ICM7555ID/01/CE151 [NXP]

ICM7555IDSOT96-1;
ICM7555ID/01/CE151
型号: ICM7555ID/01/CE151
厂家: NXP    NXP
描述:

ICM7555IDSOT96-1

信息通信管理
文件: 总22页 (文件大小:122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICM7555  
General purpose CMOS timer  
Rev. 02 — 3 August 2009  
Product data sheet  
1. General description  
The ICM7555 is a CMOS timer providing significantly improved performance over the  
standard NE/SE555 timer, while at the same time being a direct replacement for those  
devices in most applications. Improved parameters include low supply current, wide  
operating supply voltage range, low THRESHOLD, TRIGGER, and RESET currents, no  
crowbarring of the supply current during output transitions, higher frequency performance  
and no requirement to decouple CONTROL_VOLTAGE for stable operation.  
The ICM7555 is a stable controller capable of producing accurate time delays or  
frequencies.  
In the one-shot mode, the pulse width of each circuit is precisely controlled by one  
external resistor and capacitor. For astable operation as an oscillator, the free-running  
frequency and the duty cycle are both accurately controlled by two external resistors and  
one capacitor. Unlike the NE/SE555 device, the CONTROL_VOLTAGE terminal need not  
be decoupled with a capacitor. The TRIGGER and RESET inputs are active LOW. The  
output inverter can source or sink currents large enough to drive TTL loads or provide  
minimal offsets to drive CMOS loads.  
2. Features  
I Exact equivalent in most applications for NE/SE555  
I Low supply current: 80 µA (typical)  
I Extremely low trigger, threshold, and reset currents: 20 pA (typical)  
I High-speed operation: 500 kHz guaranteed  
I Wide operating supply voltage range guaranteed 3 V to 16 V over full automotive  
temperatures  
I Normal reset function; no crowbarring of supply during output transition  
I Can be used with higher-impedance timing elements than the NE/SE555 for longer  
time constants  
I Timing from microseconds through hours  
I Operates in both astable and monostable modes  
I Adjustable duty cycle  
I High output source/sink driver can drive TTL/CMOS  
I Typical temperature stability of 0.005 % / °C at 25 °C  
I Rail-to-rail outputs  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
3. Applications  
I Precision timing  
I Pulse generation  
I Sequential timing  
I Time delay generation  
I Pulse width modulation  
I Pulse position modulation  
I Missing pulse detector  
4. Ordering information  
Table 1.  
Ordering information  
Type number Temperature range  
Package  
Name  
SO8  
Description  
Version  
ICM7555CD  
ICM7555ID  
ICM7555CN  
ICM7555IN  
Tamb = 0 °C to +70 °C  
Tamb = 40 °C to +85 °C  
Tamb = 0 °C to +70 °C  
Tamb = 40 °C to +85 °C  
plastic small outline package; 8 leads; body width 3.9 mm SOT96-1  
DIP8  
plastic dual in-line package; 8 leads (300 mil)  
SOT97-1  
5. Functional diagram  
flip-flop  
V
RESET  
4
DD  
8
R
output  
drivers  
comparator A  
comparator B  
6
5
3
THRESHOLD  
CONTROL_VOLTAGE  
OUTPUT  
R
R
DISCHARGE  
7
2
TRIGGER  
N
1
GND  
1
GND  
002aae403  
Remark: Unused inputs should be connected to appropriate voltage from Table 3.  
Fig 1. Functional diagram  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
2 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
6. Pinning information  
6.1 Pinning  
1
2
3
4
8
7
6
5
GND  
TRIGGER  
OUTPUT  
RESET  
V
DD  
1
2
3
4
8
7
6
5
GND  
TRIGGER  
OUTPUT  
RESET  
V
DD  
DISCHARGE  
DISCHARGE  
ICM7555CD  
ICM7555ID  
ICM7555CN  
ICM7555IN  
THRESHOLD  
THRESHOLD  
CONTROL_VOLTAGE  
CONTROL_VOLTAGE  
002aae400  
002aae401  
Fig 2. Pin configuration for SO8  
Fig 3. Pin configuration for DIP8  
6.2 Pin description  
Table 2.  
Symbol  
GND  
Pin description  
Pin  
Description  
1
2
3
4
5
6
7
8
supply ground  
TRIGGER  
OUTPUT  
RESET  
start timer input; (active LOW)  
timer logic level output  
timer inhibit input; (active LOW)  
timing capacitor upper voltage sense input  
timing capacitor lower voltage sense input  
timing capacitor discharge output  
supply voltage  
CONTROL_VOLTAGE  
THRESHOLD  
DISCHARGE  
VDD  
7. Functional description  
Refer to Figure 1 “Functional diagram”.  
7.1 Function selection  
Table 3.  
Function selection  
THRESHOLD voltage  
TRIGGER voltage  
RESET[1]  
OUTPUT  
Discharge switch  
don’t care  
don’t care  
L
L
on  
> 23 V+  
Vth < 23 V+  
> 13 V+  
Vtrig > 13 V+  
< 13 V+  
H
H
H
L
on  
stable  
H
stable  
off  
don’t care  
[1] RESET will dominate all other inputs; TRIGGER will dominate over THRESHOLD.  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
3 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
8. Limiting values  
Table 4.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
Parameter  
Conditions  
Min  
Max  
Unit  
V
supply voltage  
input voltage  
18  
[1]  
VI  
TRIGGER  
0.3  
0.3  
0.3  
0.3  
-
VDD + 0.3  
VDD + 0.3  
VDD + 0.3  
VDD + 0.3  
100  
V
CONTROL_VOLTAGE  
THRESHOLD  
RESET  
V
V
V
IO  
P
output current  
mA  
[2][3]  
power dissipation  
Tamb = 25 °C (still air)  
DIP8 package  
-
1160  
780  
mW  
mW  
°C  
SO8 package  
-
Tstg  
Tsp  
storage temperature  
65  
+150  
300  
solder point temperature  
soldering 60 s  
-
°C  
[1] Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater  
than VDD + 0.3 V or less than GND 0.3 V may cause destructive latch-up. For this reason it is recommended that no inputs from  
external sources not operating from the same power supply be applied to the device before its power supply is established. In multiple  
systems, the supply of the ICM7555 must be turned on first.  
[2] Above 25 °C, derate at the following rates:  
DIP8 package at 9.3 mW / °C  
SO8 package at 6.2 mW / °C  
[3] Refer to Section 11.2 “Power supply considerations” section.  
9. Characteristics  
Table 5.  
Characteristics  
Tamb = 25 °C unless otherwise specified.  
Sym Parameter  
bol  
Conditions  
min Tamb Tmax  
Min  
Typ  
Max  
Unit  
VDD  
IDD  
supply voltage  
supply current[1]  
T
3
-
-
16  
V
VDD = Vmin  
VDD = Vmax  
50  
180  
200  
300  
µA  
µA  
-
Astable mode timing[2][3]  
f/f frequency stability  
-
-
-
-
-
1.0  
0.1  
50  
5.0  
%
f/V frequency variation with voltage  
3.0  
%/V  
f/T frequency variation with  
VDD = 5 V  
-
-
-
ppm/°C  
temperature[4]  
VDD = 10 V  
75  
ppm/°C  
VDD = 15 V  
100  
ppm/°C  
VI  
input voltage  
TRIGGER: VDD = 5 V  
CONTROL_VOLTAGE: VDD = 5 V  
THRESHOLD: VDD = 5 V  
RESET: VDD = Vmin and Vmax  
0.29VDD 0.31VDD 0.34VDD  
0.62VDD 0.65VDD 0.67VDD  
0.63VDD 0.65VDD 0.67VDD  
V
V
V
V
0.4VDD  
0.7VDD  
1.0VDD  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
4 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
Table 5.  
Characteristics …continued  
Tamb = 25 °C unless otherwise specified.  
Sym Parameter  
bol  
Conditions  
Min  
Typ  
Max  
Unit  
II  
input current  
TRIGGER  
VDD = Vtrig = Vmax  
VDD = Vtrig = 5 V  
VDD = Vtrig = Vmin  
THRESHOLD  
-
-
-
50  
10  
1
-
-
-
pA  
pA  
pA  
VDD = Vth = Vmax  
VDD = Vth = 5 V  
VDD = Vth = Vmin  
RESET  
-
-
-
50  
10  
1
-
-
-
pA  
pA  
pA  
VDD = Vrst = Vmax  
VDD = Vrst = 5 V  
VDD = Vrst = Vmin  
VDD = Vmax; Isink = 3.2 mA  
VDD = 5 V; Isink = 3.2 mA  
Isource = 1.0 mA  
VDD = Vmax  
-
-
-
-
-
100  
20  
-
pA  
pA  
pA  
V
-
2
-
VOL  
LOW-level output voltage  
HIGH-level output voltage  
0.1  
0.2  
0.4  
0.4  
V
VOH  
15.25  
4.0  
-
15.7  
4.5  
-
V
V
V
VDD = 5 Vmax  
-
Vo  
output voltage  
DISCHARGE:  
0.2  
0.4  
V
DD = 5 V; IDIS = 10 mA  
RL = 10 M; CL = 10 pF;  
DD = 5 V  
tr(o)  
output rise time[4]  
-
45  
75  
ns  
V
tf(o)  
fosc  
output fall time[4]  
-
-
20  
-
75  
ns  
oscillator frequency  
astable mode  
500  
kHz  
[1] The supply current value is essentially independent of the TRIGGER, THRESHOLD and RESET voltages.  
[2] Astable timing is calculated using the following equation:  
1.38  
(RA + 2RB)C  
f =  
--------------------------------  
The components are defined in Figure 15.  
[3] RA, RB = 1 kto 100 k; C = 0.1 µF; 5 V < VDD < 15 V  
[4] Parameter is not 100 % tested.  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
5 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
10. Typical performance curves  
002aae404  
250  
I
DD  
(µA)  
200  
T
= 55 °C  
+25 °C  
amb  
150  
100  
50  
+125 °C  
0
0
5
10  
15  
20  
V
(V)  
DD  
Fig 4. Supply current versus supply voltage  
002aae405  
2
10  
I
o(source)  
(mA)  
V
= 18 V  
5 V  
DD  
2 V  
10  
1
1  
10  
1  
2
10  
1
10  
10  
V
V (V)  
O
DD  
Tamb = +25 °C.  
Fig 5. High output voltage drop versus output source current  
002aae406  
2
10  
I
DIS  
(mA)  
10  
V
= 18 V  
5 V  
DD  
1
2 V  
1  
10  
1  
10  
1
10  
V
(V)  
DIS  
Tamb = +25 °C.  
Fig 6. Discharge low output voltage versus discharge sink current  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
6 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
002aae407  
2
10  
I
V
= 18 V  
5 V  
o(sink)  
(mA)  
DD  
2 V  
10  
1
1  
10  
1  
10  
1
1
1
10  
V
V
V
(V)  
(V)  
(V)  
OL  
OL  
OL  
a. Tamb = +125 °C.  
002aae408  
2
10  
I
V
= 18 V  
5 V  
2 V  
o(sink)  
(mA)  
DD  
10  
1
1  
10  
1  
10  
10  
b. Tamb = +25 °C.  
002aae409  
2
10  
V
= 18 V  
5 V  
2 V  
DD  
I
o(sink)  
(mA)  
10  
1
1  
10  
1  
10  
10  
c. Tamb = 55 °C.  
Fig 7. Low output voltage versus output sink current  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
7 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
002aae410  
500  
TRIGGER pulse width (ns)  
V
= 18 V  
5 V  
DD  
400  
300  
200  
100  
2 V  
0
0
10  
20  
30  
40  
lowest voltage level of TRIGGER pulse (% V  
)
DD  
Fig 8. Minimum pulse width for triggering  
002aae411  
1000  
t
PD  
(ns)  
T
= 55 °C  
+25 °C  
+125 °C  
amb  
750  
500  
250  
0
0
10  
20  
30  
40  
lowest voltage level of TRIGGER pulse (% V  
)
DD  
Fig 9. Propagation delay versus voltage level of TRIGGER pulse (VDD = 5 V)  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
8 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
002aae413  
6
normalized frequency  
(%)  
4
2
0
2  
4  
0
5
10  
15  
20  
V
(V)  
DD  
Tamb = +25 °C  
RA = RB = 10 kΩ  
C = 0.1 µF  
Fig 10. Normalized frequency stability as a function of supply voltage (astable mode)  
002aae414  
4
normalized frequency  
(%)  
V
= 18 V  
5 V  
DD  
2 V  
2
0
2  
4  
75  
25  
25  
75  
125  
T
(°C)  
amb  
RA = RB = 1 kΩ  
C = 0.1 µF  
Fig 11. Normalized frequency stability as a function of temperature (astable mode)  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
9 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
002aae415  
2
10  
C (µF)  
10  
1
1  
10  
2  
3  
4  
5  
10  
10  
10  
10  
1 kΩ  
10 kΩ  
100 kΩ  
1 MΩ  
10 MΩ  
1  
2
3
4
5
6
7
10  
1
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
VDD = 5 V; Tamb = +25 °C  
Fig 12. Free-running frequency as a function of RA, RB resistance and external  
capacitance  
002aae416  
2
10  
C (µF)  
10  
1 kΩ  
10 kΩ  
100 kΩ  
1 MΩ  
1
10 MΩ  
1  
10  
2  
10  
3  
10  
4  
10  
5  
10  
7  
6  
5  
4  
3  
2  
1  
10  
10  
10  
10  
10  
10  
10  
1
10  
t
(s)  
d
VDD = 5 V; Tamb = +25 °C  
Fig 13. Monostable time delay versus RA resistance and external capacitance  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
10 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
11. Application information  
11.1 General  
The ICM7555 device is, in most instances, a direct replacement for the NE/SE555 device.  
However, it is possible to effect economies in the external component count using the  
ICM7555. Because the NE/SE555 device produces large crowbar currents in the output  
driver, it is necessary to decouple the power supply lines with a good capacitor close to  
the device. The ICM7555 device produces no such transients. See Figure 14.  
The ICM7555 produces supply current spikes of only 2 mA to 3 mA instead of  
300 mA to 400 mA and supply decoupling is normally not necessary. Secondly, in most  
instances, the CONTROL_VOLTAGE decoupling capacitors are not required since the  
input impedance of the CMOS comparators on chip are very high. Thus, for many  
applications, 2 capacitors can be saved using an ICM7555.  
002aae417  
500  
I
DD  
(mA)  
300  
(1)  
100  
(2)  
100  
0
200  
400  
600  
800  
time (ns)  
Tamb = +25 °C  
(1) NE/SE555  
(2) ICM7555  
Fig 14. Supply current transient compared with a standard NE/SE555 device during an  
output transition  
11.2 Power supply considerations  
Although the supply current consumed by the ICM7555 device is very low, the total  
system supply can be high unless the timing components are high-impedance. Therefore,  
high values for R and low values for C in Figure 15 and Figure 16 are recommended.  
11.3 Output drive capability  
The output driver consists of a CMOS inverter capable of driving most logic families  
including CMOS and TTL. As such, if driving CMOS, the output swing at all supply  
voltages will equal the supply voltage. At a supply voltage of 4.5 V or more, the ICM7555  
will drive at least 2 standard TTL loads.  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
11 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
11.4 Astable operation  
If the circuit is connected as shown in Figure 15, it will trigger itself and free run as a  
multivibrator. The external capacitor charges through RA and RB and discharges through  
RB only. Thus, the duty cycle (δ) may be precisely set by the ratio of these two resistors. In  
this mode of operation, the capacitor charges and discharges between 13 VDD and  
23 VDD. Since the charge rate and the threshold levels are directly proportional to the  
supply voltage, the frequency of oscillation is independent of the supply voltage.  
1.38  
(RA + 2RB) × C  
f =  
δ =  
(1)  
(2)  
--------------------------------------  
RA + RB  
----------------------  
RA + 2RB  
V
DD  
1
2
3
4
8
7
6
5
GND  
V
V
DD  
DD  
R
A
TRIGGER  
OUTPUT  
RESET  
DISCHARGE  
THRESHOLD  
OUTPUT  
R
B
CONTROL_VOLTAGE  
V
DD  
C
002aae418  
Fig 15. Astable operation  
11.5 Monostable operation  
In this mode of operation, the timer functions as a one-shot. Initially, the external  
capacitor (C) is held discharged by a transistor inside the timer. Upon application of a  
negative pulse to pin 2, TRIGGER, the internal flip-flop is set, which releases the  
low-impedance on DISCHARGE; the external capacitor charges and drives the OUTPUT  
HIGH. The voltage across the capacitor increases exponentially with a time constant  
t = RAC. When the voltage across the capacitor equals 23 V+, the comparator resets the  
flip-flop, which in turn discharges the capacitor rapidly and also drives the OUTPUT to its  
LOW state. TRIGGER must return to a HIGH state before the OUTPUT can return to a  
LOW state.  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
12 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
V
DD  
R
A
1
2
3
4
8
7
6
5
GND  
V
DD  
TRIGGER  
OUTPUT  
RESET  
DISCHARGE  
THRESHOLD  
CONTROL_VOLTAGE  
optional  
capacitor  
C
002aae419  
VDD 18 V; t = 1.05 RAC  
Fig 16. Monostable operation  
11.6 Control voltage  
The CONTROL_VOLTAGE terminal permits the two trip voltages for the THRESHOLD  
and TRIGGER internal comparators to be controlled. This provides the possibility of  
oscillation frequency modulation in the astable mode, or even inhibition of oscillation,  
depending on the applied voltage. In the monostable mode, delay times can be changed  
by varying the applied voltage to the CONTROL_VOLTAGE pin.  
11.7 RESET  
The RESET terminal is designed to have essentially the same trip voltage as the standard  
NE/SE555 device, i.e., 0.6 V to 0.7 V. At all supply voltages it represents an extremely  
high input impedance. The mode of operation of the RESET function is, however, much  
improved over the standard NE/SE555 device in that it controls only the internal flip-flop,  
which in turn controls simultaneously the state of the OUTPUT and DISCHARGE pins.  
This avoids the multiple threshold problems sometimes encountered with slow falling  
edges in the NE/SE555 devices.  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
13 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
12. Package outline  
SO8: plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
D
E
A
X
c
y
H
v
M
A
E
Z
5
8
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
4
e
w
M
detail X  
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(2)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
5.0  
4.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.05  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.20  
0.014 0.0075 0.19  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.024  
0.028  
0.012  
inches 0.069  
0.01 0.004  
Notes  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT96-1  
076E03  
MS-012  
Fig 17. Package outline SOT96-1 (SO8)  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
14 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
DIP8: plastic dual in-line package; 8 leads (300 mil)  
SOT97-1  
D
M
E
A
2
A
A
1
L
c
w M  
Z
b
1
e
(e )  
1
M
H
b
b
2
8
5
pin 1 index  
E
1
4
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
2
(1)  
(1)  
Z
1
w
UNIT  
mm  
b
b
b
c
D
E
e
e
L
M
M
H
1
2
1
E
max.  
min.  
max.  
max.  
1.73  
1.14  
0.53  
0.38  
1.07  
0.89  
0.36  
0.23  
9.8  
9.2  
6.48  
6.20  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.1  
7.62  
0.3  
0.254  
0.01  
1.15  
0.068 0.021 0.042 0.014  
0.045 0.015 0.035 0.009  
0.39  
0.36  
0.26  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.02  
0.13  
0.045  
Note  
1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-13  
SOT97-1  
050G01  
MO-001  
SC-504-8  
Fig 18. Package outline SOT97-1 (DIP8)  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
15 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
13. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
13.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
13.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
13.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
16 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
13.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 19) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 6 and 7  
Table 6.  
SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
350  
220  
< 2.5  
235  
220  
2.5  
220  
Table 7.  
Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 19.  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
17 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 19. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
14. Soldering of through-hole mount packages  
14.1 Introduction to soldering through-hole mount packages  
This text gives a very brief insight into wave, dip and manual soldering.  
Wave soldering is the preferred method for mounting of through-hole mount IC packages  
on a printed-circuit board.  
14.2 Soldering by dipping or by solder wave  
Driven by legislation and environmental forces the worldwide use of lead-free solder  
pastes is increasing. Typical dwell time of the leads in the wave ranges from  
3 seconds to 4 seconds at 250 °C or 265 °C, depending on solder material applied, SnPb  
or Pb-free respectively.  
The total contact time of successive solder waves must not exceed 5 seconds.  
The device may be mounted up to the seating plane, but the temperature of the plastic  
body must not exceed the specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling may be necessary immediately  
after soldering to keep the temperature within the permissible limit.  
14.3 Manual soldering  
Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the  
seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is  
less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is  
between 300 °C and 400 °C, contact may be up to 5 seconds.  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
18 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
14.4 Package related soldering information  
Table 8.  
Suitability of through-hole mount IC packages for dipping and wave soldering  
Soldering method  
Package  
Dipping  
Wave  
CPGA, HCPGA  
-
suitable  
DBS, DIP, HDIP, RDBS, SDIP, SIL  
PMFP[2]  
suitable  
-
suitable[1]  
not suitable  
[1] For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit  
board.  
[2] For PMFP packages hot bar soldering or manual soldering is suitable.  
15. Abbreviations  
Table 9.  
Abbreviations  
Description  
Acronym  
CMOS  
TTL  
Complementary Metal-Oxide Semiconductors  
Transistor-Transistor Logic  
SCR  
Silicon-Controlled Rectifier  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
19 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
16. Revision history  
Table 10. Revision history  
Document ID  
ICM7555_2  
Release date  
Data sheet status  
Change notice  
Supersedes  
20090803  
Product data sheet  
-
ICM7555_1  
Modifications:  
The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP  
Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
Provided separate pinning diagrams for SO8 and DIP8 packages (Figure 2 and Figure 3,  
respectively).  
Added Table 2 “Pin description”.  
Table 4 “Limiting values”:  
Symbols VTRIG, VCV, VTH, VRST are replaced with VI (specific pin names are now noted under  
Conditions column).  
Symbol/parameter “PDMAX, maximum power dissipation” replaced with “P, power dissipation” (only  
maximum values given).  
Symbol/parameter “TSTG, storage temperature range” replaced with “Tstg, storage temperature”.  
Symbol changed from “TSOLD” to “Tsp, solder point temperature”  
Table 5 “Characteristics”:  
Symbols f/f, f/V, f/T, have been added for Astable mode timing.  
Symbols VTRIG, VCV, VTH, VRST are replaced with VI (specific pin names are now noted under  
Conditions column).  
Symbols ITRIG, ITH, IRST are replaced with II (specific pin names are now noted under Conditions  
column).  
Symbol/parameter “VDIS, discharge output voltage” changed to “Vo, output voltage” (specific pin  
name is now noted under Conditions column).  
Symbol/parameter “tR, rise time of output” changed to “tr(o), output rise time”.  
Symbol/parameter “tF, fall time of output” changed to “tf(o), output fall time”.  
Symbol “FMAX” changed to “fosc, oscillator frequency”.  
Section 11.4 “Astable operation”: changed symbol for duty cycle from “D” to “δ”.  
Added Section 12 “Package outline”.  
Added soldering information.  
Added Section 15 “Abbreviations”.  
ICM7555_1  
19940831  
Product specification  
ECN 853-1192 13721  
dated 1994 Aug 31  
-
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
20 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
17.2 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
17.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
ICM7555_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 3 August 2009  
21 of 22  
ICM7555  
NXP Semiconductors  
General purpose CMOS timer  
19. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
7.1  
8
Functional description . . . . . . . . . . . . . . . . . . . 3  
Function selection. . . . . . . . . . . . . . . . . . . . . . . 3  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Typical performance curves . . . . . . . . . . . . . . . 6  
9
10  
11  
Application information. . . . . . . . . . . . . . . . . . 11  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power supply considerations . . . . . . . . . . . . . 11  
Output drive capability . . . . . . . . . . . . . . . . . . 11  
Astable operation . . . . . . . . . . . . . . . . . . . . . . 12  
Monostable operation . . . . . . . . . . . . . . . . . . . 12  
Control voltage . . . . . . . . . . . . . . . . . . . . . . . . 13  
RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
11.7  
12  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 14  
13  
Soldering of SMD packages . . . . . . . . . . . . . . 16  
Introduction to soldering . . . . . . . . . . . . . . . . . 16  
Wave and reflow soldering . . . . . . . . . . . . . . . 16  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 16  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 17  
13.1  
13.2  
13.3  
13.4  
14  
14.1  
Soldering of through-hole mount packages . 18  
Introduction to soldering through-hole mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Soldering by dipping or by solder wave . . . . . 18  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 18  
Package related soldering information . . . . . . 19  
14.2  
14.3  
14.4  
15  
16  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 20  
17  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 21  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 21  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
17.1  
17.2  
17.3  
17.4  
18  
19  
Contact information. . . . . . . . . . . . . . . . . . . . . 21  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 3 August 2009  
Document identifier: ICM7555_2  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY