfaces. Highly pressurized gas  
molecules may permeate through the gel and then occupy boundaries between material  
surfaces within the sensor package. When decompression occurs, the gas molecules  
may collect, form bubbles and possibly result in delamination of the gel from the material  
it protects. If a bubble is located on the pressure transducer surface or on the bond wires,  
the sensor measurement may shift from its calibrated transfer function. In some cases,  
these temporary shifts could be outside the tolerances listed in the data sheet. In rare  
cases, the bubble may bend the bond wires and result in a permanent shift.  
V
V
CC  
V
CC  
CC  
V
CC  
R1  
R2  
R3  
V
SS  
CCIO  
INT  
FXPS7xxxD4  
SCL  
C1  
V
SDA  
SS  
aaa-029732  
Figure 25.ꢀI2C application diagram of FXPS7115D4  
Table 103.ꢀExternal component recommendations for I2C  
Name  
Type  
Description  
Purpose  
C1  
Ceramic  
0.1 μF, 10 %, 10 V minimum, X7R  
1000 Ω, 5 %, 200 PPM  
1000 Ω, 5 %, 200 PPM  
1000 Ω, 5 %, 200 PPM  
VCC power supply decoupling  
I2C selection pin pull-up resistor  
Serial clock pull-up resistor  
Serial data pull-up resistor  
R1  
General purpose  
General purpose  
General purpose  
R2  
R3  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
60 / 72  
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
V
CC  
V
CC  
SS_B  
MISO  
SCLK  
V
CCIO  
FXPS7xxxD4  
C1  
MOSI  
INT  
V
SS  
aaa-029733  
Figure 26.ꢀSPI application diagram for FXPS7115D4  
Table 104.ꢀExternal component recommendations for SPI  
Name  
Type  
Description  
Purpose  
C1  
Ceramic  
0.1 μF, 10 %, 10 V minimum, X7R  
VCC power supply decoupling  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
61 / 72  
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
15 Package outline  
Figure 27.ꢀPackage outline HQFN (SOT1573-1)  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
62 / 72  
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Figure 28.ꢀPackage outline detail HQFN (SOT1573-1)  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
63 / 72  
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Figure 29.ꢀPackage outline note HQFN (SOT1573-1)  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
64 / 72  
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
16 References  
[1]  
Assembly guidelines for quad flat no-lead (HQFN) and small outline no-lead (SON) packages — NXP  
Application Note (AN) 1902, Rev. 8.0 - 6 February 2018, 51 pages,  
https://www.nxp.com/docs/en/application-note/AN1902.pdf  
[2]  
[3]  
AEC documents on Automotive Electronics Council Component Technical Committee’s site:  
http://www.aecouncil.com/AECDocuments.html  
I2C-Bus specification and user manual — NXP User Manual (UM) 10204, Rev. 6 - 4 April 2014, 64 pages,  
https://www.nxp.com/docs/en/user-guide/UM10204.pdf  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
65 / 72  
 
 
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
17 Revision history  
Table 105.ꢀRevision history  
Document ID  
FXPS7115D4 v.3  
Modifications  
Release date  
20191205  
Data sheet status  
Change notice  
Supercedes  
Product data sheet  
-
FXPS7115D4 v.2  
Section 10: updated absolute pressure accuracy specification  
Section 13: updated Figure 23 and Figure 24  
FXPS7115D4 v.2  
FXPS7115D4 v.1  
20190730  
20180816  
Product data sheet  
Product data sheet  
-
-
FXPS7115D4 v.1  
-
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
66 / 72  
 
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
18 Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Definition  
Objective [short] data sheet  
Development  
This document contains data from the objective specification for product  
development.  
Preliminary [short] data sheet  
Product [short] data sheet  
Qualification  
Production  
This document contains data from the preliminary specification.  
This document contains the product specification.  
[1] Please consult the most recently issued document before initiating or completing a design.  
[2] The term 'short data sheet' is explained in section "Definitions".  
