ISP1583BS,551 [NXP]

USB Bus Controller, CMOS, PQCC64, 9 X 9 MM, 0.85 MM HEIGHT, LEAD FREE, PLASTIC, MO-220, SOT-804-1, HVQFN-64;
ISP1583BS,551
型号: ISP1583BS,551
厂家: NXP    NXP
描述:

USB Bus Controller, CMOS, PQCC64, 9 X 9 MM, 0.85 MM HEIGHT, LEAD FREE, PLASTIC, MO-220, SOT-804-1, HVQFN-64

文件: 总100页 (文件大小:509K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3
4
.80 7IRELESS  
IMPORTANT NOTICE  
Dear customer,  
As from August 2nd 2008, the wireless operations of NXP have moved to a new company,  
ST-NXP Wireless.  
As a result, the following changes are applicable to the attached document.  
Company name - NXP B.V. is replaced with ST-NXP Wireless.  
Copyright - the copyright notice at the bottom of each page “© NXP B.V. 200x. All  
rights reserved”, shall now read: “© ST-NXP Wireless 200x - All rights reserved”.  
Web site - http://www.nxp.com is replaced with http://www.stnwireless.com  
Contact information - the list of sales offices previously obtained by sending  
an email to salesaddresses@nxp.com , is now found at http://www.stnwireless.com  
under Contacts.  
If you have any questions related to the document, please contact our nearest sales office.  
Thank you for your cooperation and understanding.  
ST-NXP Wireless  
34.80 7IRELESS  
www.stnwireless.com  
ISP1583  
Hi-Speed USB peripheral controller  
Rev. 07 — 22 September 2008  
Product data sheet  
1. General description  
The ISP1583 is a cost-optimized and feature-optimized Hi-Speed Universal Serial Bus  
(USB) peripheral controller. It fully complies with Ref. 1 “Universal Serial Bus Specification  
Rev. 2.0”, supporting data transfer at high-speed (480 Mbit/s) and full-speed (12 Mbit/s).  
The ISP1583 provides high-speed USB communication capacity to systems based on  
microcontrollers or microprocessors. It communicates with a microcontroller or  
microprocessor of a system through a high-speed general-purpose parallel interface.  
The ISP1583 supports automatic detection of Hi-Speed USB system operation. Original  
USB fall-back mode allows the device to remain operational under full-speed conditions. It  
is designed as a generic USB peripheral controller so that it can fit into all existing device  
classes, such as imaging class, mass storage devices, communication devices, printing  
devices and human interface devices.  
The ISP1583 is a low-voltage device, which supports I/O pad voltages from 1.65 V to  
3.6 V.  
The internal generic Direct Memory Access (DMA) block allows easy integration into data  
streaming applications. In addition, the various configurations of the DMA block are  
tailored for mass storage applications.  
The modular approach to implementing a USB peripheral controller allows the designer to  
select the optimum system microcontroller from the wide variety available. The ability to  
reuse existing architecture and firmware shortens the development time, eliminates risk  
and reduces cost. The result is fast and efficient development of the most cost-effective  
USB peripheral solution.  
The ISP1583 also incorporates features such as SoftConnect, a reduced frequency  
crystal oscillator and integrated termination resistors. These features allow significant cost  
savings in system design and easy implementation of advanced USB functionality into PC  
peripherals.  
2. Features  
I Complies fully with:  
N Ref. 1 “Universal Serial Bus Specification Rev. 2.0”  
N Most device class specifications  
N ACPI, OnNow and USB power management requirements  
I Supports data transfer at high-speed (480 Mbit/s) and full-speed (12 Mbit/s)  
I Direct interface to ATA/ATAPI peripherals; applicable only in split bus mode  
I High performance USB peripheral controller with integrated Serial Interface Engine  
(SIE), Parallel Interface Engine (PIE), FIFO memory and data transceiver  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
I Automatic Hi-Speed USB mode detection and Original USB fall-back mode  
I Supports sharing mode  
I Supports I/O voltage range of 1.65 V to 3.6 V  
I Supports VBUS sensing  
I High-speed DMA interface  
I Configurable direct access data path from the microprocessor to an ATA device  
I Fully autonomous and multiconfiguration DMA operation  
I Seven IN endpoints, seven OUT endpoints, and a fixed control IN and OUT endpoint  
I Integrated physical 8 kB of multiconfiguration FIFO memory  
I Endpoints with double buffering to increase throughput and ease real-time data  
transfer  
I Bus-independent interface with most microcontrollers and microprocessors  
I 12 MHz crystal oscillator with integrated PLL for low EMI  
I Software-controlled connection to the USB bus (SoftConnect)  
I Low-power consumption in operation and power-down modes; suitable for use in  
bus-powered USB devices  
I Supports Session Request Protocol (SRP) that adheres to Ref. 2 “On-The-Go  
Supplement to the USB Specification Rev. 1.3”  
I Internal power-on and low-voltage reset circuits; also supports software reset  
I Operation over the extended USB bus voltage range (DP, DM and VBUS  
)
I 5 V tolerant I/O pads  
I Operating temperature range from 40 °C to +85 °C  
I Available in HVQFN64 and TFBGA64 halogen-free and lead-free packages  
3. Applications  
I Personal digital assistant  
I Mass storage device, for example: CD, DVD, Magneto-Optical (MO) and Zip drives  
I Digital video camera  
I Digital still camera  
I 3G mobile phone  
I MP3 player  
I Communication device, for example: router and modem  
I Printer  
I Scanner  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
2 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
4. Ordering information  
Table 1.  
Ordering information  
Type number Package  
Name  
Description  
Version  
ISP1583BS  
HVQFN64 plastic thermal enhanced very thin quad flat package; no leads; 64 terminals; SOT804-1  
body 9 × 9 × 0.85 mm  
ISP1583ET  
TFBGA64 plastic thin fine-pitch ball grid array package; 64 balls; body 6 × 6 × 0.8 mm  
SOT543-1  
SOT969-1  
SOT543-1  
ISP1583ET1[1] TFBGA64 plastic thin fine-pitch ball grid array package; 64 balls; body 4 × 4 × 0.8 mm  
ISP1583ET2[1] TFBGA64 plastic thin fine-pitch ball grid array package; 64 balls; body 6 × 6 × 0.8 mm  
[1] Contains solder ball material SAC105.  
5. Marking  
Table 2.  
Marking codes  
Type number  
ISP1583BS  
ISP1583ET  
ISP1583ET1  
ISP1583ET2  
Marking code[1]  
ISP1583BS  
ISP1583  
1583  
1583ET2  
[1] The package marking is the first line of text on the IC package and can be used for IC identification.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
3 of 99  
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
12 MHz  
to or from USB  
(2)  
CS1_N  
DA1  
(3)  
DREQ DIOR  
DIOW  
DA2 DACK  
V
DP DM  
BUS  
55  
CS0_N DA0  
XTAL1 XTAL2  
21 22 62 60 17  
9
10 11 12  
3
4
58  
57  
8
14  
15  
EOT  
ISP1583  
3.3 V  
INTRQ  
IORDY  
SoftConnect  
DMA  
HANDLER  
1.5 kΩ  
DMA INTERFACE  
(1)  
RPU  
2
6
37 to 40,  
42 to 53  
16  
NXP  
SIE/PIE  
MEMORY  
MANAGEMENT  
UNIT  
RREF  
HI-SPEED USB  
TRANSCEIVER  
DMA  
REGISTERS  
DATA[15:0]  
BUS_CONF  
62  
60  
34  
(3)  
12 kΩ  
(2)  
MODE0  
MODE1  
23 to 25,  
27 to 31  
8
MICRO-  
CONTROLLER  
HANDLER  
7
internal  
reset  
POWER-ON  
RESET  
RESET_N  
AD[7:0]  
CS_N  
INTEGRATED  
RAM (8 kB)  
18  
36  
19  
20  
15  
analog  
supply  
MICROCONTROLLER  
INTERFACE  
ALE/A0  
RW_N/RD_N  
DS_N/WR_N  
VOLTAGE  
REGULATORS  
SYSTEM  
CONTROLLER  
1.8 V  
61  
digital  
supply  
V
CC(3V3)  
OTG SRP  
MODULE  
(1)  
READY  
I/O pad supply  
26, 41, 54  
16  
INT  
13, 35, 59  
DGND  
1, 5  
AGND  
32, 56  
64  
63  
004aaa268  
V
SUSPEND WAKEUP  
CC(I/O)  
VCC1V8  
The figure shows the ISP1583BS pinout. For the ISP1583ET, ISP1583ET1 and ISP1583ET2 ballouts, see Table 3.  
The direction of pins DREQ, DACK, DIOR and DIOW is determined by bit MASTER (DMA Hardware register) and bit ATA_MODE (DMA Configuration register).  
(1) Pin 15 is shared by READY and IORDY.  
(2) Pin 60 is shared by MODE0 and DA1.  
(3) Pin 62 is shared by BUS_CONF and DA0.  
Fig 1. Block diagram  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
7. Pinning information  
7.1 Pinning  
terminal 1  
index area  
DATA10  
DATA9  
DATA8  
DATA7  
DATA6  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AGND  
RPU  
DP  
3
4
DM  
5
AGND  
RREF  
6
DATA5  
DATA4  
7
RESET_N  
EOT  
V
8
CC(I/O)  
ISP1583BS  
DATA3  
DATA2  
9
DREQ  
DACK  
DIOR  
10  
11  
12  
13  
14  
15  
16  
DATA1  
DIOW  
DGND  
DATA0  
ALE/A0  
DGND  
INTRQ  
READY/IORDY  
INT  
MODE1  
n.c.  
004aaa537  
Transparent top view  
Fig 2. Pin configuration ISP1583BS (top view)  
ball A1  
index area  
1 2 3 4 5 6 7 8 9 10  
A
B
C
D
E
F
ISP1583ET;  
ISP1583ET2  
G
H
J
K
004aaa859  
Transparent top view  
Fig 3. Pin configuration ISP1583ET and ISP1583ET2 (top view)  
Rev. 07 — 22 September 2008  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
5 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
ISP1583ET1  
ball A1  
index area  
1
2 3 4 5 6 7 8  
A
B
C
D
E
F
G
H
004aaa991  
Transparent top view  
Fig 4. Pin configuration ISP1583ET1 (top view)  
7.2 Pin description  
Table 3.  
Pin description  
Symbol[1] Pin  
Type[2] Description  
ISP1583BS ISP1583ET; ISP1583ET1  
ISP1583ET2  
AGND  
RPU  
1
2
D2  
A1  
D2  
A1  
-
analog ground  
A
pull-up resistor connection; this pin must be connected to  
3.3 V through an external 1.5 kresistor to pull up pin DP  
DP  
3
4
5
6
B1  
C1  
-
B1  
C1  
-
A
A
-
USB D+ line connection (analog)  
USB Dline connection (analog)  
analog ground  
DM  
AGND  
RREF  
D1  
D1  
A
external bias resistor connection; this pin must be  
connected to ground through a 12.0 kΩ ± 1 % resistor  
RESET_N  
7
E2  
C3  
I
reset input (500 µs); a LOW level produces an  
asynchronous reset; connect to VCC(3V3) for power-on  
reset (internal POR circuit)  
When the RESET_N pin is LOW, ensure that the WAKEUP  
pin does not go from LOW to HIGH; otherwise the device  
will enter test mode.  
TTL; 5 V tolerant  
EOT  
8
9
E1  
F2  
D3  
E1  
I
end-of-transfer input (programmable polarity); used in  
DMA slave mode only; when not in use, connect this pin to  
VCC(I/O) through a 10 kresistor  
input pad; TTL; 5 V tolerant  
DREQ  
I/O  
DMA request input or output (programmable polarity); the  
signal direction depends on bit MASTER in register DMA  
Hardware (see Table 59):  
Input: DMA master mode if bit MASTER = 1  
Output: DMA slave mode if bit MASTER = 0  
When not in use, in the default setting, this pin must be  
connected to ground through a 10 kresistor.  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
6 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 3.  
Pin description …continued  
Symbol[1] Pin  
Type[2] Description  
ISP1583BS ISP1583ET; ISP1583ET1  
ISP1583ET2  
DACK  
DIOR  
DIOW  
10  
11  
12  
F1  
E2  
E3  
F1  
I/O  
I/O  
I/O  
DMA acknowledge input or output (programmable  
polarity); the signal direction depends on bit MASTER in  
register DMA Hardware (see Table 59):  
Input: DMA slave mode if bit MASTER = 0  
Output: DMA master mode if bit MASTER = 1  
When not in use, in the default setting, this pin must be  
connected to VCC(I/O) through a 10 kresistor.  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
G2  
DMA read strobe input or output (programmable polarity);  
the signal direction depends on bit MASTER in register  
DMA Hardware (see Table 59):  
Input: DMA slave mode if bit MASTER = 0  
Output: DMA master mode if bit MASTER = 1  
When not in use, in the default setting, this pin must be  
connected to VCC(I/O) through a 10 kresistor.  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
G1  
DMA write strobe input or output (programmable polarity);  
the signal direction depends on bit MASTER in register  
DMA Hardware (see Table 59):  
Input: DMA slave mode if bit MASTER = 0  
Output: DMA master mode if bit MASTER = 1  
When not in use, in the default setting, this pin must be  
connected to VCC(I/O) through a 10 kresistor.  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
digital ground  
DGND  
INTRQ  
13  
14  
H2  
H1  
F2  
-
I
G2  
interrupt request input; from the ATA/ATAPI peripheral; use  
a 10 kresistor to pull down  
input pad; TTL; 5 V tolerant  
READY/  
IORDY  
15  
J1  
G1  
I/O  
Signal ready output — Used in generic processor mode:  
LOW: the ISP1583 is processing a previous command  
or data and is not ready for the next command or data  
transfer  
HIGH: the ISP1583 is ready for the next  
microprocessor read or write  
I/O ready input — Used in split bus mode to access  
ATA/ATAPI peripherals (PIO mode only)  
bidirectional pad; 10 ns slew-rate control; TTL; 5 V tolerant  
INT  
16  
17  
18  
K1  
J2  
H1  
H2  
E4  
O
O
I
interrupt output; programmable polarity (active HIGH or  
LOW) and signaling (edge or level triggered)  
CMOS output; 8 mA drive  
DA2[3]  
address output to select the Task File register of an  
ATA/ATAPI device; see Table 61  
CMOS output; 8 mA drive  
chip selection input  
CS_N  
K2  
input pad; TTL; 5 V tolerant  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
7 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 3.  
Pin description …continued  
Symbol[1] Pin  
Type[2] Description  
ISP1583BS ISP1583ET; ISP1583ET1  
ISP1583ET2  
RW_N/  
RD_N  
19  
J3  
F3  
I
Read or write input — For the Freescale mode, this  
function is determined by pin MODE0 = LOW during  
power-up.  
Read input — For the 8051 mode, this function is  
determined by pin MODE0 = HIGH during power-up.  
input pad; TTL; 5 V tolerant  
DS_N/  
WR_N  
20  
K3  
H3  
I
Data selection input — For the Freescale mode, this  
function is determined by pin MODE0 = LOW at power-up.  
Write input — For the 8051 mode, this function is  
determined by pin MODE0 = HIGH at power-up.  
input pad; TTL; 5 V tolerant  
CS0_N[3]  
CS1_N[3]  
21  
22  
J4  
G3  
F4  
O
O
chip selection output 0 for the ATA/ATAPI device; see  
Table 61  
CMOS output; 8 mA drive  
K4  
chip selection output 1 for the ATA/ATAPI device; see  
Table 61  
CMOS output; 8 mA drive  
AD0  
AD1  
AD2  
23  
24  
25  
K5  
J5  
G4  
H4  
F5  
I/O  
I/O  
I/O  
bit 0 of the multiplexed address and data  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 1 of the multiplexed address and data bus  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 2 of the multiplexed address and data bus  
K6  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
I/O pad supply voltage (1.65 V to 3.6 V); see Section 8.16  
bit 3 of the multiplexed address and data bus  
[4]  
VCC(I/O)  
26  
27  
J6  
E5  
H5  
-
AD3  
AD4  
AD5  
AD6  
AD7  
K7  
I/O  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 4 of the multiplexed address and data bus  
28  
29  
30  
31  
J7  
G5  
G6  
H6  
H7  
H8  
I/O  
I/O  
I/O  
I/O  
-
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 5 of the multiplexed address and data bus  
K8  
J8  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 6 of the multiplexed address and data bus  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 7 of the multiplexed address and data bus  
K9  
K10  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
VCC1V8[4] 32  
voltage regulator output (1.8 V ± 0.15 V); tapped out  
voltage from the internal regulator; this regulated voltage  
cannot drive external devices; decouple this pin using a  
0.1 µF capacitor; see Section 8.16  
n.c.  
33  
-
-
-
not connected  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
8 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 3.  
Pin description …continued  
Symbol[1] Pin  
Type[2] Description  
ISP1583BS ISP1583ET; ISP1583ET1  
ISP1583ET2  
MODE1  
34  
J10  
G8  
I
mode selection input 1; used in split bus mode only:  
LOW: ALE function (address latch enable)  
HIGH (connect to VCC(I/O)): A0 function (address/data  
indicator)  
Remark: When operating in generic processor mode, set  
pin MODE1 as HIGH.  
input pad; TTL; 5 V tolerant  
digital ground  
DGND  
35  
36  
H9  
F8  
F7  
-
I
ALE/A0  
H10  
Address latch enable input — When pin MODE1 = LOW  
during power-up, a falling edge on this pin latches the  
address on the multiplexed address and data bus AD[7:0].  
Address and data selection input — When pin  
MODE1 = HIGH during power-up, the function is  
determined by the level on this pin (detected on the rising  
edge of the WR_N pulse):  
HIGH: bus AD[7:0] is a register address  
LOW: bus AD[7:0] is register data; used in split bus  
mode only  
Remark: When operating in generic processor mode with  
pin MODE1 = HIGH, this pin must be pulled down using a  
10 kresistor.  
input pad; TTL; 5 V tolerant  
DATA0  
DATA1  
DATA2  
DATA3  
37  
38  
39  
40  
G9  
F6  
E6  
E7  
E8  
I/O  
I/O  
I/O  
I/O  
bit 0 of the bidirectional data bus  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 1 of the bidirectional data bus  
G10  
F9  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 2 of the bidirectional data bus  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 3 of the bidirectional data bus  
F10  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
I/O pad supply voltage (1.65 V to 3.6 V); see Section 8.16  
bit 4 of the bidirectional data bus  
[4]  
VCC(I/O)  
DATA4  
41  
42  
E9  
D7  
D6  
-
E10  
I/O  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 5 of the bidirectional data bus  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
43  
44  
45  
46  
47  
D10  
D9  
D8  
D5  
D4  
C8  
C7  
I/O  
I/O  
I/O  
I/O  
I/O  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 6 of the bidirectional data bus  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 7 of the bidirectional data bus  
C10  
C9  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 8 of the bidirectional data bus  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 9 of the bidirectional data bus  
B10  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
9 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 3.  
Pin description …continued  
Symbol[1] Pin  
Type[2] Description  
ISP1583BS ISP1583ET; ISP1583ET1  
ISP1583ET2  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
48  
49  
50  
51  
52  
53  
A10  
A8  
C4  
B7  
A7  
C6  
C5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
bit 10 of the bidirectional data bus  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 11 of the bidirectional data bus  
A9  
B8  
A8  
B7  
A7  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 12 of the bidirectional data bus  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 13 of the bidirectional data bus  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 14 of the bidirectional data bus  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
bit 15 of the bidirectional data bus  
bidirectional pad; 4 ns slew-rate control; TTL; 5 V tolerant  
I/O pad supply voltage (1.65 V to 3.6 V); see Section 8.16  
[4]  
VCC(I/O)  
VBUS  
54  
55  
B6  
B5  
B6  
A6  
-
A
USB bus power sensing input — Used to detect  
whether the host is connected or not; connect a 1 µF  
electrolytic or tantalum capacitor and a 1 Mpull-down  
resistor to ground; see Section 8.14  
VBUS pulsing output — In OTG mode; connect a 1 µF  
electrolytic or tantalum capacitor and a 1 Mpull-down  
resistor to ground; see Section 8.14  
5 V tolerant  
VCC1V8[4] 56  
A6  
B5  
-
voltage regulator output (1.8 V ± 0.15 V); tapped out  
voltage from the internal regulator; this regulated voltage  
cannot drive external devices; decouple this pin using  
4.7 µF and 0.1 µF capacitors; see Section 8.16  
XTAL2  
XTAL1  
DGND  
57  
58  
A5  
A4  
A5  
A4  
O
I
crystal oscillator output (12 MHz); connect a fundamental  
parallel-resonant crystal; leave this pin open when using  
an external clock source on pin XTAL1; see Table 100  
crystal oscillator input (12 MHz); connect a fundamental  
parallel-resonant crystal or an external clock source  
(leaving pin XTAL2 unconnected); see Table 100  
59  
60  
B4  
A3  
B4  
C2  
-
digital ground  
MODE0/  
DA1[3]  
I/O  
Mode selection input 0 — Selects the read/write strobe  
functionality in generic processor mode during power-up:  
LOW: for the Freescale mode; the function of pin 19 is  
RW_N and pin 20 is DS_N  
HIGH (connect to VCC(I/O)): for the 8051 mode; the  
function of pin 19 is RD_N and pin 20 is WR_N  
Address selection output — Selects the Task File  
register of an ATA/ATAPI device during normal operation;  
see Table 61  
bidirectional pad; 10 ns slew-rate control; TTL; 5 V tolerant  
[4]  
VCC(3V3)  
61  
B3  
B3  
-
regulator supply voltage (3.3 V ± 0.3 V); this pin supplies  
the internal regulator; see Section 8.16  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
10 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 3.  
Pin description …continued  
Symbol[1] Pin  
Type[2] Description  
ISP1583BS ISP1583ET; ISP1583ET1  
ISP1583ET2  
BUS_  
CONF/  
DA0[3]  
62  
B2  
A3  
I/O  
Bus configuration input — Selects bus mode during  
power-up:  
LOW: split bus mode; multiplexed 8-bit address and  
data bus on AD[7:0], separate DMA data bus  
DATA[15:0][5]  
HIGH (connect to VCC(I/O)): generic processor mode;  
separate 8-bit address on AD[7:0], 16-bit processor  
data bus on DATA[15:0]; DMA is multiplexed on  
processor bus DATA[15:0]  
Address selection output — Selects the Task File  
register of an ATA/ATAPI device at normal operation; see  
Table 61  
bidirectional pad; 10 ns slew-rate control; TTL; 5 V tolerant  
WAKEUP 63  
A2  
B2  
I
wake-up input; when this pin is at the HIGH level, the chip  
is prevented from going into the suspend state and  
wake-up the chip when already in suspend mode; when  
not in use, connect this pin to ground through a 10 kΩ  
resistor  
When the RESET_N pin is LOW, ensure that the WAKEUP  
pin does not go from LOW to HIGH; otherwise the device  
will enter test mode.  
input pad; TTL; 5 V tolerant  
SUSPEND 64  
C2  
B9  
A2  
O
suspend state indicator output; used as a power switch  
control output to power-off or power-on external devices  
when going into suspend mode or recovering from  
suspend mode  
CMOS output; 8 mA drive  
digital ground  
DGND  
DGND  
-
-
-
-
exposed die J9  
pad  
B8, G7  
ground supply; down bonded to the exposed die pad (heat  
sink); to be connected to DGND during the PCB layout  
[1] Symbol names ending with underscore N, for example, NAME_N, represent active LOW signals.  
[2] All outputs and I/O pins can source 4 mA, unless otherwise specified.  
[3] Control signals are not 3-stated.  
[4] Add a decoupling capacitor (0.1 µF) to all the supply pins. For better EMI results, add a 0.01 µF capacitor in parallel to 0.1 µF.  
[5] The DMA bus is in 3-state until a DMA command (see Section 9.4.1) is executed.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
11 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
8. Functional description  
The ISP1583 is a high-speed USB peripheral controller. It implements the Hi-Speed USB  
or the Original USB physical layer, and the packet protocol layer. It concurrently maintains  
up to 16 USB endpoints (control IN, control OUT, and seven IN and seven OUT  
configurable) along with endpoint EP0 set up, which accesses the set-up buffer. The Ref.  
1 “Universal Serial Bus Specification Rev. 2.0”, Chapter 9 protocol handling is executed  
using the external firmware.  
The ISP1583 has a fast general-purpose interface to communicate with most types of  
microcontrollers and microprocessors. This microcontroller interface is configured using  
pins BUS_CONF/DA0, MODE1 and MODE0/DA1 to accommodate most interface types.  
Two bus configurations are available, selected using input BUS_CONF/DA0 during  
power-up:  
Generic processor mode (pin BUS_CONF/DA0 = HIGH):  
AD[7:0]: 8-bit address bus (selects target register)  
DATA[15:0]: 16-bit data bus (shared by processor and DMA)  
Control signals: RW_N and DS_N or RD_N and WR_N (selected using pin  
MODE0/DA1), CS_N  
DMA interface (generic slave mode only): Uses lines DATA[15:0] as data bus,  
DIOR and DIOW as dedicated read and write strobes  
Split bus mode (pin BUS_CONF/DA0 = LOW):  
AD[7:0]: 8-bit local microprocessor bus (multiplexed address and data)  
DATA[15:0]: 16-bit DMA data bus  
Control signals: CS_N, ALE or A0 (selected using pin MODE1), RW_N and DS_N  
or RD_N and WR_N (selected using pin MODE0/DA1)  
DMA interface (master or slave mode): Uses DIOR and DIOW as dedicated read  
and write strobes  
For high-bandwidth data transfer, the integrated DMA handler can be invoked to transfer  
data to or from external memory or devices. The DMA interface can be configured by  
writing to proper DMA registers (see Section 9.4).  
The ISP1583 supports Hi-Speed USB and Original USB signaling. The USB signaling  
speed is automatically detected.  
The ISP1583 has 8 kB of internal FIFO memory, which is shared among enabled USB  
endpoints, including control IN and control OUT endpoints, and set-up token buffer.  
There are seven IN and seven OUT configurable endpoints, and two fixed control  
endpoints that are 64 bytes long. Any of the seven IN and seven OUT endpoints can be  
separately enabled or disabled. The endpoint type (interrupt, isochronous or bulk) and  
packet size of these endpoints can be individually configured, depending on the  
requirements of the application. Optional double buffering increases the data throughput  
of these data endpoints.  
The ISP1583 requires 3.3 V power supply. It has 5 V tolerant I/O pads and an internal  
1.8 V regulator to power the digital logic. The I/O voltage can range from 1.65 V to 3.6 V.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
12 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 4.  
Endpoint access and programmability  
Endpoint  
identifier  
Maximum packet  
size  
Double buffering Endpoint type  
Direction  
EP0SETUP  
EP0RX  
EP0TX  
EP1RX  
EP1TX  
EP2RX  
EP2TX  
EP3RX  
EP3TX  
EP4RX  
EP4TX  
EP5RX  
EP5TX  
EP6RX  
EP6TX  
EP7RX  
EP7TX  
8 bytes (fixed)  
64 bytes (fixed)  
64 bytes (fixed)  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
no  
set-up token  
OUT  
OUT  
IN  
no  
control OUT  
no  
control IN  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
programmable  
OUT  
IN  
OUT  
IN  
OUT  
IN  
OUT  
IN  
OUT  
IN  
OUT  
IN  
OUT  
IN  
The ISP1583 operates on a 12 MHz crystal oscillator. An integrated 40 × PLL clock  
multiplier generates the internal sampling clock of 480 MHz.  
8.1 DMA interface, DMA handler and DMA registers  
The DMA block can be subdivided into two blocks: DMA handler and DMA interface.  
The firmware writes to the DMA Command register to start a DMA transfer (see Table 51).  
The command opcode determines whether a generic DMA, Parallel I/O (PIO) or  
Multi-word DMA (MDMA) transfer will start. The handler interfaces to the same FIFO  
(internal RAM) as used by the USB core. On receiving the DMA command, the DMA  
handler directs the data from the endpoint FIFO to the external DMA device or from the  
external DMA device to the endpoint FIFO.  
The DMA interface configures the timing and the DMA handshake. Data can be  
transferred using either the DIOR and DIOW strobes or the DACK and DREQ  
handshakes. DMA configurations are set up by writing to the DMA Configuration register  
(see Table 56 and Table 57).  
For an IDE-based storage interface, applicable DMA modes are PIO and MDMA  
(Multi-word DMA; ATA).  
For a generic DMA interface, DMA modes that can be used are Generic DMA (GDMA)  
slave.  
Remark: The DMA endpoint buffer length must be a multiple of 4 bytes.  
For details on DMA registers, see Section 9.4.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
13 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
8.2 Hi-Speed USB transceiver  
The analog transceiver directly interfaces to the USB cable through integrated termination  
resistors. The high-speed transceiver requires an external resistor (12.0 kΩ ± 1 %)  
between pin RREF and ground to ensure an accurate current mirror that generates the  
Hi-Speed USB current drive. A full-speed transceiver is integrated as well. This makes the  
ISP1583 compliant to Hi-Speed USB and Original USB, supporting both the high-speed  
and full-speed physical layers. After automatic speed detection, the NXP Serial Interface  
Engine (SIE) sets the transceiver to use either high-speed or full-speed signaling.  
8.3 MMU and integrated RAM  
The Memory Management Unit (MMU) manages the access to the integrated RAM that is  
shared by the USB, microcontroller handler and DMA handler. Data from the USB bus is  
stored in the integrated RAM, which is cleared only when the microcontroller has read the  
corresponding endpoint, or the DMA controller has written all data from the RAM of the  
corresponding endpoint to the DMA bus. The OUT endpoint buffer can also be forcibly  
cleared by setting bit CLBUF in the Control Function register. A total of 8 kB RAM is  
available for buffering.  
8.4 Microcontroller interface and microcontroller handler  
The microcontroller interface allows direct interfacing to most microcontrollers and  
microprocessors. The interface is configured at power-up through pins BUS_CONF/DA0,  
MODE1 and MODE0/DA1.  
When pin BUS_CONF/DA0 = HIGH, the microcontroller interface switches to generic  
processor mode in which AD[7:0] is the 8-bit address bus and DATA[15:0] is the separate  
16-bit data bus. If pin BUS_CONF/DA0 = LOW, the interface is in split bus mode, where  
AD[7:0] is the local microprocessor bus (multiplexed address and data) and DATA[15:0] is  
solely used as the DMA bus.  
When pin MODE0/DA1 = HIGH, pins RW_N/RD_N and DS_N/WR_N are the read and  
write strobes (8051 mode). If pin MODE0/DA1 = LOW, pins RW_N/RD_N and  
DS_N/WR_N represent the direction and data strobes (Freescale mode).  
When pin MODE1 = LOW, pin ALE/A0 is used to latch the multiplexed address on pins  
AD[7:0]. When pin MODE1 = HIGH, pin ALE/A0 is used to indicate address or data. Pin  
MODE1 is only used in split bus mode; in generic processor mode, it must be tied to  
VCC(I/O)  
.
The microcontroller handler allows the external microcontroller to access the register set  
in the NXP SIE, as well as the DMA handler. The initialization of the DMA configuration is  
done through the microcontroller handler.  
8.5 OTG SRP module  
The OTG supplement defines a Session Request Protocol (SRP), which allows a B-device  
to request the A-device to turn on VBUS and start a session. This protocol allows the  
A-device, which may be battery-powered, to conserve power by turning off VBUS when  
there is no bus activity while still providing a means for the B-device to initiate bus activity.  
Any A-device, including a PC or laptop, can respond to SRP. Any B-device, including a  
standard USB peripheral, can initiate SRP.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
14 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
The ISP1583 is a device that can initiate SRP.  
8.6 NXP high-speed transceiver  
8.6.1 NXP Parallel Interface Engine (PIE)  
In the High-Speed (HS) transceiver, the NXP PIE interface uses a 16-bit parallel  
bidirectional data interface. The functions of the HS module also include bit-stuffing or  
de-stuffing and Non-Return-to-Zero Inverted (NRZI) encoding or decoding logic.  
8.6.2 Peripheral circuit  
To maintain a constant current driver for HS transmit circuits and to bias other analog  
circuits, an internal band gap reference circuit and an RREF resistor form the reference  
current. This circuit requires an external precision resistor (12.0 kΩ ± 1 %) connected to  
the analog ground.  
8.6.3 HS detection  
The ISP1583 handles more than one electrical state, Full-Speed (FS) or High-Speed  
(HS), under the USB specification. When the USB cable is connected from the peripheral  
to the host controller, the ISP1583 defaults to the FS state, until it sees a bus reset from  
the host controller.  
During the bus reset, the peripheral initiates an HS chirp to detect whether the host  
controller supports Hi-Speed USB or Original USB. If the HS handshake shows that there  
is an HS host connected, then the ISP1583 switches to the HS state.  
In the HS state, the ISP1583 must observe the bus for periodic activity. If the bus remains  
inactive for 3 ms, the peripheral switches to the FS state to check for a Single-Ended Zero  
(SE0) condition on the USB bus. If an SE0 condition is detected for the designated time  
(100 µs to 875 µs; refer to Ref. 1 “Universal Serial Bus Specification Rev. 2.0”,  
Section 7.1.7.6), the ISP1583 switches to the HS chirp state to perform an HS detection  
handshake. Otherwise, the ISP1583 remains in the FS state, adhering to the bus-suspend  
specification.  
8.6.4 Isolation  
Ensure that the DP and DM lines are maintained in a clean state, without any residual  
voltage or glitches. Once the ISP1583 is reset and the clock is available, ensure that there  
are no erroneous pulses or glitches even of very small amplitude on the DP and DM lines.  
Remark: If there are any erroneous unwanted pulses or glitches detected by the ISP1583  
DP and DM lines, there is a possibility of the ISP1583 clocking this state into the internal  
core, causing unknown behaviors.  
8.7 NXP Serial Interface Engine (SIE)  
The NXP SIE implements the full USB protocol layer. It is completely hardwired for speed  
and needs no firmware intervention. The functions of this block include: synchronization  
pattern recognition, parallel or serial conversion, bit-stuffing or de-stuffing, CRC checking  
or generation, Packet IDentifier (PID) verification or generation, address recognition,  
handshake evaluation or generation.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
15 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
8.8 SoftConnect  
The USB connection is established by pulling pin DP (for full-speed devices) to HIGH  
through a 1.5 kpull-up resistor. In the ISP1583, an external 1.5 kpull-up resistor must  
be connected between pin RPU and 3.3 V. The RPU pin connects the pull-up resistor to  
pin DP, when bit SOFTCT in the Mode register is set (see Table 24 and Table 25). After a  
hardware reset, the pull-up resistor is disconnected by default (bit SOFTCT = 0). The USB  
bus reset does not change the value of bit SOFTCT.  
When VBUS is not present, the SOFTCT bit must be set to logic 0 to comply with the  
back-drive voltage.  
8.9 Reconfiguring endpoints  
The ISP1583 endpoints have a limitation when implementing a composite device with at  
least two functionalities that require the support of alternate settings, for example, the  
video class and audio class devices. The ISP1583 endpoints cannot be reconfigured on  
the fly because it is implemented as a FIFO base. The internal RAM partition will be  
corrupted if there is a need to reconfigure endpoints on the fly because of alternate  
settings request, causing data corruption.  
For details and work-around, refer to Ref. 3 “Using ISP1582/3 in a composite device  
application with alternate settings (AN10071)”.  
8.10 System controller  
The system controller implements the USB power-down capabilities of the ISP1583.  
Registers are protected against data corruption during wake-up following a resume (from  
the suspend state) by locking the write access, until an unlock code is written to the  
Unlock Device register (see Table 90 and Table 91).  
8.11 Modes of operation  
The ISP1583 has two bus configuration modes, selected using pin BUS_CONF/DA0 at  
power-up:  
Split bus mode (BUS_CONF/DA0 = LOW): 8-bit multiplexed address and data bus,  
and separate 8-bit or 16-bit DMA bus  
Generic processor mode (BUS_CONF/DA0 = HIGH): separate 8-bit address and  
16-bit data bus  
Details of bus configurations for each mode are given in Table 5. Typical interface circuits  
for each mode are given in Section 14.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
16 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 5.  
Bus configuration modes  
Pin  
BUS_CONF/  
DA0  
PIO width  
DMA width  
WIDTH = 0  
Description  
WIDTH = 1  
LOW  
AD[7:0]  
D[7:0]  
D[15:0]  
split bus mode:  
Multiplexed address and data on pins AD[7:0]  
Separate 8-bit or 16-bit DMA bus on pins DATA[15:0]  
generic processor mode:  
HIGH  
A[7:0] and  
D[15:0]  
D[7:0]  
D[15:0]  
Separate 8-bit address on pins AD[7:0]  
16-bit data (PIO and DMA) on pins DATA[15:0]  
8.12 Pins status  
Table 6 illustrates the behavior of ISP1583 pins with VCC(I/O) and VCC(3V3) in various  
operating conditions.  
Table 6.  
VCC(3V3)  
ISP1583 pin status  
VCC(I/O)  
State  
Pin  
Input  
Output  
unknown  
unknown  
unknown  
output  
I/O  
0 V  
0 V  
0 V  
dead[1]  
unknown  
high-Z  
high-Z  
unknown  
high-Z  
high-Z  
high-Z  
1.65 V to 3.6 V plug-out[2]  
0 V 3.3 V 1.65 V to 3.6 V plug-in[3]  
3.3 V  
1.65 V to 3.6 V reset  
state depends on how  
the pin is driven  
3.3 V  
1.65 V to 3.6 V after reset  
state depends on how  
the pin is driven  
output  
state depends on how the  
pin is configured  
[1] Dead: the USB cable is plugged out, and VCC(I/O) is not available.  
[2] Plug-out: the USB cable is not present, but VCC(I/O) is available.  
[3] Plug-in: the USB cable is being plugged in, and VCC(I/O) is available.  
Table 7 illustrates the behavior of output pins with VCC(I/O) and VCC(3V3) in various  
operating conditions.  
Table 7.  
VCC(3V3)  
0 V  
ISP1583 output pin status  
VCC(I/O)  
State  
dead[1]  
plug-out[2]  
plug-in[3]  
reset  
INT  
SUSPEND  
HIGH  
0 V  
LOW  
LOW  
LOW  
HIGH  
HIGH  
0 V  
1.65 V to 3.6 V  
1.65 V to 3.6 V  
1.65 V to 3.6 V  
1.65 V to 3.6 V  
HIGH  
0 V 3.3 V  
3.3 V  
HIGH  
LOW  
3.3 V  
after reset  
LOW  
[1] Dead: the USB cable is plugged out, and VCC(I/O) is not available.  
[2] Plug-out: the USB cable is not present, but VCC(I/O) is available.  
[3] Plug-in: the USB cable is being plugged in, and VCC(I/O) is available.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
17 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
8.13 Interrupt  
8.13.1 Interrupt output pin  
The Interrupt Configuration register of the ISP1583 controls the behavior of the INT output  
pin. The polarity and signaling mode of the INT pin can be programmed by setting bits  
INTPOL and INTLVL of the Interrupt Configuration register (R/W: 10h); see Table 28. Bit  
GLINTENA of the Mode register (R/W: 0Ch) is used to enable pin INT; see Table 25.  
Default settings after reset are active LOW and level mode. When pulse mode is selected,  
a pulse of 60 ns is generated when the OR-ed combination of all interrupt bits changes  
from logic 0 to logic 1.  
Figure 5 shows the relationship between interrupt events and pin INT.  
Each of the indicated USB and DMA events is logged in a status bit of the Interrupt  
register and the DMA Interrupt Reason register, respectively. Corresponding bits in the  
Interrupt Enable register and the DMA Interrupt Enable register determine whether an  
event will generate an interrupt.  
Interrupts can be masked globally by means of bit GLINTENA of the Mode register.  
Field CDBGMOD[1:0] of the Interrupt Configuration register controls the generation of INT  
signals for the control pipe. Field DDBGMODIN[1:0] of the Interrupt Configuration register  
controls the generation of INT signals for the IN pipe. Field DDBGMODOUT[1:0] of the  
Interrupt Configuration register controls the generation of INT signals for the OUT pipe;  
see Table 29.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
18 of 99  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
DMA Interrupt Reason  
register  
Interrupt Enable register  
GDMA_STOP  
EXT_EOT  
IEBRST  
IESOF  
INT_EOT  
IEDMA  
BSY_DONE  
TF_RD_DONE  
CMD_INTRQ_OK  
IEP7RX  
IEP7TX  
OR  
OR  
DMA Interrupt Enable  
register  
Interrupt register  
BRESET  
SOF  
IE_GDMA_STOP  
IE_EXT_EOT  
IE_INT_EOT  
LE  
LATCH  
DMA  
Interrupt Configuration  
register  
INT  
PULSE OR LEVEL  
GENERATOR  
INTPOL  
IE_BSY_DONE  
IE_TF_RD_DONE  
IE_CMD_INTRQ_OK  
EP7RX  
EP7TX  
GLINTENA  
Mode register  
004aaa267  
Fig 5. Interrupt logic  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
8.13.2 Interrupt control  
Bit GLINTENA in the Mode register is a global interrupt enable or disable bit. The behavior  
of this bit is given in Figure 6.  
The following illustrations are only applicable for level trigger.  
Event A: When an interrupt event occurs (for example, SOF interrupt) with bit GLINTENA  
set to logic 0, an interrupt will not be generated at pin INT. It will, however, be registered in  
the corresponding Interrupt register bit.  
Event B: When bit GLINTENA is set to logic 1, pin INT is asserted because bit SOF in the  
Interrupt register is already set.  
Event C: If the firmware sets bit GLINTENA to logic 0, pin INT will still be asserted. The  
bold line shows the desired behavior of pin INT.  
Deassertion of pin INT can be achieved either by clearing all the bits in the Interrupt  
register or the DMA Interrupt Reason register, depending on the event.  
Remark: When clearing an interrupt event, perform write to all the bytes of the register.  
For more information on interrupt control, see Section 9.2.2, Section 9.2.5 and  
Section 9.5.1.  
A
B
C
INT pin  
GLINTENA = 0  
SOF asserted  
GLINTENA = 0  
(during this time,  
an interrupt event  
occurs, for example,  
SOF asserted)  
GLINTENA = 1  
SOF asserted  
004aaa394  
Pin INT: HIGH = deassert; LOW = assert (individual interrupts are enabled).  
Fig 6. Behavior of bit GLINTENA  
8.14 VBUS sensing  
The VBUS pin is one of the ways to wake up the clock when the ISP1583 is suspended  
with bit CLKAON set to logic 0 (clock off option).  
To detect whether the host is connected or not, that is VBUS sensing, a 1 Mresistor and  
a 1 µF electrolytic or tantalum capacitor must be added to damp the overshoot on plug in.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
20 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
55  
USB  
CONNECTOR  
ISP1583  
1 µF  
1 MΩ  
004aaa449  
The figure shows the ISP1583BS pinout. For the ISP1583ET, ISP1583ET1 and ISP1583ET2  
ballouts, see Table 3.  
Fig 7. Resistor and electrolytic or tantalum capacitor needed for VBUS sensing  
001aaf440  
Fig 8. Oscilloscope reading: no resistor and capacitor in the network  
001aaf441  
Fig 9. Oscilloscope reading: with resistor and capacitor in the network  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
21 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
8.15 Power-on reset  
The ISP1583 requires a minimum pulse width of 500 µs.  
The RESET_N pin can either be connected to VCC(3V3) (using the internal POR circuit) or  
externally controlled (by the microcontroller, ASIC, and so on). When VCC(3V3) is directly  
connected to the RESET_N pin, internal pulse width tPORP will typically be 200 ns.  
The power-on reset function can be explained by viewing the dips at t2 to t3 and t4 to t5  
on the VCC(POR) curve (Figure 10).  
t0 — The internal POR starts with a HIGH level.  
t1 — The detector will see the passing of the trip level and a delay element will add  
another tPORP before it drops to LOW.  
t2 to t3 — The internal POR pulse will be generated whenever VCC(POR) drops below Vtrip  
for more than 11 µs.  
t4 to t5 — The dip is too short (< 11 µs) and the internal POR pulse will not react and will  
remain LOW.  
V
CC(POR)  
V
trip  
t4  
t0  
t1  
t
t3  
t5  
t2  
(1)  
PORP  
t
PORP  
PORP  
004aab162  
(1) PORP = Power-On Reset Pulse.  
Fig 10. POR timing  
Figure 11 shows the availability of the clock with respect to the external POR.  
V
CC(3V3)  
500 µs  
external  
clock  
2 ms  
RESET_N  
004aaa906  
A
B
C
Power on VCC(3V3) at A.  
Stable external clock is to be available at B.  
The ISP1583 is operational at C.  
Fig 11. Clock with respect to the external POR  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
22 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
8.16 Power supply  
The ISP1583 can be powered by 3.3 V ± 0.3 V, and from 1.65 V to 3.6 V at the interface.  
For details, see Figure 12. If the ISP1583 is powered by VCC(3V3) = 3.3 V, an integrated  
3.3 V-to-1.8 V voltage regulator provides a 1.8 V supply voltage for the internal logic.  
In sharing mode (that is, when VCC(3V3) is not present and VCC(I/O) is present), all I/O pins  
are input type, the interrupt pin is connected to ground, and the suspend pin is connected  
to VCC(I/O). See Table 7.  
3.3 V ± 0.3 V  
V
V
CC(3V3)  
61  
0.1 µF  
0.01 µF  
1.65 V to 3.6 V  
CC(I/O)  
26  
41  
0.01 µF  
0.1 µF  
V
V
CC(I/O)  
0.01 µF  
0.1 µF  
ISP1583  
CC(I/O)  
54  
56  
0.01 µF  
0.1 µF  
VCC1V8  
(1)  
0.1 µF  
4.7 µF  
VCC1V8  
32  
0.1 µF  
004aaa271  
(1) At the VCC input (3.3 V) to the USB controller, if the ripple voltage is less than 20 mV, then 4.7 µF  
standard electrolytic or tantalum capacitors (tested ESR up to 10 ) should be OK at the VCC1V8  
output. If the ripple voltage at the input is higher than 20 mV, then use 4.7 µF LOW ESR capacitors  
(ESR from 0.2 to 2 ) at the VCC1V8 output. This is to improve the high-speed signal quality at  
the USB side.  
The figure shows the ISP1583BS pinout. For the ISP1583ET, ISP1583ET1 and ISP1583ET2  
ballouts, see Table 3.  
Fig 12. ISP1583 with a 3.3 V supply  
Table 8 shows power modes in which the ISP1583 can be operated.  
Table 8.  
VCC(3V3)  
Power modes  
VCC(I/O)  
Power mode  
[1]  
[2]  
VBUS  
VBUS  
bus-powered  
System-powered  
system-powered  
system-powered  
self-powered  
[1]  
VBUS  
power-sharing (hybrid)  
[1] The power supply to the IC (VCC(3V3)) is 3.3 V. Therefore, if the application is bus-powered, a 3.3 V regulator  
needs to be used.  
[2] VCC(I/O) can range from 1.65 V to 3.6 V. If the application is bus-powered, a voltage regulator must be used.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
23 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
8.16.1 Power-sharing mode  
to GPIO of processor  
for sensing V  
BUS  
5 V-to-3.3 V  
VOLTAGE  
REGULATOR  
1.5 kΩ  
RPU  
V
V
BUS  
V
V
USB  
CC(3V3)  
BUS  
ISP1583  
1 µF  
1 MΩ  
CC(I/O)  
004aaa458  
VCC(I/O) is system powered.  
Fig 13. Power-sharing mode  
As can be seen in Figure 13, in power-sharing mode, VCC(3V3) is supplied by the output of  
the 5 V-to-3.3 V voltage regulator. The input to the regulator is from VBUS. VCC(I/O) is  
supplied through the power source of the system. When the USB cable is plugged in, the  
ISP1583 goes through the power-on reset cycle. In this mode, OTG is disabled.  
The processor will experience continuous interrupt because the default status of the  
interrupt pin when operating in sharing mode with VBUS not present is LOW. To overcome  
this, implement external VBUS sensing circuitry. The output from the voltage regulator can  
be connected to pin GPIO of the processor to qualify the interrupt from the ISP1583.  
Remark: When the core power is applied, the ISP1583 must be reset using the RESET_N  
pin. The minimum width of the reset pulse width must be 2 ms.  
V
CC(I/O)  
V
CC(3V3)  
INT  
power off  
power off  
004aaa459  
Fig 14. Interrupt pin status during power off in power-sharing mode  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
24 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 9.  
Operation truth table for SoftConnect  
ISP1583 operation  
Power supply  
Bit SOFTCT in  
Mode register  
VCC(3V3) VCC(I/O) RPU  
VBUS  
(3.3 V)  
3.3 V  
0 V  
Normal bus operation  
Core power is lost  
3.3 V  
0 V  
3.3 V  
3.3 V  
5 V  
0 V  
enabled  
not applicable  
Table 10. Operation truth table for clock off during suspend  
ISP1583 operation  
Power supply  
Clock off  
during  
suspend  
VCC(3V3) VCC(I/O)  
RPU  
VBUS  
(3.3 V)  
Clock will wake up:  
After a resume and  
After a bus reset  
Core power is lost  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
0 V  
5 V  
enabled  
0 V  
0 V  
not applicable  
Table 11. Operation truth table for back voltage compliance  
ISP1583 operation  
Power supply  
Bit SOFTCT  
in Mode  
register  
VCC(3V3)  
3.3 V  
0 V  
VCC(I/O) RPU  
VBUS  
(3.3 V)  
Back voltage is not measured in this  
mode  
3.3 V  
3.3 V  
3.3 V  
5 V  
0 V  
enabled  
Back voltage is not an issue because  
core power is lost  
0 V  
not applicable  
Table 12. Operation truth table for OTG  
ISP1583 operation  
Power supply  
VCC(I/O) RPU  
OTG register  
VCC(3V3)  
VBUS  
(3.3 V)  
3.3 V  
0 V  
SRP is not applicable  
3.3 V  
3.3 V  
3.3 V  
5 V  
0 V  
not applicable  
not applicable  
OTG is not possible because VBUS is not 0 V  
present and so core power is lost  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
25 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
8.16.2 Self-powered mode  
1.5 kΩ  
RPU  
V
BUS  
V
USB  
V
BUS  
CC(3V3)  
ISP1583  
1 µF  
1 MΩ  
V
CC(I/O)  
004aaa461  
VCC(I/O) and VCC(3V3) are system powered.  
Fig 15. Self-powered mode  
In self-powered mode, VCC(3V3) and VCC(I/O) are supplied by the system. See Figure 15.  
Table 13. Operation truth table for SoftConnect  
ISP1583 operation  
Power supply  
Bit SOFTCT  
in Mode  
register  
VCC(3V3) VCC(I/O) RPU  
(3.3 V)  
VBUS  
Normal bus operation  
No pull up on DP  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
5 V  
0 V[1]  
enabled  
disabled  
[1] When the USB cable is removed, SoftConnect is disabled.  
Table 14. Operation truth table for clock off during suspend  
ISP1583 operation  
Power supply  
VCC(3V3) VCC(I/O) RPU  
(3.3 V)  
3.3 V  
Clock off  
during  
suspend  
VBUS  
Clock will wake up:  
3.3 V  
3.3 V  
5 V  
enabled  
After a resume and  
After a bus reset  
Clock will wake up:  
3.3 V  
3.3 V  
3.3 V  
0 V 5 V enabled  
After detecting the presence of VBUS  
Table 15. Operation truth table for back voltage compliance  
ISP1583 operation  
Power supply  
Bit SOFTCT in  
Mode register  
VCC(3V3) VCC(I/O) RPU  
VBUS  
(3.3 V)  
Back voltage is not measured in this  
mode  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
5 V  
0 V  
enabled  
disabled  
Back voltage is not an issue because pull 3.3 V  
up on DP will not be present when VBUS  
is not present  
3.3 V  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
26 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 16. Operation truth table for OTG  
ISP1583 operation  
Power supply  
OTG register  
VCC(3V3) VCC(I/O) RPU  
VBUS  
(3.3 V)  
3.3 V  
3.3 V  
SRP is not applicable  
SRP is possible  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
5 V  
0 V  
not applicable  
operational  
8.16.3 Bus-powered mode  
5 V-to-3.3 V  
VOLTAGE  
REGULATOR  
V
BUS  
V
V
CC(3V3)  
USB  
BUS  
1.65 V to 3.6 V  
ISP1583  
1 µF  
1 MΩ  
V
CC(I/O)  
1.5 kΩ  
RPU  
004aaa463  
VCC(I/O) is powered by VBUS  
.
Fig 16. Bus-powered mode  
In bus-powered mode (see Figure 16), VCC(3V3) and VCC(I/O) are supplied by the output of  
the 5 V-to-3.3 V voltage regulator. The input to the regulator is from VBUS. On plugging the  
USB cable, the ISP1583 goes through the power-on reset cycle. In this mode, OTG is  
disabled.  
Table 17. Operation truth table for SoftConnect  
ISP1583 operation  
Power supply  
Bit SOFTCT in  
Mode register  
VCC(3V3) VCC(I/O) RPU  
VBUS  
(3.3 V)  
3.3 V  
0 V  
Normal bus operation  
Power is lost  
3.3 V  
0 V  
3.3 V  
0 V  
5 V  
0 V  
enabled  
not applicable  
Table 18. Operation truth table for clock off during suspend  
ISP1583 operation  
Power supply  
Clock off  
during suspend  
VCC(3V3) VCC(I/O) RPU  
VBUS  
(3.3 V)  
Clock will wake up:  
After a resume and  
After a bus reset  
Power is lost  
3.3 V  
3.3 V  
0 V  
3.3 V  
5 V  
enabled  
0 V  
0 V  
0 V  
not applicable  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
27 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 19. Operation truth table for back voltage compliance  
ISP1583 operation  
Power supply  
Bit SOFTCT in  
Mode register  
VCC(3V3) VCC(I/O) RPU  
VBUS  
5 V  
(3.3 V)  
Back voltage is not measured in this  
mode  
3.3 V  
0 V  
3.3 V  
0 V  
3.3 V  
enabled  
Power is lost  
0 V  
0 V  
not applicable  
Table 20. Operation truth table for OTG  
ISP1583 operation  
Power supply  
OTG register  
VCC(3V3) VCC(I/O) RPU  
VBUS  
(3.3 V)  
3.3 V  
0 V  
SRP is not applicable  
Power is lost  
3.3 V  
3.3 V  
0 V  
5 V  
0 V  
not applicable  
not applicable  
0 V  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
28 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
9. Register description  
Table 21. Register overview  
Name  
Destination  
Address Description  
Size  
Reference  
(bytes)  
Initialization registers  
Address  
device  
device  
device  
device  
device  
00h  
0Ch  
10h  
12h  
14h  
USB device address and enable  
1
2
1
1
4
Section 9.2.1  
on page 31  
Mode  
power-down options, global interrupt  
enable, SoftConnect  
Section 9.2.2  
on page 31  
Interrupt Configuration  
OTG  
interrupt sources, trigger mode,  
output polarity  
Section 9.2.3  
on page 33  
OTG implementation  
Section 9.2.4  
on page 34  
Interrupt Enable  
interrupt source enabling  
Section 9.2.5  
on page 36  
Data flow registers  
Endpoint Index  
endpoints  
endpoint  
endpoint  
endpoint  
endpoint  
2Ch  
28h  
20h  
1Ch  
1Eh  
04h  
08h  
endpoint selection, data flow direction  
endpoint buffer management  
data access to endpoint FIFO  
packet size counter  
1
1
2
2
1
2
2
Section 9.3.1  
on page 38  
Control Function  
Data Port  
Section 9.3.2  
on page 39  
Section 9.3.3  
on page 40  
Buffer Length  
Buffer Status  
Section 9.3.4  
on page 41  
buffer status for each endpoint  
maximum packet size  
Section 9.3.5  
on page 42  
Endpoint MaxPacketSize endpoint  
Section 9.3.6  
on page 43  
Endpoint Type  
endpoint  
selects endpoint type: isochronous,  
bulk or interrupt  
Section 9.3.7  
on page 44  
DMA registers  
DMA Command  
DMA controller  
DMA controller  
DMA controller  
30h  
34h  
38h  
controls all DMA transfers  
1
4
1
Section 9.4.1  
on page 47  
DMA Transfer Counter  
DMA Configuration  
sets byte count for DMA transfer  
Section 9.4.2  
on page 49  
byte 0: sets GDMA configuration  
(counter enable, data strobing, bus  
width)  
Section 9.4.3  
on page 50  
39h  
3Ch  
byte 1: sets ATA configuration (IORDY  
enable, mode selection: ATA, MDMA,  
PIO)  
1
1
DMA Hardware  
DMA controller  
endian type, master or slave  
selection, signal polarity for DACK,  
DREQ, DIOW, DIOR, EOT  
Section 9.4.4  
on page 52  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
29 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 21. Register overview …continued  
Name  
Destination  
Address Description  
Size  
Reference  
(bytes)  
Task File 1F0  
ATAPI peripheral  
40h  
single address word register: byte 0  
2
Section 9.4.5  
on page 53  
(lower byte) is accessed first  
IDE device access  
IDE device access  
IDE device access  
IDE device access  
IDE device access  
IDE device access  
Task File 1F1  
Task File 1F2  
Task File 1F3  
Task File 1F4  
Task File 1F5  
Task File 1F6  
Task File 1F7  
ATAPI peripheral  
ATAPI peripheral  
ATAPI peripheral  
ATAPI peripheral  
ATAPI peripheral  
ATAPI peripheral  
ATAPI peripheral  
48h  
49h  
4Ah  
4Bh  
4Ch  
4Dh  
44h  
1
1
1
1
1
1
1
IDE device access (write only; reading  
returns FFh)  
Task File 3F6  
ATAPI peripheral  
ATAPI peripheral  
DMA controller  
4Eh  
4Fh  
50h  
IDE device access  
IDE device access  
1
1
2
Task File 3F7  
DMA Interrupt Reason  
shows reason (source) for DMA  
interrupt  
Section 9.4.6  
on page 56  
DMA Interrupt Enable  
DMA Endpoint  
DMA controller  
DMA controller  
DMA controller  
DMA controller  
54h  
58h  
60h  
64h  
enables DMA interrupt sources  
2
1
1
2
Section 9.4.7  
on page 57  
selects endpoint FIFO, data flow  
direction  
Section 9.4.8  
on page 57  
DMA Strobe Timing  
DMA Burst Counter  
strobe duration in MDMA mode  
Section 9.4.9  
on page 58  
DMA burst length  
Section 9.4.10  
on page 59  
General registers  
Interrupt  
device  
device  
device  
18h  
70h  
74h  
shows interrupt sources  
4
Section 9.5.1  
on page 59  
Chip ID  
product ID code and hardware version 3  
Section 9.5.2  
on page 61  
Frame Number  
last successfully received  
Start-Of-Frame: lower byte (byte 0) is  
accessed first  
2
Section 9.5.3  
on page 62  
Scratch  
device  
device  
PHY  
78h  
7Ch  
84h  
allows save or restore of firmware  
status during suspend  
2
2
1
Section 9.5.4  
on page 62  
Unlock Device  
Test Mode  
re-enables register write access after  
suspend  
Section 9.5.5  
on page 63  
direct setting of the DP and DM  
states, internal transceiver test (PHY)  
Section 9.5.6  
on page 63  
9.1 Register access  
Register access depends on the bus width used:  
8-bit bus: multi-byte registers are accessed lower byte (LSByte) first  
16-bit bus: for single-byte registers, the upper byte (MSByte) must be ignored  
Endpoint specific registers are indexed using the Endpoint Index register. The target  
endpoint must be selected before accessing the following registers:  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
30 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Buffer Length  
Buffer Status  
Control Function  
Data Port  
Endpoint MaxPacketSize  
Endpoint Type  
Remark: Write zero to all reserved bits, unless otherwise specified.  
9.2 Initialization registers  
9.2.1 Address register (address: 00h)  
This register sets the USB assigned address and enables the USB device. Table 22  
shows the Address register bit allocation.  
Bits DEVADDR[6:0] will be cleared whenever a bus reset, a power-on reset or a soft reset  
occurs. Bit DEVEN will be cleared whenever a power-on reset or a soft reset occurs.  
In response to standard USB request SET_ADDRESS, the firmware must write the  
(enabled) device address to the Address register, followed by sending an empty packet to  
the host. The new device address is activated when the device receives an  
acknowledgment from the host for the empty packet token.  
Table 22. Address register: bit allocation  
Bit  
7
DEVEN  
0
6
5
4
3
2
1
0
Symbol  
Reset  
DEVADDR[6:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
unchanged  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 23. Address register: bit description  
Bit  
Symbol  
Description  
7
DEVEN  
Device Enable: Logic 1 enables the device. The device will not  
respond to the host, unless this bit is set.  
6 to 0  
DEVADDR[6:0] Device Address: This field specifies the USB device address.  
9.2.2 Mode register (address: 0Ch)  
This register consists of 2 bytes (bit allocation: see Table 24).  
The Mode register controls resume, suspend and wake-up behavior, interrupt activity, soft  
reset, clock signals and SoftConnect operation.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
31 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 24. Mode register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
TEST2  
TEST1  
TEST0  
reserved  
DMA  
VBUSSTAT  
CLKON  
[1]  
Reset  
-
-
-
-
-
-
-
-
-
0
-
[1]  
Bus reset  
Access  
Bit  
-
-
-
0
-
R
R
R
-
-
-
R/W  
R
7
CLKAON  
0
6
5
4
3
2
1
PWRON  
0
0
SOFTCT  
0
Symbol  
Reset  
SNDRSU  
GOSUSP  
SFRESET GLINTENA WKUPCS  
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
unchanged  
R/W  
unchanged  
R/W  
unchanged unchanged  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
[1] Value depends on the status of the VBUS pin.  
Table 25. Mode register: bit description  
Bit  
15  
14  
13  
Symbol  
TEST2  
TEST1  
TEST0  
Description  
This bit reflects the MODE1 pin setting. Only for test purposes.  
This bit reflects the MODE0/DA1 pin setting. Only for test purposes.  
This bit reflects the BUS_CONF/DA0 pin setting. Only for test purposes.  
12 to 10 -  
reserved  
9
DMACLKON  
DMA Clock On:  
0 — Power save mode; the DMA circuit will stop completely to save  
power.  
1 — Supply clock to the DMA circuit.  
8
7
VBUSSTAT  
CLKAON  
VBUS Pin Status: This bit reflects the VBUS pin status.  
Clock Always On: Logic 1 indicates that internal clocks are always  
running when in the suspend state. Logic 0 switches off the internal  
oscillator and PLL when the device goes into suspend mode. The  
device will consume less power if this bit is set to logic 0. The clock is  
stopped about 2 ms after bit GOSUSP is set and then cleared.  
6
SNDRSU  
Send Resume: Writing logic 1, followed by logic 0 will generate a 10 ms  
upstream resume signal.  
Remark: The upstream resume signal is generated 5 ms after this bit is  
set to logic 0.  
5
4
GOSUSP  
SFRESET  
Go Suspend: Writing logic 1, followed by logic 0 will activate suspend  
mode.  
Soft Reset: Writing logic 1, followed by logic 0 will enable a  
software-initiated reset to the ISP1583. A soft reset is similar to a  
hardware-initiated reset (using the RESET_N pin).  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
32 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 25. Mode register: bit description …continued  
Bit  
Symbol  
Description  
3
GLINTENA  
Global Interrupt Enable: Logic 1 enables all interrupts. Individual  
interrupts can be masked by clearing the corresponding bits in the  
Interrupt Enable register.  
When this bit is not set, an unmasked interrupt will not generate an  
interrupt trigger on the interrupt pin. If global interrupt, however, is  
enabled while there is any pending unmasked interrupt, an interrupt  
signal will be immediately generated on the interrupt pin. (If the interrupt  
is set to pulse mode, the interrupt events that were generated before the  
global interrupt is enabled will not appear on the interrupt pin.)  
2
1
WKUPCS  
PWRON  
Wake-up on Chip selection: Logic 1 enables wake-up from suspend  
mode through a valid register read on the ISP1583. (A read will invoke  
the chip clock to restart. If you write to the register before the clock gets  
stable, it may cause malfunctioning.)  
Power On: The SUSPEND pin output control.  
0 — The SUSPEND pin is HIGH when the ISP1583 is in the suspend  
state. Otherwise, the SUSPEND pin is LOW.  
1 — When the device is woken up from the suspend state, there will be  
a 1 ms active HIGH pulse on the SUSPEND pin. The SUSPEND pin will  
remain LOW in all other states.  
0
SOFTCT  
SoftConnect: Logic 1 enables the connection of the 1.5 kpull-up  
resistor on pin RPU to the DP pin.  
The status of the chip is shown in Table 26.  
Table 26. Status of the chip  
Bus state  
SoftConnect = on  
SoftConnect = off  
VBUS on  
pull-up resistor on pin DP  
pull-up resistor on pin DP is removed;  
suspend interrupt is generated after 3 ms of  
no bus activity  
VBUS off  
pull-up resistor on pin DP is present; pull-up resistor on pin DP is removed;  
suspend interrupt is generated after suspend interrupt is generated after 3 ms of  
3 ms of no bus activity  
no bus activity  
9.2.3 Interrupt Configuration register (address: 10h)  
This 1-byte register determines the behavior and polarity of the INT output. The bit  
allocation is shown in Table 27. When the USB SIE receives or generates an ACK, NAK or  
NYET, it will generate interrupts, depending on three Debug mode fields.  
CDBGMOD[1:0] — interrupts for control endpoint 0  
DDBGMODIN[1:0] — interrupts for DATA IN endpoints 1 to 7  
DDBGMODOUT[1:0] — interrupts for DATA OUT endpoints 1 to 7  
The Debug mode settings for CDBGMOD, DDBGMODIN and DDBGMODOUT allow you  
to individually configure when the ISP1583 sends an interrupt to the external  
microprocessor. Table 29 lists available combinations.  
Bit INTPOL controls the signal polarity of the INT output: active HIGH or LOW, rising or  
falling edge. For level-triggering, bit INTLVL must be made logic 0. By setting INTLVL to  
logic 1, an interrupt will generate a pulse of 60 ns (edge-triggering).  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
33 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 27. Interrupt Configuration register: bit allocation  
Bit  
7
6
5
4
3
2
1
INTLVL  
0
0
INTPOL  
0
Symbol  
Reset  
CDBGMOD[1:0]  
DDBGMODIN[1:0]  
DDBGMODOUT[1:0]  
1
1
1
1
1
1
1
1
1
1
1
1
Bus reset  
Access  
unchanged unchanged  
R/W R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 28. Interrupt Configuration register: bit description  
Bit  
Symbol  
Description  
7 to 6  
5 to 4  
3 to 2  
1
CDBGMOD[1:0]  
DDBGMODIN[1:0]  
Control Endpoint 0 Debug Mode: For values, see Table 29  
Data Debug Mode IN: For values, see Table 29  
DDBGMODOUT[1:0] Data Debug Mode OUT: For values, see Table 29  
INTLVL  
Interrupt Level: Selects signaling mode on output INT (0 = level;  
1 = pulsed). In pulsed mode, an interrupt produces a 60 ns pulse.  
0
INTPOL  
Interrupt Polarity: Selects signal polarity on output INT (0 =  
active LOW, 1 = active HIGH).  
Table 29. Debug mode settings  
Value  
CDBGMOD  
DDBGMODIN  
DDBGMODOUT  
00h  
interrupt on all ACK and  
NAK  
interrupt on all ACK and  
NAK  
interrupt on all ACK, NYET  
and NAK  
01h  
1Xh  
interrupt on all ACK  
interrupt on ACK  
interrupt on ACK and NYET  
interrupt on all ACK and  
first NAK[1]  
interrupt on all ACK and  
first NAK[1]  
interrupt on all ACK, NYET  
and first NAK[1]  
[1] First NAK: the first NAK on an IN or OUT token is generated after a set-up token and an ACK sequence.  
9.2.4 OTG register (address: 12h)  
The bit allocation of the OTG register is given in Table 30.  
Table 30. OTG register: bit allocation  
Bit  
7
6
5
DP  
0
4
3
2
DISCV  
0
1
VP  
0
0
OTG  
0
Symbol  
Reset  
reserved  
BSESSVALID INITCOND  
-
-
-
-
-
-
-
-
-
-
Bus reset  
Access  
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
34 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 31. OTG register: bit description  
Bit  
7 to 6  
5
Symbol Description[1]  
-
reserved  
DP  
Data Pulsing: Used for data-line pulsing to toggle DP to generate the required  
data-line pulsing signal. The default value of this bit is logic 0. This bit must be  
cleared when data-line pulsing is completed.  
4
BSESS B-Session Valid: The device can initiate another VBUS discharge sequence  
VALID  
after data-line pulsing and VBUS pulsing, and before it clears this bit and detects  
a session valid.  
This bit is latched to logic 1 once VBUS exceeds the B-device session valid  
threshold. Once set, it remains at logic 1. To clear this bit, write logic 1. (The  
ISP1583 continuously updates this bit to logic 1 when the B-session is valid. If  
the B-session is valid after it is cleared, it is set back to logic 1 by the ISP1583).  
0 — It implies that SRP has failed. To proceed to a normal operation, the device  
can restart SRP, clear bit OTG or proceed to an error handling process.  
1 — It implies that the B-session is valid. The device clears bit OTG, goes into  
normal operation mode, and sets bit SOFTCT (DP pull-up) in the Mode register.  
The OTG host has a maximum of 5 s before it responds to a session request.  
During this period, the ISP1583 may request to suspend. Therefore, the device  
firmware must wait for some time if it wishes to know the SRP result (success: if  
there is minimum response from the host within 5 s; failure: if there is no  
response from the host within 5 s).  
3
INIT  
COND  
Initial Condition: Write logic 1 to clear this bit. Wait for more than 2 ms and  
check the bit status. If it reads logic 0, it means that VBUS remains lower than  
0.8 V, and DP or DM are at SE0 during the elapsed time. The device can then  
start a B-device SRP. If it reads logic 1, it means that the initial condition of SRP  
is violated. So, the device must abort SRP.  
The bit is set to logic 1 by the ISP1583 when initial conditions are not met, and  
only writing logic 1 clears the bit. (If initial conditions are not met after this bit  
has been cleared, it will be set again).  
Remark: This implementation does not cover the case if an initial SRP condition  
is violated when this bit is read and data-line pulsing is started.  
2
DISCV  
Discharge VBUS: Set to logic 1 to discharge VBUS. The device discharges VBUS  
before starting a new SRP. The discharge can take as long as 30 ms for VBUS to  
be charged less than 0.8 V. This bit must be cleared (write logic 0) before a  
session end.  
1
0
VP  
V
BUS Pulsing: Used for VBUS pulsing to toggle VP to generate the required  
VBUS pulsing signal. This bit must be set for more than 16 ms and must be  
cleared before 26 ms.  
OTG  
On-The-Go:  
1 — Enables the OTG function. The VBUS sensing functionality will be disabled.  
0 — Normal operation. All OTG control bits will be masked. Status bits are  
undefined.  
[1] No interrupt is designed for OTG. The VBUS interrupt, however, may assert as a side effect during the VBUS  
pulsing.  
When OTG is in progress, the VBUS interrupt may be set because VBUS is charged over the VBUS sensing  
threshold or the OTG host has turned on the VBUS supply to the device. Even if the VBUS interrupt is found  
during SRP, the device must complete data-line pulsing and VBUS pulsing before starting the  
B_SESSION_VALID detection.  
OTG implementation applies to the device with self-power capability. If the device works in sharing mode, it  
must provide a switch circuit to supply power to the ISP1583 core during SRP.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
35 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
9.2.4.1 Session Request Protocol (SRP)  
The ISP1583 can initiate an SRP. The B-device initiates SRP by data-line pulsing,  
followed by VBUS pulsing. The A-device can detect either data-line pulsing or VBUS  
pulsing.  
The ISP1583 can initiate the B-device SRP by performing the following steps:  
1. Set the OTG bit to start SRP.  
2. Detect initial conditions by following the instructions given in bit INITCOND of the OTG  
register.  
3. Start data-line pulsing: set bit DP of the OTG register to logic 1.  
4. Wait for 5 ms to 10 ms.  
5. Stop data-line pulsing: set bit DP of the OTG register to logic 0.  
6. Start VBUS pulsing: set bit VP of the OTG register to logic 1.  
7. Wait for 10 ms to 20 ms.  
8. Stop VBUS pulsing: set bit VP of the OTG register to logic 0.  
9. Discharge VBUS for about 30 ms: optional by using bit DISCV of the OTG register.  
10. Detect bit BSESSVALID of the OTG register for a successful SRP with bit OTG  
cleared.  
11. Once bit BSESSVALID is detected, turn on the SOFTCT bit to start normal bus  
enumeration.  
The B-device must complete both data-line pulsing and VBUS pulsing within 100 ms.  
Remark: When disabling OTG, data-line pulsing bit DP and VBUS pulsing bit VP must be  
cleared by writing logic 0.  
9.2.5 Interrupt Enable register (address: 14h)  
This register enables or disables individual interrupt sources. The interrupt for each  
endpoint can individually be controlled using the associated bits IEPnRX or IEPnTX, here  
n represents the endpoint number. All interrupts can be globally disabled using bit  
GLINTENA in the Mode register (see Table 24).  
An interrupt is generated when the USB SIE receives or generates an ACK or NAK on the  
USB bus. The interrupt generation depends on Debug mode settings of bit fields  
CDBGMOD[1:0], DDBGMODIN[1:0] and DDBGMODOUT[1:0] in the Interrupt  
Configuration register.  
All data IN transactions use the Transmit buffers (TX), which are handled by bits  
DDBGMODIN[1:0]. All data OUT transactions go through the Receive buffers (RX), which  
are handled by bits DDBGMODOUT[1:0]. Transactions on control endpoint 0 (IN, OUT  
and SETUP) are handled by bits CDBGMOD[1:0].  
Interrupts caused by events on the USB bus (SOF, suspend, resume, bus reset, set up  
and high-speed status) can also be individually controlled. A bus reset disables all  
enabled interrupts, except bit IEBRST (bus reset), which remains logic 1.  
The Interrupt Enable register consists of 4 bytes. The bit allocation is given in Table 32.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
36 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 32. Interrupt Enable register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
reserved  
IEP7TX  
IEP7RX  
-
-
-
-
-
-
-
0
0
Bus reset  
Access  
Bit  
-
-
-
-
-
0
R/W  
17  
0
R/W  
16  
-
-
-
-
-
-
23  
22  
21  
20  
19  
18  
Symbol  
Reset  
IEP6TX  
IEP6RX  
IEP5TX  
IEP5RX  
IEP4TX  
IEP4RX  
IEP3TX  
0
IEP3RX  
0
0
0
0
0
0
0
Bus reset  
Access  
Bit  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
9
R/W  
8
15  
14  
13  
12  
11  
10  
Symbol  
Reset  
IEP2TX  
IEP2RX  
IEP1TX  
IEP1RX  
IEP0TX  
IEP0RX  
reserved IEP0SETUP  
0
0
0
0
0
0
-
0
Bus reset  
Access  
Bit  
0
0
R/W  
6
0
0
0
0
-
0
R/W  
R/W  
R/W  
R/W  
R/W  
-
R/W  
7
5
4
3
2
1
IESOF  
0
0
IEBRST  
0
Symbol  
Reset  
IEVBUS  
IEDMA  
0
IEHS_STA  
IERESM  
IESUSP  
IEPSOF  
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 33. Interrupt Enable register: bit description  
Bit  
31 to 26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Symbol  
-
Description  
reserved  
IEP7TX  
IEP7RX  
IEP6TX  
IEP6RX  
IEP5TX  
IEP5RX  
IEP4TX  
IEP4RX  
IEP3TX  
IEP3RX  
IEP2TX  
IEP2RX  
IEP1TX  
IEP1RX  
IEP0TX  
IEP0RX  
-
Logic 1 enables interrupt from the indicated endpoint.  
Logic 1 enables interrupt from the indicated endpoint.  
Logic 1 enables interrupt from the indicated endpoint.  
Logic 1 enables interrupt from the indicated endpoint.  
Logic 1 enables interrupt from the indicated endpoint.  
Logic 1 enables interrupt from the indicated endpoint.  
Logic 1 enables interrupt from the indicated endpoint.  
Logic 1 enables interrupt from the indicated endpoint.  
Logic 1 enables interrupt from the indicated endpoint.  
Logic 1 enables interrupt from the indicated endpoint.  
Logic 1 enables interrupt from the indicated endpoint.  
Logic 1 enables interrupt from the indicated endpoint.  
Logic 1 enables interrupt from the indicated endpoint.  
Logic 1 enables interrupt from the indicated endpoint.  
Logic 1 enables interrupt from control IN endpoint 0.  
Logic 1 enables interrupt from control OUT endpoint 0.  
reserved  
8
IEP0SETUP Logic 1 enables interrupt for the set-up data received on endpoint 0.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
37 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 33. Interrupt Enable register: bit description …continued  
Bit  
7
Symbol  
IEVBUS  
IEDMA  
Description  
Logic 1 enables interrupt for VBUS sensing.  
6
Logic 1 enables interrupt on the DMA Interrupt Reason register change  
detection.  
5
4
3
2
1
0
IEHS_STA  
IERESM  
IESUSP  
IEPSOF  
IESOF  
Logic 1 enables interrupt on detecting a high-speed status change.  
Logic 1 enables interrupt on detecting a resume state.  
Logic 1 enables interrupt on detecting a suspend state.  
Logic 1 enables interrupt on detecting a pseudo SOF.  
Logic 1 enables interrupt on detecting an SOF.  
IEBRST  
Logic 1 enables interrupt on detecting a bus reset.  
9.3 Data flow registers  
9.3.1 Endpoint Index register (address: 2Ch)  
The Endpoint Index register selects a target endpoint for register access by the  
microcontroller. The register consists of 1 byte, and the bit allocation is shown in Table 34.  
The following registers are indexed:  
Buffer length  
Buffer status  
Control function  
Data port  
Endpoint MaxPacketSize  
Endpoint type  
For example, to access the OUT data buffer of endpoint 1 using the Data Port register, the  
Endpoint Index register must first be written with 02h.  
Remark: The Endpoint Index register and the DMA Endpoint register must not point to the  
same endpoint, irrespective of IN and OUT.  
Remark: The delay time from the Write Endpoint Index register to the Read Data Port  
register must be at least 190 ns.  
Remark: The delay time from the Write Endpoint Index register to the Write Data Port  
register must be at least 100 ns.  
Table 34. Endpoint Index register: bit allocation  
Bit  
7
6
5
EP0SETUP  
1
4
3
2
1
0
DIR  
0
Symbol  
Reset  
reserved  
ENDPIDX[3:0]  
-
-
-
-
-
-
0
0
0
0
0
0
0
Bus reset  
Access  
unchanged  
R/W  
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
38 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 35. Endpoint Index register: bit description  
Bit  
7 to 6  
5
Symbol  
Description  
-
reserved  
EP0SETUP  
Endpoint 0 Setup: Selects the SETUP buffer for endpoint 0.  
0 — Data buffer  
1 — SETUP buffer  
Must be logic 0 for access to endpoints other than set-up token buffer.  
4 to 1  
0
ENDPIDX[3:0] Endpoint Index: Selects the target endpoint for register access of  
buffer length, buffer status, control function, data port, endpoint type  
and MaxPacketSize.  
DIR  
Direction: Sets the target endpoint as IN or OUT.  
0 — Target endpoint refers to OUT (RX) FIFO  
1 — Target endpoint refers to IN (TX) FIFO  
Table 36. Addressing of endpoint buffers  
Buffer name  
SETUP  
EP0SETUP  
ENDPIDX  
00h  
DIR  
0
1
0
0
0
0
Control OUT  
Control IN  
Data OUT  
Data IN  
00h  
0
00h  
1
0Xh  
0
0Xh  
1
9.3.2 Control Function register (address: 28h)  
The Control Function register performs the buffer management on endpoints. It consists  
of 1 byte, and the bit configuration is given in Table 37. Register bits can stall, clear or  
validate any enabled endpoint. Before accessing this register, the Endpoint Index register  
must first be written to specify the target endpoint.  
Table 37. Control Function register: bit allocation  
Bit  
7
6
5
4
CLBUF  
0
3
VENDP  
0
2
DSEN  
0
1
0
STALL  
0
Symbol  
Reset  
reserved  
STATUS  
-
-
-
-
-
-
-
-
-
0
0
Bus reset  
Access  
0
0
0
0
R/W  
R/W  
W
R/W  
R/W  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
39 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 38. Control Function register: bit description  
Bit  
7 to 5  
4
Symbol Description  
reserved.  
-
CLBUF Clear Buffer: Logic 1 clears the TX or RX buffer of the indexed endpoint. The  
RX buffer is automatically cleared once the endpoint is completely read. This bit  
is set only when it is necessary to forcefully clear the buffer.  
Remark: If using double buffer, to clear both the buffers issue the CLBUF  
command two times. For details on clearing buffers, refer to Ref. 5 “ISP1582/83  
and ISP1761 clearing an IN buffer (AN10045)”.  
3
2
VENDP Validate Endpoint: Logic 1 validates data in the TX FIFO of an IN endpoint to  
send on the next IN token. In general, the endpoint is automatically validated  
when its FIFO byte count has reached endpoint MaxPacketSize. This bit is set  
only when it is necessary to validate the endpoint with the FIFO byte count,  
which is below endpoint MaxPacketSize.  
Remark: Use either bit VENDP or register Buffer Length to validate endpoint  
FIFO with FIFO bytes.  
DSEN  
Data Stage Enable: This bit controls the response of the ISP1583 to a control  
transfer. After the completion of the set-up stage, firmware must determine  
whether a data stage is required. For control OUT, rmware will set this bit and  
the ISP1583 goes into the data stage. Otherwise, the ISP1583 will NAK the data  
stage transfer. For control IN, firmware will set this bit before writing data to the  
TX FIFO and validate the endpoint. If no data stage is required, firmware can  
immediately set the STATUS bit after the set-up stage.  
Remark: The DSEN bit is cleared once the OUT token is acknowledged by the  
device and the IN token is acknowledged by the PC host. This bit cannot be  
read back and reading this bit will return logic 0.  
1
STATUS Status Acknowledge: Only applicable for control IN or OUT.  
This bit controls the generation of ACK or NAK during the status stage of a  
SETUP transfer. It is automatically cleared when the status stage is completed,  
or when a SETUP token is received. No interrupt signal will be generated.  
0 — Sends NAK  
1 — Sends an empty packet following the IN token (peripheral-to-host) or ACK  
following the OUT token (host-to-peripheral)  
Remark: The STATUS bit is cleared to zero once the zero-length packet is  
acknowledged by the device or the PC host.  
Remark: Data transfers preceding the status stage must first be fully completed  
before the STATUS bit can be set.  
0
STALL  
Stall Endpoint: Logic 1 stalls the indexed endpoint. This bit is not applicable for  
isochronous transfers.  
Remark: Stalling a data endpoint will confuse the Data Toggle bit about the  
stalled endpoint because the internal logic picks up from where it is stalled.  
Therefore, the Data Toggle bit must be reset by disabling and re-enabling the  
corresponding endpoint (by setting bit ENABLE to logic 0, followed by logic 1 in  
the Endpoint Type register) to reset the PID.  
9.3.3 Data Port register (address: 20h)  
This 2-byte register provides direct access for a microcontroller to the FIFO of the indexed  
endpoint. The bit allocation is shown in Table 39.  
Peripheral-to-host (IN endpoint): After each write action, an internal counter is auto  
incremented (by two for a 16-bit access, by one for an 8-bit access) to the next location in  
the TX FIFO. When all bytes are written (FIFO byte count = endpoint MaxPacketSize), the  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
40 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
buffer is automatically validated. The data packet will then be sent on the next IN token.  
When it is necessary to validate the endpoint whose byte count is less than  
MaxPacketSize, it can be done using the Control Function register (bit VENDP) or the  
Buffer Length register.  
Remark: The buffer can automatically be validated by using the Buffer Length register  
(see Table 41).  
Host-to-peripheral (OUT endpoint): After each read action, an internal counter is auto  
decremented (by two for a 16-bit access, by one for an 8-bit access) to the next location in  
the RX FIFO. When all bytes are read, buffer contents are automatically cleared. A new  
data packet can then be received on the next OUT token. Buffer contents can also be  
cleared using the Control Function register (bit CLBUF), when it is necessary to forcefully  
clear contents.  
Remark: The delay time from the Write Endpoint Index register to the Read Data Port  
register must be at least 190 ns.  
Remark: The delay time from the Write Endpoint Index register to the Write Data Port  
register must be at least 100 ns.  
Table 39. Data Port register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Reset  
DATAPORT[15:8]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
Bit  
R/W  
7
R/W  
6
R/W  
5
R/W  
4
R/W  
3
R/W  
2
R/W  
1
R/W  
0
Symbol  
Reset  
DATAPORT[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 40. Data Port register: bit description  
Bit Symbol Description  
15 to 8 DATAPORT[15:8] data (upper byte)  
7 to 0 DATAPORT[7:0] data (lower byte)  
9.3.4 Buffer Length register (address: 1Ch)  
This register determines the current packet size (DATACOUNT) of the indexed endpoint  
FIFO. The bit allocation is given in Table 41.  
The Buffer Length register is automatically loaded with the FIFO size, when the Endpoint  
MaxPacketSize register is written (see Table 45). A smaller value can be written when  
required. After a bus reset, the Buffer Length register is made zero.  
IN endpoint: When data transfer is performed in multiples of MaxPacketSize, the Buffer  
Length register is not significant. This register is useful only when transferring data that is  
not a multiple of MaxPacketSize. The following two examples demonstrate the  
significance of the Buffer Length register.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
41 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Example 1: Consider that the transfer size is 512 bytes and the MaxPacketSize is  
programmed as 64 bytes, the Buffer Length register need not be filled. This is because the  
transfer size is a multiple of MaxPacketSize, and MaxPacketSize packets will be  
automatically validated because the last packet is also of MaxPacketSize.  
Example 2: Consider that the transfer size is 510 bytes and the MaxPacketSize is  
programmed as 64 bytes, the Buffer Length register must be filled with 62 bytes just  
before the microprocessor writes the last packet of 62 bytes. This ensures that the last  
packet, which is a short packet of 62 bytes, is automatically validated.  
Use bit VENDP in the Control register if you are not using the Buffer Length register.  
This is applicable only to PIO mode access.  
OUT endpoint: The DATACOUNT value is automatically initialized to the number of data  
bytes sent by the host on each ACK.  
Remark: When using a 16-bit microprocessor bus, the last byte of an odd-sized packet is  
output as the lower byte (LSByte).  
Remark: Buffer Length is valid only after an interrupt is generated for the OUT endpoint.  
Table 41. Buffer Length register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Reset  
DATACOUNT[15:8]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
Bit  
R/W  
7
R/W  
6
R/W  
5
R/W  
4
R/W  
3
R/W  
2
R/W  
1
R/W  
0
Symbol  
Reset  
DATACOUNT[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 42. Buffer Length register: bit description  
Bit Symbol Description  
15 to 0 DATACOUNT[15:0] Data Count: Determines the current packet size of the indexed  
endpoint FIFO.  
9.3.5 Buffer Status register (address: 1Eh)  
This register is accessed using index. The endpoint index must first be set before  
accessing this register for the corresponding endpoint. It reflects the status of the double  
buffered endpoint FIFO.  
Remark: This register is not applicable to the control endpoint.  
Remark: For endpoint IN data transfer, firmware must ensure a 200 ns delay between  
writing of the data packet and reading the Buffer Status register. For endpoint OUT data  
transfer, firmware must also ensure a 200 ns delay between receiving the endpoint  
interrupt and reading the Buffer Status register. For more information, refer to Ref. 3  
“Using ISP1582/3 in a composite device application with alternate settings (AN10071)”.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
42 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 43 shows the bit allocation of the Buffer Status register.  
Table 43. Buffer Status register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
reserved  
BUF1  
BUF0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0
0
0
0
Bus reset  
Access  
R
R
Table 44. Buffer Status register: bit description  
Bit  
Symbol  
-
Description  
7 to 2  
1 to 0  
reserved  
BUF[1:0]  
Buffer:  
00 — Buffers are not filled.  
01 — One of the buffers is filled.  
10 — One of the buffers is filled.  
11 — Both the buffers are filled.  
9.3.6 Endpoint MaxPacketSize register (address: 04h)  
This register determines the maximum packet size for all endpoints, except set-up token  
buffer, control IN and control OUT. The register contains 2 bytes, and the bit allocation is  
given in Table 45.  
Each time the register is written, the Buffer Length register of the corresponding endpoint  
is re-initialized to the FFOSZ field value. Bits NTRANS control the number of transactions  
allowed in a single microframe (for high-speed isochronous and interrupt endpoints only).  
Table 45. Endpoint MaxPacketSize register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Reset  
reserved  
NTRANS[1:0]  
FFOSZ[10:8]  
-
-
-
-
-
-
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
Bit  
-
-
-
R/W  
4
R/W  
3
R/W  
2
R/W  
1
R/W  
0
7
6
5
Symbol  
Reset  
FFOSZ[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
43 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 46. Endpoint MaxPacketSize register: bit description  
Bit  
Symbol  
Description  
15 to 13  
12 to 11  
-
reserved  
NTRANS[1:0] Number of Transactions (HS mode only).  
00 — 1 packet per microframe  
01 — 2 packets per microframe  
10 — 3 packets per microframe  
11 — reserved  
These bits are applicable only for isochronous or interrupt  
transactions.  
10 to 0  
FFOSZ[10:0]  
FIFO Size: Sets the FIFO size, in bytes, for the indexed endpoint.  
Applies to both high-speed and full-speed operations.  
The ISP1583 supports all the transfers given in Ref. 1 “Universal Serial Bus Specification  
Rev. 2.0”.  
Each programmable FIFO can be independently configured using its Endpoint  
MaxPacketSize register (R/W: 04h), but the total physical size of all enabled endpoints (IN  
plus OUT), including set-up token buffer, control IN and control OUT, must not exceed  
8192 bytes.  
9.3.7 Endpoint Type register (address: 08h)  
This register sets the endpoint type of the indexed endpoint: isochronous, bulk or  
interrupt. It also serves to enable the endpoint and configure it for double buffering.  
Automatic generation of an empty packet for a zero-length TX buffer can be disabled using  
bit NOEMPKT. The register contains 2 bytes, and the bit allocation is shown in Table 47.  
Table 47. Endpoint Type register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Reset  
reserved  
-
-
-
-
-
-
-
-
-
-
-
-
Bus reset  
Access  
Bit  
-
-
-
-
-
-
-
-
-
-
-
-
7
6
5
4
3
2
1
0
Symbol  
Reset  
reserved  
NOEMPKT  
ENABLE  
DBLBUF  
ENDPTYP[1:0]  
-
-
-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
44 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 48. Endpoint Type register: bit description  
Bit  
Symbol  
Description  
15 to 5  
4
-
reserved  
NOEMPKT  
No Empty Packet: Logic 0 causes the ISP1583 to return a null length  
packet for the IN token after the DMA IN transfer is complete. For ATA  
mode or the DMA IN transfer, which does not require a null length  
packet after DMA completion, set to logic 1 to disable the generation of  
the null length packet.  
3
ENABLE  
Endpoint Enable: Logic 1 enables the FIFO of the indexed endpoint.  
The memory size is allocated as specified in the Endpoint  
MaxPacketSize register. Logic 0 disables the FIFO.  
Remark: Stalling a data endpoint will confuse the Data Toggle bit on the  
stalled endpoint because the internal logic picks up from where it has  
stalled. Therefore, the Data Toggle bit must be reset by disabling and  
re-enabling the corresponding endpoint (by setting bit ENABLE to  
logic 0, followed by logic 1 in the Endpoint Type register) to reset the  
PID.  
2
DBLBUF  
Double Buffering: Logic 1 enables double buffering for the indexed  
endpoint. Logic 0 disables double buffering.  
Remark: When performing a write to two empty buffers, ensure that a  
minimum of 200 ns delay is provided from the last write of the first buffer  
to the first write of the second buffer. Otherwise, the first few data bytes  
may not be written to the second buffer, causing data corruption.  
1 to 0  
ENDPTYP[1:0] Endpoint Type: These bits select the endpoint type.  
00 — not used  
01 — Isochronous  
10 — Bulk  
11 — Interrupt  
9.4 DMA registers  
Two types of Generic DMA transfers and three types of IDE-specified transfers can be  
done by writing the proper opcode in the DMA Command register.  
Control bits are given in Table 49 (Generic DMA transfers) and Table 50 (IDE-specified  
transfers).  
GDMA read/write (opcode = 00h/01h) — Generic DMA slave mode. Depending on the  
MODE[1:0] bits set in the DMA Configuration register, the DACK, DIOR or DIOW signal  
strobes data. These signals are driven by the external DMA controller.  
GDMA slave mode can operate in either counter mode or EOT-only mode.  
In counter mode, bit DIS_XFER_CNT in the DMA Configuration register must be set to  
logic 0. The DMA Transfer Counter register must be programmed before any DMA  
command is issued. The DMA transfer counter is set by writing from the LSByte to the  
MSByte (address: 34h to 37h). The DMA transfer count is internally updated only after the  
MSByte is written. Once the DMA transfer is started, the transfer counter starts  
decrementing and on reaching 0, bit DMA_XFER_OK is set and an interrupt is generated  
by the ISP1583. If the DMA master wishes to terminate the DMA transfer, it can issue an  
EOT signal to the ISP1583. This EOT signal overrides the transfer counter and can  
terminate the DMA transfer at any time.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
45 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
In EOT-only mode, DIS_XFER_CNT must be set to logic 1. Although the DMA transfer  
counter can still be programmed, it will not have any effect on the DMA transfer. The DMA  
transfer will start once the DMA command is issued. Any of the following three ways will  
terminate this DMA transfer:  
Detecting an external EOT  
Detecting an internal EOT (short packet on an OUT token)  
Issuing a GDMA stop command  
There are three interrupts programmable to differentiate the method of DMA termination:  
bits INT_EOT, EXT_EOT and DMA_XFER_OK in the DMA Interrupt Reason register (see  
Table 74).  
MDMA (master) read/write (opcode = 06h/07h) — Generic DMA master mode.  
Depending on the MODE[1:0] bits set in the DMA Configuration register, the DACK, DIOR  
or DIOW signal strobes data. These signals are driven by the ISP1583.  
In master mode, BURSTCOUNTER[12:0] in the DMA Burst Counter register,  
DIS_XFER_CNT in the DMA Configuration register and the external EOT signal are not  
applicable. The DMA transfer counter is always enabled and bit DMA_XFER_OK is set to  
1 once the counter reaches 0.  
MDMA read/write (opcode = 06h/07h) — Multi-word DMA mode for IDE transfers. The  
specification of this mode can be obtained from Ref. 4 “AT Attachment with Packet  
Interface Extension (ATA/ATAPI-4), ANSI INCITS 317-1998 (R2003)”. DIOR and DIOW  
are used as data strobes, while DREQ and DACK serve as handshake signals.  
Table 49. Control bits for Generic DMA transfers  
Control bits  
Description  
Reference  
GDMA read/write  
(opcode = 00h/01h)  
MDMA (master) read/write  
(opcode = 06h/07h)  
DMA Configuration register  
ATA_MODE  
set to logic 0 (non-ATA  
set to logic 1 (ATA transfer)  
Table 56  
transfer)  
DMA_MODE[1:0]  
-
determines MDMA timing for  
DIOR and DIOW strobes  
DIS_XFER_CNT disables use of DMA transfer disables use of DMA transfer  
counter counter  
MODE[1:0]  
determines active read/write determines active data  
data strobe signals strobe(s)  
WIDTH  
selects DMA bus width: 8 or selects DMA bus width: 8 or  
16 bits 16 bits  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
46 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 49. Control bits for Generic DMA transfers …continued  
Control bits  
Description  
Reference  
GDMA read/write  
(opcode = 00h/01h)  
MDMA (master) read/write  
(opcode = 06h/07h)  
DMA Hardware register  
ENDIAN[1:0]  
determines whether data is determines whether data is to Table 58  
to be byte swapped or  
normal; applicable only in  
16-bit mode  
be byte swapped or normal;  
applicable only in 16-bit mode  
EOT_POL  
MASTER  
selects polarity of the EOT  
signal  
input EOT is not used  
set to logic 1 (master)  
set to logic 0 (slave)  
ACK_POL,  
selects polarity of DMA  
handshake signals  
selects polarity of DMA  
handshake signals  
DREQ_POL,  
WRITE_POL,  
READ_POL  
Table 50. Control bits for IDE-specified DMA transfers  
Control bits  
Description  
Reference  
MDMA read/write (opcode = 06h/07h)  
DMA Configuration register  
ATA_MODE  
set to logic 1 (ATA transfer)  
Table 56  
DMA_MODE[1:0]  
PIO_MODE[2:0]  
selects MDMA mode; timing are ATA(PI) compatible  
selects PIO mode; timing are ATA(PI) compatible  
DMA Hardware register  
MASTER set to logic 0  
Table 58  
Remark: The DMA bus defaults to 3-state, until a DMA command is executed. All the  
other control signals are not 3-stated.  
9.4.1 DMA Command register (address: 30h)  
The DMA Command register is a 1-byte register (for bit allocation, see Table 51) that  
initiates all DMA transfer activity on the DMA controller. The register is write-only: reading  
it will return FFh.  
Remark: The DMA bus will be in 3-state, until a DMA command is executed.  
Table 51. DMA Command register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
DMA_CMD[7:0]  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Bus reset  
Access  
W
W
W
W
W
W
W
W
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
47 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 52. DMA Command register: bit description  
Bit  
Symbol  
Description  
7 to 0  
DMA_CMD[7:0]  
DMA command code, see Table 53.  
PIO read or write that started using the DMA Command register  
only performs a 16-bit transfer.  
Table 53. DMA commands  
Code  
Name  
Description  
00h  
GDMA Read  
Generic DMA IN token transfer (slave mode only): Data is  
transferred from the external DMA bus to the internal buffer.  
Strobe: DIOW by the external DMA controller.  
01h  
GDMA Write  
Generic DMA OUT token transfer (slave mode only): Data is  
transferred from the internal buffer to the external DMA bus.  
Strobe: DIOR by the external DMA controller.  
02h to 05h  
06h  
-
reserved  
MDMA Read  
Multi-word DMA Read: Data is transferred from the external  
DMA bus to the internal buffer.  
07h  
0Ah  
MDMA Write  
Read 1F0  
Multi-word DMA Write: Data is transferred from the internal  
buffer to the external DMA bus.  
Read at address 1F0h: Initiates a PIO read cycle from Task File  
1F0. Before issuing this command, the task file byte count must  
be programmed at address 1F4h (LSByte) and 1F5h (MSByte).  
0Bh  
0Ch  
Poll BSY  
Poll BSY status bit for ATAPI device: Starts repeated PIO read  
commands to poll the BSY status bit of the ATAPI device. When  
BSY = 0, polling is terminated and an interrupt is generated. The  
interrupt can be masked but the interrupt bit will still be set.  
Therefore, you can manually poll this interrupt bit.  
Read Task Files Read Task Files: Reads all task files. When Task File Index is  
set to logic 0, this command reads all registers, except 1F0h and  
1F7h. If Task File Index is not logic 0, the Task register of the  
address set in the Task File register will be read. When the  
reading is completed, an interrupt is generated. The interrupt  
can be masked off, however, the interrupt bit will still be set.  
Therefore, you can manually poll this interrupt bit.  
0Dh  
0Eh  
-
reserved  
Validate Buffer  
Validate Buffer (for debugging only): Request from the  
microcontroller to validate the endpoint buffer, following an  
ATA-to-USB data transfer.  
0Fh  
Clear Buffer  
Clear Buffer: Request from the microcontroller to clear the  
endpoint buffer, after a DMA-to-USB data transfer. Logic 1 clears  
the TX buffer of the indexed endpoint; the RX buffer is not  
affected. The TX buffer is automatically cleared once data is  
sent on the USB bus. This bit is set only when it is necessary to  
forcefully clear the buffer.  
Remark: If using double buffer, to clear both the buffers issue  
the Clear Buffer command two times, that is, set and clear this  
bit two times.  
10h  
Restart  
Restart: Request from the microcontroller to move the buffer  
pointers to the beginning of the endpoint FIFO.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
48 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 53. DMA commands …continued  
Code  
Name  
Description  
11h  
Reset DMA  
Reset DMA: Initializes the DMA core to its power-on reset state.  
Remark: When the DMA core is reset during the Reset DMA  
command, the DREQ, DACK, DIOW and DIOR handshake pins  
will temporarily be asserted. This can confuse the external DMA  
controller. To prevent this, start the external DMA controller only  
after the DMA reset.  
12h  
13h  
MDMA stop  
GDMA stop  
MDMA stop: This command immediately stops the MDMA data  
transfer. This is applicable for commands 06h and 07h only.  
GDMA stop: This command stops the GDMA data transfer. Any  
data in the OUT endpoint that is not transferred by the DMA will  
remain in the buffer. The FIFO data for the IN endpoint will be  
written to the endpoint buffer. An interrupt bit will be set to  
indicate the completion of the DMA Stop command.  
Remark: For the DMA OUT transfer, if the DMA Burst Counter  
register is programmed to some value, for example 512 bytes,  
and if a GDMA Stop command is issued in the middle of a  
transfer, the transfer will continue until the end of the burst size  
(512 bytes). Issuing a GDMA Stop command does not allow the  
ISP1583 to stop in the middle of the burst. It can only be stopped  
in between bursts.  
14h to 20h  
21h  
-
reserved  
Read Task File  
register 1F1h  
Read Task File register 1F1h: When reading is completed, an  
interrupt is generated.  
22h  
Read Task File  
register 1F2h  
Read Task File register 1F2h: When reading is completed, an  
interrupt is generated.  
23h  
Read Task File  
register 1F3h  
Read Task File register 1F3h: When reading is completed, an  
interrupt is generated.  
24h  
Read Task File  
register 1F4h  
Read Task File register 1F4h: When reading is completed, an  
interrupt is generated.  
25h  
Read Task File  
register 1F5h  
Read Task File register 1F5h: When reading is completed, an  
interrupt is generated.  
26h  
Read Task File  
register 1F6h  
Read Task File register 1F6h: When reading is completed, an  
interrupt is generated.  
27h  
Read Task File  
register 3F6h  
Read Task File register 3F6h: When reading is completed, an  
interrupt is generated.  
28h  
Read Task File  
register 3F7h  
Read Task File register 3F7h: When reading is completed, an  
interrupt is generated.  
29h to FFh  
-
reserved  
9.4.2 DMA Transfer Counter register (address: 34h)  
This 4-byte register sets up the total byte count for a DMA transfer (DMACR). It indicates  
the remaining number of bytes left for transfer. The bit allocation is given in Table 54.  
For IN endpoint — Because there is a FIFO in the ISP1583 DMA controller, some data  
may remain in the FIFO during the DMA transfer. The maximum FIFO size is 8 bytes, and  
the maximum delay time for data to be shifted to endpoint buffer is 60 ns.  
For OUT endpoint — Data will not be cleared from the endpoint buffer, until all the data is  
read from the DMA FIFO.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
49 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
If the DMA counter is disabled in the DMA transfer, it will still decrement and rollover when  
it reaches zero.  
Table 54. DMA Transfer Counter register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
DMACR4 = DMACR[31:24]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
Bit  
R/W  
23  
R/W  
22  
R/W  
21  
R/W  
20  
R/W  
19  
R/W  
18  
R/W  
17  
R/W  
16  
Symbol  
Reset  
DMACR3 = DMACR[23:16]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
Bit  
R/W  
15  
R/W  
14  
R/W  
13  
R/W  
12  
R/W  
11  
R/W  
10  
R/W  
9
R/W  
8
Symbol  
Reset  
DMACR2 = DMACR[15:8]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
Bit  
R/W  
7
R/W  
6
R/W  
5
R/W  
4
R/W  
3
R/W  
2
R/W  
1
R/W  
0
Symbol  
Reset  
DMACR1 = DMACR[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 55. DMA Transfer Counter register: bit description  
Bit  
Symbol  
Description  
31 to 24  
23 to 16  
15 to 8  
7 to 0  
DMACR4 = DMACR[31:24]  
DMACR3 = DMACR[23:16]  
DMACR2 = DMACR[15:8]  
DMACR1 = DMACR[7:0]  
DMA transfer counter byte 4 (MSByte)  
DMA transfer counter byte 3  
DMA transfer counter byte 2  
DMA transfer counter byte 1 (LSByte)  
9.4.3 DMA Configuration register (address: 38h)  
This register defines the DMA configuration for GDMA mode. The DMA Configuration  
register consists of 2 bytes. The bit allocation is given in Table 56.  
Table 56. DMA Configuration register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
reserved  
ATA_  
DMA_MODE[1:0]  
PIO_MODE[2:0]  
MODE  
Reset  
-
-
-
-
-
-
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
50 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Bit  
7
6
5
4
3
2
1
0
Symbol  
DIS_  
reserved  
MODE[1:0]  
reserved  
WIDTH  
XFER_CNT  
Reset  
0
0
-
-
-
-
-
-
-
-
-
0
0
0
0
-
-
-
1
1
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
Table 57. DMA Configuration register: bit description  
Bit  
Symbol  
Description[1]  
15 to 14  
13  
-
reserved  
ATA_MODE  
ATA Mode: Mode selection of the DMA core.  
0 — Configures the DMA core for non-ATA mode. Used when issuing  
DMA commands 00h and 01h.  
1 — Configures the DMA core for ATA or MDMA mode. Used when  
issuing DMA commands 02h to 07h, 0Ah and 0Ch; also used when  
directly accessing Task File registers.  
12 to 11 DMA_MODE  
[1:0]  
DMA Mode: These bits affect the timing for MDMA mode.  
00 — MDMA mode 0: ATA(PI) compatible timing  
01 — MDMA mode 1: ATA(PI) compatible timing  
10 — MDMA mode 2: ATA(PI) compatible timing  
11 — MDMA mode 3: enables the DMA Strobe Timing register (see  
Table 78 and Table 79) for non-standard strobe durations; only used in  
MDMA mode  
10 to 8  
PIO_MODE  
[2:0][2]  
PIO Mode: These bits affect the PIO timing.  
000 to 100 — PIO mode 0 to 4: ATA(PI) compatible timing  
101 to 111 — reserved  
7
DIS_XFER_  
CNT  
Disable Transfer Count: Logic 1 disables the DMA Transfer Counter  
(see Table 54). The transfer counter can be disabled only in GDMA  
slave mode; in master mode the counter is always enabled.  
6 to 4  
3 to 2  
-
reserved  
MODE[1:0]  
Mode: These bits only affect GDMA (slave) and MDMA (master)  
handshake signals.  
00 — DIOR (master) or DIOW (slave): strobes data from the DMA bus  
into the ISP1583; DIOW (master) or DIOR (slave): puts data from the  
ISP1583 on the DMA bus.  
01 — DIOR (master) or DACK (slave): strobes data from the DMA bus  
into the ISP1583; DACK (master) or DIOR (slave): puts data from the  
ISP1583 on the DMA bus.  
10 — DACK (master and slave): strobes data from the DMA bus into  
the ISP1583 and also puts data from the ISP1583 on the DMA bus.  
11 — reserved  
1
0
-
reserved  
WIDTH  
Width: This bit selects the DMA bus width for GDMA (slave) and  
MDMA (master).  
0 — 8-bit data bus  
1 — 16-bit data bus  
[1] The DREQ pin will be driven only after performing a write access to the DMA Configuration register (that is,  
after configuring the DMA Configuration register).  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
51 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
[2] PIO read or write that started using the DMA Command register only performs 16-bit transfer.  
9.4.4 DMA Hardware register (address: 3Ch)  
The DMA Hardware register consists of 1 byte. The bit allocation is shown in Table 58.  
This register determines the polarity of bus control signals (EOT, DACK, DREQ, DIOR and  
DIOW) and DMA mode (master or slave). It also controls whether the upper and lower  
parts of the data bus are swapped (bits ENDIAN[1:0]), for modes GDMA (slave) and  
MDMA (master) only.  
Table 58. DMA Hardware register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
ENDIAN[1:0]  
EOT_POL  
MASTER  
ACK_POL  
DREQ_  
POL  
WRITE_  
POL  
READ_  
POL  
Reset  
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 59. DMA Hardware register: bit description  
Bit Symbol Description  
7 to 6 ENDIAN[1:0] Endian: These bits determine whether the data bus is swapped between  
the internal RAM and the DMA bus. This only applies for modes GDMA  
(slave) and MDMA (master).  
00 — Normal data representation; 16-bit bus: MSByte on DATA[15:8] and  
LSByte on DATA[7:0].  
01 — Swapped data representation; 16-bit bus: MSByte on DATA[7:0] and  
LSByte on DATA[15:8].  
10 — reserved  
11 — reserved  
Remark: While operating with the 8-bit data bus, bits ENDIAN[1:0] must  
always be set to logic 00.  
5
EOT_POL  
EOT Polarity: Selects the polarity of the End-Of-Transfer input; used in  
GDMA slave mode only.  
0 — EOT is active LOW  
1 — EOT is active HIGH  
4
3
MASTER  
ACK_POL  
Master or Slave Selection: Selects DMA master or slave mode.  
0 — GDMA slave mode  
1 — MDMA master mode  
Acknowledgment Polarity: Selects the DMA acknowledgment polarity.  
0 — DACK is active LOW  
1 — DACK is active HIGH  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
52 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 59. DMA Hardware register: bit description …continued  
Bit  
Symbol  
Description  
2
DREQ_POL DREQ Polarity: Selects the DMA request polarity.  
0 — DREQ is active LOW  
1 — DREQ is active HIGH  
1
0
WRITE_POL Write Polarity: Selects the DIOW strobe polarity.  
0 — DIOW is active LOW  
1 — DIOW is active HIGH  
READ_POL Read Polarity: Selects the DIOR strobe polarity.  
0 — DIOR is active LOW  
1 — DIOR is active HIGH  
9.4.5 Task File registers (addresses: 40h to 4Fh)  
These registers allow direct access to the internal registers of an ATAPI peripheral using  
PIO mode. The supported Task File registers and their functions are shown in Table 60.  
The correct peripheral register is automatically addressed using pins CS1_N, CS0_N,  
DA2, MODE0/DA1 and BUS_CONF/DA0 (see Table 61).  
Table 60. Task File register functions  
Task file  
1F0  
ATA function  
ATAPI function  
data (16-bit)  
data (16-bit)  
1F1  
error/feature  
error/feature  
1F2  
sector count  
interrupt reason  
reserved  
1F3  
sector number/LBA[7:0]  
cylinder low/LBA[15:8]  
cylinder high/LBA[23:16]  
drive/head/LBA[27:24]  
command  
1F4  
cylinder low  
1F5  
cylinder high  
drive select  
1F6  
1F7  
status/command  
alternate status/command  
reserved  
3F6  
alternate status/command  
drive address  
3F7  
Table 61. ATAPI peripheral register addressing  
Task file  
1F0  
CS1_N  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
CS0_N  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
DA2  
MODE0/DA1 BUS_CONF/DA0  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
1F1  
1F2  
1F3  
1F4  
1F5  
1F6  
1F7  
3F6  
3F7  
LOW  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
53 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
In 8-bit bus mode, 16-bit Task File register 1F0 requires two consecutive write/read  
accesses before the proper PIO write/read is generated on the IDE interface. The first  
byte is always the lower byte (LSByte). Other Task File registers can directly be accessed.  
Writing to Task File registers can be done in any order, except for the Task File register  
1F7, which must be written last.  
Table 62. Task File 1F0 register (address: 40h): bit allocation  
CS1_N = HIGH, CS0_N = LOW, DA2 = LOW, MODE0/DA1 = LOW, BUS_CONF/DA0 = LOW.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
data (ATA or ATAPI)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 63. Task File 1F1 register (address: 48h): bit allocation  
CS1_N = HIGH, CS0_N = LOW, DA2 = LOW, MODE0/DA1 = LOW, BUS_CONF/DA0 = HIGH.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
error/feature (ATA or ATAPI)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 64. Task File 1F2 register (address: 49h): bit allocation  
CS1_N = HIGH, CS0_N = LOW, DA2 = LOW, MODE0/DA1 = HIGH, BUS_CONF/DA0 = LOW.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
sector count (ATA) or interrupt reason (ATAPI)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 65. Task File 1F3 register (address: 4Ah): bit allocation  
CS1_N = HIGH, CS0_N = LOW, DA2 = LOW, MODE0/DA1 = HIGH, BUS_CONF/DA0 = HIGH.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
sector number/LBA[7:0] (ATA), reserved (ATAPI)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 66. Task File 1F4 register (address: 4Bh): bit allocation  
CS1_N = HIGH, CS0_N = LOW, DA2 = HIGH, MODE0/DA1 = LOW, BUS_CONF/DA0 = LOW.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
cylinder low/LBA[15:8] (ATA) or cylinder low (ATAPI)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
54 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 67. Task File 1F5 register (address: 4Ch): bit allocation  
CS1_N = HIGH, CS0_N = LOW, DA2 = HIGH, MODE0/DA1 = LOW, BUS_CONF/DA0 = HIGH.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
cylinder high/LBA[23:16] (ATA) or cylinder high (ATAPI)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 68. Task File 1F6 register (address: 4Dh): bit allocation  
CS1_N = HIGH, CS0_N = LOW, DA2 = HIGH, MODE0/DA1 = HIGH, BUS_CONF/DA0 = LOW.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
drive/head/LBA[27:24] (ATA) or drive (ATAPI)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 69. Task File 1F7 register (address: 44h): bit allocation  
CS1_N = HIGH, CS0_N = LOW, DA2 = HIGH, MODE0/DA1 = HIGH, BUS_CONF/DA0 = HIGH.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
command (ATA) or status[1]/command (ATAPI)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
W
W
W
W
W
W
W
W
[1] Task File register 1F7 is a write-only register; a read will return FFh.  
Table 70. Task File 3F6 register (address: 4Eh): bit allocation  
CS1_N = LOW, CS0_N = HIGH, DA2 = HIGH, MODE0/DA1 = HIGH, BUS_CONF/DA0 = LOW.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
alternate status/command (ATA or ATAPI)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 71. Task File 3F7 register (address: 4Fh): bit allocation  
CS1_N = LOW, CS0_N = HIGH, DA2 = HIGH, MODE0/DA1 = HIGH, BUS_CONF/DA0 = HIGH.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
drive address (ATA) or reserved (ATAPI)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
55 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
9.4.6 DMA Interrupt Reason register (address: 50h)  
This 2-byte register shows the source(s) of DMA interrupt. Each bit is refreshed after a  
DMA command is executed. An interrupt source is cleared by writing logic 1 to the  
corresponding bit. On detecting the interrupt, the external microprocessor must read the  
DMA Interrupt Reason register and mask it with the corresponding bits in the DMA  
Interrupt Enable register to determine the source of the interrupt.  
The bit allocation is given in Table 72.  
Table 72. DMA Interrupt Reason register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
TEST3  
reserved  
GDMA_  
STOP  
EXT_EOT  
INT_EOT  
INTRQ_  
PENDING XFER_OK  
DMA_  
Reset  
0
0
-
-
-
-
0
0
0
0
0
0
0
0
Bus reset  
Access  
Bit  
0
R/W  
0
R/W  
R
7
-
-
R/W  
3
R/W  
2
R/W  
1
6
5
4
0
Symbol  
reserved  
READ_1F0  
BSY_  
DONE  
TF_RD_  
DONE  
CMD_  
INTRQ_OK  
reserved  
Reset  
-
-
-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
-
-
-
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
Table 73. DMA Interrupt Reason register: bit description  
Bit  
Symbol  
Description  
15  
TEST3  
This bit is set when a DMA transfer for a packet (OUT transfer)  
terminates before the whole packet is transferred. This bit is a  
status bit, and the corresponding mask bit of this register is always  
0. Writing any value other than 0 has no effect.  
14 to 13  
12  
-
reserved  
GDMA_STOP  
GDMA Stop: When the GDMA_STOP command is issued to DMA  
Command registers, it means the DMA transfer has successfully  
terminated.  
11  
10  
9
EXT_EOT  
INT_EOT  
External EOT: Logic 1 indicates that an external EOT is detected.  
This is applicable only in GDMA slave mode.  
Internal EOT: Logic 1 indicates that an internal EOT is detected;  
see Table 74.  
INTRQ_  
Interrupt Pending: Logic 1 indicates that a pending interrupt was  
PENDING  
detected on pin INTRQ.  
8
DMA_XFER_OK  
DMA Transfer OK: Logic 1 indicates that the DMA transfer is  
completed (DMA Transfer Counter has become zero). This bit is  
only used in GDMA (slave) mode and MDMA (master) mode.  
7 to 5  
4
-
reserved  
READ_1F0  
Read 1F0: Logic 1 indicates that the 1F0 FIFO contains unread  
data and the microcontroller can start reading data.  
3
BSY_DONE  
Busy Done: Logic 1 indicates that the BSY status bit has become  
zero and polling has been stopped.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
56 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 73. DMA Interrupt Reason register: bit description …continued  
Bit  
Symbol  
Description  
2
TF_RD_DONE  
Task File Read Done: Logic 1 indicates that the Read Task Files  
command has been completed.  
1
0
CMD_INTRQ_OK Command Interrupt OK: Logic 1 indicates that all bytes from the  
FIFO have been transferred (DMA Transfer Count zero) and an  
interrupt on pin INTRQ was detected.  
-
reserved  
Table 74. Internal EOT-functional relation with DMA_XFER_OK bit  
INT_EOT DMA_XFER_OK Description  
1
1
0
0
1
1
During the DMA transfer, there is a premature termination with  
short packet.  
DMA transfer is completed with short packet and the DMA  
transfer counter has reached 0.  
DMA transfer is completed without any short packet and the DMA  
transfer counter has reached 0.  
9.4.7 DMA Interrupt Enable register (address: 54h)  
This 2-byte register controls the interrupt generation of the source bits in the DMA  
Interrupt Reason register (see Table 72). The bit allocation is given in Table 75. The bit  
description is given in Table 73.  
Logic 1 enables the interrupt generation. After a bus reset, interrupt generation is  
disabled, with values turning to logic 0.  
Table 75. DMA Interrupt Enable register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
TEST4  
reserved  
IE_GDMA_  
STOP  
IE_EXT_  
EOT  
IE_INT_  
EOT  
IE_INTRQ_ IE_DMA_  
PENDING XFER_OK  
Reset  
0
0
-
-
-
-
0
0
0
0
0
0
0
0
Bus reset  
Access  
Bit  
0
R/W  
0
R/W  
R
7
-
-
R/W  
4
R/W  
3
R/W  
2
6
5
1
0
Symbol  
reserved  
IE_  
READ_1F0  
IE_BSY_  
DONE  
IE_TF_  
RD_DONE INTRQ_OK  
IE_CMD_  
reserved  
Reset  
-
-
-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
-
-
-
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
9.4.8 DMA Endpoint register (address: 58h)  
This 1-byte register selects a USB endpoint FIFO as a source or destination for DMA  
transfers. The bit allocation is given in Table 76.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
57 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 76. DMA Endpoint register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
reserved  
EPIDX[2:0]  
DMADIR  
-
-
-
-
-
-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
Table 77. DMA Endpoint register: bit description  
Bit  
Symbol  
-
Description  
7 to 4  
3 to 1  
0
reserved  
EPIDX[2:0]  
DMADIR  
Endpoint Index: selects the indicated endpoint for DMA access  
DMA Direction:  
0 — Selects the RX/OUT FIFO for DMA read transfers  
1 — Selects the TX/IN FIFO for DMA write transfers  
The DMA Endpoint register must not reference the endpoint that is indexed by the  
Endpoint Index register (2Ch) at any time. Doing so will result in data corruption.  
Therefore, if the DMA Endpoint register is unused, point it to an unused endpoint. If the  
DMA Endpoint register, however, is pointed to an active endpoint, the firmware must not  
reference the same endpoint on the Endpoint Index register.  
9.4.9 DMA Strobe Timing register (address: 60h)  
This 1-byte register controls the strobe timing for MDMA mode, when bits  
DMA_MODE[1:0] in the DMA Configuration register have been set to 03h.  
The bit allocation is given in Table 78.  
Table 78. DMA Strobe Timing register: bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
reserved  
DMA_STROBE_CNT[4:0]  
-
-
-
-
-
-
-
-
-
1
1
1
1
1
1
1
1
1
1
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 79. DMA Strobe Timing register: bit description  
Bit  
Symbol  
Description  
7 to 5  
-
reserved  
4 to 0 DMA_STROBE_ DMA Strobe Count: These bits select the strobe duration for  
CNT[4:0]  
DMA_MODE = 03h (see Table 56). The strobe duration is (N + 1)  
cycles[1], with N representing the value of DMA_STROBE_CNT (see  
Figure 17).  
[1] The cycle duration indicates the internal clock cycle (33.3 ns/cycle).  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
58 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
x
x
(N + 1) cycles  
004aaa125  
Fig 17. Programmable strobe timing  
9.4.10 DMA Burst Counter register (address: 64h)  
Table 80 shows the bit allocation of the 2-byte register.  
Table 80. DMA Burst Counter register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Reset  
reserved  
BURSTCOUNTER[12:8]  
-
-
-
-
-
-
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
Bit  
-
-
-
R/W  
4
R/W  
R/W  
R/W  
1
R/W  
0
7
6
5
3
2
Symbol  
Reset  
BURSTCOUNTER[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 81. DMA Burst Counter register: bit description  
Bit  
Symbol  
Description  
15 to 13  
12 to 0  
-
reserved  
BURSTCOUNTER Burst Counter: This register defines the burst length. The  
[12:0]  
counter must be programmed to be a multiple of two in 16-bit  
mode. The value of the burst counter must be programmed so  
that the burst counter is a factor of the buffer size.  
It is used to determine the assertion and deassertion of DREQ.  
9.5 General registers  
9.5.1 Interrupt register (address: 18h)  
The Interrupt register consists of 4 bytes. The bit allocation is given in Table 82.  
When a bit is set in the Interrupt register, it indicates that the hardware condition for an  
interrupt has occurred. When the Interrupt register content is nonzero, the INT output will  
be asserted corresponding to the Interrupt Enable register. On detecting the interrupt, the  
external microprocessor must read the Interrupt register and mask it with the  
corresponding bits in the Interrupt Enable register to determine the source of the interrupt.  
Each endpoint buffer has a dedicated interrupt bit (EPnTX, EPnRX). In addition, various  
bus states can generate an interrupt: resume, suspend, pseudo SOF, SOF and bus reset.  
The DMA controller only has one interrupt bit: the source for a DMA interrupt is shown in  
the DMA Interrupt Reason register (see Table 72 and Table 73).  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
59 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Each interrupt bit can individually be cleared by writing logic 1. The DMA Interrupt bit can  
be cleared by writing logic 1 to the related interrupt source bit in the DMA Interrupt  
Reason register, followed by writing logic 1 to the DMA bit of the Interrupt register.  
Table 82. Interrupt register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
reserved  
EP7TX  
EP7RX  
-
-
-
-
-
-
-
0
0
Bus reset  
Access  
Bit  
-
-
-
-
-
0
0
-
-
-
-
-
-
R/W  
R/W  
23  
22  
21  
20  
19  
18  
17  
16  
Symbol  
Reset  
EP6TX  
EP6RX  
EP5TX  
EP5RX  
EP4TX  
EP4RX  
EP3TX  
EP3RX  
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
Bit  
0
0
0
R/W  
10  
0
0
R/W  
15  
R/W  
14  
R/W  
R/W  
R/W  
11  
R/W  
R/W  
13  
12  
9
8
Symbol  
Reset  
EP2TX  
0
EP2RX  
0
EP1TX  
EP1RX  
EP0TX  
0
EP0RX  
0
reserved  
EP0SETUP  
0
0
-
0
Bus reset  
Access  
Bit  
0
0
0
0
0
0
-
-
0
R/W  
7
R/W  
6
R/W  
R/W  
R/W  
3
R/W  
2
R/W  
5
4
1
0
Symbol  
Reset  
VBUS  
0
DMA  
0
HS_STAT  
RESUME  
SUSP  
0
PSOF  
0
SOF  
0
BRESET  
0
0
0
0
0
1
Bus reset  
Access  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 83. Interrupt register: bit description  
Bit  
31 to 26  
25  
Symbol  
-
Description  
reserved  
EP7TX  
EP7RX  
EP6TX  
EP6RX  
EP5TX  
EP5RX  
EP4TX  
EP4RX  
EP3TX  
EP3RX  
EP2TX  
EP2RX  
EP1TX  
EP1RX  
EP0TX  
logic 1 indicates the endpoint 7 TX buffer as interrupt source  
logic 1 indicates the endpoint 7 RX buffer as interrupt source  
logic 1 indicates the endpoint 6 TX buffer as interrupt source  
logic 1 indicates the endpoint 6 RX buffer as interrupt source  
logic 1 indicates the endpoint 5 TX buffer as interrupt source  
logic 1 indicates the endpoint 5 RX buffer as interrupt source  
logic 1 indicates the endpoint 4 TX buffer as interrupt source  
logic 1 indicates the endpoint 4 RX buffer as interrupt source  
logic 1 indicates the endpoint 3 TX buffer as interrupt source  
logic 1 indicates the endpoint 3 RX buffer as interrupt source  
logic 1 indicates the endpoint 2 TX buffer as interrupt source  
logic 1 indicates the endpoint 2 RX buffer as interrupt source  
logic 1 indicates the endpoint 1 TX buffer as interrupt source  
logic 1 indicates the endpoint 1 RX buffer as interrupt source  
logic 1 indicates the endpoint 0 data TX buffer as interrupt source  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
60 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 83. Interrupt register: bit description …continued  
Bit  
10  
9
Symbol  
EP0RX  
-
Description  
logic 1 indicates the endpoint 0 data RX buffer as interrupt source  
reserved  
8
EP0SETUP logic 1 indicates that a SETUP token was received on endpoint 0  
7
VBUS  
DMA  
logic 1 indicates a transition from LOW to HIGH on VBUS  
6
DMA status: Logic 1 indicates a change in the DMA Interrupt Reason  
register.  
5
HS_STAT  
High-Speed Status: Logic 1 indicates a change from full-speed to  
high-speed mode (HS connection). This bit is not set, when the system  
goes into full-speed suspend.  
4
3
2
RESUME  
SUSP  
Resume Status: Logic 1 indicates that a status change from suspend  
to resume (active) was detected.  
Suspend Status: Logic 1 indicates that a status change from active to  
suspend was detected on the bus.  
PSOF  
Pseudo SOF Interrupt: Logic 1 indicates that a pseudo SOF or µSOF  
was received. Pseudo SOF is an internally generated clock signal  
(full-speed: 1 ms period, high-speed: 125 µs period) that is not  
synchronized to the USB bus SOF or µSOF.  
1
0
SOF  
SOF Interrupt: Logic 1 indicates that a SOF or µSOF was received.  
BRESET  
Bus Reset: Logic 1 indicates that a USB bus reset was detected. When  
bit OTG in the OTG register is set, BRESET will not be set, instead, this  
interrupt bit will report SE0 on DP and DM for 2 ms.  
9.5.2 Chip ID register (address: 70h)  
This read-only register contains the chip identification and hardware version numbers.  
The firmware must check this information to determine functions and features supported.  
The register contains 3 bytes, and the bit allocation is shown in Table 84.  
Table 84. Chip ID register: bit allocation  
Bit  
23  
22  
21  
20  
19  
18  
17  
16  
Symbol  
Reset  
CHIPID[15:8]  
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
Bus reset  
Access  
Bit  
R
R
R
R
R
R
R
9
R
8
15  
14  
13  
12  
11  
10  
Symbol  
Reset  
CHIPID[7:0]  
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
Bus reset  
Access  
Bit  
R
7
R
6
R
5
R
4
R
3
R
2
R
1
R
0
Symbol  
Reset  
VERSION[7:0]  
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
Bus reset  
Access  
R
R
R
R
R
R
R
R
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
61 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 85. Chip ID register: bit description  
Bit  
Symbol  
Description  
23 to 16  
15 to 8  
7 to 0  
CHIPID[15:8]  
CHIPID[7:0]  
VERSION[7:0]  
Chip ID: lower byte (15h)  
Chip ID: upper byte (82h)  
Version: version number (30h)  
9.5.3 Frame Number register (address: 74h)  
This read-only register contains the frame number of the last successfully received  
Start-Of-Frame (SOF). The register contains 2 bytes, and the bit allocation is given in  
Table 86. In case of 8-bit access, the register content is returned lower byte first.  
Table 86. Frame Number register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Reset  
reserved  
MICROSOF[2:0]  
SOFR[10:8]  
-
-
-
-
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
Bit  
-
-
R
5
R
4
R
3
R
2
R
1
R
0
7
6
Symbol  
Reset  
SOFR[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R
R
R
R
R
R
R
R
Table 87. Frame Number register: bit description  
Bit  
Symbol  
Description  
15 to 14  
13 to 11  
10 to 0  
-
reserved  
MICROSOF[2:0]  
SOFR[10:0]  
microframe number  
frame number  
9.5.4 Scratch register (address: 78h)  
This 16-bit register can be used by the firmware to save and restore information. For  
example, the device status before it enters the suspend state. The bit allocation is given in  
Table 88.  
Table 88. Scratch register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Reset  
SFIRH[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
Bit  
R/W  
7
R/W  
6
R/W  
5
R/W  
R/W  
3
R/W  
2
R/W  
1
R/W  
0
4
Symbol  
Reset  
SFIRL[7:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bus reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
62 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 89. Scratch register: bit description  
Bit  
Symbol  
Description  
15 to 8  
7 to 0  
SFIRH[7:0]  
SFIRL[7:0]  
Scratch firmware information register (higher byte)  
Scratch firmware information register (lower byte)  
9.5.5 Unlock Device register (address: 7Ch)  
To protect registers from getting corrupted when the ISP1583 goes into suspend, the write  
operation is disabled if bit PWRON in the Mode register is set to logic 0. In this case, when  
the chip resumes, the Unlock Device command must first be issued to this register before  
attempting to write to the rest of the registers. This is done by writing unlock code (AA37h)  
to this register. The bit allocation of the Unlock Device register is given in Table 90.  
Table 90. Unlock Device register: bit allocation  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Reset  
ULCODE[15:8] = AAh  
not applicable  
Bus reset  
Access  
Bit  
not applicable  
W
W
W
W
W
W
W
W
7
6
5
4
3
2
1
0
Symbol  
Reset  
ULCODE[7:0] = 37h  
not applicable  
Bus reset  
Access  
not applicable  
W
W
W
W
W
W
W
W
Table 91. Unlock Device register: bit description  
Bit  
Symbol  
Description  
15 to 0  
ULCODE[15:0]  
Unlock Code: Writing data AA37h unlocks internal registers and  
FIFOs for writing, following a resume.  
When bit PWRON in the Mode register is logic 1, the chip is powered. In such a case, you  
do not need to issue the Unlock command because the microprocessor is powered and  
therefore, the RW_N/RD_N, DS_N/WR_N and CS_N signals maintain their states.  
When bit PWRON is logic 0, the RW_N/RD_N, DS_N/WR_N and CS_N signals are  
floating because the microprocessor is not powered. To protect the ISP1583 registers  
from being corrupted during suspend, register write is locked when the chip goes into  
suspend. Therefore, you need to issue the Unlock command to unlock the ISP1583  
registers.  
9.5.6 Test Mode register (address: 84h)  
This 1-byte register allows the firmware to set the DP and DM pins to predetermined  
states for testing purposes. The bit allocation is given in Table 92.  
Remark: Only one bit can be set at a time. Either bit FORCEHS or FORCEFS must be set  
to logic 1 at a time. Of the four bits PRBS, KSTATE, JSTATE and SE0_NAK only one bit  
must be set at a time. This must be implemented for the Hi-Speed USB logo compliance  
testing. To exit test mode, power cycle is required.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
63 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 92. Test Mode register: bit allocation  
Bit  
7
FORCEHS  
0
6
5
4
FORCEFS  
0
3
PRBS  
0
2
1
JSTATE  
0
0
Symbol  
Reset  
reserved  
KSTATE  
SE0_NAK  
-
-
-
-
-
-
0
0
0
0
Bus reset  
Access  
unchanged  
R/W  
unchanged  
R/W  
0
0
R/W  
R/W  
R/W  
R/W  
Table 93. Test Mode register: bit description  
Bit  
Symbol  
Description  
7
FORCEHS Force High-Speed: Logic 1 forces the hardware to high-speed mode only  
and disables the chirp detection logic.  
6 to 5  
4
-
reserved  
FORCEFS Force Full-Speed: Logic 1 forces the physical layer to full-speed mode only  
and disables the chirp detection logic.  
3
PRBS  
Predetermined Random Pattern: Logic 1 sets the DP and DM pins to  
toggle in a predetermined random pattern.  
2
1
0
KSTATE  
JSTATE  
K-State: Logic 1 sets the DP and DM pins to the K state.  
J-State: Logic 1 sets the DP and DM pins to the J state.  
SE0_NAK  
SE0 NAK: Logic 1 sets the DP and DM pins to a high-speed quiescent  
state. The device only responds to a valid high-speed IN token with a NAK.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
64 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
10. Limiting values  
Table 94. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VCC(3V3)  
VCC(I/O)  
VI  
Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
-
Max  
Unit  
V
supply voltage (3.3 V)  
input/output supply voltage  
input voltage  
+4.6  
+4.6  
V
[1]  
VCC(3V3) + 0.5  
100  
V
Ilu  
latch-up current  
VI < 0 V or VI > VCC(3V3)  
mA  
Vesd  
electrostatic discharge voltage  
ILI < 1 µA  
pins DP, DM, VBUS, AGND  
and DGND  
4000  
+4000  
V
other pins  
2000  
40  
+2000  
+125  
V
Tstg  
storage temperature  
°C  
[1] The maximum value for 5 V tolerant pins is 6 V.  
11. Recommended operating conditions  
Table 95. Recommended operating conditions  
Symbol Parameter  
Conditions  
Min  
3.0  
1.65  
0
Typ  
Max  
3.6  
Unit  
VCC(3V3) supply voltage (3.3 V)  
-
-
-
-
V
V
V
V
VCC(I/O)  
VI  
input/output supply voltage  
input voltage  
3.6  
VCC(3V3) = 3.3 V  
VCC(I/O)  
3.6  
VIA(I/O)  
input voltage on analog I/O  
pins  
on pins DP and DM  
0
V(pu)OD  
Tamb  
Tj  
open-drain pull-up voltage  
ambient temperature  
junction temperature  
0
-
-
-
VCC(3V3)  
+85  
V
40  
40  
°C  
°C  
+125  
12. Static characteristics  
Table 96. Static characteristics: supply pins  
VCC(3V3) = 3.3 V ± 0.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; typical values at Tamb = +25 °C; unless otherwise specified.  
Symbol  
Supply voltage  
VCC(3V3) supply voltage (3.3 V)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
3.0  
3.3  
47  
3.6  
60  
25  
-
V
ICC(3V3)(oper) operating supply current (3.3 V) high-speed  
full-speed  
-
-
-
mA  
mA  
µA  
19  
ICC(3V3)(susp) suspend mode supply current  
(3.3 V)  
160  
I/O pad supply voltage  
VCC(I/O)  
input/output supply voltage  
1.65  
3.3  
3.6  
V
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
65 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 96. Static characteristics: supply pins …continued  
VCC(3V3) = 3.3 V ± 0.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; typical values at Tamb = +25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
ICC(I/O)  
supply current on pin VCC(I/O)  
-
3
-
mA  
Regulated supply voltage  
VCC(1V8) supply voltage (1.8 V)  
with voltage converter  
1.65  
1.8  
1.95  
V
[1] ICC(I/O) test condition: device set up under the test mode vector and I/O is subjected to external conditions.  
Table 97. Static characteristics: digital pins  
VCC(I/O) = 1.65 V to 3.6 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Input levels  
VIL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
LOW-level input voltage  
HIGH-level input voltage  
-
-
-
0.3VCC(I/O)  
-
V
V
VIH  
0.7VCC(I/O)  
Output levels  
VOL  
LOW-level output voltage  
HIGH-level output voltage  
IOL = rated drive  
IOH = rated drive  
-
-
-
0.15VCC(I/O)  
-
V
V
VOH  
0.8VCC(I/O)  
Leakage current  
ILI input leakage current  
[1]  
5  
-
+5  
µA  
[1] This value is applicable to transistor input only. The value will be different if internal pull-up or pull-down resistors are used.  
Table 98. Static characteristics: OTG detection  
VCC(I/O) = 1.65 V to 3.6 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Charging and discharging resistor  
RDN(VBUS)  
RUP(DP)  
pull-down resistance on pin  
VBUS  
only when bit DISCV is  
set in the OTG register  
680  
300  
800  
550  
1030  
780  
pull-up resistance on pin DP  
only when bit DP is set  
in the OTG register  
Comparator levels  
VBVALID  
VBUS valid detection  
VBUS B-session end detection  
2.0  
0.2  
-
-
4.0  
0.8  
V
V
VSESEND  
Table 99. Static characteristics: analog I/O pins DP and DM  
VCC(3V3) = 3.3 V ± 0.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.[1]  
Symbol  
Input levels  
VDI  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
differential input sensitivity voltage |VI(DP) VI(DM)  
|
0.2  
0.8  
-
-
-
V
V
VCM  
differential common mode voltage includes VDI range  
range  
2.5  
VSE  
VIL  
single-ended receiver threshold  
LOW-level input voltage  
0.8  
-
-
-
-
2.0  
0.8  
-
V
V
V
VIH  
HIGH-level input voltage  
2.0  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
66 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 99. Static characteristics: analog I/O pins DP and DM …continued  
VCC(3V3) = 3.3 V ± 0.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Schmitt-trigger inputs  
Vth(LH)  
Vth(HL)  
Vhys  
positive-going threshold voltage  
1.4  
0.9  
0.4  
-
-
-
1.9  
1.5  
0.7  
V
V
V
negative-going threshold voltage  
hysteresis voltage  
Output levels  
VOL  
LOW-level output voltage  
HIGH-level output voltage  
RL = 1.5 kto 3.6 V  
RL = 15 kto GND  
-
-
-
0.4  
3.6  
V
V
VOH  
2.8  
Leakage current  
ILZ  
OFF-state leakage current  
0 V < VI < 3.3 V  
pin to GND  
10  
-
-
+10  
10  
µA  
Capacitance  
Cin  
input capacitance  
-
pF  
Resistance  
ZDRV  
driver output impedance for driver steady-state drive  
which is not high-speed capable  
40.5  
10  
-
-
49.5  
-
ZINP  
input impedance exclusive of  
pull-up/pull-down (for  
low-/full-speed)  
MΩ  
[1] Pin DP is the USB positive data pin, and pin DM is the USB negative data pin.  
13. Dynamic characteristics  
Table 100. Dynamic characteristics  
VCC(3V3) = 3.3 V ± 0.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Reset  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tW(RESET_N) external RESET_N pulse width  
crystal oscillator running  
500  
-
-
µs  
Crystal oscillator  
fXTAL1  
RS  
frequency on pin XTAL1  
series resistance  
-
-
-
12  
-
-
MHz  
100  
-
CL  
load capacitance  
18  
pF  
External clock input  
tJ  
δ
external clock jitter  
-
-
500  
55  
3
ps  
%
ns  
ns  
V
clock duty cycle  
rise time  
45  
50  
-
tr  
-
tf  
fall time  
-
-
3
VI  
input voltage  
1.65  
1.8  
1.95  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
67 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 101. Dynamic characteristics: analog I/O pins DP and DM  
VCC(3V3) = 3.3 V ± 0.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; CL = 50 pF; RPU = 1.5 kon DP to VTERM; test circuit of  
Figure 38; unless otherwise specified.  
Symbol Parameter  
Driver characteristics  
Full-speed mode  
Conditions  
Min  
Typ  
Max  
Unit  
tFR  
rise time  
CL = 50 pF; 10 % to 90 % of |VOH  
4
-
-
-
-
20  
ns  
ns  
%
V
VOL  
CL = 50 pF; 90 % to 10 % of |VOH  
VOL  
|
tFF  
fall time  
4
20  
|
[1]  
FRFM  
VCRS  
differential rise time/fall time  
matching  
tFR/tFF  
90  
1.3  
111.11  
2.0  
[1][2]  
output signal crossover voltage  
High-speed mode  
tHSR rise time (10 % to 90 %)  
tHSF fall time (10 % to 90 %)  
with captive cable  
with captive cable  
500  
500  
-
-
-
-
ps  
ps  
Data source timing  
Full-speed mode  
[2]  
[2]  
tFEOPT  
tFDEOP  
source SE0 interval of EOP  
see Figure 18  
see Figure 18  
160  
-
-
175  
+5  
ns  
ns  
source jitter for differential  
transition to SE0 transition  
2  
Receiver timing  
Full-speed mode  
[2]  
[2]  
[2]  
[2]  
tJR1  
receiver jitter to next transition  
see Figure 19  
18.5  
9  
-
-
-
-
+18.5  
+9  
ns  
ns  
ns  
ns  
tJR2  
receiver jitter for paired transitions see Figure 19  
tFEOPR  
tFST  
receiver SE0 interval of EOP  
accepted as EOP; see Figure 18  
rejected as EOP; see Figure 20  
82  
-
width of SE0 interval during  
differential transition  
-
14  
[1] Excluding the first transition from the idle state.  
[2] Characterized only, not tested. Limits guaranteed by design.  
T
PERIOD  
+3.3 V  
crossover point  
extended  
crossover point  
differential  
data lines  
0 V  
differential data to  
SE0/EOP skew  
N × T + t  
source EOP width: t  
EOPT  
receiver EOP width: t  
EOPR  
mgr776  
PERIOD  
DEOP  
TPERIOD is the bit duration corresponding to the USB data rate.  
Full-speed timing symbols have a subscript prefix ‘F’, low-speed timing symbols have a prefix ‘L.  
Fig 18. Source differential data-to-EOP transition skew and EOP width  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
68 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
T
PERIOD  
+3.3 V  
differential  
data lines  
0 V  
mgr871  
t
t
t
JR2  
JR  
JR1  
consecutive  
transitions  
N × T  
+ t  
PERIOD  
JR1  
paired  
transitions  
N × T  
+ t  
PERIOD  
JR2  
TPERIOD is the bit duration corresponding to the USB data rate.  
Fig 19. Receiver differential data jitter  
t
FST  
+3.3 V  
V
IH(min)  
differential  
data lines  
0 V  
mgr872  
Fig 20. Receiver SE0 width tolerance  
13.1 Register access timing  
Remark: In the following subsections, RW_N/RD_N, DS_N/WR_N, READY/IORDY and  
ALE/A0 refer to the ISP1583 pin.  
13.1.1 Generic processor mode  
BUS_CONF/DA0 = HIGH: generic processor mode  
13.1.1.1 8051 mode  
MODE0/DA1 = HIGH: 8051 mode; see Table 3  
Table 102. ISP1583 register access timing parameters: separate address and data buses  
VCC(I/O) = 1.65 V to 3.6 V; VCC(3V3) = 3.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Reading  
tRLRH  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RW_N/RD_N LOW pulse width  
> tRLDV  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
tAVRL  
address set-up time before RW_N/RD_N LOW  
address hold time after RW_N/RD_N HIGH  
RW_N/RD_N LOW to data valid delay  
RW_N/RD_N HIGH to data outputs 3-state delay  
RW_N/RD_N HIGH to CS_N HIGH delay  
0
0
-
-
tRHAX  
-
tRLDV  
26  
15  
-
tRHDZ  
0
0
tRHSH  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
69 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 102. ISP1583 register access timing parameters: separate address and data buses …continued  
VCC(I/O) = 1.65 V to 3.6 V; VCC(3V3) = 3.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
tSLRL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CS_N LOW to RW_N/RD_N LOW delay  
2
-
-
ns  
Writing  
tWLWH  
tAVWL  
DS_N/WR_N LOW pulse width  
15  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
address set-up time before DS_N/WR_N LOW  
address hold time after DS_N/WR_N HIGH  
data set-up time before DS_N/WR_N HIGH  
data hold time after DS_N/WR_N HIGH  
DS_N/WR_N HIGH to CS_N HIGH delay  
CS_N LOW to DS_N/WR_N LOW delay  
tWHAX  
tDVWH  
tWHDZ  
tWHSH  
tSLWL  
0
11  
5
0
2
General  
Tcy(RW)  
tRDY1  
read or write cycle time  
50  
-
-
-
-
ns  
ns  
READY/IORDY HIGH to RW_N/RD_N or  
DS_N/WR_N HIGH of the last access  
91  
T
cy(RW)  
t
WHSH  
t
SLWL  
t
RHSH  
CS_N  
t
WHAX  
t
SLRL  
t
RHAX  
[
]
A 7:0  
t
t
RLDV  
RHDZ  
[
]
(read) DATA 15:0  
t
t
AVRL  
RLRH  
RW_N/RD_N  
t
t
WHDZ  
AVWL  
[
]
(write) DATA 15:0  
t
DVWH  
t
WLWH  
DS_N/WR_N  
004aaa301  
Fig 21. ISP1583 register access timing: separate address and data buses (8051 mode)  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
70 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
DS_N/WR_N,  
RW_N/RD_N  
READY/IORDY  
004aaa920  
t
RDY1  
Fig 22. ISP1583 ready signal timing  
13.1.1.2 Freescale mode  
MODE0/DA1 = LOW: Freescale mode; see Table 3  
Table 103. ISP1583 register access timing parameters: separate address and data buses  
VCC(I/O) = 1.65 V to 3.6 V; VCC(3V3) = 3.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Reading or writing  
Conditions  
Min  
Typ  
Max  
Unit  
tWLWH  
tAVWL  
DS_N/WR_N LOW pulse width  
15  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
address set-up time before DS_N/WR_N LOW  
address hold time after DS_N/WR_N HIGH  
data set-up time before DS_N/WR_N HIGH  
data hold time after DS_N/WR_N HIGH  
tWHAX  
tDVWH  
tWHDZ  
tWHSH  
tI1VI2L  
tI2HI1X  
General  
0
11  
5
DS_N/WR_N HIGH to CS_N HIGH delay  
RW_N/RD_N set-up time before DS_N/WR_N LOW  
RW_N/RD_N hold time after DS_N/WR_N HIGH  
0
0
0
Tcy(RW) read or write cycle time  
50  
-
-
-
-
ns  
ns  
tRDY1  
READY/IORDY HIGH to DS_N/WR_N HIGH of the last  
access  
91  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
71 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
T
cy(RW)  
t
t
WHSH  
WHAX  
CS_N  
[
]
AD 7:0  
[
]
(read) DATA 15:0  
t
t
WHDZ  
AVWL  
[
]
(write) DATA 15:0  
t
t
DVWH  
I1VI2L  
t
WLWH  
DS_N/WR_N  
RW_N/RD_N  
t
I2HI1X  
read  
write  
004aaa379  
Fig 23. ISP1583 register access timing: separate address and data buses (Freescale mode)  
DS_N/WR_N  
READY/IORDY  
004aaa380  
t
RDY1  
Fig 24. ISP1583 ready signal timing  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
72 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
RW_N/RD_N or  
DS_N/WR_N  
36 ns (min)  
(1)  
EOT  
DREQ  
t
h1  
004aaa378  
(1) Programmable polarity: shown as active LOW.  
Remark: EOT must be valid for 36 ns (minimum) when pins RW_N/RD_N and DS_N/WR_N are  
active.  
Fig 25. EOT timing in generic processor mode  
13.1.2 Split bus mode  
13.1.2.1 ALE function  
8051 mode  
BUS_CONF/DA0 = LOW: split bus mode  
MODE1 = LOW: ALE function  
MODE0/DA1 = HIGH: 8051 mode; see Table 3  
Table 104. ISP1583 register access timing parameters: multiplexed address/data bus  
VCC(I/O) = 1.65 V to 3.6 V; VCC(3V3) = 3.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Reading  
tRLRH  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
RW_N/RD_N LOW pulse width  
> tRLDV  
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
tRLDV  
RW_N/RD_N LOW to data valid delay  
-
25  
15  
-
tRHDZ  
RW_N/RD_N HIGH to data outputs 3-state delay  
RW_N/RD_N HIGH to CS_N HIGH delay  
ALE/A0 LOW set-up time before RW_N/RD_N LOW  
0
0
0
tRHSH  
tLLRL  
-
Writing  
tWLWH  
tDVWH  
tLLWL  
DS_N/WR_N LOW pulse width  
15  
5
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
data set-up time before DS_N/WR_N HIGH  
ALE/A0 LOW to DS_N/WR_N LOW delay  
data hold time after DS_N/WR_N HIGH  
DS_N/WR_N HIGH to CS_N HIGH delay  
0
tWHDZ  
tWHSH  
General  
Tcy(RW)  
tAVLL  
5
0
read or write cycle time  
80  
0
-
-
-
-
ns  
ns  
address set-up time before ALE/A0 LOW  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
73 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
T
cy(RW)  
t
WHSH  
CS_N  
t
t
RHDZ  
RLDV  
[
]
(read) AD 7:0  
data  
address  
t
t
t
RLRH  
LLRL  
RHSH  
RW_N/RD_N  
t
WHDZ  
[
]
(write) AD 7:0  
data  
DVWH  
address  
t
t
LLWL  
t
WLWH  
DS_N/WR_N  
ALE/A0  
t
AVLL  
004aaa382  
Fig 26. ISP1583 register access timing: multiplexed address/data bus (8051 mode)  
Freescale mode  
BUS_CONF/DA0 = LOW: split bus mode  
MODE1 = LOW: ALE function  
MODE0/DA1 = LOW: Freescale mode; see Table 3  
Table 105. ISP1583 register access timing parameters: multiplexed address/data bus  
VCC(I/O) = 1.65 V to 3.6 V; VCC(3V3) = 3.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Reading or writing  
Conditions  
Min  
Typ  
Max  
Unit  
tWLWH  
tDVWH  
tWHDZ  
tWHSH  
General  
Tcy(RW)  
tI1VLL  
DS_N/WR_N LOW pulse width  
15  
5
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
data set-up time before DS_N/WR_N HIGH  
data hold time after DS_N/WR_N HIGH  
DS_N/WR_N HIGH to CS_N HIGH delay  
5
0
read or write cycle time  
80  
5
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
RW_N/RD_N set-up time before ALE/A0 LOW  
ALE/A0 LOW to DS_N/WR_N LOW delay  
RW_N/RD_N hold time after DS_N/WR_N HIGH  
tLLI2L  
5
tI2HI1X  
5
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
74 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
T
cy(RW)  
t
WHSH  
CS_N  
[
]
]
data  
data  
(read) AD 7:0  
address  
t
WHDZ  
address  
[
(write) AD 7:0  
t
t
I1VLL  
DVWH  
t
LLI2L  
t
WLWH  
DS_N/WR_N  
RW_N/RD_N  
t
I2HI1X  
ALE/A0  
004aaa381  
Fig 27. ISP1583 register access timing: multiplexed address/data bus (Freescale mode)  
13.1.2.2 A0 function  
8051 mode  
BUS_CONF/DA0 = LOW: split bus mode  
MODE1 = HIGH: A0 function  
MODE0/DA1 = HIGH: 8051 mode; see Table 3  
Table 106. ISP1583 register access timing parameters: multiplexed address/data bus  
VCC(I/O) = 1.65 V to 3.6 V; VCC(3V3) = 3.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Reading  
Conditions  
Min  
Typ  
Max  
Unit  
tRLDV  
RW_N/RD_N LOW to data valid delay  
-
-
-
-
-
-
26  
15  
-
ns  
ns  
ns  
ns  
ns  
tRHDZ  
tRHSH  
tRLRH  
tWHRH  
Writing  
tA0WL  
tAVWH  
tDVWH  
tWHDZ  
tWHSH  
tWLWH  
RW_N/RD_N HIGH to data outputs 3-state delay  
RW_N/RD_N HIGH to CS_N HIGH delay  
RW_N/RD_N LOW pulse width  
0
0
> tRLDV  
40  
-
DS_N/WR_N HIGH to RW_N/RD_N HIGH delay  
-
ALE/A0 set-up time before DS_N/WR_N LOW  
address set-up time before DS_N/WR_N HIGH  
data set-up time before DS_N/WR_N HIGH  
data hold time after DS_N/WR_N HIGH  
DS_N/WR_N HIGH to CS_N HIGH delay  
DS_N/WR_N LOW pulse width  
0
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
5
5
5
0
15  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
75 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 106. ISP1583 register access timing parameters: multiplexed address/data bus …continued  
VCC(I/O) = 1.65 V to 3.6 V; VCC(3V3) = 3.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tWHWH  
DS_N/WR_N HIGH (address) to DS_N/WR_N  
40  
-
-
ns  
HIGH (data) delay  
General  
Tcy(RW)  
read or write cycle time  
50  
-
-
ns  
t
A0WL  
ALE/A0  
CS_N  
T
cy(RW)  
t
WHSH  
t
t
RHDZ  
RLDV  
[
]
data  
(read) AD 7:0  
address  
t
t
RLRH  
RHSH  
RW_N/RD_N  
DS_N/WR_N  
t
t
AVWH  
WHRH  
t
WHDZ  
[
]
(write) AD 7:0  
data  
address  
t
DVWH  
t
WLWH  
DS_N/WR_N  
t
WHWH  
004aaa383  
RW_N/RD_N  
Fig 28. ISP1583 register access timing: multiplexed address/data bus (A0 function and 8051 mode)  
Freescale mode  
BUS_CONF/DA0 = LOW: split bus mode  
MODE1 = HIGH: A0 function  
MODE0/DA1 = LOW: Freescale mode; see Table 3  
Table 107. ISP1583 register access timing parameters: multiplexed address/data bus  
VCC(I/O) = 1.65 V to 3.6 V; VCC(3V3) = 3.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Reading  
Conditions  
Min  
Typ  
Max  
Unit  
tRLDV  
tRHDZ  
DS_N/WR_N LOW to data valid delay  
DS_N/WR_N HIGH to data outputs 3-state delay  
-
-
-
26  
15  
ns  
ns  
0
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
76 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 107. ISP1583 register access timing parameters: multiplexed address/data bus …continued  
VCC(I/O) = 1.65 V to 3.6 V; VCC(3V3) = 3.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
0
Typ  
Max  
Unit  
ns  
tRHSH  
tRLRH  
tWHRH  
DS_N/WR_N HIGH to CS_N HIGH delay  
-
-
-
-
-
-
DS_N/WR_N LOW pulse width  
> tRLDV  
40  
ns  
DS_N/WR_N HIGH (address) to DS_N/WR_N  
HIGH (data read) delay  
ns  
Writing  
tA0WL  
ALE/A0 set-up time before DS_N/WR_N LOW  
address set-up time before DS_N/WR_N HIGH  
data set-up time before DS_N/WR_N HIGH  
data hold time after DS_N/WR_N HIGH  
DS_N/WR_N HIGH to CS_N HIGH delay  
DS_N/WR_N LOW pulse width  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVWH  
tDVWH  
tWHDZ  
tWHSH  
tWLWH  
tWHWH  
5
5
5
0
15  
40  
DS_N/WR_N HIGH (address) to DS_N/WR_N  
HIGH (data written) delay  
General  
Tcy(RW) read or write cycle time  
50  
5
-
-
-
-
ns  
ns  
tI2HI1X  
RW_N/RD_N hold time after DS_N/WR_N HIGH  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
77 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
t
A0WL  
ALE/A0  
CS_N  
T
cy(RW)  
t
WHSH  
t
t
RHDZ  
RLDV  
data  
address  
[
]
(read) AD 7:0  
t
t
RLRH  
RHSH  
RW_N/RD_N  
DS_N/WR_N  
t
t
AVWH  
WHRH  
t
WHDZ  
[
]
(write) AD 7:0  
data  
address  
t
DVWH  
t
WLWH  
DS_N/WR_N  
RW_N/RD_N  
t
I2HI1X  
t
WHWH  
004aaa384  
Fig 29. ISP1583 register access timing: multiplexed address/data bus (A0 function and Freescale mode)  
(1)  
DIOR, DIOW  
36 ns (min)  
(1)  
EOT  
DREQ  
t
h1  
004aaa926  
(1) Programmable polarity: shown as active LOW.  
Remark: EOT must be valid for 36 ns (minimum) when DIOR or DIOW is active.  
Fig 30. EOT timing in split bus mode  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
78 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
13.2 DMA timing  
13.2.1 PIO mode  
Remark: In the following subsections, RW_N/RD_N, DS_N/WR_N, READY/IORDY and  
ALE/A0 refer to the ISP1583 pin.  
Table 108. PIO mode timing parameters  
VCC(I/O) = 1.65 V to 3.6 V; VCC(3V3) = 3.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Mode 0 Mode 1 Mode 2 Mode 3 Mode 4 Unit  
[1]  
Tcy1(min) read or write cycle time  
600  
70  
383  
50  
240  
30  
180  
30  
120  
25  
ns  
ns  
tsu1(min) address to DIOR or DIOW on set-up  
time  
[1]  
[1]  
tw1(min)  
tw2(min)  
DIOR or DIOW pulse width  
DIOR/DIOW recovery time  
165  
-
125  
-
100  
-
80  
70  
30  
10  
20  
5
70  
25  
20  
10  
20  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tsu2(min) data set-up time before DIOW off  
th2(min) data hold time after DIOW off  
tsu3(min) data set-up time before DIOR on  
th3(min) data hold time after DIOR off  
td2(max) data to 3-state delay after DIOR off  
60  
30  
50  
5
45  
20  
35  
5
30  
15  
20  
5
[2]  
30  
20  
30  
15  
30  
10  
30  
10  
30  
10  
th1(min)  
address hold time after DIOR or DIOW  
off  
[3]  
[3]  
tsu4(min) READY/IORDY after DIOR or DIOW on  
set-up time  
35  
35  
35  
35  
35  
ns  
ns  
ns  
tsu5(min) read data to READY/IORDY HIGH  
set-up time  
0
0
0
0
0
tw3(max) READY/IORDY LOW pulse width  
1250  
1250  
1250  
1250  
1250  
[1] Tcy1 is the total cycle time, consisting of command active time tw1 and command recovery (inactive) time tw2, that is, Tcy1 = tw1 + tw2  
Minimum timing requirements for Tcy1, tw1 and tw2 must all be met. As Tcy1(min) is greater than the sum of tw1(min) and tw2(min), a host  
.
implementation must lengthen tw1 and/or tw2 to ensure that Tcy1 is equal to or greater than the value reported in the IDENTIFY DEVICE  
data. A device implementation shall support any legal host implementation.  
[2] td2 specifies the time after DIOR is negated, when the data bus is no longer driven by the device (3-state).  
[3] If READY/IORDY is LOW at tsu4, the host waits until READY/IORDY is made HIGH before the PIO cycle is completed. In that case, tsu5  
must be met for reading (tsu3 does not apply). When READY/IORDY is HIGH at tsu4, tsu3 must be met for reading (tsu5 does not apply).  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
79 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
T
cy1  
(1)  
device  
address  
valid  
t
t
h1  
su1  
(4)  
DIOR, DIOW  
t
t
w2  
w1  
(2)  
[
]
(write) DATA 7:0  
t
t
su2  
h2  
(2)  
[
]
(read) DATA 7:0  
t
t
su3  
h3(min)  
t
d2  
(3a)  
(3b)  
(3c)  
HIGH  
READY/IORDY  
READY/IORDY  
READY/IORDY  
t
su4  
t
su5  
004aaa921  
t
t
w3  
su4  
(1) The device address consists of signals CS1_N, CS0_N, DA2, DA1 and DA0.  
(2) The data bus width depends on the PIO access command used. The Task File register access uses 8 bits (DATA[7:0]), except  
for Task File register 1F0 that uses 16 bits (DATA[15:0]). DMA commands 04h and 05h also use a 16-bit data bus.  
(3) The device can negate READY/IORDY to extend the PIO cycle with wait states. The host determines whether or not to extend  
the current cycle after tsu4, following the assertion of DIOR or DIOW. The following three cases are distinguished:  
a) Device keeps READY/IORDY released (high-impedance): no wait state is generated.  
b) Device negates READY/IORDY during tsu4, but re-asserts READY/IORDY before tsu4 expires: no wait state is generated.  
c) Device negates READY/IORDY during tsu4 and keeps READY/IORDY negated for at least 5 ns after tsu4 expires: a wait state  
is generated. The cycle is completed as soon as READY/IORDY is re-asserted. For extended read cycles (DIOR asserted), the  
read data on lines DATAn must be valid at td1 before READY/IORDY is asserted.  
(4) DIOR and DIOW have a programmable polarity: shown here as active LOW signals.  
Fig 31. PIO mode timing  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
80 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
13.2.2 GDMA slave mode  
Bits MODE[1:0] = 00: data strobes DIOR (read) and DIOW (write); see Figure 32  
Bits MODE[1:0] = 01: data strobes DIOR (read) and DACK (write); see Figure 33  
Bits MODE[1:0] = 10: data strobes DACK (read and write); see Figure 34  
Table 109. GDMA slave mode timing parameters  
VCC(I/O) = 1.65 V to 3.6 V; VCC(3V3) = 3.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
75  
10  
33.33  
0
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Tcy1  
tsu1  
td1  
read or write cycle time  
-
-
-
-
-
-
-
-
-
-
-
-
-
DREQ set-up time before first DACK on  
DREQ on delay after last strobe off  
DREQ hold time after last strobe on  
DIOR or DIOW pulse width  
-
-
th1  
53  
600  
-
tw1  
tw2  
td2  
39  
36  
-
DIOR or DIOW recovery time  
read data valid delay after strobe on  
read data hold time after strobe off  
write data hold time after strobe off  
write data set-up time before strobe off  
DACK set-up time before DIOR/DIOW assertion  
DACK deassertion after DIOR/DIOW deassertion  
20  
5
th2  
-
th3  
1
-
tsu2  
tsu3  
ta1  
10  
0
-
-
0
30  
(2)  
DREQ  
t
su1  
t
t
T
w1  
h1  
cy1  
(1)  
(1)  
DACK  
t
d1  
t
su3  
DIOR or DIOW  
t
w2  
t
t
h2  
d2  
t
a1  
[
]
]
(read) DATA 15:0  
t
t
h3  
su2  
[
(write) DATA 15:0  
mgt500  
DREQ is continuously asserted, until the last transfer is done or the FIFO is full.  
Data strobes: DIOR (read), DIOW (write).  
(1) Programmable polarity: shown as active LOW.  
(2) Programmable polarity: shown as active HIGH.  
Fig 32. GDMA slave mode timing: DIOR (master) and DIOW (slave)  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
81 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
(2)  
DREQ  
t
su3  
t
t
t
h1  
T
d1  
w1  
cy1  
t
su1  
(1)  
(1)  
DACK  
t
t
d2  
a1  
DIOR or DIOW  
t
h2  
[
]
]
(read) DATA 15:0  
t
t
h3  
su2  
[
(write) DATA 15:0  
mgt502  
DREQ is asserted for every transfer.  
Data strobes: DIOR (read), DACK (write).  
(1) Programmable polarity: shown as active LOW.  
(2) Programmable polarity: shown as active HIGH.  
Fig 33. GDMA slave mode timing: DIOR (master) or DACK (slave)  
(2)  
DREQ  
t
t
T
cy1  
t
su1  
w1  
h1  
(1)  
(1)  
DACK  
t
d1  
t
t
w2  
d2  
HIGH  
DIOR or DIOW  
t
h2  
[
]
(read) DATA 15:0  
t
t
su2  
h3  
[
]
(write) DATA 15:0  
mgt501  
DREQ is continuously asserted, until the last transfer is done or the FIFO is full.  
Data strobe: DACK (read/write).  
(1) Programmable polarity: shown as active LOW.  
(2) Programmable polarity: shown as active HIGH.  
Fig 34. GDMA slave mode timing: DACK (master and slave)  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
82 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
13.2.3 MDMA mode  
Table 110. MDMA mode timing parameters  
VCC(I/O) = 1.65 V to 3.6 V; VCC(3V3) = 3.3 V; VGND = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Tcy1(min)  
tw1(min)  
td1(max)  
th3(min)  
tsu2(min)  
th2(min)  
tsu1(min)  
th1(min)  
tw2(min)  
Parameter  
Conditions  
Mode 0  
480  
215  
150  
5
Mode 1  
150  
80  
60  
5
Mode 2  
120  
70  
50  
5
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[1]  
[1]  
read/write cycle time  
DIOR or DIOW pulse width  
data valid delay after DIOR on  
data hold time after DIOR off  
data set-up time before DIOR or DIOW off  
data hold time after DIOW off  
DACK set-up time before DIOR or DIOW on  
DACK hold time after DIOR or DIOW off  
DIOR recovery time  
100  
20  
30  
15  
0
20  
10  
0
0
20  
5
5
[1]  
[1]  
50  
50  
50  
40  
40  
25  
25  
25  
35  
35  
25  
DIOW recovery time  
215  
120  
40  
td2(max)  
DIOR on to DREQ off delay  
DIOW on to DREQ off delay  
DACK off to data lines 3-state delay  
td3(max)  
20  
[1] Tcy1 is the total cycle time, consisting of command active time tw1 and command recovery (inactive) time tw2, that is, Tcy1 = tw1 + tw2  
Minimum timing requirements for Tcy1, tw1 and tw2 must all be met. As Tcy1(min) is greater than the sum of tw1(min) and tw2(min), a host  
.
implementation must lengthen tw1 and/or tw2 to ensure that Tcy1 is equal to or greater than the value reported in the IDENTIFY DEVICE  
data. A device implementation shall support any legal host implementation.  
(2)  
DREQ  
T
cy1  
(1)  
(1)  
DACK  
t
t
t
t
d2  
su1  
t
h1  
w2  
w1  
DIOR or DIOW  
t
d3  
t
d1  
[
]
]
(write) DATA 15:0  
t
t
su2  
t
h3  
h2  
[
(read) DATA 15:0  
mgt506  
t
su2  
(1) Programmable polarity: shown as active LOW.  
(2) Programmable polarity: shown as active HIGH.  
Fig 35. MDMA master mode timing  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
83 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
14. Application information  
ISP1583  
address  
8
AD[7:0]  
ALE/A0  
data 16  
DATA[15:0]  
CPU  
read strobe  
write strobe  
chip select  
RW_N/RD_N  
DS_N/WR_N  
CS_N  
004aaa273  
Fig 36. Typical interface connections for generic processor mode  
[
]
DATA 15:0  
DREQ  
DACK  
DIOW  
DIOR  
DMA  
ISP1583  
RW_N/RD_N  
AD[7:0]  
8
ALE/A0  
INT  
DS_N/WR_N  
address  
latch  
enable  
read  
strobe  
write  
strobe  
address  
or data  
interrupt  
P0.7/AD7  
to  
ALE  
INTn_N  
RD_N  
WR_N  
8051  
P0.0/AD0  
MICROCONTROLLER  
004aaa274  
Fig 37. Typical interface connections for split bus mode (slave mode)  
15. Test information  
The dynamic characteristics of analog I/O ports DP and DM are determined using the  
circuit shown in Figure 38.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
84 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
test point  
DUT  
C
50 pF  
L
15 kΩ  
mgt495  
In full-speed mode, an internal 1.5 kpull-up resistor is connected to pin DP.  
Fig 38. Load impedance for the DP and DM pins (full-speed mode)  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
85 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
16. Package outline  
HVQFN64: plastic thermal enhanced very thin quad flat package; no leads; 64 terminals;  
body 9 x 9 x 0.85 mm  
SOT804-1  
B
D
D
1
A
terminal 1  
index area  
A
4
A
E
E
1
c
A
1
detail X  
C
e
1
y
y
v
M
C
C
A
B
C
1
b
e
1/2 e  
w M  
17  
32  
L
33  
16  
e
e
E
2
h
1/2 e  
1
48  
terminal 1  
index area  
49  
64  
X
D
h
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
A
b
c
D
D
D
E
E
E
e
e
e
L
v
w
y
y
1
1
2
1
4
1
h
1
h
max.  
0.05 0.80 0.30  
0.00 0.65 0.18  
9.05 8.95 4.85 9.05 8.95 4.85  
8.95 8.55 4.55 8.95 8.55 4.55  
0.5  
0.3  
mm  
1
0.2  
0.5  
7.5  
7.5  
0.1  
0.05 0.05  
0.1  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
JEITA  
03-03-26  
SOT804-1  
- - -  
MO-220  
- - -  
Fig 39. Package outline SOT804-1 (HVQFN64)  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
86 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
TFBGA64: plastic thin fine-pitch ball grid array package; 64 balls; body 6 x 6 x 0.8 mm  
SOT543-1  
D
A
B
ball A1  
index area  
A
2
A
E
A
1
detail X  
C
e
1
y
y
e
1/2 e  
v M  
b
C
C
A
B
C
1
w M  
K
J
H
G
F
e
e
2
E
D
C
B
A
1/2 e  
ball A1  
index area  
1
2
3
4
5
6
7
8
9 10  
X
0
2.5  
scale  
5 mm  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
A
b
e
y
D
E
e
e
v
w
y
1
2
1
2
1
max.  
0.25 0.85 0.35  
0.15 0.75 0.25  
6.1  
5.9  
6.1  
5.9  
mm  
1.1  
0.08  
0.5  
4.5  
4.5  
0.15 0.05  
0.1  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
00-11-22  
02-04-09  
SOT543-1  
- - -  
MO-195  
- - -  
Fig 40. Package outline SOT543-1 (TFBGA64)  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
87 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
TFBGA64: plastic thin fine-pitch ball grid array package; 64 balls; body 4 x 4 x 0.8 mm  
SOT969-1  
D
B
A
E
ball A1  
index area  
A
2
A
A
1
detail X  
e
1
1/2 e  
C
M
M
v
C
C
A
B
b
e
y
y
w
C
1
H
G
F
e
E
D
C
B
A
e
2
1/2 e  
ball A1  
index area  
1
2 3 4 5 6 7 8  
X
0
2.5  
scale  
5 mm  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
1
A
2
b
D
E
e
e
e
2
v
w
y
y
1
1
max  
0.25 0.85  
0.15 0.75  
0.3  
0.2  
4.1  
3.9  
4.1  
3.9  
mm  
1.1  
0.4  
2.8  
2.8  
0.15 0.05 0.08  
0.1  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
- - -  
JEDEC  
JEITA  
06-09-22  
06-09-27  
SOT969-1  
- - -  
- - -  
Fig 41. Package outline SOT969-1 (TFBGA64)  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
88 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
17. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
17.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
17.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
17.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
89 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
17.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 42) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 111 and 112  
Table 111. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 112. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 42.  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
90 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 42. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
18. Abbreviations  
Table 113. Abbreviations  
Acronym  
ACK  
Description  
Acknowledgement  
ACPI  
ASIC  
ATA  
Advanced Configuration and Power Interface  
Application-Specific Integrated Circuit  
Advanced Technology Attachment  
Advanced Technology Attachment Peripheral Interface  
Cyclic Redundancy Code  
Direct Memory Access  
ATAPI  
CRC  
DMA  
EMI  
ElectroMagnetic Interference  
Equivalent Series Resistance  
Full-Speed  
ESR  
FS  
GDMA  
HS  
Generic DMA  
High-Speed  
IDE  
Integrated Development Environment  
Multi-word DMA  
MDMA  
MMU  
MO  
Memory Management Unit  
Magneto-Optical  
NAK  
NRZI  
NYET  
Not Acknowledged  
Non-Return-to-Zero Inverted  
Not Yet  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
91 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 113. Abbreviations …continued  
Acronym  
Description  
OTG  
PCB  
PHY  
PID  
On-The-Go  
Printed-Circuit Board  
Physical  
Packet IDentifier  
PIE  
Parallel Interface Engine  
Parallel Input/Output  
Phase-Locked Loop  
Power-On Reset  
PIO  
PLL  
POR  
SE0  
SIE  
Single-Ended Zero  
Serial Interface Engine  
Session Request Protocol  
Transistor-Transistor Logic  
Universal Serial Bus  
SRP  
TTL  
USB  
19. References  
[1] Universal Serial Bus Specification Rev. 2.0  
[2] On-The-Go Supplement to the USB Specification Rev. 1.3  
[3] Using ISP1582/3 in a composite device application with alternate settings  
(AN10071)  
[4] AT Attachment with Packet Interface Extension (ATA/ATAPI-4), ANSI INCITS  
317-1998 (R2003)  
[5] ISP1582/83 and ISP1761 clearing an IN buffer (AN10045)  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
92 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
20. Revision history  
Table 114. Revision history  
Document ID  
ISP1583_7  
Release date  
Data sheet status  
Change notice  
Supersedes  
20080922  
Product data sheet  
-
ISP1583_6  
Modifications:  
Added ISP1583ET2.  
Added Section 5 “Marking”.  
Added Table 4 “Endpoint access and programmability”.  
Figure 16 “Bus-powered mode”: updated the voltage range for VCC(I/O)  
Removed Section 7.9 “Clear buffer”.  
.
Table 24 “Mode register: bit allocation”: updated the bus reset value for bits CLKAON and PWRON.  
Table 34 “Endpoint Index register: bit allocation”: updated the reset and bus reset values for  
bit EP0SETUP.  
Table 38 “Control Function register: bit description”: updated description for bit CLBUF.  
Section 9.3.6 “Endpoint MaxPacketSize register (address: 04h)”: updated the first paragraph.  
Table 48 “Endpoint Type register: bit description”: added a remark to the DBLBUF bit description.  
Figure 32 “GDMA slave mode timing: DIOR (master) and DIOW (slave)”: updated.  
Table 53 “DMA commands”: added a remark to GDMA stop.  
Section 19 “References”: updated Ref. 3.  
ISP1583_6  
ISP1583_5  
20070820  
20070209  
20050104  
Product data sheet  
Product data sheet  
Product data  
-
ISP1583_5  
ISP1583-04  
ISP1583-03  
-
ISP1583-04  
200412038  
(9397 750 14335)  
ISP1583-03  
(9397 750 13461)  
20040712  
20040503  
20040225  
Product data  
Product data  
Preliminary data  
-
-
-
ISP1583-02  
ISP1583-01  
-
ISP1583-02  
(9397 750 12978)  
ISP1583-01  
(9397 750 11497)  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
93 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
21. Legal information  
21.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
to result in personal injury, death or severe property or environmental  
21.2 Definitions  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
21.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
21.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
SoftConnect — is a trademark of NXP B.V.  
22. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
94 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
23. Tables  
Table 1. Ordering information . . . . . . . . . . . . . . . . . . . . .3  
Table 2. Marking codes . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Table 3. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Table 4. Endpoint access and programmability . . . . . . .13  
Table 5. Bus configuration modes . . . . . . . . . . . . . . . . .17  
Table 6. ISP1583 pin status . . . . . . . . . . . . . . . . . . . . . .17  
Table 7. ISP1583 output pin status . . . . . . . . . . . . . . . .17  
Table 8. Power modes . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Table 9. Operation truth table for SoftConnect . . . . . . .25  
Table 10. Operation truth table for clock off  
Table 43. Buffer Status register: bit allocation . . . . . . . . 43  
Table 44. Buffer Status register: bit description . . . . . . . 43  
Table 45. Endpoint MaxPacketSize register:  
bit allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 46. Endpoint MaxPacketSize register:  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 47. Endpoint Type register: bit allocation . . . . . . . 44  
Table 48. Endpoint Type register: bit description . . . . . . 45  
Table 49. Control bits for Generic DMA transfers . . . . . . 46  
Table 50. Control bits for IDE-specified DMA transfers . . 47  
Table 51. DMA Command register: bit allocation . . . . . . 47  
Table 52. DMA Command register: bit description . . . . . 48  
Table 53. DMA commands . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 54. DMA Transfer Counter register: bit allocation . 50  
Table 55. DMA Transfer Counter register: bit description 50  
Table 56. DMA Configuration register: bit allocation . . . . 50  
Table 57. DMA Configuration register: bit description . . . 51  
Table 58. DMA Hardware register: bit allocation . . . . . . . 52  
Table 59. DMA Hardware register: bit description . . . . . 52  
Table 60. Task File register functions . . . . . . . . . . . . . . . 53  
Table 61. ATAPI peripheral register addressing . . . . . . . 53  
Table 62. Task File 1F0 register (address: 40h):  
during suspend . . . . . . . . . . . . . . . . . . . . . . . .25  
Table 11. Operation truth table for back voltage  
compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Table 12. Operation truth table for OTG . . . . . . . . . . . . .25  
Table 13. Operation truth table for SoftConnect . . . . . . .26  
Table 14. Operation truth table for clock off  
during suspend . . . . . . . . . . . . . . . . . . . . . . . .26  
Table 15. Operation truth table for back voltage  
compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Table 16. Operation truth table for OTG . . . . . . . . . . . . .27  
Table 17. Operation truth table for SoftConnect . . . . . . .27  
Table 18. Operation truth table for clock off during  
suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Table 19. Operation truth table for back voltage  
bit allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 63. Task File 1F1 register (address: 48h):  
compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
bit allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 64. Task File 1F2 register (address: 49h):  
Table 20. Operation truth table for OTG . . . . . . . . . . . . .28  
Table 21. Register overview . . . . . . . . . . . . . . . . . . . . . .29  
Table 22. Address register: bit allocation . . . . . . . . . . . .31  
Table 23. Address register: bit description . . . . . . . . . . .31  
Table 24. Mode register: bit allocation . . . . . . . . . . . . . . .32  
Table 25. Mode register: bit description . . . . . . . . . . . . .32  
Table 26. Status of the chip . . . . . . . . . . . . . . . . . . . . . . .33  
Table 27. Interrupt Configuration register: bit allocation .34  
Table 28. Interrupt Configuration register: bit description 34  
Table 29. Debug mode settings . . . . . . . . . . . . . . . . . . . .34  
Table 30. OTG register: bit allocation . . . . . . . . . . . . . . .34  
Table 31. OTG register: bit description . . . . . . . . . . . . . .35  
Table 32. Interrupt Enable register: bit allocation . . . . . .37  
Table 33. Interrupt Enable register: bit description . . . . .37  
Table 34. Endpoint Index register: bit allocation . . . . . . .38  
Table 35. Endpoint Index register: bit description . . . . . .39  
Table 36. Addressing of endpoint buffers . . . . . . . . . . . .39  
Table 37. Control Function register: bit allocation . . . . . .39  
Table 38. Control Function register: bit description . . . . .40  
Table 39. Data Port register: bit allocation . . . . . . . . . . .41  
Table 40. Data Port register: bit description . . . . . . . . . .41  
Table 41. Buffer Length register: bit allocation . . . . . . . .42  
Table 42. Buffer Length register: bit description . . . . . . .42  
bit allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 65. Task File 1F3 register (address: 4Ah):  
bit allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 66. Task File 1F4 register (address: 4Bh):  
bit allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 67. Task File 1F5 register (address: 4Ch):  
bit allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 68. Task File 1F6 register (address: 4Dh):  
bit allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 69. Task File 1F7 register (address: 44h):  
bit allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 70. Task File 3F6 register (address: 4Eh):  
bit allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 71. Task File 3F7 register (address: 4Fh):  
bit allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 72. DMA Interrupt Reason register: bit allocation . 56  
Table 73. DMA Interrupt Reason register: bit description 56  
Table 74. Internal EOT-functional relation with  
DMA_XFER_OK bit . . . . . . . . . . . . . . . . . . . . . 57  
Table 75. DMA Interrupt Enable register: bit allocation . . 57  
Table 76. DMA Endpoint register: bit allocation . . . . . . . 58  
Table 77. DMA Endpoint register: bit description . . . . . . 58  
continued >>  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
95 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
Table 78. DMA Strobe Timing register: bit allocation . . .58  
Table 79. DMA Strobe Timing register: bit description . .58  
Table 80. DMA Burst Counter register: bit allocation . . .59  
Table 81. DMA Burst Counter register: bit description . .59  
Table 82. Interrupt register: bit allocation . . . . . . . . . . . .60  
Table 83. Interrupt register: bit description . . . . . . . . . . .60  
Table 84. Chip ID register: bit allocation . . . . . . . . . . . . .61  
Table 85. Chip ID register: bit description . . . . . . . . . . . .62  
Table 86. Frame Number register: bit allocation . . . . . . .62  
Table 87. Frame Number register: bit description . . . . . .62  
Table 88. Scratch register: bit allocation . . . . . . . . . . . . .62  
Table 89. Scratch register: bit description . . . . . . . . . . . .63  
Table 90. Unlock Device register: bit allocation . . . . . . . .63  
Table 91. Unlock Device register: bit description . . . . . . .63  
Table 92. Test Mode register: bit allocation . . . . . . . . . . .64  
Table 93. Test Mode register: bit description . . . . . . . . . .64  
Table 94. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . .65  
Table 95. Recommended operating conditions . . . . . . . .65  
Table 96. Static characteristics: supply pins . . . . . . . . . .65  
Table 97. Static characteristics: digital pins . . . . . . . . . . .66  
Table 98. Static characteristics: OTG detection . . . . . . .66  
Table 99. Static characteristics: analog I/O pins  
DP and DM . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Table 100.Dynamic characteristics . . . . . . . . . . . . . . . . . .67  
Table 101.Dynamic characteristics: analog I/O pins  
DP and DM . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Table 102.ISP1583 register access timing parameters:  
separate address and data buses . . . . . . . . . .69  
Table 103.ISP1583 register access timing parameters:  
separate address and data buses . . . . . . . . . .71  
Table 104.ISP1583 register access timing parameters:  
multiplexed address/data bus . . . . . . . . . . . . .73  
Table 105.ISP1583 register access timing parameters:  
multiplexed address/data bus . . . . . . . . . . . . .74  
Table 106.ISP1583 register access timing parameters:  
multiplexed address/data bus . . . . . . . . . . . . .75  
Table 107.ISP1583 register access timing parameters:  
multiplexed address/data bus . . . . . . . . . . . . .76  
Table 108.PIO mode timing parameters . . . . . . . . . . . . . .79  
Table 109.GDMA slave mode timing parameters . . . . . . .81  
Table 110.MDMA mode timing parameters . . . . . . . . . . .83  
Table 111.SnPb eutectic process (from J-STD-020C) . . .90  
Table 112.Lead-free process (from J-STD-020C) . . . . . .90  
Table 113.Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Table 114.Revision history . . . . . . . . . . . . . . . . . . . . . . . .93  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
96 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
24. Figures  
Fig 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Fig 2. Pin configuration ISP1583BS (top view) . . . . . . . .5  
Fig 3. Pin configuration ISP1583ET and ISP1583ET2  
(top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Fig 4. Pin configuration ISP1583ET1 (top view) . . . . . . .6  
Fig 5. Interrupt logic. . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Fig 6. Behavior of bit GLINTENA. . . . . . . . . . . . . . . . . .20  
Fig 7. Resistor and electrolytic or tantalum capacitor  
needed for VBUS sensing . . . . . . . . . . . . . . . . . . .21  
Fig 8. Oscilloscope reading: no resistor and  
(full-speed mode) . . . . . . . . . . . . . . . . . . . . . . . . 85  
Fig 39. Package outline SOT804-1 (HVQFN64) . . . . . . . 86  
Fig 40. Package outline SOT543-1 (TFBGA64) . . . . . . . 87  
Fig 41. Package outline SOT969-1 (TFBGA64) . . . . . . . 88  
Fig 42. Temperature profiles for large and small  
components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
capacitor in the network. . . . . . . . . . . . . . . . . . . .21  
Fig 9. Oscilloscope reading: with resistor and  
capacitor in the network. . . . . . . . . . . . . . . . . . . .21  
Fig 10. POR timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Fig 11. Clock with respect to the external POR . . . . . . . .22  
Fig 12. ISP1583 with a 3.3 V supply . . . . . . . . . . . . . . . .23  
Fig 13. Power-sharing mode . . . . . . . . . . . . . . . . . . . . . .24  
Fig 14. Interrupt pin status during power off in  
power-sharing mode . . . . . . . . . . . . . . . . . . . . . .24  
Fig 15. Self-powered mode . . . . . . . . . . . . . . . . . . . . . . .26  
Fig 16. Bus-powered mode . . . . . . . . . . . . . . . . . . . . . . .27  
Fig 17. Programmable strobe timing . . . . . . . . . . . . . . . .59  
Fig 18. Source differential data-to-EOP transition  
skew and EOP width . . . . . . . . . . . . . . . . . . . . . .68  
Fig 19. Receiver differential data jitter . . . . . . . . . . . . . . .69  
Fig 20. Receiver SE0 width tolerance . . . . . . . . . . . . . . .69  
Fig 21. ISP1583 register access timing: separate  
address and data buses (8051 mode) . . . . . . . . .70  
Fig 22. ISP1583 ready signal timing . . . . . . . . . . . . . . . .71  
Fig 23. ISP1583 register access timing: separate  
address and data buses (Freescale mode) . . . . .72  
Fig 24. ISP1583 ready signal timing . . . . . . . . . . . . . . . .72  
Fig 25. EOT timing in generic processor mode . . . . . . . .73  
Fig 26. ISP1583 register access timing: multiplexed  
address/data bus (8051 mode) . . . . . . . . . . . . . .74  
Fig 27. ISP1583 register access timing: multiplexed  
address/data bus (Freescale mode) . . . . . . . . . .75  
Fig 28. ISP1583 register access timing: multiplexed  
address/data bus (A0 function and 8051 mode) .76  
Fig 29. ISP1583 register access timing:  
multiplexed address/data bus  
(A0 function and Freescale mode). . . . . . . . . . . .78  
Fig 30. EOT timing in split bus mode . . . . . . . . . . . . . . . .78  
Fig 31. PIO mode timing . . . . . . . . . . . . . . . . . . . . . . . . .80  
Fig 32. GDMA slave mode timing:  
DIOR (master) and DIOW (slave) . . . . . . . . . . . .81  
Fig 33. GDMA slave mode timing:  
DIOR (master) or DACK (slave). . . . . . . . . . . . . .82  
Fig 34. GDMA slave mode timing:  
DACK (master and slave). . . . . . . . . . . . . . . . . . .82  
Fig 35. MDMA master mode timing . . . . . . . . . . . . . . . . .83  
Fig 36. Typical interface connections for generic  
processor mode . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Fig 37. Typical interface connections for split bus mode  
(slave mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Fig 38. Load impedance for the DP and DM pins  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
97 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
25. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
9.2.5  
9.3  
Interrupt Enable register (address: 14h) . . . . 36  
Data flow registers . . . . . . . . . . . . . . . . . . . . . 38  
Endpoint Index register (address: 2Ch) . . . . . 38  
Control Function register (address: 28h) . . . . 39  
Data Port register (address: 20h). . . . . . . . . . 40  
Buffer Length register (address: 1Ch) . . . . . . 41  
Buffer Status register (address: 1Eh). . . . . . . 42  
Endpoint MaxPacketSize register  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
9.3.1  
9.3.2  
9.3.3  
9.3.4  
9.3.5  
9.3.6  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
(address: 04h) . . . . . . . . . . . . . . . . . . . . . . . . 43  
Endpoint Type register (address: 08h) . . . . . . 44  
DMA registers . . . . . . . . . . . . . . . . . . . . . . . . 45  
DMA Command register (address: 30h) . . . . 47  
DMA Transfer Counter register (address: 34h) 49  
DMA Configuration register (address: 38h) . . 50  
DMA Hardware register (address: 3Ch). . . . . 52  
Task File registers (addresses: 40h to 4Fh). . 53  
DMA Interrupt Reason register (address: 50h) 56  
DMA Interrupt Enable register (address: 54h) 57  
DMA Endpoint register (address: 58h). . . . . . 57  
DMA Strobe Timing register (address: 60h). . 58  
DMA Burst Counter register (address: 64h). . 59  
General registers . . . . . . . . . . . . . . . . . . . . . . 59  
Interrupt register (address: 18h). . . . . . . . . . . 59  
Chip ID register (address: 70h) . . . . . . . . . . . 61  
Frame Number register (address: 74h) . . . . . 62  
Scratch register (address: 78h) . . . . . . . . . . . 62  
Unlock Device register (address: 7Ch). . . . . . 63  
Test Mode register (address: 84h) . . . . . . . . . 63  
9.3.7  
9.4  
8
8.1  
Functional description . . . . . . . . . . . . . . . . . . 12  
DMA interface, DMA handler and  
DMA registers. . . . . . . . . . . . . . . . . . . . . . . . . 13  
Hi-Speed USB transceiver . . . . . . . . . . . . . . . 14  
MMU and integrated RAM . . . . . . . . . . . . . . . 14  
Microcontroller interface and  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.4.5  
9.4.6  
9.4.7  
9.4.8  
9.4.9  
9.4.10  
9.5  
9.5.1  
9.5.2  
9.5.3  
9.5.4  
9.5.5  
9.5.6  
8.2  
8.3  
8.4  
microcontroller handler . . . . . . . . . . . . . . . . . . 14  
OTG SRP module. . . . . . . . . . . . . . . . . . . . . . 14  
NXP high-speed transceiver. . . . . . . . . . . . . . 15  
NXP Parallel Interface Engine (PIE) . . . . . . . . 15  
Peripheral circuit . . . . . . . . . . . . . . . . . . . . . . . 15  
HS detection . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
NXP Serial Interface Engine (SIE) . . . . . . . . . 15  
SoftConnect . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Reconfiguring endpoints. . . . . . . . . . . . . . . . . 16  
System controller . . . . . . . . . . . . . . . . . . . . . . 16  
Modes of operation. . . . . . . . . . . . . . . . . . . . . 16  
Pins status . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Interrupt output pin . . . . . . . . . . . . . . . . . . . . . 18  
Interrupt control . . . . . . . . . . . . . . . . . . . . . . . 20  
8.5  
8.6  
8.6.1  
8.6.2  
8.6.3  
8.6.4  
8.7  
8.8  
8.9  
8.10  
8.11  
8.12  
8.13  
8.13.1  
8.13.2  
8.14  
8.15  
8.16  
8.16.1  
8.16.2  
8.16.3  
10  
11  
12  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 65  
Recommended operating conditions . . . . . . 65  
Static characteristics . . . . . . . . . . . . . . . . . . . 65  
13  
13.1  
13.1.1  
Dynamic characteristics. . . . . . . . . . . . . . . . . 67  
Register access timing. . . . . . . . . . . . . . . . . . 69  
Generic processor mode . . . . . . . . . . . . . . . . 69  
VBUS sensing . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Power-sharing mode. . . . . . . . . . . . . . . . . . . . 24  
Self-powered mode. . . . . . . . . . . . . . . . . . . . . 26  
Bus-powered mode. . . . . . . . . . . . . . . . . . . . . 27  
13.1.1.1 8051 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
13.1.1.2 Freescale mode . . . . . . . . . . . . . . . . . . . . . . . 71  
13.1.2  
13.1.2.1 ALE function. . . . . . . . . . . . . . . . . . . . . . . . . . 73  
13.1.2.2 A0 function . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
13.2  
13.2.1  
13.2.2  
13.2.3  
Split bus mode . . . . . . . . . . . . . . . . . . . . . . . . 73  
9
9.1  
9.2  
9.2.1  
9.2.2  
9.2.3  
Register description . . . . . . . . . . . . . . . . . . . . 29  
Register access . . . . . . . . . . . . . . . . . . . . . . . 30  
Initialization registers . . . . . . . . . . . . . . . . . . . 31  
Address register (address: 00h) . . . . . . . . . . . 31  
Mode register (address: 0Ch). . . . . . . . . . . . . 31  
Interrupt Configuration register  
(address: 10h). . . . . . . . . . . . . . . . . . . . . . . . . 33  
OTG register (address: 12h). . . . . . . . . . . . . . 34  
Session Request Protocol (SRP) . . . . . . . . . . 36  
DMA timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
PIO mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
GDMA slave mode . . . . . . . . . . . . . . . . . . . . . 81  
MDMA mode . . . . . . . . . . . . . . . . . . . . . . . . . 83  
14  
15  
16  
Application information . . . . . . . . . . . . . . . . . 84  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 84  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 86  
9.2.4  
9.2.4.1  
continued >>  
ISP1583_7  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 07 — 22 September 2008  
98 of 99  
ISP1583  
NXP Semiconductors  
Hi-Speed USB peripheral controller  
17  
Soldering of SMD packages . . . . . . . . . . . . . . 89  
17.1  
17.2  
17.3  
17.4  
Introduction to soldering . . . . . . . . . . . . . . . . . 89  
Wave and reflow soldering . . . . . . . . . . . . . . . 89  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 89  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 90  
18  
19  
20  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 91  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 93  
21  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 94  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 94  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
21.1  
21.2  
21.3  
21.4  
22  
23  
24  
25  
Contact information. . . . . . . . . . . . . . . . . . . . . 94  
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2008.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 22 September 2008  
Document identifier: ISP1583_7  

相关型号:

ISP1583BS,557

IC UNIVERSAL SERIAL BUS CONTROLLER, PQCC64, 9 X 9 MM, 0.85 MM HEIGHT, LEAD FREE, PLASTIC, MO-220, SOT-804-1, HVQFN-64, Bus Controller
NXP

ISP1583ET

Hi-Speed USB peripheral controller
NXP

ISP1583ET,518

暂无描述
NXP

ISP1583ET1

Hi-Speed USB peripheral controller
NXP

ISP1583ET1,118

IC UNIVERSAL SERIAL BUS CONTROLLER, PBGA64, 4 X 4 MM, 0.80 MM HEIGHT, LEAD FREE, PLASTIC, SOT969-1,TFBGA-64, Bus Controller
NXP

ISP1583ET2

Hi-Speed USB peripheral controller
NXP

ISP1583ET2,518

IC UNIVERSAL SERIAL BUS CONTROLLER, PBGA64, 6 X 6 MM, 0.80 MM HEIGHT, HALOGEN FREE AND LEAD FREE, PLASTIC, MO-195, SOT543-1,TFBGA-64, Bus Controller
NXP

ISP166

Panneaux lateraux
HAMMOND

ISP168

Panneaux lateraux
HAMMOND

ISP16DP10LM

SOT-223 封装型 100 V OptiMOS™ P 沟道 MOSFET 是面向电池管理、负载开关和反极性保护应用的全新技术。P 沟道器件的主要优势在于降低中低功率应用的设计复杂度。此类产品可轻松连接 MCU,开关速度快且雪崩能力强,尤其适合质量要求高的应用。器件支持逻辑电平,具备较宽的 RDS(on) 范围和低 Qg,低负载下效率较高。
INFINEON

ISP1703

Ultra-low-power transceiver solutions for mobile and portable applications
ETC

ISP1703A

ISP1703A
NXP