LH79524 [NXP]

System-on-Chip; 系统级芯片
LH79524
型号: LH79524
厂家: NXP    NXP
描述:

System-on-Chip
系统级芯片

文件: 总64页 (文件大小:968K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LH79524/LH79525 (A.1)  
System-on-Chip  
Preliminary data sheet  
2
• I C Module  
FEATURES  
• Highly Integrated System-on-Chip  
2
• Integrated Codec Interface Support Features (I S)  
• High Performance: 76.205 MHz CPU Speed,  
50.803 MHz maximum AHB clock (HCLK)  
• Watchdog Timer  
• Vectored Interrupt Controller  
• 32-bit ARM720T™ RISC Core  
– LH79524: 32-bit External Data Bus  
– 208 LFBGA package  
– 16 Standard and 16 Vectored IRQ Interrupts  
– Interrupts Individually Configurable as IRQ or FIQ  
• Three UARTs  
– LH79525: 16-bit External Data Bus  
– 176 LQFP package  
– 16-entry FIFOs for Rx and Tx  
– IrDA SIR Support on all UARTs  
• 8 kB Cache with Write Back Buffer  
• MMU (Windows CE™ Enabled)  
• 16 kB On-Chip SRAM  
• Three 16-bit Timers with PWM capability  
• Real Time Clock  
– 32-bit Up-counter with Programmable Load  
– Programmable 32-bit Match Compare Register  
• Flexible, Programmable Memory Interface  
– SDRAM Interface  
• Programmable General Purpose I/O Signals  
– LH79524: 108 available pins on 14 ports  
– LH79525: 86 available pins on 12 ports  
– 512 MB External Address Space  
– 32-bit External Data Bus (LH79524)  
– 16-bit External Data Bus (LH79525)  
– SRAM/Flash/ROM Interface  
• Programmable Color LCD Controller  
– 16 (LH79524) or 12 (LH79525) Bits-per-Pixel  
– 15-bit External Address Bus  
– Up to 800 × 600 resolution  
– 32-bit External Data Bus (LH79524)  
– 16-bit External Data Bus (LH79525)  
– STN, Color STN, HR-TFT, AD-TFT, TFT  
– TFT: Supports 64 k (LH79524) or 4 k (LH79525)  
Direct Colors or 256 colors selected from a  
Palette of 64 k Colors; 15 Shades of Gray  
– Color STN: Supports 3,375 Direct Colors or 256  
Colors Selected from a Palette of 3,375 Colors  
• Multi-stream DMA Controller  
– Four 32-bit Burst-Based Data Streams  
• Clock and Power Management  
– 32.768 kHz Oscillator for Real Time Clock  
– 10 MHz to 20 MHz Oscillator and On-chip PLL  
– Active, Standby, Sleep, Stop1, and Stop2 Modes  
– Externally-supplied Clock Options  
• Synchronous Serial Port  
– Supports Data Rates Up to 1.8452 Mbit/s  
– Compatible with Common Interface Schemes  
• JTAG Debug Interface and Boundary Scan  
• On-Chip Boot ROM  
• 5 V Tolerant Digital Inputs (excludes oscillator pins)  
– XTALIN and XTAL32IN pins are 1.8 V 10%  
– Allows Booting from 8-, 16-, or 32-bit Devices  
– NAND Flash Boot  
• On-Chip regulator allows single 3.3 V supply  
• Low Power Modes  
– Active Mode: 85 mA (MAX.)  
– Standby Mode: 50 mA (MAX.)  
– Sleep Mode: 3.8 mA (TYP.)  
– Stop Mode 1: 420 µA (TYP.)  
– Stop Mode 2: 25 µA (TYP.)  
DESCRIPTION  
The LH79524/LH79525, powered by an ARM720T,  
is a complete System-on-Chip with a high level of inte-  
gration to satisfy a wide range of requirements and  
applications. The SoC has a fully static design, power  
management unit, and low voltage operation (1.8 V  
Core, 3.3 V I/O). With the on-chip voltage regulator, a  
single 3.3 V supply can be used as well. Robust periph-  
erals and a low-power RISC core provide high perfor-  
mance at a reasonable price.  
• USB Device  
– Compliant with USB 2.0 Specifications (Full Speed)  
– Four Endpoints  
• Ethernet MAC, with MII and MDIO Interfaces  
– IEEE 802.3 Compliant  
– 10 and 100 Mbit/s Operation  
• Analog-to-Digital Converter/Brownout Detector  
– 10-bit ADC  
– Pen Sense Interrupt  
– Integrated Touch Screen Controller (TSC)  
Preliminary data sheet  
1
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
ORDERING INFORMATION  
Table 1. Ordering information  
Package  
Type number  
Version  
Name  
Description  
plastic low profile fine-pitch ball grid array pack-  
age; 208 balls  
LH79524N0F100A0  
LH79524N0F100A1  
LH79525N0Q100A0  
LH79525N0Q100A1  
LFBGA208  
LFBGA208  
LQFP176  
LQFP176  
SOT1019-1  
SOT1019-1  
SOT1017-1  
SOT1017-1  
plastic low profile fine-pitch ball grid array pack-  
age; 208 balls  
plastic low profile quad flat package; 176 leads;  
body 20 x 20 x 1.4 mm  
plastic low profile quad flat package; 176 leads;  
body 20 x 20 x 1.4 mm  
2
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
LH79524/LH79525  
10 - 20 MHz 32.768 kHz  
OSCILLATOR,  
PLL(2), POWER  
MANAGEMENT, and  
RESET CONTROL  
REAL TIME  
CLOCK  
GENERAL  
PURPOSE I/O  
ARM720T  
CONDITIONED  
EXTERNAL  
INTERRUPTS  
I/O  
CONFIGURATION  
CACHE  
VECTORED  
INTERRUPT  
CONTROLLER  
INTERNAL  
INTERRUPTS  
SYNCHRONOUS  
SERIAL PORT  
ETHERNET  
MAC  
SSP - I2S  
CONVERTER  
(WITH CODEC  
INTERFACE)  
INTERNAL  
16KB SRAM  
BOOT  
CONTROLLER  
BOOT  
ROM  
COUNTER/  
TIMER (3)  
4 CHANNEL  
DMA  
CONTROLLER  
EXTERNAL  
MEMORY  
CONTROLLER  
WATCHDOG  
TIMER  
ADVANCED  
PERIPHERAL  
BUS BRIDGE  
I2C  
USB  
DEVICE  
16550  
UART (3) w/SIR  
COLOR  
LCD  
TEST  
SUPPORT  
CONTROLLER  
10 CHANNEL  
10-BIT ADC  
(WITH TSC and  
BROWNOUT  
DETECTOR)  
LINEAR  
REGULATOR  
ADVANCED  
LCD  
INTERFACE  
ADVANCED  
PERPHERAL  
BUS (APB)  
ADVANCED HIGH  
PERFORMANCE  
BUS (AHB)  
LH79525-1  
Figure 1. LH79524/LH79525 block diagram  
Preliminary data sheet  
Rev. 01 16 July 2007  
3
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
LH79524  
ball A1  
index area  
2
4
6
8
10 12 14 16  
9 11 13 15  
1
3
5
7
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
002aad214  
Transparent top view  
Figure 2. LH79524 pin configuration (LFBGA208)  
1
132  
LH79525  
44  
89  
002aad213  
Figure 3. LH79525 pin configuration (LQFP176)  
4
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
SIGNAL DESCRIPTIONS  
Table 2. LH79524 Pin Descriptions  
LFBGA  
SIGNAL NAME  
PIN  
TYPE  
DESCRIPTION  
T12  
R11  
T11  
P10  
R10  
T10  
P9  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
R9  
A7  
O
External Address Bus  
T9  
A8  
T8  
A9  
R8  
A10  
P8  
A11  
T7  
A12  
R7  
A13  
P7  
A14  
T6  
A15  
M15  
N16  
L13  
M14  
N15  
P16  
M13  
N14  
F14  
G15  
D13  
E13  
E14  
G14  
G16  
H14  
H15  
H16  
L16  
L15  
M16  
L14  
J15  
J14  
K16  
K15  
D0  
D1  
D2  
D3  
I/O  
External Data Bus  
D4  
D5  
D6  
D7  
SDCLK  
SDCKE  
DQM0  
DQM1  
DQM2  
DQM3  
nDCS0  
nDCS1  
nRAS  
nCAS  
nCS0/PM0  
nCS1/PM1  
nCS2/PM2  
nCS3/PM3  
nBLE0/PM4  
nBLE1/PM5  
nBLE2/PM6  
nBLE3/PM7  
O
O
SDRAM Clock  
SDRAM Clock Enable  
O
Data Mask Output to SDRAMs  
O
O
O
O
SDRAM Chip Select  
SDRAM Chip Select  
Row Address Strobe  
Column Address Strobe  
O
O
Static Memory Chip Select; multiplexed with GPIO Port M[3:0] (output only)  
Static Memory Byte Lane Enable / Byte Write Enable; multiplexed with  
GPIO Port M[7:4] (output only)  
Preliminary data sheet  
Rev. 01 16 July 2007  
5
LH79524/LH79525  
LFBGA  
System-on-Chip  
NXP Semiconductors  
Table 2. LH79524 Pin Descriptions (Cont’d)  
SIGNAL NAME  
TYPE  
DESCRIPTION  
PIN  
K14  
J16  
A16  
A15  
E2  
nOE  
O
O
I/O  
I/O  
I
Static Memory Output Enable  
Static Memory Write Enable  
nWE  
USBDN  
USBDP  
AN0/UL/X+  
AN1/UR/X–  
USB Data Negative (Differential Pair output, single ended and Differential pair input)  
USB Data Positive (Differential Pair output, single ended and Differential pair input)  
ADC Input 0, 4-wire touch screen Upper Left, 5-wire touch screen X+  
ADC Input 1, 4-wire touch screen Upper Right, 5-wire touch screen X–  
F2  
I
ADC Input 2, 4-wire touch screen Lower Left, 5-wire touch screen Y+; multiplexed  
with GPIO Port J3 (input only)  
G2  
H2  
H3  
AN2/LL/Y+/PJ3  
AN3/LR/Y–/PJ0  
AN4/WIPER/PJ1  
I
I
I
ADC Input 3, 4-wire touch screen Upper Right, 5-wire touch screen Y–;  
multiplexed with GPIO Port J0 (input only)  
ADC Input 4, 5-wire touch screen Wiper input; multiplexed with GPIO Port J1  
(input only)  
F1  
F3  
E1  
G3  
G1  
J3  
AN5/PJ5/INT5  
AN6/PJ7/INT7  
AN7/PJ6/INT6  
AN8/PJ4  
I
ADC Input 5; multiplexed with GPIO Port J5 (input only) and External Interrupt 5  
ADC Input 6; multiplexed with GPIO Port J7 (input only) and External Interrupt 7  
ADC Input 7; multiplexed with GPIO Port J6 (input only) and External Interrupt 6  
ADC Input 8; multiplexed with GPIO Port J4 (input only)  
I
I
I
I
AN9/PJ2  
ADC Input 9; multiplexed with GPIO Port J2 (input only)  
CTCLK/INT4/BATCNTL  
I/O  
Timer[2:0] External Clock input; muxed with External Int 4 and Battery Control  
PA0/INT2/UARTRX2/  
UARTIRRX2  
General Purpose I/O Signal — Port A0; multiplexed with UART2 Received Serial  
Data Input, UART2 Infrared Received Serial Data In, and External Interrupt 2  
N1  
M2  
L3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PA1/INT3/UARTTX2/  
UARTIRTX2  
General Purpose I/O Signal — Port A1; multiplexed with UART2 Transmitted  
Serial Data Output, UART2 Serial Transmit Data Out, and External Interrupt 3  
PA2/CTCAP0A/  
CTCMP0A  
General Purpose I/O Signal — Port A2; multiplexed with Counter/Timer 0  
Capture A input and Counter/Timer 0 Compare A output  
PA3/CTCAP0B/  
CTCMP0B  
General Purpose I/O Signal — Port A3; multiplexed with Counter/Timer 0  
Capture B input and Counter/Timer 0 Compare B output  
M1  
L2  
PA4/CTCAP1A/  
CTCMP1A  
General Purpose I/O Signal — Port A4; multiplexed with Counter/Timer 1  
Capture A input and Counter/Timer 1 Compare A output  
PA5/CTCAP1B/  
CTCMP1B  
General Purpose I/O Signal — Port A5; multiplexed with Counter/Timer 1  
Capture B input and Counter/Timer 1 Compare B output  
L1  
PA6/CTCAP2A/  
CTCMP2A/SDA  
General Purpose I/O Signal — Port A6; multiplexed with Counter/Timer 2  
Capture A input, Counter/Timer 2 Compare A output, I2C Bus Data (open drain)  
K3  
K2  
R2  
R1  
PA7/CTCAP2B/  
CTCMP2B/SCL  
General Purpose I/O Signal — Port A7; multiplexed with Counter/Timer 2  
Capture B input, Counter/Timer 2 Compare B output, I2C Bus Clock (open drain)  
PB0/nDACK/  
nUARTCTS0  
General Purpose I/O Signal — Port B0; multiplexed with DMA Acknowledge and  
UART0 CTS  
PB1/DREQ/  
nUARTRTS0  
General Purpose I/O Signal — Port B1; multiplexed with DMA Request and  
UART0 RTS  
General Purpose I/O Signal — Port B2; multiplexed with SSP Serial Frame Output  
and I2S Frame Output  
General Purpose I/O Signal — Port B3; multiplexed with SSP Clock and I2S Clock  
P2  
N3  
PB2/SSPFRM/I2SWS  
PB3/SSPCLK/I2SCLK  
I/O  
I/O  
PB4/SSPRX/I2SRXD/  
UARTRX1/  
UARTIRRX1  
General Purpose I/O Signal — Port B4; multiplexed with SSP Data In, I2S Data In,  
UART1 Serial Data In, and UART1 Infrared Data In  
M4  
I/O  
PB5/SSPTX/I2STXD/  
UARTTX1/UARTIRTX1  
General Purpose I/O Signal — Port B5; multiplexed with SSP Data Out, I2S Data  
Out, UART1 Data Out, and UART1 IR Data Out  
P1  
N2  
I/O  
I/O  
PB6/INT0/UARTRX0/  
UARTIRRX0  
General Purpose I/O Signal — Port B6; multiplexed with UART0 Infrared Received  
Serial Data Input, UART0 Received Serial Data In, and External Interrupt 0  
6
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LFBGA  
LH79524/LH79525  
NXP Semiconductors  
Table 2. LH79524 Pin Descriptions (Cont’d)  
SIGNAL NAME  
TYPE  
DESCRIPTION  
PIN  
PB7/INT1/UARTTX0/  
UARTIRTX0  
General Purpose I/O Signal — Port B7; multiplexed with UART0 Infrared Transmit-  
ted Serial Data Output, UART0 Serial Transmit Data Out, and External Interrupt 1.  
M3  
I/O  
N7  
R6  
T5  
P6  
R5  
T4  
PC0/A16  
PC1/A17  
PC2/A18  
PC3/A19  
PC4/A20  
PC5/A21  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General Purpose I/O Signal — Port C0; multiplexed with Address A16  
General Purpose I/O Signal — Port C1; multiplexed with Address A17  
General Purpose I/O Signal — Port C2; multiplexed with Address A18  
General Purpose I/O Signal — Port C3; multiplexed with Address A19  
General Purpose I/O Signal — Port C4; multiplexed with Address A20  
General Purpose I/O Signal — Port C5; multiplexed with Address A21  
General Purpose I/O Signal — Port C6; multiplexed with Address A22 and NAND  
Flash Write Enable  
P5  
R4  
PC6/A22/nFWE  
PC7/A23/nFRE  
I/O  
I/O  
General Purpose I/O Signal — Port C7; multiplexed with Address A23 and NAND  
Flash Read Enable  
P15  
P14  
N13  
T15  
N12  
T14  
P12  
T13  
PD0/D8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General Purpose I/O Signal — Port D0; multiplexed with Data D8  
General Purpose I/O Signal — Port D1; multiplexed with Data D9  
General Purpose I/O Signal — Port D2; multiplexed with Data D10  
General Purpose I/O Signal — Port D3; multiplexed with Data D11  
General Purpose I/O Signal — Port D4; multiplexed with Data D12  
General Purpose I/O Signal — Port D5; multiplexed with Data D13  
General Purpose I/O Signal — Port D6; multiplexed with Data D14  
PD1/D9  
PD2/D10  
PD3/D11  
PD4/D12  
PD5/D13  
PD6/D14  
PD7/D15  
I/O  
I/O  
General Purpose I/O Signal — Port D7; multiplexed with Data D15  
PE0/LCDLP/  
LCDHRLP  
General Purpose I/O Signals — Port E0; multiplexed with LCD Line Pulse and  
AD-TFT/HR-TFT Line Pulse  
B12  
D11  
B13  
C13  
PE1/LCDDCLK  
PE2/LCDPS  
I/O  
I/O  
I/O  
General Purpose I/O Signals — Port E1; multiplexed with LCD Data Clock  
General Purpose I/O Signals — Port E2; multiplexed with LCD Power Save  
General Purpose I/O Signals — Port E3; multiplexed with LCD Row Driver Clock  
PE3/LCDCLS  
PE4/LCDDSPLEN/  
LCDREV  
General Purpose I/O Signals — Port E4; multiplexed with LCD Panel Power  
Enable and LCD Reverse  
D12  
B16  
B15  
I/O  
I/O  
I/O  
PE5/LCDVDDEN  
General Purpose I/O Signals — Port E5; multiplexed with LCD VDD Enable  
PE6/LCDVEEN/  
LCDMOD  
General Purpose I/O Signals — Port E6; multiplexed with LCD Analog Power  
Enable and MOD  
General Purpose I/O Signals — Port E7; multiplexed with nWAIT and DMA End of  
Transfer  
D14  
PE7/nWAIT/nDEOT  
I/O  
A8  
A9  
PF0/LCDVD6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General Purpose I/O Signals — Port F0; multiplexed with LCD Video Data bit 6  
General Purpose I/O Signals — Port F1; multiplexed with LCD Video Data bit 7  
General Purpose I/O Signals — Port F2; multiplexed with LCD Video Data bit 8  
General Purpose I/O Signals — Port F3; multiplexed with LCD Video Data bit 9  
General Purpose I/O Signals — Port F4; multiplexed with LCD Video Data bit 10  
General Purpose I/O Signals — Port F5; multiplexed with LCD Video Data bit 11  
General Purpose I/O Signals — Port F6; multiplexed with LCD Start Pulse Left  
PF1/LCDVD7  
B9  
PF2/LCDVD8  
C9  
PF3/LCDVD9  
B10  
A11  
B11  
PF4/LCDVD10  
PF5/LCDVD11  
PF6/LCDEN/LCDSPL  
General Purpose I/O Signals — Port F7; multiplexed with LCD Row Driver  
Counter reset  
A12  
PF7/LCDFP/LCDSPS  
I/O  
A5  
B6  
A6  
C7  
B7  
PG0/ETHERTXEN  
PG1/ETHERTXCLK  
PG2/LCDVD0  
I/O  
I/O  
I/O  
I/O  
I/O  
General Purpose I/O Signals — Port G0; multiplexed with Ethernet TX Enable  
General Purpose I/O Signals — Port G1; multiplexed with Ethernet TX Clock  
General Purpose I/O Signals — Port G2; multiplexed with LCD Video Data bit 0  
General Purpose I/O Signals — Port G3; multiplexed with LCD Video Data bit 1  
General Purpose I/O Signals — Port G4; multiplexed with LCD Video Data bit 2  
PG3/LCDVD1  
PG4/LCDVD2  
Preliminary data sheet  
Rev. 01 16 July 2007  
7
LH79524/LH79525  
LFBGA  
System-on-Chip  
NXP Semiconductors  
Table 2. LH79524 Pin Descriptions (Cont’d)  
SIGNAL NAME  
TYPE  
DESCRIPTION  
PIN  
A7  
C8  
B8  
PG5/LCDVD3  
PG6/LCDVD4  
PG7/LCDVD5  
I/O  
I/O  
I/O  
General Purpose I/O Signals — Port G5; multiplexed with LCD Video Data bit 3  
General Purpose I/O Signals — Port G6; multiplexed with LCD Video Data bit 4  
General Purpose I/O Signals — Port G7; multiplexed with LCD Video Data bit 5  
General Purpose I/O Signals — Port H0; multiplexed with Ethernet Receive  
Channel 3  
C4  
PH0/ETHERRX3  
I/O  
A3  
B4  
C5  
PH1/ETHERRXDV  
PH2/ETHERRXCLK  
PH3/ETHERTXER  
I/O  
I/O  
I/O  
General Purpose I/O Signals — Port H1; multiplexed with Ethernet Data Valid  
General Purpose I/O Signals — Port H2; multiplexed with Ethernet Receive Clock  
General Purpose I/O Signals — Port H3; multiplexed with Ethernet Transmit Error  
General Purpose I/O Signals — Port H4; multiplexed with Ethernet Transmit  
Channel 0  
D6  
A4  
B5  
C6  
D3  
B1  
PH4/ETHERTX0  
PH5/ETHERTX1  
PH6/ETHERTX2  
PH7/ETHERTX3  
PI0/ETHERMDC  
PI1/ETHERMDIO  
I/O  
I/O  
I/O  
I/O  
I/O  
General Purpose I/O Signals — Port H5; multiplexed with Ethernet Transmit  
Channel 1  
General Purpose I/O Signals — Port H6; multiplexed with Ethernet Transmit  
Channel 2  
General Purpose I/O Signals — Port H7; multiplexed with Ethernet Transmit  
Channel 3  
General Purpose I/O Signals — Port I0; multiplexed with Ethernet Management  
Data Clock  
General Purpose I/O Signals — Port I1; multiplexed with Ethernet Management  
Data I/O  
I/O  
I/O  
B2  
D4  
C3  
PI2/ETHERCOL  
PI3/ETHERCRS  
PI4/ETHERRXER  
General Purpose I/O Signals — Port I2; multiplexed with Ethernet Collision Detect  
I/O  
I/O  
General Purpose I/O Signals — Port I3; multiplexed with Ethernet Carrier Sense  
General Purpose I/O Signals — Port I4; multiplexed with Ethernet Receive Error  
General Purpose I/O Signals — Port I5; multiplexed with Ethernet Receive  
Channel 0  
A1  
A2  
B3  
PI5/ETHERRX0  
PI6/ETHERRX1  
PI7/ETHERRX2  
I/O  
I/O  
I/O  
General Purpose I/O Signals — Port I6; multiplexed with Ethernet Receive Channel 1  
General Purpose I/O Signals — Port I7; multiplexed with Ethernet Receive  
Channel 2  
R16  
M12  
T16  
R15  
P13  
R14  
R13  
N11  
C1  
PK0/D16  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General Purpose I/O Signals — Port K0; multiplexed with data bit D16  
General Purpose I/O Signals — Port K1; multiplexed with data bit D17  
General Purpose I/O Signals — Port K2; multiplexed with data bit D18  
General Purpose I/O Signals — Port K3; multiplexed with data bit D19  
General Purpose I/O Signals — Port K4; multiplexed with data bit D20  
General Purpose I/O Signals — Port K5; multiplexed with data bit D21  
General Purpose I/O Signals — Port K6; multiplexed with data bit D22  
General Purpose I/O Signals — Port K7; multiplexed with data bit D23  
General Purpose I/O Signals — Port L0; multiplexed with LCD Video Data bit 14  
General Purpose I/O Signals — Port L1; multiplexed with LCD Video Data bit 15  
General Purpose I/O Signals — Port L2; multiplexed with LCD Video Data bit 12  
General Purpose I/O Signals — Port L3; multiplexed with LCD Video Data bit 13  
General Purpose I/O Signals — Port L4; multiplexed with Data bit D28  
General Purpose I/O Signals — Port L5; multiplexed with Data bit D29  
General Purpose I/O Signals — Port L6; multiplexed with Data bit D30  
General Purpose I/O Signals — Port L7; multiplexed with Data bit D31  
General Purpose I/O Signals — Port N0; multiplexed with Data bit D26  
General Purpose I/O Signals — Port N1; multiplexed with Data bit D27  
General Purpose I/O Signals — Port N2; multiplexed with Data bit D24  
PK1/D17  
PK2/D18  
PK3/D19  
PK4/D20  
PK5/D21  
PK6/D22  
PK7/D23  
PL0/LCDVD14  
PL1/LCDVD15  
PL2/LCDVD12  
PL3/LCDVD13  
PL4/D28  
C2  
A10  
C10  
C12  
A14  
B14  
C14  
C11  
A13  
R12  
PL5/D29  
PL6/D30  
PL7/D31  
PN0/D26  
PN1/D27  
PN2/D24  
8
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LFBGA  
LH79524/LH79525  
NXP Semiconductors  
Table 2. LH79524 Pin Descriptions (Cont’d)  
SIGNAL NAME  
TYPE  
DESCRIPTION  
PIN  
P11  
J2  
PN3/D25  
nRESETIN  
nRESETOUT  
XTALIN  
XTALOUT  
XTAL32IN  
XTAL32OUT  
CLKOUT  
nTRST  
I/O  
I
General Purpose I/O Signals — Port N3; multiplexed with Data bit D25  
Reset Input  
H1  
O
I
Reset Output  
C16  
C15  
D16  
D15  
K1  
Crystal Input  
O
I
Crystal Output  
32.768 kHz Crystal Oscillator Input  
32.768 kHz Crystal Oscillator Output  
Clock Out (selectable from the internal bus clock or 32.768 kHz crystal)  
JTAG Test Reset Input  
O
O
I
D2  
P4  
TMS  
I
JTAG Test Mode Select Input  
T3  
TCK  
I
JTAG Test Clock Input  
T1  
TDI  
I
JTAG Test Serial Data Input  
P3  
TDO  
O
I
JTAG Test Data Serial Output  
T2  
TEST1  
Tie HIGH for Normal Operation; pull LOW to enable Embedded ICE Debugging  
Tie HIGH for Normal Operation; pull HIGH to enable Embedded ICE Debugging  
Linear Regulator Enable  
R3  
TEST2  
I
E3  
LINREGEN  
I
D5, E4,  
E5,H13, VDDC  
N5  
Power Core Power Supply  
Ground Core GND  
D10, F4,  
VSSC  
J13, N4  
D7, D8,  
D9, F13,  
G4,  
G13,H4,  
J4, K4,  
VDD  
Power Input/Output Power Supply  
K13, L4,  
N6, N8,  
N9, N10  
E12,G8,  
G9, H7,  
H8, H9,  
H10, J7, VSS  
J8, J9,  
Ground Input/Output GND  
J10, K8,  
K9, M5  
D1  
F16  
E16  
J1  
VDDA0  
VDDA1  
VDDA2  
VSSA0  
VSSA1  
VSSA2  
Power Analog Power Supply for Analog-to-Digital Converter  
Power Analog Power Supply for the USB PLL  
Power Analog Power Supply for System PLL  
Ground Analog GND for Analog-to-Digital Converter  
Ground Analog GND for the USB PLL  
F15  
E15  
Ground Analog GND for System PLL  
Preliminary data sheet  
Rev. 01 16 July 2007  
9
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
Table 3. LH79524 Numerical Pin List  
Table 3. LH79524 Numerical Pin List (Cont’d)  
LFBGA FUNCTION  
MULTIPLEXED  
FUNCTION(S)  
OUTPUT  
DRIVE  
LFBGA FUNCTION  
MULTIPLEXED  
FUNCTION(S)  
OUTPUT  
DRIVE  
NOTES  
NOTES  
NO.  
AT RESET  
NO.  
AT RESET  
A1  
A2  
PI5  
PI6  
ETHERRX0  
ETHERRX1  
ETHERRXDV  
ETHERTX1  
ETHERTXEN  
LCDVD0  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
1
1
1
1
1
1
1
1
1
1
2
1
1
1
3
3
2
1
1
1
1
1
1
1
2
2
1
1
1
1
C13  
C14  
C15  
C16  
D1  
PE3  
PL7  
LCDCLS  
D31  
8 mA  
8 mA  
1
1
4
5
A3  
PH1  
PH5  
PG0  
PG2  
PG5  
PF0  
PF1  
PL2  
XTALOUT  
XTALIN  
VDDA0  
nTRST  
PI0  
A4  
A5  
A6  
D2  
2, 6  
1
A7  
LCDVD3  
D3  
ETHERMDC  
ETHERCRS  
8 mA  
8 mA  
A8  
LCDVD6  
D4  
PI3  
1
A9  
LCDVD7  
D5  
VDDC  
PH4  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
LCDVD12  
LCDVD11  
LCDFP/LCDSPS  
D27  
D6  
ETHERTX0  
8 mA  
1
PF5  
PF7  
PN1  
PL5  
D7  
VDD  
D8  
VDD  
D9  
VDD  
D29  
D10  
D11  
VSSC  
PE1  
USBDP  
USBDN  
PI1  
LCDDCLK  
8 mA  
8 mA  
1
1
LCDDSPLEN/  
LCDREV  
D12  
PE4  
ETHERMDIO  
ETHERCOL  
ETHERRX2  
ETHERRXCLK  
ETHERTX2  
ETHERTXCLK  
LCDVD2  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
D13  
D14  
D15  
D16  
E1  
DQM0  
PE7  
8 mA  
8 mA  
B2  
PI2  
nWAIT/nDEOT  
PJ6/INT6  
2, 6  
4
B3  
PI7  
XTAL32OUT  
XTAL32IN  
AN7  
B4  
PH2  
PH6  
PG1  
PG4  
PG7  
PF2  
PF4  
PF6  
PE0  
PE2  
PL6  
5
B5  
B6  
E2  
AN0/UL/X+  
LINREGEN  
VDDC  
B7  
E3  
B8  
LCDVD5  
E4  
B9  
LCDVD8  
E5  
VDDC  
B10  
B11  
B12  
B13  
B14  
LCDVD10  
E12  
E13  
E14  
E15  
E16  
F1  
VSS  
LCDEN/LCDSPL  
LCDLP/LCDHRLP  
LCDPS  
DQM1  
8 mA  
8 mA  
DQM2  
VSSA2  
VDDA2  
AN5  
D30  
LCDVEEN/  
LCDMOD  
B15  
PE6  
8 mA  
1
PJ5/INT5  
PJ7/INT7  
B16  
C1  
PE5  
PL0  
PL1  
PI4  
LCDVDDEN  
LCDVD14  
LCDVD15  
ETHERRXER  
ETHERRX3  
ETHERTXER  
ETHERTX3  
LCDVD1  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
1
1
1
1
1
1
1
1
1
2
1
1
1
F2  
AN1/UR/X-  
AN6  
F3  
C2  
F4  
VSSC  
C3  
F13  
F14  
F15  
F16  
G1  
VDD  
C4  
PH0  
PH3  
PH7  
PG3  
PG6  
PF3  
PL3  
PN0  
PL4  
SDCLK  
VSSA1  
VDDA1  
AN9  
12 mA  
C5  
C6  
C7  
PJ2  
C8  
LCDVD4  
G2  
AN2/LL/Y+ PJ3  
C9  
LCDVD9  
G3  
AN8  
VDD  
VSS  
VSS  
PJ4  
C10  
C11  
C12  
LCDVD13  
D26  
G4  
G8  
D28  
G9  
10  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
Table 3. LH79524 Numerical Pin List (Cont’d)  
Table 3. LH79524 Numerical Pin List (Cont’d)  
LFBGA FUNCTION  
MULTIPLEXED  
FUNCTION(S)  
OUTPUT  
DRIVE  
LFBGA FUNCTION  
MULTIPLEXED  
FUNCTION(S)  
OUTPUT  
DRIVE  
NOTES  
NOTES  
NO.  
AT RESET  
NO.  
AT RESET  
G13  
G14  
G15  
G16  
H1  
VDD  
DQM3  
L4  
VDD  
D2  
8 mA  
8 mA  
8 mA  
8 mA  
L13  
L14  
L15  
L16  
8 mA  
8 mA  
8 mA  
8 mA  
1
SDCKE  
nCS3  
nCS1  
nCS0  
PM3  
nDCS0  
PM1  
PM0  
nRESETOUT  
H2  
AN3/LR/Y- PJ0  
AN4/WIPER PJ1  
VDD  
CTCAP0B/  
CTCMP0B  
M1  
M2  
M3  
PA3  
PA1  
PB7  
8 mA  
8 mA  
8 mA  
1, 6  
1, 6  
1, 6  
H3  
INT3/UARTTX2/  
UARTIRTX2  
H4  
H7  
VSS  
INT1/UARTTX0/  
UARTIRTX0  
H8  
VSS  
H9  
VSS  
SSPRX/I2SRXD/  
UARTRX1/  
UARTIRRX1  
M4  
PB4  
8 mA  
2
H10  
H13  
H14  
H15  
H16  
J1  
VSS  
VDDC  
M5  
VSS  
PK1  
D6  
nDCS1  
nRAS  
8 mA  
8 mA  
8 mA  
M12  
M13  
M14  
M15  
M16  
D17  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
1
1
1
1
nCAS  
D3  
VSSA0  
nRESETIN  
D0  
J2  
2, 6  
2, 6  
nCS2  
PM2  
J3  
CTCLK  
VDD  
INT4/BATCNTL  
8 mA  
INT2/UARTRX2/  
UARTIRRX2  
N1  
N2  
PA0  
PB6  
8 mA  
1, 6  
J4  
J7  
VSS  
INT0/UARTRX0/  
UARTIRRX0  
8 mA  
8 mA  
1, 6  
1
J8  
VSS  
J9  
VSS  
N3  
N4  
PB3  
VSSC  
VDDC  
VDD  
PC0  
VDD  
VDD  
VDD  
PK7  
PD4  
PD2  
D7  
SSPCLK/I2SCLK  
J10  
J13  
J14  
J15  
J16  
K1  
VSS  
VSSC  
nBLE1  
nBLE0  
nWE  
N5  
PM5  
PM4  
8 mA  
8 mA  
8 mA  
8 mA  
N6  
N7  
A16  
8 mA  
1
N8  
CLKOUT  
N9  
CTCAP2B/  
CTCMP2B/SCL  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
K2  
K3  
PA7  
PA6  
8 mA  
8 mA  
2, 6  
2, 6  
D23  
D12  
D10  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
1
1
1
1
1
1
CTCAP2A/  
CTCMP2A/SDA  
K4  
K8  
VDD  
VSS  
D4  
K9  
VSS  
D1  
K13  
K14  
K15  
K16  
VDD  
SSPTX/I2STXD/  
UARTTX1/  
UARTIRTX1  
nOE  
8 mA  
8 mA  
8 mA  
P1  
PB5  
8 mA  
1
2
nBLE3  
nBLE2  
PM7  
PM6  
P2  
P3  
P4  
P5  
P6  
P7  
PB2  
TDO  
TMS  
PC6  
PC3  
A14  
SSPFRM/I2SWS  
8 mA  
4 mA  
CTCAP1B/  
CTCMP1B  
L1  
L2  
L3  
PA5  
PA4  
PA2  
8 mA  
8 mA  
8 mA  
1, 6  
1, 6  
1, 6  
2, 6  
1
CTCAP1A/  
CTCMP1A  
A22/nFWE  
A19  
8 mA  
8 mA  
8 mA  
1
CTCAP0A/  
CTCMP0A  
Preliminary data sheet  
Rev. 01 16 July 2007  
11  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
Table 3. LH79524 Numerical Pin List (Cont’d)  
Table 3. LH79524 Numerical Pin List (Cont’d)  
LFBGA FUNCTION  
MULTIPLEXED  
FUNCTION(S)  
OUTPUT  
DRIVE  
LFBGA FUNCTION  
MULTIPLEXED  
FUNCTION(S)  
OUTPUT  
DRIVE  
NOTES  
NOTES  
NO.  
AT RESET  
NO.  
AT RESET  
PC5  
PC2  
A15  
A12  
A9  
T4  
A21  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
1
1
P8  
A11  
A6  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
T5  
A18  
P9  
T6  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
A3  
T7  
PN3  
PD6  
PK4  
PD1  
PD0  
D5  
D25  
1
1
1
1
1
1
T8  
D14  
D20  
D9  
T9  
A8  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
A5  
A2  
D8  
A0  
PD7  
PD5  
PD3  
PK2  
D15  
D13  
D11  
D18  
1
1
1
1
DREQ/  
nUARTRTS0  
R1  
R2  
PB1  
PB0  
8 mA  
8 mA  
2
2
nDACK/  
nUARTCTS0  
R3  
R4  
TEST2  
PC7  
PC4  
PC1  
A13  
A10  
A7  
2, 6  
1
NOTES:  
A23/nFRE  
A20  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
1. Internal pull-down. The internal pullup and pulldown resistance  
on all digital I/O pins is 50K.  
R5  
1
2. Internal pull-up. The internal pullup and pulldown resistance on all  
digital I/O pins is 50K.  
3. USB Inputs/outputs are tristated.  
4. Output is for crystal oscillator only, no drive capability.  
5. Crystal Oscillator Inputs should be driven to a maximum of  
1.8 V 10%.  
R6  
A17  
1
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
A4  
6. Input with Schmitt Trigger.  
7. Output Drive Values are MAX. See ‘DC Specifications’.  
8. All unused analog pins, and XTAL32IN (if unused) should be tied  
to ground through a 33Kresistor.  
A1  
PN2  
PK6  
PK5  
D24  
D22  
D21  
1
1
1
Table 4. TESTx PIN FUNCTION  
R15  
R16  
T1  
PK3  
PK0  
D19  
D16  
8 mA  
8 mA  
1
MODE  
Embedded ICE  
Normal  
TEST1  
TEST2  
nBLE0  
1
0
1
1
1
1
x
TDI  
2, 6  
2, 6  
2, 6  
T2  
TEST1  
TCK  
T3  
12  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
Table 5. LH79525 Pin Descriptions  
PIN NO.  
SIGNAL NAME  
TYPE  
DESCRIPTION  
80  
79  
A0  
A1  
78  
A2  
77  
A3  
76  
A4  
74  
A5  
73  
A6  
72  
A7  
O
External Address Bus  
71  
A8  
70  
A9  
69  
A10  
67  
A11  
65  
A12  
63  
A13  
62  
A14  
61  
A15  
99  
D0  
98  
D1  
97  
D2  
96  
D3  
I/O  
External Data Bus  
95  
D4  
94  
D5  
93  
D6  
91  
D7  
117  
116  
119  
118  
115  
114  
113  
112  
104  
103  
102  
100  
110  
109  
106  
111  
130  
131  
11  
SDCLK  
SDCKE  
DQM0  
DQM1  
nDCS0  
nDCS1  
nRAS  
nCAS  
nCS0/PM0  
nCS1/PM1  
nCS2/PM2  
nCS3/PM3  
nBLE0/PM4  
nBLE1/PM5  
nOE  
O
O
SDRAM Clock  
SDRAM Clock Enable  
O
Data Mask Output to SDRAMs  
O
O
O
O
SDRAM Chip Select  
SDRAM Chip Select  
Row Address Strobe  
Column Address Strobe  
O
Static Memory Chip Select; multiplexed with GPO Port M[3:0]  
Static Memory Byte Lane Enable / Byte Write Enable; multiplexed with  
GPIO Port M[5:4]  
O
O
O
I/O  
I/O  
I
Static Memory Output Enable  
nWE  
Static Memory Write Enable  
USBDN  
USBDP  
AN0/UL/X+  
AN1/UR/X–  
USB Data Negative (Differential Pair output, single ended and Differential input)  
USB Data Positive (Differential Pair output, single ended and Differential input)  
ADC Input 0, 4 wire touch screen Upper Left, 5 wire touch screen X+  
ADC Input 1, 4 wire touch screen Upper Right, 5 wire touch screen X–  
14  
I
ADC Input 2, 4 wire touch screen Lower Left, 5 wire touch screen Y+; multiplexed with  
GPIO Port J3 (input only)  
17  
AN2/LL/Y+/PJ3  
I
Preliminary data sheet  
Rev. 01 16 July 2007  
13  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
Table 5. LH79525 Pin Descriptions (Cont’d)  
PIN NO.  
SIGNAL NAME  
TYPE  
DESCRIPTION  
ADC Input 3, 4 wire touch screen Upper Right, 5 wire touch screen Y–; multiplexed  
with GPIO Port J0 (input only)  
20  
AN3/LR/Y–/PJ0  
I
19  
15  
12  
13  
16  
18  
AN4/WIPER/PJ1  
AN5/PJ5/INT5  
AN6/PJ7/INT7  
AN7/PJ6/INT6  
AN8/PJ4  
I
I
I
I
I
I
ADC Input 4, 5 wire touch screen Wiper input; multiplexed with Port J1 (input only)  
ADC Input 5; multiplexed with GPIO Port J5 (input only) and External Interrupt 5  
ADC Input 6; multiplexed with GPIO Port J7 (input only) and External Interrupt 7  
ADC Input 7; multiplexed with GPIO Port J6 (input only) and External Interrupt 6  
ADC Input 8; multiplexed with GPIO Port J4 (input only)  
AN9/PJ2  
ADC Input 9; multiplexed with GPIO Port J2 (input only)  
CTCLK/INT4/  
BATCNTL  
25  
36  
35  
34  
32  
31  
30  
29  
28  
44  
43  
42  
41  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Timer[2:0] External Clock input; multiplexed with Battery Control and Interrupt 4  
PA0/UARTRX2/  
UARTIRRX2/INT2  
General Purpose I/O Signal — Port A0; multiplexed with UART2 Received Serial  
Data Input, UART2 Infrared Received Serial Data In, and External Interrupt 2  
PA1/UARTTX2/  
UARTIRRX2/INT3  
General Purpose I/O Signal — Port A1; multiplexed with UART2 Transmitted  
Serial Data Output, UART2 Serial Transmit Data Out, and External Interrupt 3  
PA2/CTCAP0A/  
CTCMP0A  
General Purpose I/O Signal — Port A2; multiplexed with Counter/Timer 0 Capture A  
input and Counter/Timer 0 Compare A output  
PA3/CTCAP0B/  
CTCMP0B  
General Purpose I/O Signal — Port A3; multiplexed with Counter/Timer 0 Capture B  
input and Counter/Timer 0 Compare B output  
PA4/CTCAP1A/  
CTCMP1A  
General Purpose I/O Signal — Port A4; multiplexed with Counter/Timer 1 Capture A  
input and Counter/Timer 1 Compare A output  
PA5/CTCAP1B/  
CTCMP1B  
General Purpose I/O Signal — Port A5; multiplexed with Counter/Timer 1 Capture B  
input and Counter/Timer 1 Compare B output  
PA6/CTCAP2A/  
CTCMP2A/SDA  
General Purpose I/O Signal — Port A6; multiplexed with Counter/Timer 2 Capture A  
input, Counter/Timer 2 Compare A output, and I2C Bus Data (open drain)  
PA7/CTCAP2B/  
CTCMP2B/SLC  
General Purpose I/O Signal — Port A7; multiplexed with Counter/Timer 2 Capture B  
input, Counter/Timer 2 Compare B output, and I2C Bus Clock (open drain)  
PB0/nDACK/  
nUARTCTS0  
General Purpose I/O Signal — Port B0; multiplexed with DMA Acknowledge and  
UART0 CTS  
PB1/DREQ/  
nUARTRTS0  
General Purpose I/O Signal — Port B1; multiplexed with DMA Request and  
UART0 RTS  
PB2/SSPFRM/  
I2SWS  
General Purpose I/O Signal — Port B2; multiplexed with SSP Serial Frame Output  
and I2S Frame Output  
PB3/SSPCLK/  
I2SCLK  
General Purpose I/O Signal — Port B3; multiplexed with SSP Clock and I2S Clock  
PB4/SSPRX/  
I2SRXD/UARTRX1/  
UARTIRRX1  
General Purpose I/O Signal — Port B4; multiplexed with SSP Data In, I2S Data In,  
UART1 Serial Data In, and UART1 Infrared Data In  
40  
39  
38  
37  
I/O  
I/O  
I/O  
I/O  
PB5/SSPTX/  
I2STXD/UARTTX1/  
UARTIRTX1  
General Purpose I/O Signal — Port B5; multiplexed with SSP Data Out, I2S Data Out,  
UART1 Data Out, and UART1 IR Data Out  
PB6/INT0/  
UARTRX0/  
UARTIRRX0  
General Purpose I/O Signal — Port B6; multiplexed with UART0 Infrared Received  
Serial Data Input, UART0 Received Serial Data In, and External Interrupt 0  
PB7/INT1/  
UARTTX0/  
UARTIRTX0  
General Purpose I/O Signal — Port B7; multiplexed with UART0 Infrared Transmitted  
Serial Data Output, UART0 Serial Transmit Data Out, and External Interrupt 1  
60  
59  
58  
56  
55  
54  
PC0/A16  
PC1/A17  
PC2/A18  
PC3/A19  
PC4/A20  
PC5/A21  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General Purpose I/O Signal — Port C0; multiplexed with Address A16  
General Purpose I/O Signal — Port C1; multiplexed with Address A17  
General Purpose I/O Signal — Port C2; multiplexed with Address A18  
General Purpose I/O Signal — Port C3; multiplexed with Address A19  
General Purpose I/O Signal — Port C4; multiplexed with Address A20  
General Purpose I/O Signal — Port C5; multiplexed with Address A21  
14  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
Table 5. LH79525 Pin Descriptions (Cont’d)  
PIN NO.  
SIGNAL NAME  
TYPE  
DESCRIPTION  
General Purpose I/O Signal — Port C6; multiplexed with Address A22 and NAND  
Flash Write Enable  
53  
PC6/A22/nFWE  
PC7/A23/nFRE  
I/O  
I/O  
General Purpose I/O Signal — Port C7; multiplexed with Address A23 and NAND  
Flash Read Enable  
52  
90  
89  
88  
87  
85  
84  
83  
82  
PD0/D8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General Purpose I/O Signal — Port D0; multiplexed with Data D8  
General Purpose I/O Signal — Port D1; multiplexed with Data D9  
General Purpose I/O Signal — Port D2; multiplexed with Data D10  
General Purpose I/O Signal — Port D3; multiplexed with Data D11  
General Purpose I/O Signal — Port D4; multiplexed with Data D12  
General Purpose I/O Signal — Port D5; multiplexed with Data D13  
General Purpose I/O Signal — Port D6; multiplexed with Data D14  
General Purpose I/O Signal — Port D7; multiplexed with Data D15  
PD1/D9  
PD2/D10  
PD3/D11  
PD4/D12  
PD5/D13  
PD6/D14  
PD7/D15  
PE0/LCDLP/  
LCDHRLP  
General Purpose I/O Signals — Port E0; multiplexed with LCD Line Pulse and  
AD-TFT/HR-TFT Line Pulse  
141  
I/O  
139  
138  
137  
PE1/LCDDCLK  
PE2/LCDPS  
I/O  
I/O  
I/O  
General Purpose I/O Signals — Port E1; multiplexed with LCD Data Clock  
General Purpose I/O Signals — Port E2; multiplexed with LCD Power Save  
General Purpose I/O Signals — Port E3; multiplexed with LCD Row Driver Clock  
PE3/LCDCLS  
PE4/LCDDSPLEN/  
LCDREV  
General Purpose I/O Signals — Port E4; multiplexed with LCD Panel Power  
Enable and LCD Reverse  
136  
134  
133  
I/O  
I/O  
I/O  
PE5/LCDVDDEN  
General Purpose I/O Signals — Port E5; multiplexed with LCD VDD Enable  
PE6LCDVEEN/  
LCDMOD  
General Purpose I/O Signals — Port E6; multiplexed with LCD Analog Power  
Enable and MOD  
General Purpose I/O Signals — Port E7; multiplexed with nWAIT and DMA  
End of Transfer  
120  
PE7/nWAIT/nDEOT  
I/O  
153  
151  
149  
147  
146  
145  
PF0/LCDVD6  
PF1/LCDVD7  
PF2/LCDVD8  
PF3/LCDVD9  
PF4/LCDVD10  
PF5/LCDVD11  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General Purpose I/O Signals — Port F0; multiplexed with LCD Video Data bit 6  
General Purpose I/O Signals — Port F1; multiplexed with LCD Video Data bit 7  
General Purpose I/O Signals — Port F2; multiplexed with LCD Video Data bit 8  
General Purpose I/O Signals — Port F3; multiplexed with LCD Video Data bit 9  
General Purpose I/O Signals — Port F4; multiplexed with LCD Video Data bit 10  
General Purpose I/O Signals — Port F5; multiplexed with LCD Video Data bit 11  
PF6/LCDEN/  
LCDSPL  
143  
142  
I/O  
I/O  
General Purpose I/O Signals — Port F6; multiplexed with LCD Start Pulse Left  
General Purpose I/O Signals — Port F7; multiplexed with LCD Row Driver Counter reset  
PF7/LCDFP/  
LCDSPS  
162  
161  
159  
158  
157  
156  
155  
154  
171  
170  
169  
167  
166  
165  
PG0/ETHERTXEN  
PG1/ETHERTXCLK  
PG2/LCDVD0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
General Purpose I/O Signals — Port G0; multiplexed with Ethernet Transmit Enable  
General Purpose I/O Signals — Port G1; multiplexed with Ethernet Clock  
General Purpose I/O Signals — Port G2; multiplexed with LCD Video Data bit 0  
General Purpose I/O Signals — Port G3; multiplexed with LCD Video Data bit 1  
General Purpose I/O Signals — Port G4; multiplexed with LCD Video Data bit 2  
General Purpose I/O Signals — Port G5; multiplexed with LCD Video Data bit 3  
General Purpose I/O Signals — Port G6; multiplexed with LCD Video Data bit 4  
General Purpose I/O Signals — Port G7; multiplexed with LCD Video Data bit 5  
General Purpose I/O Signals — Port H0; multiplexed with Ethernet Receive Channel 3  
General Purpose I/O Signals — Port H1; multiplexed with Ethernet Data Valid  
General Purpose I/O Signals — Port H2; multiplexed with Ethernet Receive Clock  
General Purpose I/O Signals — Port H3; multiplexed with Ethernet Transmit Error  
General Purpose I/O Signals — Port H4; multiplexed with Ethernet Transmit Channel 0  
General Purpose I/O Signals — Port H5; multiplexed with Ethernet Transmit Channel 1  
PG3/LCDVD1  
PG4/LCDVD2  
PG5/LCDVD3  
PG6/LCDVD4  
PG7/LCDVD5  
PH0/ETHERRX3  
PH1/ETHERRXDV  
PH2/ETHERRXCLK  
PH3/ETHERTXER  
PH4/ETHERTX0  
PH5/ETHERTX1  
164  
PH6/ETHERTX2  
I/O  
General Purpose I/O Signals — Port H6; multiplexed with Ethernet Transmit Channel 2  
Preliminary data sheet  
Rev. 01 16 July 2007  
15  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
Table 5. LH79525 Pin Descriptions (Cont’d)  
PIN NO.  
SIGNAL NAME  
TYPE  
DESCRIPTION  
163  
PH7/ETHERTX3  
I/O  
General Purpose I/O Signals — Port H7; multiplexed with Ethernet Transmit Channel 3  
General Purpose I/O Signals — Port I0; multiplexed with Ethernet Management  
Data Clock  
4
PI0/ETHERMDC  
I/O  
2
PI1/ETHERMDIO  
PI2/ETHERCOL  
PI3/ETHERCRS  
PI4/ETHERRXER  
PI5/ETHERRX0  
PI6/ETHERRX1  
PI7/ETHERRX2  
nRESETIN  
nRESETOUT  
XTALIN  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
General Purpose I/O Signals — Port I1; multiplexed with Ethernet Management Data I/O  
General Purpose I/O Signals — Port I2; multiplexed with Ethernet Collision Detect  
General Purpose I/O Signals — Port I3; multiplexed with Ethernet Carrier Sense  
General Purpose I/O Signals — Port I4; multiplexed with Ethernet Receive Error  
General Purpose I/O Signals — Port I5; multiplexed with Ethernet Receive Channel 0  
General Purpose I/O Signals — Port I6; multiplexed with Ethernet Receive Channel 1  
General Purpose I/O Signals — Port I7; multiplexed with Ethernet Receive Channel 2  
Reset Input  
1
176  
175  
174  
173  
172  
24  
22  
O
I
Reset Output  
127  
128  
125  
126  
23  
Crystal Input, or external clock input  
XTALOUT  
XTAL32IN  
XTAL32OUT  
CLKOUT  
O
I
Crystal Output  
32.768 kHz Crystal Oscillator Input, or external clock input,  
32.768 kHz Crystal Oscillator Output  
O
O
I
Clock Out (selectable from the internal bus clock or 32.768 MHz)  
JTAG Test Reset Input  
8
nTRST  
50  
TMS  
I
JTAG Test Mode Select Input  
51  
TCK  
I
JTAG Test Clock Input  
46  
TDI  
I
JTAG Test Serial Data Input  
45  
TDO  
O
I
JTAG Test Data Serial Output  
47  
TEST1  
Tie HIGH for Normal Operation; pull LOW to enable embedded ICE Debugging  
Tie HIGH for Normal Operation; pull HIGH to enable embedded ICE Debugging  
Linear Regulator Enable (Requires pull-up. See User’s Guide)  
48  
TEST2  
I
9
LINREGEN  
I
6, 66,  
107, 150  
VDDC  
VSSC  
Power Core Power Supply  
Ground Core GND  
7, 64,  
105,148  
3, 26, 33,  
57, 75,  
86, 101, VDD  
129, 135,  
Power Input/Output Power Supply  
Ground Input/Output GND  
144, 160  
5, 27, 49,  
68, 81,  
92, 108, VSS  
132, 140,  
152, 168  
10  
122  
123  
21  
VDDA0  
Power Analog Power Supply for Analog-to-Digital Converter  
Power Analog Power Supply for the USB PLL  
Power Analog Power Supply for System PLL  
Ground Analog GND for Analog-to-Digital Converter  
Ground Analog GND for the USB PLL  
VDDA1  
VDDA2  
VSSA0  
VSSA1  
VSSA2  
121  
124  
Ground Analog GND for System PLL  
Table 6. LH79525 Numerical Pin List  
Table 6. LH79525 Numerical Pin List (Cont’d)  
PIN FUNCTION  
NO. AT RESET  
MULTIPLEXED  
FUNCTION(S)  
OUTPUT  
DRIVE  
PIN FUNCTION  
NO. AT RESET  
MULTIPLEXED  
FUNCTION(S)  
OUTPUT  
DRIVE  
NOTES  
NOTES  
2
PI1  
ETHERMDIO  
8 mA  
2
1
PI2  
ETHERCOL  
8 mA  
1
16  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
Table 6. LH79525 Numerical Pin List (Cont’d)  
Table 6. LH79525 Numerical Pin List (Cont’d)  
PIN FUNCTION  
NO. AT RESET  
MULTIPLEXED  
FUNCTION(S)  
OUTPUT  
DRIVE  
PIN FUNCTION  
NO. AT RESET  
MULTIPLEXED  
FUNCTION(S)  
OUTPUT  
DRIVE  
NOTES  
NOTES  
3
4
VDD  
PI0  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
TEST1  
TEST2  
VSS  
TMS  
TCK  
PC7  
PC6  
PC5  
PC4  
PC3  
VDD  
PC2  
PC1  
PC0  
A15  
A14  
A13  
VSSC  
A12  
VDDC  
A11  
VSS  
A10  
A9  
2, 3  
2, 3  
ETHERMDC  
8 mA  
1
5
VSS  
6
VDDC  
VSSC  
2, 3  
2, 3  
1
7
8
nTRST  
LINREGEN  
VDDA0  
AN0/UL/X+  
AN6  
2, 3  
A23/nFRE  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
9
A22/nFWE  
A21  
1
10  
11  
12  
13  
14  
15  
16  
17  
18  
1
A20  
1
PJ7/INT7  
PJ6/INT6  
A19  
1
AN7  
AN1/UR/X-  
AN5  
A18  
A17  
A16  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
1
1
1
PJ5/INT5  
PJ4  
AN8  
AN2/LL/Y+ PJ3  
AN9 PJ2  
19 AN4/WIPER PJ1  
20  
21  
AN3/LR/Y- PJ0  
VSSA0  
8 mA  
8 mA  
22 nRESETOUT  
8 mA  
8 mA  
23  
24  
25  
26  
27  
CLKOUT  
nRESETIN  
CTCLK  
VDD  
2, 3  
2, 3  
INT4/BATCNTL  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
VSS  
A8  
CTCAP2B/CTCMP2B/  
SCL  
A7  
28  
29  
PA7  
PA6  
8 mA  
8 mA  
2, 3  
2, 3  
A6  
CTCAP2A/CTCMP2A/  
SDA  
A5  
VDD  
A4  
30  
31  
32  
33  
34  
PA5  
PA4  
PA3  
VDD  
PA2  
CTCAP1B/CTCMP1B  
CTCAP1A/CTCMP1A  
CTCAP0B/CTCMP0B  
8 mA  
8 mA  
8 mA  
1, 3  
1, 3  
1, 3  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
A3  
A2  
A1  
CTCAP0A/CTCMP0A  
8 mA  
8 mA  
1, 3  
1, 3  
A0  
INT3/UARTTX2/  
UARTIRTX2  
35  
36  
37  
38  
39  
40  
PA1  
PA0  
PB7  
PB6  
PB5  
PB4  
VSS  
PD7  
PD6  
PD5  
PD4  
VDD  
PD3  
PD2  
PD1  
PD0  
D7  
D15  
D14  
D13  
D12  
8 mA  
8 mA  
8 mA  
8 mA  
1
1
1
1
INT2/UARTRX2/  
UARTIRRX2  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
1, 3  
1, 3  
1, 3  
1
INT1/UARTTX0/  
UARTIRTX0  
INT0/UARTRX0/  
UARTIRRX0  
D11  
D10  
D9  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
1
1
1
1
1
SSPTX/I2STXD/  
UARTTX1/UARTIRTX1  
SSPRX/I2SRXD/  
UARTRX1/UARTIRRX1  
2
D8  
41  
42  
43  
44  
45  
PB3  
PB2  
PB1  
PB0  
TDO  
SSPCLK/I2SCLK  
SSPFRM/I2SWS  
8 mA  
8 mA  
8 mA  
8 mA  
4 mA  
1
2
2
2
VSS  
D6  
8 mA  
8 mA  
8 mA  
8 mA  
1
1
1
1
DREQ/nUARTRTS0  
nDACK/nUARTCTS0  
D5  
D4  
D3  
46  
TDI  
2, 3  
Preliminary data sheet  
Rev. 01 16 July 2007  
17  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
Table 6. LH79525 Numerical Pin List (Cont’d)  
Table 6. LH79525 Numerical Pin List (Cont’d)  
PIN FUNCTION  
NO. AT RESET  
MULTIPLEXED  
FUNCTION(S)  
OUTPUT  
DRIVE  
PIN FUNCTION  
NO. AT RESET  
MULTIPLEXED  
FUNCTION(S)  
OUTPUT  
DRIVE  
NOTES  
NOTES  
97  
D2  
D1  
8 mA  
8 mA  
8 mA  
8 mA  
1
1
1
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
PF4  
PF3  
VSSC  
PF2  
VDDC  
PF1  
VSS  
PF0  
PG7  
PG6  
PG5  
PG4  
PG3  
PG2  
VDD  
PG1  
PG0  
PH7  
PH6  
PH5  
PH4  
PH3  
VSS  
PH2  
PH1  
PH0  
PI7  
LCDVD10  
8 mA  
8 mA  
2
2
98  
LCDVD9  
LCDVD8  
LCDVD7  
99  
D0  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
nCS3  
VDD  
PM3  
8 mA  
8 mA  
2
1
nCS2  
nCS1  
nCS0  
VSSC  
nOE  
PM2  
PM1  
PM0  
8 mA  
8 mA  
8 mA  
LCDVD6  
LCDVD5  
LCDVD4  
LCDVD3  
LCDVD2  
LCDVD1  
LCDVD0  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
1
1
1
1
1
1
1
8 mA  
VDDC  
VSS  
nBLE1  
nBLE0  
nWE  
PM5  
PM4  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
12 mA  
8 mA  
8 mA  
8 mA  
nCAS  
nRAS  
nDCS1  
nDCS0  
SDCKE  
SDCLK  
DQM1  
DQM0  
PE7  
ETHERTXCLK  
ETHERTXEN  
ETHERTX3  
ETHERTX2  
ETHERTX1  
ETHERTX0  
ETHERTXER  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
1
1
1
1
1
1
1
nWAIT/nDEOT  
2, 3  
ETHERRXCLK  
ETHERRXDV  
ETHERRX3  
ETHERRX2  
ETHERRX1  
ETHERRX0  
ETHERRXER  
ETHERCRS  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
1
1
1
1
1
1
1
1
VSSA1  
VDDA1  
VDDA2  
VSSA2  
XTAL32IN  
PI6  
5
6
5
6
PI5  
126 XTAL32OUT  
PI4  
PI3  
127  
128  
129  
130  
131  
132  
XTALIN  
XTALOUT  
VDD  
USBDN  
USBDP  
VSS  
4
4
LCDVEEN/  
LCDMOD  
NOTES:  
133  
PE6  
8 mA  
8 mA  
1
1
1. Internal pull-down. The internal pullup and pulldown resistance  
on all digital I/O pins is 50K.  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
PE5  
VDD  
PE4  
PE3  
PE2  
PE1  
VSS  
PE0  
PF7  
PF6  
VDD  
PF5  
LCDVDDEN  
2. Internal pull-up. The internal pullup and pulldown resistance on all  
digital I/O pins is 50K.  
3. Input with Schmitt Trigger.  
LCDDSPLEN/LCDREV  
LCDCLS  
8 mA  
8 mA  
8 mA  
8 mA  
1
1
1
1
4. USB Inputs/outputs are tristated.  
5. Crystal Inputs should be driven to a maximum of 1.8 V 10%.  
6. Output is for crystal oscillator only, no drive capability.  
7. Output Drive Values shown are MAX. See ‘DC Specifications’.  
8. All unused analog pins, and XTAL32IN (if unused) should be tied  
to ground through a 33Kresistor.  
LCDPS  
LCDDCLK  
LCDLP/LCDHRLP  
LCDFP/LCDSPS  
LCDEN/LCDSPL  
8 mA  
8 mA  
8 mA  
1
1
1
LCDVD11  
8 mA  
2
18  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
Table 7. TESTx PIN FUNCTION  
MODE  
TEST1  
TEST2  
nBLE0  
Embedded ICE  
Normal  
0
1
1
1
1
x
Table 8. LH79524 LCD Data Multiplexing  
STN  
TFT  
LFBGA  
BALL  
NO.  
LFBGA  
BALL NAME  
MONO 4-BIT  
MONO 8-BIT  
COLOR  
COLOR  
SINGLE  
PANEL  
DUAL  
PANEL  
SINGLE  
PANEL  
DUAL  
PANEL  
SINGLE  
PANEL  
DUAL  
PANEL  
SINGLE  
PANEL  
C2  
C1  
C10  
A10  
A11  
B10  
C9  
B9  
LCDVD15  
LCDVD14  
LCDVD13  
LCDVD12  
LCDVD11  
LCDVD10  
LCDVD9  
LCDVD8  
LCDVD7  
LCDVD6  
LCDVD5  
LCDVD4  
LCDVD3  
LCDVD2  
LCDVD1  
LCDVD0  
MUSTN0  
MUSTN0  
MUSTN0  
MUSTN0  
MLSTN4  
MUSTN6  
MLSTN7  
MLSTN6  
MLSTN5  
MLSTN3  
MLSTN2  
MLSTN1  
MLSTN0  
MUSTN7  
MUSTN5  
MUSTN4  
MUSTN3  
MUSTN2  
MUSTN1  
CUSTN0  
CUSTN0  
CLSTN4  
CUSTN6  
CLSTN7  
CLSTN6  
CLSTN5  
CLSTN3  
CLSTN2  
CLSTN1  
CLSTN0  
CUSTN7  
CUSTN5  
CUSTN4  
CUSTN3  
CUSTN2  
CUSTN1  
INTENSITY  
BLUE4  
BLUE3  
BLUE2  
BLUE1  
BLUE0  
GREEN4  
GREEN3  
GREEN2  
GREEN1  
GREEN0  
RED4  
X
X
X
X
X
X
MUSTN6  
CUSTN6  
X
X
X
X
X
X
X
X
X
X
X
X
X
MLSTN3  
MLSTN2  
MLSTN1  
MLSTN0  
X
X
X
X
X
X
A9  
X
X
X
A8  
X
X
X
B8  
X
MUSTN7  
MUSTN5  
MUSTN4  
MUSTN3  
MUSTN2  
MUSTN1  
CUSTN7  
CUSTN5  
CUSTN4  
CUSTN3  
CUSTN2  
CUSTN1  
C8  
A7  
X
X
X
X
RED3  
B7  
MUSTN3  
MUSTN2  
MUSTN1  
MUSTN3  
MUSTN2  
MUSTN1  
RED2  
C7  
A6  
RED1  
RED0  
NOTES:  
1. Recommended hookups for TFT 5:5:5 + Intensity and 5:6:5 are shown.  
2. The Intensity bit is identically generated for all three colors.  
3. Connect to the LSB of the Red, Green, and Blue inputs of a 6:6:6 panel.  
4. CLSTN = Color Lower data bit for STN panel.  
5. CUSTN = Color Upper data bit for STN panel.  
6. MLSTN = Monochrome Lower data bit for STN panel.  
7. MUSTN = Monochrome Upper data bit for STN panel.  
Table 9. LH79525 LCD Data Multiplexing  
STN MONO 4-BIT  
PIN NO. PIN NAME  
SINGLE PANEL DUAL PANEL  
145  
146  
147  
149  
151  
153  
154  
155  
156  
LCDVD11  
LCDVD10  
LCDVD9  
LCDVD8  
LCDVD7  
LCDVD6  
LCDVD5  
LCDVD4  
LCDVD3  
MUSTN1  
MUSTN0  
MUSTN1  
MUSTN0  
MLSTN3  
MLSTN2  
MLSTN1  
MLSTN0  
Preliminary data sheet  
Rev. 01 16 July 2007  
19  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
Table 9. LH79525 LCD Data Multiplexing  
STN MONO 4-BIT  
PIN NAME  
PIN NO.  
SINGLE PANEL DUAL PANEL  
157  
158  
159  
LCDVD2  
LCDVD1  
LCDVD0  
MUSTN3  
MUSTN2  
MUSTN3  
MUSTN2  
TOUCH SCREEN  
LCD  
WIRELESS  
ROUTER/  
SWITCHER  
ETHERNET  
TRANSCEIVER  
ETHERNET  
MAC  
STN/TFT,  
AD-TFT  
A/D  
UART  
FLASH  
I2S  
LH79524/LH79525  
CODEC  
SRAM or  
SDRAM  
A/D  
UART  
USB  
GPIO  
SSP  
BOOT  
ROM  
SENSOR  
ARRAY  
1
4
7
2
5
8
0
3
6
9
#
SERIAL  
EEPROM  
*
KEY  
MATRIX  
LH79525-19A  
Figure 4. LH79524/LH79525 Application Diagram Example  
The LH79524/LH79525 MMU allows mapping Phys-  
ical Memory (PA) addresses to virtual memory  
addresses. This allows physical memory, which is  
constrained by hardware to specific addresses, to be  
reorganized at addresses identified by the user. These  
user identified locations are called Virtual Addresses  
(VA). When the MMU is enabled, Code and Data must  
be built, loaded, and executed using Virtual Addresses  
which the MMU translates to Physical Addresses. In  
addition, the user may implement a memory protection  
scheme by using the features of the MMU. Address  
translation and memory protection services provided  
by the MMU are controlled by the user. The MMU  
is directly controlled through the System Control  
Coprocessor, Coprocessor 15 (CP15). The MMU is  
indirectly controlled by a Translation Table (TT) and  
Page Tables (PT) prepared by the user and estab-  
lished using a portion of physical memory dedicated by  
the user to storing the TT and PT’s.  
SYSTEM DESCRIPTIONS  
ARM720T Processor  
The LH79524/LH79525 microcontrollers feature  
the ARM720T cached core with an Advanced High-Per-  
formance Bus (AHB) interface. The ARM720T features:  
• 32-bit ARM720T RISC Core  
• 8 kB Cache  
• MMU (Windows CE enabled)  
The core processor for both is a member of the  
ARM7T family of processors. For more information, see  
the ARM document, ‘ARM720T (Rev 3) Technical  
Reference Manual’, available on ARM’s website at  
www.ARM.com.  
20  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
External Memory Controller  
An integrated External Memory Controller (EMC)  
provides a glueless interface to external SDRAM, Low  
Power SDRAM, Flash, SRAM, ROM, and burst ROM.  
Three remap options for the physical memory are  
selectable by software, as shown in Figure 5 through  
Figure 8.  
0xFFFFFFFF  
0xFFFF1000  
0xFFFF0000  
ADVANCED HIGH-PERFORMANCE BUS  
PERIPHERALS  
RESERVED  
ADVANCED PERIPHERAL BUS  
PERIPHERALS  
The EMC supports six banks of external memory. Two  
chip selects for synchronous memory, and either two  
(LH79525) or four (LH79524) static memory chip selects  
are available. The static interface also includes two  
(LH79525) or four (LH79524) byte lane enable signals.  
0xFFFC0000  
0xA0000000  
RESERVED  
BOOT ROM  
0x80000000  
0x60000000  
0x40000000  
16KB INTERNAL SRAM  
EXTERNAL STATIC MEMORY  
EXTERNAL SDRAM  
EXTERNAL SDRAM nDCS0  
REMAP = 01  
0xFFFFFFFF  
ADVANCED HIGH-PERFORMANCE BUS  
PERIPHERALS  
0xFFFF1000  
0x20000000  
0x00000000  
RESERVED  
0xFFFF0000  
ADVANCED PERIPHERAL BUS  
PERIPHERALS  
0xFFFC0000  
LH79525-16  
RESERVED  
0xA0000000  
Figure 6. Memory Remap ‘01’  
BOOT ROM  
0x80000000  
16KB INTERNAL SRAM  
0x60000000  
0xFFFFFFFF  
ADVANCED HIGH-PERFORMANCE BUS  
PERIPHERALS  
EXTERNAL STATIC MEMORY  
0x40000000  
0xFFFF1000  
0xFFFF0000  
RESERVED  
EXTERNAL SDRAM  
0x20000000  
ADVANCED PERIPHERAL BUS  
PERIPHERALS  
EXTERNAL SRAM nCS1  
0x00000000  
0xFFFC0000  
0xA0000000  
RESERVED  
BOOT ROM  
REMAP = 00  
LH79525-15  
Figure 5. Memory Remap ‘00’  
0x80000000  
0x60000000  
0x40000000  
16KB INTERNAL SRAM  
EXTERNAL STATIC MEMORY  
EXTERNAL SDRAM  
INTERNAL SRAM  
REMAP = 10  
0x20000000  
0x00000000  
LH79525-17  
Figure 7. Memory Remap ‘10’  
Preliminary data sheet  
Rev. 01 16 July 2007  
21  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
• Supports Thin Film Transistor (TFT) color displays  
• Programmable resolution up to 1,024 × 1,024  
0xFFFFFFFF  
• 15 gray-level mono, 3,375 color STN, and 64 k color  
TFT support  
ADVANCED HIGH-PERFORMANCE BUS  
PERIPHERALS  
0xFFFF1000  
0xFFFF0000  
• 1, 2, or 4 bits-per-pixel (BPP) for monochrome STN  
RESERVED  
• 1-, 2-, 4-, or 8-BPP palettized color displays for color  
STN and TFT (1-, 2-, or 4-bit only on LH79525)  
ADVANCED PERIPHERAL BUS  
PERIPHERALS  
0xFFFC0000  
0xA0000000  
True-color non-palettized, for color STN and TFT  
• Programmable timing for different display panels  
• 256-entry, 16-bit palette fast-access RAM  
• Frame, line and pixel clock signals  
RESERVED  
BOOT ROM  
0x80000000  
0x60000000  
0x40000000  
16KB INTERNAL SRAM  
EXTERNAL STATIC MEMORY  
EXTERNAL SDRAM  
EXTERNAL SRAM nCS0  
REMAP = 11  
• AC bias signal for STN or data enable signal for  
TFT panels  
• Patented grayscale algorithm  
• Interrupt Generation Events  
0x20000000  
0x00000000  
• Dual 16-deep programmable 32-bit wide FIFOs for  
buffering incoming data.  
ADVANCED LCD INTERFACE  
The Advanced LCD Interface (ALI) allows for direct  
connection to ultra-thin panels that do not include a tim-  
ing ASIC. It converts TFT signals from the Color LCD  
controller to provide the proper signals, timing and levels  
for direct connection to a panel’s Row and Column driv-  
ers for AD-TFT, HR-TFT, or any technology of panel that  
allows for a connection of this type. The Advanced LCD  
Interface peripheral also provides a bypass mode that  
allows the LH79524/LH79525 to interface to the built-in  
timing ASIC in standard TFT and STN panels.  
LH79525-18  
Figure 8. Memory Remap ‘11’  
DMA Controller  
The DMA Controller provides support for DMA-capa-  
ble peripherals. The LCD controller uses its own DMA  
port, connecting directly to memory for retrieving dis-  
play data.  
• Simultaneous servicing of up to 4 data streams  
• Three transfer modes are supported:  
– Memory to Memory  
Synchronous Serial Port (SSP)  
The SSP is a master or slave interface for synchro-  
nous serial communication with master or slave periph-  
eral devices that support protocols for Motorola SPI,  
National Semiconductor MICROWIRE, or Texas Instru-  
ments Synchronous Serial Interface.  
– Peripheral to Memory  
– Memory to Peripheral  
• Identical source and destination capabilities  
• Transfer Size Programmable (byte, half-word, word)  
• Burst Size Programmable  
• Address Increment or Address Freeze  
• Transfer Error interrupt for each stream  
• 16-word FIFO array with pack and unpack logic  
• Master or slave operation  
• Programmable clock rate  
• Separate transmit FIFO and receive FIFO buffers, 16  
bits wide, 8 locations deep  
Handles all combinations of byte, half-word or word  
transfers from input to output.  
• DMA for transmit and receive  
• Programmable interface protocols: Motorola SPI,  
National Semiconductor MICROWIRE, or Texas  
Instruments Synchronous Serial Port  
Color LCD Controller (CLCDC)  
The CLCDC provides all the necessary control and  
drive signals to interface directly with a variety of color  
and monochrome LCD panels.  
• LH79524 has 16 LCD Data bits; LH79525 has 12  
LCD Data bits.  
• Supports single and dual scan color and mono-  
chrome Super Twisted Nematic (STN) displays with  
4- or 8-bit interfaces (LH79524 only)  
• Programmable data frame size from 4 to 16 bits  
• Independent masking of transmit FIFO, receive FIFO  
and receive overrun interrupts  
• Available internal loopback test mode.  
22  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
interrupt vector logic with programmable priority for up  
to 16 interrupt sources. This logic reduces the interrupt  
response time for IRQ type interrupts compared to  
solutions using software polling to determine the high-  
est priority interrupt source. This significantly improves  
the real-time capabilities of the LH79524/LH79525 in  
embedded control applications.  
Universal Asynchronous Receiver  
Transmitter (UART)  
The LH79524/LH79525 incorporates three UARTs.  
UART0, UART1, and UART2 offer similar functionality  
to the industry-standard 16C550. They perform serial-  
to-parallel conversion on data received from a periph-  
eral device and parallel-to-serial conversion on data  
transmitted to the UART. The CPU reads and writes  
data and control status information through the AMBA  
APB interface. The transmit and receive paths are buff-  
ered with internal FIFO memories that support pro-  
grammable-service 'trigger levels', and overrun  
protection. These FIFO memories enable up to 32  
characters to be stored independently in both transmit  
and receive modes.  
• 20 internal and eight external interrupt sources  
– Individually maskable  
– Status accessible for software polling  
• IRQ interrupt vector logic for up to 16 channels with  
programmable priorities  
• All of the interrupt channels, with the exception of the  
Watchdog Timer interrupt, can be programmed to  
generate:  
• Programmable bits-per-character (5, 6, 7, or 8)  
– FIQ interrupt request  
– Non-vectored IRQ interrupt request (software to  
poll IRQ source)  
• Optional nine-bit mode to tag and recognize  
characters as either data or address  
• Nine-bit Transmit FIFO and 12-bit Receive FIFO  
• Programmable FIFO trigger points  
– Vectored IRQ interrupt request (up to 16 chan-  
nels total)  
• DMA support for UART0  
• The Watchdog timer can only generate FIQ interrupt  
requests  
• Programmable IrDA SIR input/output for each UART  
• External interrupt inputs programmable  
– Edge triggered or level triggered  
– Rising edge/active HIGH or falling edge/active  
LOW  
• Separate 16-byte transmit and receive FIFOs to  
reduce CPU interrupts  
• Programmable FIFO disabling for 1-byte depth  
• Programmable baud rate generator  
The 32 interrupt channels are shown in Table 10.  
• Independent masking of transmit FIFO, receive  
FIFO, receive timeout and modem status interrupts  
Table 10. Interrupt Channels  
• False start bit detection  
• Line break generation and detection  
CHANNEL  
INTERRUPT SOURCE  
• Fully-programmable serial interface characteristics:  
– 5-, 6-, 7-, or 8-bit data word length  
– Even-, odd-, or no-parity bit generation and  
detection  
0
1
WDT  
Not Used  
2
COMRX (used for debug)  
COMTX (used for debug)  
Counter/Timer0 Combined  
Counter/Timer1 Combined  
Counter/Timer2 Combined  
External Interrupt 0  
External Interrupt 1  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
External Interrupt 5  
External Interrupt 6  
External Interrupt 7  
RTC_ALARM  
3
– 1 or 2 stop bit generation  
4
• IrDA SIR Encode/Decode block, providing:  
– Programmable use of IrDA SIR or UART input/  
output  
5
6
– Supports data rates up to 115.2 kbit/s half-duplex  
– Programmable internal clock generator, allowing  
division of the Reference clock in increments of 1  
to 512 for low-power mode bit durations.  
– Loopback for testing  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
Vectored Interrupt Controller (VIC)  
The Vectored Interrupt Controller combines the  
interrupt request signals from 20 internal and eight  
external interrupt sources and applies them, after  
masking and prioritization, to the IRQ and FIQ interrupt  
inputs of the ARM7TDMI processor core.  
ACD TSIRQ Combined  
ADC Brown Out INTR  
The Interrupt Controller incorporates a hardware  
Preliminary data sheet  
Rev. 01 16 July 2007  
23  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
Table 10. Interrupt Channels (Cont’d)  
Table 11. Maximum Clock Speeds  
CHANNEL  
INTERRUPT SOURCE  
ADC Pen IRQ  
FREQUENCY  
(MAX.)  
NAME  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Oscillator Clock (CLK OSC)  
PLL System Clock (CLK PLL)  
PLL USB Clock  
20.0 MHz  
304.819 MHz  
48.0 MHz  
CLCD Combined Interrupt  
DMA Stream 0  
DMA Stream 1  
32.768 kHz Oscillator Clock  
AHB Clock (HCLK)  
32.768 kHz  
50.803 MHz  
76.205 MHz  
50.803 MHz  
50.803 MHz  
50.803 MHz  
DMA Stream 2  
DMA Stream 3  
SSP I2S Interrupt  
Ethernet Interrupt  
USB Interrupt  
AHB Fast CPU Clock (FCLK CPU)  
Ethernet Clock  
DMA Clock  
External Memory Controller Clock  
UART 0 Interrupt  
UART 1 Interrupt  
UART 2 Interrupt  
USB DMA Interrupt  
I2C Interrupt  
SSP Clock  
50.803 MHz  
50.803 MHz  
20.0 MHz  
1.0 Hz  
CLCD Clock  
UART[2:0] Clock  
RTC Clock  
Reset, Clock, and Power Controller  
(RCPC)  
Table 12. Clock Activity for Different Power Modes  
DEVICE  
ACTIVE STANDBY SLEEP STOP1 STOP2  
The RCPC generates the various clock signals for  
the operation of the LH79524/LH79525 and provides for  
an orderly start-up after power-on and during a wake-up  
from one of the power saving operating modes. The  
RCPC allows the software to individually select the fre-  
quency of the various on-chip clock signals as required  
to operate the chip in the most power-efficient mode.  
The maximum speeds of the various clocks in the SoC  
are shown in Table 11. More detailed descriptions of  
each clock appear in the User’s Guide.  
RTC 32 kHz  
Oscillator  
ON  
ON  
ON  
ON  
ON  
10 - 20 MHz  
Oscillator  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
PLL  
OFF  
OFF  
OFF  
Peripheral  
Clock  
ON  
OFF  
OFF  
CPU Clock  
OFF  
Real Time Clock  
The RCPC features:  
The RTC provides an alarm or long time base  
counter. An interrupt is generated following counting a  
programmed number of one-second periods. The 1 Hz  
RTC clock is internally derived. The RTC features:  
• 10 - 20 MHz crystal oscillator and PLL for on-chip  
Clock generation (11.2896 MHz recommended)  
• External Clock input if on-chip oscillator and PLL are  
not used  
• 32-bit up counter with programmable load  
• Programmable 32-bit match compare register  
• 32.768 kHz crystal oscillator generating 1 Hz clock  
for Real Time Clock  
• Software maskable interrupt when counter and com-  
pare registers are identical.  
• Individually controlled clocks for peripherals and CPU  
• Programmable clock prescalers for UARTs and PWMs  
RTC input clock sources:  
• PLL clock  
• Five global power control modes are available:  
– Active  
– Standby  
– Sleep  
– Stop1  
– Stop2  
• 32.768 kHz clock  
• 1 Hz clock (default).  
• CPU/Bus clock frequency can be changed on the fly  
• Selectable clock output  
• Hardware reset (nRESETIN) and software reset.  
24  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
Watchdog Timer  
General Purpose Input/Output (GPIO)  
The Watchdog Timer provides hardware protection  
against malfunctions. It is a programmable timer to be  
reset by software at regular intervals. Failure to reset  
the timer will cause a FIQ interrupt. Failure to service  
the FIQ interrupt will then generate a System Reset.  
The features of the Watchdog Timer are:  
The LH79524 provides up to 108 bits of programma-  
ble input/output, and the LH79525 provides 86 bits.  
Many of the GPIO pins are multiplexed with other sig-  
nals. All GPIO feature:  
• Individually programmable input/output pins  
• All default to Input on power-up.  
• Driven by the bus clock  
• LH79524  
16  
31  
• 16 programmable time-out periods: 2 through 2  
– Ports A-I, K, L, and N: Bidirectional I/O (Port N is  
4 bits wide)  
clock cycles  
– Port J: Input only  
– Port M: Output only  
• Generates a reset or an FIQ Interrupt whenever a  
time-out period is reached  
• Software enable, lockout, and counter-reset mecha-  
nisms add security against inadvertent writes  
• LH79525  
– Ports A-I: Bidirectional I/O  
– Port J: Input only  
– Port M: Output only (6 bits wide)  
• Protection mechanism guards against interrupt-ser-  
vice failure:  
– The first WDT time-out triggers FIQ and asserts  
nWDFIQ status flag  
Boot Controller  
– If FIQ service routine fails to clear nWDFIQ, then  
the next WDT time-out triggers a system reset.  
The boot controller allows selection of the hardware  
device to be used for booting.  
• Supports booting from 8-, 16-, or 32-bit devices,  
selectable via external pins at power-on reset  
Timers  
The LH79524 and LH79525 incorporate three 16-bit  
independently programmable Timer modules. The tim-  
ers are clocked by the system clock, but have an inter-  
nal scaled-down system clock that is used for the Pulse  
Width Modulator (PWM) and compare functions.  
• Configures the byte lane boot state for nCS1,  
selectable via external pins at power-on reset.  
• Supports booting from alternate external devices  
(e.g., NAND flash) via external pins on power-on reset  
• Glueless interface to external NAND flash.  
All counters are incremented by an internal pre-  
scaled counter clock or external clock and can gener-  
ate an overflow interrupt. All three timers have separate  
internal prescaled counter clocks, with either a com-  
mon external clock or a prescaled version of the sys-  
tem clock.  
USB Device  
The USB Device integrated into the LH79524/  
LH79525 is compliant with the USB 1.1 and 2.0 speci-  
fication, and compatible with both the OpenHCI and  
Intel UHCI standards. The USB Device:  
• Timer 0 has five Capture Registers and two Com-  
pare Registers.  
• Supports Full-Speed (12 Mbit/s) operation, and  
suspend and resume signaling  
• Timer 1 and Timer 2 have two Capture and two Com-  
pare Registers each.  
• Four Endpoints  
The Capture Registers have edge-selectable inputs  
and can generate an interrupt. The Compare Registers  
can force the compare output pin either HIGH or LOW  
upon a match.  
• Bulk/Interrupt or Isochronous Transfers  
• FIFO for each Endpoint direction (except EP0 which  
shares a FIFO between IN/OUT). FIFOs exist in  
2464 × 8 RAM  
The timers support a PWM Mode that uses the two  
Timer Compare Registers associated with a timer to  
create a PWM. Each timer can generate a separate  
interrupt. The interrupt becomes active if any enabled  
compare, capture, or overflow interrupt condition  
occurs. The interrupt remains active until all compare,  
capture, and overflow interrupts are cleared.  
• Supports DMA accesses to FIFO.  
Preliminary data sheet  
Rev. 01 16 July 2007  
25  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
2
Ethernet MAC Controller  
SSP To I S Converter  
2
The on-board Ethernet MAC Controller (EMAC) is  
compatible with IEEE 802.3, and has passed the Uni-  
versity of New Hampshire (UNH) testing. It supports  
both 10- and 100-Mbit/s, and full and half duplex oper-  
ation. Other features include:  
The SSP to I S converter is an interface that con-  
verts a synchronous serial communication stream in TI  
DSP-compatible mode into an I S compliant synchro-  
nous serial stream. The I S converter operates on  
serial data in both master and slave mode.  
2
2
2
• Statistics counter registers for RMON/MIB  
• MII interface to the physical layer  
The I S converter provides:  
• Programmable Word Select (WS) delay  
• Interrupt generation to signal receive and transmit  
completion  
• Left/right channel information:  
– Current WS value at the pin  
– WS value associated with next entry written to  
TX FIFO  
• Transmit and receive FIFOs  
• Automatic pad and CRC generation on transmitted  
frames  
– WS value associated with next entry read from  
RX FIFO  
• Automatic discard of frames received with errors  
• Ability to invert WS state  
• Address checking logic supports up to four specific  
(hardware) 48-bit addresses  
• Ability to invert the bit clock  
• Supports frame size of 16 bits only. Any other frame  
size will result in a frame size error. Each frame  
transmits starting with the most-significant bit.  
• Supports promiscuous mode where all valid  
received frames are copied to memory  
• Hash matching of unicast and multicast destination  
addresses  
• Master and slave modes supported  
• As with the SSP, a single combined interrupt is gen-  
erated as an OR function of the individual interrupt  
requests. This interrupt replaces the SSP interrupt,  
• Supports physical layer management through MDIO  
interface  
2
• Supports serial network interface operation  
which is used solely as an input to the I S converter.  
• Support for:  
• Additional interrupts:  
– Half duplex flow control by forcing collisions on in-  
coming frames  
– Full duplex flow control with recognition of incom-  
ing pause frames and hardware generation of  
transmitted pause frames  
– Transmit FIFO underrun  
– Transmit frame size error  
– Receive frame size error  
• A set of Interrupt registers contain all the information  
in the SSPIMSC, SSPRIS, and SSPMIS registers,  
plus the transmit underrun error and frame size errors  
– 802.Q VLAN tagging with recognition of incoming  
VLAN and priority tagged frames  
• Additional status bits:  
– Transmit FIFO Full  
– Receive FIFO Empty  
• Multiple buffers per receive and transmit frame  
• Software configures the MAC address  
• Jumbo frames of up to 10,240 bytes supported.  
• Passes SSP data unaltered when module is not  
enabled  
2
I C Controller  
The I C Controller includes a two-wire I C serial  
interface capable of operating in either Master or Slave  
• Loopback Test Mode support.  
2
2
2
mode. The block conforms to the I C 2.1 Bus Specifi-  
cation for data rates up to 400 kbit/s. The two wires are  
2
SCL (serial clock) and SDA (serial data). The I C mod-  
ule provides the following features:  
• Two-wire synchronous serial interface  
• Operates in both the standard mode, for data rates  
up to 100 kbit/s, and the fast mode, with data rates  
up to 400 kbit/s  
• Communicates with devices in the fast mode as well  
as the standard mode if both are attached to the bus.  
26  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
• Front bias-and-control network for touch screen  
interface and support functions, which are compati-  
ble with industry-standard 4- and 5-wire touch-sensi-  
tive panels  
ADC and Brownout Detector  
The ADC block consists of an 10-channel, 10-bit  
Analog-to-Digital Converter with integrated Touch  
Screen Controller (TSC). The complete touch screen  
interface is achieved by combining the front-end bias-  
ing, control circuitry with analog-to-digital conversion,  
reference generation, and digital control.  
• Touch-pressure sensing circuits  
• Pen-down sensing circuit and interrupt generator  
• Independent voltage reference generator  
The ADC has a bias-and-control network that allows  
correct operation with both 4- and 5-wire touch panels.  
A 16-entry × 16-bit wide FIFO holds a 10-bit ADC  
output and a 4-bit tag number.  
• Conversion automation function to minimize  
interrupt overhead  
• Brownout Detector  
When the screen is touched, it pushes the conduc-  
tive coating on the coversheet against the coating  
on the glass, making electrical contact. The voltages  
produced are the analog representation of the position  
touched. The voltage level of the coversheet is  
converted continuously by the ADC and monitored by  
the system.  
• Battery Control Signal.  
ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings  
PARAMETER  
SYMBOL  
RATING  
UNIT  
DC Core Supply Voltage  
DC I/O Supply Voltage  
VDDC  
VDD  
-0.3 to 2.4  
-0.3 to 4.6  
-0.3 to 4.6  
-0.3 to 2.4  
-0.3 to 2.4  
-55 to +125  
V
V
Other features include:  
• 10-bit fully differential Successive Approximation  
Register (SAR) with integrated sample/hold  
VDDA0  
VDDA1  
VDDA2  
TSTG  
V
DC Analog Supply  
Voltage for ADC  
V
• A 10-channel multiplexer that routes user-selected  
inputs to the ADC in single-ended and differential  
modes  
V
Storage Temperature  
°C  
• A 16-entry × 16-bit wide FIFO that holds the 10-bit  
ADC output  
NOTE: These stress ratings are only for transient conditions. Oper-  
ation at or beyond absolute maximum rating conditions may  
affect reliability and cause permanent damage to the device.  
Recommended Operating Conditions  
PARAMETER  
MINIMUM  
TYPICAL  
MAXIMUM  
NOTES  
DC Core Supply Voltage (VDDC)  
DC I/O Supply Voltage (VDD)  
DC Analog Supply Voltage (VDDA0)  
DC Analog Supply Voltage (VDDA1)  
DC Analog Supply Voltage (VDDA2)  
Clock Frequency  
1.7 V  
3.0 V  
1.8 V  
3.3 V  
3.3 V  
1.8 V  
1.8 V  
1.9 V  
3.6 V  
1, 4  
4
3.0 V  
3.6 V  
1.7 V  
1.9 V  
1.7 V  
1.9 V  
3.27 MHz  
76.205 MHz  
20.0 MHz  
+85°C  
2
3
Crystal Frequency  
10.0 MHz 11.2896 MHz  
-40°C 25°C  
Operating Temperature (Industrial)  
NOTES:  
1. Linear Regulator disabled.  
2. With PLL enabled. Without PLL, minimum frequency is 0 MHz.  
Some peripherals may not operate at minimum frequency.  
3. Choose 11.2896 MHz to ensure proper operation of the I2S, USB,  
and UART peripherals.  
4. Core Voltage should never exceed I/O Voltage after initial power  
up. See “Power Supply Sequencing” on page 28.  
Preliminary data sheet  
Rev. 01 16 July 2007  
27  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
Power Supply Sequencing  
DC/AC Specifications  
When the linear regulator is not enabled, NXP rec-  
ommends that the 1.8 V power supply be energized  
before the 3.3 V supply. If this is not possible, the 1.8 V  
supply may not lag the 3.3 V supply by more than 100  
µs. If longer delay time is needed, it is recommended  
that the voltage difference between the two power sup-  
plies be within 1.5 V during power supply ramp up. To  
avoid a potential latchup condition, voltage should be  
applied to input pins only after the device is powered-  
on as described above.  
Unless noted, all data provided are based on:  
• -40°C to +85°C (Industrial temperature range)  
• VDDC = 1.7 V to 1.9 V  
• VDD = 3.0 V to 3.6 V, VDDA = 1.7 V to 1.9 V.  
DC SPECIFICATIONS  
SYMBOL  
VIH  
PARAMETER  
CMOS input HIGH voltage  
CMOS input LOW voltage  
MIN. TYP. MAX. UNIT  
CONDITIONS  
2.0  
5.5  
0.8  
V
V
V
V
V
V
V
V
V
V
V
V
V
CEN = 1  
VIL  
CEN = 1  
VIT+  
VIT-  
Positive Input threshold voltage (Schmitt pins) 2.0  
Negative Input threshold voltage (Schmitt pins)  
Schmitt trigger hysteresis  
CSEN = 1  
CSEN = 1  
CSEN = 1  
0.8  
VHYST  
0.35  
Output drive (2 mA type)  
Output drive (4 mA type)  
Output drive (8 mA type)  
Output drive (12 mA type)  
Output drive (2 mA type)  
Output drive (4 mA type)  
Output drive (8 mA type)  
Output drive (12 mA type)  
2.6  
2.6  
2.6  
2.6  
IOH = -2 mA  
IOH = -4 mA  
IOH = -8 mA  
IOH = -12 mA  
IOL = 2 mA  
IOL = 4 mA  
IOL = 7 mA  
IOH = 12 mA  
VOH1  
VOL1  
0.4  
0.4  
0.4  
2.6  
VIN = VDD or GND (Calculate input  
leakage current at desired VDD)  
RIN  
Input leakage pull-up/pull-down resistors  
40  
kΩ  
IACTIVE  
Active current  
85  
50  
mA Note 2  
ISTANDBY Standby current  
mA Notes 2, 3  
ISLEEP  
ISTOP1  
ISTOP2  
ISTOP2  
ISTOP2  
ISTOP2  
Sleep current  
Stop1 current  
Stop2 current  
Stop2 current  
Stop2 current  
Stop2 current  
3.8  
420  
115  
95  
mA  
µA  
µA RTC ON, Linear Regulator ON  
µA RTC OFF, Linear Regulator ON  
µA RTC ON, Linear Regulator OFF  
µA RTC OFF, Linear Regulator OFF  
45  
25  
NOTES:  
1. Table 2 details each pin’s buffer type.  
2. Running Typical Application over operating range.  
3. Current measured with CPU stopped and all peripherals enabled  
Linear Regulator DC Characteristics.  
SYMBOL  
PARAMETER  
MIN. TYP. MAX. UNIT  
IQUIESCENT Quiescent Current  
75  
8
µA  
µA  
mA  
V
ISLEEPLR  
IOLR  
Current with Linear Regulator disabled  
Output Current Range  
0.0  
200  
VOLR  
Output Voltage, Linear Regulator  
1.84  
28  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
AC Test Conditions  
AC Specifications  
All signals described in Table 14 relate to transitions  
after a reference clock signal. The illustration in Figure  
9 represents all cases of these sets of measurement  
parameters; except for the Asynchronous Memory  
Interface — which are referenced to Address Valid.  
PARAMETER  
RATING  
UNIT  
Supply Voltage (VDD)  
Core Voltage (VDDC)  
Input Pulse Levels  
3.0 to 3.6  
1.7 to 1.9  
VSS to VDD  
2
V
V
V
Input Rise and Fall Times  
ns  
The reference clock signals in this design are:  
• HCLK, the System Bus clock  
Input and Output Timing  
Reference Levels  
VDD/2  
V
• PCLK, the Peripheral Bus clock (locked to HCLK in  
the LH79524/LH79525)  
Power Consumption By Peripheral Device  
Table 13 shows the typical power consumption by  
individual peripheral device.  
• SSPCLK, the Synchronous Serial Interface clock  
• UARTCLK, the UART Interface clock  
• LCDDCLK, the LCD Data clock from the  
LCD Controller  
Table 13. Peripheral Current Consumption  
• and SDCLK, the SDRAM clock.  
PERIPHERAL  
TYPICAL  
UNITS  
µA  
All signal transitions are measured from the 50%  
point of the clock to the 50% point of the signal. See  
Figure 9.  
ADC/TSC  
Counter/Timers  
DMA  
590  
203  
4.2  
µA  
mA  
µA  
For outputs from the LH79524/LH79525, tOVXXX  
(e.g. tOVA) represents the amount of time for the out-  
put to become valid from the rising edge of the refer-  
ence clock signal. Maximum requirements for tOVXXX  
are shown in Table 14.  
Ethernet Controller  
670  
200  
2.2  
2
I S  
µA  
LCD Controller  
RTC  
mA  
µA  
5.1  
The signal tOHXXX (e.g. tOHA) represents the  
amount of time the output will be held valid from the ris-  
ing edge of the reference clock signal. Minimum  
requirements for tOHXXX are listed in Table 14.  
SSP  
508  
µA  
µA  
UARTs  
203  
USB Device (+PLL)  
5.6 (+3.3)  
mA  
For Inputs, tISXXX (e.g. tISD) represents the  
amount of time the input signal must be valid before the  
rising edge of the clock signal. Minimum requirements  
for tISXXX are shown in Table 14.  
The signal tIHXXX (e.g. tIHD) represents the  
amount of time the output must be held valid from the  
rising edge of the reference clock signal. Minimum  
requirements are shown in Table 14.  
REFERENCE  
CLOCK  
tOHXXX  
tOVXXX  
OUTPUT  
SIGNAL (O)  
tISXXX tIHXXX  
INPUT  
SIGNAL (I)  
LH79525-28  
Figure 9. LH79524/LH79525 Signal Timing  
Preliminary data sheet  
Rev. 01 16 July 2007  
29  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
Table 14. AC Signal Characteristics  
SIGNAL  
TYPE LOAD  
SYMBOL  
MIN.  
MAX.  
DESCRIPTION  
ASYNCHRONOUS MEMORY INTERFACE SIGNALS  
Output 50 pF  
Input  
tWC  
tRC  
3 × tHCLK – 5.0 ns  
2 × tHCLK – 5.0 ns  
tHCLK – 5.5 ns  
tHCLK – 4.5 ns  
14.0 ns  
Write Cycle time  
A[27:0]  
Read Cycle time  
tDHWE  
tDWE  
tDSCS  
tDSOE  
tDSB  
tDHCS  
tDHOE  
tAV  
Data out hold to nWE release  
Data out valid to nWE release  
Data valid to nCSx release  
Data valid to nOE release  
Data valid to nBLEx release  
nCSx release to data invalid  
nOE release to data invalid  
nCSx valid to Address valid  
Address hold after nCSx release  
Address hold after nOE release  
Address valid to nCSx valid  
D[31:0]  
Output 50 pF  
12.5 ns  
12.0 ns  
0.0 ns  
0.0 ns  
2.5 ns  
2.5 ns  
tAHCS  
tAHOE  
tASCS  
tCW  
tHCLK – 3.0 ns  
tHCLK - 1.0 ns  
nCS[3:0]  
Output 50 pF  
2 × tHCLK + 3.0 ns nCSx valid to nWE release  
tCB  
2 × tHCLK  
nCSx valid to nBLE release  
nCSx width  
tCS  
tHCLK – 3.5 ns  
tBV  
1.5 ns  
nCSx valid to nBLE valid  
Address hold after nBLE release  
Data out valid to nBLE release  
Data in hold to nBLE release  
Data out hold to nBLE release  
Address hold to nBLE release  
Address valid to nBLE release  
Address valid to nBLE valid  
nBLE width (read)  
tAHB  
tDB  
tHCLK – 2.0 ns  
tHCLK – 6.0 ns  
0.0 ns  
tDHBR  
tDHBW  
tBR  
tHCLK + 9 ns  
–2.0 ns  
nBLE  
Output 50 pF  
tAB  
2 × tHCLK ns  
1.0 ns  
tASB  
tBLE  
tBP  
tHCLK – 4.5 ns  
tHCLK – 4.5 ns  
nBLE width (write)  
tASWE  
tAW  
tHCLK + 1.5 ns  
Address valid to nWE valid  
2 × tHCLK + 0.5 ns Address valid to nWE release  
Address Hold to nWE release  
Write Enable width  
nWE  
Output 50 pF  
Output 50 pF  
tWR  
tHCLK – 3.0 ns  
tHCLK – 1 ns  
tHCLK – 1 ns  
tWP  
tOE  
Ouput Enable width  
nOE  
tOEV  
– 0.5 ns  
nOE valid after nCSx valid  
SYNCHRONOUS MEMORY INTERFACE SIGNALS  
A[23:0]  
D[31:0]  
Ouput 50 pF  
Output 50 pF  
tOVA  
tOVD  
tOHD  
tISD  
tSDCLK/2 + 4.5 ns Address Valid  
tSDCLK/2 + 7.0 ns Output Data Valid  
tSDCLK/2 – 4.0 ns  
5.0 ns  
Output Data Hold  
Input Data Setup  
Input Data Hold  
Input  
tIHD  
1.5 ns  
tOVCA  
tOHCA  
tSDCLK/2 + 4.0 ns CAS Valid  
nCAS  
nRAS  
Output 50 pF  
tSDCLK/2 – 4.0 ns  
tSDCLK/2 – 4.0 ns  
CAS Hold  
tOVRA  
tOHRA  
tSDCLK/2 + 4.5 ns RAS Valid  
RAS Hold  
Output 50 pF  
30  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
DESCRIPTION  
NXP Semiconductors  
Table 14. AC Signal Characteristics (Cont’d)  
SIGNAL  
nWE  
TYPE LOAD  
SYMBOL  
tOVSDW  
tOHSDW  
tOVC0  
MIN.  
MAX.  
tSDCLK/2 + 4.5 ns SDWE Write Enable Valid  
SDWE Write Enable Hold  
Output 30 pF  
Output 30 pF  
Output 30 pF  
tSDCLK/2 – 4.0 ns  
tSDCLK/2 – 4.0 ns  
tSDCLK/2 – 4.0 ns  
tSDCLK/2 + 4.5 ns SDCKE Clock Enable Valid  
SDCKE Clock Enable Hold  
SDCKE  
tOHC0  
tOVDQ  
tOHDQ  
tOVSC  
tSDCLK/2 + 5.0 ns DQM Data Mask Valid  
DQM Data Mask Hold  
DQM[3:0]  
tSDCLK/2 + 4.5 ns SDCS Data Mask Valid  
SDCS Data Mask Hold  
nSDCS[1:0]  
SDCLK  
Output 30 pF  
Output 30 pF  
tOHSC  
tSDCLK/2 – 4.0 ns  
19.37 ns  
tSDCLK  
SDRAM Clock Period  
SYNCHRONOUS SERIAL PORT (SSP)  
tOVSSPFRM Output Valid,  
Referenced to SSPCLK  
SSPFRM  
Output 50 pF tOVSSPFRM  
14 ns  
SSPTX  
SSPRX  
Output 50 pF tOVSSPTX  
14 ns  
SSP Transmit Valid  
SSP Receive Setup  
Input  
tISSPRX  
20 ns  
ETHERNET MAC CONTROLLER (EMC)  
Transmit Data Valid after  
ETHERTXCLK  
tOVTXER  
25 ns  
25 ns  
25 ns  
ETHERTXER Output 50 pF  
ETHERTX[3:0] Output 50 pF  
ETHERTXEN Output 50 pF  
ETHERTXCLK/2 +  
2.0 ns  
Transmit Data Hold after  
ETHERTXCLK  
tOHTXER  
tOVTXD  
tOHTXD  
tOVTXEN  
tOHTXEN  
tISRXDV  
tIHRXDV  
tISRXD  
Transmit Data Valid after  
ETHERTXCLK  
ETHERTXCLK/2 +  
2.0 ns  
Transmit Data Hold after  
ETHERTXCLK  
Transmit Data Valid after  
ETHERTXCLK  
ETHERTXCLK/2 +  
2.0 ns  
Transmit Data Hold after  
ETHERTXCLK  
Receive Data Setup prior to  
ETHERRXCLK  
10 ns  
10 ns  
10 ns  
10 ns  
ETHERRXDV  
Input  
Receive Data Hold prior to  
ETHERRXCLK  
Receive Data Setup prior to  
ETHERRXCLK  
ETHERRX[3:0] Input  
Receive Data Hold prior to  
ETHERRXCLK  
tIHRXD  
Preliminary data sheet  
Rev. 01 16 July 2007  
31  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
Analog-To-Digital Converter  
Electrical Characteristics  
Table 15 shows the ADC electrical characteristics.  
See Figure 10 for the ADC transfer characteristics.  
Table 15. ADC Electrical Characteristics  
PARAMETER  
A/D Resolution  
MIN.  
TYP.  
MAX.  
UNITS  
NOTES  
10  
17  
3
10  
Bits  
Throughput Conversion  
Acquisition Time  
CLK Cycles  
CLK Cycles  
1
Data Format  
binary  
CLK Frequency  
500  
-0.99  
-3.0  
5,000  
3.0  
ns  
LSB  
LSB  
mV  
LSB  
V
Differential Non-Linearity  
Integral Non-Linearity  
Offset Error  
+3.0  
-10  
+10  
Gain Error  
-2.0  
+2.0  
Reference Voltage Output  
VREF-  
1.85  
VSSA  
2.0  
2.15  
VSSA  
(VREF+) -1.0 V  
VDDA  
V
2
2
VREF+  
(VREF-) +1.0 V VREF  
V
Crosstalk between channels  
Analog Input Voltage Range  
Analog Input Current  
Reference Input Current  
Analog input capacitance  
Operating Supply Voltage  
Operating Current, VDDA0  
Powerdown Current, VDDA0  
Standby Current  
-60  
dB  
V
0
VDDA  
5
3
µA  
µA  
pF  
V
5
15  
3.0  
590  
1
3.6  
1000  
10  
µA  
µA  
µA  
V
180  
300  
2.9  
4
Brown Out Trip Point (falling point)  
Brown Out Hysterisis  
Operating Temperature  
2.36  
-40  
2.63  
120  
mV  
°C  
85  
NOTES:  
1. The analog section of the ADC takes 16 × A2DCLK cycles per conversion plus 1 × A2DCLK cycles to be made available in the PCLK  
domain. An additional 3 × PCLK cycles are required before being available on the APB.  
2. The internal voltage reference is driven to nominal value VREF = 2.0 V. Using the Reference Multiplexer, alternative low impedance  
(RS < 500) voltages can be selected as reference voltages. The range of voltages allowed are specified above. However, the on-chip  
reference cannot drive the ADC unless the reference buffer is switched on.  
3. The analog input pins can be driven anywhere between the power supply rails. If the voltage at the input to the ADC exceeds VREF+  
or is below VREF-, the A/D result will saturate appropriately at positive or negative full scale. Trying to pull the analog input pins above  
or below the power supply rails will cause protection diodes to be forward-biased, resulting in large current source/sink and possible  
damage to the ADC.  
4. Bandgap and other low-bandwidth circuitry operating. All other ADC blocks shut down.  
32  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
OFFSET GAIN  
ERROR ERROR  
1024  
1023  
1022  
1021  
1020  
1019  
1018  
IDEAL  
TRANSFER CURVE  
9
8
7
6
5
4
3
2
1
CENTER OF A  
STEP OF THE ACTUAL  
TRANSFER CURVE  
ACTUAL  
TRANSFER CURVE  
INTEGRAL  
NON-LINEARITY  
CENTER OF STEP  
1
2
3
4
5
6
7
8
9
1,015 1,016 1,017 1,018 1,019 1,020 1,021 1,022 1,023 1,024  
LSB  
OFFSET  
ERROR  
DNL  
LH79525-2  
Figure 10. ADC Transfer Characteristics  
Preliminary data sheet  
Rev. 01 16 July 2007  
33  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
In Figure 18, nCSx is asserted coincident (following  
a small propagation delay) with Valid Address. Data  
becomes valid another small propagation delay later.  
Unlike Read transactions, nWE (or nBLEx) assertion is  
always delayed one HCLK cycle. The nBLEx signal has  
the same timing as nWE for write to 8-bit devices that  
use the byte lane enables instead of the write enables.  
External Memory Controller Waveforms  
The External Memory Controller (EMC) handles  
transactions with both static and dynamic memory.  
STATIC MEMORY WAVEFORMS  
This section illustrates static memory transaction  
waveforms. Each wait state is one HCLK period.  
The nWE (or nBLEx) signal remains asserted for one  
HCLK cycle when the nWE (or nBLEx) signal is deas-  
serted and the data is latched into the external memory  
device. Valid address is held for one additional cycle  
before deassertion (‘C’ in the figure), as is the Chip  
Select. The minimum Write cycle is three HCLK periods.  
nWAIT Input  
The EMC’s Static Memory Controller supports an  
nWAIT input that can be used by an external device to  
extend the wait time during a memory access. The  
SMC samples nWAIT at the beginning of at the begin-  
ning of each system clock cycle. The system clock  
cycle in which the nCSx signal is asserted counts as  
the first wait state. See Figure 11 through Figure 20.  
Read wait state programming uses the SWAITRDx  
register. Figure 19 shows the results of programming  
SWAITRDx to 0x3, setting the EMC for three wait  
states. The deassertion of nOE is delayed from the first  
rising HCLK edge following Valid Address, as in Figure  
17, to the fourth rising edge, a delay of 3 HCLK periods.  
Read and Write Waveforms  
Figure 17 shows the Read cycle with zero wait  
states. As shown in the figure, SWAITOENx and  
SWAITRDx are programmed to 0 for minimum Read  
cycle time.  
Figure 20 shows the results of programming the  
SWAITWRx and SWAITWENx registers for two Write  
wait states: register SWAITWENx = 0x0, and SWAIT-  
WRx = 0x2. Assertion of nCSx precedes nWE (nBLEx)  
by one HCLK period. Then, instead of the nWE  
(nBLEx) signal deasserting one HCLK period after  
assertion, it is delayed two wait states and the signal  
deasserts on the rising edge following two wait states.  
The zero programmed into the SWAITRDx indicates  
that the read occurs with zero wait states, on the first  
rising edge following Address Valid. After a small prop-  
agation delay, nOE is deasserted (as is nCSx), latching  
the data into the SoC. The address line is held valid  
one more HCLK period (‘C’ in the figure). Thus, the  
minimum Read cycle is two HCLK periods.  
Chapter 7 of the User’s Guide has detailed register  
descriptions and additional programming examples.  
Figure 18 shows the minimum write cycle time with  
both SWAITWRx and SWAITWENx programmed to  
zero. The write access time is determined by the number  
of wait states programmed in the SWAITWRx register.  
34  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
tDD_nWAIT_nCS(x)  
tDD_nWAIT_nOE  
tDA_nCS(x)_nWAIT  
nCS(x)  
nOE  
tA_nWAIT  
nWAIT  
HCLK  
SQ-4  
SQ-3  
SQ-2  
SQ-1  
SQ-0  
SQ-4  
SQ-3  
SQ-2  
SQ-1  
SQ-0  
Transaction  
Sequence  
WST-3 WST-2 WST-1 nWAIT nWAIT nWAIT nWAIT nWAIT WST-0  
DELAY DELAY DELAY DELAY DELAY DELAY DELAY DELAY DELAY  
NOTES:  
SQ: nWAIT Sampled and Queued  
SI: nWAIT Sampled and Ignored  
LH79525-133  
Figure 11. nWAIT Read Sequence (SWAITRDx = 3)  
Table 16. nWAIT Read Sequence Parameter Definitions  
PARAMETER  
DESCRIPTION  
MIN.  
MAX.  
UNIT 1  
tDA_nCS(x)_nWAIT  
tDD_nWAIT_nCS(x)  
tDD_nWAIT_nOE  
tA_nWAIT  
Delay from nCS(x) assertion to nWAIT assertion  
Delay from nWAIT deassertion to nCS(x) deassertion  
Delay from nWAIT deassertion to nOE deassertion  
Assertion time of nWAIT  
0
16,365  
HCLK periods  
HCLK periods  
HCLK periods  
HCLK periods  
4
4
2
NOTES:  
1. The timing relationship is specified as a cycle-based timing. Variations caused by clock jitter, power rail noise, and I/O conditioning will cause  
these timings to vary nominally. It is recommended that designers add a small margin to avoid possible corner-case conditions.  
2. The Read Wait States register (SWAITRDx) must be set to a minimum value of 3.  
3. For each rising clock edge (HCLK) that the assertion of nWAIT lags the assertion of nCSx, another read wait state (SWAITRDx) must be  
added to the minimum requirement.  
4. nWAIT delay cycles are not added for all nWAIT assertions sampled prior to WST-3. These nWAIT assertions are ignored.  
5. nWAIT delay cycles are added for all nWAIT assertions sampled from WST-3 until the de-assertion of nWAIT. nWAIT delay cycles are added  
once the wait state countdown has reached WST-1.  
6. Once nWAIT is sampled high, the current memory transaction is queued to complete.  
7. Since static and dynamic memory cannot be accessed at the same time, any prolonged access (either due to nWAIT or the Extended Wait  
Register) that causes an SDRAM refresh failure may cause SDRAM data to be lost.  
8. Timing assumes Output Enable Delay register (SWAITOENx) is programmed to 0.  
Preliminary data sheet  
Rev. 01 16 July 2007  
35  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
tDD_nWAIT_nCS(x)  
tDD_nWAIT_nOE)  
tDA_nCS(x)_nWAIT  
nCS(x)  
nOE  
tA_nWAIT  
nWAIT  
HCLK  
SI  
SI  
SQ-4  
SQ-3  
SQ-2  
SQ-1  
SQ-0  
SQ-4  
SQ-3  
SQ-2  
SQ-1  
SQ-0  
nWAIT nWAIT nWAIT nWAIT nWAIT  
DELAY DELAY DELAY DELAY DELAY  
Transaction  
Sequence  
WST-5 WST-4  
DELAY DELAY DELAY DELAY DELAY  
WST-3 WST-2 WST-1  
WST-0  
DELAY  
NOTES:  
SQ: nWAIT Sampled and Queued  
SI: nWAIT Sampled and Ignored  
LH79525-134  
Figure 12. nWAIT Read Sequence (SWAITRDx = 5)  
tDA_nCS(x)_nWAIT  
nCS(x)  
nOE  
tA_nWAIT  
SI  
SI  
nWAIT  
HCLK  
WST-0  
DELAY  
WST-5 WST-4 WST-3 WST-2 WST-1  
DELAY DELAY DELAY DELAY DELAY  
Transaction  
Sequence  
NOTES:  
SQ: nWAIT Sampled and Queued  
SI: nWAIT Sampled and Ignored  
LH79525-135  
Figure 13. nWAIT Read Sequence (SWAITRDx = 5): nWAIT has no effect on the current transaction  
36  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
tDD_nWAIT_nCS(x)  
tDD_nWAIT_nWE  
tDA_nCS(x)_nWAIT  
nCS(x)  
nWE  
tA_nWAIT  
nWAIT  
HCLK  
SQ-4  
SQ-3  
SQ-2  
SQ-1  
SQ-0  
SQ-4  
SQ-3  
SQ-2  
SQ-1  
SQ-0  
END  
END  
Transaction  
Sequence  
WST-3 WST-2 WST-1 nWAIT nWAIT nWAIT nWAIT nWAIT WST-0 CYCLE CYCLE  
DELAY DELAY DELAY DELAY DELAY DELAY DELAY DELAY DELAY nWE  
nCS(x)  
NOTES:  
SQ: nWAIT Sampled and Queued  
SI: nWAIT Sampled and Ignored  
LH79525-136  
Figure 14. nWAIT Write Sequence (SWAITWRx = 3)  
Table 17. nWAIT Write Sequence Parameter Definitions  
PARAMETER  
DESCRIPTION  
MIN.  
MAX.  
UNIT1  
tIDA_nCS(x)_nWAIT  
tDD_nWAIT_nCS(x)  
tDD_nWAIT_nWE  
tA_nWAIT  
Delay from nCS(x) assertion to nWAIT assertion  
Delay from nWAIT deassertion to nCS(x) deassertion  
Delay from nWAIT deassertion to nWE deassertion  
Assertion time of nWAIT  
0
16,365  
HCLK periods  
HCLK periods  
HCLK periods  
HCLK periods  
6
5
2
NOTES:  
1. The timing relationship is specified as a cycle-based timing. Variations caused by clock jitter, power rail noise, and I/O conditioning will cause  
these timings to vary nominally. It is recommended that designers add a small margin to avoid possible corner-case conditions.  
2. The Write Wait States register (SWAITWRx) must be set to a minimum value of 3.  
3. For each rising clock edge (HCLK) that the assertion of nWAIT lags the assertion of nCSx, another write wait state (SWAITRDx) must be  
added to the minimum requirement.  
4. nWAIT delay cycles are not added for all nWAIT assertions sampled prior to WST-3. These nWAIT assertions are ignored.  
5. nWAIT delay cycles are added for all nWAIT assertions sampled from WST-3 until the de-assertion of nWAIT. nWAIT delay cycles are added  
once the wait state countdown has reached WST-1.  
6. Once nWAIT is sampled high, the current memory transaction is queued to complete.  
7. Since static and dynamic memory cannot be accessed at the same time, any prolonged access (either due to nWAIT or the Extended Wait  
Register) that causes an SDRAM refresh failure may cause SDRAM data to be lost.  
8. Timing assumes Write Enable Delay register (SWAITWENx) is programmed to 0.  
Preliminary data sheet  
Rev. 01 16 July 2007  
37  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
tDD_nWAIT_nCS(x)  
tDD_nWAIT_nWE  
tDA_nCS(x)_nWAIT  
nCS(x)  
nWE  
tA_nWAIT  
nWAIT  
HCLK  
SI  
SI  
SQ-4  
SQ-3  
SQ-2  
SQ-1  
SQ-0  
END  
END  
CYCLE  
CYCLE  
nCS(x)  
nWE  
SQ-1  
nWAIT nWAIT  
DELAY DELAY  
SQ-0  
SQ-4  
SQ-3  
SQ-2  
Transaction  
Sequence  
nWAIT nWAIT nWAIT  
DELAY DELAY DELAY  
WST-5 WST-4 WST-3  
DELAY DELAY DELAY DELAY DELAY  
WST-2  
WST-1  
WST-0  
DELAY  
NOTES:  
SQ: nWAIT Sampled and Queued  
SI: nWAIT Sampled and Ignored  
LH79525-137  
Figure 15. nWAIT Write Sequence (SWAITWRx = 5)  
tDA_nCS(x)_nWAIT  
nCS(x)  
nWE  
tA_nWAIT  
SI  
SI  
nWAIT  
HCLK  
END  
WST-5 WST-4 WST-3 WST-2 WST-1 WST-0 CYCLE CYCLE  
DELAY DELAY DELAY DELAY DELAY DELAY  
nWE nCS(x)  
END  
Transaction  
Sequence  
NOTES:  
SQ: nWAIT Sampled and Queued  
SI: nWAIT Sampled and Ignored  
LH79525-138  
Figure 16. nWAIT Write Sequence (SWAITWRx = 5): nWAIT has no effect on the current transaction  
38  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
tRC  
tDSB  
tDSCS,  
tDSOE  
tAHCS, tAHOE  
tAHB  
tASCS  
HCLK  
A[23:0]  
D[31:0]  
VALID ADDRESS  
VALID DATA  
tCS  
nCS  
nOE  
tOEV  
tOE  
tDHCS  
tDHBR  
tDHOE  
tBV  
nBLEx  
tBLE  
DATA  
CAPTURED  
LH79525-105  
Figure 17. External Static Memory Read, Zero Wait States  
Preliminary data sheet  
Rev. 01 16 July 2007  
39  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
tWC  
HCLK  
A[23: 0]  
VALID ADDRESS  
tAW, tAB  
tASCS  
D[ 31:0 ]  
VALID DATA  
tCW  
tCB  
nCS  
tDWE  
tDHWE, tWR  
tDB  
nWE  
tBR  
tASB  
tASWE  
tWP  
tBP  
nBLEx  
LH79525-71  
Figure 18. External Static Memory Write, Zero Wait States  
HCLK  
tRC  
VALID ADDRESS  
VALID DATA  
A[23:0]  
D[31:0]  
nCSx  
DATA  
CAPTURED  
nOE  
LH79525-72  
Figure 19. External Static Memory Read with Three Wait States  
40  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
HCLK  
tWC  
A[23:0]  
D[31:0]  
nCSx  
VALID ADDRESS  
VALID DATA  
nWE or nBLEx  
LH79525-73  
Figure 20. External Static Memory Write with Two Wait States  
Preliminary data sheet  
Rev. 01 16 July 2007  
41  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
SDRAM MEMORY CONTROLLER WAVEFORMS  
Figure 21 shows the waveform and timing for an  
SDRAM Burst Read (page already open). Figure 22  
shows the waveform and timing for SDRAM to Activate  
a Bank and Write.  
tSDCLK  
SCLK  
tOVXXX tOHXXX  
READ  
tOVDQ  
NOP  
NOP  
SDRAMcmd  
DQMx  
NOP  
NOP READ  
tOHDQ  
NOP  
tOVA  
A[14:0]  
D[31:0]  
BANK,  
COLUMN  
tISD tIHD  
DATA n  
CAS  
LATENCY = 2  
DATA n + 2  
DATA n + 1  
DATA n + 3  
NOTES:  
1. SDRAMcmd is the combination of nRAS, nCAS, nSDWE, and nSDCS(X).  
2. tOVXXX represents tOVRA, tOVCA, tOVSDW, or tOVSC.  
3. tOHXXX represents tOHRA, tOHCA, tOHSDW, or tOHSC.  
4. SDCKE is HIGH.  
LH79525-3  
Figure 21. SDRAM Burst Read  
42  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
Figure 22. SDRAM Bank Activate and Write  
Preliminary data sheet  
Rev. 01 16 July 2007  
43  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
DACK/DEOT TIMING  
External DMA Handshake Signal Timing  
These timing diagrams indicate when nDACK and  
DEOT occur in relation to an external bus access to/from  
the external peripheral that requested the DMA transfer.  
DREQ TIMING  
Once asserted, DREQ must not transition from LOW  
to HIGH again until after nDACK has been asserted.  
The first diagram shows the timing with relation to a  
single read or the last word of a burst read from the  
requesting peripheral. The remaining diagrams show  
timing for data transfers.  
DREQ MAY  
TRANSITON  
DREQ  
tDREQ0L,  
tDREQ1L  
MUST NOT  
TRANSITON  
DREQ0,  
DREQ1  
DACK0  
nDACK1  
NOTE: tDREQ0L = DREQ0 LOW Pulse Width = 2 HCLK MIN.  
tDREQ1L = DREQ1 LOW Pulse Width = 2 HCLK MIN.  
LH79525-5  
Figure 23. DREQ Timing Restrictions  
HCLK  
(See Note)  
A[23:0]  
D[31:0]  
ADDRESS  
DATA  
nCSx  
nWEN  
nBLE[1:0]  
nOE  
DACK0/  
DEOT0/DEOT1  
nDACK1  
NOTE: * HCLK is an internal signal provided for reference only.  
LH79525-6  
Figure 24. Read, from Peripheral to Memory, Burst Size = 1  
44  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
HCLK  
(See Note)  
A[23:0]  
ADDRESS  
D[15:0]  
DATA  
nCSx  
nWEN  
nBLE[1:0]  
nOE  
DACK0/  
DEOT0/DEOT1  
nDACK1  
NOTE: * HCLK is an internal signal provided for reference only.  
LH79525-7  
Figure 25. Write, from Memory to Peripheral, Burst Size = 1  
HCLK*  
A[23:0]  
ADDRESS  
DATA #1  
DATA #2  
DATA #3  
DATA #4  
D[31:0]  
nCSx  
nWEN  
nBLE[1:0]  
nOE  
DACK0/DEOT0/DEOT1  
nDACK1  
NOTE: * HCLK is an internal signal, provided for reference only.  
LH79525-8  
Figure 26. Read, Peripheral to Memory: Peripheral Burst Size = 4  
Preliminary data sheet  
Rev. 01 16 July 2007  
45  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
Figure 27. Write, Memory-to-Peripheral: Burst Size = 4; Destination Width > External Access Width  
46  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
Color LCD Controller Timing Diagrams  
Figure 28. STN Horizontal Timing  
Preliminary data sheet  
Rev. 01 16 July 2007  
47  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
Figure 29. STN Vertical Timing  
48  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
Figure 30. TFT Horizontal Timing  
Preliminary data sheet  
Rev. 01 16 July 2007  
49  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
Figure 31. TFT Vertical Timing  
50  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
1 AD-TFT or HR-TFT HORIZONTAL LINE  
* CLCDCLK  
(INTERNAL)  
APBPERIPHCLKCTRL1:LCD  
CLKPRESCALE:LCDPS  
(SHOWN FOR REFERENCE)  
AD-TFT and HR-TFT SIGNALS ARE TFT SIGNALS, RE-TIMED  
TIMING0:HSW  
LCDLP  
(HORIZONTAL  
SYNCHRONIZATION  
PULSE)  
LCDDCLK  
(PANEL CLOCK)  
TIMING2:PCD  
TIMING2:BCD  
TIMING2:IPC  
TIMING2:CPL  
LCDVD[11:0] (LH79525)  
LCDVD[15:0] (LH79524)  
16 × (TIMING0:PPL+1)  
001 002 003 004 005 006 007 008  
320  
PIXEL DATA  
TIMING0:HSW +  
TIMING0: HBP  
LCDEN  
(INTERNAL DATA ENABLE)  
LCDDCLK  
(DELAYED FOR  
AD-TFT, HR-TFT)  
LCDVD[11:0] (LH79525)  
LCDVD[15:0] (LH79524)  
(DELAYED FOR  
001 002 003 004 005 006  
317 318 319 320  
AD-TFT, HR-TFT)  
1 LCDDCLK  
ALITIMING2:SPLDEL  
LCDSPL  
(AD-TFT, HR-TFT  
START PULSE LEFT)  
1 LCDDCLK  
ALITIMING1:LPDEL  
LCDLP  
(HORIZONTAL  
SYNCHRONIZATION  
PULSE)  
ALITIMING2:PS2CLS2  
ALITIMING1:PSCLS  
LCDCLS  
LCDPS  
LCDREV  
NOTE: * Source is RCPC.  
LH79525-42  
Figure 32. AD-TFT, HR-TFT Horizontal Timing  
TIMING1:VSW  
1.5 µs - 4 µs  
LCDSPS  
(VERTICAL  
SYNCHRONIZATION)  
LCDLP  
(HORIZONTAL  
SYNCHRONIZATION  
PULSE)  
LCDVD[11:0]  
(LCD VIDEO DATA)  
NOTE: LCDDCLK can range from 4.5 MHz to 6.8 MHz.  
LH79525-43  
Figure 33. AD-TFT, HR-TFT Vertical Timing  
Preliminary data sheet  
Rev. 01 16 July 2007  
51  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
Synchronous Serial Port  
The SSP timing is illustrated in Figure 34.  
Figure 34. Synchronous Serial Port Waveform  
52  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
Ethernet MAC Controller Waveforms  
The timing for the EMC is presented in the following  
two illustrations. Figure 35 shows an Ethernet transmit  
and Figure 36 shows an Ethernet receive.  
ETHERTXCLK  
tOVTXER,  
tOVTXD,  
tOVTXEN  
tOHTXER,  
tOHTXD,  
tOHTXEN  
ETHERTXER,  
ETHERTX[3:0],  
ETHERTXEN  
LH79525-13  
Figure 35. Ethernet Transmit Timing  
ETHERRXCLK  
tISRXDV,  
tISRXD  
tIHRXDV,  
tIHRXD  
ETHERRXDV,  
ETHERRX[3:0]  
LH79525-14  
Figure 36. Ethernet Receive Timing  
Preliminary data sheet  
Rev. 01 16 July 2007  
53  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
Figure 38 shows external reset timing, and Table 18  
gives the timing parameters.  
Reset, Clock, and Power Controller  
(RCPC) Waveforms  
Figure 37 shows the method the LH79524/LH79525  
uses when coming out of Reset or Power On.  
Table 18. Reset AC Timing  
DESCRIPTION  
PARAMETER  
MIN. TYP. MAX.  
UNIT  
tOSC32  
Oscillator stabilization time after Power Up (VDDC = VDDCMIN)  
550  
ms  
Oscillator stabilization time after Power Up (VDDC = VDDCMIN) or  
exiting STOP2  
tOSC14  
2.5  
ms  
tRSTIH  
tRSTIW  
nRESETIN hold time after crystal stabilization  
nRESETIN Pulse Width (once sampled LOW)  
200  
2
µS  
HCLK  
nRESETIN LOW to nRESETOUT valid  
(once nRESETIN sampled LOW)  
tRSTOV  
tRSTOH  
3.5  
1
HCLK  
HCLK  
nRESETOUT hold relative to nRESETIN HIGH  
VDDCmin  
VDDC  
tOSC32  
XTAL32  
XTAL14  
tRSTIH  
tOSC14  
nRESETIN  
tRSTOH  
nRESETOUT  
LH79525-22  
Figure 37. PLL Start-up  
tRSTIW  
nRESETIN  
tRSTOH  
tRSTOV  
nRESETOUT  
LH79525-23  
Figure 38. External Reset  
54  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
UNUSED INPUT SIGNAL CONDITIONING  
depend upon a number of factors, including the trace  
width, dielectric material the circuit board is made from  
and proximity to ground and power planes.  
Floating input signals can cause excessive power  
consumption. Unused inputs which do not include inter-  
nal pull-up or pull-down resistors should be pulled up or  
down externally, to tie the signal to its inactive state.  
Attention to power supply decoupling and printed cir-  
cuit board layout becomes more critical in systems with  
higher capacitive loads. As these capacitive loads  
increase, transient currents in the power supply and  
ground return paths also increase.  
Some GPIO signals may default to inputs. If the pins  
which carry these signals are unused, software can  
program these signals as outputs, to eliminate the need  
for pull-ups or pull-downs. Power consumption may be  
higher than expected until such software executes.  
Add pull-ups to all unused inputs unless an  
internal pull-down resistor has been specified; see  
Table 3. Consider all signals that are Inputs at Reset.  
Some LH79524/LH79525 inputs have internal pull-  
ups or pull-downs. If unused, these inputs do not  
require external conditioning.  
SUGGESTED EXTERNAL COMPONENTS  
Figure 39 shows the suggested external compo-  
nents for the 32.768 kHz crystal circuit to be used with  
the NXP LH79524/LH79525. The NAND gate repre-  
sents the logic inside the SoC. See the table in  
Figure 39 for crystal specifics.  
OTHER CIRCUIT BOARD LAYOUT PRACTICES  
All output pins on the LH79524/LH79525 have fast  
rise and fall times. Printed circuit trace interconnection  
length must therefore be reduced to minimize over-  
shoot, undershoot and reflections caused by transmis-  
sion line effects of these fast output switching times.  
This recommendation particularly applies to the  
address and data buses.  
Figure 40 shows the suggested external compo-  
nents for the 10 - 20 MHz crystal circuit to be used with  
the NXP LH79524/LH79525. The NAND gate  
rep-  
resents the logic inside the SoC. See the chart for crys-  
tal specifics.  
When considering capacitance, calculations must  
consider all device loads and capacitances due to the  
circuit board traces. Capacitance due to the traces will  
ENABLE  
INTERNAL TO  
THE LH79524/LH79525  
EXTERNAL TO  
THE LH79524/LH79525  
XTAL32IN  
XTAL32OUT  
Y1  
32.768 kHz  
R1  
10 MΩ  
C1  
15 pF  
C2  
18 pF  
GND  
GND  
RECOMMENDED CRYSTAL SPECIFICATIONS  
NOTES:  
1. Y1 is a parallel-resonant type crystal. (See table)  
2. The nominal values for C1 and C2 shown are for  
a crystal specified at 12.5 pF load capacitance (CL).  
3. The values for C1 and C2 are dependent upon  
the cystal's specified load capacitance and PCB  
stray capacitance.  
PARAMETER  
DESCRIPTION  
32.768 kHz Crystal  
Tolerance  
Aging  
Load Capacitance  
ESR (MAX.)  
Drive Level  
Parallel Mode  
30 ppm  
3 ppm  
12.5 pF  
50 kΩ  
1.0 µW (MAX.)  
MTRON SX1555 or equivalent  
4. R1 must be in the circuit.  
5. Ground connections should be short and return  
to the ground plane which is connected to the  
processor's core ground pins.  
Recommended Part  
6. Tolerance for R1, C1, C2 is 5%.  
LH79525-11  
Figure 39. Suggested External Components, 32.768 kHz Oscillator (XTAL32IN and XTAL32OUT)  
Preliminary data sheet  
Rev. 01 16 July 2007  
55  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
ENABLE  
INTERNAL TO  
THE LH79524/LH79525  
EXTERNAL TO  
THE LH79524/LH79525  
XTALIN  
XTALOUT  
Y1  
10 - 20 MHz  
R1  
1 MΩ  
C1  
18 pF  
C2  
22 pF  
GND  
GND  
RECOMMENDED CRYSTAL SPECIFICATIONS  
PARAMETER DESCRIPTION  
11.2896 MHz Crystal (AT-Cut) Parallel Mode  
NOTES:  
1. Y1 is a parallel-resonant type crystal. (See table)  
2. The nominal values for C1 and C2 shown are for  
a crystal specified at 18 pF load capacitance (CL).  
3. The values for C1 and C2 are dependent upon  
the cystal's specified load capacitance and PCB  
stray capacitance.  
Tolerance  
Stability  
Aging  
50 ppm  
100 ppm  
5 ppm  
Load Capacitance  
ESR (MAX.)  
Drive Level  
Recommended Part  
18 pF  
40 Ω  
4. R1 must be in the circuit.  
5. Ground connections should be short and return  
to the ground plane which is connected to the  
processor's core ground pins.  
100 µW (MAX.)  
CITIZEN CM309S - 11.2896 MABJTR  
or equivalent  
6. Tolerance for R1, C1, C2 is 5%.  
LH79525-12  
Figure 40. Suggested External Components, 10 MHz to 20 MHz Oscillator  
56  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
PACKAGE SPECIFICATIONS  
LQFP176: plastic low profile quad flat package; 176 leads; body 20 x 20 x 1.4 mm  
SOT1017-1  
c
y
X
A
89  
132  
Z
E
133  
88  
e
(A )  
3
A
2
A
1
H
E
A
E
M
w
θ
b
L
p
p
L
pin 1 index  
176  
45  
detail X  
44  
1
M
M
v
A
B
M
w
e
b
Z
D
p
D
B
H
v
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
1
A
2
A
3
b
p
c
D
E
e
H
D
H
E
L
L
p
v
w
y
Z
D
Z
E
θ
max  
°
°
0.15 1.45  
0.05 1.35  
0.23 0.20 20.2 20.2  
0.13 0.09 19.8 19.8  
22.2 22.2  
21.8 21.8  
0.75  
0.45  
1.5  
1.3  
1.5  
1.3  
7
0
mm  
1.6  
0.25  
0.4  
1
0.2  
0.07 0.08  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
07-07-07  
07-07-07  
SOT1017-1  
Figure 41. Package outline SOT1017-1 (LQFP176)  
Preliminary data sheet  
Rev. 01 16 July 2007  
57  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
LFBGA208: plastic low profile fine-pitch ball grid array package; 208 balls  
SOT1019-1  
D
B
A
ball A1  
index area  
A
2
A
1
E
A
detail X  
e
1
C
M
v  
w  
C
C
A
B
b
e
1/2 e  
y
1
y
M
C
T
R
P
N
M
K
H
e
L
J
e
2
G
1/2 e  
F
E
D
B
C
A
ball A1  
index area  
1
3
5
7
9
11  
13  
15  
X
2
4
6
8
10  
12  
14  
16  
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
1
A
2
D
E
e
e
1
e
2
v
w
y
y
1
b
max  
0.4  
0.3  
1.35  
1.20  
0.5  
0.4  
14.1 14.1  
13.9 13.9  
mm  
1.7  
0.8  
12  
12  
0.15 0.08 0.12  
0.1  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
07-07-07  
07-07-07  
SOT1019-1  
Figure 42. Package outline SOT1019-1 (LFBGA208)  
58  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
21.25  
0.4  
1.70  
17.2  
NOTE: Dimensions in mm.  
176LQFP-FP  
Figure 43. LH79525: LQFP176 PCB Footprint  
208-BALL CABGA  
TOP VIEW  
A1 BALL  
PAD CORNER  
3
4 5 6 7 8 9 10  
11 12 13 14 15 16  
1
2
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
0.80  
NOTES:  
1. Dimensions in mm.  
2. Recommended PCB pad diameter: 0.30 mm.  
1.00  
208CABGA-FP  
Figure 44. LH79524: LFBGA208 PCB Footprint  
Preliminary data sheet  
Rev. 01 16 July 2007  
59  
LH79524/LH79525  
System-on-Chip  
NXP Semiconductors  
REVISION HISTORY  
Table 19. Revision history  
Document ID  
Release date Data sheet status  
20070716 Preliminary data  
sheet  
Change notice Supersedes  
LH79524_525_N_1  
-
9-29-06 LH79524-525 Data Sheet REV A1  
Modifications:  
• First NXP version based on the LH79524/LH79525 data sheet of 20060929  
60  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
LH79524/LH79525  
NXP Semiconductors  
9. Legal information  
9.1  
Data sheet status  
[1][2]  
[3]  
Document status  
Product status  
Definition  
Objective [short] data sheet  
Development  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of a NXP Semiconductors product can reasonably be expected to  
result in personal injury, death or severe property or environmental damage.  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
9.2  
Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the full  
data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
9.3  
Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without limitation  
specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the  
publication hereof.  
9.4  
Trademarks  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
10. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
© NXP B.V. 2007. All rights reserved.  
IMPORTANT NOTICE  
Dear customer,  
As from June 1st, 2007 NXP Semiconductors has acquired the LH7xxx ARM Microcontrollers from  
Sharp Microelectronics. The following changes are applicable to the attached data sheet. In data  
sheets where the previous Sharp or Sharp Corporation references remain, please use the new  
links as shown below.  
For www.sharpsma.com use www.nxp.com/microcontrollers  
for indicated sales addresses use salesaddresses@nxp.com (email)  
The copyright notice at the bottom of each page (or elsewhere in the document, depending on the  
version)  
- Copyright © (year) by SHARP Corporation.  
is replaced with:  
- © NXP B.V. (year). All rights reserved.  
If you have any questions related to the data sheet, please contact our nearest sales office via  
e-mail or phone (details via salesaddresses@nxp.com). Thank you for your cooperation and  
understanding, In addition to that the Annex A (attached hereto) is added to the document.  
NXP Semiconductors  
ANNEX A: Disclaimers (11)  
1. t001dis100.fm: General (DS, AN, UM)  
General — Information in this document is believed to be accurate and reliable. However, NXP  
Semiconductors does not give any representations or warranties, expressed or implied, as to the  
accuracy or completeness of such information and shall have no liability for the consequences of  
use of such information.  
2. t001dis101.fm: Right to make changes (DS, AN, UM)  
Right to make changes — NXP Semiconductors reserves the right to make changes to  
information published in this document, including without limitation specifications and product  
descriptions, at any time and without notice. This document supersedes and replaces all  
information supplied prior to the publication hereof.  
3. t001dis102.fm: Suitability for use (DS, AN, UM)  
Suitability for use — NXP Semiconductors products are not designed, authorized or warranted  
to be suitable for use in medical, military, aircraft, space or life support equipment, nor in  
applications where failure or malfunction of a NXP Semiconductors product can reasonably be  
expected to result in personal injury, death or severe property or environmental damage. NXP  
Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in  
such equipment or applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
4. t001dis103.fm: Applications (DS, AN, UM)  
Applications — Applications that are described herein for any of these products are for  
illustrative purposes only. NXP Semiconductors makes no representation or warranty that such  
applications will be suitable for the specified use without further testing or modification.  
5. t001dis104.fm: Limiting values (DS)  
Limiting values — Stress above one or more limiting values (as defined in the Absolute  
Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting  
values are stress ratings only and operation of the device at these or any other conditions above  
those given in the Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
6. t001dis105.fm: Terms and conditions of sale (DS)  
Terms and conditions of sale — NXP Semiconductors products are sold subject to the general  
terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms,  
including those pertaining to warranty, intellectual property rights infringement and limitation of  
liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any  
inconsistency or conflict between information in this document and such terms and conditions, the  
latter will prevail.  
7. t001dis106.fm: No offer to sell or license (DS)  
No offer to sell or license — Nothing in this document may be interpreted or construed as an  
offer to sell products that is open for acceptance or the grant, conveyance or implication of any  
license under any copyrights, patents or other industrial or intellectual property rights.  
8. t001dis107.fm: Hazardous voltage (DS, AN, UM; if applicable)  
Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit  
voltages up to 60 V may appear when operating this product, depending on settings and  
application. Customers incorporating or otherwise using these products in applications where  
such high voltages may appear during operation, assembly, test etc. of such application, do so at  
their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages  
resulting from or in connection with such high voltages. Furthermore, customers are drawn to  
safety standards (IEC 950, EN 60 950, CENELEC, ISO, etc.) and other (legal) requirements  
applying to such high voltages.  
9. t001dis108.2.fm: Bare die (DS; if applicable)  
Bare die (if applicable) — Products indicated as Bare Die are subject to separate specifications  
and are not tested in accordance with standard testing procedures. Product warranties and  
guarantees as stated in this document are not applicable to Bare Die Products unless such  
warranties and guarantees are explicitly stated in a valid separate agreement entered into by  
NXP Semiconductors and customer.  
10. t001dis109.fm: AEC unqualified products (DS, AN, UM; if applicable)  
AEC unqualified products — This product has not been qualified to the appropriate Automotive  
Electronics Council (AEC) standard Q100 or Q101 and should not be used in automotive critical  
applications, including but not limited to applications where failure or malfunction of an NXP  
Semiconductors product can reasonably be expected to result in personal injury, death or severe  
property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or  
use of NXP Semiconductors products in such equipment or applications and therefore such  
inclusion and/or use is for the customer’s own risk.  
11. t001dis110.fm: Suitability for use in automotive applications only (DS, AN, UM; if  
applicable)  
Suitability for use in automotive applications only — This NXP Semiconductors product has  
been developed for use in automotive applications only. The product is not designed, authorized  
or warranted to be suitable for any other use, including medical, military, aircraft, space or life  
support equipment, nor in applications where failure or malfunction of an NXP Semiconductors  
product can reasonably be expected to result in personal injury, death or severe property or  
environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore such inclusion and/or  
use is at the customer’s own risk.  

相关型号:

LH79524N0F100A0

System-on-Chip
NXP

LH79524N0F100A0,55

LH79524N0F100A0
NXP

LH79524N0F100A1

System-on-Chip
NXP

LH79525

16/32-bit System-on-Chip with Color LCD Controller
SHARP

LH79525

System-on-Chip
NXP

LH79525N0Q100A0

System-on-Chip
NXP

LH79525N0Q100A1

System-on-Chip
NXP

LH79525N0Q100A1,557

RISC Microcontroller, 32-Bit, FLASH, CMOS, PQFP176
NXP

LH79531

ARM RISC CORE ASSPs ARM7TDMI
ETC

LH79532/Y

ARM RISC CORE ASSPs ARM7TDMI
ETC

LH79533

ARM RISC CORE ASSPs ARM7TDMI
ETC

LH7A400

32-Bit System-on-Chip
SHARP