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple  
devices. The latest product status information is available on the Internet at URL http://www.nxp.com.  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
18.2 Definitions  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes  
no representation or warranty that such applications will be suitable  
for the specified use without further testing or modification. Customers  
are responsible for the design and operation of their applications and  
products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications  
and products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with  
their applications and products. NXP Semiconductors does not accept any  
liability related to any default, damage, costs or problem which is based  
on any weakness or default in the customer’s applications or products, or  
the application or use by customer’s third party customer(s). Customer is  
responsible for doing all necessary testing for the customer’s applications  
and products using NXP Semiconductors products in order to avoid a  
default of the applications and the products or of the application or use by  
customer’s third party customer(s). NXP does not accept any liability in this  
respect.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences  
of use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is  
intended for quick reference only and should not be relied upon to contain  
detailed and full information. For detailed and full information see the  
relevant full data sheet, which is available on request via the local NXP  
Semiconductors sales office. In case of any inconsistency or conflict with the  
short data sheet, the full data sheet shall prevail.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product  
is deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those  
given in the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
18.3 Disclaimers  
Limited warranty and liability — Information in this document is believed  
to be accurate and reliable. However, NXP Semiconductors does not  
give any representations or warranties, expressed or implied, as to the  
accuracy or completeness of such information and shall have no liability  
for the consequences of use of such information. NXP Semiconductors  
takes no responsibility for the content in this document if provided by an  
information source outside of NXP Semiconductors. In no event shall NXP  
Semiconductors be liable for any indirect, incidental, punitive, special or  
consequential damages (including - without limitation - lost profits, lost  
savings, business interruption, costs related to the removal or replacement  
of any products or rework charges) whether or not such damages are based  
on tort (including negligence), warranty, breach of contract or any other  
legal theory. Notwithstanding any damages that customer might incur for  
any reason whatsoever, NXP Semiconductors’ aggregate and cumulative  
liability towards customer for the products described herein shall be limited  
in accordance with the Terms and conditions of commercial sale of NXP  
Semiconductors.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or  
the grant, conveyance or implication of any license under any copyrights,  
patents or other industrial or intellectual property rights.  
Suitability for use in automotive applications — This NXP  
Semiconductors product has been qualified for use in automotive  
applications. Unless otherwise agreed in writing, the product is not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
Right to make changes — NXP Semiconductors reserves the right to  
make changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
67 / 72  
 
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer's own  
risk.  
Customers are responsible for the design and operation of their applications  
and products to reduce the effect of these vulnerabilities on customer’s  
applications and products, and NXP Semiconductors accepts no liability for  
any vulnerability that is discovered. Customers should implement appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
18.4 Trademarks  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
Notice: All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
Security — While NXP Semiconductors has implemented advanced  
security features, all products may be subject to unidentified vulnerabilities.  
NXP — is a trademark of NXP B.V.  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
68 / 72  
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Tables  
Tab. 1.  
Tab. 2.  
Tab. 3.  
Tab. 4.  
Tab. 5.  
Ordering information ..........................................2  
Tab. 37. DEVSTAT1 - device status register (address  
02h) bit description ..........................................33  
Tab. 38. DEVSTAT2 - device status register (address  
03h) bit allocation ............................................33  
Tab. 39. DEVSTAT2 - device status register (address  
03h) bit description ..........................................34  
Tab. 40. DEVSTAT3 - device status register (address  
04h) bit allocation ............................................34  
Tab. 41. DEVSTAT3 - device status register (address  
04h) bit description ..........................................35  
Ordering options ................................................2  
Pin description ...................................................4  
Self-test control register .................................... 8  
Self-test control bits for sense data fixed  
value verification ............................................... 8  
IIR low pass filter coefficients ..........................10  
Temperature conversion variables .................. 13  
Sensor data register read wrap-around  
Tab. 6.  
Tab. 7.  
Tab. 8.  
description ....................................................... 17  
SPI command format ...................................... 19  
Tab. 9.  
Tab. 42. TEMPERATURE  
(address 0Eh) bit allocation .............................35  
Tab. 43. DEVLOCK_WR lock register writes  
register (address 10h) bit allocation ................ 35  
Tab. 44. DEVLOCK_WR lock register writes  
- temperature register  
Tab. 10. SPI command bit allocation .............................20  
Tab. 11. SPI response format ....................................... 20  
Tab. 12. Register read command message format ....... 21  
Tab. 13. Register read command message bit field  
descriptions ..................................................... 21  
Tab. 14. Register read response message format ........ 21  
Tab. 15. Register read response message bit field  
descriptions ..................................................... 22  
Tab. 16. Register write command message format ....... 22  
Tab. 17. Register write command message bit field  
descriptions ..................................................... 22  
Tab. 18. Register write response message format ........ 23  
Tab. 19. Register write response message bit field  
descriptions ..................................................... 23  
Tab. 20. Sensor data request command message  
format .............................................................. 23  
Tab. 21. Sensor data request command message bit  
field descriptions ............................................. 23  
Tab. 22. Sensor data request response message  
format .............................................................. 24  
Tab. 23. Sensor data request response message bit  
field descriptions ............................................. 24  
Tab. 24. Reserved command message format ..............24  
Tab. 25. Reserved command message bit field  
descriptions ..................................................... 24  
Tab. 26. Reserved command response message  
format .............................................................. 24  
Tab. 27. Reserved command response message bit  
field descriptions ............................................. 25  
Tab. 28. SPI Command Message CRC ........................ 25  
Tab. 29. SPI Response Message CRC .........................26  
Tab. 30. Basic status field for responses to register  
commands .......................................................26  
Tab. 31. Error responses bit field descriptions .............. 26  
Tab. 32. User-accessible data — sensor specific  
information .......................................................28  
Tab. 33. COUNT - rolling counter register (address  
00h) bit allocation ............................................31  
Tab. 34. DEVSTAT - device status register (address  
01h) bit allocation ............................................32  
Tab. 35. DEVSTAT - device status register (address  
01h) bit description ..........................................32  
Tab. 36. DEVSTAT1 - device status register (address  
02h) bit allocation ............................................32  
-
-
register (address 10h) bit description ..............36  
Tab. 45. Device reset command sequence ...................36  
Tab. 46. UF_REGION_W  
register (address 14h) bit allocation ................ 36  
Tab. 47. UF_REGION_R UF region selection  
- UF region selection  
-
register (address 15h) bit allocation ................ 37  
Tab. 48. REGION_LOAD Bit Definitions ....................... 37  
Tab. 49. REGION_ACTIVE Bit Definitions .................... 37  
Tab. 50. COMMTYPE - communication type register  
(address 16h) bit allocation .............................38  
Tab. 51. COMMTYPE - communication type register  
(address 16h) bit description ...........................38  
Tab. 52. SOURCEID_0  
register (address 1Ah) bit allocation ................39  
Tab. 53. SOURCEID_1 source identification  
register (address 1Bh) bit allocation ................39  
Tab. 54. TIMING_CFG communication timing  
-
source identification  
-
-
register (address 22h) bit allocation ................ 39  
Tab. 55. SPI_CFG Register (address 3Dh) bit  
allocation ......................................................... 39  
Tab. 56. DATASIZE Bit Definition ................................. 39  
Tab. 57. SPI CRC Definition ......................................... 40  
Tab. 58. WHO_AM_I - device identification register  
(address 3Eh) bit allocation .............................40  
Tab. 59. WHO_AM_I register values .............................40  
Tab. 60. I2C_ADDRESS - I2C slave address register  
(address 3Fh) bit allocation .............................41  
Tab. 61. Self-Test Control Bits (ST_CTRL[3:0]) ............ 41  
Tab. 62. DSP_CFG_U1 - DSP user configuration #1  
register (address 40h) bit allocation ................ 42  
Tab. 63. Low-pass filter selection bits (LPF[3:0]) ...........42  
Tab. 64. User range selection bits (USER_  
RANGE[1:0]) ....................................................42  
Tab. 65. DSP_CFG_U4 - DSP user configuration #4  
register (address 43h) bit allocation ................ 42  
Tab. 66. DSP_CFG_U4 - DSP user configuration #4  
register (address 43h) bit description ..............43  
Tab. 67. DSP_CFG_U5 - DSP user configuration #5  
register (address 44h) bit allocation ................ 43  
Tab. 68. DSP_CFG_U5 - DSP user configuration #5  
register (address 44h) bit description ..............43  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
69 / 72  
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Tab. 69. Self-test control bits ........................................ 43  
Tab. 70. INT_CFG - interrupt configuration register  
(address 45h) bit allocation .............................44  
Tab. 71. INT_CFG - interrupt configuration register  
(address 45h) bit description ...........................44  
Tab. 72. P_INT_HI, P_INT_LO - interrupt window  
comparator threshold registers (address 46h  
Tab. 85. IC MANUFACTURER IDENTIFICATION  
REGISTER (ICMFGID address C2h) bit  
allocation ......................................................... 50  
Tab. 86. PN0 Register (address C4h) bit allocation .......50  
Tab. 87. PN1 Register (address C5h) bit allocation .......50  
Tab. 88. SN0 Register (address C6h) bit allocation .......50  
Tab. 89. SN1 Register (address C7h) bit allocation .......51  
Tab. 90. SN2 Register (address C8h) bit allocation .......51  
Tab. 91. SN3 Register (address C9h) bit allocation .......51  
Tab. 92. SN4 Register (address CAh) bit allocation ...... 51  
Tab. 93. ASICWFR# Register (address CBh) bit  
allocation ......................................................... 51  
Tab. 94. ASICWFR_X Register (address CCh) bit  
allocation ......................................................... 51  
Tab. 95. ASICWFR_Y Register (address CDh) bit  
allocation ......................................................... 52  
to 49h) bit allocation ........................................44  
Tab. 73. P_CAL_ZERO  
-
pressure calibration  
registers (address 4Ch, 4Dh) bit allocation ......45  
Tab. 74. DSP_STAT - DSP-specific status register  
(address 60h) bit allocation .............................46  
Tab. 75. DSP_STAT - DSP-specific status register  
(address 60h) bit description ...........................46  
Tab. 76. DEVSTAT_COPY - device status copy  
register (address 61h) bit allocation ................ 46  
Tab. 77. SNSDATA0_L, SNSDATA0_H - sensor data  
#0 registers (addresses 62h, 63h) bit  
Tab. 96. ASICWLOT_L Register (address D0h) bit  
allocation ......................................................... 52  
allocation ......................................................... 47  
Tab. 78. SNSDATA1_L, SNSDATA1_H - sensor data  
#1 registers (address 64h, 65h) bit allocation ...47  
Tab. 79. SNSDATA0_TIMEx - time stamp register  
(address 66h to 6Bh) bit allocation ..................48  
Tab. 80. P_Max and P_Min registers (address 6Ch to  
6Fh) bit allocation ............................................48  
Tab. 97. ASICWLOT_H Register (address D1h) bit  
allocation ......................................................... 52  
Tab. 98. Lock and CRC Register bit definitions .............53  
Tab. 99. Maximum ratings .............................................54  
Tab. 100. Electrical characteristics — supply and I/O ..... 55  
Tab. 101. Static characteristics ....................................... 55  
Tab. 102. Dynamic characteristics .................................. 56  
Tab. 103. External component recommendations for  
I2C ...................................................................60  
Tab. 104. External component recommendations for  
SPI ...................................................................61  
Tab. 105. Revision history ...............................................66  
Tab. 81. FRT  
-
free running timer registers  
(addresses 78h to 7Dh) bit allocation ..............48  
Tab. 82. Range Indication Bits (RANGE[3:0]) ............... 49  
Tab. 83. IC TYPE REGISTER (ICTYPEID address  
C0h) bit allocation ........................................... 49  
Tab. 84. IC  
MANUFACTURER  
REVISION  
REGISTER (ICREVID address C1h) bit  
allocation ......................................................... 49  
Figures  
Fig. 1.  
Fig. 2.  
Fig. 3.  
Fig. 4.  
Block diagram of FXPS7115D4 ........................ 3  
Pin configuration for 16-pin HQFN ....................3  
Voltage regulation and monitoring .....................5  
User-controlled PABS common mode self-  
test flowchart .....................................................7  
ΣΔ converter block diagram ..............................8  
Signal chain diagram ........................................ 9  
Sinc filter response ........................................... 9  
800 Hz, 4-pole, low-pass filter response ......... 10  
800 Hz, 4-pole output signal delay ..................11  
Fig. 16. I2C byte transmissions ....................................15  
Fig. 17. I2C acknowledge and not acknowledge  
transmission .................................................... 15  
Fig. 18. I2C stop condition ........................................... 16  
Fig. 19. I2C timing diagram ..........................................18  
Fig. 20. Standard 32 Bit SPI protocol timing diagram ... 19  
Fig. 21. SPI data output verification ............................. 27  
Fig. 22. SPI timing diagram ..........................................27  
Fig. 23. Absolute pressure accuracy as a function of  
temperature ..................................................... 59  
Fig. 5.  
Fig. 6.  
Fig. 7.  
Fig. 8.  
Fig. 9.  
Fig. 10. 1000 Hz, 4-pole, low-pass filter response ....... 11  
Fig. 11. 1000 Hz, 4-pole output signal delay ................12  
Fig. 12. Temperature sensor signal chain block  
diagram ............................................................13  
Fig. 13. Common mode error detection signal chain  
block diagram ..................................................13  
Fig. 24. Absolute pressure accuracy multiplier over  
life ....................................................................59  
Fig. 25. I2C application diagram of FXPS7115D4 ........60  
Fig. 26. SPI application diagram for FXPS7115D4 .......61  
Fig. 27. Package outline HQFN (SOT1573-1) ..............62  
Fig. 28. Package outline detail HQFN (SOT1573-1) .... 63  
Fig. 29. Package outline note HQFN (SOT1573-1) ......64  
Fig. 14. I2C bit transmissions .......................................14  
Fig. 15. I2C start condition ...........................................14  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
70 / 72  
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
Contents  
1
2
3
3.1  
3.2  
3.3  
4
4.1  
5
6
6.1  
6.2  
7
7.1  
7.1.1  
7.2  
7.3  
7.3.1  
7.3.2  
7.3.2.1  
7.3.2.2  
7.3.2.3  
7.3.3  
7.3.4  
7.3.4.1  
7.3.4.2  
7.3.4.3  
7.3.4.4  
General description ............................................ 1  
7.5.5.1  
7.5.5.2  
7.5.5.3  
7.5.5.4  
7.5.6  
7.6  
Basic status field ............................................. 26  
Error responses ............................................... 26  
SPI error .......................................................... 26  
SPI data output verification error .....................27  
SPI timing diagram .......................................... 27  
User-accessible data array ..............................28  
Register information .........................................31  
COUNT - rolling counter register (address  
00h) ..................................................................31  
Device status registers .................................... 31  
DEVSTAT - device status register (address  
01h) ..................................................................32  
DEVSTAT1 - device status register (address  
02h) ..................................................................32  
DEVSTAT2 - device status register (address  
03h) ..................................................................33  
DEVSTAT3 - device status register (address  
04h) ..................................................................34  
Features and benefits .........................................1  
Applications .........................................................2  
Automotive .........................................................2  
Industrial ............................................................ 2  
Medical/Consumer .............................................2  
Ordering information .......................................... 2  
Ordering options ................................................ 2  
Block diagram ..................................................... 3  
Pinning information ............................................ 3  
Pinning ...............................................................3  
Pin description ...................................................4  
Functional description ........................................4  
Voltage regulators ............................................. 4  
VCC, VREG, VREGA, undervoltage monitor .....5  
Internal oscillator ............................................... 5  
Pressure sensor signal path ..............................5  
Transducer .........................................................5  
Self-test functions .............................................. 6  
PABS common mode verification ...................... 6  
Startup digital self-test verification .....................7  
Startup sense data fixed value verification ........ 8  
ΣΔ converter ......................................................8  
Digital signal processor (DSP) ...........................9  
Decimation sinc filter ......................................... 9  
Signal trim and compensation ........................... 9  
Low-pass filter ................................................... 9  
Absolute pressure output data scaling  
equation ........................................................... 12  
Temperature sensor ........................................ 12  
Temperature sensor signal chain .................... 12  
Temperature sensor output scaling equation ... 13  
Common mode error detection signal chain .... 13  
Inter-integrated circuit (I2C) interface .............. 13  
I2C bit transmissions ....................................... 14  
I2C start condition ........................................... 14  
I2C byte transmission ......................................14  
I2C acknowledge and not acknowledge  
transmissions ...................................................15  
I2C stop condition ............................................15  
I2C register transfers .......................................16  
Register write transfers ....................................16  
Register read transfers ....................................17  
Sensor data register read wrap around ........... 17  
I2C timing diagram .......................................... 18  
Standard 32-bit SPI protocol ........................... 18  
SPI command format .......................................19  
SPI response format ........................................20  
Command summary ........................................ 21  
Register read command .................................. 21  
Register write command ..................................22  
Sensor data request commands ......................23  
Reserved commands .......................................24  
Error checking ................................................. 25  
Default 8-bit CRC ............................................ 25  
Exception handling .......................................... 26  
7.7  
7.7.1  
7.7.2  
7.7.2.1  
7.7.2.2  
7.7.2.3  
7.7.2.4  
7.7.3  
TEMPERATURE  
- temperature register  
(address 0Eh) ..................................................35  
DEVLOCK_WR - lock register writes register  
(address 10h) .................................................. 35  
7.7.4  
7.7.5  
UF_REGION_W, UF_REGION_R  
-
UF  
region selection registers (address 14h, 15h) ...36  
COMMTYPE - communication type register  
(address 16h) .................................................. 38  
7.7.6  
7.7.7  
SOURCEID_x  
registers (address 1Ah, 1Bh) ...........................38  
TIMING_CFG communication timing  
-
source identification  
7.7.8  
-
7.3.5  
7.3.5.1  
7.3.5.2  
7.3.6  
7.4  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
register (address 22h) ..................................... 39  
SPI Configuration Control Register (SPI_  
CFG, Address 3Dh) .........................................39  
SPI Data Field Size (DATASIZE) .................... 39  
SPI CRC Length and Seed Bits ...................... 40  
WHO_AM_I - who am I register (address  
3Eh) ................................................................. 40  
I2C_ADDRESS - I2C slave address register  
(address 3Fh) .................................................. 40  
DSP Configuration Registers (DSP_CFG_  
Ux) ................................................................... 41  
7.7.9  
7.7.9.1  
7.7.9.2  
7.7.10  
7.7.11  
7.7.12  
7.4.5  
7.4.6  
7.4.6.1  
7.4.6.2  
7.4.6.3  
7.4.7  
7.5  
7.5.1  
7.5.2  
7.5.3  
7.5.3.1  
7.5.3.2  
7.5.3.3  
7.5.3.4  
7.5.4  
7.7.12.1 Self-test control bits .........................................41  
7.7.12.2 DSP_CFG_U1 - DSP user configuration #1  
register (address 40h) ..................................... 42  
7.7.12.3 DSP_CFG_U4 - DSP user configuration #4  
register (address 43h) ..................................... 42  
7.7.12.4 DSP_CFG_U5 - DSP user configuration #5  
register (address 44h) ..................................... 43  
7.7.13  
INT_CFG - interrupt configuration register  
(address 45h) .................................................. 44  
P_INT_HI, P_INT_LO - interrupt window  
comparator threshold registers (address 46h  
to 49h) ............................................................. 44  
7.7.14  
7.7.15  
7.7.16  
P_CAL_ZERO  
-
pressure calibration  
registers (address 4Ch, 4Dh) .......................... 45  
DSP_STAT - DSP-specific status register  
(address 60h) .................................................. 46  
7.5.4.1  
7.5.5  
FXPS7115D4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 3 — 5 December 2019  
71 / 72  
NXP Semiconductors  
FXPS7115D4  
Digital absolute pressure sensor, 40 kPa to 115 kPa  
7.7.17  
7.7.18  
7.7.19  
7.7.20  
7.7.21  
DEVSTAT_COPY - device status copy  
register (address 61h) ..................................... 46  
SNSDATA0_L, SNSDATA0_H - sensor data  
#0 registers (address 62h, 63h) .......................46  
SNSDATA1_L, SNSDATA1_H - sensor data  
#1 registers (address 64h, 65h) .......................47  
SNSDATA0_TIMEx - time stamp registers  
(address 66h to 6Bh) .......................................47  
P_MAX, P_MIN - maximum and minimum  
absolute pressure value registers (address  
6Ch to 6Fh) ..................................................... 48  
7.7.22  
FRT  
-
free running timer registers  
(addresses 78h to 7Dh) ...................................48  
DSP_CFG_F Register ..................................... 49  
IC type register (Address C0h) ........................49  
IC manufacturer revision register (Address  
7.7.23  
7.7.24  
7.7.25  
C1h) ................................................................. 49  
IC manufacturer identification register  
7.7.26  
(address C2h) ..................................................50  
Part number register (address C4h, C5h) ........50  
Device serial number registers ........................ 50  
ASIC wafer ID registers ...................................51  
USERDATA_0 to USERDATA_E - user data  
7.7.27  
7.7.28  
7.7.29  
7.7.30  
registers ........................................................... 52  
USERDATA_10 to USERDATA_1E - user  
7.7.31  
data registers ...................................................52  
Lock and CRC Registers .................................52  
Reserved registers ...........................................53  
Invalid register addresses ................................53  
Read/write register array CRC verification .......53  
Maximum ratings ...............................................54  
Operating range ................................................ 55  
Static characteristics ........................................55  
Dynamic characteristics ...................................56  
Media compatibility—pressure sensors  
only .....................................................................59  
Pressure sensor accuracy (drift over  
temperature and life) ........................................ 59  
Application information ....................................60  
Package outline .................................................62  
References .........................................................65  
Revision history ................................................ 66  
Legal information ..............................................67  
7.7.32  
7.7.33  
7.7.34  
7.8  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section 'Legal information'.  
© NXP B.V. 2019.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 5 December 2019  
Document identifier: FXPS7115D4  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY