ISP1504A1ET [NXP]

ULPI Hi-Speed Universal Serial Bus On-The-Go transceiver; ULPI高速通用串行总线的On-the - Go收发器
ISP1504A1ET
型号: ISP1504A1ET
厂家: NXP    NXP
描述:

ULPI Hi-Speed Universal Serial Bus On-The-Go transceiver
ULPI高速通用串行总线的On-the - Go收发器

驱动器 接口集成电路
文件: 总81页 (文件大小:413K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3
4
.80 7IRELESS  
IMPORTANT NOTICE  
Dear customer,  
As from August 2nd 2008, the wireless operations of NXP have moved to a new company,  
ST-NXP Wireless.  
As a result, the following changes are applicable to the attached document.  
Company name - NXP B.V. is replaced with ST-NXP Wireless.  
Copyright - the copyright notice at the bottom of each page “© NXP B.V. 200x. All  
rights reserved”, shall now read: “© ST-NXP Wireless 200x - All rights reserved”.  
Web site - http://www.nxp.com is replaced with http://www.stnwireless.com  
Contact information - the list of sales offices previously obtained by sending  
an email to salesaddresses@nxp.com , is now found at http://www.stnwireless.com  
under Contacts.  
If you have any questions related to the document, please contact our nearest sales office.  
Thank you for your cooperation and understanding.  
ST-NXP Wireless  
34.80 7IRELESS  
www.stnwireless.com  
ISP1504A1; ISP1504C1  
ULPI Hi-Speed Universal Serial Bus On-The-Go transceiver  
Rev. 01 — 6 August 2007  
Product data sheet  
1. General description  
The ISP1504A1; ISP1504C1 (ISP1504x1) is a Universal Serial Bus (USB) On-The-Go  
(OTG) transceiver that is fully compliant with Universal Serial Bus Specification Rev. 2.0,  
On-The-Go Supplement to the USB 2.0 Specification Rev. 1.2 and UTMI+ Low Pin  
Interface (ULPI) Specification Rev. 1.1.  
The ISP1504x1 can transmit and receive USB data at high-speed (480 Mbit/s), full-speed  
(12 Mbit/s) and low-speed (1.5 Mbit/s), and provides a pin-optimized, physical layer  
front-end attachment to the USB host, peripheral and OTG devices.  
It is ideal for use in portable electronic devices, such as mobile phones, digital still  
cameras, digital video cameras, Personal Digital Assistants (PDAs) and digital audio  
players. It allows USB Application-Specific Integrated Circuits (ASICs), Programmable  
Logic Devices (PLDs) and any system chip set to interface with the physical layer of the  
USB through a 12-pin interface.  
The ISP1504x1 can interface to devices with digital I/O voltages in the range of 1.65 V to  
3.6 V.  
The ISP1504x1 is available in TFBGA36 package.  
2. Features  
I Fully complies with:  
N Universal Serial Bus Specification Rev. 2.0  
N On-The-Go Supplement to the USB 2.0 Specification Rev. 1.2  
N UTMI+ Low Pin Interface (ULPI) Specification Rev 1.1  
I Interfaces to host, peripheral and OTG device cores; optimized for portable devices or  
system ASICs with built-in USB OTG device core  
I Complete Hi-Speed USB physical front-end solution that supports high-speed  
(480 Mbit/s), full-speed (12 Mbit/s) and low-speed (1.5 Mbit/s)  
N Integrated 45 Ω ± 10 % high-speed termination resistors, 1.5 kΩ ± 5 % full-speed  
device pull-up resistor, and 15 kΩ ± 5 % host termination resistors  
N Integrated parallel-to-serial and serial-to-parallel converters to transmit and receive  
N USB clock and data recovery to receive USB data at ±500 ppm  
N USB data synchronization from 60 MHz input to 480 MHz output during transmit  
N Insertion of stuff bits during transmit and discarding of stuff bits during receive  
N Non-Return-to-Zero Inverted (NRZI) encoding and decoding  
N Supports bus reset, suspend, resume and high-speed detection handshake (chirp)  
I Complete USB OTG physical front-end that supports Host Negotiation Protocol (HNP)  
and Session Request Protocol (SRP)  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
N Supports external charge pump or 5 V VBUS switch  
N Complete control over bus resistors  
N Data line and VBUS pulsing session request methods  
N Integrated VBUS voltage comparators  
N Integrated cable (ID) detector  
I Highly optimized ULPI-compliant interface  
N 60 MHz, 8-bit interface between the core and the transceiver  
N Integrated Phase-Locked Loop (PLL) supporting input clock frequency of 19.2 MHz  
for ISP1504A1, and 26 MHz for ISP1504C1  
N Fully programmable ULPI-compliant register set  
N Internal Power-On Reset (POR) circuit  
I Flexible system integration and very low current consumption, optimized for portable  
devices  
N Power-supply input range is 3.0 V to 4.5 V  
N Internal voltage regulator supplies 3.3 V and 1.8 V  
N Supports external VBUS charge pump or 5 V supply:  
External VBUS source is controlled using the PSW_N pin; open-drain PSW_N  
allows per-port or ganged power control  
Digital FAULT input to monitor the external VBUS supply status  
N Pin CS_N/PWRDN 3-states the ULPI interface, allowing bus reuse for other  
applications  
N Supports power-down mode when VCC(I/O) is not present or when  
pin CS_N/PWRDN is HIGH  
N Supports wide range interfacing I/O voltage of 1.65 V to 3.6 V; separate I/O voltage  
pins minimize crosstalk  
N Typical operating current of 10 mA to 48 mA, depending on the USB speed and  
bus utilization  
N Typical suspend current of 50 µA  
N Typical power-down current of 0.5 µA  
I Full industrial grade operating temperature range from 40 °C to +85 °C  
I ElectroStatic Discharge (ESD) compliance  
N JESD22-A114D 2 kV contact Human Body Model (HBM)  
N JESD22-A115-A 200 V Machine Model (MM)  
N JESD22-C101-C 500 V Charge Device Model (CDM)  
I Available in a small TFBGA36 (3.5 mm × 3.5 mm) Restriction of Hazardous  
Substances (RoHS) compliant, halogen-free and lead-free package  
3. Applications  
I Digital still camera  
I Digital TV  
I Digital Versatile Disc (DVD) recorder  
I External storage device, for example:  
N Zip drive  
N Magneto-Optical (MO) drive  
N Optical drive: CD-ROM, CD-RW, CD-DVD  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
2 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
I Mobile phone  
I MP3 player  
I PDA  
I Printer  
I Scanner  
I Set-Top Box (STB)  
I Video camera  
4. Ordering information  
Table 1.  
Part  
Ordering information  
Package  
Type number Marking Crystal or clock Name  
frequency  
Description  
Version  
ISP1504A1ET 504M[1]  
ISP1504C1ET 504P[1]  
19.2 MHz  
26 MHz  
TFBGA36 plastic thin fine-pitch ball grid array package;  
SOT912-1  
36 balls; body 3.5 × 3.5 × 0.8 mm  
[1] The package marking is the first line of text on the IC package and can be used for IC identification.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
3 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
5. Block diagram  
A4  
CLOCK  
USB DATA  
SERIALIZER  
D1  
DP  
B1, A1,  
A2, A3,  
A5, A6,  
HI-SPEED USB ATX  
8
DATA  
[7:0]  
B6, C6  
ULPI  
ULPI  
interface  
INTERFACE  
CONTROLLER  
TERMINATION  
RESISTORS  
C1  
USB DATA  
DESERIALIZER  
DM  
E5  
DIR  
D6  
D5  
USB  
cable  
STP  
NXT  
V
valid external  
BUS  
ON-THE-GO MODULE  
REGISTER  
MAP  
Drive V  
external  
BUS  
ID  
D3  
F4  
C3  
C4  
ID  
DETECTOR  
CS_N/PWRDN  
RESET_N  
V
POWER-ON  
RESET  
BUS  
global  
reset  
COMPARATORS  
V
BUS  
SRP CHARGE  
AND DISCHARGE  
RESISTORS  
PLL  
global clocks  
F5  
F6  
XTAL1  
XTAL2  
CRYSTAL  
OSCILLATOR  
FAULT  
E2  
D4  
B2, B3,  
B5  
ISP1504x1  
PSW_N  
interface voltage  
V
CC(I/O)  
internal power  
E3  
E6  
REG3V3  
REG1V8  
BAND GAP  
REFERENCE  
VOLTAGE  
C2  
V
REF  
RREF  
F3  
VOLTAGE  
REGULATOR  
B4, C5,  
D2, E1, E4  
V
CC  
004aaa942  
GND  
Fig 1. Block diagram  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
4 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
6. Pinning information  
6.1 Pinning  
ball A1  
index area  
ISP1504x1  
1
2
3
4
5
6
A
B
C
D
E
F
004aaa943  
Transparent top view  
Fig 2. Pin configuration TFBGA36; top view  
6.2 Pin description  
Table 2.  
Pin description  
Symbol[1][2] Pin  
Type[3] Description[4]  
DATA1  
DATA2  
DATA3  
CLOCK  
DATA4  
DATA5  
DATA0  
A1  
I/O  
I/O  
I/O  
O
pin 1 of the bidirectional ULPI data bus  
slew rate controlled output (1 ns); plain input; programmable pull down  
pin 2 of the bidirectional ULPI data bus  
A2  
slew rate controlled output (1 ns); plain input; programmable pull down  
pin 3 of the bidirectional ULPI data bus  
A3  
slew rate controlled output (1 ns); plain input; programmable pull down  
60 MHz clock output for ULPI  
A4  
slew rate controlled output (1 ns)  
A5  
I/O  
I/O  
I/O  
pin 4 of the bidirectional ULPI data bus  
slew rate controlled output (1 ns); plain input; programmable pull down  
pin 5 of the bidirectional ULPI data bus  
A6  
slew rate controlled output (1 ns); plain input; programmable pull down  
pin 0 of the bidirectional ULPI data bus  
B1  
slew rate controlled output (1 ns); plain input; programmable pull down  
VCC(I/O)  
GND  
B2, B3, B5  
P
input I/O supply voltage; allowable range 1.65 V to 3.6 V; a 0.1 µF decoupling  
capacitor is recommended  
B4, C5, D2,  
E1, E4  
P
ground supply  
DATA6  
B6  
I/O  
pin 6 of the bidirectional ULPI data bus  
slew rate controlled output (1 ns); plain input; programmable pull down  
data minus (D) pin of the USB cable  
DM  
C1  
C2  
AI/O  
AI/O  
RREF  
resistor reference; connect through 12 kΩ ± 1 % to GND  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
5 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 2.  
Pin description …continued  
Symbol[1][2] Pin  
Type[3] Description[4]  
CS_N/  
C3  
I
active LOW chip select  
PWRDN  
When this pin is HIGH, ULPI pins will be 3-stated and the chip is in power-down  
mode.  
When this pin is LOW, ULPI pins will operate normally.  
plain input  
RESET_N  
DATA7  
C4  
C6  
I
active LOW, asynchronous reset input  
If this pin is not used, it must directly be connected to VCC(I/O)  
.
plain input  
I/O  
pin 7 of the bidirectional ULPI data bus  
slew rate controlled output (1 ns); plain input; programmable pull down  
data plus (D+) pin of the USB cable  
DP  
ID  
D1  
D3  
AI/O  
I
identification (ID) pin of the micro-USB cable; see Section 7.6.1  
If this pin is not used, it is recommended to connect it to REG3V3.  
plain input; TTL level  
PSW_N  
NXT  
D4  
D5  
D6  
E2  
OD  
active LOW external VBUS power switch or external charge pump enable  
open-drain output; 5 V tolerant  
O
I
ULPI next signal  
slew rate controlled output (1 ns)  
STP  
ULPI stop signal  
plain input; programmable pull up  
FAULT  
I
input pin for the external VBUS digital overcurrent or the fault detector signal  
If this pin is not used, it must be connected to ground.  
plain input; 5 V tolerant  
REG3V3  
DIR  
E3  
E5  
P
3.3 V regulator output requiring parallel 0.1 µF and 4.7 µF capacitors; internally  
powers OTG, analog core and ATX; cannot be externally used as a power source  
O
ULPI direction signal  
slew rate controlled output (1 ns)  
REG1V8  
E6  
P
1.8 V regulator output requiring parallel 0.1 µF and 4.7 µF capacitors; internally  
powers digital core and analog core; cannot be externally used as a power source  
n.c.  
F1, F2  
F3  
-
not connected  
VCC  
VBUS  
P
input supply voltage or battery source; 3.0 V to 4.5 V  
F4  
AI/O  
must be connected to the VBUS pin of the USB cable; required in all configurations,  
except when the ISP1504x1 is used as a host-only with an external 5 V source  
XTAL1  
XTAL2  
F5  
F6  
AI/O  
AI/O  
crystal oscillator or clock input; 1.8 V peak input allowed; frequency is 19.2 MHz for  
ISP1504A1, and 26 MHz for ISP1504C1  
crystal oscillator output; if crystal is not in use, leave this pin open  
[1] Symbol names ending with underscore N, for example, NAME_N, indicate active LOW signals.  
[2] For details on external components required on each pin, see bill of materials and application diagrams in Section 15.  
[3] I = input; O = output; I/O = digital input/output; OD = open-drain output; AI/O = analog input/output; P = power or ground pin.  
[4] A detailed description of these pins can be found in Section 7.9.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
6 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
7. Functional description  
7.1 ULPI interface controller  
The ISP1504x1 provides a 12-pin interface that is compliant with UTMI+ Low Pin Interface  
(ULPI) Specification Rev. 1.1. This interface must be connected to the USB link.  
The ULPI interface controller provides the following functions:  
ULPI-compliant interface and register set  
Allows full control over the USB peripheral, host and OTG functionality  
Parses the USB transmit and receive data  
Prioritizes the USB receive data, USB transmit data, interrupts and register operations  
Low-power mode  
Control of the VBUS external power source  
VBUS monitoring, charging and discharging  
6-pin serial mode and 3-pin serial mode  
Generates RXCMDs; status updates  
Maskable interrupts  
Control over the ULPI bus state, allowing pins to 3-state or attach active weak  
pull-down resistors  
For more information on the ULPI protocol, see Section 9.  
7.2 USB data serializer and deserializer  
The USB data serializer prepares data to transmit on the USB bus. To transmit data, the  
USB link sends a transmit command and data on the ULPI bus. The serializer performs  
parallel-to-serial conversion, bit stuffing and NRZI encoding. For packets with a PID, the  
serializer adds a SYNC pattern to the start of the packet, and an EOP pattern to the end  
of the packet. When the serializer is busy and cannot accept any more data, the ULPI  
interface controller de-asserts NXT.  
The USB data deserializer decodes data received from the USB bus. When data is  
received, the deserializer strips the SYNC and EOP patterns, and then performs  
serial-to-parallel conversion, NRZI decoding and discarding of stuff bits on the data  
payload. The ULPI interface controller sends data to the USB link by asserting DIR, and  
then asserting NXT whenever a byte is ready. The deserializer also detects various  
receive errors, including bit stuff errors, elasticity buffer underrun or overrun, and  
byte-alignment errors.  
7.3 Hi-Speed USB (USB 2.0) ATX  
The Hi-Speed USB ATX block is an analog front-end containing the circuitry needed to  
transmit, receive and terminate the USB bus in high-speed, full-speed and low-speed, for  
USB peripheral, host and OTG implementations. The following circuitry is included:  
Differential drivers to transmit data at high-speed, full-speed and low-speed  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
7 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Differential and single-ended receivers to receive data at high-speed, full-speed and  
low-speed  
Squelch circuit to detect high-speed bus activity  
High-speed disconnect detector  
45 high-speed bus terminations on DP and DM  
1.5 kpull-up resistor on DP  
15 kpull-down resistor on DP and DM  
For details on controlling resistor settings, see Table 8.  
7.4 Voltage regulator  
The ISP1504x1 contains a built-in voltage regulator that conditions the VCC supply for use  
inside the ISP1504x1. The voltage regulator:  
Supports input supply range of 3.0 V < VCC < 4.5 V  
Can be supplied from a battery with a voltage range of 3.0 V to 4.5 V  
Supplies internal circuitry with 1.8 V and 3.3 V  
Automatically bypasses the internal 3.3 V regulator when VCC < 3.5 V, drawing power  
directly from the VCC pin  
To save current, the voltage regulator will be shut down, if VCC(I/O) is not present or if  
pin CS_N/PWRDN is at a HIGH level.  
Remark: The REG1V8 and REG3V3 pins require an external 0.1 µF capacitor in parallel  
with a 4.7 µF capacitor. For details, see Section 15.  
7.5 Crystal oscillator and PLL  
The ISP1504x1 has a built-in crystal oscillator and a Phase-Locked Loop (PLL) for clock  
generation.  
The crystal oscillator takes a sine-wave input from an external crystal, on the XTAL1 pin,  
and converts it to a square wave clock for internal use. Alternatively, a square wave clock  
of the same frequency can also be directly driven into the XTAL1 pin. Using an existing  
square wave clock can save the cost of the crystal and also reduce the board size. The  
input clock or crystal frequency supported is 19.2 MHz or 26 MHz.  
The PLL produces the following frequencies, irrespective of the clock source:  
60 MHz clock for the ULPI interface controller  
1.5 MHz for the low-speed USB data  
12 MHz for the full-speed USB data  
480 MHz for the high-speed USB data  
Other internal frequencies for data conversion and data recovery  
7.6 OTG module  
This module contains several sub-blocks that provide all the functionality required by the  
USB OTG specification. Specifically, it provides the following circuits:  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
8 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
The ID detector to sense the ID pin of the micro-USB cable. The ID pin dictates which  
device is initially configured as the host and which as the peripheral.  
VBUS comparators to determine the VBUS voltage level. This is required for the VBUS  
detection, SRP and HNP.  
Resistors to temporarily charge and discharge VBUS. This is required for SRP.  
Remark: The ISP1504x1 does not include the 5 V charge pump to power VBUS  
.
7.6.1 ID detector  
The ID detector detects which end of the micro-USB cable is plugged in. The detector  
must first be enabled by setting the ID_PULLUP register bit to logic 1. If the ISP1504x1  
senses a value on ID that is different from the previously reported value, an RXCMD  
status update will be sent to the USB link, or an interrupt will be asserted.  
If the micro-B end of the cable is plugged in, the ISP1504x1 will report that ID_GND is  
logic 1. The USB link must change to peripheral mode.  
If the micro-A end of the cable is plugged in, the ISP1504x1 will report that ID_GND is  
logic 0. The USB link must change to host mode.  
7.6.2 VBUS comparators  
The ISP1504x1 provides three comparators, VBUS valid comparator, session valid  
comparator and session end comparator, to detect the VBUS voltage level.  
7.6.2.1 VBUS valid comparator  
This comparator is used by hosts and OTG A-devices to determine whether the voltage on  
VBUS is at a valid level for operation. The ISP1504x1 threshold for the VBUS valid  
comparator is VA_VBUS_VLD. Any voltage on VBUS below VA_VBUS_VLD is considered a fault.  
During power-up, it is expected that the comparator output will be ignored.  
7.6.2.2 Session valid comparator  
The session valid comparator is a TTL-level input that determines when VBUS is high  
enough for a session to start. Peripherals, A-devices and B-devices use this comparator to  
detect when a session is started. The A-device also uses this comparator to determine  
when a session is completed. The session valid threshold of the ISP1504x1 is  
VA_SESS_VLD, with a hysteresis of Vhys(A_SESS_VLD)  
.
7.6.2.3 Session end comparator  
The ISP1504x1 session end comparator determines when VBUS is below the B-device  
session end threshold. The B-device uses this threshold to determine when a session has  
ended. The session end threshold of the ISP1504x1 is VB_SESS_END  
.
7.6.3 SRP charge and discharge resistors  
The ISP1504x1 provides on-chip resistors for short-term charging and discharging of  
VBUS. These are used by the B-device to request a session, prompting the A-device to  
restore the VBUS power. First, the B-device makes sure that VBUS is fully discharged from  
the previous session by setting the DISCHRG_VBUS register bit to logic 1 and waiting for  
SESS_END to be logic 1. Then the B-device charges VBUS by setting the CHRG_VBUS  
register bit to logic 1. The A-device sees that VBUS is charged above the session valid  
threshold and starts a session by turning on the VBUS power.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
9 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
7.7 Band gap reference voltage  
The band gap circuit provides a stable internal voltage reference to bias analog circuitry.  
The band gap requires an accurate external reference resistor. Connect a 12 kΩ ± 1 %  
resistor between the RREF pin and GND.  
7.8 Power-On Reset (POR)  
The ISP1504x1 has an internal POR circuit that resets all internal logic on power-up. The  
ULPI interface is also reset on power-up.  
Remark: When CLOCK starts toggling after power-up, the USB link must issue a reset  
command over the ULPI bus to ensure correct operation of the ISP1504x1.  
7.9 Detailed description of pins  
7.9.1 DATA[7:0]  
Bidirectional data bus. The USB link must drive DATA[7:0] to LOW when the ULPI bus is  
idle. When the link has data to transmit to the PHY, it drives a nonzero value.  
The data bus can be reconfigured to carry various data types, as given in Section 8 and  
Section 9.  
The DATA[7:0] pins can be 3-stated by driving pin CS_N/PWRDN to HIGH. Weak  
pull-down resistors are incorporated into the DATA[7:0] pins as part of the interface protect  
feature. For details, see Section 9.3.1.  
7.9.2 VCC(I/O)  
The input voltage that sets the I/O voltage level. The ISP1504x1 supports nominal I/O  
voltages in the range of 1.8 V to 3.3 V. A 0.1 µF decoupling capacitor is recommended.  
VCC(I/O) provides power to on-chip pads of the following pins:  
CLOCK  
CS_N/PWRDN  
DATA[7:0]  
DIR  
NXT  
RESET_N  
STP  
If VCC(I/O) is not present while VCC is present, the chip is put in power-down mode.  
7.9.3 RREF  
Resistor reference analog I/O pin. A 12 kΩ ± 1 % resistor must be connected between  
RREF and GND, as shown in Section 15. This provides an accurate voltage reference that  
biases internal analog circuitry. Less accurate resistors cannot be used and will render the  
ISP1504x1 unusable.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
10 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
7.9.4 DP and DM  
DP (data plus) and DM (data minus) are USB differential data pins. These must be  
connected to the D+ and Dpins of the USB receptacle.  
7.9.5 FAULT  
If an external VBUS overcurrent or fault circuit is used, the output fault indicator of that  
circuit can be connected to the ISP1504x1 FAULT input pin. The ISP1504x1 will inform the  
link of VBUS fault events by sending RXCMDs on the ULPI bus. To use the FAULT pin, the  
link must set the USE_EXT_VBUS_IND register bit to logic 1, and the polarity of the  
external fault signal must be set using the IND_COMPL register bit.  
7.9.6 ID  
For OTG implementations, the ID (identification) pin is connected to the ID pin of the  
micro-USB receptacle. As defined in On-The-Go Supplement to the USB 2.0 Specification  
Rev. 1.2, the ID pin dictates the initial role of the link. If ID is detected as HIGH, the link  
must assume the role of a peripheral. If ID is detected as LOW, the link must assume a  
host role. Roles can be swapped at a later time by using HNP.  
If the ISP1504x1 is not used as an OTG PHY, but as a standard USB host or peripheral  
PHY, it is recommended to connect the ID pin to REG3V3.  
7.9.7 VCC  
VCC is the main input supply voltage for the ISP1504x1. A 0.1 µF decoupling capacitor is  
recommended. For details, see Section 15.  
7.9.8 PSW_N  
PSW_N is an active LOW, open-drain output pin. This pin can be connected to an active  
LOW, external VBUS switch or charge pump enable circuit to control the external VBUS  
power source.  
If the link is in host mode, it can enable the external power switch by setting the  
DRV_VBUS_EXT bit in the OTG Control register to logic 1. The ISP1504x1 will drive  
PSW_N to LOW to enable the external switch. If the link detects an overcurrent condition  
(the VBUS state in RXCMD is not 11b), it must disable the external VBUS supply by setting  
DRV_VBUS_EXT to logic 0.  
An external pull-up resistor, Rpullup, is required when PSW_N is used. This pin is  
open-drain, allowing ganged mode power control for multiple USB ports.  
7.9.9 VBUS  
This pin acts as an input to VBUS comparators, and also as a power pin for SRP charge  
and discharge resistors.  
The VBUS pin requires a capacitive load. Table 3 provides the recommended capacitor for  
various applications.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
11 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 3.  
Recommended VBUS capacitor value  
Application  
OTG  
VBUS capacitor (CVBUS  
1 µF to 6.5 µF, 10 V  
120 µF ± 20 %, 10 V  
1 µF to 10 µF, 10 V  
)
Standard host  
Standard peripheral  
REG3V3  
CHRG_VBUS  
R
UP(VBUS)  
V
BUS  
comparators  
V
BUS  
R
R
DN(VBUS)  
I(idle)(VBUS)  
DISCHRG_  
VBUS  
004aaa871  
Fig 3. Application circuit components  
7.9.10 REG3V3 and REG1V8  
Regulator output voltage. These supplies are used to power the ISP1504x1 internal digital  
and analog circuits, and must not be used to power external circuits.  
For correct operation of the regulator, it is recommended that you connect REG3V3 and  
REG1V8 to a 0.1 µF capacitor in parallel with a 4.7 µF capacitor. For examples, see  
Section 15.  
7.9.11 XTAL1 and XTAL2  
XTAL1 is the crystal input, and XTAL2 is the crystal output. The allowed frequency on the  
XTAL1 pin is 19.2 MHz or 26 MHz.  
Either a crystal must be attached, or a clock of the same frequency must be driven into  
XTAL1, with XTAL2 left floating.  
If a crystal is attached, it requires capacitors to GND on each terminal of the crystal. For  
details, see Section 15.  
7.9.12 RESET_N  
An active LOW asynchronous reset pin that resets all circuits in the ISP1504x1. The  
RESET_N pin must be connected to VCC(I/O), if not used. The ISP1504x1 contains an  
internal power-on reset circuit, and therefore using the RESET_N pin is optional.  
For details on using RESET_N, see Section 9.3.2.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
12 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
7.9.13 DIR  
ULPI HS USB OTG transceiver  
ULPI direction output pin. Controls the direction of the data bus. By default, the  
ISP1504x1 holds DIR at LOW, causing the data bus to be an input. When DIR is LOW, the  
ISP1504x1 listens for data from the link. The ISP1504x1 pulls DIR to HIGH only when it  
has data to send to the link, which is for one of two reasons:  
To send the USB receive data, RXCMD status updates and register read data to the  
link.  
To block the link from driving the data bus during power-up, reset and low-power  
mode (suspend).  
For details on DIR usage, refer to UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1.  
7.9.14 STP  
ULPI stop input pin. The link must assert STP to signal the end of a USB transmit packet  
or a register write operation. When DIR is asserted, the link can optionally assert STP to  
abort the ISP1504x1, causing it to de-assert DIR in the next clock cycle. A weak pull-up  
resistor is incorporated into the STP pin as part of the interface protect feature. For details,  
see Section 9.3.1.  
For details on STP usage, refer to UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1.  
7.9.15 NXT  
ULPI next data output pin. The ISP1504x1 holds NXT at LOW, by default. When DIR is  
LOW and the link is sending data to the ISP1504x1, NXT will be asserted to notify the link  
to provide the next data byte. When DIR is HIGH and the ISP1504x1 is sending data to  
the link, NXT will be asserted to notify the link that another valid byte is on the bus. NXT is  
not used for register read data or the RXCMD status update.  
For details on NXT usage, refer to UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1.  
7.9.16 CLOCK  
A 60 MHz interface clock to synchronize the ULPI bus.  
7.9.17 CS_N/PWRDN  
Active LOW chip select pin. When CS_N/PWRDN is HIGH, ULPI output pins DATA[7:0],  
CLOCK, DIR and NXT are 3-stated and ignored. All internal circuits, including the internal  
regulator, are powered down. When CS_N/PWRDN is LOW, the ISP1504x1 will wake up  
and the ULPI bus will operate normally.  
If CS_N/PWRDN is not used, it must be connected to LOW. For more information on using  
CS_N/PWRDN, see Section 9.3.3.  
7.9.18 GND  
Power and signal ground. To ensure correct operation of the ISP1504x1, GND must be  
soldered to the cleanest ground available.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
13 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
8. Modes of operation  
8.1 ULPI modes  
The ISP1504x1 ULPI bus can be programmed to operate in five modes. Each mode  
reconfigures the signals on the data bus as described in the following subsections. Setting  
more than one mode will lead to undefined behavior.  
8.1.1 Synchronous mode  
This is default mode. At power-up, and when CLOCK is stable, the ISP1504x1 will enter  
synchronous mode. The link must synchronize all ULPI signals to CLOCK, meeting the  
set-up and hold times as defined in Section 14. A description of the ULPI pin behavior in  
synchronous mode is given in Table 4.  
This mode is used by the link to perform the following tasks:  
High-speed detection handshake (chirp)  
Transmit and receive USB packets  
Read and write to registers  
Receive USB status updates (RXCMDs)  
For more information on various synchronous mode protocols, see Section 9.  
Table 4.  
ULPI signal description  
Signal  
name  
Direction on Signal description  
ISP1504x1  
CLOCK  
O
60 MHz interface clock: During low-power and serial modes, the  
clock can be turned off to save power.  
DATA[7:0] I/O  
8-bit data bus: In synchronous mode, the link drives DATA[7:0] to  
LOW by default. The link initiates transfers by sending a nonzero data  
pattern called TXCMD (transmit command). In synchronous mode, the  
direction of DATA[7:0] is controlled by DIR. Contents of DATA[7:0] lines  
must be ignored for exactly one clock cycle whenever DIR changes  
value. This is called the turnaround cycle.  
Data lines have fixed direction and different meaning in low-power and  
serial modes.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
14 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 4.  
ULPI signal description …continued  
Signal  
name  
Direction on Signal description  
ISP1504x1  
DIR  
O
Direction: Controls the direction of data bus DATA[7:0]. In  
synchronous mode, the ISP1504x1 drives DIR to LOW by default,  
making the data bus an input so that the ISP1504x1 can listen for  
TXCMDs from the link. The ISP1504x1 drives DIR to HIGH only when  
it has data for the link. When DIR and NXT are HIGH, the byte on the  
data bus contains decoded USB data. When DIR is HIGH and NXT is  
LOW, the byte contains status information called RXCMD (receive  
command). The only exception to this rule is when the PHY returns  
register read data, where NXT is also LOW, replacing the usual  
RXCMD byte. Every change in DIR causes a turnaround cycle on the  
data bus, during which DATA[7:0] is not valid and must be ignored by  
the link.  
DIR is always asserted during low-power and serial modes.  
STP  
NXT  
I
Stop: In synchronous mode, the link drives STP to HIGH for one cycle  
after the last byte of data is sent to the ISP1504x1. The link can  
optionally assert STP to force DIR to be de-asserted.  
In low-power and serial modes, the link holds STP at HIGH to wake up  
the ISP1504x1, causing the ULPI bus to return to synchronous mode.  
O
Next: In synchronous mode, the ISP1504x1 drives NXT to HIGH to  
throttle data. If DIR is LOW, the ISP1504x1 asserts NXT to notify the  
link to place the next data byte on DATA[7:0] in the following clock  
cycle. If DIR is HIGH, the ISP1504x1 asserts NXT to notify the link that  
a valid USB data byte is on DATA[7:0] in the current cycle. The  
ISP1504x1 always drives an RXCMD when DIR is HIGH and NXT is  
LOW, unless register read data is to be returned to the link in the  
current cycle.  
NXT is not used in low-power or serial mode.  
8.1.2 Low-power mode  
When the USB is idle, the link can place the ISP1504x1 into low-power mode (also called  
suspend mode). In low-power mode, the data bus definition changes to that shown in  
Table 5. To enter low-power mode, the link sets the SUSPENDM bit in the Function  
Control register to logic 0. To exit low-power mode, the link asserts the STP signal. The  
ISP1504x1 will draw only suspend current from the VCC supply (see Table 46).  
During low-power mode, the clock on XTAL1 may be stopped. The clock must be started  
again before asserting STP to exit low-power mode. After exiting low-power mode, the  
ISP1504x1 will send an RXCMD to the link if a change was detected in any interrupt  
source, and the change still exists. An RXCMD may not be sent if the interrupt condition is  
removed before exiting.  
For more information on low-power mode enter and exit protocols, refer to UTMI+ Low Pin  
Interface (ULPI) Specification Rev. 1.1.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
15 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 5.  
Signal mapping during low-power mode  
Signal  
Maps to  
DATA0  
DATA1  
DATA2  
DATA3  
Direction  
Description  
LINESTATE0  
LINESTATE1  
Reserved  
INT  
O
O
O
O
combinatorial LINESTATE0 directly driven by the analog receiver  
combinatorial LINESTATE1 directly driven by the analog receiver  
reserved; the ISP1504x1 will drive this pin to LOW  
active HIGH interrupt indication; will be asserted whenever any  
unmasked interrupt occurs  
8.1.3 6-pin full-speed or low-speed serial mode  
If the link requires a 6-pin serial interface to transmit and receive full-speed or low-speed  
USB data, it can set the ISP1504x1 to 6-pin serial mode. In 6-pin serial mode, the data  
bus definition changes to that shown in Table 6. To enter 6-pin serial mode, the link sets  
the 6PIN_FSLS_SERIAL bit in the Interface Control register to logic 1. To exit 6-pin serial  
mode, the link asserts STP. This is provided primarily for links that contain legacy  
full-speed or low-speed functionality, providing a more cost-effective upgrade path to  
high-speed. An interrupt pin is also provided to inform the link of USB events. If the link  
requires CLOCK to be running during 6-pin serial mode, the CLOCK_SUSPENDM  
register bit must be set to logic 1.  
For more information on 6-pin serial mode enter and exit protocols, refer to UTMI+ Low  
Pin Interface (ULPI) Specification Rev. 1.1.  
Table 6.  
Signal  
Signal mapping for 6-pin serial mode  
Maps to  
DATA0  
DATA1  
DATA2  
DATA3  
Direction  
Description  
TX_ENABLE  
TX_DAT  
TX_SE0  
INT  
I
active HIGH transmit enable  
transmit differential data on DP and DM  
transmit single-ended zero on DP and DM  
I
I
O
active HIGH interrupt indication; will be asserted whenever any  
unmasked interrupt occurs  
RX_DP  
DATA4  
DATA5  
DATA6  
DATA7  
O
O
O
O
single-ended receive data from DP  
RX_DM  
RX_RCV  
Reserved  
single-ended receive data from DM  
differential receive data from DP and DM  
reserved; the ISP1504x1 will drive this pin to LOW  
8.1.4 3-pin full-speed or low-speed serial mode  
If the link requires a 3-pin serial interface to transmit and receive full-speed or low-speed  
USB data, it can set the ISP1504x1 to 3-pin serial mode. In 3-pin serial mode, the data  
bus definition changes to that shown in Table 7. To enter 3-pin serial mode, the link sets  
the 3PIN_FSLS_SERIAL bit in the Interface Control register to logic 1. To exit 3-pin serial  
mode, the link asserts STP. This is provided primarily for links that contain legacy  
full-speed or low-speed functionality, providing a more cost-effective upgrade path to  
high-speed. An interrupt pin is also provided to inform the link of USB events. If the link  
requires CLOCK to be running during 3-pin serial mode, the CLOCK_SUSPENDM  
register bit must be set to logic 1.  
For more information on 3-pin serial mode enter and exit protocols, refer to UTMI+ Low  
Pin Interface (ULPI) Specification Rev. 1.1.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
16 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 7.  
Signal  
Signal mapping for 3-pin serial mode  
Maps to  
DATA0  
DATA1  
Direction  
Description  
TX_ENABLE  
DAT  
I
active HIGH transmit enable  
I/O  
transmit differential data on DP and DM when TX_ENABLE is HIGH  
receive differential data from DP and DM when TX_ENABLE is LOW  
transmit single-ended zero on DP and DM when TX_ENABLE is HIGH  
receive single-ended zero from DP and DM when TX_ENABLE is LOW  
SE0  
DATA2  
I/O  
INT  
DATA3  
O
O
active HIGH interrupt indication; will be asserted whenever any  
unmasked interrupt occurs  
Reserved  
DATA[7:4]  
reserved; the ISP1504x1 will drive these pins to LOW  
8.1.5 Power-down mode  
In this mode, the PHY will 3-state the DATA[7:0], CLOCK, NXT and DIR pins. The link can  
reuse the 3-stated pins for other purposes. To enter power-down mode, the link must drive  
the CS_N/PWRDN pin to HIGH. To exit power-down mode, the link must drive the  
CS_N/PWRDN pin to LOW.  
In this mode, the ISP1504x1 will do the following:  
All internal circuits, including the internal regulator, are powered down. The total  
current from VCC is less than 10 µA.  
The DATA[7:0], NXT, CLOCK and DIR pins are 3-stated and ignored. The STP pin is  
ignored.  
The pull-down resistors on DATA[7:0] are disabled.  
USB wake-up events cannot be detected. The link must first wake up the ISP1504x1  
by driving CS_N/PWRDN to LOW.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
17 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
entering power-down mode  
exiting power-down mode  
CS_N/PWRDN  
CLOCK  
t
PWRUP  
t
PWRDN  
3-stated pins  
DATA[7:0]  
DIR  
NXT  
STP  
004aaa733  
Fig 4. Entering and exiting 3-state in normal mode  
8.2 USB state transitions  
A Hi-Speed USB host or an OTG device handles more than one electrical state as defined  
in Universal Serial Bus Specification Rev. 2.0 and On-The-Go Supplement to the USB 2.0  
Specification Rev. 1.2. The ISP1504x1 accommodates various states through the register  
bit settings of XCVRSELECT[1:0], TERMSELECT, OPMODE[1:0], DP_PULLDOWN and  
DM_PULLDOWN.  
Table 8 summarizes operating states. The values of register settings in Table 8 will force  
resistor settings as also given in Table 8. Resistor setting signals are defined as follows:  
RPU_DP_EN enables the 1.5 kpull-up resistor on DP  
RPD_DP_EN enables the 15 kpull-down resistor on DP  
RPD_DM_EN enables the 15 kpull-down resistor on DM  
HSTERM_EN enables the 45 termination resistors on DP and DM  
It is up to the link to set the desired register settings.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
18 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 8.  
Operating states and corresponding resistor settings  
Signaling mode  
Register settings  
Internal resistor settings  
XCVR  
SELECT  
[1:0]  
TERM  
SELECT [1:0]  
OPMODE  
DP_  
PULL PULL  
DOWN DOWN  
DM_  
RPU_DP RPD_DP RPD_  
HSTERM_  
_EN  
_EN  
DM_EN EN  
General settings  
3-state drivers  
XXb  
01b  
Xb  
0b  
01b  
00b  
Xb  
1b  
Xb  
1b  
0b  
0b  
0b  
1b  
0b  
1b  
0b  
0b  
Power up or VBUS  
VB_SESS_END  
<
Host settings  
Host chirp  
00b  
00b  
X1b  
01b  
0b  
0b  
1b  
1b  
10b  
00b  
00b  
00b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
0b  
0b  
0b  
0b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
0b  
0b  
Host high-speed  
Host full-speed  
Host high-speed or  
full-speed suspend  
Host high-speed or  
full-speed resume  
01b  
1b  
10b  
1b  
1b  
0b  
1b  
1b  
0b  
Host low-speed  
10b  
10b  
1b  
1b  
00b  
00b  
1b  
1b  
1b  
1b  
0b  
0b  
1b  
1b  
1b  
1b  
0b  
0b  
Host low-speed  
suspend  
Host low-speed  
resume  
10b  
1b  
0b  
10b  
10b  
1b  
1b  
1b  
1b  
0b  
0b  
1b  
1b  
1b  
1b  
0b  
1b  
Host Test J or Test K 00b  
Peripheral settings  
Peripheral chirp  
00b  
00b  
1b  
0b  
10b  
00b  
0b  
0b  
0b  
0b  
1b  
0b  
0b  
0b  
0b  
0b  
0b  
1b  
Peripheral  
high-speed  
Peripheral full-speed 01b  
1b  
1b  
00b  
00b  
0b  
0b  
0b  
0b  
1b  
1b  
0b  
0b  
0b  
0b  
0b  
0b  
Peripheral  
01b  
high-speed or  
full-speed suspend  
Peripheral  
high-speed or  
full-speed resume  
01b  
1b  
0b  
10b  
10b  
0b  
0b  
0b  
0b  
1b  
0b  
0b  
0b  
0b  
0b  
0b  
1b  
Peripheral Test J or 00b  
Test K  
OTG settings  
OTG device  
peripheral chirp  
00b  
00b  
1b  
0b  
10b  
00b  
0b  
0b  
1b  
1b  
1b  
0b  
0b  
0b  
1b  
1b  
0b  
1b  
OTG device  
peripheral  
high-speed  
OTG device  
01b  
1b  
00b  
0b  
1b  
1b  
0b  
1b  
0b  
peripheral full-speed  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
19 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 8.  
Operating states and corresponding resistor settings …continued  
Signaling mode  
Register settings  
Internal resistor settings  
XCVR  
SELECT  
[1:0]  
TERM  
SELECT [1:0]  
OPMODE  
DP_  
PULL PULL  
DOWN DOWN  
DM_  
RPU_DP RPD_DP RPD_  
HSTERM_  
_EN  
_EN  
DM_EN EN  
OTG device  
peripheral  
high-speed and  
full-speed suspend  
01b  
01b  
00b  
1b  
1b  
0b  
00b  
10b  
10b  
0b  
0b  
0b  
1b  
1b  
1b  
1b  
0b  
1b  
1b  
1b  
0b  
0b  
1b  
OTG device  
peripheral  
high-speed and  
full-speed resume  
1b  
0b  
0b  
0b  
OTG device  
peripheral Test J or  
Test K  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
20 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
9. Protocol description  
This following subsections describe the protocol for using the ISP1504x1.  
9.1 ULPI references  
The ISP1504x1 provides a 12-pin ULPI interface to communicate with the link. It is highly  
recommended that you read UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1 and  
UTMI+ Specification Rev. 1.0.  
9.2 Power-On Reset (POR)  
An internal POR is generated when REG1V8 rises above VPOR(trip) for at least  
tw(REG1V8_H). The internal POR pulse will also be generated whenever REG1V8 drops  
below VPOR(trip) for more than tw(REG1V8_L), and then rises above VPOR(trip) again. The  
voltage on REG1V8 is generated from VCC  
.
To give a better view of the functionality, Figure 5 shows a possible curve of REG1V8. The  
internal POR starts with logic 0 at t0. At t1, the detector will see the passing of the trip  
level so that POR turns to logic 1 and a delay element will add another tPORP before it  
drops to logic 0. If REG1V8 dips from t2 to t3 for > tw(REG1V8_L), another POR pulse is  
generated. If the dip at t4 to t5 is too short, that is, < tw(REG1V8_L), the internal POR pulse  
will not react and will remain LOW.  
REG1V8  
V
POR(trip)  
t4  
t3  
t5  
t0  
t1  
t
t2  
POR  
t
PORP  
PORP  
004aaa751  
Fig 5. Internal power-on reset timing  
9.3 Power-up, reset and bus idle sequence  
Figure 6 shows a typical start-up sequence.  
On power-up, the ISP1504x1 performs an internal power-on reset and asserts DIR to  
indicate to the link that the ULPI bus cannot be used. When the internal PLL is stable, the  
ISP1504x1 de-asserts DIR and outputs 60 MHz on the CLOCK pin. The power-up time  
depends on the VCC supply rise time, the crystal start-up time, and the PLL start-up time  
(tstartup(o)(CLOCK)). Whenever DIR is asserted, the ISP1504x1 drives the NXT pin to LOW  
and drives DATA[7:0] with RXCMD values. When DIR is de-asserted, the link must drive  
the data bus to a valid level. By default, the link must drive data to LOW. When the  
ISP1504x1 initially de-asserts DIR on power-up, the link must ignore all RXCMDs until it  
resets the ISP1504x1. Before beginning USB packets, the link must set the RESET bit in  
the Function Control register to reset the ISP1504x1. After the RESET bit is set, the  
ISP1504x1 will assert DIR until the internal reset completes. The ISP1504x1 will  
automatically de-assert DIR and clear the RESET bit when reset has completed. After  
every reset, an RXCMD is sent to the link to update USB status information. After this  
sequence, the ULPI bus is ready for use and the link can start USB operations.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
21 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
The recommended power-up sequence for the link is:  
1. The CS_N/PWRDN pin transitions from HIGH to LOW.  
2. The link waits for 1 ms, ignoring all the ULPI pin status.  
3. The link may start to detect DIR status level. If DIR is detected LOW for three clock  
cycles, the link may send a RESET command.  
4. The ULPI interface is ready for use.  
For details on power-up sequence, see Figure 6.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
22 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
V
CC  
V
CC(I/O)  
CS_N/  
PWRDN  
REG1V8  
t
PWRUP  
internal  
REG1V8  
detector  
internal  
POR  
XTAL1  
bus idle  
internal clocks stable  
RESET command  
t
startup(PLL)  
CLOCK  
DATA[7:0]  
D
TXCMD  
RXCMD  
update  
internal reset  
DIR  
STP  
NXT  
t8  
t1 t2  
t4  
t5  
t6  
t7  
t3  
004aaa768  
t1 = VCC is applied to the ISP1504x1.  
t2 = VCC(I/O) is turned on. ULPI interface pins (CLOCK, DATA[7:0], DIR and NXT) are in 3-state as long as CS_N/PWRDN is  
HIGH.  
t3 = CS_N/PWRDN turns from HIGH to LOW. The ISP1504x1 regulator starts to turn on.  
t4 = ULPI pads detect REG1V8 rising above the REG1V8 regulator threshold and are not in 3-state. These pads may drive  
either LOW or HIGH. It is recommended that the link ignores the ULPI pins status during tPWRUP  
.
t5 = The POR threshold is reached and a POR pulse is generated. After the POR pulse, ULPI pins are driven to a defined  
level. DIR is driven to HIGH and the other pins are driven to LOW.  
t6 = The 19.2 MHz or 26 MHz input clock starts. This clock may be started any time.  
t7 = The internal PLL is stabilized after tstartup(PLL). If the 19.2 MHz or 26 MHz clock is started before POR, the internal PLL  
will be stabilized after tstartup(PLL) from POR. The CLOCK pin starts to output 60 MHz. The DIR pin will transition from HIGH  
to LOW. The link is expected to issue a RESET command to initialize the ISP1504x1.  
t8 = The power-up sequence is completed and the ULPI bus interface is ready for use.  
Fig 6. Power-up and reset sequence required before the ULPI bus is ready for use  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
23 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
9.3.1 Interface protection  
By default, the ISP1504x1 enables a weak pull-up resistor on STP. If the STP pin is  
unexpectedly HIGH at any time, the ISP1504x1 will protect the ULPI interface by enabling  
weak pull-down resistors on DATA[7:0].  
The interface protect feature prevents unwanted activity of the ISP1504x1 whenever the  
ULPI interface is not correctly driven by the link. For example, when the link powers up  
more slowly than the ISP1504x1.  
The interface protect feature can be disabled by setting the INTF_PROT_DIS bit to logic 1.  
If the interface protect feature is not needed, it must be disabled to reduce power  
consumption.  
9.3.2 Interface behavior with respect to RESET_N  
The use of the RESET_N pin is optional. When RESET_N is asserted (LOW), the  
ISP1504x1 will assert DIR. All logic in the ISP1504x1 will be reset, including the analog  
circuitry and ULPI registers. During reset, the link must drive DATA[7:0] and STP to LOW;  
otherwise undefined behavior may result. When RESET_N is de-asserted (HIGH), the  
DIR output will de-assert (LOW) four or five clock cycles later. Figure 7 shows the ULPI  
interface behavior when RESET_N is asserted (LOW), and when RESET_N is  
subsequently de-asserted (HIGH). The behavior of Figure 7 applies only when  
CS_N/PWRDN is asserted (LOW). If RESET_N is not used, it must be tied to VCC(I/O)  
.
CLOCK  
RESET_N  
DATA[7:0]  
Hi-Z (input)  
Hi-Z (input)  
Hi-Z (link must drive)  
Hi-Z (link must drive)  
Hi-Z (input)  
DIR  
Hi-Z (input)  
STP  
NXT  
004aaa720  
Fig 7. Interface behavior with respect to RESET_N  
9.3.3 Interface behavior with respect to CS_N/PWRDN  
The use of the CS_N/PWRDN pin is optional. When de-asserted (HIGH), the  
CS_N/PWRDN pin will 3-state ULPI pins and power down internal circuitry. If  
CS_N/PWRDN is not used, it must be tied to LOW. Figure 8 shows the ULPI interface  
behavior when CS_N/PWRDN is asserted (LOW) and when CS_N/PWRDN is  
subsequently de-asserted (HIGH). The behavior of Figure 8 assumes that RESET_N is  
de-asserted (HIGH).  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
24 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
t
PWRDN  
Hi-Z (ignored)  
CLOCK  
CS_N/PWRDN  
DATA[7:0]  
DIR  
Hi-Z (input)  
Hi-Z (ignored)  
Hi-Z (ignored)  
Hi-Z (ignored)  
Hi-Z (ignored)  
Hi-Z (input)  
STP  
NXT  
004aaa734  
Fig 8. Interface behavior with respect to CS_N/PWRDN  
9.4 VBUS power and overcurrent detection  
9.4.1 Driving 5 V on VBUS  
The ISP1504x1 supports external 5 V supplies. The ISP1504x1 can control the external  
supply using the active-LOW PSW_N open-drain output pin. To enable the external supply  
by driving PSW_N to LOW, the link must set the DRV_VBUS_EXT bit in the OTG Control  
register to logic 1.  
Table 9 summarizes settings to drive 5 V on VBUS  
.
Table 9.  
OTG Control register power control bits  
DRV_VBUS_EXT  
Power source used  
0
1
external 5 V VBUS power source disabled (PSW_N = HIGH)  
external 5 V VBUS power source enabled (PSW_N = LOW)  
9.4.2 Fault detection  
The ISP1504x1 supports external VBUS fault detector circuits that output a digital fault  
indicator signal. The indicator signal must be connected to the FAULT pin. To enable the  
ISP1504x1 to monitor the digital fault input, the link must set the USE_EXT_VBUS_IND  
bit in the OTG Control register and the IND_PASSTHRU bit in the Interface Control  
register to logic 1. For details, see Figure 10.  
The FAULT input pin is mapped to the A_VBUS_VLD bit in RXCMD. Any changes for the  
FAULT input will trigger RXCMD carrying the FAULT condition with A_VBUS_VLD.  
9.5 TXCMD and RXCMD  
Commands between the ISP1504x1 and the link are described in the following  
subsections.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
25 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
9.5.1 TXCMD  
ULPI HS USB OTG transceiver  
By default, the link must drive the ULPI bus to its idle state of 00h. To send commands and  
USB packets, the link drives a nonzero value on DATA[7:0] to the ISP1504x1 by sending a  
byte called TXCMD. Commands include USB packet transmissions, and register reads  
and writes. Once the TXCMD is interpreted and accepted by the ISP1504x1, the NXT  
signal is asserted and the link can follow up with the required number of data bytes. The  
TXCMD byte format is given in Table 10. Any values other than those in Table 10 are  
illegal and will result in undefined behavior.  
Various TXCMD packet and register sequences are shown in later sections.  
Table 10. TXCMD byte format  
Command Command code Command  
type name DATA[7:6]  
Command  
NOOP  
Command description  
payload DATA[5:0] name  
Idle  
00b  
00 0000b  
No operation. 00h is the idle value of the data bus.  
The link must drive NOOP by default.  
Packet  
transmit  
01b  
00 0000b  
NOPID  
Transmit USB data that does not have a PID, such as  
chirp and resume signaling. The ISP1504x1 starts  
transmitting only after accepting the next data byte.  
00 XXXXb  
10 1111b  
PID  
Transmit USB packet. DATA[3:0] indicates USB  
packet identifier PID[3:0].  
Register  
write  
10b  
11b  
EXTW  
Extended register write command (optional). The  
8-bit address must be provided after the command is  
accepted.  
XX XXXXb  
10 1111b  
REGW  
EXTR  
Register write command with 6-bit immediate  
address.  
Register  
read  
Extended register read command (optional). The  
8-bit address must be provided after the command is  
accepted.  
XX XXXXb  
REGR  
Register read command with 6-bit immediate  
address.  
9.5.2 RXCMD  
The ISP1504x1 communicates status information to the link by asserting DIR and sending  
an RXCMD byte on the DATA bus. The RXCMD data byte format follows UTMI+ Low Pin  
Interface (ULPI) Specification Rev. 1.1 and is given in Table 11.  
The ISP1504x1 will automatically send an RXCMD whenever there is a change in any of  
the RXCMD data fields. The link must be able to accept an RXCMD at any time; including  
single RXCMDs, back-to-back RXCMDs, and RXCMDs at any time during USB receive  
packets when NXT is LOW. An example is shown in Figure 9. For details and diagrams,  
refer to UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1.  
An RXCMD may not be sent when exiting low-power mode or serial mode, if the interrupt  
condition is removed before exiting.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
26 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 11. RXCMD byte format  
DATA  
Name  
Description and value  
1 to 0  
LINESTATE LINESTATE signals: For a definition of LINESTATE, see Section 9.5.2.1.  
DATA0 — LINESTATE[0]  
DATA1 — LINESTATE[1]  
3 to 2  
5 to 4  
6
VBUS state  
RxEvent  
ID  
Encoded VBUS voltage state: For an explanation of the VBUS state, see Section 9.5.2.2.  
Encoded USB event signals: For an explanation of RxEvent, see Section 9.5.2.4.  
Set to the value of the ID pin.  
7
ALT_INT  
By default, this signal is not used and is not needed in typical designs. Optionally, the link can  
enable the BVALID_RISE and/or BVALID_FALL bits in the Power Control register. Corresponding  
changes in BVALID will cause an RXCMD to be sent to the link with the ALT_INT bit asserted.  
CLOCK  
Single RXCMD  
RXCMD  
Back-to-back RXCMDs  
RXCMD RXCMD  
turnaround  
turnaround  
turnaround  
turnaround  
[
]
DATA 7:0  
DIR  
STP  
NXT  
004aaa695  
Fig 9. Single and back-to-back RXCMDs from the ISP1504x1 to the link  
9.5.2.1 Linestate encoding  
LINESTATE[1:0] reflects the current state of DP and DM. Whenever the ISP1504x1  
detects a change in DP or DM, an RXCMD will be sent to the link with the new  
LINESTATE[1:0] value. The value given on LINESTATE[1:0] depends on the setting of  
various registers. Table 12 shows the LINESTATE[1:0] encoding for upstream facing ports,  
which applies to peripherals. Table 13 shows the LINESTATE[1:0] encoding for  
downstream facing ports, which applies to Host Controllers. Dual-role devices must  
choose the correct table, depending on whether it is in peripheral or host mode.  
Table 12. LINESTATE[1:0] encoding for upstream facing ports: peripheral  
DP_PULLDOWN = 0.[1]  
Mode  
Full-speed  
01, 11  
1
High-speed  
00  
Chirp  
XCVRSELECT[1:0]  
TERMSELECT  
00  
0
1
LINESTATE[1:0]  
00  
SE0  
squelch  
!squelch  
invalid  
invalid  
squelch  
01  
10  
11  
FS-J  
!squelch and HS_Differential_Receiver_Output  
!squelch and !HS_Differential_Receiver_Output  
invalid  
FS-K  
SE1  
[1] !squelch indicates inactive squelch. !HS_Differential_Receiver_Output indicates inactive HS_Differential_Receiver_Output.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
27 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 13. LINESTATE[1:0] encoding for downstream facing ports: host  
DP_PULLDOWN and DM_PULLDOWN = 1.[1]  
Mode  
Low-speed  
Full-speed High-speed Chirp  
XCVRSELECT[1:0]  
TERMSELECT  
OPMODE[1:0]  
LINESTATE[1:0]  
10  
01, 11  
1
00  
00  
1
0
0
X
X
00, 01 or 11  
squelch  
!squelch  
invalid  
invalid  
10  
00  
01  
10  
11  
SE0  
LS-K  
LS-J  
SE1  
SE0  
FS-J  
FS-K  
SE1  
squelch  
!squelch and HS_Differential_Receiver_Output  
!squelch and !HS_Differential_Receiver_Output  
invalid  
[1] !squelch indicates inactive squelch. !HS_Differential_Receiver_Output indicates inactive HS_Differential_Receiver_Output.  
9.5.2.2 VBUS state encoding  
USB devices must monitor the VBUS voltage for purposes such as overcurrent detection,  
starting a session and SRP. The VBUS state field in the RXCMD is an encoding of the  
voltage level on VBUS  
.
The SESS_END and SESS_VLD indicators in the VBUS state are directly taken from  
internal comparators built-in to the ISP1504x1, and encoded as shown in Table 11 and  
Table 14.  
Table 14. Encoded VBUS voltage state  
Value  
00  
VBUS voltage  
SESS_END  
SESS_VLD  
A_VBUS_VLD  
VBUS < VB_SESS_END  
1
0
X
X
0
0
1
X
0
0
0
1
01  
VB_SESS_END VBUS < VA_SESS_VLD  
VA_SESS_VLD VBUS < VA_VBUS_VLD  
VBUS VA_VBUS_VLD  
10  
11  
The A_VBUS_VLD indicator in the VBUS state provides several options and must be  
configured based on current draw requirements. A_VBUS_VLD can input from one or  
more VBUS voltage indicators, as shown in Figure 10.  
A description on how to use and select the VBUS state encoding is given in  
Section 9.5.2.3.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
28 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
A_VBUS_VLD comparator  
internal A_VBUS_VLD  
V
BUS  
(0, X)  
(1, 0)  
RXCMD  
A_VBUS_VLD  
complement  
output  
FAULT indicator  
FAULT  
(1, 1)  
IND_COMPL  
USE_EXT_VBUS_IND,  
IND_PASSTHRU  
004aaa698  
Fig 10. RXCMD A_VBUS_VLD indicator source  
9.5.2.3 Using and selecting the VBUS state encoding  
The VBUS state encoding is shown in Table 11. The ISP1504x1 will send an RXCMD to the  
link whenever there is a change in the VBUS state. To receive VBUS state updates, the link  
must first enable corresponding interrupts in the USB Interrupt Enable Rising Edge and  
USB Interrupt Enable Falling Edge registers.  
The link can use the VBUS state to monitor VBUS and take appropriate action. Table 15  
shows the recommended usage for typical applications.  
Table 15. VBUS indicators in RXCMD required for typical applications  
Application  
A_VBUS_VLD  
SESS_VLD  
SESS_END  
Standard host  
yes  
no  
no  
no  
no  
yes  
Standard peripheral no  
yes  
yes  
yes  
OTG A-device  
OTG B-device  
yes  
no  
Standard USB Host Controllers: For standard hosts, the system must be able to provide  
500 mA on VBUS in the range of 4.75 V to 5.25 V. An external circuit must be used to  
detect overcurrent conditions. If the external overcurrent detector provides a digital fault  
signal, then the fault signal must be connected to the ISP1504x1 FAULT input pin, and the  
link must do the following:  
1. Set the IND_COMPL bit in the Interface Control register to logic 0 or logic 1,  
depending on the polarity of the external fault signal.  
2. Set the USE_EXT_VBUS_IND bit in the OTG Control register to logic 1.  
3. If it is not necessary to qualify the fault indicator with the internal A_VBUS_VLD  
comparator, set the IND_PASSTHRU bit in the Interface Control register to logic 1.  
Standard USB Peripheral Controllers: Standard peripherals must be able to detect  
when VBUS is at a sufficient level for operation. SESS_VLD must be enabled to detect the  
start and end of USB peripheral operations. Detection of A_VBUS_VLD and SESS_END  
thresholds is not needed for standard peripherals.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
29 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
OTG devices: When an OTG device is configured as an OTG A-device, it must be able to  
provide a minimum of 8 mA on VBUS. If the OTG A-device provides less than 100 mA, then  
there is no need for an overcurrent detection circuit because the internal A_VBUS_VLD  
comparator is sufficient. If the OTG A-device provides more than 100 mA on VBUS, an  
overcurrent detector must be used and Section “Standard USB Host Controllers” applies.  
The OTG A-device also uses SESS_VLD to detect when an OTG A-device is initiating  
VBUS pulsing SRP.  
When an OTG device is configured as an OTG B-device, SESS_VLD must be used to  
detect when VBUS is at a sufficient level for operation. SESS_END must be used to detect  
when VBUS has dropped to a LOW level, allowing the B-device to safely initiate VBUS  
pulsing SRP.  
9.5.2.4 RxEvent encoding  
The RxEvent field (see Table 16) of the RXCMD informs the link of information related  
packets received on the USB bus. RxActive and RxError are defined in USB 2.0  
Transceiver Macrocell Interface (UTMI) Specification Ver. 1.05. HostDisconnect is defined  
in UTMI+ Specification Rev. 1.0. A short definition is also given in the following  
subsections.  
Table 16. Encoded USB event signals  
Value  
00  
RxActive  
RxError  
HostDisconnect  
0
1
1
X
0
0
1
X
0
0
0
1
01  
11  
10  
RxActive: When the ISP1504x1 has detected a SYNC pattern on the USB bus, it signals  
an RxActive event to the link. An RxActive event can be communicated using two  
methods. The first method is for the ISP1504x1 to simultaneously assert DIR and NXT.  
The second method is for the ISP1504x1 to send an RXCMD to the link with the RxActive  
field in RxEvent bits set to logic 1. The link must be able to detect both methods. RxActive  
frames the receive packet from the first byte to the last byte.  
The link must assume that RxActive is set to logic 0 when indicated in an RXCMD or when  
DIR is de-asserted, whichever occurs first.  
The link uses RxActive to time high-speed packets and ensure that bus turnaround times  
are met. For more information on the USB packet timing, see Section 9.8.1.  
RxError: When the ISP1504x1 has detected an error while receiving a USB packet, it  
de-asserts NXT and sends an RXCMD with the RxError field set to logic 1. The received  
packet is no longer valid and must be dropped by the link.  
HostDisconnect: HostDisconnect is encoded into the RxEvent field of the RXCMD.  
HostDisconnect is valid only when the ISP1504x1 is configured as a host (both  
DP_PULLDOWN and DM_PULLDOWN are set to logic 1), and indicates to the Host  
Controller when a peripheral is connected or disconnected. The Host Controller must  
enable HostDisconnect by setting the HOST_DISCON_R and HOST_DISCON_F bits in  
the USB Interrupt Enable Rising Edge and USB Interrupt Enable Falling Edge registers,  
respectively. Changes in HostDisconnect will cause the PHY to send an RXCMD to the  
link with the updated value.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
30 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
9.6 Register read and write operations  
Figure 11 shows register read and write sequences. The ISP1504x1 supports immediate  
addressing and extended addressing register operations. Extended register addressing is  
optional for links. Note that register operations will be aborted if the ISP1504x1 asserts  
DIR during the operation. When a register operation is aborted, the link must retry until  
successful. For more information on register operations, refer to UTMI+ Low Pin Interface  
(ULPI) Specification Rev. 1.1.  
CLOCK  
TXCMD  
(REGW) D  
TXCMD  
(REGR)  
TXCMD  
(EXTW) AD  
TXCMD  
(EXTW) AD  
D
D
D
DATA[7:0]  
immediate  
register write  
extended  
register write  
immediate  
register read  
extended  
register read  
DIR  
STP  
NXT  
004aaa710  
AD indicates the address byte, and D indicates the data byte.  
Fig 11. Example of register write, register read, extended register write and extended register read  
9.7 USB reset and high-speed detection handshake (chirp)  
Figure 12 shows the sequence of events for USB reset and high-speed detection  
handshake (chirp). The sequence is shown for hosts and peripherals. Figure 12 does not  
show all RXCMD updates, and timing is not to scale. The sequence is as follows:  
1. USB reset: The host detects a peripheral attachment as low-speed if DM is HIGH and  
as full-speed if DP is HIGH. If a host detects a low-speed peripheral, it does not follow  
the remainder of this protocol. If a host detects a full-speed peripheral, it resets the  
peripheral by writing to the Function Control register and setting XCVRSELECT[1:0] =  
00b (high-speed) and TERMSELECT = 0b, which drives SE0 on the bus (DP and DM  
are connected to ground through 45 ). The host also sets OPMODE[1:0] = 10b for  
correct chirp transmit and receive. The start of SE0 is labeled T0.  
Remark: To receive chirp signaling, the host must also consider the high-speed  
differential receiver output. The Host Controller must interpret LINESTATE as shown  
in Table 13.  
2. High-speed detection handshake (chirp)  
a. Peripheral chirp: After detecting SE0 for no less than 2.5 µs, if the peripheral is  
capable of high-speed, it sets XCVRSELECT[1:0] to 00b (high-speed) and  
OPMODE[1:0] to 10b (chirp). The peripheral immediately follows this with a  
TXCMD (NOPID), transmitting a Chirp K for no less than 1 ms and ending no more  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
31 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
than 7 ms after reset time T0. If the peripheral is in low-power mode, it must wake  
up its clock within 5.6 ms, leaving 200 µs for the link to start transmitting the  
Chirp K, and 1.2 ms for the Chirp K to complete (worst case with 10 % slow clock).  
b. Host chirp: If the host does not detect the peripheral chirp, it must continue  
asserting SE0 until the end of reset. If the host detects the peripheral Chirp K for  
no less than 2.5 µs, then no more than 100 µs after the bus leaves the Chirp K  
state, the host sends a TXCMD (NOPID) with an alternating sequence of Chirp Ks  
and Js. Each Chirp K or Chirp J must last no less than 40 µs and no longer than  
60 µs.  
c. High-speed idle: The peripheral must detect a minimum of Chirp K-J-K-J-K-J. Each  
Chirp K and Chirp J must be detected for at least 2.5 µs. After seeing that  
minimum sequence, the peripheral sets TERMSELECT = 0b and OPMODE[1:0] =  
00b. The peripheral is now in high-speed mode and sees !squelch (01b on  
LINESTATE). When the peripheral sees squelch (10b on LINESTATE), it knows  
that the host has completed chirp and waits for high-speed USB traffic to begin.  
After transmitting the chirp sequence, the host changes OPMODE[1:0] to 00b and  
begins sending USB packets.  
For more information, refer to UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
32 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
USB reset  
high-speed detection handshake (chirp)  
T
0
peripheral chirp  
host chirp  
HS idle  
TXCMD  
(REGW)  
TXCMD  
(REGW)  
TXCMD  
NOPID  
SE0  
K
00  
K
...  
J
K
J
DATA  
[
]
7:0  
DIR  
STP  
NXT  
00 (HS)  
01 (FS)  
XCVR  
SELECT  
TERM  
SELECT  
00 (normal)  
00 (normal)  
J (01b)  
01 (chirp)  
OP  
MODE  
squelch  
(00b)  
SE0 (00b)  
host chirp K (10b) or chirp J (01b)  
peripheral chirp K (10b)  
squelch (00b)  
LINE  
STATE  
RXCMDs  
TXCMD  
TXCMD  
(REGW)  
TXCMD  
NOPID  
(REGW)  
00  
K
J
K
J
00  
SE0  
K
K
...  
K
K
J
DATA  
[
]
7:0  
DIR  
STP  
NXT  
01 (FS)  
00 (HS)  
XCVR  
SELECT  
TERM  
SELECT  
00 (normal)  
10 (chirp)  
00 (normal)  
OP  
MODE  
squelch  
(00b)  
!squelch  
(01b)  
squelch (00b)  
peripheral chirp K (10b)  
J (01b)  
SE0 (00b)  
host chirp K or J (10b or 01b)  
LINE  
STATE  
DP  
DM  
004aaa711  
Timing is not to scale.  
Fig 12. USB reset and high-speed detection handshake (chirp) sequence  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
33 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
9.8 USB packet transmit and receive  
An example of a packet transmit and receive is shown in Figure 13. For details on USB  
packets, refer to UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1.  
ISP1504x1  
ISP1504x1 deasserts  
ISP1504x1  
asserts DIR,  
causing  
turnaround  
cycle  
link sends  
the next data;  
ISP1504x1  
accepts  
ISP1504x1  
sends  
RXCMD  
ISP1504x1  
accepts  
TXCMD  
sends  
USB data turnaround  
(NXT HIGH) cycle  
DIR, causing  
link sends  
TXCMD  
link signals  
end of data  
ULPI bus  
is idle  
(NXT LOW)  
CLOCK  
DATA  
turnaround  
turnaround  
RXCMD  
DATA  
TXCMD  
[
]
DATA 7:0  
DIR  
STP  
NXT  
004aaa944  
Fig 13. Example of using the ISP1504x1 to transmit and receive USB data  
9.8.1 USB packet timing  
9.8.1.1 ISP1504x1 pipeline delays  
The ISP1504x1 delays are shown in Table 17. For detailed description, refer to UTMI+  
Low Pin Interface (ULPI) Specification Rev. 1.1, Section 3.8.2.6.2.  
Table 17. PHY pipeline delays  
Parameter name  
RXCMD delay (J and K)  
RXCMD delay (SE0)  
TX start delay  
High-speed PHY delay  
Full-speed PHY delay  
4
Low-speed PHY delay  
4
4
4
4 to 6  
16 to 18  
1 to 2  
3 to 4  
6 to 9  
5 to 6  
5 to 6  
6 to 10  
74 to 75  
TX end delay (packets)  
TX end delay (SOF)  
RX start delay  
not applicable  
not applicable  
not applicable  
17 to 18  
not applicable  
not applicable  
not applicable  
122 to 123  
RX end delay  
9.8.1.2 Allowed link decision time  
The amount of clock cycles allocated to the link to respond to a received packet and  
correctly receive back-to-back packets is given in Table 18. Link designs must follow  
values given in Table 18 for correct USB system operation. Examples of high-speed  
packet sequences and timing are shown in Figure 14 and Figure 15. For details, refer to  
UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1, Section 3.8.2.6.3.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
34 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 18. Link decision times  
Packet sequence High-speed Full-speed Low-speed Definition  
link delay  
link delay  
link delay  
Transmit-Transmit 15 to 24  
(host only)  
7 to 18  
77 to 247  
Number of clocks a host link must wait before driving the  
TXCMD for the second packet.  
In high-speed, the link starts counting from the assertion of  
STP for the first packet.  
In full-speed, the link starts counting from the RXCMD,  
indicating LINESTATE has changed from SE0 to J for the  
first packet. The timing given ensures inter-packet delays of  
2 bit times to 6.5 bit times.  
Receive-Transmit 1 to 14  
(host or  
7 to 18  
77 to 247  
Number of clocks the link must wait before driving the  
TXCMD for the transmit packet.  
peripheral)  
In high-speed, the link starts counting from the end of the  
receive packet; de-assertion of DIR or an RXCMD  
indicating RxActive is LOW.  
In full-speed or low-speed, the link starts counting from the  
RXCMD, indicating LINESTATE has changed from SE0 to J  
for the receive packet. The timing given ensures  
inter-packet delays of 2 bit times to 6.5 bit times.  
Receive-Receive  
(peripheral only)  
1
1
1
Minimum number of clocks between consecutive receive  
packets. The link must be capable of receiving both  
packets.  
Transmit-Receive 92  
(host or  
peripheral)  
80  
718  
Host or peripheral transmits a packet and will time-out after  
this amount of clock cycles if a response is not received.  
Any subsequent transmission can occur after this time.  
USB interpacket delay (88 to 192 high-speed bit times)  
DP or  
DM  
IDLE  
EOP  
SYNC  
D0  
DATA  
CLOCK  
D
N1  
D
N
D1  
TXCMD  
DATA  
[7:0]  
DIR  
STP  
NXT  
link decision time (15 to 24 clocks)  
TX start delay  
TX end delay (two to five clocks)  
(one to two clocks)  
004aaa712  
Fig 14. High-speed transmit-to-transmit packet timing  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
35 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
USB interpacket delay (8 to 192 high-speed bit times)  
DP or  
DM  
IDLE  
EOP  
SYNC  
DATA  
CLOCK  
D
N
D
N4  
D
N2  
D0  
D1  
TXCMD  
DATA  
[7:0]  
turnaround  
D
N3  
D
N1  
DIR  
STP  
NXT  
link decision time (1 to 14 clocks)  
RX end delay  
(three to eight clocks)  
TX start delay  
(one to two clocks)  
004aaa713  
Fig 15. High-speed receive-to-transmit packet timing  
9.9 Preamble  
Preamble packets are headers to low-speed packets that must travel over a full-speed  
bus, between a host and a hub. To enter preamble mode, the link sets  
XCVRSELECT[1:0] = 11b in the Function Control register. When in preamble mode, the  
ISP1504x1 operates just as in full-speed mode, and sends all data with full-speed rise and  
fall times. Whenever the link transmits a USB packet in preamble mode, the ISP1504x1  
will automatically send a preamble header at full-speed bit rate before sending the link  
packet at low-speed bit rate. The ISP1504x1 will ensure a minimum gap of four full-speed  
bit times between the last bit of the full-speed PRE PID and the first bit of the low-speed  
packet SYNC. The ISP1504x1 will drive a J for at least one full-speed bit time after  
sending the PRE PID, after which the pull-up resistor can hold the J state on the bus. An  
example transmit packet is shown in Figure 16.  
In preamble mode, the ISP1504x1 can also receive low-speed packets from the full-speed  
bus.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
36 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
CLOCK  
D1  
D0  
TXCMD (low-speed packet ID)  
DATA[7:0]  
DIR  
STP  
NXT  
FS  
PRE ID  
IDLE (min  
4 FS bits)  
LS D0  
LS D1  
LS SYNC  
LS PID  
FS SYNC  
DP or DM  
004aaa714  
DP and DM timing is not to scale.  
Fig 16. Preamble sequence  
9.10 USB suspend and resume  
9.10.1 Full-speed or low-speed host-initiated suspend and resume  
Figure 17 illustrates how a host or a hub places a full-speed or low-speed peripheral into  
suspend and sometime later initiates resume signaling to wake up the downstream  
peripheral. Note that Figure 17 timing is not to scale, and does not show all RXCMD  
LINESTATE updates.  
The sequence of events for a host and a peripheral, both with ISP1504x1, is as follows:  
1. Idle: Initially, the host and the peripheral are idle. The host has its 15 kpull-down  
resistors enabled (DP_PULLDOWN and DM_PULLDOWN are set to 1b) and 45 Ω  
terminations disabled (TERMSELECT is set to 1b). The peripheral has the 1.5 kΩ  
pull-up resistor connected to DP for full-speed or DM for low-speed (TERMSELECT is  
set to 1b).  
2. Suspend: When the peripheral sees no bus activity for 3 ms, it enters the suspend  
state. The peripheral link places the PHY into low-power mode by setting the  
SUSPENDM bit in the Function Control register, causing the PHY to draw only  
suspend current. The host may or may not be powered down.  
3. Resume K: When the host wants to wake up the peripheral, it sets OPMODE[1:0] to  
10b and transmits a K for at least 20 ms. The peripheral link sees the resume K on  
LINESTATE, and asserts STP to wake up the PHY.  
4. EOP: When STP is asserted, the ISP1504x1 on the host side automatically appends  
an EOP of two bits of SE0 at low-speed bit rate, followed by one bit of J. The  
ISP1504x1 on the host side knows to add the EOP because DP_PULLDOWN and  
DM_PULLDOWN are set to 1b for a host. After the EOP is completed, the host link  
sets OPMODE[1:0] to 00b for normal operation. The peripheral link sees the EOP and  
also resumes normal operation.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
37 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
EOP  
idle  
suspend  
resume K  
idle  
TXCMD  
(REGW)  
TXCMD  
NOPID  
K
...  
K
TXCMD  
K
DATA  
[
]
7:0  
DIR  
STP  
NXT  
OPMODE  
10b  
00b  
00b  
LINE  
STATE  
K
SE0  
J
J
CLOCK  
TXCMD  
(REGW)  
LINESTATE J  
LINESTATE K  
SE0  
J
DATA  
[
]
7:0  
DIR  
STP  
NXT  
00b  
OPMODE  
10b  
00b  
SUSPEND  
M
LINE  
STATE  
K
SE0  
J
J
DP  
DM  
004aaa715  
Timing is not to scale.  
Fig 17. Full-speed suspend and resume  
9.10.2 High-speed suspend and resume  
Figure 18 illustrates how a host or a hub places a high-speed enabled peripheral into  
suspend and then initiates resume signaling. The high-speed peripheral will wake up and  
return to high-speed operations. Note that Figure 18 timing is not to scale, and does not  
show all RXCMD LINESTATE updates.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
38 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
The sequence of events related to a host and a peripheral, both with ISP1504x1, is as  
follows.  
1. High-speed idle: Initially, the host and the peripheral are idle. The host has its 15 kΩ  
pull-down resistors enabled (DP_PULLDOWN and DM_PULLDOWN are set to 1b)  
and 45 terminations enabled (TERMSELECT is set to 0b). The peripheral has its  
45 terminations enabled (TERMSELECT is set to 0b).  
2. Full-speed suspend: When the peripheral sees no bus activity for 3 ms, it enters the  
suspend state. The peripheral link places the ISP1504x1 into full-speed mode  
(XCVRSELECT is set to 01b), removes 45 terminations, and enables the 1.5 kΩ  
pull-up resistor on DP (TERMSELECT is set to 1b). The peripheral link then places  
the ISP1504x1 into low-power mode by setting SUSPENDM, causing the ISP1504x1  
to draw only suspend current. The host also changes the ISP1504x1 to full-speed  
(XCVRSELECT is set to 01b), removes 45 terminations (TERMSELECT is set to  
1b), and then may or may not be powered down.  
3. Resume K: When the host wants to wake up the peripheral, it sets OPMODE to 10b  
and transmits a full-speed K for at least 20 ms. The peripheral link sees the resume K  
(10b) on LINESTATE, and asserts STP to wake up the ISP1504x1.  
4. High-speed traffic: The host link sets high-speed (XCVRSELECT is set to 00b) and  
enables its 45 terminations (TERMSELECT is set to 0b). The peripheral link sees  
SE0 on LINESTATE and also sets high-speed (XCVRSELECT is set to 00b), and  
enables its 45 terminations (TERMSELECT is set to 0b). The host link sets  
OPMODE to 00b for normal high-speed operation.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
39 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
FS suspend  
resume K  
HS idle  
HS idle  
TXCMD  
(REGW)  
TXCMD  
(REGW)  
TXCMD  
(REGW)  
TXCMD  
NOPID  
K
K
...  
K
DATA  
[
]
7:0  
DIR  
STP  
NXT  
XCVR  
01b  
00b  
00b  
SELECT  
TERM  
SELECT  
OP  
10b  
00b  
00b  
MODE  
!SQUELCH  
(01b)  
!SQUELCH SQUELCH  
FS J (01b)  
FS K (10b)  
SQUELCH (00b)  
(01b)  
(00b)  
LINE  
STATE  
CLOCK  
TXCMD  
(REGW)  
TXCMD  
(REGW)  
LINESTATE K  
LINESTATE J  
SE0  
DATA  
[
]
7:0  
DIR  
STP  
NXT  
XCVR  
SELECT  
01b  
00b  
00b  
TERM  
SELECT  
OP  
MODE  
00b  
10b  
00b  
SUSPEND  
M
!SQUELCH  
(01b)  
!SQUELCH  
(01b)  
SQUELCH  
(00b)  
FS K (10b)  
SQUELCH (00b)  
FS J (01b)  
LINE  
STATE  
DP  
DM  
004aaa717  
Timing is not to scale.  
Fig 18. High-speed suspend and resume  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
40 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
9.10.3 Remote wake-up  
The ISP1504x1 supports peripherals that initiate remote wake-up resume. When placed  
into USB suspend, the peripheral link remembers what speed it was originally operating.  
Depending on the original speed, the link follows one of the protocols detailed here. In  
Figure 19, timing is not to scale, and not all RXCMD LINESTATE updates are shown.  
The sequence of events related to a host and a peripheral, both with ISP1504x1, is as  
follows.  
1. Both the host and the peripheral are assumed to be in low-power mode.  
2. The peripheral begins remote wake-up by re-enabling its clock and setting its  
SUSPENDM bit to 1b.  
3. The peripheral begins driving K on the bus to signal resume. Note that the peripheral  
link must assume that LINESTATE is K (01b) while transmitting because it will not  
receive any RXCMDs.  
4. The host recognizes the resume, re-enables its clock and sets its SUSPENDM bit.  
5. The host takes over resume driving within 1 ms of detecting the remote wake-up.  
6. The peripheral stops driving resume.  
7. The peripheral sees the host continuing to drive the resume.  
8. The host stops driving resume and the ISP1504x1 automatically adds the EOP to the  
end of the resume. The peripheral recognizes the EOP as the end of resume.  
9. Both the host and the peripheral revert to normal operation by writing 00b to  
OPMODE. If the host or the peripheral was previously in high-speed mode, it must  
revert to high-speed before the SE0 of the EOP is completed. This can be achieved  
by writing XCVRSELECT = 00b and TERMSELECT = 0b after LINESTATE indicates  
SE0.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
41 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
TXCMD  
NOPID  
TXCMD  
REGW  
TXCMD  
REGW  
00h  
LINESTATE  
DATA  
[
]
7:0  
DIR  
STP  
NXT  
XCVR  
SELECT  
01b (FS), 10b (LS)  
00b (HS only)  
TERM  
SELECT  
0b (HS only)  
00b  
OP  
MODE  
10b  
TXCMD  
REGW  
TXCMD  
REGW  
TXCMD  
NOPID  
LINESTATE  
00h  
RXCMD  
RXCMD  
RXCMD  
DATA  
[
]
7:0  
DIR  
STP  
NXT  
00b (HS only)  
0b (HS only)  
XCVR  
SELECT  
00b (HS), 01b (FS), 10b (LS)  
TERM  
SELECT  
OP  
MODE  
10b  
00b  
004aaa718  
Timing is not to scale.  
Fig 19. Remote wake-up from low-power mode  
9.11 No automatic SYNC and EOP generation (optional)  
This setting allows the link to turn off the automatic SYNC and EOP generation, and must  
be used for high-speed packets only. It is provided for backwards compatibility with legacy  
controllers that include SYNC and EOP bytes in the data payload when transmitting  
packets. The ISP1504x1 will not automatically generate the SYNC and EOP patterns  
when OPMODE[1:0] is set to 11b. The ISP1504x1 will still NRZI encode data and perform  
bit stuffing. An example of a sequence is shown in Figure 20. The link must always send  
packets using the TXCMD (NOPID) type. The ISP1504x1 does not provide a mechanism  
to control bit stuffing in individual bytes, but will automatically turn off bit stuffing for EOP  
when STP is asserted with data set to FEh. If data is set to 00h when STP is asserted, the  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
42 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
PHY will not transmit any EOP. The ISP1504x1 will also detect if the PID byte is A5h,  
indicating an SOF packet and automatically send a long EOP when STP is asserted. To  
transmit chirp and resume signaling, the link must set OPMODE to 10b.  
CLOCK  
D
N 1  
DATA  
[7:0]  
... ...  
80h  
D
N
00h  
00h 00h  
PID D1 D2 D3  
FEh  
TXCMD  
DIR  
STP  
NXT  
TX  
VALID  
TX  
READY  
TXBIT  
STUFF  
ENABLE  
DP,  
DM  
SYNC  
DATA PAYLOAD  
IDLE  
IDLE  
PID  
EOP  
004aaa719  
Fig 20. Transmitting USB packets without automatic SYNC and EOP generation  
9.12 On-The-Go operations  
On-The-Go (OTG) is a supplement to Universal Serial Bus Specification Rev. 2.0 that  
allows a portable USB device to assume the role of a limited USB host by defining  
improvements, such as a small connector and low power. Non-portable devices, such as  
standard hosts and embedded hosts, can also benefit from OTG features.  
The ISP1504x1 OTG PHY is designed to support all the tasks specified in the OTG  
supplement. The ISP1504x1 provides the front-end analog support for Host Negotiation  
Protocol (HNP) and Session Request Protocol (SRP) for dual-role devices. The  
supporting components include:  
Voltage comparators  
A_VBUS_VLD  
SESS_VLD (session valid, can be used for both A-session and B-session valid)  
SESS_END (session end)  
Pull-up and pull-down resistors on DP and DM  
ID detector indicates if micro-A or micro-B plug is inserted  
Charge and discharge resistors on VBUS  
The following subsections describe how to use the ISP1504x1 OTG components.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
43 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
9.12.1 OTG comparators  
The ISP1504x1 provides comparators that conform to On-The-Go Supplement to the  
USB 2.0 Specification Rev. 1.2 requirements of VA_VBUS_VLD, VA_SESS_VLD, VB_SESS_VLD  
and VB_SESS_END. In this data sheet, VA_SESS_VLD and VB_SESS_VLD are combined into  
VA_SESS_VLD. Comparators are described in Section 7.6.2. Changes in comparator values  
are communicated to the link by RXCMDs as described in Section 9.5.2.2. Control over  
comparators is described in Section 10.1.5 to Section 10.1.8.  
9.12.2 Pull-up and pull-down resistors  
The USB resistors on DP and DM can be used to initiate data-line pulsing SRP. The link  
must set the required bus state using mode settings in Table 8.  
9.12.3 ID detection  
The ISP1504x1 provides an internal pull-up resistor to sense the value of the ID pin. The  
pull-up resistor must first be enabled by setting the ID_PULLUP register bit to logic 1. If  
the value on ID has changed, the ISP1504x1 will send an RXCMD or interrupt to the link  
by time tID. If the link does not receive any RXCMD or interrupt by tID, then the ID value  
has not changed.  
9.12.4 VBUS charge and discharge resistors  
A pull-up resistor, RUP(VBUS), is provided to perform VBUS pulsing SRP. A B-device is  
allowed to charge VBUS above the session valid threshold to request the host to turn on  
the VBUS power.  
A pull-down resistor, RDN(VBUS), is provided for a B-device to discharge VBUS. This is done  
whenever the A-device turns off the VBUS power; the B-device can use the pull-down  
resistor to ensure VBUS is below VB_SESS_END before starting a session.  
For details, refer to On-The-Go Supplement to the USB 2.0 Specification Rev. 1.2.  
9.13 Serial modes  
The ISP1504x1 supports both 6-pin serial mode and 3-pin serial mode, controlled by bits  
6PIN_FSLS_SERIAL and 3PIN_FSLS_SERIAL of the Interface Control register. For  
details, refer to UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1, Section 3.10.  
Figure 21 and Figure 22 provide example of 6-pin serial mode and 3-pin serial mode,  
respectively.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
44 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
TRANSMIT  
DATA  
RECEIVE  
SYNC  
SYNC  
DATA  
EOP  
EOP  
DATA0  
(TX_ENABLE)  
DATA1  
(TX_DAT)  
DATA2  
(TX_SE0)  
DATA4  
(RX_DP)  
DATA5  
(RX_DM)  
DATA6  
(RX_RCV)  
DP  
DM  
004aaa692  
Fig 21. Example of transmit followed by receive in 6-pin serial mode  
TRANSMIT  
RECEIVE  
DATA  
DATA  
SYNC  
SYNC  
EOP  
EOP  
DATA0  
(TX_ENABLE)  
DATA1  
(TX_DAT/  
RX_RCV)  
DATA2  
(TX_SE0/  
RX_SE0)  
DP  
DM  
004aaa693  
Fig 22. Example of transmit followed by receive in 3-pin serial mode  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
45 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
9.14 Aborting transfers  
The ISP1504x1 supports aborting transfers on the ULPI bus. For details, refer to UTMI+  
Low Pin Interface (ULPI) Specification Rev. 1.1, Section 3.8.4.  
9.15 Avoiding contention on the ULPI data bus  
Because the ULPI data bus is bidirectional, avoid situations in which both the link and the  
PHY simultaneously drive the data bus.  
The following points must be considered while implementing the data bus drive control on  
the link.  
After power-up and clock stabilization, default states are as follows:  
The ISP1504x1 drives DIR to LOW.  
The data bus is input to the ISP1504x1.  
The ULPI link data bus is output, with all data bus lines driven to LOW.  
When the ISP1504x1 wants to take control of data bus to initiate a data transfer, it  
changes the DIR value from LOW to HIGH.  
At this point, the link must disable its output buffers. This must be as fast as possible so  
the link must use a combinational path from DIR.  
The ISP1504x1 will not immediately enable its output buffers, but will delay the enabling of  
its buffers until the next clock edge, avoiding bus contention.  
When the data transfer is no longer required by the ISP1504x1, it changes DIR from HIGH  
to LOW and starts to immediately turn off its output drivers. The link senses the change of  
DIR from HIGH to LOW, but delays enabling its output buffers for one CLOCK cycle,  
avoiding data bus contention.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
46 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
10. Register map  
Table 19. Immediate register set overview  
Field name  
Size  
Address (6 bits)  
References  
(bits)  
R[1]  
00h  
01h  
02h  
03h  
W[2]  
S[3]  
C[4]  
Vendor ID Low register  
8
8
8
8
8
8
8
8
8
8
8
8
8
-
-
-
-
-
-
-
Section 10.1.1 on page 48  
Vendor ID High register  
Product ID Low register  
Product ID High register  
Function Control register  
Interface Control register  
OTG Control register  
-
-
-
-
-
-
04h to 06h 04h  
07h to 09h 07h  
0Ah to 0Ch 0Ah  
0Dh to 0Fh 0Dh  
10h to 12h 10h  
05h  
08h  
0Bh  
0Eh  
11h  
-
06h  
09h  
0Ch  
0Fh  
12h  
-
Section 10.1.2 on page 48  
Section 10.1.3 on page 49  
Section 10.1.4 on page 50  
Section 10.1.5 on page 51  
Section 10.1.6 on page 52  
Section 10.1.7 on page 52  
Section 10.1.8 on page 53  
Section 10.1.9 on page 54  
Section 10.1.10 on page 54  
Section 10.1.11 on page 54  
Section 10.1.12 on page 54  
Section 10.1.13 on page 54  
Section 10.1.14 on page 54  
USB Interrupt Enable Rising register  
USB Interrupt Enable Falling register  
USB Interrupt Status register  
USB Interrupt Latch register  
Debug register  
13h  
14h  
15h  
-
-
-
-
-
-
-
Scratch register  
16h to 18h 16h  
17h  
18h  
Reserved (not used, not available)  
Access extended register set  
Vendor-specific registers  
Power Control register  
19h to 2Eh  
2Fh  
8
8
8
-
-
-
30h to 3Ch  
3D to 3Fh  
[1] Read (R): A register can be read. Read-only if this is the only mode given.  
[2] Write (W): The pattern on the data bus will be written over all bits of a register.  
[3] Set (S): The pattern on the data bus is OR-ed with and written to a register.  
[4] Clear (C): The pattern on the data bus is a mask. If a bit in the mask is set, then the corresponding register bit will be set to zero  
(cleared).  
Table 20. Extended register set overview  
Field name  
Size  
(bits)  
Address (6 bits)  
W[2] S[3]  
References  
R[1]  
C[4]  
Maps to immediate register set above  
Reserved (do not use)  
8
8
00h to 3Fh  
40h to FFh  
Section 10.2 on page 55  
[1] Read (R): A register can be read. Read-only if this is the only mode given.  
[2] Write (W): The pattern on the data bus will be written over all bits of a register.  
[3] Set (S): The pattern on the data bus is OR-ed with and written to a register.  
[4] Clear (C): The pattern on the data bus is a mask. If a bit in the mask is set, then the corresponding register bit will be set to zero  
(cleared).  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
47 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
10.1 Immediate register set  
10.1.1 Vendor ID and Product ID registers  
10.1.1.1 Vendor ID Low register  
Table 21 shows the bit description of the register.  
Table 21. Vendor ID Low register (address R = 00h) bit description  
Bit  
Symbol  
Access Value  
CCh  
Description  
7 to 0  
VENDOR_ID_  
LOW[7:0]  
R
Vendor ID Low: Lower byte of the NXP vendor ID supplied by USB-IF;  
has a fixed value of CCh  
10.1.1.2 Vendor ID High register  
The bit description of the register is given in Table 22.  
Table 22. Vendor ID High register (address R = 01h) bit description  
Bit  
Symbol  
Access Value  
04h  
Description  
7 to 0  
VENDOR_ID_  
HIGH[7:0]  
R
Vendor ID High: Upper byte of the NXP vendor ID supplied by USB-IF;  
has a fixed value of 04h  
10.1.1.3 Product ID Low register  
The bit description of the Product ID Low register is given in Table 23.  
Table 23. Product ID Low register (address R = 02h) bit description  
Bit  
Symbol  
Access Value  
04h  
Description  
7 to 0  
PRODUCT_ID_ R  
LOW[7:0]  
Product ID Low: Lower byte of the NXP product ID number; has a fixed  
value of 04h  
10.1.1.4 Product ID High register  
The bit description of the register is given in Table 24.  
Table 24. Product ID High register (address R = 03h) bit description  
Bit  
Symbol  
Access  
Value  
Description  
7 to 0  
PRODUCT_ID_  
HIGH[7:0]  
R
15h  
Product ID High: Upper byte of the NXP product ID number; has a  
fixed value of 15h  
10.1.2 Function Control register  
This register controls UTMI function settings of the PHY. The bit allocation of the register  
is given in Table 25.  
Table 25. Function Control register (address R = 04h to 06h, W = 04h, S = 05h, C = 06h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
reserved  
SUSPENDM  
RESET  
OPMODE[1:0]  
TERM  
XCVRSELECT[1:0]  
SELECT  
Reset  
0
1
0
0
0
0
0
1
Access  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
48 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 26. Function Control register (address R = 04h to 06h, W = 04h, S = 05h, C = 06h) bit description  
Bit  
7
Symbol  
Description  
-
reserved  
6
SUSPENDM  
Suspend LOW: Active LOW PHY suspend.  
Sets the PHY into low-power mode. The PHY will power down all blocks, except the full-speed  
receiver, OTG comparators and ULPI interface pins.  
To come out of low-power mode, the link must assert STP. The PHY will automatically clear this  
bit when it exits low-power mode.  
0b — Low-power mode  
1b — Powered  
5
RESET  
Reset: Active HIGH transceiver reset.  
After the link sets this bit, the PHY will assert DIR and reset the digital core. This does not reset  
the ULPI interface or the ULPI register set.  
When the reset is completed, the PHY will de-assert DIR and automatically clear this bit,  
followed by an RXCMD update to the link.  
The link must wait for DIR to de-assert before using the ULPI bus.  
0b — Do not reset  
1b — Reset  
4 to 3  
OPMODE[1:0] Operation Mode: Selects the required bit-encoding style during transmit.  
00b — Normal operation  
01b — Non-driving  
10b — Disable bit-stuffing and NRZI encoding  
11b — Do not automatically add SYNC and EOP when transmitting; must be used only for  
high-speed packets  
2
TERMSELECT Termination Select: Controls the internal 1.5 kfull-speed pull-up resistor and 45 Ω  
high-speed terminations. Control over bus resistors changes, depending on  
XCVRSELECT[1:0], OPMODE[1:0], DP_PULLDOWN and DM_PULLDOWN, as shown in  
Table 8.  
1 to 0  
XCVRSELECT Transceiver Select: Selects the required transceiver speed.  
[1:0]  
00b — Enable the high-speed transceiver  
01b — Enable the full-speed transceiver  
10b — Enable the low-speed transceiver  
11b — Enable the full-speed transceiver for low-speed packets (full-speed preamble is  
automatically prefixed)  
10.1.3 Interface Control register  
The Interface Control register enables alternative interfaces. All of these modes are  
optional features provided for legacy link cores. Setting more than one of these fields  
results in undefined behavior. Table 27 provides the bit allocation of the register.  
Table 27. Interface Control register (address R = 07h to 09h, W = 07h, S = 08h, C = 09h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
INTF_  
PROT_DIS  
IND_PASS  
THRU  
IND_  
COMPL  
reserved  
CLOCK_  
SUSPENDM  
reserved  
3PIN_  
FSLS_  
SERIAL  
6PIN_  
FSLS_  
SERIAL  
Reset  
0
0
0
0
0
0
0
0
Access  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
49 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 28. Interface Control register (address R = 07h to 09h, W = 07h, S = 08h, C = 09h) bit description  
Bit  
Symbol  
Description  
7
INTF_PROT_DIS  
Interface Protect Disable: Controls circuitry built into the ISP1504x1 to protect the ULPI  
interface when the link 3-states STP and DATA[7:0]. When this bit is enabled, the ISP1504x1  
will automatically detect when the link stops driving STP.  
0b — Enables the interface protect circuit (default). The ISP1504x1 attaches a weak pull-up  
resistor on STP. If STP is unexpectedly HIGH, the ISP1504x1 attaches weak pull-down  
resistors on DATA[7:0], protecting data inputs.  
1b — Disables the interface protect circuit, detaches weak pull-down resistors on DATA[7:0],  
and a weak pull-up resistor on STP.  
6
5
IND_PASSTHRU  
Indicator Pass-through: Controls whether the complement output is qualified with the internal  
A_VBUS_VLD comparator before being used in the VBUS state in RXCMD. For details, see  
Section 9.5.2.2.  
0b — The complement output signal is qualified with the internal A_VBUS_VLD comparator.  
1b — The complement output signal is not qualified with the internal A_VBUS_VLD  
comparator.  
IND_COMPL  
Indicator Complement: Informs the PHY to invert the FAULT input signal, generating the  
complement output. For details, see Section 9.5.2.2.  
0b — The ISP1504x1 will not invert the FAULT signal (default).  
1b — The ISP1504x1 will invert the FAULT signal.  
reserved  
4
3
-
CLOCK_  
Clock Suspend LOW: Active LOW clock suspend.  
SUSPENDM  
Powers down the internal clock circuitry only. By default, the clock will not be powered in 6-pin  
serial mode or 3-pin serial mode.  
Valid only in 6-pin serial mode and 3-pin serial mode. Valid only when SUSPENDM is set to  
logic 1, otherwise this bit is ignored.  
0b — Clock will not be powered in 3-pin or 6-pin serial mode.  
1b — Clock will be powered in 3-pin and 6-pin serial modes.  
reserved  
2
1
-
3PIN_FSLS_  
SERIAL  
3-Pin Full-Speed Low-Speed Serial Mode: Changes the ULPI interface to a 3-bit serial  
interface. The PHY will automatically clear this bit when 3-pin serial mode is exited.  
0b — Full-speed or low-speed packets are sent using the parallel interface.  
1b — Full-speed or low-speed packets are sent using the 3-pin serial interface.  
0
6PIN_FSLS_  
SERIAL  
6-Pin Full-Speed Low-Speed Serial Mode: Changes the ULPI interface to a 6-bit serial  
interface. The PHY will automatically clear this bit when 6-pin serial mode is exited.  
0b — Full-speed or low-speed packets are sent using the parallel interface.  
1b — Full-speed or low-speed packets are sent using the 6-pin serial interface.  
10.1.4 OTG Control register  
This register controls various OTG functions of the ISP1504x1. The bit allocation of the  
OTG Control register is given in Table 29.  
Table 29. OTG Control register (address R = 0Ah to 0Ch, W = 0Ah, S = 0Bh, C = 0Ch) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
USE_EXT_  
VBUS_IND VBUS_EXT  
DRV_  
reserved  
CHRG_  
VBUS  
DISCHRG_ DM_PULL  
DP_PULL  
DOWN  
ID_PULL  
UP  
VBUS  
DOWN  
Reset  
0
0
0
0
0
1
1
0
Access  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
50 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 30. OTG Control register (address R = 0Ah to 0Ch, W = 0Ah, S = 0Bh, C = 0Ch) bit description  
Bit  
Symbol  
Description  
7
USE_EXT_VBUS  
_IND  
Use External VBUS Indicator: Informs the PHY to use an external VBUS overcurrent indicator.  
0b — Use the internal OTG comparator.  
1b — Use the external VBUS valid indicator signal input from the FAULT pin.  
6
DRV_VBUS_EXT  
Drive VBUS External: Controls external charge pump or 5 V supply by the PSW_N pin.  
0b — PSW_N is HIGH.  
1b — PSW_N to LOW.  
reserved  
5
4
-
CHRG_VBUS  
Charge VBUS: Charges VBUS through a resistor. Used for the VBUS pulsing of SRP. The link must  
first check that VBUS is discharged (see bit DISCHRG_VBUS), and that both the DP and DM  
data lines have been LOW (SE0) for 2 ms.  
0b — Do not charge VBUS  
1b — Charge VBUS  
.
.
3
DISCHRG_VBUS  
Discharge VBUS: Discharges VBUS through a resistor. If the link sets this bit to logic 1, it waits for  
an RXCMD indicating that SESS_END has changed from 0 to 1, and then resets this bit to 0 to  
stop the discharge.  
0b — Do not discharge VBUS  
1b — Discharge VBUS  
.
.
2
1
0
DM_PULLDOWN DM Pull Down: Enables the 15 kpull-down resistor on DM.  
0b — Pull-down resistor is not connected to DM.  
1b — Pull-down resistor is connected to DM.  
DP_PULLDOWN DP Pull Down: Enables the 15 kpull-down resistor on DP.  
0b — Pull-down resistor is not connected to DP.  
1b — Pull-down resistor is connected to DP.  
ID_PULLUP  
ID Pull Up: Connects a pull-up to the ID line and enables sampling of the ID level. Disabling the  
ID line sampler will reduce PHY power consumption.  
0b — Disable sampling of the ID line.  
1b — Enable sampling of the ID line.  
10.1.5 USB Interrupt Enable Rising Edge register  
The bits in this register enable interrupts and RXCMDs to be sent when the corresponding  
bits in the USB Interrupt Status register change from logic 0 to logic 1. By default, all  
transitions are enabled. Table 31 shows the bit allocation of the register.  
Table 31. USB Interrupt Enable Rising Edge register (address R = 0Dh to 0Fh, W = 0Dh, S = 0Eh, C = 0Fh) bit  
allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
reserved  
ID_GND_R  
SESS_  
END_R  
SESS_  
VALID_R  
VBUS_  
VALID_R DISCON_R  
HOST_  
Reset  
0
0
0
1
1
1
1
1
Access  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
51 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 32. USB Interrupt Enable Rising Edge register (address R = 0Dh to 0Fh, W = 0Dh, S = 0Eh, C = 0Fh) bit  
description  
Bit  
Symbol  
Description  
7 to 5 -  
reserved  
4
3
ID_GND_R  
SESS_END_R  
ID Ground Rise: Enables interrupts and RXCMDs for logic 0 to logic 1 transitions on ID_GND.  
Session End Rise: Enables interrupts and RXCMDs for logic 0 to logic 1 transitions on  
SESS_END.  
2
1
SESS_VALID_R Session Valid Rise: Enables interrupts and RXCMDs for logic 0 to logic 1 transitions on  
SESS_VLD.  
VBUS_VALID_R  
VBUS Valid Rise: Enables interrupts and RXCMDs for logic 0 to logic 1 transitions on  
A_VBUS_VLD.  
0
HOST_DISCON Host Disconnect Rise: Enables interrupts and RXCMDs for logic 0 to logic 1 transitions on  
_R  
HOST_DISCON.  
10.1.6 USB Interrupt Enable Falling Edge register  
The bits in this register enable interrupts and RXCMDs to be sent when the corresponding  
bits in the USB Interrupt Status register change from logic 1 to logic 0. By default, all  
transitions are enabled. See Table 33.  
Table 33. USB Interrupt Enable Falling Edge register (address R = 10h to 12h, W = 10h, S = 11h, C = 12h) bit  
allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
reserved  
ID_GND_F  
SESS_  
END_F  
SESS_  
VALID_F  
VBUS_  
VALID_F  
HOST_  
DISCON_F  
Reset  
0
0
0
1
1
1
1
1
Access  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
Table 34. USB Interrupt Enable Falling Edge register (address R = 10h to 12h, W = 10h, S = 11h, C = 12h) bit  
description  
Bit  
Symbol  
Description  
7 to 5 -  
reserved  
4
3
ID_GND_F  
SESS_END_F  
ID Ground Fall: Enables interrupts and RXCMDs for logic 1 to logic 0 transitions on ID_GND.  
Session End Fall: Enables interrupts and RXCMDs for logic 1 to logic 0 transitions on  
SESS_END.  
2
1
SESS_VALID_F Session Valid Fall: Enables interrupts and RXCMDs for logic 1 to logic 0 transitions on  
SESS_VLD.  
VBUS_VALID_F  
VBUS Valid Fall: Enables interrupts and RXCMDs for logic 1 to logic 0 transitions on  
A_VBUS_VLD.  
0
HOST_DISCON Host Disconnect Fall: Enables interrupts and RXCMDs for logic 1 to logic 0 transitions on  
_F  
HOST_DISCON.  
10.1.7 USB Interrupt Status register  
This register (see Table 35) indicates the current value of the interrupt source signal.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
52 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 35. USB Interrupt Status register (address R = 13h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
reserved  
ID_GND  
SESS_  
END  
SESS_  
VALID  
VBUS_  
VALID  
HOST_  
DISCON  
Reset  
X
R
X
R
X
R
0
0
0
0
0
Access  
R
R
R
R
R
Table 36. USB Interrupt Status register (address R = 13h) bit description  
Bit  
Symbol  
Description  
7 to 5  
-
reserved  
4
3
2
1
0
ID_GND  
ID Ground: Reflects the current value of the ID detector circuit.  
SESS_END  
SESS_VALID  
VBUS_VALID  
HOST_DISCON  
Session End: Reflects the current value of the session end voltage comparator.  
Session Valid: Reflects the current value of the session valid voltage comparator.  
VBUS Valid: Reflects the current value of the VBUS valid voltage comparator.  
Host Disconnect: Reflects the current value of the host disconnect detector.  
10.1.8 USB Interrupt Latch register  
The bits of the USB Interrupt Latch register are automatically set by the ISP1504x1 when  
an unmasked change occurs on the corresponding interrupt source signal. The  
ISP1504x1 will automatically clear all bits when the link reads this register, or when the  
PHY enters low-power mode.  
Remark: It is optional for the link to read this register when the clock is running because  
all signal information will automatically be sent to the link through the RXCMD byte.  
The bit allocation of this register is given in Table 37.  
Table 37. USB Interrupt Latch register (address R = 14h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
reserved  
ID_GND_L  
SESS_  
END_L  
SESS_  
VALID_L  
VBUS_  
VALID_L  
HOST_  
DISCON_L  
Reset  
0
0
0
0
0
0
0
0
Access  
R
R
R
R
R
R
R
R
Table 38. USB Interrupt Latch register (address R = 14h) bit description  
Bit  
7 to 5  
4
Symbol  
Description  
-
reserved  
ID_GND_L  
ID Ground Latch: Automatically set when an unmasked event occurs on ID_GND. Cleared  
when this register is read.  
3
2
1
SESS_END_L  
SESS_VALID_L  
VBUS_VALID_L  
Session End Latch: Automatically set when an unmasked event occurs on SESS_END.  
Cleared when this register is read.  
Session Valid Latch: Automatically set when an unmasked event occurs on SESS_VLD.  
Cleared when this register is read.  
VBUS Valid Latch: Automatically set when an unmasked event occurs on A_VBUS_VLD.  
Cleared when this register is read.  
0
HOST_DISCON_L Host Disconnect Latch: Automatically set when an unmasked event occurs on  
HOST_DISCON. Cleared when this register is read.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
53 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
10.1.9 Debug register  
The bit allocation of the Debug register is given in Table 39. This register indicates the  
current value of signals useful for debugging.  
Table 39. Debug register (address R = 15h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
reserved  
LINE  
LINE  
STATE1  
STATE0  
Reset  
0
0
0
0
0
0
0
0
Access  
R
R
R
R
R
R
R
R
Table 40. Debug register (address R = 15h) bit description  
Bit  
7 to 2  
1
Symbol  
Description  
-
reserved  
LINESTATE1 Line State 1: Contains the current value of LINESTATE 1  
LINESTATE0 Line State 0: Contains the current value of LINESTATE 0  
0
10.1.10 Scratch register  
This is an empty register for testing purposes, see Table 41.  
Table 41. Scratch register (address R = 16h to 18h, W = 16h, S = 17h, C = 18h) bit description  
Bit  
Symbol  
Access  
Value Description  
7 to 0  
SCRATCH[7:0] R/W/S/C 00h  
Scratch: This is an empty register byte for testing purposes. Software can  
read, write, set and clear this register, and the functionality of the PHY will  
not be affected.  
10.1.11 Reserved  
Registers 19h to 2Eh are not implemented. Operating on these addresses will have no  
effect on the PHY.  
10.1.12 Access extended register set  
Address 2Fh does not contain register data. Instead it links to the extended register set.  
The immediate register set maps to the lower end of the extended register set.  
10.1.13 Vendor-specific registers  
Address 30h to 3Fh contains vendor-specific registers.  
10.1.14 Power Control register  
This register controls various aspects of the ISP1504x1. Table 42 shows the bit allocation  
of the register.  
Table 42. Power Control register (address R = 3Dh to 3Fh, W = 3Dh, S = 3Eh, C = 3Fh) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
reserved  
BVALID_  
FALL  
BVALID_  
RISE  
reserved  
Reset  
0
0
0
0
0
0
0
0
Access  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
54 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 43. Power Control register (address R = 3Dh to 3Fh, W = 3Dh, S = 3Eh, C = 3Fh) bit description  
Bit  
7 to 4  
3
Symbol  
Description  
-
reserved; the link must never write logic 1 to these bits.  
BVALID_FALL BValid Fall: Enables RXCMDs for HIGH-to-LOW transitions on BVALID. When BVALID changes  
from HIGH to LOW, the ISP1504x1 will send an RXCMD to the link with the ALT_INT bit set to  
logic 1.  
This bit is optional and is not necessary for OTG devices. The session valid comparator must be  
used instead.  
2
BVALID_RISE BValid Rise: Enables RXCMDs for LOW-to-HIGH transitions on BVALID. When BVALID changes  
from LOW to HIGH, the ISP1504x1 will send an RXCMD to the link with the ALT_INT bit set to  
logic 1.  
This bit is optional and is not necessary for OTG devices. The session valid comparator must be  
used instead.  
1 to 0  
-
reserved; the link must never write logic 1 to this bit.  
10.2 Extended register set  
Addresses 00h to 3Fh of the extended register set directly map to the immediate set. This  
means a read, write, set or clear operation to these extended addresses will operate on  
the immediate register set.  
Addresses 40h to FFh are not implemented. Operating on these addresses may result in  
undefined behavior of the PHY.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
55 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
11. Limiting values  
Table 44. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
Max  
Unit  
V
VCC  
supply voltage  
+5.5  
VCC(I/O)  
VI  
input/output supply voltage  
input voltage  
+4.6  
V
on pins CLOCK, STP, DATA[7:0],  
RESET_N and CS_N/PWRDN  
VCC(I/O) + 0.5  
V
on pins VBUS, FAULT and PSW_N  
on pin XTAL1  
0.5  
0.5  
0.5  
0.5  
2000  
+5.5  
+2.5  
+4.6  
+4.6  
+2000  
V
V
V
V
V
on pin ID  
[1]  
[2]  
on pins DP and DM  
VESD  
electrostatic discharge  
voltage  
ILI < 1 µA; Human Body Model  
(JESD22-A114D)  
ILI < 1 µA; Machine Model  
(JESD22-A115-A)  
200  
500  
+200  
+500  
V
V
ILI < 1 µA; Charge Device Model  
(JESD22-C101-C)  
Ilu  
latch-up current  
0.5 × VCC < V < +1.5 × VCC  
-
100  
mA  
°C  
Tstg  
Tj  
storage temperature  
junction temperature  
40  
40  
+125  
+125  
°C  
[1] The ISP1504x1 has been tested according to the additional requirements listed in Universal Serial Bus Specification Rev. 2.0,  
Section 7.1.1. The short circuit withstand test and the AC stress test were performed for 24 hours, and the ISP1504x1 was found to be  
fully operational after the test completed.  
[2] Equivalent to discharging a 100 pF capacitor through a 1.5 kresistor (Human Body Model).  
12. Recommended operating conditions  
Table 45. Recommended operating conditions  
Symbol  
VCC  
Parameter  
Conditions  
Min  
3.0  
1.65  
0
Typ  
3.6  
1.8  
-
Max  
4.5  
Unit  
V
supply voltage  
[1]  
VCC(I/O)  
VI  
input/output supply voltage  
input voltage  
3.6  
V
on pins CLOCK, STP, DATA[7:0],  
RESET_N and CS_N/PWRDN  
VCC(I/O)  
V
on pins VBUS, FAULT and PSW_N  
on pins DP, DM and ID  
on pin XTAL1  
0
-
5.25  
3.6  
V
0
-
V
0
-
1.95  
+85  
V
Tamb  
ambient temperature  
40  
+25  
°C  
[1] VCC(I/O) must not exceed VCC  
.
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
56 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
13. Static characteristics  
Table 46. Static characteristics: supply pins  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values are at VCC = 3.6 V; VCC(I/O) = 1.8 V; Tamb = +25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
3.0  
1.65  
1.0  
-
Typ  
3.3  
1.8  
-
Max  
3.6  
Unit  
V
V(REG3V3) voltage on pin REG3V3  
V(REG1V8) voltage on pin REG1V8  
VPOR(trip) power-on reset trip voltage  
1.95  
1.5  
V
V
ICC  
supply current  
power-down mode (pin CS_N/PWRDN =  
HIGH or VCC(I/O) is not present)  
0.5  
10  
µA  
low-power mode; VBUS valid detector  
disabled; 1.5 kpull-up resistor on pin DP  
disconnected  
-
-
50  
120  
315  
µA  
µA  
low-power mode; VBUS valid detector  
disabled; 1.5 kpull-up resistor on pin DP  
connected  
235  
full-speed idle; no USB activity  
high-speed idle; no USB activity  
-
-
-
11  
19  
15  
-
-
-
mA  
mA  
mA  
[1]  
full-speed continuous data transmit; 50 pF  
load on pins DP and DM  
[1]  
[1]  
full-speed continuous data receive  
-
-
11  
48  
-
-
mA  
mA  
high-speed continuous data transmit; 45 Ω  
load on pins DP and DM to ground  
[1]  
high-speed continuous data receive  
static current; digital I/O pins are idle  
-
-
28  
-
-
mA  
ICC(I/O)  
supply current on  
pin VCC(I/O)  
10  
µA  
[1] A continuous stream of 1 kB packets with minimum inter-packet gap and all data bits set to logic 0 for continuous toggling.  
Table 47. Static characteristics: digital pins CLOCK, DIR, STP, NXT, DATA[7:0], RESET_N, CS_N/PWRDN  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values are at VCC = 3.6 V; VCC(I/O) = 1.8 V; Tamb = +25 °C; unless otherwise specified.  
Symbol Parameter  
Input levels  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
ILI  
LOW-level input voltage  
-
-
0.3 × VCC(I/O)  
V
HIGH-level input voltage  
input leakage current  
0.7 × VCC(I/O)  
1  
-
-
V
+0.1  
+1  
µA  
Output levels  
VOL  
VOH  
IOH  
IOL  
LOW-level output voltage  
IOL = 2 mA  
-
-
0.4  
V
HIGH-level output voltage  
HIGH-level output current  
LOW-level output current  
off-state output current  
IOH = +2 mA  
V
CC(I/O) 0.4 -  
-
V
VOH = VCC(I/O) 0.4 V  
VOL = 0.4 V  
4.8  
4.2  
-
-
-
-
-
mA  
mA  
µA  
-
IOZ  
0 V < VO < VCC(I/O)  
1
Impedance  
ZL  
load impedance  
45  
-
65  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
57 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 47. Static characteristics: digital pins CLOCK, DIR, STP, NXT, DATA[7:0], RESET_N, CS_N/PWRDN …continued  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values are at VCC = 3.6 V; VCC(I/O) = 1.8 V; Tamb = +25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Pull-up and pull-down  
Ipd  
pull-down current  
interface protect enabled;  
DATA[7:0] pins only; VI =  
VCC(I/O)  
25  
50  
90  
µA  
Ipu  
pull-up current  
interface protect enabled;  
STP pin only; VI = 0 V  
30  
50  
80  
µA  
Capacitance  
Cin input capacitance  
-
-
3.5  
pF  
Table 48. Static characteristics: digital pin FAULT  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values are at VCC = 3.6 V; VCC(I/O) = 1.8 V; Tamb = +25 °C; unless otherwise specified.  
Symbol Parameter  
Input levels  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
VIH  
IIL  
LOW-level input voltage  
-
-
-
-
-
0.8  
-
V
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
2.0  
V
VI = 0 V  
-
-
1
µA  
µA  
IIH  
VI = VCC(I/O)  
1
Table 49. Static characteristics: digital pin PSW_N  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values are at VCC = 3.6 V; VCC(I/O) = 1.8 V; Tamb = +25 °C; unless otherwise specified.  
Symbol Parameter  
Output levels  
Conditions  
Min  
Typ  
Max  
Unit  
VOH  
VOL  
IOH  
IOL  
HIGH-level output voltage  
external pull-up resistor connected  
IOL = 4 mA  
3.0[1]  
-
-
-
-
5.25  
0.4  
1
V
LOW-level output voltage  
HIGH-level output current  
LOW-level output current  
-
V
external pull-up resistor connected  
VO = 0.4 V  
-
µA  
mA  
4.0  
-
[1] When VOH is less than 3.0 V, ICC may increase because of the cross current.  
Table 50. Static characteristics: analog I/O pins DP, DM  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values are at VCC = 3.6 V; VCC(I/O) = 1.8 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Original USB transceiver (low-speed and full-speed)  
Input levels (differential receiver)  
VDI  
differential input sensitivity  
|VDP VDM  
|
0.2  
0.8  
-
-
-
V
V
VCM  
differential common mode voltage range  
includes VDI range  
2.5  
Input levels (single-ended receivers)  
VIL  
VIH  
LOW-level input voltage  
HIGH-level input voltage  
-
-
-
0.8  
-
V
V
2.0  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
58 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 50. Static characteristics: analog I/O pins DP, DM …continued  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values are at VCC = 3.6 V; VCC(I/O) = 1.8 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Output levels  
VOL  
LOW-level output voltage  
pull-up on pin DP; RL =  
1.5 kto 3.6 V  
0.0  
2.8  
1.3  
0.18  
3.2  
-
0.3  
3.6  
2.0  
V
V
V
VOH  
VCRS  
HIGH-level output voltage  
pull-down on pins DP and  
DM; RL = 15 kto GND  
output signal crossover voltage  
excluding the first  
transition from the idle  
state  
Termination  
VTERM  
termination voltage for upstream facing port  
pull-up  
3.0  
-
3.6  
V
Resistance  
RUP(DP)  
pull-up resistance on pin DP  
1425  
1500  
1575  
High-speed USB transceiver (HS)  
Input levels (differential receiver)  
VHSSQ  
high-speed squelch detection threshold  
voltage (differential signal amplitude)  
100  
525  
-
-
150  
625  
mV  
mV  
VHSDSC  
high-speed disconnect detection threshold  
voltage (differential signal amplitude)  
VHSDI  
high-speed differential input sensitivity  
|VDP VDM  
|
300  
-
-
-
mV  
mV  
VHSCM  
high-speed data signaling common mode  
voltage range  
includes VDI range  
50  
+500  
Output levels  
VHSOI  
high-speed idle level  
10  
10  
360  
700  
900  
-
-
-
-
-
+10  
mV  
mV  
mV  
mV  
mV  
VHSOL  
high-speed data signaling LOW-level voltage  
high-speed data signaling HIGH-level voltage  
Chirp J level (differential voltage)  
+10  
VHSOH  
VCHIRPJ  
VCHIRPK  
440  
1100  
500  
Chirp K level (differential voltage)  
Leakage current  
ILZ  
off-state leakage current  
1  
-
-
+1  
5
µA  
Capacitance  
Cin  
input capacitance  
pin to GND  
-
pF  
Resistance  
RDN(DP)  
RDN(DM)  
pull-down resistance on pin DP  
pull-down resistance on pin DM  
14.25  
14.25  
15  
15  
15.75  
15.75  
kΩ  
kΩ  
Termination  
[1]  
[1]  
ZO(drv)(DP) driver output impedance on pin DP  
ZO(drv)(DM) driver output impedance on pin DM  
steady-state drive  
steady-state drive  
40.5  
40.5  
1
45  
45  
-
49.5  
49.5  
-
ZINP  
input impedance  
MΩ  
[1] For high-speed USB and full-speed USB.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
59 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 51. Static characteristics: analog pin VBUS  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values are at VCC = 3.6 V; VCC(I/O) = 1.8 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Comparators  
VA_VBUS_VLD  
VA_SESS_VLD  
A-device VBUS valid voltage  
A-device session valid voltage  
4.4  
0.8  
70  
-
4.75  
2.0  
V
for A-device and B-device  
1.6  
90  
V
Vhys(A_SESS_VLD) A-device session valid hysteresis for A-device and B-device  
voltage  
110  
mV  
VB_SESS_END  
Resistance  
RUP(VBUS)  
B-device session end voltage  
0.2  
0.5  
0.8  
-
V
pull-up resistance on pin VBUS  
connect to pin REG3V3  
when CHRG_VBUS is  
logic 1  
281  
680  
RDN(VBUS)  
pull-down resistance on pin VBUS connect to GND when  
DISCHRG_VBUS is logic 1  
656  
40  
1200  
70  
-
RI(idle)(VBUS)  
idle input resistance on pin VBUS  
100  
kΩ  
Table 52. Static characteristics: ID detection circuit  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values are at VCC = 3.6 V; VCC(I/O) = 1.8 V; Tamb = +25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
50  
Typ  
-
Max  
Unit  
ms  
V
tID  
ID detection time  
-
Vth(ID)  
RUP(ID)  
ID detector threshold voltage  
ID pull-up resistance  
0.8  
40  
1.2  
50  
2.0  
60  
connect to pin REG3V3  
ID_PULLUP is logic 1  
kΩ  
Table 53. Static characteristics: resistor reference  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values are at VCC = 3.6 V; VCC(I/O) = 1.8 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VO(RREF)  
output voltage on pin RREF  
SUSPENDM is logic 1  
-
1.22  
-
V
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
60 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
14. Dynamic characteristics  
Table 54. Dynamic characteristics: reset and clock  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values are at VCC = 3.6 V; VCC(I/O) = 1.8 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
Reset  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tW(POR)  
internal power-on reset pulse  
width  
0.2  
-
-
µs  
tw(REG1V8_H)  
tw(REG1V8_L)  
tW(RESET_N)  
tstartup(PLL)  
tPWRUP  
REG1V8 HIGH pulse width  
REG1V8 LOW pulse width  
external RESET_N pulse width  
PLL startup time  
2
-
-
µs  
µs  
ns  
µs  
ms  
11  
200  
-
-
-
-
-
650  
-
-
regulator start-up time  
4.7 µF ± 20 % capacitor each  
on pins REG1V8 and  
REG3V3  
-
1
tPWRDN  
regulator power-down time  
4.7 µF ± 20 % capacitor each  
on pins REG1V8 and  
REG3V3  
-
-
100  
ms  
Crystal or clock applied to XTAL1  
fi(XTAL1)  
input frequency on pin XTAL1  
ISP1504A1ET  
-
-
-
-
-
19.2000  
-
MHz  
MHz  
ps  
ISP1504C1ET  
26.0000  
-
tjit(i)(XTAL1)RMS RMS input jitter on pin XTAL1  
fi(XTAL1) = 19.2 MHz  
fi(XTAL1) = 26 MHz  
-
200  
300  
200  
-
ps  
fi(XTAL1)  
input frequency tolerance on  
pin XTAL1  
50  
ppm  
[1]  
δi(XTAL1)  
tr(XTAL1)  
input duty cycle on pin XTAL1  
rise time on pin XTAL1  
fall time on pin XTAL1  
-
50  
-
-
%
ns  
ns  
V
only for square wave input  
only for square wave input  
only for square wave input  
-
5
tf(XTAL1)  
-
-
5
V(XTAL1)(p-p)  
peak-to-peak voltage on  
pin XTAL1  
0.566  
-
1.95  
Output CLOCK characteristics  
fo(CLOCK)  
output frequency on pin CLOCK  
59.97 60.00  
60.03 MHz  
tjit(o)(CLOCK)RMS RMS output jitter on pin CLOCK  
-
-
500  
55  
ps  
%
δo(CLOCK)  
output clock duty cycle on pin  
CLOCK  
45  
50  
[1] The internal PLL is triggered only on the positive edge from the crystal oscillator. Therefore, the duty cycle is not critical.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
61 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 55. Dynamic characteristics: digital I/O pins  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values are at VCC = 3.6 V; VCC(I/O) = 1.8 V; Tamb = +25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VCC(I/O) = 1.65 V to 1.95 V  
tsu(DATA)  
th(DATA)  
td(DATA)  
tsu(STP)  
th(STP)  
td(DIR)  
DATA set-up time with respect to 20 pF total external load  
5.7  
0
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
the rising edge of pin CLOCK  
per pin  
DATA hold time with respect to  
the rising edge of pin CLOCK  
20 pF total external load  
per pin  
-
DATA output delay with respect 20 pF total external load  
to the rising edge of pin CLOCK per pin  
-
7.8  
-
STP set-up time with respect to 20 pF total external load  
4.5  
0
the rising edge of pin CLOCK  
per pin  
STP hold time with respect to  
the rising edge of pin CLOCK  
20 pF total external load  
per pin  
-
DIR output delay with respect to 20 pF total external load  
the rising edge of pin CLOCK per pin  
-
8.9  
8.9  
td(NXT)  
NXT output delay with respect to 20 pF total external load  
the rising edge of pin CLOCK per pin  
-
VCC(I/O) = 3.0 V to 3.6 V  
tsu(DATA)  
th(DATA)  
td(DATA)  
tsu(STP)  
th(STP)  
td(DIR)  
DATA set-up time with respect to 30 pF total external load  
3.3  
0.8  
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
the rising edge of pin CLOCK  
per pin  
DATA hold time with respect to  
the rising edge of pin CLOCK  
30 pF total external load  
per pin  
-
DATA output delay with respect 30 pF total external load  
to the rising edge of pin CLOCK per pin  
5.5  
-
STP set-up time with respect to 30 pF total external load  
3.4  
0.8  
-
the rising edge of pin CLOCK  
per pin  
STP hold time with respect to  
the rising edge of pin CLOCK  
30 pF total external load  
per pin  
-
DIR output delay with respect to 30 pF total external load  
the rising edge of pin CLOCK per pin  
6.6  
6.6  
td(NXT)  
NXT output delay with respect to 30 pF total external load  
the rising edge of pin CLOCK per pin  
-
Table 56. Dynamic characteristics: other characteristics  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values are at VCC = 3.6 V; VCC(I/O) = 1.8 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
td(busturn-DV) data valid after bus turnaround delay 30 pF load; see  
1.9  
-
-
ns  
time  
Figure 28  
tO(THL)  
tO(TLH)  
high-to-low output transition time  
low-to-high output transition time  
line impedance 50 Ω  
line impedance 50 Ω  
1.2  
1.2  
-
-
3.1  
3.1  
µs  
µs  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
62 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 57. Dynamic characteristics: analog I/O pins DP and DM  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values are at VCC = 3.6 V; VCC(I/O) = 1.8 V; Tamb = +25 °C; unless otherwise specified.  
Symbol Parameter  
High-speed driver  
Conditions  
Min  
Typ  
Max  
Unit  
tHSR  
tHSF  
Full-speed driver  
rise time (10 % to 90 %)  
drive 45 to GND on pins  
DP and DM  
500  
500  
-
-
-
-
ps  
ps  
fall time (10 % to 90 %)  
drive 45 to GND on pins  
DP and DM  
tFR  
rise time  
CL = 50 pF; 10 % to 90 % of  
4
-
-
-
20  
ns  
ns  
%
|VOH VOL  
CL = 50 pF; 90 % to 10 % of  
|VOH VOL  
|
tFF  
fall time  
4
20  
|
FRFM  
differential rise time/fall time  
matching  
excluding the first transition  
from the idle state  
90  
111.1  
USB low-speed driver characteristics  
tLR  
transition time: rise time  
transition time: fall time  
rise and fall time matching  
CL = 200 pF to 600 pF;  
1.5 kpull-up on pin DM  
enabled; 10 % to 90 % of  
75  
75  
80  
-
-
-
300  
300  
125  
ns  
ns  
%
|VOH VOL  
|
tLF  
CL = 200 pF to 600 pF;  
1.5 kpull-up on pin DM  
enabled; 90 % to 10 % of  
|VOH VOL  
|
tLRFM  
tLR/tLF; excluding the first  
transition from the idle state  
Driver timing (valid only for serial mode)  
tPLH(drv)  
tPHL(drv)  
tPHZ  
driver propagation delay (LOW TX_DAT, TX_SE0 to DP, DM;  
to HIGH) see Figure 24  
-
-
-
-
-
-
-
-
-
-
-
-
11  
11  
12  
12  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
driver propagation delay (HIGH TX_DAT, TX_SE0 to DP, DM;  
to LOW) see Figure 24  
driver disable delay from HIGH TX_ENABLE to DP, DM; see  
level Figure 25  
tPLZ  
driver disable delay from LOW TX_ENABLE to DP, DM; see  
level  
Figure 25  
tPZH  
driver enable delay to HIGH  
level  
TX_ENABLE to DP, DM; see  
Figure 25  
tPZL  
driver enable delay to LOW  
level  
TX_ENABLE to DP, DM; see  
Figure 25  
Receiver timing (valid only for serial mode)  
Differential receiver  
tPLH(rcv)  
receiver propagation delay  
(LOW to HIGH)  
DP, DM to RX_RCV, RX_DP  
and RX_DM; see Figure 26  
-
-
-
-
17  
17  
ns  
ns  
tPHL(rcv)  
receiver propagation delay  
(HIGH to LOW)  
DP, DM to RX_RCV, RX_DP  
and RX_DM; see Figure 26  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
63 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 57. Dynamic characteristics: analog I/O pins DP and DM …continued  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values are at VCC = 3.6 V; VCC(I/O) = 1.8 V; Tamb = +25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Single-ended receiver  
tPLH(se)  
single-ended propagation delay DP, DM to RX_RCV, RX_DP  
(LOW to HIGH) and RX_DM; see Figure 26  
-
-
-
-
17  
17  
ns  
ns  
tPHL(se)  
single-ended propagation delay DP, DM to RX_RCV, RX_DP  
(HIGH to LOW)  
and RX_DM; see Figure 26  
1.8 V  
0.9 V  
logic input 0.9 V  
0 V  
t
, t , t  
HSF FF LF  
t
, t , t  
HSR FR LR  
V
t
t
PHL(drv)  
OH  
PLH(drv)  
90 %  
90 %  
V
OH  
differential  
data lines  
V
V
CRS  
CRS  
10 %  
10 %  
V
OL  
V
OL  
004aaa573  
004aaa861  
Fig 23. Rise time and fall time  
Fig 24. Timing of TX_DAT and TX_SE0 to DP and DM  
2.0 V  
1.8 V  
differential  
data lines  
V
V
CRS  
CRS  
logic  
input  
0.9 V  
0.9 V  
0.8 V  
0 V  
t
t
PLH(rcv)  
PHL(rcv)  
t
t
t
PHZ  
PZH  
t
PHL(se)  
t
PLH(se)  
t
PLZ  
PZL  
V
OH  
V
OH  
V
0.3 V  
OH  
0.9 V  
0.9 V  
logic output  
differential  
data lines  
V
CRS  
V
+ 0.3 V  
OL  
V
OL  
V
004aaa574  
004aaa575  
OL  
Fig 25. Timing of TX_ENABLE to DP and DM  
Fig 26. Timing of DP and DM to RX_RCV, RX_DP and  
RX_DM  
14.1 Timing characteristics  
ULPI interface timing requirements are given in Figure 27. This timing apply to  
synchronous mode only. All timing is measured with respect to the ISP1504x1 CLOCK  
pin. All signals are clocked on the rising edge of CLOCK.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
64 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
CLOCK  
t
t
su(STP) h(STP)  
CONTROL IN  
(STP)  
t
t
su(DATA)  
h(DATA)  
DATA IN  
(8-BIT)  
t
,
d(DIR)  
t
d(NXT)  
CONTROL OUT  
(DIR, NXT)  
t
,
d(DIR)  
t
t
d(NXT)  
d(DATA)  
DATA OUT  
(8-BIT)  
004aaa722  
Fig 27. ULPI timing interface  
turnaround cycle  
CLOCK  
t
d(busturn-DV)  
DATA[7:0]  
DRIVE  
3-STATE  
link releases data bus  
004aaa794  
Fig 28. Bus turnaround timing  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
65 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
15. Application information  
Table 58. Recommended bill of materials  
Designator Application  
Part type  
Comment  
Cbypass  
highly recommended for all  
applications  
0.1 µF  
-
Cfilter  
highly recommended for all  
applications  
4.7 µF ± 20 %; use a LOW  
ESR capacitor (0.2 to 2 )  
for best performance  
-
CVBUS  
mandatory for peripherals  
mandatory for host  
0.1 µF and 1 µF to 10 µF in  
parallel  
-
-
-
0.1 µF and 120 µF ± 20 %  
(min) in parallel  
mandatory for OTG  
0.1 µF and 1 µF to 6.5 µF in  
parallel  
DESD  
recommended for all  
ESD-sensitive applications  
IP4359CX4/LF  
Wafer-Level Chip-Scale Package  
(WLCSP); ESD IEC 61000-4-2 level 4;  
±15 kV contact; ±15 kV air discharge  
compliant protection  
Rpullup  
recommended; for applications 4.7 k(recommended)  
with an external VBUS supply  
-
controlled by PSW_N  
RRREF  
mandatory in all applications  
12 kΩ ± 1 %  
1 kΩ ± 5 %  
-
-
RS(VBUS)  
strongly recommended for  
peripheral or external 5 V  
applications only  
RXTAL  
required only for applications  
driving a square wave into the  
XTAL1 pin  
47 kΩ ± 5 %  
used to avoid floating input on the XTAL1  
pin  
XTAL  
crystal is used  
19.2 MHz  
26 MHz  
100 pF  
CL = 10 pF; RS < 220 ; CXTAL = 18 pF[1]  
CL = 10 pF; RS < 130 ; CXTAL = 18 pF[1]  
C(XTAL)SQ  
required only for applications  
driving a square wave into the  
XTAL1 pin that has a DC offset  
used to AC couple the input square wave to  
the XTAL1 pin  
[1] Recommended crystal specification: 500 µW (max) drive level, ESR 100 (max) and shunt capacitance 7 pF (max).  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
66 of 80  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
V
V
CC(I/O)  
CC  
B1  
B2  
C2  
C1  
D1  
E2  
D3  
F1  
F2  
F3  
D4  
F4  
E3  
F5  
F6  
A1  
A2  
B3  
C3  
A3  
A4  
A5  
A6  
B6  
C6  
B5  
D5  
D6  
E5  
C
C
bypass  
bypass  
DATA1  
DATA2  
DATA0  
CS_N/PWRDN  
(optional)  
V
CC(I/O)  
R
RREF  
V
1
2
CC(I/O)  
CS_N/PWRDN  
DATA3  
V
RREF  
DM  
BUS  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
D−  
3
4
USB  
STANDARD-B  
RECEPTACLE  
D+  
DP  
CLOCK  
GND  
FAULT  
ID  
DATA4  
A1  
A2  
DATA5  
PERIPHERAL  
CONTROLLER  
n.c.  
ISP1504x1  
DATA6  
DATA7  
IP4359CX4/LF  
n.c.  
B1  
B2  
V
CC  
D
V
ESD  
CLOCK  
NXT  
CC(I/O)  
NXT  
R
pullup  
PSW_N  
R
S(VBUS)  
V
BUS  
STP  
STP  
C
VBUS  
DIR  
REG3V3  
XTAL1  
XTAL2  
DIR  
E6  
C4  
REG1V8  
RESET_N  
XTAL  
XTAL  
C
C
filter  
bypass  
GND (B4, C5, D2, E1, E4)  
C
C
filter  
bypass  
C
C
XTAL  
004aaa945  
Fig 29. Using the ISP1504x1 with a standard USB Peripheral Controller; external crystal  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
+5 V  
V
V
CC  
CC(I/O)  
IN  
FAULT  
V
BUS  
R
pullup  
SWITCH  
ON  
OUT  
B1  
A1  
A2  
C
C
bypass  
bypass  
DATA1  
DATA2  
DATA0  
B2  
C2  
V
CC(I/O)  
R
RREF  
CS_N/PWRDN  
(optional)  
B3  
C3  
1
2
3
V
V
CC(I/O)  
BUS  
RREF  
DATA0  
C1  
D1  
D3  
E2  
CS_N/PWRDN  
D−  
D+  
ID  
DM  
DP  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
A3  
A4  
DATA3  
CLOCK  
USB MICRO-AB  
RECEPTACLE  
4
5
ID  
A5  
A6  
GND  
DATA4  
DATA5  
FAULT  
OTG  
CONTROLLER  
F1  
F2  
n.c.  
n.c.  
A1  
A2  
B6  
C6  
B5  
D5  
D6  
E5  
ISP1504x1  
DATA6  
DATA7  
IP4359CX4/LF  
B1  
B2  
F3  
D4  
F4  
V
V
CLOCK  
NXT  
D
CC  
CC(I/O)  
NXT  
ESD  
PSW_N  
R
S(VBUS)  
STP  
DIR  
STP  
V
BUS  
C
E3  
VBUS  
RESET_N  
(optional)  
DIR  
REG3V3  
XTAL1  
XTAL2  
E6  
C4  
F5  
F6  
REG1V8  
RESET_N  
C
C
filter  
bypass  
GND (B4, C5, D2, E1, E4)  
C
C
filter  
bypass  
C
(XTAL)SQ  
R
XTAL  
(1)  
f
i(XTAL1)  
004aaa946  
(1) Can be a square wave clock of 19.2 MHz or 26 MHz.  
Fig 30. Using the ISP1504x1 with an OTG Controller; external 5 V source with built-in FAULT and external square wave input on pin XTAL1  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
+5 V  
V
V
CC(I/O)  
CC  
IN  
FAULT  
V
BUS  
R
pullup  
SWITCH  
ON  
OUT  
A1  
A2  
C
B1  
bypass  
C
bypass  
DATA0  
DATA1  
DATA2  
B2  
C2  
V
CC(I/O)  
R
RREF  
CS_N/PWRDN  
(optional)  
B3  
C3  
1
2
V
V
CC(I/O)  
RREF  
DM  
BUS  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
C1  
D1  
CS_N/PWRDN  
D−  
3
4
A3  
A4  
USB  
D+  
DP  
DATA3  
CLOCK  
DATA4  
STANDARD-A  
RECEPTACLE  
GND  
E2  
D3  
F1  
F2  
FAULT  
ID  
A5  
A6  
DATA5  
DATA6  
DATA7  
A1  
A2  
ISP1504x1  
HOST  
n.c.  
n.c.  
V
B6  
CONTROLLER  
DATA6  
DATA7  
IP4359CX4/LF  
C6  
B5  
B1  
B2  
F3  
D
ESD  
CC  
V
CLOCK  
NXT  
CC(I/O)  
NXT  
D4  
F4  
D5  
D6  
E5  
PSW_N  
R
S(VBUS)  
V
BUS  
STP  
STP  
E3  
REG3V3  
RESET_N  
(optional)  
DIR  
DIR  
E6  
C4  
REG1V8  
F5  
F6  
XTAL1  
XTAL2  
XTAL  
RESET_N  
C
filter  
C
VBUS  
C
bypass  
GND (B4, C5, D2, E1, E4)  
C
C
filter  
bypass  
C
XTAL  
C
XTAL  
004aaa947  
Fig 31. Using the ISP1504x1 with a standard USB Host Controller; external 5 V source with built-in FAULT and external crystal  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
16. Package outline  
TFBGA36: plastic thin fine-pitch ball grid array package; 36 balls; body 3.5 x 3.5 x 0.8 mm  
SOT912-1  
D
B
A
E
ball A1  
index area  
A
2
A
A
1
detail X  
e
1
1/2 e  
e
C
M
M
v
C A  
C
B
b
y
y
w
C
1
F
E
D
C
B
A
e
e
2
1/2 e  
ball A1  
index area  
1
2
3
4
5
6
X
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
1
A
2
b
D
E
e
e
e
2
v
w
y
y
1
1
max  
0.25 0.90 0.35  
0.15 0.75 0.25  
3.6  
3.4  
3.6  
3.4  
mm  
1.15  
0.5  
2.5  
2.5  
0.15 0.05 0.08  
0.1  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
JEITA  
05-08-09  
05-09-01  
- - -  
- - -  
- - -  
SOT912-1  
Fig 32. Package outline SOT912-1 (TFBGA36)  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
70 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
17. Soldering  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
17.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
17.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus PbSn soldering  
17.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
71 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
17.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 33) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 59 and 60  
Table 59. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 60. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 33.  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
72 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 33. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
18. Abbreviations  
Table 61. Abbreviations  
Acronym  
ASIC  
ATX  
Description  
Application-Specific Integrated Circuit  
Analog USB Transceiver  
End-Of-Packet  
EOP  
ESR  
FS  
Effective Series Resistance  
Full-Speed  
HBM  
HNP  
HS  
Human Body Model  
Host Negotiation Protocol  
High-Speed  
ID  
Identification  
LS  
Low-Speed  
MM  
Machine Model  
NRZI  
OTG  
PHY  
PID  
Non-Return-to-Zero Inverted  
On-The-Go  
Physical Layer[1]  
Packet Identifier  
PLL  
Phase-Locked Loop  
Power-On Reset  
POR  
RXCMD  
SE0  
Receive Command  
Single-Ended Zero  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
73 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 61. Abbreviations …continued  
Acronym  
Description  
SOF  
Start-Of-Frame  
SRP  
Session Request Protocol  
Synchronous  
SYNC  
TTL  
Transistor-Transistor Logic  
Transmit Command  
Universal Serial Bus  
USB Implementers Forum  
UTMI+ Low Pin Interface  
TXCMD  
USB  
USB-IF  
ULPI  
UTMI  
UTMI+  
USB 2.0 Transceiver Macrocell Interface  
USB 2.0 Transceiver Macrocell Interface Plus  
[1] Physical layer containing the USB transceiver. The ISP1504x1 is a PHY.  
19. References  
[1] Universal Serial Bus Specification Rev. 2.0  
[2] On-The-Go Supplement to the USB 2.0 Specification Rev. 1.2  
[3] UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1  
[4] UTMI+ Specification Rev. 1.0  
[5] USB 2.0 Transceiver Macrocell Interface (UTMI) Specification Ver. 1.05  
[6] Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)  
(JESD22-A114D)  
[7] Electrostatic Discharge (ESD) Sensitivity Testing Machine Model (MM)  
(JESD22-A115-A)  
[8] Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components  
(JESD22-C101-C)  
20. Revision history  
Table 62. Revision history  
Document ID  
Release date Data sheet status  
Change notice  
Supersedes  
ISP1504A1_ISP1504C1_1  
20070806  
Product data sheet  
-
-
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
74 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
21. Legal information  
21.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of a NXP Semiconductors product can reasonably be expected to  
21.2 Definitions  
result in personal injury, death or severe property or environmental damage.  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
21.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
21.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
22. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
75 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
23. Tables  
Table 1. Ordering information . . . . . . . . . . . . . . . . . . . . .3  
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Table 3. Recommended VBUS capacitor value . . . . . . .12  
Table 4. ULPI signal description . . . . . . . . . . . . . . . . . .14  
Table 5. Signal mapping during low-power mode . . . . .16  
Table 6. Signal mapping for 6-pin serial mode . . . . . . .16  
Table 7. Signal mapping for 3-pin serial mode . . . . . . .17  
Table 8. Operating states and corresponding resistor  
settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Table 9. OTG Control register power control bits . . . . .25  
Table 10. TXCMD byte format . . . . . . . . . . . . . . . . . . . . .26  
Table 11. RXCMD byte format . . . . . . . . . . . . . . . . . . . . .27  
Table 12. LINESTATE[1:0] encoding for upstream  
facing ports: peripheral . . . . . . . . . . . . . . . . . .27  
Table 13. LINESTATE[1:0] encoding for downstream  
facing ports: host . . . . . . . . . . . . . . . . . . . . . . .28  
Table 14. Encoded VBUS voltage state . . . . . . . . . . . . . .28  
Table 15. VBUS indicators in RXCMD required for  
typical applications . . . . . . . . . . . . . . . . . . . . . .29  
Table 16. Encoded USB event signals . . . . . . . . . . . . . .30  
Table 17. PHY pipeline delays . . . . . . . . . . . . . . . . . . . . .34  
Table 18. Link decision times . . . . . . . . . . . . . . . . . . . . .35  
Table 19. Immediate register set overview . . . . . . . . . . .47  
Table 20. Extended register set overview . . . . . . . . . . . .47  
Table 21. Vendor ID Low register (address R = 00h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .48  
Table 22. Vendor ID High register (address R = 01h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .48  
Table 23. Product ID Low register (address R = 02h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .48  
Table 24. Product ID High register (address R = 03h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .48  
Table 25. Function Control register (address R = 04h to  
06h, W = 04h, S = 05h, C = 06h) bit allocation 48  
Table 26. Function Control register (address  
Table 31. USB Interrupt Enable Rising Edge register  
(address R = 0Dh to 0Fh, W = 0Dh, S = 0Eh,  
C = 0Fh) bit allocation . . . . . . . . . . . . . . . . . . . 51  
Table 32. USB Interrupt Enable Rising Edge register  
(address R = 0Dh to 0Fh, W = 0Dh, S = 0Eh,  
C = 0Fh) bit description . . . . . . . . . . . . . . . . . . 52  
Table 33. USB Interrupt Enable Falling Edge register  
(address R = 10h to 12h, W = 10h, S = 11h,  
C = 12h) bit allocation . . . . . . . . . . . . . . . . . . . 52  
Table 34. USB Interrupt Enable Falling Edge register  
(address R = 10h to 12h, W = 10h, S = 11h,  
C = 12h) bit description . . . . . . . . . . . . . . . . . . 52  
Table 35. USB Interrupt Status register (address R =  
13h) bit allocation . . . . . . . . . . . . . . . . . . . . . . 53  
Table 36. USB Interrupt Status register (address R =  
13h) bit description . . . . . . . . . . . . . . . . . . . . . 53  
Table 37. USB Interrupt Latch register (address R =  
14h) bit allocation . . . . . . . . . . . . . . . . . . . . . . 53  
Table 38. USB Interrupt Latch register (address R =  
14h) bit description . . . . . . . . . . . . . . . . . . . . . 53  
Table 39. Debug register (address R = 15h) bit  
allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 40. Debug register (address R = 15h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 41. Scratch register (address R = 16h to 18h,  
W = 16h, S = 17h, C = 18h) bit description . . . 54  
Table 42. Power Control register (address R = 3Dh to  
3Fh, W = 3Dh, S = 3Eh, C = 3Fh) bit  
allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 43. Power Control register (address R = 3Dh to  
3Fh, W = 3Dh, S = 3Eh, C = 3Fh) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 44. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 45. Recommended operating conditions . . . . . . . . 56  
Table 46. Static characteristics: supply pins . . . . . . . . . . 57  
Table 47. Static characteristics: digital pins CLOCK,  
DIR, STP, NXT, DATA[7:0], RESET_N,  
R = 04h to 06h, W = 04h, S = 05h, C = 06h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .49  
Table 27. Interface Control register (address R = 07h to  
09h, W = 07h, S = 08h, C = 09h) bit allocation 49  
Table 28. Interface Control register (address R = 07h to  
09h, W = 07h, S = 08h, C = 09h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Table 29. OTG Control register (address R = 0Ah to  
0Ch, W = 0Ah, S = 0Bh, C = 0Ch) bit  
CS_N/PWRDN . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 48. Static characteristics: digital pin FAULT . . . . . 58  
Table 49. Static characteristics: digital pin PSW_N . . . . 58  
Table 50. Static characteristics: analog I/O pins DP,  
DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 51. Static characteristics: analog pin VBUS . . . . . . 60  
Table 52. Static characteristics: ID detection circuit . . . . 60  
Table 53. Static characteristics: resistor reference . . . . . 60  
Table 54. Dynamic characteristics: reset and clock . . . . 61  
Table 55. Dynamic characteristics: digital I/O pins . . . . . 62  
Table 56. Dynamic characteristics: other characteristics 62  
allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Table 30. OTG Control register (address R = 0Ah to  
0Ch, W = 0Ah, S = 0Bh, C = 0Ch) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
continued >>  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
76 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
Table 57. Dynamic characteristics: analog I/O pins DP  
and DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Table 58. Recommended bill of materials . . . . . . . . . . . .66  
Table 59. SnPb eutectic process (from J-STD-020C) . . .72  
Table 60. Lead-free process (from J-STD-020C) . . . . . .72  
Table 61. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Table 62. Revision history . . . . . . . . . . . . . . . . . . . . . . . .74  
continued >>  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
77 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
24. Figures  
Fig 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Fig 2. Pin configuration TFBGA36; top view . . . . . . . . . .5  
Fig 3. Application circuit components . . . . . . . . . . . . . .12  
Fig 4. Entering and exiting 3-state in normal mode . . . .18  
Fig 5. Internal power-on reset timing . . . . . . . . . . . . . . .21  
Fig 6. Power-up and reset sequence required before  
the ULPI bus is ready for use. . . . . . . . . . . . . . . .23  
Fig 7. Interface behavior with respect to RESET_N. . . .24  
Fig 8. Interface behavior with respect to  
Fig 33. Temperature profiles for large and small  
components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
CS_N/PWRDN. . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Fig 9. Single and back-to-back RXCMDs from the  
ISP1504x1 to the link. . . . . . . . . . . . . . . . . . . . . .27  
Fig 10. RXCMD A_VBUS_VLD indicator source . . . . . . .29  
Fig 11. Example of register write, register read,  
extended register write and extended register  
read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Fig 12. USB reset and high-speed detection  
handshake (chirp) sequence . . . . . . . . . . . . . . . .33  
Fig 13. Example of using the ISP1504x1 to transmit and  
receive USB data. . . . . . . . . . . . . . . . . . . . . . . . .34  
Fig 14. High-speed transmit-to-transmit packet timing. . .35  
Fig 15. High-speed receive-to-transmit packet timing . . .36  
Fig 16. Preamble sequence. . . . . . . . . . . . . . . . . . . . . . .37  
Fig 17. Full-speed suspend and resume . . . . . . . . . . . . .38  
Fig 18. High-speed suspend and resume . . . . . . . . . . . .40  
Fig 19. Remote wake-up from low-power mode . . . . . . .42  
Fig 20. Transmitting USB packets without automatic  
SYNC and EOP generation . . . . . . . . . . . . . . . . .43  
Fig 21. Example of transmit followed by receive in  
6-pin serial mode . . . . . . . . . . . . . . . . . . . . . . . . .45  
Fig 22. Example of transmit followed by receive in  
3-pin serial mode . . . . . . . . . . . . . . . . . . . . . . . . .45  
Fig 23. Rise time and fall time . . . . . . . . . . . . . . . . . . . . .64  
Fig 24. Timing of TX_DAT and TX_SE0 to DP and DM. .64  
Fig 25. Timing of TX_ENABLE to DP and DM. . . . . . . . .64  
Fig 26. Timing of DP and DM to RX_RCV, RX_DP and  
RX_DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Fig 27. ULPI timing interface . . . . . . . . . . . . . . . . . . . . . .65  
Fig 28. Bus turnaround timing . . . . . . . . . . . . . . . . . . . . .65  
Fig 29. Using the ISP1504x1 with a standard USB  
Peripheral Controller; external crystal . . . . . . . . .67  
Fig 30. Using the ISP1504x1 with an OTG Controller;  
external 5 V source with built-in FAULT and  
external square wave input on pin XTAL1 . . . . . .68  
Fig 31. Using the ISP1504x1 with a standard USB Host  
Controller; external 5 V source with built-in  
FAULT and external crystal . . . . . . . . . . . . . . . . .69  
Fig 32. Package outline SOT912-1 (TFBGA36). . . . . . . .70  
continued >>  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
78 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
25. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
8.1.3  
8.1.4  
8.1.5  
8.2  
6-pin full-speed or low-speed serial mode . . . 16  
3-pin full-speed or low-speed serial mode . . . 16  
Power-down mode . . . . . . . . . . . . . . . . . . . . . 17  
USB state transitions . . . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
9
Protocol description . . . . . . . . . . . . . . . . . . . . 21  
ULPI references . . . . . . . . . . . . . . . . . . . . . . . 21  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . 21  
Power-up, reset and bus idle sequence . . . . . 21  
Interface protection. . . . . . . . . . . . . . . . . . . . . 24  
Interface behavior with respect to  
RESET_N. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Interface behavior with respect to  
CS_N/PWRDN. . . . . . . . . . . . . . . . . . . . . . . . 24  
9.1  
9.2  
9.3  
9.3.1  
9.3.2  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.6.1  
7.6.2  
7.6.2.1  
7.6.2.2  
7.6.2.3  
7.6.3  
7.7  
Functional description . . . . . . . . . . . . . . . . . . . 7  
ULPI interface controller . . . . . . . . . . . . . . . . . . 7  
USB data serializer and deserializer. . . . . . . . . 7  
Hi-Speed USB (USB 2.0) ATX . . . . . . . . . . . . . 7  
Voltage regulator. . . . . . . . . . . . . . . . . . . . . . . . 8  
Crystal oscillator and PLL. . . . . . . . . . . . . . . . . 8  
OTG module . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
ID detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
VBUS comparators. . . . . . . . . . . . . . . . . . . . . . . 9  
9.3.3  
9.4  
VBUS power and overcurrent detection. . . . . . 25  
9.4.1  
9.4.2  
9.5  
9.5.1  
9.5.2  
9.5.2.1  
9.5.2.2  
9.5.2.3  
9.5.2.4  
9.6  
Driving 5 V on VBUS . . . . . . . . . . . . . . . . . . . . 25  
Fault detection . . . . . . . . . . . . . . . . . . . . . . . . 25  
TXCMD and RXCMD . . . . . . . . . . . . . . . . . . . 25  
TXCMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
RXCMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Linestate encoding. . . . . . . . . . . . . . . . . . . . . 27  
VBUS valid comparator . . . . . . . . . . . . . . . . . . . 9  
Session valid comparator . . . . . . . . . . . . . . . . . 9  
Session end comparator. . . . . . . . . . . . . . . . . . 9  
SRP charge and discharge resistors . . . . . . . . 9  
Band gap reference voltage . . . . . . . . . . . . . . 10  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . 10  
Detailed description of pins . . . . . . . . . . . . . . 10  
DATA[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
VCC(I/O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
RREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
DP and DM . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
FAULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
VBUS state encoding. . . . . . . . . . . . . . . . . . . . 28  
Using and selecting the VBUS state encoding. 29  
RxEvent encoding . . . . . . . . . . . . . . . . . . . . . 30  
Register read and write operations . . . . . . . . 31  
USB reset and high-speed detection  
handshake (chirp) . . . . . . . . . . . . . . . . . . . . . 31  
USB packet transmit and receive . . . . . . . . . . 34  
USB packet timing . . . . . . . . . . . . . . . . . . . . . 34  
ISP1504x1 pipeline delays. . . . . . . . . . . . . . . 34  
Allowed link decision time . . . . . . . . . . . . . . . 34  
Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
USB suspend and resume . . . . . . . . . . . . . . . 37  
Full-speed or low-speed host-initiated  
suspend and resume . . . . . . . . . . . . . . . . . . . 37  
High-speed suspend and resume . . . . . . . . . 38  
Remote wake-up . . . . . . . . . . . . . . . . . . . . . . 41  
No automatic SYNC and EOP generation  
(optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
On-The-Go operations . . . . . . . . . . . . . . . . . . 43  
OTG comparators. . . . . . . . . . . . . . . . . . . . . . 44  
Pull-up and pull-down resistors . . . . . . . . . . . 44  
ID detection . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
7.8  
7.9  
9.7  
7.9.1  
7.9.2  
7.9.3  
7.9.4  
7.9.5  
7.9.6  
7.9.7  
7.9.8  
7.9.9  
7.9.10  
7.9.11  
7.9.12  
7.9.13  
7.9.14  
7.9.15  
7.9.16  
7.9.17  
7.9.18  
9.8  
9.8.1  
9.8.1.1  
9.8.1.2  
9.9  
9.10  
9.10.1  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
PSW_N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
VBUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
REG3V3 and REG1V8 . . . . . . . . . . . . . . . . . . 12  
XTAL1 and XTAL2. . . . . . . . . . . . . . . . . . . . . . 12  
RESET_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
STP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
NXT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
CLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
CS_N/PWRDN . . . . . . . . . . . . . . . . . . . . . . . . 13  
GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
9.10.2  
9.10.3  
9.11  
9.12  
9.12.1  
9.12.2  
9.12.3  
9.12.4  
9.13  
VBUS charge and discharge resistors . . . . . . . 44  
Serial modes . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Aborting transfers. . . . . . . . . . . . . . . . . . . . . . 46  
Avoiding contention on the ULPI data bus . . . 46  
8
8.1  
8.1.1  
8.1.2  
Modes of operation . . . . . . . . . . . . . . . . . . . . . 14  
ULPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Synchronous mode. . . . . . . . . . . . . . . . . . . . . 14  
Low-power mode . . . . . . . . . . . . . . . . . . . . . . 15  
9.14  
9.15  
10  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
continued >>  
ISP1504A1_ISP1504C1_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 6 August 2007  
79 of 80  
ISP1504A1; ISP1504C1  
NXP Semiconductors  
ULPI HS USB OTG transceiver  
10.1  
10.1.1  
Immediate register set . . . . . . . . . . . . . . . . . . 48  
Vendor ID and Product ID registers . . . . . . . . 48  
10.1.1.1 Vendor ID Low register . . . . . . . . . . . . . . . . . . 48  
10.1.1.2 Vendor ID High register . . . . . . . . . . . . . . . . . 48  
10.1.1.3 Product ID Low register . . . . . . . . . . . . . . . . . 48  
10.1.1.4 Product ID High register . . . . . . . . . . . . . . . . . 48  
10.1.2  
10.1.3  
10.1.4  
10.1.5  
10.1.6  
10.1.7  
10.1.8  
10.1.9  
Function Control register . . . . . . . . . . . . . . . . 48  
Interface Control register . . . . . . . . . . . . . . . . 49  
OTG Control register . . . . . . . . . . . . . . . . . . . 50  
USB Interrupt Enable Rising Edge register . . 51  
USB Interrupt Enable Falling Edge register . . 52  
USB Interrupt Status register . . . . . . . . . . . . . 52  
USB Interrupt Latch register. . . . . . . . . . . . . . 53  
Debug register . . . . . . . . . . . . . . . . . . . . . . . . 54  
10.1.10 Scratch register. . . . . . . . . . . . . . . . . . . . . . . . 54  
10.1.11 Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
10.1.12 Access extended register set . . . . . . . . . . . . . 54  
10.1.13 Vendor-specific registers . . . . . . . . . . . . . . . . 54  
10.1.14 Power Control register . . . . . . . . . . . . . . . . . . 54  
10.2  
Extended register set . . . . . . . . . . . . . . . . . . . 55  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 56  
Recommended operating conditions. . . . . . . 56  
Static characteristics. . . . . . . . . . . . . . . . . . . . 57  
Dynamic characteristics . . . . . . . . . . . . . . . . . 61  
Timing characteristics. . . . . . . . . . . . . . . . . . . 64  
Application information. . . . . . . . . . . . . . . . . . 66  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 70  
11  
12  
13  
14  
14.1  
15  
16  
17  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Introduction to soldering . . . . . . . . . . . . . . . . . 71  
Wave and reflow soldering . . . . . . . . . . . . . . . 71  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 71  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 72  
17.1  
17.2  
17.3  
17.4  
18  
19  
20  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 73  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 74  
21  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 75  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 75  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
21.1  
21.2  
21.3  
21.4  
22  
23  
24  
25  
Contact information. . . . . . . . . . . . . . . . . . . . . 75  
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2007.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 6 August 2007  
Document identifier: ISP1504A1_ISP1504C1_1  

相关型号:

ISP1504A1ET,118

IC LINE TRANSCEIVER, PBGA36, 3.50 X 3.50 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, PLASTIC, SOT-912-1, TFBGA-36, Line Driver or Receiver
NXP

ISP1504A1_07

ULPI Hi-Speed Universal Serial Bus On-The-Go transceiver
NXP

ISP1504ABS

ULPI Hi-Speed Universal Serial Bus On-The-Go transceiver
NXP

ISP1504C

ULPI Hi-Speed Universal Serial Bus On-The-Go transceiver
NXP

ISP1504C1

ULPI Hi-Speed Universal Serial Bus On-The-Go transceiver
NXP

ISP1504C1ET

ULPI Hi-Speed Universal Serial Bus On-The-Go transceiver
NXP

ISP1504C1ET,118

IC LINE TRANSCEIVER, PBGA36, 3.50 X 3.50 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, PLASTIC, SOT-912-1, TFBGA-36, Line Driver or Receiver
NXP

ISP1504CBS

ULPI Hi-Speed Universal Serial Bus On-The-Go transceiver
NXP

ISP1504CBS-S

IC,BUS CONTROLLER,LLCC,32PIN
NXP

ISP1505A

ULPI Hi-Speed USB host and peripheral transceiver
NXP

ISP1505ABS

ULPI Hi-Speed USB host and peripheral transceiver
NXP

ISP1505ABS,518

暂无描述
NXP