KMPC860TCZQ66D4 [NXP]

KMPC860TCZQ66D4;
KMPC860TCZQ66D4
型号: KMPC860TCZQ66D4
厂家: NXP    NXP
描述:

KMPC860TCZQ66D4

PC
文件: 总78页 (文件大小:529K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MPC860EC  
Rev. 9, 02/2012  
Freescale Semiconductor  
Technical Data  
MPC860 PowerQUICC Family  
Hardware Specifications  
Contents  
This hardware specification contains detailed information on  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3. Maximum Tolerated Ratings . . . . . . . . . . . . . . . . . . . 7  
4. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . 8  
5. Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
7. Thermal Calculation and Measurement . . . . . . . . . . 12  
8. Layout Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
9. Bus Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
10. IEEE 1149.1 Electrical Specifications . . . . . . . . . . . 41  
11. CPM Electrical Characteristics . . . . . . . . . . . . . . . . . 43  
12. UTOPIA AC Electrical Specifications . . . . . . . . . . . 65  
13. FEC Electrical Characteristics . . . . . . . . . . . . . . . . . 67  
14. Mechanical Data and Ordering Information . . . . . . . 70  
15. Document Revision History . . . . . . . . . . . . . . . . . . . 76  
power considerations, DC/AC electrical characteristics, and  
AC timing specifications for the MPC860 family.  
To locate published errata or updates for this document, see  
the MPC860 product summary page on the website listed on  
the back cover of this document or contact your local  
Freescale sales office.  
Freescale reserves the right to change the detail specifications as may be required  
to permit improvements in the design of its products.  
© 2007-2012 Freescale Semiconductor, Inc. All rights reserved.  
Overview  
1 Overview  
The MPC860 power quad integrated communications controller (PowerQUICC™) is a versatile one-chip  
integrated microprocessor and peripheral combination designed for a variety of controller applications. It  
particularly excels in communications and networking systems. The PowerQUICC unit is referred to as  
the MPC860 in this hardware specification.  
The MPC860 implements Power Architecture™ technology and contains a superset of Freescale’s  
MC68360 quad integrated communications controller (QUICC), referred to here as the QUICC, RISC  
communications proccessor module (CPM). The CPU on the MPC860 is a 32-bit core built on Power  
Architecture technology that incorporates memory management units (MMUs) and instruction and data  
caches.. The CPM from the MC68360 QUICC has been enhanced by the addition of the inter-integrated  
2
controller (I C) channel. The memory controller has been enhanced, enabling the MPC860 to support any  
type of memory, including high-performance memories and new types of DRAMs. A PCMCIA socket  
controller supports up to two sockets. A real-time clock has also been integrated.  
Table 1 shows the functionality supported by the MPC860 family.  
Table 1. MPC860 Family Functionality  
Cache (Kbytes)  
Ethernet  
1
Part  
ATM  
SCC  
Reference  
Instruction  
Cache  
Data Cache  
10T  
10/100  
MPC860DE  
MPC860DT  
MPC860DP  
MPC860EN  
MPC860SR  
MPC860T  
4
4
4
4
8
4
4
4
8
4
Up to 2  
Up to 2  
Up to 2  
Up to 4  
Up to 4  
Up to 4  
Up to 4  
1
1
2
2
2
4
4
4
4
1
1
1
1
1
1
1
1
2
Yes  
Yes  
16  
4
1
1
4
Yes  
Yes  
Yes  
Yes  
4
MPC860P  
MPC855T  
16  
4
1
1
1
Supporting documentation for these devices refers to the following:  
1. MPC860 PowerQUICC Family User’s Manual (MPC860UM, Rev. 3)  
2. MPC855T User’s Manual (MPC855TUM, Rev. 1)  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
2
Freescale Semiconductor  
 
Features  
2 Features  
The following list summarizes the key MPC860 features:  
Embedded single-issue, 32-bit core (implementing the Power Architecture technology) with  
thirty-two 32-bit general-purpose registers (GPRs)  
— The core performs branch prediction with conditional prefetch without conditional execution.  
— 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1)  
– 16-Kbyte instruction caches are four-way, set-associative with 256 sets; 4-Kbyte instruction  
caches are two-way, set-associative with 128 sets.  
– 8-Kbyte data caches are two-way, set-associative with 256 sets; 4-Kbyte data caches are  
two-way, set-associative with 128 sets.  
– Cache coherency for both instruction and data caches is maintained on 128-bit (4-word)  
cache blocks.  
– Caches are physically addressed, implement a least recently used (LRU) replacement  
algorithm, and are lockable on a cache block basis.  
— MMUs with 32-entry TLB, fully-associative instruction, and data TLBs  
— MMUs support multiple page sizes of 4-, 16-, and 512-Kbytes, and 8-Mbytes; 16 virtual  
address spaces and 16 protection groups  
— Advanced on-chip-emulation debug mode  
Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)  
32 address lines  
Operates at up to 80 MHz  
Memory controller (eight banks)  
— Contains complete dynamic RAM (DRAM) controller  
— Each bank can be a chip select or RAS to support a DRAM bank.  
— Up to 15 wait states programmable per memory bank  
— Glueless interface to DRAM, SIMMS, SRAM, EPROM, Flash EPROM, and other memory  
devices  
— DRAM controller programmable to support most size and speed memory interfaces  
— Four CAS lines, four WE lines, and one OE line  
— Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)  
Variable block sizes (32 Kbytes to 256 Mbytes)  
— Selectable write protection  
— On-chip bus arbitration logic  
General-purpose timers  
— Four 16-bit timers or two 32-bit timers  
— Gate mode can enable/disable counting  
— Interrupt can be masked on reference match and event capture.  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
3
Features  
System integration unit (SIU)  
— Bus monitor  
— Software watchdog  
— Periodic interrupt timer (PIT)  
— Low-power stop mode  
— Clock synthesizer  
— Decrementer, time base, and real-time clock (RTC)  
— Reset controller  
— IEEE 1149.1™ Std. test access port (JTAG)  
Interrupts  
— Seven external interrupt request (IRQ) lines  
— 12 port pins with interrupt capability  
— 23 internal interrupt sources  
— Programmable priority between SCCs  
— Programmable highest priority request  
10/100 Mbps Ethernet support, fully compliant with the IEEE 802.3u® Standard (not available  
when using ATM over UTOPIA interface)  
ATM support compliant with ATM forum UNI 4.0 specification  
— Cell processing up to 50–70 Mbps at 50-MHz system clock  
— Cell multiplexing/demultiplexing  
— Support of AAL5 and AAL0 protocols on a per-VC basis. AAL0 support enables OAM and  
software implementation of other protocols.  
ATM pace control (APC) scheduler, providing direct support for constant bit rate (CBR) and  
unspecified bit rate (UBR) and providing control mechanisms enabling software support of  
available bit rate (ABR)  
— Physical interface support for UTOPIA (10/100-Mbps is not supported with this interface) and  
byte-aligned serial (for example, T1/E1/ADSL)  
— UTOPIA-mode ATM supports level-1 master with cell-level handshake, multi-PHY (up to four  
physical layer devices), connection to 25-, 51-, or 155-Mbps framers, and UTOPIA/system  
clock ratios of 1/2 or 1/3.  
— Serial-mode ATM connection supports transmission convergence (TC) function for  
T1/E1/ADSL lines, cell delineation, cell payload scrambling/descrambling, automatic  
idle/unassigned cell insertion/stripping, header error control (HEC) generation, checking, and  
statistics.  
Communications processor module (CPM)  
— RISC communications processor (CP)  
— Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT  
MODE, and RESTART TRANSMIT)  
— Supports continuous mode transmission and reception on all serial channels  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
4
Freescale Semiconductor  
Features  
— Up to 8 Kbytes of dual-port RAM  
— 16 serial DMA (SDMA) channels  
— Three parallel I/O registers with open-drain capability  
Four baud-rate generators (BRGs)  
— Independent (can be tied to any SCC or SMC)  
— Allows changes during operation  
— Autobaud support option  
Four serial communications controllers (SCCs)  
— Ethernet/IEEE 802.3® standard optional on SCC1–4, supporting full 10-Mbps operation  
(available only on specially programmed devices)  
— HDLC/SDLC (all channels supported at 2 Mbps)  
— HDLC bus (implements an HDLC-based local area network (LAN))  
— Asynchronous HDLC to support point-to-point protocol (PPP)  
— AppleTalk  
— Universal asynchronous receiver transmitter (UART)  
— Synchronous UART  
— Serial infrared (IrDA)  
— Binary synchronous communication (BISYNC)  
— Totally transparent (bit streams)  
— Totally transparent (frame-based with optional cyclic redundancy check (CRC))  
Two SMCs (serial management channels)  
— UART  
— Transparent  
— General circuit interface (GCI) controller  
— Can be connected to the time-division multiplexed (TDM) channels  
One SPI (serial peripheral interface)  
— Supports master and slave modes  
— Supports multimaster operation on the same bus  
2
One I C (inter-integrated circuit) port  
— Supports master and slave modes  
— Multiple-master environment support  
Time-slot assigner (TSA)  
— Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation  
— Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user defined  
— 1- or 8-bit resolution  
— Allows independent transmit and receive routing, frame synchronization, and clocking  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
5
Features  
— Allows dynamic changes  
— Can be internally connected to six serial channels (four SCCs and two SMCs)  
Parallel interface port (PIP)  
— Centronics interface support  
— Supports fast connection between compatible ports on the MPC860 or the MC68360  
PCMCIA interface  
— Master (socket) interface, release 2.1 compliant  
— Supports two independent PCMCIA sockets  
— Supports eight memory or I/O windows  
Low power support  
— Full on—all units fully powered  
— Doze—core functional units disabled except time base decrementer, PLL, memory controller,  
RTC, and CPM in low-power standby  
— Sleep—all units disabled except RTC and PIT, PLL active for fast wake up  
— Deep sleep—all units disabled including PLL except RTC and PIT  
— Power down mode—all units powered down except PLL, RTC, PIT, time base, and  
decrementer  
Debug interface  
— Eight comparators: four operate on instruction address, two operate on data address, and two  
operate on data  
— Supports conditions: = < >  
— Each watchpoint can generate a break-point internally.  
3.3-V operation with 5-V TTL compatibility except EXTAL and EXTCLK  
357-pin ball grid array (BGA) package  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
6
Freescale Semiconductor  
Maximum Tolerated Ratings  
3 Maximum Tolerated Ratings  
This section provides the maximum tolerated voltage and temperature ranges for the MPC860. Table 2  
provides the maximum ratings.  
This device contains circuitry protecting against damage due to high-static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for example, either GND or V ).  
DD  
Table 2. Maximum Tolerated Ratings  
(GND = 0 V)  
Rating  
Symbol  
Value  
Unit  
1
Supply voltage  
V
–0.3 to 4.0  
–0.3 to 4.0  
–0.3 to 4.0  
–0.3 to 4.0  
GND – 0.3 to V  
0
V
V
DDH  
V
DDL  
KAPWR  
V
V
V
DDSYN  
2
Input voltage  
V
V
in  
DDH  
3
Temperature (standard)  
T
°C  
°C  
°C  
°C  
°C  
A(min)  
T
95  
j(max)  
3
Temperature (extended)  
T
–40  
A(min)  
T
95  
j(max)  
Storage temperature range  
T
–55 to 150  
stg  
1
2
The power supply of the device must start its ramp from 0.0 V.  
Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum ratings are  
stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device  
reliability or cause permanent damage to the device.  
Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than the supply voltage. This restriction applies to  
power-up and normal operation (that is, if the MPC860 is unpowered, voltage greater than 2.5 V must not be applied to its  
inputs).  
3
Minimum temperatures are guaranteed as ambient temperature, T . Maximum temperatures are guaranteed as junction  
A
temperature, T .  
j
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
7
 
Thermal Characteristics  
Figure 1 shows the undershoot and overshoot voltages at the interface of the MPC860.  
V
/V  
+ 20%  
DDH DDL  
V
/V  
+ 5%  
/V  
DDH DDL  
V
V
DDH DDL  
IH  
GND  
GND – 0.3 V  
V
IL  
GND – 0.7 V  
Not to Exceed 10%  
1
of t  
interface  
Note:  
1. t  
refers to the clock period associated with the bus clock interface.  
interface  
Figure 1. Undershoot/Overshoot Voltage for V  
and V  
DDL  
DDH  
4 Thermal Characteristics  
Table 3. Package Description  
Package Designator  
Package Code (Case No.)  
Package Description  
ZP  
5050 (1103-01)  
PBGA 357 25*25*0.9P1.27  
PBGA 357 25*25*1.2P1.27  
ZQ/VR  
5058 (1103D-02)  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
8
Freescale Semiconductor  
 
