ISP1301BS,151 [NXP]

IC LINE TRANSCEIVER, PQCC24, 4 X 4 MM, 0.85 MM HEIGHT, LEAD FREE AND HALOGEN FREE, PLASTIC, MO-220, SOT-616-1, HVQFN-24, Line Driver or Receiver;
ISP1301BS,151
型号: ISP1301BS,151
厂家: NXP    NXP
描述:

IC LINE TRANSCEIVER, PQCC24, 4 X 4 MM, 0.85 MM HEIGHT, LEAD FREE AND HALOGEN FREE, PLASTIC, MO-220, SOT-616-1, HVQFN-24, Line Driver or Receiver

驱动 接口集成电路 驱动器
文件: 总52页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3
4
.80 7IRELESS  
IMPORTANT NOTICE  
Dear customer,  
As from August 2nd 2008, the wireless operations of NXP have moved to a new company,  
ST-NXP Wireless.  
As a result, the following changes are applicable to the attached document.  
Company name - Philips Semiconductors is replaced with ST-NXP Wireless.  
Copyright - the copyright notice at the bottom of each page “© Koninklijke Philips  
Electronics N.V. 200x. All rights reserved”, shall now read: “© ST-NXP Wireless 200x -  
All rights reserved”.  
Web site - http://www.semiconductors.philips.com is replaced with  
http://www.stnwireless.com  
Contact information - the list of sales offices previously obtained by sending an email  
to sales.addresses@www.semiconductors.philips.com, is now found at  
http://www.stnwireless.com under Contacts.  
If you have any questions related to the document, please contact our nearest sales office.  
Thank you for your cooperation and understanding.  
ST-NXP Wireless  
34.80 7IRELESS  
www.stnwireless.com  
ISP1301  
Universal Serial Bus On-The-Go transceiver  
Rev. 03 — 21 February 2006  
Product data sheet  
1. General description  
The ISP1301 is a Universal Serial Bus (USB) On-The-Go (OTG) transceiver device that is  
fully compliant with Universal Serial Bus Specification Rev. 2.0 and On-The-Go  
Supplement to the USB Specification Rev. 1.0a. The ISP1301 can transmit and receive  
serial data at both full-speed (12 Mbit/s) and low-speed (1.5 Mbit/s) data rates.  
It is ideal for use in portable electronics devices, such as mobile phones, digital still  
cameras, digital video cameras, Personal Digital Assistants (PDAs) and digital audio  
players. It allows USB Application Specific Integrated Circuits (ASICs), Programmable  
Logic Devices (PLDs) and any system chip set (with the USB host or device function  
built-in but without the USB physical layer) to interface to the physical layer of the USB.  
The ISP1301 can interface to devices with digital I/O voltages in the range of  
1.65 V to 3.6 V.  
The ISP1301 is available in HVQFN24 package.  
2. Features  
Fully complies with:  
Universal Serial Bus Specification Rev. 2.0  
On-The-Go Supplement to the USB 2.0 Specification Rev. 1.0a  
On-The-Go Transceiver Specification (CEA-2011) Rev. 1.0  
Can transmit and receive serial data at both full-speed (12 Mbit/s) and low-speed  
(1.5 Mbit/s) data rates  
Ideal for system ASICs or chip sets with built-in USB OTG dual-role core  
Supports mini USB analog carkit interface  
Supports various serial data interface protocols; transparent general-purpose buffer  
mode allows you to control the direction of data transfer  
Supports data line and VBUS pulsing session request  
Contains Host Negotiation Protocol (HNP) command and status registers  
Supports serial I2C-bus interface for OTG status and command controls  
2.7 V to 4.5 V power supply input range for the ISP1301  
Built-in charge pump regulator outputs 5 V at current greater than 8 mA  
Supports external charge pump  
Supports wide range interfacing I/O voltage (VCC(I/O) = 1.65 V to 3.6 V) for digital  
control logics  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
8 kV built-in ElectroStatic Discharge (ESD) protection on the DP, DM, VBUS and ID  
lines  
Full industrial grade operation from 40 °C to +85 °C  
Available in a small HVQFN24 (4 × 4 mm2) halogen-free and lead-free package  
3. Applications  
Mobile phone  
Digital camera  
Personal digital assistant  
Digital video recorder  
4. Ordering information  
Table 1:  
Ordering information  
Type number Package  
Name  
Description  
Version  
ISP1301BS  
HVQFN24  
plastic thermal enhanced very thin quad flat package; no leads; 24 terminals; SOT616-1  
body 4 × 4 × 0.85 mm  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
2 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
5. Block diagram  
V
V
VREG3V3  
7
C2  
C1  
CC(I/O)  
24  
CC  
22  
21  
20  
23  
3.3 V DC-DC  
REGULATOR  
CGND  
V
BUS  
CHARGE PUMP  
19  
V
BUS  
ISP1301BS  
V
BUS  
3
SCL  
COMPARATORS  
2
SDA  
1
ADR/PSW  
5
INT_N  
SERIAL  
CONTROLLER  
18  
ID DETECTOR  
ID  
9
OE_N/INT_N  
14  
DAT/VP  
LEVEL  
SHIFTER  
13  
SE0/VM  
PULL-UP AND  
PULL-DOWN  
RESISTORS  
12  
RCV  
11  
VP  
10  
VM  
CARKIT  
INTERRUPT  
DETECTOR  
6
SPEED  
8
SUSPEND  
15  
16  
DM  
DP  
4
USB  
TRANSCEIVER  
RESET_N  
exposed die pad  
17  
004aaa748  
DGND  
AGND  
Fig 1. Block diagram  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
3 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
6. Pinning information  
6.1 Pinning  
terminal 1  
index area  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
ADR/PSW  
SDA  
ID  
AGND  
DP  
SCL  
ISP1301BS  
RESET_N  
INT_N  
DM  
DAT/VP  
SE0/VM  
SPEED  
004aaa542  
Transparent top view  
Fig 2. Pin configuration HVQFN24 (top view)  
6
5
4
3
2
1
13  
14  
15  
16  
17  
18  
SPEED  
INT_N  
SE0/VM  
DAT/VP  
DM  
DGND (exposed  
die pad)  
RESET_N  
SCL  
ISP1301BS  
DP  
SDA  
AGND  
ID  
ADR/PSW  
terminal 1  
index area  
004aaa196  
Bottom view  
Fig 3. Pin configuration HVQFN24 (bottom view)  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
4 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
6.2 Pin description  
Table 2:  
Pin description  
Symbol[1]  
Pin  
Type [2] Reset  
Description[3]  
state  
ADR/PSW  
1
I/O  
high-Z  
ADR input — sets the least-significant I2C-bus  
address bit of the ISP1301; latched-on reset  
(including power-on reset)  
PSW output — enables or disables the external  
charge pump after reset  
bidirectional; push-pull input; 3-state output  
serial I2C-bus data input and output  
bidirectional; push-pull input; open-drain output  
serial I2C-bus clock input and output  
bidirectional; push-pull input; open-drain output  
asynchronous reset; active LOW  
push-pull input  
SDA  
2
3
4
5
6
I/OD  
high-Z  
SCL  
I/OD  
high-Z  
RESET_N  
INT_N  
SPEED  
I
-
OD  
I
high-Z  
-
interrupt output; active LOW  
open-drain output  
speed selection input for the ATX; effective when  
bit SPD_SUSP_CTRL = 0:  
LOW: low-speed  
HIGH: full-speed  
push-pull input  
VREG3V3  
SUSPEND  
7
8
P
I
-
-
output of the internal voltage regulator; an external  
decoupling capacitor of 0.1 µF is required  
suspend selection input for the ATX; effective when  
bit SPD_SUSP_CTRL = 0:  
LOW: normal operating  
HIGH: suspend  
push-pull input  
OE_N/  
INT_N  
9
I/O  
high-Z  
OE_N input — enables driving DP and DM when in  
USB mode  
INT_N output — interrupt (push pull) when  
suspended and bit OE_INT_EN = 1  
bidirectional; push-pull input; 3-state output  
single-ended DM receiver output  
push-pull output  
VM  
VP  
10  
11  
12  
O
O
O
-
-
single-ended DP receiver output  
push-pull output  
RCV  
0
differential receiver output; reflects the differential  
value of DP and DM  
push-pull output  
[4]  
SE0/VM  
13  
I/O  
-
SE0 (input and output) — SE0 functions in  
DAT_SE0 USB mode  
VM (input and output) — VM functions in VP_VM  
USB mode  
bidirectional; push-pull input; 3-state output  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
5 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
Table 2:  
Pin description…continued  
Symbol[1]  
Pin  
Type [2] Reset  
Description[3]  
state  
[4]  
DAT/VP  
14  
I/O  
-
DAT (input and output) — DAT functions in  
DAT_SE0 USB mode  
VP (input and output) — VP functions in VP_VM  
USB mode  
bidirectional; push-pull input; 3-state output  
USB data minus pin (D)  
USB data plus pin (D+)  
DM  
DP  
15  
16  
17  
18  
AI/O  
AI/O  
P
-
-
-
-
AGND  
ID  
analog ground  
AI/O  
identification detector input and output; connected  
to the ID pin of the USB mini receptacle  
VBUS  
19  
AI/O  
-
VBUS line input and output of the USB interface;  
place an external decoupling capacitor of 0.1 µF  
close to this pin  
VCC  
C1  
20  
21  
P
-
-
supply voltage (2.7 V to 4.5 V)  
AI/O  
charge pump capacitor pin 1; typically use a 100 nF  
capacitor between pins C1 and C2  
C2  
22  
AI/O  
-
charge pump capacitor pin 2; typically use a 100 nF  
capacitor between pins C1 and C2  
CGND  
23  
24  
P
P
-
-
ground for the charge pump  
VCC(I/O)  
supply voltage for the interface logic signals  
(1.65 V to 3.6 V)  
DGND  
exposed  
die pad  
P
-
digital ground  
[1] Symbol names ending with underscore N (for example, NAME_N) indicate active LOW signals.  
[2] I = input; O = output; I/O = digital input/output; OD = open-drain output; AI/O = analog input/output;  
P = power or ground pin.  
[3] A detailed description of these pins can be found in Section 7.10.  
[4] High-Z when pin OE_N/INT_N is LOW. Driven LOW when pin OE_N/INT_N is HIGH.  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
6 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
7. Functional description  
7.1 Serial controller  
The serial controller includes the following functions:  
I2C-bus slave interface  
Interrupt generator  
Mode Control registers  
OTG registers  
Interrupt related registers  
Device identification registers  
The serial controller acts as an I2C-bus slave, and uses the SCL and SDA pins to  
communicate with the OTG Controller.  
For details on serial controller, see Section 10.  
7.2 VBUS charge pump  
The charge pump supplies current to the VBUS line. It can operate in any of the following  
modes:  
Output 5 V at current greater than 8 mA  
Pull-up VBUS to 3.3 V through a resistor (RUP(VBUS)) to initiate VBUS pulsing SRP  
Pull-down VBUS to ground through a resistor (RDN(VBUS)) to discharge VBUS before  
initiating SRP  
7.3 VBUS comparators  
VBUS comparators provide indications regarding the voltage level on VBUS  
.
7.3.1 VBUS valid comparator  
This comparator is used by an A-device to determine whether the voltage on VBUS is at a  
valid level for operation. The minimum threshold for the VBUS valid comparator is 4.4 V.  
Any voltage on VBUS below this threshold is considered to be a fault. During power-up, it is  
expected that the comparator output will be ignored.  
7.3.2 Session valid comparator  
The session valid comparator is a TTL-level input that determines when VBUS is high  
enough for a session to start. Both the A-device and the B-device use this comparator to  
detect when a session is started. The A-device also uses this comparator to indicate when  
a session is completed. The session valid threshold of the ISP1301 is between  
0.8 V and 2.0 V.  
7.3.3 Session end comparator  
The session end comparator determines when VBUS is below the B-device session end  
threshold of 0.2 V to 0.8 V.  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
7 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
7.4 ID detector  
In either active or suspended power mode, the ID detector senses the condition of the ID  
line and differentiates between the following three conditions:  
Pin ID is floating; bit ID_FLOAT = 1  
Pin ID is shorted to ground; bit ID_GND = 1  
Pin ID is connected to ground through resistor RACC_ID; bit ID_FLOAT = 0 and bit  
ID_GND = 0  
The ID detector also has a switch that can be used to ground pin ID. This switch is  
controlled by bit ID_PULLDOWN in the serial controller.  
7.5 Pull-up and pull-down resistors  
The pull-up and pull-down resistors include the following switchable resistors:  
Pin DP pull-up  
Pin DP pull-down  
Pin DM pull-up  
Pin DM pull-down  
The pull-up resistor is a context variable as described in the ECN_27%_Resistor  
document. The variable pull-up resistor hardware is implemented to meet the USB  
ECN_27% specification.  
7.6 Analog USB Transceiver (ATX)  
The behavior of the USB transceiver depends on operation mode of the ISP1301:  
In USB mode, the USB transceiver block performs USB full-speed or low-speed  
transceiver functions. This includes differential driver, differential receiver and  
single-ended receivers.  
In transparent general purpose buffer mode or UART mode, USB transceiver block  
functions as a level shifter between pins DAT/VP and SE0/VM and pins DP and DM.  
7.7 3.3 V DC-DC regulator  
The built-in 3.3 V DC-DC regulator conditions the supply voltage (VCC) for use in the  
ISP1301:  
VCC = 3.6 V to 4.5 V: the regulator will output 3.3 V ± 10 %  
VCC < 3.6 V: the regulator will be bypassed  
The output of the regulator can be monitored on the VREG3V3 pin.  
7.8 Carkit interrupt detector  
The carkit interrupt detector is a comparator that detects when the DP line is below the  
carkit interrupt threshold VPH_CR_INT (0.4 V to 0.6 V). The carkit interrupt detector is  
enabled in audio mode only (bit AUDIO_EN = 1).  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
8 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
7.9 Power-On Reset (POR)  
When VCC is powered on, an internal POR is generated. The internal POR pulse width  
(tPORP) will be typically 200 ns. The pulse is started when VCC rises above VPOR(trip)  
.
The POR function can be explained by viewing dips at t2 to t3 and t4 to t5 on the VCC  
curve (Figure 4).  
t0 — The internal POR starts with a LOW level.  
t1 — The detector will see the passing of the trip level and a delay element will add  
another tPORP before it drops to LOW.  
t2-t3 — The internal POR pulse will be generated whenever VCC drops below VPOR(trip) for  
more than 11 µs.  
t4-t5 — The dip is too short (< 11 µs) and the internal POR pulse will not react and will  
remain LOW.  
V
CC  
V
POR(trip)  
t0  
t1  
t
t2  
t3  
t4  
t5  
(1)  
PORP  
t
PORP  
PORP  
004aaa750  
(1) PORP = Power-On Reset Pulse  
Fig 4. Internal POR timing  
7.10 Detailed description of pins  
7.10.1 ADR/PSW  
The ADR/PSW pin has two functions. On reset (including power-on reset), the level on  
this pin is latched as ADR_REG, which represents the Least Significant Bit (LSB) of the  
I2C-bus address of the ISP1301. If bit ADR_REG = 0, the I2C-bus address for the  
ISP1301 is 010 1100 (2Ch); if bit ADR_REG = 1, the I2C-bus address for the ISP1301 is  
010 1101 (2Dh).  
After reset, the ADR/PSW pin can be programmed as an output. If in the Mode Control 2  
register bit PSW_OE = 1, then the ADR/PSW output will be enabled. The logic level will  
be determined by bit ADR_REG. If bit ADR_REG = 0, then the ADR/PSW pin will be  
driven HIGH. If bit ADR_REG = 1, then the ADR/PSW pin will be driven LOW.  
The ADR/PSW pin can be used to turn on or off the external charge pump. The ISP1301  
built-in charge pump supports VBUS current at 8 mA. If the application needs more current  
support (for example, 50 mA), an external charge pump may be needed. In this case, the  
ADR/PSW pin can act as a power switch for the external charge pump. Figure 5 shows an  
example of using external charge pump.  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
9 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
+3.3 V  
100 kΩ  
V
CC  
ADR/PSW  
V
OUT  
V
V
BUS  
IN  
ID  
4.7 µF  
DM  
ISP1301BS  
CHARGE PUMP  
ON/OFF  
DP  
V
BUS  
GND  
004aaa437  
Fig 5. Using external charge pump  
7.10.2 SCL and SDA  
The SCL (serial clock) and SDA (serial data) signals implement a two-wire serial I2C-bus.  
7.10.3 RESET_N  
Active LOW asynchronous reset for all digital logic. Either connect this pin to VCC(I/O) for  
power-on reset or apply a minimum of 10 µs LOW pulse for hardware reset.  
7.10.4 INT_N  
The INT_N (interrupt) pin is asserted while an interrupt condition exists. It is de-asserted  
when the Interrupt Latch register is cleared. The INT_N pin is open-drain, and, therefore,  
can be connected using a wired-AND with other interrupt signals.  
7.10.5 OE_N/INT_N  
Pin OE_N/INT_N is normally an input to the ISP1301.  
When bit TRANSP_EN = 0 and bit UART_EN = 0, the OE_N/INT_N pin controls the  
direction of DAT/VP, SE0/VM, DP and DM as indicated in Table 4.  
When suspended (either pin SUSPEND = HIGH or bit SUSPEND_REG = 1) and bit  
OE_INT_EN = 1, pin OE_N/INT_N becomes a push-pull output (active LOW) to indicate  
the interrupt condition.  
7.10.6 SE0/VM, DAT/VP, RCV, VM and VP  
The ISP1301 transmits USB data on the USB line under the following conditions:  
Bit TRANSP_EN = 0  
Bit UART_EN = 0  
Pin OE_N/INT_N = LOW  
Table 10 shows the operation of the SE0/VM and DAT/VP pins during the transmit  
operation. The RCV pin is not used during transmit.  
The ISP1301 receives USB data from the USB line under the following conditions:  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
10 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
Bit TRANSP_EN = 0  
Bit UART_EN = 0  
Pin OE_N/INT_N = HIGH  
Table 12 shows the operation of the SE0/VM, DAT/VP and RCV pins during the receive  
operation.  
The VP and VM pins are single-ended receiver outputs of the DP and DM pins,  
respectively.  
7.10.7 DP and DM  
The DP (data plus) and DM (data minus) pins implement the USB data signals. When in  
transparent general-purpose buffer mode, the ISP1301 operates as a level shifter  
between the (DAT/VP, SE0/VM) and (DP, DM) pins.  
7.10.8 ID  
The ID (identification) pin is connected to the ID pin on the USB mini receptacle. An  
internal pull-up resistor (to VREG3V3) is connected to this pin. When bit ID_PULLDOWN  
is set, the ID pin will be shorted to ground.  
7.10.9 VBUS  
This pin acts as an input to the VBUS comparator or an output from the charge pump.  
When the VBUS_DRV bit of the OTG Control register is asserted, the ISP1301 tries to  
drive VBUS to a voltage of 4.4 V to 5.25 V, with an output current capability of at least  
8 mA.  
7.10.10 VCC  
This pin is an input and supplies power to the ISP1301. The ISP1301 operates when VCC  
is between 2.7 V and 4.5 V.  
7.10.11 C1 and C2  
The C1 and C2 pins are to connect the flying capacitor of the charge pump. The output  
current capacity of the charge pump depends on the value of the capacitor. For maximum  
efficiency, place capacitors as close as possible to the pins.  
V
CC  
C1  
C2  
C
ext  
ISP1301BS  
V
BUS  
I
L
004aaa278  
Fig 6. Charge pump capacitor  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
11 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
Table 3:  
Cext  
Recommended charge pump capacitor value  
VCC  
IL (max)[1]  
47 nF  
100 nF  
2.7 V to 4.5 V  
2.7 V to 4.5 V  
3.0 V to 4.5 V  
8 mA  
8 mA  
18 mA  
[1] For output voltage VBUS > 4.7 V (bit VBUS_VLD = 1).  
7.10.12 VCC(I/O)  
This pin is an input and sets logic thresholds. It also powers the pads of the following logic  
pins:  
ADR/PSW  
DAT/VP, SE0/VM and RCV  
VM and VP  
INT_N  
OE_N/INT_N  
RESET_N  
SPEED  
SUSPEND  
SCL and SDA  
7.10.13 AGND, CGND and DGND  
AGND, CGND and DGND are ground pins for analog, charge pump and digital circuits,  
respectively. These pins can be connected separately or together depending on the  
system performance requirements.  
8. Modes of operation  
There are four types of modes in the ISP1301:  
Power modes  
Direct I2C-bus mode  
USB modes  
Transparent modes  
8.1 Power modes  
Power modes of the ISP1301 are as follows:  
Active power mode: power is on.  
USB suspend mode: to reduce power consumption, the USB differential receiver is  
powered down.  
Global power-down mode: set bit GLOBAL_PWR_DN = 1 of the Mode Control 2  
register; the differential transmitter and receiver, clock generator, charge pump, and  
all biasing circuits are turned off to reduce power consumption to the minimum  
possible; for details on waking up the clock, see Section 11.  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
12 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
8.2 Direct I2C-bus mode  
In direct I2C-bus mode, an external I2C-bus master (OTG Controller) directly  
communicates with the serial controller through the SCL and SDA lines. The serial  
controller has a built-in I2C-bus slave function.  
In this mode, an external I2C-bus master can access the internal registers of the device  
(Status, Control, Interrupt, and so on) through the I2C-bus interface.  
The supported I2C-bus bit rate is 100 kbit/s (maximum).  
The ISP1301 is in direct I2C-bus mode when either bit TRANSP_EN bit = 0 or pin  
OE_N/INT_N is de-asserted.  
8.3 USB modes  
The four USB modes of the ISP1301 are:  
VP_VM unidirectional mode  
VP_VM bidirectional mode  
DAT_SE0 unidirectional mode  
DAT_SE0 bidirectional mode  
In VP_VM USB mode, the DAT/VP pin is used for the VP function, the SE0/VM pin is used  
for the VM function, and the RCV pin is used for the RCV function.  
In DAT_SE0 USB mode, the DAT/VP pin is used for the DAT function, the SE0/VM pin is  
used for the SE0 function, and the RCV pin is not used.  
In unidirectional mode, the DAT/VP and SE0/VM pins are always inputs. In bidirectional  
mode, the direction of these signals depends on the OE_N/INT_N input.  
Table 6 specifies the functionality of the device during the four USB modes.  
The ISP1301 is in USB mode when both the TRANSP_EN and UART_EN bits are  
cleared.  
8.4 Transparent modes  
8.4.1 Transparent general-purpose buffer mode  
In transparent general-purpose buffer mode, the DAT/VP and SE0/VM pins are connected  
to the DP and DM pins, respectively. Using bits TRANSP_BDIR1 and TRANSP_BDIR0 of  
the Mode Control 2 register as specified in Table 8, you can control the direction of data  
transfer. The ISP1301 is in transparent general-purpose buffer mode if bit  
TRANSP_EN = 1 and bit DAT_SE0 = 1.  
8.4.2 Transparent UART mode  
When in transparent UART mode, the ATX behaves as two logic level translator between  
the following pins:  
For the TxD signal: from SE0/VM (VCC(I/O) level) to DM (+3.3 V level).  
For the RxD signal: from DP (+3.3 V level) to DAT/VP (VCC(I/O) level).  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
13 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
In UART mode, the OTG Controller is allowed to connect a UART to the DAT/VP and  
SE0/VM pins of the ISP1301.  
UART mode is entered by setting the UART_EN bit in the Mode Control 1 register. UART  
mode is equivalent to one of transparent general purpose buffer mode (bit  
TRANSP_BDIR1 = 1, bit TRANSP_BDIR0 = 0).  
8.4.3 Summary tables  
Table 4:  
Mode  
Device operating modes  
USB  
Bit  
Pin  
Bit  
Bit  
Description  
suspend  
DAT  
OE_N/ TRANSP UART  
condition[1] _SE0  
INT_N _EN  
_ EN  
Direct I2C-bus mode  
Direct I2C-bus mode  
X
X
X
X
X
1
X
0
1
1
X
X
X
-
HIGH  
X
USB modes  
USB suspend mode  
USB functional mode  
Transparent modes  
1
0
X
X
X
X
0
0
0
0
see Table 5 and Table 7  
ATX is fully functional; see Table 6  
Transparent  
general-purpose buffer  
mode  
X
X
1
X
X
1
0
1
ATX is not functional; see Table 8  
Transparent UART mode  
X
X
DAT/VP DP (RxD signal of UART)  
SE0/VM DM (TxD signal of UART);  
ATX is not functional  
[1] Conditions:  
a) bit SPD_SUSP_CTRL = 0 and pin SUSPEND = HIGH, or  
b) bit SPD_SUSP_CTRL = 1 and bit SUSPEND_REG = 0.  
Table 5:  
Pin  
USB suspend mode: I/O  
Function  
DP as output  
DM as output  
VBUS  
can be driven if pin OE_N/INT_N is active LOW, otherwise high-Z[1]  
can be driven if pin OE_N/INT_N is active LOW, otherwise high-Z[1]  
can be driven depending on bit VBUS_DRV  
SCL  
connected to SCL I/O of the I2C-bus slave  
SDA  
connected to SDA I/O of the I2C-bus slave  
[1] In USB suspend mode, the ISP1301 can drive the DP and DM lines, if the OE_N/INT_N input (when the  
OE_INT_EN bit is not set) is LOW. In such a case, these outputs are driven as in USB functional modes,  
but with the full-speed characteristics, irrespective of the value of the SPEED input pin or the SPEED_REG  
bit.  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
14 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
Table 6:  
USB functional modes: I/O values  
USB mode[1]  
Bit  
Pin  
DAT_SE0  
BI_DI  
OE_N/  
INT_N  
DAT/VP  
SE0/VM VP  
VM  
RCV  
VP_VM  
unidirectional  
bidirectional  
0
0
0
1
1
1
0
1
1
0
1
1
X
TxD+[2]  
TxD+[2]  
RxD+[3]  
TxD[4]  
TxD[4]  
RxD[6]  
TxD[2]  
TxD[2]  
RxD[3]  
FSE0[5]  
FSE0[5]  
RSE0[7]  
RxD+[3] RxD[3]  
RxD[6]  
LOW  
HIGH  
X
DAT_SE0 unidirectional  
bidirectional  
LOW  
HIGH  
[1] Some of the modes and signals are provided to achieve backward compatibility with IP cores.  
[2] TxD+ and TxDare single-ended inputs to drive the DP and DM outputs, respectively, in single-ended mode.  
[3] RxD+ and RxDare the outputs of the single-ended receivers connected to DP and DM, respectively.  
[4] TxD is the input to drive DP and DM in DAT_SE0 mode.  
[5] FSE0 is to force an SE0 on the DP and DM lines in DAT_SE0 mode.  
[6] RxD is the output of the differential receiver.  
[7] RSE0 is an output indicating that an SE0 has been received on the DP and DM lines.  
Table 7:  
USB suspend mode: I/O values  
USB suspend mode  
Input pin  
Output pin  
DAT/VP  
LOW  
DP  
DM  
SE0/VM  
HIGH  
LOW  
VP  
VM  
RCV  
X
DAT_SE0  
(bit DAT_SE0 = 1)  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
X
LOW  
LOW  
X
HIGH  
LOW  
X
VP_VM  
(bit DAT_SE0 = 0)  
LOW  
LOW  
X
HIGH  
LOW  
X
LOW  
HIGH  
HIGH  
X
HIGH  
X
Table 8:  
Bit  
Transparent general-purpose buffer mode  
Direction of the data flow  
TRANSP_BDIR[1:0]  
00  
01  
10  
11  
DAT/VP DP  
DAT/VP DP  
DAT/VP DP  
DAT/VP DP  
SE0/VM DM  
SE0/VM DM  
SE0/VM DM  
SE0/VM DM  
9. USB transceiver  
9.1 Differential driver  
The operation of the driver is described in Table 9. The register bits and the pins used in  
the column heading are described in Section 10.1 and Section 7.10, respectively.  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
15 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
Table 9:  
Transceiver driver operation setting  
Suspend[1] Bit  
TRANSP_  
Pin  
OE_N/  
INT_N  
Bit  
DAT_SE0  
Differential driver  
EN  
0
0
0
LOW  
0
1
output value from DAT/VP to DP and  
SE0/VM to DM  
0
LOW  
output value from DAT/VP to DP and DM if  
SE0/VM is 0; otherwise, drive both DP and  
DM LOW  
1
0
X
1
LOW  
HIGH  
X
X
X
X
output value from DAT/VP to DP and DM  
X
X
high-Z  
high-Z  
[1] Can be controlled by using either the SUSPEND pin or the SUSPEND_REG bit.  
Table 10: USB functional mode: transmit operation  
USB mode  
Input pin  
DAT/VP  
LOW  
Output pin  
DP  
SE0/VM  
LOW  
DM  
DAT_SE0  
LOW  
HIGH  
LOW  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
LOW  
VP_VM  
LOW  
HIGH  
LOW  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
9.2 Differential receiver  
Table 11 describes the operation of the differential receiver. The register bits and the pins  
used in the column heading are described in Section 10.1 and Section 7.10, respectively.  
The detailed behavior of the receive transceiver operation is given in Table 12.  
Table 11: Differential receiver operation settings  
Suspend[1] Bit  
TRANSP_EN  
Pin  
OE_N/INT_N  
Bit  
DAT_SE0  
Differential receiver  
1
X
X
0
X
X
X
X
X
1
X
0
0
X
1
0
LOW  
X
HIGH  
output differential value from DP  
and DM to DAT/VP and RCV  
0
0
HIGH  
0
output differential value from DP  
and DM to RCV  
[1] Can be controlled by using either the SUSPEND pin or the SUSPEND_REG bit.  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
16 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
Table 12: USB functional mode: receive operation  
USB mode Suspend[1] Input pin  
Output pin  
DAT/VP  
RCV  
DP  
DM  
SE0/VM  
HIGH  
LOW  
LOW  
LOW  
HIGH  
LOW  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
RCV  
DAT_SE0  
DAT_SE0  
DAT_SE0  
DAT_SE0  
DAT_SE0  
DAT_SE0  
DAT_SE0  
DAT_SE0  
VP_VM  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
last value of RCV  
HIGH  
LOW  
HIGH  
LOW  
RCV  
last value of RCV  
LOW  
X
HIGH  
LOW  
X
X
HIGH  
LOW  
X
last value of RCV  
VP_VM  
HIGH  
LOW  
HIGH  
VP_VM  
LOW  
VP_VM  
HIGH  
LOW  
last value of RCV  
VP_VM  
X
X
X
X
VP_VM  
HIGH  
LOW  
VP_VM  
VP_VM  
HIGH  
[1] Can be controlled by using either the SUSPEND pin or the SUSPEND_REG bit.  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
17 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
10. Serial controller  
10.1 Register map  
Table 13 provides an overview of the serial controller registers.  
Table 13: Serial controller registers  
Register  
Width Access[1] Memory address Functionality  
Reference  
(bits)  
Vendor ID  
16  
R
00h to 01h  
02h to 03h  
14h to 15h  
Set — 04h  
Clear — 05h  
Set — 12h  
Clear — 13h  
Set — 06h  
Clear — 07h  
10h  
device identification registers Section 10.1.1 on page 18  
Product ID  
Version ID  
16  
R
16  
R
Mode Control 1  
8
R/S/C  
mode control registers  
Section 10.1.2 on page 19  
Mode Control 2  
OTG Control  
8
8
R/S/C  
R/S/C  
OTG registers  
Section 10.1.3 on page 20  
Section 10.1.4 on page 21  
OTG Status  
8
8
8
R
Interrupt Source  
Interrupt Latch  
R
08h  
interrupt related registers  
R/S/C  
Set — 0Ah  
Clear — 0Bh  
Set — 0Ch  
Clear — 0Dh  
Set — 0Eh  
Clear — 0Fh  
Interrupt Enable Low  
Interrupt Enable High  
8
8
R/S/C  
R/S/C  
[1] The R/S/C access type represents a field that can be read, set or cleared (set to 0). A register can be read from either of the indicated  
addresses: set or clear. Writing logic 1 to the set address causes the associated bit to be set. Writing logic 1 to the clear address causes  
the associated bit to be cleared. Writing logic 0 to an address has no effect.  
10.1.1 Device identification registers  
10.1.1.1 Vendor ID register (Read: 00h to 01h)  
Table 14 provides the bit description of the Vendor ID register.  
Table 14: Vendor ID register: bit description  
Bit  
Symbol  
Access  
Value  
Description  
15 to 0  
VENDORID[15:0]  
R
04CCh  
Philips Semiconductors’ Vendor ID  
10.1.1.2 Product ID register (Read: 02h to 03h)  
The bit description of this register is given in Table 15.  
Table 15: Product ID register: bit description  
Bit  
Symbol  
Access  
Value  
Description  
15 to 0  
PRODUCTID[15:0]  
R
1301h  
Product ID of the ISP1301  
10.1.1.3 Version ID register (Read: 14h to 15h)  
Table 16 shows the bit description of this register.  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
18 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
Table 16: Version ID register: bit description  
Bit  
Symbol  
Access  
Value  
Description  
Version number of the ISP1301  
15 to 0  
VERSIONID[15:0] R  
0210h  
10.1.2 Mode control registers  
10.1.2.1 Mode Control 1 register (Set/Clear: 04h/05h)  
The bit allocation of the Mode Control 1 register is given in Table 17.  
Table 17: Mode Control 1 register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
-
UART_EN  
OE_INT_  
EN  
BDIS_  
ACON_EN  
TRANSP_  
EN  
DAT_SE0  
SUSPEND  
_REG  
SPEED_  
REG  
Reset  
-
0
0
0
0
0
0
0
Access  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
Table 18: Mode Control 1 register: bit description  
Bit  
7
Symbol  
-
Description  
reserved  
6
UART_EN  
OE_INT_EN  
When set, the ATX is in transparent UART mode.  
5
When set and when in suspend mode, pin OE_N/INT_N becomes  
an output and is asserted when an interrupt occurs.  
4
BDIS_ACON_EN  
Enables the A-device to connect if the B-device disconnect is  
detected; see Section 10.3.  
3
2
TRANSP_EN  
DAT_SE0  
When set, the ATX is in transparent mode.  
0 — VP_VM mode  
1 — DAT_SE0 mode; see Table 6 and Table 7  
Sets the ISP1301 in suspend mode, if bit SPD_SUSP_CTRL = 1.  
0 — active-power mode  
1
0
SUSPEND_REG  
SPEED_REG  
1 — USB suspend mode  
Sets the rise time and the fall time of the transmit driver in USB  
modes, if bit SPD_SUSP_CTRL = 1.  
0 — USB low-speed mode  
1 — USB full-speed mode  
10.1.2.2 Mode Control 2 register (Set/Clear: 12h/13h)  
For the bit allocation of this register, see Table 19.  
Table 19: Mode Control 2 register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
EN2V7  
PSW_OE AUDIO_EN TRANSP_ TRANSP_  
BI_DI  
SPD_SUSP GLOBAL_  
BDIR1  
BDIR0  
_CTRL  
PWR_DN  
Reset  
0
0
0
0
0
1
0
0
Access  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
19 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
Table 20: Mode Control 2 register: bit description  
Bit  
Symbol  
Description  
7
EN2V7  
0 — VCC = 3.0 V to 4.5 V  
1 — VCC = 2.7 V to 4.5 V  
0 — ADR/PSW pin acts as an input  
1 — ADR/PSW pin is driven  
6
5
PSW_OE  
AUDIO_EN  
0 — SE receiver is enabled; cr_int detector is disabled  
1 — SE receiver is turned off (pin VP = LOW, pin VM = LOW);  
cr_int detector is enabled  
4 to 3  
2
TRANSP_BDIR[1:0] controls the direction of data transfer in transparent  
general-purpose buffer mode; see Table 8  
BI_DI  
0 — direction of DAT/VP and SE0/VM are fixed (transmit only)  
1 — direction of DAT/VP and SE0/VM are controlled by  
pin OE_N/INT_N; see Table 6  
1
0
SPD_SUSP_CTRL  
control of speed and suspend in USB modes:  
0 — controlled by pins SPEED and SUSPEND  
1 — controlled by bit SPEED_REG and bit SUSPEND_REG of  
the Mode Control 1 register  
GLOBAL_PWR_DN 0 — normal operation  
1 — sets the ISP1301 to Power-down mode  
Activities on the I2C-bus or any OTG event can wake-up the chip;  
see Section 11  
10.1.3 OTG registers  
10.1.3.1 OTG Control register (Set/Clear: 06h/07h)  
Table 21 provides the bit allocation of the OTG Control register.  
Table 21: OTG Control register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
VBUS_  
CHRG  
VBUS_  
DISCHRG  
VBUS_  
DRV  
ID_PULL  
DOWN  
DM_PULL  
DOWN  
DP_PULL  
DOWN  
DM_PULL  
UP  
DP_PULL  
UP  
Reset  
0
0
0
0
1
1
0
0
Access  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
Table 22: OTG Control register: bit description  
Bit  
7
Symbol  
Description  
VBUS_CHRG  
VBUS_DISCHRG  
VBUS_DRV  
charge VBUS through a resistor to 3.3 V  
discharge VBUS through a resistor to ground  
drive VBUS to 5 V through the charge pump  
connect the ID pin to ground  
6
5
4
ID_PULLDOWN  
DM_PULLDOWN  
DP_PULLDOWN  
DM_PULLUP  
DP_PULLUP  
3
connect the DM pull-down resistor to ground  
connect the DP pull-down resistor to ground  
connect the DM pull-up resistor to 3.3 V  
connect the DP pull-up resistor to 3.3 V  
2
1
0
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
20 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
10.1.3.2 OTG Status register (Read: 10h)  
Table 23 shows the bit allocation of the OTG Status register.  
Table 23: OTG Status register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
B_SESS_  
VLD  
B_SESS_  
END  
reserved  
Reset  
0
0
0
0
0
0
0
0
Access  
R
R
R
R
R
R
R
R
Table 24: OTG Status register: bit description  
Bit  
Symbol  
Description  
7
B_SESS_VLD  
set when the VBUS voltage is above the B-device session valid  
threshold (2.0 V to 4.0 V)  
6
B_SESS_END  
-
set when the VBUS voltage is below the B-device session end  
threshold (0.2 V to 0.8 V)  
5 to 0  
reserved  
10.1.4 Interrupt related registers  
10.1.4.1 Interrupt Source register (Read: 08h)  
This register indicates the current state of the signals that can generate an interrupt. The  
bit allocation of the Interrupt Source register is given in Table 25.  
Table 25: Interrupt Source register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
CR_INT  
BDIS_  
ACON  
ID_FLOAT  
DM_HI  
ID_GND  
DP_HI  
SESS_VLD VBUS_VLD  
Reset  
0
0
0
0
0
0
0
0
Access  
R
R
R
R
R
R
R
R
Table 26: Interrupt Source register: bit description  
Bit  
7
Symbol  
Description  
DP pin is above the carkit interrupt threshold (0.4 V to 0.6 V)  
CR_INT  
6
BDIS_ACON  
set when bit BDIS_ACON_EN is set, and the ISP1301 asserts bit  
DP_PULLUP after detecting the B-device disconnect  
5
4
3
2
1
0
ID_FLOAT  
DM_HI  
ID pin is floating  
DM pin is HIGH  
ID_GND  
DP_HI  
ID pin is connected to ground  
DP pin is HIGH  
SESS_VLD  
VBUS_VLD  
session valid comparator; threshold = 0.8 V to 2.0 V  
A-device VBUS valid comparator; threshold > 4.4 V  
10.1.4.2 Interrupt Latch register (Set/Clear: 0Ah/0Bh)  
This register indicates the source that generated the interrupt. The bit allocation of the  
Interrupt Latch register is given in Table 27.  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
21 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
Table 27: Interrupt Latch register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
CR_INT  
BDIS_  
ACON  
ID_FLOAT  
DM_HI  
ID_GND  
DP_HI  
SESS_VLD VBUS_VLD  
Reset  
0
0
0
0
0
0
0
0
Access  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
Table 28: Interrupt Latch register: bit description  
Bit  
7
Symbol  
Description  
CR_INT  
interrupt for CR_INT status change  
interrupt for BDIS_ACON status change  
interrupt for ID_FLOAT status change  
interrupt for DM_HI status change  
interrupt for ID_GND status change  
interrupt for DP_HI status change  
interrupt for SESS_VLD status change  
interrupt for VBUS_VLD status change  
6
BDIS_ACON  
ID_FLOAT  
DM_HI  
5
4
3
ID_GND  
2
DP_HI  
1
SESS_VLD  
VBUS_VLD  
0
10.1.4.3 Interrupt Enable Low register (Set/Clear: 0Ch/0Dh)  
This register enables interrupts on transition from true to false. For the bit allocation of this  
register, see Table 29.  
Table 29: Interrupt Enable Low register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
CR_INT  
BDIS_  
ACON  
ID_FLOAT  
DM_HI  
ID_GND  
DP_HI  
SESS_VLD VBUS_VLD  
Reset  
0
0
0
0
0
0
0
0
Access  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
Table 30: Interrupt Enable Low register: bit description  
Bit  
7
Symbol  
Description  
CR_INT  
interrupt enable for CR_INT status change from 1 to 0  
interrupt enable for BDIS_ACON status change from 1 to 0  
interrupt enable for ID_FLOAT status change from 1 to 0  
interrupt enable for DM_HI status change from 1 to 0  
interrupt enable for ID_GND status change from 1 to 0  
interrupt enable for DP_HI status change from 1 to 0  
interrupt enable for SESS_VLD status change from 1 to 0  
interrupt enable for VBUS_VLD status change from 1 to 0  
6
BDIS_ACON  
ID_FLOAT  
DM_HI  
5
4
3
ID_GND  
2
DP_HI  
1
SESS_VLD  
VBUS_VLD  
0
10.1.4.4 Interrupt Enable High register (Set/Clear: 0Eh/0Fh)  
The Interrupt Enable High register enables interrupts on transition from FALSE to TRUE.  
Table 31 provides the bit allocation of this register.  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
22 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
Table 31: Interrupt Enable High register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
CR_INT  
BDIS_  
ACON  
ID_FLOAT  
DM_HI  
ID_GND  
DP_HI  
SESS_VLD VBUS_VLD  
Reset  
0
0
0
0
0
0
0
0
Access  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
Table 32: Interrupt Enable High register: bit description  
Bit  
7
Symbol  
Description  
CR_INT  
interrupt enable for CR_INT status change from 0 to 1  
interrupt enable for BDIS_ACON status change from 0 to 1  
interrupt enable for ID_FLOAT status change from 0 to 1  
interrupt enable for DM_HI status change from 0 to 1  
interrupt enable for ID_GND status change from 0 to 1  
interrupt enable for DP_HI status change from 0 to 1  
interrupt enable for SESS_VLD status change from 0 to 1  
interrupt enable for VBUS_VLD status change from 0 to 1  
6
BDIS_ACON  
ID_FLOAT  
DM_HI  
5
4
3
ID_GND  
2
DP_HI  
1
SESS_VLD  
VBUS_VLD  
0
10.2 Interrupts  
Table 26 indicates the signals that can generate interrupts. Any of the signals given in  
Table 26 can generate an interrupt when the signal becomes either LOW or HIGH. After  
an interrupt has been generated, the OTG Controller should be able to read the status of  
each signal and the bit that indicates whether that signal generated the interrupt.  
A bit in the Interrupt Latch register is set when any of these occurs:  
Writing logic 1 to its set address causes the corresponding bit to be set.  
The corresponding bit in the Interrupt Enable High register is set, and the associated  
signal changes from LOW to HIGH.  
The corresponding bit in the Interrupt Enable Low register is set, and the associated  
signal changes from HIGH to LOW.  
The Interrupt Latch register bit is cleared by writing logic 1 to its clear address.  
10.3 Auto-connect  
The Host Negotiation Protocol (HNP) in the OTG supplement specifies the following  
sequence of events to transfer the role of the host from the A-device to the B-device:  
1. The A-device puts the bus in the suspend state.  
2. The B-device simulates a disconnect by de-asserting its DP pull-up.  
3. The A-device detects SE0 on the bus, and asserts its DP pull-up.  
4. The B-device detects that the DP line is HIGH, and takes the role of the host.  
The OTG supplement specifies that the time between the B-device de-asserting its DP  
pull-up and the A-device asserting its pull-up must be less than 3 ms. For an A-device with  
a slow interrupt response time, 3 ms may not be enough time to write an I2C-bus  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
23 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
command to the ISP1301 to assert the DP pull-up. An alternative method is for the  
A-device transceiver to automatically assert the DP pull-up after detecting an SE0 from  
the B-device.  
The sequence of events is: After finishing data transfers between the A-device and the  
B-device and before suspending the bus, the A-device sends SOFs. The B-device  
receives these SOFs, and does not transmit any packet back to the A-device. During this  
time, the A-device sets the BDIS_ACON_EN bit in the ISP1301. This enables the  
ISP1301 to look for SE0 whenever the A-device is not transmitting (that is, whenever the  
OE_N/INT_N pin of the ISP1301 is not asserted). After the BDIS_ACON_EN bit is set, the  
A-device stops transmitting SOFs and allows the bus to go to the idle state. If the B-device  
disconnects, the bus goes to SE0, and the ISP1301 logic automatically turns on the  
A-device pull-up.  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
24 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
11. Clock wake-up scheme  
The following subsections explain the ISP1301 clock stop timing, events triggering the  
clock to wake up, and the timing of the clock wake-up.  
11.1 Power-down event  
The clock is stopped when the GLOBAL_PWR_DN bit is set. It takes approximately 8 ms  
for the clock to stop from the time the power-down condition is detected. The clock always  
stops at its falling edge. The waveform is given in Figure 7.  
SCL  
GLOBAL_PWR_DN  
CLOCK  
8 ms  
004aaa217  
Fig 7. Clock stopped using the GLOBAL_PWR_DN bit  
11.2 Clock wake-up events  
The clock wakes up when any of the following events occur on the ISP1301 pins:  
SCL goes LOW.  
VBUS goes above the session valid threshold (0.8 V to 2.0 V), provided the  
SESS_VLD bit in the Interrupt Enable High register is set.  
ID changes when mini-A plug is inserted, provided the ID_FLOAT bit in the Interrupt  
Enable Low register is set.  
ID changes when mini-A plug is removed, provided the ID_FLOAT bit in the Interrupt  
Enable High register is set.  
DP goes HIGH, provided the DP_HI bit in the Interrupt Enable High register is set.  
DM goes HIGH, provided the DM_HI bit in the Interrupt Enable High register is set.  
The event triggers the clock to start and a stable clock is guaranteed after about six clock  
periods, which is approximately 8 µs. The startup analog clock time is 10 µs. Therefore,  
the total estimated start time after a triggered event is about 20 µs. The clock will always  
start at its rising edge.  
Waveforms of the clock wake-up because of different events are given in Figure 8,  
Figure 9, Figure 10, Figure 11 and Figure 12.  
SCL  
CLOCK  
004aaa218  
20 µs  
Fig 8. Clock wake-up using SCL  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
25 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
SESS_VLD  
CLOCK  
004aaa219  
20 µs  
20 µs  
20 µs  
Fig 9. Clock wake-up by VBUS  
ID_FLOAT  
CLOCK  
004aaa220  
Fig 10. Clock wake-up by ID change (1)  
ID_FLOAT  
CLOCK  
004aaa221  
Fig 11. Clock wake-up by ID change (2)  
DP_HI  
or DM_HI  
CLOCK  
20 µs  
004aaa434  
Fig 12. Clock wake-up by data line SRP  
When an event is triggered and the clock is started, it will remain active for 8 ms. If the  
GLOBAL_PWR_DN bit is not cleared within this 8 ms period, the clock will stop. If the  
clock wakes up because of any event other than SCL going LOW, an interrupt will be  
generated once the clock is active.  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
26 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
12. I2C-bus protocol  
For detailed information, refer to The I2C-bus specification; version 2.1.  
12.1 I2C-bus byte transfer format  
Table 33: I2C-bus byte transfer format  
S[1]  
Byte 1  
A[2]  
Byte 2  
A[2]  
Byte 3  
A[2]  
..  
A[2]  
P[3]  
8 bits  
8 bits  
8 bits  
..  
[1] S = Start.  
[2] A = Acknowledge.  
[3] P = Stop.  
12.2 I2C-bus device address  
Table 34: I2C-bus device address byte 1 bit allocation  
Bit  
7
A6  
0
6
A5  
1
5
A4  
0
4
A3  
1
3
A2  
1
2
A1  
0
1
0
R/W_N  
X
Symbol  
Value  
A0  
[1]  
[1] The value of A0 (LSB) is loaded from pin ADR/PSW during reset (including power-on reset). If pin  
ADR/PSW = HIGH, bit A0 = 1; otherwise bit A0 = 0.  
Table 35: I2C-bus device address byte 1 bit description  
Bit  
7 to 1  
0
Symbol Description  
A[6:0]  
Device address: The device address of the ISP1301 is: 01 0110 (A0).  
R/W_N Read or write command.  
0 — write  
1 — read  
12.3 Write format  
A write operation can be performed as:  
One-byte write to the specified register address.  
Multi-byte write to N consecutive registers, starting from the specified start address. N  
defines the number of registers to write. If N = 1, only the start register is written.  
12.3.1 One-byte write  
Figure 13 illustrates the byte sequence.  
Table 36: Transfer format description for one-byte write  
Byte  
Description  
S
master starts with a START condition  
master transmits device address and write command bit R/W = 0  
slave generates an acknowledgment  
Device select  
ACK  
Register address K master transmits address of register K  
ACK  
slave generates an acknowledgment  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
27 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
Table 36: Transfer format description for one-byte write…continued  
Byte  
Description  
Write data K  
master writes data to register K  
slave generates an acknowledgment  
master generates a STOP condition  
ACK  
P
12.3.2 Multiple-byte write  
Figure 13 illustrates the byte sequence.  
Table 37: Transfer format description for multiple-byte write  
Byte  
Description  
S
master starts with a START condition  
Device select  
ACK  
master transmits device address and write command bit R/W = 0  
slave generates an acknowledgment  
Register address K master transmits address of register K. This is the start address for writing  
multiple data bytes to consecutive registers. After a byte is written, the  
register address is automatically incremented by 1.  
Remark: If the master writes to a non existent register, the slave must send  
a 'not ACK' and also must not increment the index address.  
ACK  
slave generates an acknowledgment  
master writes data to register K  
slave generates an acknowledgment  
master writes data to register K + 1  
slave generates an acknowledgment  
:
Write data K  
ACK  
Write data K + 1  
ACK  
:
Write data K + N 1 master writes data to register K + N 1. When the incremented address  
K + N 1 becomes > 255, the register address rolls over to 0. Therefore, it  
is possible that some registers may be overwritten, if the transfer is not  
stopped before the rollover.  
ACK  
P
slave generates an acknowledgment  
master generates a STOP condition  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
28 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
ACK  
ACK  
ACK  
P
write data K  
S
register address K  
device select  
wr  
one-byte write  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
write data K  
S
wr  
write data K + 1  
device select  
register address K  
write data K + 3  
ACK  
.... maximum, rollover to 0  
ACK  
P
write data K + N - 1  
write data K + 2  
004aaa569  
multiple-byte write  
Fig 13. Writing data to the ISP1301 registers  
12.4 Read format  
A read operation can be performed in two ways:  
Current address read: to read the register at the current address.  
Single register read  
Random address read: to read N registers starting at a specified address. N defines  
the number of registers to be read. If N = 1, only the start register is read.  
Single register read  
Multiple register read  
12.4.1 Current address read  
Figure 14 illustrates the byte sequence.  
Table 38: Transfer format description for current address read  
Byte  
Description  
S
master starts with a START condition  
master transmits device address and read command bit R/W = 1  
slave generates an acknowledgment  
Device select  
ACK  
Read data K  
slave transmits and master reads data from register K. If the start address is  
not specified, the read operation starts from where the index register is  
pointing to because of a previous read or write operation.  
No ACK  
P
master terminates the read operation by generating a No Acknowledge  
master generates a stop condition  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
29 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
ACK  
rd  
current address read  
no ACK  
P
S
device select  
read data K  
004aaa570  
Fig 14. Current address read  
12.4.2 Random address read  
12.4.2.1 Single read  
Figure 15 illustrates the byte sequence.  
Table 39: Transfer format description for single-byte read  
SDA line  
S
Description  
master starts with a START condition  
Device select  
ACK  
master transmits device address and writes command bit R/W = 0  
slave generates an acknowledgment  
Register address K master transmits (start) address of register K to be read from  
ACK  
slave generates an acknowledgment  
Device select  
master transmits device address and read command bit R/W = 1  
slave generates an acknowledgment  
ACK  
S
master restarts with a START condition  
Read data K  
No ACK  
P
slave transmits and master reads data from register K  
master terminates the read operation by generating a No Acknowledge  
master generates a STOP condition  
12.4.2.2 Multiple read  
Figure 15 illustrates the byte sequence.  
Table 40: Transfer format description for multiple-byte read  
SDA line  
S
Description  
master starts with a START condition  
master transmits device address and write command bit R/W = 0  
slave generates an acknowledgment  
Device select  
ACK  
Register address K master transmits (start) address of register K to be read from  
ACK  
slave generates an acknowledgment  
S
master restarts with a START condition  
Device select  
ACK  
master transmits device address and read command bit R/W = 1  
slave generates an acknowledgment  
Read data K  
slave transmits and master reads data from register K. After a byte is read,  
the address is automatically incremented by 1.  
ACK  
master generates an acknowledgment  
slave transmits and master reads data from register K + 1  
master generates an acknowledgment  
:
Read data K + 1  
ACK  
:
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
30 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
Table 40: Transfer format description for multiple-byte read…continued  
SDA line Description  
Read data K + N 1 slave transmits and master reads data register K + N 1. This is the last  
register to read. After incrementing, the address rolls over to 0. Here, N  
represents the number of addresses available in the slave.  
No ACK  
P
master terminates the read operation by generating a No Acknowledge  
master generates a STOP condition  
ACK  
ACK  
no ACK  
P
ACK  
S
rd  
S
wr  
device select  
device select  
read data K  
register address K  
random address single read  
ACK  
S
ACK  
ACK  
ACK  
ACK  
wr  
device select  
rd  
ACK  
S
device select  
register address K  
read data K  
ACK  
.... maximum, rollover to 0  
no ACK  
P
write data K + N - 1  
read data K + 1  
read data K + 2  
004aaa571  
random access multiple read  
Fig 15. Random address read  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
31 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
13. Limiting values  
Table 41: Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VCC  
Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
-
Max  
Unit  
V
supply voltage  
+4.6  
VCC(I/O)  
VI  
input/output supply voltage  
input voltage  
+4.6  
V
VI = 1.8 V to +5.4 V  
ILI < 1 µA  
VCC(I/O) + 0.5 V  
100  
V
Ilu  
latch-up current  
mA  
Vesd  
electrostatic discharge voltage  
[1]  
pins DP, DM, ID,  
VBUS, AGND, CGND  
and DGND  
8  
+8  
kV  
all other pins  
2  
+2  
kV  
Tstg  
storage temperature  
60  
+125  
°C  
[1] Equivalent to discharging a 100 pF capacitor through a 1.5 kresistor (Human Body Model). A 4.7 µF capacitor is needed from  
VREG3V3 and VBUS to ground.  
14. Recommended operating conditions  
Table 42: Recommended operating conditions  
Symbol  
VCC  
Parameter  
Conditions  
Min  
2.7  
1.65  
0
Typ  
Max  
3.6  
Unit  
V
supply voltage  
-
-
-
-
-
-
[1]  
VCC(I/O)  
VI  
input/output supply voltage  
input voltage  
3.6  
V
VCC(I/O)  
3.6  
V
[2]  
[3]  
VIA(I/O)  
V(pu)OD  
Tamb  
input voltage on analog I/O pins  
open-drain pull-up voltage  
ambient temperature  
0
V
0
3.6  
V
40  
+85  
°C  
[1] VCC(I/O) should be less than or equal to VCC  
.
[2] Input voltage on analog I/O pins DP and DM.  
[3] Open-drain output pull-up voltage on pins SCL, SDA and INT_N.  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
32 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
15. Static characteristics  
Table 43: Static characteristics: supply pins  
VCC = 2.7 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Charge pump disabled  
[1]  
[2]  
VO(REG3V3) output voltage from internal 3.3 V VCC = 3.0 V to 4.5 V  
3.0  
2.7  
1.5  
-
-
3.6  
3.0  
2.5  
8
V
regulator  
VCC = 2.7 V to 3.0 V  
-
V
VPOR(trip)  
ICC  
power-on reset trip voltage  
supply current  
-
V
transmitting and receiving at  
12 Mbit/s; CL = 50 pF on  
pins DP and DM  
4
mA  
[2]  
[3]  
ICC(I/O)  
ICC(idle)  
supply current on pin VCC(I/O)  
idle and SE0 supply current  
transmitting and receiving at  
12 Mbit/s  
-
-
1
-
2
mA  
idle: VDP > 2.7 V, VDM < 0.3 V;  
SE0: VDP < 0.3 V, VDM < 0.3 V  
300  
µA  
ICC(I/O)(static) static supply current on pin VCC(I/O) idle, SE0 or suspend  
ICC(pd) Power-down mode supply current bit GLOBAL_PWR_DN = 1  
Charge pump enabled  
-
-
-
-
20  
20  
µA  
µA  
[3]  
ICC(cp)  
charge pump supply current  
Iload = 8 mA; ATX is idle  
Iload = 0 mA; ATX is idle  
-
-
-
-
20  
mA  
300  
µA  
[1] In suspend mode, the minimum voltage is 2.7 V.  
[2] Maximum value characterized only, not tested in production.  
[3] Excluding any load current to the 1.5 kand 15 kpull-up and pull-down resistors (200 µA typical).  
Table 44: Static characteristics: digital pins  
VCC = 2.7 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Input levels  
VIL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
LOW-level input voltage  
HIGH-level input voltage  
-
-
-
0.3VCC(I/O)  
-
V
V
VIH  
0.6VCC(I/O)  
Output levels  
VOL  
LOW-level output voltage  
HIGH-level output voltage  
IOL = 2 mA  
-
-
-
-
-
-
0.4  
V
V
V
V
IOL = 100 µA  
IOH = 2 mA  
IOH = 100 µA  
0.15  
[1]  
VOH  
V
CC(I/O) 0.4 V  
CC(I/O) 0.15 V  
-
-
V
Leakage current  
ILI  
input leakage current  
1  
5  
-
-
-
-
+1  
+5  
10  
µA  
µA  
pF  
Open-drain outputs  
IOZ  
off-state output current  
Capacitance  
Cin  
input capacitance  
pin to GND  
[1] Not applicable for open-drain outputs.  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
33 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
Table 45: Static characteristics: analog I/O pins DP and DM  
VCC = 2.7 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Input levels  
VDI  
differential input sensitivity  
|VI(DP) VI(DM)  
|
0.2  
0.8  
-
-
-
-
-
-
V
V
V
V
VCM  
differential common-mode range includes VDI range  
LOW-level input voltage  
2.5  
0.8  
-
VIL  
VIH  
HIGH-level input voltage  
2.0  
Output levels  
VOL  
VOH  
LOW-level output voltage  
HIGH-level output voltage  
RL of 1.5 kto +3.6 V  
RL of 15 kto GND  
VCC = 3.0 V to 4.5 V  
VCC = 2.7 V to 3.0 V  
-
-
0.3  
V
2.8  
2.6  
-
-
3.6  
3.0  
V
V
Leakage current  
ILZ  
off-state leakage current  
1  
-
-
+1  
10  
µA  
Capacitance  
Cin  
input capacitance  
pin to GND  
-
pF  
Resistance  
RDN(DP)  
RDN(DM)  
RUP(DP)  
pull-down resistance on pin DP  
pull-down resistance on pin DM  
pull-up resistance on pin DP  
14.25  
14.25  
900  
-
-
-
-
-
-
-
-
24.8  
24.8  
1575  
3090  
1575  
3090  
44  
kΩ  
kΩ  
bus idle  
bus driven  
bus idle  
1425  
900  
RUP(DM)  
pull-up resistance on pin DM  
bus driven  
steady-state drive  
1425  
34  
[1]  
ZDRV  
driver output impedance  
input impedance  
ZINP  
10  
-
MΩ  
Termination  
VTERM  
termination voltage  
for the upstream port  
3.0  
-
3.6  
V
pull-up resistor (RPU  
)
[1] Includes external series resistors of 33 Ω ± 1 % each on DP and DM.  
Table 46: Static characteristics: analog I/O pin ID  
VCC = 2.7 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Resistance  
RUP(ID)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ID pull-up resistance  
on pin ID to VREG3V3  
77  
-
-
-
-
130  
10  
1
kΩ  
RDN(ID)  
pull-down resistance on pin ID bit ID_PULLDOWN = 1  
RA_ID  
A-device ID impedance to  
GND  
bit ID_GND = 1  
-
kΩ  
RB_ID  
B-device ID impedance to  
GND  
bit ID_FLOAT = 1  
800  
20  
-
-
-
kΩ  
kΩ  
RACC_ID  
accessory device ID  
impedance to GND  
bit ID_GND = 0;  
bit ID_FLOAT = 0  
200  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
34 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
Table 47: Static characteristics: charge pump  
VCC = 2.7 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Current  
Iload  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
load current  
Cext = 100 nF;  
8.0  
-
-
mA  
VBUS = 4.65 V  
Voltage  
VO(VBUS)  
output voltage on pin VBUS Iload = 8 mA;  
ext = 100 nF  
4.65  
-
5
-
5.25  
0.2  
V
V
C
VL(VBUS)  
leakage voltage on  
pin VBUS  
charge pump disabled  
VA_VBUS_VLD  
VB_SESS_END  
A-device VBUS valid voltage  
4.4  
0.2  
-
-
4.65  
0.8  
V
V
B-device session end  
voltage  
Vhys(B_SESS_END) B-device session end  
hysteresis voltage  
-
150  
-
-
mV  
V
VA_SESS_VLD  
A-device session valid  
voltage  
0.8  
2.0  
Vhys(A_SESS_VLD) A-device session valid  
hysteresis voltage  
-
200  
-
-
mV  
V
VB_SESS_VLD  
B-device session valid  
voltage  
2.0  
4.0  
Vhys(B_SESS_VLD) B-device session valid  
hysteresis voltage  
-
-
200  
75  
-
-
mV  
%
ηcp  
charge pump efficiency  
Iload = 8 mA; VCC = 3 V  
Resistance  
RUP(VBUS)  
pull-up resistance on  
pin VBUS  
connect to VREG3V3  
when VBUS_CHRG = 1  
460  
660  
40  
-
-
-
1000  
1200  
100  
RDN(VBUS)  
pull-down resistance on  
pin VBUS  
connect to GND when  
VBUS_DISCHRG = 1  
RI(idle)(VBUS)(A)  
idle input resistance on  
pin VBUS (A-device)  
ID pin connected to  
GND  
kΩ  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
35 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
16. Dynamic characteristics  
Table 48: Dynamic characteristics: reset and clock  
VCC = 2.7 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Reset  
Parameter  
Conditions  
Min  
Typ  
Max  
-
Unit  
µs  
tW(RESET_N) external RESET_N pulse width  
10  
-
Internal clock  
fclk  
clock frequency  
bit GLOBAL_PWR_DN = 0  
700  
1000  
1300  
kHz  
Table 49: Dynamic characteristics: digital I/O pins  
VCC = 2.7 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; CL = 50 pF; RPU = 1.5 kon DP to VTERM; Tamb = 40 °C to +85 °C; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tTOI  
bus turnaround time (O/I) OE_N/INT_N to DAT/VP and  
SE0/VM; see Figure 20  
0
-
5
ns  
tTIO  
bus turnaround time (I/O) OE_N/INT_N to DAT/VP and  
SE0/VM; see Figure 20  
0
-
5
ns  
Table 50: Dynamic characteristics: analog I/O pins DP and DM  
VCC = 2.7 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; CL = 50 pF; RPU = 1.5 kon DP to VTERM; Tamb = 40 °C to +85 °C; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Driver characteristics  
tFR  
rise time  
fall time  
CL = 50 pF to 125 pF;  
10 % to 90 % of  
|VOH VOL|; see Figure 16  
4
-
20  
ns  
tFF  
CL = 50 pF to 125 pF;  
90 % to 10 % of  
4
-
20  
ns  
|VOH VOL|; see Figure 16  
[1]  
[2]  
FRFM  
VCRS  
differential rise time/fall time  
matching  
excluding the first transition  
from idle state  
90  
-
-
111.1  
2.0  
%
V
output signal crossover voltage excluding the first transition  
1.3  
from idle state; see  
Figure 17  
Driver timing  
tPLH(drv)  
tPHL(drv)  
tPHZ  
driver propagation delay  
(LOW to HIGH)  
DAT/VP, SE0/VM to  
DP, DM; see Figure 17 and  
Figure 21  
-
-
-
-
-
-
-
-
18  
18  
15  
15  
ns  
ns  
ns  
ns  
driver propagation delay  
(HIGH to LOW)  
DAT/VP, SE0/VM to  
DP, DM; see Figure 17 and  
Figure 21  
driver disable delay from HIGH OE_N/INT_N to DP, DM;  
level  
see Figure 18 and  
Figure 22  
tPLZ  
driver disable delay from LOW  
level  
OE_N/INT_N to DP, DM;  
see Figure 18 and  
Figure 22  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
36 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
Table 50: Dynamic characteristics: analog I/O pins DP and DM…continued  
VCC = 2.7 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; CL = 50 pF; RPU = 1.5 kon DP to VTERM; Tamb = 40 °C to +85 °C; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tPZH  
driver enable delay to HIGH  
level  
OE_N/INT_N to DP, DM;  
see Figure 18 and  
Figure 22  
-
-
15  
ns  
tPZL  
driver enable delay to LOW level OE_N/INT_N to DP, DM;  
-
-
15  
ns  
see Figure 18 and  
Figure 22  
Receiver timing  
Differential receiver  
tPLH(rcv)  
receiver propagation delay  
(LOW to HIGH)  
DP, DM to RCV; see  
Figure 19 and Figure 23  
-
-
-
-
15  
15  
ns  
ns  
tPHL(rcv)  
receiver propagation delay  
(HIGH to LOW)  
DP, DM to RCV; see  
Figure 19 and Figure 23  
Single-ended receiver  
tPLH(se) single-ended propagation delay DP, DM to VP and DAT/VP,  
-
-
-
-
18  
18  
ns  
ns  
(LOW to HIGH)  
VM and SE0/VM; see  
Figure 19 and Figure 23  
tPHL(se)  
single-ended propagation delay DP, DM to VP and DAT/VP,  
(HIGH to LOW)  
VM and SE0/VM; see  
Figure 19 and Figure 23  
[1] tFR / tFF  
.
[2] Characterized only; not tested. Limits guaranteed by design.  
1.8 V  
logic input 0.9 V  
0 V  
0.9 V  
t
, t  
FR LR  
t
, t  
FF LF  
V
t
t
OH  
PLH(drv)  
PHL(drv)  
90 %  
90 %  
V
OH  
differential  
data lines  
V
V
CRS  
CRS  
10 %  
10 %  
V
OL  
V
OL  
004aaa572  
004aaa573  
Fig 16. Rise time and fall time  
Fig 17. Timing of DAT/VP and SE0/VM to DP and DM  
2.0 V  
1.8 V  
differential  
data lines  
V
V
CRS  
CRS  
logic  
input  
0.9 V  
PHZ  
0.9 V  
0.8 V  
0 V  
t
t
PLH(rcv)  
PHL(rcv)  
t
t
t
PZH  
t
PHL(se)  
t
PLH(se)  
t
PLZ  
PZL  
V
OH  
V
OH  
V
0.3 V  
OH  
0.9 V  
0.9 V  
logic output  
differential  
data lines  
V
CRS  
V
+ 0.3 V  
OL  
V
OL  
V
004aaa574  
004aaa575  
OL  
Fig 18. Timing of OE_N/INT_N to DP and DM  
Fig 19. Timing of DP and DM to RCV, VP or DAT/VP and  
VM or SE0/VM  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
37 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
OE_N/INT_N  
t
t
TOI  
TIO  
DAT/VP  
SE0/VM  
input  
output  
output  
004aaa439  
Fig 20. SIE interface bus turnaround timing  
V
TERM  
VREG3V3  
1.5 kΩ  
33 Ω  
DUT  
test point  
DP or DM  
15 kΩ  
C
L
004aaa448  
Load capacitance CL = 50 pF (minimum or maximum timing).  
Fig 21. Load on pins DP and DM  
test point  
33 Ω  
500 Ω  
D.U.T.  
DP or  
DM  
50 pF  
V
004aaa517  
V = 0 V for tPZH and tPHZ  
.
V = VREG3V3 for tPZL and tPLZ  
.
Fig 22. Load on pins DP and DM for enable time and disable time  
test point  
D.U.T.  
25 pF  
004aaa709  
Fig 23. Load on pins VM, SE0/VM, VP, DAT/VP and RCV  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
38 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
Table 51: Characteristics of I/O stages of I2C-bus lines (SDA, SCL)  
Symbol Parameter  
Conditions  
Standard mode Unit  
Min  
-
Max  
fSCL  
SCL clock frequency  
100  
kHz  
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
tHD;STA  
t(SCL)L  
t(SCL)H  
tSU;STA  
tSU;DAT  
tHD;DAT  
tr  
hold time for the START condition  
LOW period of the SCL clock  
HIGH period of the SCL clock  
setup time for the START condition  
data setup time  
4.0  
4.7  
4.0  
4.7  
250  
0
-
-
-
-
-
data hold time  
-
rise time  
SDA and SCL signals  
SDA and SCL signals  
-
1000  
tf  
fall time  
-
300  
tSU;STO  
tBUF  
STOP condition setup time  
4.0  
4.7  
-
-
bus free time between a STOP and START  
condition  
SDA  
t
t
r
f
t
t
t
BUF  
t
t
t
SU;DAT  
t
r
HD;STA  
SP  
f
t
(SCL)L  
SCL  
t
HD;STA  
t
SU;STA  
Sr  
SU;STO  
P
S
S
t
t
(SCL)H  
HD;DAT  
004aaa577  
Fig 24. Definition of timing for standard-mode devices on the I2C-bus  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
39 of 51  
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
V
CC(I/O)  
R1  
V
CC(I/O)  
V
10 kΩ  
SW1  
CC  
SW-PB  
V
CC(I/O)  
C1  
C2  
1 µF  
C10  
0.1 µF  
0.1 µF  
V
R9  
CC(I/O)  
100 kΩ  
R3  
R5  
R2  
R4  
R8  
100  
kΩ  
3.3  
kΩ  
3.3  
kΩ  
10 kΩ  
10 kΩ  
V
ADR/PSW  
CC(I/O)  
1
24  
SDA  
SCL  
CGND  
C2  
2
3
4
SDA  
SCL  
23  
22  
21  
C4  
RESET_N  
C1  
0.1 µF  
INT_N  
INT_N  
SPEED  
V
V
CC  
5
6
7
20  
19  
18  
OTG  
GND  
ID  
BUS  
CONTROLLER  
OE_N  
5
4
3
ISP1301BS  
VREG3V3  
SUSPEND  
ID  
R6  
AGND  
DP  
D+  
8
9
17  
16  
33 Ω  
OE_N/INT_N  
VM  
D−  
USB MINI-AB  
RECEPTACLE  
2
1
SE0  
DAT  
R7  
33 Ω  
DM  
V
BUS  
10  
11  
12  
15  
14  
13  
VP  
DAT/VP  
SE0/VM  
C5  
0.1 µF  
RCV  
C7  
C9  
C6  
C8  
DGND  
4.7  
µF  
0.1  
µF  
22  
pF  
22  
pF  
004aaa348  
Fig 25. Application diagram for the OTG Controller with the DAT_SE0 SIE interface  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
V
CC(I/O)  
V
CC  
R1  
10 kΩ  
SW1  
V
SW-PB  
CC(I/O)  
C1  
1 µF  
V
CC(I/O)  
C3  
C10  
0.1 µF  
0.1 µF  
R9  
V
CC(I/O)  
100 kΩ  
R5  
R2  
R4  
R3  
R8  
3.3  
kΩ  
3.3  
kΩ  
10 kΩ  
10 kΩ  
100  
kΩ  
V
ADR/PSW  
CC(I/O)  
24  
1
SDA  
SCL  
CGND  
SDA  
SCL  
23  
22  
2
3
4
C2  
C1  
V
C4  
RESET_N  
0.1 µF  
INT_N  
21  
INT_N  
CC  
5
6
7
20  
19  
18  
OTG  
V
GND  
ID  
SPEED  
BUS  
CONTROLLER  
OE_N  
5
4
3
ISP1301BS  
VREG3V3  
ID  
R6  
D+  
SUSPEND  
AGND  
DP  
17  
16  
15  
8
33 Ω  
OE_N/INT_N  
D−  
USB MINI-AB  
RECEPTACLE  
9
2
1
RCV  
VM  
VP  
R7  
33 Ω  
VM  
VP  
DM  
V
BUS  
10  
DAT/VP  
SE0/VM  
14  
13  
11  
12  
C5  
RCV  
0.1 µF  
C7  
C9  
4.7 µF  
C6  
C8  
DGND  
22 pF  
0.1 µF  
22 pF  
004aaa438  
Fig 26. Application diagram for the OTG Controller with the VP_VM SIE interface  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
18. Package outline  
HVQFN24: plastic thermal enhanced very thin quad flat package; no leads;  
24 terminals; body 4 x 4 x 0.85 mm  
SOT616-1  
B
A
D
terminal 1  
index area  
A
A
1
E
c
detail X  
e
1
C
1/2 e  
y
y
C
1
e
v
M
M
C
C
A
B
b
7
12  
w
L
13  
6
e
e
E
h
2
1/2 e  
1
18  
terminal 1  
index area  
24  
19  
X
D
h
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
(1)  
(1)  
UNIT  
mm  
A
b
c
E
e
e
e
2
y
D
D
E
L
v
w
y
1
h
1
h
1
max.  
0.05 0.30  
0.00 0.18  
4.1  
3.9  
2.25  
1.95  
4.1  
3.9  
2.25  
1.95  
0.5  
0.3  
0.05  
0.1  
1
0.2  
0.5  
2.5  
2.5  
0.1 0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
01-08-08  
02-10-22  
SOT616-1  
- - -  
MO-220  
- - -  
Fig 27. Package outline SOT616-1 (HVQFN24)  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
42 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
19. Soldering  
19.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
19.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
19.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
43 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
19.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
19.5 Package related soldering information  
Table 52: Suitability of surface mount IC packages for wave and reflow soldering methods  
Package [1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
44 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
20. Abbreviations  
Table 53: Abbreviations  
Acronym  
ASIC  
ATX  
Description  
Application-Specific Integrated Circuit  
Analog USB Transceiver  
Host Negotiation Protocol  
ElectroStatic Discharge  
Inter IC-bus  
HNP  
ESD  
I2C-bus  
IC  
Integrated Circuit  
LSB  
Least Significant Bit  
On-The-Go  
OTG  
PDA  
Personal Digital Assistant  
Programmable Logic Device  
Power-On Reset  
PLD  
POR  
PORP  
SE0  
Power-On Reset Pulse  
Single-Ended Zero  
SOF  
Start-Of-Frame  
SRP  
Session Request Protocol  
Universal Serial Bus  
USB Implementers Forum  
USB  
USB-IF  
21. References  
[1] ECN_27%_Resistor (Pull-up/pull-down Resistors ECN)  
[2] Universal Serial Bus Specification Rev. 2.0  
[3] On-The-Go Supplement to the USB Specification Rev. 1.0a  
[4] On-The-Go Transceiver Specification (CEA-2011) Rev. 1.0  
[5] The I2C-bus specification; version 2.1  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
45 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
22. Revision history  
Table 54: Revision history  
Document ID  
ISP1301_3  
Release date Data sheet status  
20060221 Product data sheet  
Change notice  
Doc. number  
Supersedes  
-
-
ISP1301-02  
Modifications:  
The format of this data sheet has been redesigned to comply with the new presentation and  
information standard of Philips Semiconductors.  
Updated symbols and pin names according to the latest Philips Semiconductors standards.  
Table 41 “Limiting values”: updated the maximum value of VCC  
.
Table 42 “Recommended operating conditions”: updated the maximum value of VCC  
.
ISP1301-02  
ISP1301-01  
20050104  
20040414  
Product data  
Product data  
-
-
9397 750 14337 ISP1301-01  
9397 750 11355  
-
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
46 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
23. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
24. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
makes no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
26. Trademarks  
Notice — All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
I2C-bus — logo is a trademark of Koninklijke Philips Electronics N.V.  
25. Disclaimers  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
27. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
47 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
28. Tables  
Table 1: Ordering information . . . . . . . . . . . . . . . . . . . . .2  
Table 2: Pin description . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Table 3: Recommended charge pump capacitor value .12  
Table 4: Device operating modes . . . . . . . . . . . . . . . . .14  
Table 5: USB suspend mode: I/O . . . . . . . . . . . . . . . . .14  
Table 6: USB functional modes: I/O values . . . . . . . . . .15  
Table 7: USB suspend mode: I/O values . . . . . . . . . . . .15  
Table 8: Transparent general-purpose buffer mode . . . .15  
Table 9: Transceiver driver operation setting . . . . . . . . .16  
Table 10: USB functional mode: transmit operation . . . .16  
Table 11: Differential receiver operation settings . . . . . . .16  
Table 12: USB functional mode: receive operation . . . . .17  
Table 13: Serial controller registers . . . . . . . . . . . . . . . . .18  
Table 14: Vendor ID register: bit description . . . . . . . . . .18  
Table 15: Product ID register: bit description . . . . . . . . .18  
Table 16: Version ID register: bit description . . . . . . . . . .19  
Table 17: Mode Control 1 register: bit allocation . . . . . . .19  
Table 18: Mode Control 1 register: bit description . . . . . .19  
Table 19: Mode Control 2 register: bit allocation . . . . . . .19  
Table 20: Mode Control 2 register: bit description . . . . . .20  
Table 21: OTG Control register: bit allocation . . . . . . . . .20  
Table 22: OTG Control register: bit description . . . . . . . .20  
Table 23: OTG Status register: bit allocation . . . . . . . . . .21  
Table 24: OTG Status register: bit description . . . . . . . . .21  
Table 25: Interrupt Source register: bit allocation . . . . . .21  
Table 26: Interrupt Source register: bit description . . . . .21  
Table 27: Interrupt Latch register: bit allocation . . . . . . .22  
Table 28: Interrupt Latch register: bit description . . . . . .22  
Table 29: Interrupt Enable Low register: bit allocation . . .22  
Table 30: Interrupt Enable Low register: bit description .22  
Table 31: Interrupt Enable High register: bit allocation . .23  
Table 32: Interrupt Enable High register: bit description .23  
Table 33: I2C-bus byte transfer format . . . . . . . . . . . . . . .27  
Table 34: I2C-bus device address byte 1 bit allocation . .27  
Table 35: I2C-bus device address byte 1 bit description .27  
Table 36: Transfer format description for one-byte write .27  
Table 37: Transfer format description for multiple-byte  
write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Table 45: Static characteristics: analog I/O pins DP  
and DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 46: Static characteristics: analog I/O pin ID . . . . . 34  
Table 47: Static characteristics: charge pump . . . . . . . . 35  
Table 48: Dynamic characteristics: reset and clock . . . . 36  
Table 49: Dynamic characteristics: digital I/O pins . . . . . 36  
Table 50: Dynamic characteristics: analog I/O pins DP  
and DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 51: Characteristics of I/O stages of I2C-bus lines  
(SDA, SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 52: Suitability of surface mount IC packages for  
wave and reflow soldering methods . . . . . . . . 44  
Table 53: Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 54: Revision history . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 38: Transfer format description for current address  
read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Table 39: Transfer format description for single-byte  
read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Table 40: Transfer format description for multiple-byte  
read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Table 41: Limiting values . . . . . . . . . . . . . . . . . . . . . . . . .32  
Table 42: Recommended operating conditions . . . . . . . .32  
Table 43: Static characteristics: supply pins . . . . . . . . . .33  
Table 44: Static characteristics: digital pins . . . . . . . . . . .33  
continued >>  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
48 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
29. Figures  
Fig 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Fig 2. Pin configuration HVQFN24 (top view) . . . . . . . . .4  
Fig 3. Pin configuration HVQFN24 (bottom view) . . . . . .4  
Fig 4. Internal POR timing . . . . . . . . . . . . . . . . . . . . . . . .9  
Fig 5. Using external charge pump . . . . . . . . . . . . . . . .10  
Fig 6. Charge pump capacitor . . . . . . . . . . . . . . . . . . . .11  
Fig 7. Clock stopped using the GLOBAL_PWR_DN bit.25  
Fig 8. Clock wake-up using SCL . . . . . . . . . . . . . . . . . .25  
Fig 9. Clock wake-up by VBUS . . . . . . . . . . . . . . . . . . . .26  
Fig 10. Clock wake-up by ID change (1) . . . . . . . . . . . . .26  
Fig 11. Clock wake-up by ID change (2) . . . . . . . . . . . . .26  
Fig 12. Clock wake-up by data line SRP . . . . . . . . . . . . .26  
Fig 13. Writing data to the ISP1301 registers . . . . . . . . .29  
Fig 14. Current address read. . . . . . . . . . . . . . . . . . . . . .30  
Fig 15. Random address read . . . . . . . . . . . . . . . . . . . . .31  
Fig 16. Rise time and fall time . . . . . . . . . . . . . . . . . . . . .37  
Fig 17. Timing of DAT/VP and SE0/VM to DP and DM . .37  
Fig 18. Timing of OE_N/INT_N to DP and DM . . . . . . . .37  
Fig 19. Timing of DP and DM to RCV, VP or DAT/VP  
and VM or SE0/VM . . . . . . . . . . . . . . . . . . . . . . .37  
Fig 20. SIE interface bus turnaround timing. . . . . . . . . . .38  
Fig 21. Load on pins DP and DM. . . . . . . . . . . . . . . . . . .38  
Fig 22. Load on pins DP and DM for enable time and  
disable time . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Fig 23. Load on pins VM, SE0/VM, VP, DAT/VP and  
RCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Fig 24. Definition of timing for standard-mode devices  
on the I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Fig 25. Application diagram for the OTG Controller with  
the DAT_SE0 SIE interface . . . . . . . . . . . . . . . . .40  
Fig 26. Application diagram for the OTG Controller with  
the VP_VM SIE interface . . . . . . . . . . . . . . . . . . .41  
Fig 27. Package outline SOT616-1 (HVQFN24) . . . . . . .42  
continued >>  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
49 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
30. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
10  
10.1  
10.1.1  
Serial controller. . . . . . . . . . . . . . . . . . . . . . . . 18  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Device identification registers. . . . . . . . . . . . . 18  
10.1.1.1 Vendor ID register (Read: 00h to 01h) . . . . . . 18  
10.1.1.2 Product ID register (Read: 02h to 03h) . . . . . 18  
10.1.1.3 Version ID register (Read: 14h to 15h). . . . . . 18  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
10.1.2  
Mode control registers . . . . . . . . . . . . . . . . . . 19  
10.1.2.1 Mode Control 1 register (Set/Clear: 04h/05h) 19  
10.1.2.2 Mode Control 2 register (Set/Clear: 12h/13h) 19  
10.1.3  
OTG registers. . . . . . . . . . . . . . . . . . . . . . . . . 20  
7
7.1  
7.2  
7.3  
7.3.1  
7.3.2  
7.3.3  
7.4  
7.5  
7.6  
Functional description . . . . . . . . . . . . . . . . . . . 7  
Serial controller. . . . . . . . . . . . . . . . . . . . . . . . . 7  
VBUS charge pump . . . . . . . . . . . . . . . . . . . . . . 7  
10.1.3.1 OTG Control register (Set/Clear: 06h/07h) . . 20  
10.1.3.2 OTG Status register (Read: 10h) . . . . . . . . . . 21  
10.1.4  
10.1.4.1 Interrupt Source register (Read: 08h) . . . . . . 21  
10.1.4.2 Interrupt Latch register (Set/Clear: 0Ah/0Bh). 21  
10.1.4.3 Interrupt Enable Low register (Set/Clear:  
0Ch/0Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
10.1.4.4 Interrupt Enable High register (Set/Clear:  
0Eh/0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Interrupt related registers. . . . . . . . . . . . . . . . 21  
V
V
BUS comparators. . . . . . . . . . . . . . . . . . . . . . . 7  
BUS valid comparator . . . . . . . . . . . . . . . . . . . 7  
Session valid comparator . . . . . . . . . . . . . . . . . 7  
Session end comparator. . . . . . . . . . . . . . . . . . 7  
ID detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pull-up and pull-down resistors. . . . . . . . . . . . . 8  
Analog USB Transceiver (ATX). . . . . . . . . . . . . 8  
3.3 V DC-DC regulator . . . . . . . . . . . . . . . . . . . 8  
Carkit interrupt detector . . . . . . . . . . . . . . . . . . 8  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . . 9  
Detailed description of pins . . . . . . . . . . . . . . . 9  
ADR/PSW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SCL and SDA . . . . . . . . . . . . . . . . . . . . . . . . . 10  
RESET_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
INT_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
OE_N/INT_N. . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SE0/VM, DAT/VP, RCV, VM and VP . . . . . . . . 10  
DP and DM . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
VBUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
10.2  
10.3  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Auto-connect . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7.7  
7.8  
7.9  
11  
11.1  
11.2  
Clock wake-up scheme. . . . . . . . . . . . . . . . . . 25  
Power-down event . . . . . . . . . . . . . . . . . . . . . 25  
Clock wake-up events . . . . . . . . . . . . . . . . . . 25  
7.10  
7.10.1  
7.10.2  
7.10.3  
7.10.4  
7.10.5  
7.10.6  
7.10.7  
7.10.8  
7.10.9  
7.10.10  
12  
12.1  
12.2  
12.3  
12.3.1  
12.3.2  
12.4  
12.4.1  
12.4.2  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 27  
I2C-bus byte transfer format . . . . . . . . . . . . . . 27  
I2C-bus device address . . . . . . . . . . . . . . . . . 27  
Write format . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
One-byte write . . . . . . . . . . . . . . . . . . . . . . . . 27  
Multiple-byte write . . . . . . . . . . . . . . . . . . . . . 28  
Read format . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Current address read . . . . . . . . . . . . . . . . . . . 29  
Random address read . . . . . . . . . . . . . . . . . . 30  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
7.10.11 C1 and C2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
7.10.12 VCC(I/O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
7.10.13 AGND, CGND and DGND. . . . . . . . . . . . . . . . 12  
12.4.2.1 Single read. . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
12.4.2.2 Multiple read. . . . . . . . . . . . . . . . . . . . . . . . . . 30  
13  
14  
15  
16  
17  
18  
19  
19.1  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 32  
Recommended operating conditions . . . . . . 32  
Static characteristics . . . . . . . . . . . . . . . . . . . 33  
Dynamic characteristics. . . . . . . . . . . . . . . . . 36  
Application information . . . . . . . . . . . . . . . . . 40  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 42  
8
8.1  
8.2  
8.3  
Modes of operation . . . . . . . . . . . . . . . . . . . . . 12  
Power modes . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Direct I2C-bus mode . . . . . . . . . . . . . . . . . . . . 13  
USB modes. . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Transparent modes. . . . . . . . . . . . . . . . . . . . . 13  
Transparent general-purpose buffer mode . . . 13  
Transparent UART mode . . . . . . . . . . . . . . . . 13  
Summary tables . . . . . . . . . . . . . . . . . . . . . . . 14  
8.4  
8.4.1  
8.4.2  
8.4.3  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 43  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 43  
9
9.1  
9.2  
USB transceiver . . . . . . . . . . . . . . . . . . . . . . . . 15  
Differential driver. . . . . . . . . . . . . . . . . . . . . . . 15  
Differential receiver. . . . . . . . . . . . . . . . . . . . . 16  
19.2  
19.3  
continued >>  
ISP1301_3  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 21 February 2006  
50 of 51  
ISP1301  
Philips Semiconductors  
USB OTG transceiver  
19.4  
19.5  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 44  
Package related soldering information . . . . . . 44  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 45  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 46  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 47  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Contact information . . . . . . . . . . . . . . . . . . . . 47  
20  
21  
22  
23  
24  
25  
26  
27  
© Koninklijke Philips Electronics N.V. 2006  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 21 February 2006  
Document number: ISP1301_3  
Published in The Netherlands  

相关型号:

ISP1301BS,157

IC LINE TRANSCEIVER, PQCC24, 4 X 4 MM, 0.85 MM HEIGHT, LEAD FREE AND HALOGEN FREE, PLASTIC, MO-220, SOT-616-1, HVQFN-24, Line Driver or Receiver
NXP

ISP1302HN

Universal Serial Bus On-The-Go transceiver with carkit support
NXP

ISP1302HN,518

IC LINE TRANSCEIVER, PQCC24, 4 X 4 MM, 0.85 MM HEIGHT, PLASTIC, MO-220, SOT-616-3, VQFN-24, Line Driver or Receiver
NXP

ISP1302HN,551

IC LINE TRANSCEIVER, PQCC24, 4 X 4 MM, 0.85 MM HEIGHT, PLASTIC, MO-220, SOT-616-3, VQFN-24, Line Driver or Receiver
NXP

ISP1302HN,557

IC LINE TRANSCEIVER, PQCC24, 4 X 4 MM, 0.85 MM HEIGHT, PLASTIC, MO-220, SOT-616-3, VQFN-24, Line Driver or Receiver
NXP

ISP1302UK

Universal Serial Bus On-The-Go transceiver with carkit support
NXP

ISP1302UK,023

IC LINE TRANSCEIVER, PBGA25, 2.50 X 2.50 MM, 0.60 MM HEIGHT, WLCSP-25, Line Driver or Receiver
NXP

ISP1302_07

Universal Serial Bus On-The-Go transceiver with carkit support
NXP

ISP1362

Single-chip Universal Serial Bus On-The-Go controller
NXP

ISP1362BD

Single-chip Universal Serial Bus On-The-Go controller
NXP

ISP1362BD,151

USB Bus Controller, CMOS, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-314-2, LQFP-64
NXP

ISP1362BD,157

IC UNIVERSAL SERIAL BUS CONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-314-2, LQFP-64, Bus Controller
NXP