LPC1102UK [NXP]

32-bit ARM Cortex-M0 microcontroller; 32 kB flash and 8 kB SRAM; 32位ARM Cortex -M0微控制器; 32 KB的闪存和8 KB的SRAM
LPC1102UK
型号: LPC1102UK
厂家: NXP    NXP
描述:

32-bit ARM Cortex-M0 microcontroller; 32 kB flash and 8 kB SRAM
32位ARM Cortex -M0微控制器; 32 KB的闪存和8 KB的SRAM

闪存 微控制器 静态存储器
文件: 总39页 (文件大小:279K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC1102  
32-bit ARM Cortex-M0 microcontroller; 32 kB flash and 8 kB  
SRAM  
Rev. 3 — 18 April 2011  
Product data sheet  
1. General description  
The LPC1102 is an ARM Cortex-M0 based, low-cost 32-bit MCU, designed for 8/16-bit  
microcontroller applications, offering performance, low power, simple instruction set and  
memory addressing together with reduced code size compared to existing 8/16-bit  
architectures.  
The LPC1102 operates at CPU frequencies of up to 50 MHz.  
The peripheral complement of the LPC1102 includes 32 kB of flash memory, 8 kB of data  
memory, one RS-485/EIA-485 UART, one SPI interface with SSP features, four general  
purpose counter/timers, a 10-bit ADC, and 11 general purpose I/O pins.  
2. Features and benefits  
„ System:  
‹ ARM Cortex-M0 processor, running at frequencies of up to 50 MHz.  
‹ ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC).  
‹ Serial Wire Debug.  
‹ System tick timer.  
„ Memory:  
‹ 32 kB on-chip flash programming memory.  
‹ 8 kB SRAM.  
‹ In-Application Programming (IAP) and In-System Programming (ISP) support via  
on-chip bootloader software.  
„ Digital peripherals:  
‹ 11 General Purpose I/O (GPIO) pins with configurable pull-up/pull-down resistors.  
‹ GPIO pins can be used as edge and level sensitive interrupt sources.  
‹ Four general purpose counter/timers with a total of one capture input and nine  
match outputs.  
‹ Programmable WatchDog Timer (WDT).  
„ Analog peripherals:  
‹ 10-bit ADC with input multiplexing among five pins.  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
„ Serial interfaces:  
‹ UART with fractional baud rate generation, internal FIFO, and RS-485 support.  
‹ One SPI controller with SSP features and with FIFO and multi-protocol capabilities  
(see Section 7.16).  
„ Clock generation:  
‹ 12 MHz internal RC oscillator trimmed to 1 % accuracy that can optionally be used  
as a system clock.  
‹ Programmable watchdog oscillator with a frequency range of 7.8 kHz to 1.8 MHz.  
‹ PLL allows CPU operation up to the maximum CPU rate without the need for a  
high-frequency crystal. May be run from an external clock or the internal RC  
oscillator.  
„ Power control:  
‹ Integrated PMU (Power Management Unit) to minimize power consumption during  
Sleep and Deep-sleep modes.  
‹ Power profiles residing in boot ROM allowing to optimize performance and  
minimize power consumption for any given application through one simple function  
call.  
‹ Two reduced power modes: Sleep and Deep-sleep modes.  
‹ Processor wake-up from Deep-sleep mode via a dedicated start logic using up to  
six of the functional pins.  
‹ Power-On Reset (POR).  
‹ Brownout detect with four separate thresholds for interrupt and forced reset.  
„ Unique device serial number for identification.  
„ Single 3.3 V power supply (1.8 V to 3.6 V).  
„ Available as WLCSP16 package.  
3. Applications  
„ Mobile devices  
„ 8-/16-bit applications  
„ Portable devices  
„ Consumer peripherals  
„ Lighting  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
wafer level chip-size package; 16 bumps; 2.17 × 2.32 × 0.6 mm  
Version  
LPC1102UK  
WLCSP16  
-
4.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Flash  
Total  
SRAM  
UART  
RS-485  
SPI  
ADC  
channels  
Package  
WLCSP16  
LPC1102UK  
32 kB  
8 kB  
1
1
5
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
2 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
5. Block diagram  
XTALIN  
RESET  
SWD  
LPC1102  
IRC  
CLOCK  
GENERATION,  
POWER CONTROL,  
SYSTEM  
TEST/DEBUG  
INTERFACE  
POR  
FUNCTIONS  
ARM  
CORTEX-M0  
clocks and  
controls  
FLASH  
32 kB  
SRAM  
8 kB  
ROM  
system bus  
slave  
slave  
slave  
slave  
HIGH-SPEED  
GPIO  
GPIO port  
PIO0/1  
AHB-LITE BUS  
slave  
AHB TO APB  
BRIDGE  
RXD  
TXD  
UART  
AD[4:0]  
10-bit ADC  
SCK, MISO,  
MOSI  
SPI  
CT32B0_MAT[3,1,0]  
32-bit COUNTER/TIMER 0  
32-bit COUNTER/TIMER 1  
16-bit COUNTER/TIMER 0  
16-bit COUNTER/TIMER 1  
WDT  
CT32B1_MAT[2:0]  
CT32B1_CAP0  
IOCONFIG  
CT16B0_MAT[2:0]  
SYSTEM CONTROL  
PMU  
002aaf524  
Fig 1. LPC1102 block diagram  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
3 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
6. Pinning information  
6.1 Pinning  
LPC1102UK  
D
C
B
A
ball A1  
index area  
1
2
3
4
002aaf525  
Fig 2. Pin configuration WLCSP16 package  
6.2 Pin description  
Table 3.  
Symbol  
LPC1102 pin description table  
Pin  
Start Type Reset Description  
logic  
input  
state[1]  
RESET/PIO0_0  
C1[2]  
yes  
I
I; PU  
RESET — External reset input with 20 ns glitch filter. A LOW  
-going pulse as short as 50 ns on this pin resets the device,  
causing I/O ports and peripherals to take on their default states,  
and processor execution to begin at address 0.  
I/O  
I/O  
I/O  
O
-
PIO0_0 — General purpose digital input/output pin.  
PIO0_8 — General purpose digital input/output pin.  
MISO0 — Master In Slave Out for SPI.  
PIO0_8/MISO/  
CT16B0_MAT0  
A2[3]  
A3[3]  
A4[3]  
yes  
yes  
yes  
I; PU  
-
-
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.  
PIO0_9 — General purpose digital input/output pin.  
MOSI0 — Master Out Slave In for SPI.  
PIO0_9/MOSI/  
CT16B0_MAT1  
I/O  
I/O  
O
I; PU  
-
-
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.  
SWCLK — Serial wire clock.  
SWCLK/  
I
I; PU  
PIO0_10/  
SCK/CT16B0_MAT2  
I/O  
I/O  
O
-
PIO0_10 — General purpose digital input/output pin.  
SCK — Serial clock for SPI.  
-
-
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.  
R — Reserved.  
R/PIO0_11/  
B4[4]  
yes  
-
I; PU  
AD0/CT32B0_MAT3  
I/O  
I
-
-
-
PIO0_11 — General purpose digital input/output pin.  
AD0 — A/D converter, input 0.  
I
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
4 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC1102 pin description table …continued  
Pin  
Start Type Reset Description  
logic  
input  
state[1]  
R/PIO1_0/  
AD1/CT32B1_CAP0  
B3[4]  
yes  
no  
no  
no  
-
I; PU  
R — Reserved.  
I/O  
I
-
PIO1_0 — General purpose digital input/output pin.  
AD1 — A/D converter, input 1.  
-
I
-
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.  
R — Reserved.  
R/PIO1_1/  
AD2/CT32B1_MAT0  
C4[4]  
-
I; PU  
I/O  
I
-
PIO1_1 — General purpose digital input/output pin.  
AD2 — A/D converter, input 2.  
-
O
-
-
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.  
R — Reserved.  
R/PIO1_2/  
AD3/CT32B1_MAT1  
C3[4]  
I; PU  
I/O  
I
-
PIO1_2 — General purpose digital input/output pin.  
AD3 — A/D converter, input 3.  
-
O
I/O  
I/O  
I
-
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.  
SWDIO — Serial wire debug input/output.  
PIO1_3 — General purpose digital input/output pin.  
AD4 — A/D converter, input 4.  
SWDIO/PIO1_3/AD4/ D4[4]  
CT32B1_MAT2  
I; PU  
-
-
O
I/O  
I
-
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.  
PIO1_6 — General purpose digital input/output pin.  
RXD — Receiver input for UART.  
PIO1_6/RXD/  
CT32B0_MAT0  
C2[3]  
D1[3]  
no  
no  
I; PU  
-
O
I/O  
O
O
I
-
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.  
PIO1_7 — General purpose digital input/output pin.  
TXD — Transmitter output for UART.  
PIO1_7/TXD/  
CT32B0_MAT1  
I; PU  
-
-
-
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.  
VDD  
D2; A1  
B2[5]  
-
-
-
3.3 V supply voltage to the internal regulator, the external rail,  
and the ADC. Also used as the ADC reference voltage.  
XTALIN  
VSS  
I
I
-
-
External clock input and input to internal clock generator circuits.  
Input voltage must not exceed 1.8 V.  
D3; B1  
Ground.  
[1] Pin state at reset for default function: I = Input; PU = internal pull-up enabled.  
[2] 5 V tolerant pad. See Figure 21 for the reset pad configuration.  
[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 20).  
[4] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input.  
When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 20).  
[5] When the external clock is not used, connect XTALIN as follows: XTALIN can be left floating or can be grounded (grounding is preferred  
to reduce susceptibility to noise).  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
5 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7. Functional description  
7.1 ARM Cortex-M0 processor  
The ARM Cortex-M0 is a general purpose, 32-bit microprocessor, which offers high  
performance and very low power consumption.  
7.2 On-chip flash program memory  
The LPC1102 contains 32 kB of on-chip flash memory.  
Remark: The LPC1102 supports In-Application Programming (IAP) and In-System  
Programming (ISP). For ISP, since there is no dedicated ISP entry pin, user code is  
required to invoke ISP functionality. Unprogrammed parts will automatically boot into ISP  
mode.  
7.3 On-chip SRAM  
The LPC1102 contains 8 kB on-chip static RAM memory.  
7.4 Memory map  
The LPC1102 incorporates several distinct memory regions, shown in the following  
figures. Figure 3 shows the overall map of the entire address space from the user  
program viewpoint following reset. The interrupt vector area supports address remapping.  
The AHB peripheral area is 2 megabyte in size, and is divided to allow for up to 128  
peripherals. The APB peripheral area is 512 kB in size and is divided to allow for up to 32  
peripherals. Each peripheral of either type is allocated 16 kB of space. This allows  
simplifying the address decoding for each peripheral.  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
6 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
AHB peripherals  
0x5020 0000  
LPC1102  
4 GB  
0xFFFF FFFF  
reserved  
private peripheral bus  
reserved  
0xE010 0000  
0xE000 0000  
127 - 16 reserved  
0x5004 0000  
reserved  
15-12  
11-8  
7-4  
0x5003 0000  
0x5002 0000  
0x5020 0000  
0x5000 0000  
reserved  
AHB peripherals  
reserved  
GPIO PIO1  
GPIO PIO0  
0x5001 0000  
0x5000 0000  
3-0  
APB peripherals  
0x4008 0000  
31 - 23 reserved  
reserved  
0x4005 C000  
0x4005 8000  
0x4008 0000  
0x4000 0000  
22  
APB peripherals  
reserved  
1 GB  
21 - 19 reserved  
0x4004 C000  
0x4004 8000  
0x4004 4000  
0x4004 0000  
system control  
IOCONFIG  
18  
17  
SPI  
16  
15  
flash controller  
0x4003 C000  
0x4003 8000  
0x2000 0000  
0.5 GB  
14  
PMU  
reserved  
13 - 10 reserved  
0x1FFF 4000  
0x1FFF 0000  
0x4002 8000  
0x4002 4000  
0x4002 0000  
16 kB boot ROM  
reserved  
reserved  
reserved  
9
8
7
6
5
4
3
2
ADC  
0x4001 C000  
0x4001 8000  
32-bit counter/timer 1  
32-bit counter/timer 0  
16-bit counter/timer 1  
16-bit counter/timer 0  
UART  
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
0x1000 2000  
0x1000 0000  
8 kB SRAM  
reserved  
WDT  
1
0
0x4000 4000  
0x4000 0000  
reserved  
0x0000 00C0  
0x0000 8000  
0x0000 0000  
active interrupt vectors  
0x0000 0000  
32 kB on-chip flash  
0 GB  
002aaf526  
Fig 3. LPC1102 memory map  
7.5 Nested Vectored Interrupt Controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M0. The  
tight coupling to the CPU allows for low interrupt latency and efficient processing of late  
arriving interrupts.  
7.5.1 Features  
Controls system exceptions and peripheral interrupts.  
In the LPC1102, the NVIC supports 19 vectored interrupts including up to 6 inputs to  
the start logic from individual GPIO pins.  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
7 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Four programmable interrupt priority levels, with hardware priority level masking.  
Software interrupt generation.  
7.5.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags. Individual interrupt flags may also represent more than one interrupt  
source.  
Any GPIO pin (total of up to 11 pins) regardless of the selected function, can be  
programmed to generate an interrupt on a level, or rising edge or falling edge, or both.  
7.6 IOCONFIG block  
The IOCONFIG block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on-chip peripherals.  
Peripherals should be connected to the appropriate pins prior to being activated and prior  
to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is  
not mapped to a related pin should be considered undefined.  
7.7 Fast general purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs  
can be set or cleared in one write operation.  
The LPC1102 uses accelerated GPIO functions:  
GPIO registers are a dedicated AHB peripheral so that the fastest possible I/O timing  
can be achieved.  
Entire port value can be written in one instruction.  
Additionally, any GPIO pin (total of 11 pins) providing a digital function can be  
programmed to generate an interrupt on a level, a rising or falling edge, or both.  
7.7.1 Features  
Bit level port registers allow a single instruction to set or clear any number of bits in  
one write operation.  
Direction control of individual bits.  
All I/O default to inputs with pull-ups enabled after reset.  
Pull-up/pull-down resistor configuration can be programmed through the IOCONFIG  
block for each GPIO pin.  
7.8 UART  
The LPC1102 contains one UART.  
Support for RS-485/9-bit mode allows both software address detection and automatic  
address detection using 9-bit mode.  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
8 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
The UART includes a fractional baud rate generator. Standard baud rates such as  
115200 Bd can be achieved with any crystal frequency above 2 MHz.  
7.8.1 Features  
Maximum UART data bit rate of 3.125 Mbit/s.  
16 Byte Receive and Transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
FIFO control mechanism that enables software flow control implementation.  
Support for RS-485/9-bit mode.  
7.9 SPI serial I/O controller  
The LPC1102 contains one SPI controller and fully supports SSP features.  
The SPI controller is capable of operation on a SSP, 4-wire SSI, or Microwire bus. It can  
interact with multiple masters and slaves on the bus. Only a single master and a single  
slave can communicate on the bus during a given data transfer. The SPI supports full  
duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the  
slave and from the slave to the master. In practice, often only one of these data flows  
carries meaningful data.  
Remark: Care must be taken when using the SPI because the SPI clock SCK and the  
serial wire debug clock SWCLK share the same pin on the WLCSP16 package. Once the  
SPI is enabled, the serial wire debugger is no longer available.  
7.9.1 Features  
Maximum SPI speed of 25 Mbit/s (master) or 4.17 Mbit/s (slave) (in SSP mode)  
Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National  
Semiconductor Microwire buses  
Synchronous serial communication  
Master or slave operation  
8-frame FIFOs for both transmit and receive  
4-bit to 16-bit frame  
7.10 10-bit ADC  
The LPC1102 contains one ADC. It is a single 10-bit successive approximation ADC with  
five channels.  
7.10.1 Features  
10-bit successive approximation ADC.  
Input multiplexing among 5 pins.  
Power-down mode.  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
9 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Measurement range 0 V to VDD  
.
10-bit conversion time 2.44 μs.  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition of input pin or timer match signal.  
Individual result registers for each ADC channel to reduce interrupt overhead.  
7.11 General purpose external event counter/timers  
The LPC1102 includes two 32-bit counter/timers and two 16-bit counter/timers. The  
counter/timer is designed to count cycles of the system derived clock. It can optionally  
generate interrupts or perform other actions at specified timer values, based on four  
match registers. Each counter/timer also includes one capture input to trap the timer value  
when an input signal transitions, optionally generating an interrupt.  
7.11.1 Features  
A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler.  
Counter or timer operation.  
One capture channel that can take a snapshot of the timer value when an input signal  
transitions. A capture event may also generate an interrupt.  
Four match registers per timer that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Up to four external outputs corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
7.12 System tick timer  
The ARM Cortex-M0 includes a system tick timer (SYSTICK) that is intended to generate  
a dedicated SYSTICK exception at a fixed time interval (typically 10 ms).  
7.13 Watchdog timer  
The purpose of the watchdog is to reset the microcontroller within a selectable time  
period.  
7.13.1 Features  
Internally resets chip if not periodically reloaded.  
Debug mode.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
10 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) × 256 × 4) to (Tcy(WDCLK) × 224 × 4) in  
multiples of Tcy(WDCLK) × 4.  
The Watchdog Clock (WDCLK) source can be selected from the Internal RC oscillator  
(IRC), the Watchdog oscillator, or the main clock. This gives a wide range of potential  
timing choices of Watchdog operation under different power reduction conditions. It  
also provides the ability to run the WDT from an entirely internal source that is not  
dependent on an external crystal and its associated components and wiring for  
increased reliability.  
7.14 Clocking and power control  
7.14.1 Crystal oscillators  
The LPC1102 includes two independent oscillators. These are the Internal RC oscillator  
(IRC) and the Watchdog oscillator. Each oscillator can be used for more than one purpose  
as required in a particular application.  
Following reset, the LPC1102 will operate from the Internal RC oscillator until switched by  
software. This allows systems to operate without any external crystal and the bootloader  
code to operate at a known frequency.  
See Figure 4 for an overview of the LPC1102 clock generation.  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
11 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
AHB clock 0  
(system)  
system clock  
SYSTEM CLOCK  
DIVIDER  
18  
AHB clocks 1 to 18  
(memories  
and peripherals)  
AHBCLKCTRL[1:18]  
(AHB clock enable)  
SPI0 PERIPHERAL  
CLOCK DIVIDER  
SPI0  
IRC oscillator  
main clock  
UART PERIPHERAL  
CLOCK DIVIDER  
UART  
watchdog oscillator  
MAINCLKSEL  
(main clock select)  
IRC oscillator  
WDT CLOCK  
DIVIDER  
WDT  
IRC oscillator  
external clock  
watchdog oscillator  
SYSTEM PLL  
WDTUEN  
(WDT clock update enable)  
SYSPLLCLKSEL  
(system PLL clock select)  
002aaf527  
Fig 4. LPC1102 clock generation block diagram  
7.14.1.1 Internal RC oscillator  
The IRC may be used as the clock source for the WDT, and/or as the clock that drives the  
PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz. The IRC is  
trimmed to 1 % accuracy over the entire voltage and temperature range.  
Upon power-up or any chip reset, the LPC1102 uses the IRC as the clock source.  
Software may later switch to one of the other available clock sources.  
7.14.1.2 Watchdog oscillator  
The watchdog oscillator can be used as a clock source that directly drives the CPU or the  
watchdog timer. The watchdog oscillator nominal frequency is programmable between 7.8  
kHz and 1.7 MHz. The frequency spread over processing and temperature is ±40 %.  
7.14.2 System PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO).  
The multiplier can be an integer value from 1 to 32. The CCO operates in the range of  
156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within  
its frequency range while the PLL is providing the desired output frequency. The PLL  
output frequency must be lower than 100 MHz. The output divider may be set to divide by  
2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2, it is  
insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
12 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
following a chip reset and may be enabled by software. The program must configure and  
activate the PLL, wait for the PLL to lock, and then connect to the PLL as a clock source.  
The PLL settling time is 100 μs.  
7.14.3 Wake-up process  
The LPC1102 begins operation at power-up by using the 12 MHz IRC oscillator as the  
clock source. This allows chip operation to resume quickly. If an external clock or the PLL  
is needed by the application, software will need to enable these features and wait for them  
to stabilize before they are used as a clock source.  
7.14.4 Power control  
The LPC1102 supports a variety of power control features. There are two special modes  
of processor power reduction: Sleep mode and Deep-sleep mode. The CPU clock rate  
may also be controlled as needed by changing clock sources, reconfiguring PLL values,  
and/or altering the CPU clock divider value. This allows a trade-off of power versus  
processing speed based on application requirements. In addition, a register is provided for  
shutting down the clocks to individual on-chip peripherals, allowing fine tuning of power  
consumption by eliminating all dynamic power use in any peripherals that are not required  
for the application. Selected peripherals have their own clock divider which provides even  
better power control.  
7.14.4.1 Power profiles  
The power consumption in Active and Sleep modes can be optimized for the application  
through a simple call to the power profiles. The power configuration routine configures the  
LPC1102 for one of the following power modes:  
Default mode corresponding to power configuration after reset.  
CPU performance mode corresponding to optimized processing capability.  
Efficiency mode corresponding to optimized balance of current consumption and CPU  
performance.  
Low-current mode corresponding to lowest power consumption.  
In addition, the power profiles includes a routine to select the optimal PLL settings for a  
given system clock and PLL input clock.  
7.14.4.2 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence but re-enabling the clock to the ARM core.  
In Sleep mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and may generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, and internal  
buses.  
7.14.4.3 Deep-sleep mode  
In Deep-sleep mode, the chip is in Sleep mode, and in addition all analog blocks are shut  
down except for the watchdog oscillator and the BOD circuit, which can be configured to  
remain running in Deep-sleep mode to allow a reset initiated by a timer or BOD event.  
Deep-sleep mode allows for additional power savings.  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
13 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Six of the GPIO pins (see Table 3) serve as external wake-up pins to a dedicated start  
logic to wake up the chip from Deep-sleep mode.  
The clock source should be switched to IRC before entering Deep-sleep mode unless the  
watchdog oscillator remains running in Deep-sleep mode. The IRC can be switched on  
and off glitch-free and provides a clean clock signal after start-up.  
7.15 System control  
7.15.1 Start logic  
The start logic connects external pins to corresponding interrupts in the NVIC. Each pin  
shown in Table 3 as input to the start logic has an individual interrupt in the NVIC interrupt  
vector table. The start logic pins can serve as external interrupt pins when the chip is  
running. In addition, an input signal on the start logic pins can wake up the chip from  
Deep-sleep mode when all clocks are shut down.  
The start logic must be configured in the system configuration block and in the NVIC  
before being used.  
7.15.2 Reset  
Reset has four sources on the LPC1102: the RESET pin, the Watchdog reset, power-on  
reset (POR), and the BrownOut Detection (BOD) circuit. In addition, there is an ARM  
software reset. The RESET pin is a Schmitt trigger input pin. Assertion of chip reset by  
any source, once the operating voltage attains a usable level, starts the IRC and initializes  
the flash controller.  
A LOW-going pulse as short as 50 ns resets the part.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the boot block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
7.15.3 Brownout detection  
The LPC1102 includes four levels for monitoring the voltage on the VDD pin. If this voltage  
falls below one of the four selected levels, the BOD asserts an interrupt signal to the  
NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC  
in order to cause a CPU interrupt; if not, software can monitor the signal by reading a  
dedicated status register. Four additional threshold levels can be selected to cause a  
forced reset of the chip.  
7.15.4 Code security (Code Read Protection - CRP)  
This feature of the LPC1102 allows user to enable different levels of security in the system  
so that access to the on-chip flash and use of the Serial Wire Debugger (SWD) can be  
restricted. When needed, CRP is invoked by programming a specific pattern into a  
dedicated flash location. IAP commands are not affected by the CRP.  
There are three levels of Code Read Protection:  
1. CRP1 disables access to the chip via the SWD and allows partial flash update  
(excluding flash sector 0). This mode is useful when CRP is required and flash field  
updates are needed but all sectors can not be erased.  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
14 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
2. CRP2 disables access to the chip via the SWD and only allows full flash erase and  
update.  
3. Running an application with level CRP3 selected fully disables any access to the chip  
via the SWD pins.  
Remark: The LPC1102 does not provide an ISP entry pin to be monitored at reset. For all  
three CRP levels, the user’s application code must provide a flash update mechanism  
which reinvokes ISP by defining a user-selected PIO pin for ISP entry.  
CAUTION  
If Code Read Protection of any level (CRP1, CRP2 or CRP3) is selected, no future factory  
testing can be performed on the device.  
7.15.5 APB interface  
The APB peripherals are located on one APB bus.  
7.15.6 AHBLite  
The AHBLite connects the CPU bus of the ARM Cortex-M0 to the flash memory, the main  
static RAM, and the Boot ROM.  
7.15.7 External interrupt inputs  
All GPIO pins can be level or edge sensitive interrupt inputs. In addition, start logic inputs  
serve as external interrupts (see Section 7.15.1).  
7.16 Emulation and debugging  
Debug functions are integrated into the ARM Cortex-M0. Serial wire debug with four  
breakpoints and two watchpoints is supported.  
Remark: Care must be taken when using the SPI because the SPI clock SCK and the  
serial wire debug clock SWCLK share the same pin on the WLCSP16 package. Once the  
SPI is enabled, the serial wire debugger is no longer available.  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
15 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
8. Limiting values  
Table 4.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
VDD  
Parameter  
Conditions  
Min  
1.8  
Max  
3.6  
Unit  
V
supply voltage (core and external rail)  
input voltage  
[2]  
VI  
5 V tolerant I/O  
pins; only valid  
when the VDD  
supply voltage is  
present  
0.5  
+5.5  
V
[3]  
[3]  
IDD  
supply current  
per supply pin  
per ground pin  
-
-
-
100  
100  
100  
mA  
mA  
mA  
ISS  
ground current  
I/O latch-up current  
Ilatch  
(0.5VDD) < VI <  
(1.5VDD);  
Tj < 125 °C  
[4]  
Tstg  
storage temperature  
65  
+150  
150  
1.5  
°C  
°C  
W
Tj(max)  
Ptot(pack)  
maximum junction temperature  
total power dissipation (per package)  
-
-
based on package  
heat transfer, not  
device power  
consumption  
[5]  
VESD  
electrostatic discharge voltage  
human body  
6500  
+6500  
V
model; all pins  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Including voltage on outputs in 3-state mode.  
[3] The peak current is limited to 25 times the corresponding maximum current.  
[4] Dependent on package type.  
[5] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kΩ series resistor.  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
16 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9. Static characteristics  
Table 5.  
Static characteristics  
Tamb = 40 °C to +85 °C, unless otherwise specified.  
Symbol  
VDD  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
supply voltage (core  
and external rail)  
1.8  
3.3  
3.6  
V
IDD  
supply current  
Active mode; code  
while(1){}  
executed from flash  
system clock = 12 MHz  
[2][3][4]  
[5][6]  
-
-
-
2
7
1
-
-
-
mA  
mA  
mA  
V
DD = 3.3 V  
system clock = 50 MHz  
DD = 3.3 V  
[2][3][5]  
[6][7]  
V
[2][3][4]  
[5][6]  
Sleep mode;  
system clock = 12 MHz  
VDD = 3.3 V  
[2][3][8]  
Deep-sleep mode;  
VDD = 3.3 V  
-
2
-
μA  
Standard port pins, RESET  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up  
resistor disabled  
-
-
0.5  
0.5  
10  
10  
nA  
nA  
IIH  
HIGH-level input  
current  
VI = VDD; on-chip  
pull-down resistor  
disabled  
IOZ  
OFF-state output  
current  
VO = 0 V; VO = VDD  
on-chip pull-up/down  
resistors disabled  
;
-
0.5  
-
10  
nA  
V
[9][10]  
VI  
input voltage  
pin configured to provide  
a digital function  
0
5.0  
VO  
output voltage  
output active  
0
-
-
VDD  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
0.3VDD  
V
V
V
Vhys  
VOH  
-
0.4  
-
-
-
HIGH-level output  
voltage  
2.0 V VDD 3.6 V;  
IOH = 4 mA  
VDD 0.4  
1.8 V VDD < 2.0 V;  
IOH = 3 mA  
VDD 0.4  
-
-
-
-
-
V
VOL  
LOW-level output  
voltage  
2.0 V VDD 3.6 V;  
-
0.4  
0.4  
-
V
I
OL = 4 mA  
1.8 V VDD < 2.0 V;  
IOL = 3 mA  
-
V
IOH  
HIGH-level output  
current  
VOH = VDD 0.4 V;  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
4  
mA  
3  
-
-
mA  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
17 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 5.  
Static characteristics …continued  
Tamb = 40 °C to +85 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
IOL  
LOW-level output  
current  
VOL = 0.4 V  
4
-
-
mA  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
3
-
-
-
-
mA  
mA  
[11]  
[11]  
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
45  
LOW-level short-circuit VOL = VDD  
output current  
-
-
50  
mA  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V;  
10  
50  
150  
μA  
μA  
15  
50  
85  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
10  
50  
85  
μA  
μA  
VDD < VI < 5 V  
0
0
0
External clock input  
Vi(xtal) crystal input voltage  
0.5  
1.8  
1.95  
V
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.  
[2] Tamb = 25 °C.  
[3] IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled.  
[4] IRC enabled; external clock disabled; system PLL disabled.  
[5] BOD disabled.  
[6] All peripherals disabled in the SYSAHBCLKCTRL register. Peripheral clocks to UART and SPI0/1 disabled in system configuration  
block. Low-current mode PWR_LOW_CURRENT selected when running the set_power routine in the power profiles.  
[7] IRC disabled; system oscillator enabled; system PLL enabled.  
[8] All oscillators and analog blocks turned off in the PDSLEEPCFG register; PDSLEEPCFG = 0x0000 18FF.  
[9] Including voltage on outputs in 3-state mode.  
[10] VDD supply voltage must be present.  
[11] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
18 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 6.  
ADC static characteristics  
Tamb = 40 °C to +85 °C unless otherwise specified; ADC frequency 4.5 MHz, VDD = 2.5 V to 3.6 V.  
Symbol  
VIA  
Parameter  
Conditions  
Min  
Typ  
Max  
VDD  
1
Unit  
V
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Cia  
pF  
[1][2]  
[3]  
ED  
± 1  
LSB  
LSB  
LSB  
%
EL(adj)  
EO  
± 1.5  
± 3.5  
0.6  
[4]  
[5]  
EG  
gain error  
[6]  
ET  
absolute error  
± 4  
LSB  
kΩ  
Rvsi  
voltage source interface  
resistance  
40  
[7][8]  
Ri  
input resistance  
-
-
2.5  
MΩ  
[1] The ADC is monotonic, there are no missing codes.  
[2] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 5.  
[3] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 5.  
[4] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 5.  
[5] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 5.  
[6] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated  
ADC and the ideal transfer curve. See Figure 5.  
[7] Tamb = 25 °C; maximum sampling frequency fs = 4.5 MHz and analog input capacitance Cia = 1 pF.  
[8] Input resistance Ri depends on the sampling frequency fs: Ri = 1 / (fs × Cia).  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
19 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
offset  
error  
gain  
error  
E
E
G
O
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
(LSB  
)
ideal  
IA  
offset error  
E
O
V
V  
DD SS  
1024  
1 LSB =  
002aaf426  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 5. ADC characteristics  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
20 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9.1 BOD static characteristics  
Table 7.  
BOD static characteristics[1]  
Tamb = 25 °C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage interrupt level 0  
assertion  
-
-
1.65  
1.80  
-
-
V
V
de-assertion  
interrupt level 1  
assertion  
-
-
2.22  
2.35  
-
-
V
V
de-assertion  
interrupt level 2  
assertion  
-
-
2.52  
2.66  
-
-
V
V
de-assertion  
interrupt level 3  
assertion  
-
-
2.80  
2.90  
-
-
V
V
de-assertion  
reset level 0  
assertion  
-
-
1.46  
1.63  
-
-
V
V
de-assertion  
reset level 1  
assertion  
-
-
2.06  
2.15  
-
-
V
V
de-assertion  
reset level 2  
assertion  
-
-
2.35  
2.43  
-
-
V
V
de-assertion  
reset level 3  
assertion  
-
-
2.63  
2.71  
-
-
V
V
de-assertion  
[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see LPC1102  
user manual.  
9.2 Power consumption  
Power measurements in Active, Sleep, and Deep-sleep modes were performed under the  
following conditions (see LPC1102 user manual):  
Configure all pins as GPIO with pull-up resistor disabled in the IOCONFIG block.  
Configure GPIO pins as outputs using the GPIOnDIR registers.  
Write 0 to all GPIOnDATA registers to drive the outputs LOW.  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
21 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aaf980  
10  
I
DD  
(mA)  
8
6
4
2
0
(2)  
48 MHz  
(2)  
36 MHz  
(2)  
24 MHz  
(1)  
12 MHz  
1.8  
2.4  
3.0  
3.6  
V
DD  
(V)  
Conditions: Tamb = 25 °C; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL= 0x1F); all peripheral  
clocks disabled; internal pull-up resistors disabled; BOD disabled; low-current mode.  
(1) System PLL disabled; IRC enabled.  
(2) System PLL enabled; IRC disabled.  
Fig 6. Active mode: Typical supply current IDD versus supply voltage VDD for different  
system clock frequencies  
002aaf981  
10  
I
DD  
(mA)  
8
6
4
2
0
(2)  
(2)  
48 MHz  
36 MHz  
(2)  
(1)  
24 MHz  
12 MHz  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD = 3.3 V; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL= 0x1F); all peripheral  
clocks disabled; internal pull-up resistors disabled; BOD disabled; low-current mode.  
(1) System PLL disabled; IRC enabled.  
(2) System PLL enabled; IRC disabled.  
Fig 7. Active mode: Typical supply current IDD versus temperature for different system  
clock frequencies  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
22 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aaf982  
6
4
2
0
I
DD  
(mA)  
(2)  
48 MHz  
(2)  
36 MHz  
(2)  
24 MHz  
(1)  
12 MHz  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD = 3.3 V; sleep mode entered from flash; all peripherals disabled in the  
SYSAHBCLKCTRL register (SYSAHBCLKCTRL= 0x1F); all peripheral clocks disabled; internal  
pull-up resistors disabled; BOD disabled; low-current mode.  
(1) System PLL disabled; IRC enabled.  
(2) System PLL enabled; IRC disabled.  
Fig 8. Sleep mode: Typical supply current IDD versus temperature for different system  
clock frequencies  
002aaf977  
5.5  
I
DD  
(μA)  
4.5  
3.5  
2.5  
1.5  
V
DD  
= 3.3 V, 3.6 V  
1.8 V  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: BOD disabled; all oscillators and analog blocks disabled in the PDSLEEPCFG register  
(PDSLEEPCFG = 0x0000 18FF).  
Fig 9. Deep-sleep mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
23 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9.3 Electrical pin characteristics  
002aae991  
15  
I
OL  
T = 85 °C  
25 °C  
40 °C  
(mA)  
10  
5
0
0
0.2  
0.4  
0.6  
V
OL  
(V)  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 10. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
002aae992  
3.6  
V
OH  
(V)  
T = 85 °C  
25 °C  
40 °C  
3.2  
2.8  
2.4  
2
0
8
16  
24  
I
(mA)  
OH  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 11. Typical HIGH-level output voltage VOH versus HIGH-level output source current  
IOH  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
24 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aae988  
10  
I
pu  
(μA)  
10  
30  
50  
70  
T = 85 °C  
25 °C  
40 °C  
0
1
2
3
4
5
V (V)  
I
Conditions: VDD = 3.3 V; standard port pins.  
Fig 12. Typical pull-up current Ipu versus input voltage VI  
002aae989  
80  
T = 85 °C  
I
pd  
25 °C  
(μA)  
40 °C  
60  
40  
20  
0
0
1
2
3
4
5
V (V)  
I
Conditions: VDD = 3.3 V; standard port pins.  
Fig 13. Typical pull-down current Ipd versus input voltage VI  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
25 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10. Dynamic characteristics  
10.1 Power-up ramp conditions  
Table 8.  
Power-up characteristics  
Tamb = 40 °C to +85 °C.  
Symbol Parameter  
Conditions  
Min  
0
Typ  
Max  
500  
-
Unit  
ms  
μs  
[1]  
tr  
rise time  
at t = t1: 0 < VI 400 mV  
-
-
-
[1][2]  
twait  
VI  
wait time  
12  
0
input voltage  
at t = t1 on pin VDD  
400  
mV  
[1] See Figure 14.  
[2] The wait time specifies the time the power supply must be at levels below 400 mV before ramping up.  
t
r
V
DD  
400 mV  
0
t
wait  
t = t  
1
002aag001  
Condition: 0 < VI 400 mV at start of power-up (t = t1)  
Fig 14. Power-up ramp  
10.2 Flash memory  
Table 9.  
Flash characteristics  
Tamb = 40 °C to +85 °C, unless otherwise specified.  
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
10000  
10  
Typ  
Max  
Unit  
[1]  
100000  
-
cycles  
years  
years  
ms  
retention time  
powered  
-
-
unpowered  
20  
-
-
ter  
erase time  
sector or multiple  
consecutive  
sectors  
95  
100  
105  
[2]  
tprog  
programming  
time  
0.95  
1
1.05  
ms  
[1] Number of program/erase cycles.  
[2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash  
in blocks of 256 bytes.  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
26 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.3 External clock  
Table 10. Dynamic characteristic: external clock  
Tamb = 40 °C to +85 °C; VDD over specified ranges.[1]  
Symbol  
fosc  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
MHz  
ns  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
40  
1000  
Tcy(clk) × 0.4  
-
ns  
Tcy(clk) × 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply  
voltages.  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 15. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
27 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.4 Internal oscillators  
Table 11. Dynamic characteristic: internal oscillators  
Tamb = 40 °C to +85 °C; 2.7 V VDD 3.6 V.[1]  
Symbol Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
fosc(RC) internal RC oscillator frequency -  
11.88  
12  
12.12  
MHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply  
voltages.  
002aaf403  
12.15  
f
(MHz)  
VDD = 3.6 V  
3.3 V  
3.0 V  
2.7 V  
12.05  
2.4 V  
2.0 V  
11.95  
11.85  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: Frequency values are typical values. 12 MHz ± 1 % accuracy is guaranteed for  
2.7 V VDD 3.6 V and Tamb = 40 °C to +85 °C. Variations between parts may cause the IRC to  
fall outside the 12 MHz ± 1 % accuracy specification for voltages below 2.7 V.  
Fig 16. Internal RC oscillator frequency versus temperature  
Table 12. Dynamic characteristics: Watchdog oscillator  
Symbol Parameter  
Conditions  
Min Typ[1]  
Max Unit  
[2][3]  
[2][3]  
fosc(int) internal oscillator DIVSEL = 0x1F, FREQSEL = 0x1  
-
7.8  
-
kHz  
frequency  
in the WDTOSCCTRL register;  
DIVSEL = 0x00, FREQSEL = 0xF  
in the WDTOSCCTRL register  
-
1700  
-
kHz  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply  
voltages.  
[2] The typical frequency spread over processing and temperature (Tamb = 40 °C to +85 °C) is ±40 %.  
[3] See the LPC1102 user manual.  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
28 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.5 I/O pins  
Table 13. Dynamic characteristic: I/O pins[1]  
Tamb = 40 °C to +85 °C; 3.0 V VDD 3.6 V.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tr  
rise time  
pin  
3.0  
-
5.0  
ns  
configured as  
output  
tf  
fall time  
pin  
2.5  
-
5.0  
ns  
configured as  
output  
[1] Applies to standard port pins and RESET pin.  
10.6 SPI interfaces  
Table 14. Dynamic characteristics of SPI pins in SPI mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI master (in SPI mode)  
[1]  
[1]  
[2]  
Tcy(clk)  
clock cycle time  
data set-up time  
when only receiving  
when only transmitting  
in SPI mode  
40  
-
-
-
-
ns  
ns  
ns  
27.8  
15  
tDS  
2.4 V VDD 3.6 V  
2.0 V VDD < 2.4 V  
1.8 V VDD < 2.0 V  
in SPI mode  
[2]  
[2]  
[2]  
[2]  
[2]  
20  
24  
0
ns  
ns  
ns  
ns  
ns  
-
-
-
-
-
tDH  
data hold time  
-
tv(Q)  
th(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
10  
-
0
SPI slave (in SPI mode)  
Tcy(PCLK) PCLK cycle time  
20  
0
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
[3][4]  
[3][4]  
[3][4]  
[3][4]  
tDS  
data set-up time  
data hold time  
in SPI mode  
in SPI mode  
tDH  
3 × Tcy(PCLK) + 4  
tv(Q)  
th(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
-
3 × Tcy(PCLK) + 11  
2 × Tcy(PCLK) + 5  
[1] Tcy(clk) = (SSPCLKDIV × (1 + SCR) × CPSDVSR) / fmain. The clock cycle time derived from the SPI bit rate Tcy(clk) is a function of the  
main clock frequency fmain, the SPI peripheral clock divider (SSPCLKDIV), the SPI SCR parameter (specified in the SSP0CR0 register),  
and the SPI CPSDVSR parameter (specified in the SPI clock prescale register).  
[2]  
[3] Tcy(clk) = 12 × Tcy(PCLK)  
[4] Tamb = 25 °C; for normal voltage supply range: VDD = 3.3 V.  
Tamb = 40 °C to 85 °C.  
.
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
29 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
T
t
t
clk(L)  
cy(clk)  
clk(H)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
CPHA = 1  
t
t
DH  
DS  
DATA VALID  
DATA VALID  
MISO  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
t
MOSI  
MISO  
t
CPHA = 0  
DS  
DH  
DATA VALID  
DATA VALID  
002aae829  
Fig 17. SPI master timing in SPI mode  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
30 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
T
t
t
clk(L)  
cy(clk)  
clk(H)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
t
t
h(Q)  
v(Q)  
CPHA = 1  
DATA VALID  
DATA VALID  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
h(Q)  
CPHA = 0  
v(Q)  
DATA VALID  
002aae830  
Fig 18. SPI slave timing in SPI mode  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
31 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11. Application information  
11.1 ADC usage notes  
The following guidelines show how to increase the performance of the ADC in a noisy  
environment beyond the ADC specifications listed in Table 6:  
The ADC input trace must be short and as close as possible to the LPC1102 chip.  
The ADC input traces must be shielded from fast switching digital signals and noisy  
power supply lines.  
Because the ADC and the digital core share the same power supply, the power supply  
line must be adequately filtered.  
To improve the ADC performance in a very noisy environment, put the device in Sleep  
mode during the ADC conversion.  
11.2 XTAL input  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave  
mode, a minimum of 200 mV (RMS) is needed.  
LPC1xxx  
XTALIN  
C
i
C
g
100 pF  
002aae788  
Fig 19. Slave mode operation of the on-chip oscillator  
In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF  
(Figure 19), with an amplitude between 200 mV (RMS) and 1000 mV (RMS). This  
corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V.  
11.3 Standard I/O pad configuration  
Figure 20 shows the possible pin modes for standard I/O pins with analog input function:  
Digital output driver  
Digital input: Pull-up enabled/disabled  
Digital input: Pull-down enabled/disabled  
Digital input: Repeater mode enabled/disabled  
Analog input  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
32 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
V
DD  
ESD  
output enable  
pin configured  
as digital output  
driver  
output  
PIN  
ESD  
V
DD  
V
SS  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater mode  
enable  
pin configured  
as digital input  
pull-down enable  
data input  
select analog input  
pin configured  
as analog input  
analog input  
002aaf304  
Fig 20. Standard I/O pad configuration  
11.4 Reset pad configuration  
V
DD  
V
DD  
V
DD  
R
pu  
ESD  
20 ns RC  
GLITCH FILTER  
reset  
PIN  
ESD  
V
SS  
002aaf274  
Fig 21. Reset pad configuration  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
33 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
12. Package outline  
WLCSP16: wafer level chip-size package; 16 bumps; body 2.17 x 2.32 x 0.6 mm  
LPC1102UK  
D
B
A
ball A1  
index area  
A
A
2
E
A
1
detail X  
e
1
1/2 e  
b
C
v  
w  
C
C
A
B
e
y
D
e
C
B
A
1/2 e  
e
2
ball A1  
index area  
1
2
3
4
X
0
1
2 mm  
scale  
Dimensions  
Unit  
A
A
1
A
2
b
D
E
e
e
1
e
2
v
w
y
max 0.65 0.27 0.38 0.35 2.21 2.36  
mm nom 0.60 0.24 0.36 0.32 2.17 2.32 0.5 1.5 1.5 0.15 0.05 0.05  
min 0.55 0.21 0.34 0.29 2.13 2.28  
lpc1102uk_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
- - -  
JEDEC  
- - -  
JEITA  
- - -  
10-10-15  
10-10-18  
LPC1102UK  
Fig 22. Package outline LPC1102UK (WLCSP16)  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
34 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
13. Abbreviations  
Table 15. Abbreviations  
Acronym  
ADC  
AHB  
APB  
BOD  
GPIO  
PLL  
Description  
Analog-to-Digital Converter  
Advanced High-performance Bus  
Advanced Peripheral Bus  
BrownOut Detection  
General Purpose Input/Output  
Phase-Locked Loop  
RC  
Resistor-Capacitor  
SPI  
Serial Peripheral Interface  
Serial Synchronous Interface  
Synchronous Serial Port  
SSI  
SSP  
UART  
Universal Asynchronous Receiver/Transmitter  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
35 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
14. Revision history  
Table 16. Revision history  
Document ID  
Release date  
Data sheet status  
Change notice Supersedes  
LPC1102 v.3  
20110418  
Product data sheet  
-
LPC1102 v.2  
Modifications:  
Changed data sheet status to Product.  
Power consumption data added (see Figure 6 to Figure 9).  
Section 10.1 “Power-up ramp conditions” added.  
RESET pad description updated (5 V tolerant) in Table 3.  
IRC frequency data added (see Figure 16 “Internal RC oscillator frequency versus  
temperature”.  
Clock output removed from feature list.  
LPC1102 v.2  
Modifications:  
LPC1102 v.1  
20101126  
Preliminary data sheet -  
LPC1102 v.1  
-
Changed data sheet status to Preliminary.  
20101116  
Objective data sheet  
-
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
36 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
15. Legal information  
15.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
15.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
15.3 Disclaimers  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
37 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
15.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
16. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC1102  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 3 — 18 April 2011  
38 of 39  
LPC1102  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
17. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
7.15.5  
7.15.6  
7.15.7  
7.16  
APB interface. . . . . . . . . . . . . . . . . . . . . . . . . 15  
AHBLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
External interrupt inputs. . . . . . . . . . . . . . . . . 15  
Emulation and debugging . . . . . . . . . . . . . . . 15  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3
4
4.1  
5
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 16  
9
Static characteristics . . . . . . . . . . . . . . . . . . . 17  
BOD static characteristics . . . . . . . . . . . . . . . 21  
Power consumption . . . . . . . . . . . . . . . . . . . 21  
Electrical pin characteristics. . . . . . . . . . . . . . 24  
9.1  
9.2  
9.3  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
10  
Dynamic characteristics. . . . . . . . . . . . . . . . . 26  
Power-up ramp conditions . . . . . . . . . . . . . . . 26  
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . 26  
External clock. . . . . . . . . . . . . . . . . . . . . . . . . 27  
Internal oscillators . . . . . . . . . . . . . . . . . . . . . 28  
I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SPI interfaces. . . . . . . . . . . . . . . . . . . . . . . . . 29  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.5.1  
7.5.2  
7.6  
7.7  
7.7.1  
7.8  
7.8.1  
7.9  
7.9.1  
7.10  
7.10.1  
7.11  
Functional description . . . . . . . . . . . . . . . . . . . 6  
ARM Cortex-M0 processor. . . . . . . . . . . . . . . . 6  
On-chip flash program memory . . . . . . . . . . . . 6  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Nested Vectored Interrupt Controller (NVIC) . . 7  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . . 8  
IOCONFIG block . . . . . . . . . . . . . . . . . . . . . . . 8  
Fast general purpose parallel I/O . . . . . . . . . . . 8  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
SPI serial I/O controller. . . . . . . . . . . . . . . . . . . 9  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
10-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
General purpose external event  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
11  
Application information . . . . . . . . . . . . . . . . . 32  
ADC usage notes. . . . . . . . . . . . . . . . . . . . . . 32  
XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Standard I/O pad configuration . . . . . . . . . . . 32  
Reset pad configuration. . . . . . . . . . . . . . . . . 33  
11.1  
11.2  
11.3  
11.4  
12  
13  
14  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 34  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 36  
15  
Legal information . . . . . . . . . . . . . . . . . . . . . . 37  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 37  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
15.1  
15.2  
15.3  
15.4  
counter/timers. . . . . . . . . . . . . . . . . . . . . . . . . 10  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
System tick timer . . . . . . . . . . . . . . . . . . . . . . 10  
Watchdog timer. . . . . . . . . . . . . . . . . . . . . . . . 10  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Clocking and power control . . . . . . . . . . . . . . 11  
Crystal oscillators . . . . . . . . . . . . . . . . . . . . . . 11  
7.11.1  
7.12  
7.13  
7.13.1  
7.14  
7.14.1  
16  
17  
Contact information . . . . . . . . . . . . . . . . . . . . 38  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7.14.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 12  
7.14.1.2 Watchdog oscillator . . . . . . . . . . . . . . . . . . . . 12  
7.14.2  
7.14.3  
7.14.4  
System PLL . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 13  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 13  
7.14.4.1 Power profiles . . . . . . . . . . . . . . . . . . . . . . . . 13  
7.14.4.2 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
7.14.4.3 Deep-sleep mode . . . . . . . . . . . . . . . . . . . . . . 13  
7.15  
System control . . . . . . . . . . . . . . . . . . . . . . . . 14  
Start logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Brownout detection. . . . . . . . . . . . . . . . . . . . . 14  
Code security (Code Read Protection - CRP) 14  
7.15.1  
7.15.2  
7.15.3  
7.15.4  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2011.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 18 April 2011  
Document identifier: LPC1102  

相关型号:

LPC1102_11

32-bit ARM Cortex-M0 microcontroller; 32 kB flash and 8 kB SRAM
NXP

LPC1102_1106

32-bit ARM Cortex-M0 microcontroller; 32 kB flash and 8 kB SRAM
NXP

LPC1104

NXP Microcontrollers Selection Guide
NXP

LPC110CTP

VERTICAL CLIPLITE 4MM LITEPIPE
VCC

LPC1110

NXP Microcontrollers Selection Guide
NXP

LPC1110FD20

IC 32-BIT, FLASH, 50 MHz, RISC MICROCONTROLLER, PDSO20, 7.50 MM HEIGHT, PLASTIC, SOT163-1, MS-013, SOP-20, Microcontroller
NXP

LPC1110FD20,529

LPC1110FD20 - 4kB flash, 1kB SRAM, SO20 package SOP 20-Pin
NXP

LPC1111

32-bit ARM Cortex-M0 microcontroller; up to 32 kB flash and 8 kB SRAM
NXP

LPC1111FDH20/002

IC 32-BIT, FLASH, 50 MHz, RISC MICROCONTROLLER, PDSO20, 4.40 MM HEIGHT, PLASTIC, SOT360-1, MO-153, TSSOP-20, Microcontroller
NXP

LPC1111FHN33/101

Cortex-M0 based microcontrollers with industry-leading power and efficiency
NXP

LPC1111FHN33/101,5

LPC1111FHN33 - 8kB flash, 4kB SRAM, HVQFN32 package QFN 32-Pin
NXP

LPC1111FHN33/102

IC 32-BIT, FLASH, 50 MHz, RISC MICROCONTROLLER, PQCC33, 7 X 7 MM, 0.85 MM HEIGHT, PLASTIC, HVQFN-33, Microcontroller
NXP