LH79525N0Q100A1,557 [NXP]

RISC Microcontroller, 32-Bit, FLASH, CMOS, PQFP176;
LH79525N0Q100A1,557
型号: LH79525N0Q100A1,557
厂家: NXP    NXP
描述:

RISC Microcontroller, 32-Bit, FLASH, CMOS, PQFP176

时钟 微控制器 外围集成电路
文件: 总55页 (文件大小:1133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MCF52235  
Rev. 10, 3/2011  
MCF52235  
LQFP-80  
LQFP-112  
14mm x 14mm  
20mm_x_20mm  
MCF52235 ColdFire  
Microcontroller Data Sheet  
MAPBGA-121  
12mm_x_12mm  
Supports MCF52230, MCF52231,  
MCF52232, MCF52233, MCF52234,  
MCF52235, and MCF52236  
®
The MCF52235 is a member of the ColdFire family of  
• Two 16-bit periodic interrupt timers (PITs)  
• Real-time clock (RTC) module  
• Programmable software watchdog timer  
• Two interrupt controllers providing every peripheral with a  
unique selectable-priority interrupt vector plus seven  
external interrupts with fixed levels/priorities  
• Clock module with support for crystal or external oscillator  
and integrated phase-locked loop (PLL)  
reduced instruction set computing (RISC) microcontrollers.  
This document provides an overview of the MCF52235  
microcontroller family, focusing on its highly integrated and  
diverse feature set.  
This 32-bit device is based on the Version 2 ColdFire core  
operating at a frequency up to 60 MHz, offering high  
performance and low power consumption. On-chip memories  
connected tightly to the processor core include up to 256  
Kbytes of Flash and 32 Kbytes of static random access  
memory (SRAM). On-chip modules include:  
• V2 ColdFire core providing 56 Dhrystone 2.1 MIPS @ 60  
MHz executing out of on-chip Flash memory using  
enhanced multiply accumulate (EMAC) and hardware  
divider  
• Test access/debug port (JTAG, BDM)  
• Enhanced Multiply Accumulate Unit (EMAC) and  
hardware divide module  
• Cryptographic Acceleration Unit (CAU) coprocessor  
• Fast Ethernet Controller (FEC)  
• On-chip Ethernet Transceiver (EPHY)  
• FlexCAN controller area network (CAN) module  
• Three universal asynchronous/synchronous  
receiver/transmitters (UARTs)  
• Inter-integrated circuit (I2C™) bus controller  
• Queued serial peripheral interface (QSPI) module  
• Eight-channel 10- or 12-bit fast analog-to-digital converter  
(ADC)  
• Four channel direct memory access (DMA) controller  
• Four 32-bit input capture/output compare timers with  
DMA support (DTIM)  
• Four-channel general-purpose timer (GPT) capable of  
input capture/output compare, pulse width modulation  
(PWM) and pulse accumulation  
• Eight/Four-channel 8/16-bit pulse width modulation timers  
(two adjacent 8-bit PWMs can be concatenated to form a  
single 16-bit timer)  
Freescale reserves the right to change the detail specifications as may be required to permit  
improvements in the design of its products.  
© Freescale Semiconductor, Inc., 2011. All rights reserved.  
Table of Contents  
1
MCF52235 Family Configurations . . . . . . . . . . . . . . . . . . . . . .3  
Figure 14.Test Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 15.Boundary Scan (JTAG) Timing . . . . . . . . . . . . . . . . . 45  
Figure 16.Test Access Port Timing . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 17.TRST Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 18.Real-Time Trace AC Timing. . . . . . . . . . . . . . . . . . . . 46  
Figure 19.BDM Serial Port AC Timing . . . . . . . . . . . . . . . . . . . . 46  
1.1 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.3 Reset Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
1.4 PLL and Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . .22  
1.5 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
1.6 External Interrupt Signals . . . . . . . . . . . . . . . . . . . . . . .22  
1.7 Queued Serial Peripheral Interface (QSPI). . . . . . . . . .23  
1.8 Fast Ethernet Controller EPHY Signals . . . . . . . . . . . .23  
1.9 I2C I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
1.10 UART Module Signals. . . . . . . . . . . . . . . . . . . . . . . . . .24  
1.11 DMA Timer Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
1.12 ADC Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
1.13 General Purpose Timer Signals . . . . . . . . . . . . . . . . . .25  
1.14 Pulse Width Modulator Signals. . . . . . . . . . . . . . . . . . .25  
1.15 Debug Support Signals. . . . . . . . . . . . . . . . . . . . . . . . .25  
1.16 EzPort Signal Descriptions . . . . . . . . . . . . . . . . . . . . . .27  
1.17 Power and Ground Pins . . . . . . . . . . . . . . . . . . . . . . . .27  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
2.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
2.2 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
2.3 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . .32  
2.4 Phase Lock Loop Electrical Specifications . . . . . . . . . .33  
2.5 General Purpose I/O Timing . . . . . . . . . . . . . . . . . . . . .35  
2.6 Reset Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
2.7 I2C Input/Output Timing Specifications. . . . . . . . . . . . .36  
2.8 EPHY Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
2.9 Analog-to-Digital Converter (ADC) Parameters . . . . . .40  
2.10 DMA Timers Timing Specifications. . . . . . . . . . . . . . . .42  
2.11 EzPort Electrical Specifications . . . . . . . . . . . . . . . . . .42  
2.12 QSPI Electrical Specifications. . . . . . . . . . . . . . . . . . . .43  
2.13 JTAG and Boundary Scan Timing. . . . . . . . . . . . . . . . .44  
2.14 Debug AC Timing Specifications. . . . . . . . . . . . . . . . . .46  
Mechanical Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . .47  
3.1 80-pin LQFP Package. . . . . . . . . . . . . . . . . . . . . . . . . .47  
3.2 112-pin LQFP Package. . . . . . . . . . . . . . . . . . . . . . . . .48  
3.3 121 MAPBGA Package. . . . . . . . . . . . . . . . . . . . . . . . .51  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
List of Tables  
Table 1. MCF52235 Family Configurations . . . . . . . . . . . . . . . . . 3  
Table 2. Orderable Part Number Summary. . . . . . . . . . . . . . . . 13  
Table 3. Pin Functions by Primary and Alternate Purpose . . . . 17  
Table 4. Reset Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 5. PLL and Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 6. Mode Selection Signals. . . . . . . . . . . . . . . . . . . . . . . . 22  
Table 7. External Interrupt Signals . . . . . . . . . . . . . . . . . . . . . . 22  
Table 8. Queued Serial Peripheral Interface (QSPI) Signals. . . 23  
Table 9. Fast Ethernet Controller (FEC) Signals . . . . . . . . . . . . 23  
Table 10.I2C I/O Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 11.UART Module Signals . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 12.DMA Timer Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 13.ADC Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 14.GPT Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 15.PWM Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 16.Debug Support Signals . . . . . . . . . . . . . . . . . . . . . . . . 25  
Table 17.EzPort Signal Descriptions . . . . . . . . . . . . . . . . . . . . . 27  
Table 18.Power and Ground Pins. . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 19.Absolute Maximum Ratings, . . . . . . . . . . . . . . . . . . . 29  
Table 20.Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 21.ESD Protection Characteristics . . . . . . . . . . . . . . . . . . 31  
Table 22.DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . 32  
Table 23.Active Current Consumption Specifications. . . . . . . . . 33  
Table 24.Current Consumption Specifications in  
2
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 25.PLL Electrical Specifications . . . . . . . . . . . . . . . . . . . . 33  
Table 26.GPIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Table 27.Reset and Configuration Override Timing . . . . . . . . . . 35  
Table 28.I2C Input Timing Specifications between  
3
4
I2C_SCL and I2C_SDA . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 29. I2C Output Timing Specifications between  
List of Figures  
I2C_SCL and I2C_SDA . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 1.MCF52235 Block Diagram . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2.80-pin LQFP Pin Assignments . . . . . . . . . . . . . . . . . . 14  
Figure 3.112-pin LQFP Pin Assignments . . . . . . . . . . . . . . . . . 15  
Figure 4.121 MAPBGA Pin Assignments . . . . . . . . . . . . . . . . . 16  
Figure 5.Suggested Connection Scheme for Power and Ground 28  
Figure 6.GPIO Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 7.RSTI and Configuration Override Timing . . . . . . . . . . 36  
Figure 8.I2C Input/Output Timings . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 9.EPHY Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 10.10BASE-T SQE (Heartbeat) Timing . . . . . . . . . . . . . 39  
Figure 11.10BASE-T Jab and Unjab Timing . . . . . . . . . . . . . . . 39  
Figure 12.Equivalent Circuit for A/D Loading. . . . . . . . . . . . . . . 42  
Figure 13.QSPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 30.EPHY Timing Parameters . . . . . . . . . . . . . . . . . . . . . . 38  
Table 31.10BASE-T SQE (Heartbeat) Timing Parameters . . . . 38  
Table 32.10BASE-T Jab and Unjab Timing Parameters . . . . . . 39  
Table 33.10BASE-T Transceiver Characteristics . . . . . . . . . . . . 40  
Table 34.100BASE-TX Transceiver Characteristics . . . . . . . . . . 40  
Table 35.ADC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 36.Timer Module AC Timing Specifications . . . . . . . . . . . 42  
Table 37.EzPort Electrical Specifications. . . . . . . . . . . . . . . . . . 42  
Table 38.QSPI Modules AC Timing Specifications. . . . . . . . . . . 43  
Table 39.JTAG and Boundary Scan Timing . . . . . . . . . . . . . . . . 44  
Table 40.Debug AC Timing Specification. . . . . . . . . . . . . . . . . . 46  
Table 41.Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
2
Freescale Semiconductor  
MCF52235 Family Configurations  
1 MCF52235 Family Configurations  
Table 1. MCF52235 Family Configurations  
Module  
52230  
52231  
52232  
52233  
52234  
52235  
52236  
Version 2 ColdFire Core with EMAC  
(Enhanced Multiply-Accumulate Unit)  
System Clock (MHz)  
60  
56  
60  
56  
50  
46  
60  
56  
60  
56  
60  
56  
50  
46  
Performance (Dhrystone 2.1 MIPS)  
Flash / Static RAM (SRAM)  
128/32  
Kbytes  
128/32  
Kbytes  
128/32  
Kbytes  
256/32  
Kbytes  
256/32  
Kbytes  
256/32  
Kbytes  
256/32  
Kbytes  
Interrupt Controllers (INTC0/INTC1)  
Fast Analog-to-Digital Converter (ADC)  
Random Number Generator and Crypto  
Acceleration Unit (CAU)  
FlexCAN 2.0B Module  
Fast Ethernet Controller (FEC) with on-chip  
interface (EPHY)  
Four-channel Direct-Memory Access (DMA)  
Software Watchdog Timer (WDT)  
Programmable Interrupt Timer  
Four-Channel General Purpose Timer  
32-bit DMA Timers  
2
4
3
2
4
3
2
4
3
2
4
3
2
4
3
2
4
3
2
4
3
QSPI  
UART(s)  
I2C  
Eight/Four-channel 8/16-bit PWM Timer  
General Purpose I/O Module (GPIO)  
Chip Configuration and Reset Controller  
Module  
Background Debug Mode (BDM)  
JTAG - IEEE 1149.1 Test Access Port1  
Package  
80 LQFP 80 LQFP 80 LQFP 80 LQFP 112 LQFP 112 LQFP 80 LQFP  
112 LQFP 112 LQFP 112 LQFP 121 121  
MAPBGA MAPBGA  
1
The full debug/trace interface is available only on the 112- and 121-pin packages. A reduced debug interface is bonded on the  
80-pin package.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
3
MCF52235 Family Configurations  
1.1  
Block Diagram  
The MCF52235 (or its variants) comes in 80- and 112-pin low-profile quad flat pack packages (LQFP) and a 121 MAPBGA,  
and operates in single-chip mode only. Figure 1 shows a top-level block diagram of the MCF52235.  
EzPD  
EzPQ  
EzPCK  
EzPCS  
EPHY_TX  
EPHY_RX  
EzPort  
Arbiter  
GPTn  
QSPI_DIN,  
QSPI_DOUT  
Interrupt  
Controller 1  
Interrupt  
Controller 2  
EPHY  
QSPI_CLK,  
QSPI_CSn  
SDA  
Fast  
SCL  
Ethernet  
Controller  
(FEC)  
UTXDn  
URXDn  
URTSn  
UCTSn  
DTINn/DTOUTn  
CANRX  
CANTX  
PWMn  
UART  
0
UART  
1
UART  
2
I2C  
QSPI  
RTC  
4 CH DMA  
DTIM  
0
DTIM  
1
DTIM  
2
DTIM  
3
To/From PADI  
MUX  
JTAG_EN  
V2 ColdFire CPU  
CAU  
IFP OEP  
EMAC  
PMM  
CIM  
JTAG  
TAP  
32 Kbytes  
SRAM  
256 Kbytes  
Flash  
(32K16)4  
RSTIN  
PORTS  
(GPIO)  
AN[7:0]  
ADC  
RSTOUT  
(4K16)4  
VRH VRL  
PLL  
CLKGEN  
Edge  
Port 1  
PWM  
PIT1  
FlexCAN  
Edge  
Port 2  
EXTAL XTAL CLKOUT  
GPT  
PIT0  
RNGA  
To/From Interrupt Controller  
Figure 1. MCF52235 Block Diagram  
1.2  
Features  
This document contains information on a new product under development. Freescale reserves the right to change or discontinue  
this product without notice. Specifications and information herein are subject to change without notice.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
4
Freescale Semiconductor  
MCF52235 Family Configurations  
1.2.1 Feature Overview  
The MCF52235 family includes the following features:  
Version 2 ColdFire variable-length RISC processor core  
— Static operation  
— 32-bit address and data paths on-chip  
— Up to 60 MHz processor core frequency  
— Sixteen general-purpose, 32-bit data and address registers  
— Implements ColdFire ISA_A with extensions to support the user stack pointer register and four new instructions  
for improved bit processing (ISA_A+)  
— Enhanced Multiply-Accumulate (EMAC) unit with 32-bit accumulator to support 16 16 32 or 32 32 32  
operations  
— Cryptography Acceleration Unit (CAU)  
Tightly-coupled coprocessor to accelerate software-based encryption and message digest functions  
FIPS-140 compliant random number generator  
— Support for DES, 3DES, AES, MD5, and SHA-1 algorithms  
— Illegal instruction decode that allows for 68K emulation support  
System debug support  
— Real time trace for determining dynamic execution path  
— Background debug mode (BDM) for in-circuit debugging (DEBUG_B+)  
— Real time debug support, with six hardware breakpoints (4 PC, 1 address and 1 data) that can be configured into  
a 1- or 2-level trigger  
On-chip memories  
— Up to 32 Kbytes of dual-ported SRAM on CPU internal bus, supporting core and DMA access with standby power  
supply support  
— Up to 256 Kbytes of interleaved Flash memory supporting 2-1-1-1 accesses  
Power management  
— Fully static operation with processor sleep and whole chip stop modes  
— Rapid response to interrupts from the low-power sleep mode (wake-up feature)  
— Clock enable/disable for each peripheral when not used  
Fast Ethernet Controller (FEC)  
— 10/100 BaseT/TX capability, half duplex or full duplex  
— On-chip transmit and receive FIFOs  
— Built-in dedicated DMA controller  
— Memory-based flexible descriptor rings  
On-chip Ethernet Transceiver (EPHY)  
— Digital adaptive equalization  
— Supports auto-negotiation  
— Baseline wander correction  
— Full-/Half-duplex support in all modes  
— Loopback modes  
— Supports MDIO preamble suppression  
— Jumbo packet  
FlexCAN 2.0B module  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
5
MCF52235 Family Configurations  
— Based on and includes all existing features of the Freescale TouCAN module  
— Full implementation of the CAN protocol specification version 2.0B  
Standard Data and Remote Frames (up to 109 bits long)  
Extended Data and Remote Frames (up to 127 bits long)  
0–8 bytes data length  
Programmable bit rate up to 1 Mbit/sec  
— Flexible Message Buffers (MBs), totalling up to 16 message buffers of 0–8 byte data length each, configurable as  
Rx or Tx, all supporting standard and extended messages  
— Unused Message Buffer space can be used as general purpose RAM space  
— Listen only mode capability  
— Content-related addressing  
— No read/write semaphores required  
— Three programmable mask registers: global for MBs 0-13, special for MB14, and special for MB15  
— Programmable transmit-first scheme: lowest ID or lowest buffer number  
— Time stamp based on 16-bit free-running timer  
— Global network time, synchronized by a specific message  
— Maskable interrupts  
Three universal asynchronous/synchronous receiver transmitters (UARTs)  
— 16-bit divider for clock generation  
— Interrupt control logic with maskable interrupts  
— DMA support  
— Data formats can be 5, 6, 7 or 8 bits with even, odd or no parity  
— Up to 2 stop bits in 1/16 increments  
— Error-detection capabilities  
— Modem support includes request-to-send (RTS) and clear-to-send (CTS) lines for two UARTs  
— Transmit and receive FIFO buffers  
I2C module  
— Interchip bus interface for EEPROMs, LCD controllers, A/D converters, and keypads  
— Fully compatible with industry-standard I2C bus  
— Master and slave modes support multiple masters  
— Automatic interrupt generation with programmable level  
Queued serial peripheral interface (QSPI)  
— Full-duplex, three-wire synchronous transfers  
— Up to four chip selects available  
— Master mode operation only  
— Programmable bit rates up to half the CPU clock frequency  
— Up to 16 pre-programmed transfers  
Fast analog-to-digital converter (ADC)  
— Eight analog input channels  
— 12-bit resolution  
— Minimum 1.125 s conversion time  
— Simultaneous sampling of two channels for motor control applications  
— Single-scan or continuous operation  
— Optional interrupts on conversion complete, zero crossing (sign change), or under/over low/high limit  
— Unused analog channels can be used as digital I/O  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
6
Freescale Semiconductor  
MCF52235 Family Configurations  
Four 32-bit DMA timers  
— 17-ns resolution at 60 MHz  
— Programmable sources for clock input, including an external clock option  
— Programmable prescaler  
— Input capture capability with programmable trigger edge on input pin  
— Output compare with programmable mode for the output pin  
— Free run and restart modes  
— Maskable interrupts on input capture or output compare  
— DMA trigger capability on input capture or output compare  
Four-channel general purpose timers  
— 16-bit architecture  
— Programmable prescaler  
— Output pulse widths variable from microseconds to seconds  
— Single 16-bit input pulse accumulator  
— Toggle-on-overflow feature for pulse-width modulator (PWM) generation  
— One dual-mode pulse accumulation channel  
Pulse-width modulation timer  
— Operates as eight channels with 8-bit resolution or four channels with 16-bit resolution  
— Programmable period and duty cycle  
— Programmable enable/disable for each channel  
— Software selectable polarity for each channel  
— Period and duty cycle are double buffered. Change takes effect when the end of the current period is reached  
(PWM counter reaches zero) or when the channel is disabled.  
— Programmable center or left aligned outputs on individual channels  
— Four clock sources (A, B, SA, and SB) provide for a wide range of frequencies  
— Emergency shutdown  
Real-Time Clock (RTC)  
— Maintains system time-of-day clock  
— Provides stopwatch and alarm interrupt functions  
Two periodic interrupt timers (PITs)  
— 16-bit counter  
— Selectable as free running or count down  
Software watchdog timer  
— 32-bit counter  
— Low power mode support  
Clock Generation Features  
— Crystal input  
— On-chip PLL  
— Provides clock for integrated EPHY  
Dual Interrupt Controllers (INTC0/INTC1)  
— Support for multiple interrupt sources organized as follows:  
Fully-programmable interrupt sources for each peripheral  
7 fixed-level interrupt sources  
Seven external interrupt signals  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
7
MCF52235 Family Configurations  
— Unique vector number for each interrupt source  
— Ability to mask any individual interrupt source or all interrupt sources (global mask-all)  
— Support for hardware and software interrupt acknowledge (IACK) cycles  
— Combinatorial path to provide wake-up from low power modes  
DMA controller  
— Four fully programmable channels  
— Dual-address transfer support with 8-, 16-, and 32-bit data capability, along with support for 16-byte (4 x 32-bit)  
burst transfers  
— Source/destination address pointers that can increment or remain constant  
— 24-bit byte transfer counter per channel  
— Auto-alignment transfers supported for efficient block movement  
— Bursting and cycle steal support  
— Software-programmable DMA requesters for the UARTs (3) and 32-bit timers (4)  
Reset  
— Separate reset in and reset out signals  
— Seven sources of reset:  
Power-on reset (POR)  
External  
Software  
Watchdog  
Loss of clock  
Loss of lock  
Low-voltage detection (LVD)  
— Status flag indication of source of last reset  
Chip integration module (CIM)  
— System configuration during reset  
— Selects one of three clock modes  
— Configures output pad drive strength  
— Unique part identification number and part revision number  
General purpose I/O interface  
— Up to 56 bits of general purpose I/O  
— Bit manipulation supported via set/clear functions  
— Programmable drive strengths  
— Unused peripheral pins may be used as extra GPIO  
JTAG support for system level board testing  
1.2.2  
V2 Core Overview  
The version 2 ColdFire processor core is comprised of two separate pipelines decoupled by an instruction buffer. The two-stage  
instruction fetch pipeline (IFP) is responsible for instruction-address generation and instruction fetch. The instruction buffer is  
a first-in-first-out (FIFO) buffer that holds prefetched instructions awaiting execution in the operand execution pipeline (OEP).  
The OEP includes two pipeline stages. The first stage decodes instructions and selects operands (DSOC); the second stage  
(AGEX) performs instruction execution and calculates operand effective addresses, if needed.  
The V2 core implements the ColdFire instruction set architecture revision A+ with added support for a separate user stack  
pointer register and four new instructions to assist in bit processing. Additionally, the MCF52235 core includes the enhanced  
multiply-accumulate (EMAC) unit for improved signal processing capabilities. The EMAC implements a three-stage arithmetic  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
8
Freescale Semiconductor  
MCF52235 Family Configurations  
pipeline, optimized for 1616 bit operations, with support for one 32-bit accumulator. Supported operands include 16- and  
32-bit signed and unsigned integers, signed fractional operands, and a complete set of instructions to process these data types.  
The EMAC provides support for execution of DSP operations within the context of a single processor at a minimal hardware  
cost.  
1.2.3  
Integrated Debug Module  
The ColdFire processor core debug interface is provided to support system debugging in conjunction with low-cost debug and  
emulator development tools. Through a standard debug interface, access debug information and real-time tracing capability is  
provided on 112-and 121-lead packages. This allows the processor and system to be debugged at full speed without the need  
for costly in-circuit emulators.  
The on-chip breakpoint resources include a total of nine programmable 32-bit registers: an address and an address mask register,  
a data and a data mask register, four PC registers, and one PC mask register. These registers can be accessed through the  
dedicated debug serial communication channel or from the processor’s supervisor mode programming model. The breakpoint  
registers can be configured to generate triggers by combining the address, data, and PC conditions in a variety of single- or  
dual-level definitions. The trigger event can be programmed to generate a processor halt or initiate a debug interrupt exception.  
The MCF52235 implements revision B+ of the ColdFire Debug Architecture.  
The MCF52235’s interrupt servicing options during emulator mode allow real-time critical interrupt service routines to be  
serviced while processing a debug interrupt event, thereby ensuring that the system continues to operate even during debugging.  
To support program trace, the V2 debug module provides processor status (PST[3:0]) and debug data (DDATA[3:0]) ports.  
These buses and the PSTCLK output provide execution status, captured operand data, and branch target addresses defining  
processor activity at the CPU’s clock rate. The MCF52235 includes a new debug signal, ALLPST. This signal is the logical  
AND of the processor status (PST[3:0]) signals and is useful for detecting when the processor is in a halted state (PST[3:0] =  
1111).  
The full debug/trace interface is available only on the 112 and 121-pin packages. However, every product features the dedicated  
debug serial communication channel (DSI, DSO, DSCLK) and the ALLPST signal.  
1.2.4  
JTAG  
The MCF52235 supports circuit board test strategies based on the Test Technology Committee of IEEE and the Joint Test Action  
Group (JTAG). The test logic includes a test access port (TAP) consisting of a 16-state controller, an instruction register, and  
three test registers (a 1-bit bypass register, a 256-bit boundary-scan register, and a 32-bit ID register). The boundary scan register  
links the device’s pins into one shift register. Test logic, implemented using static logic design, is independent of the device  
system logic.  
The MCF52235 implementation can do the following:  
Perform boundary-scan operations to test circuit board electrical continuity  
Sample MCF52235 system pins during operation and transparently shift out the result in the boundary scan register  
Bypass the MCF52235 for a given circuit board test by effectively reducing the boundary-scan register to a single bit  
Disable the output drive to pins during circuit-board testing  
Drive output pins to stable levels  
1.2.5  
On-Chip Memories  
1.2.5.1  
SRAM  
The dual-ported SRAM module provides a general-purpose 16- or 32-Kbyte memory block that the ColdFire core can access  
in a single cycle. The location of the memory block can be set to any 16- or 32-Kbyte boundary within the 4-Gbyte address  
space. This memory is ideal for storing critical code or data structures and for use as the system stack. Because the SRAM  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
9
MCF52235 Family Configurations  
module is physically connected to the processor's high-speed local bus, it can quickly service core-initiated accesses or  
memory-referencing commands from the debug module.  
The SRAM module is also accessible by the DMA. The dual-ported nature of the SRAM makes it ideal for implementing  
applications with double-buffer schemes, where the processor and a DMA device operate in alternate regions of the SRAM to  
maximize system performance.  
1.2.5.2  
Flash  
The ColdFire flash module (CFM) is a non-volatile memory (NVM) module that connects to the processor’s high-speed local  
bus. The CFM is constructed with four banks of 32 K16-bit flash arrays to generate 256 Kbytes of 32-bit flash memory. These  
arrays serve as electrically erasable and programmable, non-volatile program and data memory. The flash memory is ideal for  
program and data storage for single-chip applications, allowing for field reprogramming without requiring an external high  
voltage source. The CFM interfaces to the ColdFire core through an optimized read-only memory controller which supports  
interleaved accesses from the 2-cycle flash arrays. A backdoor mapping of the flash memory is used for all program, erase, and  
verify operations, as well as providing a read datapath for the DMA. Flash memory may also be programmed via the EzPort,  
which is a serial flash programming interface that allows the flash to be read, erased and programmed by an external controller  
in a format compatible with most SPI bus flash memory chips. This allows easy device programming via Automated Test  
Equipment or bulk programming tools.  
1.2.6  
Cryptography Acceleration Unit  
The MCF52235 device incorporates two hardware accelerators for cryptographic functions. First, the CAU is a coprocessor  
tightly-coupled to the V2 ColdFire core that implements a set of specialized operations to increase the throughput of  
software-based encryption and message digest functions, specifically the DES, 3DES, AES, MD5 and SHA-1 algorithms.  
Second, a random number generator provides FIPS-140 compliant 32-bit values to security processing routines. Both modules  
supply critical acceleration to software-based cryptographic algorithms at a minimal hardware cost.  
1.2.7  
Power Management  
The MCF52235 incorporates several low-power modes of operation which are entered under program control and exited by  
several external trigger events. An integrated power-on reset (POR) circuit monitors the input supply and forces an MCU reset  
as the supply voltage rises. The low voltage detector (LVD) monitors the supply voltage and is configurable to force a reset or  
interrupt condition if it falls below the LVD trip point.  
1.2.8  
FlexCAN  
The FlexCAN module is a communication controller implementing version 2.0 of the CAN protocol parts A and B. The CAN  
protocol can be used as an industrial control serial data bus, meeting the specific requirements of reliable operation in a harsh  
EMI environment with high bandwidth. This instantiation of FlexCAN has 16 message buffers.  
1.2.9  
UARTs  
The MCF52235 has three full-duplex UARTs that function independently. The three UARTs can be clocked by the system bus  
clock, eliminating the need for an external clock source. On smaller packages, the third UART is multiplexed with other digital  
I/O functions.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
10  
Freescale Semiconductor  
MCF52235 Family Configurations  
1.2.10 I2C Bus  
The I2C bus is a two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange and minimizes the  
interconnection between devices. This bus is suitable for applications requiring occasional communications over a short  
distance between many devices on a circuit board.  
1.2.11 QSPI  
The queued serial peripheral interface (QSPI) provides a synchronous serial peripheral interface with queued transfer capability.  
It allows up to 16 transfers to be queued at once, minimizing the need for CPU intervention between transfers.  
1.2.12 Fast ADC  
The Fast ADC consists of an eight-channel input select multiplexer and two independent sample and hold (S/H) circuits feeding  
separate 10- or 12-bit ADCs. The two separate converters store their results in accessible buffers for further processing.  
The ADC can be configured to perform a single scan and halt, perform a scan whenever triggered, or perform a programmed  
scan sequence repeatedly until manually stopped.  
The ADC can be configured for sequential or simultaneous conversion. When configured for sequential conversions, up to eight  
channels can be sampled and stored in any order specified by the channel list register. Both ADCs may be required during a  
scan, depending on the inputs to be sampled.  
During a simultaneous conversion, both S/H circuits are used to capture two different channels at the same time. This  
configuration requires that a single channel may not be sampled by both S/H circuits simultaneously.  
Optional interrupts can be generated at the end of the scan sequence if a channel is out of range (measures below the low  
threshold limit or above the high threshold limit set in the limit registers) or at several different zero crossing conditions.  
1.2.13 DMA Timers (DTIM0–DTIM3)  
There are four independent, DMA transfer capable 32-bit timers (DTIM0, DTIM1, DTIM2, and DTIM3) on the each device.  
Each module incorporates a 32-bit timer with a separate register set for configuration and control. The timers can be configured  
to operate from the system clock or from an external clock source using one of the DTINx signals. If the system clock is selected,  
it can be divided by 16 or 1. The input clock is further divided by a user-programmable 8-bit prescaler which clocks the actual  
timer counter register (TCRn). Each of these timers can be configured for input capture or reference (output) compare mode.  
Timer events may optionally cause interrupt requests or DMA transfers.  
1.2.14 General Purpose Timer (GPT)  
The general purpose timer (GPT) is a 4-channel timer module consisting of a 16-bit programmable counter driven by a 7-stage  
programmable prescaler. Each of the four channels can be configured for input capture or output compare. Additionally, one of  
the channels, channel 3, can be configured as a pulse accumulator.  
A timer overflow function allows software to extend the timing capability of the system beyond the 16-bit range of the counter.  
The input capture and output compare functions allow simultaneous input waveform measurements and output waveform  
generation. The input capture function can capture the time of a selected transition edge. The output compare function can  
generate output waveforms and timer software delays. The 16-bit pulse accumulator can operate as a simple event counter or a  
gated time accumulator.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
11  
MCF52235 Family Configurations  
1.2.15 Periodic Interrupt Timers (PIT0 and PIT1)  
The two periodic interrupt timers (PIT0 and PIT1) are 16-bit timers that provide interrupts at regular intervals with minimal  
processor intervention. Each timer can count down from the value written in its PIT modulus register or can be a free-running  
down-counter.  
1.2.16 Pulse Width Modulation (PWM) Timers  
The MCF52235 has an 8-channel, 8-bit PWM timer. Each channel has a programmable period and duty cycle as well as a  
dedicated counter. Each of the modulators can create independent continuous waveforms with software-selectable duty rates  
from 0 to 100%. The PWM outputs have programmable polarity and can be programmed as left-aligned outputs or  
center-aligned outputs. For higher period and duty cycle resolution, each pair of adjacent channels ([7:6], [5:4], [3:2], and [1:0])  
can be concatenated to form a single 16-bit channel. The module can, therefore, be configured to support 8/0, 6/1, 4/2, 2/3, or  
0/4 8-/16-bit channels.  
1.2.17 Software Watchdog Timer  
The watchdog timer is a 32-bit timer that facilitates recovery from runaway code. The watchdog counter is a free-running  
down-counter that generates a reset on underflow. To prevent a reset, software must periodically restart the countdown.  
1.2.18 Phase Locked Loop (PLL)  
The clock module contains a crystal oscillator, 8 MHz on-chip relaxation oscillator (OCO), phase-locked loop (PLL), reduced  
frequency divider (RFD), low-power divider status/control registers, and control logic. To improve noise immunity, the PLL,  
crystal oscillator, and relaxation oscillator have their own power supply inputs: VDDPLL and VSSPLL. All other circuits are  
powered by the normal supply pins, VDD and VSS.  
1.2.19 Interrupt Controller (INTC0/INTC1)  
There are two interrupt controllers on the MCF52235. These interrupt controllers are organized as seven levels with up to nine  
interrupt sources per level. Each interrupt source has a unique interrupt vector, and provide each peripheral with all necessary  
interrupts. Each internal interrupt has a programmable level [1-7] and priority within the level. The seven external interrupts  
have fixed levels/priorities.  
1.2.20 DMA Controller  
The direct memory access (DMA) controller provides an efficient way to move blocks of data with minimal processor  
intervention. It has four channels that allow byte, word, longword, or 16-byte burst line transfers. These transfers are triggered  
by software explicitly setting a DCRn[START] bit or by the occurrence of certain UART or DMA timer events.  
1.2.21 Reset  
The reset controller determines the source of reset, asserts the appropriate reset signals to the system, and keeps track of what  
caused the last reset. There are seven sources of reset:  
External reset input  
Power-on reset (POR)  
Watchdog timer  
Phase locked-loop (PLL) loss of lock  
PLL loss of clock  
Software  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
12  
Freescale Semiconductor  
MCF52235 Family Configurations  
Low-voltage detector (LVD)  
Control of the LVD and its associated reset and interrupt are managed by the reset controller. Other registers provide status flags  
indicating the last source of reset and a control bit for software assertion of the RSTO pin.  
1.2.22 GPIO  
Nearly all pins on the MCF52235 have general purpose I/O capability in addition to their primary functions and are grouped  
into 8-bit ports. Some ports do not utilize all 8 bits. Each port has registers that configure, monitor, and control the port pins.  
1.2.23 Part Numbers and Packaging  
Table 2. Orderable Part Number Summary  
Freescale Part  
Number  
Speed Flash/SRAM  
Temp range  
Description  
Package  
(MHz)  
(Kbytes)  
(C)  
MCF52230CAF60  
MCF52230CAL60  
MCF52231CAF60  
MCF52231CAL60  
MCF52232CAF50  
MCF52232AF50  
MCF52230 Microcontroller  
MCF52230 Microcontroller  
60  
60  
60  
60  
50  
50  
60  
60  
60  
60  
60  
60  
60  
60  
60  
50  
50  
50  
128 / 32  
128 / 32  
128 / 32  
128 / 32  
128 / 32  
128 / 32  
256 / 32  
256 / 32  
256 / 32  
256 / 32  
256 / 32  
256 / 32  
256 / 32  
256 / 32  
256 / 32  
256 / 32  
256 / 32  
256 / 32  
80 LQFP  
112 LQFP  
80 LQFP  
112 LQFP  
80 LQFP  
80 LQFP  
80 LQFP  
112 LQFP  
112 LQFP  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
0 to +70  
MCF52231 Microcontroller, FlexCAN  
MCF52231 Microcontroller, FlexCAN  
MCF52232 Microcontroller  
MCF52232 Microcontroller  
MCF52233CAF60  
MCF52233CAL60  
MCF52233CAL60A  
MCF52233CVM60  
MCF52234CAL60  
MCF52234CVM60  
MCF52233 Microcontroller  
-40 to +85  
-40 to +85  
-40 to +85  
MCF52233 Microcontroller  
MCF52233 Microcontroller  
MCF52233 Microcontroller  
121 MAPBGA -40 to +85  
112 LQFP -40 to +85  
121 MAPBGA -40 to +85  
MCF52234 Microcontroller, FlexCAN  
MCF52234 Microcontroller, FlexCAN  
MCF52235CAL60 MCF52235 Microcontroller, FlexCAN, CAU, RNGA  
MCF52235CAL60A MCF52235 Microcontroller, FlexCAN, CAU, RNGA  
MCF52235CVM60 MCF52235 Microcontroller, FlexCAN, CAU, RNGA  
112 LQFP  
112 LQFP  
-40 to +85  
-40 to +85  
121 MAPBGA -40 to +85  
MCF52236CAF50  
MCF52236AF50  
MCF52236AF50A  
MCF52236 Microcontroller  
MCF52236 Microcontroller  
MCF52236 Microcontroller  
80 LQFP  
80 LQFP  
80 LQFP  
-40 to +85  
0 to +70  
0 to +70  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
13  
MCF52235 Family Configurations  
1.2.24 Package Pinouts  
Figure 2 shows the pinout configuration for the 80-pin LQFP.  
TCLK/PSTCLK  
TMS/BKPT  
RCON/EZPCS  
TDI/DSI  
TDO/DSO  
TRST/DSCLK  
ALLPST  
DTIN0/DTOUT0  
DTIN1/DTOUT1  
VDDX1  
ACTLED  
LNKLED  
VDDR  
SPDLED  
1
2
3
4
5
6
7
8
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
PHY_VSSRX  
PHY_VDDRX  
PHY_RXN  
PHY_RXP  
PHY_VSSTX  
PHY_TXN  
PHY_TXP  
PHY_VDDTX  
PHY_VDDA  
PHY_VSSA  
PHY_RBIAS  
VDD2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
80-pin  
LQFP  
VSSX1  
JTAG_EN  
DTIN2/DTOUT2  
DTIN3/DTOUT3  
URTS1  
UCTS1  
URTS0  
UCTS0  
SYNCB  
VSS2  
DUPLED  
COLLED  
IRQ11  
SYNCA  
Figure 2. 80-pin LQFP Pin Assignments  
Figure 3 shows the pinout configuration for the 112-pin LQFP.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
14  
Freescale Semiconductor  
MCF52235 Family Configurations  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
1
2
3
4
5
6
7
8
ACTLED  
LNKLED  
VDDR  
SPDLED  
PST3  
PST2  
PST1  
TCLK/PSTCLK  
TMS/BKPT  
RCON/EZPCS  
TDI/DSI  
TDO/DSO  
TRST/DSCLK  
ALLPST  
DTIN0/DTOUT0  
DTIN1/DTOUT1  
IRQ8  
PST0  
9
PHY_VSSRX  
PHY_VDDRX  
PHY_RXN  
PHY_RXP  
PHY_VSSTX  
PHY_TXN  
PHY_TXP  
PHY_VDDTX  
PHY_VDDA  
PHY_VSSA  
PHY_RBIAS  
VDD2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
IRQ9  
DDATA3  
DDATA2  
VDDX1  
VSSX1  
DDATA1  
DDATA0  
JTAG_EN  
IRQ6  
112-pin LQFP  
IRQ5  
VSS2  
UTXD2  
URXD2  
UCTS2  
DTIN2/DTOUT2  
DTIN3/DTOUT3  
URTS1  
UCTS1  
URTS0  
UCTS0  
SYNCB  
URTS2  
DUPLED  
COLLED  
IRQ11  
SYNCA  
Figure 3. 112-pin LQFP Pin Assignments  
Figure 4 shows the pinout configuration for the 121 MAPBGA.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
15  
1
2
3
4
5
6
7
8
9
10  
11  
TCLK  
SDA  
SCL  
IRQ15  
IRQ14  
IRQ13  
VSSA  
VDDA  
AN1  
AN7  
AN5  
A
B
C
D
E
F
G
H
J
TMS  
TRST  
RCON  
TDO  
GPT0  
TDI  
GPT3  
GPT2  
PWM5  
PWM7  
VDDX  
PWM1  
PWM3  
VDDX  
VDDX  
VSS  
VRL  
IRQ12  
VDD  
VRH  
AN0  
AN2  
AN3  
AN6  
LNKLED  
PST3  
AN4  
ACTLED  
SPDLED  
PHY_RXN  
DTIN1  
DDATA3  
DDATA0  
DTIN2  
DTIN3  
SYNCB  
SYNCA  
IRQ10  
DTIN0  
IRQ9  
ALLPST  
IRQ8  
GPT1  
VDDR  
VDD  
VSS  
PST2  
PST0  
VSS  
VSS  
VSS  
PST1  
DDATA1  
IRQ5  
DDATA2  
IRQ6  
VSS  
VSS  
VSS  
PHY_VSSRX PHY_VDDRX PHY_RXP  
JTAG_EN  
QSPI_DIN  
VDDX  
VDDX  
VDDX  
RSTI  
VDDX  
TEST  
XTAL  
PHY_VSSA PHY_VSSTX PHY_VDDTX PHY_TXP  
URTS0  
UCTS0  
URXD0  
UTXD0  
URTS1  
UCTS1  
URXD1  
UTXD1  
QSPI_CS1  
TXLED  
IRQ1  
IRQ2  
IRQ3  
RXLED  
COLLED  
IRQ11  
PHY_VDDA  
DUPLED  
URTS2  
PHY_TXN  
PHY_RBIAS  
URXD2  
QSPI_DOUT QSPI_CS2  
QSPI_CLK  
QSPI_CS0  
QSPI_CS3  
IRQ4  
VDDPLL  
RSTO  
VSSPLL  
EXTAL  
K
L
IRQ7  
UCTS2  
UTXD2  
Figure 4. 121 MAPBGA Pin Assignments  
Table 3. Pin Functions by Primary and Alternate Purpose  
Drive  
Primary  
Function  
SecondaryF  
unction  
Tertiary  
Quaternary  
Function  
Wired OR  
Control  
Pull-up/  
Pin on 121  
MAPBGA  
Pin on 112 Pin on 80  
Pin Group  
Strength/  
Function  
Pull-down2  
LQFP  
LQFP  
Control1  
ADC3  
AN7  
AN6  
PAN[7]  
PAN[6]  
PAN[5]  
PAN[4]  
PAN[3]  
PAN[2]  
PAN[1]  
PAN[0]  
PAS[3]  
PAS[2]  
Low  
Low  
A10  
B10  
A11  
B11  
C9  
B9  
A9  
C8  
K1  
J1  
88  
87  
86  
85  
89  
90  
91  
92  
28  
27  
93  
96  
94  
95  
48  
49  
45  
47  
7
64  
63  
62  
61  
65  
66  
67  
68  
20  
19  
69  
72  
70  
71  
36  
37  
33  
35  
7
AN5  
Low  
AN4  
Low  
AN3  
Low  
AN2  
Low  
AN1  
Low  
AN0  
Low  
SYNCA  
SYNCB  
VDDA  
VSSA  
VRH  
CANTX4  
FEC_MDIO  
PDSR[39]  
PDSR[39]  
N/A  
CANRX4  
FEC_MDC  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
A8  
A7  
B8  
B7  
L7  
N/A  
N/A  
VRL  
N/A  
Clock  
Generation  
EXTAL  
XTAL  
N/A  
N/A  
J7  
VDDPLL5  
VSSPLL  
ALLPST  
DDATA[3:0]  
PST[3:0]  
N/A  
K6  
K7  
D3  
N/A  
Debug  
Data  
High  
High  
High  
PDD[7:4]  
PDD[3:0]  
E1, F3,F2, F1 12,13,16,17  
D10, D9,  
E10, E9  
80,79,78,77  
Table 3. Pin Functions by Primary and Alternate Purpose (continued)  
Drive  
Primary  
Function  
SecondaryF  
unction  
Tertiary  
Quaternary  
Function  
Wired OR  
Control  
Pull-up/  
Pin on 121  
MAPBGA  
Pin on 112 Pin on 80  
Pin Group  
Strength/  
Function  
Pull-down2  
LQFP  
LQFP  
Control1  
Ethernet  
LEDs  
ACTLED  
COLLED  
DUPLED  
LNKLED  
SPDLED  
RXLED  
PLD[0]  
PLD[4]  
PLD[3]  
PLD[1]  
PLD[2]  
PLD[5]  
PLD[6]  
PDSR[32] PWOR[8]  
PDSR[36] PWOR[12]  
PDSR[35] PWOR[11]  
PDSR[33] PWOR[9]  
PDSR[34] PWOR[10]  
PDSR[37] PWOR[13]  
PDSR[38] PWOR[14]  
C11  
J9  
84  
58  
59  
83  
81  
52  
51  
82  
66  
74  
73  
71  
70  
68  
75  
69  
67  
76  
72  
111  
112  
106  
105  
98  
97  
60  
42  
43  
59  
57  
58  
46  
54  
53  
51  
50  
48  
55  
49  
47  
56  
52  
79  
80  
J10  
C10  
D11  
H9  
TXLED  
H8  
VDDR  
D8  
Ethernet  
PHY  
PHY_RBIAS  
PHY_RXN  
PHY_RXP  
PHY_TXN  
PHY_TXP  
PHY_VDDA5  
PHY_VDDRX5  
PHY_VDDTX5  
PHY_VSSA  
PHY_VSSRX  
PHY_VSSTX  
SCL  
J11  
E11  
F11  
H11  
G11  
H10  
F10  
G10  
G8  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
F9  
G9  
I2C  
CANTX4  
CANRX4  
UTXD2  
URXD2  
PAS[0]  
PAS[1]  
PGP[7]  
PGP[6]  
PGP[5]  
PGP[4]  
PDSR[0]  
PDSR[0]  
Pull-Up6  
Pull-Up6  
Pull-Up6  
Pull-Up6  
Pull-Up6  
Pull-Up6  
A3  
SDA  
A2  
Interrupts3  
IRQ15  
PSDR[47]  
PSDR[46]  
PSDR[45]  
PSDR[44]  
A4  
IRQ14  
A5  
IRQ13  
A6  
IRQ12  
C7  
Table 3. Pin Functions by Primary and Alternate Purpose (continued)  
Drive  
Primary  
Function  
SecondaryF  
unction  
Tertiary  
Quaternary  
Function  
Wired OR  
Control  
Pull-up/  
Pin on 121  
MAPBGA  
Pin on 112 Pin on 80  
Pin Group  
Strength/  
Function  
Pull-down2  
LQFP  
LQFP  
Control1  
Continued  
Interrupts3  
IRQ11  
IRQ10  
IRQ9  
PGP[3]  
PGP[2]  
PGP[1]  
PGP[0]  
PNQ[7]  
PNQ[6]  
PNQ[5]  
PNQ[4]  
PNQ[3]  
PNQ[2]  
PNQ[1]  
PSDR[43]  
PSDR[42]  
PSDR[41]  
PSDR[40]  
Low  
N/A  
Pull-Up6  
Pull-Up6  
Pull-Up6  
Pull-Up  
K9  
L1  
E2  
E3  
L9  
G3  
G2  
L5  
L8  
K8  
J8  
57  
29  
11  
10  
56  
19  
20  
41  
53  
54  
55  
18  
1
41  
40  
29  
39  
12  
1
IRQ8  
IRQ7  
Pull-Up6  
Pull-Up6  
Pull-Up6  
Pull-Up6  
Pull-Up6  
Pull-Up6  
Pull-Up6  
Pull-Down  
Pull-Up7  
IRQ6  
FEC_RXER  
FEC_RXD[1]  
Low  
IRQ5  
Low  
IRQ4  
Low  
IRQ3  
FEC_RXD[2]  
FEC_RXD[3]  
PWM1  
Low  
IRQ2  
Low  
IRQ1  
SYNCA  
High  
JTAG/BDM  
JTAG_EN  
N/A  
G4  
A1  
TCLK/  
CLKOUT  
High  
PSTCLK  
TDI/DSI  
TDO/DSO  
N/A  
High  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Pull-Up7  
C3  
C2  
B1  
C1  
B2  
4
5
2
6
3
4
5
2
6
3
TMS/BKPT  
TRST/DSCLK  
RCON/EZPCS  
Pull-Up7  
Pull-Up  
Pull-Up  
Mode  
Selection  
PWM  
PWM7  
PWM5  
PWM3  
PWM1  
PTD[3]  
PTD[2]  
PTD[1]  
PTD[0]  
PDSR[31]  
PDSR[30]  
PDSR[29]  
PDSR[28]  
C5  
B5  
C6  
B6  
104  
103  
100  
99  
Table 3. Pin Functions by Primary and Alternate Purpose (continued)  
Drive  
Primary  
Function  
SecondaryF  
unction  
Tertiary  
Quaternary  
Function  
Wired OR  
Control  
Pull-up/  
Pin on 121  
MAPBGA  
Pin on 112 Pin on 80  
Pin Group  
Strength/  
Function  
Pull-down2  
LQFP  
LQFP  
Control1  
QSPI3  
QSPI_DIN/  
EZPD  
CANRX4  
CANTX4  
SCL  
URXD1  
UTXD1  
URTS1  
PQS[1]  
PQS[0]  
PQS[2]  
PDSR[2]  
PDSR[1]  
PDSR[3]  
PWOR[4]  
PWOR[5]  
PWOR[6]  
H4  
J4  
34  
25  
QSPI_DOUT/E  
ZPQ  
35  
36  
26  
27  
QSPI_CLK/  
EZPCK  
Pull-Up8  
K4  
QSPI_CS3  
QSPI_CS2  
QSPI_CS1  
QSPI_CS0  
RSTI  
SYNCA  
SYNCB  
FEC_TXCLK  
FEC_TXEN  
UCTS1  
PQS[6]  
PQS[5]  
PQS[4]  
PQS[3]  
PDSR[7]  
PDSR[6]  
PDSR[5]  
PDSR[4]  
N/A  
K5  
J5  
40  
39  
38  
37  
44  
46  
50  
107  
108  
109  
110  
22  
21  
9
28  
32  
34  
38  
75  
76  
77  
78  
14  
13  
9
H5  
L4  
J6  
SDA  
PWOR[7]  
Pull-Up8  
Pull-Up9  
Reset9  
Test  
N/A  
RSTO  
high  
L6  
H7  
B4  
C4  
D4  
B3  
H1  
G1  
D1  
D2  
J2  
TEST  
N/A  
N/A  
Pull-Down  
Pull-Up10  
Pull-Up10  
Pull-Up10  
Pull-Up10  
Timers,  
16-bit3  
GPT3  
FEC_TXD[3]  
FEC_TXD[2]  
FEC_TXD[1]  
FEC_TXER  
DTOUT3  
DTOUT2  
DTOUT1  
DTOUT0  
CANRX4  
CANTX4  
PWM7  
PTA[3]  
PTA[2]  
PTA[1]  
PTA[0]  
PTC[3]  
PTC[2]  
PTC[1]  
PTC[0]  
PUA[3]  
PUA[2]  
PUA[1]  
PUA[0]  
PDSR[23]  
PDSR[22]  
PDSR[21]  
PDSR[20]  
PDSR[19]  
PDSR[18]  
PDSR[17]  
PDSR[16]  
PDSR[11]  
PDSR[10]  
PDSR[9]  
PDSR[8]  
GPT2  
PWM5  
GPT1  
PWM3  
GPT0  
PWM1  
Timers,  
32-bit  
DTIN3  
PWM6  
DTIN2  
PWM4  
DTIN1  
PWM2  
DTIN0  
PWM0  
8
8
UART 03  
UCTS0  
URTS0  
URXD0  
UTXD0  
FEC_RXCLK  
FEC_RXDV  
FEC_RXD[0]  
FEC_CRS  
26  
25  
30  
31  
18  
17  
21  
22  
H2  
K2  
L2  
PWOR[0]  
PWOR[1]  
Table 3. Pin Functions by Primary and Alternate Purpose (continued)  
Drive  
Primary  
Function  
SecondaryF  
unction  
Tertiary  
Quaternary  
Function  
Wired OR  
Control  
Pull-up/  
Pin on 121  
MAPBGA  
Pin on 112 Pin on 80  
Pin Group  
Strength/  
Function  
Pull-down2  
LQFP  
LQFP  
Control1  
UART 13  
UCTS1  
URTS1  
URXD1  
UTXD1  
UCTS2  
URTS2  
URXD2  
UTXD2  
SYNCA  
SYNCB  
VDD  
SYNCA  
URXD2  
PUB[3]  
PUB[2]  
PUB[1]  
PUB[0]  
PUC[3]  
PUC[2]  
PUC[1]  
PUC[0]  
PAS[3]  
PAS[2]  
PDSR[15]  
PDSR[14]  
J3  
H3  
24  
23  
16  
15  
SYNCB  
UTXD2  
FEC_TXD[0]  
PDSR[13] PWOR[2]  
PDSR[12] PWOR[3]  
K3  
32  
23  
FEC_COL  
L3  
33  
24  
UART 2  
PDSR[27]  
PDSR[26]  
PDSR[25]  
PDSR[24]  
PDSR[39]  
PDSR[39]  
N/A  
L10  
K10  
K11  
L11  
61  
60  
62  
FEC_MDIO  
FEC_MDC  
63  
FlexCAN  
CANTX4  
CANRX4  
28  
20  
27  
19  
VDD5,11  
VDDX  
N/A  
N/A  
D7, E8  
65,102  
14, 43  
45,74  
10, 31  
VDDX  
N/A  
D5, D6, E6, G5,  
G6, G7, H6  
VSS  
VSS  
N/A  
N/A  
E4, E5, E7,F4,  
F5, F6, F7, F8  
64,101  
44,73  
VSSX  
VSSX  
N/A  
N/A  
15, 42  
11, 30  
1
The PDSR and PSSR registers are described in Chapter 14, “General Purpose I/O Module. All programmable signals default to 2mA drive in normal  
(single-chip) mode.  
All signals have a pull-up in GPIO mode.  
The use of an external PHY limits ADC, interrupt, and QSPI functionality. It also disables the UART0/1 and timer pins.  
2
3
4
5
The multiplexed CANTX and CANRX signals do not have dedicated pins, but are available as muxed replacements for other signals.  
The VDD1, VDD2, VDDPLL, and PHY_VDD pins are for decoupling only and should not have power directly applied to them.  
6
7
8
9
For primary and GPIO functions only.  
Only when JTAG mode is enabled.  
For secondary and GPIO functions only.  
RSTI has an internal pull-up resistor; however, the use of an external resistor is strongly recommended.  
10 For GPIO function. Primary Function has pull-up control within the GPT module.  
11 This list for power and ground does not include those dedicated power/ground pins included elsewhere, e.g. in the Ethernet PHY.  
MCF52235 Family Configurations  
1.3  
Reset Signals  
Table 4 describes signals that are used to either reset the chip or as a reset indication.  
Table 4. Reset Signals  
Signal Name  
Abbreviation  
Function  
I/O  
Reset In  
RSTI  
Primary reset input to the device. Asserting RSTI immediately resets  
the CPU and peripherals.  
I
Reset Out  
RSTO  
Driven low for 512 CPU clocks after the reset source has deasserted.  
O
1.4  
PLL and Clock Signals  
Table 5 describes signals that are used to support the on-chip clock generation circuitry.  
Table 5. PLL and Clock Signals  
Signal Name  
Abbreviation  
Function  
I/O  
External Clock In  
Crystal  
EXTAL  
XTAL  
Crystal oscillator or external clock input.  
Crystal oscillator output.  
I
O
O
Clock Out  
CLKOUT  
This output signal reflects the internal system clock.  
1.5  
Mode Selection  
Table 6 describes signals used in mode selection, Table 6 describes particular clocking modes.  
Table 6. Mode Selection Signals  
Signal Name  
Abbreviation  
Function  
I/O  
Reset Configuration  
RCON  
The Serial Flash Programming mode is entered by asserting the  
RCON pin (with the TEST pin negated) as the chip comes out of  
reset. During this mode, the EzPort has access to the Flash memory  
which can be programmed from an external device.  
Test  
TEST  
Reserved for factory testing only and in normal modes of operation  
should be connected to VSS to prevent unintentional activation of  
test functions.  
I
1.6  
External Interrupt Signals  
Table 7 describes the external interrupt signals.  
Table 7. External Interrupt Signals  
Signal Name  
Abbreviation  
Function  
I/O  
External Interrupts  
IRQ[15:1] External interrupt sources.  
I
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
22  
Freescale Semiconductor  
MCF52235 Family Configurations  
1.7  
Queued Serial Peripheral Interface (QSPI)  
Table 8 describes QSPI signals.  
Table 8. Queued Serial Peripheral Interface (QSPI) Signals  
Signal Name  
Abbreviation  
Function  
I/O  
QSPI Synchronous  
Serial Output  
QSPI_DOUT Provides the serial data from the QSPI and can be programmed to be  
driven on the rising or falling edge of QSPI_CLK.  
O
QSPI Synchronous  
Serial Data Input  
QSPI_DIN Provides the serial data to the QSPI and can be programmed to be  
sampled on the rising or falling edge of QSPI_CLK.  
I
QSPI Serial Clock  
QSPI_CLK Provides the serial clock from the QSPI. The polarity and phase of  
QSPI_CLK are programmable.  
O
O
SynchronousPeripheral QSPI_CS[3:0] QSPI peripheral chip selects that can be programmed to be active  
Chip Selects high or low.  
1.8  
Fast Ethernet Controller EPHY Signals  
Table 9 describes the Fast Ethernet Controller (FEC) signals.  
Table 9. Fast Ethernet Controller (FEC) Signals  
Signal Name  
Abbreviation  
Function  
I/O  
Twisted Pair Input +  
RXP  
Differential Ethernet twisted-pair input pin. This pin is high-impedance  
out of reset.  
I
Twisted Pair Input -  
Twisted Pair Output +  
Twisted Pair Output -  
Bias Control Resistor  
RXN  
TXN  
Differential Ethernet twisted-pair input pin. This pin is high-impedance  
out of reset.  
I
Differential Ethernet twisted-pair output pin. This pin is  
high-impedance out of reset.  
O
O
I
TXP  
Differential Ethernet twisted-pair output pin. This pin is  
high-impedance out of reset.  
RBIAS  
Connect a 12.4 k(1.0%) external resistor, RBIAS, between the  
PHY_RBIAS pin and analog ground.  
Place this resistor as near to the chip pin as possible. Stray  
capacitance must be kept to less than 10 pF  
(>50 pF causes instability). No high-speed signals can be permitted in  
the region of RBIAS.  
Activity LED  
Link LED  
ACT_LED  
Indicates when the EPHY is transmitting or receiving  
O
O
O
O
O
O
O
LINK_LED Indicates when the EPHY has a valid link  
SPD_LED Indicates the speed of the EPHY connection  
Speed LED  
Duplex LED  
Collision LED  
Transmit LED  
Receive LED  
DUPLED  
COLLED  
TXLED  
Indicates the duplex (full or half) of the EPHY connection  
Indicates if the EPHY detects a collision  
Indicates if the EPHY is transmitting  
RXLED  
Indicates if the EPHY is receiving  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
23  
MCF52235 Family Configurations  
2
1.9  
I C I/O Signals  
2
Table 10 describes the I C serial interface module signals.  
2
Table 10. I C I/O Signals  
Signal Name  
Abbreviation  
Function  
I/O  
Serial Clock  
SCL  
Open-drain clock signal for the for the I2C interface. Either it is driven  
by the I2C module when the bus is in master mode or it becomes the  
clock input when the I2C is in slave mode.  
I/O  
Serial Data  
SDA  
Open-drain signal that serves as the data input/output for the I2C  
interface.  
I/O  
1.10 UART Module Signals  
Table 11 describes the UART module signals.  
Table 11. UART Module Signals  
Function  
Signal Name  
Abbreviation  
I/O  
Transmit Serial Data  
Output  
UTXDn  
Transmitter serial data outputs for the UART modules. The output is  
held high (mark condition) when the transmitter is disabled, idle, or in  
the local loopback mode. Data is shifted out, LSB first, on this pin at  
the falling edge of the serial clock source.  
O
Receive Serial Data  
Input  
URXDn  
Receiver serial data inputs for the UART modules. Data is received on  
this pin LSB first. When the UART clock is stopped for power-down  
mode, any transition on this pin restarts it.  
I
Clear-to-Send  
UCTSn  
URTSn  
Indicate to the UART modules that they can begin data transmission.  
I
Request-to-Send  
Automatic request-to-send outputs from the UART modules. This  
signal can also be configured to be asserted and negated as a  
function of the RxFIFO level.  
O
1.11 DMA Timer Signals  
Table 12 describes the signals of the four DMA timer modules.  
Table 12. DMA Timer Signals  
Signal Name  
Abbreviation  
Function  
I/O  
DMA Timer Input  
DTINn  
Event input to the DMA timer modules.  
I
DMA Timer Output  
DTOUTn  
Programmable output from the DMA timer modules.  
O
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
24  
Freescale Semiconductor  
MCF52235 Family Configurations  
1.12 ADC Signals  
Table 13 describes the signals of the Analog-to-Digital Converter.  
Table 13. ADC Signals  
Function  
Signal Name  
Abbreviation  
I/O  
Analog Inputs  
AN[7:0]  
VRH  
Inputs to the A-to-D converter.  
I
I
I
Analog Reference  
Reference voltage high and low inputs.  
VRL  
Analog Supply  
VDDA  
VSSA  
Isolate the ADC circuitry from power supply noise  
1.13 General Purpose Timer Signals  
Table 14 describes the General Purpose Timer Signals.  
Table 14. GPT Signals  
Function  
Inputs to or outputs from the general purppose timer module  
Signal Name  
Abbreviation  
I/O  
General Purpose Timer  
Input/Output  
GPT[3:0]  
I/O  
1.14 Pulse Width Modulator Signals  
Table 15 describes the PWM signals.  
Table 15. PWM Signals  
Function  
PWM[7:0] Pulse width modulated output for PWM channels  
Signal Name  
Abbreviation  
I/O  
PWM Output Channels  
O
1.15 Debug Support Signals  
These signals are used as the interface to the on-chip JTAG controller and also to interface to the BDM logic.  
Table 16. Debug Support Signals  
Signal Name  
Abbreviation  
Function  
I/O  
JTAG Enable  
Test Reset  
JTAG_EN  
TRST  
Select between debug module and JTAG signals at reset  
I
I
This active-low signal is used to initialize the JTAG logic  
asynchronously.  
Test Clock  
TCLK  
TMS  
Used to synchronize the JTAG logic.  
I
I
Test Mode Select  
Used to sequence the JTAG state machine. TMS is sampled on the  
rising edge of TCLK.  
Test Data Input  
TDI  
Serial input for test instructions and data. TDI is sampled on the rising  
edge of TCLK.  
I
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
25  
MCF52235 Family Configurations  
Table 16. Debug Support Signals (continued)  
Function  
Signal Name  
Abbreviation  
TDO  
I/O  
Test Data Output  
Serial output for test instructions and data. TDO is tri-stateable and is  
actively driven in the shift-IR and shift-DR controller states. TDO  
changes on the falling edge of TCLK.  
O
Development Serial  
Clock  
DSCLK  
BKPT  
Development Serial Clock. Internally synchronized input. (The logic  
level on DSCLK is validated if it has the same value on two  
consecutive rising bus clock edges.) Clocks the serial communication  
port to the debug module during packet transfers. Maximum frequency  
is PSTCLK/5. At the synchronized rising edge of DSCLK, the data  
input on DSI is sampled and DSO changes state.  
I
I
Breakpoint  
Breakpoint. Input used to request a manual breakpoint. Assertion of  
BKPT puts the processor into a halted state after the current  
instruction completes. Halt status is reflected on processor status  
signals (PST[3:0]) as the value 0xF. If CSR[BKD] is set (disabling  
normal BKPT functionality), asserting BKPT generates a debug  
interrupt exception in the processor.  
Development Serial  
Input  
DSI  
Development Serial Input. Internally synchronized input that provides  
data input for the serial communication port to the debug module after  
the DSCLK has been seen as high (logic 1).  
I
Development Serial  
Output  
DSO  
Development Serial Output. Provides serial output communication for  
debug module responses. DSO is registered internally. The output is  
delayed from the validation of DSCLK high.  
O
O
O
Debug Data  
DDATA[3:0] Display captured processor data and breakpoint status. The CLKOUT  
signal can be used by the development system to know when to  
sample DDATA[3:0].  
Processor Status Clock  
PSTCLK  
Processor Status Clock. Delayed version of the processor clock. Its  
rising edge appears in the center of valid PST and DDATA output.  
PSTCLK indicates when the development system should sample PST  
and DDATA values.  
If real-time trace is not used, setting CSR[PCD] keeps PSTCLK, PST,  
and DDATA outputs from toggling without disabling triggers.  
Non-quiescent operation can be re-enabled by clearing CSR[PCD],  
although the external development systems must resynchronize with  
the PST and DDATA outputs.  
PSTCLK starts clocking only when the first non-zero PST value (0xC,  
0xD, or 0xF) occurs during system reset exception processing.  
Processor Status  
Outputs  
PST[3:0]  
ALLPST  
Indicate core status. Debug mode timing is synchronous with the  
processor clock; status is unrelated to the current bus transfer. The  
CLKOUT signal can be used by the development system to know  
when to sample PST[3:0].  
O
O
All Processor Status  
Outputs  
Logical AND of PST[3:0]  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
26  
Freescale Semiconductor  
MCF52235 Family Configurations  
1.16 EzPort Signal Descriptions  
Table 17 contains a list of EzPort external signals  
Table 17. EzPort Signal Descriptions  
Abbreviation Function  
EZPCK Shift clock for EzPort transfers  
Signal Name  
I/O  
EzPort Clock  
I
EzPort Chip Select  
EZPCS  
EZPD  
EZPQ  
Chip select for signalling the start and end  
of serial transfers  
I
EzPort Serial Data In  
EzPort Serial Data Out  
EZPD is sampled on the rising edge of  
EZPCK  
I
EZPQ transitions on the falling edge of  
EZPCK  
O
1.17 Power and Ground Pins  
The pins described in Table 18 provide system power and ground to the chip. Multiple pins are provided for adequate current  
capability. All power supply pins must have adequate bypass capacitance for high-frequency noise suppression.  
Table 18. Power and Ground Pins  
Signal Name  
Abbreviation  
Function  
I/O  
PLL Analog Supply  
VDDPLL,  
VSSPLL  
Dedicated power supply signals to isolate the sensitive PLL analog  
circuitry from the normal levels of noise present on the digital power  
supply.  
I
Positive Supply  
Ground  
VDD  
VSS  
These pins supply positive power to the core logic.  
This pin is the negative supply (ground) to the chip.  
I
Some of the V and V pins on the device are only to be used for noise bypass. Figure 5 shows a typical connection diagram.  
DD  
SS  
Pay particular attention to those pins which show only capacitor connections. Do not connect power supply voltage directly to  
these pins.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
27  
Electrical Characteristics  
33  
35  
69  
70  
71  
72  
58  
11  
10  
31  
30  
45  
44  
74  
73  
VDDPLL  
0.22µF  
0.1µF  
1000pF  
V
SSPLL  
VDDA  
VRH  
10µF  
10V  
Tantalum  
0.1µF  
10µH  
*
VRL  
VSSA  
VDDR  
VSSX1  
VDDX1  
VDDX2  
VSSX2  
VDD2  
VSS2  
VDD1  
VSS1  
0.1µF  
0.1µF  
3.3V  
MCF52235  
0.1µF  
Pin numbering is shown  
for the 80-pin LQFP  
0.22µF  
0.22µF  
0.22µF 0.22µF 0.22µF  
12.4K  
1%  
*
optional  
Figure 5. Suggested Connection Scheme for Power and Ground  
2
Electrical Characteristics  
This section contains electrical specification tables and reference timing diagrams for the MCF52235, including detailed  
information on power considerations, DC/AC electrical characteristics, and AC timing specifications.  
NOTE  
The parameters specified in this appendix supersede any values found in the module  
specifications.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
28  
Freescale Semiconductor  
Electrical Characteristics  
2.1  
Maximum Ratings  
1, 2  
Table 19. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
VDDPLL  
VIN  
–0.3 to +4.0  
–0.3 to +4.0  
–0.3 to + 4.0  
0 to 3.3  
V
V
Clock synthesizer supply voltage  
Digital input voltage 3  
EXTAL pin voltage  
V
VEXTAL  
VXTAL  
IDD  
V
XTAL pin voltage  
0 to 3.3  
V
Instantaneous maximum current  
25  
mA  
Single pin limit (applies to all pins) 4, 5  
Operating temperature range (packaged)  
TA  
(TL - TH)  
–40 to 85  
C  
C  
Storage temperature range  
Tstg  
–65 to 150  
1
2
Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum  
Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress  
beyond those listed may affect device reliability or cause permanent damage to the device.  
This device contains circuitry protecting against damage due to high static voltage or electrical  
fields; however, it is advised that normal precautions be taken to avoid application of any voltages  
higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is  
enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either VSS or VDD).  
Input must be current limited to the IDD value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then  
use the larger of the two values.  
3
4
5
All functional non-supply pins are internally clamped to VSS and VDD  
The power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (Vin > VDD) is greater than IDD  
.
,
the injection current may flow out of VDD and could result in external power supply going out of  
regulation. Ensure external VDD load shunts current greater than maximum injection current. This is  
the greatest risk when the MCU is not consuming power (ex; no clock). The power supply must  
maintain regulation within operating VDD range during instantaneous and operating maximum  
current conditions.  
Table 20 lists thermal resistance values.  
NOTE  
The use of this device in one- or two-layer board designs is not recommended due to the  
limited thermal conductance provided by those boards.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
29  
Electrical Characteristics  
Table 20. Thermal Characteristics  
Symbol  
Characteristic  
Junction to ambient, natural convection  
Package1  
Value  
Unit  
JA  
80-pin LQFP, four-layer board  
112-pin LQFP, four-layer board  
121 MAPBGA, four-layer board  
80-pin LQFP, one-layer board1  
121 MAPBGA, one-layer board1  
112-pin LQFP, one-layer board1  
80-pin LQFP, four-layer board  
112-pin LQFP, four-layer board  
121 MAPBGA, four-layer board  
80-pin LQFP, one-layer board1  
112-pin LQFP, one-layer board1  
121 MAPBGA, one-layer board1  
80-pin LQFP  
36.02,3  
35.0  
32  
C/W  
49.01  
561  
44.01  
30.0  
29.0  
28  
Junction to ambient (@200 ft/min)  
JMA  
C/W  
39.01  
35.01  
461  
Junction to board  
JB  
JC  
jt  
Tj  
22.04  
23.0  
18  
C/W  
C/W  
C/W  
oC  
112-pin LQFP  
121 MAPBGA, four-layer board  
80-pin LQFP  
Junction to case  
6.05  
112-pin LQFP  
6.0  
121 MAPBGA  
10  
Junction to top of package, natural convection  
Maximum operating junction temperature  
80-pin LQFP  
2.06  
2.06  
2.06  
130  
112-pin LQFP  
121 MAPBGA  
All  
1
The use of this device in one- or two-layer board designs is not recommended due to the limited thermal conductance  
provided by those boards.  
2
JMA and jt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale  
recommends the use of JMA and power dissipation specifications in the system design to prevent device junction  
temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures  
can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature  
specification can be verified by physical measurement in the customer’s system using the jt parameter, the device power  
dissipation, and the method described in EIA/JESD Standard 51-2.  
3
4
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board  
temperature is measured on the top surface of the board near the package.  
5
6
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written  
in conformance with Psi-JT.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
30  
Freescale Semiconductor  
Electrical Characteristics  
The average chip-junction temperature (T ) in C can be obtained from  
J
TJ = TA + PD  JMA  
Eqn. 1  
where  
T = ambient temperature, C  
A
= package thermal resistance, junction-to-ambient, C/W  
JMA  
P = P  
+ P  
I/O  
D
INT  
P
P
= chip internal power, I V , watts  
DD DD  
= power dissipation on input and output pins — user determined  
INT  
I/O  
For most applications, PI/O < P  
and can be ignored. An approximate relationship between P and T (if P is neglected) is:  
INT  
D
J
I/O  
PD = K  TJ + 273C  
Eqn. 2  
Eqn. 3  
Solving equations 1 and 2 for K gives:  
2
K = PD  TA + 273C+ JMA PD  
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 1 and Equation 2 iteratively  
A
D
J
for any value of T .  
A
2.2  
ESD Protection  
1
Table 21. ESD Protection Characteristics  
Characteristic  
Symbol  
Value  
Units  
ESD target for Human Body Model  
HBM  
1500 (ADC and EPHY pins)  
2000 (All other pins)  
V
ESD target for Charged Device Model  
HBM circuit description  
CDM  
Rseries  
C
250  
1500  
100  
V
ohms  
pF  
Number of pulses per pin (HBM)  
positive pulses  
negative pulses  
1
1
Number of pulses per pin (CDM)  
positive pulses  
negative pulses  
3
3
Interval of pulses (HBM)  
1.0  
0.2  
sec  
sec  
Interval of pulses (CDM)  
1
A device is defined as a failure if the device no longer meets the device specification requirements after  
exposure to ESD pulses. Complete DC parametric and functional testing is performed per applicable device  
specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
31  
Electrical Characteristics  
2.3  
DC Electrical Specifications  
1
Table 22. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Max  
Unit  
Supply voltage  
VDD  
VIH  
3.0  
0.7 VDD  
VSS – 0.3  
0.06 VDD  
2.15  
3.6  
4.0  
V
V
Input high voltage  
Input low voltage  
VIL  
0.35 x VDD  
V
Input hysteresis  
VHYS  
VLVD  
VLVDHYS  
Iin  
mV  
V
Low-voltage detect trip voltage (VDD falling)  
Low-voltage detect hysteresis (VDD rising)  
Input leakage current  
2.3  
60  
120  
mV  
A  
–1.0  
1.0  
Vin = VDD or VSS, input-only pins  
High impedance (off-state) leakage current  
IOZ  
VOH  
VOL  
–1.0  
VDD - 0.5  
__  
1.0  
__  
A  
V
Vin = VDD or VSS, all input/output and output pins  
Output high voltage (all input/output and all output pins)  
IOH = –2.0 mA  
Output low voltage (all input/output and all output pins)  
IOL = 2.0 mA  
0.5  
V
Weak internal pull-up device current, tested at VIL max.2  
Input capacitance 3  
IAPU  
Cin  
–10  
–130  
A  
pF  
All input-only pins  
All input/output (three-state) pins  
7
7
Load capacitance4  
Low drive strength  
High drive strength  
pF  
CL  
IIC  
25  
50  
3, 5, 6, 7  
DC injection current  
mA  
VNEGCLAMP =VSS– 0.3 V, VPOSCLAMP = VDD + 0.3  
Single pin limit  
Total MCU limit, Includes sum of all stressed pins  
–1.0  
–10  
1.0  
10  
1
Refer to Table 25 for additional PLL specifications.  
Refer to Table 3 for pins with internal pull-up devices.  
2
3
4
This parameter is characterized before qualification rather than 100% tested.  
pF load ratings are based on DC loading and are provided as an indication of driver strength. High speed interfaces  
require transmission line analysis to determine proper drive strength and termination.  
5
6
All functional non-supply pins are internally clamped to VSS and their respective VDD  
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.  
7
The power supply must maintain regulation within operating VDD range during instantaneous and operating maximum  
current conditions. If positive injection current (Vin > VDD) is greater than IDD, the injection current may flow out of VDD  
and could result in external power supply going out of regulation. Ensure that the external VDD load shunts current  
greater than maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples are:  
if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, the system  
clock is not present during the power-up sequence until the PLL has attained lock.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
32  
Freescale Semiconductor  
Electrical Characteristics  
Table 23. Active Current Consumption Specifications  
Typical  
Running from Running from Running from Running from  
Characteristic  
Symbol  
Peak  
Unit  
SRAM,  
Flash,  
Flash, EPHY Flash, EPHY  
EPHY Off  
EPHY Off  
10BaseT  
100BaseT  
Active current, core and I/O IDDR+IDDX  
PLL @25 MHz  
PLL @60 MHz  
+IDDA  
75  
130  
82  
138  
150  
220  
260  
310  
290  
340  
mA  
Analog supply current  
Normal operation  
Low-power STOP  
IDDA  
20  
15  
20  
15  
20  
15  
20  
15  
30  
50  
mA  
A  
1
Table 24. Current Consumption Specifications in Low-Power Modes  
PLL @25 MHz PLL @60 MHz PLL @60 MHz  
Mode2  
Unit  
(typical)3  
(typical)3  
(peak)4  
STOP mode 3 (STPMD[1:0]=11)  
0.2  
7
1.0  
mA  
STOP mode 2 (STPMD[1:0]=10)  
STOP mode 1 (STPMD[1:0]=01)  
10  
10  
16  
16  
25  
12  
12  
27  
27  
45  
STOP mode 0 (STPMD[1:0]=00)  
WAIT  
DOZE  
RUN  
1
All values are measured with a 3.30 V power supply.  
Refer to the “Power Management” chapter in the MCF52235 ColdFire® Integrated  
Microcontroller Reference Manual for more information on low-power modes.  
2
3
4
These values were obtained with CLKOUT and all peripheral clocks except for the CFM clock  
disabled prior to entering low-power mode. The tests were performed at room temperature. All  
code was executed from flash memory; running code from SRAM further reduces power  
consumption.  
These values were obtained with CLKOUT and all peripheral clocks enabled. All code was  
executed from flash memory.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
33  
Electrical Characteristics  
2.4  
Phase Lock Loop Electrical Specifications  
Table 25. Oscillator and PLL Electrical Specifications  
(VDD and VDDPLL = 2.7 to 3.6 V, VSS = VSSPLL = 0 V)  
Characteristic  
Symbol  
Min  
Max  
Unit  
Clock Source Frequency Range of EXTAL Frequency Range  
MHz  
• Crystal  
fcrystal  
fext  
0.5  
0
25.0  
60.0  
• External1  
PLL reference frequency range  
fref_pll  
2
10.0  
MHz  
System frequency 2  
External clock mode  
On-Chip PLL Frequency  
fsys  
MHz  
0
60  
60  
f
ref / 32  
Loss of reference frequency 3, 5  
Self clocked mode frequency 4, 5  
Crystal start-up time 5, 6  
fLOR  
fSCM  
tcst  
100  
1
1000  
5
kHz  
MHz  
ms  
10  
EXTAL input high voltage  
Crystal reference  
VIHEXT  
V
VDD- 1.0  
2.0  
VDD  
3.07  
External reference  
EXTAL input low voltage  
Crystal reference  
VILEXT  
V
VSS  
VSS  
1.0  
0.8  
External reference  
XTAL output high voltage  
IOH = 1.0 mA  
VOL  
VOL  
V
V
VDD –1.0  
XTAL output low voltage  
IOL = 1.0 mA  
0.5  
XTAL load capacitance8  
PLL lock time5,9  
pF  
tlpll  
500  
s  
Power-up to lock time 5, 7,9  
With crystal reference  
tlplk  
10.5  
500  
ms  
s  
Without crystal reference  
Duty cycle of reference 5  
Frequency un-LOCK range  
Frequency LOCK range  
tdc  
40  
60  
1.5  
% fsys  
% fsys  
% fsys  
fUL  
–1.5  
–0.75  
fLCK  
Cjitter  
0.75  
CLKOUT period Jitter 5, 6, 8, 10,11, measured at fSYS Max  
Peak-to-peak jitter (clock edge to clock edge)  
Long term jitter (averaged over 2 ms interval)  
10  
0.01  
% fsys  
1
In external clock mode, it is possible to run the chip directly from an external clock source without enabling the PLL.  
All internal registers retain data at 0 Hz.  
Loss of reference frequency is the reference frequency detected internally that transitions the PLL into self-clocked mode.  
2
3
4
Self-clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below fLOR with  
default MFD/RFD settings.  
5
6
This parameter is characterized before qualification rather than 100% tested.  
Proper PC board layout procedures must be followed to achieve specifications.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
34  
Freescale Semiconductor  
Electrical Characteristics  
7
8
9
This value has been updated  
Load capacitance determined from crystal manufacturer specifications and include circuit board parasitics.  
Assuming a reference is available at power up, lock time is measured from the time VDD and VDDPLL are valid to RSTO  
negating. If the crystal oscillator is the reference for the PLL, the crystal start up time must be added to the PLL lock time to  
determine the total start-up time.  
10 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency increase the Cjitter percentage  
for a given interval  
11 Based on slow system clock of 40 MHz measured at fsys max.  
2.5  
General Purpose I/O Timing  
GPIO can be configured for certain pins of the QSPI, timers, UARTs, FEC, and interrupts. When in GPIO mode, the timing  
specification for these pins is given in Table 26 and Figure 6.  
The GPIO timing is met under the following load test conditions:  
50 pF / 50 for high drive  
25 pF / 25 for low drive  
Table 26. GPIO Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
G1  
G2  
G3  
G4  
CLKOUT high to GPIO output valid  
CLKOUT high to GPIO output invalid  
GPIO input valid to CLKOUT high  
CLKOUT high to GPIO input invalid  
tCHPOV  
tCHPOI  
tPVCH  
tCHPI  
1.5  
9
10  
ns  
ns  
ns  
ns  
1.5  
CLKOUT  
G2  
G1  
GPIO Outputs  
G3  
G4  
GPIO Inputs  
Figure 6. GPIO Timing  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
35  
Electrical Characteristics  
2.6  
Reset Timing  
Table 27. Reset and Configuration Override Timing  
(VDD = 2.7 to 3.6 V, VSS = 0 V, TA = TL to TH)1  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
R1 RSTI input valid to CLKOUT high  
R2 CLKOUT high to RSTI input invalid  
R3 RSTI input valid time 2  
tRVCH  
tCHRI  
9
1.5  
5
10  
ns  
ns  
tRIVT  
tCYC  
ns  
R4 CLKOUT high to RSTO valid  
tCHROV  
1
2
All AC timing is shown with respect to 50% VDD levels unless otherwise noted.  
During low power STOP, the synchronizers for the RSTI input are bypassed and RSTI is asserted asynchronously to the  
system. Therefore, RSTI must be held a minimum of 100ns.  
CLKOUT  
1R1  
R2  
R3  
RSTI  
R4  
R4  
RSTO  
Figure 7. RSTI and Configuration Override Timing  
2
2.7  
I C Input/Output Timing Specifications  
2
Table 28 lists specifications for the I C input timing parameters shown in Figure 8.  
2
Table 28. I C Input Timing Specifications between I2C_SCL and I2C_SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
2 tCYC  
8 tCYC  
1
ns  
ns  
ms  
ns  
ms  
ns  
ns  
ns  
ns  
Clock low period  
SCL/SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
0
1
SCL/SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
4 tCYC  
0
Data setup time  
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2 tCYC  
2 tCYC  
2
Table 29 lists specifications for the I C output timing parameters shown in Figure 8.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
36  
Freescale Semiconductor  
Electrical Characteristics  
Table 29. I C Output Timing Specifications between I2C_SCL and I2C_SDA  
2
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I1 1  
I2 1  
I3 2  
6 tCYC  
10 tCYC  
ns  
ns  
µs  
Clock low period  
I2C_SCL/I2C_SDA rise time  
(VIL = 0.5 V to VIH = 2.4 V)  
I4 1  
I5 3  
Data hold time  
7 tCYC  
3
ns  
ns  
I2C_SCL/I2C_SDA fall time  
(VIH = 2.4 V to VIL = 0.5 V)  
I6 1  
I7 1  
I8 1  
Clock high time  
Data setup time  
10 tCYC  
2 tCYC  
20 x tCYC  
ns  
ns  
ns  
Start condition setup time (for repeated start  
condition only)  
I9 1  
Stop condition setup time  
10 x tCYC  
ns  
1
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the  
maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 29. The I2C  
interface is designed to scale the actual data transition time to move it to the middle of the SCL low  
period. The actual position is affected by the prescale and division values programmed into the IFDR;  
however, the numbers given in Table 29 are minimum values.  
2
3
Because SCL and SDA are open-collector-type outputs, which the processor can only actively drive  
low, the time SCL or SDA take to reach a high level depends on external signal capacitance and pull-up  
resistor values.  
Specified at a nominal 50-pF load.  
Figure 8 shows timing for the values in Table 28 and Table 29.  
I2  
I6  
I5  
SCL  
SDA  
I3  
I1  
I4  
I8  
I9  
I7  
2
Figure 8. I C Input/Output Timings  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
37  
Electrical Characteristics  
2.8  
EPHY Parameters  
2.8.1  
EPHY Timing  
Table 30 and Figure 9 show the relevant EPHY timing parameters.  
Table 30. EPHY Timing Parameters  
Num  
Characteristic  
EPHY startup time  
Symbol  
Value  
Unit  
E1  
tStart-Up  
360  
s  
EPHYEN  
MDIO  
E1  
Figure 9. EPHY Timing  
2.8.2  
10BASE-T SQE (Heartbeat) Timing  
Table 31 and Figure 10 show the relevant 10BASE-T SQE (heartbeat) timing parameters.  
Table 31. 10BASE-T SQE (Heartbeat) Timing Parameters  
Characteristic  
Symbol  
Min  
Typ1  
Max  
Units  
COL (SQE) delay after TXEN off  
COL (SQE) pulse duration  
t1  
t2  
1.0  
1.0  
s  
s  
1
Typical values are at 25C.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
38  
Freescale Semiconductor  
Electrical Characteristics  
TXC  
TXEN  
t1  
t2  
COL  
Figure 10. 10BASE-T SQE (Heartbeat) Timing  
2.8.3  
10BASE-T Jab and Unjab Timing  
Table 32 and Figure 11 show the relevant 10BASE-T jab and unjab timing parameters.  
Table 32. 10BASE-T Jab and Unjab Timing Parameters  
Parameter  
Maximum transmit time  
Unjab time  
Symbol  
Min  
Typ1  
Max  
Units  
t1  
t2  
98  
ms  
ms  
525  
1
Typical values are at 25C.  
TXEN  
t1  
TXD  
COL  
t2  
Figure 11. 10BASE-T Jab and Unjab Timing  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
39  
Electrical Characteristics  
2.8.4  
Transceiver Characteristics  
Table 33. 10BASE-T Transceiver Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Test Conditions  
Peak differential output voltage  
VOP  
2.2  
2.5  
2.8  
V
With specified transformer and line  
replaced by 100 ( 1%) load  
Transmit timing jitter  
0
2
11  
ns  
Using line model specified in the  
IEEE 802.3  
Receive dc input impedance  
Zin  
10  
k  
0.0 < Vin < 3.3 V  
Receive differential squelch level  
Vsquelch  
300  
400  
585  
mV  
3.3 MHz sine wave input  
Table 34. 100BASE-TX Transceiver Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Test Conditions  
Transmit Peak Differential Output  
Voltage  
VOP  
0.95  
1.00  
1.05  
V
With specified transformer and line  
replaced by 100 ( 1%) load  
Transmit Signal Amplitude  
Symmetry  
Vsym  
trf  
98  
3
100  
4
102  
5
%
With specified transformer and line  
replaced by 100 ( 1%) load  
Transmit Rise/Fall Time  
ns  
With specified transformer and line  
replaced by 100 ( 1%) load  
Transmit Rise/Fall Time Symmetry  
Transmit Overshoot/UnderShoot  
Transmit Jitter  
trfs  
Vosh  
–0.5  
0
0
+0.5  
5
ns  
%
ns  
V
See IEEE 802.3 for details  
2.5  
.6  
1.4  
Receive Common Mode Voltage  
Receiver Maximum Input Voltage  
Vcm  
Vmax  
1.6  
VDDRX = 2.5 V  
4.7  
V
VDDRX = 2.5 V. Internal circuits  
protected by divider in shutdown  
2.9  
Analog-to-Digital Converter (ADC) Parameters  
Table 35 lists specifications for the analog-to-digital converter.  
1
Table 35. ADC Parameters  
Name  
Characteristic  
Low reference voltage  
Min  
Typical  
Max  
Unit  
VREFL  
VREFH  
VDDA  
VADIN  
RES  
INL  
VSS  
VREFH  
VDDA  
3.6  
V
V
High reference voltage  
VREFL  
3.0  
Analog supply voltage  
3.3  
V
Input voltages  
VREFL  
12  
VREFH  
12  
V
Resolution  
bits  
LSB3  
LSB  
LSB  
Integral non-linearity (full input signal range)2  
Integral non-linearity (10% to 90% input signal range)4  
Differential non-linearity  
Monotonicity  
2.5  
3  
INL  
2.5  
3  
DNL  
–1 < DNL < 1  
<1  
Guaranteed  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
40  
Freescale Semiconductor  
Electrical Characteristics  
1
Table 35. ADC Parameters (continued)  
Name  
Characteristic  
Min  
Typical  
Max  
Unit  
fADIC  
RAD  
ADC internal clock  
Conversion range  
ADC power-up time5  
Recovery from auto standby  
Conversion time  
0.1  
VREFL  
5.0  
VREFH  
13  
1
MHz  
V
tADPU  
tREC  
tADC  
tADS  
CADI  
XIN  
6
tAIC cycles6  
0
tAIC cycles  
6
tAIC cycles  
Sample time  
1
tAIC cycles  
pF  
Input capacitance  
See Figure 12  
Input impedance  
See Figure 12  
W
IADI  
Input injection current7, per pin  
VREFH current  
0
3
mA  
mA  
mV  
IVREFH  
VOFFSET Offset voltage internal reference  
EGAIN Gain error (transfer path)  
VOFFSET Offset voltage external reference  
11  
1
15  
1.01  
.99  
3  
mV  
dB  
SNR  
THD  
Signal-to-noise ratio  
62 to 66  
–75  
75  
Total harmonic distortion  
Spurious free dynamic range  
Signal-to-noise plus distortion  
Effective number OF bits  
dB  
SFDR  
SINAD  
ENOB  
dB  
65  
dB  
9.1  
10.6  
Bits  
1
2
3
4
5
6
7
All measurements were made at VDD = 3.3V, VREFH = 3.3V, and VREFL = ground  
INL measured from VIN = VREFL to VIN = VREFH  
LSB = Least Significant Bit  
INL measured from VIN = 0.1VREFH to VIN = 0.9VREFH  
Includes power-up of ADC and VREF  
ADC clock cycles  
The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the  
ADC  
2.9.1  
Equivalent Circuit for ADC Inputs  
Figure 10-17 shows the ADC input circuit during sample and hold. S1 and S2 are always open/closed at the same time that S3  
is closed/open. When S1/S2 are closed and S3 is open, one input of the sample and hold circuit moves to (VREFH-VREFL)/2,  
while the other charges to the analog input voltage. When the switches are flipped, the charge on C1 and C2 are averaged via  
S3, with the result that a single-ended analog input is switched to a differential voltage centered about (VREFH-VREFL)/2. The  
switches switch on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). There are additional  
capacitances associated with the analog input pad, routing, etc., but these do not filter into the S/H output voltage, as S1 provides  
isolation during the charge-sharing phase. One aspect of this circuit is that there is an ongoing input current, which is a function  
of the analog input voltage, VREF, and the ADC clock frequency.  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
41  
Electrical Characteristics  
125W ESD Resistor  
8pF noise damping capacitor  
4
3
Analog Input  
S1  
C1  
S/H  
S3  
C2  
S2  
(VREFH- VREFL) 2  
2
1
C1 = C2 = 1pF  
1
Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8pF  
2
3
4
Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04pF  
Equivalent resistance for the channel select mux; 100 ohms  
Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input  
and is only connected to it at sampling time; 1.4pF  
1
5
-----------------------------------------------------------------------------------------  
Equivalent input impedance, when the input is selected =  
ADC CLOCK RATE  1.4 10–12  
Figure 12. Equivalent Circuit for A/D Loading  
2.10 DMA Timers Timing Specifications  
Table 36 lists timer module AC timings.  
Table 36. Timer Module AC Timing Specifications  
Name  
Characteristic1  
Min  
Max  
Unit  
T1  
T2  
DTIN0 / DTIN1 / DTIN2 / DTIN3 cycle time  
DTIN0 / DTIN1 / DTIN2 / DTIN3 pulse width  
3 tCYC  
1 tCYC  
ns  
ns  
1
All timing references to CLKOUT are given to its rising edge.  
2.11 EzPort Electrical Specifications  
Table 37. EzPort Electrical Specifications  
Name  
Characteristic  
Min  
Max  
sys / 2  
Unit  
EP1  
EP1a  
EP2  
EP3  
EP4  
EP5  
EP6  
EPCK frequency of operation (all commands except READ)  
EPCK frequency of operation (READ command)  
EPCS_b negation to next EPCS_b assertion  
EPCS_B input valid to EPCK high (setup)  
EPCK high to EPCS_B input invalid (hold)  
EPD input valid to EPCK high (setup)  
f
MHz  
MHz  
ns  
fsys / 8  
2 × Tcyc  
5
5
2
5
ns  
ns  
ns  
EPCK high to EPD input invalid (hold)  
ns  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
42  
Freescale Semiconductor  
Electrical Characteristics  
Table 37. EzPort Electrical Specifications (continued)  
Name  
Characteristic  
Min  
Max  
Unit  
EP7  
EP8  
EP9  
EPCK low to EPQ output valid (out setup)  
EPCK low to EPQ output invalid (out hold)  
EPCS_B negation to EPQ tri-state  
0
12  
12  
ns  
ns  
ns  
2.12 QSPI Electrical Specifications  
Table 38 lists QSPI timings.  
Table 38. QSPI Modules AC Timing Specifications  
Characteristic  
Name  
Min  
Max  
Unit  
QS1  
QS2  
QS3  
QS4  
QS5  
QSPI_CS[3:0] to QSPI_CLK  
1
2
510  
10  
tCYC  
ns  
QSPI_CLK high to QSPI_DOUT valid  
QSPI_CLK high to QSPI_DOUT invalid (output hold)  
QSPI_DIN to QSPI_CLK (input setup)  
QSPI_DIN to QSPI_CLK (input hold)  
ns  
9
ns  
9
ns  
The values in Table 38 correspond to Figure 13.  
QS1  
QSPI_CS[3:0]  
QSPI_CLK  
QS2  
QSPI_DOUT  
QSPI_DIN  
QS3  
QS4  
QS5  
Figure 13. QSPI Timing  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
43  
Electrical Characteristics  
2.13 JTAG and Boundary Scan Timing  
Table 39. JTAG and Boundary Scan Timing  
Num  
Characteristics1  
TCLK frequency of operation  
Symbol  
Min  
Max  
Unit  
J1  
J2  
fJCYC  
tJCYC  
DC  
1/4  
3
fsys/2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCLK cycle period  
4 tCYC  
J3  
TCLK clock pulse width  
tJCW  
26  
0
J4  
TCLK rise and fall times  
tJCRF  
J5  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
tBSDST  
tBSDHT  
tBSDV  
4
33  
33  
26  
8
J6  
26  
0
J7  
J8  
tBSDZ  
0
J9  
tTAPBST  
tTAPBHT  
tTDODV  
tTDODZ  
tTRSTAT  
tTRSTST  
4
J10  
J11  
J12  
J13  
J14  
10  
0
TCLK low to TDO high Z  
0
TRST assert time  
100  
10  
TRST setup time (negation) to TCLK high  
1
JTAG_EN is expected to be a static signal. Hence, it is not associated with any timing.  
J2  
J3  
J3  
VIH  
TCLK  
VIL  
(input)  
J4  
J4  
Figure 14. Test Clock Input Timing  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
44  
Freescale Semiconductor  
Electrical Characteristics  
TCLK  
VIL  
VIH  
J5  
Input Data Valid  
J6  
Data Inputs  
J7  
J8  
Data Outputs  
Output Data Valid  
Data Outputs  
Data Outputs  
J7  
Output Data Valid  
Figure 15. Boundary Scan (JTAG) Timing  
TCLK  
VIL  
VIH  
J9  
J10  
TDI  
TMS  
Input Data Valid  
J11  
TDO  
Output Data Valid  
J12  
J11  
TDO  
TDO  
Output Data Valid  
Figure 16. Test Access Port Timing  
TCLK  
TRST  
14  
13  
Figure 17. TRST Timing  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
45  
Electrical Characteristics  
2.14 Debug AC Timing Specifications  
Table 40 lists specifications for the debug AC timing parameters shown in Figure 19.  
Table 40. Debug AC Timing Specification  
60 MHz  
Num  
Characteristic  
Units  
Min  
Max  
D1  
D2  
PST, DDATA to CLKOUT setup  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLKOUT to PST, DDATA hold  
DSI-to-DSCLK setup  
1.5  
D3  
1 tCYC  
4 tCYC  
5 tCYC  
4
D4 1  
DSCLK-to-DSO hold  
D5  
DSCLK cycle time  
D6  
BKPT input data setup time to CLKOUT Rise  
BKPT input data hold time to CLKOUT Rise  
CLKOUT high to BKPT high Z  
D7  
1.5  
D8  
0.0  
10.0  
1
DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to  
the rising edge of CLKOUT.  
Figure 18 shows real-time trace timing for the values in Table 40.  
CLKOUT  
D1  
D2  
PST[3:0]  
DDATA[3:0]  
Figure 18. Real-Time Trace AC Timing  
Figure 19 shows BDM serial port AC timing for the values in Table 40.  
CLKOUT  
DSCLK  
DSI  
D5  
D3  
Current  
Past  
Next  
D4  
DSO  
Current  
Figure 19. BDM Serial Port AC Timing  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
46  
Freescale Semiconductor  
Mechanical Outline Drawings  
3
Mechanical Outline Drawings  
This section describes the physical properties of the MCF52235 and its derivatives.  
3.1  
80-pin LQFP Package  
–X–  
X= L, M, N  
4X  
4X 20 TIPS  
0.20 (0.008)  
0.20 (0.008)  
H
L–M  
N
T
L–M  
N
P
80  
61  
C
L
1
60  
AB  
AB  
G
–M–  
B1  
VIEW Y  
B
V
PLATING  
F
–L–  
3X VIEW Y  
BASE  
METAL  
J
V1  
41  
20  
D
U
21  
40  
–N–  
M
S
S
0.13 (0.005)  
T
L–M  
N
A1  
S1  
SECTION AB–AB  
ROTATED 90 CLOCKWISE  
A
S
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS –L–, –M– AND –N– TO BE DETERMINED  
AT DATUM PLANE –H–.  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE –T–.  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 (0.010) PER SIDE. DIMENSIONS A AND B  
DO INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE –H–.  
C
8X  
2
0.10 (0.004)  
T
–H–  
–T–  
SEATING  
PLANE  
VIEW AA  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE LEAD WIDTH TO EXCEED 0.460  
(0.018). MINIMUM SPACE BETWEEN  
PROTRUSION AND ADJACENT LEAD OR  
PROTRUSION 0.07 (0.003).  
(W)  
C2  
S
0.05 (0.002)  
MILLIMETERS  
MIN MAX  
14.00 BSC  
7.00 BSC  
14.00 BSC  
7.00 BSC  
INCHES  
MIN MAX  
0.551 BSC  
0.276 BSC  
0.551 BSC  
0.276 BSC  
1
DIM  
A
A1  
B
B1  
C
C1  
C2  
D
E
F
G
J
K
P
R1  
S
S1  
U
0.25 (0.010)  
2X R R1  
GAGE  
PLANE  
–––  
0.04  
1.30  
0.22  
0.40  
0.17  
1.60  
–––  
0.002  
0.051  
0.009  
0.016  
0.007  
0.063  
0.24  
1.50  
0.38  
0.75  
0.33  
0.009  
0.059  
0.015  
0.030  
0.013  
(K)  
C1  
E
(Z)  
0.65 BSC  
0.026 BSC  
VIEW AA  
0.09  
0.27  
0.004  
0.011  
0.50 REF  
0.325 BSC  
0.020 REF  
0.013 REF  
0.004 0.008  
0.630 BSC  
0.315 BSC  
0.10  
0.20  
16.00 BSC  
8.00 BSC  
0.09  
0.16  
0.004  
0.006  
V
16.00 BSC  
0.630 BSC  
0.315 BSC  
0.008 REF  
0.039 REF  
V1  
W
Z
8.00 BSC  
0.20 REF  
1.00 REF  
0
01  
02  
0
0
9
10  
–––  
14  
0
0
9
10  
–––  
14  
CASE 917A–02  
ISSUE C  
DATE 09/21/95  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
47  
Mechanical Outline Drawings  
3.2 112-pin LQFP Package  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
48  
Freescale Semiconductor  
Mechanical Outline Drawings  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
49  
Mechanical Outline Drawings  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
50  
Freescale Semiconductor  
Mechanical Outline Drawings  
3.3 121 MAPBGA Package  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
51  
Mechanical Outline Drawings  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
52  
Freescale Semiconductor  
Revision History  
4 Revision History  
Table 41. Revision History  
Revision  
Description  
2 (Jul 2006)  
• Updated available packages.  
• Inserted mechanical drawings.  
• Corrected signal pinouts and table.  
3 (Feb 2007)  
• Changed signal names TIN to DTIN and TOUT to DTOUT to match the MCF52235 ColdFire® Integrated  
Microcontroller Reference Manual.  
• Added overbars to extend over entire UCTSn and URTSn signal name.  
• Added revision history.  
• Formatting, layout, spelling, and grammar corrections.  
• Updated block diagram and feature information to match Revision 3 of the MCF52235 ColdFire®  
Integrated Microcontroller Reference Manual.  
• Deleted the “PSTCLK cycle time” row from the “Debug AC Timing Specifications” table.  
• Added “EPHY Timing” section.  
• Deleted the “RAM standby supply voltage” entry from Table 19.  
• Changed the minimum value for SNR, THD, SFDR, and SINAD in the “ADC parameters” table (was  
TBD, is “—”).  
• In the “Pin Functions by Primary and Alternate Purpose” table, changed the pin number for IRQ11 on  
the 80 LQFP package (was “—”, is 41).  
• Updated the “Thermal characteristics” table to include proper thermal resistance values.  
• Added two tables, “Active Current Consumption Specifications” and “Current Consumption  
Specifications in Low-Power Modes”, containing the latest current consumption information.  
• Changed the value of Tj in the “Thermal Characteristics” table (was 105 C, is 130 C for all packages).  
• Added the following note to and above the “Thermal Characteristics” table: “The use of this device in  
one- or two-layer board designs is not recommended due to the limited thermal conductance provided  
by those boards.”  
• Added the value for jt for the 121MAPBGA package (2.0 C/W).  
4 (May 2007)  
5 (Sep 2007)  
• Formatting, layout, spelling, and grammar corrections.  
• Added load test condition information to the “General Purpose I/O Timing” section.  
• Added specifications for VLVD and VLVDHYS to the “DC electrical specifications” table.  
• Formatting, layout, spelling, and grammar corrections.  
• Added information about the MCF52232 and MCF52236 devices.  
• Revised the part number table to include full Freescale orderable part numbers.  
• Synchronized the “Pin Functions by Primary and Alternate Purpose” table in the device reference  
manual and data sheet.  
• Added specifications for VREFL, VREFH, and VDDA to the “ADC Parameters” table.  
• Added several EPHY specifications.  
6 (Oct 2007)  
7 (Aug 2008)  
• Formatting, layout, spelling, and grammar corrections.  
• Changed the data sheet classification (was “Product Preview”, is “Advance Information”).  
• Added the “EzPort Electrical Specifications” section.  
• Updated the “ESD Protection” section.  
• Changed document type from Advance Information to Technical Data.  
• Added supported device list in subtitle.  
• Removed preliminary text from electrical specifications section as device is fully characterized.  
• Corrected IVREFH, VREFH current unit from “m” to “mA” in ADC specification table.  
• Changed VOFFSET from TBD to — in ADC specification table.  
8 (Jun 2009)  
• Updated Orderable Part Number Summary table to include MCF52233CAL60A, MCF52235CAL60A,  
and MCF52236AF50A parts  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
Freescale Semiconductor  
53  
Revision History  
Revision  
Table 41. Revision History (continued)  
Description  
8 Sep 2009  
8 April 2010  
22 Mar 2011  
• Updated Table 25 — PLL Electrical Specifications.  
• Updated Table 37— EzPort Electrical Specifications  
• Updated Table Oscillator and PLL Electrical Specification. In EXTAL input high voltage updated VDD to  
3.0  
23-Mar-2011  
• Changed EXTAL input high voltage (External reference) Maximum to "3.0V" (Instead of "VDD"). Also,  
add a note this value has been updated.  
• Updated clock generation feature  
MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10  
54  
Freescale Semiconductor  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2011. All rights reserved.  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MCF52235  
Rev. 10  
3/2011  

相关型号:

LH79531

ARM RISC CORE ASSPs ARM7TDMI
ETC

LH79532/Y

ARM RISC CORE ASSPs ARM7TDMI
ETC

LH79533

ARM RISC CORE ASSPs ARM7TDMI
ETC

LH7A400

32-Bit System-on-Chip
SHARP

LH7A400

32-Bit System-on-Chip
NXP

LH7A400N0B000

32-Bit System-on-Chip
SHARP

LH7A400N0B000B3A

32-Bit System-on-Chip
NXP

LH7A400N0B000B5

32-Bit System-on-Chip
NXP

LH7A400N0C000

32-Bit System-on-Chip
SHARP

LH7A400N0E000

32-Bit System-on-Chip
SHARP

LH7A400N0E000B3A

32-Bit System-on-Chip
NXP

LH7A400N0E000B5

32-Bit System-on-Chip
NXP