ISP1301BS [NXP]

Universal Serial Bus On-The-Go transceiver; 通用串行总线的On-the - Go收发器
ISP1301BS
型号: ISP1301BS
厂家: NXP    NXP
描述:

Universal Serial Bus On-The-Go transceiver
通用串行总线的On-the - Go收发器

线路驱动器或接收器 驱动程序和接口 接口集成电路
文件: 总46页 (文件大小:235K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISP1301  
Universal Serial Bus On-The-Go transceiver  
Rev. 01 — 14 April 2004  
Product data  
1. General description  
The ISP1301 is a Universal Serial Bus (USB) On-The-Go (OTG) transceiver device  
that is fully compliant with Universal Serial Bus Specification Rev. 2.0 and On-The-Go  
Supplement to the USB Specification Rev. 1.0a. The ISP1301 can transmit and  
receive serial data at both full-speed (12 Mbit/s) and low-speed (1.5 Mbit/s) data  
rates.  
It is ideal for use in portable electronics devices, such as mobile phones, digital still  
cameras, digital video cameras, Personal Digital Assistants (PDAs) and digital audio  
players. It allows USB Application Specific Integrated Circuits (ASICs),  
Programmable Logic Devices (PLDs) and any system chip set (with the USB host or  
device function built-in but without the USB physical layer) to interface to the physical  
layer of the USB.  
The ISP1301 can interface to devices with digital I/O voltages in the range of  
1.65 V to 3.6 V.  
The ISP1301 is available in HVQFN24 package.  
2. Features  
Fully complies with:  
Universal Serial Bus Specification Rev. 2.0  
On-The-Go Supplement to the USB 2.0 Specification Rev. 1.0a  
On-The-Go Transceiver Specification (CEA–2011) Rev. 1.0  
Can transmit and receive serial data at both full-speed (12 Mbit/s) and low-speed  
(1.5 Mbit/s) data rates  
Ideal for system ASICs or chip sets with built-in USB OTG dual-role core  
Supports mini USB analog car kit interface  
Supports various serial data interface protocols; transparent general-purpose  
buffer mode allows you to control the direction of data transfer  
Supports data line and VBUS pulsing session request  
Contains Host Negotiation Protocol (HNP) command and status registers  
Supports serial I2C-bus™ interface for OTG status and command controls  
2.7 V to 4.5 V power supply input range for the ISP1301  
Built-in charge pump regulator outputs 5 V at current greater than 8 mA  
Supports external charge pump  
Supports wide range interfacing I/O voltage (VDD_LGC = 1.65 V to 3.6 V) for digital  
control logics  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
8 kV built-in electrostatic discharge (ESD) protection on the DP, DM, VBUS and ID  
lines  
Full industrial grade operation from 40 °C to +85 °C  
Available in a small HVQFN24 (4 × 4 mm2) halogen-free and lead-free package.  
3. Applications  
4. Abbreviations  
Mobile phone  
Digital camera  
Personal digital assistant  
Digital video recorder.  
ASIC — Application-Specific Integrated Circuit  
ATX — Analog USB transceiver  
HNP — Host Negotiation Protocol  
ESD — ElectroStatic Discharge  
I2C-bus — Inter IC-bus  
IC — Integrated Circuit  
OTG — On-The-Go  
PDA — Personal Digital Assistant  
SE0 — Single-Ended zero  
SOF — Start-of-Frame  
SRP — Session Request Protocol  
USB — Universal Serial Bus  
USB-IF — USB Implementers Forum.  
5. Ordering information  
Table 1:  
Ordering information  
Package  
Type  
number  
Name  
Description  
Version  
ISP1301BS HVQFN24 plastic thermal enhanced very thin quad flat package; SOT616-1  
no leads; 24 terminals; body 4 × 4 × 0.85 mm  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
2 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
6. Block diagram  
V
V
V
C2  
C1  
DD_LGC  
24  
REG(3V3)  
7
BAT  
22  
V
21  
20  
23  
3.3 V DC-DC  
REGULATOR  
CGND  
BUS  
CHARGE PUMP  
19  
V
BUS  
ISP1301  
V
BUS  
3
SCL  
COMPARATORS  
2
SDA  
1
ADR/PSW  
5
INT_N  
SERIAL  
CONTROLLER  
18  
ID DETECTOR  
ID  
9
OE_N/INT_N  
LEVEL  
14  
13  
DAT/VP  
SHIFTER  
PULL-UP AND  
PULL-DOWN  
RESISTORS  
SE0/VM  
12  
RCV  
11  
VP  
10  
VM  
6
SPEED  
8
CARKIT  
INTERRUPT  
DETECTOR  
SUSPEND  
15  
DM  
4
USB  
TRANSCEIVER  
RESET_N  
16  
DP  
exposed die pad  
17  
004aaa195  
DGND  
AGND  
Fig 1. Block diagram.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
3 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
7. Pinning information  
7.1 Pinning  
24  
23  
19  
22  
21  
20  
ID  
1
18  
ADR/PSW  
SDA  
AGND  
2
3
4
5
6
17  
16  
15  
14  
13  
SCL  
RESET_N  
INT_N  
DP  
ISP1301BS  
DM  
DAT/VP  
SE0/VM  
004aaa542  
SPEED  
7
8
12  
9
10  
11  
Fig 2. Pin configuration HVQFN24 (top view).  
7
8
12  
9
10  
11  
SE0/VM  
DAT/VP  
6
13  
SPEED  
INT_N  
DGND  
(exposed die pad)  
5
4
3
2
1
14  
15  
16  
17  
18  
RESET_N  
SCL  
DM  
DP  
ISP1301BS  
terminal 1  
AGND  
ID  
SDA  
ADR/PSW  
24  
23  
19  
22  
21  
20  
004aaa196  
Bottom view  
Fig 3. Pin configuration HVQFN24 (bottom view).  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
4 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
7.2 Pin description  
Table 2:  
Symbol[2] Pin  
Pin description[1]  
Type[3] Reset  
value  
Description  
ADR/PSW  
1
I/O  
high-Z ADR input — sets the least-significant I2C-bus  
address bit of the ISP1301; latched-on reset  
(including power-on reset)  
PSW output — enables or disables the external  
charge pump after reset  
bidirectional; push-pull input; three-state output  
high-Z serial I2C-bus data input and output  
bidirectional; push-pull input; open-drain output  
high-Z serial I2C-bus clock input and output  
bidirectional; push-pull input; open-drain output  
SDA  
2
3
4
5
6
I/OD  
SCL  
I/OD  
RESET_N  
INT_N  
SPEED  
I
-
asynchronous reset; active LOW  
push-pull input  
OD  
I
high-Z interrupt output; active LOW  
open-drain output  
-
speed selection input for the ATX; effective when  
bit SPD_SUSP_CTRL = 0:  
LOW: low-speed  
HIGH: full-speed.  
push-pull input  
VREG(3V3)  
7
8
P
I
-
-
output of the internal voltage regulator; an  
external decoupling capacitor of 0.1 µF is  
required  
SUSPEND  
suspend selection input for ATX; effective when  
bit SPD_SUSP_CTRL = 0:  
LOW: normal operating  
HIGH: suspend.  
push-pull input  
OE_N/  
INT_N  
9
I/O  
high-Z OE_N input — enable driving DP and DM when  
in the USB mode  
INT_N output — interrupt (push pull) when  
suspended and bit OE_INT_EN = 1  
bidirectional; push-pull input; three-state output  
VM  
VP  
10  
11  
12  
O
O
O
-
single-ended DM receiver output  
push-pull output  
-
single-ended DP receiver output  
push-pull output  
RCV  
0
differential receiver output; reflects the  
differential value of DP and DM  
push-pull output  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
5 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
Table 2:  
Symbol[2] Pin  
Pin description[1]…continued  
Type[3] Reset  
Description  
value  
[4]  
SE0/VM  
13  
I/O  
-
SE0 (input and output) — SE0 function in  
DAT_SE0 USB mode  
VM (input and output) — VM function in  
VP_VM USB mode  
bidirectional; push-pull input; three-state output  
[4]  
DAT/VP  
14  
I/O  
-
DAT (input and output) — DAT function in  
DAT_SE0 USB mode  
VP (input and output) — VP function in VP_VM  
USB mode  
bidirectional; push-pull input; three-state output  
USB data minus pin (D)  
USB data plus pin (D+)  
DM  
DP  
15  
16  
17  
18  
AI/O  
AI/O  
P
-
-
-
-
AGND  
ID  
analog ground  
AI/O  
identification detector input and output;  
connected to the ID pin of the USB mini  
receptacle  
VBUS  
19  
AI/O  
-
VBUS line input and output of the USB interface;  
place an external decoupling capacitor of 0.1 µF  
close to this pin  
VBAT  
C1  
20  
21  
P
-
-
supply voltage (2.7 V to 4.5 V)  
AI/O  
charge pump capacitor pin 1; typically use a  
100 nF capacitor between pins C1 and C2  
C2  
22  
AI/O  
-
charge pump capacitor pin 2; typically use a  
100 nF capacitor between pins C1 and C2  
CGND  
23  
24  
P
P
-
-
ground for the charge pump  
VDD_LGC  
supply voltage for the interface logic signals  
(1.65 V to 3.6 V)  
DGND  
exposed  
die pad  
P
-
digital ground  
[1] A detailed description of these pins can be found in Section 8.9.  
[2] Symbol names ending with underscore N (for example, NAME_N) indicate active LOW signals.  
[3] I = input; O = output; I/O = digital input/output; OD = open-drain output; AI/O = analog input/output;  
P = power or ground pin.  
[4] High-Z when pin OE_N/INT_N is LOW. Driven LOW when pin OE_N/INT_N is HIGH.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
6 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
8. Functional description  
8.1 Serial controller  
The serial controller includes the following functions:  
I2C-bus slave interface  
Interrupt generator  
Mode Control registers  
OTG registers  
Interrupt related registers  
Device identification registers.  
The serial controller acts as an I2C-bus slave, and uses the SCL and SDA pins to  
communicate with the OTG controller.  
For more details on serial controller, see Section 11.  
8.2 VBUS charge pump  
The charge pump supplies current to the VBUS line. It can operate in any of the  
following modes:  
Output 5 V at current greater than 8 mA  
Pull-up VBUS to 3.3 V through a resistor (RVBUS(PU)) for initiating VBUS pulsing SRP  
Pull-down VBUS to ground through a resistor (RVBUS(PD)) for discharging VBUS  
before initiating SRP.  
8.3 VBUS comparators  
VBUS comparators provide indications regarding the voltage level on VBUS  
.
8.3.1 VBUS valid comparator  
This comparator is used by an A-device to determine whether or not the voltage on  
VBUS is at a valid level for operation. The minimum threshold for the VBUS valid  
comparator is 4.4 V. Any voltage on VBUS below this threshold is considered to be a  
fault. During power up, it is expected that the comparator output will be ignored.  
8.3.2 Session valid comparator  
The session valid comparator is a TTL-level input that determines when VBUS is high  
enough for a session to start. Both the A-device and the B-device use this comparator  
to detect when a session is being started. The A-device also uses this comparator to  
indicate when a session is completed. The session valid threshold of the ISP1301 is  
between 0.8 V and 2.0 V.  
8.3.3 Session end comparator  
The session end comparator determines when VBUS is below the B-device session  
end threshold of 0.2 V to 0.8 V.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
7 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
8.4 ID detector  
In either the active or suspended power mode, the ID detector senses the condition of  
the ID line and differentiates between the following three conditions:  
Pin ID is floating; bit ID_FLOAT = 1  
Pin ID is shorted to ground; bit ID_GND = 1  
Pin ID is connected to ground through resistor RACC_ID; bit ID_FLOAT = 0 and bit  
ID_GND = 0.  
The ID detector also has a switch that can be used to ground pin ID. This switch is  
controlled by bit ID_PULLDOWN in the serial controller.  
8.5 Pull-up and pull-down resistors  
The pull-up and pull-down resistors include the following switchable resistors:  
Pin DP pull-up  
Pin DP pull-down  
Pin DM pull-up  
Pin DM pull-down.  
The pull-up resistor is a context variable as described in the ECN_27%_Resistor  
document. The variable pull-up resistor hardware is implemented to meet the USB  
ECN_27% specification.  
8.6 USB transceiver (ATX)  
The behavior of the USB transceiver depends on the operation mode of the ISP1301:  
In the USB mode, the USB transceiver block performs USB full-speed or  
low-speed transceiver functions. This includes differential driver, differential  
receiver and single-ended receivers.  
In the transparent general purpose buffer mode or the UART mode, the USB  
transceiver block functions as a level shifter between the pins DAT/VP and SE0/VM  
and the pins DP and DM.  
8.7 3.3 V DC-DC regulator  
The built-in 3.3 V DC-DC regulator conditions the supply voltage (VBAT) for use in the  
ISP1301:  
VBAT = 3.6 V to 4.5 V: the regulator will output 3.3 V ± 10 %  
VBAT < 3.6 V: the regulator will be bypassed.  
The output of the regulator can be monitored on the VREG(3V3) pin.  
8.8 Car kit interrupt detector  
The car kit interrupt detector is a comparator that detects when the DP line is below  
the car kit interrupt threshold VPH_CR_INT (0.4 V to 0.6 V). The car kit interrupt  
detector is enabled in the audio mode only (bit AUDIO_EN = 1).  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
8 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
8.9 Detailed description of pins  
8.9.1 ADR/PSW  
The ADR/PSW pin has two functions. On reset (including power-on reset), the level  
on this pin is latched as ADR_REG, which represents the least significant bit (LSB) of  
the I2C address of the ISP1301. If bit ADR_REG = 0, the I2C-bus address for the  
ISP1301 is 0101100 (0x2C); if bit ADR_REG = 1, the I2C-bus address for the  
ISP1301 is 0101101 (0x2D).  
After reset, the ADR/PSW pin can be programmed as an output. If in the Mode  
Control 2 register bit PSW_OE = 1, then the ADR/PSW output will be enabled. The  
logic level will be determined by bit ADR_REG. If bit ADR_REG = 0, then the  
ADR/PSW pin will drive HIGH. If bit ADR_REG = 1, then the ADR/PSW pin will drive  
LOW.  
The ADR/PSW pin can be used to turn on or off the external charge pump. The  
ISP1301 built-in charge pump supports VBUS current at 8 mA. If the application needs  
more current support (for example, 50 mA), an external charge pump may be  
needed. In this case, the ADR/PSW pin can act as a power switch for the external  
charge pump. Figure 4 shows an example of using external charge pump.  
+3.3 V  
100 k  
V
BAT  
ADR/PSW  
V
V
V
OUT  
BUS  
IN  
ID  
4.7 µF  
DM  
CHARGE PUMP  
ON/OFF  
ISP1301  
DP  
V
BUS  
GND  
004aaa437  
Fig 4. Using external charge pump.  
8.9.2 SCL and SDA  
The SCL (serial clock) and SDA (serial data) signals implement a two-wire serial  
I2C-bus.  
8.9.3 RESET_N  
Active LOW asynchronous reset for all digital logic. Either connect this pin to VDD_LGC  
for power-on reset or apply a minimum of 10 µs LOW pulse for hardware reset.  
8.9.4 INT_N  
The INT_N (interrupt) pin is asserted while an interrupt condition exists. It is  
deasserted when the Interrupt Latch register is cleared. The INT_N pin is open-drain,  
and, therefore, can be connected using a wired-AND with other interrupt signals.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
9 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
8.9.5 OE_N/INT_N  
Pin OE_N/INT_N is normally an input to the ISP1301.  
When bit TRANSP_EN = 0 and bit UART_EN = 0, the OE_N/INT_N pin controls the  
direction of DAT/VP, SE0/VM, DP and DM as indicated in Table 4.  
When suspended (either pin SUSPEND = HIGH or bit SUSPEND_REG = 1) and bit  
OE_INT_EN = 1, pin OE_N/INT_N becomes a push-pull output (active LOW) to  
indicate the interrupt condition.  
8.9.6 SE0/VM, DAT/VP, RCV, VM and VP  
The ISP1301 transmits USB data on the USB line under the following conditions:  
Bit TRANSP_EN = 0  
Bit UART_EN = 0  
Pin OE_N/INT_N = LOW.  
Table 10 shows the operation of the SE0/VM and DAT/VP pins during the transmit  
operation. The RCV pin is not used during transmit.  
The ISP1301 receives USB data from the USB line under the following conditions:  
Bit TRANSP_EN = 0  
Bit UART_EN = 0  
Pin OE_N/INT_N = HIGH.  
Table 12 shows the operation of the SE0/VM, DAT/VP and RCV pins during the  
receive operation.  
The VP and VM pins are single-ended receiver outputs of the DP and DM pins,  
respectively.  
8.9.7 DP and DM  
The DP (data plus) and DM (data minus) pins implement the USB data signals. When  
in the transparent general-purpose buffer mode, the ISP1301 operates as a level  
shifter between the (DAT/VP, SE0/VM) and (DP, DM) pins.  
8.9.8 ID  
The ID (identification) pin is connected to the ID pin on the USB mini receptacle. An  
internal pull-up resistor (to VREG(3V3)) is connected to this pin. When bit  
ID_PULLDOWN is set, the ID pin will be shorted to ground.  
8.9.9 VBUS  
This pin acts as an input to the VBUS comparator or an output from the charge pump.  
When the VBUS_DRV bit of the OTG Control register is asserted, the ISP1301 tries  
to drive VBUS to a voltage of 4.4 V to 5.25 V with an output current capability of at  
least 8 mA.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
10 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
8.9.10 VBAT  
This pin is an input and supplies power to the ISP1301. The ISP1301 operates when  
VBAT is between 2.7 V and 4.5 V.  
8.9.11 C1 and C2  
The C1 and C2 pins are for connecting the flying capacitor of the charge pump. The  
output current capacity of the charge pump depends on the value of the capacitor.  
For maximum efficiency, place capacitors as close as possible to the pins.  
C1  
C
ext  
C2  
ISP1301  
V
BUS  
I
L
004aaa278  
Fig 5. Charge pump capacitor.  
Table 3:  
Cext  
Recommended charge pump capacitor value  
IL (max)[1]  
47 nF  
100 nF  
8 mA  
18 mA[2]  
[1] For output voltage VBUS > 4.7 V (bit VBUS_VLD = 1).  
[2] For VBAT = 3.0 V to 4.5 V.  
8.9.12 VDD_LGC  
This pin is an input and sets logic thresholds. It also powers the pads of the following  
logic pins:  
ADR/PSW  
DAT/VP, SE0/VM and RCV  
VM and VP  
INT_N  
OE_N/INT_N  
RESET_N  
SPEED  
SUSPEND  
SCL and SDA.  
8.9.13 AGND, CGND and DGND  
AGND, CGND and DGND are ground pins for analog, charge pump and digital  
circuits, respectively. These pins can be connected separately or together depending  
on the system performance requirements.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
11 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
9. Modes of operation  
There are four types of modes in the ISP1301:  
Power modes  
Direct I2C-bus mode  
USB modes  
Transparent modes.  
9.1 Power modes  
The power modes of the ISP1301 are as follows:  
Active power mode: power is on.  
USB suspend mode: to reduce power consumption, the USB differential receiver is  
powered down.  
Global power-down mode: set bit GLOBAL_PWR_DN = 1 of the Mode Control 2  
register; the differential transmitter and receiver, clock generator, charge pump,  
and all biasing circuits are turned off to reduce power consumption to the minimum  
possible; for details on waking up the clock, see Section 12.  
9.2 Direct I2C-bus mode  
In the direct I2C-bus mode, an external I2C-bus master (OTG controller) directly  
communicates with the serial controller through the SCL and SDA lines. The serial  
controller has a built-in I2C-bus slave function.  
In this mode, an external I2C-bus master can access the internal registers of the  
device (Status, Control, Interrupt, and so on) through the I2C-bus interface.  
The supported I2C-bus bit rate is 100 kbit/s (maximum).  
The ISP1301 is in the direct I2C-bus mode when either bit TRANSP_EN bit = 0 or pin  
OE_N/INT_N is deasserted.  
9.3 USB modes  
The four USB modes of the ISP1301 are:  
VP_VM unidirectional mode  
VP_VM bidirectional mode  
DAT_SE0 unidirectional mode  
DAT_SE0 bidirectional mode.  
In the VP_VM USB mode, the DAT/VP pin is used for the VP function, the SE0/VM  
pin is used for the VM function, and the RCV pin is used for the RCV function.  
In the DAT_SE0 USB mode, the DAT/VP pin is used for the DAT function, the SE0/VM  
pin is used for the SE0 function, and the RCV pin is not used.  
In the unidirectional mode, the DAT/VP and SE0/VM pins are always inputs. In the  
bidirectional mode, the direction of these signals depends on the OE_N/INT_N input.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
12 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
Table 6 specifies the functionality of the device during the four USB modes.  
The ISP1301 is in the USB mode when both the TRANSP_EN and UART_EN bits  
are cleared.  
9.4 Transparent modes  
9.4.1 Transparent general-purpose buffer mode  
In the transparent general-purpose buffer mode, the DAT/VP and SE0/VM pins are  
connected to the DP and DM pins, respectively. Using bits TRANSP_BDIR1 and  
TRANSP_BDIR0 of the Mode Control 2 register as specified in Table 8, you can  
control the direction of data transfer. The ISP1301 is in the transparent  
general-purpose buffer mode if bit TRANSP_EN = 1 and bit DAT_SE0 = 1.  
9.4.2 Transparent UART mode  
When in the transparent UART mode, the ATX behaves as two logic level translator  
between the following pins:  
For TxD signal: from SE0/VM (VDD_LGC level) to DM (+3.3 V level)  
For RxD signal: from DP (+3.3 V level) to DAT/VP (VDD_LGC level).  
In the UART mode, the OTG controller is allowed to connect a UART to the DAT/VP  
and SE0/VM pins of the ISP1301.  
The UART mode is entered by setting the UART_EN bit in the Mode Control 1  
register. The UART mode is equivalent to one of the transparent general purpose  
buffer mode (bit TRANSP_BDIR1 = 1, bit TRANSP_BDIR0 = 0).  
9.4.3 Summary tables  
Table 4:  
Mode  
Device operating modes  
USB  
suspend  
Bit  
DAT  
Pin  
Bit  
Bit  
Description  
OE_N/ TRANSP UART  
INT_N _EN  
condition[1] _SE0  
_ EN  
Direct I2C-bus mode  
Direct I2C-bus mode  
X
X
X
X
X
1
X
0
1
1
X
X
X
HIGH  
X
USB modes  
USB suspend mode  
USB functional mode  
Transparent modes  
1
0
X
X
X
X
0
0
0
0
see Table 5 and Table 7  
ATX is fully functional; see Table 6  
Transparent general-purpose  
buffer mode  
X
X
1
X
X
1
0
1
ATX is not functional; see Table 8  
Transparent UART mode  
X
X
DAT/VP <= DP (RxD signal of UART)  
SE0/VM => DM (TxD signal of UART);  
ATX is not functional  
[1] Conditions:  
a) bit SPD_SUSP_CTRL = 0 and pin SUSPEND = HIGH, or  
b) bit SPD_SUSP_CTRL = 1 and bit SUSPEND_REG = 0.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
13 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
Table 5:  
Pin  
USB suspend mode: I/O  
Function  
DP as output  
DM as output  
VBUS  
can be driven if pin OE_N/INT_N is active LOW, otherwise high-Z[1]  
can be driven if pin OE_N/INT_N is active LOW, otherwise high-Z[1]  
can be driven depending on bit VBUS_DRV  
SCL  
connected to SCL I/O of the I2C-bus slave  
SDA  
connected to SDA I/O of the I2C-bus slave  
[1] In the USB suspend mode, the ISP1301 can drive the DP and DM lines, if the OE_N/INT_N input  
(when the OE_INT_EN bit is not set) is LOW. In such a case, these outputs are driven as in the USB  
functional modes, but with the full-speed characteristics, irrespective of the value of the SPEED input  
pin or the SPEED_REG bit.  
Table 6:  
USB functional modes: I/O values[1]  
USB mode  
Bit  
Pin  
DAT_SE0  
BI_DI  
OE_N/  
INT_N  
DAT/VP  
SE0/VM VP  
VM  
RCV  
VP_VM  
unidirectional  
bidirectional  
0
0
0
1
1
1
0
1
1
0
1
1
X
TxD+[2]  
TxD+[2]  
RxD+[3]  
TxD[4]  
TxD[4]  
RxD[6]  
TxD[2]  
TxD[2]  
RxD[3]  
FSE0[5]  
FSE0[5]  
RSE0[7]  
RxD+[3]  
RxD[3]  
RxD[3]  
LOW  
HIGH  
X
DAT_SE0 unidirectional  
bidirectional  
LOW  
HIGH  
[1] Some of the modes and signals are provided to achieve backward compatibility with IP cores.  
[2] TxD+ and TxDare single-ended inputs for driving the DP and DM outputs, respectively, in the single-ended mode.  
[3] RxD+ and RxDare the outputs of the single-ended receivers connected to DP and DM, respectively.  
[4] TxD is the input for driving DP and DM in the DAT_SE0 mode.  
[5] FSE0 is for forcing an SE0 on the DP and DM lines in the DAT_SE0 mode.  
[6] RxD is the output of the differential receiver.  
[7] RSE0 is an output indicating that an SE0 has been received on the DP and DM lines.  
Table 7:  
USB suspend mode: I/O values  
USB suspend mode Input pin  
Output pin  
DAT/VP  
LOW  
DP  
DM  
LOW  
SE0/VM VP  
VM  
RCV  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
DAT_SE0  
LOW  
HIGH  
LOW  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
(bit DAT_SE0 = 1)  
HIGH LOW  
LOW  
HIGH HIGH HIGH  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
HIGH LOW  
VP_VM  
(bit DAT_SE0 = 0)  
LOW  
HIGH LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH LOW  
HIGH HIGH HIGH  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
14 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
Table 8:  
Bit  
Transparent general-purpose buffer mode  
Direction of the data flow  
TRANSP_BDIR[1:0]  
00  
01  
10  
11  
DAT/VP => DP  
DAT/VP => DP  
DAT/VP <= DP  
DAT/VP <= DP  
SE0/VM => DM  
SE0/VM <= DM  
SE0/VM => DM  
SE0/VM <= DM  
10. USB transceiver  
10.1 Differential driver  
The operation of the driver is described in Table 9. The register bits and the pins used  
in the column heading are described in Section 11.1 and Section 8.9, respectively.  
Table 9:  
Suspend[1] Bit  
TRANSP_ OE_N/  
Transceiver driver operation setting  
Pin  
Bit  
Differential driver  
DAT_SE0  
EN  
INT_N  
0
0
0
LOW  
0
1
output value from DAT/VP to DP and  
SE0/VM to DM  
0
LOW  
output value from DAT/VP to DP and DM  
if SE0/VM is 0; otherwise, drive both DP  
and DM LOW  
1
0
X
1
LOW  
HIGH  
X
X
X
X
output value from DAT/VP to DP and DM  
X
X
high-Z  
high-Z  
[1] Can be controlled by using either the SUSPEND pin or the SUSPEND_REG bit.  
Table 10: USB functional mode: transmit operation  
USB mode  
Input pin  
DAT/VP  
LOW  
Output pin  
DP  
SE0/VM  
LOW  
DM  
DAT_SE0  
LOW  
HIGH  
LOW  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
LOW  
VP_VM  
LOW  
HIGH  
LOW  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
10.2 Differential receiver  
Table 11 describes the operation of the differential receiver. The register bits and the  
pins used in the column heading are described in Section 11.1 and Section 8.9,  
respectively.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
15 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
The detailed behavior of the receive transceiver operation is given in Table 12.  
Table 11: Differential receiver operation settings  
Suspend[1] Bit  
TRANSP_EN OE_N/INT_N  
Pin  
Bit  
DAT_SE0  
Differential receiver  
1
X
X
0
X
X
1
0
X
X
X
X
1
0
0
0
LOW  
X
HIGH  
output differential value from DP  
and DM to DAT/VP and RCV  
0
0
HIGH  
0
output differential value from DP  
and DM to RCV  
[1] Can be controlled by using either the SUSPEND pin or the SUSPEND_REG bit.  
Table 12: USB functional mode: receive operation  
USB mode Suspend[1] Input pin  
Output pin  
DP  
DM  
DAT/VP SE0/VM RCV  
DAT_SE0  
DAT_SE0  
DAT_SE0  
DAT_SE0  
DAT_SE0  
DAT_SE0  
DAT_SE0  
DAT_SE0  
VP_VM  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
RCV  
HIGH  
LOW  
LOW  
LOW  
HIGH  
LOW  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
last value of RCV  
HIGH  
HIGH  
LOW  
RCV  
LOW  
last value of RCV  
LOW  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
LOW  
LOW  
last value of RCV  
HIGH  
VP_VM  
VP_VM  
LOW  
VP_VM  
last value of RCV  
LOW  
VP_VM  
VP_VM  
LOW  
VP_VM  
LOW  
VP_VM  
LOW  
[1] Can be controlled by using either the SUSPEND pin or the SUSPEND_REG bit.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
16 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
11. Serial controller  
11.1 Register map  
Table 13 provides an overview of the serial controller registers.  
Table 13: Serial controller registers  
Register  
Width Access[1] Memory address Functionality  
Reference  
(bits)  
Vendor ID  
16  
R
00–01H  
device identification registers Section 11.1.1 on page 17  
Product ID  
Version ID  
16  
R
02–03H  
16  
R
14–15H  
Mode Control 1  
8
R/S/C  
Set — 04H  
Clear — 05H  
Set — 12H  
Clear — 13H  
Set — 06H  
Clear — 07H  
10H  
mode control registers  
Section 11.1.2 on page 18  
Mode Control 2  
OTG Control  
8
8
R/S/C  
R/S/C  
OTG registers  
Section 11.1.3 on page 19  
Section 11.1.4 on page 20  
OTG Status  
8
8
8
R
Interrupt Source  
Interrupt Latch  
R
08H  
interrupt related registers  
R/S/C  
Set — 0AH  
Clear — 0BH  
Set — 0CH  
Clear — 0DH  
Set — 0EH  
Clear — 0FH  
Interrupt Enable Low  
Interrupt Enable High  
8
8
R/S/C  
R/S/C  
[1] The R/S/C access type represents a field that can be read, set or cleared (set to 0). A register can be read from either of the indicated  
addresses—set or clear. Writing logic 1 to the set address causes the associated bit to be set. Writing logic 1 to the clear address  
causes the associated bit to be cleared. Writing logic 0 to an address has no effect.  
11.1.1 Device identification registers  
Vendor ID register (Read: 00H–01H): Table 14 provides the bit allocation of the  
Vendor ID register.  
Table 14: Vendor ID register: bit description  
Bit  
Symbol  
Access  
Value  
Description  
15 to 0 VENDORID  
[15:0]  
R
04CCH  
Philips Semiconductors’ Vendor ID  
Product ID register (Read: 02H–03H): The bit allocation of this register is given in  
Table 15.  
Table 15: Product ID register: bit description  
Bit  
Symbol  
Access  
Value  
Description  
15 to 0 PRODUCTID  
[15:0]  
R
1301H  
Product ID of the ISP1301  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
17 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
Version ID register (Read: 14H–15H): Table 16 shows the bit allocation of this  
register.  
Table 16: Version ID register: bit description  
Bit  
Symbol  
Access  
Value  
Description  
15 to 0 VERSIONID  
[15:0]  
R
0210H  
Version number of the ISP1301  
11.1.2 Mode control registers  
Mode Control 1 register (Set/Clear: 04H/05H): The bit allocation of the Mode  
Control 1 register is given in Table 17.  
Table 17: Mode Control 1 register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
-
UART_EN  
OE_INT_  
EN  
BDIS_  
ACON_EN  
TRANSP_  
EN  
DAT_SE0  
SUSPEND  
_REG  
SPEED_  
REG  
Reset  
-
0
0
0
0
0
0
0
Access  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
Table 18: Mode Control 1 register: bit description  
Bit  
7
Symbol  
-
Description  
reserved  
6
UART_EN  
OE_INT_EN  
When set, the ATX is in the transparent UART mode.  
5
When set and when in the suspend mode, pin OE_N/INT_N  
becomes an output and is asserted when an interrupt occurs.  
4
BDIS_ACON_EN Enables the A-device to connect if the B-device disconnect is  
detected; see Section 11.3  
3
2
TRANSP_EN  
DAT_SE0  
When set, the ATX is in the transparent mode.  
0 — VP_VM mode  
1 — DAT_SE0 mode; see Table 6 and Table 7  
1
SUSPEND_REG Sets the ISP1301 in the suspend mode, if bit  
SPD_SUSP_CTRL = 1.  
0 — active-power mode  
1 — USB suspend mode  
0
SPEED_REG  
Sets the rise time and the fall time of the transmit driver in  
USB modes, if bit SPD_SUSP_CTRL = 1.  
0 — USB low-speed mode  
1 — USB full-speed mode  
Mode Control 2 register (Set/Clear: 12H/13H): For the bit allocation of this register,  
see Table 19.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
18 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
Table 19: Mode Control 2 register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
EN2V7  
PSW_OE AUDIO_EN TRANSP_ TRANSP_  
BI_DI  
SPD_SUSP GLOBAL_  
BDIR1  
BDIR0  
_CTRL  
PWR_DN  
Reset  
0
0
0
0
0
1
0
0
Access  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
Table 20: Mode Control 2 register: bit description  
Bit  
Symbol  
Description  
7
EN2V7  
0 — VBAT = 3.0 V to 4.5 V  
1 — VBAT = 2.7 V to 4.5 V  
6
5
PSW_OE  
0 — ADR/PSW pin acts as an input  
1 — ADR/PSW pin is driven  
AUDIO_EN  
0 — SE receiver is enabled; cr_int detector is disabled  
1 — SE receiver is turned off (pin VP = LOW, pin VM = LOW);  
cr_int detector is enabled  
4 to 3  
2
TRANSP_BDIR[1:0] controls the direction of data transfer in the transparent  
general-purpose buffer mode; see Table 8  
BI_DI  
0 — direction of DAT/VP and SE0/VM are fixed (transmit only)  
1 — direction of DAT/VP and SE0/VM are controlled by  
pin OE_N/INT_N; see Table 6  
1
0
SPD_SUSP_CTRL control of speed and suspend in USB modes:  
0 — controlled by pins SPEED and SUSPEND  
1 — controlled by bit SPEED_REG and bit SUSPEND_REG  
of the Mode Control 1 register  
GLOBAL_PWR_DN 0 — normal operation  
1 — sets the ISP1301 to the power down mode  
Activities on the I2C-bus or any OTG event can wake up the  
chip; see Section 12  
11.1.3 OTG registers  
OTG Control register (Set/Clear: 06H/07H): Table 21 provides the bit allocation of  
the OTG Control register.  
Table 21: OTG Control register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
VBUS_  
CHRG  
VBUS_  
DISCHRG  
VBUS_  
DRV  
ID_PULL  
DOWN  
DM_PULL  
DOWN  
DP_PULL  
DOWN  
DM_PULL  
UP  
DP_PULL  
UP  
Reset  
0
0
0
0
1
1
0
0
Access  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
19 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
Table 22: OTG Control register: bit description  
Bit  
7
Symbol  
Description  
VBUS_CHRG  
charge VBUS through a resistor to 3.3 V  
6
VBUS_DISCHRG discharge VBUS through a resistor to ground  
5
VBUS_DRV  
drive VBUS to 5 V through the charge pump  
connect the ID pin to ground  
4
ID_PULLDOWN  
DM_PULLDOWN  
DP_PULLDOWN  
DM_PULLUP  
3
connect DM pull-down resistor to ground  
connect DP pull-down resistor to ground  
connect DM pull-up resistor to 3.3 V  
connect DP pull-up resistor to 3.3 V  
2
1
0
DP_PULLUP  
OTG Status register (Read: 10H): Table 23 shows the bit allocation of the OTG  
Status register.  
Table 23: OTG Status register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
B_SESS_  
VLD  
B_SESS_  
END  
reserved  
Reset  
0
0
0
0
0
0
0
0
Access  
R
R
R
R
R
R
R
R
Table 24: OTG Status register: bit description  
Bit  
Symbol  
Description  
7
B_SESS_VLD set when the VBUS voltage is above the B-device session valid  
threshold (2.0 V to 4.0 V)  
6
B_SESS_END set when the VBUS voltage is below the B-device session end  
threshold (0.2 V to 0.8 V)  
5 to 0  
-
reserved  
11.1.4 Interrupt related registers  
Interrupt Source register (Read: 08H): This register indicates the current state of  
the signals that can generate an interrupt. The bit allocation of the Interrupt Source  
register is given in Table 25.  
Table 25: Interrupt Source register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
CR_INT  
BDIS_  
ACON  
ID_FLOAT  
DM_HI  
ID_GND  
DP_HI  
SESS_VLD VBUS_VLD  
Reset  
0
0
0
0
0
0
0
0
Access  
R
R
R
R
R
R
R
R
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
20 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
Table 26: Interrupt Source register: bit description  
Bit  
7
Symbol  
Description  
CR_INT  
DP pin is above the car kit interrupt threshold (0.4 V to 0.6 V)  
6
BDIS_ACON  
set when bit BDIS_ACON_EN is set, and the ISP1301 asserts bit  
DP_PULLUP after detecting the B-device disconnect  
5
4
3
2
1
0
ID_FLOAT  
DM_HI  
ID pin is floating  
DM pin is HIGH  
ID_GND  
DP_HI  
ID pin is connected to ground  
DP pin is HIGH  
SESS_VLD  
VBUS_VLD  
session valid comparator; threshold = 0.8 V to 2.0 V  
A-device VBUS valid comparator; threshold > 4.4 V  
Interrupt Latch register (Set/Clear: 0AH/0BH): This register indicates the source  
that generated the interrupt. The bit allocation of the Interrupt Latch register is given  
in Table 27.  
Table 27: Interrupt Latch register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
CR_INT  
BDIS_  
ACON  
ID_FLOAT  
DM_HI  
ID_GND  
DP_HI  
SESS_VLD VBUS_VLD  
Reset  
0
0
0
0
0
0
0
0
Access  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
Table 28: Interrupt Latch register: bit description  
Bit  
7
Symbol  
Description  
CR_INT  
interrupt for CR_INT status change  
interrupt for BDIS_ACON status change  
interrupt for ID_FLOAT status change  
interrupt for DM_HI status change  
interrupt for ID_GND status change  
interrupt for DP_HI status change  
interrupt for SESS_VLD status change  
interrupt for VBUS_VLD status change  
6
BDIS_ACON  
ID_FLOAT  
DM_HI  
5
4
3
ID_GND  
2
DP_HI  
1
SESS_VLD  
VBUS_VLD  
0
Interrupt Enable Low register (Set/Clear: 0CH/0DH): This register enables  
interrupts on transition from true to false. For the bit allocation of this register, see  
Table 29.  
Table 29: Interrupt Enable Low register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
CR_INT  
BDIS_  
ACON  
ID_FLOAT  
DM_HI  
ID_GND  
DP_HI  
SESS_VLD VBUS_VLD  
Reset  
0
0
0
0
0
0
0
0
Access  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
21 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
Table 30: Interrupt Enable Low register: bit description  
Bit  
7
Symbol  
Description  
CR_INT  
interrupt enable for CR_INT status change from 1 to 0  
interrupt enable for BDIS_ACON status change from 1 to 0  
interrupt enable for ID_FLOAT status change from 1 to 0  
interrupt enable for DM_HI status change from 1 to 0  
interrupt enable for ID_GND status change from 1 to 0  
interrupt enable for DP_HI status change from 1 to 0  
interrupt enable for SESS_VLD status change from 1 to 0  
interrupt enable for VBUS_VLD status change from 1 to 0  
6
BDIS_ACON  
ID_FLOAT  
DM_HI  
5
4
3
ID_GND  
2
DP_HI  
1
SESS_VLD  
VBUS_VLD  
0
Interrupt Enable High register (Set/Clear: 0EH/0FH): The Interrupt Enable High  
register enables interrupts on transition from FALSE to TRUE. Table 31 provides the  
bit allocation of this register.  
Table 31: Interrupt Enable High register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
CR_INT  
BDIS_  
ACON  
ID_FLOAT  
DM_HI  
ID_GND  
DP_HI  
SESS_VLD VBUS_VLD  
Reset  
0
0
0
0
0
0
0
0
Access  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
R/S/C  
Table 32: Interrupt Enable High register: bit description  
Bit  
7
Symbol  
Description  
interrupt enable for CR_INT status change from 0 to 1  
CR_INT  
6
BDIS_ACON  
ID_FLOAT  
DM_HI  
interrupt enable for BDIS_ACON status change from 0 to 1  
interrupt enable for ID_FLOAT status change from 0 to 1  
interrupt enable for DM_HI status change from 0 to 1  
interrupt enable for ID_GND status change from 0 to 1  
interrupt enable for DP_HI status change from 0 to 1  
interrupt enable for SESS_VLD status change from 0 to 1  
interrupt enable for VBUS_VLD status change from 0 to 1  
5
4
3
ID_GND  
2
DP_HI  
1
SESS_VLD  
VBUS_VLD  
0
11.2 Interrupts  
Table 26 indicates the signals that can generate interrupts. Any of the signals given in  
Table 26 can generate an interrupt when the signal becomes either LOW or HIGH.  
After an interrupt has been generated, the OTG controller should be able to read the  
status of each signal and the bit that indicates whether or not that signal generated  
the interrupt.  
A bit in the Interrupt Latch register is set when any of these occurs:  
Writing logic 1 to its set address causes the corresponding bit to be set  
The corresponding bit in the Interrupt Enable High register is set, and the  
associated signal changes from LOW to HIGH  
The corresponding bit in the Interrupt Enable Low register is set, and the  
associated signal changes from HIGH to LOW.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
22 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
The Interrupt Latch register bit is cleared by writing logic 1 to its clear address.  
11.3 Autoconnect  
The Host Negotiation Protocol (HNP) in the OTG supplement specifies the following  
sequence of events to transfer the role of the host from the A-device to the B-device:  
1. The A-device puts the bus in the suspend state  
2. The B-device simulates a disconnect by deasserting its DP pull-up  
3. The A-device detects SE0 on the bus, and asserts its DP pull-up  
4. The B-device detects that the DP line is HIGH, and takes the role of the host.  
The OTG supplement specifies that the time between the B-device deasserting its DP  
pull-up and the A-device asserting its pull-up must be less than 3 ms. For an A-device  
with a slow interrupt response time, 3 ms may not be enough time to write an I2C-bus  
command to the ISP1301 to assert the DP pull-up. An alternative method is for the  
A-device transceiver to automatically assert the DP pull-up after detecting an SE0  
from the B-device.  
The sequence of events is as follows:  
After finishing data transfers between the A-device and the B-device and before  
suspending the bus, the A-device sends SOFs. The B-device receives these SOFs,  
and does not transmit any packet back to the A-device. During this time, the A-device  
sets the BDIS_ACON_EN bit in the ISP1301. This enables the ISP1301 to look for  
SE0 whenever the A-device is not transmitting (that is, whenever the OE_N/INT_N  
pin of the ISP1301 is not asserted). After the BDIS_ACON_EN bit is set, the A-device  
stops transmitting SOFs and allows the bus to go to the idle state. If the B-device  
disconnects, the bus goes to SE0, and the ISP1301 logic automatically turns on the  
A-device pull-up.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
23 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
12. Clock wake up scheme  
This section explains the ISP1301 clock stop timing, events triggering the clock to  
wake up, and the timing of the clock wake up.  
12.1 Power down event  
The clock is stopped when the GLOBAL_PWR_DN bit is set. It takes approximately  
8 ms for the clock to stop from the time the power down condition is detected. The  
clock always stops at its falling edge. The waveform is given in Figure 6.  
SCL  
GLOBAL_PWR_DN  
CLOCK  
8 ms  
004aaa217  
Fig 6. Clock stopped using the GLOBAL_PWR_DN bit.  
12.2 Clock wake up events  
The clock wakes up when any of the following events occur on the ISP1301 pins:  
SCL goes LOW  
VBUS goes above the session valid threshold (0.8 V to 2.0 V), provided the  
SESS_VLD bit in the Interrupt Enable High register is set.  
ID changes when mini-A plug is inserted, provided the ID_FLOAT bit in the  
Interrupt Enable Low register is set.  
ID changes when mini-A plug is removed, provided the ID_FLOAT bit in the  
Interrupt Enable High register is set.  
DP goes HIGH, provided the DP_HI bit in the Interrupt Enable High register is set.  
DM goes HIGH, provided the DM_HI bit in the Interrupt Enable High register is set.  
The event triggers the clock to start and a stable clock is guaranteed after about six  
clock periods, which is approximately 8 µs. The startup analog clock time is 10 µs.  
Therefore, the total estimated start time after a triggered event is about 20 µs. The  
clock will always start at its rising edge.  
Waveforms of the clock wake up because of different events are given in Figure 7,  
Figure 8, Figure 9, Figure 10 and Figure 11.  
SCL  
CLOCK  
004aaa218  
20 µs  
Fig 7. Clock wake up using SCL.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
24 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
SESS_VLD  
CLOCK  
004aaa219  
20 µs  
Fig 8. Clock wake up by VBUS  
.
ID_FLOAT  
CLOCK  
20 µs  
004aaa220  
Fig 9. Clock wake up by ID change (1).  
ID_FLOAT  
CLOCK  
004aaa221  
20 µs  
Fig 10. Clock wake up by ID change (2).  
DP_HI  
or DM_HI  
CLOCK  
004aaa434  
20 µs  
Fig 11. Clock wake up by data line SRP.  
When an event is triggered and the clock is started, it will remain active for 8 ms. If  
the GLOBAL_PWR_DN bit is not cleared within this 8 ms period, the clock will stop. If  
the clock wakes up because of any event other than SCL going LOW, an interrupt will  
be generated once the clock is active.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
25 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
13. I2C-bus protocol  
For detailed information, refer to The I2C-bus specification; version 2.1.  
13.1 I2C-bus byte transfer format  
Table 33: I2C-bus byte transfer format[1]  
S
Byte 1  
A
Byte 2  
A
Byte 3  
A
A
P
8 bits  
8 bits  
8 bits  
[1] S = Start; A = Acknowledge; P = Stop.  
13.2 I2C-bus device address  
Table 34: Device address byte 1  
Bit  
7
6
5
4
3
2
1
0
device address  
-
R/W  
X
Name  
Value  
A6  
0
A5  
1
A4  
0
A3  
1
A2  
1
A1  
0
A0  
X
Table 35: Bit description  
Bit  
Symbol Description  
7 to 1  
A[6:0]  
Device address: The device address of the ISP1301 is: 0101 10 (A0).  
The value of A0 (LSB) is loaded from pin ADR/PSW during reset  
(including power-on reset). If pin ADR/PSW = HIGH, bit A0 = 1;  
otherwise bit A0 = 0.  
0
R/W  
Read/write command.  
0 — write  
1 — read.  
13.3 Write format  
A write operation can be performed as:  
One-byte write to the specified register address  
Multi-byte write to N consecutive registers, starting from the specified start  
address. N defines the number of registers to write. If N = 1, only the start register  
is written.  
13.3.1 One-byte write  
Figure 12 illustrates the byte sequence.  
Table 36: Transfer format description for one-byte write  
Byte  
Description  
S
master starts with a START condition  
master transmits device address and write command bit R/W = 0  
slave generates an acknowledgment  
Device select  
ACK  
Register address K master transmits address of register K  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
26 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
Table 36: Transfer format description for one-byte write…continued  
Byte  
Description  
ACK  
slave generates an acknowledgment  
master writes data to register K  
slave generates an acknowledgment  
master generates a STOP condition  
Write data K  
ACK  
P
13.3.2 Multiple-byte write  
Figure 12 illustrates the byte sequence.  
Table 37: Transfer format description for multiple-byte write  
Byte  
Description  
S
master starts with a START condition  
Device select  
ACK  
master transmits device address and write command bit R/W = 0  
slave generates an acknowledgment  
Register address K master transmits address of register K. This is the start address for  
writing multiple data bytes to consecutive registers. After a byte is  
written, the register address is automatically incremented by 1.  
Remark: If the master writes to a non existent register, the slave must  
send a 'not ACK' and also must not increment the index address.  
ACK  
slave generates an acknowledgment  
master writes data to register K  
slave generates an acknowledgment  
master writes data to register K + 1  
slave generates an acknowledgment  
:
Write data K  
ACK  
Write data K + 1  
ACK  
:
Write data  
K + N 1  
master writes data to register K + N 1. When the incremented  
address K + N 1 becomes > 255, the register address rolls over to 0.  
Therefore, it is possible that some registers may be overwritten, if the  
transfer is not stopped before the rollover.  
ACK  
P
slave generates an acknowledgment  
master generates a STOP condition  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
27 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
ACK  
ACK  
ACK  
P
write data K  
S
WR  
deviceselect
register address K  
One-byte write  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
write data K  
S
WR  
deviceselect
writedataK+2  
register address K  
write data K + 3  
write data K + 1  
ACK  
P
write data K + N - 1  
.... maximum, rollover to 0  
004aaa213  
Multiple-byte write  
Fig 12. Writing data to the ISP1301 registers.  
13.4 Read format  
A read operation can be performed in two ways:  
Current address read: to read the register at the current address.  
Single register read.  
Random address read: to read N registers starting at a specified address.  
N defines the number of registers to be read. If N = 1, only the start register is  
read.  
Single register read  
Multiple register read.  
13.4.1 Current address read  
Figure 13 illustrates the byte sequence.  
Table 38: Transfer format description for current address read  
Byte  
Description  
S
master starts with a START condition  
master transmits device address and read command bit R/W = 1  
slave generates an acknowledgment  
Device select  
ACK  
Read data K  
slave transmits and master reads data from register K. If the start  
address is not specified, the read operation starts from where the index  
register is pointing to because of a previous read or write operation.  
No ACK  
P
master terminates the read operation by generating a No Acknowledge  
master generates a stop condition  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
28 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
ACK  
No ACK  
S
RD  
P
device select
read data K  
004aaa215  
Current address read  
Fig 13. Current address read.  
13.4.2 Random address read  
Single read: Figure 14 illustrates the byte sequence.  
Table 39: Transfer format description for single-byte read  
SDA line  
S
Description  
master starts with a START condition  
Device select  
ACK  
master transmits device address and writes command bit R/W = 0  
slave generates an acknowledgment  
Register address K master transmits (start) address of register K to be read from  
ACK  
slave generates an acknowledgment  
Device select  
ACK  
master transmits device address and read command bit R/W = 1  
slave generates an acknowledgment  
Read data K  
No ACK  
P
slave transmits and master reads data from register K  
master terminates the read operation by generating a No Acknowledge  
master generates a STOP condition  
Multiple read: Figure 14 illustrates the byte sequence.  
Table 40: Transfer format description for multiple-byte read  
SDA line  
S
Description  
master starts with a START condition  
master transmits device address and write command bit R/W = 0  
slave generates an acknowledgment  
Device select  
ACK  
Register address K master transmits (start) address of register K to be read from  
ACK  
slave generates an acknowledgment  
Device select  
ACK  
master transmits device address and read command bit R/W = 1  
slave generates an acknowledgment  
Read data K  
slave transmits and master reads data from register K. After a byte is  
read, the address is automatically incremented by 1.  
ACK  
slave generates an acknowledgment  
slave transmits and master reads data from register K + 1  
slave generates an acknowledgment  
:
Read data K + 1  
ACK  
:
Read data  
K + N 1  
slave transmits and master reads data register K + N 1. This is the  
last register to read. After incrementing, the address rolls over to 0.  
Here, N represents the number of addresses available in the slave.  
No ACK  
P
master terminates the read operation by generating a No Acknowledge  
master generates a STOP condition  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
29 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
ACK  
ACK  
No ACK  
ACK  
device select  
register address K  
S
P
S
WR  
deviceselect
RD  
read data K  
Random address single read  
ACK  
ACK  
ACK  
ACK  
device select  
S
RD  
S
WR  
deviceselect
readdataK+1
register address K  
read data K + 2  
read data K  
ACK  
ACK  
ACK  
No ACK  
P
write data K + N - 1  
.... maximum, rollover to 0  
004aaa214  
Random access multiple read  
Fig 14. Random address read.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
30 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
14. Limiting values  
Table 41: Absolute maximum ratings  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VBAT  
VDD_LGC  
VI  
Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
-
Max  
Unit  
V
supply voltage  
+5.5  
I/O supply voltage  
input voltage  
+4.6  
V
VI = −1.8 V to +5.4 V  
ILI < 1 µA  
VDD_LGC + 0.5  
100  
V
Ilu  
latch-up current  
electrostatic discharge voltage  
mA  
Vesd  
[1]  
pins DP, DM, ID,  
VBUS, AGND, CGND  
and DGND  
8  
+8  
kV  
all other pins  
2  
+2  
kV  
Tstg  
storage temperature  
60  
+125  
°C  
[1] Equivalent to discharging a 100 pF capacitor through a 1.5 kresistor (Human Body Model). A 4.7 µF capacitor is needed from  
VREG(3V3) and VBUS to ground.  
15. Recommended operating conditions  
Table 42: Recommended operating conditions  
Symbol  
VBAT  
Parameter  
Conditions  
Min  
2.7  
1.65  
0
Typ  
Max  
4.5  
Unit  
V
supply voltage  
I/O supply voltage  
input voltage  
-
-
-
-
[1]  
VDD_LGC  
VI  
3.6  
V
VDD_LGC  
3.6  
V
VI(AI/O)  
input voltage on analog I/O pins DP  
and DM  
0
V
VO(OD)  
Tamb  
open-drain output pull-up voltage on  
pins SCL, SDA and INT_N  
0
-
-
3.6  
V
ambient temperature  
40  
+85  
°C  
[1] VDD_LGC should be less than or equal to VBAT  
.
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
31 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
16. Static characteristics  
Table 43: Static characteristics: supply pins  
VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; Tamb = −40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Charge pump disabled  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[2]  
VREG(3V3)  
regulated supply voltage output VBAT = 3.0 V to 4.5 V  
VBAT = 2.7 V to 3.0 V  
3.0  
2.7  
-
-
3.6  
3.0  
8
V
-
V
IBAT  
operating supply current  
transmitting and receiving at  
4
mA  
12 Mbit/s; CL = 50 pF on  
pins DP and DM  
[2]  
[3]  
IDD_LGC  
IBAT(idle)  
operating I/O supply current  
transmitting and receiving at  
12 Mbit/s  
-
-
1
-
2
mA  
supply current during full-speed idle: VDP > 2.7 V, VDM < 0.3 V;  
300  
µA  
idle and SE0  
IDD_LGC(static) static I/O supply current  
IBAT(pd)  
Charge pump enabled  
IBAT(cp) operating supply current for the  
charge pump  
SE0: VDP < 0.3 V, VDM < 0.3 V  
idle, SE0 or suspend  
-
-
-
-
20  
20  
µA  
µA  
[3]  
power down mode supply current bit GLOBAL_PWR_DN = 1  
I
LOAD = 8 mA; ATX is idle  
LOAD = 0 mA; ATX is idle  
-
-
-
-
20  
mA  
I
300  
µA  
[1] In the suspend mode, the minimum voltage is 2.7 V.  
[2] Maximum value characterized only, not tested in production.  
[3] Excluding any load current to the 1.5 kand 15 kpull-up and pull-down resistors (200 µA typical).  
Table 44: Static characteristics: digital pins  
VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; Tamb = −40 °C to +85 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Input levels  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
-
-
-
0.3VDD_LGC  
-
V
V
VIH  
0.6VDD_LGC  
Output levels  
VOL  
LOW-level output voltage  
HIGH-level output voltage  
I
I
I
I
OL = 2 mA  
-
-
-
-
-
-
0.4  
V
V
V
V
OL = 100 µA  
OH = 2 mA  
OH = 100 µA  
0.15  
[1]  
VOH  
V
DD_LGC 0.4  
-
-
V
DD_LGC 0.15  
Leakage current  
ILI  
input leakage current  
1  
5  
-
-
-
-
+1  
+5  
10  
µA  
µA  
pF  
Open-drain outputs  
IOZ  
OFF-state output current  
Capacitance  
CIN  
input capacitance  
pin to GND  
[1] Not applicable for open-drain outputs.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
32 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
Table 45: Static characteristics: analog I/O pins DP and DM  
VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; Tamb = −40 °C to +85 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Input levels  
VDI  
differential input sensitivity  
|VI(DP) VI(DM)  
|
0.2  
0.8  
-
-
-
V
V
VCM  
differential common mode  
voltage  
includes VDI range  
2.5  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
-
-
-
0.8  
-
V
V
VIH  
2.0  
Output levels  
VOL  
VOH  
LOW-level output voltage  
HIGH-level output voltage  
RL of 1.5 kto +3.6 V  
RL of 15 kto GND  
VBAT = 3.0 V to 4.5 V  
VBAT = 2.7 V to 3.0 V  
-
-
0.3  
V
2.8  
2.6  
-
-
3.6  
3.0  
V
V
Leakage current  
ILZ  
OFF-state leakage current  
1  
-
-
-
+1  
µA  
pF  
kΩ  
Capacitance  
CIN  
transceiver capacitance  
pin to GND  
-
10  
Resistance  
RPD  
pull-down resistor on pins  
DP and DM  
14.25  
24.8  
RPU_DP  
pull-up resistor on pin DP  
bus idle  
900  
1425  
900  
1425  
34  
-
-
-
-
-
-
1575  
3090  
1575  
3090  
44  
bus driven  
bus idle  
RPU_DM  
pull-up resistor on pin DM  
bus driven  
steady-state drive  
[1]  
ZDRV  
driver output impedance  
input impedance  
ZINP  
10  
-
MΩ  
Termination  
VTERM  
termination voltage for the  
upstream port pull-up  
3.0  
-
3.6  
V
resistor (RPU  
)
[1] Includes external series resistors of 33 Ω ± 1 % each on DP and DM.  
Table 46: Static characteristics: analog I/O pin ID  
VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; Tamb = −40 °C to +85 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Resistance  
RPU_ID  
pull-up resistor on pin ID to  
VREG(3V3)  
77  
-
-
-
130  
10  
kΩ  
RPD_ID  
impedance to GND  
bit ID_PULLDOWN = 1  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
33 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
Table 46: Static characteristics: analog I/O pin ID…continued  
VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; Tamb = −40 °C to +85 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RA_ID  
A-device ID impedance to  
GND  
bit ID_GND = 1  
-
-
1
kΩ  
RB_ID  
B-device ID impedance to  
GND  
bit ID_FLOAT = 1  
800  
20  
-
-
-
kΩ  
kΩ  
RACC_ID  
Accessory device ID  
impedance to GND  
bit ID_GND = 0;  
bit ID_FLOAT = 0  
200  
Table 47: Static characteristics: charge pump  
BAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; Tamb = −40 °C to +85 °C; unless otherwise specified.  
V
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
8.0  
Unit  
mA  
V
Current  
ILOAD  
maximum load current  
C
ext = 100 nF; VBUS = 4.7 V  
-
-
Voltage  
VBUS  
regulated VBUS output  
voltage  
ILOAD = 8 mA; Cext = 100 nF  
4.65  
5
5.25  
VBUS(LEAK)  
VBUS leakage voltage  
VBUS valid threshold  
charge pump disabled  
-
-
-
-
0.2  
V
V
V
Vth(VBUSVLD)  
Vth(SESSEND)  
4.4  
0.2  
4.65  
0.8  
VBUS session end  
comparator threshold  
Vhys(SESSEND) VBUS session end  
comparator hysteresis  
-
150  
-
-
mV  
V
Vth(SESSVLD)  
VBUS session valid  
0.8  
2.0  
comparator threshold  
Vhys(SESSVLD) VBUS session valid  
comparator hysteresis  
-
200  
-
-
mV  
V
Vth(BSESSVLD) VBUS session valid  
comparator threshold  
for the B-device  
for the B-device  
2.0  
4.0  
Vhys(BSESSVLD) VBUS session valid  
comparator hysteresis  
-
-
200  
75  
-
-
mV  
%
E
efficiency when loaded  
ILOAD = 8 mA; VBAT = 3 V  
Resistance  
RVBUS(PU)  
VBUS pull-up resistor  
connect to VREG(3V3) when  
VBUS_CHRG = 1  
460  
660  
40  
-
-
-
1000  
1200  
100  
RVBUS(PD)  
VBUS pull-down resistor  
connect to GND when  
VBUS_DISCHRG = 1  
RVBUS(IDLE_A) VBUS idle impedance for  
A-device  
ID pin connected to GND  
kΩ  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
34 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
17. Dynamic characteristics  
Table 48: Dynamic characteristics: reset and clock  
VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; Tamb = −40 °C to +85 °C; unless otherwise specified.  
Symbol  
Reset  
Parameter  
Conditions  
Min  
Typ  
Max  
-
Unit  
µs  
tW(RESET_N) pulse width on input RESET_N  
10  
-
Internal clock  
fclk  
clock frequency  
bit GLOBAL_PWR_DN = 0  
700  
1000  
1300  
kHz  
Table 49: Dynamic characteristics: digital I/O pins  
BAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; CL = 50 pF; RPU = 1.5 kon DP to VTERM; Tamb = −40°C to +85 °C; unless  
otherwise specified.  
V
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tTOI  
bus turnaround time  
(OE_N/INT_N to DAT/VP and  
SE0/VM)  
output-to-input; see  
Figure 19  
0
-
5
ns  
tTIO  
bus turnaround time  
(OE_N/INT_N to DAT/VP and  
SE0/VM)  
input-to-output; see  
Figure 19  
0
-
5
ns  
Table 50: Dynamic characteristics: analog I/O pins DP and DM  
BAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; CL = 50 pF; RPU = 1.5 kon DP to VTERM; Tamb = −40 °C to +85 °C; unless  
otherwise specified.  
V
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Driver characteristics  
tFR  
rise time  
CL = 50 pF to 125 pF;  
10 % to 90 % of  
4
-
20  
ns  
|VOH VOL|; see Figure 15  
tFF  
fall time  
CL = 50 pF to 125 pF;  
90 % to 10 % of  
4
-
20  
ns  
|VOH VOL|; see Figure 15  
FRFM  
VCRS  
differential rise/fall time  
excluding the first transition  
from idle state  
90  
-
-
111.1  
2.0  
%
V
matching (tFR/tFF  
)
[1]  
output signal crossover voltage excluding the first transition  
1.3  
from idle state; see  
Figure 16  
Driver timing  
tPLH(drv)  
tPHL(drv)  
tPHZ  
driver propagation delay  
(DAT/VP, SE0/VM to DP, DM)  
LOW-to-HIGH; see  
Figure 16 and Figure 20  
-
-
-
-
-
-
-
-
-
-
18  
18  
15  
15  
15  
ns  
ns  
ns  
ns  
ns  
driver propagation delay  
(DAT/VP, SE0/VM to DP, DM)  
HIGH-to-LOW; see  
Figure 16 and Figure 20  
driver disable delay  
(OE_N/INT_N to DP, DM)  
HIGH-to-OFF; see  
Figure 17 and Figure 21  
tPLZ  
driver disable delay  
(OE_N/INT_N to DP, DM)  
LOW-to-OFF; see  
Figure 17 and Figure 21  
tPZH  
driver enable delay  
OFF-to-HIGH; see  
(OE_N/INT_N to DP, DM)  
Figure 17 and Figure 21  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
35 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
Table 50: Dynamic characteristics: analog I/O pins DP and DM…continued  
VBAT = 2.7 V to 4.5 V; VDD_LGC = 1.65 V to 3.6 V; CL = 50 pF; RPU = 1.5 kon DP to VTERM; Tamb = −40 °C to +85 °C; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tPZL  
driver enable delay  
OFF-to-LOW; see  
-
-
15  
ns  
(OE_N/INT_N to DP, DM)  
Figure 17 and Figure 21  
Receiver timing  
Differential receiver  
tPLH(rcv)  
propagation delay (DP, DM to  
RCV)  
LOW-to-HIGH; see  
Figure 18 and Figure 22  
-
-
-
-
15  
15  
ns  
ns  
tPHL(rcv)  
propagation delay (DP, DM to  
RCV)  
HIGH-to-LOW; see  
Figure 18 and Figure 22  
Single-ended receiver  
tPLH(se) propagation delay (DP, DM to  
LOW-to-HIGH; see  
Figure 18 and Figure 22  
-
-
-
-
18  
18  
ns  
ns  
VP and DAT/VP, VM and  
SE0/VM)  
tPHL(se)  
propagation delay (DP, DM to  
VP and DAT/VP, VM and  
SE0/VM)  
HIGH-to-LOW; see  
Figure 18 and Figure 22  
[1] Characterized only; not tested. Limits guaranteed by design.  
1.8 V  
logic input 0.9 V  
0.9 V  
0 V  
OH  
t
, t  
t
, t  
FR LR  
FF LF  
t
t
PHL(drv)  
PLH(drv)  
V
OH  
90 %  
V
90 %  
differential  
data lines  
V
V
CRS  
CRS  
10 %  
10 %  
V
V
OL  
OL  
MGS964  
MGS963  
Fig 15. Rise and fall times.  
Fig 16. Timing of DAT/VP and SE0/VM to DP and DM.  
2.0 V  
1.8 V  
differential  
data lines  
V
V
CRS  
CRS  
0.9 V  
logic input 0.9 V  
0 V  
0.8 V  
t
t
PLH(rcv)  
PHL(rcv)  
t
t
t
t
PHZ  
PLZ  
PZH  
PZL  
t
t
PHL(se)  
PLH(se)  
V
OH  
V
OH  
V
0.3 V  
OH  
0.9 V  
0.9 V  
differential  
data lines  
logic output  
V
CRS  
V
+0.3 V  
OL  
V
OL  
V
MGS965  
MGS966  
OL  
Fig 17. Timing of OE_N/INT_N to DP and DM.  
Fig 18. Timing of DP and DM to RCV, VP or DAT/VP and  
VM or SE0/VM.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
36 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
OE_N/INT_N  
t
t
TOI  
TIO  
DAT/VP  
SE0/VM  
output  
input  
output  
004aaa439  
Fig 19. SIE interface bus turnaround timing.  
V
TERM  
V
REG(3V3)  
test point  
1.5 k  
DP or DM  
D.U.T.  
33 Ω  
004aaa448  
15 kΩ  
C
L
Load capacitance CL = 50 pF (minimum or maximum timing).  
Fig 20. Load on pins DP and DM.  
test point  
33 Ω  
500 Ω  
D.U.T.  
50 pF  
V
MBL142  
V = 0 V for tPZH and tPHZ  
.
V = VREG(3V3) for tPZL and tPLZ  
.
Fig 21. Load on pins DP and DM for enable and disable times.  
test point  
D.U.T.  
25 pF  
MGS968  
Fig 22. Load on pins VM, SE0/VM, VP, DAT/VP and RCV.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
37 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
Table 51: Characteristics of I/O stages of I2C-bus lines (SDA, SCL)  
Symbol  
Parameter  
Standard mode  
Unit  
Min  
-
Max  
fSCL  
SCL clock frequency  
100  
kHz  
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
tHD;STA  
tLOW  
tHIGH  
tSU;STA  
tSU;DAT  
tHD:DAT  
tr  
hold time for the START condition  
LOW period of the SCL clock  
HIGH period of the SCL clock  
set-up time for the START condition  
data set-up time  
4.0  
4.7  
4.0  
4.7  
250  
0
-
-
-
-
-
data hold time  
-
rise time of SDA and SCL signals  
fall time of SDA and SCL signals  
set-up time for the STOP condition  
-
1000  
tf  
-
300  
tSU;STO  
tBUF  
4.0  
4.7  
-
-
bus free time between a STOP and START  
condition  
SDA  
SCL  
t
f
t
t
t
t
t
t
t
t
BUF  
SU;DAT  
LOW  
f
r
HD;STA  
SP  
r
t
t
SU;STA  
t
HD;STA  
SU;STO  
t
t
HIGH  
HD;DAT  
P
S
S
Sr  
004aaa216  
Fig 23. Definition of timing for standard-mode devices on the I2C-bus.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
38 of 46  
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
V
DD_LGC  
V
BAT  
R1  
10 kΩ  
SW1  
V
DD_LGC  
SW-PB  
C1  
1 µF  
V
DD_LGC  
C2  
C10  
0.1 µF  
0.1 µF  
V
R9  
100 kΩ  
DD_LGC  
R3  
R5  
10  
kΩ  
R8  
100  
kΩ  
R2  
3.3  
kΩ  
R4  
10  
kΩ  
3.3  
kΩ  
1
24  
23  
22  
21  
V
DD_LGC  
ADR/PSW  
2
3
4
SDA  
SCL  
CGND  
C2  
SDA  
SCL  
C4  
0.1  
µF  
C1  
INT_N  
RESET_N  
5
6
7
20  
19  
18  
OTG  
V
BAT  
INT_N  
CONTROLLER  
5
4
3
V
SPEED  
BUS  
GND  
ID  
ISP1301  
V
ID  
REG(3V3)  
R6  
8
9
17  
16  
15  
14  
13  
AGND  
DP  
SUSPEND  
D+  
OE_N  
SE0  
USB MINI-AB  
RECEPTACLE  
33 Ω  
2
OE_N/INT_N  
VM  
D-  
V
R7  
33 Ω  
10  
11  
12  
1
DM  
DAT/VP  
SE0/VM  
DAT  
BUS  
VP  
C5  
0.1 µF  
RCV  
C9  
4.7  
µF  
C6  
0.1  
µF  
C8  
22  
pF  
C7  
22  
pF  
004aaa348  
Fig 24. Application diagram for the OTG controller with DAT_SE0 SIE interface.  
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
V
DD_LGC  
V
BAT  
R1  
10 kΩ  
SW1  
V
DD_LGC  
SW-PB  
C1  
1 µF  
V
DD_LGC  
C3  
C10  
0.1 µF  
0.1 µF  
V
R9  
100 kΩ  
DD_LGC  
R3  
R5  
10  
kΩ  
R8  
100  
kΩ  
R2  
3.3  
kΩ  
R4  
10  
kΩ  
3.3  
kΩ  
1
24  
V
DD_LGC  
ADR/PSW  
2
3
4
23  
22  
21  
SDA  
SCL  
CGND  
C2  
SDA  
SCL  
C4  
0.1 µF  
C1  
INT_N  
RESET_N  
5
6
7
20  
19  
18  
OTG  
CONTROLLER  
V
BAT  
INT_N  
5
4
3
V
SPEED  
BUS  
GND  
ID  
ISP1301  
V
ID  
REG(3V3)  
R6  
8
9
17  
16  
15  
14  
13  
AGND  
DP  
SUSPEND  
D+  
USB MINI-AB  
RECEPTACLE  
OE_N  
33 Ω  
2
OE_N/INT_N  
VM  
D-  
V
RCV  
VM  
VP  
R7  
33 Ω  
10  
11  
12  
1
DM  
DAT/VP  
SE0/VM  
BUS  
VP  
C5  
0.1 µF  
RCV  
C9  
4.7  
µF  
C6  
0.1  
µF  
C8  
22  
pF  
C7  
22  
pF  
004aaa438  
Fig 25. Application diagram for the OTG controller with VP_VM SIE interface.  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
19. Package outline  
HVQFN24: plastic thermal enhanced very thin quad flat package; no leads;  
24 terminals; body 4 x 4 x 0.85 mm  
SOT616-1  
B
A
D
terminal 1  
index area  
A
A
1
E
c
detail X  
e
1
C
1/2 e  
y
y
C
1
e
v
M
M
C
C
A
B
b
7
12  
w
L
13  
6
e
e
E
h
2
1/2 e  
1
18  
terminal 1  
index area  
24  
19  
X
D
h
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
(1)  
(1)  
UNIT  
mm  
A
b
c
E
e
e
e
2
y
D
D
E
L
v
w
y
1
h
1
h
1
max.  
0.05 0.30  
0.00 0.18  
4.1  
3.9  
2.25  
1.95  
4.1  
3.9  
2.25  
1.95  
0.5  
0.3  
0.05  
0.1  
1
0.2  
0.5  
2.5  
2.5  
0.1 0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
01-08-08  
02-10-22  
SOT616-1  
- - -  
MO-220  
- - -  
Fig 26. HVQFN24 package outline.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
41 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
20. Soldering  
20.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account  
of soldering ICs can be found in our Data Handbook IC26; Integrated Circuit  
Packages (document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine  
pitch SMDs. In these situations reflow soldering is recommended. In these situations  
reflow soldering is recommended.  
20.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling  
or pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 to 270 °C depending on solder  
paste material. The top-surface temperature of the packages should preferably be  
kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with  
a thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all  
times.  
20.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging  
and non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal  
results:  
Use a double-wave soldering method comprising a turbulent wave with high  
upward pressure followed by a smooth laminar wave.  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
9397 750 11355  
Product data  
Rev. 01 — 14 April 2004  
42 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle  
to the transport direction of the printed-circuit board. The footprint must  
incorporate solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 to 4 seconds at 250 °C or  
265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in  
most applications.  
20.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low  
voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time  
must be limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 to 5 seconds between 270 and 320 °C.  
20.5 Package related soldering information  
Table 52: Suitability of surface mount IC packages for wave and reflow soldering  
methods  
Package[1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, USON, VFBGA  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, not suitable[4]  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5][6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note  
(AN01026); order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal  
or external package cracks may occur due to vaporization of the moisture in them (the so called  
popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated  
Circuit Packages; Section: Packing Methods.  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
43 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must  
on no account be processed through more than one soldering cycle or subjected to infrared reflow  
soldering with peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow  
oven. The package body peak temperature must be kept as low as possible.  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom  
side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with  
the heatsink on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it  
is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSOP packages with a pitch (e) equal to or  
larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than  
0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex  
foil by using a hot bar soldering process. The appropriate soldering profile can be provided on  
request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
21. Revision history  
Table 53: Revision history  
Rev Date  
CPCN  
-
Description  
01 20040414  
Product data (9397 750 11355).  
9397 750 11355  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 01 — 14 April 2004  
44 of 46  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
22. Data sheet status  
Level Data sheet status[1]  
Product status[2][3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
Right to make changes — Philips Semiconductors reserves the right to  
23. Definitions  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
licence or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
25. Licenses  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
Purchase of Philips I2C components  
Purchase of Philips I2C components conveys a license  
under the Philips’ I2C patent to use the components in the  
I2C system provided the system conforms to the I2C  
specification defined by Philips. This specification can be  
ordered using the code 9398 393 40011.  
24. Disclaimers  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
26. Trademarks  
I2C-bus — is a trademark of Koninklijke Philips Electronics N.V.  
Contact information  
For additional information, please visit http://www.semiconductors.philips.com.  
For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
45 of 46  
9397 750 11355  
Product data  
Rev. 01 — 14 April 2004  
ISP1301  
USB OTG transceiver  
Philips Semiconductors  
Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
11.1.1  
11.1.2  
11.1.3  
11.1.4  
11.2  
Device identification registers. . . . . . . . . . . . . 17  
Mode control registers . . . . . . . . . . . . . . . . . . 18  
OTG registers. . . . . . . . . . . . . . . . . . . . . . . . . 19  
Interrupt related registers. . . . . . . . . . . . . . . . 20  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Autoconnect . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
11.3  
12  
12.1  
12.2  
Clock wake up scheme . . . . . . . . . . . . . . . . . . 24  
Power down event . . . . . . . . . . . . . . . . . . . . . 24  
Clock wake up events. . . . . . . . . . . . . . . . . . . 24  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
13  
13.1  
13.2  
13.3  
13.3.1  
13.3.2  
13.4  
13.4.1  
13.4.2  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 26  
I2C-bus byte transfer format . . . . . . . . . . . . . . 26  
I2C-bus device address . . . . . . . . . . . . . . . . . 26  
Write format . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
One-byte write . . . . . . . . . . . . . . . . . . . . . . . . 26  
Multiple-byte write . . . . . . . . . . . . . . . . . . . . . 27  
Read format . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Current address read . . . . . . . . . . . . . . . . . . . 28  
Random address read . . . . . . . . . . . . . . . . . . 29  
8
8.1  
8.2  
8.3  
8.3.1  
8.3.2  
8.3.3  
8.4  
8.5  
8.6  
Functional description . . . . . . . . . . . . . . . . . . . 7  
Serial controller. . . . . . . . . . . . . . . . . . . . . . . . . 7  
VBUS charge pump . . . . . . . . . . . . . . . . . . . . . . 7  
V
V
BUS comparators. . . . . . . . . . . . . . . . . . . . . . . 7  
BUS valid comparator . . . . . . . . . . . . . . . . . . . 7  
Session valid comparator . . . . . . . . . . . . . . . . . 7  
Session end comparator. . . . . . . . . . . . . . . . . . 7  
ID detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pull-up and pull-down resistors. . . . . . . . . . . . . 8  
USB transceiver (ATX) . . . . . . . . . . . . . . . . . . . 8  
3.3 V DC-DC regulator . . . . . . . . . . . . . . . . . . . 8  
Car kit interrupt detector. . . . . . . . . . . . . . . . . . 8  
Detailed description of pins . . . . . . . . . . . . . . . 9  
ADR/PSW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SCL and SDA . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
RESET_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
INT_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
OE_N/INT_N. . . . . . . . . . . . . . . . . . . . . . . . . . 10  
SE0/VM, DAT/VP, RCV, VM and VP . . . . . . . . 10  
DP and DM . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
VBUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
VBAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
C1 and C2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
VDD_LGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
AGND, CGND and DGND. . . . . . . . . . . . . . . . 11  
14  
15  
16  
17  
18  
19  
20  
20.1  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 31  
Recommended operating conditions . . . . . . 31  
Static characteristics . . . . . . . . . . . . . . . . . . . 32  
Dynamic characteristics. . . . . . . . . . . . . . . . . 35  
Application information . . . . . . . . . . . . . . . . . 39  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 41  
8.7  
8.8  
8.9  
8.9.1  
8.9.2  
8.9.3  
8.9.4  
8.9.5  
8.9.6  
8.9.7  
8.9.8  
8.9.9  
8.9.10  
8.9.11  
8.9.12  
8.9.13  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Introduction to soldering surface mount  
packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 42  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 42  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 43  
Package related soldering information. . . . . . 43  
20.2  
20.3  
20.4  
20.5  
21  
22  
23  
24  
25  
26  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 44  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 45  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Licenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9
9.1  
9.2  
9.3  
Modes of operation . . . . . . . . . . . . . . . . . . . . . 12  
Power modes . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Direct I2C-bus mode . . . . . . . . . . . . . . . . . . . . 12  
USB modes. . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Transparent modes. . . . . . . . . . . . . . . . . . . . . 13  
Transparent general-purpose buffer mode . . . 13  
Transparent UART mode . . . . . . . . . . . . . . . . 13  
Summary tables . . . . . . . . . . . . . . . . . . . . . . . 13  
9.4  
9.4.1  
9.4.2  
9.4.3  
10  
10.1  
10.2  
USB transceiver . . . . . . . . . . . . . . . . . . . . . . . . 15  
Differential driver. . . . . . . . . . . . . . . . . . . . . . . 15  
Differential receiver. . . . . . . . . . . . . . . . . . . . . 15  
11  
Serial controller . . . . . . . . . . . . . . . . . . . . . . . . 17  
11.1  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . 17  
© Koninklijke Philips Electronics N.V. 2004.  
Printed in The Netherlands  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or  
contract, is believed to be accurate and reliable and may be changed without notice. No  
liability will be accepted by the publisher for any consequence of its use. Publication  
thereof does not convey nor imply any license under patent- or other industrial or  
intellectual property rights.  
Date of release: 14 April 2004  
Document order number: 9397 750 11355  

相关型号:

ISP1301BS,115

IC LINE TRANSCEIVER, PQCC24, 4 X 4 MM, 0.85 MM HEIGHT, LEAD FREE AND HALOGEN FREE, PLASTIC, MO-220, SOT-616-1, HVQFN-24, Line Driver or Receiver
NXP

ISP1301BS,151

IC LINE TRANSCEIVER, PQCC24, 4 X 4 MM, 0.85 MM HEIGHT, LEAD FREE AND HALOGEN FREE, PLASTIC, MO-220, SOT-616-1, HVQFN-24, Line Driver or Receiver
NXP

ISP1301BS,157

IC LINE TRANSCEIVER, PQCC24, 4 X 4 MM, 0.85 MM HEIGHT, LEAD FREE AND HALOGEN FREE, PLASTIC, MO-220, SOT-616-1, HVQFN-24, Line Driver or Receiver
NXP

ISP1302HN

Universal Serial Bus On-The-Go transceiver with carkit support
NXP

ISP1302HN,518

IC LINE TRANSCEIVER, PQCC24, 4 X 4 MM, 0.85 MM HEIGHT, PLASTIC, MO-220, SOT-616-3, VQFN-24, Line Driver or Receiver
NXP

ISP1302HN,551

IC LINE TRANSCEIVER, PQCC24, 4 X 4 MM, 0.85 MM HEIGHT, PLASTIC, MO-220, SOT-616-3, VQFN-24, Line Driver or Receiver
NXP

ISP1302HN,557

IC LINE TRANSCEIVER, PQCC24, 4 X 4 MM, 0.85 MM HEIGHT, PLASTIC, MO-220, SOT-616-3, VQFN-24, Line Driver or Receiver
NXP

ISP1302UK

Universal Serial Bus On-The-Go transceiver with carkit support
NXP

ISP1302UK,023

IC LINE TRANSCEIVER, PBGA25, 2.50 X 2.50 MM, 0.60 MM HEIGHT, WLCSP-25, Line Driver or Receiver
NXP

ISP1302_07

Universal Serial Bus On-The-Go transceiver with carkit support
NXP

ISP1362

Single-chip Universal Serial Bus On-The-Go controller
NXP

ISP1362BD

Single-chip Universal Serial Bus On-The-Go controller
NXP