K32L2B3X [NXP]

K32 L2B Microcontroller;
K32L2B3X
型号: K32L2B3X
厂家: NXP    NXP
描述:

K32 L2B Microcontroller

微控制器
文件: 总112页 (文件大小:1427K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
K32L2B3x  
Data Sheet: Technical Data  
Rev. 3, 09/2020  
K32 L2B Microcontroller  
K32L2B31Vxx0A  
K32L2B21Vxx0A  
K32L2B11Vxx0A  
48 MHz Arm® Cortex®-M0+ and 64/128/256 KB Flash  
The K32 L2B series is optimized for cost-sensitive and battery-  
powered applications requiring low-power USB connectivity and  
an optional segment LCD (SLCD). The product offers:  
• Optional low power segment LCD up to 24x8 or 28x4  
• USB FS 2.0 device without requiring an external crystal  
• Embedded ROM with boot loader for flexible program  
upgrade  
32 QFN  
5x5 mm P 0.5 mm  
48 QFN  
7x7 mm P 0.5 mm  
• High accuracy internal voltage and clock reference  
• FlexIO to support any standard and customized serial  
peripheral emulation  
• Down to 54 uA/MHz in very low power run mode and 1.96  
uA in deep sleep mode (RAM + RTC retained)  
64 LQFP  
10x10 mm P 0.5 mm  
64 BGA  
5x5 mm P 0.5 mm  
Core Processor  
Peripherals  
• Arm® Cortex®-M0+ core up to 48 MHz  
• SLCD supporting up to 24x8 or 28x4 segments  
• USB full-speed 2.0 device controller supporting  
crystal-less operation  
Memories  
• 64/128/256 KB program flash memory  
• 32 KB SRAM  
• One UART module supporting ISO7816, operating  
up to 1.5 Mbit/s  
• 16 KB ROM with build-in bootloader  
• 32-byte backup register  
• Two low-power UART modules supporting  
asynchronous operation in low-power modes  
• Two I2C modules and I2C0 supporting up to 1  
Mbit/s  
• Two 16-bit SPI modules supporting up to 24 Mbit/s  
• One FlexIO module supporting emulation of  
additional UART, SPI, I2C, PWM and other serial  
modules, etc.  
• One 16-bit 461 ksps ADC module with high  
accuracy internal voltage reference (Vref) and up to  
16 channels  
• High-speed analog comparator containing a 6-bit  
DAC for programmable reference input  
• One 12-bit DAC  
System  
• 4-channel asynchronous DMA controller  
• Watchdog  
• Low-leakage wakeup unit  
• Two-pin Serial Wire Debug (SWD) programming and  
debug interface  
• Micro Trace Buffer  
• Bit manipulation engine  
• Interrupt controller  
Clocks  
• 48 MHz high accuracy (up to 0.5%) internal reference  
clock  
• 1.2 V internal voltage reference  
• 8 MHz/2 MHz high accuracy (up to 3%) internal  
reference clock  
• 1 KHz reference clock active under all low-power  
modes (except VLLS0)  
I/O  
• Up to 50 general-purpose input/output pins (GPIO)  
and 6 high-drive pad  
• 32–40 KHz and 3–32 MHz crystal oscillator  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
Operating Characteristics  
Timers  
• One 6-channel Timer/PWM module  
• Voltage range: 1.71 to 3.6 V  
• Flash write voltage range: 1.71 to 3.6 V  
• Temperature range: –40 to 105 °C  
• Two 2-channel Timer/PWM modules  
• One low-power timer  
• Periodic interrupt timer  
• Real time clock  
Packages  
• 64 LQFP 10mm x 10mm, 0.5 mm pitch, 1.6 mm  
thickness  
• 64 MAPBGA 5mm x 5mm, 0.5 mm pitch, 1.23 mm  
thickness  
• 48 QFN 7mm x 7mm, 0.5 mm pitch, 0.65 mm thickness  
• 32 QFN 5mm x 5mm, 0.5 mm pitch, 0.65 mm thickness  
Security and Integrity  
• 80-bit unique identification number per chip  
• Advanced flash security  
Low Power  
• Down to 54 μA/MHz in very low power run mode  
• Down to 1.96 μA in VLLS3 mode (RAM + RTC  
retained)  
• Six flexible static modes  
Related Resources  
Type  
Selector  
Description  
Resource  
Selector Guide  
The NXP Selector Guide is a web-based tool that features interactive  
application wizards and a dynamic product selector.  
Guide  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the  
structure and function (operation) of a device.  
K32L2B3xRM1  
This document.  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
Chip Errata  
The chip mask set Errata provides additional or corrective information for K32L2B_1N71K1  
a particular device mask set.  
Package  
drawing  
Package dimensions are provided in package drawings.  
64-LQFP: 98ASS23234W, 64-  
MAPBGA: 98ASA00420D, 32-  
QFN: 98ASA00615D, 48-QFN:  
98ASA00616D1  
1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.  
2
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Table of Contents  
1
2
Ordering information............................................................4  
4.4.7  
Human-machine interfaces (HMI)..................42  
Overview............................................................................. 4  
2.1 System features...........................................................5  
4.5 K32 L2B LQFP and MAPBGA pinouts.........................43  
4.6 K32 L2B QFN Pinouts..................................................45  
4.7 Package dimensions....................................................47  
Electrical characteristics......................................................54  
5.1 Ratings.........................................................................54  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
2.1.6  
2.1.7  
2.1.8  
2.1.9  
Arm Cortex-M0+ core.................................... 5  
NVIC.............................................................. 6  
AWIC............................................................. 6  
Memory..........................................................7  
Reset and boot.............................................. 7  
Clock options................................................. 9  
Security..........................................................12  
Power management.......................................12  
LLWU.............................................................14  
5
5.1.1  
5.1.2  
5.1.3  
5.1.4  
Thermal handling ratings............................... 54  
Moisture handling ratings...............................55  
ESD handling ratings.....................................55  
Voltage and current operating ratings............55  
5.2 General........................................................................ 56  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
AC electrical characteristics...........................56  
Nonswitching electrical specifications............56  
Switching specifications.................................71  
Thermal specifications...................................72  
2.1.10 Debug controller............................................ 15  
2.1.11 COP...............................................................15  
2.2 Peripheral features.......................................................16  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.2.7  
2.2.8  
2.2.9  
Segment LCD (SLCD)................................... 16  
BME...............................................................16  
DMA and DMAMUX.......................................16  
TPM............................................................... 17  
ADC............................................................... 18  
VREF............................................................. 19  
CMP...............................................................19  
DAC............................................................... 20  
RTC............................................................... 20  
5.3 Peripheral operating requirements and behaviors.......73  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
Core modules................................................ 73  
System modules............................................ 75  
Clock modules............................................... 75  
Memories and memory interfaces................. 78  
Security and integrity modules.......................80  
Analog............................................................80  
5.4 Timers..........................................................................91  
5.5 Communication interfaces........................................... 91  
2.2.10 PIT................................................................. 20  
2.2.11 LPTMR...........................................................21  
2.2.12 UART.............................................................21  
2.2.13 LPUART.........................................................22  
2.2.14 SPI.................................................................23  
2.2.15 I2C................................................................. 23  
2.2.16 USB............................................................... 24  
2.2.17 FlexIO............................................................ 24  
2.2.18 Port control and GPIO................................... 25  
Memory map....................................................................... 26  
Pinouts................................................................................ 27  
4.1 K32 L2B Signal Multiplexing and Pin Assignments  
(LQFP and MAPBGA)..................................................27  
4.2 K32 L2B Signal Multiplexing and Pin Assignments  
(QFN)...........................................................................30  
4.3 Pin properties...............................................................32  
4.4 Module Signal Description Tables............................... 37  
5.5.1  
5.5.2  
5.5.3  
5.5.4  
5.5.5  
USB electrical specifications..........................91  
USB VREG electrical specifications.............. 92  
SPI switching specifications...........................92  
I2C................................................................. 97  
UART.............................................................98  
5.6 Human-machine interfaces (HMI)................................99  
5.6.1 LCD electrical characteristics........................ 99  
6
Design considerations.........................................................100  
6.1 Hardware design considerations..................................100  
3
4
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
Printed circuit board recommendations......... 100  
Power delivery system...................................101  
Analog design................................................102  
Digital design................................................. 102  
Crystal oscillator............................................ 105  
6.2 Software considerations...............................................107  
Part identification.................................................................107  
7.1 Description...................................................................107  
7.2 Format..........................................................................108  
7.3 Fields........................................................................... 108  
7.4 Example.......................................................................108  
Small package marking.......................................................109  
Package marking information..............................................109  
7
4.4.1  
4.4.2  
4.4.3  
4.4.4  
4.4.5  
4.4.6  
Core modules................................................ 37  
System modules............................................ 37  
Clock modules............................................... 38  
Analog............................................................38  
Timer Modules...............................................39  
Communication interfaces............................. 40  
8
9
10 Revision History.................................................................. 110  
K32 L2B Microcontroller, Rev. 3, 09/2020  
3
NXP Semiconductors  
Ordering information  
1 Ordering information  
The following chips are available for ordering.  
Table 1. Ordering information  
Product  
Memory  
Package  
IO and ADC channel  
Serial  
Interface  
Part number  
Flash  
(KB)  
SRAM  
(KB)  
Pin  
count  
Package  
GPIOs  
GPIOs  
ADC  
channels  
(SE/DP)  
SLCD  
(INT/HD)1  
K32L2B31VLH0A  
K32L2B31VMP0A  
K32L2B31VFT0A  
K32L2B31VFM0A  
K32L2B21VLH0A  
K32L2B21VMP0A  
K32L2B21VFT0A  
K32L2B21VFM0A  
K32L2B11VLH0A  
K32L2B11VMP0A  
K32L2B11VFT0A  
K32L2B11VFM0A  
256  
256  
256  
256  
128  
128  
128  
128  
64  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
64  
64  
48  
32  
64  
64  
48  
32  
64  
64  
48  
32  
LQFP  
MAPBGA  
QFN  
50  
50  
36  
23  
50  
50  
36  
23  
50  
50  
36  
23  
31/6  
31/6  
24/6  
19/6  
31/6  
31/6  
24/6  
19/6  
31/6  
31/6  
24/6  
19/6  
16/2  
16/2  
14/1  
7/0  
Yes  
Yes  
QFN  
LQFP  
MAPBGA  
QFN  
16/2  
16/2  
14/1  
7/0  
Yes  
Yes  
QFN  
LQFP  
MAPBGA  
QFN  
16/2  
16/2  
14/1  
7/0  
Yes  
Yes  
64  
64  
64  
QFN  
1. INT: interrupt pin numbers; HD: high drive pin numbers  
2 Overview  
The following figure shows the system diagram of this device  
4
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Overview  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
Slave  
Master  
Cortex M0+  
IOPORT  
ADC(16-bit 16-ch)  
CMP  
64/128/256 KB  
Flash  
M0  
FMC  
Debug  
(SWD)  
CM0+ core  
1.2V Voltage reference  
TPM0(6-channel)  
TPM1(2-channel)  
TPM2(2-channel)  
S0  
S1  
NVIC  
16 KB ROM  
LPTMR  
PIT  
M2  
RTC  
DMA  
MUX  
DMA  
32 KB RAM  
LPUART0  
LPUART1  
UART2  
SPI0  
S2  
M3  
SPI1  
BME  
USB FS Device Only  
I2C0  
I2C1  
FlexIO  
Watchdog(COP)  
MCG-Lite  
Register File(32 Bytes)  
LLWU  
RCM  
SMC  
PMC  
HIRC48M  
LIRC2M/8M  
OSC  
SLCD  
Figure 1. System diagram  
The crossbar switch connects bus masters and slaves using a crossbar switch structure.  
This structure allows up to four bus masters to access different bus slaves  
simultaneously, while providing arbitration among the bus masters when they access  
the same slave.  
2.1 System features  
The following sections describe the high-level system features.  
K32 L2B Microcontroller, Rev. 3, 09/2020  
5
NXP Semiconductors  
Overview  
2.1.1 Arm Cortex-M0+ core  
The enhanced Arm Cortex M0+ is the member of the Cortex-M series of processors  
targeting microcontroller cores focused on very cost sensitive, low power applications.  
It has a single 32-bit AMBA AHB-Lite interface and includes an NVIC component. It  
also has hardware debug functionality including support for simple program trace  
capability. The processor supports the ARMv6-M instruction set (Thumb) architecture  
including all but three 16-bit Thumb opcodes (52 total) plus seven 32-bit instructions. It  
is upward compatible with other Cortex-M profile processors.  
2.1.2 NVIC  
The Nested Vectored Interrupt Controller supports nested interrupts and 4 priority  
levels for interrupts. In the NVIC, each source in the IPR registers contains two bits. It  
also differs in number of interrupt sources and supports 32 interrupt vectors.  
The Cortex-M family uses a number of methods to improve interrupt latency to up to 15  
clock cycles for Cortex-M0+. It also can be used to wake the MCU core from Wait and  
VLPW modes.  
2.1.3 AWIC  
The asynchronous wake-up interrupt controller (AWIC) is used to detect asynchronous  
wake-up events in Stop mode and signal to clock control logic to resume system  
clocking. After clock restarts, the NVIC observes the pending interrupt and performs  
the normal interrupt or event processing. The AWIC can be used to wake MCU core  
from Stop and VLPS modes.  
Wake-up sources are listed as below:  
Table 2. AWIC stop wake-up sources  
Wake-up source  
Available system resets  
Low-voltage detect  
Low-voltage warning  
Pin interrupts  
ADC  
Description  
RESET pin when LPO is its clock source  
Power management controller—functional in Stop mode  
Power management controller—functional in Stop mode  
Port control module—any enabled pin interrupt is capable of waking the system  
The ADC is functional when using internal clock source or external crystal clock  
Interrupt in normal or trigger mode  
CMP0  
I2Cx  
Address match wakeup  
Table continues on the next page...  
6
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Overview  
Table 2. AWIC stop wake-up sources (continued)  
Wake-up source  
Description  
Any enabled interrupt can be a source as long as the module remains clocked  
Active edge on RXD  
LPUART0 , LPUART1  
UART2  
RTC  
Alarm or seconds interrupt  
NMI  
NMI pin  
TPMx  
LPTMR  
SPIx  
Any enabled interrupt can be a source as long as the module remains clocked  
Any enabled interrupt can be a source as long as the module remains clocked  
Slave mode interrupt  
FlexIO  
Any enabled interrupt can be a source as long as the module remains clocked  
2.1.4 Memory  
This device has the following features:  
• 32 KB of embedded RAM accessible (read/write) at CPU clock speed with 0 wait  
states.  
• The non-volatile memory is divided into two arrays  
• Up to 256 KB of embedded program memory  
• 16 KB ROM (built-in bootloader to support UART, I2C, USB, and SPI  
interfaces)  
The program flash memory contains a 16-byte flash configuration field that stores  
default protection settings and security information. The page size of program  
flash is 1 KB.  
The protection setting can protect 32 regions of the program flash memory from  
unintended erase or program operations.  
The security circuitry prevents unauthorized access to RAM or flash contents  
from debug port.  
• System register file  
This device contains a 32-byte register file that is powered in all power modes.  
Also, it retains contents during low power modes and is reset only during a  
power-on reset.  
K32 L2B Microcontroller, Rev. 3, 09/2020  
7
NXP Semiconductors  
Overview  
2.1.5 Reset and boot  
The following table lists all the reset sources supported by this device.  
NOTE  
In the following table, Y means the specific module, except  
for the registers, bits or conditions mentioned in the footnote,  
is reset by the corresponding Reset source. N means the  
specific module is not reset by the corresponding Reset  
source.  
Table 3. Reset source  
Reset  
Descriptions  
Modules  
sources  
PMC  
SIM  
SMC RCM LLWU Reset pin RTC LPTMR Others  
is  
negated  
POR reset  
Power-on reset (POR)  
Y
Y1  
N
Y
Y
Y2  
Y
Y
N
Y
Y
Y
Y
Y
N
Y
Y
Y3  
Y
N
N
Y
Y
N
Y
Y
Y
System resets Low-voltage detect (LVD)  
Low leakage wakeup  
(LLWU) reset  
External pin reset  
(RESET)  
Y1  
Y1  
Y2  
Y2  
Y4  
Y4  
Y
Y
Y
Y
Y
N
N
N
N
Y
Y
Computer operating  
properly (COP) watchdog  
reset  
Y5  
Stop mode acknowledge  
error (SACKERR)  
Y1  
Y2  
Y4  
Y5  
Y
Y
N
N
Y
Software reset (SW)  
Y1  
Y1  
Y1  
Y1  
Y2  
Y2  
Y2  
Y2  
Y4  
Y4  
Y4  
Y4  
Y5  
Y5  
Y5  
Y5  
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Lockup reset (LOCKUP)  
MDM DAP system reset  
Debug reset  
Debug reset  
1. Except PMC_LVDSC1[LVDV] and PMC_LVDSC2[LVWV]  
2. Except SIM_SOPT1  
3. Only if RESET is used to wake from VLLS mode.  
4. Except SMC_PMCTRL, SMC_STOPCTRL, SMC_PMSTAT  
5. Except RCM_RPFC, RCM_RPFW, RCM_FM  
The CM0+ core adds support for a programmable Vector Table Offset Register  
(VTOR) to relocate the exception vector table after reset. This device supports booting  
from:  
• internal flash  
• ROM  
8
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Overview  
The Flash Option (FOPT) register in the Flash Memory module (FTFA_FOPT) allows  
the user to customize the operation of the MCU at boot time. The register contains  
read-only bits that are loaded from the NVM's option byte in the flash configuration  
field. Below is boot flow chart for this device.  
POR or Reset  
N
RCM[FORCEROM] =00  
Y
N
FOPT[BOOTPIN_OPT]=0  
Y
N
BOOTCFG0 pin=0  
Y
N
FOPT[BOOTSRC  
_SEL]=10/11  
Y
Boot from ROM  
Boot from Flash  
Figure 2. Boot flow chart  
The blank chip is default to boot from ROM and remaps the vector table to ROM base  
address, otherwise, it remaps to flash address.  
2.1.6 Clock options  
This chip provides a wide range of sources to generate the internal clocks. These  
sources include internal resistor capacitor (IRC) oscillators, external oscillators,  
external clock sources, and ceramic resonators. These sources can be configured to  
provide the required performance and optimize the power consumption.  
The IRC oscillators include the high-speed internal resister capacitor (HIRC)  
oscillator, the low-speed internal resister capacitor (LIRC) oscillator, and the low  
power oscillator (LPO).  
The HIRC oscillator generates a 48 MHz clock and synchronizes with the USB clock  
in full speed mode to achieve the required accuracy.  
The LIRC oscillator generates an 8 MHz or 2 MHz clock, and default to 8 MHz  
system clock on reset. The LIRC oscillator cannot be used in any VLLS modes.  
The LPO generates a 1 kHz clock and cannot be used in VLLS0 mode.  
K32 L2B Microcontroller, Rev. 3, 09/2020  
9
NXP Semiconductors  
Overview  
The system oscillator supports low frequency crystals (32 kHz to 40 kHz), high  
frequency crystals (3 MHz to 32 MHz), and ceramic resonators (3 MHz to 32 MHz). An  
external clock source, DC to 48 MHz, can be used as the system clock through the  
EXTAL0 pin. The external oscillator also supports a low speed external clock (32.768  
kHz) on the RTC_CLKIN pin for use with the RTC.  