Thermal Characteristics  
Table 4 shows the thermal characteristics for the MPC860.  
Table 4. MPC860 Thermal Resistance Data  
ZP  
ZQ / VR  
Unit  
Rating  
Environment  
Symbol  
MPC860P MPC860P  
Mold Compound Thickness  
0.85  
34  
22  
27  
18  
14  
6
1.15  
34  
22  
27  
18  
13  
8
mm  
1
2
Junction-to-ambient  
Natural convection  
Single-layer board (1s)  
R
•C/W  
θJA  
3
3
3
Four-layer board (2s2p)  
Single-layer board (1s)  
Four-layer board (2s2p)  
R
R
R
θJMA  
θJMA  
θJMA  
Airflow (200 ft/min)  
4
Junction-to-board  
R
θJB  
θJC  
5
Junction-to-case  
R
6
Junction-to-package top Natural convection  
Ψ
2
2
JT  
1
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal  
resistance.  
Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method  
(MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad  
packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from  
the junction to the exposed pad without contact resistance.  
2
3
4
5
6
Thermal characterization parameter indicating the temperature difference between the package top and the junction  
temperature per JEDEC JESD51-2.  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
9
 
Power Dissipation  
5 Power Dissipation  
Table 5 provides power dissipation information. The modes are 1:1, where CPU and bus speeds are equal,  
and 2:1, where CPU frequency is twice the bus speed.  
Table 5. Power Dissipation (P )  
D
1
2
Die Revision  
Frequency (MHz)  
Typical  
Maximum  
Unit  
D.4  
(1:1 mode)  
50  
66  
66  
80  
656  
TBD  
722  
851  
735  
TBD  
762  
909  
mW  
mW  
mW  
mW  
D.4  
(2:1 mode)  
1
2
Typical power dissipation is measured at 3.3 V.  
Maximum power dissipation is measured at 3.5 V.  
NOTE  
Values in Table 5 represent V  
-based power dissipation and do not  
DDL  
include I/O power dissipation over V  
. I/O power dissipation varies  
DDH  
widely by application due to buffer current, depending on external circuitry.  
6 DC Characteristics  
Table 6 provides the DC electrical characteristics for the MPC860.  
Table 6. DC Electrical Specifications  
Characteristic  
Symbol  
, V , V  
Min  
Max  
Unit  
Operating voltage at 40 MHz or less  
V
3.0  
2.0  
3.6  
3.6  
V
V
DDH  
DDL DDSYN  
KAPWR  
(power-down mode)  
KAPWR  
(all other operating modes)  
V
V
– 0.4  
V
V
V
V
V
V
DDH  
DDH  
Operating voltage greater than 40 MHz  
V
, V  
, KAPWR,  
DDL  
3.135  
2.0  
3.465  
DDH  
V
DDSYN  
KAPWR  
(power-down mode)  
3.6  
KAPWR  
(all other operating modes)  
– 0.4  
V
DDH  
DDH  
Input high voltage (all inputs except EXTAL and  
EXTCLK)  
V
2.0  
5.5  
0.8  
IH  
1
Input low voltage  
V
GND  
V
V
IL  
EXTAL, EXTCLK input high voltage  
V
0.7 × (V  
)
V
+ 0.3  
DDH  
IHC  
DDH  
Input leakage current, V = 5.5 V (except TMS, TRST,  
I
100  
µA  
in  
in  
DSCK, and DSDI pins)  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
10  
Freescale Semiconductor  
 
 
DC Characteristics  
Table 6. DC Electrical Specifications (continued)  
Characteristic Symbol Min  
Max  
Unit  
Input leakage current, V = 3.6 V (except TMS, TRST,  
DSCK, and DSDI pins)  
I
I
10  
10  
µA  
in  
In  
Input leakage current, V = 0 V (except TMS, TRST,  
µA  
in  
In  
DSCK, and DSDI pins)  
2
Input capacitance  
C
20  
pF  
V
in  
Output high voltage, I  
= –2.0 mA, V  
= 3.0 V  
V
OH  
2.4  
OH  
DDH  
(except XTAL, XFC, and open-drain pins)  
Output low voltage  
V
0.5  
V
OL  
I
I
I
I
I
= 2.0 mA, CLKOUT  
OL  
OL  
OL  
OL  
OL  
3
= 3.2 mA  
= 5.3 mA  
4
= 7.0 mA, TXD1/PA14, TXD2/PA12  
= 8.9 mA, TS, TA, TEA, BI, BB, HRESET, SRESET  
1
2
2
V (max) for the I C interface is 0.8 V rather than the 1.5 V as specified in the I C standard.  
IL  
2
3
Input capacitance is periodically sampled.  
A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2, IP_B(0:1)/IWP(0:1)/VFLS(0:1),  
IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3,  
RXD1/PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9, L1RXDA/PA8, TIN1/L1RCLKA/BRGO1/CLK1/PA7,  
BRGCLK1/TOUT1/CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5, TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3, BRGCLK2/  
L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/PA1, L1TCLKB/TOUT4/CLK8/PA0, REJCT1/SPISEL/PB31, SPICLK/  
PB30,SPIMOSI/PB29, BRGO4/SPIMISO/PB28, BRGO1/I2CSDA/PB27, BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/  
PB24, SMSYN1/SDACK1/PB23, SMSYN2/SDACK2/PB22, SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/  
RTS1/PB19, L1ST2/RTS2/PB18, L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/  
DREQ0/PC15, L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11, TGATE1/CD1/PC10,  
CTS2/PC9, TGATE2/CD2/PC8, SDACK2/L1TSYNCB/PC7, L1RSYNCB/PC6, SDACK1/L1TSYNCA/PC5, L1RSYNCA/PC4,  
PD15, PD14, PD13, PD12, PD11, PD10, PD9, PD8, PD5, PD6, PD7, PD4, PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO,  
and MII_TXD[0:3]  
4
BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD, WE1/BS_B1/IOWR,  
WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A(2:3)/GPL_B(2:3)/  
CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A, ALE_B/DSCK/AT1, OP(0:1),  
OP2/MODCK1/STS, OP3/MODCK2/DSDO, and BADDR(28:30)  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
11  
Thermal Calculation and Measurement  
7 Thermal Calculation and Measurement  
For the following discussions, P = (V × I ) + PI/O, where PI/O is the power dissipation of the I/O  
D
DD  
DD  
drivers.  
7.1  
Estimation with Junction-to-Ambient Thermal Resistance  
An estimation of the chip junction temperature, TJ, in ºC can be obtained from the equation:  
T = T + (R × P )  
J
A
θJA  
D
where:  
T = ambient temperature (ºC)  
A
R
= package junction-to-ambient thermal resistance (ºC/W)  
θJA  
P = power dissipation in package  
D
The junction-to-ambient thermal resistance is an industry standard value which provides a quick and easy  
estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated  
that errors of a factor of two (in the quantity T T ) are possible.  
J
A
7.2  
Estimation with Junction-to-Case Thermal Resistance  
Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal  
resistance and a case-to-ambient thermal resistance:  
R
= R  
+ R  
θJC θCA  
θJA  
where:  
R
R
R
= junction-to-ambient thermal resistance (ºC/W)  
= junction-to-case thermal resistance (ºC/W)  
= case-to-ambient thermal resistance (ºC/W)  
θJA  
θJC  
θCA  
R
is device related and cannot be influenced by the user. The user adjusts the thermal environment to  
θJC  
affect the case-to-ambient thermal resistance, R  
. For instance, the user can change the airflow around  
θCA  
the device, add a heat sink, change the mounting arrangement on the printed-circuit board, or change the  
thermal dissipation on the printed-circuit board surrounding the device. This thermal model is most useful  
for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink  
to the ambient environment. For most packages, a better model is required.  
7.3  
Estimation with Junction-to-Board Thermal Resistance  
A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a  
two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The  
junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial  
amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance  
describes the thermal performance when most of the heat is conducted to the printed-circuit board. It has  
been observed that the thermal performance of most plastic packages, especially PBGA packages, is  
strongly dependent on the board temperature; see Figure 2.  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
12  
Freescale Semiconductor  
Thermal Calculation and Measurement  
Board Temperature Rise Above Ambient Divided by Package Power  
Figure 2. Effect of Board Temperature Rise on Thermal Behavior  
If the board temperature is known, an estimate of the junction temperature in the environment can be made  
using the following equation:  
T = T + (R  
× P )  
D
J
B
θJB  
where:  
R
= junction-to-board thermal resistance (ºC/W)  
θJB  
T = board temperature (ºC)  
B
P = power dissipation in package  
D
If the board temperature is known and the heat loss from the package case to the air can be ignored,  
acceptable predictions of junction temperature can be made. For this method to work, the board and board  
mounting must be similar to the test board used to determine the junction-to-board thermal resistance,  
namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the ground  
plane.  
7.4  
Estimation Using Simulation  
When the board temperature is not known, a thermal simulation of the application is needed. The simple  
two-resistor model can be used with the thermal simulation of the application [2], or a more accurate and  
complex model of the package can be used in the thermal simulation.  
7.5  
Experimental Determination  
To determine the junction temperature of the device in the application after prototypes are available, the  
thermal characterization parameter (Ψ ) can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T + (Ψ × P )  
J
T
JT  
D
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
13  
Layout Practices  
where:  
Ψ = thermal characterization parameter  
JT  
T = thermocouple temperature on top of package  
T
P = power dissipation in package  
D
The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40 gauge  
type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned  
so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is  
placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
7.6  
References  
Semiconductor Equipment and Materials International  
(415) 964-5111  
805 East Middlefield Rd.  
Mountain View, CA 94043  
MIL-SPEC and EIA/JESD (JEDEC) Specifications  
(Available from Global Engineering Documents)  
800-854-7179 or  
303-397-7956  
JEDEC Specifications  
http://www.jedec.org  
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an  
Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 4754.  
2. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance  
and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999,  
pp. 212220.  
8 Layout Practices  
Each VDD pin on the MPC860 should be provided with a low-impedance path to the board’s supply. Each  
GND pin should likewise be provided with a low-impedance path to ground. The power supply pins drive  
distinct groups of logic on the chip. The VDD power supply should be bypassed to ground using at least  
four 0.1 µF-bypass capacitors located as close as possible to the four sides of the package. The capacitor  
leads and associated printed circuit traces connecting to chip VDD and GND should be kept to less than half  
an inch per capacitor lead. A four-layer board employing two inner layers as VCC and GND planes is  
recommended.  
All output pins on the MPC860 have fast rise and fall times. Printed circuit (PC) trace interconnection  
length should be minimized in order to minimize undershoot and reflections caused by these fast output  
switching times. This recommendation particularly applies to the address and data buses. Maximum PC  
trace lengths of 6 inches are recommended. Capacitance calculations should consider all device loads as  
well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes  
especially critical in systems with higher capacitive loads because these loads create higher transient  
currents in the VCC and GND circuits. Pull up all unused inputs or signals that will be inputs during reset.  
Special care should be taken to minimize the noise levels on the PLL supply pins.  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
14  
Freescale Semiconductor  
Bus Signal Timing  
9 Bus Signal Timing  
Table 7 provides the bus operation timing for the MPC860 at 33, 40, 50, and 66 MHz.  
The maximum bus speed supported by the MPC860 is 66 MHz. Higher-speed parts must be operated in  
half-speed bus mode (for example, an MPC860 used at 80 MHz must be configured for a 40-MHz bus).  
The timing for the MPC860 bus shown assumes a 50-pF load for maximum delays and a 0-pF load for  
minimum delays.  
Table 7. Bus Operation Timings  
33 MHz  
Min Max  
40 MHz  
Min Max  
50 MHz  
Min Max  
66 MHz  
Min Max  
Num  
Characteristic  
Unit  
B1  
CLKOUT period  
30.30 30.30 25.00 30.30 20.00 30.30 15.15 30.30  
–0.90 0.90 –0.90 0.90 –0.90 0.90 –0.90 0.90  
ns  
ns  
B1a EXTCLK to CLKOUT phase skew  
(EXTCLK > 15 MHz and MF <= 2)  
B1b EXTCLK to CLKOUT phase skew  
(EXTCLK > 10 MHz and MF < 10)  
–2.30 2.30 –2.30 2.30 –2.30 2.30 –2.30 2.30  
–0.60 0.60 –0.60 0.60 –0.60 0.60 –0.60 0.60  
–2.00 2.00 –2.00 2.00 –2.00 2.00 –2.00 2.00  
ns  
ns  
B1c CLKOUT phase jitter (EXTCLK > 15 MHz  
1
and MF <= 2)  
1
B1d CLKOUT phase jitter  
ns  
%
1
B1e CLKOUT frequency jitter (MF < 10)  
0.50  
2.00  
3.00  
0.50  
0.50  
2.00  
3.00  
0.50  
0.50  
2.00  
3.00  
0.50  
0.50  
2.00  
3.00  
0.50  
1
B1f  
CLKOUT frequency jitter (10 < MF < 500)  
%
1
B1g CLKOUT frequency jitter (MF > 500)  
%
2
B1h Frequency jitter on EXTCLK  
%
B2  
B3  
B4  
CLKOUT pulse width low  
CLKOUT width high  
12.12  
12.12  
10.00  
10.00  
8.00  
8.00  
6.06  
6.06  
ns  
ns  
ns  
ns  
ns  
3
CLKOUT rise time  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
33  
3
B5  
B7  
CLKOUT fall time  
CLKOUT to A(0:31), BADDR(28:30),  
7.58  
6.25  
5.00  
3.80  
RD/WR, BURST, D(0:31), DP(0:3) invalid  
B7a CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3),  
BDIP, PTR invalid  
7.58  
7.58  
6.25  
6.25  
5.00  
5.00  
3.80  
3.80  
ns  
ns  
ns  
ns  
ns  
B7b CLKOUT to BR, BG, FRZ, VFLS(0:1),  
4
VF(0:2) IWP(0:2), LWP(0:1), STS invalid  
B8  
CLKOUT to A(0:31), BADDR(28:30)  
RD/WR, BURST, D(0:31), DP(0:3) valid  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04  
B8a CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3)  
BDIP, PTR valid  
B8b CLKOUT to BR, BG, VFLS(0:1), VF(0:2),  
4
IWP(0:2), FRZ, LWP(0:1), STS valid  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
15  
 
Bus Signal Timing  
Table 7. Bus Operation Timings (continued)  
33 MHz 40 MHz  
Min Max Min Max  
50 MHz  
Min Max  
66 MHz  
Min Max  
Num  
Characteristic  
Unit  
B9  
CLKOUT to A(0:31), BADDR(28:30),  
RD/WR, BURST, D(0:31), DP(0:3),  
TSIZ(0:1), REG, RSV, AT(0:3), PTR High-Z  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04  
ns  
B11 CLKOUT to TS, BB assertion  
7.58 13.58 6.25 12.25 5.00 11.00 3.80 11.29  
ns  
ns  
B11a CLKOUT to TA, BI assertion (when driven by 2.50  
the memory controller or PCMCIA interface)  
9.25  
2.50  
9.25  
2.50  
9.25  
2.50  
9.75  
B12 CLKOUT to TS, BB negation  
7.58 14.33 6.25 13.00 5.00 11.75 3.80  
8.54  
9.00  
ns  
ns  
B12a CLKOUT to TA, BI negation (when driven by 2.50 11.00 2.50 11.00 2.50 11.00 2.50  
the memory controller or PCMCIA interface)  
B13 CLKOUT to TS, BB High-Z  
7.58 21.58 6.25 20.25 5.00 19.00 3.80 14.04  
2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00  
ns  
ns  
B13a CLKOUT to TA, BI High-Z (when driven by  
the memory controller or PCMCIA interface)  
B14 CLKOUT to TEA assertion  
B15 CLKOUT to TEA High-Z  
2.50 10.00 2.50 10.00 2.50 10.00 2.50  
9.00  
ns  
ns  
ns  
ns  
2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00  
B16 TA, BI valid to CLKOUT (setup time)  
9.75  
9.75  
9.75  
6.00  
4.50  
B16a TEA, KR, RETRY, CR valid to CLKOUT  
(setup time)  
10.00  
10.00  
10.00  
5
B16b BB, BG, BR, valid to CLKOUT (setup time)  
8.50  
1.00  
8.50  
1.00  
8.50  
1.00  
4.00  
2.00  
ns  
ns  
B17 CLKOUT to TA, TEA, BI, BB, BG, BR valid  
(hold time)  
B17a CLKOUT to KR, RETRY, CR valid (hold  
time)  
2.00  
6.00  
1.00  
4.00  
2.00  
2.00  
6.00  
1.00  
4.00  
2.00  
2.00  
6.00  
1.00  
4.00  
2.00  
2.00  
6.00  
2.00  
4.00  
2.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
B18 D(0:31), DP(0:3) valid to CLKOUT rising  
6
edge (setup time)  
B19 CLKOUT rising edge to D(0:31), DP(0:3)  
6
valid (hold time)  
B20 D(0:31), DP(0:3) valid to CLKOUT falling  
7
edge (setup time)  
B21 CLKOUT falling edge to D(0:31), DP(0:3)  
7
valid (hold time)  
B22 CLKOUT rising edge to CS asserted GPCM 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04  
ACS = 00  
B22a CLKOUT falling edge to CS asserted GPCM  
ACS = 10, TRLX = 0  
8.00  
8.00  
8.00  
8.00  
B22b CLKOUT falling edge to CS asserted GPCM 7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54  
ACS = 11, TRLX = 0, EBDF = 0  
B22c CLKOUT falling edge to CS asserted GPCM 10.86 17.99 8.88 16.00 7.00 14.13 5.18 12.31  
ACS = 11, TRLX = 0, EBDF = 1  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
16  
Freescale Semiconductor  
Bus Signal Timing  
Table 7. Bus Operation Timings (continued)  
33 MHz 40 MHz  
50 MHz  
66 MHz  
Unit  
Num  
Characteristic  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B23 CLKOUT rising edge to CS negated GPCM 2.00  
read access, GPCM write access ACS = 00,  
TRLX = 0, and CSNT = 0  
8.00  
2.00  
8.00  
2.00  
8.00  
2.00  
8.00  
ns  
B24 A(0:31) and BADDR(28:30) to CS asserted 5.58  
GPCM ACS = 10, TRLX = 0  
4.25  
10.50  
3.00  
8.00  
1.79  
5.58  
ns  
ns  
ns  
B24a A(0:31) and BADDR(28:30) to CS asserted 13.15  
GPCM ACS = 11, TRLX = 0  
B25 CLKOUT rising edge to OE, WE(0:3)  
asserted  
9.00  
9.00  
9.00  
9.00  
B26 CLKOUT rising edge to OE negated  
2.00  
9.00  
2.00  
9.00  
2.00  
9.00  
2.00  
9.00  
ns  
ns  
B27 A(0:31) and BADDR(28:30) to CS asserted 35.88  
GPCM ACS = 10, TRLX = 1  
29.25  
23.00  
16.94  
B27a A(0:31) and BADDR(28:30) to CS asserted 43.45  
GPCM ACS = 11, TRLX = 1  
35.50  
28.00  
20.73  
ns  
ns  
ns  
B28 CLKOUT rising edge to WE(0:3) negated  
GPCM write access CSNT = 0  
9.00  
9.00  
9.00  
9.00  
B28a CLKOUT falling edge to WE(0:3) negated  
GPCM write access TRLX = 0, 1, CSNT = 1,  
EBDF = 0  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54  
B28b CLKOUT falling edge to CS negated GPCM  
write access TRLX = 0, 1, CSNT = 1,  
14.33  
13.00  
11.75  
10.54  
ns  
ns  
ACS = 10, or ACS = 11, EBDF = 0  
B28c CLKOUT falling edge to WE(0:3) negated  
GPCM write access TRLX = 0, 1, CSNT = 1  
write access TRLX = 0, CSNT = 1,  
EBDF = 1  
10.86 17.99 8.88 16.00 7.00 14.13 5.18 12.31  
B28d CLKOUT falling edge to CS negated GPCM  
write access TRLX = 0, 1, CSNT = 1,  
17.99  
16.00  
14.13  
12.31  
ns  
ACS = 10, or ACS = 11, EBDF = 1  
B29 WE(0:3) negated to D(0:31), DP(0:3) High-Z 5.58  
GPCM write access CSNT = 0, EBDF = 0  
4.25  
10.5  
3.00  
8.00  
1.79  
5.58  
ns  
ns  
B29a WE(0:3) negated to D(0:31), DP(0:3) High-Z 13.15  
GPCM write access, TRLX = 0, CSNT = 1,  
EBDF = 0  
B29b CS negated to D(0:31), DP(0:3), High-Z  
GPCM write access, ACS = 00, TRLX = 0, 1,  
and CSNT = 0  
5.58  
4.25  
10.5  
3.00  
8.00  
1.79  
5.58  
ns  
ns  
B29c CS negated to D(0:31), DP(0:3) High-Z  
GPCM write access, TRLX = 0, CSNT = 1,  
ACS = 10, or ACS = 11, EBDF = 0  
13.15  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
17  
Bus Signal Timing  
Table 7. Bus Operation Timings (continued)  
33 MHz 40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B29d WE(0:3) negated to D(0:31), DP(0:3) High-Z 43.45  
GPCM write access, TRLX = 1, CSNT = 1,  
EBDF = 0  
35.5  
28.00  
28.00  
5.00  
20.73  
29.73  
3.18  
ns  
B29e CS negated to D(0:31), DP(0:3) High-Z  
GPCM write access, TRLX = 1, CSNT = 1,  
ACS = 10, or ACS = 11, EBDF = 0  
43.45  
35.5  
ns  
ns  
ns  
ns  
ns  
B29f WE(0:3) negated to D(0:31), DP(0:3) High-Z 8.86  
GPCM write access, TRLX = 0, CSNT = 1,  
EBDF = 1  
6.88  
B29g CS negated to D(0:31), DP(0:3) High-Z  
GPCM write access, TRLX = 0, CSNT = 1,  
ACS = 10, or ACS = 11, EBDF = 1  
8.86  
6.88  
5.00  
3.18  
B29h WE(0:3) negated to D(0:31), DP(0:3) High-Z 38.67  
GPCM write access, TRLX = 1, CSNT = 1,  
EBDF = 1  
31.38  
31.38  
24.50  
24.50  
17.83  
17.83  
B29i CS negated to D(0:31), DP(0:3) High-Z  
GPCM write access, TRLX = 1, CSNT = 1,  
ACS = 10, or ACS = 11, EBDF = 1  
38.67  
B30 CS, WE(0:3) negated to A(0:31),  
BADDR(28:30) invalid GPCM write access  
5.58  
4.25  
3.00  
8.00  
1.79  
5.58  
ns  
ns  
8
B30a WE(0:3) negated to A(0:31), BADDR(28:30) 13.15  
invalid GPCM, write access, TRLX = 0,  
10.50  
CSNT = 1, CS negated to A(0:31) invalid  
GPCM write access, TRLX = 0, CSNT = 1  
ACS = 10, or ACS = 11, EBDF = 0  
B30b WE(0:3) negated to A(0:31), invalid GPCM 43.45  
BADDR(28:30) invalid GPCM write access,  
TRLX = 1, CSNT = 1. CS negated to  
A(0:31), Invalid GPCM, write access,  
TRLX = 1, CSNT = 1, ACS = 10, or  
35.50  
28.00  
20.73  
ns  
ACS = 11, EBDF = 0  
B30c WE(0:3) negated to A(0:31), BADDR(28:30) 8.36  
invalid GPCM write access, TRLX = 0,  
6.38  
31.38  
1.50  
4.50  
24.50  
1.50  
2.68  
17.83  
1.50  
ns  
ns  
ns  
CSNT = 1. CS negated to A(0:31) invalid  
GPCM write access, TRLX = 0, CSNT = 1,  
ACS = 10, ACS = 11, EBDF = 1  
B30d WE(0:3) negated to A(0:31), BADDR(28:30) 38.67  
invalid GPCM write access, TRLX = 1,  
CSNT =1. CS negated to A(0:31) invalid  
GPCM write access TRLX = 1, CSNT = 1,  
ACS = 10, or ACS = 11, EBDF = 1  
B31 CLKOUT falling edge to CS valid—as  
requested by control bit CST4 in the  
corresponding word in UPM  
1.50  
6.00  
6.00  
6.00  
6.00  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
18  
Freescale Semiconductor  
Bus Signal Timing  
Table 7. Bus Operation Timings (continued)  
33 MHz 40 MHz  
Min Max Min Max  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54  
50 MHz  
Min Max  
66 MHz  
Unit  
Num  
Characteristic  
Min  
Max  
B31a CLKOUT falling edge to CS valid—as  
requested by control bit CST1 in the  
corresponding word in UPM  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
B31b CLKOUT rising edge to CS valid—as  
requested by control bit CST2 in the  
corresponding word in UPM  
1.50  
8.00  
1.50  
8.00  
1.50  
8.00  
1.50  
8.00  
B31c CLKOUT rising edge to CS valid—as  
requested by control bit CST3 in the  
corresponding word in UPM  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.04  
13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31  
B31d CLKOUT falling edge to CS valid—as  
requested by control bit CST1 in the  
corresponding word in UPM, EBDF = 1  
B32 CLKOUT falling edge to BS valid—as  
requested by control bit BST4 in the  
corresponding word in UPM  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
B32a CLKOUT falling edge to BS valid—as  
requested by control bit BST1 in the  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54  
corresponding word in UPM, EBDF = 0  
B32b CLKOUT rising edge to BS valid—as  
requested by control bit BST2 in the  
corresponding word in UPM  
1.50  
8.00  
1.50  
8.00  
1.50  
8.00  
1.50  
8.00  
B32c CLKOUT rising edge to BS valid—as  
requested by control bit BST3 in the  
corresponding word in UPM  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54  
13.26 17.99 11.28 16.00 9.40 14.13 7.58 12.31  
B32d CLKOUT falling edge to BS valid—as  
requested by control bit BST1 in the  
corresponding word in UPM, EBDF = 1  
B33 CLKOUT falling edge to GPL valid—as  
requested by control bit GxT4 in the  
corresponding word in UPM  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
B33a CLKOUT rising edge to GPL valid—as  
requested by control bit GxT3 in the  
corresponding word in UPM  
7.58 14.33 6.25 13.00 5.00 11.75 3.80 10.54  
B34 A(0:31), BADDR(28:30), and D(0:31) to CS 5.58  
valid—as requested by control bit CST4 in  
the corresponding word in UPM  
4.25  
10.50  
16.75  
3.00  
8.00  
1.79  
5.58  
9.36  
B34a A(0:31), BADDR(28:30), and D(0:31) to CS 13.15  
valid—as requested by control bit CST1 in  
the corresponding word in UPM  
B34b A(0:31), BADDR(28:30), and D(0:31) to CS 20.73  
valid—as requested by control bit CST2 in  
the corresponding word in UPM  
13.00  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
19  
Bus Signal Timing  
Table 7. Bus Operation Timings (continued)  
33 MHz 40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
5.58  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B35 A(0:31), BADDR(28:30) to CS valid—as  
requested by control bit BST4 in the  
corresponding word in UPM  
4.25  
10.50  
16.75  
4.25  
3.00  
1.79  
5.58  
9.36  
1.79  
ns  
B35a A(0:31), BADDR(28:30), and D(0:31) to BS 13.15  
valid—as requested by control bit BST1 in  
the corresponding word in UPM  
8.00  
ns  
ns  
ns  
B35b A(0:31), BADDR(28:30), and D(0:31) to BS 20.73  
valid—as requested by control bit BST2 in  
the corresponding word in UPM  
13.00  
3.00  
B36 A(0:31), BADDR(28:30), and D(0:31) to  
GPL valid—as requested by control bit GxT4  
in the corresponding word in UPM  
5.58  
9
B37 UPWAIT valid to CLKOUT falling edge  
6.00  
1.00  
7.00  
6.00  
1.00  
7.00  
7.00  
6.00  
1.00  
7.00  
7.00  
6.00  
1.00  
7.00  
7.00  
ns  
ns  
ns  
ns  
9
B38 CLKOUT falling edge to UPWAIT valid  
10  
B39 AS valid to CLKOUT rising edge  
B40 A(0:31), TSIZ(0:1), RD/WR, BURST, valid to 7.00  
CLKOUT rising edge  
B41 TS valid to CLKOUT rising edge (setup time) 7.00  
B42 CLKOUT rising edge to TS valid (hold time) 2.00  
7.00  
2.00  
7.00  
2.00  
7.00  
2.00  
ns  
ns  
ns  
B43 AS negation to memory controller signals  
negation  
TBD  
TBD  
TBD  
TBD  
1
2
Phase and frequency jitter performance results are only valid if the input jitter is less than the prescribed value.  
If the rate of change of the frequency of EXTAL is slow (that is, it does not jump between the minimum and maximum values  
in one cycle) or the frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time) then the maximum  
allowed jitter on EXTAL can be up to 2%.  
The timings specified in B4 and B5 are based on full strength clock.  
The timing for BR output is relevant when the MPC860 is selected to work with external bus arbiter. The timing for BG output  
is relevant when the MPC860 is selected to work with internal bus arbiter.  
3
4
5
6
7
The timing required for BR input is relevant when the MPC860 is selected to work with internal bus arbiter. The timing for BG  
input is relevant when the MPC860 is selected to work with external bus arbiter.  
The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is  
asserted.  
The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read  
accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats where DLT3 = 1 in the  
UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)  
The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0.  
The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and  
B38 are specified to enable the freeze of the UPM output signals as described in Figure 18.  
The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified  
in Figure 21.  
8
9
10  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
20  
Freescale Semiconductor  
Bus Signal Timing  
Figure 3 is the control timing diagram.  
CLKOUT  
A
B
Outputs  
Outputs  
Inputs  
A
B
D
C
D
C
Inputs  
A
B
C
D
Maximum output delay specification.  
Minimum output hold time.  
Minimum input setup time specification.  
Minimum input hold time specification.  
Figure 3. Control Timing  
Figure 4 provides the timing for the external clock.  
CLKOUT  
B1  
B1  
B3  
B2  
B4  
B5  
Figure 4. External Clock Timing  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
21  
 
 
Bus Signal Timing  
Figure 5 provides the timing for the synchronous output signals.  
CLKOUT  
B8  
B7  
B9  
Output  
Signals  
B8a  
B8b  
B7a  
B7b  
B9  
Output  
Signals  
Output  
Signals  
Figure 5. Synchronous Output Signals Timing  
Figure 6 provides the timing for the synchronous active pull-up and open-drain output signals.  
CLKOUT  
B13  
B11  
B12  
B12a  
B15  
TS, BB  
B13a  
B11a  
B14  
TA, BI  
TEA  
Figure 6. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
22  
Freescale Semiconductor  
 
 
Bus Signal Timing  
Figure 7 provides the timing for the synchronous input signals.  
CLKOUT  
B16  
B17  
TA, BI  
B16a  
B17a  
B17  
TEA, KR,  
RETRY, CR  
B16b  
BB, BG, BR  
Figure 7. Synchronous Input Signals Timing  
Figure 8 provides normal case timing for input data. It also applies to normal read accesses under the  
control of the UPM in the memory controller.  
CLKOUT  
B16  
B17  
TA  
B18  
B19  
D[0:31],  
DP[0:3]  
Figure 8. Input Data Timing in Normal Case  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
23  
 
 
Bus Signal Timing  
Figure 9 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in  
the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)  
CLKOUT  
TA  
B20  
B21  
D[0:31],  
DP[0:3]  
Figure 9. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1  
Figure 10 through Figure 13 provide the timing for the external bus read controlled by various GPCM  
factors.  
CLKOUT  
B11  
B8  
B12  
TS  
A[0:31]  
CSx  
B22  
B23  
B25  
B26  
B19  
OE  
B28  
WE[0:3]  
B18  
D[0:31],  
DP[0:3]  
Figure 10. External Bus Read Timing (GPCM Controlled—ACS = 00)  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
24  
Freescale Semiconductor  
 
 
Bus Signal Timing  
CLKOUT  
TS  
B11  
B8  
B12  
A[0:31]  
CSx  
B22a  
B24  
B23  
B25  
B26  
B19  
OE  
B18  
D[0:31],  
DP[0:3]  
Figure 11. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)  
CLKOUT  
TS  
B11  
B8  
B12  
B22b  
B22c  
A[0:31]  
B23  
CSx  
OE  
B24a  
B25  
B26  
B19  
B18  
D[0:31],  
DP[0:3]  
Figure 12. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
25  
Bus Signal Timing  
CLKOUT  
B11  
B12  
TS  
B8  
A[0:31]  
B22a  
B23  
CSx  
OE  
B27  
B26  
B19  
B27a  
B22bB22c  
B18  
D[0:31],  
DP[0:3]  
Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
26  
Freescale Semiconductor  
Bus Signal Timing  
Figure 14 through Figure 16 provide the timing for the external bus write controlled by various GPCM  
factors.  
CLKOUT  
B11  
B8  
B12  
TS  
B30  
A[j0:31]  
B22  
B23  
CSx  
WE[0:3]  
OE  
B25  
B28  
B29b  
B29  
B26  
B8  
B9  
D[0:31],  
DP[0:3]  
Figure 14. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 0)  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
27  
 
Bus Signal Timing  
CLKOUT  
B11  
B8  
B12  
TS  
B30aB30c  
B23  
A[0:31]  
B28b B28d  
B25  
B22  
CSx  
WE[0:3]  
OE  
B29c B29g  
B29a B29f  
B26  
B28a B28c  
B8  
B9  
D[0:31],  
DP[0:3]  
Figure 15. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 1)  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
28  
Freescale Semiconductor  
Bus Signal Timing  
CLKOUT  
TS  
B11  
B12  
B30b B30d  
B8  
A[0:31]  
B28b B28d  
B22  
B23  
CSx  
WE[0:3]  
OE  
B29e B29i  
B29d B29h  
B25  
B26  
B29b  
B28a B28c  
B8  
B9  
D[0:31],  
DP[0:3]  
Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 1)  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
29  
Bus Signal Timing  
Figure 17 provides the timing for the external bus controlled by the UPM.  
CLKOUT  
B8  
A[0:31]  
B31a  
B31d  
B31c  
B31b  
B31  
CSx  
B34  
B34a  
B34b  
B32aB32d  
B32c  
B32b  
B32  
BS_A[0:3],  
BS_B[0:3]  
B35 B36  
B35b  
B35a  
B33a  
B33  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 17. External Bus Timing (UPM Controlled Signals)  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
30  
Freescale Semiconductor  
 
Bus Signal Timing  
Figure 18 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.  
CLKOUT  
UPWAIT  
CSx  
B37  
B38  
BS_A[0:3],  
BS_B[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 18. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing  
Figure 19 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.  
CLKOUT  
B37  
UPWAIT  
B38  
CSx  
BS_A[0:3],  
BS_B[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 19. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
31  
 
 
Bus Signal Timing  
Figure 20 provides the timing for the synchronous external master access controlled by the GPCM.  
CLKOUT  
B41  
B40  
B42  
TS  
A[0:31],  
TSIZ[0:1],  
R/W, BURST  
B22  
CSx  
Figure 20. Synchronous External Master Access Timing (GPCM Handled ACS = 00)  
Figure 21 provides the timing for the asynchronous external master memory access controlled by the  
GPCM.  
CLKOUT  
B39  
AS  
B40  
A[0:31],  
TSIZ[0:1],  
R/W  
B22  
CSx  
Figure 21. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)  
Figure 22 provides the timing for the asynchronous external master control signals negation.  
AS  
B43  
CSx, WE[0:3],  
OE, GPLx,  
BS[0:3]  
Figure 22. Asynchronous External Master—Control Signals Negation Timing  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
32  
Freescale Semiconductor  
 
 
 
Bus Signal Timing  
Table 8 provides interrupt timing for the MPC860.  
Table 8. Interrupt Timing  
All Frequencies  
Min Max  
1
Num  
Characteristic  
Unit  
I39  
I40  
I41  
I42  
I43  
IRQx valid to CLKOUT rising edge (setup time)  
IRQx hold time after CLKOUT  
IRQx pulse width low  
6.00  
2.00  
3.00  
3.00  
ns  
ns  
ns  
ns  
IRQx pulse width high  
IRQx edge-to-edge time  
4 × T  
CLOCKOUT  
1
The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as  
level-sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the  
CLKOUT.  
The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry and have no direct  
relation with the total system interrupt latency that the MPC860 is able to support.  
Figure 23 provides the interrupt detection timing for the external level-sensitive lines.  
CLKOUT  
I39  
I40  
IRQx  
Figure 23. Interrupt Detection Timing for External Level Sensitive Lines  
Figure 24 provides the interrupt detection timing for the external edge-sensitive lines.  
CLKOUT  
I41  
I42  
IRQx  
I43  
I43  
Figure 24. Interrupt Detection Timing for External Edge Sensitive Lines  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
33  
 
 
 
Bus Signal Timing  
Table 9 shows the PCMCIA timing for the MPC860.  
Table 9. PCMCIA Timing  
33 MHz 40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
P44 A(0:31), REG valid to PCMCIA Strobe  
20.73  
16.75  
13.00  
9.36  
ns  
1
asserted  
1
P45 A(0:31), REG valid to ALE negation  
28.30  
23.00  
18.00  
13.15  
ns  
ns  
ns  
ns  
ns  
ns  
P46 CLKOUT to REG valid  
7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84  
8.58 7.25 6.00 4.84  
P47 CLKOUT to REG invalid  
P48 CLKOUT to CE1, CE2 asserted  
P49 CLKOUT to CE1, CE2 negated  
7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84  
7.58 15.58 6.25 14.25 5.00 13.00 3.79 11.84  
P50 CLKOUT to PCOE, IORD, PCWE, IOWR  
assert time  
11.00  
11.00  
11.00  
11.00  
P51 CLKOUT to PCOE, IORD, PCWE, IOWR  
negate time  
2.00 11.00 2.00 11.00 2.00 11.00 2.00 11.00  
ns  
P52 CLKOUT to ALE assert time  
P53 CLKOUT to ALE negate time  
7.58 15.58 6.25 14.25 5.00 13.00 3.79 10.04  
ns  
ns  
ns  
ns  
15.58  
14.25  
13.00  
11.84  
1
P54 PCWE, IOWR negated to D(0:31) invalid  
5.58  
8.00  
4.25  
8.00  
3.00  
8.00  
1.79  
8.00  
P55 WAITA and WAITB valid to CLKOUT rising  
1
edge  
P56 CLKOUT rising edge to WAITA and WAITB  
2.00  
2.00  
2.00  
2.00  
ns  
1
invalid  
1
PSST = 1. Otherwise add PSST times cycle time.  
PSHT = 0. Otherwise add PSHT times cycle time.  
These synchronous timings define when the WAITx signals are detected in order to freeze (or relieve) the  
PCMCIA current cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the  
PSL timer expiration. See Chapter 16, “PCMCIA Interface,” in the MPC860 PowerQUICC™ Family  
Users Manual.  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
34  
Freescale Semiconductor  
 
Bus Signal Timing  
Figure 25 provides the PCMCIA access cycle timing for the external bus read.  
CLKOUT  
TS  
P44  
A[0:31]  
P46  
P48  
P45  
P47  
P49  
P51  
P52  
REG  
CE1/CE2  
PCOE, IORD  
ALE  
P50  
P53  
P52  
B18  
B19  
D[0:31]  
Figure 25. PCMCIA Access Cycle Timing External Bus Read  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
35  
 
Bus Signal Timing  
Figure 26 provides the PCMCIA access cycle timing for the external bus write.  
CLKOUT  
TS  
P44  
A[0:31]  
P46  
P48  
P45  
P47  
P49  
P51  
P52  
B9  
REG  
CE1/CE2  
PCWE, IOWR  
ALE  
P50  
P53  
B8  
P54  
P52  
D[0:31]  
Figure 26. PCMCIA Access Cycle Timing External Bus Write  
Figure 27 provides the PCMCIA WAIT signal detection timing.  
CLKOUT  
P55  
P56  
WAITx  
Figure 27. PCMCIA WAIT Signal Detection Timing  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
36  
Freescale Semiconductor  
 
 
Bus Signal Timing  
Table 10 shows the PCMCIA port timing for the MPC860.  
Table 10. PCMCIA Port Timing  
33 MHz 40 MHz  
50 MHz  
66 MHz  
Unit  
Num  
Characteristic  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
P57 CLKOUT to OPx valid  
19.00  
19.00  
19.00  
19.00  
ns  
ns  
ns  
ns  
1
P58 HRESET negated to OPx drive  
25.73  
5.00  
1.00  
21.75  
5.00  
1.00  
18.00  
5.00  
1.00  
14.36  
5.00  
1.00  
P59 IP_Xx valid to CLKOUT rising edge  
P60 CLKOUT rising edge to IP_Xx invalid  
OP2 and OP3 only.  
1
Figure 28 provides the PCMCIA output port timing for the MPC860.  
CLKOUT  
P57  
Output  
Signals  
HRESET  
P58  
OP2, OP3  
Figure 28. PCMCIA Output Port Timing  
Figure 29 provides the PCMCIA output port timing for the MPC860.  
CLKOUT  
P59  
P60  
Input  
Signals  
Figure 29. PCMCIA Input Port Timing  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
37  
 
 
 
Bus Signal Timing  
Table 11 shows the debug port timing for the MPC860.  
Table 11. Debug Port Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
P61 DSCK cycle time  
3 × T  
ns  
ns  
ns  
ns  
ns  
CLOCKOUT  
P62 DSCK clock pulse width  
P63 DSCK rise and fall times  
1.25 × T  
CLOCKOUT  
0.00  
3.00  
P64 DSDI input data setup time  
P65 DSDI data hold time  
8.00  
5.00  
0.00  
0.00  
P66 DSCK low to DSDO data valid  
P67 DSCK low to DSDO invalid  
15.00  
2.00  
Figure 30 provides the input timing for the debug port clock.  
DSCK  
D61  
D62  
D61  
D62  
D63  
Figure 30. Debug Port Clock Input Timing  
D63  
Figure 31 provides the timing for the debug port.  
DSCK  
D64  
D65  
DSDI  
D66  
D67  
DSDO  
Figure 31. Debug Port Timings  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
38  
Freescale Semiconductor  
 
 
 
Bus Signal Timing  
Table 12 shows the reset timing for the MPC860.  
Table 12. Reset Timing  
33 MHz 40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
R69 CLKOUT to HRESET high impedance  
R70 CLKOUT to SRESET high impedance  
R71 RSTCONF pulse width  
20.00  
20.00  
20.00  
20.00  
20.00  
20.00  
20.00  
20.00  
ns  
ns  
ns  
515.15  
425.00  
340.00  
257.58  
R72  
R73 Configuration data to HRESET rising edge 504.55  
setup time  
425.00  
350.00  
277.27  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
R74 Configuration data to RSTCONF rising  
edge setup time  
350.00  
0.00  
0.00  
350.00  
0.00  
350.00  
0.00  
0.00  
350.00  
0.00  
0.00  
R75 Configuration data hold time after  
RSTCONF negation  
R76 Configuration data hold time after  
HRESET negation  
0.00  
R77 HRESET and RSTCONF asserted to data  
out drive  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
R78 RSTCONF negated to data out high  
impedance  
R79 CLKOUT of last rising edge before chip  
three-state HRESET to data out high  
impedance  
R80 DSDI, DSCK setup  
90.91  
0.00  
75.00  
0.00  
60.00  
0.00  
45.45  
0.00  
ns  
ns  
ns  
R81 DSDI, DSCK hold time  
R82 SRESET negated to CLKOUT rising edge 242.42  
for DSDI and DSCK sample  
200.00  
160.00  
121.21  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
39  
 
Bus Signal Timing  
Figure 32 shows the reset timing for the data bus configuration.  
HRESET  
R71  
R76  
RSTCONF  
D[0:31] (IN)  
R73  
R74  
R75  
Figure 32. Reset Timing—Configuration from Data Bus  
Figure 33 provides the reset timing for the data bus weak drive during configuration.  
CLKOUT  
R69  
HRESET  
R79  
RSTCONF  
R77  
R78  
D[0:31] (OUT)  
(Weak)  
Figure 33. Reset Timing—Data Bus Weak Drive During Configuration  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
40  
Freescale Semiconductor  
 
 
IEEE 1149.1 Electrical Specifications  
Figure 34 provides the reset timing for the debug port configuration.  
CLKOUT  
R70  
R82  
SRESET  
R80  
R80  
R81  
R81  
DSCK, DSDI  
Figure 34. Reset Timing—Debug Port Configuration  
10 IEEE 1149.1 Electrical Specifications  
Table 13 provides the JTAG timings for the MPC860 shown in Figure 35 through Figure 38.  
Table 13. JTAG Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
J82  
J83  
J84  
J85  
J86  
J87  
J88  
J89  
J90  
J91  
J92  
J93  
J94  
J95  
J96  
TCK cycle time  
100.00  
40.00  
0.00  
5.00  
25.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK clock pulse width measured at 1.5 V  
TCK rise and fall times  
10.00  
TMS, TDI data setup time  
TMS, TDI data hold time  
TCK low to TDO data valid  
27.00  
TCK low to TDO data invalid  
0.00  
TCK low to TDO high impedance  
TRST assert time  
20.00  
100.00  
40.00  
TRST setup time to TCK low  
TCK falling edge to output valid  
TCK falling edge to output valid out of high impedance  
TCK falling edge to output high impedance  
Boundary scan input valid to TCK rising edge  
TCK rising edge to boundary scan input invalid  
50.00  
50.00  
50.00  
50.00  
50.00  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
41  
 
 
IEEE 1149.1 Electrical Specifications  
TCK  
J82  
J83  
J82  
J83  
J84  
J84  
Figure 35. JTAG Test Clock Input Timing  
TCK  
J85  
J86  
TMS, TDI  
J87  
J88  
J89  
TDO  
TCK  
Figure 36. JTAG Test Access Port Timing Diagram  
J91  
J90  
TRST  
TCK  
Figure 37. JTAG TRST Timing Diagram  
J92  
J93  
J94  
Output  
Signals  
Output  
Signals  
J95  
J96  
Output  
Signals  
Figure 38. Boundary Scan (JTAG) Timing Diagram  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
42  
Freescale Semiconductor  
CPM Electrical Characteristics  
11 CPM Electrical Characteristics  
This section provides the AC and DC electrical specifications for the communications processor module  
(CPM) of the MPC860.  
11.1 PIP/PIO AC Electrical Specifications  
Table 14 provides the PIP/PIO AC timings as shown in Figure 39 through Figure 43.  
Table 14. PIP/PIO Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Data-in setup time to STBI low  
Data-in hold time to STBI high  
STBI pulse width  
0
2.5 – t3  
1.5  
2
ns  
CLK  
CLK  
ns  
1
STBO pulse width  
1 CLK – 5 ns  
Data-out setup time to STBO low  
2
5
CLK  
CLK  
CLK  
CLK  
ns  
Data-out hold time from STBO high  
STBI low to STBO low (Rx interlock)  
STBI low to STBO high (Tx interlock)  
Data-in setup time to clock high  
2
25  
15  
7.5  
Data-in hold time from clock high  
ns  
Clock low to data-out valid (CPU writes data, control, or direction)  
ns  
1
t3 = Specification 23.  
DATA-IN  
21  
22  
23  
STBI  
27  
24  
STBO  
Figure 39. PIP Rx (Interlock Mode) Timing Diagram  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
43  
 
 
CPM Electrical Characteristics  
DATA-OUT  
25  
26  
24  
STBO  
(Output)  
28  
23  
STBI  
(Input)  
Figure 40. PIP Tx (Interlock Mode) Timing Diagram  
DATA-IN  
21  
22  
23  
24  
STBI  
(Input)  
STBO  
(Output)  
Figure 41. PIP Rx (Pulse Mode) Timing Diagram  
DATA-OUT  
25  
26  
24  
STBO  
(Output)  
23  
STBI  
(Input)  
Figure 42. PIP TX (Pulse Mode) Timing Diagram  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
44  
Freescale Semiconductor  
CPM Electrical Characteristics  
CLKO  
DATA-IN  
29  
30  
31  
DATA-OUT  
Figure 43. Parallel I/O Data-In/Data-Out Timing Diagram  
11.2 Port C Interrupt AC Electrical Specifications  
Table 15 provides the timings for port C interrupts.  
Table 15. Port C Interrupt Timing  
1
33.34 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
35  
36  
Port C interrupt pulse width low (edge-triggered mode)  
Port C interrupt minimum time between active edges  
55  
55  
ns  
ns  
1
External bus frequency of greater than or equal to 33.34 MHz.  
Figure 44 shows the port C interrupt detection timing.  
36  
Port C  
(Input)  
35  
Figure 44. Port C Interrupt Detection Timing  
11.3 IDMA Controller AC Electrical Specifications  
Table 16 provides the IDMA controller timings as shown in Figure 45 through Figure 48.  
Table 16. IDMA Controller Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
40  
41  
DREQ setup time to clock high  
DREQ hold time from clock high  
7
3
ns  
ns  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
45  
 
 
 
CPM Electrical Characteristics  
Table 16. IDMA Controller Timing (continued)  
Characteristic  
All Frequencies  
Num  
Unit  
Min  
Max  
42  
43  
44  
45  
46  
SDACK assertion delay from clock high  
SDACK negation delay from clock low  
7
12  
12  
20  
15  
ns  
ns  
ns  
ns  
ns  
SDACK negation delay from TA low  
SDACK negation delay from clock high  
TA assertion to rising edge of the clock setup time (applies to external TA)  
CLKO  
(Output)  
41  
40  
DREQ  
(Input)  
Figure 45. IDMA External Requests Timing Diagram  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
43  
DATA  
46  
TA  
(Input)  
SDACK  
Figure 46. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
46  
Freescale Semiconductor  
 
CPM Electrical Characteristics  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
44  
DATA  
TA  
(Output)  
SDACK  
Figure 47. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
45  
DATA  
TA  
(Output)  
SDACK  
Figure 48. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
47  
CPM Electrical Characteristics  
11.4 Baud Rate Generator AC Electrical Specifications  
Table 17 provides the baud rate generator timings as shown in Figure 49.  
Table 17. Baud Rate Generator Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
50  
51  
52  
BRGO rise and fall time  
BRGO duty cycle  
BRGO cycle  
40  
40  
10  
60  
ns  
%
ns  
50  
50  
BRGOX  
51  
51  
52  
Figure 49. Baud Rate Generator Timing Diagram  
11.5 Timer AC Electrical Specifications  
Table 18 provides the general-purpose timer timings as shown in Figure 50.  
Table 18. Timer Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
61  
62  
63  
64  
65  
TIN/TGATE rise and fall time  
TIN/TGATE low time  
10  
1
25  
ns  
CLK  
CLK  
CLK  
ns  
TIN/TGATE high time  
TIN/TGATE cycle time  
CLKO low to TOUT valid  
2
3
3
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
48  
Freescale Semiconductor  
 
 
 
CPM Electrical Characteristics  
CLKO  
60  
61  
63  
62  
TIN/TGATE  
(Input)  
61  
64  
65  
TOUT  
(Output)  
Figure 50. CPM General-Purpose Timers Timing Diagram  
11.6 Serial Interface AC Electrical Specifications  
Table 19 provides the serial interface timings as shown in Figure 51 through Figure 55.  
Table 19. SI Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1, 2  
70  
71  
71a  
72  
73  
74  
75  
76  
77  
78  
L1RCLK, L1TCLK frequency (DSC = 0)  
SYNCCLK/2.5 MHz  
2
L1RCLK, L1TCLK width low (DSC = 0)  
P + 10  
P + 10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
3
L1RCLK, L1TCLK width high (DSC = 0)  
L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time  
L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time)  
L1CLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time)  
L1RSYNC, L1TSYNC rise/fall time  
15.00  
20.00  
35.00  
15.00  
L1RXD valid to L1CLK edge (L1RXD setup time)  
L1CLK edge to L1RXD invalid (L1RXD hold time)  
17.00  
13.00  
10.00  
10.00  
10.00  
10.00  
10.00  
0.00  
4
L1CLK edge to L1ST(1–4) valid  
45.00  
45.00  
45.00  
55.00  
55.00  
42.00  
78A L1SYNC valid to L1ST(1–4) valid  
79  
80  
L1CLK edge to L1ST(1–4) invalid  
L1CLK edge to L1TXD valid  
4
80A L1TSYNC valid to L1TXD valid  
81  
82  
L1CLK edge to L1TXD high impedance  
L1RCLK, L1TCLK frequency (DSC =1 )  
16.00 or  
SYNCCLK/2  
83  
L1RCLK, L1TCLK width low (DSC = 1)  
L1RCLK, L1TCLK width high (DSC = 1)  
P + 10  
P + 10  
ns  
ns  
3
83a  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
49  
 
CPM Electrical Characteristics  
Table 19. SI Timing (continued)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
84  
85  
L1CLK edge to L1CLKO valid (DSC = 1)  
30.00  
ns  
4
L1RQ valid before falling edge of L1TSYNC  
1.00  
L1TCL  
K
2
86  
87  
88  
L1GR setup time  
42.00  
42.00  
ns  
ns  
ns  
L1GR hold time  
L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0)  
0.00  
1
2
3
4
The ratio SYNCCLK/L1RCLK must be greater than 2.5/1.  
These specs are valid for IDL mode only.  
Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns.  
These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever comes later.  
L1RCLK  
(FE = 0, CE = 0)  
(Input)  
71  
70  
71a  
72  
L1RCLK  
(FE = 1, CE = 1)  
(Input)  
RFSD=1  
75  
74  
L1RSYNC  
(Input)  
73  
77  
L1RXD  
(Input)  
BIT0  
76  
78  
79  
L1ST(4–1)  
(Output)  
Figure 51. SI Receive Timing Diagram with Normal Clocking (DSC = 0)  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
50  
Freescale Semiconductor  
CPM Electrical Characteristics  
L1RCLK  
(FE = 1, CE = 1)  
(Input)  
72  
83a  
82  
L1RCLK  
(FE = 0, CE = 0)  
(Input)  
RFSD=1  
75  
L1RSYNC  
(Input)  
73  
74  
77  
L1RXD  
(Input)  
BIT0  
76  
78  
79  
L1ST(4–1)  
(Output)  
84  
L1CLKO  
(Output)  
Figure 52. SI Receive Timing with Double-Speed Clocking (DSC = 1)  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
51  
CPM Electrical Characteristics  
L1TCLK  
(FE = 0, CE = 0)  
(Input)  
71  
70  
72  
L1TCLK  
(FE = 1, CE = 1)  
(Input)  
73  
TFSD=0  
75  
74  
L1TSYNC  
(Input)  
80a  
BIT0  
80  
81  
L1TXD  
(Output)  
79  
78  
L1ST(4–1)  
(Output)  
Figure 53. SI Transmit Timing Diagram (DSC = 0)  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
52  
Freescale Semiconductor  
CPM Electrical Characteristics  
L1RCLK  
(FE = 0, CE = 0)  
(Input)  
72  
83a  
82  
L1RCLK  
(FE = 1, CE = 1)  
(Input)  
TFSD=0  
75  
L1RSYNC  
(Input)  
73  
74  
81  
L1TXD  
(Output)  
BIT0  
80  
78a  
79  
L1ST(4–1)  
(Output)  
78  
84  
L1CLKO  
(Output)  
Figure 54. SI Transmit Timing with Double Speed Clocking (DSC = 1)  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
53  
CPM Electrical Characteristics  
Figure 55. IDL Timing  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
54  
Freescale Semiconductor  
CPM Electrical Characteristics  
11.7 SCC in NMSI Mode Electrical Specifications  
Table 20 provides the NMSI external clock timing.  
Table 20. NMSI External Clock Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1
100  
101  
102  
103  
104  
105  
106  
107  
108  
RCLK1 and TCLK1 width high  
1/SYNCCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RCLK1 and TCLK1 width low  
1/SYNCCLK + 5  
RCLK1 and TCLK1 rise/fall time  
15.00  
50.00  
50.00  
TXD1 active delay (from TCLK1 falling edge)  
RTS1 active/inactive delay (from TCLK1 falling edge)  
CTS1 setup time to TCLK1 rising edge  
RXD1 setup time to RCLK1 rising edge  
0.00  
0.00  
5.00  
5.00  
5.00  
5.00  
2
RXD1 hold time from RCLK1 rising edge  
CD1 setup Time to RCLK1 rising edge  
1
2
The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 2.25/1.  
Also applies to CD and CTS hold time when they are used as external sync signals.  
Table 21 provides the NMSI internal clock timing.  
Table 21. NMSI Internal Clock Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1
100  
102  
103  
104  
105  
106  
107  
108  
RCLK1 and TCLK1 frequency  
0.00  
SYNCCLK/3  
MHz  
ns  
RCLK1 and TCLK1 rise/fall time  
30.00  
30.00  
TXD1 active delay (from TCLK1 falling edge)  
RTS1 active/inactive delay (from TCLK1 falling edge)  
CTS1 setup time to TCLK1 rising edge  
RXD1 setup time to RCLK1 rising edge  
0.00  
0.00  
40.00  
40.00  
0.00  
40.00  
ns  
ns  
ns  
ns  
2
RXD1 hold time from RCLK1 rising edge  
ns  
CD1 setup time to RCLK1 rising edge  
ns  
1
2
The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 3/1.  
Also applies to CD and CTS hold time when they are used as external sync signals.  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
55  
 
 
CPM Electrical Characteristics  
Figure 56 through Figure 58 show the NMSI timings.  
RCLK1  
102  
102  
101  
106  
100  
RxD1  
(Input)  
107  
108  
CD1  
(Input)  
107  
CD1  
(SYNC Input)  
Figure 56. SCC NMSI Receive Timing Diagram  
TCLK1  
102  
102  
101  
100  
TxD1  
(Output)  
103  
105  
RTS1  
(Output)  
104  
104  
CTS1  
(Input)  
107  
CTS1  
(SYNC Input)  
Figure 57. SCC NMSI Transmit Timing Diagram  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
56  
Freescale Semiconductor  
 
CPM Electrical Characteristics  
TCLK1  
102  
102  
101  
100  
TxD1  
(Output)  
103  
RTS1  
(Output)  
104  
107  
104  
105  
CTS1  
(Echo Input)  
Figure 58. HDLC Bus Timing Diagram  
11.8 Ethernet Electrical Specifications  
Table 22 provides the Ethernet timings as shown in Figure 59 through Figure 63.  
Table 22. Ethernet Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
CLSN width high  
RCLK1 rise/fall time  
RCLK1 width low  
RCLK1 clock period  
RXD1 setup time  
RXD1 hold time  
40  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
40  
80  
20  
5
1
120  
RENA active delay (from RCLK1 rising edge of the last data bit)  
10  
100  
RENA width low  
TCLK1 rise/fall time  
TCLK1 width low  
15  
40  
99  
10  
10  
10  
10  
1
TCLK1 clock period  
101  
50  
50  
50  
50  
TXD1 active delay (from TCLK1 rising edge)  
TXD1 inactive delay (from TCLK1 rising edge)  
TENA active delay (from TCLK1 rising edge)  
TENA inactive delay (from TCLK1 rising edge)  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
57  
 
CPM Electrical Characteristics  
Table 22. Ethernet Timing (continued)  
Characteristic  
All Frequencies  
Num  
Unit  
Min  
Max  
135  
136  
137  
138  
139  
RSTRT active delay (from TCLK1 falling edge)  
RSTRT inactive delay (from TCLK1 falling edge)  
10  
10  
1
50  
50  
20  
20  
ns  
ns  
REJECT width low  
CLK  
ns  
2
CLKO1 low to SDACK asserted  
2
CLKO1 low to SDACK negated  
ns  
1
2
The ratios SYNCCLK/RCLK1 and SYNCCLK/TCLK1 must be greater than or equal to 2/1.  
SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.  
CLSN(CTS1)  
(Input)  
120  
Figure 59. Ethernet Collision Timing Diagram  
RCLK1  
121  
121  
124  
123  
RxD1  
(Input)  
Last Bit  
125  
126  
127  
RENA(CD1)  
(Input)  
Figure 60. Ethernet Receive Timing Diagram  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
58  
Freescale Semiconductor  
CPM Electrical Characteristics  
TCLK1  
128  
128  
129  
131  
121  
TxD1  
(Output)  
132  
133  
134  
TENA(RTS1)  
(Input)  
RENA(CD1)  
(Input)  
(Note 2)  
Notes:  
1. Transmit clock invert (TCI) bit in GSMR is set.  
2. If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the CSL bit is set in  
the buffer descriptor at the end of the frame transmission.  
Figure 61. Ethernet Transmit Timing Diagram  
RCLK1  
RxD1  
(Input)  
0
1
1
BIT1  
125  
BIT2  
136  
Start Frame Delimiter  
RSTRT  
(Output)  
Figure 62. CAM Interface Receive Start Timing Diagram  
REJECT  
137  
Figure 63. CAM Interface REJECT Timing Diagram  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
59  
CPM Electrical Characteristics  
11.9 SMC Transparent AC Electrical Specifications  
Table 23 provides the SMC transparent timings as shown in Figure 64.  
Table 23. SMC Transparent Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1
150  
151  
SMCLK clock period  
SMCLK width low  
100  
50  
50  
15  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
151A SMCLK width high  
152  
153  
154  
155  
SMCLK rise/fall time  
SMTXD active delay (from SMCLK falling edge)  
SMRXD/SMSYNC setup time  
10  
20  
5
RXD1/SMSYNC hold time  
1
SYNCCLK must be at least twice as fast as SMCLK.  
SMCLK  
151A  
150  
152  
152  
151  
SMTXD  
(Output)  
Note 1  
154  
153  
155  
SMSYNC  
154  
155  
SMRXD  
(Input)  
Note:  
1. This delay is equal to an integer number of character-length clocks.  
Figure 64. SMC Transparent Timing Diagram  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
60  
Freescale Semiconductor  
 
 
CPM Electrical Characteristics  
11.10 SPI Master AC Electrical Specifications  
Table 24 provides the SPI master timings as shown in Figure 65 and Figure 66.  
Table 24. SPI Master Timing  
All Frequencies  
Unit  
Num  
Characteristic  
Min  
Max  
160  
161  
162  
163  
164  
165  
166  
167  
MASTER cycle time  
4
2
1024  
512  
t
t
cyc  
cyc  
MASTER clock (SCK) high or low time  
MASTER data setup time (inputs)  
Master data hold time (inputs)  
Master data valid (after SCK edge)  
Master data hold time (outputs)  
Rise time output  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
0
20  
15  
Fall time output  
15  
SPICLK  
(CI = 0)  
(Output)  
161  
161  
167  
166  
166  
167  
160  
SPICLK  
(CI = 1)  
(Output)  
163  
162  
SPIMISO  
msb  
167  
Data  
165  
lsb  
msb  
(Input)  
164  
166  
SPIMOSI  
(Output)  
msb  
Data  
lsb  
msb  
Figure 65. SPI Master (CP = 0) Timing Diagram  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
61  
 
 
CPM Electrical Characteristics  
SPICLK  
(CI = 0)  
(Output)  
161  
167  
166  
166  
167  
161  
160  
SPICLK  
(CI = 1)  
(Output)  
163  
162  
SPIMISO  
(Input)  
msb  
167  
Data  
165  
lsb  
msb  
164  
166  
SPIMOSI  
(Output)  
msb  
Data  
lsb  
msb  
Figure 66. SPI Master (CP = 1) Timing Diagram  
11.11 SPI Slave AC Electrical Specifications  
Table 25 provides the SPI slave timings as shown in Figure 67 and Figure 68.  
Table 25. SPI Slave Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
170  
171  
172  
173  
174  
175  
176  
177  
Slave cycle time  
2
15  
15  
1
50  
t
cyc  
Slave enable lead time  
Slave enable lag time  
ns  
ns  
Slave clock (SPICLK) high or low time  
Slave sequential transfer delay (does not require deselect)  
Slave data setup time (inputs)  
t
cyc  
cyc  
1
t
20  
20  
ns  
ns  
ns  
Slave data hold time (inputs)  
Slave access time  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
62  
Freescale Semiconductor  
 
CPM Electrical Characteristics  
SPISEL  
(Input)  
172  
171  
174  
SPICLK  
(CI = 0)  
(Input)  
173  
182  
181  
173  
170  
SPICLK  
(CI = 1)  
(Input)  
177  
181  
182  
180  
178  
Undef  
SPIMISO  
(Output)  
msb  
175  
Data  
lsb  
msb  
msb  
179  
176  
181 182  
lsb  
SPIMOSI  
(Input)  
msb  
Data  
Figure 67. SPI Slave (CP = 0) Timing Diagram  
SPISEL  
(Input)  
172  
174  
171  
170  
SPICLK  
(CI = 0)  
(Input)  
173  
182  
181  
182  
173  
181  
SPICLK  
(CI = 1)  
(Input)  
177  
180  
178  
SPIMISO  
(Output)  
msb  
msb  
msb  
Undef  
175  
Data  
lsb  
179  
176  
msb  
181 182  
Data  
SPIMOSI  
(Input)  
lsb  
Figure 68. SPI Slave (CP = 1) Timing Diagram  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
63  
CPM Electrical Characteristics  
2
11.12 I C AC Electrical Specifications  
2
Table 26 provides the I C (SCL < 100 kHz) timings.  
2
Table 26. I C Timing (SCL < 100 kHZ)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
200  
200  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
SCL clock frequency (slave)  
SCL clock frequency (master)  
0
100  
100  
kHz  
kHz  
μs  
1
1.5  
4.7  
4.7  
4.0  
4.7  
4.0  
0
Bus free time between transmissions  
Low period of SCL  
μs  
High period of SCL  
μs  
Start condition setup time  
Start condition hold time  
Data hold time  
μs  
μs  
μs  
Data setup time  
250  
ns  
SDL/SCL rise time  
1
μs  
SDL/SCL fall time  
300  
ns  
Stop condition setup time  
4.7  
μs  
1
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3 × pre_scaler × 2).  
The ratio SYNCCLK/(BRGCLK/pre_scaler) must be greater than or equal to 4/1.  
2
Table 27 provides the I C (SCL > 100 kHz) timings.  
2
Table 27. . I C Timing (SCL > 100 kHZ)  
All Frequencies  
Num  
Characteristic  
SCL clock frequency (slave)  
Expression  
Unit  
Min  
Max  
200  
200  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
fSCL  
fSCL  
0
BRGCLK/48  
Hz  
Hz  
s
1
SCL clock frequency (master)  
BRGCLK/16512  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
0
BRGCLK/48  
Bus free time between transmissions  
Low period of SCL  
s
High period of SCL  
s
Start condition setup time  
Start condition hold time  
Data hold time  
s
s
s
Data setup time  
1/(40 * fSCL)  
s
SDL/SCL rise time  
1/(10 * fSCL)  
1/(33 * fSCL)  
s
SDL/SCL fall time  
s
Stop condition setup time  
1/2(2.2 * fSCL)  
s
1
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) × pre_scaler × 2).  
The ratio SYNCCLK/(BRGCLK / pre_scaler) must be greater than or equal to 4/1.  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
64  
Freescale Semiconductor  
 
 
UTOPIA AC Electrical Specifications  
2
Figure 69 shows the I C bus timing.  
SDA  
202  
203  
204  
208  
205  
207  
SCL  
206  
209  
210  
211  
2
Figure 69. I C Bus Timing Diagram  
12 UTOPIA AC Electrical Specifications  
Table 28 shows the AC electrical specifications for the UTOPIA interface.  
Table 28. UTOPIA AC Electrical Specifications  
Num  
Signal Characteristic  
Direction  
Min  
Max  
Unit  
U1  
UtpClk rise/fall time (Internal clock option)  
Output  
50  
40  
2
3.5  
50  
50  
3.5  
60  
50  
16  
ns  
%
Duty cycle  
Frequency  
MHz  
ns  
U1a UtpClk rise/fall time (external clock option)  
Input  
Duty cycle  
Frequency  
%
MHz  
ns  
U2  
U3  
U4  
U5  
RxEnb and TxEnb active delay  
Output  
Input  
UTPB, SOC, Rxclav and Txclav setup time  
UTPB, SOC, Rxclav and Txclav hold time  
8
ns  
Input  
1
ns  
UTPB, SOC active delay (and PHREQ and PHSEL active delay in  
MPHY mode)  
Output  
2
16  
ns  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
65  
 
 
UTOPIA AC Electrical Specifications  
Figure 70 shows signal timings during UTOPIA receive operations.  
U1  
U1  
UtpClk  
U5  
PHREQn  
U3  
U4  
RxClav  
U2  
RxEnb  
U3  
U4  
UTPB  
SOC  
Figure 70. UTOPIA Receive Timing  
Figure 71 shows signal timings during UTOPIA transmit operations.  
U1  
U1  
UtpClk  
U5  
PHSELn  
U4  
U3  
TxClav  
U2  
TxEnb  
U5  
UTPB  
SOC  
Figure 71. UTOPIA Transmit Timing  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
66  
Freescale Semiconductor  
 
 
FEC Electrical Characteristics  
13 FEC Electrical Characteristics  
This section provides the AC electrical specifications for the Fast Ethernet controller (FEC). Note that the  
timing specifications for the MII signals are independent of system clock frequency (part speed  
designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 V or  
3.3 V.  
13.1 MII Receive Signal Timing (MII_RXD[3:0], MII_RX_DV, MII_RX_ER,  
MII_RX_CLK)  
The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. There is no  
minimum frequency requirement. In addition, the processor clock frequency must exceed the  
MII_RX_CLK frequency – 1%.  
Table 29 provides information on the MII receive signal timing.  
Table 29. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M1  
M2  
M3  
MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup  
MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold  
MII_RX_CLK pulse width high  
5
5
ns  
ns  
35%  
65%  
MII_RX_CLK  
period  
M4  
MII_RX_CLK pulse width low  
35%  
65%  
MII_RX_CLK  
period  
Figure 72 shows MII receive signal timing.  
M3  
MII_RX_CLK (Input)  
M4  
MII_RXD[3:0] (Inputs)  
MII_RX_DV  
MII_RX_ER  
M1  
M2  
Figure 72. MII Receive Signal Timing Diagram  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
67  
 
 
FEC Electrical Characteristics  
13.2 MII Transmit Signal Timing (MII_TXD[3:0], MII_TX_EN,  
MII_TX_ER, MII_TX_CLK)  
The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz +1%. There is  
no minimum frequency requirement. In addition, the processor clock frequency must exceed the  
MII_TX_CLK frequency – 1%.  
Table 30 provides information on the MII transmit signal timing.  
Table 30. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
M6  
M7  
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid  
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid  
MII_TX_CLK pulse width high  
5
25  
ns  
35  
65%  
MII_TX_CLK  
period  
M8  
MII_TX_CLK pulse width low  
35%  
65%  
MII_TX_CLK  
period  
Figure 73 shows the MII transmit signal timing diagram.  
M7  
MII_TX_CLK (Input)  
RMII_REFCLK  
M5  
M8  
MII_TXD[3:0] (Outputs)  
MII_TX_EN  
MII_TX_ER  
M6  
Figure 73. MII Transmit Signal Timing Diagram  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
68  
Freescale Semiconductor  
 
 
FEC Electrical Characteristics  
13.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)  
Table 31 provides information on the MII async inputs signal timing.  
Table 31. MII Async Inputs Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M9  
MII_CRS, MII_COL minimum pulse width  
1.5  
MII_TX_CLK  
period  
Figure 74 shows the MII asynchronous inputs signal timing diagram.  
MII_CRS, MII_COL  
M9  
Figure 74. MII Async Inputs Timing Diagram  
13.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)  
Table 32 provides information on the MII serial management channel signal timing. The FEC functions  
correctly with a maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under  
investigation.  
Table 32. MII Serial Management Channel Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M10 MII_MDC falling edge to MII_MDIO output invalid (minimum propagation  
delay)  
0
ns  
M11 MII_MDC falling edge to MII_MDIO output valid (max prop delay)  
M12 MII_MDIO (input) to MII_MDC rising edge setup  
M13 MII_MDIO (input) to MII_MDC rising edge hold  
M14 MII_MDC pulse width high  
10  
25  
ns  
ns  
ns  
0
40%  
60%  
MII_MDC  
period  
M15 MII_MDC pulse width low  
40%  
60%  
MII_MDC  
period  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
69  
 
 
 
Mechanical Data and Ordering Information  
Figure 75 shows the MII serial management channel timing diagram.  
M14  
MM15  
MII_MDC (Output)  
MII_MDIO (Output)  
M10  
M11  
MII_MDIO (Input)  
M12  
M13  
Figure 75. MII Serial Management Channel Timing Diagram  
14 Mechanical Data and Ordering Information  
14.1 Ordering Information  
Table 33 provides information on the MPC860 Revision D.4 derivative devices.  
Table 33. MPC860 Family Revision D.4 Derivatives  
2
Number of Ethernet Support  
Multichannel  
HDLC Support Support  
ATM  
Device  
1
SCCs  
(Mbps)  
MPC855T  
1
2
10/100  
10  
Yes  
N/A  
Yes  
Yes  
N/A  
Yes  
Yes  
Yes  
Yes  
N/A  
Yes  
Yes  
N/A  
Yes  
Yes  
Yes  
MPC860DE  
MPC860DT  
MPC860DP  
MPC860EN  
MPC860SR  
MPC860T  
10/100  
10/100  
10  
4
10  
10/100  
10/100  
MPC860P  
1
Serial communications controller (SCC)  
Up to 4 channels at 40 MHz or 2 channels at 25 MHz  
2
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
70  
Freescale Semiconductor  
 
 
Mechanical Data and Ordering Information  
Table 34 identifies the packages and operating frequencies available for the MPC860.  
Table 34. MPC860 Family Package/Frequency Availability  
Freq. (MHz) /  
Temp. (Tj)  
Package Type  
Package  
Order Number  
1
Ball grid array  
50  
ZP/ZQ  
MPC855TZQ50D4  
MPC860DEZQ50D4  
MPC860DTZQ50D4  
MPC860ENZQ50D4  
MPC860SRZQ50D4  
MPC860TZQ50D4  
MPC860DPZQ50D4  
MPC860PZQ50D4  
ZP suffix—leaded  
ZQ suffix—leaded  
VR suffix—lead-free  
0° to 95°C  
Tape and Reel  
MPC855TZQ50D4R2  
MPC860DEZQ50D4R2  
MPC860ENZQ50D4R2  
MPC860SRZQ50D4R2  
MPC860TZQ50D4R2  
MPC860DPZQ50D4R2  
MC860ENCVR50D4R2  
MPC855TVR50D4R2  
MPC860ENVR50D4R2  
MPC860SRVR50D4R2  
MPC860TVR50D4R2  
VR  
MPC855TCVR50D4  
MPC855TVR50D4  
MPC860DEVR50D4  
MPC860DPVR50D4  
MPC860DTVR50D4  
MPC860ENVR50D4  
MPC860PVR50D4  
MPC860SRVR50D4  
MPC860TVR50D4  
1
66  
ZP/ZQ  
MPC855TZQ66D4  
MPC860DEZQ66D4  
MPC860DTZQ66D4  
MPC860ENZQ66D4  
MPC860SRZQ66D4  
MPC860TZQ66D4  
MPC860DPZQ66D4  
MPC860PZQ66D4  
0° to 95°C  
Tape and Reel  
VR  
MPC860SRZQ66D4R2  
MPC860PZQ66D4R2  
MPC855TCVR66D4  
MPC855TVR66D4  
MPC860DEVR66D4  
MPC860DPVR66D4  
MPC860DTVR66D4  
MPC860ENVR66D4  
MPC860PVR66D4  
MPC860SRVR66D4  
MPC860TVR66D4  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
71  
 
Mechanical Data and Ordering Information  
Table 34. MPC860 Family Package/Frequency Availability (continued)  
Freq. (MHz) /  
Temp. (Tj)  
Package Type  
Ball grid array (continued)  
ZP suffix—leaded  
ZQ suffix—leaded  
VR suffix—lead-free  
Package  
Order Number  
1
80  
ZP/ZQ  
MPC855TZQ80D4  
MPC860DEZQ80D4  
MPC860DTZQ80D4  
MPC860ENZQ80D4  
MPC860SRZQ80D4  
MPC860TZQ80D4  
MPC860DPZQ80D4  
MPC860PZQ80D4  
0° to 95°C  
Tape and Reel  
VR  
MPC860PZQ80D4R2  
MPC860PVR80D4R2  
MPC855TVR80D4  
MPC860DEVR80D4  
MPC860DPVR80D4  
MPC860ENVR80D4  
MPC860PVR80D4  
MPC860SRVR80D4  
MPC860TVR80D4  
1
Ball grid array (CZP suffix)  
CZP suffix—leaded  
CZQ suffix—leaded  
50  
ZP/ZQ  
MPC855TCZQ50D4  
MPC860DECZQ50D4  
MPC860DTCZQ50D4  
MPC860ENCZQ50D4  
MPC860SRCZQ50D4  
MPC860TCZQ50D4  
MPC860DPCZQ50D4  
MPC860PCZQ50D4  
–40° to 95°C  
CVR suffix—lead-free  
Tape and Reel  
CVR  
MPC855TCZQ50D4R2  
MC860ENCVR50D4R2  
MPC860DECVR50D4  
MPC860DTCVR50D4  
MPC860ENCVR50D4  
MPC860PCVR50D4  
MPC860SRCVR50D4  
MPC860TCVR50D4  
1
66  
ZP/ZQ  
MPC855TCZQ66D4  
MPC860ENCZQ66D4  
MPC860SRCZQ66D4  
MPC860TCZQ66D4  
MPC860DPCZQ66D4  
MPC860PCZQ66D4  
–40° to 95°C  
CVR  
MPC860DTCVR66D4  
MPC860ENCVR66D4  
MPC860PCVR66D4  
MPC860SRCVR66D4  
MPC860TCVR66D4  
1
The ZP package is no longer recommended for use. The ZQ package replaces the ZP package.  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
72  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
14.2 Pin Assignments  
Figure 76 shows the top view pinout of the PBGA package. For additional information, see the MPC860  
PowerQUICC Users Manual, or the MPC855T Users Manual.  
NOTE: This is the top view of the device.  
W
PD10 PD8  
PD14 PD13 PD9  
PA0 PB14 PD15  
PD3  
IRQ7 D0  
D4  
D1  
D2  
D10  
D11  
D9  
D3  
D5  
VDDL  
D20  
D6  
D7  
D29  
DP1  
DP2 CLKOUT IPA3  
V
U
T
VSSSYN1  
N/C  
PD6 M_Tx_EN IRQ0 D13  
D27  
D23  
D17  
D14  
D16  
D15  
D18  
D19  
D22  
D24  
D26  
D31  
D28  
D30  
DP3  
DP0  
PD4  
PD5 IRQ1  
D8  
D21  
IPA5 IPA4 IPA2  
N/C VSSSYN  
XFC VDDSYN  
PA1  
PC6  
PC5  
PC4 PD11  
PD7 VDDH D12  
VDDH  
D25  
IPA6 IPA0 IPA1 IPA7  
R
P
N
M
L
VDDH  
WAIT_B WAIT_A  
VDDL RSTCONF  
PA2 PB15 PD12  
KAPWR  
PORESET  
SRESET  
PA4 PB17 PA3 VDDL  
PB19 PA5 PB18 PB16  
GND  
GND  
XTAL  
TEXP  
HRESET  
EXTCLK EXTAL  
PA7  
PC8  
PA6  
PC7  
BADDR28  
MODCK2  
OP0  
BADDR29 VDDL  
OP1 MODCK1  
PB22 PC9  
PA8 PB20  
AS  
K
J
PC10 PA9 PB23 PB21  
PC11 PB24 PA10 PB25  
GND  
BADDR30 IPB6 ALEA IRQ4  
IPB5 IPB1 IPB2 ALEB  
M_COL IRQ2 IPB0 IPB7  
H
G
F
VDDL M_MDIO TDI  
TCK  
TRST TMS TDO PA11  
PB26 PC12 PA12 VDDL  
PB27 PC13 PA13 PB29  
PB28 PC14 PA14 PC15  
BR  
VDDL  
CS3  
IRQ6 IPB4 IPB3  
GND  
GND  
TS  
BI  
IRQ3 BURST  
VDDH  
VDDH  
CS6  
E
D
C
B
A
BG  
BB  
A8  
A9  
N/C  
A12  
A13  
N/C  
A16  
A17  
A15  
A20  
A21  
A19  
A24  
A23  
A25  
A18 BSA0 GPLA0 N/C  
CS2 GPLA5 BDIP TEA  
PB30 PA15 PB31  
A3  
A6  
A26 TSIZ1 BSA1 WE0 GPLA1 GPLA3 CS7  
CS0  
TA GPLA4  
A0  
19  
A1  
A4  
A10  
A22 TSIZ0 BSA3 M_CRS WE2 GPLA2 CS5 CE1A WR GPLB4  
A2  
18  
A5  
17  
A7  
16  
A11  
15  
A14  
14  
A27  
13  
A29  
12  
A30  
11  
A28  
10  
A31 VDDL BSA2 WE1 WE3 CS4 CE2A CS1  
9
8
7
6
5
4
3
2
1
Figure 76. Pinout of the PBGA Package  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
73  
 
Mechanical Data and Ordering Information  
14.3 Mechanical Dimensions of the PBGA Package  
Figure 77 shows the mechanical dimensions of the ZP PBGA package.  
C
0.2  
4X  
0.2 C  
0.25 C  
0.35 C  
D
A
E2  
E
D2  
B
TOP VIEW  
A2  
A3  
A1  
A
D1  
SIDE VIEW  
18X e  
W
V
U
T
R
P
N
M
L
K
J
E1  
H
G
F
MILLIMETERS  
E
D
C
B
A
DIM MIN  
MAX  
2.05  
0.70  
1.35  
0.90  
0.90  
A
A1  
A2  
A3  
b
---  
0.50  
0.95  
0.70  
0.60  
1
3
5
7
9
11 13 15 17 19  
2
4 6 8 10 12 14 16 18  
357X  
b
BOTTOM VIEW  
M
0.3  
C A B  
C
D
25.00 BSC  
22.86 BSC  
M
0.15  
D1  
D2  
e
22.40  
22.60  
1.27 BSC  
25.00 BSC  
22.86 BSC  
E
NOTE  
E1  
E2  
1. Dimensions and tolerance per ASME Y14.5M, 1994.  
22.40  
22.60  
2. Dimensions in millimeters.  
3. Dimension b is the maximum solder ball diameter  
measured parallel to data C.  
Figure 77. Mechanical Dimensions and Bottom Surface Nomenclature of the ZP PBGA Package  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
74  
Freescale Semiconductor  
 
Mechanical Data and Ordering Information  
Figure 78 shows the mechanical dimensions of the ZQ PBGA package.  
NOTE  
1. All Dimensions in millimeters.  
2. Dimensions and tolerance per ASME Y14.5M, 1994.  
3. Maximum Solder Ball Diameter measured parallel to Datum A.  
4.  
Datum A, the seating plane, is defined by the spherical crowns of the solder balls.  
Figure 78. Mechanical Dimensions and Bottom Surface Nomenclature of the ZQ PBGA Package  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
75  
 
Document Revision History  
15 Document Revision History  
Table 35 lists significant changes between revisions of this hardware specification.  
Table 35. Document Revision History  
Revision  
Date  
Changes  
9
10/2011  
Updated orderable part numbers in Table 34, “MPC860 Family Package/Frequency  
Availability.”  
8
08/2007  
• Updated template.  
• On page 1, added a second paragraph.  
• After Table 2, inserted a new figure showing the undershoot/overshoot voltage  
(Figure 1) and renumbered the rest of the figures.  
• In Figure 3, changed all reference voltage measurement points from 0.2 and 0.8 V to  
50% level.  
• In Table 16, changed num 46 description to read, “TA assertion to rising edge ...”  
• In Figure 46, changed TA to reflect the rising edge of the clock.  
7.0  
9/2004  
• Added a tablefootnote to Table 6 DC Electrical Specifications about meeting the VIL  
Max of the I2C Standard  
• Replaced the thermal characteristics in Table 4 by the ZQ package  
• Add the new parts to the Ordering and Availablity Chart in Table 34  
• Added the mechanical spec of the ZQ package in Figure 78  
• Removed all of the old revisions from Table 5  
6.3  
6.2  
9/2003  
8/2003  
• •Added Section 11.2 on the Port C interrupt pins  
• •Nontechnical reformatting  
• Changed B28a through B28d and B29d to show that TRLX can be 0 or 1  
• Changed reference documentation to reflect the Rev 2 MPC860 PowerQUICC Family  
Users Manual  
• Nontechnical reformatting  
6.1  
11/2002  
• Corrected UTOPIA RXenb* and TXenb* timing values  
• Changed incorrect usage of Vcc to Vdd  
• Corrected dual port RAM to 8 Kbytes  
6
10/2002  
11/2001  
• Added the MPC855T. Corrected Figure 26 on page -36.  
5.1  
• Revised template format, removed references to MAC functionality, changed Table 7  
B23 max value @ 66 MHz from 2ns to 8ns, added this revision history table  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
76  
Freescale Semiconductor  
 
Document Revision History  
MPC860 PowerQUICC Family Hardware Specifications, Rev. 9  
Freescale Semiconductor  
77  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
+1-480-768-2130  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064  
Japan  
0120 191014 or  
+81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Semiconductor was negligent regarding the design or manufacture of the part.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,  
QorIQ, StarCore, and Symphony are trademarks of Freescale  
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ Qonverge,  
QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor,  
Inc. All other product or service names are the property of their respective  
owners. The Power Architecture and Power.org word marks and the Power  
and Power.org logos and related marks are trademarks and service marks  
licensed by Power.org.  
© 2007-2012 Freescale Semiconductor, Inc.  
Document Number: MPC860EC  
Rev. 9  
02/2012  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY