LPC1114LVFHN24/103 [NXP]

32-bit ARM Cortex-M0 MCU; up to 32 kB flash, 8 kB SRAM; 8-bit ADC;
LPC1114LVFHN24/103
型号: LPC1114LVFHN24/103
厂家: NXP    NXP
描述:

32-bit ARM Cortex-M0 MCU; up to 32 kB flash, 8 kB SRAM; 8-bit ADC

静态存储器
文件: 总53页 (文件大小:1354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC111xLV/LPC11xxLVUK  
32-bit ARM Cortex-M0 MCU; up to 32 kB flash, 8 kB SRAM;  
8-bit ADC  
Rev. 2 — 10 October 2012  
Product data sheet  
1. General description  
The LPC111xLV/LPC11xxLVUK is an ARM Cortex-M0-based, low-cost 32-bit MCU family,  
designed for 8/16-bit microcontroller applications, offering performance, low power, simple  
instruction set and memory addressing together with reduced code size compared to  
existing 8/16-bit architectures.  
The LPC111xLV/LPC11xxLVUK operate at CPU frequencies of up to 50 MHz.  
The peripherals of the LPC111xLV/LPC11xxLVUK include up to 32 kB of flash memory, up  
to 8 kB of SRAM data memory, a Fast-mode Plus I2C-bus interface, one SSP/SPI  
interface, one UART, four general-purpose counter/timers, an 8-bit ADC, and up to 27  
general-purpose I/O pins.  
2. Features and benefits  
System:  
ARM Cortex-M0 processor, running at frequencies of up to 50 MHz.  
ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC).  
Serial Wire Debug.  
System tick timer.  
Memory:  
Up to 32 kB on-chip flash programming memory with a 256 byte page erase  
function.  
Up to 8 kB SRAM.  
In-System Programming (ISP) and In-Application Programming (IAP) via on-chip  
bootloader software.  
Digital peripherals:  
Up to 27 General-Purpose I/O (GPIO) pins with configurable pull-up/pull-down  
resistors and a configurable open-drain mode.  
GPIO pins can be used as edge and level sensitive interrupt sources.  
High-current output driver on one pin.  
High-current sink drivers on two I2C-bus pins in Fast-mode Plus.  
Four general-purpose counter/timers with up to 7 capture inputs and 13 match  
outputs.  
Programmable windowed WDT.  
Analog peripherals:  
8-bit ADC with input multiplexing among up to 8 pins.  
Serial interfaces:  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
UART with fractional baud rate generation and internal FIFO.  
One SPI controller with SSP features and with FIFO and multi-protocol capabilities.  
I2C-bus interface supporting full I2C-bus specification and Fast-mode Plus with a  
data rate of 1 Mbit/s with multiple address recognition and monitor mode.  
Clock generation:  
12 MHz internal RC oscillator trimmed to 2.5 % accuracy for Tamb = -20 °C to  
+85 °C and to 5 % accuracy for Tamb = -40 °C to -20 °C. The IRC can optionally be  
used as a system clock.  
Crystal oscillator with an operating range of 1 MHz to 25 MHz.  
Programmable watchdog oscillator with a frequency range of 9.4 kHz to 2.3 MHz.  
PLL allows CPU operation up to the maximum CPU rate without the need for a  
high-frequency crystal. May be run from the system oscillator or the internal RC  
oscillator.  
Clock output function with divider that can reflect the system oscillator clock, IRC  
clock, CPU clock, and the Watchdog clock.  
Power control:  
Two reduced power modes: Sleep and Deep-sleep mode.  
Ultra-low power consumption in Deep-sleep mode (1.6 A).  
5 s wake-up time from Deep-sleep mode.  
Processor wake-up from Deep-sleep mode via a dedicated start logic using up to  
13 of the functional pins.  
Power-On Reset (POR).  
Brown-Out Detection (BOD) causing a forced reset.  
Unique device serial number for identification.  
Single power supply (1.65 V to 1.95 V)  
Available as WLCSP25, HVQFN24, and HVQFN33 package. Other package options  
are available for high-volume customers.  
3. Applications  
Mobile phones  
Tablets/Ultra books  
Active cables  
Mobile accessories  
Cameras  
Portable medical electronics  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC1101LVUK  
WLCSP25  
WLCSP25  
HVQFN24  
wafer level chip-size package; 25 bumps; 2.17 2.32 0.56 mm  
wafer level chip-size package; 25 bumps; 2.17 2.32 0.56 mm  
-
LPC1102LVUK  
-
LPC1112LVFHN24/003  
plastic thermal enhanced very thin quad flat package; no leads; 24  
terminals; body 4 x 4 x 0.85 mm  
SOT616-3  
LPC1114LVFHN24/103  
HVQFN24  
plastic thermal enhanced very thin quad flat package; no leads; 24  
terminals; body 4 x 4 x 0.85 mm  
SOT616-3  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
2 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 1.  
Ordering information …continued  
Type number  
Package  
Name  
Description  
Version  
LPC1114LVFHN24/303  
LPC1112LVFHI33/103  
LPC1114LVFHI33/303  
HVQFN24  
plastic thermal enhanced very thin quad flat package; no leads; 24  
terminals; body 4 x 4 x 0.85 mm  
SOT616-3  
HVQFN33  
HVQFN33  
plastic thermal enhanced very thin quad flat package; no leads; 33  
terminals; body 5 5 0.85 mm  
n/a  
plastic thermal enhanced very thin quad flat package; no leads; 33  
n/a  
terminals; body 5 5 0.85 mm  
4.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Flash Total  
SPI/ I2C UART ADC  
GPI Package  
in kB SRAM in SSP  
kB  
O
pins  
LPC1101LVUK  
LPC1102LVUK  
32  
32  
2
8
2
4
8
4
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
6-channel  
6-channel  
6-channel  
6-channel  
6-channel  
8-channel  
8-channel  
21  
21  
20  
20  
20  
27  
27  
WLCSP25  
WLCSP25  
HVQFN24  
HVQFN24  
HVQFN24  
HVQFN33  
HVQFN33  
LPC1112LVFHN24/003 16  
LPC1114LVFHN24/103 32  
LPC1114LVFHN24/303 32  
LPC1112LVFHI33/103 16  
LPC1114LVFHI33/303 32  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
3 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
5. Block diagram  
XTALIN  
XTALOUT  
RESET  
SWD  
LPC110xLVUK  
LPC111xLV  
IRC  
CLOCK  
GENERATION,  
POWER CONTROL,  
SYSTEM  
CLKOUT  
TEST/DEBUG  
INTERFACE  
POR  
FUNCTIONS  
ARM  
CORTEX-M0  
clocks and  
controls  
FLASH  
16/32 kB  
SRAM  
2/4/8 kB  
ROM  
system bus  
slave  
slave  
slave  
slave  
HIGH-SPEED  
GPIO  
AHB-LITE BUS  
GPIO ports  
slave  
AHB TO APB  
BRIDGE  
RXD  
TXD  
(2)  
UART  
AD[7:0]  
10-bit/8-bit ADC  
SPI0  
(3)  
(3)  
DSR , RTS,  
(3)  
CTS , DTR  
SCK0, SSEL0  
MISO0, MOSI0  
CT32B0_MAT[3:0]  
CT32B0_CAP0  
32-bit COUNTER/TIMER 0  
32-bit COUNTER/TIMER 1  
16-bit COUNTER/TIMER 0  
16-bit COUNTER/TIMER 1  
CT32B1_MAT[3:0]  
(1)  
CT32B1_CAP[1:0]  
SCL  
SDA  
2
I C-BUS  
CT16B0_MAT[2:0]  
(1)  
CT16B0_CAP[1:0]  
(1)  
CT16B1_MAT[1:0]  
WWDT  
IOCON  
(1)  
CT16B1_CAP[1:0]  
SYSTEM CONTROL  
002aag851  
(1) CT16B1_MAT1, CT32B1_CAP1, CT1B0_CAP1, CT16B1_CAP1 available on HVQFN33 only. CT16B1_MAT0 available on  
HVQFN33 and WLCSP25 packages only.  
(2) 6 channels on WLCSP25 and HVQFN24 packages. 8 channels on HVQFN33 packages.  
(3) DSR on WLCSP25 package only. DTR on HVQFN33 package only. CTS on HVQFN24 and HVQFN33 packages only.  
Fig 1. LPC111xLV/LPC11xxLVUK block diagram  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
4 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
6. Pinning information  
6.1 Pinning  
ball A1  
index area  
LPC1101/02LVUK  
1
2
3
4
5
A
B
C
D
E
002aag852  
Transparent top view  
Fig 2. Pin configuration WLCSP25 package  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
5 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
terminal 1  
index area  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
PIO1_7/TXD/CT32B0_MAT1  
RESET/PIO0_0  
R/PIO1_2/AD3/CT32B1_MAT1  
R/PIO1_1/AD2/CT32B1_MAT0  
R/PIO1_0/AD1/CT32B1_CAP0  
R/PIO0_11/AD0/CT32B0_MAT3  
SWCLK/PIO0_10/SCK0/CT16B0_MAT2  
PIO0_9/MOSI0/CT16B0_MAT1  
PIO0_1/CLKOUT/CT32B0_MAT2  
XTALIN  
XTALOUT  
PIO1_8/CT16B1_CAP0  
002aag849  
Transparent top view  
For parts LPC1112LVFHN24/003, LPC1114LVFHN24/103, LPC1114LVFHN24/303.  
Fig 3. Pin configuration HVQFN24 package  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
6 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
terminal 1  
index area  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PIO2_0/DTR  
R/PIO1_2/AD3/CT32B1_MAT1  
R/PIO1_1/AD2/CT32B1_MAT0  
R/PIO1_0/AD1/CT32B1_CAP0  
R/PIO0_11/AD0/CT32B0_MAT3  
PIO1_10/AD6/CT16B1_MAT1  
SWCLK/PIO0_10/SCK0/CT16B0_MAT2  
PIO0_9/MOSI0/CT16B0_MAT1  
PIO0_8/MISO0/CT16B0_MAT0  
RESET/PIO0_0  
PIO0_1/CLKOUT/CT32B0_MAT2  
XTALIN  
XTALOUT  
V
DD(IO)  
33 V  
PIO1_8/CT16B1_CAP0  
SS  
PIO0_2/SSEL0/CT16B0_CAP0  
002aag850  
Transparent top view  
For parts LPC1112LVFHI33/103 and LPC1114LVFHI33/303.  
Fig 4. Pin configuration HVQFN33 package  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
7 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
6.2 Pin description  
Table 3.  
Symbol  
LPC110xLVUK/LPC111xLV pin description table  
Start Type Reset Description  
logic  
input  
state  
[1]  
[2]  
RESET/PIO0_0  
D1  
2
2
yes  
I
I; PU RESET — External reset input with 20 ns glitch filter. A  
LOW-going pulse as short as 50 ns on this pin resets  
the device, causing I/O ports and peripherals to take on  
their default states, and processor execution to begin at  
address 0.  
I/O  
I/O  
-
PIO0_0 — General purpose digital input/output pin with  
10 ns glitch filter.  
[3]  
[3]  
PIO0_1/CLKOUT/  
CT32B0_MAT2  
C3  
B2  
3
7
3
8
yes  
yes  
I; PU PIO0_1 — General purpose digital input/output pin. A  
LOW level on this pin during reset starts the ISP  
command handler.  
O
-
-
CLKOUT — Clockout pin.  
O
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.  
PIO0_2/SSEL0/  
CT16B0_CAP0  
I/O  
I/O  
I
I; PU PIO0_2 — General purpose digital input/output pin.  
-
-
SSEL0 — Slave Select for SPI0.  
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.  
[3]  
[4]  
PIO0_3  
-
-
9
yes  
yes  
I/O  
I/O  
I;PU PIO0_3 — General purpose digital input/output pin.  
PIO0_4/SCL  
A2  
8
10  
I; IA  
PIO0_4 — General purpose digital input/output pin  
(open-drain).  
I/O  
-
SCL — I2C-bus, open-drain clock input/output.  
High-current sink only if I2C Fast-mode Plus is selected  
in the I/O configuration register.  
[4]  
PIO0_5/SDA  
A3  
9
11  
yes  
I/O  
I/O  
I; IA  
-
PIO0_5 — General purpose digital input/output pin  
(open-drain).  
SDA — I2C-bus, open-drain data input/output.  
High-current sink only if I2C Fast-mode Plus is selected  
in the I/O configuration register.  
[3]  
[3]  
PIO0_6/SCK0  
PIO0_7/CTS  
A4  
-
10 15  
11 16  
yes  
yes  
I/O  
I/O  
I/O  
I; PU PIO0_6 — General purpose digital input/output pin.  
SCK0 — Serial clock for SPI0.  
-
I; PU PIO0_7 — General purpose digital input/output pin  
(high-current output driver).  
I
-
CTS — Clear To Send input for UART.  
[3]  
[3]  
PIO0_8/MISO0/  
CT16B0_MAT0  
A5  
B5  
12 17  
13 18  
yes  
yes  
I/O  
I/O  
O
I; PU PIO0_8 — General purpose digital input/output pin.  
-
-
MISO0 — Master In Slave Out for SPI0.  
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.  
PIO0_9/MOSI0/  
CT16B0_MAT1  
I/O  
I/O  
O
I; PU PIO0_9 — General purpose digital input/output pin.  
-
-
MOSI0 — Master Out Slave In for SPI0.  
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
8 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC110xLVUK/LPC111xLV pin description table  
Start Type Reset Description  
logic  
input  
state  
[1]  
[3]  
[5]  
SWCLK/PIO0_10/  
SCK0/  
CT16B0_MAT2  
B4  
C5  
14 19  
yes  
yes  
I
I; PU SWCLK — Serial wire clock.  
I/O  
I/O  
O
I
-
-
-
PIO0_10 — General purpose digital input/output pin.  
SCK0 — Serial clock for SPI0.  
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.  
R/PIO0_11/  
15 21  
I; PU R — Reserved. Configure for an alternate function in  
AD0/CT32B0_MAT3  
the IOCON block.  
I/O  
-
-
-
PIO0_11 — General purpose digital input/output pin.  
AD0 — A/D converter, input 0.  
I
O
I
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.  
[5]  
[5]  
[5]  
R/PIO1_0/  
AD1/CT32B1_CAP0  
C4  
D5  
D4  
16 22  
17 23  
18 24  
yes  
no  
I; PU R — Reserved. Configure for an alternate function in  
the IOCON block.  
I/O  
-
-
-
PIO1_0 — General purpose digital input/output pin.  
AD1 — A/D converter, input 1.  
I
I
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.  
R/PIO1_1/  
AD2/CT32B1_MAT0  
O
I; PU R — Reserved. Configure for an alternate function in  
the IOCON block.  
I/O  
-
-
-
PIO1_1 — General purpose digital input/output pin.  
AD2 — A/D converter, input 2.  
I
O
I
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.  
R/PIO1_2/  
no  
I; PU R — Reserved. Configure for an alternate function in  
AD3/CT32B1_MAT1  
the IOCON block.  
I/O  
I
-
-
-
PIO1_2 — General purpose digital input/output pin.  
AD3 — A/D converter, input 3.  
O
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.  
[5]  
[5]  
SWDIO/PIO1_3/  
AD4/CT32B1_MAT2  
E5  
D3  
19 25  
no  
no  
I/O  
I/O  
I
I; PU SWDIO — Serial wire debug input/output.  
-
-
-
PIO1_3 — General purpose digital input/output pin.  
AD4 — A/D converter, input 4.  
O
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.  
PIO1_4/AD5/  
20 26  
I/O  
I; PU PIO1_4 — General purpose digital input/output pin with  
CT32B1_MAT3  
10 ns glitch filter.  
I
-
-
AD5 — A/D converter, input 5.  
O
I/O  
O
I
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.  
[3]  
[3]  
PIO1_5/RTS/  
CT32B0_CAP0  
E2  
D2  
23 30  
24 31  
no  
no  
I; PU PIO1_5 — General purpose digital input/output pin.  
-
-
RTS — Request To Send output for UART.  
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.  
PIO1_6/RXD/  
CT32B0_MAT0  
I/O  
I
I; PU PIO1_6 — General purpose digital input/output pin.  
-
-
RXD — Receiver input for UART.  
O
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
9 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC110xLVUK/LPC111xLV pin description table  
Start Type Reset Description  
logic  
input  
state  
[1]  
[3]  
PIO1_7/TXD/  
CT32B0_MAT1  
E1  
1
32  
no  
I/O  
O
O
I/O  
I
I; PU PIO1_7 — General purpose digital input/output pin.  
-
-
TXD — Transmitter output for UART.  
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.  
[3]  
[3]  
[5]  
PIO1_8/  
CT16B1_CAP0  
B1  
B3  
-
6
-
7
no  
no  
no  
I; PU PIO1_8 — General purpose digital input/output pin.  
CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.  
I; PU PIO1_9 — General purpose digital input/output pin.  
CT16B1_MAT0 — Match output 0 for 16-bit timer 1.  
I;PU PIO1_10 — General purpose digital input/output pin.  
-
PIO1_9/  
CT16B1_MAT0  
12  
20  
I/O  
O
I/O  
I
-
PIO1_10/AD6/  
CT16B1_MAT1  
-
-
-
AD6 — A/D converter, input 6.  
O
I/O  
I
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.  
[5]  
PIO1_11/AD7/  
CT32B0_MAT3  
-
-
27  
no  
I;PU PIO1_11 — General purpose digital input/output pin.  
-
-
AD7 — A/D converter, input 7.  
O
I/O  
O
I/O  
I
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.  
[3]  
[3]  
[3]  
PIO2_0/DTR  
PIO2_1/DSR  
-
-
-
-
1
no  
no  
no  
I;PU PIO2_0 — General purpose digital input/output pin.  
DTR — Data Terminal Ready output for UART.  
I; PU PIO2_1 — General purpose digital input/output pin.  
DSR — Data Set Ready input for UART.  
I;PU PIO3_4 — General purpose digital input/output pin.  
-
A1  
-
-
-
PIO3_4/  
CT16B0_CAP1/RXD  
13  
I/O  
I
-
-
CT16B0_CAP1 — Capture input 1 for 16-bit timer 0.  
RXD — Receiver input for UART.  
I
[3]  
PIO3_5/  
CT16B1_CAP1/TXD  
-
-
14  
no  
I/O  
I
I;PU PIO3_5 — General purpose digital input/output pin.  
-
-
-
CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.  
TXD — Transmitter output for UART.  
O
-
VDD  
E3  
C1  
22 29;  
-
-
1.8 V supply voltage to the core, the external rail, and  
the ADC. Also used as the ADC reference voltage.  
6;  
28  
[6]  
[6]  
XTALIN  
4
5
4
I
-
Input to the oscillator circuit and internal clock  
generator circuits. Input voltage must not exceed 1.8 V.  
XTALOUT  
VSS  
C2  
E4  
5
-
-
O
-
-
-
Output from the oscillator amplifier.  
Ground.  
21 33  
[1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled (pins pulled up to full VDD level 0; IA = inactive,  
no pull-up/down enabled.  
[2] See Figure 28 for the reset pad configuration.  
[3] Pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 27).  
[4] I2C-bus pads compliant with the I2C-bus specification for I2C standard mode and I2C Fast-mode Plus.  
[5] Pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When  
configured as an ADC input, digital section of the pad is disabled (see Figure 27).  
[6] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded  
(grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
10 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7. Functional description  
7.1 ARM Cortex-M0 processor  
The ARM Cortex-M0 is a general purpose, 32-bit microprocessor, which offers high  
performance and very low power consumption.  
7.2 On-chip flash program memory  
The LPC111xLV/LPC11xxLVUK contains up to 32 kB of on-chip flash memory.  
The flash memory is divided into 4 kB sectors with each sector consisting of 16 pages.  
Individual pages of 256 byte each can be erased using the IAP erase page command.  
7.3 On-chip SRAM  
The LPC111xLV/LPC11xxLVUK contains up to 8 kB on-chip static RAM memory.  
7.4 Memory map  
The LPC111xLV/LPC11xxLVUK incorporates several distinct memory regions, shown in  
the following figures. Figure 5 shows the overall map of the entire address space from the  
user program viewpoint following reset. The interrupt vector area supports address  
remapping.  
The AHB peripheral area is 2 megabyte in size, and is divided to allow for up to 128  
peripherals. The APB peripheral area is 512 kB in size and is divided to allow for up to 32  
peripherals. Each peripheral of either type is allocated 16 kilobytes of space. This allows  
simplifying the address decoding for each peripheral.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
11 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
LPC110xLVUK  
LPC111xLV  
AHB peripherals  
0x5020 0000  
4 GB  
0xFFFF FFFF  
reserved  
0xE010 0000  
0xE000 0000  
127-16 reserved  
private peripheral bus  
0x5004 0000  
0x5003 0000  
0x5002 0000  
GPIO PIO3  
GPIO PIO2  
GPIO PIO1  
GPIO PIO0  
15-12  
11-8  
7-4  
reserved  
0x5020 0000  
0x5000 0000  
AHB peripherals  
0x5001 0000  
0x5000 0000  
3-0  
reserved  
APB peripherals  
0x4008 0000  
31-23 reserved  
reserved  
0x4005 C000  
0x4005 8000  
0x4008 0000  
0x4000 0000  
22  
APB peripherals  
reserved  
1 GB  
21-19 reserved  
0x4004 C000  
0x4004 8000  
0x4004 4000  
0x4004 0000  
system control  
IOCON  
18  
17  
0x2000 0000  
0.5 GB  
SPI0  
16  
15  
flash controller  
0x4003 C000  
0x4003 8000  
reserved  
14  
reserved  
0x1FFF 4000  
0x1FFF 0000  
16 kB boot ROM  
reserved  
13-10 reserved  
0x4002 8000  
0x4002 4000  
0x4002 0000  
reserved  
reserved  
9
8
7
6
5
4
3
2
0x1000 2000  
0x1000 1000  
8 kB SRAM  
LPC1114LV/303, LPC1102LVUK  
ADC  
0x4001 C000  
0x4001 8000  
32-bit counter/timer 1  
4 kB SRAM  
LPC1114LV/103, LPC1112LV/103  
32-bit counter/timer 0  
16-bit counter/timer 1  
16-bit counter/timer 0  
UART  
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
0x1000 0800  
0x1000 0000  
0x0000 8000  
2 kB SRAM  
LPC1101LVUK, LPC1112LV/003  
reserved  
WDT  
1
0
0x4000 4000  
0x4000 0000  
32 kB on-chip flash  
LPC1101LVUK, LPC1102LVUK  
LPC1114LV  
2
I C-bus  
0x0000 4000  
0x0000 0000  
0x0000 00C0  
16 kB on-chip flash  
LPC1112LV  
active interrupt vectors  
0x0000 0000  
0 GB  
002aag853  
Fig 5. LPC111xLV/LPC11xxLVUK memory map  
7.5 Nested Vectored Interrupt Controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M0. The  
tight coupling to the CPU allows for low interrupt latency and efficient processing of late  
arriving interrupts.  
7.5.1 Features  
Controls system exceptions and peripheral interrupts.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
12 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
In the LPC111xLV/LPC11xxLVUK, the NVIC supports 32 vectored interrupts including  
up to 13 inputs to the start logic from individual GPIO pins.  
Four programmable interrupt priority levels with hardware priority level masking.  
Software interrupt generation.  
7.5.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags. Individual interrupt flags may also represent more than one interrupt  
source.  
Any GPIO pin (total of up to 18 pins) regardless of the selected function, can be  
programmed to generate an interrupt on a level, or rising edge or falling edge, or both.  
7.6 IOCON block  
The IOCON block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on-chip peripherals.  
Peripherals should be connected to the appropriate pins prior to being activated and prior  
to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is  
not mapped to a related pin should be considered undefined.  
7.7 Fast general purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs  
can be set or cleared in one write operation.  
LPC111xLV/LPC11xxLVUK use accelerated GPIO functions:  
GPIO registers are a dedicated AHB peripheral so that the fastest possible I/O timing  
can be achieved.  
Entire port value can be written in one instruction.  
Additionally, any GPIO pin (total of up to 18 pins) providing a digital function can be  
programmed to generate an interrupt on a level, a rising or falling edge, or both.  
7.7.1 Features  
Bit level port registers allow a single instruction to set or clear any number of bits in  
one write operation.  
Direction control of individual bits.  
All I/O default to inputs with pull-ups enabled after reset with the exception of the  
I2C-bus pins PIO0_4 and PIO0_5.  
Pull-up/pull-down resistor configuration can be programmed through the IOCON block  
for each GPIO pin (except for pins PIO0_4 and PIO0_5).  
All GPIO pins (except PIO0_4 and PIO0_5) are pulled up to 1.8 V (VDD = 1.8 V) if their  
pull-up resistor is enabled in the IOCON block (single power supply).  
Programmable open-drain mode.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
13 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
7.8 UART  
32-bit ARM Cortex-M0 microcontroller  
The LPC111xLV/LPC11xxLVUK contains one UART.  
Support for RS-485/9-bit mode allows both software address detection and automatic  
address detection using 9-bit mode.  
The UART includes a fractional baud rate generator. Standard baud rates such as  
115200 Bd can be achieved with any crystal frequency above 2 MHz.  
7.8.1 Features  
Maximum UART data bit rate of 3.125 MBit/s.  
16 Byte Receive and Transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
FIFO control mechanism that enables software flow control implementation.  
Support for RS-485/9-bit mode.  
Support for modem control.  
7.9 SPI serial I/O controller  
The LPC111xLV/LPC11xxLVUK contains one SPI controller.  
The SPI controller is capable of operation on an SSP, 4-wire SSI, or Microwire bus. It can  
interact with multiple masters and slaves on the bus. Only a single master and a single  
slave can communicate on the bus during a given data transfer. The SPI supports  
full-duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the  
slave and from the slave to the master. In practice, often only one of these data flows  
carries meaningful data.  
7.9.1 Features  
Maximum SPI speed of 25 Mbit/s (master) or 4.17 Mbit/s (slave) (in SSP mode)  
Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National  
Semiconductor Microwire buses  
Synchronous serial communication  
Master or slave operation  
8-frame FIFOs for both transmit and receive  
4-bit to 16-bit frame  
7.10 I2C-bus serial I/O controller  
The LPC111xLV/LPC11xxLVUK contains one I2C-bus controller.  
The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock Line  
(SCL) and a Serial DAta line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
14 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be  
controlled by more than one bus master connected to it.  
7.10.1 Features  
The I2C-interface is a standard I2C-bus compliant interface with open-drain pins. The  
I2C-bus interface also supports Fast-mode Plus with bit rates up to 1 Mbit/s.  
Easy to configure as master, slave, or master/slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can be used for test and diagnostic purposes.  
The I2C-bus controller supports multiple address recognition and a bus monitor mode.  
7.11 ADC  
The LPC111xLV/LPC11xxLVUK contains one ADC. It is a single 8-bit successive  
approximation ADC with up to eight channels.  
Remark: ADC specifications are valid for Tamb = -40 °C to +85 °C on HVQFN33 and  
WLCSP25 packages. ADC specifications are valid for Tamb = -10 °C to 85 °C on the  
HVQFN24 package.  
7.11.1 Features  
8-bit successive approximation ADC.  
Input multiplexing among 6 pins (WLCSP25 and HVQFN24 packages).  
Input multiplexing among 8 pins (HVQFN33 packages).  
Power-down mode.  
Measurement range 0 V to VDD  
.
8-bit sampling rate of up to 10 kSamples/s.  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition of input pin or timer match signal.  
Individual result registers for each ADC channel to reduce interrupt overhead.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
15 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.12 General purpose external event counter/timers  
The LPC111xLV/LPC11xxLVUK includes two 32-bit counter/timers and two 16-bit  
counter/timers. The counter/timer is designed to count cycles of the system derived clock.  
It can optionally generate interrupts or perform other actions at specified timer values,  
based on four match registers. Each counter/timer also includes one capture input to trap  
the timer value when an input signal transitions, optionally generating an interrupt.  
7.12.1 Features  
A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler.  
Counter or timer operation.  
Up to two capture channels per timer, that can take a snapshot of the timer value  
when an input signal transitions. A capture event may also generate an interrupt.  
The timer and prescaler may be configured to be cleared on a designated capture  
event. This feature permits easy pulse width measurement by clearing the timer on  
the leading edge of an input pulse and capturing the timer value on the trailing edge.  
Four match registers per timer that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Up to four external outputs corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
7.13 System tick timer  
The ARM Cortex-M0 includes a system tick timer (SYSTICK) that is intended to generate  
a dedicated SYSTICK exception at a fixed time interval (typically 10 ms).  
7.14 Windowed WatchDog Timer  
The purpose of the watchdog is to reset the controller if software fails to periodically  
service it within a programmable time window.  
7.14.1 Features  
Internally resets chip if not periodically reloaded during the programmable time-out  
period.  
Optional windowed operation requires reload to occur between a minimum and  
maximum time period, both programmable.  
Optional warning interrupt can be generated at a programmable time prior to  
watchdog time-out.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
16 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Incorrect feed sequence causes reset or interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in  
multiples of Tcy(WDCLK) 4.  
The Watchdog Clock (WDCLK) source can be selected from the IRC or the dedicated  
watchdog oscillator (WDO). This gives a wide range of potential timing choices of  
watchdog operation under different power conditions.  
7.15 Clocking and power control  
7.15.1 Crystal oscillators  
The LPC111xLV/LPC11xxLVUK include three independent oscillators. These are the  
system oscillator, the Internal RC oscillator (IRC), and the Watchdog oscillator. Each  
oscillator can be used for more than one purpose as required in a particular application.  
Following reset, the LPC111xLV/LPC11xxLVUK will operate from the Internal RC oscillator  
until switched by software. This allows systems to operate without any external crystal and  
the bootloader code to operate at a known frequency.  
See Figure 6 for an overview of the LPC111xLV/LPC11xxLVUK clock generation.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
17 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
AHB clock 0  
(system)  
system clock  
SYSTEM CLOCK  
DIVIDER  
18  
AHB clocks 1 to 18  
(memories  
and peripherals)  
SYSAHBCLKCTRL[1:18]  
(AHB clock enable)  
SPI0 PERIPHERAL  
SPI0  
CLOCK DIVIDER  
IRC oscillator  
main clock  
UART PERIPHERAL  
UART  
CLOCK DIVIDER  
watchdog oscillator  
MAINCLKSEL  
(main clock select)  
IRC oscillator  
SYSTEM PLL  
system oscillator  
IRC oscillator  
WWDT CLOCK  
WDT  
DIVIDER  
SYSPLLCLKSEL  
(system PLL clock select)  
watchdog oscillator  
WDTUEN  
(WDT clock update enable)  
IRC oscillator  
system oscillator  
watchdog oscillator  
CLKOUT PIN CLOCK  
DIVIDER  
CLKOUT pin  
CLKOUTUEN  
(CLKOUT update enable)  
002aag859  
Fig 6. LPC111xLV/LPC11xxLVUK clock generation block diagram  
7.15.1.1 Internal RC oscillator  
The IRC may be used as the clock source for the WDT, and/or as the clock that drives the  
PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz. The IRC is  
trimmed to 2.5 % accuracy over the entire voltage and temperature range.  
Upon power-up or any chip reset, the LPC111xLV/LPC11xxLVUK use the IRC as the clock  
source. Software may later switch to one of the other available clock sources.  
7.15.1.2 System oscillator  
The system oscillator can be used as the clock source for the CPU, with or without using  
the PLL.  
The system oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be  
boosted to a higher frequency, up to the maximum CPU operating frequency, by the  
system PLL.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
18 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.15.1.3 Watchdog oscillator  
The watchdog oscillator can be used as a clock source that directly drives the CPU, the  
watchdog timer, or the CLKOUT pin. The watchdog oscillator nominal frequency is  
programmable between 9.4 kHz and 2.3 MHz. The frequency spread over processing and  
temperature is 40 %.  
7.15.2 System PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO).  
The multiplier can be an integer value from 1 to 32. The CCO operates in the range of  
156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within  
its frequency range while the PLL is providing the desired output frequency. The PLL  
output frequency must be lower than 100 MHz. The output divider may be set to divide by  
2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2, it is  
insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed  
following a chip reset and may be enabled by software. The program must configure and  
activate the PLL, wait for the PLL to lock, and then connect to the PLL as a clock source.  
The PLL settling time is 100 s.  
7.15.3 Clock output  
The LPC111xLV/LPC11xxLVUK features a clock output function that routes the IRC  
oscillator, the system oscillator, the watchdog oscillator, or the main clock to an output pin.  
7.15.4 Wake-up process  
The LPC111xLV/LPC11xxLVUK begin operation at power-up by using the 12 MHz IRC  
oscillator as the clock source. This allows chip operation to resume quickly. If the system  
oscillator or the PLL is needed by the application, software will need to enable these  
features and wait for them to stabilize before they are used as a clock source.  
7.15.5 Power control  
The LPC111xLV/LPC11xxLVUK support a variety of power control features. There are two  
special modes of processor power reduction: Sleep mode, and Deep-sleep mode. The  
CPU clock rate may also be controlled as needed by changing clock sources,  
reconfiguring PLL values, and/or altering the CPU clock divider value. This allows a  
trade-off of power versus processing speed based on application requirements. In  
addition, a register is provided for shutting down the clocks to individual on-chip  
peripherals, allowing fine-tuning of power consumption by eliminating all dynamic power  
use in any peripherals that are not required for the application. Selected peripherals have  
their own clock divider which provides even better power control.  
7.15.5.1 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence but re-enabling the clock to the ARM core.  
In Sleep mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and may generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, and internal  
buses.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
19 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.15.5.2 Deep-sleep mode  
In Deep-sleep mode, the chip is in Sleep mode, and in addition all analog blocks are shut  
down. As an exception, the user has the option to keep the IRC, the BOD, and the  
watchdog timer/watchdog oscillator running for self-timed wake-up. Deep-sleep mode  
allows for additional power savings.  
Up to 13 pins can serve as external wake-up pins to the start logic to wake up the chip  
from Deep-sleep mode.  
Unless the watchdog oscillator or the IRC are selected to run in Deep-sleep mode, the  
clock source should be switched to IRC before entering Deep-sleep mode, because the  
IRC can be switched on and off glitch-free.  
7.16 System control  
7.16.1 Start logic  
The start logic connects external pins to corresponding interrupts in the NVIC. Each pin  
shown in Table 3 as input to the start logic is connected to an individual interrupt in the  
NVIC interrupt vector table. The start logic pins can serve as external interrupt pins when  
the chip is in Active mode. In addition, an input signal on the start logic pins can wake up  
the chip from Deep-sleep mode when all clocks are shut down.  
The start logic must be configured in the system configuration block and in the NVIC  
before being used.  
7.16.2 Reset  
Reset has four sources on the LPC111xLV/LPC11xxLVUK: the RESET pin, the Watchdog  
reset, the BrownOut Detection (BOD) circuit, and Power-On Reset (POR). The RESET  
pin is a Schmitt trigger input pin. Assertion of chip reset by any source, once the operating  
voltage attains a usable level, starts the IRC and initializes the flash controller.  
A LOW-going pulse as short as 50 ns resets the part.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the boot block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
7.16.3 BrownOut Detection (BOD)  
The LPC111xLV/LPC11xxLVUK includes a BOD circuit which monitors the voltage level  
on the VDD pin. If this voltage falls below a fixed level (see Table 8), the BOD asserts a  
chip reset.  
7.16.4 Code security (Code Read Protection - CRP)  
This feature of the LPC111xLV/LPC11xxLVUK allows user to enable different levels of  
security in the system so that access to the on-chip flash and use of the Serial Wire  
Debugger (SWD) and In-System Programming (ISP) can be restricted. When needed,  
CRP is invoked by programming a specific pattern into a dedicated flash location. IAP  
commands are not affected by the CRP.  
In addition, ISP entry via the PIO0_1 pin can be disabled without enabling CRP. For  
details see the LPC111xLV user manual.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
20 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
There are three levels of Code Read Protection:  
1. CRP1 disables access to the chip via the SWD and allows partial flash update  
(excluding flash sector 0) using a limited set of the ISP commands. This mode is  
useful when CRP is required and flash field updates are needed but all sectors cannot  
be erased.  
2. CRP2 disables access to the chip via the SWD and only allows full flash erase and  
update using a reduced set of the ISP commands.  
3. Running an application with level CRP3 selected fully disables any access to the chip  
via the SWD pins and the ISP. This mode effectively disables ISP override using  
PIO0_1 pin, too. It is up to the user’s application to provide (if needed) flash update  
mechanism using IAP calls or call reinvoke ISP command to enable flash update via  
the UART.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
In addition to the three CRP levels, sampling of pin PIO0_1 for valid user code can be  
disabled (NO_ISP mode). For details see the LPC111xLV user manual.  
7.16.5 APB interface  
The APB peripherals are located on one APB bus.  
7.16.6 AHBLite  
The AHBLite connects the CPU bus of the ARM Cortex-M0 to the flash memory, the main  
static RAM, and the Boot ROM.  
7.16.7 External interrupt inputs  
All GPIO pins can be level or edge sensitive interrupt inputs. In addition, start logic inputs  
serve as external interrupts (see Section 7.16.1).  
7.17 Emulation and debugging  
Debug functions are integrated into the ARM Cortex-M0. Serial wire debug with four  
breakpoints and two watchpoints is supported.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
21 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
8. Limiting values  
Table 4.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol Parameter  
Conditions  
Min  
1.65  
0.5  
Max  
1.95  
+3.0  
Unit  
V
VDD  
VI  
supply voltage (core and external rail)  
[2]  
input voltage  
only valid when the VDD supply  
voltage is present  
V
1.65 V VDD < 1.8 V  
VDD 1.8 V  
0.5  
+5.0  
100  
100  
100  
V
IDD  
supply current  
per supply pin  
-
-
-
mA  
mA  
mA  
ISS  
ground current  
I/O latch-up current  
per ground pin  
Ilatch  
(0.5VDD) < VI < (1.5VDD);  
Tj < 125 C  
[3]  
[4]  
Tstg  
storage temperature  
non-operating  
65  
+150  
150  
1.5  
C  
C  
W
Tj(max)  
maximum junction temperature  
-
-
Ptot(pack) total power dissipation (per package)  
based on package heat transfer, not  
device power consumption  
VESD electrostatic discharge voltage  
human body model; all pins  
6500  
+6500  
V
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Including voltage on outputs in 3-state mode.  
[3] The maximum non-operating storage temperature is different than the temperature for required shelf life which should be determined  
based on required shelf lifetime. Refer to the JEDEC spec (J-STD-033B.1) for further details.  
[4] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
22 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9. Static characteristics  
9.1 Static characteristics  
Table 5.  
Static characteristics (single power supply  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
VDD  
supply voltage (core  
and external rail)  
1.65  
1.8  
1.95  
V
Power consumption  
IDD  
supply current  
Active mode; code  
while(1){}  
executed from flash  
system clock = 12 MHz  
[2][3][4]  
[5]  
-
-
-
2
-
-
-
mA  
mA  
mA  
VDD = 1.8 V  
[2][3]  
[5][6]  
system clock = 50 MHz  
VDD = 1.8 V  
8
[2][3][4]  
[5]  
Sleep mode;  
0.8  
system clock = 12 MHz  
VDD = 1.8 V  
[2][3][7]  
Deep-sleep mode;  
VDD = 1.8 V  
-
1.6  
-
A  
Standard port pins, RESET  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up  
resistor disabled  
-
-
0.5  
0.5  
10  
10  
nA  
nA  
IIH  
HIGH-level input  
current  
VI = VDD; on-chip  
pull-down resistor  
disabled  
IOZ  
OFF-state output  
current  
VO = 0 V; VO = VDD  
on-chip pull-up/down  
resistors disabled  
;
-
0.5  
10  
nA  
[8][9]  
VI  
input voltage  
pin configured to provide  
a digital function;  
V
DD = 1.8 V  
0
-
-
-
3.0  
VDD  
-
V
V
V
VO  
output voltage  
output active  
0
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
0.3VDD  
V
V
V
Vhys  
VOH  
-
0.4  
-
-
-
HIGH-level output  
voltage  
1.65 V VDD 1.95 V;  
IOH = 3 mA  
VDD 0.4  
VOL  
IOH  
LOW-level output  
voltage  
1.65 V VDD 1.95 V;  
IOL = 3 mA  
-
-
-
0.4  
-
V
HIGH-level output  
current  
VOH = VDD 0.4 V;  
1.65 V VDD 1.95 V  
VOL = 0.4 V  
3
mA  
IOL  
LOW-level output  
current  
3
-
-
mA  
1.65 V VDD 1.95 V  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
23 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 5.  
Static characteristics (single power supply …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
[10]  
[10]  
IOHS  
HIGH-level short-circuit VOH = 0 V  
output current  
-
-
45  
mA  
IOLS  
Ipd  
LOW-level short-circuit VOL = VDD  
output current  
-
-
50  
mA  
A  
A  
pull-down current  
VI = 1.8 V  
10  
3  
29  
13  
90  
(VDD = 1.8 V)  
Ipu  
pull-up current  
VI = 0 V;  
85  
1.65 V VDD 1.95 V  
VDD < VI < 3.0 V  
0
0
0
A  
High-drive output pin (PIO0_7)  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up  
resistor disabled  
-
-
0.5  
0.5  
10  
10  
nA  
nA  
IIH  
HIGH-level input  
current  
VI = VDD; on-chip  
pull-down resistor  
disabled  
IOZ  
OFF-state output  
current  
VO = 0 V; VO = VDD  
on-chip pull-up/down  
resistors disabled  
;
-
0.5  
10  
nA  
[8][9]  
VI  
input voltage  
pin configured to provide  
a digital function;  
VDD = 1.8 V  
output active  
0
-
-
-
3.0  
VDD  
-
V
V
V
VO  
output voltage  
0
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
0.3VDD  
V
V
V
Vhys  
VOH  
-
0.4  
-
-
-
HIGH-level output  
voltage  
1.65 V VDD 1.95 V;  
IOH = 10 mA  
VDD 0.4  
VOL  
IOH  
LOW-level output  
voltage  
1.65 V VDD 1.95 V;  
IOL = 3 mA  
-
-
-
0.4  
-
V
HIGH-level output  
current  
VOH = VDD 0.4 V;  
1.65 V VDD 1.95 V  
VOL = 0.4 V  
10  
mA  
IOL  
LOW-level output  
current  
3
-
-
-
-
mA  
mA  
1.65 V VDD 1.95 V  
[10]  
IOLS  
LOW-level short-circuit VOL = VDD  
output current  
50  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 1.8 V  
10  
29  
90  
A  
A  
VI = 0 V;  
3  
13  
85  
1.65 V VDD 1.95 V  
VDD < VI < 3.0 V  
0
0
0
A  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
24 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 5.  
Static characteristics (single power supply …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
I2C-bus pins (PIO0_4 and PIO0_5)  
VIH  
HIGH-level input  
voltage  
0.7VDD  
-
-
V
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
0.3VDD  
V
Vhys  
IOL  
-
0.05VDD  
-
-
-
V
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as standard  
mode pins  
2.5  
mA  
1.65 V VDD 1.95 V  
IOL  
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as Fast-mode  
Plus pins  
15  
-
-
mA  
1.65 V VDD 1.95 V;  
[11]  
ILI  
input leakage current  
VI = VDD  
-
2
4
A  
Oscillator pins  
Vi(xtal)  
crystal input voltage  
crystal output voltage  
0.5  
0.5  
1.8  
1.8  
1.95  
1.95  
V
V
Vo(xtal)  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
[2] Tamb = 25 C.  
[3]  
IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled. BOD disabled  
for all measurements.  
[4] IRC enabled; system oscillator disabled; system PLL disabled.  
[5] All peripherals disabled in the SYSAHBCLKCTRL register. Peripheral clocks to UART and SPI0 disabled in system configuration block.  
[6] IRC disabled; system oscillator enabled; system PLL enabled.  
[7] All oscillators and analog blocks turned off in the PDSLEEPCFG register; PDSLEEPCFG = 0x0000 18FF.  
[8] Including voltage on outputs in 3-state mode.  
[9]  
[10] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[11] To VSS  
VDD supply voltage must be present.  
.
9.1.1 Analog characteristics  
Remark: ADC specifications are valid for Tamb = -40 °C to +85 °C on HVQFN33 and  
WLCSP25 packages. ADC specifications are valid for Tamb = -10 °C to +85 °C on the  
HVQFN24 package.  
Table 6.  
8-bit ADC static characteristics  
Tamb = 40 C to +85 C for HVQFN33 and WLCSP25 packages. Tamb = 10 C to +85 C for the  
HVQFN24 package. VDD = 1.8 V 5 %; 8-bit resolution.  
Symbol  
VIA  
Parameter  
Min  
Typ  
Max  
VDD  
1
Unit  
V
analog input voltage  
analog input capacitance  
differential non-linearity  
integral non-linearity  
offset error  
0
-
-
-
-
-
-
Cia  
pF  
[1][2]  
[3]  
DNL  
INL  
-
1  
LSB  
LSB  
LSB  
-
1.5  
1  
[4]  
EO  
-
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
25 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 6.  
8-bit ADC static characteristics …continued  
Tamb = 40 C to +85 C for HVQFN33 and WLCSP25 packages. Tamb = 10 C to +85 C for the  
HVQFN24 package. VDD = 1.8 V 5 %; 8-bit resolution.  
Symbol  
EG  
Parameter  
Min  
Typ  
Max  
2  
110  
10  
Unit  
[5]  
gain error  
-
-
-
-
-
-
-
-
LSB  
fclk(ADC)  
fs  
ADC clock frequency  
sampling rate  
kHz  
kSamples/s  
k  
Rvsi  
voltage source interface  
resistance  
40  
[6][7]  
Ri  
input resistance  
-
-
2.5  
M  
[1] The ADC is monotonic, there are no missing codes.  
[2] The differential linearity error (ED) is the difference between the actual step width and the ideal step width.  
See Figure 7.  
[3] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and  
the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 7.  
[4] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the  
straight line which fits the ideal curve. See Figure 7.  
[5] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer  
curve after removing offset error, and the straight line which fits the ideal transfer curve. See Figure 7.  
[6]  
Tamb = 25 C; maximum sampling frequency fs = 10 kSamples/s and analog input capacitance Cia = 1 pF.  
[7] Input resistance Ri depends on the sampling frequency fs: Ri = 1 / (fs Cia).  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
26 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
offset  
error  
O
gain  
error  
E
E
G
255  
254  
253  
252  
251  
250  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
250  
251  
252  
253  
254  
255  
256  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
offset error  
E
O
V - V  
DD SS  
256  
1 LSB =  
002aag903  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 7. ADC characteristics  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
27 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9.2 Electrical pin characteristics  
002aah391  
2
1.8  
1.6  
1.4  
1.2  
V
OH  
(V)  
-40 °C  
+ 25 °C  
+ 85 °C  
0
4
8
12  
16  
20  
I
(mA)  
OH  
Conditions: high-drive pin PIO0_7; VDD = 1.8 V.  
Fig 8. High-drive output: Typical HIGH-level output voltage VOH versus HIGH-level  
output current IOH  
.
002aah392  
30  
OL  
-40 °C  
+ 25 °C  
+ 85 °C  
I
(mA)  
24  
18  
12  
6
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
V
(V)  
OL  
Conditions: I2C-bus pins PIO0_4 and PIO0_5; VDD = 1.8 V; configured for Fast mode plus in the  
IOCON PIO0_4 and PIO0_5 registers.  
Fig 9. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus  
LOW-level output voltage VOL  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
28 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aah387  
2
1.8  
1.6  
1.4  
1.2  
V
OH  
(V)  
-40 °C  
+ 25 °C  
+ 85 °C  
0
1
2
3
4
5
6
I
(mA)  
OH  
Conditions: standard port pins; VDD = 1.8 V.  
Fig 10. Typical HIGH-level output voltage VOH versus HIGH-level output source current  
IOH  
002aah388  
8
I
OL  
(mA)  
-40 °C  
+25 °C  
+ 85 °C  
6
4
2
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
V
(V)  
OL  
Conditions: standard port pins; VDD = 1.8 V.  
Fig 11. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
29 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aah394  
10  
5
I
pu  
(μA)  
+85 °C  
+25 °C  
-40 °C  
0
-5  
-10  
-15  
-20  
0
0.6  
1.2  
1.8  
2.4  
3
3.6  
V (V)  
I
Conditions: standard port pins; VDD = 1.8 V.  
Fig 12. Typical pull-up current Ipu versus input voltage VI  
002aah393  
40  
I
pd  
(μA)  
32  
24  
16  
8
-40 °C  
+25 °C  
+85 °C  
0
0
0.6  
1.2  
1.8  
2.4  
3
3.6  
V (V)  
I
Conditions: standard port pins; VDD = 1.8 V.  
Fig 13. Typical pull-down current Ipd versus input voltage VI  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
30 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9.3 Power consumption  
002aah297  
1
I
DD  
(mA)  
6 MHz  
0.8  
0.6  
0.4  
0.2  
0
4 MHz  
2 MHz  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
V
(V)  
DD  
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral  
clocks disabled; internal pull-up resistors disabled; System oscillator, system PLL, IRC, BOD  
disabled; system clock provided by external clock.  
Fig 14. Active mode (2 MHz to 6 MHz): Typical supply current IDD versus supply voltage  
VDD for different clock frequencies  
002aah296  
1
I
DD  
(mA)  
6 MHz  
4 MHz  
2 MHz  
0.8  
0.6  
0.4  
0.2  
0
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD = 1.8 V; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral  
clocks disabled; internal pull-up resistors disabled; System oscillator, system PLL, IRC, BOD  
disabled; system clock provided by external clock.  
Fig 15. Active mode (2 MHz to 6 MHz): Typical supply current IDD versus temperature for  
different clock frequencies  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
31 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aah299  
8
6
4
2
0
I
DD  
(mA)  
(2)  
48 MHz  
(2)  
36 MHz  
(2)  
24 MHz  
(1)  
12 MHz  
1.65  
1.7  
1.75  
1.8  
1.85  
1.9  
1.95  
V
(V)  
DD  
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral  
clocks disabled; internal pull-up resistors disabled.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
Fig 16. Active mode: Typical supply current IDD versus supply voltage for different  
system clock frequencies  
002aah298  
8
I
DD  
(mA)  
(2)  
(2)  
48 MHz  
36 MHz  
6
4
2
0
(2)  
(1)  
24 MHz  
12 MHz  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD = 1.8 V; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral  
clocks disabled; internal pull-up resistors disabled.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
Fig 17. Active mode: Typical supply current IDD versus temperature for different system  
clock frequencies  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
32 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag770  
0.6  
6 MHz  
I
DD  
(mA)  
4 MHz  
2 MHz  
0.5  
0.4  
0.3  
1.65  
1.75  
1.85  
1.95  
V
(V)  
DD  
Conditions: Tamb = 25 C; Sleep mode entered from flash; all peripherals disabled in the  
SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral clocks disabled; internal  
pull-up resistors disabled; System oscillator and system PLL disabled; IRC disabled; system clock  
provided by external clock.  
Fig 18. Sleep mode (2 MHz to 6 MHz): Typical supply current IDD versus supply voltage  
VDD for different clock frequencies  
002aag769  
3
(2)  
48 MHz  
I
DD  
(mA)  
(2)  
(2)  
36 MHz  
24 MHz  
2
1
0
(1)  
12 MHz  
1.65  
1.75  
1.85  
1.95  
V
(V)  
DD  
Conditions: Tamb = 25 C; Sleep mode entered from flash; all peripherals disabled in the  
SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral clocks disabled; internal  
pull-up resistors disabled.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
Fig 19. Sleep mode (12 MHz to 48 MHz): Typical supply current IDD versus supply voltage  
VDD for different clock frequencies  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
33 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aah295  
3
I
DD  
(mA)  
(2)  
48 MHz  
2.5  
(2)  
36 MHz  
2
(2)  
24 MHz  
1.5  
1
(1)  
12 MHz  
0.5  
0
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: Tamb = 25 C; VDD = 1.8 V; Sleep mode entered from flash; all peripherals disabled in  
the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral clocks disabled;  
internal pull-up resistors disabled.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
Fig 20. Sleep mode (12 MHz to 48 MHz): Typical supply current IDD versus temperature for  
different clock frequencies  
002aah294  
15  
I
DD  
(μA)  
12  
9
6
1.95 V  
1.8 V  
1.65 V  
3
0
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: all oscillators and analog blocks disabled in the PDSLEEPCFG register  
(PDSLEEPCFG = 0x0000 18FF).  
Fig 21. Deep-sleep mode: Typical supply current IDD versus temperature  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
34 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9.4 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG  
and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both  
registers and no code is executed. Measured on a typical sample at Tamb = 25 C. Unless  
noted otherwise, the system oscillator and PLL are running in both measurements.  
The supply currents are shown for system clock frequencies of 12 MHz and 48 MHz.  
Table 7.  
Power consumption for individual analog and digital blocks  
Peripheral  
Typical supply current in  
mA  
Notes  
n/a  
12 MHz 48 MHz  
IRC  
0.26  
-
-
-
-
-
-
System oscillator running; PLL off; independent  
of main clock frequency.  
System oscillator 0.18  
at 12 MHz  
IRC running; PLL off; independent of main clock  
frequency.  
Watchdog  
oscillator at  
500 kHz/2  
0.004  
System oscillator running; PLL off; independent  
of main clock frequency.  
Main PLL  
ADC  
-
-
-
0.061  
0.08  
0.18  
-
0.29  
0.45  
CLKOUT  
Main clock divided by 4 in the CLKOUTDIV  
register.  
CT16B0  
CT16B1  
CT32B0  
CT32B1  
GPIO  
-
-
-
-
-
0.02  
0.02  
0.02  
0.02  
0.23  
0.06  
0.06  
0.07  
0.06  
0.88  
GPIO pins configured as outputs and set to  
LOW. Direction and pin state are maintained if  
the GPIO is disabled in the SYSAHBCLKCFG  
register.  
IOCON  
I2C  
-
-
-
-
-
-
0.03  
0.04  
0.04  
0.12  
0.22  
0.02  
0.10  
0.13  
0.15  
0.45  
0.82  
0.06  
ROM  
SPI0  
UART  
WWDT  
Main clock selected as clock source for the  
WWDT.  
9.5 BOD static characteristics  
Table 8.  
BOD static characteristics  
Tamb = 25 C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage reset level 0  
assertion  
-
-
1.46  
1.63  
-
-
V
V
de-assertion  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
35 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10. Dynamic characteristics  
10.1 Flash memory  
Table 9.  
Flash characteristics  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
10000  
10  
Typ  
Max  
Unit  
[1]  
100000  
-
cycles  
years  
years  
ms  
retention time  
powered  
-
-
unpowered  
20  
-
-
ter  
erase time  
sector or multiple  
consecutive  
sectors  
95  
100  
105  
[2]  
tprog  
programming  
time  
0.95  
1
1.05  
ms  
[1] Number of program/erase cycles.  
[2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash  
in blocks of 256 bytes.  
10.2 External clock  
Table 10. Dynamic characteristic: external clock  
Tamb = 40 C to +85 C; VDD over specified ranges.[1]  
Symbol  
fosc  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
MHz  
ns  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
40  
1000  
Tcy(clk) 0.4  
-
ns  
Tcy(clk) 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 22. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
36 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.3 Internal oscillators  
Table 11. Dynamic characteristic: internal oscillators  
VDD 1.65V to 1.95 V.  
Symbol Parameter  
Conditions  
Min  
Typ[2] Max  
Unit  
fosc(RC)  
internal RC oscillator -20 C Tamb +85 C 12 - 2.5 % 12  
12 + 2.5 % MHz  
frequency  
-40 C Tamb < -20 C 12 - 5 % 12  
12 + 5 %  
MHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
002aah435  
12.6  
f
(MHz)  
VDD = 1.95 V  
12.3  
VDD = 1.8 V  
VDD = 1.65 V  
12  
11.7  
11.4  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Fig 23. Typical internal RC oscillator frequency for different supply voltages VDD  
Table 12. Dynamic characteristics: Watchdog oscillator  
Symbol Parameter  
Conditions  
Min Typ[1]  
Max Unit  
[2][3]  
[2][3]  
fosc(int) internal oscillator DIVSEL = 0x1F, FREQSEL = 0x1  
-
9.4  
-
kHz  
frequency  
in the WDTOSCCTRL register;  
DIVSEL = 0x00, FREQSEL = 0xF  
in the WDTOSCCTRL register  
-
2300  
-
kHz  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +85 C) is 40 %.  
[3] See the LPC111xLV user manual.  
10.4 I2C-bus  
Table 13. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +85 C.[2]  
Symbol  
Parameter  
Conditions  
Min  
0
Max  
100  
400  
1
Unit  
kHz  
kHz  
MHz  
fSCL  
SCL clock  
frequency  
Standard-mode  
Fast-mode  
0
Fast-mode Plus  
0
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
37 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 13. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +85 C.[2]  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
[4][5][6][7]  
tf  
fall time  
of both SDA and  
SCL signals  
-
300  
ns  
Standard-mode  
Fast-mode  
20 + 0.1 Cb 300  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
Fast-mode Plus  
Standard-mode  
Fast-mode  
-
120  
tLOW  
LOW period of  
the SCL clock  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
0
-
-
-
-
-
-
-
-
-
-
-
-
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
HIGH period of  
the SCL clock  
Fast-mode Plus  
Standard-mode  
Fast-mode  
[3][4][8]  
[9][10]  
tHD;DAT  
data hold time  
0
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
tSU;DAT  
data set-up  
time  
250  
100  
50  
Fast-mode Plus  
[1] See the I2C-bus specification UM10204 for details.  
[2] Parameters are valid over operating temperature range unless otherwise specified.  
[3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission  
and the acknowledge.  
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the  
VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
[5] Cb = total capacitance of one bus line in pF.  
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA  
output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the  
SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.  
[7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors  
are used, designers should allow for this when considering bus timing.  
[8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than  
the maximum of tVD;DAT or tVD;ACK by a transition time (see UM10204). This maximum must only be met if  
the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the  
data must be valid by the set-up time before it releases the clock.  
[9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in  
transmission and the acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement  
t
SU;DAT = 250 ns must then be met. This will automatically be the case if the device does not stretch the  
LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must  
output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must  
meet this set-up time.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
38 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
t
t
SU;DAT  
f
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
002aaf425  
Fig 24. I2C-bus pins clock timing  
10.5 SPI interface  
Table 14. Dynamic characteristics of SPI pins in SPI mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI master (in SPI mode)  
[1]  
[1]  
[2]  
Tcy(clk)  
clock cycle time  
data set-up time  
data hold time  
full-duplex mode  
when only transmitting  
in SPI mode  
50  
40  
24  
-
-
-
-
-
-
ns  
ns  
ns  
tDS  
1.8 V VDD < 1.95 V  
in SPI mode  
[2]  
[2]  
[2]  
tDH  
0
-
-
-
-
-
ns  
ns  
ns  
tv(Q)  
th(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
10  
-
0
[1] Tcy(clk) = (SSPCLKDIV (1 + SCR) CPSDVSR) / fmain. The clock cycle time derived from the SPI bit rate Tcy(clk) is a function of the  
main clock frequency fmain, the SPI peripheral clock divider (SSPCLKDIV), the SPI SCR parameter (specified in the SSP0CR0 register),  
and the SPI CPSDVSR parameter (specified in the SPI clock prescale register).  
[2] Tamb = 40 C to 85 C.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
39 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
T
t
t
clk(L)  
cy(clk)  
clk(H)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
CPHA = 1  
t
t
DH  
DS  
DATA VALID  
DATA VALID  
MISO  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
t
MOSI  
MISO  
t
CPHA = 0  
DS  
DH  
DATA VALID  
DATA VALID  
002aae829  
Fig 25. SPI master timing in SPI mode  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
40 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
T
t
t
clk(L)  
cy(clk)  
clk(H)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
t
t
h(Q)  
v(Q)  
CPHA = 1  
DATA VALID  
DATA VALID  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
h(Q)  
CPHA = 0  
v(Q)  
DATA VALID  
002aae830  
Fig 26. SPI slave timing in SPI mode  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
41 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11. Application information  
11.1 ADC usage notes  
The following guidelines show how to increase the performance of the ADC in a noisy  
environment beyond the ADC specifications listed in Table 6:  
The ADC input trace must be short and as close as possible to the  
LPC111xLV/LPC11xxLVUK chip.  
The ADC input traces must be shielded from fast switching digital signals and noisy  
power supply lines.  
Because the ADC and the digital core share the same power supply, the power supply  
line must be adequately filtered.  
To improve the ADC performance in a very noisy environment, put the device in Sleep  
mode during the ADC conversion.  
11.2 Standard I/O pad configuration  
Figure 27 shows the possible pin modes for standard I/O pins with analog input function:  
Digital output driver with configurable open-drain output  
Digital input: Pull-up enabled/disabled  
Digital input: Pull-down enabled/disabled  
Digital input: Repeater mode enabled/disabled  
Analog input  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
42 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
V
DD  
V
DD  
open-drain enable  
output enable  
data output  
strong  
pull-up  
ESD  
pin configured  
as digital output  
driver  
PIN  
strong  
pull-down  
ESD  
V
SS  
V
DD  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater mode  
enable  
pin configured  
as digital input  
pull-down enable  
data input  
10 ns RC  
GLITCH FILTER  
select data  
inverter  
select glitch  
filter  
select analog input  
pin configured  
as analog input  
analog input  
002aaf695  
Fig 27. Standard I/O pad configuration  
11.3 Reset pad configuration  
V
DD  
V
DD  
V
DD  
R
pu  
ESD  
20 ns RC  
GLITCH FILTER  
reset  
PIN  
ESD  
V
SS  
002aaf274  
Fig 28. Reset pad configuration  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
43 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
12. Package outline  
WLCSP25: wafer level chip-size package; 25 bumps; 2.17 x 2.32 x 0.56 mm  
WLCSP25217X232  
D
B
A
E
ball A1  
index area  
A
2
A
A
1
detail X  
e
C
1
Ø v  
Ø w  
C A  
C
B
e
y
b
E
D
C
B
A
e
e
2
ball A1  
1
2
3
4
5
e
index area  
X
0
2 mm  
scale  
v
Dimensions (mm are the original dimensions)  
Unit  
A
A
1
A
b
D
E
e
1
e
2
w
y
2
max 0.615 0.23 0.385 0.29 2.21 2.36  
mm nom 0.560 0.20 0.360 0.26 2.17 2.32 0.4 1.6 1.6 0.15 0.05 0.05  
0.505 0.17 0.335 0.23 2.13 2.28  
min  
wlcsp25_217x232_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
11-05-04  
12-02-13  
WLCSP25217X232  
Fig 29. Package outline (WLCSP25)  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
44 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
HVQFN24: plastic thermal enhanced very thin quad flat package; no leads;  
24 terminals; body 4 x 4 x 0.85 mm  
SOT616-3  
B
A
D
terminal 1  
index area  
A
A
1
E
c
detail X  
e
1
C
1/2 e  
y
y
C
1
e
v
M
M
C
C
A
B
b
7
12  
w
L
13  
6
e
e
E
h
2
1/2 e  
1
18  
terminal 1  
index area  
24  
19  
X
D
h
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
max.  
(1)  
(1)  
UNIT  
mm  
A
b
c
E
e
e
e
y
D
D
E
L
v
w
y
1
1
h
1
2
h
0.05 0.30  
0.00 0.18  
4.1  
3.9  
2.75  
2.45  
4.1  
3.9  
2.75  
2.45  
0.5  
0.3  
0.05  
0.1  
1
0.2  
0.5  
2.5  
2.5  
0.1 0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
04-11-19  
05-03-10  
SOT616-3  
- - -  
MO-220  
- - -  
Fig 30. Package outline (HVQFN24)  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
45 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
HVQFN33: plastic thermal enhanced very thin quad flat package; no leads;  
32 terminals; body 5 x 5 x 0.85 mm  
D
B
A
terminal 1  
index area  
A
A
1
E
c
detail X  
C
e
1
y
y
v
w
C A  
C
B
C
1
e
1/2 e  
b
9
16  
L
17  
8
e
e
E
h
2
1/2 e  
24  
1
terminal 1  
index area  
32  
25  
X
D
h
0
2.5  
scale  
5 mm  
Dimensions (mm are the original dimensions)  
(1)  
(1)  
(1)  
(1)  
Unit  
A
A
1
b
c
D
D
E
E
e
e
e
L
v
w
y
y
1
h
h
1
2
max  
0.05 0.30  
5.1 3.75 5.1 3.75  
0.5  
mm nom 0.85  
min  
0.2  
0.5 3.5 3.5  
0.1 0.05 0.05 0.1  
0.00 0.18  
4.9 3.45 4.9 3.45  
0.3  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
hvqfn33f_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
11-10-11  
11-10-17  
MO-220  
Fig 31. Package outline (HVQFN33)  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
46 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
13. Soldering  
Footprint information for reflow soldering of HVQFN24 package  
SOT616-3  
Hx  
Gx  
D
P
0.025  
0.025  
C
(0.105)  
SPx  
SPy  
nSPx  
Hy Gy  
SLy By  
Ay  
nSPy  
SPx tot  
SLx  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
solder paste deposit  
solder land plus solder paste  
occupied area  
nSPx nSPy  
2
2
Dimensions in mm  
Ax  
P
Ay  
Bx  
By  
C
D
SLx  
SLy  
SPx tot  
1.500  
SPy tot  
1.500  
SPx  
SPy  
Gx  
Gy  
Hx  
Hy  
0.500 5.000 5.000 3.200 3.200 0.900 0.240 2.500 2.500  
0.550 0.550 4.300 4.300 5.250 5.250  
07-05-07  
Issue date  
sot616-3_fr  
09-06-15  
Fig 32. Reflow soldering for the HVQFN24 package  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
47 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Footprint information for reflow soldering of HVQFN33 package  
Hx  
Gx  
see detail X  
P
nSPx  
Ay  
By  
SLy  
Hy Gy  
nSPy  
C
D
SLx  
Bx  
Ax  
0.60  
0.30  
solder land  
solder paste  
occupied area  
detail X  
Dimensions in mm  
P
Ax  
Ay  
Bx  
By  
C
D
Gx  
Gy  
5.25  
Hx  
Hy  
SLx  
SLy  
nSPx nSPy  
0.5  
5.95  
5.95  
4.25  
4.25  
0.85  
0.27  
5.25  
6.2  
6.2  
3.75  
3.75  
3
3
11-11-15  
11-11-20  
Issue date  
002aag766  
Fig 33. Reflow soldering for the HVQFN33 (5x5) package  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
48 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
14. Abbreviations  
Table 15. Abbreviations  
Acronym  
ADC  
Description  
Analog-to-Digital Converter  
AHB  
Advanced High-performance Bus  
Advanced Microcontroller Bus Architecture  
Advanced Peripheral Bus  
AMBA  
APB  
BOD  
Brown-Out Detect  
GPIO  
JEDEC  
NVM  
PLL  
General-Purpose Input/Output  
Joint Electron Devices Engineering Council  
Non-Volatile Memory  
Phase-Locked Loop  
SPI  
Serial Peripheral Interface  
SSI  
Serial Synchronous Interface  
Transistor-Transistor Logic  
TTL  
USART  
Universal Synchronous Asynchronous Receiver/Transmitter  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
49 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
15. Revision history  
Table 16. Revision history  
Document ID  
Release  
date  
Data sheet status Change notice Supersedes  
LPC111XLV_LPC11XXLVUK v.2 20121010  
Modifications:  
Product data sheet  
-
LPC111XLV_LPC11XXLVUK v.1  
Functions CT16B0_CAP1/RXD added to pin PIO3_4.  
Functions CT16B1_CAP1/TXD added to pin PIO3_5.  
Function CT32B1_CAP1 added to pin PIO1_11.  
Capture/clear functionality added to counter/timers. See Section 7.12.  
Figure 21 “Deep-sleep mode: Typical supply current IDD versus temperature”  
updated.  
Electrical pin characteristics data combined in Section 9.2 for dual and single power  
supplies.  
SSP timing characteristics in slave mode removed for single power supply parts in  
Table 14.  
Table 11 “Dynamic characteristic: internal oscillators” and Figure 23 updated.  
Figure 33 corrected.  
Removed dual-power supply option. All parts use a single 1.8 V +/- 10 % power  
supply.  
Removed 10-bit ADC. Only the 8-bit ADC is available.  
Temperature range for ADC characteristics on the HVQFN24 package restricted to  
Tamb = -10 °C to +85 °C.  
BOD interrupt level 0 removed in Table 8.  
IRC accuracy updated to 2.5 % accuracy for Tamb = -20 °C to +85 °C and to 5 %  
accuracy for Tamb = -40 °C to -20 °C.  
Data sheet status changed to Product data sheet.  
LPC111XLV_LPC11XXLVUK v.1 20120621  
Objective data  
sheet  
-
-
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
50 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
16. Legal information  
17. Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
17.1 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
17.2 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
51 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
17.3 Trademarks  
non-automotive qualified products in automotive equipment or applications.  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC111XLV_LPC11XXLVUK  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 10 October 2012  
52 of 53  
LPC111xLV/LPC11xxLVUK  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
19. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
7.16.2  
7.16.3  
7.16.4  
7.16.5  
7.16.6  
7.16.7  
7.17  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
BrownOut Detection (BOD) . . . . . . . . . . . . . . 20  
Code security (Code Read Protection - CRP) 20  
APB interface. . . . . . . . . . . . . . . . . . . . . . . . . 21  
AHBLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
External interrupt inputs. . . . . . . . . . . . . . . . . 21  
Emulation and debugging . . . . . . . . . . . . . . . 21  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
4
4.1  
5
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 8  
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 22  
9
Static characteristics . . . . . . . . . . . . . . . . . . . 23  
Static characteristics . . . . . . . . . . . . . . . . . . . 23  
Analog characteristics . . . . . . . . . . . . . . . . . . 25  
Electrical pin characteristics. . . . . . . . . . . . . . 28  
Power consumption . . . . . . . . . . . . . . . . . . . . 31  
Peripheral power consumption . . . . . . . . . . . 35  
BOD static characteristics . . . . . . . . . . . . . . . 35  
9.1  
9.1.1  
9.2  
9.3  
9.4  
9.5  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.5.1  
7.5.2  
7.6  
7.7  
7.7.1  
7.8  
7.8.1  
7.9  
7.9.1  
7.10  
7.10.1  
7.11  
7.11.1  
7.12  
Functional description . . . . . . . . . . . . . . . . . . 11  
ARM Cortex-M0 processor. . . . . . . . . . . . . . . 11  
On-chip flash program memory . . . . . . . . . . . 11  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . 11  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Nested Vectored Interrupt Controller (NVIC) . 12  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 13  
IOCON block . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Fast general purpose parallel I/O . . . . . . . . . . 13  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SPI serial I/O controller. . . . . . . . . . . . . . . . . . 14  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 14  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
General purpose external event  
10  
Dynamic characteristics. . . . . . . . . . . . . . . . . 36  
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . 36  
External clock. . . . . . . . . . . . . . . . . . . . . . . . . 36  
Internal oscillators . . . . . . . . . . . . . . . . . . . . . 37  
I2C-bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . 39  
10.1  
10.2  
10.3  
10.4  
10.5  
11  
Application information . . . . . . . . . . . . . . . . . 42  
ADC usage notes. . . . . . . . . . . . . . . . . . . . . . 42  
Standard I/O pad configuration . . . . . . . . . . . 42  
Reset pad configuration. . . . . . . . . . . . . . . . . 43  
11.1  
11.2  
11.3  
12  
13  
14  
15  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 44  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 50  
counter/timers. . . . . . . . . . . . . . . . . . . . . . . . . 16  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
System tick timer . . . . . . . . . . . . . . . . . . . . . . 16  
Windowed WatchDog Timer . . . . . . . . . . . . . 16  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Clocking and power control . . . . . . . . . . . . . . 17  
Crystal oscillators . . . . . . . . . . . . . . . . . . . . . . 17  
16  
17  
17.1  
17.2  
17.3  
Legal information . . . . . . . . . . . . . . . . . . . . . . 51  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 51  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
7.12.1  
7.13  
7.14  
7.14.1  
7.15  
7.15.1  
18  
19  
Contact information . . . . . . . . . . . . . . . . . . . . 52  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
7.15.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 18  
7.15.1.2 System oscillator . . . . . . . . . . . . . . . . . . . . . . 18  
7.15.1.3 Watchdog oscillator . . . . . . . . . . . . . . . . . . . . 19  
7.15.2  
7.15.3  
7.15.4  
7.15.5  
System PLL . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Clock output . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 19  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.15.5.1 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.15.5.2 Deep-sleep mode . . . . . . . . . . . . . . . . . . . . . . 20  
7.16  
7.16.1  
System control . . . . . . . . . . . . . . . . . . . . . . . . 20  
Start logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2012.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 10 October 2012  
Document identifier: LPC111XLV_LPC11XXLVUK  

相关型号:

LPC1114LVFHN24/303

LPC1114LVFHN24 - 32-bit ARM Cortex-M0 MCU; 32 kB flash, 4/8 kB SRAM; ADC QFN 24-Pin
NXP

LPC1115

NXP Microcontrollers Selection Guide
NXP

LPC1115FET48/303,151

RISC Microcontroller, 32-Bit, FLASH, CMOS, PBGA48
NXP

LPC1115FET48/303QL

LPC1115FET48 - 64kB flash, 8kB SRAM, TFBGA48 package BGA 48-Pin
NXP

LPC1115JBD48/303QL

LPC1115JBD48 - 64kB flash, 8kB SRAM, LQFP48 package QFP 48-Pin
NXP

LPC1115JET48/303

IC RISC MICROCONTROLLER, Microcontroller
NXP

LPC1115JET48/303,151

RISC Microcontroller, 32-Bit, FLASH, CMOS, PBGA48
NXP

LPC111XLV

32-bit ARM Cortex-M0 MCU; up to 32 kB flash, 8 kB SRAM; 8-bit ADC
NXP

LPC1124JBD48/303

32-bit ARM Cortex-M0 microcontroller; 64 kB flash and 8 kB SRAM; 12-bit ADC
NXP

LPC1125JBD48/303

32-bit ARM Cortex-M0 microcontroller; 64 kB flash and 8 kB SRAM; 12-bit ADC
NXP

LPC112CTP

VERTICAL CLIPLITE 4MM LITEPIPE
VCC

LPC112X

32-bit ARM Cortex-M0 microcontroller; 64 kB flash and 8 kB SRAM; 12-bit ADC
NXP