LPC11U13FBD48/201 [NXP]

IC RISC MICROCONTROLLER, Microcontroller;
LPC11U13FBD48/201
型号: LPC11U13FBD48/201
厂家: NXP    NXP
描述:

IC RISC MICROCONTROLLER, Microcontroller

微控制器
文件: 总72页 (文件大小:1717K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC11U1x  
32-bit ARM Cortex-M0 microcontroller; up to 32 kB flash; 6 kB  
SRAM; USB device; USART  
Rev. 2.2 — 11 March 2014  
Product data sheet  
1. General description  
The LPC11U1x are an ARM Cortex-M0 based, low-cost 32-bit MCU family, designed for  
8/16-bit microcontroller applications, offering performance, low power, simple instruction  
set and memory addressing together with reduced code size compared to existing 8/16-bit  
architectures.  
The LPC11U1x operate at CPU frequencies of up to 50 MHz.  
Equipped with a highly flexible and configurable Full Speed USB 2.0 device controller, the  
LPC11U1x brings unparalleled design flexibility and seamless integration to today’s  
demanding connectivity solutions.  
The peripheral complement of the LPC11U1x includes up to 32 kB of flash memory, 6 kB  
of SRAM data memory, one Fast-mode Plus I2C-bus interface, one RS-485/EIA-485  
USART with support for synchronous mode and smart card interface, two SSP interfaces,  
four general purpose counter/timers, a 10-bit ADC, and up to 40 general purpose I/O pins.  
For additional documentation related to the LPC11U1x parts, see Section 15  
“References”.  
2. Features and benefits  
System:  
ARM Cortex-M0 processor, running at frequencies of up to 50 MHz.  
ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC).  
Non Maskable Interrupt (NMI) input selectable from several input sources.  
System tick timer.  
Memory:  
Up to 32 kB on-chip flash program memory.  
Total of 6 kB SRAM data memory (4 kB main SRAM and 2 kB USB SRAM).  
16 kB boot ROM includes  
In-System Programming (ISP) and In-Application Programming (IAP) via on-chip  
bootloader software.  
ROM-based 32-bit integer division routines.  
Debug options:  
Standard JTAG test interface for BSDL.  
Serial Wire Debug.  
Digital peripherals:  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Up to 40 General Purpose I/O (GPIO) pins with configurable pull-up/pull-down  
resistors, repeater mode, input inverter, and open-drain mode. Eight pins support a  
programmable glitch filter.  
Up to 8 GPIO pins can be selected as edge and level sensitive interrupt sources.  
Two GPIO grouped interrupt modules enable an interrupt based on a  
programmable pattern of input states of a group of GPIO pins.  
High-current source output driver (20 mA) on one pin (P0_7).  
High-current sink driver (20 mA) on true open-drain pins (P0_4 and P0_5).  
Four general purpose counter/timers with a total of up to 5 capture inputs and 13  
match outputs.  
Programmable Windowed WatchDog Timer (WWDT) with a dedicated, internal  
low-power WatchDog Oscillator (WDO).  
Analog peripherals:  
10-bit ADC with input multiplexing among eight pins.  
Serial interfaces:  
USB 2.0 full-speed device controller.  
USART with fractional baud rate generation, internal FIFO, a full modem control  
handshake interface, and support for RS-485/9-bit mode and synchronous mode.  
USART supports an asynchronous smart card interface (ISO 7816-3).  
Two SSP controllers with FIFO and multi-protocol capabilities.  
I2C-bus interface supporting the full I2C-bus specification and Fast-mode Plus with  
a data rate of up to 1 Mbit/s with multiple address recognition and monitor mode.  
Clock generation:  
Crystal Oscillator with an operating range of 1 MHz to 25 MHz (system oscillator).  
12 MHz high-frequency Internal RC oscillator (IRC) that can optionally be used as  
a system clock.  
Internal low-power, low-frequency WatchDog Oscillator (WDO) with programmable  
frequency output.  
PLL allows CPU operation up to the maximum CPU rate with the system oscillator  
or the IRC as clock sources.  
A second, dedicated PLL is provided for USB.  
Clock output function with divider that can reflect the crystal oscillator, the main  
clock, the IRC, or the watchdog oscillator.  
Power control:  
Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep  
power-down.  
Power profiles residing in boot ROM allow optimized performance and minimized  
power consumption for any given application through one simple function call.  
Processor wake-up from Deep-sleep and Power-down modes via reset, selectable  
GPIO pins, watchdog interrupt, or USB port activity.  
Processor wake-up from Deep power-down mode using one special function pin.  
Integrated PMU (Power Management Unit) to minimize power consumption during  
Sleep, Deep-sleep, Power-down, and Deep power-down modes.  
Power-On Reset (POR).  
Brownout detect with four separate thresholds for interrupt and forced reset.  
Unique device serial number for identification.  
Single 3.3 V power supply (1.8 V to 3.6 V).  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
2 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Temperature range 40 C to +85 C.  
Available as LQFP48, TFBGA48, and HVQFN33 packages.  
Pin compatible to the LPC134x series.  
3. Applications  
Consumer peripherals  
Handheld scanners  
USB audio devices  
Medical  
Industrial control  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC11U12FHN33/201 HVQFN33  
plastic thermal enhanced very thin quad flat package; no leads; 33  
n/a  
terminals; body 7 7 0.85 mm  
LPC11U12FBD48/201 LQFP48  
LPC11U13FBD48/201 LQFP48  
LPC11U14FHN33/201 HVQFN33  
plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm SOT313-2  
plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm SOT313-2  
plastic thermal enhanced very thin quad flat package; no leads; 33  
n/a  
terminals; body 7 7 0.85 mm  
LPC11U14FHI33/201  
HVQFN33  
plastic thermal enhanced very thin quad flat package; no leads; 33  
n/a  
terminals; body 5 5 0.85 mm  
LPC11U14FBD48/201 LQFP48  
LPC11U14FET48/201 TFBGA48  
plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm SOT313-2  
plastic thin fine-pitch ball grid array package; 48 balls; body  
SOT1155-2  
4.5 4.5 0.7 mm  
4.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Flash SRAM  
USART  
I2C-bus  
FM+  
SSP USB  
ADC  
GPIO  
device channels pins  
CPU  
16 kB 4 kB  
16 kB 4 kB  
24 kB 4 kB  
32 kB 4 kB  
32 kB 4 kB  
32 kB 4 kB  
32 kB 4 kB  
USB  
2 kB  
2 kB  
2 kB  
2 kB  
2 kB  
2 kB  
2 kB  
Total  
6 kB  
6 kB  
6 kB  
6 kB  
6 kB  
6 kB  
6 kB  
LPC11U12FHN33/201  
LPC11U12FBD48/201  
LPC11U13FBD48/201  
LPC11U14FHN33/201  
LPC11U14FHI33/201  
LPC11U14FBD48/201  
LPC11U14FET48/201  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
1
1
1
1
1
1
1
8
8
8
8
8
8
8
26  
40  
40  
26  
26  
40  
40  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
3 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
5. Block diagram  
SWD, JTAG  
XTALIN XTALOUT  
RESET  
LPC11U12/13/14  
SYSTEM OSCILLATOR  
CLOCK  
GENERATION,  
IRC, WDO  
BOD  
TEST/DEBUG  
INTERFACE  
POWER CONTROL,  
SYSTEM  
CLKOUT  
FUNCTIONS  
POR  
ARM  
CORTEX-M0  
PLL0  
USB PLL  
FLASH  
16/24/32 kB  
SRAM  
6 kB  
ROM  
16 kB  
system bus  
master  
slave  
slave  
slave  
slave  
USB_DP  
USB_DM  
USB_VBUS  
slave  
USB DEVICE  
CONTROLLER  
HIGH-SPEED  
GPIO  
AHB-LITE BUS  
GPIO ports 0/1  
USB_FTOGGLE,  
USB_CONNECT  
slave  
AHB TO APB  
BRIDGE  
RXD  
TXD  
DCD, DSR , RI  
CTS, RTS, DTR  
SCLK  
USART/  
SMARTCARD INTERFACE  
(1)  
(1)  
AD[7:0]  
10-bit ADC  
SCL, SDA  
2
I C-BUS  
CT16B0_MAT[1:0]  
16-bit COUNTER/TIMER 0  
CT16B0_CAP0  
SCK0, SSEL0,  
MISO0, MOSI0  
SSP0  
CT16B1_MAT[1:0]  
CT16B1_CAP0  
CT32B0_MAT[3:0]  
16-bit COUNTER/TIMER 1  
32-bit COUNTER/TIMER 0  
SCK1, SSEL1,  
MISO1, MOSI1  
SSP1  
(1)  
CT32B0_CAP[1:0]  
IOCON  
CT32B1_MAT[3:0]  
32-bit COUNTER/TIMER 1  
(2)  
CT32B1_CAP[1:0]  
SYSTEM CONTROL  
PMU  
WINDOWED WATCHDOG  
TIMER  
GPIO pins  
GPIO PIN INTERRUPTS  
GPIO pins  
GPIO pins  
GPIO GROUP0 INTERRUPT  
GPIO GROUP1 INTERRUPT  
002aaf885  
(1) DSR, RI, CT32B0_CAP1 are not available on HVQFN33 packages.  
(2) CT32B1_CAP1 is available only on the TFBGA48package.  
Fig 1. Block diagram  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
4 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
6. Pinning information  
6.1 Pinning  
terminal 1  
index area  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PIO1_19/DTR/SSEL1  
TRST/PIO0_14/AD3/CT32B1_MAT1  
TDO/PIO0_13/AD2/CT32B1_MAT0  
TMS/PIO0_12/AD1/CT32B1_CAP0  
TDI/PIO0_11/AD0/CT32B0_MAT3  
PIO0_22/AD6/CT16B1_MAT1/MISO1  
SWCLK/PIO0_10/SCK0/CT16B0_MAT2  
PIO0_9/MOSI0/CT16B0_MAT1  
RESET/PIO0_0  
PIO0_1/CLKOUT/CT32B0_MAT2/USB_FTOGGLE  
XTALIN  
LPC11U1x  
XTALOUT  
V
DD  
PIO0_20/CT16B1_CAP0  
33 V  
SS  
PIO0_2/SSEL0/CT16B0_CAP0  
PIO0_8/MISO0/CT16B0_MAT0  
002aaf888  
Transparent top view  
Fig 2. Pin configuration (HVQFN33)  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
5 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PIO1_25/CT32B0_MAT1  
PIO1_13/DTR/CT16B0_MAT0/TXD  
TRST/PIO0_14/AD3/CT32B1_MAT1  
TDO/PIO0_13/AD2/CT32B1_MAT0  
TMS/PIO0_12/AD1/CT32B1_CAP0  
TDI/PIO0_11/AD0/CT32B0_MAT3  
PIO1_29/SCK0/CT32B0_CAP1  
PIO0_22/AD6/CT16B1_MAT1/MISO1  
SWCLK/PIO0_10/SCK0/CT16B0_MAT2  
PIO0_9/MOSI0/CT16B0_MAT1  
PIO0_8/MISO0/CT16B0_MAT0  
PIO1_21/DCD/MISO1  
PIO1_19/DTR/SSEL1  
RESET/PIO0_0  
3
4
PIO0_1/CLKOUT/CT32B0_MAT2/USB_FTOGGLE  
5
V
SS  
6
XTALIN  
LPC11U1x  
7
XTALOUT  
8
V
DD  
9
PIO0_20/CT16B1_CAP0  
PIO0_2/SSEL0/CT16B0_CAP0  
PIO1_26/CT32B0_MAT2/RXD  
PIO1_27/CT32B0_MAT3/TXD  
10  
11  
12  
PIO1_31  
002aaf884  
Fig 3. Pin configuration (LQFP48)  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
6 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
ball A1  
index area  
LPC11U1x  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
G
H
002aag101  
Transparent top view  
Fig 4. Pin configuration (TFBGA48)  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
7 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
6.2 Pin description  
Table 3 shows all pins and their assigned digital or analog functions ordered by GPIO port  
number. The default function after reset is listed first. All port pins have internal pull-up  
resistors enabled after reset with the exception of the true open-drain pins PIO0_4 and  
PIO0_5.  
Every port pin has a corresponding IOCON register for programming the digital or analog  
function, the pull-up/pull-down configuration, the repeater, and the open-drain modes.  
The USART, counter/timer, and SSP functions are available on more than one port pin.  
Table 4 shows how peripheral functions are assigned to port pins.  
Table 3.  
Symbol  
Pin description  
Reset Type  
Description  
state  
[1]  
[2]  
RESET/PIO0_0  
2
3
C1  
I; PU  
I
RESET — External reset input with 20 ns glitch  
filter. A LOW-going pulse as short as 50 ns on  
this pin resets the device, causing I/O ports and  
peripherals to take on their default states, and  
processor execution to begin at address 0. This  
pin also serves as the debug select input. LOW  
level selects the JTAG boundary scan. HIGH  
level selects the ARM SWD debug mode.  
In deep power-down mode, this pin must be  
pulled HIGH externally. The RESET pin can be  
left unconnected or be used as a GPIO pin if an  
external RESET function is not needed and  
Deep power-down mode is not used.  
-
I/O  
I/O  
PIO0_0 — General purpose digital input/output  
pin.  
[3][4]  
PIO0_1/CLKOUT/  
CT32B0_MAT2/  
USB_FTOGGLE  
3
4
C2  
I; PU  
PIO0_1 — General purpose digital input/output  
pin. A LOW level on this pin during reset starts  
the ISP command handler.  
-
-
O
O
CLKOUT — Clockout pin.  
CT32B0_MAT2 — Match output 2 for 32-bit  
timer 0.  
-
O
USB_FTOGGLE — USB 1 ms Start-of-Frame  
signal.  
[3]  
[3]  
PIO0_2/SSEL0/  
CT16B0_CAP0  
8
9
10 F1  
I; PU  
I/O  
PIO0_2 — General purpose digital input/output  
pin.  
-
-
I/O  
I
SSEL0 — Slave select for SSP0.  
CT16B0_CAP0 — Capture input 0 for 16-bit  
timer 0.  
PIO0_3/USB_VBUS  
14 H2  
I; PU  
-
I/O  
I
PIO0_3 — General purpose digital input/output  
pin.  
USB_VBUS — Monitors the presence of USB  
bus power.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
8 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
Pin description …continued  
Reset Type  
Description  
state  
[1]  
[5]  
[5]  
[3]  
PIO0_4/SCL  
PIO0_5/SDA  
10 15 G3  
11 16 H3  
15 22 H6  
I; IA  
-
I/O  
I/O  
PIO0_4 — General purpose digital input/output  
pin (open-drain).  
SCL — I2C-bus clock input/output (open-drain).  
High-current sink only if I2C Fast-mode Plus is  
selected in the I/O configuration register.  
I; IA  
-
I/O  
I/O  
PIO0_5 — General purpose digital input/output  
pin (open-drain).  
SDA — I2C-bus data input/output (open-drain).  
High-current sink only if I2C Fast-mode Plus is  
selected in the I/O configuration register.  
PIO0_6/USB_CONNECT/  
SCK0  
I; PU  
-
I/O  
O
PIO0_6 — General purpose digital input/output  
pin.  
USB_CONNECT — Signal used to switch an  
external 1.5 kresistor under software control.  
Used with the SoftConnect USB feature.  
-
I/O  
I/O  
SCK0 — Serial clock for SSP0.  
[6]  
[3]  
PIO0_7/CTS  
16 23 G7  
17 27 F8  
I; PU  
PIO0_7 — General purpose digital input/output  
pin (high-current output driver).  
-
I
CTS — Clear To Send input for USART.  
PIO0_8/MISO0/  
CT16B0_MAT0  
I; PU  
I/O  
PIO0_8 — General purpose digital input/output  
pin.  
-
-
I/O  
O
MISO0 — Master In Slave Out for SSP0.  
CT16B0_MAT0 — Match output 0 for 16-bit  
timer 0.  
[3]  
[3]  
PIO0_9/MOSI0/  
CT16B0_MAT1  
18 28 F7  
I; PU  
I/O  
PIO0_9 — General purpose digital input/output  
pin.  
-
-
I/O  
O
MOSI0 — Master Out Slave In for SSP0.  
CT16B0_MAT1 — Match output 1 for 16-bit  
timer 0.  
SWCLK/PIO0_10/SCK0/  
CT16B0_MAT2  
19 29 E7  
I; PU  
-
I
SWCLK — Serial wire clock and test clock TCK  
for JTAG interface.  
I/O  
PIO0_10 — General purpose digital  
input/output pin.  
-
-
O
O
SCK0 — Serial clock for SSP0.  
CT16B0_MAT2 — Match output 2 for 16-bit  
timer 0.  
[7]  
TDI/PIO0_11/AD0/  
CT32B0_MAT3  
21 32 D8  
I; PU  
-
I
TDI — Test Data In for JTAG interface.  
I/O  
PIO0_11 — General purpose digital input/output  
pin.  
-
-
I
AD0 — A/D converter, input 0.  
O
CT32B0_MAT3 — Match output 3 for 32-bit  
timer 0.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
9 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
Pin description …continued  
Reset Type  
Description  
state  
[1]  
[7]  
[7]  
[7]  
[7]  
[7]  
TMS/PIO0_12/AD1/  
CT32B1_CAP0  
22 33 C7  
23 34 C8  
24 35 B7  
25 39 B6  
26 40 A6  
I; PU  
-
I
TMS — Test Mode Select for JTAG interface.  
I/O  
PIO_12 — General purpose digital input/output  
pin.  
-
-
I
I
AD1 — A/D converter, input 1.  
CT32B1_CAP0 — Capture input 0 for 32-bit  
timer 1.  
TDO/PIO0_13/AD2/  
CT32B1_MAT0  
I; PU  
-
O
TDO — Test Data Out for JTAG interface.  
I/O  
PIO0_13 — General purpose digital  
input/output pin.  
-
-
I
AD2 — A/D converter, input 2.  
O
CT32B1_MAT0 — Match output 0 for 32-bit  
timer 1.  
TRST/PIO0_14/AD3/  
CT32B1_MAT1  
I; PU  
-
I
TRST — Test Reset for JTAG interface.  
I/O  
PIO0_14 — General purpose digital  
input/output pin.  
-
-
I
AD3 — A/D converter, input 3.  
O
CT32B1_MAT1 — Match output 1 for 32-bit  
timer 1.  
SWDIO/PIO0_15/AD4/  
CT32B1_MAT2  
I; PU  
-
I/O  
I/O  
SWDIO — Serial wire debug input/output.  
PIO0_15 — General purpose digital  
input/output pin.  
-
-
I
AD4 — A/D converter, input 4.  
O
CT32B1_MAT2 — Match output 2 for 32-bit  
timer 1.  
PIO0_16/AD5/  
I; PU  
I/O  
PIO0_16 — General purpose digital  
CT32B1_MAT3/WAKEUP  
input/output pin.  
-
-
I
AD5 — A/D converter, input 5.  
O
CT32B1_MAT3 — Match output 3 for 32-bit  
timer 1.  
-
I
WAKEUP — Deep power-down mode wake-up  
pin with 20 ns glitch filter. This pin must be  
pulled HIGH externally to enter Deep  
power-down mode and pulled LOW to exit Deep  
power-down mode. A LOW-going pulse as short  
as 50 ns wakes up the part.  
[3]  
PIO0_17/RTS/  
30 45 A3  
I; PU  
I/O  
PIO0_17 — General purpose digital  
CT32B0_CAP0/SCLK  
input/output pin.  
-
-
O
I
RTS — Request To Send output for USART.  
CT32B0_CAP0 — Capture input 0 for 32-bit  
timer 0.  
-
I/O  
SCLK — Serial clock input/output for USART in  
synchronous mode.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
10 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
Pin description …continued  
Reset Type  
Description  
state  
[1]  
[3]  
PIO0_18/RXD/  
CT32B0_MAT0  
31 46 B3  
I; PU  
I/O  
I
PIO0_18 — General purpose digital  
input/output pin.  
-
RXD — Receiver input for USART.Used in  
UART ISP mode.  
-
O
CT32B0_MAT0 — Match output 0 for 32-bit  
timer 0.  
[3]  
PIO0_19/TXD/  
CT32B0_MAT1  
32 47 B2  
I; PU  
I/O  
O
PIO0_19 — General purpose digital  
input/output pin.  
-
TXD — Transmitter output for USART. Used in  
UART ISP mode.  
-
O
CT32B0_MAT1 — Match output 1 for 32-bit  
timer 0.  
[3]  
[3]  
PIO0_20/CT16B1_CAP0  
7
9
F2  
I; PU  
I/O  
I
PIO0_20 — General purpose digital  
input/output pin.  
-
CT16B1_CAP0 — Capture input 0 for 16-bit  
timer 1.  
PIO0_21/CT16B1_MAT0/  
MOSI1  
12 17 G4  
I; PU  
-
I/O  
O
PIO0_21 — General purpose digital  
input/output pin.  
CT16B1_MAT0 — Match output 0 for 16-bit  
timer 1.  
-
I/O  
I/O  
MOSI1 — Master Out Slave In for SSP1.  
[7]  
PIO0_22/AD6/  
20 30 E8  
I; PU  
PIO0_22 — General purpose digital  
CT16B1_MAT1/MISO1  
input/output pin.  
-
-
I
AD6 — A/D converter, input 6.  
O
CT16B1_MAT1 — Match output 1 for 16-bit  
timer 1.  
-
I/O  
I/O  
MISO1 — Master In Slave Out for SSP1.  
[7]  
[3]  
PIO0_23/AD7  
27 42 A5  
I; PU  
PIO0_23 — General purpose digital  
input/output pin.  
-
I
AD7 — A/D converter, input 7.  
PIO1_5/CT32B1_CAP1  
-
-
-
H8  
I; PU  
I/O  
PIO1_5 — General purpose digital input/output  
pin.  
-
I
CT32B1_CAP1 — Capture input 1 for 32-bit  
timer 1.  
[3]  
PIO1_13/DTR/  
36 B8  
I; PU  
I/O  
PIO1_13 — General purpose digital  
CT16B0_MAT0/TXD  
input/output pin.  
-
-
O
O
DTR — Data Terminal Ready output for USART.  
CT16B0_MAT0 — Match output 0 for 16-bit  
timer 0.  
-
O
TXD — Transmitter output for USART.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
11 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
Pin description …continued  
Reset Type  
Description  
state  
[1]  
[3]  
[3]  
[3]  
PIO1_14/DSR/  
CT16B0_MAT1/RXD  
-
37 A8  
I; PU  
I/O  
PIO1_14 — General purpose digital  
input/output pin.  
-
-
I
DSR — Data Set Ready input for USART.  
O
CT16B0_MAT1 — Match output 1 for 16-bit  
timer 0.  
-
I
RXD — Receiver input for USART.  
PIO1_15/DCD/  
CT16B0_MAT2/SCK1  
28 43 A4  
I; PU  
I/O  
PIO1_15 — General purpose digital  
input/output pin.  
I
DCD — Data Carrier Detect input for USART.  
-
O
CT16B0_MAT2 — Match output 2 for 16-bit  
timer 0.  
-
I/O  
I/O  
SCK1 — Serial clock for SSP1.  
PIO1_16/RI/  
-
48 A2  
I; PU  
PIO1_16 — General purpose digital  
CT16B0_CAP0  
input/output pin.  
-
-
I
I
RI — Ring Indicator input for USART.  
CT16B0_CAP0 — Capture input 0 for 16-bit  
timer 0.  
[3]  
[3]  
[3]  
[3]  
[3]  
PIO1_19/DTR/SSEL1  
PIO1_20/DSR/SCK1  
PIO1_21/DCD/MISO1  
PIO1_22/RI/MOSI1  
1
-
2
B1  
I; PU  
I/O  
PIO1_19 — General purpose digital  
input/output pin.  
-
O
DTR — Data Terminal Ready output for USART.  
SSEL1 — Slave select for SSP1.  
-
I/O  
I/O  
13 H1  
26 G8  
38 A7  
18 H4  
I; PU  
PIO1_20 — General purpose digital  
input/output pin.  
-
I
DSR — Data Set Ready input for USART.  
SCK1 — Serial clock for SSP1.  
-
I/O  
I/O  
-
I; PU  
PIO1_21 — General purpose digital  
input/output pin.  
-
I
DCD — Data Carrier Detect input for USART.  
MISO1 — Master In Slave Out for SSP1.  
-
I/O  
I/O  
-
I; PU  
PIO1_22 — General purpose digital  
input/output pin.  
-
I
RI — Ring Indicator input for USART.  
MOSI1 — Master Out Slave In for SSP1.  
-
I/O  
I/O  
PIO1_23/CT16B1_MAT1/  
SSEL1  
-
I; PU  
PIO1_23 — General purpose digital  
input/output pin.  
-
-
O
CT16B1_MAT1 — Match output 1 for 16-bit  
timer 1.  
I/O  
SSEL1 — Slave select for SSP1.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
12 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
Pin description …continued  
Reset Type  
Description  
state  
[1]  
[3]  
[3]  
[3]  
PIO1_24/CT32B0_MAT0  
PIO1_25/CT32B0_MAT1  
-
-
-
21 G6  
I; PU  
I/O  
O
PIO1_24 — General purpose digital  
input/output pin.  
-
CT32B0_MAT0 — Match output 0 for 32-bit  
timer 0.  
1
A1  
I; PU  
I/O  
O
PIO1_25 — General purpose digital  
input/output pin.  
-
CT32B0_MAT1 — Match output 1 for 32-bit  
timer 0.  
PIO1_26/CT32B0_MAT2/  
RXD  
11 G2  
12 G1  
24 H7  
I; PU  
-
I/O  
O
PIO1_26 — General purpose digital  
input/output pin.  
CT32B0_MAT2 — Match output 2 for 32-bit  
timer 0.  
-
I
RXD — Receiver input for USART.  
[3]  
[3]  
PIO1_27/CT32B0_MAT3/  
TXD  
-
-
I; PU  
I/O  
PIO1_27 — General purpose digital  
input/output pin.  
-
O
CT32B0_MAT3 — Match output 3 for 32-bit  
timer 0.  
-
O
TXD — Transmitter output for USART.  
PIO1_28/CT32B0_CAP0/  
SCLK  
I; PU  
I/O  
PIO1_28 — General purpose digital  
input/output pin.  
-
I
CT32B0_CAP0 — Capture input 0 for 32-bit  
timer 0.  
-
I/O  
I/O  
SCLK — Serial clock input/output for USART in  
synchronous mode.  
[3]  
[3]  
PIO1_29/SCK0/  
CT32B0_CAP1  
-
-
31 D7  
I; PU  
PIO1_29 — General purpose digital  
input/output pin.  
-
-
I/O  
I
SCK0 — Serial clock for SSP0.  
CT32B0_CAP1 — Capture input 1 for 32-bit  
timer 0.  
PIO1_31  
25  
-
I; PU  
I/O  
PIO1_31 — General purpose digital  
input/output pin.  
[8]  
[8]  
[9]  
USB_DM  
USB_DP  
XTALIN  
13 19 G5  
14 20 H5  
F
F
-
-
-
-
USB_DM — USB bidirectional Dline.  
USB_DP — USB bidirectional D+ line.  
4
6
D1  
Input to the oscillator circuit and internal clock  
generator circuits. Input voltage must not  
exceed 1.8 V.  
[9]  
XTALOUT  
VDD  
5
7
E1  
-
-
-
-
Output from the oscillator amplifier.  
6; 8;  
29 44 E2  
B4,  
Supply voltage to the internal regulator, the  
external rail, and the ADC. Also used as the  
ADC reference voltage.  
VSS  
33 5;  
B5,  
-
-
Ground.  
41 D2  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
13 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
[1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled;  
F = floating; floating pins, if not used, should be tied to ground or power to minimize power consumption.  
[2] 5 V tolerant pad. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up  
from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode. See Figure 31 for the  
reset pad configuration.  
[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 30).  
[4] For parts with bootloader version 7.0, both pins (PIO0_1, PIO0_3) must be pulled LOW to enter UART ISP mode.  
[5] I2C-bus pins compliant with the I2C-bus specification for I2C standard mode, I2C Fast-mode, and I2C Fast-mode Plus. The pin requires  
an external pull-up to provide output functionality. When power is switched off, this pin is floating and does not disturb the I2C lines.  
Open-drain configuration applies to all functions on this pin.  
[6] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 30);  
includes high-current output driver.  
[7] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input.  
When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 30); includes digital  
input glitch filter.  
[8] Pad provides USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode  
only). This pad is not 5 V tolerant.  
[9] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded  
(grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.  
To assign a peripheral function to a port, program the FUNC bits in the port pin’s IOCON  
register with this function. The user must ensure that the assignment of a function to a port  
pin is unambiguous. Only the debug functions for JTAG and SWD are selected by default  
in their corresponding IOCON registers. All other functions must be programmed in the  
IOCON block before they can be used. For details see the LPC11Uxx user manual.  
Table 4.  
Multiplexing of peripheral functions  
Type Default Available on ports  
HVQFN33/LQFP48/TFBGA48 LQFP48/TFBGA48  
Peripheral Function  
TFBGA48  
USART  
RXD  
I
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
PIO0_18  
PIO0_19  
PIO0_7  
PIO0_17  
PIO1_13  
-
-
PIO1_14  
PIO1_13  
-
PIO1_26  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
TXD  
O
-
PIO1_27  
CTS  
I
-
-
RTS  
O
-
-
-
DTR  
O
PIO1_19  
-
-
-
DSR  
I
PIO1_14  
PIO1_21  
PIO1_16  
PIO1_28  
PIO1_29  
-
PIO1_20  
DCD  
I
PIO1_15  
-
-
RI  
I
PIO1_22  
-
SCLK  
SCK0  
SSEL0  
MISO0  
MOSI0  
SCK1  
SSEL1  
MISO1  
MOSI1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PIO0_17  
PIO0_6  
PIO0_2  
PIO0_8  
PIO0_9  
PIO1_15  
PIO1_19  
PIO0_22  
PIO0_21  
SSP0  
SSP1  
PIO0_10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PIO1_20  
PIO1_23  
PIO1_21  
PIO1_22  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
14 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 4.  
Multiplexing of peripheral functions …continued  
Peripheral Function  
Type Default Available on ports  
HVQFN33/LQFP48/TFBGA48 LQFP48/TFBGA48  
TFBGA48  
CT16B0  
CT16B0_CAP0  
I
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
no  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
PIO0_2  
PIO0_8  
PIO0_9  
PIO0_10  
PIO0_20  
PIO0_21  
PIO0_22  
PIO0_17  
PIO1_29  
PIO0_18  
PIO0_19  
PIO0_1  
PIO0_11  
PIO0_12  
-
-
PIO1_16  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CT16B0_MAT0  
CT16B0_MAT1  
CT16B0_MAT2  
CT16B1_CAP0  
CT16B1_MAT0  
CT16B1_MAT1  
CT32B0_CAP0  
CT32B0_CAP1  
CT32B0_MAT0  
CT32B0_MAT1  
CT32B0_MAT2  
CT32B0_MAT3  
CT32B1_CAP0  
CT32B1_CAP1  
CT32B1_MAT0  
CT32B1_MAT1  
CT32B1_MAT2  
CT32B1_MAT3  
AD0  
O
O
O
I
-
PIO1_13  
-
-
PIO1_14  
-
PIO1_15  
-
-
CT16B1  
CT32B0  
-
-
-
-
-
-
-
-
-
-
-
O
O
I
-
-
PIO1_23  
-
PIO1_28  
-
I
-
-
O
O
O
O
I
PIO1_24  
-
PIO1_25  
-
PIO1_26  
-
PIO1_27  
-
CT32B1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
I
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PIO1_5  
O
O
O
O
I
PIO0_13  
PIO0_14  
PIO0_15  
PIO0_16  
PIO0_11  
PIO0_12  
PIO0_13  
PIO0_14  
PIO0_15  
PIO0_16  
PIO0_22  
PIO0_23  
PIO0_3  
PIO0_1  
PIO0_6  
PIO0_1  
PIO0_11  
PIO0_12  
PIO0_13  
PIO0_14  
PIO0_10  
PIO0_10  
PIO0_15  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ADC  
AD1  
I
AD2  
I
AD3  
I
AD4  
I
AD5  
I
AD6  
I
AD7  
I
USB  
USB_VBUS  
USB_FTOGGLE  
USB_CONNECT  
CLKOUT  
I
O
O
O
I
CLKOUT  
JTAG  
TDI  
TMS  
I
TDO  
O
I
TRST  
TCK  
I
SWD  
SWCLK  
I
SWDIO  
I/O  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
15 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7. Functional description  
7.1 On-chip flash programming memory  
The LPC11U1x contain up to 32 kB on-chip flash program memory. The flash can be  
programmed using In-System Programming (ISP) or In-Application Programming (IAP)  
via the on-chip boot loader software.  
7.2 SRAM  
The LPC11U1x contain a total of 6 kB on-chip static RAM memory.  
7.3 On-chip ROM  
The on-chip ROM contains the boot loader and the following Application Programming  
Interfaces (APIs):  
In-System Programming (ISP) and In-Application Programming (IAP) support for flash  
programming  
Power profiles for configuring power consumption and PLL settings  
32-bit integer division routines  
7.4 Memory map  
The LPC11U1x incorporates several distinct memory regions, shown in the following  
figures. Figure 5 shows the overall map of the entire address space from the user  
program viewpoint following reset. The interrupt vector area supports address remapping.  
The AHB peripheral area is 2 MB in size and is divided to allow for up to 128 peripherals.  
The APB peripheral area is 512 kB in size and is divided to allow for up to 32 peripherals.  
Each peripheral of either type is allocated 16 kB of space. This allows simplifying the  
address decoding for each peripheral.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
16 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
LPC11U12/13/14  
4 GB  
0xFFFF FFFF  
reserved  
0xE010 0000  
0xE000 0000  
private peripheral bus  
reserved  
APB peripherals  
0x4008 0000  
0x5000 4000  
0x5000 0000  
GPIO  
25 - 31 reserved  
0x4006 4000  
GPIO GROUP1 interrupt  
GPIO GROUP0 interrupt  
24  
23  
22  
0x4006 0000  
0x4005 C000  
reserved  
0x4008 4000  
SSP1  
USB  
0x4005 8000  
0x4004 C000  
0x4008 0000  
0x4000 0000  
20 - 21 reserved  
APB peripherals  
1 GB  
GPIO pin interrupt  
19  
0x4004 C000  
0x4004 8000  
0x4004 4000  
0x4004 0000  
reserved  
system control  
IOCON  
18  
17  
0x2000 4800  
SSP0  
2 kB USB RAM  
reserved  
16  
15  
0x2000 4000  
0x2000 0000  
flash controller  
0x4003 C000  
0x4003 8000  
0.5 GB  
14  
PMU  
reserved  
10 - 13 reserved  
0x1FFF 4000  
0x1FFF 0000  
0x4002 8000  
0x4002 4000  
0x4002 0000  
16 kB boot ROM  
reserved  
reserved  
9
8
7
6
5
4
3
2
reserved  
ADC  
0x4001 C000  
0x4001 8000  
32-bit counter/timer 1  
32-bit counter/timer 0  
16-bit counter/timer 1  
16-bit counter/timer 0  
USART/SMART CARD  
WWDT  
0x1000 1000  
0x1000 0000  
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
4 kB SRAM  
reserved  
0x0000 8000  
0x0000 6000  
1
0
0x4000 4000  
0x4000 0000  
32 kB on-chip flash (LPC11U14)  
24 kB on-chip flash (LPC11U13)  
2
I C-bus  
0x0000 00C0  
0x0000 4000  
0x0000 0000  
active interrupt vectors  
16 kB on-chip flash (LPC11U12)  
0x0000 0000  
0 GB  
002aaf891  
Fig 5. LPC11U1x memory map  
7.5 Nested Vectored Interrupt Controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M0. The  
tight coupling to the CPU allows for low interrupt latency and efficient processing of late  
arriving interrupts.  
7.5.1 Features  
Controls system exceptions and peripheral interrupts.  
In the LPC11U1x, the NVIC supports 24 vectored interrupts.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
17 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Four programmable interrupt priority levels, with hardware priority level masking.  
Software interrupt generation.  
7.5.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags. Individual interrupt flags may also represent more than one interrupt  
source.  
7.6 IOCON block  
The IOCON block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on-chip peripherals.  
Peripherals should be connected to the appropriate pins prior to being activated and prior  
to any related interrupts being enabled. Activity of any enabled peripheral function that is  
not mapped to a related pin should be considered undefined.  
7.6.1 Features  
Programmable pull-up, pull-down, or repeater mode.  
All GPIO pins (except PIO0_4 and PIO0_5) are pulled up to 3.3 V (VDD = 3.3 V) if their  
pull-up resistor is enabled.  
Programmable pseudo open-drain mode.  
Programmable 10-ns glitch filter on pins PIO0_22, PIO0_23, and PIO0_11 to  
PIO0_16. The glitch filter is turned on by default.  
Programmable hysteresis.  
Programmable input inverter.  
7.7 General Purpose Input/Output GPIO  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs  
can be set or cleared in one write operation.  
LPC11U1x use accelerated GPIO functions:  
GPIO registers are a dedicated AHB peripheral so that the fastest possible I/O timing  
can be achieved.  
Entire port value can be written in one instruction.  
Any GPIO pin providing a digital function can be programmed to generate an interrupt on  
a level, a rising or falling edge, or both.  
The GPIO block consists of three parts:  
1. The GPIO ports.  
2. The GPIO pin interrupt block to control eight GPIO pins selected as pin interrupts.  
3. Two GPIO group interrupt blocks to control two combined interrupts from all GPIO  
pins.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
18 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.7.1 Features  
GPIO pins can be configured as input or output by software.  
All GPIO pins default to inputs with interrupt disabled at reset.  
Pin registers allow pins to be sensed and set individually.  
Up to eight GPIO pins can be selected from all GPIO pins to create an edge- or  
level-sensitive GPIO interrupt request.  
Port interrupts can be triggered by any pin or pins in each port.  
7.8 USB interface  
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a  
host and one or more (up to 127) peripherals. The host controller allocates the USB  
bandwidth to attached devices through a token-based protocol. The bus supports  
hot-plugging and dynamic configuration of the devices. All transactions are initiated by the  
host controller.  
The LPC11U1x USB interface consists of a full-speed device controller with on-chip PHY  
for device functions.  
Remark: Configure the LPC11U1x in default power mode with the power profiles before  
using the USB (see Section 7.16.5.1). Do not use the USB with the part in performance,  
efficiency, or low-power mode.  
7.8.1 Full-speed USB device controller  
The device controller enables 12 Mbit/s data exchange with a USB Host controller. It  
consists of a register interface, serial interface engine, and endpoint buffer memory. The  
serial interface engine decodes the USB data stream and writes data to the appropriate  
endpoint buffer. The status of a completed USB transfer or error condition is indicated via  
status registers. An interrupt is also generated if enabled.  
7.8.1.1 Features  
Dedicated USB PLL available.  
Fully compliant with USB 2.0 specification (full speed).  
Supports 10 physical (5 logical) endpoints including one control endpoint.  
Single and double buffering supported.  
Each non-control endpoint supports bulk, interrupt, or isochronous endpoint types.  
Supports wake-up from Deep-sleep mode and Power-down mode on USB activity  
and remote wake-up.  
Supports SoftConnect.  
7.9 USART  
The LPC11U1x contains one USART.  
The USART includes full modem control, support for synchronous mode, and a smart  
card interface. The RS-485/9-bit mode allows both software address detection and  
automatic address detection using 9-bit mode.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
19 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
The USART uses a fractional baud rate generator. Standard baud rates such as  
115200 Bd can be achieved with any crystal frequency above 2 MHz.  
7.9.1 Features  
Maximum USART data bit rate of 3.125 Mbit/s.  
16-byte receive and transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
Fractional divider for baud rate control, auto baud capabilities and FIFO control  
mechanism that enables software flow control implementation.  
Support for RS-485/9-bit mode.  
Support for modem control.  
Support for synchronous mode.  
Includes smart card interface.  
7.10 SSP serial I/O controller  
The SSP controllers are capable of operation on a SSP, 4-wire SSI, or Microwire bus. It  
can interact with multiple masters and slaves on the bus. Only a single master and a  
single slave can communicate on the bus during a given data transfer. The SSP supports  
full duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the  
slave and from the slave to the master. In practice, often only one of these data flows  
carries meaningful data.  
7.10.1 Features  
Maximum SSP speed of 25 Mbit/s (master) or 4.17 Mbit/s (slave) (in SSP mode)  
Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National  
Semiconductor Microwire buses  
Synchronous serial communication  
Master or slave operation  
8-frame FIFOs for both transmit and receive  
4-bit to 16-bit frame  
7.11 I2C-bus serial I/O controller  
The LPC11U1x contain one I2C-bus controller.  
The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock line  
(SCL) and a Serial Data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be  
controlled by more than one bus master connected to it.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
20 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.11.1 Features  
The I2C-interface is an I2C-bus compliant interface with open-drain pins. The I2C-bus  
interface supports Fast-mode Plus with bit rates up to 1 Mbit/s.  
Easy to configure as master, slave, or master/slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can be used for test and diagnostic purposes.  
The I2C-bus controller supports multiple address recognition and a bus monitor mode.  
7.12 10-bit ADC  
The LPC11U1x contains one ADC. It is a single 10-bit successive approximation ADC with  
eight channels.  
7.12.1 Features  
10-bit successive approximation ADC.  
Input multiplexing among 8 pins.  
Power-down mode.  
Measurement range 0 V to VDD  
.
10-bit conversion time 2.44 s (up to 400 kSamples/s).  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition of input pin or timer match signal.  
Individual result registers for each ADC channel to reduce interrupt overhead.  
7.13 General purpose external event counter/timers  
The LPC11U1x includes two 32-bit counter/timers and two 16-bit counter/timers. The  
counter/timer is designed to count cycles of the system derived clock. It can optionally  
generate interrupts or perform other actions at specified timer values, based on four  
match registers. Each counter/timer also includes one capture input to trap the timer value  
when an input signal transitions, optionally generating an interrupt.  
7.13.1 Features  
A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler.  
Counter or timer operation.  
One capture channel per timer, that can take a snapshot of the timer value when an  
input signal transitions. A capture event may also generate an interrupt.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
21 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Four match registers per timer that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Up to four external outputs corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
The timer and prescaler may be configured to be cleared on a designated capture  
event. This feature permits easy pulse-width measurement by clearing the timer on  
the leading edge of an input pulse and capturing the timer value on the trailing edge.  
7.14 System tick timer  
The ARM Cortex-M0 includes a system tick timer (SYSTICK) that is intended to generate  
a dedicated SYSTICK exception at a fixed time interval (typically 10 ms).  
7.15 Windowed WatchDog Timer (WWDT)  
The purpose of the watchdog is to reset the controller if software fails to periodically  
service it within a programmable time window.  
7.15.1 Features  
Internally resets chip if not periodically reloaded during the programmable time-out  
period.  
Optional windowed operation requires reload to occur between a minimum and  
maximum time period, both programmable.  
Optional warning interrupt can be generated at a programmable time prior to  
watchdog time-out.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect feed sequence causes reset or interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in  
multiples of Tcy(WDCLK) 4.  
The Watchdog Clock (WDCLK) source can be selected from the IRC or the dedicated  
watchdog oscillator (WDO). This gives a wide range of potential timing choices of  
watchdog operation under different power conditions.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
22 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.16 Clocking and power control  
7.16.1 Integrated oscillators  
The LPC11U1x include three independent oscillators. These are the system oscillator, the  
Internal RC oscillator (IRC), and the watchdog oscillator. Each oscillator can be used for  
more than one purpose as required in a particular application.  
Following reset, the LPC11U1x will operate from the internal RC oscillator until switched  
by software. This allows systems to operate without any external crystal and the  
bootloader code to operate at a known frequency.  
See Figure 6 for an overview of the LPC11U1x clock generation.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
23 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
CPU, system control,  
PMU  
system clock  
n
SYSTEM CLOCK  
DIVIDER  
memories,  
peripheral clocks  
SYSAHBCLKCTRLn  
(AHB clock enable)  
IRC oscillator  
main clock  
SSP0 PERIPHERAL  
CLOCK DIVIDER  
SSP0  
UART  
SSP1  
watchdog oscillator  
USART PERIPHERAL  
CLOCK DIVIDER  
MAINCLKSEL  
(main clock select)  
SSP1 PERIPHERAL  
CLOCK DIVIDER  
IRC oscillator  
SYSTEM PLL  
system oscillator  
SYSPLLCLKSEL  
(system PLL clock select)  
USB PLL  
system oscillator  
USB 48 MHz CLOCK  
DIVIDER  
USB  
USBPLLCLKSEL  
(USB clock select)  
USBUEN  
(USB clock update enable)  
IRC oscillator  
system oscillator  
watchdog oscillator  
CLKOUT PIN CLOCK  
DIVIDER  
CLKOUT pin  
CLKOUTUEN  
(CLKOUT update enable)  
IRC oscillator  
WDT  
watchdog oscillator  
WDCLKSEL  
(WDT clock select)  
002aaf892  
Fig 6. LPC11U1x clocking generation block diagram  
7.16.1.1 Internal RC oscillator  
The IRC may be used as the clock source for the WDT, and/or as the clock that drives the  
system PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz.  
Upon power-up, any chip reset, or wake-up from Deep power-down mode, the LPC11U1x  
use the IRC as the clock source. Software may later switch to one of the other available  
clock sources.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
24 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.16.1.2 System oscillator  
The system oscillator can be used as the clock source for the CPU, with or without using  
the PLL. On the LPC11U1x, the system oscillator must be used to provide the clock  
source to USB.  
The system oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be  
boosted to a higher frequency, up to the maximum CPU operating frequency, by the  
system PLL.  
7.16.1.3 Watchdog oscillator  
The watchdog oscillator can be used as a clock source that directly drives the CPU, the  
watchdog timer, or the CLKOUT pin. The watchdog oscillator nominal frequency is  
programmable between 7.8 kHz and 1.7 MHz. The frequency spread over processing and  
temperature is 40 % (see also Table 13).  
7.16.2 System PLL and USB PLL  
The LPC11U1x contain a system PLL and a dedicated PLL for generating the 48 MHz  
USB clock. The system and USB PLLs are identical.  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO).  
The multiplier can be an integer value from 1 to 32. The CCO operates in the range of  
156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within  
its frequency range while the PLL is providing the desired output frequency. The output  
divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. The PLL output  
frequency must be lower than 100 MHz. Since the minimum output divider value is 2, it is  
insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed  
following a chip reset and may be enabled by software. The program must configure and  
activate the PLL, wait for the PLL to lock, and then connect to the PLL as a clock source.  
The PLL settling time is 100 s.  
7.16.3 Clock output  
The LPC11U1x features a clock output function that routes the IRC oscillator, the system  
oscillator, the watchdog oscillator, or the main clock to an output pin.  
7.16.4 Wake-up process  
The LPC11U1x begin operation at power-up and when awakened from Deep power-down  
mode by using the 12 MHz IRC oscillator as the clock source. This allows chip operation  
to resume quickly. If the main oscillator or the PLL is needed by the application, software  
will need to enable these features and wait for them to stabilize before they are used as a  
clock source.  
7.16.5 Power control  
The LPC11U1x support a variety of power control features. There are four special modes  
of processor power reduction: Sleep mode, Deep-sleep mode, Power-down mode, and  
Deep power-down mode. The CPU clock rate may also be controlled as needed by  
changing clock sources, reconfiguring PLL values, and/or altering the CPU clock divider  
value. This allows a trade-off of power versus processing speed based on application  
requirements. In addition, a register is provided for shutting down the clocks to individual  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
25 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
on-chip peripherals, allowing fine tuning of power consumption by eliminating all dynamic  
power use in any peripherals that are not required for the application. Selected  
peripherals have their own clock divider which provides even better power control.  
7.16.5.1 Power profiles  
The power consumption in Active and Sleep modes can be optimized for the application  
through simple calls to the power profile. The power configuration routine configures the  
LPC11U1x for one of the following power modes:  
Default mode corresponding to power configuration after reset.  
CPU performance mode corresponding to optimized processing capability.  
Efficiency mode corresponding to optimized balance of current consumption and CPU  
performance.  
Low-current mode corresponding to lowest power consumption.  
In addition, the power profile includes routines to select the optimal PLL settings for a  
given system clock and PLL input clock.  
Remark: When using the USB, configure the LPC11U1x in Default mode.  
7.16.5.2 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence but re-enabling the clock to the ARM core.  
In Sleep mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and may generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, and internal  
buses.  
7.16.5.3 Deep-sleep mode  
In Deep-sleep mode, the LPC11U1x is in Sleep-mode and all peripheral clocks and all  
clock sources are off with the exception of the IRC. The IRC output is disabled unless the  
IRC is selected as input to the watchdog timer. In addition all analog blocks are shut down  
and the flash is in stand-by mode. In Deep-sleep mode, the user has the option to keep  
the watchdog oscillator and the BOD circuit running for self-timed wake-up and BOD  
protection.  
The LPC11U1x can wake up from Deep-sleep mode via reset, selected GPIO pins, a  
watchdog timer interrupt, or an interrupt generating USB port activity.  
Deep-sleep mode saves power and allows for short wake-up times.  
7.16.5.4 Power-down mode  
In Power-down mode, the LPC11U1x is in Sleep-mode and all peripheral clocks and all  
clock sources are off with the exception of watchdog oscillator if selected. In addition all  
analog blocks and the flash are shut down. In Power-down mode, the user has the option  
to keep the BOD circuit running for BOD protection.  
The LPC11U1x can wake up from Power-down mode via reset, selected GPIO pins, a  
watchdog timer interrupt, or an interrupt generating USB port activity.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
26 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Power-down mode reduces power consumption compared to Deep-sleep mode at the  
expense of longer wake-up times.  
7.16.5.5 Deep power-down mode  
In Deep power-down mode, power is shut off to the entire chip with the exception of the  
WAKEUP pin. The LPC11U1x can wake up from Deep power-down mode via the  
WAKEUP pin.  
The LPC11U1x can be prevented from entering Deep power-down mode by setting a lock  
bit in the PMU block. Locking out Deep power-down mode enables the user to always  
keep the watchdog timer or the BOD running.  
When entering Deep power-down mode, an external pull-up resistor is required on the  
WAKEUP pin to hold it HIGH. The RESET pin must also be held HIGH to prevent it from  
floating while in Deep power-down mode.  
7.16.6 System control  
7.16.6.1 Reset  
Reset has four sources on the LPC11U1x: the RESET pin, the Watchdog reset, power-on  
reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt  
trigger input pin. Assertion of chip reset by any source, once the operating voltage attains  
a usable level, starts the IRC and initializes the flash controller.  
A LOW-going pulse as short as 50 ns resets the part.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the boot block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
An external pull-up resistor is required on the RESET pin if Deep power-down mode is  
used.  
7.16.6.2 Brownout detection  
The LPC11U1x includes four levels for monitoring the voltage on the VDD pin. If this  
voltage falls below one of the four selected levels, the BOD asserts an interrupt signal to  
the NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the  
NVIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading  
a dedicated status register. Four additional threshold levels can be selected to cause a  
forced reset of the chip.  
7.16.6.3 Code security (Code Read Protection - CRP)  
This feature of the LPC11U1x allows user to enable different levels of security in the  
system so that access to the on-chip flash and use of the Serial Wire Debugger (SWD)  
and In-System Programming (ISP) can be restricted. When needed, CRP is invoked by  
programming a specific pattern into a dedicated flash location. IAP commands are not  
affected by the CRP.  
In addition, ISP entry via the PIO0_1 pin can be disabled without enabling CRP. For  
details see the LPC11U1x user manual.  
There are three levels of Code Read Protection:  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
27 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
1. CRP1 disables access to the chip via the SWD and allows partial flash update  
(excluding flash sector 0) using a limited set of the ISP commands. This mode is  
useful when CRP is required and flash field updates are needed but all sectors can  
not be erased.  
2. CRP2 disables access to the chip via the SWD and only allows full flash erase and  
update using a reduced set of the ISP commands.  
3. Running an application with level CRP3 selected fully disables any access to the chip  
via the SWD pins and the ISP. This mode effectively disables ISP override using  
PIO0_1 pin, too. It is up to the user’s application to provide (if needed) flash update  
mechanism using IAP calls or call reinvoke ISP command to enable flash update via  
the USART.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
In addition to the three CRP levels, sampling of pin PIO0_1 for valid user code can be  
disabled. For details see the LPC11U1x user manual.  
7.16.6.4 APB interface  
The APB peripherals are located on one APB bus.  
7.16.6.5 AHBLite  
The AHBLite connects the CPU bus of the ARM Cortex-M0 to the flash memory, the main  
static RAM, and the ROM.  
7.16.6.6 External interrupt inputs  
All GPIO pins can be level or edge sensitive interrupt inputs.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
28 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.17 Emulation and debugging  
Debug functions are integrated into the ARM Cortex-M0. Serial wire debug functions are  
supported in addition to a standard JTAG boundary scan. The ARM Cortex-M0 is  
configured to support up to four breakpoints and two watch points.  
The RESET pin selects between the JTAG boundary scan (RESET = LOW) and the ARM  
SWD debug (RESET = HIGH). The ARM SWD debug port is disabled while the  
LPC11U1x is in reset.  
To perform boundary scan testing, follow these steps:  
1. Erase any user code residing in flash.  
2. Power up the part with the RESET pin pulled HIGH externally.  
3. Wait for at least 250 s.  
4. Pull the RESET pin LOW externally.  
5. Perform boundary scan operations.  
6. Once the boundary scan operations are completed, assert the TRST pin to enable the  
SWD debug mode and release the RESET pin (pull HIGH).  
Remark: The JTAG interface cannot be used for debug purposes.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
29 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
8. Limiting values  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
[2]  
VDD  
supply voltage (core and  
external rail)  
0.5  
+4.6  
V
[5][2]  
VI  
input voltage  
5 V tolerant digital I/O pins;  
VDD 1.8 V  
0.5  
+5.5  
V
V
VDD = 0 V  
0.5  
0.5  
+3.6  
+5.5  
[2][4]  
5 V tolerant open-drain pins  
PIO0_4 and PIO0_5  
[2]  
[3]  
VIA  
analog input voltage  
pin configured as analog input  
0.5  
4.6  
V
IDD  
supply current  
per supply pin  
-
-
-
100  
100  
100  
mA  
mA  
mA  
ISS  
ground current  
I/O latch-up current  
per ground pin  
(0.5VDD) < VI < (1.5VDD);  
Tj < 125 C  
Ilatch  
[6]  
Tstg  
storage temperature  
non-operating  
65  
+150  
150  
C  
C  
Tj(max)  
maximum junction  
temperature  
-
Ptot(pack)  
total power dissipation (per  
package)  
based on package heat  
transfer, not device power  
consumption  
-
-
1.5  
W
V
[7]  
VESD  
electrostatic discharge  
voltage  
human body model; all pins  
+6500  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
c) The limiting values are stress ratings only. Operating the part at these values is not recommended, and proper operation is not  
guaranteed. The conditions for functional operation are specified in Table 6.  
[2] Maximum/minimum voltage above the maximum operating voltage (see Table 6) and below ground that can be applied for a short time  
(< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.  
[3] See Table 7 for maximum operating voltage.  
[4] VDD present or not present. Compliant with the I2C-bus standard. 5.5 V can be applied to this pin when VDD is powered down.  
[5] Including voltage on outputs in 3-state mode.  
[6] The maximum non-operating storage temperature is different than the temperature for required shelf life which should be determined  
based on required shelf lifetime. Please refer to the JEDEC spec (J-STD-033B.1) for further details.  
[7] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
30 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9. Static characteristics  
Table 6.  
Static characteristics  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
[2]  
VDD  
supply voltage (core  
and external rail)  
1.8  
3.3  
3.6  
V
IDD  
supply current  
Active mode; VDD = 3.3 V;  
Tamb = 25 C; code  
while(1){}  
executed from flash;  
system clock = 12 MHz  
[3][4][5]  
[6][7][8]  
-
-
-
2
7
1
-
-
-
mA  
mA  
mA  
[4][5][6]  
[7][8][9]  
system clock = 50 MHz  
[3][4][5]  
[6][7][8]  
Sleep mode;  
VDD = 3.3 V; Tamb = 25 C;  
system clock = 12 MHz  
[4][7]  
Deep-sleep mode; VDD = 3.3 V;  
Tamb = 25 C  
-
-
-
360  
2
-
-
-
A  
A  
nA  
Power-down mode; VDD = 3.3 V;  
Tamb = 25 C  
[10]  
Deep power-down mode;  
220  
VDD = 3.3 V; Tamb = 25 C  
Standard port pins, RESET  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up resistor  
disabled  
-
0.5  
0.5  
0.5  
-
10  
10  
10  
5.0  
nA  
nA  
nA  
V
IIH  
IOZ  
VI  
HIGH-level input  
current  
VI = VDD; on-chip pull-down resistor  
disabled  
-
OFF-state output  
current  
VO = 0 V; VO = VDD; on-chip  
pull-up/down resistors disabled  
-
[11][12]  
[13]  
input voltage  
pin configured to provide a digital  
function  
0
VO  
output voltage  
output active  
0
-
-
VDD  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
0.3VDD  
V
Vhys  
VOH  
-
0.4  
-
V
HIGH-level output  
voltage  
2.0 V VDD 3.6 V; IOH = 4 mA  
1.8 V VDD < 2.0 V; IOH = 3 mA  
2.0 V VDD 3.6 V; IOL = 4 mA  
1.8 V VDD < 2.0 V; IOL = 3 mA  
VOH = VDD 0.4 V;  
VDD 0.4  
-
-
-
-
-
-
V
VDD 0.4  
-
V
VOL  
LOW-level output  
voltage  
-
0.4  
0.4  
-
V
-
V
IOH  
HIGH-level output  
current  
4  
mA  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
3  
-
-
mA  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
31 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 6.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
IOL  
LOW-level output  
current  
VOL = 0.4 V  
4
-
-
mA  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
3
-
-
-
-
mA  
mA  
[14]  
[14]  
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
45  
LOW-level short-circuit VOL = VDD  
output current  
-
-
50  
mA  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V;  
10  
50  
150  
A  
A  
15  
50  
85  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
10  
50  
85  
A  
A  
VDD < VI < 5 V  
0
0
0
High-drive output pin (PIO0_7)  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up resistor  
disabled  
-
0.5  
0.5  
0.5  
-
10  
10  
10  
5.0  
nA  
nA  
nA  
V
IIH  
IOZ  
VI  
HIGH-level input  
current  
VI = VDD; on-chip pull-down resistor  
disabled  
-
OFF-state output  
current  
VO = 0 V; VO = VDD; on-chip  
pull-up/down resistors disabled  
-
[11][12]  
[13]  
input voltage  
pin configured to provide a digital  
function  
0
VO  
output voltage  
output active  
0
-
-
VDD  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
-
-
-
-
0.3VDD  
V
Vhys  
VOH  
0.4  
-
V
HIGH-level output  
voltage  
2.5 V VDD 3.6 V; IOH = 20 mA  
1.8 V VDD < 2.5 V; IOH = 12 mA  
2.0 V VDD 3.6 V; IOL = 4 mA  
1.8 V VDD < 2.0 V; IOL = 3 mA  
VDD 0.4  
-
V
VDD 0.4  
-
V
VOL  
LOW-level output  
voltage  
-
0.4  
0.4  
-
V
-
V
IOH  
HIGH-level output  
current  
VOH = VDD 0.4 V;  
2.5 V VDD 3.6 V  
20  
mA  
1.8 V VDD < 2.5 V  
VOL = 0.4 V  
12  
4
-
-
-
-
mA  
mA  
IOL  
LOW-level output  
current  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
3
-
-
-
-
mA  
mA  
[14]  
IOLS  
LOW-level short-circuit VOL = VDD  
output current  
50  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V  
10  
50  
150  
A  
A  
15  
50  
85  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
10  
50  
85  
A  
A  
VDD < VI < 5 V  
0
0
0
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
32 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 6.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
I2C-bus pins (PIO0_4 and PIO0_5)  
VIH  
HIGH-level input  
voltage  
0.7VDD  
-
-
V
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
0.3VDD  
V
Vhys  
IOL  
-
0.05VDD  
-
-
-
V
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins configured  
as standard mode pins  
3.5  
mA  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
VOL = 0.4 V; I2C-bus pins configured  
as Fast-mode Plus pins  
3
-
-
-
-
IOL  
LOW-level output  
current  
20  
mA  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
VI = VDD  
16  
-
-
-
[15]  
ILI  
input leakage current  
2
4
A  
A  
VI = 5 V  
-
10  
22  
Oscillator pins  
Vi(xtal)  
crystal input voltage  
0.5  
0.5  
1.8  
1.8  
1.95  
1.95  
V
V
Vo(xtal)  
USB pins  
IOZ  
crystal output voltage  
[2]  
OFF-state output  
current  
0 V < VI < 3.3 V  
-
-
10  
A  
[2]  
[2]  
VBUS  
VDI  
bus supply voltage  
-
-
-
5.25  
-
V
V
differential input  
(D+) (D)  
0.2  
sensitivity voltage  
[2]  
[2]  
VCM  
differential common  
mode voltage range  
includes VDI range  
0.8  
0.8  
-
-
2.5  
2.0  
V
V
Vth(rs)se single-ended receiver  
switching threshold  
voltage  
[2]  
[2]  
VOL  
LOW-level output  
voltage  
for low-/full-speed;  
RL of 1.5 kto 3.6 V  
-
-
-
0.18  
3.5  
V
V
VOH  
HIGH-level output  
voltage  
driven; for low-/full-speed;  
RL of 15 kto GND  
2.8  
[2]  
Ctrans  
ZDRV  
transceiver capacitance pin to GND  
-
-
-
20  
pF  
[16][2]  
driver output  
with 33 series resistor; steady state  
drive  
36  
44.1  
impedance for driver  
which is not high-speed  
capable  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
33 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 6.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol Parameter  
Pin capacitance  
Conditions  
Min  
Typ[1]  
Max  
Unit  
Cio  
input/output  
capacitance  
pins configured for analog function  
I2C-bus pins (PIO0_4 and PIO0_5)  
pins configured as GPIO  
-
-
-
-
-
-
7.1  
2.5  
2.8  
pF  
pF  
pF  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
[2] For USB operation 3.0 V VDD((3V3) 3.6 V. Guaranteed by design.  
[3] IRC enabled; system oscillator disabled; system PLL disabled.  
[4]  
IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled.  
[5] BOD disabled.  
[6] All peripherals disabled in the AHBCLKCTRL register. Peripheral clocks to USART, SSP0/1 disabled in the syscon block.  
[7] USB_DP and USB_DM pulled LOW externally.  
[8] Low-current mode PWR_LOW_CURRENT selected when running the set_power routine in the power profiles.  
[9] IRC disabled; system oscillator enabled; system PLL enabled.  
[10] WAKEUP pin pulled HIGH externally. An external pull-up resistor is required on the RESET pin for the Deep power-down mode.  
[11] Including voltage on outputs in 3-state mode.  
[12] VDD supply voltage must be present.  
[13] 3-state outputs go into 3-state mode in Deep power-down mode.  
[14] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[15] To VSS  
.
[16] Includes external resistors of 33   1 % on USB_DP and USB_DM.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
34 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 7.  
ADC static characteristics  
Tamb = 40 C to +85 C unless otherwise specified; ADC frequency 4.5 MHz, VDD = 2.5 V to 3.6 V.  
Symbol  
VIA  
Parameter  
Conditions  
Min  
Typ  
Max  
VDD  
1
Unit  
V
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Cia  
pF  
[1][2]  
[3]  
ED  
1  
LSB  
LSB  
LSB  
%
EL(adj)  
EO  
1.5  
3.5  
0.6  
4  
[4]  
[5]  
EG  
gain error  
[6]  
ET  
absolute error  
LSB  
k  
Rvsi  
voltage source interface  
resistance  
40  
[7][8]  
Ri  
input resistance  
-
-
2.5  
M  
[1] The ADC is monotonic, there are no missing codes.  
[2] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 7.  
[3] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 7.  
[4] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 7.  
[5] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 7.  
[6] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated  
ADC and the ideal transfer curve. See Figure 7.  
[7] Tamb = 25 C; maximum sampling frequency fs = 400kSamples/s and analog input capacitance Cia = 1 pF.  
[8] Input resistance Ri depends on the sampling frequency fs: Ri = 1 / (fs Cia).  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
35 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
offset  
error  
gain  
error  
E
E
O
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
(LSB  
)
ideal  
IA  
offset error  
E
O
V
V  
SS  
DD  
1 LSB =  
1024  
002aaf426  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 7. ADC characteristics  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
36 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9.1 BOD static characteristics  
Table 8.  
BOD static characteristics[1]  
Tamb = 25 C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage interrupt level 1  
assertion  
-
-
2.22  
2.35  
-
-
V
V
de-assertion  
interrupt level 2  
assertion  
-
-
2.52  
2.66  
-
-
V
V
de-assertion  
interrupt level 3  
assertion  
-
-
2.80  
2.90  
-
-
V
V
de-assertion  
reset level 0  
assertion  
-
-
1.46  
1.63  
-
-
V
V
de-assertion  
reset level 1  
assertion  
-
-
2.06  
2.15  
-
-
V
V
de-assertion  
reset level 2  
assertion  
-
-
2.35  
2.43  
-
-
V
V
de-assertion  
reset level 3  
assertion  
-
-
2.63  
2.71  
-
-
V
V
de-assertion  
[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see  
LPC11U1x user manual.  
9.2 Power consumption  
Power measurements in Active, Sleep, and Deep-sleep modes were performed under the  
following conditions (see LPC11U1x user manual):  
Configure all pins as GPIO with pull-up resistor disabled in the IOCON block.  
Configure GPIO pins as outputs using the GPIOnDIR registers.  
Write 0 to all GPIOnDATA registers to drive the outputs LOW.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
37 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag749  
9
6
3
0
(2)  
48 MHz  
I
DD  
(mA)  
(2)  
36 MHz  
(2)  
24 MHz  
(1)  
12 MHz  
1.8  
2.4  
3.0  
3.6  
V
(V)  
DD  
Conditions: Tamb = 25 C; Active mode entered executing code while(1){} from flash;  
internal pull-up resistors disabled; BOD disabled; all peripherals disabled in the  
SYSAHBCLKCTRL register; all peripheral clocks disabled; low-current mode; USB_DP and  
USB_DM pulled LOW externally.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
Fig 8. Typical supply current versus regulator supply voltage VDD in active mode  
002aag750  
9
(2)  
48 MHz  
36 MHz  
I
DD  
(mA)  
6
3
0
(2)  
(2)  
(1)  
24 MHz  
12 MHz  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD = 3.3 V; Active mode entered executing code while(1){} from flash; internal  
pull-up resistors disabled; BOD disabled; all peripherals disabled in the SYSAHBCLKCTRL  
register; all peripheral clocks disabled; low-current mode; USB_DP and USB_DM pulled LOW  
externally.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
Fig 9. Typical supply current versus temperature in Active mode  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
38 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag751  
4
3
2
1
0
I
DD  
(mA)  
(2)  
48 MHz  
(2)  
36 MHz  
(2)  
24 MHz  
(1)  
12 MHz  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD = 3.3 V; Sleep mode entered from flash; internal pull-up resistors disabled; BOD  
disabled; all peripherals disabled in the SYSAHBCLKCTRL register; all peripheral clocks disabled;  
low-current mode; USB_DP and USB_DM pulled LOW externally.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
Fig 10. Typical supply current versus temperature in Sleep mode  
002aag745  
385  
I
DD  
(μA)  
375  
V
V
= 3.6 V  
= 3.3 V  
DD  
DD  
365  
355  
345  
V
V
= 2.0 V  
= 1.8 V  
DD  
DD  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: BOD disabled; all oscillators and analog blocks turned off in the PDSLEEPCFG  
register; USB_DP and USB_DM pulled LOW externally.  
Fig 11. Typical supply current versus temperature in Deep-sleep mode  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
39 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag746  
20  
I
DD  
V
= 3.6 V, 3.3 V  
DD  
(μA)  
V
= 2.0 V  
= 1.8 V  
DD  
V
DD  
15  
10  
5
0
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: BOD disabled; all oscillators and analog blocks turned off in the PDSLEEPCFG  
register; USB_DP and USB_DM pulled LOW externally.  
Fig 12. Typical supply current versus temperature in Power-down mode  
002aag747  
0.8  
I
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 3.6 V  
= 3.3 V  
= 2.0 V  
= 1.8 V  
(μA)  
0.6  
0.4  
0.2  
0
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Fig 13. Typical supply current versus temperature in Deep power-down mode  
9.3 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG  
and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both  
registers and no code is executed. Measured on a typical sample at Tamb = 25 C. Unless  
noted otherwise, the system oscillator and PLL are running in both measurements.  
The supply currents are shown for system clock frequencies of 12 MHz and 48 MHz.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
40 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 9.  
Power consumption for individual analog and digital blocks  
Peripheral  
Typical supply current in  
mA  
Notes  
n/a  
12 MHz 48 MHz  
IRC  
0.27  
-
-
-
-
-
-
System oscillator running; PLL off; independent  
of main clock frequency.  
System oscillator 0.22  
at 12 MHz  
IRC running; PLL off; independent of main clock  
frequency.  
Watchdog  
oscillator at  
500 kHz/2  
0.004  
System oscillator running; PLL off; independent  
of main clock frequency.  
BOD  
0.051  
-
-
Independent of main clock frequency.  
Main PLL  
ADC  
-
-
-
0.21  
0.08  
0.12  
-
-
-
0.29  
0.47  
CLKOUT  
Main clock divided by 4 in the CLKOUTDIV  
register.  
CT16B0  
CT16B1  
CT32B0  
CT32B1  
GPIO  
-
-
-
-
-
0.02  
0.02  
0.02  
0.02  
0.23  
0.06  
0.06  
0.07  
0.06  
0.88  
-
-
-
-
GPIO pins configured as outputs and set to  
LOW. Direction and pin state are maintained if  
the GPIO is disabled in the SYSAHBCLKCFG  
register.  
IOCONFIG  
I2C  
-
-
-
-
-
-
-
0.03  
0.04  
0.04  
0.12  
0.12  
0.22  
0.02  
0.10  
0.13  
0.15  
0.45  
0.45  
0.82  
0.06  
-
-
-
-
-
-
ROM  
SPI0  
SPI1  
UART  
WWDT  
Main clock selected as clock source for the  
WDT.  
USB  
-
-
1.2  
-
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
41 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9.4 Electrical pin characteristics  
002aae990  
3.6  
V
(V)  
OH  
T = 85 °C  
25 °C  
40 °C  
3.2  
2.8  
2.4  
2
0
10  
20  
30  
40  
50  
60  
I
(mA)  
OH  
Conditions: VDD = 3.3 V; on pin PIO0_7.  
Fig 14. High-drive output: Typical HIGH-level output voltage VOH versus HIGH-level  
output current IOH  
.
002aaf019  
60  
I
T = 85 °C  
25 °C  
40 °C  
OL  
(mA)  
40  
20  
0
0
0.2  
0.4  
0.6  
V
(V)  
OL  
Conditions: VDD = 3.3 V; on pins PIO0_4 and PIO0_5.  
Fig 15. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus  
LOW-level output voltage VOL  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
42 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aae991  
15  
I
OL  
T = 85 °C  
25 °C  
40 °C  
(mA)  
10  
5
0
0
0.2  
0.4  
0.6  
V
(V)  
OL  
Conditions: VDD = 3.3 V; standard port pins and PIO0_7.  
Fig 16. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
002aae992  
3.6  
V
OH  
(V)  
T = 85 °C  
25 °C  
40 °C  
3.2  
2.8  
2.4  
2
0
8
16  
24  
I
(mA)  
OH  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 17. Typical HIGH-level output voltage VOH versus HIGH-level output source current  
IOH  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
43 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aae988  
10  
I
pu  
(μA)  
10  
30  
50  
70  
T = 85 °C  
25 °C  
40 °C  
0
1
2
3
4
5
V (V)  
I
Conditions: VDD = 3.3 V; standard port pins.  
Fig 18. Typical pull-up current Ipu versus input voltage VI  
002aae989  
80  
T = 85 °C  
I
pd  
25 °C  
(μA)  
40 °C  
60  
40  
20  
0
0
1
2
3
4
5
V (V)  
I
Conditions: VDD = 3.3 V; standard port pins.  
Fig 19. Typical pull-down current Ipd versus input voltage VI  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
44 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10. Dynamic characteristics  
10.1 Flash memory  
Table 10. Flash characteristics  
amb = 40 C to +85 C, unless otherwise specified.  
T
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
10000 100000  
-
cycles  
years  
years  
ms  
retention time  
powered  
10  
20  
95  
-
-
unpowered  
-
-
ter  
erase time  
sector or multiple  
100  
105  
consecutive sectors  
[2]  
tprog  
programming time  
0.95  
1
1.05  
ms  
[1] Number of program/erase cycles.  
[2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash  
in blocks of 256 bytes.  
10.2 External clock  
Table 11. Dynamic characteristic: external clock  
Tamb = 40 C to +85 C; VDD over specified ranges.[1]  
Symbol Parameter  
Conditions  
Min  
Typ[2] Max  
Unit  
MHz  
ns  
fosc  
oscillator frequency  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
40  
1000  
Tcy(clk) 0.4  
-
ns  
Tcy(clk) 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 20. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
45 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.3 Internal oscillators  
Table 12. Dynamic characteristics: IRC  
Tamb = 40 C to +85 C; 2.7 V VDD 3.6 V[1].  
Symbol  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
fosc(RC)  
internal RC oscillator  
frequency  
-
11.88  
12  
12.12  
MHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
002aaf403  
12.15  
f
(MHz)  
VDD = 3.6 V  
3.3 V  
3.0 V  
2.7 V  
12.05  
2.4 V  
2.0 V  
11.95  
11.85  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: Frequency values are typical values. 12 MHz 1 % accuracy is guaranteed for  
2.7 V VDD 3.6 V and Tamb = 40 C to +85 C. Variations between parts may cause the IRC to  
fall outside the 12 MHz 1 % accuracy specification for voltages below 2.7 V.  
Fig 21. Internal RC oscillator frequency versus temperature  
Table 13. Dynamic characteristics: Watchdog oscillator  
Symbol  
Parameter  
Conditions  
Min Typ[1] Max Unit  
[2][3]  
[2][3]  
fosc(int)  
internal oscillator DIVSEL = 0x1F, FREQSEL = 0x1  
-
7.8  
-
kHz  
frequency  
in the WDTOSCCTRL register;  
DIVSEL = 0x00, FREQSEL = 0xF  
in the WDTOSCCTRL register  
-
1700  
-
kHz  
[1] Typical ratings are not guaranteed. The values listed are at nominal supply voltages.  
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +85 C) is 40 %.  
[3] See the LPC11U1x user manual.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
46 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.4 I/O pins  
Table 14. Dynamic characteristics: I/O pins[1]  
Tamb = 40 C to +85 C; 3.0 V VDD 3.6 V.  
Symbol Parameter Conditions  
Min  
3.0  
2.5  
Typ  
Max  
5.0  
Unit  
ns  
tr  
tf  
rise time  
fall time  
pin configured as output  
pin configured as output  
-
-
5.0  
ns  
[1] Applies to standard port pins and RESET pin.  
10.5 I2C-bus  
Table 15. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +85 C.[2]  
Symbol  
Parameter  
Conditions  
Min  
Max  
100  
400  
1
Unit  
fSCL  
SCL clock  
frequency  
Standard-mode  
Fast-mode  
0
0
0
-
kHz  
kHz  
MHz  
ns  
Fast-mode Plus  
[4][5][6][7]  
tf  
fall time  
of both SDA and SCL  
signals  
300  
Standard-mode  
Fast-mode  
20 + 0.1 Cb  
300  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
Fast-mode Plus  
Standard-mode  
Fast-mode  
-
120  
tLOW  
LOW period of the  
SCL clock  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
0
-
-
-
-
-
-
-
-
-
-
-
-
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
HIGH period of the  
SCL clock  
Fast-mode Plus  
Standard-mode  
Fast-mode  
[3][4][8]  
[9][10]  
tHD;DAT  
data hold time  
0
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
tSU;DAT  
data set-up time  
250  
100  
50  
Fast-mode Plus  
[1] See the I2C-bus specification UM10204 for details.  
[2] Parameters are valid over operating temperature range unless otherwise specified.  
[3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.  
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to  
bridge the undefined region of the falling edge of SCL.  
[5] Cb = total capacitance of one bus line in pF.  
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at  
250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines  
without exceeding the maximum specified tf.  
[7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should  
allow for this when considering bus timing.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
47 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
[8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or  
tVD;ACK by a transition time (see UM10204). This maximum must only be met if the device does not stretch the LOW period (tLOW) of the  
SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.  
[9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the  
acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met.  
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the  
LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.  
t
f
t
SU;DAT  
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
002aaf425  
Fig 22. I2C-bus pins clock timing  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
48 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.6 SSP interface  
Table 16. Dynamic characteristics of SPI pins in SPI mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI master (in SPI mode)  
[1]  
[1]  
[2]  
Tcy(clk)  
clock cycle time  
data set-up time  
full-duplex mode  
when only transmitting  
in SPI mode  
50  
40  
15  
-
-
-
-
ns  
ns  
ns  
tDS  
2.4 V VDD 3.6 V  
2.0 V VDD < 2.4 V  
1.8 V VDD < 2.0 V  
in SPI mode  
[2]  
[2]  
[2]  
[2]  
[2]  
20  
24  
0
ns  
ns  
ns  
ns  
ns  
-
-
-
-
-
tDH  
data hold time  
-
tv(Q)  
th(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
10  
-
0
SPI slave (in SPI mode)  
Tcy(PCLK) PCLK cycle time  
20  
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
[3][4]  
[3][4]  
[3][4]  
[3][4]  
tDS  
data set-up time  
data hold time  
in SPI mode  
in SPI mode  
0
-
tDH  
3 Tcy(PCLK) + 4  
-
tv(Q)  
th(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
-
3 Tcy(PCLK) + 11  
2 Tcy(PCLK) + 5  
[1] Tcy(clk) = (SSPCLKDIV (1 + SCR) CPSDVSR) / fmain. The clock cycle time derived from the SPI bit rate Tcy(clk) is a function of the  
main clock frequency fmain, the SPI peripheral clock divider (SSPCLKDIV), the SPI SCR parameter (specified in the SSP0CR0 register),  
and the SPI CPSDVSR parameter (specified in the SPI clock prescale register).  
[2]  
[3] Tcy(clk) = 12 Tcy(PCLK)  
[4] Tamb = 25 C; for normal voltage supply range: VDD = 3.3 V.  
Tamb = 40 C to 85 C.  
.
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
49 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
CPHA = 1  
t
t
DH  
DS  
DATA VALID  
DATA VALID  
MISO  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
t
MOSI  
MISO  
t
CPHA = 0  
DS  
DH  
DATA VALID  
DATA VALID  
002aae829  
Fig 23. SSP master timing in SPI mode  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
t
t
h(Q)  
v(Q)  
CPHA = 1  
DATA VALID  
DATA VALID  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
h(Q)  
CPHA = 0  
v(Q)  
DATA VALID  
002aae830  
Fig 24. SSP slave timing in SPI mode  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
50 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.7 USB interface  
Table 17. Dynamic characteristics: USB pins (full-speed)  
CL = 50 pF; Rpu = 1.5 kon D+ to VDD; 3.0 V VDD 3.6 V.  
Symbol  
Parameter  
rise time  
fall time  
Conditions  
10 % to 90 %  
10 % to 90 %  
tr / tf  
Min  
8.5  
7.7  
-
Typ  
Max  
13.8  
13.7  
109  
Unit  
ns  
tr  
-
-
-
tf  
ns  
tFRFM  
differential rise and fall time  
matching  
%
VCRS  
output signal crossover voltage  
source SE0 interval of EOP  
1.3  
160  
2  
-
-
-
2.0  
175  
+5  
V
tFEOPT  
tFDEOP  
see Figure 25  
ns  
ns  
source jitter for differential transition see Figure 25  
to SE0 transition  
tJR1  
receiver jitter to next transition  
18.5  
9  
-
-
-
+18.5  
ns  
ns  
ns  
tJR2  
receiver jitter for paired transitions  
EOP width at receiver  
10 % to 90 %  
+9  
-
[1]  
tEOPR  
must accept as  
EOP; see  
82  
Figure 25  
[1] Characterized but not implemented as production test. Guaranteed by design.  
T
PERIOD  
crossover point  
extended  
crossover point  
differential  
data lines  
source EOP width: t  
FEOPT  
differential data to  
SE0/EOP skew  
PERIOD FDEOP  
n
T
+ t  
receiver EOP width: t  
EOPR  
aaa-009330  
Fig 25. Differential data-to-EOP transition skew and EOP width  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
51 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11. Application information  
11.1 Suggested USB interface solutions  
The USB device can be connected to the USB as self-powered device (see Figure 26) or  
bus-powered device (see Figure 27).  
On the LPC11U1x, the PIO0_3/USB_VBUS pin is 5 V tolerant only when VDD is applied  
and at operating voltage level. Therefore, if the USB_VBUS function is connected to the  
USB connector and the device is self-powered, the USB_VBUS pin must be protected for  
situations when VDD = 0 V.  
If VDD is always greater than 0 V while VBUS = 5 V, the USB_VBUS pin can be connected  
directly to the VBUS pin on the USB connector.  
For systems where VDD can be 0 V and VBUS is directly applied to the VBUS pin,  
precautions must be taken to reduce the voltage to below 3.6 V, which is the maximum  
allowable voltage on the USB_VBUS pin in this case.  
One method is to use a voltage divider to connect the USB_VBUS pin to the VBUS on the  
USB connector. The voltage divider ratio should be such that the USB_VBUS pin will be  
greater than 0.7VDD to indicate a logic HIGH while below the 3.6 V allowable maximum  
voltage.  
For the following operating conditions  
VBUSmax = 5.25 V  
VDD = 3.6 V,  
the voltage divider should provide a reduction of 3.6 V/5.25 V or ~0.686 V.  
V
DD  
USB_CONNECT  
soft-connect switch  
R1  
1.5 kΩ  
LPC1xxx  
R2  
R3  
USB_VBUS  
R
= 33 Ω  
= 33 Ω  
S
S
USB-B  
connector  
USB_DP  
USB_DM  
R
V
SS  
aaa-010178  
Fig 26. USB interface on a self-powered device where USB_VBUS = 5 V  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
52 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
For a bus-powered device, the VBUS signal does not need to be connected to the  
USB_VBUS pin (see Figure 27). The USB_CONNECT function can additionally be  
connected as shown in Figure 26 to prevent the USB from timing out when there is a  
significant delay between power-up and handling USB traffic.  
V
DD  
REGULATOR  
LPC1xxx  
R1  
1.5 kΩ  
VBUS  
USB-B  
connector  
R
R
= 33 Ω  
= 33 Ω  
S
USB_DP  
USB_DM  
S
V
SS  
aaa-010179  
Fig 27. USB interface on a bus-powered device  
Remark: When a bus-powered circuit as shown in Figure 27 is used, configure the  
PIO0_3/USB_VBUS pin for GPIO (PIO0_3) in the IOCON block to ensure that the  
USB_CONNECT signal can still be controlled by software. For details on the soft-connect  
feature, see the LPC11U1x user manual (Ref. 1).  
Remark: When a self-powered circuit is used without connecting VBUS, configure the  
PIO0_3/USB_VBUS pin for GPIO (PIO0_3) and provide software that can detect the host  
presence through some other mechanism before enabling USB_CONNECT and the  
soft-connect feature. Enabling the soft-connect without host presence will lead to USB  
compliance failure.  
11.2 XTAL input  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave  
mode, a minimum of 200 mV(RMS) is needed.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
53 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
LPC1xxx  
XTALIN  
C
i
C
g
100 pF  
002aae788  
Fig 28. Slave mode operation of the on-chip oscillator  
In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF  
(Figure 28), with an amplitude between 200 mV(RMS) and 1000 mV(RMS). This  
corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V.  
The XTALOUT pin in this configuration can be left unconnected.  
External components and models used in oscillation mode are shown in Figure 29 and in  
Table 18 and Table 19. Since the feedback resistance is integrated on chip, only a crystal  
and the capacitances CX1 and CX2 need to be connected externally in case of  
fundamental mode oscillation (the fundamental frequency is represented by L, CL and  
RS). Capacitance CP in Figure 29 represents the parallel package capacitance and should  
not be larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal  
manufacturer.  
LPC1xxx  
L
XTALIN  
XTALOUT  
C
L
C
P
=
XTAL  
R
S
C
X2  
C
X1  
002aaf424  
Fig 29. Oscillator modes and models: oscillation mode of operation and external crystal  
model used for CX1/CX2 evaluation  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
54 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 18. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) low frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
1 MHz to 5 MHz  
10 pF  
< 300   
< 300   
< 300   
< 300   
< 200   
< 100   
< 160   
< 60   
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
20 pF  
30 pF  
5 MHz to 10 MHz  
10 pF  
20 pF  
30 pF  
10 MHz to 15 MHz  
15 MHz to 20 MHz  
10 pF  
20 pF  
10 pF  
< 80   
Table 19. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) high frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
15 MHz to 20 MHz  
10 pF  
< 180   
< 100   
< 160   
< 80   
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
39 pF, 39 pF  
20 pF  
20 MHz to 25 MHz  
10 pF  
20 pF  
11.3 XTAL Printed-Circuit Board (PCB) layout guidelines  
The crystal should be connected on the PCB as close as possible to the oscillator input  
and output pins of the chip. Take care that the load capacitors Cx1, Cx2, and Cx3 in case of  
third overtone crystal usage have a common ground plane. The external components  
must also be connected to the ground plain. Loops must be made as small as possible in  
order to keep the noise coupled in via the PCB as small as possible. Also parasitics  
should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller  
accordingly to the increase in parasitics of the PCB layout.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
55 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11.4 Standard I/O pad configuration  
Figure 30 shows the possible pin modes for standard I/O pins with analog input function:  
Digital output driver  
Digital input: Pull-up enabled/disabled  
Digital input: Pull-down enabled/disabled  
Digital input: Repeater mode enabled/disabled  
Analog input  
V
DD  
ESD  
output enable  
pin configured  
as digital output  
driver  
output  
PIN  
ESD  
V
V
DD  
SS  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater mode  
enable  
pin configured  
as digital input  
pull-down enable  
data input  
select analog input  
pin configured  
as analog input  
analog input  
002aaf304  
Fig 30. Standard I/O pad configuration  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
56 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11.5 Reset pad configuration  
V
DD  
V
DD  
V
DD  
R
pu  
ESD  
20 ns RC  
GLITCH FILTER  
reset  
PIN  
ESD  
V
SS  
002aaf274  
Fig 31. Reset pad configuration  
11.6 ADC effective input impedance  
A simplified diagram of the ADC input channels can be used to determine the effective  
input impedance seen from an external voltage source. See Figure 32.  
ADC Block  
Source  
R
R
R
mux  
sw  
s
ADC  
COMPARATOR  
<2 kΩ  
<1.3 kΩ  
R
in  
C
ia  
V
C
EXT  
io  
V
SS  
002aah615  
Fig 32. ADC input channel  
The effective input impedance, Rin, seen by the external voltage source, VEXT, is the  
parallel impedance of ((1/fs x Cia) + Rmux + Rsw) and (1/fs x Cio), and can be calculated  
using Equation 1 with  
fs = sampling frequency  
Cia = ADC analog input capacitance  
Rmux = analog mux resistance  
Rsw = switch resistance  
Cio = pin capacitance  
1
1
  
-----------------  
Rin  
=
+ Rmux + R  
(1)  
-----------------  
sw  
fs Cio  
fs Cia  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
57 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Under nominal operating condition VDD = 3.3 V and with the maximum sampling  
frequency fs = 400 kHz, the parameters assume the following values:  
Cia = 1 pF (max)  
Rmux = 2 k(max)  
Rsw = 1.3 k(max)  
Cio = 7.1 pF (max)  
The effective input impedance with these parameters is Rin = 308 k.  
11.7 ADC usage notes  
The following guidelines show how to increase the performance of the ADC in a noisy  
environment beyond the ADC specifications listed in Table 7:  
The ADC input trace must be short and as close as possible to the LPC11U1x chip.  
The ADC input traces must be shielded from fast switching digital signals and noisy  
power supply lines.  
Because the ADC and the digital core share the same power supply, the power supply  
line must be adequately filtered.  
To improve the ADC performance in a very noisy environment, put the device in Sleep  
mode during the ADC conversion.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
58 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
12. Package outline  
HVQFN33: plastic thermal enhanced very thin quad flat package; no leads;  
33 terminals; body 7 x 7 x 0.85 mm  
D
B
A
terminal 1  
index area  
E
A
A
1
c
detail X  
e
1
C
v
C
C
A
B
e
b
y
1
y
w
C
9
16  
L
8
17  
e
E
e
2
h
33  
1
24  
X
terminal 1  
index area  
32  
25  
0
D
h
2.5  
scale  
5 mm  
v
Dimensions  
Unit  
(1)  
(1)  
(1)  
A
A
b
c
D
D
E
E
e
e
1
e
2
L
w
y
y
1
1
h
h
max 1.00 0.05 0.35  
mm nom 0.85 0.02 0.28 0.2 7.0 4.70 7.0 4.70 0.65 4.55 4.55 0.60 0.1 0.05 0.08 0.1  
min 0.80 0.00 0.23 6.9 4.55 6.9 4.55 0.45  
7.1 4.85 7.1 4.85  
0.75  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
hvqfn33_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
- - -  
09-03-17  
09-03-23  
Fig 33. Package outline HVQFN33 (7 x 7 x 0.85 mm)  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
59 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
HVQFN33: plastic thermal enhanced very thin quad flat package; no leads;  
32 terminals; body 5 x 5 x 0.85 mm  
D
B
A
terminal 1  
index area  
A
A
1
E
c
detail X  
C
e
1
y
y
v
w
C
C
A
B
C
1
e
1/2 e  
b
9
16  
L
17  
8
e
e
E
h
2
1/2 e  
24  
1
terminal 1  
index area  
32  
25  
X
D
h
0
2.5  
scale  
5 mm  
Dimensions (mm are the original dimensions)  
(1)  
(1)  
(1)  
(1)  
Unit  
A
A
1
b
c
D
D
E
E
e
e
e
L
v
w
y
y
1
h
h
1
2
max  
0.05 0.30  
5.1 3.75 5.1 3.75  
0.5  
mm nom 0.85  
min  
0.2  
0.5 3.5 3.5  
0.1 0.05 0.05 0.1  
0.00 0.18  
4.9 3.45 4.9 3.45  
0.3  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
hvqfn33f_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
11-10-11  
11-10-17  
MO-220  
Fig 34. Package outline HVQFN33 (5 x 5 x 0.85 mm)  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
60 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT313-2  
136E05  
MS-026  
Fig 35. Package outline LQFP48 (SOT313-2)  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
61 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
TFBGA48: plastic thin fine-pitch ball grid array package; 48 balls; body 4.5 x 4.5 x 0.7 mm  
SOT1155-2  
D
B
A
ball A1  
index area  
A
2
E
A
A
1
detail X  
e
1
C
Ø v  
Ø w  
C
C
A
B
e
1/2 e  
b
y
1
y
C
H
e
G
F
E
D
C
B
A
e
2
1/2 e  
ball A1  
index area  
solder mask open area  
not for solder ball  
1
2
3
4
5
6
7
8
X
0
5 mm  
scale  
Dimensions  
Unit  
A
A
1
A
2
b
D
E
e
e
1
e
2
v
w
y
y
1
max 1.10 0.30 0.80 0.35 4.6 4.6  
mm nom 0.95 0.25 0.70 0.30 4.5 4.5 0.5 3.5 3.5 0.15 0.05 0.08 0.1  
min 0.85 0.20 0.65 0.25 4.4 4.4  
sot1155-2_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
- - -  
JEITA  
13-06-17  
13-06-19  
SOT1155-2  
Fig 36. Package outline TFBGA48 (SOT1155-2)  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
62 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
13. Soldering  
Footprint information for reflow soldering of HVQFN33 package  
Hx  
Gx  
see detail X  
P
nSPx  
Ay  
By  
SLy  
Hy Gy  
nSPy  
C
D
SLx  
Bx  
Ax  
0.60  
0.30  
solder land  
solder paste  
occupied area  
detail X  
Dimensions in mm  
P
Ax  
Ay  
Bx  
By  
C
D
Gx  
Gy  
Hx  
Hy  
6.2  
SLx  
SLy  
nSPx nSPy  
0.5  
5.95  
5.95  
4.25  
4.25  
0.85  
0.27  
5.25  
5.25  
6.2  
3.75  
3.75  
3
3
11-11-15  
11-11-20  
Issue date  
002aag766  
Fig 37. Reflow soldering for the HVQFN33 (5x5) package  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
63 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Footprint information for reflow soldering of HVQFN33 package  
OID = 8.20 OA  
PID = 7.25 PA+OA  
OwDtot = 5.10 OA  
evia = 4.25  
0.20 SR  
chamfer (4×)  
W = 0.30 CU  
e = 0.65  
SPD = 1.00 SP  
0.45 DM  
GapD = 0.70 SP  
evia = 2.40  
B-side  
SDhtot = 2.70 SP  
Solder resist  
covered via  
4.55 SR  
DHS = 4.85 CU  
LbD = 5.80 CU  
LaD = 7.95 CU  
0.30 PH  
0.60 SR cover  
0.60 CU  
(A-side fully covered)  
number of vias: 20  
solder land  
solder land plus solder paste  
solder paste deposit  
occupied area  
solder resist  
Remark:  
Stencil thickness: 0.125 mm  
Dimensions in mm  
001aao134  
Fig 38. Reflow soldering for the HVQFN33 (7x7) package  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
64 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Footprint information for reflow soldering of LQFP48 package  
SOT313-2  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 10.350 10.350 7.350 7.350 1.500 0.280 0.500 7.500 7.500 10.650 10.650  
sot313-2_fr  
Fig 39. Reflow soldering for the LQFP48 package  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
65 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Footprint information for reflow soldering of TFBGA48 package  
SOT1155-2  
Hx  
P
P
Hy  
see detail X  
solder land  
solder paste deposit  
solder land plus solder paste  
SL  
occupied area  
solder resist  
SP  
SR  
detail X  
DIMENSIONS in mm  
P
SL  
SP  
SR  
Hx  
Hy  
0.50  
0.225 0.275 0.325  
4.75  
4.75  
sot1155-2_fr  
Fig 40. Reflow soldering for the TFBGA48 package  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
66 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
14. Abbreviations  
Table 20. Abbreviations  
Acronym  
A/D  
Description  
Analog-to-Digital  
ADC  
AHB  
APB  
Analog-to-Digital Converter  
Advanced High-performance Bus  
Advanced Peripheral Bus  
BrownOut Detection  
BOD  
GPIO  
JTAG  
PLL  
General Purpose Input/Output  
Joint Test Action Group  
Phase-Locked Loop  
RC  
Resistor-Capacitor  
SPI  
Serial Peripheral Interface  
Serial Synchronous Interface  
Synchronous Serial Port  
Test Access Port  
SSI  
SSP  
TAP  
USART  
Universal Synchronous Asynchronous Receiver/Transmitter  
15. References  
[1] LPC11U1x User manual UM10462:  
http://www.nxp.com/documents/user_manual/UM10462.pdf  
[2] LPC11U1x Errata sheet:  
http://www.nxp.com/documents/errata_sheet/ES_LPC11U1X.pdf  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
67 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
16. Revision history  
Table 21. Revision history  
Document ID  
LPC11U1X v.2.2  
Modifications:  
Release date  
20140311  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
LPC11U1X v.2.1  
Updated Section 11.1 “Suggested USB interface solutions” for clarity.  
Open-drain I2C-bus and RESET pin descriptions updated for clarity. See Table 3.  
LPC11U1X v.2.1  
Modifications:  
20130924  
Product data sheet  
-
LPC11U1X v.2  
Number of CT16B0 match outputs corrected in Figure 1.  
Table 3:  
Added Table note 2 “5 V tolerant pad” to RESET/PIO0_0.  
Added Table note 4 “For parts with bootloader version 7.0...” .  
Table 8: Removed BOD interrupt level 0.  
Added Section 11.6 “ADC effective input impedance”.  
Programmable glitch filter is enabled by default. See Section 7.6.1.  
Table 6 “Static characteristics” added Pin capacitance section.  
Updated Section 11.1 “Suggested USB interface solutions”.  
Table 5 “Limiting values”:  
Updated VDD min and max.  
Updated VI conditions.  
Changed title of Figure 28 from “USB interface on a self-powered device” to “USB interface  
with soft-connect”.  
Section 10.7 “USB interface” added. Parameter tEOPR1 and tEOPR2 renamed to tEOPR  
.
LPC11U1X v.2  
Modifications:  
20120111 Product data sheet LPC11U1X v.1  
-
Number of physical and logical endpoints corrected in Section 7.8.1.  
Use of JTAG updated in Section 2 (for BSDL only).  
Sampling frequency corrected in Table note 7 of Table 7.  
Conditions for parameter Tstg updated in Table 5.  
Part LPC11U14FHI33/201 added.  
Editorial updates.  
ROM-based integer division routines added (Section 2).  
Use of USB with power profiles specified (Section 7.8).  
Power consumption data added in Section 9.2.  
SSP dynamic characteristics added (Table 16).  
IRC dynamic characteristics added (Table 12).  
Data sheet status changed to Product data sheet.  
Section 13 added.  
Description of pin PIO0_3 updated in Table 3: this pin is not used by the boot loader.  
LPC11U1X v.1  
20110411  
Objective data sheet  
-
-
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
68 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
17.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
17.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
69 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
17.4 Trademarks  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP Semiconductors N.V.  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
70 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
19. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
7.16.5.1 Power profiles . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.16.5.2 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.16.5.3 Deep-sleep mode. . . . . . . . . . . . . . . . . . . . . . 26  
7.16.5.4 Power-down mode. . . . . . . . . . . . . . . . . . . . . 26  
7.16.5.5 Deep power-down mode . . . . . . . . . . . . . . . . 27  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
4
4.1  
5
7.16.6  
System control . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.16.6.1 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.16.6.2 Brownout detection . . . . . . . . . . . . . . . . . . . . 27  
7.16.6.3 Code security (Code Read Protection - CRP) 27  
7.16.6.4 APB interface. . . . . . . . . . . . . . . . . . . . . . . . . 28  
7.16.6.5 AHBLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7.16.6.6 External interrupt inputs. . . . . . . . . . . . . . . . . 28  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 8  
7
7.1  
7.2  
7.3  
7.4  
7.5  
Functional description . . . . . . . . . . . . . . . . . . 16  
On-chip flash programming memory . . . . . . . 16  
SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
On-chip ROM . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Nested Vectored Interrupt Controller (NVIC) . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 18  
IOCON block . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
General Purpose Input/Output GPIO . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
USB interface . . . . . . . . . . . . . . . . . . . . . . . . 19  
Full-speed USB device controller . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
SSP serial I/O controller . . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
General purpose external event  
7.17  
Emulation and debugging . . . . . . . . . . . . . . . 29  
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 30  
9
Static characteristics . . . . . . . . . . . . . . . . . . . 31  
BOD static characteristics . . . . . . . . . . . . . . . 37  
Power consumption . . . . . . . . . . . . . . . . . . . 37  
Peripheral power consumption . . . . . . . . . . . 40  
Electrical pin characteristics. . . . . . . . . . . . . . 42  
9.1  
9.2  
9.3  
9.4  
7.5.1  
7.5.2  
7.6  
7.6.1  
7.7  
7.7.1  
7.8  
7.8.1  
7.8.1.1  
7.9  
7.9.1  
7.10  
7.10.1  
7.11  
7.11.1  
7.12  
7.12.1  
7.13  
10  
Dynamic characteristics. . . . . . . . . . . . . . . . . 45  
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . 45  
External clock. . . . . . . . . . . . . . . . . . . . . . . . . 45  
Internal oscillators . . . . . . . . . . . . . . . . . . . . . 46  
I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
I2C-bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
SSP interface. . . . . . . . . . . . . . . . . . . . . . . . . 49  
USB interface . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.7  
11  
Application information . . . . . . . . . . . . . . . . . 52  
Suggested USB interface solutions . . . . . . . . 52  
XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
XTAL Printed-Circuit Board (PCB) layout  
11.1  
11.2  
11.3  
guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Standard I/O pad configuration . . . . . . . . . . . 56  
Reset pad configuration. . . . . . . . . . . . . . . . . 57  
ADC effective input impedance . . . . . . . . . . . 57  
ADC usage notes. . . . . . . . . . . . . . . . . . . . . . 58  
11.4  
11.5  
11.6  
11.7  
counter/timers. . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
System tick timer . . . . . . . . . . . . . . . . . . . . . . 22  
Windowed WatchDog Timer (WWDT) . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Clocking and power control . . . . . . . . . . . . . . 23  
Integrated oscillators . . . . . . . . . . . . . . . . . . . 23  
7.13.1  
7.14  
7.15  
7.15.1  
7.16  
7.16.1  
12  
13  
14  
15  
16  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 59  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 67  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 68  
7.16.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 24  
7.16.1.2 System oscillator . . . . . . . . . . . . . . . . . . . . . . 25  
7.16.1.3 Watchdog oscillator . . . . . . . . . . . . . . . . . . . . 25  
7.16.2  
7.16.3  
7.16.4  
7.16.5  
17  
Legal information . . . . . . . . . . . . . . . . . . . . . . 69  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 69  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
17.1  
17.2  
17.3  
17.4  
System PLL and USB PLL . . . . . . . . . . . . . . . 25  
Clock output . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 25  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 25  
continued >>  
LPC11U1X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.2 — 11 March 2014  
71 of 72  
LPC11U1x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
18  
19  
Contact information. . . . . . . . . . . . . . . . . . . . . 70  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2014.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 11 March 2014  
Document identifier: LPC11U1X  

相关型号:

LPC11U14

NXP Microcontrollers Selection Guide
NXP

LPC11U14FBD201

32-bit ARM Cortex-M0 microcontroller; up to 32 kB flash; 6 kB SRAM; USB device; USART
NXP

LPC11U14FBD48

32-bit ARM Cortex-M0 microcontroller; up to 32 kB flash; 6 kB SRAM; USB device; USART
NXP

LPC11U14FBD48.201

32-bit ARM Cortex-M0 microcontroller; up to 32 kB flash; 6 kB SRAM; USB device; USART
NXP

LPC11U14FBD48/201,151

RISC Microcontroller, 32-Bit, FLASH, CMOS, PQFP48
NXP

LPC11U14FET201

32-bit ARM Cortex-M0 microcontroller; up to 32 kB flash; 6 kB SRAM; USB device; USART
NXP

LPC11U14FET48

32-bit ARM Cortex-M0 microcontroller; up to 32 kB flash; 6 kB SRAM; USB device; USART
NXP

LPC11U14FET48.201

32-bit ARM Cortex-M0 microcontroller; up to 32 kB flash; 6 kB SRAM; USB device; USART
NXP

LPC11U14FET48/201

IC RISC MICROCONTROLLER, Microcontroller
NXP

LPC11U14FHI33.201

32-bit ARM Cortex-M0 microcontroller; up to 32 kB flash; 6 kB SRAM; USB device; USART
NXP

LPC11U14FHN201

32-bit ARM Cortex-M0 microcontroller; up to 32 kB flash; 6 kB SRAM; USB device; USART
NXP

LPC11U14FHN33

32-bit ARM Cortex-M0 microcontroller; up to 32 kB flash; 6 kB SRAM; USB device; USART
NXP