LPC1224FBD48/121,1 [NXP]

LPC1224FBD48 - 32kB flash, 4kB SRAM, LQFP48 package QFP 48-Pin;
LPC1224FBD48/121,1
型号: LPC1224FBD48/121,1
厂家: NXP    NXP
描述:

LPC1224FBD48 - 32kB flash, 4kB SRAM, LQFP48 package QFP 48-Pin

时钟 PC 微控制器 静态存储器 外围集成电路
文件: 总61页 (文件大小:381K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC122x  
32-bit ARM Cortex-M0 microcontroller; up to 128 kB flash and  
8 kB SRAM  
Rev. 2 — 26 August 2011  
Product data sheet  
1. General description  
The LPC122x extend NXP's 32-bit ARM microcontroller continuum and target a wide  
range of industrial applications in the areas of factory and home automation. Benefitting  
from the ARM Cortex-M0 Thumb instruction set, the LPC122x have up to 50 % higher  
code density compared to common 8/16-bit microcontroller performing typical tasks. The  
LPC122x also feature an optimized ROM-based divide library for Cortex-M0, which offers  
several times the arithmetic performance of software-based libraries, as well as highly  
deterministic cycle time combined with reduced flash code size. The ARM Cortex-M0  
efficiency also helps the LPC122x achieve lower average power for similar applications.  
The LPC122x operate at CPU frequencies of up to 45 MHz.They offer a wide range of  
flash memory options, from 32 kB to 128 kB. The small 512-byte page erase of the flash  
memory brings multiple design benefits, such as finer EEPROM emulation, boot-load  
support from any serial interface and ease of in-field programming with reduced on-chip  
RAM buffer requirements.  
The peripheral complement of the LPC122x includes a 10-bit ADC, two comparators with  
output feedback loop, two UARTs, one SSP/SPI interface, one I2C-bus interface with  
Fast-mode Plus features, a Windowed Watchdog Timer, a DMA controller, a CRC engine,  
four general purpose timers, a 32-bit RTC, a 1 % internal oscillator for baud rate  
generation, and up to 55 General Purpose I/O (GPIO) pins.  
2. Features and benefits  
Processor core  
ARM Cortex-M0 processor, running at frequencies of up to 45 MHz (one wait state  
from flash) or 30 MHz (zero wait states from flash). The LPC122x have a high  
score of over 45 in CoreMark CPU performance benchmark testing, equivalent to  
1.51/MHz.  
ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC).  
Serial Wire Debug (SWD).  
System tick timer.  
Memory  
Up to 8 kB SRAM.  
Up to 128 kB on-chip flash programming memory.  
In-System Programming (ISP) and In-Application Programming (IAP) via on-chip  
bootloader software.  
Includes ROM-based 32-bit integer division routines.  
Clock generation unit  
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Crystal oscillator with an operating range of 1 MHz to 25 MHz.  
12 MHz Internal RC (IRC) oscillator trimmed to 1 % accuracy that can optionally be  
used as a system clock.  
PLL allows CPU operation up to the maximum CPU rate without the need for a  
high-frequency crystal. May be run from the system oscillator or the internal RC  
oscillator.  
Clock output function with divider that can reflect the system oscillator clock, IRC  
clock, main clock, and Watchdog clock.  
Real-Time Clock (RTC).  
Digital peripherals  
Micro DMA controller with 21 channels.  
CRC engine.  
Two UARTs with fractional baud rate generation and internal FIFO. One UART with  
RS-485 and modem support and one standard UART with IrDA.  
SSP/SPI controller with FIFO and multi-protocol capabilities.  
I2C-bus interface supporting full I2C-bus specification and Fast-mode Plus with a  
data rate of 1 Mbit/s with multiple address recognition and monitor mode. I2C-bus  
pins have programmable glitch filter.  
Up to 55 General Purpose I/O (GPIO) pins with programmable pull-up resistor,  
open-drain mode, programmable digital input glitch filter, and programmable input  
inverter.  
Programmable output drive on all GPIO pins. Four pins support high-current output  
drivers.  
All GPIO pins can be used as edge and level sensitive interrupt sources.  
Four general purpose counter/timers with four capture inputs and four match  
outputs (32-bit timers) or two capture inputs and two match outputs (16-bit timers).  
Windowed WatchDog Timer (WWDT); IEC-60335 Class B certified.  
Analog peripherals  
One 8-channel, 10-bit ADC.  
Two highly flexible analog comparators. Comparator outputs can be programmed  
to trigger a timer match signal or can be used to emulate 555 timer behavior.  
Power  
Three reduced power modes: Sleep, Deep-sleep, and Deep power-down.  
Processor wake-up from Deep-sleep mode via start logic using 12 port pins.  
Processor wake-up from Deep-power down and Deep-sleep modes via the RTC.  
Brownout detect with three separate thresholds each for interrupt and forced reset.  
Power-On Reset (POR).  
Integrated PMU (Power Management Unit).  
Unique device serial number for identification.  
3.3 V power supply.  
Available as 64-pin and 48-pin LQFP package.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
2 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
3. Applications  
eMetering  
Lighting  
Industrial networking  
Alarm systems  
White goods  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC1227FBD64/301 LQFP64 LQFP64: plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm SOT314-2  
LPC1226FBD64/301 LQFP64 LQFP64: plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm SOT314-2  
LPC1225FBD64/321 LQFP64 LQFP64: plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm SOT314-2  
LPC1225FBD64/301 LQFP64 LQFP64: plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm SOT314-2  
LPC1224FBD64/121 LQFP64 LQFP64: plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm SOT314-2  
LPC1224FBD64/101 LQFP64 LQFP64: plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm SOT314-2  
LPC1227FBD48/301 LQFP48 LQFP48: plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm SOT313-2  
LPC1226FBD48/301 LQFP48 LQFP48: plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm SOT313-2  
LPC1225FBD48/321 LQFP48 LQFP48: plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm SOT313-2  
LPC1225FBD48/301 LQFP48 LQFP48: plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm SOT313-2  
LPC1224FBD48/121 LQFP48 LQFP48: plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm SOT313-2  
LPC1224FBD48/101 LQFP48 LQFP48: plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm SOT313-2  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
3 of 61  
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
4.1 Ordering options  
Table 2.  
Ordering options for LPC122x  
Type number  
Flash Total UART  
SRAM  
I2C/  
FM+  
SSP/ ADC  
GPIO Package  
SPI  
channels  
LPC1227  
LPC1227FBD64/301 128 kB 8 kB  
LPC1227FBD48/301 128 kB 8 kB  
LPC1226  
2
2
1
1
1
1
8
8
55  
39  
LQFP64  
LQFP48  
LPC1226FBD64/301 96 kB 8 kB  
LPC1226FBD48/301 96 kB 8 kB  
LPC1225  
2
2
1
1
1
1
8
8
55  
39  
LQFP64  
LQFP48  
LPC1225FBD64/321 80 kB 8 kB  
LPC1225FBD64/301 64 kB 8 kB  
LPC1225FBD48/321 80 kB 8 kB  
LPC1225FBD48/301 64 kB 8 kB  
LPC1224  
2
2
2
2
1
1
1
1
1
1
1
1
8
8
8
8
55  
55  
39  
39  
LQFP64  
LQFP64  
LQFP48  
LQFP48  
LPC1224FBD64/121 48 kB 4 kB  
LPC1224FBD64/101 32 kB 4 kB  
LPC1224FBD48/121 48 kB 4 kB  
LPC1224FBD48/101 32 kB 4 kB  
2
2
2
2
1
1
1
1
1
1
1
1
8
8
8
8
55  
55  
39  
39  
LQFP64  
LQFP64  
LQFP48  
LQFP48  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
4 of 61  
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
5. Block diagram  
XTALIN  
XTALOUT  
RESET  
SWD  
LPC122x  
IRC, OSCILLATORS  
CLOCK  
GENERATION,  
POWER CONTROL,  
SYSTEM  
CLKOUT  
BOD  
POR  
TEST/DEBUG  
INTERFACE  
FUNCTIONS  
clocks and controls  
ARM  
CORTEX-M0  
32/48/64/80/  
MICRO DMA  
4/8 kB  
SRAM  
96/128 kB  
FLASH  
ROM  
CONTROLLER  
system  
bus  
master  
slave  
slave  
slave  
AHB-LITE BUS  
slave  
slave  
slave  
HIGH-SPEED  
GPIO  
CRC  
ENGINE  
GPIO ports  
AHB-APB  
BRIDGE  
SCK  
SSEL  
MISO  
MOSI  
SSP/SPI  
UART0 RS-485  
UART1  
10-bit ADC  
AD[7:0]  
ACMP0_I[3:0]  
ACMP1_I[3:0]  
ACMP0_O  
ACMP1_O  
VREF_CMP  
RXD0  
TXD0  
COMPARATOR0/1  
DTR0, DSR0, CTS0,  
DCD0, RI0, RTS0  
RXD1  
TXD1  
WINDOWED WDT  
IOCONFIG  
SCL  
SDA  
2
I C  
RTCXOUT  
RTCXIN  
RTC  
32 kHz OSCILLATOR  
SYSTEM CONTROL  
4 × MAT  
32-bit COUNTER/TIMER 0  
32-bit COUNTER/TIMER 1  
4 × CAP  
4 × MAT  
4 × CAP  
2 × MAT  
MICRO DMA REGISTERS  
16-bit COUNTER/TIMER 0  
16-bit COUNTER/TIMER 1  
2 × CAP  
2 × MAT  
2 × CAP  
Grey-shaded blocks represent peripherals  
with connection to the micro DMA controller  
002aaf269  
Fig 1. LPC122x block diagram  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
5 of 61  
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
6. Pinning information  
6.1 Pinning  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
XTALIN  
XTALOUT  
R/PIO1_0  
R/PIO0_31  
R/PIO0_30  
PIO0_18  
3
VREF_CMP  
PIO0_19  
4
5
PIO0_20  
PIO0_17  
6
PIO0_21  
PIO0_16  
7
PIO0_22  
PIO0_15  
8
PIO0_23  
PIO0_14  
LPC122x  
9
PIO0_24  
RESET/PIO0_13  
(1)  
10  
11  
12  
13  
14  
15  
16  
SWDIO/PIO0_25  
SWCLK/PIO0_26  
PIO0_12  
PIO0_11  
PIO0_10  
PIO2_7  
PIO2_6  
PIO2_5  
PIO2_4  
(1)  
PIO0_27  
PIO2_12  
PIO2_13  
PIO2_14  
PIO2_15  
002aaf554  
(1) High-current output driver.  
Remark: For a full listing of all functions for each pin see Table 3.  
Fig 2. Pin configuration LQFP64 package  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
6 of 61  
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
XTALIN  
R/PIO1_0  
R/PIO0_31  
R/PIO0_30  
PIO0_18  
XTALOUT  
VREF_CMP  
PIO0_19  
3
4
5
PIO0_20  
PIO0_17  
6
PIO0_21  
PIO0_16  
LPC122x  
7
PIO0_22  
PIO0_15  
8
PIO0_23  
PIO0_14  
9
PIO0_24  
RESET/PIO0_13  
(1)  
10  
11  
12  
SWDIO/PIO0_25  
SWCLK/PIO0_26  
PIO0_12  
PIO0_11  
PIO0_10  
(1)  
PIO0_27  
002aaf724  
(1) High-current output driver.  
Remark: For a full listing of all functions for each pin see Table 3.  
Fig 3. Pin configuration LQFP48 package  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
7 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
6.2 Pin description  
All pins except the supply pins can have more than one function as shown in Table 3. The  
pin function is selected through the pin’s IOCON register in the IOCONFIG block. The  
multiplexed functions (see Table 4) include the counter/timer inputs and outputs, the  
UART receive, transmit, and control functions, and the serial wire debug functions.  
For each pin, the default function is listed first together with the pin’s reset state.  
Table 3.  
Symbol  
LPC122x pin description  
Start Type Reset Description  
logic  
input  
state  
[1]  
PIO0_0 to PIO0_31  
PIO0_0/RTS0  
I/O  
Port 0 — Port 0 is a 32-bit I/O port with individual direction and  
function controls for each bit. The operation of port 0 pins  
depends on the function selected through the IOCONFIG  
register block.  
[2]  
[3]  
15 19  
16 20  
yes  
yes  
I/O  
O
I/O  
I
I; PU PIO0_0 — General purpose digital input/output pin.  
RTS0 — Request To Send output for UART0.  
I; PU PIO0_1 — General purpose digital input/output pin.  
-
[2]  
[3]  
PIO0_1/RXD0/  
CT32B0_CAP0/  
CT32B0_MAT0  
-
-
-
RXD0 — Receiver input for UART0.  
I
CT32B0_CAP0 — Capture input, channel 0 for 32-bit timer 0.  
CT32B0_MAT0 — Match output, channel 0 for 32-bit timer 0.  
O
I/O  
O
I
[2]  
[3]  
PIO0_2/TXD0/  
CT32B0_CAP1/  
CT32B0_MAT1  
17 21  
18 22  
19 23  
yes  
yes  
yes  
I; PU PIO0_2 — General purpose digital input/output pin.  
-
-
-
TXD0 — Transmitter output for UART0.  
CT32B0_CAP1 — Capture input, channel 1 for 32-bit timer 0.  
CT32B0_MAT1 — Match output, channel 1 for 32-bit timer 0.  
O
I/O  
O
I
[2]  
[3]  
PIO0_3/DTR0/  
CT32B0_CAP2/  
CT32B0_MAT2  
I; PU PIO0_3 — General purpose digital input/output pin.  
-
-
-
DTR0 — Data Terminal Ready output for UART0.  
CT32B0_CAP2 — Capture input, channel 2 for 32-bit timer 0.  
CT32B0_MAT2 — Match output, channel 2 for 32-bit timer 0.  
O
I/O  
I
[2]  
[3]  
PIO0_4/DSR0/  
CT32B0_CAP3/  
CT32B0_MAT3  
I; PU PIO0_4 — General purpose digital input/output pin.  
-
-
-
DSR0 — Data Set Ready input for UART0.  
I
CT32B0_CAP3 — Capture input, channel 3 for 32-bit timer 0.  
CT32B0_MAT3 — Match output, channel 3 for 32-bit timer 0.  
O
I/O  
I
[2]  
[3]  
PIO0_5/DCD0  
20 24  
21 25  
yes  
yes  
I; PU PIO0_5 — General purpose digital input/output pin.  
DCD0 — Data Carrier Detect input for UART0.  
I; PU PIO0_6 — General purpose digital input/output pin.  
-
[2]  
[3]  
PIO0_6/RI0/  
CT32B1_CAP0/  
CT32B1_MAT0  
I/O  
I
-
-
-
RI0 — Ring Indicator input for UART0.  
I
CT32B1_CAP0 — Capture input, channel 0 for 32-bit timer 1.  
CT32B1_MAT0 — Match output, channel 0 for 32-bit timer 1.  
O
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
8 of 61  
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC122x pin description …continued  
Start Type Reset Description  
logic  
input  
state  
[1]  
[2]  
[3]  
PIO0_7/CTS0/  
CT32B1_CAP1/  
CT32B1_MAT1  
22 26  
23 27  
24 28  
yes  
yes  
yes  
I/O  
I
I; PU PIO0_7 — General purpose digital input/output pin.  
-
-
-
CTS0 — Clear To Send input for UART0.  
I
CT32B1_CAP1 — Capture input, channel 1 for 32-bit timer 1.  
CT32B1_MAT1 — Match output, channel 1 for 32-bit timer 1.  
O
I/O  
I
[2]  
[3]  
PIO0_8/RXD1/  
CT32B1_CAP2/  
CT32B1_MAT2  
I; PU PIO0_8 — General purpose digital input/output pin.  
-
-
-
RXD1 — Receiver input for UART1.  
I
CT32B1_CAP2 — Capture input, channel 2 for 32-bit timer 1.  
CT32B1_MAT2 — Match output, channel 2 for 32-bit timer 1.  
O
I/O  
O
I
[2]  
[3]  
PIO0_9/TXD1/  
CT32B1_CAP3/  
CT32B1_MAT3  
I; PU PIO0_9 — General purpose digital input/output pin.  
-
TXD1 — Transmitter output for UART1.  
-
CT32B1_CAP3 — Capture input, channel 3 for 32-bit timer 1.  
CT32B1_MAT3 — Match output, channel 3 for 32-bit timer 1.  
PIO0_10 — General purpose digital input/output pin.  
SCL — I2C-bus clock input/output.  
O
I/O  
I/O  
I/O  
I/O  
I
-
[4]  
[4]  
PIO0_10/SCL  
25 37  
26 38  
yes  
yes  
I; IA  
-
PIO0_11/SDA/  
CT16B0_CAP0/  
CT16B0_MAT0  
I; IA  
PIO0_11 — General purpose digital input/output pin.  
SDA — I2C-bus data input/output.  
-
-
-
CT16B0_CAP0 — Capture input, channel 0 for 16-bit timer 0.  
CT16B0_MAT0 — Match output, channel 0 for 16-bit timer 0.  
O
I/O  
[9]  
PIO0_12/CLKOUT/  
CT16B0_CAP1/  
CT16B0_MAT1  
27 39  
no  
no  
I; PU PIO0_12 — General purpose digital input/output pin. A LOW  
level on this pin during reset starts the ISP command handler.  
High-current output driver.  
O
I
-
-
-
CLKOUT — Clock out pin.  
CT16B0_CAP1 — Capture input, channel 1 for 16-bit timer 0.  
CT16B0_MAT1 — Match output, channel 1 for 16-bit timer 0.  
O
I
[5]  
[3]  
RESET/PIO0_13  
PIO0_14/SCK  
28 40  
I; PU RESET — External reset input: A LOW on this pin resets the  
device, causing I/O ports and peripherals to take on their  
default states, and processor execution to begin at address 0.  
I/O  
I/O  
I/O  
I/O  
I/O  
I
-
PIO0_13 — General purpose digital input/output pin.  
I; PU PIO0_14 — General purpose digital input/output pin.  
SCK — Serial clock for SSP/SPI.  
I; PU PIO0_15 — General purpose digital input/output pin.  
[2]  
[3]  
29 41  
30 42  
no  
no  
-
[2]  
[3]  
PIO0_15/SSEL/  
CT16B1_CAP0/  
CT16B1_MAT0  
-
-
-
SSEL — Slave select for SSP/SPI.  
CT16B1_CAP0 — Capture input, channel 0 for 16-bit timer 1.  
CT16B1_MAT0 — Match output, channel 0 for 16-bit timer 1.  
O
[2]  
[3]  
PIO0_16/MISO/  
CT16B1_CAP1/  
CT16B1_MAT1  
31 43  
no  
I/O  
I/O  
I
I; PU PIO0_16 — General purpose digital input/output pin.  
-
-
-
MISO — Master In Slave Out for SSP/SPI.  
CT16B1_CAP1 — Capture input, channel 1 for 16-bit timer 1.  
CT16B1_MAT1 — Match output, channel 1 for 16-bit timer 1.  
O
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
9 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC122x pin description …continued  
Start Type Reset Description  
logic  
input  
state  
[1]  
[2]  
[3]  
PIO0_17/MOSI  
32 44  
33 45  
no  
no  
I/O  
I/O  
I/O  
I
I; PU PIO0_17 — General purpose digital input/output pin.  
MOSI — Master Out Slave In for SSP/SPI.  
I; PU PIO0_18 — General purpose digital input/output pin.  
-
[2]  
[3]  
PIO0_18/SWCLK/  
CT32B0_CAP0/  
CT32B0_MAT0  
-
-
-
SWCLK — Serial wire clock, alternate location.  
I
CT32B0_CAP0 — Capture input, channel 0 for 32-bit timer 0.  
CT32B0_MAT0 — Match output, channel 0 for 32-bit timer 0.  
O
I/O  
I
[6]  
[7]  
PIO0_19/ACMP0_I0/  
CT32B0_CAP1/  
CT32B0_MAT1  
4
5
6
4
5
6
no  
no  
no  
I; PU PIO0_19 — General purpose digital input/output pin.  
-
-
-
ACMP0_I0 — Input 0 for comparator 0.  
I
CT32B0_CAP1 — Capture input, channel 1 for 32-bit timer 0.  
CT32B0_MAT1 — Match output, channel 1 for 32-bit timer 0  
O
I/O  
I
[6]  
[7]  
PIO0_20/ACMP0_I1/  
CT32B0_CAP2/  
CT32B0_MAT2  
I; PU PIO0_20 — General purpose digital input/output pin.  
-
-
-
ACMP0_I1 — Input 1 for comparator 0.  
I
CT32B0_CAP2 — Capture input, channel 2 for 32-bit timer 0.  
CT32B0_MAT2 — Match output, channel 2 for 32-bit timer 0.  
O
I/O  
I
[6]  
[7]  
PIO0_21/ACMP0_I2/  
CT32B0_CAP3/  
CT32B0_MAT3  
I; PU PIO0_21 — General purpose digital input/output pin.  
-
-
-
ACMP0_I2 — Input 2 for comparator 0.  
I
CT32B0_CAP3 — Capture input, channel 3 for 32-bit timer 0.  
CT32B0_MAT3 — Match output, channel 3 for 32-bit timer 0.  
O
I/O  
I
[6]  
[7]  
PIO0_22/ACMP0_I3  
7
8
7
8
no  
no  
I; PU PIO0_22 — General purpose digital input/output pin.  
ACMP0_I3 — Input 3 for comparator 0.  
I; PU PIO0_23 — General purpose digital input/output pin.  
-
[6]  
[7]  
PIO0_23/  
ACMP1_I0/  
CT32B1_CAP0/  
CT32B1_MAT0  
I/O  
I
-
-
-
ACMP1_I0 — Input 0 for comparator 1.  
I
CT32B1_CAP0 — Capture input, channel 0 for 32-bit timer 1.  
CT32B1_MAT0 — Match output, channel 0 for 32-bit timer 1.  
O
I/O  
I
[6]  
[7]  
PIO0_24/ACMP1_I1/  
CT32B1_CAP1/  
CT32B1_MAT1  
9
9
no  
no  
I; PU PIO0_24 — General purpose digital input/output pin.  
-
-
-
ACMP1_I1 — Input 1 for comparator 1.  
I
CT32B1_CAP1 — Capture input, channel 1 for 32-bit timer 1.  
CT32B1_MAT1 — Match output, channel 1 for 32-bit timer 1.  
O
I/O  
I
[6]  
[7]  
SWDIO/ACMP1_I2/  
CT32B1_CAP2/  
CT32B1_MAT2/  
PIO0_25  
10 10  
I; PU SWDIO — Serial wire debug input/output, default location.  
-
-
-
-
ACMP1_I2 — Input 2 for comparator 1.  
I
CT32B1_CAP2 — Capture input, channel 2 for 32-bit timer 1.  
CT32B1_MAT2 — Match output, channel 2 for 32-bit timer 1.  
PIO0_25 — General purpose digital input/output pin.  
O
I/O  
I
[6]  
[7]  
SWCLK/ACMP1_I3/  
CT32B1_CAP3/  
CT32B1_MAT3/  
PIO0_26  
11 11  
no  
I; PU SWCLK — Serial wire clock, default location.  
I
-
-
-
ACMP1_I3 — Input 3 for comparator 1.  
I
CT32B1_CAP3 — Capture input, channel 3 or 32-bit timer 1.  
CT32B1_MAT3 — Match output, channel 3 for 32-bit timer 1.  
PIO0_26 — General purpose digital input/output pin.  
O
I/O  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
10 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC122x pin description …continued  
Start Type Reset Description  
logic  
input  
state  
[1]  
[9]  
[9]  
PIO0_27/ACMP0_O  
12 12  
13 17  
no  
no  
I/O  
I; PU PIO0_27 — General purpose digital input/output pin  
(high-current output driver).  
O
-
ACMP0_O — Output for comparator 0.  
PIO0_28/ACMP1_O/  
CT16B0_CAP0/  
CT16B0_MAT0  
I/O  
I; PU PIO0_28 — General purpose digital input/output pin  
(high-current output driver).  
O
I
-
-
-
ACMP1_O — Output for comparator 1.  
CT16B0_CAP0 — Capture input, channel 0 for 16-bit timer 0.  
CT16B0_MAT0 — Match output, channel 0 for 16-bit timer 0.  
O
I/O  
[9]  
PIO0_29/ROSC/  
CT16B0_CAP1/  
CT16B0_MAT1  
14 18  
no  
I; PU PIO0_29 — General purpose digital input/output pin  
(high-current output driver).  
I/O  
-
-
-
ROSC — Relaxation oscillator for 555 timer applications.  
CT16B0_CAP1 — Capture input, channel 1 for 16-bit timer 0.  
CT16B0_MAT1 — Match output, channel 1 for 16-bit timer 0.  
I
O
I
[6]  
[3]  
R/PIO0_30/AD0  
R/PIO0_31/AD1  
34 46  
35 47  
no  
no  
I; PU R — Reserved. Configure for an alternate function in the  
IOCONFIG block.  
I/O  
-
-
PIO0_30 — General purpose digital input/output pin.  
AD0 — A/D converter, input 0.  
I
I
[6]  
[3]  
I; PU R — Reserved. Configure for an alternate function in the  
IOCONFIG block.  
I/O  
I
-
-
PIO0_31 — General purpose digital input/output pin.  
AD1 — A/D converter, input 1.  
PIO1_0 to PIO1_6  
R/PIO1_0/AD2  
I/O  
Port 1 — Port 1 is a 32-bit I/O port with individual direction and  
function controls for each bit. The operation of port 1 pins  
depends on the function selected through the IOCONFIG  
register block. Pins PIO1_7 through PIO1_31 are not available.  
[6]  
[3]  
36 48  
37 49  
38 50  
no  
no  
O
I; PU R — Reserved. Configure for an alternate function in the  
IOCONFIG block.  
I/O  
-
-
PIO1_0 — General purpose digital input/output pin.  
AD2 — A/D converter, input 2.  
I
I
[6]  
[3]  
R/PIO1_1/AD3  
I; PU R — Reserved. Configure for an alternate function in the  
IOCONFIG block.Do not pull this pin LOW at reset.  
I/O  
-
-
PIO1_1 — General purpose digital input/output pin.  
AD3 — A/D converter, input 3.  
I
[6]  
[3]  
PIO1_2/SWDIO/AD4  
no  
no  
no  
I/O  
I; PU PIO1_2 — General purpose digital input/output pin.  
I/O  
-
-
SWDIO — Serial wire debug input/output, alternate location.  
AD4 — A/D converter, input 4.  
I
[8]  
[3]  
PIO1_3/AD5/WAKEUP 39 51  
I/O  
I; PU PIO1_3 — General purpose digital input/output pin.  
I
-
-
AD5 — A/D converter, input 5.  
I
WAKEUP — Deep power-down mode wake-up pin.  
[6]  
[3]  
PIO1_4/AD6  
40 52  
I/O  
I
I; PU PIO1_4 — General purpose digital input/output pin.  
AD6 — A/D converter, input 6.  
-
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
11 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC122x pin description …continued  
Start Type Reset Description  
logic  
input  
state  
[1]  
[6]  
[3]  
PIO1_5/AD7/  
CT16B1_CAP0/  
CT16B1_MAT0  
41 53  
42 54  
no  
no  
I/O  
I
I; PU PIO1_5 — General purpose digital input/output pin.  
-
-
-
AD7 — A/D converter, input 7.  
I
CT16B1_CAP0 — Capture input, channel 0 for 16-bit timer 1.  
CT16B1_MAT0 — Match output, channel 0 for 16-bit timer 1.  
O
I/O  
I
[2]  
[3]  
PIO1_6/  
CT16B1_CAP1/  
CT16B1_MAT1  
I; PU PIO1_6 — General purpose digital input/output pin.  
-
-
CT16B1_CAP1 — Capture input, channel 1 for 16-bit timer 1.  
CT16B1_MAT1 — Match output, channel 1 for 16-bit timer 1.  
O
I/O  
PIO2_0 to PIO2_15  
Port 2 — Port 2 is a 32-bit I/O port with individual direction and  
function controls for each bit. The operation of port 2 pins  
depends on the function selected through the IOCONFIG  
register block. Pins PIO2_16 through PIO2_31 are not  
available.  
[2]  
[3]  
PIO2_0/  
-
-
-
-
-
-
29  
30  
31  
32  
33  
34  
no  
no  
no  
no  
no  
no  
I/O  
I
I; PU PIO2_0 — General purpose digital input/output pin.  
CT16B0_CAP0/  
CT16B0_MAT0/  
RTS0  
-
-
-
CT16B0_CAP0 — Capture input, channel 0 for 16-bit timer 0.  
CT16B0_MAT0 — Match output, channel 0 for 16-bit timer 0.  
RTS0 — Request To Send output for UART0.  
O
O
I/O  
I
[2]  
[3]  
PIO2_1/  
CT16B0_CAP1/  
CT16B0_MAT1/RXD0  
I; PU PIO2_1 — General purpose digital input/output pin.  
-
-
-
CT16B0_CAP1 — Capture input, channel 1 for 16-bit timer 0.  
CT16B0_MAT1 — Match output, channel 1 for 16-bit timer 0.  
RXD0 — Receiver input for UART0.  
O
I
[2]  
[3]  
PIO2_2/  
CT16B1_CAP0/  
CT16B1_MAT0/TXD0  
I/O  
I
I; PU PIO2_2 — General purpose digital input/output pin.  
-
-
-
CT16B1_CAP0 — Capture input, channel 0 for 16-bit timer 1.  
CT16B1_MAT0 — Match output, channel 0 for 16-bit timer 1.  
TXD0 — Transmitter output for UART0.  
O
O
I/O  
I
[2]  
[3]  
PIO2_3/  
CT16B1_CAP1/  
CT16B1_MAT1/DTR0  
I; PU PIO2_3 — General purpose digital input/output pin.  
-
-
-
CT16B1_CAP1 — Capture input, channel 1 for 16-bit timer 1.  
CT16B1_MAT1 — Match output, channel 1 for 16-bit timer 1.  
DTR0 — Data Terminal Ready output for UART0.  
O
O
I/O  
I
[2]  
[3]  
PIO2_4/  
CT32B0_CAP0/  
CT32B0_MAT0/CTS0  
I; PU PIO2_4 — General purpose digital input/output pin.  
-
-
-
CT32B0_CAP0 — Capture input, channel 0 for 32-bit timer 0.  
CT32B0_MAT0 — Match output, channel 0 for 32-bit timer 0.  
CTS0 — Clear To Send input for UART0.  
O
I
[2]  
[3]  
PIO2_5/  
CT32B0_CAP1/  
CT32B0_MAT1/RI0  
I/O  
I
I; PU PIO2_5 — General purpose digital input/output pin.  
-
-
-
CT32B0_CAP1 — Capture input, channel 1 for 32-bit timer 0.  
CT32B0_MAT1 — Match output, channel 1 for 32-bit timer 0.  
RI0 — Ring Indicator input for UART0.  
O
I
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
12 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC122x pin description …continued  
Start Type Reset Description  
logic  
input  
state  
[1]  
[2]  
[3]  
PIO2_6/  
CT32B0_CAP2/  
CT32B0_MAT2/DCD0  
-
-
35  
36  
no  
no  
I/O  
I
I; PU PIO2_6 — General purpose digital input/output pin.  
-
-
-
CT32B0_CAP2 — Capture input, channel 2 for 32-bit timer 0.  
CT32B0_MAT2 — Match output, channel 2 for 32-bit timer 0.  
DCD0 — Data Carrier Detect input for UART0.  
O
I
[2]  
[3]  
PIO2_7/  
CT32B0_CAP3/  
CT32B0_MAT3/DSR0  
I/O  
I
I; PU PIO2_7 — General purpose digital input/output pin.  
-
-
-
CT32B0_CAP3 — Capture input, channel 3 for 32-bit timer 0.  
CT32B0_MAT3 — Match output, channel 3 for 32-bit timer 0.  
DSR0 — Data Set Ready input for UART0.  
O
I
[2]  
[3]  
PIO2_8/  
CT32B1_CAP0/  
CT32B1_MAT0  
-
-
-
59  
60  
61  
no  
no  
no  
I/O  
I
I; PU PIO2_8 — General purpose digital input/output pin.  
-
-
CT32B1_CAP0 — Capture input, channel 0 for 32-bit timer 1.  
CT32B1_MAT0 — Match output, channel 0 for 32-bit timer 1.  
O
I/O  
I
[2]  
[3]  
PIO2_9/  
CT32B1_CAP1/  
CT32B1_MAT1  
I; PU PIO2_9 — General purpose digital input/output pin.  
-
-
CT32B1_CAP1 — Capture input, channel 1 for 32-bit timer 1.  
CT32B1_MAT1 — Match output, channel 1 for 32-bit timer 1.  
O
I/O  
I
[2]  
[3]  
PIO2_10/  
CT32B1_CAP2/  
CT32B1_MAT2/TXD1  
I; PU PIO2_10 — General purpose digital input/output pin.  
-
-
-
CT32B1_CAP2 — Capture input, channel 2 for 32-bit timer 1.  
CT32B1_MAT2 — Match output, channel 2 for 32-bit timer 1.  
TXD1 — Transmitter output for UART1.  
O
O
I/O  
I
[2]  
[3]  
PIO2_11/  
CT32B1_CAP3/  
CT32B1_MAT3/RXD1  
-
62  
no  
I; PU PIO2_11 — General purpose digital input/output pin.  
-
-
-
CT32B1_CAP3 — Capture input, channel 3 for 32-bit timer 1.  
CT32B1_MAT3 — Match output, channel 3 for 32-bit timer 1.  
RXD1 — Receiver input for UART1.  
O
I
[2]  
[3]  
PIO2_12/RXD1  
PIO2_13/TXD1  
-
-
13  
14  
no  
no  
I/O  
I
I; PU PIO2_12 — General purpose digital input/output pin.  
RXD1 — Receiver input for UART1.  
I; PU PIO2_13 — General purpose digital input/output pin.  
TXD1 — Transmitter output for UART1.  
-
[2]  
[3]  
I/O  
O
I/O  
-
[2]  
[3]  
PIO2_14  
PIO2_15  
-
-
15  
16  
no  
no  
I; PU PIO2_14 — General purpose digital input/output pin.  
[2]  
[3]  
I/O  
I; PU PIO2_15 — General purpose digital input/output pin.  
[10]  
[10]  
RTCXIN  
RTCXOUT  
XTALIN  
46 58  
45 57  
-
-
-
I
-
-
-
Input to the 32 kHz oscillator circuit.  
O
I
Output from the 32 kHz oscillator amplifier.  
1
1
Input to the system oscillator circuit and internal clock  
generator circuits.  
XTALOUT  
2
3
2
3
-
-
O
I
-
-
Output from the system oscillator amplifier.  
Reference voltage for comparator.  
VREF_CMP  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
13 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC122x pin description …continued  
Start Type Reset Description  
logic  
input  
state  
[1]  
VDD(IO)  
47 63  
44 56  
-
-
I
I
-
-
Input/output supply voltage.  
VDD(3V3)  
3.3 V supply voltage to the internal regulator and the ADC. Also  
used as the ADC reference voltage.  
VSSIO  
VSS  
48 64  
43 55  
-
-
I
I
-
-
Ground.  
Ground.  
[1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled.  
[2] 3.3 V tolerant, digital I/O pin; default: pull-up enabled, no hysteresis.  
[3] If set to output, this normal-drive pin is in low mode by default.  
[4] I2C-bus pins; 5 V tolerant; open-drain; default: no pull-up/pull-down; no hysteresis.  
[5] 3.3 V tolerant, digital I/O pin with RESET function; default: pull-up enabled, no hysteresis. An external pull-up resistor is required on this  
pin for the Deep power-down mode.  
[6] 3.3 V tolerant, digital I/O pin with analog function; default: pull-up enabled, no hysteresis.  
[7] If set to output, this normal-drive pin is in high mode by default.  
[8] 3.3 V tolerant, digital I/O pin with analog function and WAKEUP function; default: pull-up enabled, no hysteresis.  
[9] 3.3 V tolerant, high-drive digital I/O pin; default: pull-up enabled, no hysteresis.  
[10] If the RTC is not used, RTCXIN and RTCXOUT can be left floating.  
To enable a peripheral function, find the corresponding port pin, or select a port pin if the  
function is multiplexed, and program the port pin’s IOCONFIG register to enable that  
function. The primary SWD functions and RESET are the default functions on their pins  
after reset.  
Table 4.  
Pin multiplexing  
Peripheral  
Function  
ROSC  
Type  
Available on ports:  
Analog comparators  
I/O  
PIO0_29  
PIO0_19  
PIO0_20  
PIO0_21  
PIO0_22  
PIO0_27  
PIO0_23  
PIO0_24  
PIO0_25  
PIO0_26  
PIO0_28  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ACMP0_I0  
ACMP0_I1  
ACMP0_I2  
ACMP0_I3  
ACMP0_O  
ACMP1_I0  
ACMP1_I1  
ACMP1_I2  
ACMP1_I3  
ACMP1_O  
I
I
I
I
O
I
I
I
I
O
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
14 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 4.  
Pin multiplexing  
Function  
Peripheral  
Type  
Available on ports:  
ADC  
AD0  
I
PIO0_30  
PIO0_31  
PIO1_0  
PIO1_1  
PIO1_2  
PIO1_3  
PIO1_4  
PIO1_5  
PIO0_11  
PIO0_12  
PIO0_11  
PIO0_12  
PIO0_15  
PIO0_16  
PIO0_15  
PIO0_16  
PIO0_1  
PIO0_2  
PIO0_3  
PIO0_4  
PIO0_1  
PIO0_2  
PIO0_3  
PIO0_4  
PIO0_6  
PIO0_7  
PIO0_8  
PIO0_9  
PIO0_6  
PIO0_7  
PIO0_8  
PIO0_9  
PIO0_1  
PIO0_2  
PIO0_7  
PIO0_5  
PIO0_4  
PIO0_3  
PIO0_6  
PIO0_0  
-
-
AD1  
I
-
-
AD2  
I
-
-
AD3  
I
-
-
AD4  
I
-
-
AD5  
I
-
-
AD6  
I
-
-
AD7  
I
-
-
CT16B0  
CT16B1  
CT32B0  
CT16B0_CAP0  
CT16B0_CAP1  
CT16B0_MAT0  
CT16B0_MAT1  
CT16B1_CAP0  
CT16B1_CAP1  
CT16B1_MAT0  
CT16B1_MAT1  
CT32B0_CAP0  
CT32B0_CAP1  
CT32B0_CAP2  
CT32B0_CAP3  
CT32B0_MAT0  
CT32B0_MAT1  
CT32B0_MAT2  
CT32B0_MAT3  
CT32B1_CAP0  
CT32B1_CAP1  
CT32B1_CAP2  
CT32B1_CAP3  
CT32B1_MAT0  
CT32B1_MAT1  
CT32B1_MAT2  
CT32B1_MAT3  
RXD0  
I
PIO0_28  
PIO0_29  
PIO0_28  
PIO0_29  
PIO1_5  
PIO1_6  
PIO1_5  
PIO1_6  
PIO0_18  
PIO0_19  
PIO0_20  
PIO0_21  
PIO0_18  
PIO0_19  
PIO0_20  
PIO0_21  
PIO0_23  
PIO0_24  
PIO0_25  
PIO0_26  
PIO0_23  
PIO0_24  
PIO0_25  
PIO0_26  
PIO2_1  
PIO2_2  
PIO2_4  
PIO2_6  
PIO2_7  
PIO2_3  
PIO2_5  
PIO2_0  
PIO2_0  
PIO2_1  
PIO2_0  
PIO2_1  
PIO2_2  
PIO2_3  
PIO2_2  
PIO2_3  
PIO2_4  
PIO2_5  
PIO2_6  
PIO2_7  
PIO2_4  
PIO2_5  
PIO2_6  
PIO2_7  
PIO2_8  
PIO2_9  
PIO2_10  
PIO2_11  
PIO2_8  
PIO2_9  
PIO2_10  
PIO2_11  
-
I
O
O
I
I
O
O
I
I
I
I
O
O
O
O
I
CT32B1  
I
I
I
O
O
O
O
I
UART0  
TXD0  
O
I
-
CTS0  
-
DCD0  
I
-
DSR0  
I
-
DTR0  
O
I
-
RI0  
-
RTS0  
O
-
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
15 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 4.  
Pin multiplexing  
Function  
Peripheral  
Type  
I
Available on ports:  
UART1  
RXD1  
TXD1  
PIO0_8  
PIO2_11  
PIO2_12  
O
PIO0_9  
PIO2_10  
PIO2_13  
SSP/SPI  
SCK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
PIO0_14  
PIO0_16  
PIO0_17  
PIO0_15  
PIO0_10  
PIO0_11  
PIO0_18  
PIO0_25  
PIO0_13  
PIO0_12  
-
-
-
-
-
-
-
-
-
-
-
MISO  
-
MOSI  
-
SSEL  
-
I2C  
SCL  
-
SDA  
-
SWD  
SWCLK[1]  
SWDIO[1]  
RESET  
CLKOUT  
PIO0_26  
I/O  
I
PIO1_2  
Reset  
-
-
Clockout pin  
O
[1] After reset, the SWD functions are selected by default on pins PIO0_26 and PIO0_25.  
7. Functional description  
7.1 ARM Cortex-M0 processor  
The ARM Cortex-M0 is a general purpose, 32-bit microprocessor, which offers high  
performance and very low power consumption.  
7.1.1 System tick timer  
The ARM Cortex-M0 includes a System Tick timer (SYSTICK) that is intended to generate  
a dedicated SYSTICK exception at a 10 ms interval.  
7.2 On-chip flash program memory  
The LPC122x contain up to 128 kB of on-chip flash memory.  
7.3 On-chip SRAM  
The LPC122x contain a total of up to 8 kB on-chip static RAM memory.  
7.4 Memory map  
The LPC122x incorporates several distinct memory regions, shown in the following  
figures. Figure 4 shows the overall map of the entire address space from the user  
program viewpoint following reset. The interrupt vector area supports address remapping.  
The AHB peripheral area is 2 megabyte in size, and is divided to allow for up to 128  
peripherals. The APB peripheral area is 512 kB in size and is divided to allow for up to 32  
peripherals. Each peripheral of either type is allocated 16 kilobytes of space. This allows  
simplifying the address decoding for each peripheral.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
16 of 61  
 
 
 
 
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
AHB peripherals  
0x5008 0000  
CRC  
7
LPC122x  
0x5007 0000  
4 GB  
0xFFFF FFFF  
3 - 6 reserved  
reserved  
private peripheral bus  
reserved  
0x5003 0000  
0x5002 0000  
0xE010 0000  
0xE000 0000  
GPIO PIO2  
GPIO PIO1  
GPIO PIO0  
2
1
0
0x5001 0000  
0x5000 0000  
0x5008 0000  
0x5000 0000  
AHB peripherals  
reserved  
APB peripherals  
0x4008 0000  
22 - 31 reserved  
0x4005 8000  
0x4005 4000  
0x4008 0000  
0x4000 0000  
comparator 0/1  
RTC  
21  
20  
19  
18  
APB peripherals  
reserved  
1 GB  
0x4005 0000  
0x4004 C000  
0x4004 8000  
0x4004 4000  
0x4004 0000  
micro DMA registers  
system control  
0x1FFF 2000  
0x1FFF 0000  
0x1FFE 2000  
0x1FFE 0000  
0x1FFC 4000  
IOCONFIG  
SSP  
17  
16  
15  
14  
8 kB boot ROM  
reserved  
reserved  
0x4003 C000  
0x4003 8000  
PMU  
8 kB custom ROM  
reserved  
9 - 13 reserved  
16 kB NXP library ROM  
0x1FFC 0000  
0x4002 4000  
0x4002 0000  
reserved  
ADC  
8
7
6
5
4
3
2
0x1000 2000  
0x1000 1000  
32-bit counter/timer 1  
32-bit counter/timer 0  
16-bit counter/timer 1  
16-bit counter/timer 0  
UART1  
0x4001 C000  
0x4001 8000  
8 kB SRAM (LPC1225/6/7)  
4 kB SRAM (LPC1224)  
0x1000 0000  
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
reserved  
0x0002 0000  
0x0001 8000  
0x0001 4000  
0x0001 0000  
128 kB on-chip flash (LPC1227/301)  
96 kB on-chip flash (LPC1226/301)  
80 kB on-chip flash (LPC1225/321)  
64 kB on-chip flash (LPC1225/301)  
48 kB on-chip flash (LPC1224/121)  
32 kB on-chip flash (LPC1224/101)  
UART0  
WDT  
1
0
0x4000 4000  
0x4000 0000  
2
I C-bus  
0x0000 C000  
0x0000 8000  
0x0000 00C0  
active interrupt vectors  
0x0000 0000  
002aaf270  
0x0000 0000  
0 GB  
Fig 4. LPC122x memory map  
7.5 Nested Vectored Interrupt Controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M0. The  
tight coupling to the CPU allows for low interrupt latency and efficient processing of late  
arriving interrupts.  
7.5.1 Features  
Controls system exceptions and peripheral interrupts.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
17 of 61  
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
In the LPC122x, the NVIC supports 32 vectored interrupts. In addition, up to 12 of the  
individual GPIO inputs are NVIC-vector capable.  
Four programmable interrupt priority levels with hardware priority level masking.  
Software interrupt generation.  
Non-maskable Interrupt (NMI) can be programmed to use any of the peripheral  
interrupts. The NMI is not available on an external pin.  
7.5.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags. Individual interrupt flags may also represent more than one interrupt  
source.  
Any GPIO pin (total of up to 55 pins) regardless of the selected function, can be  
programmed to generate an interrupt on a level, a rising edge or falling edge, or both.  
7.6 IOCONFIG block  
The IOCONFIG block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on-chip peripherals.  
Peripherals should be connected to the appropriate pins prior to being activated and prior  
to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is  
not mapped to a related pin should be considered undefined.  
7.6.1 Features  
Programmable pull-up resistor.  
Programmable digital glitch filter.  
Programmable input inverter.  
Programmable drive current.  
Programmable open-drain mode.  
7.7 Micro DMA controller  
The micro DMA controller enables memory-to-memory, memory-to-peripheral, and  
peripheral-to-memory data transfers. The supported peripherals are: UART0 (transmit  
and receive), UART1 (transmit and receive), SSP/SPI (transmit and receive), ADC, RTC,  
32-bit counter/timer 0 (match output channels 0 and 1), 32-bit counter/timer 1 (match  
output channels 0 and 1), 16-bit counter/timer 0 (match output channel 0), 16-bit  
counter/timer 1 (match output channel 0), comparator 0, comparator 1, GPIO0 to GPIO2.  
7.7.1 Features  
Single AHB-Lite master for transferring data using a 32-bit address bus and 32-bit  
data bus.  
21 DMA channels.  
Handshake signals and priority level programmable for each channel.  
Each priority level arbitrates using a fixed priority that is determined by the DMA  
channel number.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
18 of 61  
 
 
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Supports memory-to-memory, memory-to-peripheral, and peripheral-to-memory  
transfers.  
Supports multiple DMA cycle types and multiple DMA transfer widths.  
Performs all DMA transfers using the single AHB-Lite burst type.  
7.8 CRC engine  
The Cyclic Redundancy Check (CRC) engine with programmable polynomial settings  
supports several CRC standards commonly used. To save system power and bus  
bandwidth, the CRC engine supports DMA transfers.  
7.8.1 Features  
Supports three common polynomials CRC-CCITT, CRC-16, and CRC-32.  
CRC-CCITT: x16 + x12 + x5 + 1  
CRC-16: x16 + x15 + x2 + 1  
CRC-32: x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1  
Bit order reverse and 1’s complement programmable setting for input data and CRC  
sum.  
Programmable seed number setting.  
Supports CPU programmed I/O or DMA back-to-back transfer.  
Accept any size of data width per write: 8, 16 or 32-bit.  
8-bit write: 1-cycle operation  
16-bit write: 2-cycle operation (8-bit 2-cycle)  
32-bit write: 4-cycle operation (8-bit 4-cycle)  
7.9 Fast general purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate  
registers allow setting or clearing any number of outputs simultaneously. The value of the  
output register may be read back as well as the current state of the port pins.  
7.9.1 Features  
Bit level set and clear registers allow a single instruction to set or clear any number of  
bits in one port.  
Direction control of individual bits.  
All I/O default to inputs after reset.  
7.10 UARTs  
The LPC122x contains two UARTs. UART0 supports full modem control and RS-485/9-bit  
mode and allows both software address detection and automatic hardware address  
detection using 9-bit mode.  
The UARTs include a fractional baud rate generator. Standard baud rates such as  
115200 Bd can be achieved with any crystal frequency above 2 MHz.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
19 of 61  
 
 
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.10.1 Features  
16-byte Receive and Transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
Auto-baud capabilities and FIFO control mechanism that enables software flow  
control implementation.  
Support for RS-485/9-bit mode (UART0).  
Support for modem control (UART0).  
7.11 SSP/SPI serial I/O controller  
The LPC122x contain one SSP/SPI controller. The SSP/SPI controller is capable of  
operation on a SSP, 4-wire SSI, or Microwire bus. It can interact with multiple masters and  
slaves on the bus. Only a single master and a single slave can communicate on the bus  
during a given data transfer. The SSP supports full duplex transfers, with frames of 4 bits  
to 16 bits of data flowing from the master to the slave and from the slave to the master. In  
practice, often only one of these data flows carries meaningful data.  
7.11.1 Features  
Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National  
Semiconductor Microwire buses  
Synchronous serial communication  
Master or slave operation  
8-frame FIFOs for both transmit and receive  
4-bit to 16-bit frame  
7.12 I2C-bus serial I/O controller  
The LPC122x contain one I2C-bus controller.  
The I2C-bus is bidirectional for inter-IC control using only two wires: a serial clock line  
(SCL) and a serial data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be  
controlled by more than one bus master connected to it.  
7.12.1 Features  
The I2C-interface is a standard I2C-compliant bus interface with open-drain pins and  
supports I2C Fast-mode Plus with bit rates of up to 1 Mbit/s.  
Programmable digital glitch filter providing a 60 ns to 1 s input filter.  
Easy to configure as master, slave, or master/slave.  
Programmable clocks allow versatile rate control.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
20 of 61  
 
 
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can be used for test and diagnostic purposes.  
The I2C-bus controller supports multiple address recognition and a bus monitor mode.  
7.13 10-bit ADC  
The LPC122x contains one ADC. It is a single 10-bit successive approximation ADC with  
eight channels.  
7.13.1 Features  
10-bit successive approximation ADC.  
Input multiplexing among 8 pins.  
Power-down mode.  
Measurement range 0 V to VDD(3V3)  
10-bit conversion time of 257 kHz.  
.
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition of input pin or counter/timer match signal.  
Individual result registers for each ADC channel to reduce interrupt overhead.  
7.14 Comparator block  
The comparator block consists of two analog comparators.  
7.14.1 Features  
Up to six selectable external sources per comparator; fully configurable on either  
positive or negative comparator input channels.  
BOD 0.9 V internal reference voltage selectable on both comparators; configurable on  
either positive or negative comparator input channels.  
32-stage voltage ladder internal reference voltage selectable on both comparators;  
configurable on either positive or negative comparator input channels.  
Voltage ladder source voltage is selectable from an external pin or an internal 3.3 V  
voltage rail if external power source is not available.  
Voltage ladder can be separately powered down for applications only requiring the  
comparator function.  
Relaxation oscillator circuitry output for a feedback 555-style timer application.  
Common interrupt connected to NVIC.  
Comparator outputs selectable as synchronous or asynchronous.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
21 of 61  
 
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Comparator outputs connect to two timers, allowing for the recording of comparison  
event time stamps.  
7.15 General purpose external event counter/timers  
The LPC122x includes two 32-bit counter/timers and two 16-bit counter/timers. The  
counter/timer is designed to count cycles of the system derived clock. It can optionally  
generate interrupts or perform other actions at specified timer values, based on four  
match registers. Each counter/timer also includes up to four capture inputs to trap the  
timer value when an input signal transitions, optionally generating an interrupt.  
7.15.1 Features  
A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler.  
Counter or timer operation.  
Up to four capture channels per timer, that can take a snapshot of the timer value  
when an input signal transitions. A capture event may also generate an interrupt.  
Four match registers per timer that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Up to four external outputs corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
The timer and prescaler may be configured to be cleared on a designated capture  
event. This feature permits easy pulse width measurement by clearing the timer on  
the leading edge of an input pulse and capturing the timer value on the trailing edge.  
Supports timed DMA requests.  
7.16 Windowed WatchDog timer (WWDT)  
The purpose of the watchdog is to reset the microcontroller within a windowed amount of  
time if it enters an erroneous state. When enabled, the watchdog will generate a system  
reset if the user program fails to ‘feed’ (or reload) the watchdog within a predetermined  
amount of time.  
7.16.1 Features  
Internally resets chip if not periodically reloaded.  
Debug mode.  
Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.  
Safe operation: can be locked by software to be always on.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
22 of 61  
 
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in  
multiples of Tcy(WDCLK) 4.  
The Watchdog Clock (WDCLK) source can be selected from the Internal RC oscillator  
(IRC) or the Watchdog oscillator. This gives a wide range of potential timing choices of  
Watchdog operation under different power reduction conditions. It also provides the  
ability to run the WDT from an entirely internal source that is not dependent on an  
external crystal and its associated components and wiring for increased reliability.  
7.17 Real-time clock (RTC)  
The RTC provides a basic alarm function or can be used as a long time base counter. The  
RTC generates an interrupt after counting for a programmed number of cycles of the RTC  
clock input.  
7.17.1 Features  
Uses dedicated 32 kHz ultra low-power oscillator.  
Selectable clock inputs: RTC oscillator (1 Hz, delayed 1 Hz, or 1 kHz clock) or main  
clock with programmable clock divider.  
32-bit counter.  
Programmable 32-bit match/compare register.  
Software maskable interrupt when counter and compare registers are identical.  
Generates wake-up from Deep-sleep and Deep power-down modes.  
7.18 Clocking and power control  
7.18.1 Crystal oscillators  
The LPC122x include four independent oscillators. These are the system oscillator, the  
Internal RC oscillator (IRC), the RTC 32 kHz oscillator (for the RTC only), and the  
Watchdog oscillator. Except for the RTC oscillator, each oscillator can be used for more  
than one purpose as required in a particular application.  
Following reset, the LPC122x will operate from the Internal RC oscillator until switched by  
software. This allows systems to operate without any external crystal and the bootloader  
code to operate at a known frequency.  
See Figure 5 for an overview of the LPC122x clock generation.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
23 of 61  
 
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
AHB clock 0  
(system)  
main clock  
system clock  
CLOCK  
DIVIDER  
AHB clocks  
1 to 31  
31  
(memories  
and peripherals)  
SYSAHBCLKCTRL[1:31]  
(AHB clock enable)  
3
7
CLOCK  
DIVIDER  
peripheral clocks  
(SSP, UART0, UART1)  
CLOCK  
DIVIDER  
peripheral clocks  
(IOCONFIG glitch filter)  
CLOCK  
DIVIDER  
IRC oscillator  
RTC oscillator 1 Hz clock  
RTC oscillator 1 Hz delayed clock  
RTC oscillator 1 kHz clock  
RTC  
watchdog oscillator  
MAINCLKSEL  
RTCOSCCTRL  
(main clock select)  
IRC oscillator  
system oscillator  
watchdog oscillator  
IRC oscillator  
CLOCK  
DIVIDER  
SYSTEM PLL  
CLKOUT pin  
system oscillator  
SYSPLLCLKSEL  
CLKOUTUEN  
(CLKOUT clock update enable)  
IRC oscillator  
WWDT  
watchdog oscillator  
WDCLKSEL  
(WWDT clock select)  
002aaf271  
Fig 5. LPC122x clocking generation block diagram  
7.18.1.1 Internal RC oscillator  
The IRC may be used as the clock source for the WDT, and/or as the clock that drives the  
PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz. The IRC is  
trimmed to 1 % accuracy over the entire voltage and temperature range.  
Upon power-up or any chip reset, the LPC122x use the IRC as the clock source. Software  
may later switch to one of the other available clock sources.  
7.18.1.2 System oscillator  
The system oscillator can be used as the clock source for the CPU, with or without using  
the PLL.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
24 of 61  
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
The system oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be  
boosted to a higher frequency, up to the maximum CPU operating frequency, by the  
system PLL. The ARM processor clock frequency is referred to as CCLK elsewhere in this  
document.  
7.18.1.3 Watchdog oscillator  
The watchdog oscillator can be used as a clock source that directly drives the CPU, the  
watchdog timer, or the CLKOUT pin. The watchdog oscillator nominal frequency is  
programmable between 7.8 kHz and 1.7 MHz. The frequency spread over processing and  
temperature is 40 %.  
7.18.2 System PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO).  
The multiplier can be an integer value from 1 to 32. The CCO operates in the range of  
156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within  
its frequency range while the PLL is providing the desired output frequency. The output  
divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. The PLL output  
frequency must be lower than 100 MHz. Since the minimum output divider value is 2, it is  
insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed  
following a chip reset and may be enabled by software. The program must configure and  
activate the PLL, wait for the PLL to lock, and then connect to the PLL as a clock source.  
The PLL settling time is 100 s.  
7.18.3 Clock output  
The LPC122x features a clock output function that routes the IRC oscillator, the system  
oscillator, the watchdog oscillator, or the main clock to an output pin.  
7.18.4 Wake-up process  
The LPC122x begin operation at power-up and when awakened from Deep power-down  
mode by using the 12 MHz IRC oscillator as the clock source. This allows chip operation  
to resume quickly. If the main oscillator or the PLL is needed by the application, software  
will need to enable these features and wait for them to stabilize before they are used as a  
clock source.  
7.18.5 Power control  
The LPC122x support a variety of power control features. There are three special modes  
of processor power reduction: Sleep mode, Deep-sleep mode, and Deep power-down  
mode. The CPU clock rate may also be controlled as needed by changing clock sources,  
reconfiguring PLL values, and/or altering the CPU clock divider value. This allows a  
trade-off of power versus processing speed based on application requirements. In  
addition, a register is provided for shutting down the clocks to individual on-chip  
peripherals, allowing fine tuning of power consumption by eliminating all dynamic power  
use in any peripherals that are not required for the application. Selected peripherals have  
their own clock divider which provides even better power control.  
7.18.5.1 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence but re-enabling the clock to the ARM core.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
25 of 61  
 
 
 
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
In Sleep mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and may generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, and internal  
buses.  
7.18.5.2 Deep-sleep mode  
In Deep-sleep mode, the chip is in Sleep mode, and in addition all analog blocks are shut  
down. As an exception, the user has the option to keep the watchdog oscillator and the  
BOD circuit running for self-timed wake-up and BOD protection. Deep-sleep mode allows  
for additional power savings.  
The GPIO pins PIO0_0 to PIO0_11 (up to 12 pins total) and the RTC match interrupt can  
serve as a wake-up input to the start logic to wake up the chip from Deep-sleep mode.  
Unless the watchdog oscillator is selected to run in Deep-sleep mode, the clock source  
should be switched to IRC before entering Deep-sleep mode, because the IRC can be  
switched on and off glitch-free.  
7.18.5.3 Deep power-down mode  
In Deep power-down mode, power is shut off to the entire chip with the exception of the  
Real Time Clock, the four general-purpose registers, and the WAKEUP pin. The LPC122x  
can wake up from Deep power-down mode via the WAKEUP pin or the RTC match  
interrupt.  
When entering Deep power-down mode, an external pull-up resistor is required on the  
WAKEUP pin to hold it HIGH. The RESET pin must also be held HIGH to prevent it from  
floating while in Deep power-down mode.  
7.19 System control  
7.19.1 Start logic  
The start logic connects external pins to corresponding interrupts in the NVIC. Each pin  
shown in Table 3 as input to the start logic has an individual interrupt in the NVIC interrupt  
vector table. The start logic pins can serve as external interrupt pins when the chip is  
running. In addition, an input signal on the start logic pins can wake up the chip from  
Deep-sleep mode when all clocks are shut down.  
The start logic must be configured in the system configuration block and in the NVIC  
before being used.  
7.19.2 Reset  
Reset has four sources on the LPC122x: the RESET pin, the Watchdog reset, power-on  
reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt  
trigger input pin. Assertion of chip reset by any source, once the operating voltage attains  
a usable level, starts the IRC and initializes the flash controller.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the boot block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
26 of 61  
 
 
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
An external pull-up resistor is required on the RESET pin if Deep power-down mode is  
used.  
7.19.3 Brownout detection  
The LPC122x includes four levels for monitoring the voltage on the VDD(3V3) pin. If this  
voltage falls below one of the four selected levels, the BOD asserts an interrupt signal to  
the NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the  
NVIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading  
a dedicated status register. An additional threshold level can be selected to cause a  
forced reset of the chip.  
7.19.4 Code security (Code Read Protection - CRP)  
This feature of the LPC122x allows user to enable different levels of security in the system  
so that access to the on-chip flash and use of the SWD and ISP can be restricted. When  
needed, CRP is invoked by programming a specific pattern into a dedicated flash location.  
IAP commands are not affected by the CRP.  
There are three levels of Code Read Protection:  
1. CRP1 disables access to chip via the SWD and allows partial flash update (excluding  
flash sector 0) using a limited set of the ISP commands. This mode is useful when  
CRP is required and flash field updates are needed but all sectors can not be erased.  
2. CRP2 disables access to chip via the SWD and only allows full flash erase and  
update using a reduced set of the ISP commands.  
3. Running an application with level CRP3 selected fully disables any access to chip via  
the SWD pins and the ISP. This mode effectively disables ISP override using PIO0_12  
pin, too. It is up to the user’s application to provide (if needed) flash update  
mechanism using IAP calls or call reinvoke ISP command to enable flash update via  
UART0.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
In addition to the three CRP levels, sampling of pin PIO0_12 for valid user code can be  
disabled.  
7.19.5 APB interface  
The APB peripherals are located on one APB bus.  
7.19.6 AHB-Lite  
The AHB-Lite connects the CPU bus of the ARM Cortex-M0 to the flash memory, the main  
static RAM, and the Boot ROM.  
7.19.7 External interrupt inputs  
All GPIO pins can be level or edge sensitive interrupt inputs.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
27 of 61  
 
 
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.20 Emulation and debugging  
Debug functions are integrated into the ARM Cortex-M0. Serial wire debug is supported.  
7.21 Integer division routines  
The LPC122x contain performance-optimized integer division routines with support for up  
to 32-bit width in the numerator and denominator. Routines for signed and unsigned  
division and division with remainder are available. The integer division routines are  
ROM-based to reduce code-size.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
28 of 61  
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
8. Limiting values  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
VDD(3V3)  
VDD(IO)  
VI  
Parameter  
Conditions  
Min  
3.0  
3.0  
0.5  
0
Max  
3.6  
Unit  
V
supply voltage (3.3 V)  
input/output supply voltage  
input voltage  
3.6  
V
[2]  
on all digital pins  
+3.6  
5.5  
V
on pins PIO0_10  
and PIO0_11  
(I2C-bus pins)  
V
[3]  
[3]  
IDD  
supply current  
per supply pin  
per ground pin  
-
-
-
100  
100  
100  
mA  
mA  
mA  
ISS  
ground current  
I/O latch-up current  
Ilatch  
(0.5VDD) < VI <  
(1.5VDD);  
Tj < 125 C  
[4]  
[5]  
Tstg  
storage temperature  
65  
+150  
1.5  
C  
Ptot(pack)  
total power dissipation (per package)  
based on package  
heat transfer, not  
device power  
-
W
consumption  
VESD  
electrostatic discharge voltage  
human body  
8000  
+8000  
V
model; all pins  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Including voltage on outputs in 3-state mode.  
[3] The peak current is limited to 25 times the corresponding maximum current.  
[4] Dependent on package type.  
[5] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
29 of 61  
 
 
 
 
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9. Thermal characteristics  
9.1 Thermal characteristics  
The average chip junction temperature, Tj (C), can be calculated using the following  
equation:  
Tj = Tamb + PD Rthj a  
(1)  
Tamb = ambient temperature (C),  
Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)  
PD = sum of internal and I/O power dissipation  
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of  
the I/O pins is often small and many times can be negligible. However it can be significant  
in some applications.  
Table 6.  
Thermal characteristics  
VDD = 3.0 V to 3.6 V; Tamb = 40 C to +85 C unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rth(j-a)  
thermal resistance from  
junction to ambient  
JEDEC test board; no  
air flow  
-
LQFP64 package  
LQFP48 package  
JEDEC test board  
LQFP64 package  
LQFP48 package  
61  
86  
-
-
C/W  
C/W  
Rth(j-c)  
thermal resistance from  
junction to case  
-
-
19  
36  
-
-
C/W  
C/W  
C  
-
Tj(max)  
maximum junction  
temperature  
150  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
30 of 61  
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10. Static characteristics  
Table 7.  
Static characteristics  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
VDD(IO)  
input/output supply  
voltage  
on pin VDD(IO)  
3.0  
3.3  
3.6  
V
VDD(3V3)  
IDD  
supply voltage (3.3 V)  
supply current  
3.0  
3.3  
3.6  
V
Active mode;  
VDD(3V3) = 3.3 V;  
Tamb = 25 C; code  
while(1){}  
executed from flash  
all peripherals disabled:  
CCLK = 12 MHz  
-
-
-
4.6  
9
-
-
-
mA  
mA  
mA  
CCLK = 24 MHz  
CCLK = 33 MHz  
12.2  
all peripherals enabled:  
CCLK = 12 MHz  
-
-
-
6.6  
-
-
-
mA  
mA  
mA  
CCLK = 24 MHz  
10.9  
14.1  
CCLK = 33 MHz  
Sleep mode;  
VDD(3V3) = 3.3 V;  
Tamb = 25 C;  
all peripherals disabled  
CCLK = 12 MHz  
CCLK = 24 MHz  
CCLK = 33 MHz  
-
-
-
-
1.8  
3.3  
4.4  
30  
-
-
-
-
mA  
mA  
mA  
A  
Deep-sleep mode;  
VDD(3V3) = 3.3 V;  
Tamb = 25 C  
Deep power-down mode;  
-
720  
-
nA  
V
DD(3V3) = 3.3 V;  
Tamb = 25 C  
Normal-drive output pins (Standard port pins, RESET)  
IIL  
LOW-level input  
current  
VI = 0 V;  
-
-
-
-
-
100  
nA  
nA  
nA  
V
IIH  
IOZ  
VI  
HIGH-level input  
current  
VI = VDD(IO)  
;
-
100  
OFF-state output  
current  
VO = 0 V; VO = VDD(IO)  
;
-
100  
[2][3][4]  
input voltage  
pin configured to provide a  
digital function  
0
VDD(IO)  
VO  
output voltage  
output active  
0
-
-
VDD(IO)  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD(IO)  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
31 of 61  
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 7.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
VIL  
LOW-level input  
voltage  
-
-
0.3VDD(I  
V
O)  
Vhys  
VOH  
hysteresis voltage  
-
0.4  
-
-
V
V
HIGH-level output  
voltage  
low mode; IOH = 2 mA  
high mode; IOH = 4 mA  
VDD(IO)  
0.4  
-
VDD(IO)  
0.4  
-
-
-
V
V
VOL  
LOW-level output  
voltage  
low mode; IOL = 2 mA  
high mode; IOL = 4 mA  
-
0.4  
0.4  
-
IOH  
HIGH-level output  
current  
low mode; VOH = VDD(IO)  
0.4 V  
2  
4  
-
-
mA  
mA  
high mode; VOH = VDD(IO)  
0.4 V  
-
IOL  
LOW-level output  
current  
low mode; VOL = 0.4 V  
high mode; VOL = 0.4 V  
VOH = 0 V  
2
4
-
-
-
-
-
mA  
mA  
mA  
-
[5]  
[5]  
IOHS  
HIGH-level  
short-circuit output  
current  
45  
IOLS  
LOW-level  
VOL = VDDA  
-
-
50  
mA  
short-circuit output  
current  
Ipu  
pull-up current  
VI = 0 V  
50  
80  
100  
A  
High-drive output pins (PIO0_27, PIO0_28, PIO0_29, PIO0_12)  
IIL  
LOW-level input  
current  
VI = 0 V;  
-
-
-
-
-
100  
nA  
nA  
nA  
V
IIH  
IOZ  
VI  
HIGH-level input  
current  
VI = VDD(IO)  
;
-
100  
OFF-state output  
current  
VO = 0 V; VO = VDD(IO)  
;
-
100  
[2][3]  
[4]  
input voltage  
pin configured to provide a  
digital function  
0
VDD(IO)  
VO  
output voltage  
output active  
0
-
-
VDD(IO)  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD(IO)  
-
VIL  
LOW-level input  
voltage  
-
0.3VDD(IO)  
-
-
Vhys  
VOH  
hysteresis voltage  
-
-
-
-
V
V
HIGH-level output  
voltage  
low mode; IOH = 20 mA  
high mode; IOH = 28 mA  
VDD(IO)  
0.7  
VDD(IO)  
0.7  
-
-
V
VOL  
LOW-level output  
voltage  
low mode; IOL = 12 mA  
high mode; IOL = 18 mA  
-
-
-
-
0.4  
0.4  
V
V
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
32 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 7.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
IOH  
HIGH-level output  
current  
low mode; VOH = VDD(IO)  
0.7  
20  
-
-
mA  
high mode; VOH = VDD(IO)  
0.7  
28  
12  
-
-
-
-
mA  
mA  
IOL  
LOW-level output  
current  
VOL = 0.4 V  
low mode  
high mode  
18  
-
-
-
-
mA  
mA  
[5]  
IOLS  
LOW-level  
VOL = VDD  
short-circuit output  
current  
Ipu  
pull-up current  
VI = 0 V  
50  
80  
100  
A  
I2C-bus pins (PIO0_10 and PIO0_11)  
VIH  
HIGH-level input  
voltage  
0.7VDD(IO)  
-
-
-
-
V
V
VIL  
LOW-level input  
voltage  
0.3VDD(I  
O)  
Vhys  
VOL  
hysteresis voltage  
-
-
0.05VDD(IO)  
-
-
V
V
LOW-level output  
voltage  
IOLS = 20 mA  
0.4  
[6]  
ILI  
Ci  
input leakage current VI = VDD(IO)  
VI = 5 V  
-
-
-
2
4
A  
A  
pF  
10  
-
22  
8
capacitance for each  
I/O pin  
on pins PIO0_10 and  
PIO0_11  
Oscillator pins  
Vi(xtal)  
crystal input voltage  
crystal output voltage  
see Section 12.1  
0
0
1.8  
1.8  
1.95  
1.95  
V
V
Vo(xtal)  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
[2] Including voltage on outputs in 3-state mode.  
[3] VDD(3V3) and VDD(IO) supply voltages must be present.  
[4] 3-state outputs go into 3-state mode when VDD(IO) is grounded.  
[5] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[6] To VSS  
.
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
33 of 61  
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.1 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG  
and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both  
registers and no code is executed. Measured on a typical sample at Tamb = 25 C and  
V
DD(3V3) = 3.3 V.  
Table 8.  
Peripheral power consumption  
Typical current consumption IDD in mA  
Peripheral  
Frequency  
24 MHz  
12 MHz  
independent  
system  
IRC + PLL  
system  
IRC  
oscillator + PLL  
oscillator  
IRC  
0.29  
1.87  
-
-
-
-
-
-
-
-
PLL (PLL output  
frequency = 24 MHz)  
WDosc (WDosc output 0.25  
frequency = 500 kHz)  
-
-
-
-
BOD  
0.06  
-
-
-
-
Analog comparator 0/1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.05  
1.86  
0.04  
0.09  
0.09  
0.08  
0.08  
0.34  
0.34  
0.36  
0.09  
0.09  
0.10  
0.30  
0.52  
0.52  
0.18  
0.06  
0.05  
1.85  
0.04  
0.09  
0.09  
0.08  
0.08  
0.34  
0.34  
0.37  
0.09  
0.10  
0.10  
0.29  
0.51  
0.51  
0.18  
0.06  
0.03  
1.61  
0.02  
0.04  
0.04  
0.04  
0.04  
0.17  
0.17  
0.18  
0.05  
0.05  
0.05  
0.15  
0.26  
0.26  
0.09  
0.03  
0.02  
1.61  
0.02  
0.04  
0.04  
0.04  
0.04  
0.17  
0.17  
0.18  
0.05  
0.05  
0.05  
0.15  
0.26  
0.26  
0.09  
0.03  
ADC  
CRC engine  
16-bit timer 0 (CT16B0)  
16-bit timer 1 (CT16B1)  
32-bit timer 0 (CT32B0)  
32-bit timer 1 (CT32B1)  
GPIO0  
GPIO1  
GPIO2  
I2C  
IOCON  
RTC  
SSP  
UART0  
UART1  
DMA  
WWDT  
10.2 Power consumption  
Power measurements in Active, Sleep, and Deep-sleep modes were performed under the  
following conditions (see LPC122x user manual):  
Active mode: all GPIO pins set to input with external pull-up resistors.  
Sleep and Deep-sleep modes: all GPIO pins set to output driving LOW.  
Deep power-down mode: all GPIO pins set to input with external pull-up resistors.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
34 of 61  
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag186  
16  
I
DD  
(mA)  
(2)  
(2)  
33 MHz  
24 MHz  
12  
8
4
0
(1)  
12 MHz  
(3)  
(3)  
4 MHz  
1 MHz  
3
3.2  
3.4  
3.6  
V
(V)  
DD(3V3)  
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register; all peripheral clocks disabled; internal  
pull-up resistors disabled; BOD disabled.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
(3) System oscillator enabled; IRC and system PLL disabled.  
Fig 6. Active mode: Typical supply current IDD versus supply voltage VDD(3V3) for  
different system clock frequencies (all peripherals disabled)  
002aag023  
16  
I
DD  
(mA)  
(2)  
(2)  
33 MHz  
24 MHz  
12  
8
4
0
(1)  
12 MHz  
(3)  
4 MHz  
1 MHz  
(3)  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD(3V3) = 3.3 V; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register; all peripheral clocks disabled; internal  
pull-up resistors disabled; BOD disabled.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
(3) System oscillator enabled; IRC and system PLL disabled.  
Fig 7. Active mode: Typical supply current IDD versus temperature for different system  
clock frequencies (peripherals disabled)  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
35 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag187  
16  
(2)  
(2)  
33 MHz  
24 MHz  
I
DD  
(mA)  
12  
8
4
0
(1)  
12 MHz  
(3)  
(3)  
4 MHz  
1 MHz  
3
3.2  
3.4  
3.6  
V
(V)  
DD(3V3)  
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all  
peripherals enabled in the SYSAHBCLKCTRL register.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
(3) System oscillator enabled with external clock input; IRC and system PLL disabled.  
Fig 8. Active mode: Typical supply current IDD versus supply voltage VDD(3V3) for  
different system clock frequencies (all peripherals enabled)  
002aag024  
16  
(2)  
33 MHz  
I
DD  
(mA)  
(2)  
24 MHz  
12  
8
4
0
(1)  
12 MHz  
(3)  
4 MHz  
1 MHz  
(3)  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD(3V3) = 3.3 V; active mode entered executing code while(1){} from flash; all  
peripherals enabled in the SYSAHBCLKCTRL register.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
(3) System oscillator enabled with external clock input; IRC and system PLL disabled.  
Fig 9. Active mode: Typical supply current IDD versus temperature for different system  
clock frequencies (peripherals enabled)  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
36 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag188  
5
4
3
2
1
0
(2)  
(2)  
33 MHz  
24 MHz  
I
DD  
(mA)  
(1)  
12 MHz  
(3)  
(3)  
4 MHz  
1 MHz  
3.0  
3.2  
3.4  
3.6  
V
(V)  
DD(3V3)  
Conditions: VDD(3V3) = 3.3 V; sleep mode entered from flash; all peripherals disabled in the  
SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral clocks disabled; internal  
pull-up resistors disabled; BOD disabled.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
(3) System oscillator enabled with external clock input; IRC and system PLL disabled.  
Fig 10. Sleep mode: Typical supply current IDD versus supply voltage VDD(3V3) for  
different system clock frequencies  
002aag190  
50  
I
DD  
(μA)  
V
= 3.6 V  
3.3 V  
DD(3V3)  
40  
3.0 V  
30  
20  
10  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: BOD disabled; all oscillators and analog blocks disabled in the PDSLEEPCFG register  
Fig 11. Deep-sleep mode: Typical supply current IDD versus temperature for different  
supply voltages VDD(3V3)  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
37 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag189  
1.0  
I
DD  
(μA)  
0.9  
0.8  
0.7  
0.6  
V
= 3.6 V  
3.3 V  
3.0 V  
DD(3V3)  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Fig 12. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD(3V3)  
10.3 Electrical pin characteristics  
002aag175  
3.6  
V
OH  
(V)  
3.2  
low mode  
-40 °C  
+25 °C  
+70 °C  
+85 °C  
low mode  
-40 °C  
+25 °C  
+70 °C  
+85 °C  
2.8  
2.4  
2
0
16  
32  
48  
I
(mA)  
OH  
Conditions: VDD(IO) = 3.3 V  
Fig 13. High-drive pins: Typical HIGH-level output voltage VOH versus HIGH-level output  
current IOH  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
38 of 61  
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag310  
1.2  
high mode  
-40 °C  
+25 °C  
+70 °C  
+85 °C  
V
OL  
low mode  
-40 °C  
+25 °C  
+70 °C  
+85 °C  
(V)  
0.8  
0.4  
0
0
16  
32  
48  
I
(mA)  
OL  
Conditions: VDD(IO) = 3.3 V  
Fig 14. High-drive pins: Typical LOW-level output voltage VOL versus LOW-level output  
current IOL  
002aag180  
0.8  
V
OL  
(V)  
-40 °C  
+25 °C  
+70 °C  
+85 °C  
0.6  
0.4  
0.2  
0
0
12  
24  
36  
48  
I
(mA)  
OL  
Conditions: VDD(IO) = 3.3 V.  
Fig 15. I2C-bus pins (high current sink): Typical LOW-level output voltage VOL versus  
LOW-level output current IOL  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
39 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag181  
1.2  
high mode  
-
40 °C  
V
OL  
+25 °C  
+70 °C  
+85 °C  
(V)  
low mode  
-
40 °C  
0.8  
+25 °C  
+70 °C  
+85 °C  
0.4  
0
0
4
8
12  
16  
I
(mA)  
OL  
Conditions: VDD(IO) = 3.3 V.  
Fig 16. Normal-drive pins: Typical LOW-level output voltage VOL versus LOW-level output  
current IOL  
002aag182  
3.4  
high mode  
-40 °C  
+25 °C  
+70 °C  
+85 °C  
V
OH  
(V)  
3.0  
low mode  
-40 °C  
+25 °C  
+70 °C  
+85 °C  
2.6  
2.2  
1.8  
0
4
8
12  
16  
I
(mA)  
OH  
Conditions: VDD(IO) = 3.3 V.  
Fig 17. Normal-drive pins: Typical HIGH-level output voltage VOH versus HIGH-level  
output source current IOH  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
40 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag185  
0
I
pu  
(mA)  
-20  
-40  
+85 °C  
+70 °C  
+25 °C  
-40 °C  
-60  
-80  
-100  
0
1
2
3
V (mA)  
I
Conditions: VDD(IO) = 3.3 V.  
Fig 18. Typical pull-up current Ipu versus input voltage VI  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
41 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.4 ADC characteristics  
Table 9.  
ADC static characteristics  
Tamb = 40 C to +85 C unless otherwise specified; ADC frequency 9 MHz, VDD(3V3) = 3.0 V to  
3.6 V.  
Symbol  
VIA  
Parameter  
Conditions  
Min  
Typ[1] Max  
Unit  
V
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VDD(3V3)  
Cia  
1
pF  
[2][3][4]  
[2][5]  
[2][6]  
[2][7]  
[2][8]  
ED  
1  
2.5  
1  
3  
3  
257  
3.9  
LSB  
LSB  
LSB  
LSB  
LSB  
kHz  
M  
EL(adj)  
EO  
EG  
gain error  
ET  
absolute error  
fc(ADC)  
Ri  
ADC conversion frequency  
input resistance  
[9][10]  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
[2] Conditions: VSS = 0 V, VDD(3V3) = 3.3 V.  
[3] The ADC is monotonic, there are no missing codes.  
[4] The differential linearity error (ED) is the difference between the actual step width and the ideal step width.  
See Figure 19.  
[5] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and  
the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 19.  
[6] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the  
straight line which fits the ideal curve. See Figure 19.  
[7] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer  
curve after removing offset error, and the straight line which fits the ideal transfer curve. See Figure 19.  
[8] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer  
curve of the non-calibrated ADC and the ideal transfer curve. See Figure 19.  
[9]  
Tamb = 25 C; maximum sampling frequency fs = 257 kHz and analog input capacitance Cia = 1 pF.  
[10] Input resistance Ri depends on the sampling frequency fs: Ri = 1 / (fs Cia).  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
42 of 61  
 
 
 
 
 
 
 
 
 
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
offset  
error  
gain  
error  
E
E
O
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
(LSB  
)
ideal  
IA  
offset error  
E
O
V
V  
SS  
DD(3V3)  
1 LSB =  
1024  
002aae787  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 19. ADC characteristics  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
43 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.5 BOD static characteristics  
Table 10. BOD static characteristics[1]  
Tamb = 25 C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage interrupt level 1  
assertion  
-
-
2.25  
2.39  
-
-
V
V
de-assertion  
interrupt level 2  
assertion  
-
-
2.54  
2.67  
-
-
V
V
de-assertion  
interrupt level 3  
assertion  
-
-
2.83  
2.93  
-
-
V
V
de-assertion  
reset level 1  
assertion  
-
-
2.04  
2.18  
-
-
V
V
de-assertion  
reset level 2  
assertion  
-
-
2.34  
2.47  
-
-
V
V
de-assertion  
reset level 3  
assertion  
-
-
2.62  
2.76  
-
-
V
V
de-assertion  
[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see LPC122x  
user manual.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
44 of 61  
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11. Dynamic characteristics  
11.1 Power-up ramp conditions  
Table 11. Power-up characteristics  
amb = 40 C to +85 C.  
T
Symbol Parameter  
Conditions  
Min  
0
Typ  
Max  
500  
-
Unit  
ms  
s  
[1]  
tr  
rise time  
at t = t1: 0 < VI 400 mV  
-
-
-
[1][2]  
twait  
VI  
wait time  
12  
0
input voltage  
at t = t1 on pin VDD  
400  
mV  
[1] See Figure 20.  
[2] The wait time specifies the time the power supply must be at levels below 400 mV before ramping up.  
t
r
V
DD  
400 mV  
0
t
wait  
t = t  
1
002aag001  
Condition: 0 < VI 400 mV at start of power-up (t = t1)  
Fig 20. Power-up ramp  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
45 of 61  
 
 
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11.2 Flash memory  
Table 12. Dynamic characteristic: flash memory  
Tamb = 40 C to +85 C; VDD(3V3) over specified ranges.  
Symbol  
Parameter  
Conditions  
Min  
Max  
20  
Unit  
ms  
[1]  
[1]  
[1]  
ter  
erase time  
for one page (512 byte)  
for one sector (4 kB)  
-
162  
20  
ms  
for all sectors; mass  
erase  
-
ms  
[1]  
[1]  
[1]  
tprog  
programming  
time  
one word (4 bytes)  
-
-
-
49  
s  
s  
s  
four sequential words  
194  
765  
128 bytes (one row of 32  
words)  
[2]  
Nendu  
tret  
endurance  
20000  
10  
-
-
cycles  
years  
retention time  
[1] Erase and programming times are valid over the lifetime of the device (minimum 20000 cycles).  
[2] Number of program/erase cycles.  
11.3 External clock  
Table 13. Dynamic characteristic: external clock  
Tamb = 40 C to +85 C; VDD(3V3) over specified ranges.[1]  
Symbol  
fosc  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
MHz  
ns  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
40  
1000  
Tcy(clk) 0.4  
-
ns  
Tcy(clk) 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 21. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
46 of 61  
 
 
 
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11.4 Internal oscillators  
Table 14. Dynamic characteristic: internal oscillators  
Tamb = 40 C to +85 C; VDD(3V3) over specified ranges.[1]  
Symbol Parameter  
fosc(RC) internal RC oscillator frequency  
Conditions  
Min  
Typ[2] Max  
12 12.12  
Unit  
-
11.88  
MHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at nominal supply voltages.  
002aag020  
12.15  
12 MHz + 1%  
f
osc(RC)  
(MHz)  
VDD = 3.6 V  
3.3 V  
3.0 V  
12.05  
11.95  
11.85  
12 MHz 1%  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Fig 22. Internal RC oscillator frequency versus temperature  
Table 15. Dynamic characteristics: Watchdog oscillator  
Symbol Parameter  
Conditions  
Min Typ[1]  
Max Unit  
[2][3]  
[2][3]  
fosc(int) internal oscillator DIVSEL = 0x1F, FREQSEL = 0x1  
-
7.8  
-
kHz  
frequency  
in the WDTOSCCTRL register;  
DIVSEL = 0x00, FREQSEL = 0xF  
in the WDTOSCCTRL register  
-
1700  
-
kHz  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +85 C) is 40 %.  
[3] See the LPC122x user manual.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
47 of 61  
 
 
 
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11.5 I2C-bus  
Table 16. Dynamic characteristic: I2C-bus pins  
Tamb = 40 C to +85 C.[1]  
Symbol  
Parameter  
Conditions  
Min  
Max  
100  
400  
1
Unit  
kHz  
kHz  
MHz  
ns  
fSCL  
SCL clock frequency  
Standard-mode  
Fast-mode  
0
0
0
-
Fast-mode Plus  
[3][4][5][6]  
tf  
fall time  
of both SDA and  
SCL signals  
300  
Standard-mode  
Fast-mode  
20 + 0.1 Cb  
300  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
Fast-mode Plus  
Standard-mode  
Fast-mode  
-
120  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
data hold time  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
0
-
-
-
-
-
-
-
-
-
-
-
-
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
Fast-mode Plus  
Standard-mode  
Fast-mode  
[2][3][7]  
[8][9]  
tHD;DAT  
0
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
tSU;DAT  
data set-up time  
250  
100  
50  
Fast-mode Plus  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.  
[3] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to  
bridge the undefined region of the falling edge of SCL.  
[4] Cb = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed.  
[5] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at  
250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines  
without exceeding the maximum specified tf.  
[6] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should  
allow for this when considering bus timing.  
[7] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or  
t
VD;ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If  
the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.  
[8] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the  
acknowledge.  
[9] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met.  
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the  
LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
48 of 61  
 
 
 
 
 
 
 
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
t
t
SU;DAT  
f
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
002aaf425  
Fig 23. I2C-bus pins clock timing  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
49 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
12. Application information  
12.1 XTAL input  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave  
mode, a minimum of 200 mV(RMS) is needed.  
LPC1xxx  
XTALIN  
C
i
C
g
100 pF  
002aae788  
Fig 24. Slave mode operation of the on-chip oscillator  
12.2 XTAL Printed Circuit Board (PCB) layout guidelines  
The crystal should be connected on the PCB as close as possible to the oscillator input  
and output pins of the chip. Take care that the load capacitors Cx1,Cx2, and Cx3 in case of  
third overtone crystal usage have a common ground plane. The external components  
must also be connected to the ground plain. Loops must be made as small as possible in  
order to keep the noise coupled in via the PCB as small as possible. Also parasitics  
should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller  
accordingly to the increase in parasitics of the PCB layout.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
50 of 61  
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
12.3 ElectroMagnetic Compatibility (EMC)  
Radiated emission measurements according to the IEC61967-2 standard using the  
TEM-cell method are shown for the LPC1227FBD64/301 in Table 17.  
Table 17. ElectroMagnetic Compatibility (EMC) for part LPC1227FBD64/301 (TEM-cell  
method)  
VDD = 3.3 V; Tamb = 25 C.  
Parameter Frequency band  
System clock =  
12 MHz  
Unit  
24 MHz  
33 MHz  
Input clock: IRC (12 MHz)  
maximum  
peak level  
150 kHz - 30 MHz  
4.2  
3.8  
6.4  
dBV  
30 MHz - 150 MHz  
7.3  
16.4  
M
5.4  
20.1  
L
9
dBV  
dBV  
-
150 MHz - 1 GHz  
-
23.4  
L
IEC level[1]  
Input clock: crystal oscillator (12 MHz)  
maximum  
peak level  
150 kHz - 30 MHz  
4.8  
4  
6.6  
dBV  
30 MHz - 150 MHz  
6.9  
16.3  
M
5.6  
20.3  
L
10  
22.3  
L
dBV  
dBV  
-
150 MHz - 1 GHz  
-
IEC level[1]  
[1] IEC levels refer to Appendix D in the IEC61967-2 Specification.  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
51 of 61  
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
13. Package outline  
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm  
SOT314-2  
y
X
A
48  
33  
Z
49  
32  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
64  
17  
detail X  
1
16  
Z
v
M
A
D
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 10.1 10.1  
0.17 0.12 9.9 9.9  
12.15 12.15  
11.85 11.85  
0.75  
0.45  
1.45 1.45  
1.05 1.05  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT314-2  
136E10  
MS-026  
Fig 25. Package outline SOT314-2 (LQFP64)  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
52 of 61  
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT313-2  
136E05  
MS-026  
Fig 26. Package outline SOT313-2 (LQFP48)  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
53 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
14. Soldering  
Footprint information for reflow soldering of LQFP48 package  
SOT313-2  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 10.350 10.350 7.350 7.350 1.500 0.280 0.500 7.500 7.500 10.650 10.650  
sot313-2_fr  
Fig 27. Reflow soldering of the LQFP48 package  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
54 of 61  
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Footprint information for reflow soldering of LQFP64 package  
SOT314-2  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 13.300 13.300 10.300 10.300 1.500 0.280 0.400 10.500 10.500 13.550 13.550  
sot314-2_fr  
Fig 28. Reflow soldering of the LQFP64 package  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
55 of 61  
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
15. Abbreviations  
Table 18. Abbreviations  
Acronym  
ADC  
AHB  
APB  
Description  
Analog-to-Digital-Converter  
Advanced High-performance Bus  
Advanced Peripheral Bus  
BrownOut Detection  
BOD  
CCITT  
CRC  
DMA  
FIFO  
GPIO  
I/O  
Comité Consultatif International Téléphonique et Télégraphique  
Cyclic Redundancy Check  
Direct Memory Access  
First-In-First-Out  
General Purpose Input/Output  
Input/Output  
IrDA  
Infrared Data Association  
IRC  
Internal Resistor-Capacitor  
Joint Electron Devices Engineering Council  
Phase-Locked Loop  
JEDEC  
PLL  
SPI  
Serial Peripheral Interface  
SSI  
Serial Synchronous Interface  
Synchronous Serial Port  
SSP  
UART  
Universal Asynchronous Receiver/Transmitter  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
56 of 61  
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
16. Revision history  
Table 19. Revision history  
Document ID  
Release date  
Data sheet status  
Change notice  
Supersedes  
LPC122X v.2  
20110826  
Product data sheet  
-
LPC122X v.1.2  
Modifications:  
Power consumption data updated in Table 7.  
Power consumption graphs added in Section 10.2.  
Electrical pin characteristics updated for all pins in Table 7 and Section 10.3.  
Parameter Ri added to Table 9.  
EMC data added (Section 12.3).  
Parameter VI updated for I2C-bus pins in Table 5.  
Section 11.1 “Power-up ramp conditions” added.  
Data sheet status updated to Product Data Sheet.  
SSP dynamic characteristics removed.  
LPC122X v.1.2  
Modifications:  
20110329  
Objective data sheet  
-
LPC122X v.1.1  
Figure 2 “Pin configuration LQFP64 package”: Pin RTCXIN changed to 58 and pin  
RTCXOUT changed to 57.  
Table 3 “LPC122x pin description”: In column Pin LQFP64, pin RTCXIN changed to 58  
and pin RTCXOUT changed to 57.  
LPC122X v.1.1  
Modifications:  
20110221  
Objective data sheet  
-
LPC122X v.1  
Section 1 “General description”: Updated text.  
Section 2 “Features and benefits”: Updated text.  
LPC122X v.1  
20110214  
Objective data sheet  
-
-
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
57 of 61  
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
17.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
17.3 Disclaimers  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
58 of 61  
 
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
non-automotive qualified products in automotive equipment or applications.  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
I2C-bus — logo is a trademark of NXP B.V.  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
59 of 61  
 
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
19. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
7.18.1.3 Watchdog oscillator . . . . . . . . . . . . . . . . . . . . 25  
7.18.2  
7.18.3  
7.18.4  
7.18.5  
System PLL . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Clock output. . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 25  
Power control. . . . . . . . . . . . . . . . . . . . . . . . . 25  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 4  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
4
4.1  
5
7.18.5.1 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.18.5.2 Deep-sleep mode. . . . . . . . . . . . . . . . . . . . . . 26  
7.18.5.3 Deep power-down mode . . . . . . . . . . . . . . . . 26  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 6  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 8  
7.19  
System control . . . . . . . . . . . . . . . . . . . . . . . . 26  
Start logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Brownout detection . . . . . . . . . . . . . . . . . . . . 27  
Code security (Code Read Protection - CRP) 27  
APB interface. . . . . . . . . . . . . . . . . . . . . . . . . 27  
AHB-Lite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
External interrupt inputs. . . . . . . . . . . . . . . . . 27  
Emulation and debugging . . . . . . . . . . . . . . . 28  
Integer division routines. . . . . . . . . . . . . . . . . 28  
7.19.1  
7.19.2  
7.19.3  
7.19.4  
7.19.5  
7.19.6  
7.19.7  
7.20  
7
7.1  
7.1.1  
7.2  
7.3  
Functional description . . . . . . . . . . . . . . . . . . 16  
ARM Cortex-M0 processor . . . . . . . . . . . . . . . 16  
System tick timer . . . . . . . . . . . . . . . . . . . . . . 16  
On-chip flash program memory . . . . . . . . . . . 16  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . 16  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Nested Vectored Interrupt Controller (NVIC) . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 18  
IOCONFIG block . . . . . . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Micro DMA controller . . . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
CRC engine . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Fast general purpose parallel I/O . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
UARTs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
SSP/SPI serial I/O controller . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
10-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Comparator block . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
General purpose external event  
7.4  
7.5  
7.21  
7.5.1  
7.5.2  
7.6  
7.6.1  
7.7  
7.7.1  
7.8  
7.8.1  
7.9  
7.9.1  
7.10  
7.10.1  
7.11  
7.11.1  
7.12  
7.12.1  
7.13  
7.13.1  
7.14  
7.14.1  
7.15  
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 29  
Thermal characteristics . . . . . . . . . . . . . . . . . 30  
Thermal characteristics . . . . . . . . . . . . . . . . . 30  
9
9.1  
10  
Static characteristics . . . . . . . . . . . . . . . . . . . 31  
Peripheral power consumption . . . . . . . . . . . 34  
Power consumption . . . . . . . . . . . . . . . . . . . 34  
Electrical pin characteristics. . . . . . . . . . . . . . 38  
ADC characteristics . . . . . . . . . . . . . . . . . . . . 42  
BOD static characteristics . . . . . . . . . . . . . . . 44  
10.1  
10.2  
10.3  
10.4  
10.5  
11  
Dynamic characteristics. . . . . . . . . . . . . . . . . 45  
Power-up ramp conditions . . . . . . . . . . . . . . . 45  
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . 45  
External clock. . . . . . . . . . . . . . . . . . . . . . . . . 46  
Internal oscillators . . . . . . . . . . . . . . . . . . . . . 47  
I2C-bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
11.1  
11.2  
11.3  
11.4  
11.5  
12  
12.1  
12.2  
Application information . . . . . . . . . . . . . . . . . 50  
XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
XTAL Printed Circuit Board (PCB) layout  
guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
ElectroMagnetic Compatibility (EMC) . . . . . . 51  
12.3  
13  
counter/timers. . . . . . . . . . . . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Windowed WatchDog timer (WWDT) . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Real-time clock (RTC) . . . . . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Clocking and power control . . . . . . . . . . . . . . 23  
Crystal oscillators . . . . . . . . . . . . . . . . . . . . . . 23  
7.15.1  
7.16  
7.16.1  
7.17  
7.17.1  
7.18  
7.18.1  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 52  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 57  
14  
15  
16  
17  
Legal information . . . . . . . . . . . . . . . . . . . . . . 58  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 58  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
17.1  
17.2  
17.3  
7.18.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 24  
7.18.1.2 System oscillator . . . . . . . . . . . . . . . . . . . . . . 24  
continued >>  
LPC122X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 2 — 26 August 2011  
60 of 61  
 
LPC122x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
17.4  
18  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Contact information. . . . . . . . . . . . . . . . . . . . . 59  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
19  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2011.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 26 August 2011  
Document identifier: LPC122X  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY