HT2MOA2S20/E/3 [NXP]

IC SPECIALTY TELECOM CIRCUIT, PUUC2, PLASTIC, SOT500-2, LLMC-2, Telecom IC:Other;
HT2MOA2S20/E/3
型号: HT2MOA2S20/E/3
厂家: NXP    NXP
描述:

IC SPECIALTY TELECOM CIRCUIT, PUUC2, PLASTIC, SOT500-2, LLMC-2, Telecom IC:Other

电信 电信集成电路
文件: 总51页 (文件大小:1350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HITAG 2  
Transponder IC  
Rev. 3.0 — 26 February 2010  
188330  
Product data sheet  
CONFIDENTIAL  
1. Introduction  
HITAG 2 is part of the universal and powerful product line of NXP Semiconductors  
125 kHz HITAG family. The contactless read/write system that works with passive  
transponders is suitable for various applications. Inductive coupling allows to achieve big  
reading ranges.  
The HITAG product family is used in the proximity area (operating range up to about  
200 mm) as well as in the long range area (operating range up to about 1000 mm).  
2. General description  
HITAG 2 based transponders are highly integrated and do not need any additional  
components beside the HITAG 2 transponder IC and the external coil.  
Data are transmitted bidirectionally, in half duplex mode, between read/write device  
(RWD) and HITAG transponder IC.  
To achieve a main stream security, data may be transmitted enciphered.  
HTAG 2 transponder IC offer a memory of 256 bit.  
Custom specific configuration of the transponder IC is possible by using the configuration  
page. The configuration page allows the selection of different modes and access  
possibilities and also the configuration of the memory. The pages of the memory can be  
protected against read or write access by setting corresponding memory flags.  
The HITAG 2 transponder IC provides - besides password and crypto mode - the following  
three standard read only modes, that can be configured using the configuration byte:  
public-mode-A  
public-mode-B (animal identification, according to ISO 11784 and ISO 11785)  
public-mode-C (PIT compatible mode PCF793x)  
HITAG 2  
NXP Semiconductors  
Transponder IC  
3. Features and benefits  
„ Identification transponder for use in contactless applications  
„ Operating frequency 125 kHz  
„ Data transmission and energy supply via RF link, no internal battery  
„ Reading distance same as writing distance  
„ Non-volatile memory of 256 bits (128-bit user data and 128-bit control data/secret  
memory) organized in 8 pages, 4 bytes each  
„ 10 years non-volatile data retention  
„ 100 000 erase/write cycles  
„ Selective read/write protection of memory content  
„ Two coding schemes for read operation: Biphase and Manchester coding  
„ Effective communication protocol with outstanding data integrity check  
„ Mutual authentication function  
„ Read/write mode allows:  
‹ Plain data transmission (password mode)  
‹ Encrypted data transmission (crypto mode)  
„ In read/write mode multi-tag operation possible because of special HALT-function  
„ Emulation of standard industrial read-only transponders:  
‹ Public Mode A (MIRO and transponders from µEM (H400x))  
‹ Public Mode B (according to ISO 11784 and ISO 11785 for animal identification)  
‹ Public Mode C (PIT compatible mode)  
4. Applications  
„ Logistics  
„ Livestock tracking  
„ Asset tracking  
„ Gas cylinder ID  
„ Casino - gambling  
„ Industrial automation  
5. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Type  
Version  
HT2ICS2002W/V9F  
HT2MOA2S20/E/3  
HT2DC20S20/F  
Wafer  
sawn wafer on FFC, 150 µm, 8 inch, UV, inked  
and mapped  
-
-
MOA2  
plastic leadless module carrier package; 35 mm  
wide tape  
-
-
SOT500-2  
SOT385-1  
PLLMC  
plastic leadless module carrier package  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
2 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
6. Block diagram  
The HITAG 2 transponder IC requires no external power supply. The contactless interface  
generates the power supply and the system clock via the resonant circuitry by inductive  
coupling to the RWD. The interface also demodulates data transmitted from the RWD to  
the HITAG 2 transponder IC, and modulates the magnetic field for data transmission from  
the HITAG 2 transponder IC to the RWD.  
Data are stored in a non-volatile memory (EEPROM). The memory has a capacity of  
256 bit and is organized in pages.  
Fig 1. Block diagram of HITAG 2 transponder IC  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
3 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
7. Pinning information  
1412  
Poly Silicon  
Realized Bow  
cHT2V0  
134.2  
205  
232  
153.4  
110.4  
Fig 2. Bond plan of HT2ICS2002 [units in µm]  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
4 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
8. Mechanical specification  
8.1 Wafer specification  
See Ref. 2 “General specification for 8’’ wafer on UV-tape”.  
8.1.1 Wafer  
Designation:  
each wafer is scribed with batch number and  
wafer number  
Diameter:  
Thickness:  
Process:  
Batch size:  
PGDW:  
200 mm (8’’)  
150 µm ± 15 µm  
C150EE  
25 wafers  
11091  
8.1.2 Wafer backside  
Material:  
Si  
Treatment:  
Roughness:  
ground and etched  
Ra max. 0.5 µm, Rt max. 5 µm  
8.1.3 Chip dimensions  
Die size without scribe:  
1618 µm x 1412 µm = 2284616 µm  
Scribe line width:  
X-dimension:  
108 µm  
102 µm  
5
Y-dimension:  
Number of pads:  
8.1.4 Passivation on front  
Type:  
single layer  
Material/Thickness:  
TEOS 300 nm, Nitride 700nm  
8.1.5 Bondpads  
Pad size:  
IN1, IN2  
120 x 90 µm  
90 x 90 µm  
AlCu  
TOUT, VSS, VDD  
Material:  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
5 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
8.1.6 Fail die identification  
Every die is 100% electrically tested. Identification of dies which do not confirm with the  
electrical parameters is done by inking and wafer mapping.  
Electronic wafer mapping (SECS II format) covers the electrical test results and  
additionally the results of mechanical/visual inspection.  
See Ref. 2 “General specification for 8’’ wafer on UV-tape”.  
8.1.7 Map file distribution  
See Ref. 2 “General specification for 8’’ wafer on UV-tape”.  
9. Functional description  
9.1 Overview of transponder  
Table 2.  
Overview of transponders  
Description  
Parameter  
Unit  
carrier frequency  
coding read  
125  
kHz  
Manchester/Biphase  
-
coding write  
Pulse duration  
-
modulation  
ASK (amplitude shift keying)  
-
total memory size  
user memory read/write  
read only serial number  
data retention  
256  
bit  
bit  
bit  
year  
-
128  
32  
10  
data security  
encryption, authentication, passwords  
data integrity  
half-duplex handshake, reverse data transmission  
-
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
6 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
9.2 Memory map  
The 256 bit memory area of the HITAG 2 transponder IC is divided into 8 pages. Each  
page has a size of 32 bits.  
Depending on the operation mode (Crypto mode/Password mode) the memory is  
organized as described in the following:  
page  
content  
access  
0
1
Serial number  
ro  
Secret Key Low (32 bit)  
r/w or 0  
Secret Key High (16 bit)  
reserved Bit (14 bit)  
3
3
r/w or ro  
r/w or ro  
configuration (8 bit)  
password tag (24 bit)  
4
5
6
7
usable memory page  
usable memory page  
usable memory page  
usable memory page  
r/w or ro  
r/w or ro  
r/w or ro  
r/w or ro  
Fig 3. Memory map in Crypto Mode  
page  
content  
access  
0
1
2
Serial number  
password RWD  
ro  
r/w or 0  
r/w or 0  
reserved for future use  
configuration (8 bit)  
password tag (24 bit)  
3
r/w or ro  
4
5
6
7
usable memory page  
usable memory page  
usable memory page  
usable memory page  
r/w or ro  
r/w or ro  
r/w or ro  
r/w or ro  
Fig 4. Memory map in Password Mode  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
7 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
9.3 Definition of passwords and keys  
Keys are cryptographic codes, which determine data encryption during data transfer  
between RWD and transponder IC. Keys are used to select a HITAG 2 transponder IC in  
Crypto Mode. The 16 bit KEY HIGH and 32 bit KEY LOW form one 48 bit key which has to  
be identical on both the transponder and the RWD.  
Passwords are needed to select a HITAG 2 transponder in Password Mode. There is one  
pair of passwords (Password TAG, Password RWD) which has to be identical both on the  
transponder and the RWD.  
Password TAG:  
Password RWD:  
Password that the transponder sends to the RWD and which may be  
verified by the latter (depending on the configuration of the RWD).  
Password that the RWD sends to the transponder and which is checked for  
identity by the latter.  
It is important that the following values are in accordance with each other, i.e. the  
respective data on the RWD and on the transponder have to be identical pairs.  
Table 3.  
HITAG 2 in password mode  
On the RWD  
On the transponder  
Password RWD  
Password RWD  
as an option (depending on the configuration of the RWD):  
Password TAG  
Password TAG  
Table 4.  
HITAG 2 in crypto mode  
On the RWD  
KEY LOW  
KEY HIGH  
On the transponder  
KEY LOW  
KEY HIGH  
as an option (depending on the configuration of the RWD):  
Password TAG Password TAG  
The passwords and keys are predefined by NXP Semiconductors by means of defined  
transport passwords and a transport key. They can be written to, which means that they  
can be changed (see also Chapter "Configuration of Delivered HITAG 2 Transponders"  
Section 9.4.3.3).  
ATTENTION: Passwords and Keys only can be changed if their current values are known!  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
8 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
9.4 Operation Modes and Configuration  
With the Configuration Byte the operation mode and the access rights to the memory can  
be selected. During Power-Up of the transponder IC the Configuration Byte is read from  
the memory.  
In case keys or passwords are changed, the transponder should be placed directly  
(0-distance) on the antenna of the RWD! In order to avoid any errors the  
transponder must not be moved during this write process. The programming  
should take place in a safe environment without electrical noise.  
9.4.1 Modes of operation  
The HITAG 2 can be operated in several modes.  
Crypto Mode  
Mode for writing or reading the transponder with encrypted data transmission.  
Password Mode  
Mode for writing or reading the transponder with plain data transmission after password  
check.  
Public Mode A (Manchester)  
Read only mode. The 64 bits of the User Pages 4 and 5 are cyclically transmitted to the  
RWD.  
Public Mode B (Biphase)  
Read only mode according to ISO standards 11784 and 11785 for animal identification.  
The 128 bits of the User Pages 4 to 7 are cyclically transmitted to the RWD.  
Public Mode C (Biphase)  
Read only mode emulating the read operation of the PCF793X (with a slightly different  
Program Mode Check).  
In the Public Mode C the 128 bits of the User Pages 4 to 7 are cyclically transmitted to the  
RWD.  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
9 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
9.4.2 Status flow  
Fig 5. Status flow  
After entering the RF-field the transponder enters the Wait Mode and waits for a command  
to start the authentication.  
After issuing this command the mutual authentication takes place, followed by read- and  
write commands.  
In password mode the data transfer occurs plain, in crypto mode data are encrypted.  
The Halt Mode can be entered for muting a transponder.  
If the transponder is configured in one of the public modes, these modes are entered  
automatically after a certain waiting time and data pages are sent cyclically to the RWD.  
By issuing the command to start the authentication during the waiting time also public  
mode transponders can be brought into the authorized state.  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
10 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
9.4.3 Organization of the Configuration Byte  
The Configuration Byte is represented by the first 8 bits of Page 3 of the transponder IC  
memory.  
9.4.3.1 Configuration Byte  
7
6
5
4
3
2
1
0
0: Manchester Code  
1: Biphase Code  
Bit 2 Bit 1  
Version  
Coding  
Coding in  
HITAG 2-  
Operation  
0
0
1
1
0
1
0
1
Public Mode B  
Public Mode A  
biphase  
manchester  
depending on bit 0  
depending on bit 0  
depending on bit 0  
Public Mode C biphase  
HITAG 2  
depending on bit 0 depending on bit 0  
0: password mode  
1: crypto mode  
0: PAGE 6 and 7 read/write  
1: PAGE 6 and 7 read only  
0: PAGE 4 and 5 read/write  
1: PAGE 4 and 5 read only  
THE SETTING OF THIS BIT IS OTP!  
0: PAGE 3 read/write  
1: PAGE 3 read only; Configuration Byte and Password TAG fixed  
THE SETTING OF THIS BIT IS OTP!  
0: PAGE 1 and 2 read/write  
1: PAGE 1 no read/no write  
PAGE 2 read only (when transponder is in password mode)  
PAGE 2 no read/no write (when transponder is in crypto mode)  
001aak013_1  
Fig 6. Configuration Byte  
Configuration Byte/Bit 6:  
Bit 6 = '0': Page 3 is read/write.  
Bit 6 = '1': Page 3 can only be read. This process is irreversible!  
ATTENTION: Do not set Bit 6 of the Configuration Byte to '1' before having written the  
final data into Page 3 (including the Configuration Byte and Password TAG) of the  
transponder.  
Configuration Byte/Bit 7:  
Bit 7 = '0': Pages 1 and 2 are read/write.  
Bit 7 = '1': Pages 1 and 2 are locked against writing. This process is irreversible!  
ATTENTION: Do not set Bit 7 of the Configuration Byte to '1' before having written the  
final data into Pages 1 and 2 of the transponder.  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
11 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
9.4.3.2 Standard values of the Configuration Byte  
Table 5. Standard values for the Configuration Byte  
Mode  
Value  
06h  
Password Mode  
Crypto Mode  
0Eh  
02h  
Public Mode A  
Public Mode B  
Public Mode C  
00h  
04h  
9.4.3.3 Delivery configuration of HITAG 2 transponder IC  
HITAG 2 transponder ICs are delivered with the following configuration by NXP  
Semiconductors:  
Table 6.  
Delivery configuration  
Unique serial number  
Serial number  
Configuration byte  
06h  
read only  
fixed  
Password Mode (Manchester Code)  
Page 6 and 7 read/write  
Page 4 and 5 read/write  
Page 3 read/write  
can be changed  
can be changed  
can be changed  
can be changed  
can be changed  
Page 1 and 2 read/write  
Values for transport passwords, transport keys  
Password RWD  
Password TAG  
Key Low  
4D 49 4B 52h (= “MIKR“)  
AA 48 54h  
4D 49 4B 52h (= “MIKR“)  
4F 4Eh (= “ON“)  
Key High  
Recommendation:  
Before delivering transponders to end users, Pages 1 to 3 should be locked (set  
Configuration Byte/Bit 6 to '1' for Page 3 and set Configuration Byte/Bit 7 to '1' for pages 1  
and 2).  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
12 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
9.5 Electromagnetic characteristics  
9.5.1 Magnetic flux densities  
Since magnetic coupling is used for the data transmission between transponder and RWD  
the magnetic field is the most important attribute. Figure 7 shows the direction of the  
magnetic field lines with the transponder placed in the antenna field.  
Fig 7. Magnetic coupling between RWD and transponder  
9.5.2 Equivalent circuit for data and energy transfer  
Figure 8 shows the model for the transmission channel realized as an inductive coupled  
circuit. The primary side (L1) represents the RWD antenna and the secondary side (L2)  
the antenna of the transponder.  
Fig 8. Equivalent circuit  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
13 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
9.6 Data transmission: transponder RWD  
9.6.1 Coding  
Load modulation is used, when sending data to the RWD. To force the absorption of the  
magnetic field, the transponder in principle turns on/off an internal resistor. With the  
resistor turned on, the physical state is named modulator ON (loaded) otherwise  
modulator OFF (unloaded).  
Two different codes are used for the transmission of data to the read/write device:  
Table 7.  
Coding and Bit length  
Coding  
Mode  
Bit length T  
32 T0  
Bit rate  
4 KBit/s  
4 KBit/s  
2 KBit/s  
4 KBit/s  
2 KBit/s  
Crypto  
Biphase/Manchester  
Password  
Public Mode A  
Public Mode B  
PCF793X (PIT)  
Biphase/Manchester  
Manchester  
Biphase  
32 T0  
64 T0  
32 T0  
Biphase  
64 T0  
[1] T0 ... Carrier period time (1/125 kHz = 8 µsec nominal)  
Fig 9. Data coding: Transponder RWD  
The first bit of the transmitted data always starts with the Modulator ON (loaded) state.  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
14 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
9.6.2 Modulation  
Figure 10 shows the voltage at the antenna coil of the transponder. Measurement was  
done with an additional coil fixed at the transponder.  
The minimum modulation ratio depends on the coupling factor of the configuration (RWD  
antenna, tag antenna size).  
Fig 10. Transponder antenna coil voltage  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
15 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
9.7 Data transmission: RWD transponder  
9.7.1 Coding  
Data are transmitted to the transponder by switching on/off the current through the  
antenna. When the current is switched off, the physical state is named low field, otherwise  
high field.  
Binary puls length modulation (BPLM) is used to encode the data stream.  
All coded data bits and the stop condition start with a low field of length tlow  
.
Afterwards the field is switched on again.  
'0' and '1' can be distinguished by the duration of T[0] and T[1].  
The end of the data transmission is characterized by a stop condition.  
Figure 11 shows the data transmission from the RWD to the transponder.  
Fig 11. Data coding: RWD transponder  
Table 8.  
Symbol  
tlow  
Timing values  
Description  
Duration  
4 to 10  
18 to 22  
26 to 32  
> 36  
Unit[2]  
[1]  
low field time  
T0  
T[0]  
logic 0 pulse length  
logic 1 pulse length  
high field for stop condition  
T0  
T0  
T0  
T[1]  
tstop  
[1] This application specific value will be within this frame, but has to be optimized for each application  
depending on antenna current and quality factor!  
[2] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
16 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
The average Bit rate from the RWD to transponder therefore is:  
2
··  
= 5, 2kB s  
--------------------------------  
Bitrate =  
(1)  
T 0 + T 1  
Remark: The end of each data sequence from RWD to transponder has to be a stop  
condition.  
Depending on transient and decay times caused by different RWDs the timing for T[0],  
T[1] and tlow has to be adapted.  
The following two examples show the timing for two RWDs.  
Used timing values with a Proximity Reader Module are:  
Table 9.  
Symbol  
tlow  
Timing values with a Proximity Reader Module  
Description  
Duration  
Unit[1]  
T0  
low field time  
6
T[0]  
logic 0 pulse length  
logic 1 pulse length  
22  
28  
T0  
T[1}  
T0  
[1] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
Used timing values with a Long Range Reader Module are:  
Table 10. Timing values with a Long Reader Module  
Symbol  
tlow  
Description  
Duration  
Unit[1]  
T0  
low field time  
8
T[0]  
logic 0 pulse length  
logic 1 pulse length  
22  
28  
T0  
T[1}  
T0  
[1] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
Remark: This application specific values have to be optimized for each application!  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
17 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
9.7.2 Modulation  
The following figure shows the antenna voltage of the RWD.  
The minimum modulation depends on the quality factor of the antennas (transponder and  
RWD).  
A recommended value for the quality factor of the RWD antenna is approx. 40.  
Uo  
Um  
Fig 12. RWD antenna coil voltage  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
18 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
9.8 Switching the transmission direction  
When switching between receiving and sending, the RWD has to consider time frames, in  
which transmission of data is not allowed:  
tWAIT1  
:
:
When receiving the last bit from the RWD, the transponder waits before  
answering.  
tWAIT2  
After receiving the last bit from the transponder, the RWD has to wait before  
sending data. Data transmitted to the transponder within twait, will not be  
recognized by the transponder.  
Table 11. tWAIT times  
Symbol  
Description  
Duration  
Min  
Unit[2]  
Max  
tWAIT1  
tWAIT2  
transponder switching from receive to transmit, wait  
time after end of data  
199  
206  
T0  
T0  
transponder switching from transmit to receive, wait  
time after end of data  
90[1]  
-
[1] tWAIT2 must not exceed 5000 T0!  
[2] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
9.8.1 Data integrity using the HITAG 2  
For data transmission between RWD and transponders the HITAG 2 transponder IC  
supports special commands to increase data integrity.  
Using additional inverted data transmission for commands, addresses as well as read  
data, utmost data integrity is achieved.  
For write transmissions read after write is recommended. See also Section 10 “Command  
set and timing”  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
19 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
10. Command set and timing  
There are two types of instructions  
1. Instruction for the start of the communication (START_AUTH)  
2. Instructions for the communication itself  
10.1 Data flow: RWD transponder  
Please note that the transponder IC memory works like a FIFO (First-In-First-Out)  
memory. Therefore the order of the bits transferred is as described in the example below:  
Write: Bit 31 is sent first to the transponder.  
Read: Bit 31 is sent first to the RWD.  
Fig 13. Data flow  
10.2 START_AUTH-Instruction  
Table 12. START_AUTH  
CM1  
CM0  
ADDR4  
ADDR3  
ADDR2  
1
1
0
0
0
T0  
Carrier period time (1/125 kHz = 8 µsec nominal)  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
20 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
10.2.1 Crypto Mode  
After an instruction START_AUTH from the RWD all transponders in the field respond with  
a start sequence (5 bits ’1’) followed by their 32 bit serial number (SN).  
RWD  
11000  
Transponder  
1 1 1 1 1  
SN31 ...............SN0  
32 Bit serial number  
start  
first in  
sequence  
RWD  
32 bit PRN 32 bit secret data  
Transponder first in  
1 1 1 1 1 Config. Byte / Password TAG  
32 Bit  
The instruction START_AUTH cannot be repeated, because at the same time the crypto  
unit is initialized. A second START_AUTH resets the state machine. Therefore the  
transponder only responds to every second START_AUTH.  
After the transponder has sent the serial number, the RWD sends a 32 bit Pseudo  
Random Number (PRN) and a 32 bit secret datastream to the transponder. If the secret  
datastream corresponds with the secret datastream on the transponder, Page 3 of the  
transponder (8 bit configuration, 24 bit password transponder) is transmitted after the 5 bit  
header.  
With the transponder password in the configuration page the mutual authentication takes  
place. Access to the transponder is only possible after this mutual authentication and  
password checking routine. Transmission of the password and the following  
communication takes place encrypted.  
As the information about the configuration of the transponder (password or crypto) is  
transmitted with the configuration page, the RWD must know which type of transponder  
has to be handled. In one application either crypto transponders or password  
transponders are to be handled.  
The write instructions are interrupted by the transponder, when the memory supply is too  
low during the write operation.  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
21 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
Timing:  
RWD  
11000  
PRN/PSW  
Transponder  
ID number  
tSN  
Config Byte/Password TAG  
tCONFIG  
tPowerUp  
tSTART_AUTH  
tWAIT1  
tWAIT2  
tPZZ/SDS  
tWAIT1  
Table 13. Timing in crypto mode  
Symbol  
tPowerUp  
tSTART_AUTH  
tWAIT1  
Min  
Typ  
Max  
Unit[1]  
T0  
-
312.5  
116  
-
-
-
T0  
199  
-
206  
T0  
tSN  
-
1184[2]  
-
T0  
tWAIT2  
90  
-
-
T0  
tPZZ/SDS  
tCONFIG  
Total  
1280  
1536  
1184[2]  
4630  
1792  
T0  
-
-
-
-
T0  
T0  
[1] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
[2] Timing defined by digital design and therefore fixed  
After a following tWAIT2 the first read or write instruction can be sent by the RWD. The  
authentication time in crypto mode is about 4630 T0.  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
22 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
10.2.2 Password Mode  
After an instruction START_AUTH from the RWD all transponders in the field respond with  
a start sequence (5 bits ’1’) followed by their 32 bit serial number.  
RWD  
11000  
Transponder  
1 1 1 1 1  
SN31 ...............SN0  
32 Bit serial number  
start  
first in  
sequence  
RWD  
32 bit PSW  
Transponder first in  
1 1 1 1 1 Config. Byte / Password TAG  
32 Bit  
The instruction START_AUTH cannot be repeated. A second START_AUTH resets the  
state-machine. Therefore the transponder only responds to every second START_AUTH.  
After the transponder has sent the serial number, the RWD sends a 32 bit password. If the  
password corresponds with the password on the transponder, Page 3 of the transponder  
(8 bit configuration, 24 bit password transponder) is transmitted after the 5 bit header.  
With the transponder password in the Configuration Page the mutual authentication takes  
place.  
Access to the transponder is only possible after this mutual authentication and password  
checking routine.  
As the information about the configuration of the transponder (password or crypto) is  
transmitted with the Configuration Page, the RWD must know which type of transponder  
has to be handled. In one application either crypto transponders or password  
transponders are to be handled.  
The read and write instructions are interrupted by the transponder, when the memory  
supply is too low during read or write.  
As the transponder is selected by the password, each transponder must have a unique  
password, that can have a connection with the serial number.  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
23 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
Timing:  
RWD  
11000  
PSW  
Transponder  
ID number  
tSN  
Config Byte/Password TAG  
tCONFIG  
tPowerRUp tSTART_AUTH  
tWAIT1  
tWAIT2  
tPSW  
tWAIT1  
Table 14. Timing in password mode  
Symbol  
tPowerUp  
tSTART_AUTH  
tWAIT1  
Min  
Typ  
312.5  
116  
Max  
Unit[1]  
T0  
-
-
-
-
T0  
199  
-
206  
T0  
tSN  
-
1184[2]  
-
T0  
tWAIT2  
90  
-
-
T0  
tPZZ/SDS  
tCONFIG  
Total  
640  
768  
1184[2]  
3860  
896  
T0  
-
-
-
-
T0  
T0  
[1] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
[2] Timing defined by digital design and therefore fixed  
After tWAIT2 the first read or write instruction can be sent by the RWD. The authentication  
time in password mode is about 3860 T0.  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
24 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
10.2.3 Public Modes A and B  
After the Configuration Byte is stored in the logic during power up, and after the  
synchronization phase of the state machine, the transponder waits for the instruction  
START_AUTH. If the RWD does not send the instruction START_AUTH within tWAIT  
START_AUTH after the Power_Up (312.5 T0 after the RF-field is applied) the transponder  
begins to send the data in one of the public modes (depending on the configuration).  
Table 15. Timings  
Symbol  
Description  
Duration  
312.5  
Unit[2]  
T0  
tPowerUp  
internal power_up time  
tWAIT START_AUTH  
waiting time to receive the  
START_AUTH command  
max. 232.5[1]  
T0  
[1] If the waiting time tWAIT START_AUTH exceeds 232.5 T0 the transponder enters the read-only state.  
[2] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
25 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
Public Mode A  
In this standard read-only mode the transponder cyclically transmits page 4 and page 5 in  
plain mode to the RWD without a start sequence as long as the transponder is in the field  
of the RWD. The data are transmitted in Manchester Code with a baudrate of 2 KBit/s.  
Power Up and  
Wait for  
Synchronization START_AUTH  
312.5 T0  
232.5 T0  
Transponder  
Page 4  
Page 5  
Page 4  
Page 5  
Page 4  
..............  
Remark: As the RWD has to be synchronized to the data, the first 9 bits of page 4 are ’1’  
(header of the transponder in Public Mode A).  
Timing:  
Transponder  
PAGE4, PAGE5  
tPAGE4PAGE5  
PAGE4, PAGE5 .....  
tPAGE4PAGE5  
tPowerUp  
tWAITSTART_AUTH  
Table 16. Timing in Public Mode A  
Symbol  
Min  
Typ  
Max  
Unit[1]  
T0  
tPowerUp  
-
-
-
-
312.5  
-
tWAITSTART_AUTH  
tPAGE4PAGE5  
Total  
-
232.5  
T0  
4096[2]  
4640  
-
-
T0  
T0  
[1] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
[2] Timing defined by digital design and therefore fixed  
If the RWD sends the instruction START_AUTH within the 232.5 T0 after the power up the  
transponder behaves like a normal HITAG 2 transponder IC. Depending on bit 3 of the  
Configuration Byte, the communication is plain or encrypted.  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
26 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
Public Mode B  
Public Mode B accords to the ISO standards 11784 and 11785 for animal identification.  
In this mode the transponder cyclically transmits page 4 to page 7 in plain mode to the  
RWD without a start sequence as long as the transponder is in the field of the RWD. The  
data are transmitted in Biphase Code with a baudrate of 4 KBit/s.  
Power Up and  
Wait for  
Synchronization START_AUTH  
312.5 T0  
232.5 T0  
Transponder  
Page 4  
Page 5  
Page 6  
Page 7  
Page 4  
..............  
If the RWD sends the instruction START_AUTH within the 232.5 T0 after the power up the  
transponder behaves like a normal HITAG 2 transponder IC. Depending on bit 3 of the  
Configuration Byte, the communication is plain or encrypted.  
Timing:  
Transponder  
PAGE4 .... PAGE5  
tPAGE4...7  
.....  
tPowerUp  
tWAITSTART_AUTH  
Table 17. Timing in Public Mode B  
Symbol  
Min  
Typ  
Max  
Unit[1]  
T0  
tPowerUp  
-
-
-
-
312.5  
-
tWAITSTART_AUTH  
tPAGE4...7  
Total  
-
232.5  
T0  
4096[2]  
4640  
-
-
T0  
T0  
[1] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
[2] Timing defined by digital design and therefore fixed  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
27 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
Public Mode C  
With this additional feature a HITAG 2 transponder IC that is configured in Public Mode C  
is compatible to the PCF793X (PIT).  
After the configuration byte is stored in the logic during power up, and after the  
synchronization phase of the state machine, the transponder waits for the instruction  
START_AUTH. If the RWD does not send the instruction START_AUTH within 232.5 T0  
after power up the transponder begins to send the data in PCF793X mode.  
In this mode the transponder cyclically transmits page 4 to page 7 in plain mode to the  
RWD without a start sequence as long as the transponder is in the field of the RWD. The  
data are transmitted in Biphase Code with a baudrate of 2 KBit/s. Between the 128 bit  
data blocks there is a Program Mode Check phase (PMC).  
Power Up and  
Wait for  
Synchronization  
START_AUTH  
312.5 T0  
232.5 T0  
Transponder  
Page 4 to 7 PMC  
Page 4 to 7 PMC  
Page 4 to 7  
...........  
Thi  
= 64 T0  
Tlow1= 128 T0  
Tlow2= 192 T0  
Fig 14. Program Mode check phase  
If the RWD sends the instruction START_AUTH within the 232.5 T0 after the power up the  
transponder behaves like a normal HITAG 2 transponder IC. Depending on bit 3 of the  
Configuration Byte, the communication is plain or encrypted.  
Remark: Only the READ MODE of the PCF793X is emulated (with a different PMC).  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
28 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
Timing:  
Transponder  
PAGE4 - 7 PMC  
PAGE4 - 7  
.....  
tPowerUp  
tWAITSTART_AUTH  
tPAGE4-7  
tPMC  
tPAGE4-7  
Table 18. Timing in Public Mode C  
Symbol  
tPowerUp  
tWAITSTART_AUTH  
tPAGE4...7  
tPMC  
Min  
Typ  
Max  
Unit[1]  
-
-
-
-
-
312.5  
-
T0  
T0  
T0  
T0  
T0  
-
232.5  
8192[2]  
384[2]  
9120  
-
-
-
Total  
[1] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
[2] Timing defined by digital design and therefore fixed  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
29 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
10.3 Communication instructions  
Before starting a read or write operation the transponder has to be selected by the  
START_AUTH command.  
Table 19. Communication instructions  
CM1  
CM0  
ADDR4  
ADDR3  
ADDR2  
Command  
1
0
1
0
1
1
0
0
x
x
x
x
x
x
x
x
x
x
x
x
READ PAGE  
READ PAGE INVERTED  
WRITE PAGE  
HALT  
Times for communication instructions depend on the protection of data in the protocol  
from RWD to the transponder.  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
30 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
10.3.1 READ PAGE  
RWD  
1 1  
ADDR (A4 .. A2)  
0 0  
inv. ADDR (/A4 .. /A2)  
........  
Transponder  
1 1 1 1 1  
32 Bit Data  
first out  
The instruction READ PAGE (2 bits) and the page address (3 bits) are transmitted to the  
transponder in normal mode and in inverted mode to secure the data channel from RWD  
to transponder. To achieve a higher confidence level, this protocol can be repeated  
several times. The logic on the transponder checks if there is a failure in the sequence.  
The READ PAGE instruction therefore is 10, 15, 20, ..... bits long. If there is a failure in the  
transmission of the sequence the transponder is reset and the communication has to be  
started again with START_AUTH. If the transponder receives no more data and there was  
no failure in the transmission of the sequence, the transponder answers with the 5 bit  
header and the 32 bit data of the addressed page.  
Timing:  
RWD  
Command  
Transponder  
Data  
tDATA  
tKOMM  
tWAIT1  
tWAIT2  
Table 20. Timing of READ PAGE instruction  
Symbol  
tKOMM  
tWAIT1  
tDATA  
Min  
Typ  
240  
-
Max  
Unit[1]  
T0  
-
-
199  
206  
T0  
-
1184[2]  
-
-
-
T0  
tWAIT2  
Total  
90  
-
-
T0  
1750  
T0  
[1] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
[2] Timing defined by digital design and therefore fixed  
After tWAIT2 the next instruction can be accepted by the transponder.  
A typical READ PAGE (10 bit command) time therefore is: 1750 T0  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
31 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
10.3.2 READ PAGE INVERTED  
RWD  
0 1  
ADDR (A4 .. A2)  
1 0  
inv. ADDR (/A4 .. /A2)  
........  
Transponder  
1 1 1 1 1  
32 Bit inverted Data  
first out  
The instruction READ PAGE INVERTED (2 bits) and the page address (3 bits) are  
transmitted to the transponder in normal mode and in inverted mode to secure the data  
channel from RWD to transponder. To achieve a higher confidence level, this protocol can  
be repeated several times. The logic on the transponder checks if there is a failure in the  
sequence. The READ PAGE INVERTED instruction therefore is 10, 15, 20, ..... bits long. If  
there is a failure in the transmission of the sequence the transponder is reset and the  
communication has to be started again with START_AUTH. If the transponder receives no  
more data and there was no failure in the transmission of the sequence, the transponder  
answers with the 5 bit header and the 32 bit data of the addressed page. The data are  
transmitted inverted to the RWD.  
By alternating transmission of the instructions READ PAGE and READ PAGE INVERTED  
the data from the transponder to the RWD can be secured at a level that can be chosen  
by the user. Additionally check data can be stored in the transponder IC memory with the  
data.  
Timing:  
RWD  
Command  
Transponder  
Data  
tDATA  
tKOMM  
tWAIT1  
tWAIT2  
Table 21. Timing of READ PAGE INVERTED instruction  
Symbol  
tKOMM  
tWAIT1  
tDATA  
Min  
Typ  
240  
-
Max  
Unit[1]  
T0  
-
-
199  
206  
T0  
-
1184[2]  
-
-
-
T0  
tWAIT2  
Total  
90  
-
-
T0  
1750  
T0  
[1] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
[2] Timing defined by digital design and therefore fixed  
After tWAIT2 the next instruction can be accepted by the transponder.  
A typical READ PAGE INVERTED (10 bit command) time therefore is: 1750 T0  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
32 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
10.3.3 WRITE PAGE  
RWD  
1 0  
ADDR  
(A4 .. A2)  
0 1 inv. ADDR  
(/A4 .. /A2)  
.......  
.
first out  
Transponder  
RWD  
1 1 1 1 1 1 0 ADDR  
(A4...A2)  
0 1  
inv. ADDR  
(/A4 .. /A2)  
32 Bit Data  
The instruction WRITE PAGE (2 bits) and the page address (3 bits) are transmitted to the  
transponder in normal mode and in inverted mode to secure the data channel from RWD  
to the transponder. To achieve a higher confidence level, this protocol can be repeated  
several times. The logic on the transponder checks if there is a failure in the sequence.  
The WRITE PAGE instruction therefore is 10, 15, 20, ..... bits long. If there is a failure in  
the transmission of the sequence the transponder is reset and the communication has to  
be started again with START_AUTH. If the transponder receives no more data and there  
was no failure in the transmission of the sequence, the transponder answers with the 5 bit  
header and an acknowledgement. This acknowledgement consists of the WRITE PAGE  
instruction and the page address in normal and inverted mode.  
With this procedure the RWD knows, that the data are written to the correct address.  
After the address sent from transponder to RWD has been checked, the RWD transmits  
32 bit data to the transponder. There is no acknowledgement from the transponder  
concerning the success of data programming. This can only be tested by read-after-write.  
The READ PAGE command for a read-after-write has to be executed immediately  
following the WRITE PAGE command. If the memory supply was too low during  
programming (insufficiently programmed cell, data retention not ensured) the read  
command is not executed by the transponder (control function!). In this case the  
transponder is reset and the user has to start again with a START_AUTH command.  
Timing:  
RWD  
Command  
Data  
Transponder  
Acknow.  
tQUIT  
tKOMM  
tWAIT1  
tWAIT2  
tDATA  
tPROG  
tWAIT2  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
33 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
Table 22. Timing WRITE PAGE instruction  
Symbol  
Min  
-
Typ  
240  
-
Max  
Unit[1]  
T0  
tKOMM  
tWAIT1  
tQUIT  
-
199  
-
206  
T0  
480[2]  
-
T0  
tWAIT2  
tDATA  
90  
640  
-
-
-
T0  
768  
614[2]  
896  
T0  
tPROG  
tWAIT2  
Total  
-
-
-
T0  
90  
-
T0  
2500  
T0  
[1] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
[2] Timing defined by digital design and therefore fixed  
After tWAIT2 the next instruction can be accepted by the transponder.  
A typical WRITE PAGE (10 bit command) time therefore is: 2500 T0  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
34 of 51  
HITAG 2  
NXP Semiconductors  
10.3.4 HALT  
Transponder IC  
With the HALT instruction a selected transponder can be set to the HALT Mode. In this  
mode the transponder is muted and does not respond to a START_AUTH from the RWD.  
If the transponder is set to HALT Mode after the communication, other transponders within  
the field of the antenna can be handled.  
If the transponder is in HALT Mode, only a Power-on-reset (POR) enables the  
transponder to communicate with the RWD again. This means that the transponder has to  
leave the field of the antenna or the field has to be switched off (Reset).  
RWD  
0 0  
ADDR  
(A4 .. A2)  
1 1 inv. ADDR  
(/A4 .. /A2)  
........ →  
first out  
Transponder  
1 1 1 1 1 0 0 ADDR  
(A4...A2)  
1 1  
inv. ADDR  
(/A4 .. /A2)  
The instruction HALT (2 bits) and the page address (3 bits) are transmitted to the  
transponder in normal mode and in inverted mode to secure the data channel from RWD  
to the transponder. To achieve a higher confidence level, this protocol can be repeated  
several times. The logic on the transponder checks if there is a failure in the sequence.  
The HALT instruction therefore is 10, 15, 20, ..... bits long. If there is a failure in the  
transmission of the sequence the transponder is reset and the communication has to be  
started again with START_AUTH. If the transponder receives no more data and there was  
no failure in the transmission of the sequence, the transponder answers with the 5 bit  
header and an acknowledgement. This acknowledgement consists of the HALT  
instruction and the page address in normal and inverted mode. The address that is  
transmitted with the HALT instruction can be any of the possible addresses.  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
35 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
Timing:  
RWD  
Command  
Transponder  
Acknow.  
tQUIT  
tKOMM  
tWAIT1  
Table 23. Timing of HALT instruction  
Symbol  
tKOMM  
tWAIT1  
tQUIT  
Min  
Typ  
240  
-
Max  
Unit[1]  
T0  
-
-
199  
1648  
T0  
-
-
480[2]  
-
-
T0  
Total  
1000  
T0  
[1] T0 Carrier period time (1/125 kHz = 8 µsec nominal)  
[2] Timing defined by digital design and therefore fixed  
A typical HALT (10 bit command) therefore is 1000 T0.  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
36 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
10.4 Transponder coil specification - HT2MOA2S20  
The HITAG 2 chip module has to be connected to a coil whose parameters are briefly  
described in the following.  
Cpc  
Cp  
Lpc  
Rpc  
Cchip  
Rchip  
Uc  
Fig 15. Equivalent circuit of the transponder  
1
1
-------------------------------------------------------------  
--------------------------------------------------------------------  
fres  
=
= 125kHz Lpc  
=
(2)  
(2πfres)2(Cchip + Cpc + Cp)  
2π  
(Cchip + Cpc + Cp)Lpc  
Description  
Uc  
voltage at the connection pads  
fres  
Lpc  
Rpc  
Cp  
resonant frequency of the transponder  
parallel inductivity of the coil (f = 125 kHz)  
parallel resistance of the coil (f = 125 kHz)  
parasitic capacitance of the package  
210 pF ± 10 %  
Cchip  
fresc  
self resonant frequency of the coil  
resistance of the chip  
Rchip  
Rpc  
> 45 k... to increase Qcoil  
Qcoil  
> 7.5 ... quality factor of transponder coil at 125 kHz  
Cpc  
Cchip  
Lpc  
parasitic capacitance of the coil  
capacitance of the chip (Uc > 4 Vpp)  
> 6.5 mH ... to ensure resonant frequency near 125 kHz  
Remark: The parasitic capacitance of the package (Cp) must be considered.  
Typical values for Cp molded tags: Cp = 6.0 pF  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
37 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
For a rough estimation (± 10 %) of the number of coil windings following formula can be  
used. It is assumed that the winding is done in circular form.  
L
N =  
---------------------  
(3)  
u
⎛ ⎞  
1, 85  
--  
2Uln  
⎝ ⎠  
d
Table 24. Abbreviations  
Description  
N
L
number of windings  
inductance [nH]  
U
d
average coil circumference [cm]  
copper diameter [mm]  
u
average coil circumference [mm]  
For fine tuning a measurement of the inductance and an according adjustment of the  
number of windings is necessary. This process always needs some iterations.  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
38 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
11. Limiting values  
Table 25. Limiting values - HT2IC2002[1]  
Symbol  
VDD  
Parameter  
Conditions  
Min  
0.5  
2
Max  
Unit  
V
supply voltage  
+6.5  
-
VESD  
electrostatic discharge voltage  
MIL-STD 883D, Method  
3015.7, Human Body  
kV  
Ilu  
latch-up current  
MIL-STD 883D, Method 3023  
IN1-IN2  
100  
mA  
Ii(max)  
Tj  
maximum input current  
junction temperature  
30  
mApeak  
°C  
55  
+140  
[1] Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any conditions other than those described in the Operating Conditions and Electrical  
Characteristics section of this specification is not implied.  
Table 26. Limiting values -HT2DC20S20 (SOT385-1)/ HT2MOA2S20 (SOT500-2)[1]  
Symbol  
Parameter  
Conditions  
Min  
55  
Max  
+125  
0.2  
Unit  
°C  
T
Tstg  
storage temperature  
Magnetic flux density  
[1] Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any conditions other than those described in the Operating Conditions and Electrical  
Characteristics section of this specification is not implied.  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
39 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
12. Characteristics  
Table 27. Electrical characteristics - HT2IC2002[1][2]  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Operating range  
TA  
Temperature  
Supply Voltage  
RThJunctionAmbient 30K/W @  
IIN=30mA  
-40  
2.8  
85  
°C  
VDD  
5.5  
V
Power consumption  
IVDDQ Quiescent Current  
IVDDI Idle Current  
VDD=3.5V, Limiter off  
-
-
4
7
µA  
µA  
VDD=3.5V, VIN=100mV @ 125  
kHz, Limiter off  
Clock recovery  
VCLK Sensitivity  
fCLK Frequency  
VDD=3.5V  
-
-
100  
250  
mV  
VIN=100mV,  
VDD=3.5V  
kHz  
Demodulator  
VDEMOD Sensitivity  
VINHigh - VINLow @ VINHigh=5Vp,  
T0=8µs, TMOD=6*T0  
-
2
V
TDEMOD  
Response Time  
VINHigh=5V, VINLow=2.5V,  
T0=8µs, TMOD=6*T0  
4
24  
µs  
Modulator  
RIN1L  
R_IN1 linear  
R_IN1 nonlinear  
R_IN2 linear  
VDD=3.5V, VIN1=0.5V, VIN2=0V  
VDD=3.5V, VIN1=1.5V, VIN2=0V  
VDD=3.5V, VIN1=0V, VIN2=0.5V  
1.6  
480  
3.4  
3.0  
kΩ  
kΩ  
kΩ  
RIN1NL  
RIN2L  
1.46  
6.4  
Voltage limiter  
VLimitMin Minimum Voltage  
VLimitMax Maximum Voltage  
VDD @ IIN ±10 µA  
VDD @ IIN ±30 µA  
2.7  
-
-
V
V
5.5  
Resonance capacitor  
CResInit  
VDD=3.5V  
189  
231  
pF  
Power on reset  
VPOR  
Static Power on Reset Level  
1.3  
0.9  
2.3  
2.0  
V
VDD capacitor  
CVDD  
VDD Capacitor Value  
VDD=3.5V  
nF  
EEPROM characteristics  
write current  
VDD=2.8V  
VDD=2.8V  
@ 55 °C  
-
20  
7
-
µA  
read current  
-
µA  
tret  
retention time  
10  
year  
cycle  
Nendu(W)  
write endurance  
100000  
-
[1] In normal operation supply voltage is generated by on chip rectification and limitation of the AC voltage applied via antenna to pins IN1  
and IN2, and can be measured at pins VDD and VSS.  
[2] Pins VDD and VSS are not connected for normal operation but can be used for forcing supply voltages during test.  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
40 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
Table 28. Electrical characteristics - HT2DC20S20 (SOT385-1)  
Symbol Parameter  
Conditions  
Min Max Unit  
TA  
ambient temperature  
RThJunctionAm  
bient 30 K/W  
@
25 85  
°C  
IINpeak = 30 mA  
fRES  
BW  
resonance frequency  
bandwidth  
121 129 kHz  
2.3  
35  
-
kHz  
Bthr  
magnetic flux density,  
f0 = 125 kHz  
400[1 µTpp  
]
data transmission from transponder to  
base station  
Bprog  
magnetic flux density for programming the m = 0.95  
35  
35  
400[1 µTpp  
]
EEPROM  
f0 = 125 kHz  
t
low = 8T0  
Bauth  
magnetic flux density for mutual  
authentication  
m = 0.95  
400[1 µTpp  
]
f0 = 125 kHz  
tlow = 8T0  
f0 = 125 kHz  
Bread  
field absorption due to the modulation of  
the transponder  
8
-
µTpp  
Bfield = 35 µTpp  
MiPRG  
modulation index (m) of the base station  
for programming and authentication  
Bfield = 35 µTpp  
f0 = 125 kHz  
95  
100  
%
tlow = 8T0  
[1] Maximum available field strength of the test equipment. Transponder limit has not been characterized.  
All parameters are characterized with the Scemtec test equipment (STM-1), available  
from SCEMTEC, Reichshof-Wenrath,Germany.  
Fig 16. Modulation index  
(Bmax Bmin  
(Bmax + Bmin  
)
)
----------------------------------  
m =  
(4)  
(5)  
Bread = Bmax Bmin  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
41 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
Table 29. Electrical characteristics - HT2MOA2S20 (SOT500-2)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Operating range  
TA  
ambient temperature  
RThJunctionAmbient 30 K/W @  
25  
85  
°C  
IINpeak = 30 mA  
VIN, TH  
input threshold voltage  
input read voltage  
input write voltage  
start modulation after SETCC  
read EEPROM  
-
-
-
3.9  
4.5  
4.7  
Vp  
Vp  
Vp  
VIN, RD  
VIN, WR  
Modulator  
RMODL  
write EEPROM  
R_MOD linear  
R_MOD linear  
VINLow 2.0 Vp  
VINLow 2.0 Vp  
-
-
4.0  
3.6  
kΩ  
kΩ  
RMODNL  
Resonance capacitor  
CRESInit  
VIN = 4.0 Vp  
189  
231  
pF  
13. Mechanical characteristics  
Table 30. Mechanical characteristics HT2DC20S20 (SOT385-1)  
Parameter  
Value  
Unit  
Mechanical dimensions  
Protection class  
Casting material  
Housing color  
Vibration  
12 x 6 x 3  
IP67  
mm  
epoxy resin  
black  
20  
g
20 to 200 Hz  
3-axis  
IEC 68-2-6, Test Fc  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
42 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
14. Package outline  
PLLMC: plastic leadless module carrier package; 35 mm wide tape  
SOT500-2  
X
D
A
detail X  
0
10  
20 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
max.  
UNIT  
D
For unspecified dimensions see PLLMC-drawing given in the subpackage code.  
35.05  
34.95  
mm  
0.33  
Note  
1. Total package thickness, exclusive punching burr.  
REFERENCES  
JEDEC  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEITA  
03-09-17  
06-05-22  
SOT500-2  
- - -  
- - -  
- - -  
Fig 17. Package outline SOT500-2 (HT2DCS20)  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
43 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
Fig 18. Package outline SOT385-1 (HT2MOA2S20)  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
44 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
15. Abbreviations  
Table 31. Abbreviations  
Abbreviation  
AC  
Definition  
Anticollision Code  
Binary Pulse Length Modulation  
Cyclic Redundancy Check  
Electrically Erasable Programmable Memory  
Integrated Circuit  
BPLM  
CRC  
EEPROM  
IC  
RO  
Read Only  
R/W  
Read/Write  
RWD  
SN  
Read Write Device  
Serial Number  
WO  
Write Only  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
45 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
16. References  
[1] Application note — AN10214, HITAG Coil Design Guide, Transponder IC  
BL-ID Doc.No.: 0814**1  
[2] General specification for 8’’ wafer on UV-tape — Delivery type description, BL-ID  
Doc.No.: 1005**1  
1. ** ... document version number  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
46 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
17. Revision history  
Table 32. Revision history  
Document ID  
Release date  
20100226  
Data sheet status  
Change notice  
Supersedes  
188330  
Product data sheet  
-
-
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
47 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
18. Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
18.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on a weakness or default in the  
customer application/use or the application/use of customer’s third party  
customer(s) (hereinafter both referred to as “Application”). It is customer’s  
sole responsibility to check whether the NXP Semiconductors product is  
suitable and fit for the Application planned. Customer has to do all necessary  
testing for the Application in order to avoid a default of the Application and the  
product. NXP Semiconductors does not accept any liability in this respect.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
18.3 Disclaimers  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Non-automotive qualified products — Unless the data sheet of an NXP  
Semiconductors product expressly states that the product is automotive  
qualified, the product is not suitable for automotive use. It is neither qualified  
nor tested in accordance with automotive testing or application requirements.  
NXP Semiconductors accepts no liability for inclusion and/or use of  
non-automotive qualified products in automotive equipment or applications.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
48 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
18.4 Licenses  
ICs with HITAG functionality  
NXP Semiconductors owns a worldwide perpetual license for the patents  
US 5214409, US 5499017, US 5235326 and for any foreign counterparts  
or equivalents of these patents. The license is granted for the Field-of-Use  
covering: (a) all non-animal applications, and (b) any application for animals  
raised for human consumption (including but not limited to dairy animals),  
including without limitation livestock and fish.  
Please note that the license does not include rights outside the specified  
Field-of-Use, and that NXP Semiconductors does not provide indemnity for  
the foregoing patents outside the Field-of-Use.  
18.5 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
HITAG — is a trademark of NXP B.V.  
19. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
49 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
20. Tables  
Table 1. Ordering information. . . . . . . . . . . . . . . . . . . . . .2  
Table 2. Overview of transponders. . . . . . . . . . . . . . . . . .6  
Table 3. HITAG 2 in password mode . . . . . . . . . . . . . . . .8  
Table 4. HITAG 2 in crypto mode . . . . . . . . . . . . . . . . . . .8  
Table 5. Standard values for the Configuration Byte . . .12  
Table 6. Delivery configuration . . . . . . . . . . . . . . . . . . .12  
Table 7. Coding and Bit length . . . . . . . . . . . . . . . . . . . .14  
Table 8. Timing values . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Table 9. Timing values with a Proximity Reader Module 17  
Table 10. Timing values with a Long Reader Module. . . .17  
Table 11. tWAIT times . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Table 12. START_AUTH . . . . . . . . . . . . . . . . . . . . . . . . .20  
Table 13. Timing in crypto mode . . . . . . . . . . . . . . . . . . .22  
Table 14. Timing in password mode. . . . . . . . . . . . . . . . .24  
Table 15. Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Table 16. Timing in Public Mode A. . . . . . . . . . . . . . . . . .26  
Table 17. Timing in Public Mode B. . . . . . . . . . . . . . . . . .27  
Table 18. Timing in Public Mode C. . . . . . . . . . . . . . . . . .29  
Table 19. Communication instructions. . . . . . . . . . . . . . . 30  
Table 20. Timing of READ PAGE instruction . . . . . . . . . . 31  
Table 21. Timing of READ PAGE INVERTED instruction 32  
Table 22. Timing WRITE PAGE instruction . . . . . . . . . . . 34  
Table 23. Timing of HALT instruction. . . . . . . . . . . . . . . . 36  
Table 24. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 25. Limiting values - HT2IC2002[1]. . . . . . . . . . . . . 39  
Table 26. Limiting values -HT2DC20S20 (SOT385-1)/  
HT2MOA2S20 (SOT500-2)[1]. . . . . . . . . . . . . . 39  
Table 27. Electrical characteristics - HT2IC2002[1][2]. . . . 40  
Table 28. Electrical characteristics -  
HT2DC20S20 (SOT385-1). . . . . . . . . . . . . . . . 41  
Table 29. Electrical characteristics - HT2MOA2S20  
(SOT500-2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 30. Mechanical characteristics HT2DC20S20  
(SOT385-1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 31. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 32. Revision history . . . . . . . . . . . . . . . . . . . . . . . . 47  
21. Figures  
Fig 1. Block diagram of HITAG 2 transponder IC. . . . . . .3  
Fig 2. Bond plan of HT2ICS2002 [units in mm] . . . . . . . .4  
Fig 3. Memory map in Crypto Mode. . . . . . . . . . . . . . . . .7  
Fig 4. Memory map in Password Mode . . . . . . . . . . . . . .7  
Fig 5. Status flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Fig 6. Configuration Byte . . . . . . . . . . . . . . . . . . . . . . . .11  
Fig 7. Magnetic coupling between RWD and  
transponder . . . . . . . . . . . . . . . . . . . . . . . . 13  
Fig 8. Equivalent circuit . . . . . . . . . . . . . . . . . . . . . . . . .13  
Fig 9. Data coding: Transponder RWD . . . . . . . . . . .14  
Fig 10. Transponder antenna coil voltage . . . . . . . . . . . .15  
Fig 11. Data coding: RWD transponder . . . . . . . . . . .16  
Fig 12. RWD antenna coil voltage . . . . . . . . . . . . . . . . . .18  
Fig 13. Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Fig 14. Program Mode check phase . . . . . . . . . . . . . . . .28  
Fig 15. Equivalent circuit of the transponder . . . . . . . . . .37  
Fig 16. Modulation index . . . . . . . . . . . . . . . . . . . . . . . . .41  
Fig 17. Package outline SOT500-2 (HT2DCS20) . . . . . .43  
Fig 18. Package outline SOT385-1 (HT2MOA2S20). . . .44  
188330  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
CONFIDENTIAL  
Rev. 3.0 — 26 February 2010  
188330  
50 of 51  
HITAG 2  
NXP Semiconductors  
Transponder IC  
22. Contents  
1
2
3
4
5
6
7
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
9.8.1  
Data integrity using the HITAG 2 . . . . . . . . . . 19  
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features and benefits . . . . . . . . . . . . . . . . . . . . 2  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
10  
Command set and timing . . . . . . . . . . . . . . . . 20  
Data flow: RWD transponder. . . . . . . . . . . 20  
START_AUTH-Instruction . . . . . . . . . . . . . . . 20  
Crypto Mode . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Timing: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Password Mode . . . . . . . . . . . . . . . . . . . . . . . 23  
Timing: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Public Modes A and B . . . . . . . . . . . . . . . . . . 25  
Public Mode A . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Timing: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Public Mode B . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Timing: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Public Mode C . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Timing: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Communication instructions. . . . . . . . . . . . . . 30  
READ PAGE . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Timing: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
READ PAGE INVERTED . . . . . . . . . . . . . . . . 32  
Timing: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
WRITE PAGE. . . . . . . . . . . . . . . . . . . . . . . . . 33  
Timing: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
HALT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Timing: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
10.1  
10.2  
10.2.1  
10.2.2  
10.2.3  
8
8.1  
Mechanical specification . . . . . . . . . . . . . . . . . 5  
Wafer specification . . . . . . . . . . . . . . . . . . . . . . 5  
Wafer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Wafer backside. . . . . . . . . . . . . . . . . . . . . . . . . 5  
Chip dimensions. . . . . . . . . . . . . . . . . . . . . . . . 5  
Passivation on front . . . . . . . . . . . . . . . . . . . . . 5  
Bondpads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Fail die identification . . . . . . . . . . . . . . . . . . . . 6  
Map file distribution. . . . . . . . . . . . . . . . . . . . . . 6  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.1.6  
8.1.7  
10.3  
10.3.1  
9
Functional description . . . . . . . . . . . . . . . . . . . 6  
Overview of transponder . . . . . . . . . . . . . . . . . 6  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Definition of passwords and keys . . . . . . . . . . . 8  
Operation Modes and Configuration. . . . . . . . . 9  
Modes of operation. . . . . . . . . . . . . . . . . . . . . . 9  
Crypto Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Password Mode . . . . . . . . . . . . . . . . . . . . . . . . .9  
Public Mode A (Manchester) . . . . . . . . . . . . . . .9  
Public Mode B (Biphase) . . . . . . . . . . . . . . . . . .9  
Public Mode C (Biphase) . . . . . . . . . . . . . . . . . .9  
Status flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Organization of the Configuration Byte. . . . . . 11  
Configuration Byte . . . . . . . . . . . . . . . . . . . . . 11  
Configuration Byte/Bit 6:. . . . . . . . . . . . . . . . . .11  
Configuration Byte/Bit 7:. . . . . . . . . . . . . . . . . .11  
Standard values of the Configuration Byte . . . 12  
Delivery configuration of HITAG 2  
transponder IC . . . . . . . . . . . . . . . . . . . . . . . . 12  
Recommendation: . . . . . . . . . . . . . . . . . . . . . .12  
Electromagnetic characteristics . . . . . . . . . . . 13  
Magnetic flux densities . . . . . . . . . . . . . . . . . . 13  
Equivalent circuit for data and energy transfer 13  
Data transmission: transponder RWD . . . . 14  
Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data transmission: RWD transponder . . . . 16  
Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Switching the transmission direction. . . . . . . . 19  
10.3.2  
10.3.3  
10.3.4  
9.1  
9.2  
9.3  
9.4  
9.4.1  
10.4  
Transponder coil specification -  
HT2MOA2S20. . . . . . . . . . . . . . . . . . . . . . . . . . 37  
11  
12  
13  
14  
15  
16  
17  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 39  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 40  
Mechanical characteristics . . . . . . . . . . . . . . 42  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 43  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 45  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 47  
9.4.2  
9.4.3  
9.4.3.1  
9.4.3.2  
9.4.3.3  
18  
Legal information . . . . . . . . . . . . . . . . . . . . . . 48  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . 48  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Licenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
18.1  
18.2  
18.3  
18.4  
18.5  
9.5  
9.5.1  
9.5.2  
9.6  
9.6.1  
9.6.2  
9.7  
9.7.1  
9.7.2  
9.8  
19  
20  
21  
22  
Contact information . . . . . . . . . . . . . . . . . . . . 49  
Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2010.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 26 February 2010  
188330  
Document identifier: 188330  

相关型号:

HT2MOA2S20/E/3,118

HT2X_SDS - HITAG 2 transponder IC COB 35-Pin
NXP

HT2MOA2S20/E/3/RJ

HT2X_SDS - HITAG 2 transponder IC COB 35-Pin
NXP

HT2MOA3S20

HITAGTM2 Chip Module
NXP

HT2MOA3S20/E/1

HITAGTM2 Chip Module
NXP

HT2MOA3S20/E/3

HITAGTM2 Chip Module
NXP

HT2MOA4S20

HITAG 2 transponder IC
NXP

HT2MOA4S20E

HITAG 2 transponder IC
NXP

HT2MOA4S20E3

HITAG 2 transponder IC
NXP

HT2MOA4S20E3R

HITAG 2 transponder IC
NXP

HT2TA

Small Signal Bipolar Transistor, 0.1A I(C), 80V V(BR)CEO, 1-Element, NPN, Silicon
DIODES

HT2V157M35015HC

Aluminum Electrolytic Capacitor, Polarized, Aluminum (wet), 350V, 20% +Tol, 20% -Tol, 150uF, Through Hole Mount, 15 MMH, ROHS COMPLIANT
SAMWHA

HT3

TRANSISTOR | BJT | PNP | 80V V(BR)CEO | 100MA I(C) | SOT-23
ETC