For more details on the clock operations and configurations, see Reference Manual.  
The following figure is a high level block diagram of the clock generation.  
Multipurpose Clock  
Generator Lite  
System  
Integration  
IRC_TRIMs  
MCGPCLK  
MCGIRCLK  
HIRC48M  
USB  
USB_EN  
CG  
LIRC_DIV2  
LIRC  
8MHz  
8MHz/  
2MHz  
IRC  
MCGOUTCLK  
FCRDIV  
OUTDIV1  
OUTDIV4  
CG  
CG  
Core/Platform/System clock  
Bus/Flash clock  
2MHz  
IRCS  
CLKS  
System oscillator  
EREFS0  
OSCCLK  
CG  
EXTAL0  
XTAL_CLK  
OSC  
OSCERCLK  
ERCLK32K  
OSC32KCLK  
logic  
XTAL0  
RTC_CKLIN  
OS32KSEL  
RTCCLKOUTSEL  
LPO  
PMC logic  
PMC  
RTC  
RTC_CLKOUT  
1Hz  
Counter logic  
CG — Clock gate  
Figure 3. Clock block diagram  
In order to provide flexibility, many peripherals can select from multiple clock sources  
for operation. This enables the peripheral to select a clock that will always be available  
during operation in various operational modes.  
The following table summarizes the clocks associated with each module.  
Table 4. Module clocks  
Module  
Bus interface clock  
Core modules  
Table continues on the next page...  
Internal clocks  
I/O interface clocks  
10  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Overview  
Table 4. Module clocks (continued)  
Module  
Arm Cortex-M0+ core  
NVIC  
Bus interface clock  
Platform clock  
Internal clocks  
I/O interface clocks  
Core clock  
Platform clock  
DAP  
Platform clock  
SWD_CLK  
System modules  
DMA  
DMA Mux  
System clock  
Bus clock  
Port control  
Bus clock  
Crossbar Switch  
Peripheral bridges  
LLWU, PMC, SIM, RCM  
Mode controller  
MCM  
Platform clock  
System clock  
Bus clock  
Bus clock  
LPO  
Bus clock  
Platform clock  
Bus clock  
COP watchdog  
LPO, Bus Clock, MCGIRCLK,  
OSCERCLK  
Clocks  
MCG_Lite  
OSC  
Bus clock  
Bus clock  
MCGOUTCLK, MCGPCLK,  
MCGIRCLK, OSCERCLK,  
ERCLK32K  
OSCERCLK  
Memory and memory interfaces  
Flash Controller  
Flash memory  
Platform clock  
Flash clock  
Flash clock  
Analog  
ADC  
CMP  
Bus clock  
Bus clock  
Bus clock  
OSCERCLK  
Internal Voltage Reference  
(VREF)  
Timers  
TPM  
PIT  
Bus clock  
Bus clock  
Bus clock  
TPM clock  
TPM_CLKIN0, TPM_CLKIN1  
LPTMR  
LPO, OSCERCLK,  
MCGPCLK, ERCLK32K  
RTC  
Bus clock  
ERCLK32K  
RTC_CLKOUT, RTC_CLKIN  
Communication interfaces  
USB FS (Device Only)  
System clock  
USB FS clock  
SPI0  
SPI1  
I2C0  
I2C1  
Bus clock  
SPI0_SCK  
SPI1_SCK  
I2C0_SCL  
I2C1_SCL  
System clock  
System Clock  
System Clock  
Table continues on the next page...  
K32 L2B Microcontroller, Rev. 3, 09/2020  
11  
NXP Semiconductors  
Overview  
Table 4. Module clocks (continued)  
Module  
Bus interface clock  
Internal clocks  
LPUART0 clock  
LPUART1 clock  
I/O interface clocks  
LPUART0, LPUART1  
Bus clock  
UART2  
FlexIO  
Bus clock  
Bus clock  
FlexIO clock  
Human-machine interfaces  
Platform clock  
GPIO  
2.1.7 Security  
Security state can be enabled via programming flash configuration field (0x40e). After  
enabling device security, the SWD port cannot access the memory resources of the  
MCU, and ROM boot loader is also limited to access flash and not allowed to read out  
flash information via ROM boot loader commands.  
Access interface  
Secure state  
Unsecure operation  
SWD port  
Cannot access memory source by SWD The debugger can write to the Flash  
interface  
Mass Erase in Progress field of the  
MDM-AP Control register to trigger a  
mass erase (Erase All Blocks)  
command  
ROM boot loader Interface  
(UART/I2C/SPI/USB)  
Limit access to the flash, cannot read  
out flash content  
Send “FlashEraseAllUnsecureh"  
command or attempt to unlock flash  
security using the backdoor key  
This device features 80-bit unique identification number, which is programmed in  
factory and loaded to SIM register after power-on reset.  
2.1.8 Power management  
The Power Management Controller (PMC) expands upon Arm’s operational modes of  
Run, Sleep, and Deep Sleep, to provide multiple configurable modes. These modes can  
be used to optimize current consumption for a wide range of applications. The WFI or  
WFE instruction invokes a Wait or a Stop mode, depending on the current  
configuration. For more information on Arm’s operational modes, See the Arm®  
Cortex User Guide.  
12  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Overview  
The PMC provides Run (Run), and Very Low Power Run (VLPR) configurations in  
Arm’s Run operation mode. In these modes, the MCU core is active and can access all  
peripherals. The difference between the modes is the maximum clock frequency of the  
system and therefore the power consumption. The configuration that matches the  
power versus performance requirements of the application can be selected.  
The PMC provides Wait (Wait) and Very Low Power Wait (VLPW) configurations in  
Arm’s Sleep operation mode. In these modes, even though the MCU core is inactive,  
all of the peripherals can be enabled and operate as programmed. The difference  
between the modes is the maximum clock frequency of the system and therefore the  
power consumption.  
The PMC provides Stop (Stop), Very Low Power Stop (VLPS), Low Leakage Stop  
(LLS), and Very Low Leakage Stop (VLLS) configurations in Arm’s Deep Sleep  
operational mode. In these modes, the MCU core and most of the peripherals are  
disabled. Depending on the requirements of the application, different portions of the  
analog, logic, and memory can be retained or disabled to conserve power.  
The Nested Vectored Interrupt Controller (NVIC), the Asynchronous Wake-up  
Interrupt Controller (AWIC), and the Low Leakage Wake-Up Controller (LLWU) are  
used to wake up the MCU from low power states. The NVIC is used to wake up the  
MCU core from WAIT and VLPW modes. The AWIC is used to wake up the MCU  
core from STOP and VLPS modes. The LLWU is used to wake up the MCU core  
from LLS and VLLSx modes.  
For additional information regarding operational modes, power management, the  
NVIC, AWIC, or the LLWU, please refer to the Reference Manual.  
The following table provides information about the state of the peripherals in the  
various operational modes and the modules that can wake MCU from low power  
modes.  
Table 6. Peripherals states in different operational modes  
Core mode  
Device mode  
Descriptions  
Run mode  
Run  
In Run mode, all device modules are operational.  
Very Low Power Run  
In VLPR mode, all device modules are operational at a reduced frequency  
except the Low Voltage Detect (LVD) monitor, which is disabled.  
Sleep mode  
Wait  
In Wait mode, all peripheral modules are operational. The MCU core is  
placed into Sleep mode.  
Very Low Power Wait  
In VLPW mode, all peripheral modules are operational at a reduced  
frequency except the Low Voltage Detect (LVD) monitor, which is disabled.  
The MCU core is placed into Sleep mode.  
Table continues on the next page...  
K32 L2B Microcontroller, Rev. 3, 09/2020  
13  
NXP Semiconductors  
Overview  
Table 6. Peripherals states in different operational modes (continued)  
Core mode  
Deep sleep  
Device mode  
Descriptions  
Stop  
In Stop mode, most peripheral clocks are disabled and placed in a static  
state. Stop mode retains all registers and SRAMs while maintaining Low  
Voltage Detection protection. In Stop mode, the ADC, CMP, LPTMR, RTC,  
and pin interrupts are operational. The NVIC is disabled, but the AWIC can  
be used to wake up from an interrupt.  
Very Low Power Stop  
Low Leakage Stop  
In VLPS mode, the contents of the SRAM are retained. The CMP (low  
speed), ADC, OSC, RTC, LPTMR, TPM, FlexIO, LPUART, USB, and DMA  
are operational, LVD and NVIC are disabled, AWIC is used to wake up from  
interrupt.  
In LLS mode, the contents of the SRAM and the 32-byte system register file  
are retained. The CMP (low speed), LLWU, LPTMR, and RTC are  
operational. The ADC, DMA, FlexIO, I2C, LPUART, MCG-Lite, NVIC, PIT,  
SPI, TPM, UART, USB, and COP are static, but retain their programming.  
The GPIO, and VREF are static, retain their programming, and continue to  
drive their previous values.  
Very Low Leakage Stop In VLLS modes, most peripherals are powered off and will resume operation  
from their reset state when the device wakes up. The LLWU, LPTMR, and  
RTC are operational in all VLLS modes.  
In VLLS3, the contents of the SRAM and the 32-byte system register file are  
retained. The CMP (low speed), and PMC are operational. The GPIO, and  
VREF are not operational but continue driving.  
In VLLS1, the contents of the 32-byte system register file are retained. The  
CMP (low speed), and PMC are operational. The GPIO, and VREF are not  
operational but continue driving.  
In VLLS0, the contents of the 32-byte system register file are retained. The  
PMC is operational. The GPIO is not operational but continues driving. The  
POR detection circuit can be enabled or disabled.  
2.1.9 LLWU  
The LLWU module is used to wake MCU from low leakage power mode (LLS and  
VLLSx) and functional only on entry into a low-leakage power mode. After recovery  
from LLS, the LLWU is immediately disabled. After recovery from VLLSx, the LLWU  
continues to detect wake-up events until the user has acknowledged the wake-up event.  
This device uses 8 external wakeup pin inputs and 4 internal modules as wakeup  
sources to the LLWU module.  
The following is internal peripheral and external pin inputs as wakeup sources to the  
LLWU module.  
14  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Overview  
Table 7. Wakeup source  
LLWU pin  
LLWU_P5  
Module source or pin name  
PTB0  
PTC1  
LLWU_P6  
LLWU_P7  
PTC3  
LLWU_P8  
PTC4  
LLWU_P9  
PTC5  
LLWU_P10  
LLWU_P14  
LLWU_P15  
LLWU_M0IF  
LLWU_M1IF  
LLWU_M2IF  
LLWU_M3IF  
LLWU_M4IF  
LLWU_M5IF  
LLWU_M6IF  
LLWU_M7IF  
PTC6  
PTD4  
PTD6  
LPTMR0  
CMP0  
Reserved  
Reserved  
Reserved  
RTC alarm  
Reserved  
RTC seconds  
2.1.10 Debug controller  
This device supports standard Arm 2-pin SWD debug port. It provides register and  
memory accessibility from the external debugger interface, basic run/halt control plus  
2 breakpoints and 2 watchpoints.  
It also supports trace function with the Micro Trace Buffer (MTB), which provides a  
simple execution trace capability for the Cortex-M0+ processor.  
2.1.11 COP  
The COP monitors internal system operation and forces a reset in case of failure. It  
can run from bus clock, LPO, 8/2 MHz internal oscillator or external crystal oscillator.  
Optional window mode can detect deviations in program flow or system frequency.  
The COP has the following features:  
• Support multiple clock input, 1 kHz clock(LPO), bus clock, 8/2 MHz internal  
reference clock, external crystal oscillator  
• Can work in Stop/VLPS and Debug mode  
K32 L2B Microcontroller, Rev. 3, 09/2020  
15  
NXP Semiconductors  
Overview  
• Configurable for short and long timeout values, the longest timeout is up to 262  
seconds  
• Support window mode  
2.2 Peripheral features  
The following sections describe the features of each peripherals of the chip.  
2.2.1 Segment LCD (SLCD)  
The SLCD module is a CMOS charge pump voltage inverter that is designed for low-  
voltage and low-power operation. SLCD is designed to generate the appropriate  
waveforms to drive multiplexed numeric, alphanumeric, or custom segment LCD  
panels. SLCD also has several timing and control settings that can be software  
configured depending on the application's requirements. Timing and control consists of  
registers and control logic for:  
• LCD frame frequency  
• Duty cycle selection  
• Front plane/back plane selection and enabling  
• Blink modes and frequency  
• Operation in low-power modes  
2.2.2 BME  
The Bit Manipulation Engine (BME) provides hardware support for atomic read-  
modify-write memory operations to the peripheral address space in Cortex-M0+ based  
microcontrollers. It reduces up to 30% of the code size and up to 9% of the cycles for  
bit-oriented operations to peripheral registers.  
The BME supports unsigned bit field extract, load-and-set 1-bit, load-and-clear 1-bit,  
bit field insert, logical AND/OR/XOR operations with byte, halfword or word-sized  
data type.  
16  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Overview  
2.2.3 DMA and DMAMUX  
The DMA controller module enables fast transfers of data, which provides an efficient  
way to move blocks of data with minimal processor interaction. The DMA controller  
in this device implements four channels which can be routed from up to 63 DMA  
request sources through DMA MUX module. Some of the peripheral request sources  
have asynchronous DMA capability which can be used to wake MCU from Stop  
mode. The peripherals which have such capability include . The DMA channel 0 and  
1 can be periodically triggered by PIT via DMA MUX.  
Main features are listed below:  
• Dual-address transfers via 32-bit master connection to the system bus and data  
transfers in 8-, 16-, or 32-bit blocks  
• Supports programmable source and destination address and transfer size, optional  
modulo addressing from 16 bytes to 256 KB  
• Automatic updates of source and destination addresses  
• Auto-alignment feature for source or destination accesses allows block transfers  
to occur at the optimal size based on the address, byte count,and programmed  
size, which significantly improves the speed of block transfer  
• Automatic single or double channel linking allows the current DMA channel to  
automatically trigger a DMA request to the linked channels without CPU  
intervention  
For more information on asynchronous DMA, see AN4631.  
2.2.4 TPM  
This device contains three low power TPM modules (TPM). All TPM modules are  
functional in Stop/VLPS mode if the clock source is enabled.  
The TPM features include:  
• TPM clock mode is selectable from external clock input, internal clock source,  
external crystal input clock, MCGIRCLK clock or clocking from MCGFLLCLK  
and MCGPLLCLK/2  
• Prescaler divide-by 1, 2, 4, 8, 16, 32, 64, or 128  
• TPM includes a 16-bit counter  
• Includes 6 channels that can be configured for input capture, output compare,  
edge-aligned PWM mode, or center-aligned PWM mode  
• Support the generation of an interrupt and/or DMA request per channel or counter  
overflow  
K32 L2B Microcontroller, Rev. 3, 09/2020  
17  
NXP Semiconductors  
Overview  
• Support selectable trigger input to optionally reset or cause the counter to start or  
stop incrementing  
• Support the generation of hardware triggers when the counter overflows and per  
channel  
2.2.5 ADC  
This device contains one ADC module. This ADC module supports hardware triggers  
from TPM, LPTMR, PIT, RTC, external trigger pin and CMP output. It supports  
wakeup of MCU in low power mode when using internal clock source or external  
crystal clock.  
ADC module has the following features:  
• Linear successive approximation algorithm with up to 16-bit resolution  
• Up to four pairs of differential and 17 single-ended external analog inputs  
• Support selectable 16-bit, 13-bit, 11-bit, and 9-bit differential output mode, or 16-  
bit, 12-bit, 10-bit, and 8-bit single-ended output modes  
• Single or continuous conversion  
• Configurable sample time and conversion speed/power  
• Selectable clock source up to four  
• Operation in low-power modes for lower noise  
• Asynchronous clock source for lower noise operation with option to output the  
clock  
• Selectable hardware conversion trigger  
• Automatic compare with interrupt for less-than, greater-than or equal-to, within  
range, or out-of-range, programmable value  
• Temperature sensor  
• Hardware average function up to 32x  
• Selectable voltage reference: external or alternate  
• Self-calibration mode  
2.2.5.1 Temperature sensor  
This device integrates one temperature sensor internally connected to the input channel  
of AD26, see for details of the linearity factor.  
The sensor provides good linearity, but it has to be calibrated to gain good accuracy, see  
also AN3031. We recommend to use internal reference voltage as ADC reference with  
long sample time.  
18  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Overview  
2.2.6 VREF  
The Voltage Reference (VREF) can supply an accurate voltage output (1.2V typically)  
trimmed in 0.5 mV steps. It can be used in applications to provide a reference voltage  
to external devices or used internally as a reference to analog peripherals such as the  
ADC or CMP.  
The VREF supports the following programmable buffer modes:  
• Bandgap on only, used for stabilization and startup  
• High power buffer mode  
• Low-power buffer mode  
• Buffer disabled  
The VREF voltage output signal, bonded on VREFH for 48 QFN, 64 LQFP and 64  
MAPBGA packages and on PTE30 for 32 QFN packages, can be used by both  
internal and external peripherals in low and high power buffer mode. A 100 nF  
capacitor must always be connected between this pin and VSSA if the VREF is used.  
This capacitor must be as close to VREF_OUT pin as possible.  
2.2.7 CMP  
The device contains one high-speed comparator and two 8-input multiplexers for both  
the inverting and non-inverting inputs of the comparator. Each CMP input channel  
connects to both muxes.  
The CMP includes one 6-bit DAC, which provides a selectable voltage reference for  
various user application cases. Besides, the CMP also has several module-to-module  
interconnects in order to facilitate ADC triggering, TPM triggering, and interfaces.  
The CMP has the following features:  
• Inputs may range from rail to rail  
• Programmable hysteresis control  
• Selectable interrupt on rising-edge, falling-edge, or both rising or falling edges of  
the comparator output  
• Selectable inversion on comparator output  
• Capability to produce a wide range of outputs such as sampled, digitally filtered  
• External hysteresis can be used at the same time that the output filter is used for  
internal functions  
• Two software selectable performance levels: shorter propagation delay at the  
expense of higher power and Low power with longer propagation delay  
K32 L2B Microcontroller, Rev. 3, 09/2020  
19  
NXP Semiconductors  
Overview  
• DMA transfer support  
• Functional in all modes of operation except in VLLS0 mode  
• The filter functions are not available in Stop, VLPS, LLS, or VLLSx modes  
• Integrated 6-bit DAC with selectable supply reference source and can be power  
down to conserve power  
• Two 8-to-1 channel mux  
2.2.8 DAC  
The 12-bit Digital-to-Analog Converter (DAC) is a low-power, general-purpose DAC.  
The output of the DAC can be placed on an external pin or set as one of the inputs to  
the analog comparator, op-amps, or ADC.  
The features of the DAC module include:  
• On-chip programmable reference generator output. The voltage output range is  
from 1⁄4096 Vin to Vin, and the step is 1⁄4096 Vin, where Vin is the input voltage.  
• Vin can be selected from two reference sources.  
• Static operation in Normal Stop mode.  
• 2-word data buffer supported with multiple operation modes.  
• DMA support.  
2.2.9 RTC  
The RTC is an always powered-on block that remains active in all low power modes.  
The time counter within the RTC is clocked by a 32.768 kHz clock sourced from an  
external crystal using the oscillator or clock directly from RTC_CLKIN pin.  
RTC is reset on power-on reset, and a software reset bit in RTC can also initialize all  
RTC registers.  
The RTC module has the following features  
• 32-bit seconds counter with roll-over protection and 32-bit alarm  
• 16-bit prescaler with compensation that can correct errors between 0.12 ppm and  
3906 ppm  
• Register write protection with register lock mechanism  
• 1 Hz square wave or second pulse output with optional interrupt  
20  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Overview  
2.2.10 PIT  
The Periodic Interrupt Timer (PIT) is used to generate periodic interrupt to the CPU. It  
has two independent channels and each channel has a 32-bit counter. Both channels  
can be chained together to form a 64-bit counter.  
Channel 0 can be used to periodically trigger DMA channel 0, and channel 1 can be  
used to periodically trigger DMA channel 1. Either channel can be programmed as an  
ADC trigger source, or TPM trigger source. Channel 0 can be programmed to trigger  
DAC.  
The PIT module has the following features:  
• Each 32-bit timers is able to generate DMA trigger  
• Each 32-bit timers is able to generate timeout interrupts  
• Two timers can be cascaded to form a 64-bit timer  
• Each timer can be programmed as ADC/TPM trigger source  
• Timer 0 is able to trigger DAC  
2.2.11 LPTMR  
The low-power timer (LPTMR) can be configured to operate as a time counter with  
optional prescaler, or as a pulse counter with optional glitch filter, across all power  
modes, including the low-leakage modes. It can also continue operating through most  
system reset events, allowing it to be used as a time of day counter.  
The LPTMR module has the following features:  
• 16-bit time counter or pulse counter with compare  
• Optional interrupt can generate asynchronous wakeup from any low-power  
mode  
• Hardware trigger output  
• Counter supports free-running mode or reset on compare  
• Configurable clock source for prescaler/glitch filter  
• Configurable input source for pulse counter  
2.2.12 UART  
This device contains a basic universal asynchronous receiver/transmitter (UART)  
module with DMA function supported. Generally, this module is used in RS-232,  
RS-485, and other communications. It also supports LIN slave operation and  
ISO7816.  
K32 L2B Microcontroller, Rev. 3, 09/2020  
21  
NXP Semiconductors  
Overview  
The UART module has the following features:  
• Full-duplex operation  
• 13-bit baud rate selection with /32 fractional divide, based on the module clock  
frequency  
• Programmable 8-bit or 9-bit data format  
• Programmable transmitter output polarity  
• Programmable receive input polarity  
• Up to 14-bit break character transmission.  
• 11-bit break character detection option  
• Two receiver wakeup methods with idle line or address mark wakeup  
• Address match feature in the receiver to reduce address mark wakeup ISR overhead  
• Ability to select MSB or LSB to be the first bit on wire  
• Support for ISO 7816 protocol to interface with SIM cards and smart cards  
• Receiver framing error detection  
• Hardware parity generation and checking  
• 1/16 bit-time noise detection  
• DMA interface  
2.2.13 LPUART  
This product contains two Low-Power UART modules, both of their clock sources are  
selectable from IRC48M, IRC8M/2M or external crystal clock, and can work in Stop  
and VLPS modes. They also support 4x to 32x data oversampling rate to meet different  
applications.  
The LPUART module has the following features:  
• Programmable baud rates (13-bit modulo divider) with configurable oversampling  
ratio from 4x to 32x  
• Transmit and receive baud rate can operate asynchronous to the bus clock and can  
be configured independently of the bus clock frequency, support operation in Stop  
mode  
• Interrupt, DMA or polled operation  
• Hardware parity generation and checking  
• Programmable 8-bit, 9-bit or 10-bit character length  
• Programmable 1-bit or 2-bit stop bits  
• Three receiver wakeup methods  
• Idle line wakeup  
• Address mark wakeup  
• Receive data match  
• Automatic address matching to reduce ISR overhead:  
22  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Overview  
• Address mark matching  
• Idle line address matching  
• Address match start, address match end  
• Optional 13-bit break character generation / 11-bit break character detection  
• Configurable idle length detection supporting 1, 2, 4, 8, 16, 32, 64 or 128 idle  
characters  
• Selectable transmitter output and receiver input polarity  
2.2.14 SPI  
This device contains two SPI modules. SPI modules support 8-bit and 16-bit modes.  
FIFO function is available only on SPI1 module.  
The SPI modules have the following features:  
• Full-duplex or single-wire bidirectional mode  
• Programmable transmit bit rate  
• Double-buffered transmit and receive data register  
• Serial clock phase and polarity options  
• Slave select output  
• Mode fault error flag with CPU interrupt capability  
• Control of SPI operation during wait mode  
• Selectable MSB-first or LSB-first shifting  
• Programmable 8- or 16-bit data transmission length  
• Receive data buffer hardware match feature  
• 64-bit FIFO mode for high speed/large amounts of data transfers  
• Support DMA  
2.2.15 I2C  
This device contains two I2C modules, which support up to 1 Mbits/s by dual buffer  
features, and address match to wake MCU from the low power mode.  
I2C modules support DMA transfer, and the interrupt condition can trigger DMA  
request when DMA function is enabled.  
The I2C modules have the following features:  
• Support for system management bus (SMBus) specification, version 2  
• Software programmable for one of 64 different serial clock frequencies  
• Software-selectable acknowledge bit  
• Arbitration-lost interrupt with automatic mode switching from master to slave  
K32 L2B Microcontroller, Rev. 3, 09/2020  
23  
NXP Semiconductors  
Overview  
• Calling address identification interrupt  
• START and STOP signal generation and detection  
• Repeated-START signal generation and detection  
• Acknowledge bit generation and detection  
• Bus busy detection  
• General call recognition  
• 10-bit address extension  
• Programmable input glitch filter  
• Low power mode wakeup on slave address match  
• Range slave address support  
• DMA support  
• Double buffering support to achieve higher baud rate  
2.2.16 USB  
This device contains one USB module which implements a USB2.0 full-speed  
compliant peripheral and interfaces to the on-chip USBFS transceiver. It implements  
keep-alive feature to avoid re-enumerating when exiting from low power modes and  
enables HIRC48M to allow crystal-less USB operation.  
The USBFS has the following features:  
• USB 1.1 and 2.0 compliant full-speed device controller  
• 16 bidirectional end points  
• DMA or FIFO data stream interfaces  
• Low-power consumption  
• HIRC48 with clock-recovery is supported to eliminate the 48 MHz crystal. It is  
used for USB device-only implementation.  
• USB keeps alive in low power mode down to VLPS and is able to wake MCU from  
low power mode  
2.2.17 FlexIO  
The FlexIO is a highly configurable module providing a wide range of protocols  
including, but not limited to UART, I2C, SPI, Camera IF, LCD RGB, PWM/Waveform  
generation. The module supports programmable baud rates independent of bus clock  
frequency, with automatic start/stop bit generation.  
The FlexIO module has the following features:  
24  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Overview  
• Functional in VLPR/VLPW/Stop/VLPS mode provided the clock it is using  
remains enabled  
• Four 32-bit double buffered shift registers with transmit, receive, and data match  
modes, and continuous data transfer  
• The timing of the shifter's shift, load and store events are controlled by the highly  
flexible 16-bit timer assigned to the shifter  
• Two or more shifters can be concatenated to support large data transfer sizes  
• Each 16-bit timers operates independently, supports for reset, enable and disable  
on a variety of internal or external trigger conditions with programmable trigger  
polarity  
• Flexible pin configuration supporting output disabled, open drain, bidirectional  
output data and output mode  
• Supports interrupt, DMA or polled transmit/receive operation  
2.2.18 Port control and GPIO  
The Port Control and Interrupt (PORT) module provides support for port control,  
digital filtering, and external interrupt functions. The GPIO data direction and output  
data registers control the direction and output data of each pin when the pin is  
configured for the GPIO function. The GPIO input data register displays the logic  
value on each pin when the pin is configured for any digital function, provided the  
corresponding Port Control and Interrupt module for that pin is enabled.  
The PORT module has the following features:  
• all PIN support interrupt enable  
• Configurable edge (rising, falling, or both) or level sensitive interrupt type  
• Support DMA request  
• Asynchronous wake-up in low-power modes  
• Configurable pullup, pulldown, and pull-disable on select pins  
• Configurable high and low drive strength on selected pins  
• Configurable fast and slow slew rates on selected pins  
• Configurable passive filter on selected pins  
• Individual mux control field supporting analog or pin disabled, GPIO, and up to  
chip-specific digital functions  
• Pad configuration fields are functional in all digital pin muxing modes.  
The GPIO module has the following features:  
• Port Data Input register visible in all digital pin-multiplexing modes  
• Port Data Output register with corresponding set/clear/toggle registers  
K32 L2B Microcontroller, Rev. 3, 09/2020  
25  
NXP Semiconductors  
Memory map  
• Port Data Direction register  
• GPIO support single-cycle access via fast GPIO.  
3 Memory map  
This device contains various memories and memory-mapped peripherals which are  
located in a 4 GB memory space. The following figure shows the system memory and  
peripheral locations  
0x4000_0000  
0x4000_8000  
0x4000_F000  
0x4002_0000  
0x4002_1000  
0x4003_7000  
0x4003_8000  
0x4003_9000  
0x4003_A000  
0x4003_B000  
0x4003_D000  
0x4003_F000  
0x4004_0000  
Reserved  
DMA controller  
GPIO Controller (alias to 0x400F_F000)  
Flash memory  
DMA Channel Multiplexer  
PIT  
0x0000_0000  
Flash  
ROM  
LPTPM0  
LPTPM1  
LPTPM2  
ADC0  
0x0000_0000  
0x07FF_FFFF  
0x1C00_0000  
Code space  
Boot ROM  
0x07FF_FFFF  
0x1C00_0000  
RTC  
DAC  
0x1C00_3FFF  
0x1C00_4000  
0x1FFF_E000  
LPTMR  
System register file  
SIM low power logic  
SIM  
0x4004_1000  
0x4004_7000  
0x1FFF_E000  
0x2000_0000  
Data Space  
Reserved  
SRAM_L  
SRAM_U  
0x4004_8000  
0x4004_9000  
0x4004_A000  
0x4004_B000  
0x4004_C000  
0x4004_D000  
0x4005_3000  
0x4005_4000  
0x4005_5000  
0x4005_F000  
0x4006_4000  
0x4006_5000  
0x4006_6000  
0x4006_7000  
0x4006_C000  
0x4007_2000  
0x4007_3000  
0x4007_4000  
0x4007_6000  
0x4007_7000  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
SLCD  
0x2000_5FFF  
0x4000_0000  
0x2000_5FFF  
0x4000_0000  
0x4007_FFFF  
Public  
peripheral  
AIPS  
peripherals  
0x400F_F000  
LPUART0  
LPUART1  
FlexIO  
Reserved  
0x4400_0000  
0x6000_0000  
0x400F_F000  
0x400F_FFFF  
BME  
GPIO  
Reserved  
0xE000_0000  
MCG Lite  
OSC  
Private  
peripheral  
Reserved  
MTB  
0xE010_0000  
I2C0  
I2C1  
MTBDWT  
UART2  
USB  
ROM Table  
Others  
CMP  
MCM  
VREF  
SPI0  
Reserved  
IOPORT  
0xFFFF_FFFF  
SPI1  
0x4007_C000  
0x4007_D000  
0x4007_E000  
0x4007_F000  
0x400F_F000  
LLWU  
PMC  
SMC  
RCM  
GPIO  
Figure 4. Memory map  
26  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Pinouts  
4 Pinouts  
4.1 K32 L2B Signal Multiplexing and Pin Assignments (LQFP  
and MAPBGA)  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is  
responsible for selecting which ALT functionality is available on each pin.  
NOTE  
VREFH can act as VREF_OUT when VREFV1 module is  
enabled.  
NOTE  
When FTFA_FOPT[RESET_PIN_CONFIG]=0, the PTA20  
pin acts as RESET_B function only during the POR. After  
POR, this pin cannot be used as the RESET function. Then,  
writing to PORTA_PCR20[MUX]=0x1, the PTA20 pin will  
act as GPIO function (with setting value of ALT1). When  
FTFA_FOPT[RESET_PIN_CONFIG]=1, the PTA20 pin  
acts as RESET_B and cannot switch to GPIO function  
regardless of PORTA_PCR20[MUX]'s setting value.  
64  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
MAP LQFP  
BGA  
A1  
1
PTE0  
LCD_P48  
LCD_P48  
PTE0/  
CLKOUT32K  
SPI1_MISO  
SPI1_MOSI  
LPUART1_TX  
LPUART1_RX  
RTC_CLKOUT CMP0_OUT  
SPI1_MISO  
I2C1_SDA  
I2C1_SCL  
LCD_P48  
LCD_P49  
B1  
2
3
4
5
6
7
8
9
PTE1  
LCD_P49  
VDD  
LCD_P49  
VDD  
PTE1  
VDD  
C4  
E1  
D1  
E2  
D2  
G1  
VSS  
VSS  
VSS  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
PTE20  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
LCD_P59/  
ADC0_DP0/  
ADC0_SE0  
LCD_P59/  
ADC0_DP0/  
ADC0_SE0  
PTE20  
TPM1_CH0  
LPUART0_TX  
FXIO0_D4  
LCD_P59  
K32 L2B Microcontroller, Rev. 3, 09/2020  
27  
NXP Semiconductors  
Pinouts  
64  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
MAP LQFP  
BGA  
F1  
10  
PTE21  
LCD_P60/  
LCD_P60/  
PTE21  
TPM1_CH1  
LPUART0_RX  
FXIO0_D5  
LCD_P60  
ADC0_DM0/  
ADC0_SE4a  
ADC0_DM0/  
ADC0_SE4a  
G2  
F2  
11  
12  
PTE22  
PTE23  
ADC0_DP3/  
ADC0_SE3  
ADC0_DP3/  
ADC0_SE3  
PTE22  
PTE23  
TPM2_CH0  
TPM2_CH1  
UART2_TX  
UART2_RX  
FXIO0_D6  
FXIO0_D7  
ADC0_DM3/  
ADC0_SE7a  
ADC0_DM3/  
ADC0_SE7a  
F4  
G4  
G3  
F3  
H1  
13  
14  
15  
16  
17  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
PTE29  
CMP0_IN5/  
ADC0_SE4b  
CMP0_IN5/  
ADC0_SE4b  
PTE29  
PTE30  
TPM0_CH2  
TPM0_CH3  
TPM_CLKIN0  
TPM_CLKIN1  
H2  
18  
PTE30  
DAC0_OUT/  
ADC0_SE23/  
CMP0_IN4  
DAC0_OUT/  
ADC0_SE23/  
CMP0_IN4  
LPUART1_TX  
LPTMR0_  
ALT1  
H3  
H4  
H5  
D3  
D4  
E5  
D5  
G5  
F5  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
PTE31  
PTE24  
PTE25  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
PTA5  
PTA12  
PTA13  
VDD  
DISABLED  
DISABLED  
DISABLED  
SWD_CLK  
DISABLED  
DISABLED  
SWD_DIO  
NMI_b  
PTE31  
PTE24  
PTE25  
PTA0  
TPM0_CH4  
TPM0_CH0  
TPM0_CH1  
TPM0_CH5  
I2C0_SCL  
I2C0_SDA  
SWD_CLK  
PTA1  
LPUART0_RX TPM2_CH0  
PTA2  
LPUART0_TX  
I2C1_SCL  
TPM2_CH1  
TPM0_CH0  
TPM0_CH1  
TPM0_CH2  
TPM1_CH0  
TPM1_CH1  
PTA3  
SWD_DIO  
NMI_b  
PTA4  
I2C1_SDA  
DISABLED  
DISABLED  
DISABLED  
VDD  
PTA5  
USB_CLKIN  
H6  
G6  
G7  
H7  
H8  
G8  
PTA12  
PTA13  
VDD  
VSS  
VSS  
VSS  
PTA18  
PTA19  
EXTAL0  
EXTAL0  
XTAL0  
PTA18  
PTA19  
LPUART1_RX TPM_CLKIN0  
XTAL0  
LPUART1_TX  
TPM_CLKIN1  
LPTMR0_  
ALT1  
F8  
F7  
34  
35  
PTA20  
RESET_b  
PTB0/  
LLWU_P5  
LCD_P0/  
ADC0_SE8  
LCD_P0/  
ADC0_SE8  
PTB0/  
LLWU_P5  
I2C0_SCL  
I2C0_SDA  
I2C0_SCL  
I2C0_SDA  
SPI1_MOSI  
TPM1_CH0  
TPM1_CH1  
TPM2_CH0  
TPM2_CH1  
LCD_P0  
LCD_P1  
LCD_P2  
LCD_P3  
LCD_P12  
F6  
E7  
E8  
E6  
36  
37  
38  
39  
PTB1  
PTB2  
PTB3  
PTB16  
LCD_P1/  
ADC0_SE9  
LCD_P1/  
ADC0_SE9  
PTB1  
PTB2  
PTB3  
PTB16  
LCD_P2/  
ADC0_SE12  
LCD_P2/  
ADC0_SE12  
LCD_P3/  
ADC0_SE13  
LCD_P3/  
ADC0_SE13  
LCD_P12  
LCD_P12  
LPUART0_RX TPM_CLKIN0  
SPI1_MISO  
28  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Pinouts  
64  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
MAP LQFP  
BGA  
D7  
D6  
C7  
D8  
40  
41  
42  
43  
PTB17  
LCD_P13  
LCD_P14  
LCD_P15  
LCD_P13  
LCD_P14  
LCD_P15  
PTB17  
SPI1_MISO  
LPUART0_TX  
TPM2_CH0  
TPM2_CH1  
EXTRG_IN  
TPM_CLKIN1  
SPI1_MOSI  
LCD_P13  
PTB18  
PTB19  
PTC0  
PTB18  
PTB19  
PTC0  
LCD_P14  
LCD_P15  
LCD_P20  
LCD_P20/  
ADC0_SE14  
LCD_P20/  
ADC0_SE14  
audioUSB_  
SOF_OUT  
CMP0_OUT  
C6  
44  
PTC1/  
LCD_P21/  
LCD_P21/  
PTC1/  
I2C1_SCL  
TPM0_CH0  
LCD_P21  
LLWU_P6/  
RTC_CLKIN  
ADC0_SE15  
ADC0_SE15  
LLWU_P6/  
RTC_CLKIN  
B7  
C8  
45  
46  
PTC2  
LCD_P22/  
ADC0_SE11  
LCD_P22/  
ADC0_SE11  
PTC2  
I2C1_SDA  
SPI1_SCK  
TPM0_CH1  
LCD_P22  
LCD_P23  
PTC3/  
LCD_P23  
LCD_P23  
PTC3/  
LPUART1_RX TPM0_CH2  
CLKOUT  
LLWU_P7  
LLWU_P7  
E3  
E4  
C5  
A6  
47  
48  
49  
VSS  
VDD  
VLL3  
VLL2  
VSS  
VDD  
VLL3  
VSS  
VDD  
VLL3  
VLL2/  
LCD_P4  
VLL2/  
LCD_P4  
PTC20  
PTC21  
PTC22  
PTC23  
LCD_P4  
LCD_P5  
LCD_P6  
LCD_P39  
LCD_P24  
LCD_P25  
LCD_P26  
LCD_P27  
B5  
B4  
A5  
B8  
A8  
A7  
B6  
50  
51  
52  
53  
54  
55  
56  
VLL1  
VLL1/  
LCD_P5  
VLL1/  
LCD_P5  
VCAP2  
VCAP1  
VCAP2/  
LCD_P6  
VCAP2/  
LCD_P6  
VCAP1/  
LCD_P39  
VCAP1/  
LCD_P39  
PTC4/  
LLWU_P8  
LCD_P24  
LCD_P24  
PTC4/  
LLWU_P8  
SPI0_SS  
LPUART1_TX  
TPM0_CH3  
PTC5/  
LLWU_P9  
LCD_P25  
LCD_P25  
PTC5/  
LLWU_P9  
SPI0_SCK  
SPI0_MOSI  
SPI0_MISO  
LPTMR0_  
ALT2  
CMP0_OUT  
PTC6/  
LLWU_P10  
LCD_P26/  
CMP0_IN0  
LCD_P26/  
CMP0_IN0  
PTC6/  
LLWU_P10  
EXTRG_IN  
SPI0_MISO  
SPI0_MOSI  
PTC7  
LCD_P27/  
CMP0_IN1  
LCD_P27/  
CMP0_IN1  
PTC7  
audioUSB_  
SOF_OUT  
C3  
A4  
57  
58  
PTD0  
PTD1  
LCD_P40  
LCD_P40  
PTD0  
PTD1  
SPI0_SS  
TPM0_CH0  
TPM0_CH1  
FXIO0_D0  
FXIO0_D1  
LCD_P40  
LCD_P41  
LCD_P41/  
LCD_P41/  
SPI0_SCK  
ADC0_SE5b  
ADC0_SE5b  
C2  
B3  
A3  
59  
60  
61  
PTD2  
PTD3  
LCD_P42  
LCD_P43  
LCD_P44  
LCD_P42  
LCD_P43  
LCD_P44  
PTD2  
PTD3  
SPI0_MOSI  
SPI0_MISO  
SPI1_SS  
UART2_RX  
UART2_TX  
UART2_RX  
TPM0_CH2  
TPM0_CH3  
TPM0_CH4  
SPI0_MISO  
SPI0_MOSI  
FXIO0_D2  
FXIO0_D3  
FXIO0_D4  
LCD_P42  
LCD_P43  
LCD_P44  
PTD4/  
PTD4/  
LLWU_P14  
LLWU_P14  
C1  
B2  
A2  
62  
63  
64  
PTD5  
LCD_P45/  
ADC0_SE6b  
LCD_P45/  
ADC0_SE6b  
PTD5  
SPI1_SCK  
SPI1_MOSI  
SPI1_MISO  
UART2_TX  
TPM0_CH5  
FXIO0_D5  
FXIO0_D6  
FXIO0_D7  
LCD_P45  
LCD_P46  
LCD_P47  
PTD6/  
LLWU_P15  
LCD_P46/  
ADC0_SE7b  
LCD_P46/  
ADC0_SE7b  
PTD6/  
LLWU_P15  
LPUART0_RX  
LPUART0_TX  
SPI1_MISO  
SPI1_MOSI  
PTD7  
LCD_P47  
LCD_P47  
PTD7  
K32 L2B Microcontroller, Rev. 3, 09/2020  
29  
NXP Semiconductors  
Pinouts  
4.2 K32 L2B Signal Multiplexing and Pin Assignments (QFN)  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
NOTE  
When FTFA_FOPT[RESET_PIN_CONFIG]=0, the PTA20  
pin acts as RESET_B function only during the POR. After  
POR, this pin cannot be used as the RESET function. Then,  
writing to PORTA_PCR20[MUX]=0x1, the PTA20 pin will  
act as GPIO function (with setting value of ALT1). When  
FTFA_FOPT[RESET_PIN_CONFIG]=1, the PTA20 pin acts  
as RESET_B and cannot switch to GPIO function regardless  
of PORTA_PCR20[MUX]'s setting value.  
32  
48  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
QFN  
QFN  
1
7
VDD  
VDD  
VDD  
PTE20  
ADC0_DP0/  
ADC0_SE0  
ADC0_DP0/  
ADC0_SE0  
PTE20  
TPM1_CH0  
TPM1_CH1  
LPUART0_TX  
LPUART0_RX  
FXIO0_D4  
FXIO0_D5  
8
PTE21  
ADC0_DM0/  
ADC0_SE4a  
ADC0_DM0/  
ADC0_SE4a  
PTE21  
10  
11  
13  
VREFH  
VREFL  
PTE29  
VREFH  
VREFL  
VREFH  
VREFL  
CMP0_IN5/  
ADC0_SE4b  
CMP0_IN5/  
ADC0_SE4b  
PTE29  
TPM0_CH2  
TPM_CLKIN0  
15  
16  
29  
30  
31  
32  
33  
PTE24  
PTE25  
PTB2  
DISABLED  
DISABLED  
ADC0_SE12  
ADC0_SE13  
DISABLED  
DISABLED  
ADC0_SE14  
PTE24  
PTE25  
PTB2  
TPM0_CH0  
TPM0_CH1  
TPM2_CH0  
TPM2_CH1  
LPUART0_RX  
LPUART0_TX  
EXTRG_IN  
I2C0_SCL  
I2C0_SDA  
ADC0_SE12  
ADC0_SE13  
I2C0_SCL  
I2C0_SDA  
SPI1_MOSI  
SPI1_MISO  
PTB3  
PTB3  
PTB16  
PTB17  
PTC0  
PTB16  
PTB17  
PTC0  
TPM_CLKIN0  
TPM_CLKIN1  
SPI1_MISO  
SPI1_MOSI  
CMP0_OUT  
ADC0_SE14  
ADC0_SE5b  
audioUSB_  
SOF_OUT  
1
41  
42  
43  
44  
PTD0  
PTD1  
PTD2  
PTD3  
PTE0  
DISABLED  
ADC0_SE5b  
DISABLED  
DISABLED  
DISABLED  
PTD0  
PTD1  
PTD2  
PTD3  
SPI0_SS  
TPM0_CH0  
TPM0_CH1  
TPM0_CH2  
TPM0_CH3  
FXIO0_D0  
FXIO0_D1  
FXIO0_D2  
FXIO0_D3  
I2C1_SDA  
SPI0_SCK  
SPI0_MOSI  
SPI0_MISO  
SPI1_MISO  
UART2_RX  
UART2_TX  
LPUART1_TX  
SPI0_MISO  
SPI0_MOSI  
PTE0/  
RTC_CLKOUT CMP0_OUT  
CLKOUT32K  
2
2
VSS  
VSS  
VSS  
30  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Pinouts  
32  
48  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
QFN  
QFN  
3
4
5
6
7
8
9
3
4
USB0_DP  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
VDDA  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
VDDA  
USB0_DM  
VOUT33  
VREGIN  
VDDA  
5
6
9
12  
14  
VSSA  
VSSA  
VSSA  
PTE30  
DAC0_OUT/  
ADC0_SE23/  
CMP0_IN4  
DAC0_OUT/  
ADC0_SE23/  
CMP0_IN4  
PTE30  
TPM0_CH3  
TPM_CLKIN1  
LPUART1_TX  
LPTMR0_  
ALT1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
VDD  
SWD_CLK  
DISABLED  
DISABLED  
SWD_DIO  
NMI_b  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
TPM0_CH5  
TPM2_CH0  
TPM2_CH1  
TPM0_CH0  
TPM0_CH1  
SWD_CLK  
LPUART0_RX  
LPUART0_TX  
I2C1_SCL  
SWD_DIO  
NMI_b  
I2C1_SDA  
VDD  
VDD  
VSS  
VSS  
VSS  
PTA18  
PTA19  
EXTAL0  
XTAL0  
EXTAL0  
XTAL0  
PTA18  
PTA19  
LPUART1_RX  
LPUART1_TX  
TPM_CLKIN0  
TPM_CLKIN1  
LPTMR0_  
ALT1  
19  
20  
26  
27  
PTA20  
RESET_b  
PTB0/  
LLWU_P5  
ADC0_SE8  
ADC0_SE8  
PTB0/  
LLWU_P5  
I2C0_SCL  
TPM1_CH0  
TPM1_CH1  
21  
22  
28  
34  
PTB1  
ADC0_SE9  
ADC0_SE9  
PTB1  
I2C0_SDA  
I2C1_SCL  
PTC1/  
ADC0_SE15  
ADC0_SE15  
PTC1/  
TPM0_CH0  
LLWU_P6/  
RTC_CLKIN  
LLWU_P6/  
RTC_CLKIN  
23  
24  
35  
36  
PTC2  
ADC0_SE11  
DISABLED  
ADC0_SE11  
PTC2  
I2C1_SDA  
SPI1_SCK  
TPM0_CH1  
TPM0_CH2  
PTC3/  
LLWU_P7  
PTC3/  
LLWU_P7  
LPUART1_RX  
LPUART1_TX  
CLKOUT  
25  
26  
27  
28  
29  
37  
38  
39  
40  
45  
PTC4/  
LLWU_P8  
DISABLED  
DISABLED  
CMP0_IN0  
CMP0_IN1  
DISABLED  
PTC4/  
LLWU_P8  
SPI0_SS  
TPM0_CH3  
PTC5/  
LLWU_P9  
PTC5/  
LLWU_P9  
SPI0_SCK  
SPI0_MOSI  
SPI0_MISO  
SPI1_SS  
LPTMR0_  
ALT2  
CMP0_OUT  
FXIO0_D4  
PTC6/  
LLWU_P10  
CMP0_IN0  
CMP0_IN1  
PTC6/  
LLWU_P10  
EXTRG_IN  
SPI0_MISO  
SPI0_MOSI  
PTC7  
PTC7  
audioUSB_  
SOF_OUT  
PTD4/  
LLWU_P14  
PTD4/  
LLWU_P14  
UART2_RX  
TPM0_CH4  
TPM0_CH5  
30  
31  
46  
47  
PTD5  
ADC0_SE6b  
ADC0_SE7b  
ADC0_SE6b  
ADC0_SE7b  
PTD5  
SPI1_SCK  
UART2_TX  
FXIO0_D5  
FXIO0_D6  
PTD6/  
LLWU_P15  
PTD6/  
LLWU_P15  
SPI1_MOSI  
LPUART0_RX  
SPI1_MISO  
SPI1_MOSI  
32  
48  
PTD7  
DISABLED  
PTD7  
SPI1_MISO  
LPUART0_TX  
FXIO0_D7  
K32 L2B Microcontroller, Rev. 3, 09/2020  
31  
NXP Semiconductors  
Pinouts  
4.3 Pin properties  
The following table lists the pin properties of 64 LQFP/MAPBGA package.  
1
2
A1  
B1  
PTE0  
PTE1  
ND  
ND  
Hi-Z  
Hi-Z  
PD  
SS  
SS  
N
N
N
N
N
N
3
VDD  
N
N
N
4
C4  
E1  
D1  
E2  
D2  
G1  
F1  
G2  
F2  
F4  
G4  
G3  
F3  
H1  
H2  
H3  
H4  
H5  
D3  
D4  
E5  
VSS  
5
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
PTE20  
PTE21  
PTE22  
PTE23  
VDDA  
6
7
8
9
ND  
ND  
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
SS  
SS  
SS  
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
N
N
N
N
N
N
N
N
N
N
N
N
VREFH  
VREFL  
VSSA  
PTE29  
PTE30  
PTE31  
PTE24  
PTE25  
PTA0  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
L
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
PTA1  
Hi-Z  
Hi-Z  
N
N
Y
PTA2  
N
N
Y
Table continues on the next page...  
32  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Pinouts  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
D5  
G5  
F5  
H6  
G6  
G7  
H7  
H8  
G8  
F8  
F7  
F6  
E7  
E8  
E6  
D7  
D6  
C7  
D8  
C6  
PTA3  
PTA4  
ND  
ND  
ND  
ND  
ND  
H
PU  
PU  
PU  
FS  
SS  
SS  
SS  
SS  
N
N
N
N
N
N
N
Y
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
Y
Y
H
PTA5  
Hi-Z  
Hi-Z  
Hi-Z  
PTA12  
PTA13  
VDD  
VSS  
PTA18  
PTA19  
PTA20  
PTB0/LLWU_P5  
PTB1  
ND  
ND  
ND  
HD  
HD  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
Hi-Z  
Hi-Z  
H
SS  
SS  
SS  
SS  
SS  
SS  
SS  
FS  
FS  
SS  
SS  
SS  
SS  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
PTB2  
PTB3  
PTB16  
PTB17  
PTB18  
PTB19  
PTC0  
PTC1/LLWU_P6/  
RTC_CLKIN  
45  
46  
47  
48  
49  
50  
51  
B7  
C8  
E3  
E4  
C5  
A6  
B5  
B4  
PTC2  
PTC3/LLWU_P7  
VSS  
ND  
HD  
Hi-Z  
Hi-Z  
SS  
FS  
N
N
Y
N
N
Y
VDD  
VLL3  
VLL2  
VLL1  
VCAP2  
Table continues on the next page...  
K32 L2B Microcontroller, Rev. 3, 09/2020  
33  
NXP Semiconductors  
Pinouts  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
A5  
B8  
A8  
A7  
B6  
C3  
A4  
C2  
B3  
A3  
C1  
B2  
A2  
VCAP1  
PTC4/LLWU_P8  
PTC5/LLWU_P9  
PTC6/LLWU_P10  
PTC7  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
HD  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
HD  
HD  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
FS  
FS  
FS  
FS  
SS  
SS  
SS  
SS  
FS  
FS  
FS  
FS  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4/LLWU_P14  
PTD5  
PTD6/LLWU_P15  
PTD7  
The following table lists the pin properties of 32/48 QFN package.  
1
VDD  
Table continues on the next page...  
34  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Pinouts  
1
7
PTE20  
PTE21  
VREFH  
VREFL  
PTE29  
PTE24  
PTE25  
PTB2  
ND  
ND  
Hi-Z  
Hi-Z  
PD  
PU  
SS  
SS  
N
N
N
N
N
N
N
N
N
N
S
8
10  
11  
13  
15  
16  
29  
30  
31  
32  
33  
41  
42  
43  
44  
2
N
N
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
SS  
SS  
SS  
SS  
SS  
FS  
FS  
SS  
SS  
SS  
SS  
SS  
SS  
N
N
N
N
N
N
PTB3  
N
N
PTB16  
PTB17  
PTC0  
N
N
N
N
Y
N
N
N
N
PTD0  
N
N
Y
PTD1  
N
N
Y
PTD2  
N
N
Y
PTD3  
N
N
Y
PTE0  
N
N
N
N
Y
2
VSS  
N
N
3
3
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
VDDA  
VSSA  
4
4
5
5
6
6
7
9
8
12  
14  
17  
18  
19  
20  
9
PTE30  
PTA0  
ND  
ND  
ND  
ND  
ND  
Hi-Z  
L
SS  
SS  
SS  
SS  
FS  
10  
11  
12  
13  
N
N
PTA1  
Hi-Z  
Hi-Z  
H
N
N
Y
PTA2  
N
N
Y
PTA3  
N
N
Y
Table continues on the next page...  
K32 L2B Microcontroller, Rev. 3, 09/2020  
35  
NXP Semiconductors  
Pinouts  
14  
15  
16  
17  
18  
19  
20  
21  
22  
21  
22  
23  
24  
25  
26  
27  
28  
34  
PTA4  
VDD  
ND  
H
PU  
PU  
SS  
N
N
N
Y
N
N
N
Y
Y
Y
VSS  
PTA18  
ND  
ND  
ND  
HD  
HD  
ND  
Hi-Z  
Hi-Z  
H
SS  
SS  
SS  
SS  
SS  
SS  
PTA19  
Y
PTA20  
Y
PTB0/LLWU_P5  
PTB1  
Hi-Z  
Hi-Z  
Hi-Z  
N
N
N
N
N
N
N
N
Y
PTC1/LLWU_P6/  
RTC_CLKIN  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
35  
36  
37  
38  
39  
40  
45  
46  
47  
48  
PTC2  
ND  
HD  
HD  
ND  
ND  
ND  
ND  
ND  
HD  
HD  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
SS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
FS  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
PTC3/LLWU_P7  
PTC4/LLWU_P8  
PTC5/LLWU_P9  
PTC6/LLWU_P10  
PTC7  
PTD4/LLWU_P14  
PTD5  
PTD6/LLWU_P15  
PTD7  
Properties  
Abbreviation  
Descriptions  
Normal drive  
High drive  
Driver strength  
ND  
HD  
Hi-Z  
H
Default status after POR  
High impendence  
High level  
L
Low level  
Pullup/ pulldown setting  
after POR  
PD  
PU  
Pulldown  
Pullup  
Table continues on the next page...  
36  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Pinouts  
Properties  
Abbreviation  
Descriptions  
Fast slew rate  
Slow slew rate  
Disabled  
Slew rate after POR  
FS  
SS  
N
Passive Pin Filter after  
POR  
Y
Enabled  
Open drain  
N
Disabled1  
Enabled2  
Y
Pin interrupt  
Y
Yes  
1. When I2C module is enabled and a pin is functional for I2C, this pin is (pseudo-) open drain enabled. When UART or  
LPUART module is enabled and a pin is functional for UART or LPUART, this pin is (pseudo-) open drain  
configurable.  
2. PTA20 is a true open drain pin that must never be pulled above VDD.  
4.4 Module Signal Description Tables  
The following sections correlate the chip-level signal name with the signal name used  
in the module's chapter. They also briefly describe the signal function and direction.  
4.4.1 Core modules  
Table 9. SWD signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
SWD_DIO  
SWD_DIO  
SWD_CLK  
Serial Wire Debug Data Input/Output  
Input /  
Output  
The SWD_DIO pin is used by an external debug tool for  
communication and device control. This pin is pulled up  
internally.  
SWD_CLK  
Serial Wire Clock  
Input  
This pin is the clock for debug logic when in the Serial Wire  
Debug mode. This pin is pulled down internally.  
4.4.2 System modules  
Table 10. System signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
NMI  
Non-maskable interrupt  
I
Table continues on the next page...  
K32 L2B Microcontroller, Rev. 3, 09/2020  
37  
NXP Semiconductors  
Pinouts  
Table 10. System signal descriptions (continued)  
Chip signal name  
Module signal  
name  
Description  
I/O  
NOTE: Driving the NMI signal low forces a non-maskable  
interrupt, if the NMI function is selected on the  
corresponding pin.  
RESET  
VDD  
Reset bidirectional signal  
MCU power  
I/O  
I
I
VSS  
MCU ground  
Table 11. LLWU signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LLWU_Pn  
LLWU_Pn  
Wakeup inputs  
I
4.4.3 Clock modules  
Table 12. OSC signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
EXTAL  
XTAL  
EXTAL0  
XTAL0  
External clock/Oscillator input  
Oscillator output  
I
O
4.4.4 Analog  
This table presents the signal descriptions of the ADC0 module.  
Table 13. ADC0 signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
ADC0_DPn  
ADC0_DMn  
ADC0_SEn  
VREFH  
DADP3–DADP0  
Differential Analog Channel Inputs  
I
I
I
I
I
I
I
DADM3–DADM0 Differential Analog Channel Inputs  
ADn  
VREFSH  
VREFSL  
VDDA  
Single-Ended Analog Channel Inputs  
Voltage Reference Select High  
Voltage Reference Select Low  
Analog Power Supply  
VREFL  
VDDA  
VSSA  
VSSA  
Analog Ground  
Table continues on the next page...  
38  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Pinouts  
Table 13. ADC0 signal descriptions (continued)  
Chip signal name  
Module signal  
name  
Description  
I/O  
EXTRG_IN  
ADHWT  
Hardware trigger  
I
This table presents the signal descriptions of the CMP0 module.  
Table 14. CMP0 signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
CMP0_IN[5:0]  
CMP0_OUT  
IN[5:0]  
CMPO  
Analog voltage inputs  
Comparator output  
I
O
Table 15. VREF signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
VREF_OUT  
VREF_OUT  
Internally-generated voltage reference output  
O
4.4.5 Timer Modules  
Table 16. TPM0 signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
TPM_CLKIN[1:0]  
TPM_EXTCLK  
External clock. TPM external clock can be selected to increment  
the TPM counter on every rising edge synchronized to the  
counter clock.  
I
TPM0_CH[5:0]  
EXTRG_IN  
TPM_CHn  
TPM channel (n = 5 to 0). A TPM channel pin is configured as  
output when configured in an output compare or PWM mode and  
the TPM counter is enabled, otherwise the TPM channel pin is an  
input.  
I/O  
I
ADHWT  
Hardware trigger  
Table 17. TPM1 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
TPM_CLKIN[1:0]  
TPM_EXTCLK  
External clock. TPM external clock can be selected to increment  
the TPM counter on every rising edge synchronized to the  
counter clock.  
I
Table continues on the next page...  
K32 L2B Microcontroller, Rev. 3, 09/2020  
39  
NXP Semiconductors  
Pinouts  
Table 17. TPM1 signal descriptions (continued)  
Chip signal name  
Module signal  
name  
Description  
I/O  
TPM1_CH[1:0]  
TPM_CHn  
TPM channel (n = 1 to 0). A TPM channel pin is configured as  
output when configured in an output compare or PWM mode and  
the TPM counter is enabled, otherwise the TPM channel pin is an  
input.  
I/O  
EXTRG_IN  
ADHWT  
Hardware trigger  
I
Table 18. TPM2 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
TPM_CLKIN[1:0]  
TPM_EXTCLK  
External clock. TPM external clock can be selected to increment  
the TPM counter on every rising edge synchronized to the counter  
clock.  
I
TPM2_CH[1:0]  
EXTRG_IN  
TPM_CHn  
ADHWT  
TPM channel (n = 1 to 0). A TPM channel pin is configured as  
output when configured in an output compare or PWM mode and  
the TPM counter is enabled, otherwise the TPM channel pin is an  
input.  
I/O  
Hardware trigger  
I
Table 19. LPTMR0 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LPTMR0_ALT[3:1]  
LPTMR0_ALTn  
Pulse Counter Input pin  
I
Table 20. RTC signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
RTC_CLKOUT1  
RTC_CLKOUT  
1 Hz square-wave output or OSCERCLK  
O
1. RTC_CLKOUT can also be driven with OSCERCLK via SIM control bit SIM_SOPT[RCTCLKOUTSEL]  
4.4.6 Communication interfaces  
Table 21. USB FS Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
USB0_DM  
USB0_DP  
usb_dm  
usb_dp  
USB D- analog data signal on the USB bus.  
USB D+ analog data signal on the USB bus.  
Alternate USB clock input  
I/O  
I/O  
I
USB_CLKIN  
40  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Pinouts  
Table 22. SPI0 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
MISO  
MOSI  
SPSCK  
SS  
SPI0_MISO  
SPI0_MOSI  
SPI0_SCLK  
SPI0_PCS0  
Master Data In, Slave Data Out  
Master Data Out, Slave Data In  
SPI Serial Clock  
I/O  
I/O  
I/O  
I/O  
Slave Select  
Table 23. SPI1 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
MISO  
MOSI  
SPSCK  
SS  
SPI1_MISO  
SPI1_MOSI  
SPI1_SCLK  
SPI1_PCS0  
Master Data In, Slave Data Out  
Master Data Out, Slave Data In  
SPI Serial Clock  
I/O  
I/O  
I/O  
I/O  
Slave Select  
Table 24. I2C0 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
I2C0_SCL  
I2C0_SDA  
SCL  
Bidirectional serial clock line of the I2C system.  
Bidirectional serial data line of the I2C system.  
I/O  
I/O  
SDA  
Table 25. I2C1 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
I2C1_SCL  
I2C1_SDA  
SCL  
Bidirectional serial clock line of the I2C system.  
Bidirectional serial data line of the I2C system.  
I/O  
I/O  
SDA  
Table 26. LPUART0 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LPUART0_TX  
LPUART0_RX  
TxD  
Transmit data  
Receive data  
I/O  
I
RxD  
K32 L2B Microcontroller, Rev. 3, 09/2020  
41  
NXP Semiconductors  
Pinouts  
Table 27. LPUART1 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LPUART1_TX  
LPUART1_RX  
TxD  
Transmit data  
Receive data  
I/O  
I
RxD  
Table 28. UART2 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
UART2_TX  
UART2_RX  
TxD  
Transmit data  
Receive data  
O
I
RxD  
Table 29. FlexIO signal descriptions  
Chip signal name  
Module signal name  
Description  
I/O  
FXIO0_Dx  
FXIO_Dn (n=0...7)  
Bidirectional FlexIO Shifter  
and Timer pin inputs/outputs  
I/O  
I
EXTRG_IN  
ADHWT  
Hardware trigger  
4.4.7 Human-machine interfaces (HMI)  
Table 30. GPIO Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
PTA[20:0]  
PTB[19:0]  
PTD[7:0]  
PTE[31:0]  
PORTA20–PORTA0 General-purpose input/output  
PORTB19–PORTB0 General-purpose input/output  
PORTD7–PORTD0 General-purpose input/output  
PORTE31–PORTE0 General-purpose input/output  
I/O  
I/O  
I/O  
I/O  
Table 31. LCD Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
LCD_Pn  
LCD_P[63:0] . 64 Configurable front plane/back plane driver that connects directly to  
LCD front plane/back the display. LCD_P[63:0] can operate as GPIO pins  
plane  
O
VLL1, VLL2, VLL3  
VLL1, VLL2, VLL3. LCD LCD bias voltages (requires external capacitors when charge  
I/O  
bias voltages  
pump is used).  
Table continues on the next page...  
42  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Pinouts  
Table 31. LCD Signal Descriptions (continued)  
Chip signal name  
Module signal  
name  
Description  
I/O  
Vcap1, Vcap2  
Vcap1, Vcap2. LCD Charge pump capacitor pins.  
O
charge pump  
capacitance.  
4.5 K32 L2B LQFP and MAPBGA pinouts  
Figure below shows the 64 LQFP pinouts  
K32 L2B Microcontroller, Rev. 3, 09/2020  
43  
NXP Semiconductors  
Pinouts  
PTE0  
PTE1  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VLL3  
2
VSS  
VDD  
3
PTC3/LLWU_P7  
VSS  
4
PTC2  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
PTE20  
PTE21  
PTE22  
PTE23  
VDDA  
5
PTC1/LLWU_P6/RTC_CLKIN  
6
PTC0  
7
PTB19  
PTB18  
PTB17  
PTB16  
PTB3  
8
9
10  
11  
12  
13  
14  
15  
16  
PTB2  
PTB1  
VREFH  
VREFL  
VSSA  
PTB0/LLWU_P5  
PTA20  
PTA19  
Figure 5. 64 LQFP Pinout diagram  
Figure below shows the 64 MAPBGA pinouts  
44  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Pinouts  
1
2
3
4
5
6
7
8
PTD4/  
LLWU_P14  
PTC6/  
LLWU_P10  
PTC5/  
LLWU_P9  
A
B
C
D
E
F
PTE0  
PTD7  
PTD1  
VCAP1  
VLL2  
A
B
C
D
E
F
PTD6/  
LLWU_P15  
PTC4/  
LLWU_P8  
PTE1  
PTD5  
PTD3  
PTD0  
PTA0  
VSS  
VCAP2  
VSS  
VLL1  
VLL3  
PTA3  
PTA2  
PTA5  
PTA4  
PTC7  
PTC2  
PTB19  
PTB17  
PTB2  
PTC1/  
LLWU_P6/  
RTC_CLKIN  
PTC3/  
LLWU_P7  
PTD2  
USB0_DM VREGIN  
PTA1  
PTB18  
PTB16  
PTB1  
PTC0  
PTB3  
USB0_DP  
PTE21  
VOUT33  
PTE23  
PTE22  
VDD  
PTB0/  
LLWU_P5  
VSSA  
VREFL  
VDDA  
VREFH  
PTA20  
PTA19  
G
H
PTE20  
PTA13  
VDD  
G
H
PTE29  
1
PTE30  
2
PTE31  
3
PTE24  
4
PTE25  
5
PTA12  
6
VSS  
7
PTA18  
8
Figure 6. 64 MAPBGA Pinout diagram  
4.6 K32 L2B QFN Pinouts  
The figure below shows the 32 QFN pinouts.  
K32 L2B Microcontroller, Rev. 3, 09/2020  
45  
NXP Semiconductors  
Pinouts  
PTC3/LLWU_P7  
PTE0  
VSS  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
7
8
PTC2  
PTC1/LLWU_P6/RTC_CLKIN  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
VDDA  
PTB1  
PTB0/LLWU_P5  
PTA20  
PTA19  
18  
17  
VSSA  
PTA18  
Figure 7. 32 QFN Pinout diagram (transparent top view)  
The figure below shows the 48 QFN pinouts.  
46  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Pinouts  
PTC3/LLWU_P7  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD  
VSS  
1
2
PTC2  
PTC1/LLWU_P6/RTC_CLKIN  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
PTE20  
3
PTC0  
4
PTB17  
PTB16  
PTB3  
5
6
7
PTE21  
PTB2  
8
VDDA  
PTB1  
9
VREFH  
VREFL  
VSSA  
PTB0/LLWU_P5  
PTA20  
10  
11  
12  
PTA19  
Figure 8. 48 QFN Pinout diagram (transparent top view)  
4.7 Package dimensions  
The following figures show the dimensions of the package options for the devices  
supported by this document.  
K32 L2B Microcontroller, Rev. 3, 09/2020  
47  
NXP Semiconductors  
Pinouts  
Figure 9. 64-pin LQFP package dimensions 1  
48  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Pinouts  
8
(0.22)  
BASE METAL  
0.16  
B
B
0.20  
0.09  
8
0.09  
8
60X  
0.5  
PLATING  
0.23  
0.17  
0.25  
8
X
X=A, B OR D  
SECTION B-B  
DETAIL Y  
(0.2)  
0° MIN  
1.45  
1.35  
0.05  
2X R0.2  
0.1  
0.25  
GAUGE  
PLANE  
0.15  
0.05  
(0.5)  
0.75  
0.45  
7°  
0°  
(1.00)  
DETAIL AA  
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
3. DATUMS A, B AND D TO BE DETERMINDE AT DATUM PLANE H.  
4. DIMENSIONS TO BE DETERMINED AT SEATING PLANE C.  
5. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT  
BY MORE THAN 0.08 MM AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE  
LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN  
PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 MM.  
6. THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION  
IS 0.25 MM PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE  
DIMENSION INCLUDING MOLD MISMATCH.  
7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.  
8. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN  
0.1 MM AND 0.25 MM FROM THE LEAD TIP.  
Figure 10. 64-pin LQFP package dimensions 2  
K32 L2B Microcontroller, Rev. 3, 09/2020  
49  
NXP Semiconductors  
Pinouts  
5
B
C
64X  
0.08 A  
A1 INDEX AREA  
D
A
5
// 0.2 A  
SEATING  
PLANE  
4
5
4X  
0.15  
D
TOP VIEW  
0.25  
7X 0.5  
H
G
F
7X 0.5  
0.25  
E
D
C
B
A
0.25  
0.15  
0.35  
Ø0.25  
64X  
3
M
A B  
A
C
Ø0.15  
1.23 MAX  
M
Ø0.05  
A1 INDEX AREA  
VIEW D-D  
BOTTOM VIEW  
NOTES:  
1. ALL DIMENSIONS IN MILLIMETERS.  
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.  
4. DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE  
SOLDER BALLS.  
5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE  
OF PACKAGE.  
Figure 11. 64-pin MAPBGA package dimension  
50  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Pinouts  
Figure 12. 48-pin QFN package dimension 1  
K32 L2B Microcontroller, Rev. 3, 09/2020  
51  
NXP Semiconductors  
Pinouts  
45°  
0.25  
(0.05)  
0.95  
1.13  
DETAIL F  
// 0.1 C  
48X  
0.65  
0.50  
0.08 C  
4
0.05  
0.00  
(0.2)  
C
SEATING PLANE  
(0.5)  
DETAIL G  
VIEW ROTATED 90℃W  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
3. THIS IS A NON-JEDEC REGISTERED PACKAGE.  
4. COPLANARITY APPLIES TO LEADS AND DIE ATTACH FLAG.  
5. MIN. METAL GAP SHOULD BE 0.2 MM.  
Figure 13. 48-pin QFN package dimension 2  
52  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Pinouts  
Figure 14. 32-pin QFN package dimension 1  
K32 L2B Microcontroller, Rev. 3, 09/2020  
53  
NXP Semiconductors  
Electrical characteristics  
// 0.1 C  
32X  
0.65  
0.50  
0.08 C  
0.05  
0.00  
(0.2)  
C
SEATING PLANE  
(0.5)  
DETAIL G  
VIEW ROTATED 90℃W  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.  
3. THIS IS A NON-JEDEC REGISTERED PACKAGE.  
4. COPLANARITY APPLIES TO LEADS AND DIE ATTACH FLAG.  
5. MIN. METAL GAP SHOULD BE 0.2 MM.  
Figure 15. 32-pin QFN package dimension 2  
5 Electrical characteristics  
5.1 Ratings  
54  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Electrical characteristics  
5.1.1 Thermal handling ratings  
Table 32. Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
5.1.2 Moisture handling ratings  
Table 33. Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
5.1.3 ESD handling ratings  
Table 34. ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
–2000  
–500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
ILAT  
Latch-up current at ambient temperature of 105 °C  
–100  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
5.1.4 Voltage and current operating ratings  
Table 35. Voltage and current operating ratings  
Symbol  
VDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage  
Digital supply current  
IDD  
120  
mA  
Table continues on the next page...  
K32 L2B Microcontroller, Rev. 3, 09/2020  
55  
NXP Semiconductors  
Electrical characteristics  
Table 35. Voltage and current operating ratings (continued)  
Symbol  
VIO  
Description  
Min.  
–0.3  
–25  
Max.  
VDD + 0.3  
25  
Unit  
V
IO pin input voltage  
ID  
Instantaneous maximum current single pin limit (applies to  
all port pins)  
mA  
VDDA  
Analog supply voltage  
USB_DP input voltage  
USB_DM input voltage  
USB regulator input  
VDD – 0.3  
–0.3  
VDD + 0.3  
3.63  
V
V
V
V
VUSB_DP  
VUSB_DM  
VREGIN  
–0.3  
3.63  
–0.3  
6.0  
5.2 General  
5.2.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 16. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assume that the  
output pins have the following characteristics.  
• CL=30 pF loads  
• Slew rate disabled  
• Normal drive strength  
5.2.2 Nonswitching electrical specifications  
56  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Electrical characteristics  
5.2.2.1 Voltage and current operating requirements  
Table 36. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
3.6  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
0.1  
V
0.1  
V
VIH  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
-3  
V
IO pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
mA  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents of 16  
contiguous pins  
-25  
mA  
• Negative current injection  
VODPU  
VRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
2
VDD voltage required to retain RAM  
1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN  
greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If  
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting  
resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|.  
2. Open drain outputs must be pulled to VDD  
.
5.2.2.2 LVD and POR operating requirements  
Table 37. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV = 01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV = 00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
2.62  
2.72  
2.82  
2.70  
2.80  
2.90  
2.78  
2.88  
2.98  
V
V
V
• Level 2 falling (LVWV = 01)  
Table continues on the next page...  
K32 L2B Microcontroller, Rev. 3, 09/2020  
57  
NXP Semiconductors  
Electrical characteristics  
Table 37. VDD supply LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLVW4H  
• Level 3 falling (LVWV = 10)  
2.92  
3.00  
3.08  
V
• Level 4 falling (LVWV = 11)  
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
60  
mV  
V
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV = 00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
40  
1.86  
1.96  
2.06  
2.16  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low-power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
5.2.2.3 Voltage and current operating behaviors  
Table 38. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –1.5 mA  
1
VDD – 0.5  
VDD – 0.5  
V
V
VOH  
Output high voltage — high drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –18 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –6 mA  
1
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
VOL  
Output high current total for all ports  
100  
mA  
Output low voltage — normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 1.5 mA  
1
1
0.5  
0.5  
V
V
VOL  
Output low voltage — high drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 18 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 6 mA  
0.5  
0.5  
V
V
IOLT  
Output low current total for all ports  
100  
mA  
Table continues on the next page...  
58  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Electrical characteristics  
Table 38. Voltage and current operating behaviors (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
IIN  
Input leakage current (per pin) for full temperature  
range  
1
μA  
2
IIN  
IIN  
Input leakage current (per pin) at 25 °C  
0.025  
64  
μA  
μA  
2
2
Input leakage current (total all pins) for full  
temperature range  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
Internal pullup resistors  
1
μA  
kΩ  
RPU  
20  
50  
3
1. PTB0, PTB1, PTC3, PTC4, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the  
associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.  
2. Measured at VDD = 3.6 V  
3. Measured at VDD supply voltage = VDD min and Vinput = VSS  
5.2.2.4 Power mode transition operating behaviors  
All specifications except tPOR and VLLSxRUN recovery times in the following  
table assume this clock configuration:  
• CPU and system clocks = 48 MHz  
• Bus and flash clock = 24 MHz  
• HIRC clock mode  
Table 39. Power mode transition operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tPOR After a POR event, amount of time from the  
300  
μs  
1
point VDD reaches 1.8 V to execution of the first  
instruction across the operating temperature  
range of the chip.  
• VLLS0 RUN  
• VLLS1 RUN  
• VLLS3 RUN  
• LLS RUN  
152  
152  
93  
166  
166  
104  
8
μs  
μs  
μs  
μs  
μs  
μs  
7.5  
7.5  
7.5  
• VLPS RUN  
• STOP RUN  
8
8
1. Normal boot (FTFA_FOPT[LPBOOT]=11)  
K32 L2B Microcontroller, Rev. 3, 09/2020  
59  
NXP Semiconductors  
Electrical characteristics  
5.2.2.5 Power consumption operating behaviors  
The maximum values stated in the following table represent characterized results  
equivalent to the mean plus three times the standard deviation (mean + 3 sigma).  
NOTE  
The while (1) test is executed with flash cache enabled.  
Table 40. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUNCO Running CoreMark in flash in compute operation  
mode—48M HIRC mode, 48 MHz core / 24 MHz  
flash, VDD = 3.0 V  
5.76  
6.04  
6.40  
6.68  
mA  
mA  
mA  
• at 25 °C  
• at 105 °C  
IDD_RUNCO Running While(1) loop in flash in compute  
operation mode—48M HIRC mode, 48 MHz  
core / 24 MHz flash, VDD = 3.0 V  
• at 25 °C  
3.21  
3.49  
3.85  
4.13  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock disable 48  
MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
2
2
6.45  
6.75  
7.09  
7.39  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in flash all peripheral clock disable, 24  
MHz core/12 MHz flash, VDD = 3.0 V  
3.95  
4.23  
4.59  
4.87  
• at 25 °C  
mA  
mA  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock disable 12  
MHz core/6 MHz flash, VDD = 3.0 V  
• at 25 °C  
2
2
2.68  
2.96  
3.32  
3.60  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock enable 48  
MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
8.08  
8.39  
8.72  
9.03  
mA  
• at 105 °C  
Table continues on the next page...  
60  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Electrical characteristics  
Table 40. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in flash all peripheral clock disable,  
48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
3.90  
4.21  
4.54  
4.85  
mA  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in Flash all peripheral clock disable,  
24 MHz core/12 MHz flash, VDD = 3.0 V  
• at 25 °C  
2.66  
2.94  
3.30  
3.58  
mA  
mA  
mA  
mA  
mA  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, Running  
While(1) loop in Flash all peripheral clock disable,  
12 MHz core/6 MHz flash, VDD = 3.0 V  
• at 25 °C  
2.03  
2.31  
2.67  
2.95  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, Running  
While(1) loop in Flash all peripheral clock enable,  
48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
5.52  
5.83  
6.16  
6.47  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in SRAM all peripheral clock  
disable, 48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
5.29  
5.56  
5.93  
6.20  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in SRAM all peripheral clock  
enable, 48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
6.91  
7.19  
7.55  
7.91  
• at 105 °C  
IDD_VLPRCO Very Low Power Run Core Mark in Flash in  
Compute Operation mode: Core@4 MHz, Flash  
@1 MHz, VDD = 3.0 V  
826  
405  
154  
907  
486  
235  
μA  
μA  
μA  
• at 25 °C  
IDD_VLPRCO Very-low-power-run While(1) loop in SRAM in  
compute operation mode— 8 MHz LIRC mode, 4  
MHz core / 1 MHz flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPRCO Very-low-power run While(1) loop in SRAM in  
compute operation mode:—2 MHz LIRC mode, 2  
MHz core / 0.5 MHz flash, VDD = 3.0 V  
• at 25 °C  
Table continues on the next page...  
K32 L2B Microcontroller, Rev. 3, 09/2020  
61  
NXP Semiconductors  
Electrical characteristics  
Table 40. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
108  
39  
Max.  
Unit  
Notes  
IDD_VLPR Very-low-power run mode current— 2 MHz LIRC  
mode, While(1) loop in flash all peripheral clock  
disable, 2 MHz core / 0.5 MHz flash, VDD = 3.0 V  
• at 25 °C  
189  
μA  
IDD_VLPR Very-low-power run mode current— 2 MHz LIRC  
mode, While(1) loop in flash all peripheral clock  
disable, 125 kHz core / 31.25 kHz flash, VDD  
3.0 V  
=
120  
μA  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 8 MHz LIRC  
mode, While(1) loop in flash all peripheral clock  
disable, 4 MHz core / 1 MHz flash, VDD = 3.0 V  
• at 25 °C  
249  
337  
416  
330  
418  
497  
μA  
μA  
μA  
IDD_VLPR Very-low-power run mode current— 8 MHz LIRC  
mode, While(1) loop in flash all peripheral clock  
enable, 4 MHz core / 1 MHz flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 8 MHz LIRC  
mode, While(1) loop in SRAM in all peripheral  
clock disable, 4 MHz core / 1 MHz flash, VDD  
=
3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 8 MHz LIRC  
mode, While(1) loop in SRAM all peripheral clock  
enable, 4 MHz core / 1 MHz flash, VDD = 3.0 V  
• at 25 °C  
494  
166  
575  
247  
μA  
μA  
IDD_VLPR Very-low-power run mode current—2 MHz LIRC  
mode, While(1) loop in SRAM in all peripheral  
clock disable, 2 MHz core / 0.5 MHz flash, VDD  
=
3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current—2 MHz LIRC  
mode, While(1) loop in SRAM all peripheral clock  
disable, 125 kHz core / 31.25 kHz flash, VDD  
=
50  
131  
μA  
3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current—2 MHz LIRC  
mode, While(1) loop in SRAM all peripheral clock  
enable, 2 MHz core / 0.5 MHz flash, VDD = 3.0 V  
• at 25 °C  
208  
1.81  
1.22  
289  
1.89  
1.39  
μA  
mA  
mA  
IDD_WAIT Wait mode current—core disabled, 48 MHz  
system/24 MHz bus, flash disabled (flash doze  
enabled), all peripheral clocks disabled,  
MCG_Lite under HIRC mode, VDD = 3.0 V  
IDD_WAIT Wait mode current—core disabled, 24 MHz  
system/12 MHz bus, flash disabled (flash doze  
enabled), all peripheral clocks disabled,  
MCG_Lite under HIRC mode, VDD = 3.0 V  
Table continues on the next page...  
62  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Electrical characteristics  
Table 40. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLPW Very-low-power wait mode current, core disabled,  
4 MHz system/ 1 MHz bus and flash, all  
172  
182  
μA  
peripheral clocks disabled, VDD = 3.0 V  
IDD_VLPW Very-low-power wait mode current, core disabled,  
2 MHz system/ 0.5 MHz bus and flash, all  
69  
36  
76  
40  
μA  
μA  
peripheral clocks disabled, VDD = 3.0 V  
IDD_VLPW Very-low-power wait mode current, core disabled,  
125 kHz system/ 31.25 kHz bus and flash, all  
peripheral clocks disabled, VDD = 3.0 V  
IDD_PSTOP2 Partial Stop 2, core and system clock disabled, 12  
MHz bus and flash, VDD = 3.0 V  
1.81  
1.00  
2.06  
1.25  
mA  
mA  
IDD_PSTOP2 Partial Stop 2, core and system clock disabled,  
flash doze enabled, 12 MHz bus, VDD = 3.0 V  
IDD_STOP Stop mode current at 3.0 V  
• at 25 °C and below  
161.93  
181.45  
236.29  
390.33  
171.82  
191.96  
271.17  
465.58  
• at 50 °C  
• at 85 °C  
• at 105 °C  
μA  
μA  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
• at 25 °C and below  
3.31  
10.43  
34.14  
104.38  
5.14  
17.68  
61.06  
164.44  
• at 50 °C  
• at 85 °C  
• at 105 °C  
IDD_VLPS Very-low-power stop mode current at 1.8 V  
• at 25 °C and below  
3.21  
10.26  
33.49  
102.92  
5.22  
17.62  
60.19  
162.20  
• at 50 °C  
• at 85 °C  
• at 105 °C  
μA  
μA  
IDD_LLS Low-leakage stop mode current, all peripheral  
disable, at 3.0 V  
2.06  
4.72  
3.33  
6.85  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
8.13  
13.30  
24.70  
52.43  
13.34  
41.08  
IDD_LLS Low-leakage stop mode current with RTC current,  
at 3.0 V  
μA  
2.46  
3.73  
Table continues on the next page...  
K32 L2B Microcontroller, Rev. 3, 09/2020  
63  
NXP Semiconductors  
Electrical characteristics  
Table 40. Power consumption operating behaviors (continued)  
Symbol Description  
• at 25 °C and below  
Min.  
Typ.  
Max.  
Unit  
Notes  
5.12  
7.25  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
8.53  
13.74  
41.48  
11.78  
18.91  
52.83  
IDD_LLS Low-leakage stop mode current with RTC current,  
3
μA  
μA  
μA  
μA  
at 1.8 V  
2.35  
4.91  
2.70  
6.75  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
8.32  
11.78  
18.21  
51.85  
13.44  
40.47  
IDD_VLLS3 Very-low-leakage stop mode 3 current, all  
peripheral disable, at 3.0 V  
1.45  
3.37  
5.76  
9.72  
30.41  
1.85  
4.39  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
8.48  
14.30  
37.50  
IDD_VLLS3 Very-low-leakage stop mode 3 current with RTC  
current, at 3.0 V  
3
2.05  
3.97  
2.45  
4.99  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
6.36  
9.08  
10.32  
31.01  
14.73  
38.10  
IDD_VLLS3 Very-low-leakage stop mode 3 current with RTC  
current, at 1.8 V  
3
1.96  
3.86  
2.36  
5.67  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
6.23  
8.53  
10.21  
30.25  
13.37  
37.02  
IDD_VLLS1 Very-low-leakage stop mode 1 current all  
peripheral disabled at 3.0 V  
0.66  
1.78  
2.55  
0.80  
3.87  
4.26  
• at 25 °C and below  
• at 50°C  
• at 70°C  
μA  
Table continues on the next page...  
64  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Electrical characteristics  
Table 40. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
• at 85°C  
4.83  
6.64  
• at 105 °C  
16.42  
20.49  
IDD_VLLS1 Very-low-leakage stop mode 1 current RTC  
enabled at 3.0 V  
3
1.26  
2.38  
3.15  
5.43  
17.02  
1.40  
4.47  
4.86  
7.24  
21.09  
• at 25 °C and below  
• at 50°C  
• at 70°C  
• at 85°C  
• at 105 °C  
μA  
IDD_VLLS1 Very-low-leakage stop mode 1 current RTC  
enabled at 1.8 V  
3
1.16  
1.96  
2.78  
4.85  
15.78  
1.30  
2.28  
3.37  
6.88  
18.81  
• at 25 °C and below  
• at 50°C  
• at 70°C  
• at 85°C  
• at 105 °C  
μA  
μA  
IDD_VLLS0 Very-low-leakage stop mode 0 current all  
peripheral disabled (SMC_STOPCTRL[PORPO]  
= 0) at 3.0 V  
0.35  
1.25  
2.53  
4.40  
16.09  
0.47  
1.44  
3.24  
5.24  
19.29  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
IDD_VLLS0 Very-low-leakage stop mode 0 current all  
peripheral disabled (SMC_STOPCTRL[PORPO]  
= 1) at 3 V  
0.18  
1.09  
2.25  
4.25  
15.95  
0.28  
1.31  
2.94  
5.10  
19.10  
• at 25 °C and below  
μA  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.  
See each module's specification for its supply current.  
2. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high,  
optimized for balanced.  
3. RTC uses external 32 kHz crystal as clock source, and the current includes ERCLK32K power consumption.  
K32 L2B Microcontroller, Rev. 3, 09/2020  
65  
NXP Semiconductors  
Electrical characteristics  
Table 41. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
IIRC8MHz  
8 MHz internal reference clock (IRC)  
adder. Measured by entering STOP or  
VLPS mode with 8 MHz IRC enabled,  
MCG_SC[FCRDIV]=000b,  
93  
93  
93  
93  
93  
93  
µA  
MCG_MC[LIRC_DIV2]=000b.  
IIRC2MHz  
2 MHz internal reference clock (IRC)  
adder. Measured by entering STOP mode  
with the 2 MHz IRC enabled,  
MCG_SC[FCRDIV]=000b,  
MCG_MC[LIRC_DIV2]=000b.  
29  
29  
29  
29  
29  
29  
µA  
µA  
IEREFSTEN4MHz  
External 4 MHz crystal clock adder.  
Measured by entering STOP or VLPS  
mode with the crystal enabled.  
206  
224  
230  
238  
245  
253  
IEREFSTEN32KHz  
External 32 kHz crystal clock adder by  
means of the OSC0_CR[EREFSTEN and  
EREFSTEN] bits. Measured by entering all  
modes with the crystal enabled.  
• VLLS1  
440  
440  
490  
510  
510  
490  
490  
490  
560  
560  
540  
540  
540  
560  
560  
560  
560  
560  
560  
560  
570  
570  
570  
610  
610  
580  
580  
680  
680  
680  
• VLLS3  
• LLS  
• VLPS  
• STOP  
nA  
ILPTMR  
LPTMR peripheral adder measured by  
placing the device in VLLS1 mode with  
LPTMR enabled using LPO.  
30  
22  
30  
22  
30  
22  
85  
22  
100  
22  
200  
22  
nA  
µA  
ICMP  
CMP peripheral adder measured by  
placing the device in VLLS1 mode with  
CMP enabled using the 6-bit DAC and a  
single external input for compare. Includes  
6-bit DAC power consumption.  
IUART  
UART peripheral adder measured by  
placing the device in STOP or VLPS mode  
with selected clock source waiting for RX  
data at 115200 baud rate. Includes  
selected clock source power consumption.  
• IRC8M (8 MHz internal reference  
clock)  
114  
34  
114  
34  
114  
34  
114  
34  
114  
34  
114  
34  
µA  
• IRC2M (2 MHz internal reference  
clock)  
Table continues on the next page...  
66  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Electrical characteristics  
Table 41. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
ITPM  
TPM peripheral adder measured by  
placing the device in STOP or VLPS mode  
with selected clock source configured for  
output compare generating 100 Hz clock  
signal. No load is placed on the I/O  
generating the clock signal. Includes  
selected clock source and I/O switching  
currents.  
147  
42  
147  
42  
147  
42  
147  
42  
147  
42  
147  
42  
µA  
• IRC8M (8 MHz internal reference  
clock)  
• IRC2M (2 MHz internal reference  
clock)  
IBG  
Bandgap adder when BGEN bit is set and  
device is placed in VLPx or VLLSx mode.  
45  
45  
45  
45  
45  
45  
µA  
µA  
IADC  
ADC peripheral adder combining the  
measured values at VDD and VDDA by  
placing the device in STOP or VLPS  
mode. ADC is configured for low power  
mode using the internal clock and  
continuous conversions.  
330  
330  
330  
330  
330  
330  
ILCD  
LCD peripheral adder measured by  
placing the device in VLLS1 mode with  
external 32 kHz crystal enabled by means  
of the OSC0_CR[EREFSTEN,  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
µA  
EREFSTEN] bits. VIREG disabled, resistor  
bias network enabled, 1/8 duty cycle, 8 x  
36 configuration for driving 288 Segments,  
32 Hz frame rate, no LCD glass  
connected. Includes ERCLK32K (32 kHz  
external crystal) power consumption.  
5.2.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG-Lite in HIRC for run mode, and LIRC for VLPR mode  
• USB regulator disabled  
• No GPIOs toggled  
• Code execution from flash  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
K32 L2B Microcontroller, Rev. 3, 09/2020  
67  
NXP Semiconductors  
Electrical characteristics  
Figure 17. Run mode supply current vs. core frequency  
68  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Electrical characteristics  
K32 L2B Microcontroller, Rev. 3, 09/2020  
69  
NXP Semiconductors  
Electrical characteristics  
Figure 18. VLPR mode current vs. core frequency  
5.2.2.6 EMC performance  
Electromagnetic compatibility (EMC) performance is highly dependent on the  
environment in which the MCU resides. Board design and layout, circuit topology  
choices, location and characteristics of external components, and MCU software  
operation play a significant role in the EMC performance. The system designer can  
consult the following NXP applications notes, available on nxp.com for advice and  
guidance specifically targeted at optimizing EMC performance.  
• AN2321: Designing for Board Level Electromagnetic Compatibility  
• AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS  
Microcontrollers  
• AN1263: Designing for Electromagnetic Compatibility with Single-Chip  
Microcontrollers  
70  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Electrical characteristics  
• AN2764: Improving the Transient Immunity Performance of Microcontroller-  
Based Applications  
• AN1259: System Design and Layout Techniques for Noise Reduction in MCU-  
Based Systems  
5.2.2.7 Capacitance attributes  
Table 42. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN  
Input capacitance  
7
pF  
5.2.3 Switching specifications  
5.2.3.1 Device clock specifications  
Table 43. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Normal run mode  
fSYS  
fBUS  
System and core clock1  
Bus clock1  
Flash clock1  
20  
48  
24  
24  
24  
MHz  
MHz  
MHz  
MHz  
MHz  
fFLASH  
fSYS_USB  
fLPTMR  
System and core clock when Full Speed USB in operation  
LPTMR clock  
VLPR and VLPS modes2  
System and core clock  
Bus clock  
fSYS  
fBUS  
fFLASH  
fLPTMR  
4
1
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Flash clock  
LPTMR clock3  
1
24  
16  
16  
fLPTMR_ERCLK LPTMR external reference clock  
fosc_hi_2 Oscillator crystal or resonator frequency — high frequency  
mode (high range) (MCG_C2[RANGE]=1x)  
fTPM  
TPM asynchronous clock  
8
8
MHz  
MHz  
fLPUART0/1 LPUART0/1 asynchronous clock  
1. The maximum value of system clock, core clock, bus clock, and flash clock under normal run mode can be 3% higher  
than the specified maximum frequency when IRC 48 MHz is used as the clock source.  
2. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing  
specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN  
or from VLPR.  
3. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.  
K32 L2B Microcontroller, Rev. 3, 09/2020  
71  
NXP Semiconductors  
Electrical characteristics  
5.2.3.2 General switching specifications  
These general-purpose specifications apply to all signals configured for GPIO and  
UART signals.  
Table 44. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter disabled) —  
Synchronous path  
1.5  
Bus clock  
cycles  
1
External RESET and NMI pin interrupt pulse width —  
Asynchronous path  
100  
ns  
2
GPIO pin interrupt pulse width — Asynchronous path  
Port rise and fall time  
16  
ns  
ns  
2
3
36  
1. The synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
3. 75 pF load  
5.2.4 Thermal specifications  
5.2.4.1 Thermal operating requirements  
Table 45. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Notes  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to  
determine TJ is: TJ = TA + RθJA × chip power dissipation.  
5.2.4.2 Thermal attributes  
Table 46. Thermal attributes  
Board type  
Symbol  
Description  
48 QFN 32 QFN  
64  
64  
Unit  
°C/W  
°C/W  
Notes  
LQFP MAPBG  
A
Single-layer (1S)  
Four-layer (2s2p)  
RθJA  
Thermal resistance, junction  
to ambient (natural  
convection)  
86  
29  
101  
33  
70  
50.3  
1
RθJA  
Thermal resistance, junction  
to ambient (natural  
convection)  
51  
42.9  
Table continues on the next page...  
72  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Electrical characteristics  
Table 46. Thermal attributes (continued)  
Board type  
Symbol  
Description  
48 QFN 32 QFN  
64  
64  
Unit  
°C/W  
°C/W  
Notes  
LQFP MAPBG  
A
Single-layer (1S)  
Four-layer (2s2p)  
RθJMA Thermal resistance, junction  
to ambient (200 ft./min. air  
speed)  
71  
24  
84  
28  
58  
41.4  
RθJMA Thermal resistance, junction  
to ambient (200 ft./min. air  
speed)  
45  
38.0  
RθJB  
RθJC  
ΨJT  
Thermal resistance, junction  
to board  
12  
1.7  
2
13  
1.7  
3
33  
20  
4
39.6  
27.3  
0.4  
°C/W  
°C/W  
°C/W  
2
3
4
Thermal resistance, junction  
to case  
Thermal characterization  
parameter, junction to  
package top outside center  
(natural convection)  
ΨJB  
Thermal characterization  
parameter, junction to  
package bottom (natural  
convection)  
-
-
-
12.6  
°C/W  
5
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test  
Method Environmental Conditions—Forced Convection (Moving Air).  
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board.  
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material  
between the top of the package and the cold plate.  
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
5. Thermal characterization parameter indicating the temperature difference between package bottom center and the  
junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization  
parameter is written as Psi-JB.  
5.3 Peripheral operating requirements and behaviors  
5.3.1 Core modules  
5.3.1.1 SWD electricals  
Table 47. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
Table continues on the next page...  
K32 L2B Microcontroller, Rev. 3, 09/2020  
73  
NXP Semiconductors  
Electrical characteristics  
Table 47. SWD full voltage range electricals (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
J1  
SWD_CLK frequency of operation  
• Serial wire debug  
0
25  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
20  
ns  
J4  
J9  
SWD_CLK rise and fall times  
10  
0
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
32  
J10  
J11  
J12  
5
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 19. Serial wire clock input timing  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 20. Serial wire data timing  
74  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Electrical characteristics  
5.3.2 System modules  
There are no specifications necessary for the device's system modules.  
5.3.3 Clock modules  
5.3.3.1 MCG-Lite specifications  
Table 48. IRC48M specification  
Symbol  
IDD  
Description  
Supply current  
Output frequency  
Min.  
Typ.  
400  
48  
Max.  
500  
Unit  
µA  
Notes  
fIRC  
MHz  
Δfirc48m_ol_lv Open loop total deviation of IRC48M  
frequency at low voltage  
1
0.5  
1.5  
%firc48m  
(VDD=1.71V-1.89V) over temperature  
Δfirc48m_ol_hv Open loop total deviation of IRC48M  
frequency at high voltage  
1
0.5  
1.0  
%firc48m  
(VDD=1.89V-3.6V) over temperature  
Tj  
Period jitter (RMS)  
Startup time  
35  
2
150  
3
ps  
µs  
Tsu  
1. The maximum value represents characterized results equivalent to mean plus or minus three times the standard  
deviation (mean +/-3sigma).  
Table 49. IRC8M/2M specification  
Symbol  
IDD_2M  
Description  
Supply current in 2 MHz mode  
Supply current in 8 MHz mode  
Output frequency  
Min.  
Typ.  
14  
30  
2
Max.  
17  
Unit  
µA  
Notes  
IDD_8M  
35  
µA  
fIRC_2M  
fIRC_8M  
fIRC_T_2M  
fIRC_T_8M  
Tsu_2M  
MHz  
MHz  
%fIRC  
%fIRC  
µs  
Output frequency  
8
Output frequency range (trimmed)  
Output frequency range (trimmed)  
Startup time  
3
3
12.5  
12.5  
Tsu_8M  
Startup time  
µs  
K32 L2B Microcontroller, Rev. 3, 09/2020  
75  
NXP Semiconductors  
Electrical characteristics  
Figure 21. IRC8M Frequency Drift vs Temperature curve  
5.3.3.2 Oscillator electrical specifications  
5.3.3.2.1 Oscillator DC electrical specifications  
Table 50. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
Table continues on the next page...  
76  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Electrical characteristics  
Table 50. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
• 24 MHz  
1.5  
mA  
• 32 MHz  
IDDOSC  
Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
25  
400  
500  
2.5  
3
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain  
mode (HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
K32 L2B Microcontroller, Rev. 3, 09/2020  
77  
NXP Semiconductors  
Electrical characteristics  
3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For  
all other cases external capacitors must be used.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other devices.  
5.3.3.2.2 Oscillator frequency specifications  
Table 51. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency — high-  
frequency mode (low range)  
3
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal Input clock frequency (external clock mode)  
tdc_extal Input clock duty cycle (external clock mode)  
40  
50  
48  
60  
MHz  
%
1, 2  
3, 4  
tcst  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the FLL  
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by  
FRDIV, it remains within the limits of the DCO input clock frequency.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S  
register being set.  
5.3.4 Memories and memory interfaces  
5.3.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
78  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Electrical characteristics  
5.3.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps  
are active and do not include command overhead.  
Table 52. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
13  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4 Longword Program high-voltage time  
thversscr Sector Erase high-voltage time  
thversblk128k Erase Block high-voltage time for 128 KB  
1
113  
452  
ms  
ms  
52  
1
1. Maximum time based on expectations at cycling end-of-life.  
5.3.4.1.2 Flash timing specifications — commands  
Table 53. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
• 128 KB program flash  
Min.  
Typ.  
Max.  
Unit  
Notes  
1
trd1blk128k  
1.7  
ms  
trd1sec1k Read 1s Section execution time (flash sector)  
tpgmchk Program Check execution time  
65  
60  
45  
μs  
μs  
μs  
μs  
1
1
trdrsrc  
tpgm4  
Read Resource execution time  
Program Longword execution time  
Erase Flash Block execution time  
• 128 KB program flash  
30  
1
145  
2
tersblk128k  
88  
600  
ms  
tersscr  
trd1all  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
14  
114  
1.8  
ms  
ms  
μs  
2
1
trdonce  
25  
1
tpgmonce Program Once execution time  
65  
μs  
2
tersall  
tvfykey  
tersallu  
Erase All Blocks execution time  
175  
1300  
30  
ms  
μs  
Verify Backdoor Access Key execution time  
Erase All Blocks Unsecure execution time  
1
175  
1300  
ms  
2
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
5.3.4.1.3 Flash high voltage current behaviors  
Table 54. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
Table continues on the next page...  
K32 L2B Microcontroller, Rev. 3, 09/2020  
79  
NXP Semiconductors  
Electrical characteristics  
Table 54. Flash high voltage current behaviors (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
5.3.4.1.4 Reliability specifications  
Table 55. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
100  
50 K  
10 K  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.  
5.3.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
5.3.6 Analog  
5.3.6.1 ADC electrical specifications  
Using differential inputs can achieve better system accuracy than using single-end  
inputs.  
5.3.6.1.1 16-bit ADC operating conditions  
Table 56. 16-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
VREFH  
Supply voltage  
Supply voltage  
Absolute  
2
Delta to VDD (VDD – VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
Ground voltage Delta to VSS (VSS – VSSA  
)
0
2
ADC reference  
voltage high  
VDDA  
3
Table continues on the next page...  
80  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Electrical characteristics  
Table 56. 16-bit ADC operating conditions (continued)  
Symbol Description  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
Notes  
VREFL  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
3
VADIN  
Input voltage  
• 16-bit differential mode  
VREFL  
VREFL  
31/32 ×  
VREFH  
V
• All other modes  
• 16-bit mode  
VREFH  
CADIN  
Input  
capacitance  
8
4
10  
5
pF  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input series  
resistance  
2
5
5
kΩ  
kΩ  
4
Analog source  
resistance  
(external)  
13-bit / 12-bit modes  
fADCK < 4 MHz  
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
2.0  
24  
MHz  
MHz  
5
5
6
ADC conversion 16-bit mode  
clock frequency  
12.0  
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20.000  
37.037  
1200  
ksps  
ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
6
rate  
No ADC hardware averaging  
461.467  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. VREFH can act as VREF_OUT when VREFV1 module is enabled.  
4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
K32 L2B Microcontroller, Rev. 3, 09/2020  
81  
NXP Semiconductors  
Electrical characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
leakage  
ZAS  
ADC SAR  
ENGINE  
RAS  
RADIN  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 22. ADC input impedance equivalency diagram  
5.3.6.1.2 16-bit ADC electrical characteristics  
Table 57. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
mA  
Notes  
IDDA_ADC Supply current  
3
ADC asynchronous  
clock source  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
MHz  
MHz  
MHz  
MHz  
tADACK = 1/  
fADACK  
2.4  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
• <12-bit modes  
0.7  
0.2  
–1.1 to  
+1.9  
–0.3 to  
0.5  
INL  
Integral non-linearity  
• 12-bit modes  
• <12-bit modes  
1.0  
0.5  
–2.7 to  
+1.9  
LSB4  
5
Table continues on the next page...  
82  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Electrical characteristics  
Table 57. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
–0.7 to  
+0.5  
5
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4  
LSB4  
VADIN = VDDA  
Quantization error  
0.5  
ENOB Effective number of 16-bit differential mode  
6
bits  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg = 32  
• Avg = 4  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
dB  
• Avg = 4  
Signal-to-noise plus See ENOB  
SINAD  
6.02 × ENOB + 1.76  
distortion  
THD  
Total harmonic  
distortion  
16-bit differential mode  
• Avg = 32  
7
7
dB  
dB  
-94  
-85  
16-bit single-ended mode  
• Avg = 32  
SFDR Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
dB  
dB  
82  
78  
95  
90  
16-bit single-ended mode  
• Avg = 32  
EIL  
Input leakage error  
IIn × RAS  
mV  
IIn = leakage  
current  
(refer to the  
MCU's voltage  
and current  
operating  
ratings)  
Temp sensor slope Across the full temperature  
range of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor voltage 25 °C  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with  
1 MHz ADC conversion clock speed.  
K32 L2B Microcontroller, Rev. 3, 09/2020  
83  
NXP Semiconductors  
Electrical characteristics  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
8. ADC conversion clock < 3 MHz  
Typical ADC 16-bit Differential ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
15.00  
14.70  
14.40  
14.10  
13.80  
13.50  
13.20  
12.90  
12.60  
Hardware Averaging Disabled  
Averaging of 4 samples  
Averaging of 8 samples  
Averaging of 32 samples  
12.30  
12.00  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 23. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
14.00  
13.75  
13.50  
13.25  
13.00  
12.75  
12.50  
12.25  
12.00  
11.75  
11.50  
11.25  
Averaging of 4 samples  
Averaging of 32 samples  
11.00  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 24. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
5.3.6.2 Voltage reference electrical specifications  
84  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Electrical characteristics  
Table 58. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Supply voltage  
Temperature  
Min.  
Max.  
Unit  
V
Notes  
3.6  
Operating temperature  
range of the device  
°C  
CL  
Output load capacitance  
100  
nF  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature  
range of the device.  
Table 59 is tested under the condition of setting VREF_TRM[CHOPEN],  
VREF_SC[REGEN] and VREF_SC[ICOMPEN] bits to 1.  
Table 59. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1915  
1.195  
1.1977  
V
1
nominal VDDA and temperature=25C  
Voltage reference output — factory trim  
Voltage reference output — user trim  
Voltage reference trim step  
Vout  
Vout  
1.1584  
1.193  
1.2376  
1.197  
V
V
1
1
1
1
Vstep  
Vtdrift  
0.5  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range: 0 to 70°C)  
50  
Ibg  
Ilp  
Bandgap only current  
80  
360  
1
µA  
uA  
mA  
µV  
1
1
Low-power buffer current  
High-power buffer current  
Ihp  
1
ΔVLOAD Load regulation  
• current = 1.0 mA  
1, 2  
200  
Tstup  
Buffer startup time  
100  
35  
µs  
Tchop_osc_st Internal bandgap start-up delay with chop  
ms  
1
oscillator enabled  
up  
Vvdrift  
Voltage drift (Vmax -Vmin across the full  
voltage range)  
2
mV  
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 60. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
50  
°C  
K32 L2B Microcontroller, Rev. 3, 09/2020  
85  
NXP Semiconductors  
Electrical characteristics  
Table 61. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
5.3.6.3 CMP and 6-bit DAC electrical specifications  
Table 62. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, high-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
VDD – 0.5  
50  
250  
7
0.5  
200  
600  
40  
V
V
Output low  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
20  
ns  
tDLS  
80  
ns  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
86  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Electrical characteristics  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 25. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
K32 L2B Microcontroller, Rev. 3, 09/2020  
87  
NXP Semiconductors  
Electrical characteristics  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 26. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
5.3.6.4 12-bit DAC electrical characteristics  
5.3.6.4.1 12-bit DAC operating requirements  
Table 63. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
CL  
Desciption  
Min.  
Max.  
3.6  
3.6  
100  
1
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Output load capacitance  
Output load current  
1.13  
V
1
2
pF  
mA  
IL  
1. The DAC reference can be selected to be VDDA or VREF_OUT  
.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.  
88  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Electrical characteristics  
5.3.6.4.2 12-bit DAC operating behaviors  
Table 64. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
250  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
900  
200  
30  
μA  
μs  
μs  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
tCCDACLP Code-to-code settling time (0xBF8 to  
0xC08) — low-power mode and high-  
speed mode  
0.7  
1
Vdacoutl DAC output voltage range low — high-  
speed mode, no load, DAC set to 0x000  
100  
mV  
mV  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
VDACR  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
8
1
1
LSB  
LSB  
LSB  
2
3
4
Differential non-linearity error — VDACR > 2  
V
Differential non-linearity error — VDACR  
VREF_OUT  
=
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
Rop  
SR  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
3.7  
μV/C  
%FSR/C  
Ω
6
0.000421  
250  
V/μs  
• High power (SPHP  
)
1.2  
1.7  
• Low power (SPLP  
3dB bandwidth  
)
0.05  
0.12  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC  
set to 0x800, temperature range is across the full range of the device  
K32 L2B Microcontroller, Rev. 3, 09/2020  
89  
NXP Semiconductors  
Electrical characteristics  
8
6
4
2
0
-2  
-4  
-6  
-8  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Digital Code  
Figure 27. Typical INL error vs. digital code  
90  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Electrical characteristics  
1.499  
1.4985  
1.498  
1.4975  
1.497  
1.4965  
1.496  
55  
85  
25  
105  
125  
-40  
Temperature °C  
Figure 28. Offset at half scale vs. temperature  
5.4 Timers  
See General switching specifications.  
5.5 Communication interfaces  
5.5.1 USB electrical specifications  
The USB electricals for the USB module conform to the standards documented by the  
Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit  
usb.org .  
K32 L2B Microcontroller, Rev. 3, 09/2020  
91  
NXP Semiconductors  
Electrical characteristics  
NOTE  
The IRC48M do not meet the USB jitter specifications for  
certification for Host mode operation.  
This device cannot support Host mode operation.  
5.5.2 USB VREG electrical specifications  
Table 65. USB VREG electrical specifications  
Symbol Description  
Min.  
2.7  
Typ.1  
Max.  
5.5  
Unit  
V
Notes  
VREGIN Input supply voltage  
IDDon  
IDDstby  
IDDoff  
Quiescent current — Run mode, load current  
equal zero, input supply (VREGIN) > 3.6 V  
125  
186  
μA  
Quiescent current — Standby mode, load  
current equal zero  
1.1  
10  
μA  
Quiescent current — Shutdown mode  
650  
4
nA  
μA  
• VREGIN = 5.0 V and temperature=25 °C  
• Across operating voltage and temperature  
ILOADrun Maximum load current — Run mode  
ILOADstby Maximum load current — Standby mode  
120  
1
mA  
mA  
VReg33out Regulator output voltage — Input supply  
(VREGIN) > 3.6 V  
• Run mode  
3
3.3  
2.8  
3.6  
3.6  
3.6  
V
V
V
• Standby mode  
2.1  
2.1  
VReg33out Regulator output voltage — Input supply  
(VREGIN) < 3.6 V, pass-through mode  
2
COUT  
ESR  
External output capacitor  
1.76  
1
2.2  
8.16  
100  
μF  
External output capacitor equivalent series  
resistance  
mΩ  
ILIM  
Short circuit current  
290  
mA  
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.  
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad  
.
92  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Electrical characteristics  
5.5.3 SPI switching specifications  
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master  
and slave operations. Many of the transfer attributes are programmable. The following  
tables provide timing characteristics for classic SPI timing modes. See the SPI chapter  
of the chip's Reference Manual for information about the modified transfer formats  
used for communicating with slower peripheral devices.  
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted,  
as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.  
Table 66. SPI master mode timing on slew rate disabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
18  
0
ns  
ns  
ns  
ns  
ns  
15  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
Table 67. SPI master mode timing on slew rate enabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
96  
0
ns  
ns  
Table continues on the next page...  
K32 L2B Microcontroller, Rev. 3, 09/2020  
93  
NXP Semiconductors  
Electrical characteristics  
Table 67. SPI master mode timing on slew rate enabled pads (continued)  
Num.  
Symbol Description  
Min.  
Max.  
52  
Unit  
ns  
Note  
8
9
tv  
Data valid (after SPSCK edge)  
tHO  
tRI  
Data hold time (outputs)  
Rise time input  
0
ns  
10  
tperiph - 25  
ns  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
Fall time output  
36  
ns  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 29. SPI master mode timing (CPHA = 0)  
94  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Electrical characteristics  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 30. SPI master mode timing (CPHA = 1)  
Table 68. SPI slave mode timing on slew rate disabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2.5  
3.5  
0
ns  
7
ns  
8
tperiph  
tperiph  
31  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
K32 L2B Microcontroller, Rev. 3, 09/2020  
95  
NXP Semiconductors  
Electrical characteristics  
Table 69. SPI slave mode timing on slew rate enabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2
7
ns  
7
ns  
8
0
tperiph  
tperiph  
122  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
SS  
(INPUT)  
2
12  
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 31. SPI slave mode timing (CPHA = 0)  
96  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Electrical characteristics  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE: Not defined  
Figure 32. SPI slave mode timing (CPHA = 1)  
5.5.4 I2C  
5.5.4.1 Inter-Integrated Circuit Interface (I2C) timing  
Table 70. I2C timing  
Characteristic  
Symbol  
Standard Mode  
Fast Mode  
Unit  
Minimum Maximum Minimum Maximum  
SCL Clock Frequency  
fSCL  
0
4
100  
0
4001  
kHz  
µs  
Hold time (repeated) START condition. tHD; STA  
After this period, the first clock pulse is  
generated.  
0.6  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.25  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
0.6  
Data hold time for I2C bus devices  
tHD; DAT  
tSU; DAT  
tr  
02  
2505  
3.453  
04  
1003, 6  
20 +0.1Cb  
20 +0.1Cb  
0.6  
0.92  
µs  
ns  
ns  
ns  
µs  
µs  
Data set-up time  
7
6
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
1000  
300  
300  
300  
tf  
tSU; STO  
tBUF  
4
Bus free time between STOP and  
START condition  
4.7  
1.3  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
K32 L2B Microcontroller, Rev. 3, 09/2020  
97  
NXP Semiconductors  
Electrical characteristics  
1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the high  
drive pins across the full voltage range and when using the normal drive pins and VDD ≥ 2.7 V.  
2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL  
lines.  
3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
4. Input signal Slew = 10 ns and Output Load = 50 pF  
5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.  
6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns  
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such  
a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU;  
DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released.  
7. Cb = total capacitance of the one bus line in pF.  
Table 71. I 2C 1Mbit/s timing  
Characteristic  
Symbol  
fSCL  
Minimum  
Maximum  
Unit  
MHz  
µs  
SCL Clock Frequency  
0
11  
Hold time (repeated) START condition. After this  
period, the first clock pulse is generated.  
tHD; STA  
0.26  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
0.5  
0.26  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
Set-up time for a repeated START condition  
Data hold time for I2C bus devices  
Data set-up time  
tSU; STA  
tHD; DAT  
tSU; DAT  
tr  
0.26  
0
50  
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
20 +0.1Cb  
120  
120  
2
tf  
20 +0.1Cb  
tSU; STO  
tBUF  
0.26  
0.5  
0
Bus free time between STOP and START condition  
Pulse width of spikes that must be suppressed by  
the input filter  
tSP  
50  
1. The maximum SCL clock frequency of 1 Mbit/s can support maximum bus loading when using the high drive pins across  
the full voltage range.  
2. Cb = total capacitance of the one bus line in pF.  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tSU; STO  
HD; STA  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 33. Timing definition for devices on the I2C bus  
98  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Electrical characteristics  
5.5.5 UART  
See General switching specifications.  
5.6 Human-machine interfaces (HMI)  
5.6.1 LCD electrical characteristics  
Table 72. LCD electricals  
Symbol Description  
fFrame LCD frame frequency  
Min.  
Typ.  
Max.  
Unit  
Notes  
• GCR[FFR]=0  
• GCR[FFR]=1  
23.3  
46.6  
73.1  
Hz  
Hz  
146.2  
CLCD  
LCD charge pump capacitance — nominal  
value  
100  
nF  
CBYLCD LCD bypass capacitance — nominal value  
100  
nF  
pF  
V
1
2
3
CGlass  
VIREG  
LCD glass capacitance  
VIREG  
2000  
8000  
• RVTRIM=0000  
• RVTRIM=1000  
• RVTRIM=0100  
• RVTRIM=1100  
• RVTRIM=0010  
• RVTRIM=1010  
• RVTRIM=0110  
• RVTRIM=1110  
• RVTRIM=0001  
• RVTRIM=1001  
• RVTRIM=0101  
• RVTRIM=1101  
• RVTRIM=0011  
• RVTRIM=1011  
• RVTRIM=0111  
• RVTRIM=1111  
0.91  
0.92  
0.93  
0.94  
0.96  
0.97  
0.98  
0.99  
1.01  
1.02  
1.03  
1.05  
1.06  
1.07  
1.08  
1.09  
ΔRTRIM VIREG TRIM resolution  
IVIREG VIREG current adder — RVEN = 1  
IRBIAS RBIAS current adder  
1
3.0  
% VIREG  
µA  
Table continues on the next page...  
K32 L2B Microcontroller, Rev. 3, 09/2020  
99  
NXP Semiconductors  
Design considerations  
Symbol Description  
Table 72. LCD electricals (continued)  
Min.  
Typ.  
Max.  
Unit  
Notes  
• LADJ = 10 or 11 — High load (LCD glass  
10  
µA  
capacitance ≤ 8000 pF)  
• LADJ = 00 or 01 — Low load (LCD glass  
capacitance ≤ 2000 pF)  
1
µA  
RRBIAS RBIAS resistor values  
• LADJ = 10 or 11 — High load (LCD glass  
capacitance ≤ 8000 pF)  
0.28  
2.98  
MΩ  
MΩ  
• LADJ = 00 or 01 — Low load (LCD glass  
capacitance ≤ 2000 pF)  
VLL1  
VLL2  
VLL3  
VLL1  
VLL2  
VLL3  
VLL1 voltage  
VIREG  
2 x VIREG  
3 x VIREG  
VDDA / 3  
VDDA / 1.5  
VDDA  
V
V
V
V
V
V
4
4
4
5
5
5
VLL2 voltage  
VLL3 voltage  
VLL1 voltage  
VLL2 voltage  
VLL3 voltage  
1. The actual value used could vary with tolerance.  
2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter  
within the device's reference manual.  
3. VIREG maximum should never be externally driven to any level other than VDD - 0.15 V  
4. VLL1, VLL2 and VLL3 are a function of VIREG only when the regulator is enabled (GCR[RVEN]=1) and the charge pump  
is enabled (GCR[CPSEL]=1).  
5. VLL1, VLL2 and VLL3 are a function of VDDA only under either of the following conditions:  
• The charge pump is enabled (GCR[CPSEL]=1), the regulator is disabled (GCR[RVEN]=0), and VLL3 = VDDA  
through the internal power switch (GCR[VSUPPLY]=0).  
• The resistor bias string is enabled (GCR[CPSEL]=0), the regulator is disabled (GCR[RVEN]=0), and VLL3 is  
connected to VDDA externally (GCR[VSUPPLY]=1).  
6 Design considerations  
6.1 Hardware design considerations  
This device contains protective circuitry to guard against damage due to high static  
voltage or electric fields. However, take normal precautions to avoid application of any  
voltages higher than maximum-rated voltages to this high-impedance circuit.  
100  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Design considerations  
6.1.1 Printed circuit board recommendations  
• Place connectors or cables on one edge of the board and do not place digital  
circuits between connectors.  
• Drivers and filters for I/O functions must be placed as close to the connectors as  
possible. Connect TVS devices at the connector to a good ground. Connect filter  
capacitors at the connector to a good ground. Consider to add ferrite bead or  
inductor to some sensitive lines.  
• Physically isolate analog circuits from digital circuits if possible.  
• Place input filter capacitors as close to the MCU as possible.  
• For best EMC performance, route signals as transmission lines; use a ground  
plane directly under LQFP packages; and solder the exposed pad (EP) to ground  
directly under QFN packages.  
6.1.2 Power delivery system  
Consider the following items in the power delivery system:  
• Use a plane for ground.  
• Use a plane for MCU VDD supply if possible.  
• Always route ground first, as a plane or continuous surface, and never as  
sequential segments.  
• Always route the power net as star topology, and make each power trace loop as  
minimum as possible.  
• Route power next, as a plane or traces that are parallel to ground traces.  
• Place bulk capacitance, 10 μF or more, at the entrance of the power plane.  
• Place bypass capacitors for MCU power domain as close as possible to each  
VDD/VSS pair, including VDDA/VSSA and VREFH/VREFL.  
• The minimum bypass requirement is to place 0.1 μF capacitors positioned as near  
as possible to the package supply pins.  
• Take special care to minimize noise levels on the VREFH/VREFL inputs. An  
option is to use the internal reference voltage (output 1.2 V typically) as the ADC  
reference.  
NOTE  
The internally-generated Voltage Reference Output  
(VREF_OUT) is bonded to the VREFH pin on some  
packages and to PTE30 on other packages. When  
VREF_OUT is used, a 0.1 μF capacitor is required as a  
filter. Do not connect any other supply voltage to the pin  
that has VREF_OUT activated.  
K32 L2B Microcontroller, Rev. 3, 09/2020  
101  
NXP Semiconductors  
Design considerations  
6.1.3 Analog design  
Each ADC input must have an RC filter as shown in the following figure. The  
maximum value of R must be RAS max if fast sampling and high resolution are  
required. The value of C must be chosen to ensure that the RC time constant is very  
small compared to the sample period.  
MCU  
1
2
Input signal  
ADCx  
R
C
Figure 34. RC circuit for ADC input  
High voltage measurement circuits require voltage division, current limiting, and over-  
voltage protection as shown the following figure. The voltage divider formed by R1 –  
R4 must yield a voltage less than or equal to VREFH. The current must be limited to  
less than the injection current limit. Since the ADC pins do not have diodes to VDD,  
external clamp diodes must be included to protect against transient over-voltages.  
MCU  
R1  
R2  
R3  
VDD  
1
1
1
2
2
2
R5  
1
2
ADCx  
High voltage input  
R4  
1
2
C
BAT54SW  
Figure 35. High voltage measurement with an ADC input  
NOTE  
For more details of ADC related usage, refer to AN5250:  
How to Increase the Analog-to-Digital Converter Accuracy in  
an Application.  
102  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Design considerations  
6.1.4 Digital design  
Ensure that all I/O pins cannot get pulled above VDD (Max I/O is VDD+0.3V).  
CAUTION  
Do not provide power to I/O pins prior to VDD, especially  
the RESET_b pin.  
• RESET_b pin  
The RESET_b pin is an open-drain I/O pin that has an internal pullup resistor. An  
external RC circuit is recommended to filter noise as shown in the following  
figure. The resistor value must be in the range of 4.7 kΩ to 10 kΩ; the  
recommended capacitance value is 0.1 μF. The RESET_b pin also has a selectable  
digital filter to reject spurious noise.  
VDD  
MCU  
10k  
RESET_b  
RESET_b  
0.1uF  
Figure 36. Reset circuit  
When an external supervisor chip is connected to the RESET_b pin, a series  
resistor must be used to avoid damaging the supervisor chip or the RESET_b pin,  
as shown in the following figure. The series resistor value (RS below) must be in  
the range of 100 Ω to 1 kΩ depending on the external reset chip drive strength.  
Select the open-drain output from the supervisor chip.  
K32 L2B Microcontroller, Rev. 3, 09/2020  
103  
NXP Semiconductors  
Design considerations  
VDD  
Supervisor Chip  
MCU  
10k  
1
2
OUT  
RESET_b  
RS  
0.1uF  
Figure 37. Reset signal connection to external reset chip  
• NMI pin  
Do not add a pull-down resistor or capacitor on the NMI_b pin, because a low level  
on this pin will trigger non-maskable interrupt. When this pin is enabled as the NMI  
function, an external pull-up resistor (10 kΩ) as shown in the following figure is  
recommended for robustness.  
If the NMI_b pin is used as an I/O pin, the non-maskable interrupt handler is  
required to disable the NMI function by remapping to another function. The NMI  
function is disabled by programming the FOPT[NMI_DIS] bit to zero.  
VDD  
MCU  
10k  
NMI_b  
Figure 38. NMI pin biasing  
• Debug interface  
This MCU uses the standard Arm SWD interface protocol as shown in the  
following figure. While pull-up or pull-down resistors are not required (SWD_DIO  
has an internal pull-up and SWD_CLK has an internal pull-down), external 10 kΩ  
pull resistors are recommended for system robustness. The RESET_b pin  
recommendations mentioned above must also be considered.  
104  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Design considerations  
VDD  
10k  
VDD  
J1  
SWD_DIO  
SWD_CLK  
1
3
5
7
9
2
4
6
8
RESET_b  
10k  
10  
0.1uF  
HDR_5X2  
Figure 39. SWD debug interface  
• Low leakage stop mode wakeup  
Select low leakage wakeup pins (LLWU_Px) to wake the MCU from one of the  
low leakage stop modes (LLS/VLLSx). See the pinout table for pin selection.  
• Unused pin  
Unused GPIO pins must be left floating (no electrical connections) with the MUX  
field of the pin’s PORTx_PCRn register equal to 0:0:0. This disables the digital  
input path to the MCU.  
If the USB module is not used, leave the USB data pins (USB0_DP, USB0_DM)  
floating.  
6.1.5 Crystal oscillator  
When using an external crystal or ceramic resonator as the frequency reference for the  
MCU clock system, refer to the following table and diagrams.  
The feedback resistor, RF, is incorporated internally with the low power oscillators.  
An external feedback is required when using high gain (HGO=1) mode.  
Internal load capacitors (Cx, Cy) are provided in the low frequency (32.786 kHz)  
mode. Use the SCxP bits in the OSC0_CR register to adjust the load capacitance for  
the crystal. Typically, values of 10pf to 16 pF are sufficient for 32.768 kHz crystals  
that have a 12.5 pF CL specification. The internal load capacitor selection must not be  
used for high frequency crystals and resonators.  
K32 L2B Microcontroller, Rev. 3, 09/2020  
105  
NXP Semiconductors  
Design considerations  
Table 73. External crystal/resonator connections  
Oscillator mode  
Low frequency (32.768 kHz), low power  
Low frequency (32.768 kHz), high gain  
High frequency (3-32 MHz), low power  
High frequency (3-32 MHz), high gain  
Oscillator mode  
Diagram 1  
Diagram 2, Diagram 4  
Diagram 3  
Diagram 4  
OSCILLATOR  
EXTAL  
XTAL  
1
2
CRYSTAL  
Figure 40. Crystal connection – Diagram 1  
OSCILLATOR  
EXTAL  
XTAL  
1
2
RF  
RS  
1
2
CRYSTAL  
Figure 41. Crystal connection – Diagram 2  
OSCILLATOR  
EXTAL  
OSCILLATOR  
EXTAL  
XTAL  
XTAL  
1
2
1
3
CRYSTAL  
Cx  
Cy  
RESONATOR  
Figure 42. Crystal connection – Diagram 3  
106  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Part identification  
OSCILLATOR  
EXTAL  
OSCILLATOR  
EXTAL  
XTAL  
XTAL  
1
2
1
2
RF  
RF  
RS  
RS  
1
2
1
3
CRYSTAL  
Cx  
Cy  
RESONATOR  
Figure 43. Crystal connection – Diagram 4  
6.2 Software considerations  
All K32 L-series ultra-low power Microcontrollers (MCUs), optimized for low-  
leakage applications, are supported by comprehensive NXP and third-party hardware  
and software enablement solutions, which can reduce development costs and time to  
market. Featured software and tools are listed below.  
Evaluation and Prototyping Hardware  
• NXP Freedom Development Platform: http://www.nxp.com/freedom  
• Tower System Development Platform: http://www.nxp.com/tower  
IDEs for K32 L2B MCUs  
• MCUXpresso: https://mcuxpresso.nxp.com  
Run-time Software  
• K32 L2B SDK: http://mcuxpresso.nxp.com  
For all other partner-developed software and tools, visit http://www.nxp.com/partners.  
7 Part identification  
K32 L2B Microcontroller, Rev. 3, 09/2020  
107  
NXP Semiconductors  
Part identification  
7.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
7.2 Format  
Part numbers for this device have the following format:  
B PF S FS SPF T PG FR SR PT  
7.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Table 74. Part number fields descriptions  
Field  
Description  
Values  
B
Brand  
• K32  
• L2  
PF  
S
Product Family  
Sub-family  
• A= Sub-family A  
• B= Sub-family B  
FS  
Flash size  
• 1 = 64 KB  
• 2 = 128 KB  
• 3 = 256 KB  
• 4 = 512 KB  
SPF  
Special Feature  
• 0 = Dual core  
• 1 = Single core  
T
Temperature range (°C)  
Package  
• V = -40 to 105  
PG  
• FM = 32 QFN  
• FT = 48 QFN  
• MP = 64 BGA  
• LH = 64 LQFP  
FR  
SR  
Frequency (MHz)  
Silicon Revision  
• 0 = 0 - 50 MHz  
• A = Initial Mask Set  
• B = 1st Major Spin  
PT  
Packaging Type  
• R = Std Reel  
108  
K32 L2B Microcontroller, Rev. 3, 09/2020  
NXP Semiconductors  
Small package marking  
7.4 Example  
This is an example part number:  
K32L2B31VLH0A  
8 Small package marking  
In order to save space, small package devices use special marking on the chip.  
Q FS FF TP  
Field  
Description  
Values  
Q
Qualification status  
K=M  
PK=P  
FS  
FF  
Family  
L2B=K32L2B family  
6=64 KB  
Program flash memory size  
7=128 KB  
8=256 KB  
TP  
Temperature range  
V=-40 to 105 for all 4 packages  
For example:  
KL2B6V = K32L2B11VFM0A  
9 Package marking information  
The K32L2B 64LQFP package has the following top-side marking:  
• First line: aaaaaaaa  
• Second line: aaaaa  
• Third line: mmmmm  
• Fourth line: xxxyywwx  
The K32L2B 64MAPBGA package has the following top-side marking:  
• First line: aaaaaa  
• Second line: mmmmm  
• Third line: xxywx  
The K32L2B 48QFN package has the following top-side marking:  
K32 L2B Microcontroller, Rev. 3, 09/2020  
109  
NXP Semiconductors  
Revision History  
• First line: aaaaaa  
• Second line: mmmmm  
• Third line: xxywx  
The K32L2B 32QFN package has the following top-side marking:  
• First line: aaaaaa  
• Second line: mmmmm  
• Third line: xxywx  
The detailed code format for these identifiers is show in the table below.  
Identifier  
Description  
a
Part number code, refer to the "Part identification" section.  
m
y
Mask set  
Work year  
w
x
Work week  
NXP internal use  
10 Revision History  
The following table provides a revision history for this document.  
Table 75. Revision History  
Rev. No.  
Date  
Substantial Changes  
3
September  
2020  
• Updated value of ADC to 461 ksps from 818 in front page of the Data sheet.  
• Removed "RESET_b" from ALT7 column and "PTA20" from ALT1 column  
corresponding to PTA20 pin in K32 L2B Signal Multiplexing and Pin Assignments  
(LQFP and MAPBGA) and K32 L2B Signal Multiplexing and Pin Assignments (QFN).  
Also added the following note: When FTFA_FOPT[RESET_PIN_CONFIG]=0, PTA20  
pin acts as RESET_B function only during ............of PORTA_PCR20[MUX]'s setting  
value.  
• Added Package marking information and Small package marking.  
• Removed "OTG/On the Go" references.  
2
1
December  
2019  
• Added Related Resources table in front page of the Data sheet.  
• Corrected description of PD/PU in Table 8 Pin Properties section.  
• Updated values in "Default" column for pins 1, 2, 9, 10, 49-52 in K32 L2B Signal  
Multiplexing and Pin Assignments (LQFP and MAPBGA).  
• Added EXTRG_IN signal in TPM signal descriptions and Table 29.  
September Initial public release.  
2019 • Removed support of CRC throughout.  
• Replaced name of function pin VREFO with VREF_OUT.  
• Changed the high drive pin number to 6 for 48 QFN in Ordering information.  
• Updated flash and RAM in Figure 1. System diagram in the Overview section.  
Table continues on the next page...  
110  
NXP Semiconductors  
K32 L2B Microcontroller, Rev. 3, 09/2020  
Revision History  
Table 75. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
• Added DAC topic to the "Peripheral Features" section.  
• Updated memory addresses and peripherals in Memory map.  
• Updated 32 QFN and 48 QFN pinouts and diagrams to remove usage of USB_VDD  
pin.  
• Updated pin names in Pin properties. Split the table into two, each for 64 LQFP/  
MAPBGA and 32/48 QFN packages.  
• Added thermal attributes for 32 QFN and 48 QFN packages in Thermal attributes.  
• Updated part number format and fields in Format and Fields.  
0
July 2019  
• Initial release (internal).  
K32 L2B Microcontroller, Rev. 3, 09/2020  
111  
NXP Semiconductors  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including "typicals," must be validated for each customer application  
by customer's technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, CWare, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,  
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,  
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, UMEMS, eIQ,  
Immersiv3D, EdgeLock, and EdgeScale are trademarks of NXP B.V. All other product or service  
names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11,  
Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,  
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,  
ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered  
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology  
may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.  
Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and  
Power.org word marks and the Power and Power.org logos and related marks are trademarks and  
service marks licensed by Power.org.  
© 2019-2020 NXP B.V.  
Document Number K32L2B3x  
Revision 3, 09/2020  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY