LPC1756 [NXP]

32-bit ARM Cortex-M3 MCU up to 512 kB flash and 64 kB SRAM with Ethernet, USB 2.0 Host/Device/OTG, CAN; 32位ARM Cortex -M3 MCU高达512 KB的闪存和64 KB的SRAM,带有以太网, USB 2.0主机/设备/ OTG , CAN
LPC1756
型号: LPC1756
厂家: NXP    NXP
描述:

32-bit ARM Cortex-M3 MCU up to 512 kB flash and 64 kB SRAM with Ethernet, USB 2.0 Host/Device/OTG, CAN
32位ARM Cortex -M3 MCU高达512 KB的闪存和64 KB的SRAM,带有以太网, USB 2.0主机/设备/ OTG , CAN

闪存 静态存储器 以太网
文件: 总71页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC1758/56/54/52/51  
32-bit ARM Cortex-M3 MCU; up to 512 kB flash and 64 kB  
SRAM with Ethernet, USB 2.0 Host/Device/OTG, CAN  
Rev. 02 — 11 February 2009  
Objective data sheet  
1. General description  
The LPC1758/56/54/52/51 are ARM Cortex-M3 based microcontrollers for embedded  
applications featuring a high level of integration and low power consumption. The ARM  
Cortex-M3 is a next generation core that offers system enhancements such as enhanced  
debug features and a higher level of support block integration.  
The LPC1758/56/54/52/51 operate at CPU frequencies of up to 100 MHz. The ARM  
Cortex-M3 CPU incorporates a 3-stage pipeline and uses a Harvard architecture with  
separate local instruction and data buses as well as a third bus for peripherals. The ARM  
Cortex-M3 CPU also includes an internal prefetch unit that supports speculative  
branching.  
The peripheral complement of the LPC1758/56/54/52/51 includes up to 512 kB of flash  
memory, up to 64 kB of data memory, Ethernet MAC, USB Device/Host/OTG interface,  
8-channel general purpose DMA controller, 4 UARTs, 2 CAN channels, 2 SSP controllers,  
SPI interface, 3 I2C-bus interfaces, 2-input plus 2-output I2S-bus interface, 6 channel  
12-bit ADC, 10-bit DAC, motor control PWM, Quadrature Encoder interface, 4 general  
purpose timers, 6-output general purpose PWM, ultra-low power Real-Time Clock (RTC)  
with separate battery supply, and up to 52 general purpose I/O pins.  
2. Features  
I ARM Cortex-M3 processor, running at frequencies of up to 100 MHz. A Memory  
Protection Unit (MPU) supporting eight regions is included.  
I ARM Cortex-M3 built-in Nested Vectored Interrupt Controller (NVIC).  
I Up to 512 kB on-chip flash programming memory. Enhanced flash memory accelerator  
enables high-speed 100 MHz operation with zero wait states.  
I In-System Programming (ISP) and In-Application Programming (IAP) via on-chip  
bootloader software.  
I On-chip SRAM includes:  
N Up to 32 kB of SRAM on the CPU with local code/data bus for high-performance  
CPU access.  
N Two/one 16 kB SRAM blocks with separate access paths for higher throughput.  
These SRAM blocks may be used for Ethernet (LPC1758 only), USB, and DMA  
memory, as well as for general purpose CPU instruction and data storage.  
I Eight channel General Purpose DMA controller (GPDMA) on the AHB multilayer  
matrix that can be used with the SSP, I2S-bus, UART, the Analog-to-Digital and  
Digital-to-Analog converter peripherals, timer match signals, and for  
memory-to-memory transfers.  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
I Multilayer AHB matrix interconnect provides a separate bus for each AHB master. AHB  
masters include the CPU, General Purpose DMA controller, Ethernet MAC (LPC1758  
only), and the USB interface. This interconnect provides communication with no  
arbitration delays.  
I Split APB bus allows high throughput with few stalls between the CPU and DMA.  
I Serial interfaces:  
N On the LPC1758 only, Ethernet MAC with RMII interface and dedicated DMA  
controller.  
N USB 2.0 full-speed device/Host/OTG controller with dedicated DMA controller and  
on-chip PHY for device, Host, and OTG functions. The LPC1752/51 include a USB  
device controller only.  
N Four UARTs with fractional baud rate generation, internal FIFO, DMA support, and  
RS-485 support. One UART has modem control I/O, and one UART has IrDA  
support.  
N CAN 2.0B controller with two (LPC1758/56) or one (LPC1754/52/51) channels.  
N SPI controller with synchronous, serial, full duplex communication and  
programmable data length.  
N Two SSP controllers with FIFO and multi-protocol capabilities. The SSP interfaces  
can be used with the GPDMA controller.  
N Two I2C-bus interfaces supporting fast mode with a data rate of 400 kbit/s with  
multiple address recognition and monitor mode.  
N On the LPC1758/56 only, I2S (Inter-IC Sound) interface for digital audio input or  
output, with fractional rate control. The I2S-bus interface can be used with the  
GPDMA. The I2S-bus interface supports 3-wire and 4-wire data transmit and  
receive as well as master clock input/output.  
I Other peripherals:  
N 52 General Purpose I/O (GPIO) pins with configurable pull-up/down resistors and a  
new, configurable open-drain operating mode.  
N 12-bit Analog-to-Digital Converter (ADC) with input multiplexing among six pins,  
conversion rates up to 1 MHz, and multiple result registers. The 12-bit ADC can be  
used with the GPDMA controller.  
N On the LPC1758/56/54 only, 10-bit Digital-to-Analog Converter (DAC) with  
dedicated conversion timer and DMA support.  
N Four general purpose timers/counters, with a total of three capture inputs and ten  
compare outputs. Each timer block has an external count input and DMA support.  
N One motor control PWM with support for three-phase motor control.  
N Quadrature encoder interface that can monitor one external quadrature encoder.  
N One standard PWM/timer block with external count input.  
N Real-Time Clock (RTC) with a separate power domain and dedicated RTC  
oscillator. The RTC block includes 64 bytes of battery-powered backup registers.  
N Watchdog Timer (WDT) resets the microcontroller within a reasonable amount of  
time if it enters an erroneous state.  
N System tick timer, including an external clock input option.  
N Repetitive Interrupt Timer (RIT) provides programmable and repeating timed  
interrupts.  
N Each peripheral has its own clock divider for further power savings.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
2 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
I Standard JTAG test/debug interface for compatibility with existing tools. Serial Wire  
Debug and Serial Wire Trace Port options.  
I Emulation trace module enables non-intrusive, high-speed real-time tracing of  
instruction execution.  
I Integrated PMU (Power Management Unit) automatically adjusts internal regulators to  
minimize power consumption during Sleep, Deep sleep, Power-down, and Deep  
power-down modes.  
I Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep power-down.  
I Single 3.3 V power supply (2.4 V to 3.6 V).  
I One external interrupt input configurable as edge/level sensitive. All pins on PORT0  
and PORT2 can be used as edge sensitive interrupt sources.  
I Non-maskable Interrupt (NMI) input.  
I Clock output function that can reflect the main oscillator clock, IRC clock, RTC clock,  
CPU clock, and the USB clock.  
I The Wakeup Interrupt Controller (WIC) allows the CPU to automatically wake up from  
any priority interrupt that can occur while the clocks are stopped in deep sleep,  
power-down, and deep power-down modes.  
I Processor wake-up from Power-down mode via interrupts from various peripherals.  
I Brownout detect with separate threshold for interrupt and forced reset.  
I Power-On Reset (POR).  
I Crystal oscillator with an operating range of 1 MHz to 25 MHz.  
I 4 MHz internal RC oscillator trimmed to 1 % accuracy that can optionally be used as a  
system clock.  
I PLL allows CPU operation up to the maximum CPU rate without the need for a  
high-frequency crystal. May be run from the main oscillator, the internal RC oscillator,  
or the RTC oscillator.  
I USB PLL for added flexibility.  
I Code Read Protection (CRP) with different security levels.  
I Available as 80-pin LQFP package (12 × 12 × 1.4 mm).  
3. Applications  
I eMetering  
I Lighting  
I Industrial networking  
I Alarm systems  
I White goods  
I Motor control  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
3 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC1758FBD80  
LPC1756FBD80  
LPC1754FBD80  
LPC1752FBD80  
LPC1751FBD80  
LQFP80  
LQFP80  
LQFP80  
LQFP80  
LQFP80  
plastic low-profile quad package; 80 leads; body 12 × 12 × 1.4 mm  
plastic low-profile quad package; 80 leads; body 12 × 12 × 1.4 mm  
plastic low-profile quad package; 80 leads; body 12 × 12 × 1.4 mm  
plastic low-profile quad package; 80 leads; body 12 × 12 × 1.4 mm  
plastic low-profile quad package; 80 leads; body 12 × 12 × 1.4 mm  
SOT315-1  
SOT315-1  
SOT315-1  
SOT315-1  
SOT315-1  
4.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Flash  
512 kB  
256 kB  
128 kB  
64 kB  
Total  
SRAM  
Ethernet USB  
CAN  
I2S-bus DAC Package Sampling  
LPC1758FBD80  
LPC1756FBD80  
LPC1754FBD80  
LPC1752FBD80  
LPC1751FBD80  
64 kB  
32 kB  
32 kB  
16 kB  
8 kB  
yes  
no  
no  
no  
no  
Device/  
Host/OTG  
2
2
1
1
1
yes  
yes  
no  
yes  
yes  
yes  
no  
80 pins  
80 pins  
80 pins  
80 pins  
80 pins  
Q2 2009  
Device/  
Host/OTG  
Q1 2009  
Q1 2009  
Q1 2009  
Q1 2009  
Device/  
Host/OTG  
Device  
only  
no  
32 kB  
Device  
only  
no  
no  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
4 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
5. Block diagram  
XTAL1  
debug  
port  
JTAG  
interface  
RMII pins  
USB pins  
USB PHY  
XTAL2  
RESET  
LPC1758/56/54/52/51  
TEST/DEBUG  
INTERFACE  
CLOCK  
GENERATION,  
POWER CONTROL,  
SYSTEM  
CLKOUT  
USB HOST/  
DEVICE/OTG  
CONTROLLER  
ETHERNET  
CONTROLLER  
WITH DMA  
ARM  
CORTEX-M3  
DMA  
CONTROLLER  
FUNCTIONS  
(2)  
(4)  
WITH DMA  
clocks and  
controls  
I-code  
bus  
D-code  
bus  
system  
bus  
master  
master  
master  
slave  
ROM  
slave  
MULTILAYER AHB MATRIX  
SRAM  
64/32/  
16/8 kB  
slave  
FLASH  
ACCELERATOR  
slave  
slave  
slave  
AHB TO  
APB  
BRIDGE 1  
P0, P1,  
P2, P4  
HIGH-SPEED  
GPIO  
AHB TO  
APB  
BRIDGE 0  
FLASH  
512/256/128/64/32 kB  
APB slave group 0  
SSP1  
APB slave group 1  
SSP0  
SCK0  
SCK1  
SSEL0  
MISO0  
MOSI0  
SSEL1  
MISO1  
MOSI1  
RXD2/3  
TXD2/3  
RXD0/TXD0  
8 × UART1  
UART2/3  
UART0/1  
1 × I2SRX  
3 × I2STX  
TX_MCLK  
RX_MCLK  
RD1/2  
TD1/2  
(1)  
CAN1/CAN2  
(1)  
I2S  
SCL1  
SDA1  
I2C1  
SPI0  
SCL2  
SDA2  
I2C2  
SCK/SSEL  
MOSI/MISO  
2 × MAT0/1  
RI TIMER  
TIMER2/3  
TIMER 0/1  
WDT  
1 × CAP0,  
2 × CAP1  
4 × MAT2  
2 × MAT3  
PWM1[6:1]  
PCAP1[1:0]  
EXTERNAL INTERRUPTS  
SYSTEM CONTROL  
EINT0  
PWM1  
12-bit ADC  
AD0[7:2]  
MC0A/B  
MC1A/B  
MC2A/B  
MCFB1/2  
PIN CONNECT  
MOTOR CONTROL PWM  
P0, P2  
GPIO INTERRUPT CONTROL  
32 kHz  
(3)  
DAC  
AOUT  
RTCX1  
RTCX2  
PHA, PHB  
INDEX  
RTC  
OSCILLATOR  
QUADRATURE ENCODER  
(1)  
VBAT  
LPC1758/56 only  
LPC1758 only  
LPC1758/56/54 only  
LPC1752/51 USB device only  
BACKUP REGISTERS  
RTC POWER DOMAIN  
(2)  
(3)  
(4)  
002aae153  
Grey-shaded blocks represent peripherals with connection to the GPDMA.  
Fig 1. Block diagram  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
5 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
6. Pinning information  
6.1 Pinning  
1
60  
20  
41  
002aae158  
Fig 2. Pin configuration LQFP80 package  
6.2 Pin description  
Table 3.  
Pin description  
Symbol  
Pin  
Type  
Description  
P0[0] to P0[31]  
I/O  
Port 0: Port 0 is a 32-bit I/O port with individual direction controls for each bit. The  
operation of port 0 pins depends upon the pin function selected via the pin connect  
block. Some port pins are not available on the LQFP80 package.  
P0[0]/RD1/TXD3/  
SDA1  
37[1]  
I/O  
I
P0[0] — General purpose digital input/output pin.  
RD1 — CAN1 receiver input.  
O
TXD3 — Transmitter output for UART3.  
I/O  
I/O  
O
SDA1 — I2C1 data input/output (this is not an I2C-bus compliant open-drain pin).  
P0[1] — General purpose digital input/output pin.  
TD1 — CAN1 transmitter output.  
P0[1]/TD1/RXD3/  
SCL1  
38[1]  
I
RXD3 — Receiver input for UART3.  
I/O  
I/O  
O
SCL1 — I2C1 clock input/output (this is not an I2C-bus compliant open-drain pin).  
P0[2] — General purpose digital input/output pin.  
TXD0 — Transmitter output for UART0.  
P0[2]/TXD0/AD0[7] 79[2]  
P0[3]/RXD0/AD0[6] 80[2]  
I
AD0[7] — A/D converter 0, input 7.  
I/O  
I
P0[3] — General purpose digital input/output pin.  
RXD0 — Receiver input for UART0.  
I
AD0[6] — A/D converter 0, input 6.  
P0[6]/  
I2SRX_SDA/  
SSEL1/MAT2[0]  
64[1]  
I/O  
I/O  
P0[6] — General purpose digital input/output pin.  
I2SRX_SDA — Receive data. It is driven by the transmitter and read by the  
receiver. Corresponds to the signal SD in the I2S-bus specification. (LPC1758/56  
only).  
I/O  
O
SSEL1 — Slave Select for SSP1.  
MAT2[0] — Match output for Timer 2, channel 0.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
6 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Symbol  
P0[7]/I2STX_CLK/ 63[1]  
SCK1/MAT2[1]  
Pin description …continued  
Pin  
Type  
I/O  
Description  
P0[7] — General purpose digital input/output pin.  
I/O  
I2STX_CLK — Transmit Clock. It is driven by the master and received by the  
slave. Corresponds to the signal SCK in the I2S-bus specification. (LPC1758/56  
only).  
I/O  
O
SCK1 — Serial Clock for SSP1.  
MAT2[1] — Match output for Timer 2, channel 1.  
P0[8] — General purpose digital input/output pin.  
P0[8]/I2STX_WS/  
MISO1/MAT2[2]  
62[1]  
I/O  
I/O  
I2STX_WS — Transmit Word Select. It is driven by the master and received by the  
slave. Corresponds to the signal WS in the I2S-bus specification. (LPC1758/56  
only).  
I/O  
O
MISO1 — Master In Slave Out for SSP1.  
MAT2[2] — Match output for Timer 2, channel 2.  
P0[9] — General purpose digital input/output pin.  
P0[9]/I2STX_SDA/ 61[1]  
MOSI1/MAT2[3]  
I/O  
I/O  
I2STX_SDA — Transmit data. It is driven by the transmitter and read by the  
receiver. Corresponds to the signal SD in the I2S-bus specification. (LPC1758/56  
only).  
I/O  
O
MOSI1 — Master Out Slave In for SSP1.  
MAT2[3] — Match output for Timer 2, channel 3.  
P0[10] — General purpose digital input/output pin.  
TXD2 — Transmitter output for UART2.  
P0[10]/TXD2/  
SDA2/MAT3[0]  
39[1]  
40[1]  
47[1]  
48[1]  
46[1]  
45[1]  
I/O  
O
I/O  
O
SDA2 — I2C2 data input/output (this is not an open-drain pin).  
MAT3[0] — Match output for Timer 3, channel 0.  
P0[11] — General purpose digital input/output pin.  
RXD2 — Receiver input for UART2.  
P0[11]/RXD2/  
SCL2/MAT3[1]  
I/O  
I
I/O  
O
SCL2 — I2C2 clock input/output (this is not an open-drain pin).  
MAT3[1] — Match output for Timer 3, channel 1.  
P0[15] — General purpose digital input/output pin.  
TXD1 — Transmitter output for UART1.  
P0[15]/TXD1/  
SCK0/SCK  
I/O  
O
I/O  
I/O  
I/O  
I
SCK0 — Serial clock for SSP0.  
SCK — Serial clock for SPI.  
P0[16]/RXD1/  
SSEL0/SSEL  
P0[16] — General purpose digital input/output pin.  
RXD1 — Receiver input for UART1.  
I/O  
I/O  
I/O  
I
SSEL0 — Slave Select for SSP0.  
SSEL — Slave Select for SPI.  
P0[17]/CTS1/  
MISO0/MISO  
P0[17] — General purpose digital input/output pin.  
CTS1 — Clear to Send input for UART1.  
MISO0 — Master In Slave Out for SSP0.  
MISO — Master In Slave Out for SPI.  
I/O  
I/O  
I/O  
I
P0[18]/DCD1/  
MOSI0/MOSI  
P0[18] — General purpose digital input/output pin.  
DCD1 — Data Carrier Detect input for UART1.  
MOSI0 — Master Out Slave In for SSP0.  
MOSI — Master Out Slave In for SPI.  
I/O  
I/O  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
7 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Symbol  
Pin  
44[1]  
Type  
I/O  
O
Description  
P0[22]/RTS1/TD1  
P0[22] — General purpose digital input/output pin.  
RTS1 — Request to Send output for UART1.  
TD1 — CAN1 transmitter output.  
O
P0[25]/AD0[2]/  
I2SRX _SDA/  
TXD3  
7[2]  
I/O  
I
P0[25] — General purpose digital input/output pin.  
AD0[2] — A/D converter 0, input 2.  
I/O  
I2SRX_SDA — Receive data. It is driven by the transmitter and read by the  
receiver. Corresponds to the signal SD in the I2S-bus specification. (LPC1758/56  
only).  
O
TXD3 — Transmitter output for UART3.  
P0[26] — General purpose digital input/output pin.  
AD0[3] — A/D converter 0, input 3.  
P0[26]/AD0[3]/  
AOUT/RXD3  
6[3]  
I/O  
I
O
AOUT — DAC output. (LPC1758/56/54 only).  
RXD3 — Receiver input for UART3.  
I
P0[29]/USB_D+  
P0[30]/USB_D−  
P1[0] to P1[31]  
22[4]  
23[4]  
I/O  
I/O  
I/O  
I/O  
I/O  
P0[29] — General purpose digital input/output pin.  
USB_D+ — USB bidirectional D+ line.  
P0[30] — General purpose digital input/output pin.  
USB_DUSB bidirectional Dline.  
Port 1: Port 1 is a 32-bit I/O port with individual direction controls for each bit. The  
operation of port 1 pins depends upon the pin function selected via the pin connect  
block. Some port pins are not available on the LQFP80 package.  
P1[0]/  
ENET_TXD0  
76[1]  
75[1]  
74[1]  
73[1]  
72[1]  
71[1]  
70[1]  
69[1]  
25[1]  
I/O  
O
P1[0] — General purpose digital input/output pin.  
ENET_TXD0 — Ethernet transmit data 0. (LPC1758 only).  
P1[1] — General purpose digital input/output pin.  
ENET_TXD1 — Ethernet transmit data 1. (LPC1758 only).  
P1[4] — General purpose digital input/output pin.  
ENET_TX_EN — Ethernet transmit data enable. (LPC1758 only).  
P1[8] — General purpose digital input/output pin.  
ENET_CRS — Ethernet carrier sense. (LPC1758 only).  
P1[9] — General purpose digital input/output pin.  
ENET_RXD0 — Ethernet receive data. (LPC1758 only).  
P1[10] — General purpose digital input/output pin.  
ENET_RXD1 — Ethernet receive data. (LPC1758 only).  
P1[14] — General purpose digital input/output pin.  
ENET_RX_ER — Ethernet receive error. (LPC1758 only).  
P1[15] — General purpose digital input/output pin.  
ENET_REF_CLK — Ethernet reference clock. (LPC1758 only).  
P1[18] — General purpose digital input/output pin.  
P1[1]/  
ENET_TXD1  
I/O  
O
P1[4]/  
ENET_TX_EN  
I/O  
O
P1[8]/  
ENET_CRS  
I/O  
I
P1[9]/  
ENET_RXD0  
I/O  
I
P1[10]/  
ENET_RXD1  
I/O  
I
P1[14]/  
ENET_RX_ER  
I/O  
I
P1[15]/  
ENET_REF_CLK  
I/O  
I
P1[18]/  
I/O  
O
USB_UP_LED/  
PWM1[1]/  
CAP1[0]  
USB_UP_LED — USB GoodLink LED indicator. It is LOW when device is  
configured (non-control endpoints enabled). It is HIGH when the device is not  
configured or during global suspend.  
O
I
PWM1[1] — Pulse Width Modulator 1, channel 1 output.  
CAP1[0] — Capture input for Timer 1, channel 0.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
8 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Symbol  
Pin description …continued  
Pin  
26[1]  
Type  
I/O  
O
Description  
P1[19]/MC0A/  
USB_PPWR  
CAP1[1]  
P1[19] — General purpose digital input/output pin.  
MC0A — Motor control PWM channel 0, output A.  
O
USB_PPWR — Port Power enable signal for USB port. (LPC1758/56/54 only).  
CAP1[1] — Capture input for Timer 1, channel 1.  
I
P1[20]/MCFB0/  
PWM1[2]/SCK0  
27[1]  
28[1]  
29[1]  
30[1]  
I/O  
I
P1[20] — General purpose digital input/output pin.  
MCFB0 — Motor control PWM channel 0, feedback input. Also Quadrature  
Encoder Interface PHA input.  
O
PWM1[2] — Pulse Width Modulator 1, channel 2 output.  
SCK0 — Serial clock for SSP0.  
I/O  
I/O  
O
P1[22]/MC0B/  
USB_PWRD/  
MAT1[0]  
P1[22] — General purpose digital input/output pin.  
MC0B — Motor control PWM channel 0, output B.  
I
USB_PWRD — Power Status for USB port (host power switch). (LPC1758/56/54  
only).  
O
I/O  
I
MAT1[0] — Match output for Timer 1, channel 0.  
P1[23] — General purpose digital input/output pin.  
P1[23]/MCFB1/  
PWM1[4]/MISO0  
MCFB1 — Motor control PWM channel 1, feedback input. Also Quadrature  
Encoder Interface PHB input.  
O
PWM1[4] — Pulse Width Modulator 1, channel 4 output.  
MISO0 — Master In Slave Out for SSP0.  
I/O  
I/O  
I
P1[24]/MCFB2/  
PWM1[5]/MOSI0  
P1[24] — General purpose digital input/output pin.  
MCFB2 — Motor control PWM channel 2, feedback input. Also Quadrature  
Encoder Interface INDEX input.  
O
I/O  
I/O  
O
O
O
I/O  
O
O
I
PWM1[5] — Pulse Width Modulator 1, channel 5 output.  
MOSI0 — Master Out Slave in for SSP0.  
P1[25]/MC1A/  
CLKOUT/MAT1[1]  
31[1]  
32[1]  
35[1]  
36[1]  
P1[25] — General purpose digital input/output pin.  
MC1A — Motor control PWM channel 1, output A.  
CLKOUT — Clock output.  
MAT1[1] — Match output for Timer 1, channel 1.  
P1[26] — General purpose digital input/output pin.  
MC1B — Motor control PWM channel 1, output B.  
PWM1[6] — Pulse Width Modulator 1, channel 6 output.  
CAP0[0] — Capture input for Timer 0, channel 0.  
P1[28] — General purpose digital input/output pin.  
MC2A — Motor control PWM channel 2, output A.  
PCAP1[0] — Capture input for PWM1, channel 0.  
MAT0[0] — Match output for Timer 0, channel 0.  
P1[29] — General purpose digital input/output pin.  
MC2B — Motor control PWM channel 2, output B.  
PCAP1[1] — Capture input for PWM1, channel 1.  
MAT0[1] — Match output for Timer 0, channel 0.  
P1[26]/MC1B/  
PWM1[6]/CAP0[0]  
P1[28]/MC2A/  
PCAP1[0]/  
MAT0[0]  
I/O  
O
I
O
I/O  
O
I
P1[29]/MC2B/  
PCAP1[1]/  
MAT0[1]  
O
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
9 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Symbol  
Pin description …continued  
Pin  
18[2]  
Type  
I/O  
I
Description  
P1[30]/VBUS  
AD0[4]  
/
P1[30] — General purpose digital input/output pin.  
VBUS Monitors the presence of USB bus power.  
Note: This signal must be HIGH for USB reset to occur.  
AD0[4] — A/D converter 0, input 4.  
I
P1[31]/SCK1/  
AD0[5]  
17[2]  
I/O  
I/O  
I
P1[31] — General purpose digital input/output pin.  
SCK1 — Serial Clock for SSP1.  
AD0[5] — A/D converter 0, input 5.  
P2[0] to P2[31]  
I/O  
Port 2: Port 2 is a 32-bit I/O port with individual direction controls for each bit. The  
operation of port 2 pins depends upon the pin function selected via the pin connect  
block. Some port pins are not available on the LQFP80 package.  
P2[0]/PWM1[1]/  
TXD1  
60[1]  
59[1]  
58[1]  
I/O  
O
O
I/O  
O
I
P2[0] — General purpose digital input/output pin.  
PWM1[1] — Pulse Width Modulator 1, channel 1 output.  
TXD1 — Transmitter output for UART1.  
P2[1]/PWM1[2]/  
RXD1  
P2[1] — General purpose digital input/output pin.  
PWM1[2] — Pulse Width Modulator 1, channel 2 output.  
RXD1 — Receiver input for UART1.  
P2[2]/PWM1[3]/  
CTS1/  
TRACEDATA[3]  
I/O  
O
I
P2[2] — General purpose digital input/output pin.  
PWM1[3] — Pulse Width Modulator 1, channel 3 output.  
CTS1 — Clear to Send input for UART1.  
O
I/O  
O
I
TRACEDATA[3] — Trace data, bit 3.  
P2[3]/PWM1[4]/  
DCD1/  
TRACEDATA[2]  
55[1]  
54[1]  
53[1]  
52[1]  
51[1]  
P2[3] — General purpose digital input/output pin.  
PWM1[4] — Pulse Width Modulator 1, channel 4 output.  
DCD1 — Data Carrier Detect input for UART1.  
TRACEDATA[2] — Trace data, bit 2.  
O
I/O  
O
I
P2[4]/PWM1[5]/  
DSR1/  
TRACEDATA[1]  
P2[4] — General purpose digital input/output pin.  
PWM1[5] — Pulse Width Modulator 1, channel 5 output.  
DSR1 — Data Set Ready input for UART1.  
TRACEDATA[1] — Trace data, bit 1.  
O
I/O  
O
O
O
I/O  
I
P2[5]/PWM1[6]/  
DTR1/  
TRACEDATA[0]  
P2[5] — General purpose digital input/output pin.  
PWM1[6] — Pulse Width Modulator 1, channel 6 output.  
DTR1 — Data Terminal Ready output for UART1.  
TRACEDATA[0] — Trace data, bit 0.  
P2[6]/PCAP1[0]/  
RI1/TRACECLK  
P2[6] — General purpose digital input/output pin.  
PCAP1[0] — Capture input for PWM1, channel 0.  
RI1 — Ring Indicator input for UART1.  
I
O
I/O  
I
TRACECLK — Trace Clock.  
P2[7]/RD2/  
RTS1  
P2[7] — General purpose digital input/output pin.  
RD2 — CAN2 receiver input. (LPC1758/56 only).  
RTS1 — Request to Send output for UART1.  
O
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
10 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Symbol  
Pin description …continued  
Pin  
50[1]  
Type  
I/O  
O
Description  
P2[8]/TD2/  
TXD2/ENET_MDC  
P2[8] — General purpose digital input/output pin.  
TD2 — CAN2 transmitter output. (LPC1758/56 only).  
TXD2 — Transmitter output for UART2.  
O
O
ENET_MDC — Ethernet MIIM clock. (LPC1758 only).  
P2[9] — General purpose digital input/output pin.  
P2[9]/  
49[1]  
I/O  
O
USB_CONNECT/  
RXD2/  
ENET_MDIO  
USB_CONNECT — Signal used to switch an external 1.5 kresistor under  
software control. Used with the SoftConnect USB feature.  
I
RXD2 — Receiver input for UART2.  
I/0  
I/O  
ENET_MDIO — Ethernet MIIM data input and output. (LPC1758 only).  
P2[10] — General purpose digital input/output pin.  
P2[10]/EINT0/NMI 41[5]  
Note: LOW on this pin while RESET is LOW forces on-chip bootloader to take  
over control of the part after a reset.  
I
EINT0 — External interrupt 0 input.  
NMI — Non-maskable interrupt input.  
I
P4[0] to P4[31]  
I/O  
Port 4: Port 4 is a 32-bit I/O port with individual direction controls for each bit. The  
operation of port 4 pins depends upon the pin function selected via the pin connect  
block. Some port pins are not available on the LQFP80 package.  
P4[28]/RX_MCLK/ 65[1]  
MAT2[0]/TXD3  
I/O  
I
P4[28] — General purpose digital input/output pin.  
RX_MCLK — I2S receive master clock. (LPC1758/56 only).  
MAT2[0] — Match output for Timer 2, channel 0.  
TXD3 — Transmitter output for UART3.  
O
O
I/O  
I
P4[29]/TX_MCLK/ 68[1]  
MAT2[1]/RXD3  
P4[29] — General purpose digital input/output pin.  
TX_MCLK — I2S transmit master clock. (LPC1758/56 only).  
MAT2[1] — Match output for Timer 2, channel 1.  
RXD3 — Receiver input for UART3.  
O
I
TDO/SWO  
1[1]  
O
O
I
TDO — Test Data out for JTAG interface.  
SWO — Serial wire trace output.  
TDI  
2[1]  
3[1]  
TDI — Test Data in for JTAG interface.  
TMS/SWDIO  
I
TMS — Test Mode Select for JTAG interface.  
SWDIO — Serial wire debug data input/output.  
TRST — Test Reset for JTAG interface.  
I/O  
I
TRST  
4[1]  
5[1]  
TCK/SWDCLK  
I
TCK — Test Clock for JTAG interface.  
I
SWDCLK — Serial wire clock.  
RSTOUT  
RESET  
11  
O
RSTOUT — This is a 3.3 V pin. LOW on this pin indicates LPC1758/56/54/52/51  
being in Reset state.  
14[6]  
I
External reset input: A LOW on this pin resets the device, causing I/O ports and  
peripherals to take on their default states, and processor execution to begin at  
address 0. TTL with hysteresis, 5 V tolerant.  
XTAL1  
XTAL2  
RTCX1  
RTCX2  
19[7]  
20[7]  
13[7]  
15[7]  
I
Input to the oscillator circuit and internal clock generator circuits.  
Output from the oscillator amplifier.  
O
I
Input to the RTC oscillator circuit.  
O
Output from the RTC oscillator circuit.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
11 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Symbol  
VSS  
Pin description …continued  
Pin  
Type  
Description  
24, 33,  
43, 57,  
66, 78  
I
ground: 0 V reference.  
VSSA  
9
I
I
I
I
analog ground: 0 V reference. This should nominally be the same voltage as VSS,  
but should be isolated to minimize noise and error.  
VDD(3V3)  
VDD(REG)(3V3)  
VDDA  
21, 42,  
56, 77  
3.3 V supply voltage: This is the power supply voltage for the I/O ports.  
34, 67  
3.3 V voltage regulator supply voltage: This is the supply voltage for the on-chip  
voltage regulator only.  
8
analog 3.3 V pad supply voltage: This should be nominally the same voltage as  
V
DD(3V3) but should be isolated to minimize noise and error. This voltage is used to  
power the ADC and DAC.  
VREFP  
VREFN  
VBAT  
10  
12  
16  
I
I
I
ADC positive reference voltage: This should be nominally the same voltage as  
V
DDA but should be isolated to minimize noise and error. Level on this pin is used  
as a reference for ADC and DAC.  
ADC negative reference voltage: This should be nominally the same voltage as  
V
SS but should be isolated to minimize noise and error. Level on this pin is used as  
a reference for ADC and DAC.  
RTC pin power supply: 3.3 V on this pin supplies the power to the RTC  
peripheral.  
[1] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis.  
[2] 5 V tolerant pad providing digital I/O functions (with TTL levels and hysteresis) and analog input. When configured as a ADC input,  
digital section of the pad is disabled.  
[3] 5 V tolerant pad providing digital I/O with TTL levels and hysteresis and analog output function. When configured as the DAC output,  
digital section of the pad is disabled.  
[4] Pad provides digital I/O and USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and  
Low-speed mode only).  
[5] 5 V tolerant pad with 5 ns glitch filter providing digital I/O functions with TTL levels and hysteresis.  
[6] 5 V tolerant pad with 20 ns glitch filter providing digital I/O function with TTL levels and hysteresis.  
[7] Pad provides special analog functionality.  
7. Functional description  
7.1 Architectural overview  
The ARM Cortex-M3 includes three AHB-Lite buses: the system bus, the I-code bus, and  
the D-code bus (see Figure 1). The I-code and D-code core buses are faster than the  
system bus and are used similarly to Tightly Coupled Memory (TCM) interfaces: one bus  
dedicated for instruction fetch (I-code) and one bus for data access (D-code). The use of  
two core buses allows for simultaneous operations if concurrent operations target different  
devices.  
The LPC1758/56/54/52/51 use a multi-layer AHB matrix to connect the ARM Cortex-M3  
buses and other bus masters to peripherals in a flexible manner that optimizes  
performance by allowing peripherals that are on different slaves ports of the matrix to be  
accessed simultaneously by different bus masters.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
12 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.2 ARM Cortex-M3 processor  
The ARM Cortex-M3 is a general purpose, 32-bit microprocessor, which offers high  
performance and very low power consumption. The ARM Cortex-M3 offers many new  
features, including a Thumb-2 instruction set, low interrupt latency, hardware divide,  
interruptable/continuable multiple load and store instructions, automatic state save and  
restore for interrupts, tightly integrated interrupt controller with wakeup interrupt controller,  
and multiple core buses capable of simultaneous accesses.  
Pipeline techniques are employed so that all parts of the processing and memory systems  
can operate continuously. Typically, while one instruction is being executed, its successor  
is being decoded, and a third instruction is being fetched from memory.  
The ARM Cortex-M3 processor is described in detail in the Cortex-M3 Technical  
Reference Manual that can be found on official ARM website.  
7.3 On-chip flash program memory  
The LPC1758/56/54/52/51 contain up to 512 kB of on-chip flash memory. A new two-port  
flash accelerator maximizes performance for use with the two fast AHB-Lite buses.  
7.4 On-chip SRAM  
The LPC1758/56/54/52/51 contain a total of up to 64 kB on-chip static RAM memory. This  
includes the main 32/16/8 kB SRAM, accessible by the CPU and DMA controller on a  
higher-speed bus, and up to two additional 16 kB each SRAM blocks situated on a  
separate slave port on the AHB multilayer matrix.  
This architecture allows CPU and DMA accesses to be spread over three separate RAMs  
that can be accessed simultaneously.  
7.5 Memory Protection Unit (MPU)  
The LPC1758/56/54/52/51 have a Memory Protection Unit (MPU) which can be used to  
improve the reliability of an embedded system by protecting critical data within the user  
application.  
The MPU allows separating processing tasks by disallowing access to each other's data,  
disabling access to memory regions, allowing memory regions to be defined as read-only  
and detecting unexpected memory accesses that could potentially break the system.  
The MPU separates the memory into distinct regions and implements protection by  
preventing disallowed accesses. The MPU supports up to 8 regions each of which can be  
divided into 8 subregions. Accesses to memory locations that are not defined in the MPU  
regions, or not permitted by the region setting, will cause the Memory Management Fault  
exception to take place.  
7.6 Memory map  
The LPC1758/56/54/52/51 incorporate several distinct memory regions, shown in the  
following figures. Figure 3 shows the overall map of the entire address space from the  
user program viewpoint following reset. The interrupt vector area supports address  
remapping.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
13 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
The AHB peripheral area is 2 MB in size, and is divided to allow for up to 128 peripherals.  
The APB peripheral area is 1 MB in size and is divided to allow for up to 64 peripherals.  
Each peripheral of either type is allocated 16 kB of space. This allows simplifying the  
address decoding for each peripheral.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
14 of 71  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
APB1 peripherals  
LPC1758/56/54/52/51 memory space  
reserved  
4 GB  
0x4010 0000  
0x400F C000  
0x400C 0000  
0x400B C000  
0x400B 8000  
0x400B 4000  
0x400B 0000  
0x400A C000  
0x400A 8000  
0x400A 4000  
0x400A 0000  
0x4009 C000  
0x4009 8000  
0x4009 4000  
0x4009 0000  
0x4008 C000  
0x4008 8000  
0x4008 0000  
0xFFFF FFFF  
31  
system control  
30 - 16 not used  
QEI  
AHB peripherals  
127- 4 not used  
0x5020 0000  
0x5001 0000  
0x5000 C000  
0x5000 8000  
0x5000 4000  
0x5000 0000  
0xE010 0000  
0xE000 0000  
15  
14  
13  
12  
11  
10  
9
private peripheral bus  
reserved  
motor control PWM  
not used  
3
2
1
USB controller  
reserved  
0x5020 0000  
0x5000 0000  
repetitive interrupt timer  
not used  
AHB peripherals  
reserved  
GPDMA controller  
(1)  
(2)  
0
I2S  
Ethernet controller  
0x4400 0000  
0x4200 0000  
not used  
I2C2  
peripheral bit band alias addressing  
reserved  
8
APB0 peripherals  
31 - 24 not used  
0x4008 0000  
0x4006 0000  
0x4005 C000  
0x4004 C000  
0x4004 8000  
0x4004 4000  
0x4004 0000  
0x4003 C000  
0x4003 8000  
0x4003 4000  
0x4003 0000  
0x4002 C000  
0x4002 8000  
0x4002 4000  
0x4002 0000  
0x4001 C000  
0x4001 8000  
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
0x4000 4000  
0x4000 0000  
002aae154  
UART3  
UART2  
Timer 3  
Timer 2  
7
0x4010 0000  
0x4008 0000  
0x4000 0000  
6
APB1 peripherals  
APB0 peripherals  
reserved  
I2C1  
23  
5
1 GB  
22 - 19 not used  
4
(1)  
CAN2  
(3)  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
0x2400 0000  
0x2200 0000  
3
DAC  
CAN1  
CAN common  
CAN AF registers  
CAN AF RAM  
ADC  
SSP0  
AHB SRAM bit band alias addressing  
2
1 - 0 reserved  
reserved  
GPIO  
0x200A 0000  
0x2009 C000  
0x2008 4000  
0x2000 4000  
reserved  
(1)  
LPC1758/56 only  
LPC1758 only  
LPC1758/56/54 only  
(2)  
(3)  
16 kB AHB SRAM1 (LPC1758)  
SSP1  
16 kB AHB SRAM0 (LPC1758/6/4)  
pin connect  
GPIO interrupts  
RTC + backup registers  
SPI  
0.5 GB  
0x2007 C000  
0x1FFF 2000  
reserved  
8 kB boot ROM  
0x1FFF 0000  
0x1000 8000  
0x1000 4000  
0x1000 2000  
0x1000 0000  
0x0008 0000  
0x0004 0000  
0x0002 0000  
8
reserved  
not used  
7
32 kB local static RAM (LPC1758)  
16 kB local static RAM (LPC1756/4/2)  
PWM1  
6
not used  
5
8 kB local static RAM (LPC1751)  
I-code/D-code  
memory space  
UART1  
4
UART0  
reserved  
3
TIMER1  
2
512 kB on-chip flash (LPC1758)  
256 kB on-chip flash (LPC1756)  
128 kB on-chip flash (LPC1754)  
TIMER0  
1
0
WDT  
0x0001 0000  
0x0000 8000  
0x0000 0000  
+ 256 bytes  
0x0000 0100  
0x0000 0000  
64 kB on-chip flash (LPC1752)  
32 kB on-chip flash (LPC1751)  
active interrupt vectors  
0 GB  
Fig 3. LPC1758/56/54/52/51 memory map  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.7 Nested Vectored Interrupt Controller (NVIC)  
The NVIC is an integral part of the Cortex-M3. The tight coupling to the CPU allows for low  
interrupt latency and efficient processing of late arriving interrupts.  
7.7.1 Features  
Controls system exceptions and peripheral interrupts  
In the LPC1758/56/54/52/51, the NVIC supports 33 vectored interrupts  
32 programmable interrupt priority levels, with hardware priority level masking  
Relocatable vector table  
Non-Maskable Interrupt (NMI)  
Software interrupt generation  
7.7.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags. Individual interrupt flags may also represent more than one interrupt  
source.  
Any pin on PORT0 and PORT2 (total of 30 pins) regardless of the selected function, can  
be programmed to generate an interrupt on a rising edge, a falling edge, or both.  
7.8 Pin connect block  
The pin connect block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on-chip peripherals.  
Peripherals should be connected to the appropriate pins prior to being activated and prior  
to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is  
not mapped to a related pin should be considered undefined.  
Most pins can also be configured as open-drain outputs or to have a pull-up, pull-down, or  
no resistor enabled.  
7.9 General purpose DMA controller  
The GPDMA is an AMBA AHB compliant peripheral allowing selected  
LPC1758/56/54/52/51 peripherals to have DMA support.  
The GPDMA enables peripheral-to-memory, memory-to-peripheral,  
peripheral-to-peripheral, and memory-to-memory transactions. The source and  
destination areas can each be either a memory region or a peripheral, and can be  
accessed through the AHB master. The GPDMA controller allows data transfers between  
the USB and Ethernet (LPC1758 only) controllers and the various on-chip SRAM areas.  
The supported APB peripherals are SSP0/1, all UARTs, the I2S-bus interface, the ADC,  
and the DAC. Two match signals for each timer can be used to trigger DMA transfers.  
Remark: Note that the DAC is not available on the LPC1752/51, and the I2S-bus interface  
is not available on the LPC1754/52/51.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
16 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.9.1 Features  
Eight DMA channels. Each channel can support an unidirectional transfer.  
16 DMA request lines.  
Single DMA and burst DMA request signals. Each peripheral connected to the DMA  
Controller can assert either a burst DMA request or a single DMA request. The DMA  
burst size is set by programming the DMA Controller.  
Memory-to-memory, memory-to-peripheral, peripheral-to-memory, and  
peripheral-to-peripheral transfers are supported.  
Scatter or gather DMA is supported through the use of linked lists. This means that  
the source and destination areas do not have to occupy contiguous areas of memory.  
Hardware DMA channel priority.  
AHB slave DMA programming interface. The DMA Controller is programmed by  
writing to the DMA control registers over the AHB slave interface.  
One AHB bus master for transferring data. The interface transfers data when a DMA  
request goes active.  
32-bit AHB master bus width.  
Incrementing or non-incrementing addressing for source and destination.  
Programmable DMA burst size. The DMA burst size can be programmed to more  
efficiently transfer data.  
Internal four-word FIFO per channel.  
Supports 8, 16, and 32-bit wide transactions.  
Big-endian and little-endian support. The DMA Controller defaults to little-endian  
mode on reset.  
An interrupt to the processor can be generated on a DMA completion or when a DMA  
error has occurred.  
Raw interrupt status. The DMA error and DMA count raw interrupt status can be read  
prior to masking.  
7.10 Fast general purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate  
registers allow setting or clearing any number of outputs simultaneously. The value of the  
output register may be read back as well as the current state of the port pins.  
LPC1758/56/54/52/51 use accelerated GPIO functions:  
GPIO registers are a dedicated AHB peripheral and are accessed through the AHB  
multilayer bus so that the fastest possible I/O timing can be achieved.  
Mask registers allow treating sets of port bits as a group, leaving other bits  
unchanged.  
All GPIO registers are byte and half-word addressable.  
Entire port value can be written in one instruction.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
17 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Additionally, any pin on PORT0 and PORT2 (total of 42 pins) providing a digital function  
can be programmed to generate an interrupt on a rising edge, a falling edge, or both. The  
edge detection is asynchronous, so it may operate when clocks are not present such as  
during Power-down mode. Each enabled interrupt can be used to wake up the chip from  
Power-down mode.  
7.10.1 Features  
Bit level set and clear registers allow a single instruction to set or clear any number of  
bits in one port.  
Direction control of individual bits.  
All I/O default to inputs after reset.  
Pull-up/pull-down resistor configuration and open-drain configuration can be  
programmed through the pin connect block for each GPIO pin.  
7.11 Ethernet (LPC1758 only)  
The Ethernet block contains a full featured 10 Mbit/s or 100 Mbit/s Ethernet MAC  
designed to provide optimized performance through the use of DMA hardware  
acceleration. Features include a generous suite of control registers, half or full duplex  
operation, flow control, control frames, hardware acceleration for transmit retry, receive  
packet filtering and wake-up on LAN activity. Automatic frame transmission and reception  
with scatter-gather DMA off-loads many operations from the CPU.  
The Ethernet block and the CPU share the ARM Cortex-M3 D-code and system bus  
through the AHB-multilayer matrix to access the various on-chip SRAM blocks for  
Ethernet data, control, and status information.  
The Ethernet block interfaces between an off-chip Ethernet PHY using the Reduced MII  
(RMII) protocol and the on-chip Media Independent Interface Management (MIIM) serial  
bus.  
The Ethernet block supports bus clock rates of up to 100 MHz.  
7.11.1 Features  
Ethernet standards support:  
Supports 10 Mbit/s or 100 Mbit/s PHY devices including 10 Base-T, 100 Base-TX,  
100 Base-FX, and 100 Base-T4.  
Fully compliant with IEEE standard 802.3.  
Fully compliant with 802.3x full duplex flow control and half duplex back pressure.  
Flexible transmit and receive frame options.  
Virtual Local Area Network (VLAN) frame support.  
Memory management:  
Independent transmit and receive buffers memory mapped to shared SRAM.  
DMA managers with scatter/gather DMA and arrays of frame descriptors.  
Memory traffic optimized by buffering and pre-fetching.  
Enhanced Ethernet features:  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
18 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Receive filtering.  
Multicast and broadcast frame support for both transmit and receive.  
Optional automatic Frame Check Sequence (FCS) insertion with Cyclic  
Redundancy Check (CRC) for transmit.  
Selectable automatic transmit frame padding.  
Over-length frame support for both transmit and receive allows any length frames.  
Promiscuous receive mode.  
Automatic collision back-off and frame retransmission.  
Includes power management by clock switching.  
Wake-on-LAN power management support allows system wake-up: using the  
receive filters or a magic frame detection filter.  
Physical interface:  
Attachment of external PHY chip through standard RMII interface.  
PHY register access is available via the MIIM interface.  
7.12 USB interface  
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a  
host and one or more (up to 127) peripherals. The host controller allocates the USB  
bandwidth to attached devices through a token-based protocol. The bus supports hot  
plugging and dynamic configuration of the devices. All transactions are initiated by the  
host controller.  
The LPC1758/56/54 USB interface includes a device, Host, and OTG controller with  
on-chip PHY for device and Host functions. The OTG switching protocol is supported  
through the use of an external controller. Details on typical USB interfacing solutions can  
be found in Section 14.1. The LPC1752/51 include a USB device controller only.  
7.12.1 USB device controller  
The device controller enables 12 Mbit/s data exchange with a USB Host controller. It  
consists of a register interface, serial interface engine, endpoint buffer memory, and a  
DMA controller. The serial interface engine decodes the USB data stream and writes data  
to the appropriate endpoint buffer. The status of a completed USB transfer or error  
condition is indicated via status registers. An interrupt is also generated if enabled. When  
enabled, the DMA controller transfers data between the endpoint buffer and the on-chip  
SRAM.  
7.12.1.1 Features  
Fully compliant with USB 2.0 specification (full speed).  
Supports 32 physical (16 logical) endpoints with a 4 kB endpoint buffer RAM.  
Supports Control, Bulk, Interrupt and Isochronous endpoints.  
Scalable realization of endpoints at run time.  
Endpoint Maximum packet size selection (up to USB maximum specification) by  
software at run time.  
Supports SoftConnect and GoodLink features.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
19 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
While USB is in the Suspend mode, the LPC1758/56/54/52/51 can enter one of the  
reduced power modes and wake up on USB activity.  
Supports DMA transfers with all on-chip SRAM blocks on all non-control endpoints.  
Allows dynamic switching between CPU-controlled slave and DMA modes.  
Double buffer implementation for Bulk and Isochronous endpoints.  
7.12.2 USB host controller (LPC1758/56/54 only).  
The host controller enables full- and low-speed data exchange with USB devices attached  
to the bus. It consists of a register interface, a serial interface engine, and a DMA  
controller. The register interface complies with the Open Host Controller Interface (OHCI)  
specification.  
7.12.2.1 Features  
OHCI compliant.  
One downstream port.  
Supports port power switching.  
7.12.3 USB OTG controller (LPC1758/56/54 only).  
USB OTG is a supplement to the USB 2.0 specification that augments the capability of  
existing mobile devices and USB peripherals by adding host functionality for connection to  
USB peripherals.  
The OTG Controller integrates the host controller, device controller, and a master-only  
I2C-bus interface to implement OTG dual-role device functionality. The dedicated I2C-bus  
interface controls an external OTG transceiver.  
7.12.3.1 Features  
Fully compliant with On-The-Go supplement to the USB 2.0 Specification, Revision  
1.0a.  
Hardware support for Host Negotiation Protocol (HNP).  
Includes a programmable timer required for HNP and Session Request Protocol  
(SRP).  
Supports any OTG transceiver compliant with the OTG Transceiver Specification  
(CEA-2011), Rev. 1.0.  
7.13 CAN controller and acceptance filters  
The Controller Area Network (CAN) is a serial communications protocol which efficiently  
supports distributed real-time control with a very high level of security. Its domain of  
application ranges from high-speed networks to low cost multiplex wiring.  
The CAN block is intended to support multiple CAN buses simultaneously, allowing the  
device to be used as a gateway, switch, or router among a number of CAN buses in  
industrial or automotive applications.  
Remark: LPC1754/52/51 have only one CAN bus.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
20 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.13.1 Features  
One or two CAN controllers and buses.  
Data rates to 1 Mbit/s on each bus.  
32-bit register and RAM access.  
Compatible with CAN specification 2.0B, ISO 11898-1.  
Global Acceptance Filter recognizes standard (11-bit) and extended-frame (29-bit)  
receive identifiers for all CAN buses.  
Acceptance Filter can provide FullCAN-style automatic reception for selected  
Standard Identifiers.  
FullCAN messages can generate interrupts.  
7.14 12-bit ADC  
The LPC1758/56/54/52/51 contain one ADC. It is a single 12-bit successive  
approximation ADC with four channels and DMA support.  
7.14.1 Features  
12-bit successive approximation ADC.  
Input multiplexing among 8 pins.  
Power-down mode.  
Measurement range Vi(VREFN) to Vi(VREFP)  
12-bit conversion rate: 1 MHz.  
.
Individual channels can be selected for conversion.  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition of input pin or Timer Match signal.  
Individual result registers for each ADC channel to reduce interrupt overhead.  
DMA support.  
7.15 10-bit DAC (LPC1758/56/54 only)  
The DAC allows to generate a variable analog output. The maximum output value of the  
DAC is Vi(VREFP)  
.
7.15.1 Features  
10-bit DAC  
Resistor string architecture  
Buffered output  
Power-down mode  
Selectable output drive  
Dedicated conversion timer  
DMA support  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
21 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
7.16 UARTs  
32-bit ARM Cortex-M3 microcontroller  
The LPC1758/56/54/52/51 each contain four UARTs. In addition to standard transmit and  
receive data lines, UART1 also provides a full modem control handshake interface.  
Support for RS-485/9-bit mode allows both software address detection and automatic  
address detection using 9-bit mode.  
The UARTs include a fractional baud rate generator. Standard baud rates such as  
115200 Bd can be achieved with any crystal frequency above 2 MHz.  
7.16.1 Features  
16 B Receive and Transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
Fractional divider for baud rate control, auto baud capabilities and FIFO control  
mechanism that enables software flow control implementation.  
UART1 equipped with standard modem interface signals. This module also provides  
full support for hardware flow control (auto-CTS/RTS).  
Support for RS-485/9-bit mode.  
UART3 includes an IrDA mode to support infrared communication.  
All UARTs have DMA support.  
7.17 SPI serial I/O controller  
The LPC1758/56/54/52/51 contain one SPI controller. SPI is a full duplex serial interface  
designed to handle multiple masters and slaves connected to a given bus. Only a single  
master and a single slave can communicate on the interface during a given data transfer.  
During a data transfer the master always sends 8 bits to 16 bits of data to the slave, and  
the slave always sends 8 bits to 16 bits of data to the master.  
7.17.1 Features  
Compliant with SPI specification  
Synchronous, serial, full duplex communication  
Combined SPI master and slave  
Maximum data bit rate of one eighth of the input clock rate  
8 bits to 16 bits per transfer  
7.18 SSP serial I/O controller  
The LPC1758/56/54/52/51 contain two SSP controllers. The SSP controller is capable of  
operation on a SPI, 4-wire SSI, or Microwire bus. It can interact with multiple masters and  
slaves on the bus. Only a single master and a single slave can communicate on the bus  
during a given data transfer. The SSP supports full duplex transfers, with frames of 4 bits  
to 16 bits of data flowing from the master to the slave and from the slave to the master. In  
practice, often only one of these data flows carries meaningful data.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
22 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.18.1 Features  
Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National  
Semiconductor Microwire buses  
Synchronous serial communication  
Master or slave operation  
8-frame FIFOs for both transmit and receive  
4-bit to 16-bit frame  
DMA transfers supported by GPDMA  
7.19 I2C-bus serial I/O controllers  
The LPC1758/56/54/52/51 each contain three I2C-bus controllers.  
The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock Line  
(SCL) and a Serial Data Line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be  
controlled by more than one bus master connected to it.  
7.19.1 Features  
I2C1 and I2C2 use standard I/O pins with bit rates of up to 400 kbit/s (Fast I2C-bus).  
Easy to configure as master, slave, or master/slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can be used for test and diagnostic purposes.  
All I2C-bus controllers support multiple address recognition and a bus monitor mode.  
7.20 I2S-bus serial I/O controllers (LPC1758/56 only)  
The I2S-bus provides a standard communication interface for digital audio applications.  
The I2S-bus specification defines a 3-wire serial bus using one data line, one clock line,  
and one word select signal. The basic I2S connection has one master, which is always the  
master, and one slave. The I2S-bus interface provides a separate transmit and receive  
channel, each of which can operate as either a master or a slave.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
23 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.20.1 Features  
The interface has separate input/output channels each of which can operate in master  
or slave mode.  
Capable of handling 8-bit, 16-bit, and 32-bit word sizes.  
Mono and stereo audio data supported.  
The sampling frequency can range from 16 kHz to 96 kHz (16, 22.05, 32, 44.1, 48,  
96) kHz.  
Support for an audio master clock.  
Configurable word select period in master mode (separately for I2S input and output).  
Two 8-word FIFO data buffers are provided, one for transmit and one for receive.  
Generates interrupt requests when buffer levels cross a programmable boundary.  
Two DMA requests, controlled by programmable buffer levels. These are connected to  
the GPDMA block.  
Controls include reset, stop and mute options separately for I2S input and I2S output.  
7.21 General purpose 32-bit timers/external event counters  
The LPC1758/56/54/52/51 include four 32-bit timer/counters. The timer/counter is  
designed to count cycles of the system derived clock or an externally-supplied clock. It  
can optionally generate interrupts, generate timed DMA requests, or perform other actions  
at specified timer values, based on four match registers. Each timer/counter also includes  
two capture inputs to trap the timer value when an input signal transitions, optionally  
generating an interrupt.  
7.21.1 Features  
A 32-bit timer/counter with a programmable 32-bit prescaler.  
Counter or timer operation.  
Two 32-bit capture channels per timer, that can take a snapshot of the timer value  
when an input signal transitions. A capture event may also generate an interrupt.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Up to four external outputs corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
Up to two match registers can be used to generate timed DMA requests.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
24 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.22 Pulse width modulator  
The PWM is based on the standard Timer block and inherits all of its features, although  
only the PWM function is pinned out on the LPC1758/56/54/52/51. The Timer is designed  
to count cycles of the system derived clock and optionally switch pins, generate interrupts  
or perform other actions when specified timer values occur, based on seven match  
registers. The PWM function is in addition to these features, and is based on match  
register events.  
The ability to separately control rising and falling edge locations allows the PWM to be  
used for more applications. For instance, multi-phase motor control typically requires three  
non-overlapping PWM outputs with individual control of all three pulse widths and  
positions.  
Two match registers can be used to provide a single edge controlled PWM output. One  
match register (PWMMR0) controls the PWM cycle rate, by resetting the count upon  
match. The other match register controls the PWM edge position. Additional single edge  
controlled PWM outputs require only one match register each, since the repetition rate is  
the same for all PWM outputs. Multiple single edge controlled PWM outputs will all have a  
rising edge at the beginning of each PWM cycle, when an PWMMR0 match occurs.  
Three match registers can be used to provide a PWM output with both edges controlled.  
Again, the PWMMR0 match register controls the PWM cycle rate. The other match  
registers control the two PWM edge positions. Additional double edge controlled PWM  
outputs require only two match registers each, since the repetition rate is the same for all  
PWM outputs.  
With double edge controlled PWM outputs, specific match registers control the rising and  
falling edge of the output. This allows both positive going PWM pulses (when the rising  
edge occurs prior to the falling edge), and negative going PWM pulses (when the falling  
edge occurs prior to the rising edge).  
7.22.1 Features  
LPC1758/56/54/52/51 has one PWM block with Counter or Timer operation (may use  
the peripheral clock or one of the capture inputs as the clock source).  
Seven match registers allow up to 6 single edge controlled or 3 double edge  
controlled PWM outputs, or a mix of both types. The match registers also allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Supports single edge controlled and/or double edge controlled PWM outputs. Single  
edge controlled PWM outputs all go high at the beginning of each cycle unless the  
output is a constant low. Double edge controlled PWM outputs can have either edge  
occur at any position within a cycle. This allows for both positive going and negative  
going pulses.  
Pulse period and width can be any number of timer counts. This allows complete  
flexibility in the trade-off between resolution and repetition rate. All PWM outputs will  
occur at the same repetition rate.  
Double edge controlled PWM outputs can be programmed to be either positive going  
or negative going pulses.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
25 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Match register updates are synchronized with pulse outputs to prevent generation of  
erroneous pulses. Software must ‘release’ new match values before they can become  
effective.  
May be used as a standard 32-bit timer/counter with a programmable 32-bit prescaler  
if the PWM mode is not enabled.  
7.23 Motor control PWM  
The motor control PWM is a specialized PWM supporting 3-phase motors and other  
combinations. Feedback inputs are provided to automatically sense rotor position and use  
that information to ramp speed up or down. An abort input is also provided that causes the  
PWM to immediately release all motor drive outputs. At the same time, the motor control  
PWM is highly configurable for other generalized timing, counting, capture, and compare  
applications.  
7.24 Quadrature Encoder Interface (QEI)  
A quadrature encoder, also known as a 2-channel incremental encoder, converts angular  
displacement into two pulse signals. By monitoring both the number of pulses and the  
relative phase of the two signals, the user can track the position, direction of rotation, and  
velocity. In addition, a third channel, or index signal, can be used to reset the position  
counter. The quadrature encoder interface decodes the digital pulses from a quadrature  
encoder wheel to integrate position over time and determine direction of rotation. In  
addition, the QEI can capture the velocity of the encoder wheel.  
7.24.1 Features  
Tracks encoder position.  
Increments/decrements depending on direction.  
Programmable for 2x or 4x position counting.  
Velocity capture using built-in timer.  
Velocity compare function with “less than” interrupt.  
Uses 32-bit registers for position and velocity.  
Three position compare registers with interrupts.  
Index counter for revolution counting.  
Index compare register with interrupts.  
Can combine index and position interrupts to produce an interrupt for whole and  
partial revolution displacement.  
Digital filter with programmable delays for encoder input signals.  
Can accept decoded signal inputs (clk and direction).  
Connected to APB.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
26 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.25 Repetitive Interrupt (RI) timer  
The repetitive interrupt timer provides a free-running 32-bit counter which is compared to  
a selectable value, generating an interrupt when a match occurs. Any bits of the  
timer/compare can be masked such that they do not contribute to the match detection.  
The repetitive interrupt timer can be used to create an interrupt that repeats at  
predetermined intervals.  
7.25.1 Features  
32-bit counter running from PCLK. Counter can be free-running or be reset by a  
generated interrupt.  
32-bit compare value.  
32-bit compare mask. An interrupt is generated when the counter value equals the  
compare value, after masking. This allows for combinations not possible with a simple  
compare.  
7.26 System tick timer  
The ARM Cortex-M3 includes a system tick timer (SYSTICK) that is intended to generate  
a dedicated SYSTICK exception at a 10 ms interval. In the LPC1758/56/54/52/51, this  
timer can be clocked from the internal AHB clock or from a device pin.  
7.27 Watchdog timer  
The purpose of the watchdog is to reset the microcontroller within a reasonable amount of  
time if it enters an erroneous state. When enabled, the watchdog will generate a system  
reset if the user program fails to ‘feed’ (or reload) the watchdog within a predetermined  
amount of time.  
7.27.1 Features  
Internally resets chip if not periodically reloaded.  
Debug mode.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 32-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) × 256 × 4) to (Tcy(WDCLK) × 232 × 4) in  
multiples of Tcy(WDCLK) × 4.  
The Watchdog Clock (WDCLK) source can be selected from the Internal RC (IRC)  
oscillator or the APB peripheral clock. This gives a wide range of potential timing  
choices of Watchdog operation under different power reduction conditions. It also  
provides the ability to run the WDT from an entirely internal source that is not  
dependent on an external crystal and its associated components and wiring for  
increased reliability.  
Includes lock/safe feature.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
27 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.28 RTC and backup registers  
The RTC is a set of counters for measuring time when system power is on, and optionally  
when it is off. The RTC on the LPC1758/56/54/52/51 is designed to have extremely low  
power consumption, i.e. less than 1 µA. The RTC will typically run from the main chip  
power supply, conserving battery power while the rest of the device is powered up. When  
operating from a battery, the RTC will continue working down to 2.1 V. Battery power can  
be provided from a standard 3 V Lithium button cell.  
An ultra-low power 32 kHz oscillator will provide a 1 Hz clock to the time counting portion  
of the RTC, moving most of the power consumption out of the time counting function.  
The RTC includes a calibration mechanism to allow fine-tuning the count rate in a way that  
will provide less than 1 second per day error when operated at a constant voltage and  
temperature. A clock output function (see Section 7.29.4) makes measuring the oscillator  
rate easy and accurate.  
The RTC contains a small set of backup registers (64 bytes) for holding data while the  
main part of the LPC1758/56/54/52/51 is powered off.  
The RTC includes an alarm function that can wake up the LPC1758/56/54/52/51 from all  
reduced power modes with a time resolution of 1 s.  
7.28.1 Features  
Measures the passage of time to maintain a calendar and clock.  
Ultra low power design to support battery powered systems.  
Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and Day  
of Year.  
Dedicated power supply pin can be connected to a battery or to the main 3.3 V.  
Periodic interrupts can be generated from increments of any field of the time registers.  
Backup registers (64 bytes) powered by VBAT.  
RTC power supply is isolated from the rest of the chip.  
7.29 Clocking and power control  
7.29.1 Crystal oscillators  
The LPC1758/56/54/52/51 include three independent oscillators. These are the main  
oscillator, the IRC oscillator, and the RTC oscillator. Each oscillator can be used for more  
than one purpose as required in a particular application. Any of the three clock sources  
can be chosen by software to drive the main PLL and ultimately the CPU.  
Following reset, the LPC1758/56/54/52/51 will operate from the Internal RC oscillator until  
switched by software. This allows systems to operate without any external crystal and the  
bootloader code to operate at a known frequency.  
See Figure 4 for an overview of the LPC1758/56/54/52/51 clock generation.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
28 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
LPC17xx  
usbclk  
(48 MHz)  
USB PLL  
USB  
CLOCK  
DIVIDER  
MAIN  
OSCILLATOR  
USB BLOCK  
MAIN PLL  
pllclk  
USB clock config  
(USBCLKCFG)  
USB PLL enable  
cclk  
CPU  
CLOCK  
DIVIDER  
system  
clock  
select  
ARM  
CORTEX-M3  
main PLL enable  
ETHERNET  
BLOCK  
(CLKSRCSEL)  
CPU clock config  
(CCLKCFG)  
INTERNAL  
RC  
OSCILLATOR  
DMA  
GPIO  
NVIC  
WATCHDOG  
TIMER  
CCLK/8  
CCLK/6  
CCLK/4  
CCLK/2  
CCLK  
32 kHz  
PERIPHERAL  
CLOCK  
GENERATOR  
pclk  
WDT  
APB peripherals  
RTC  
rtclk = 1Hz  
OSCILLATOR  
REAL-TIME  
CLOCK  
002aad947  
Fig 4. LPC1758/56/54/52/51 clocking generation block diagram  
7.29.1.1 Internal RC oscillator  
The IRC may be used as the clock source for the WDT, and/or as the clock that drives the  
PLL and subsequently the CPU. The nominal IRC frequency is 4 MHz. The IRC is  
trimmed to 1 % accuracy over the entire voltage and temperature range.  
Upon power-up or any chip reset, the LPC1758/56/54/52/51 use the IRC as the clock  
source. Software may later switch to one of the other available clock sources.  
7.29.1.2 Main oscillator  
The main oscillator can be used as the clock source for the CPU, with or without using the  
PLL. The main oscillator also provides the clock source for the dedicated USB PLL.  
The main oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be  
boosted to a higher frequency, up to the maximum CPU operating frequency, by the main  
PLL. The clock selected as the PLL input is PLLCLKIN. The ARM processor clock  
frequency is referred to as CCLK elsewhere in this document. The frequencies of  
PLLCLKIN and CCLK are the same value unless the PLL is active and connected. The  
clock frequency for each peripheral can be selected individually and is referred to as  
PCLK. Refer to Section 7.29.2 for additional information.  
7.29.1.3 RTC oscillator  
The RTC oscillator can be used as the clock source for the RTC block, the main PLL,  
and/or the CPU.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
29 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.29.2 Main PLL (PLL0)  
The PLL0 accepts an input clock frequency in the range of 32 kHz to 25 MHz. The input  
frequency is multiplied up to a high frequency, then divided down to provide the actual  
clock used by the CPU and/or the USB block.  
The PLL0 input, in the range of 32 kHz to 25 MHz, may initially be divided down by a value  
‘N’, which may be in the range of 1 to 256. This input division provides a wide range of  
output frequencies from the same input frequency.  
Following the PLL0 input divider is the PLL0 multiplier. This can multiply the input divider  
output through the use of a Current Controlled Oscillator (CCO) by a value ‘M’, in the  
range of 1 through 32768. The resulting frequency must be in the range of 275 MHz to  
550 MHz. The multiplier works by dividing the CCO output by the value of M, then using a  
phase-frequency detector to compare the divided CCO output to the multiplier input. The  
error value is used to adjust the CCO frequency.  
The PLL0 is turned off and bypassed following a chip Reset and by entering Power-down  
mode. PLL0 is enabled by software only. The program must configure and activate the  
PLL0, wait for the PLL0 to lock, and then connect to the PLL0 as a clock source.  
7.29.3 USB PLL (PLL1)  
The LPC1758/56/54/52/51 contain a second, dedicated USB PLL1 to provide clocking for  
the USB interface.  
The PLL1 receives its clock input from the main oscillator only and provides a fixed  
48 MHz clock to the USB block only. The PLL1 is disabled and powered off on reset. If the  
PLL1 is left disabled, the USB clock will be supplied by the 48 MHz clock from the main  
PLL0.  
The PLL1 accepts an input clock frequency in the range of 10 MHz to 25 MHz only. The  
input frequency is multiplied up the range of 48 MHz for the USB clock using a Current  
Controlled Oscillators (CCO). It is insured that the PLL1 output has a 50% duty cycle.  
7.29.4 RTC clock output  
The LPC1758/56/54/52/51 feature a clock output function intended for synchronizing with  
external devices and for use during system development to allow checking the internal  
clocks CCLK, IRC clock, main crystal, RTC clock, and USB clock in the outside world. The  
RTC clock output allows tuning the RTC frequency without probing the pin, which would  
distort the results.  
7.29.5 Wake-up timer  
The LPC1758/56/54/52/51 begin operation at power-up and when awakened from  
Power-down mode by using the 4 MHz IRC oscillator as the clock source. This allows chip  
operation to resume quickly. If the main oscillator or the PLL is needed by the application,  
software will need to enable these features and wait for them to stabilize before they are  
used as a clock source.  
When the main oscillator is initially activated, the wake-up timer allows software to ensure  
that the main oscillator is fully functional before the processor uses it as a clock source  
and starts to execute instructions. This is important at power on, all types of Reset, and  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
30 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
whenever any of the aforementioned functions are turned off for any reason. Since the  
oscillator and other functions are turned off during Power-down mode, any wake-up of the  
processor from Power-down mode makes use of the wake-up Timer.  
The Wake-up Timer monitors the crystal oscillator to check whether it is safe to begin  
code execution. When power is applied to the chip, or when some event caused the chip  
to exit Power-down mode, some time is required for the oscillator to produce a signal of  
sufficient amplitude to drive the clock logic. The amount of time depends on many factors,  
including the rate of VDD(3V3) ramp (in the case of power on), the type of crystal and its  
electrical characteristics (if a quartz crystal is used), as well as any other external circuitry  
(e.g., capacitors), and the characteristics of the oscillator itself under the existing ambient  
conditions.  
7.29.6 Power control  
The LPC1758/56/54/52/51 support a variety of power control features. There are four  
special modes of processor power reduction: Sleep mode, Deep-sleep mode,  
Power-down mode, and Deep power-down mode. The CPU clock rate may also be  
controlled as needed by changing clock sources, reconfiguring PLL values, and/or altering  
the CPU clock divider value. This allows a trade-off of power versus processing speed  
based on application requirements. In addition, Peripheral Power Control allows shutting  
down the clocks to individual on-chip peripherals, allowing fine tuning of power  
consumption by eliminating all dynamic power use in any peripherals that are not required  
for the application. Each of the peripherals has its own clock divider which provides even  
better power control.  
Integrated PMU (Power Management Unit) automatically adjust internal regulators to  
minimize power consumption during Sleep, Deep sleep, Power-down, and Deep  
power-down modes.  
The LPC1758/56/54/52/51 also implement a separate power domain to allow turning off  
power to the bulk of the device while maintaining operation of the RTC and a small set of  
registers for storing data during any of the power-down modes.  
7.29.6.1 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence but re-enabling the clock to the ARM core.  
In Sleep mode, execution of instructions is suspended until either a Reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and may generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, and internal  
buses.  
7.29.6.2 Deep-sleep mode  
In Deep-sleep mode, the oscillator is shut down and the chip receives no internal clocks.  
The processor state and registers, peripheral registers, and internal SRAM values are  
preserved throughout Deep-sleep mode and the logic levels of chip pins remain static.  
The output of the IRC is disabled but the IRC is not powered down for a fast wake-up later.  
The RTC oscillator is not stopped because the RTC interrupts may be used as the  
wake-up source. The PLL is automatically turned off and disconnected. The CCLK and  
USB clock dividers automatically get reset to zero.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
31 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
The Deep-sleep mode can be terminated and normal operation resumed by either a  
Reset or certain specific interrupts that are able to function without clocks. Since all  
dynamic operation of the chip is suspended, Deep-sleep mode reduces chip power  
consumption to a very low value. Power to the flash memory is left on in Deep-sleep  
mode, allowing a very quick wake-up.  
On wake-up from Deep-sleep mode, the code execution and peripherals activities will  
resume after 4 cycles expire if the IRC was used before entering Deep-sleep mode. If the  
main external oscillator was used, the code execution will resume when 4096 cycles  
expire. PLL and clock dividers need to be reconfigured accordingly.  
7.29.6.3 Power-down mode  
Power-down mode does everything that Deep-sleep mode does, but also turns off the  
power to the IRC oscillator and the flash memory. This saves more power but requires  
waiting for resumption of flash operation before execution of code or data access in the  
flash memory can be accomplished.  
On the wake-up of Power-down mode, if the IRC was used before entering Power-down  
mode, it will take IRC 60 µs to start-up. After this 4 IRC cycles will expire before the code  
execution can then be resumed if the code was running from SRAM. In the meantime, the  
flash wake-up timer then counts 4 MHz IRC clock cycles to make the 100 µs flash start-up  
time. When it times out, access to the flash will be allowed. Users need to reconfigure the  
PLL and clock dividers accordingly.  
7.29.6.4 Deep power-down mode  
The Deep power-down mode can only be entered from the RTC block. In Deep  
power-down mode, power is shut off to the entire chip with the exception of the RTC  
module and the RESET pin.  
The LPC1758/56/54/52/51 can wake up from Deep power-down mode via the RESET pin  
or an alarm match event of the RTC.  
7.29.6.5 Wakeup interrupt controller  
The Wakeup Interrupt Controller (WIC) allows the CPU to automatically wake up from any  
enabled priority interrupt that can occur while the clocks are stopped in Deep sleep,  
Power-down, and Deep power-down modes.  
The Wake-up controller (WIC) works in connection with the Nested Vectored Interrupt  
Controller (NVIC). When the CPU enters Deep sleep, Power-down, or Deep power-down  
mode, the NVIC sends a mask of the current interrupt situation to the WIC.This mask  
includes all of the interrupts that are both enabled and of sufficient priority to be serviced  
immediately. With this information, the WIC simply notices when one of the interrupts has  
occurred and then it wakes up the CPU.  
The Wake-up controller (WIC) eliminates the need to periodically wake up the CPU and  
poll the interrupts resulting in additional power savings.  
7.29.7 Peripheral power control  
A Power Control for Peripherals feature allows individual peripherals to be turned off if  
they are not needed in the application, resulting in additional power savings.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
32 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.29.8 Power domains  
The LPC1758/56/54/52/51 provide two independent power domains that allow the bulk of  
the device to have power removed while maintaining operation of the RTC and the backup  
Registers.  
On the LPC1758/56/54/52/51, I/O pads are powered by the 3.3 V (VDD(3V3)) pins, while  
the VDD(REG)(3V3) pin powers the on-chip voltage regulator which in turn provides power to  
the CPU and most of the peripherals.  
Depending on the LPC1758/56/54/52/51 application, a design can use two power options  
to manage power consumption.  
The first option assumes that power consumption is not a concern and the design ties the  
VDD(3V3) and VDD(REG)(3V3) pins together. This approach requires only one 3.3 V power  
supply for both pads, the CPU, and peripherals. While this solution is simple, it does not  
support powering down the I/O pad ring “on the fly” while keeping the CPU and  
peripherals alive.  
The second option uses two power supplies; a 3.3 V supply for the I/O pads (VDD(3V3)) and  
a dedicated 3.3 V supply for the CPU (VDD(REG)(3V3)). Having the on-chip voltage regulator  
powered independently from the I/O pad ring enables shutting down of the I/O pad power  
supply “on the fly”, while the CPU and peripherals stay active.  
The VBAT pin supplies power only to the RTC domain. The RTC requires a minimum of  
power to operate, which can be supplied by an external battery. The device core power  
(VDD(REG)(3V3)) is used to operate the RTC whenever VDD(REG)(3V3) is present. Therefore,  
there is no power drain from the RTC battery when VDD(REG)(3V3) is available.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
33 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
LPC17xx  
V
to I/O pads  
DD(3V3)  
to core  
V
SS  
3.3 V REGULATOR  
to memories,  
peripherals,  
oscillators,  
PLLs  
V
DD(REG)(3V3)  
MAIN POWER DOMAIN  
ULTRA-LOW  
POWER  
REGULATOR  
POWER  
SELECTOR  
VBAT  
BACKUP REGISTERS  
REAL-TIME CLOCK  
RTCX1  
RTCX2  
32 kHz  
OSCILLATOR  
RTC POWER DOMAIN  
DAC  
ADC  
V
DDA  
VREFP  
VREFN  
V
SSA  
ADC POWER DOMAIN  
002aad978  
Fig 5. Power distribution  
7.30 System control  
7.30.1 Reset  
Reset has four sources on the LPC1758/56/54/52/51: the RESET pin, the Watchdog  
reset, power-on reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin  
is a Schmitt trigger input pin. Assertion of chip Reset by any source, once the operating  
voltage attains a usable level, starts the Wake-up timer (see description in  
Section 7.29.5), causing reset to remain asserted until the external Reset is de-asserted,  
the oscillator is running, a fixed number of clocks have passed, and the flash controller  
has completed its initialization.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the Boot Block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
34 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.30.2 Brownout detection  
The LPC1758/56/54/52/51 include 2-stage monitoring of the voltage on the VDD(REG)(3V3)  
pins. If this voltage falls below 2.95 V, the BOD asserts an interrupt signal to the Vectored  
Interrupt Controller. This signal can be enabled for interrupt in the Interrupt Enable  
Register in the NVIC in order to cause a CPU interrupt; if not, software can monitor the  
signal by reading a dedicated status register.  
The second stage of low-voltage detection asserts reset to inactivate the  
LPC1758/56/54/52/51 when the voltage on the VDD(REG)(3V3) pins falls below 2.65 V. This  
reset prevents alteration of the flash as operation of the various elements of the chip  
would otherwise become unreliable due to low voltage. The BOD circuit maintains this  
reset down below 1 V, at which point the power-on reset circuitry maintains the overall  
reset.  
Both the 2.95 V and 2.65 V thresholds include some hysteresis. In normal operation, this  
hysteresis allows the 2.95 V detection to reliably interrupt, or a regularly executed event  
loop to sense the condition.  
7.30.3 Code security (Code Read Protection - CRP)  
This feature of the LPC1758/56/54/52/51 allows user to enable different levels of security  
in the system so that access to the on-chip flash and use of the JTAG and ISP can be  
restricted. When needed, CRP is invoked by programming a specific pattern into a  
dedicated flash location. IAP commands are not affected by the CRP.  
There are three levels of the Code Read Protection.  
CRP1 disables access to chip via the JTAG and allows partial flash update (excluding  
flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is  
required and flash field updates are needed but all sectors can not be erased.  
CRP2 disables access to chip via the JTAG and only allows full flash erase and update  
using a reduced set of the ISP commands.  
Running an application with level CRP3 selected fully disables any access to chip via the  
JTAG pins and the ISP. This mode effectively disables ISP override using P2[10] pin, too. It  
is up to the user’s application to provide (if needed) flash update mechanism using IAP  
calls or call reinvoke ISP command to enable flash update via UART0.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
7.30.4 APB interface  
The APB peripherals are split into two separate APB buses in order to distribute the bus  
bandwidth and thereby reducing stalls caused by contention between the CPU and the  
GPDMA controller.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
35 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.30.5 AHB multilayer matrix  
The LPC1758/56/54/52/51 use an AHB multilayer matrix. This matrix connects the  
instruction (I-code) and data (D-code) CPU buses of the ARM Cortex-M3 to the flash  
memory, the main (32 kB) static RAM, and the Boot ROM. The GPDMA can also access  
all of these memories. The peripheral DMA controllers, Ethernet (LPC1758 only) and  
USB, can access all SRAM blocks. Additionally, the matrix connects the CPU system bus  
and all of the DMA controllers to the various peripheral functions.  
7.30.6 External interrupt inputs  
The LPC1758/56/54/52/51 include up to 30 edge sensitive interrupt inputs combined with  
one level sensitive external interrupt input as selectable pin function. The external  
interrupt input can optionally be used to wake up the processor from Power-down mode.  
7.30.7 Memory mapping control  
The Cortex-M3 incorporates a mechanism that allows remapping the interrupt vector table  
to alternate locations in the memory map. This is controlled via the Vector Table Offset  
Register contained in the NVIC.  
The vector table may be located anywhere within the bottom 1 GB of Cortex-M3 address  
space. The vector table must be located on a 128 word (512 byte) boundary because the  
NVIC on the LPC1758/56/54/52/51 is configured for 128 total interrupts.  
7.31 Emulation and debugging  
Debug and trace functions are integrated into the ARM Cortex-M3. Serial wire debug and  
trace functions are supported in addition to a standard JTAG debug and parallel trace  
functions. The ARM Cortex-M3 is configured to support up to eight breakpoints and four  
watch points.  
8. Limiting values  
Table 4.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VDD(3V3)  
supply voltage (3.3 V)  
core and external  
rail  
2.4  
3.6  
V
VDD(REG)(3V3) regulator supply voltage (3.3 V)  
2.4  
3.6  
V
V
V
V
V
VDDA  
analog 3.3 V pad supply voltage  
input voltage on pin VBAT  
input voltage on pin VREFP  
analog input voltage  
0.5  
0.5  
0.5  
0.5  
+4.6  
+4.6  
+4.6  
+5.1  
Vi(VBAT)  
Vi(VREFP)  
VIA  
for the RTC  
on ADC related  
pins  
[2]  
VI  
input voltage  
5 V tolerant I/O  
pins; only valid  
when the VDD(3V3)  
supply voltage is  
present  
0.5  
+6.0  
V
[2][3]  
other I/O pins  
0.5  
VDD(3V3)  
0.5  
+
V
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
36 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 4.  
Limiting values …continued  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
IDD  
Parameter  
Conditions  
Min  
Max  
100  
100  
100  
Unit  
mA  
mA  
mA  
[4]  
[4]  
supply current  
ground current  
I/O latch-up current  
per supply pin  
per ground pin  
-
-
-
ISS  
Ilatch  
(0.5VDD(3V3)) < VI  
< (1.5VDD(3V3));  
Tj < 125 °C  
[5]  
[6]  
Tstg  
storage temperature  
65  
+150  
1.5  
°C  
Ptot(pack)  
total power dissipation (per package)  
based on package  
heat transfer, not  
device power  
-
W
consumption  
Vesd  
electrostatic discharge voltage  
human body  
2000  
+2000  
V
model; all pins  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Including voltage on outputs in 3-state mode.  
[3] Not to exceed 4.6 V.  
[4] The peak current is limited to 25 times the corresponding maximum current.  
[5] Dependent on package type.  
[6] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
37 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
9. Thermal characteristics  
9.1 Thermal characteristics  
The average chip junction temperature, TJ (°C), can be calculated using the following  
equation:  
TJ = Tamb + (PD × Rth( j a)  
)
(1)  
Tamb = ambient temperature (°C),  
Rth(j-a) = the package junction-to-ambient thermal resistance (°C/W)  
PD = sum of internal and I/O power dissipation  
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of  
the I/O pins is often small and many times can be negligible. However it can be significant  
in some applications.  
Table 5.  
Thermal characteristics  
VDD = 2.4 V to 3.6 V; Tamb = 40 °C to +85 °C unless otherwise specified;  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rth(j-a)  
thermal resistance from  
junction to ambient  
LQFP80 package  
-
<tbd>  
-
°C/W  
Tj(max)  
maximum junction  
temperature  
-
-
150  
°C  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
38 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
10. Static characteristics  
Table 6.  
Static characteristics  
Tamb = 40 °C to +85 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
2.4  
2.4  
Typ[1]  
3.3  
Max  
3.6  
Unit  
V
VDD(3V3)  
supply voltage (3.3 V)  
core and external rail  
VDD(REG)(3V3)  
regulator supply voltage  
(3.3 V)  
3.3  
3.6  
V
VDDA  
analog 3.3 V pad supply  
voltage  
2.7  
2.1  
2.7  
3.3  
3.3  
3.3  
3.6  
V
V
V
[2]  
Vi(VBAT)  
Vi(VREFP)  
input voltage on pin  
VBAT  
3.6  
input voltage on pin  
VREFP  
VDDA  
Standard port pins, RESET, RTC  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up  
resistor disabled  
-
-
-
-
3
3
µA  
µA  
IIH  
HIGH-level input current VI = VDD(3V3); on-chip  
pull-down resistor  
disabled  
IOZ  
OFF-state output  
current  
VO = 0 V; VO = VDD(3V3)  
on-chip pull-up/down  
resistors disabled  
;
-
-
-
3
µA  
[3][4][5]  
VI  
input voltage  
pin configured to provide  
a digital function  
0
5.5  
V
VO  
output voltage  
output active  
0
-
-
VDD(3V3)  
-
V
V
VIH  
HIGH-level input  
voltage  
2.0  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
0.8  
V
V
V
Vhys  
VOH  
0.4  
-
-
-
[6]  
[6]  
[6]  
[6]  
[7]  
[7]  
HIGH-level output  
voltage  
IOH = 4 mA  
VDD(3V3)  
0.4  
VOL  
IOH  
LOW-level output  
voltage  
IOL = 4 mA  
-
-
-
-
-
-
0.4  
-
V
HIGH-level output  
current  
VOH = VDD(3V3) 0.4 V  
VOL = 0.4 V  
4  
4
-
mA  
mA  
mA  
mA  
IOL  
LOW-level output  
current  
-
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
45  
50  
LOW-level short-circuit VOL = VDDA  
output current  
-
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
10  
15  
0
50  
50  
0
150  
85  
0
µA  
µA  
µA  
VI = 0 V  
VDD(3V3) < VI < 5 V  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
39 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 6.  
Static characteristics …continued  
Tamb = 40 °C to +85 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
IDD(REG)(3V3)  
regulator supply current active mode;  
(3.3 V)  
VDD(REG)(3V3) = 3.3 V;  
T
amb = 25 °C; code  
while(1){}  
executed from flash; all  
peripherals enabled  
CCLK = 10 MHz  
CCLK = 100 MHz  
-
-
-
<tbd>  
<tbd>  
<tbd>  
-
-
-
mA  
mA  
µA  
sleep mode;  
VDD(REG)(3V3) = 3.3 V;  
T
amb = 25 °C  
deep sleep mode;  
DD(REG)(3V3) = 3.3 V;  
amb = 25 °C  
-
-
-
<tbd>  
<tbd>  
<tbd>  
-
-
-
µA  
µA  
µA  
V
T
power-down mode;  
VDD(REG)(3V3) = 3.3 V;  
T
amb = 25 °C  
deep power-down mode;  
VDD(REG)(3V3) = 3.3 V;  
T
amb = 25 °C  
RTC running;  
DD(REG)(3V3) present  
RTC running;  
[8]  
[8]  
IBATact  
active mode battery  
supply current  
-
-
V
0.8  
-
-
µA  
µA  
VDD(REG)(3V3) not present  
< 0.8  
Oscillator pins  
Vi(XTAL1)  
input voltage on pin  
XTAL1  
0
0
0
0
-
-
-
-
1.8  
1.8  
1.8  
1.8  
V
V
V
V
Vo(XTAL2)  
Vi(RTCX1)  
Vo(RTCX2)  
output voltage on pin  
XTAL2  
input voltage on pin  
RTCX1  
output voltage on pin  
RTCX2  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
40 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 6.  
Static characteristics …continued  
Tamb = 40 °C to +85 °C, unless otherwise specified.  
Symbol  
USB pins  
IOZ  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
OFF-state output  
current  
0 V < VI < 3.3 V  
-
-
±10  
µA  
VBUS  
VDI  
bus supply voltage  
-
-
-
5.25  
-
V
V
differential input  
|(D+) (D)|  
0.2  
sensitivity voltage  
VCM  
differential common  
mode voltage range  
includes VDI range  
0.8  
0.8  
-
-
2.5  
2.0  
V
V
Vth(rs)se  
single-ended receiver  
switching threshold  
voltage  
VOL  
LOW-level output  
voltage for  
low-/full-speed  
RL of 1.5 kto 3.6 V  
RL of 15 kto GND  
-
-
-
0.18  
3.5  
V
V
VOH  
HIGH-level output  
voltage (driven) for  
low-/full-speed  
2.8  
Ctrans  
ZDRV  
transceiver capacitance pin to GND  
-
-
-
20  
pF  
[10]  
driver output  
with 33 series resistor;  
36  
44.1  
impedance for driver  
which is not high-speed  
capable  
steady state drive  
Rpu  
pull-up resistance  
SoftConnect = ON  
1.1  
-
1.9  
kΩ  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.  
[2] The RTC typically fails when Vi(VBAT) drops below 1.6 V.  
[3] Including voltage on outputs in 3-state mode.  
[4] VDD(3V3) supply voltages must be present.  
[5] 3-state outputs go into 3-state mode when VDD(3V3) is grounded.  
[6] Accounts for 100 mV voltage drop in all supply lines.  
[7] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[8] On pin VBAT.  
[9] To VSS  
.
[10] Includes external resistors of 18 Ω ± 1 % on D+ and D.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
41 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
10.1 Power consumption  
001aac984  
X
X
X
X
X
X
X
(X)  
<tbd>  
X
X
X
X
X
X (X)  
Conditions: Tamb = 25 °C; active mode entered executing code from flash; core voltage 2.7 V; all  
peripherals enabled but not configured to run.  
Fig 6. Regulator supply current at different core frequencies in active mode  
001aac984  
X
X
(X)  
X
X
<tbd>  
X
X
X
X
X
X
X
X
X (X)  
Conditions: Tamb = 25 °C; active mode entered executing code from flash; all peripherals enabled  
but not configured to run.  
Fig 7. Regulator supply current at different core voltages in active mode  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
42 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
001aac984  
X
X
X
X
X
X
X
(X)  
<tbd>  
X
X
X
X
X
X (X)  
Conditions: active mode entered executing code from flash; core voltage 2.7 V; all peripherals  
enabled but not configured to run.  
Fig 8. Regulator supply current at different temperatures in active mode  
001aac984  
X
X
X
X
X
X
X
(X)  
<tbd>  
X
X
X
X
X
X (X)  
Conditions: active mode entered executing code from flash; Tamb = 25 °C; RTC running;  
Fig 9. Battery supply current for different core voltages in active mode  
Table 7.  
Typical peripheral current consumption  
Core voltage 3.3 V; Tamb = 25 °C; all measurements in µA; PCLK = CCLK8; all peripherals enabled.  
Peripheral  
CCLK = 10 MHz  
CCLK = 100 MHz  
active mode sleep mode active mode sleep mode  
Timer0  
Timer1  
Timer2  
Timer3  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
43 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 7.  
Typical peripheral current consumption …continued  
Core voltage 3.3 V; Tamb = 25 °C; all measurements in µA; PCLK = CCLK8; all peripherals enabled.  
Peripheral  
CCLK = 10 MHz  
CCLK = 100 MHz  
active mode sleep mode active mode sleep mode  
RIT  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
UART0  
UART1  
UART2  
UART3  
PWM1  
Motor control PWM  
Quadrature encoder  
I2C1-bus  
I2C2-bus  
I2S-bus interface (LPC1758/56 only)  
SPI  
SSP0  
SSP1  
CAN1  
CAN2 (LPC1758/56 only)  
ADC  
DAC (LPC1758/56/54 only)  
USB  
Ethernet (LPC1758 only)  
GPDMA controller  
Table 8.  
Typical RTC power consumption  
Vi(VBAT) = 3.3 V; Tamb = 25 °C; all measurements in µA; RTC clock = 1 Hz; VDD(REG)(3V3) not present.  
Power modes  
active  
sleep  
deep-sleep  
power-down deep  
power-down  
IBAT in µA  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
44 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
10.2 Electrical pin characteristics  
001aac984  
X
X
X
X
X
X
X
(X)  
<tbd>  
X
X
X
X
X
X (X)  
Measured on pins Pn.m; VDD(3V3) = x.x V.  
Fig 10. Typical LOW-level output IOL current versus LOW-level output VOL  
001aac984  
X
X
X
X
X
X
X
(X)  
<tbd>  
X
X
X
X
X
X (X)  
Measured on pins Pn.m; VDD(3V3) = x.x V.  
Fig 11. Typical HIGH-level output IOH current versus HIGH-level output voltage VOH  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
45 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
001aac984  
X
X
X
X
X
X
X
(X)  
<tbd>  
X
X
X
X
X
X (X)  
Measured on pins Pn.m; VDD(3V3) = x.x V.  
Fig 12. Typical pull-up current Ipu versus input voltage Vi  
001aac984  
X
X
(X)  
X
X
<tbd>  
X
X
X
X
X
X
X
X
X (X)  
Measured on pins Pn.m; VDD(3V3) = x.x V.  
Fig 13. Typical pull-down current Ipd versus input voltage Vi  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
46 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11. Dynamic characteristics  
11.1 Flash memory  
Table 9.  
Flash characteristics  
Tamb = 40 °C to +85 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Nendu  
endurance  
40 °C to +85 °C  
25 °C to +85 °C  
10000  
100000  
10  
-
-
-
-
-
-
cycles  
cycles  
years  
tret  
retention time  
powered; < 100 cycles;  
40 °C to +85 °C  
11.2 External clock  
Table 10. Dynamic characteristic: external clock  
Tamb = 40 °C to +85 °C; VDD(3V3) over specified ranges.[1]  
Symbol  
fosc  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
MHz  
ns  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
42  
1000  
T
T
-
cy(clk) × 0.4  
-
ns  
cy(clk) × 0.4  
-
ns  
5
5
ns  
-
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 14. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
47 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.3 Internal oscillators  
Table 11. Dynamic characteristic: internal oscillators  
Tamb = 40 °C to +85 °C; VDD(3V3) over specified ranges.[1]  
Symbol  
fosc(RC)  
fi(RTC)  
Parameter  
Conditions  
Min  
Typ[2]  
<tbd>  
<tbd>  
Max  
Unit  
MHz  
MHz  
internal RC oscillator frequency  
RTC input frequency  
-
-
<tbd>  
<tbd>  
<tbd>  
<tbd>  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.  
001aac984  
X
X
(X)  
X
X
<tbd>  
X
X
X
X
X
X
X
X
X (X)  
conditions: <tbd>  
Fig 15. Internal RC oscillator frequency vs. temperature  
001aac984  
X
X
(X)  
X
X
<tbd>  
X
X
X
X
X
X
X
X
X (X)  
conditions: <tbd>  
Fig 16. Internal RC oscillator frequency vs. core voltage  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
48 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.4 I2C-bus  
Table 12. Dynamic characteristic: I2C-bus pins  
Tamb = 40 °C to +85 °C; VDD(3V3) over specified ranges.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
I2C-bus pins (P0[27] and P0[28])  
[3]  
tf(o)  
tr  
output fall time  
rise time  
VIH to VIL  
20 + 0.1 × Cb  
<tbd>  
-
-
ns  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
tf  
fall time  
<tbd>  
tBUF  
bus free time between a STOP and  
START condition  
-
<tbd>  
tLOW  
LOW period of the SCL clock  
-
-
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
tHD;STA  
hold time (repeated) START  
condition  
tHIGH  
HIGH period of the SCL clock  
data set-up time  
-
-
-
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
tSU;DAT  
tSU;STA  
set-up time for a repeated START  
condition  
tSU;STO  
set-up time for STOP condition  
-
<tbd>  
<tbd>  
<tbd>  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.  
[3] Bus capacitance Cb in pF, from 10 pF to 400 pF.  
SDA  
t
t
t
t
t
HD;STA  
BUF  
LOW  
r
f
SCL  
P
P
S
S
t
t
t
t
t
t
SU;STO  
HD;STA  
HD;STA  
HIGH  
SU;DAT  
SU;STA  
002aad985  
Fig 17. I2C-bus pins clock timing  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
49 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.5 SSP interface  
Table 13. Dynamic characteristic: SSP interface  
Tamb = 40 °C to +85 °C; VDD(3V3) over specified ranges.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
SSP interface  
tsu(SPI_MISO)  
SPI_MISO set-up time  
Tamb =25 °C;  
measured in  
SPI Master  
mode; see  
Figure 18  
-
11  
-
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.  
shifting edges  
SCK  
sampling edges  
MOSI  
MISO  
t
su(SPI_MISO)  
002aad326  
Fig 18. MISO line set-up time in SSP Master mode  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
50 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.6 USB interface  
Table 14. Dynamic characteristics: USB pins (full-speed)  
CL = 50 pF; Rpu = 1.5 kon D+ to VDD(3V3), unless otherwise specified.  
Symbol  
Parameter  
rise time  
fall time  
Conditions  
10 % to 90 %  
10 % to 90 %  
tr / tf  
Min  
8.5  
7.7  
-
Typ  
Max  
13.8  
13.7  
109  
Unit  
ns  
tr  
-
-
-
tf  
ns  
tFRFM  
differential rise and fall time  
matching  
%
VCRS  
output signal crossover voltage  
source SE0 interval of EOP  
1.3  
160  
2  
-
-
-
2.0  
175  
+5  
V
tFEOPT  
tFDEOP  
see Figure 19  
ns  
ns  
source jitter for differential transition see Figure 19  
to SE0 transition  
tJR1  
receiver jitter to next transition  
18.5  
9  
-
-
-
+18.5  
ns  
ns  
ns  
tJR2  
receiver jitter for paired transitions  
EOP width at receiver  
10 % to 90 %  
+9  
-
[1]  
[1]  
tEOPR1  
must reject as  
EOP; see  
Figure 19  
40  
tEOPR2  
EOP width at receiver  
must accept as  
EOP; see  
82  
-
-
ns  
Figure 19  
[1] Characterized but not implemented as production test. Guaranteed by design.  
T
PERIOD  
crossover point  
extended  
crossover point  
differential  
data lines  
source EOP width: t  
FEOPT  
differential data to  
SE0/EOP skew  
n × T  
+ t  
PERIOD  
FDEOP  
receiver EOP width: t  
, t  
EOPR1 EOPR2  
002aab561  
Fig 19. Differential data-to-EOP transition skew and EOP width  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
51 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
11.7 SPI  
32-bit ARM Cortex-M3 microcontroller  
Table 15. Dynamic characteristics of SPI pins  
Tamb = 40 °C to +85 °C.  
Symbol  
SPI master  
TSPICYC  
tSPICLKH  
tSPICLKL  
tSPIDSU  
tSPIDH  
Parameter  
Min  
Typ  
Max  
Unit  
SPI cycle time  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SPICLK HIGH time  
SPICLK LOW time  
SPI data set-up time  
SPI data hold time  
tSPIQV  
SPI data output valid time  
SPI output data hold time  
tSPIOH  
SPI slave  
TSPICYC  
tSPICLKH  
tSPICLKL  
tSPIDSU  
tSPIDH  
SPI cycle time  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SPICLK HIGH time  
SPICLK LOW time  
SPI data set-up time  
SPI data hold time  
tSPIQV  
SPI data output valid time  
SPI output data hold time  
tSPIOH  
T
t
SPICLKH  
t
SPICYC  
SPICLKL  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
SPIOH  
SPIQV  
DATA VALID  
DATA VALID  
t
t
SPIDH  
SPIDSU  
MISO  
DATA VALID  
DATA VALID  
002aad986  
Fig 20. SPI master timing (CPHA = 1)  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
52 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
T
t
SPICLKH  
t
SPICYC  
SPICLKL  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
SPIOH  
SPIQV  
DATA VALID  
DATA VALID  
t
t
SPIDH  
SPIDSU  
DATA VALID  
DATA VALID  
MISO  
002aad987  
Fig 21. SPI master timing (CPHA = 0)  
T
t
SPICLKH  
t
SPICYC  
SPICLKL  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
SPIDH  
SPIDSU  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
SPIOH  
SPIQV  
DATA VALID  
002aad988  
Fig 22. SPI slave timing (CPHA = 1)  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
53 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
T
t
SPICLKH  
t
SPICYC  
SPICLKL  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
SPIDH  
SPIDSU  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
SPIOH  
SPIQV  
DATA VALID  
002aad989  
Fig 23. SPI slave timing (CPHA = 0)  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
54 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.8 Ethernet (LPC1758 only)  
Table 16. Dynamic characteristics: Ethernet MAC pins  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Ethernet MAC signals for MIIM  
Tcy(clk)  
tv(Q)  
clock cycle time  
on pin ENET_MDC  
<tbd>  
<tbd> <tbd> ns  
<tbd> <tbd> ns  
data output valid time  
on pin ENET_MDIO; MDIO <tbd>  
write  
tQZ  
data output high-impedance time  
data input set-up time  
<tbd>  
<tbd> <tbd> ns  
<tbd> <tbd> ns  
tsu(D)  
on pin ENET_MDIO; MDIO <tbd>  
read  
th(D)  
data input hold time  
on pin ENET_MDIO; MDIO <tbd>  
read  
<tbd> <tbd> ns  
Ethernet MAC signals for RMII  
tsu(D) data input set-up time  
on pin ENET_RXD; RMII  
receive input  
<tbd>  
<tbd>  
<tbd> <tbd> ns  
<tbd> <tbd> ns  
<tbd> <tbd> ns  
<tbd> <tbd> ns  
<tbd> <tbd> ns  
<tbd> <tbd> ns  
<tbd> <tbd> ns  
<tbd> <tbd> ns  
<tbd> <tbd> ns  
<tbd> <tbd> ns  
on pin ENET_CRS; RMII  
carrier sense input  
on pin ENET_RX_ER; RMII <tbd>  
receive error input  
th(D)  
data input hold time  
on pin ENET_RXD; RMII  
receive input  
<tbd>  
on pin ENET_CRS; RMII  
carrier sense input  
<tbd>  
on pin ENET_RX_ER; RMII <tbd>  
receive error input  
td(QV)  
data output valid delay time  
data output hold time  
on pin ENET_TXD; RMII  
transmit output  
<tbd>  
on pin ENET_TX_EN; RMII <tbd>  
transmit enable  
th(Q)  
on pin ENET_TXD; RMII  
transmit output  
<tbd>  
on pin ENET_TX_EN; RMII <tbd>  
transmit enable  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
55 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
T
cy(clk)  
ENET_MDC  
t
v(Q)  
ENET_MDIO(O)  
t
QZ  
t
t
su(D)  
h(D)  
ENET_MDIO(I)  
002aad990  
Fig 24. Ethernet MAC MIIM timing  
ENET_REF_CLK  
t
t
h(Q)  
d(QV)  
ENET_TX_EN  
ENET_TXD[1:0]  
t
t
h(D)  
su(D)  
ENET_CRS  
ENET_RXD[1:0]  
ENET_RX_ER  
002aad991  
Fig 25. Ethernet RMII timing  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
56 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.9 I2S-bus interface (LPC1758/56 only)  
Table 17. Dynamic characteristics: I2S-bus interface pins  
Tamb = 40 °C to +85 °C.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
common to input and output  
Tcy(clk)  
tr  
clock cycle time  
rise time  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
tf  
fall time  
output  
tWH  
tWL  
pulse width HIGH  
pulse width LOW  
data output valid time  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
tv(Q)  
on pin I2STX_SDA  
on pin I2STX_WS  
input  
tsu(D)  
th(D)  
data input set-up time  
data input hold time  
on pin I2SRX_SDA  
on pin I2SRX_SDA  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
T
t
t
r
cy(clk)  
f
I2STX_CLK  
I2STX_SDA  
t
t
WL  
WH  
t
v(Q)  
I2STX_WS  
002aad992  
t
v(Q)  
Fig 26. I2S-bus timing (output)  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
57 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
T
t
t
r
cy(clk)  
f
I2SRX_CLK  
t
t
WL  
WH  
I2SRX_SDA  
I2SRX_WS  
t
t
h(D)  
su(D)  
002aae159  
t
t
su(D)  
su(D)  
Fig 27. I2S-bus timing (input)  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
58 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
12. ADC electrical characteristics  
Table 18. ADC characteristics  
VDDA = 2.7 V to 3.6 V; Tamb = 40 °C to +85 °C unless otherwise specified; ADC frequency <tbd>.  
Symbol  
VIA  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
0
-
-
-
-
-
-
-
-
VDDA  
Cia  
-
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
pF  
[1][2][3]  
[1][4]  
[1][5]  
[1][6]  
[1][7]  
[8]  
ED  
2
1
-
LSB  
LSB  
LSB  
%
EL(adj)  
EO  
EG  
gain error  
-
ET  
absolute error  
-
LSB  
kΩ  
Rvsi  
voltage source interface  
resistance  
-
SRin  
input slew rate  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
V/ms  
ns  
Tcy(ADC)  
tADC  
ADC clock cycle time  
ADC conversion time  
ns  
[1] Conditions: VSSA = 0 V, VDDA = 3.3 V.  
[2] The ADC is monotonic, there are no missing codes.  
[3] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 28.  
[4] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 28.  
[5] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 28.  
[6] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 28.  
[7] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC  
and the ideal transfer curve. See Figure 28.  
[8] See Figure 29.  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
59 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
offset  
error  
gain  
error  
E
E
O
G
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
4090 4091 4092 4093 4094 4095 4096  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
offset error  
E
O
V
V  
DDA SSA  
1 LSB =  
4096  
002aad948  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 28. 12-bit ADC characteristics  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
60 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
LPC17XX  
R
vsi  
x kΩ  
AD0[y]  
AD0[y]  
SAMPLE  
x pF  
x pF  
V
EXT  
V
SS  
002aad949  
Fig 29. Suggested ADC interface - LPC1758/56/54/52/51 AD0[y] pin  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
61 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
13. DAC electrical characteristics (LPC1758/56/54 only)  
Table 19. DAC electrical characteristics  
VDDA = 2.7 V to 3.6 V; Tamb = 40 °C to +85 °C unless otherwise specified; DAC frequency <tbd> MHz.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
PSRR  
power supply rejection  
ratio  
VDDA = 100mV  
<tbd>  
<tbd>  
<tbd>  
dB  
VO  
output voltage  
count = max  
count = min  
V
DDA k  
V
VSSA + k  
±1  
V
ED  
EL(adj)  
EO  
EG  
ET  
differential linearity error  
integral non-linearity  
offset error  
-
-
LSB  
LSB  
LSB  
%
-
-
±2  
-
-
±3  
gain error  
-
-
±0.5  
±4  
absolute error  
load capacitance  
output resistance  
turn-on time  
-
-
LSB  
pF  
CL  
-
-
100  
RO  
ton  
1
-
4
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
ns  
ts  
settling time  
full scale  
ns  
small change  
ns  
SR  
slew rate  
V/ms  
nV.s  
kHz  
glitch energy, full scale  
3 dB bandwidth  
B3dB  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
62 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
14. Application information  
14.1 Suggested USB interface solutions  
V
DD(3V3)  
USB_UP_LED  
USB_CONNECT  
LPC17xx  
SoftConnect switch  
R1  
1.5 kΩ  
V
BUS  
R
R
= 33 Ω  
= 33 Ω  
S
USB-B  
connector  
USB_D+  
S
USB_D−  
V
SS  
002aad939  
Fig 30. LPC1758/56/54/52/51 USB interface on a self-powered device  
V
DD(3V3)  
R2  
LPC17xx  
R1  
1.5 kΩ  
USB_UP_LED  
V
BUS  
USB-B  
connector  
R
R
= 33 Ω  
= 33 Ω  
S
USB_D+  
S
USB_D−  
V
SS  
002aad940  
Fig 31. LPC1758/56/54/52/51 USB interface on a bus-powered device  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
63 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
V
DD  
R1  
R2  
R3  
R4  
VBUS  
ID  
RSTOUT  
RESET_N  
ADR/PSW  
OE_N/INT_N  
SPEED  
33 Ω  
DP  
V
DD  
Mini-AB  
33 Ω  
connector  
DM  
ISP1302  
SUSPEND  
R4  
R5  
R6  
LPC1758/56/54  
V
SS  
SCL  
SDA  
SCL1/2  
SDA1/2  
INT_N  
EINT0  
USB_D+  
USB_D−  
002aae155  
Fig 32. LPC1758/56/54 USB OTG port configuration  
V
DD  
USB_UP_LED  
V
SS  
33 Ω  
33 Ω  
D+  
USB_D+  
USB_D−  
D−  
USB-A  
connector  
15 kΩ  
15 kΩ  
LPC1758/56/54  
V
DD  
V
BUS  
USB_PWRD  
USB_PPWR  
FLAGA  
OUTA  
ENA  
5 V  
LM3526-L  
IN  
002aae156  
Fig 33. LPC1758/56/54 USB host port configuration  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
64 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
V
DD  
USB_UP_LED  
V
DD  
USB_CONNECT  
LPC17xx  
V
SS  
33 Ω  
33 Ω  
USB_D+  
D+  
USB-B  
connector  
D−  
USB_D−  
V
V
BUS  
BUS  
002aad943  
Fig 34. LPC1758/56/54/52/51 USB device port configuration  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
65 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
15. Package outline  
LQFP80: plastic low profile quad flat package; 80 leads; body 12 x 12 x 1.4 mm  
SOT315-1  
y
X
A
60  
41  
Z
61  
40  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
L
pin 1 index  
80  
21  
detail X  
1
20  
Z
D
v
M
A
e
w M  
b
p
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
H
L
L
v
w
y
Z
Z
θ
1
2
3
p
D
E
p
D
E
max.  
7o  
0o  
0.16 1.5  
0.04 1.3  
0.27 0.18 12.1 12.1  
0.13 0.12 11.9 11.9  
14.15 14.15  
13.85 13.85  
0.75  
0.30  
1.45 1.45  
1.05 1.05  
mm  
1.6  
0.25  
0.5  
1
0.2 0.15 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT315-1  
136E15  
MS-026  
Fig 35. Package outline (LQFP80)  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
66 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
16. Abbreviations  
Table 20. Abbreviations  
Acronym  
ADC  
AHB  
AMBA  
APB  
BOD  
CAN  
DAC  
DCC  
DMA  
DSP  
EOP  
ETM  
GPIO  
IRC  
Description  
Analog-to-Digital Converter  
Advanced High-performance Bus  
Advanced Microcontroller Bus Architecture  
Advanced Peripheral Bus  
BrownOut Detection  
Controller Area Network  
Digital-to-Analog Converter  
Debug Communication Channel  
Direct Memory Access  
Digital Signal Processing  
End Of Packet  
Embedded Trace Macrocell  
General Purpose Input/Output  
Internal RC  
IrDA  
Infrared Data Association  
Joint Test Action Group  
JTAG  
MAC  
MIIM  
OTG  
PHY  
PLL  
Media Access Control  
Media Independent Interface Management  
On-The-Go  
Physical Layer  
Phase-Locked Loop  
PWM  
RMII  
SE0  
Pulse Width Modulator  
Reduced Media Independent Interface  
Single Ended Zero  
SPI  
Serial Peripheral Interface  
Serial Synchronous Interface  
Synchronous Serial Port  
Transistor-Transistor Logic  
Universal Asynchronous Receiver/Transmitter  
Universal Serial Bus  
SSI  
SSP  
TTL  
UART  
USB  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
67 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
17. Revision history  
Table 21. Revision history  
Document ID  
Release date  
Data sheet status  
Change  
notice  
Supersedes  
LPC1758_56_54_52_51_2  
Modifications:  
20090211  
Objective data sheet  
-
LPC1758_56_54_52_51_1  
Updated Figure 3 “LPC1758/56/54/52/51 memory map” on page 15  
Updated Table 9 “Flash characteristics” on page 47  
LPC1758_56_54_52_51_1  
20090115  
Objective data sheet  
-
-
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
68 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
18. Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
to result in personal injury, death or severe property or environmental  
18.2 Definitions  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
18.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
18.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
I2C-bus — logo is a trademark of NXP B.V.  
19. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
69 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
20. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
7.20  
I2S-bus serial I/O controllers  
(LPC1758/56 only) . . . . . . . . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
General purpose 32-bit timers/external  
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 4  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 4  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
7.20.1  
7.21  
3
4
4.1  
5
event counters . . . . . . . . . . . . . . . . . . . . . . . . 24  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Pulse width modulator . . . . . . . . . . . . . . . . . . 25  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Motor control PWM . . . . . . . . . . . . . . . . . . . . 26  
Quadrature Encoder Interface (QEI) . . . . . . . 26  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Repetitive Interrupt (RI) timer. . . . . . . . . . . . . 27  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
System tick timer . . . . . . . . . . . . . . . . . . . . . . 27  
Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . 27  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
RTC and backup registers . . . . . . . . . . . . . . . 28  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Clocking and power control . . . . . . . . . . . . . . 28  
Crystal oscillators. . . . . . . . . . . . . . . . . . . . . . 28  
7.21.1  
7.22  
7.22.1  
7.23  
7.24  
7.24.1  
7.25  
7.25.1  
7.26  
7.27  
7.27.1  
7.28  
7.28.1  
7.29  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 6  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Functional description . . . . . . . . . . . . . . . . . . 12  
Architectural overview. . . . . . . . . . . . . . . . . . . 12  
ARM Cortex-M3 processor . . . . . . . . . . . . . . . 13  
On-chip flash program memory . . . . . . . . . . . 13  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . 13  
Memory Protection Unit (MPU). . . . . . . . . . . . 13  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Nested Vectored Interrupt Controller (NVIC) . 16  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 16  
Pin connect block . . . . . . . . . . . . . . . . . . . . . . 16  
General purpose DMA controller . . . . . . . . . . 16  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Fast general purpose parallel I/O . . . . . . . . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Ethernet (LPC1758 only) . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
USB interface . . . . . . . . . . . . . . . . . . . . . . . . . 19  
USB device controller . . . . . . . . . . . . . . . . . . . 19  
7.7.1  
7.7.2  
7.8  
7.29.1  
7.29.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 29  
7.29.1.2 Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.29.1.3 RTC oscillator. . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.9  
7.9.1  
7.10  
7.10.1  
7.11  
7.11.1  
7.12  
7.12.1  
7.29.2  
7.29.3  
7.29.4  
7.29.5  
7.29.6  
Main PLL (PLL0) . . . . . . . . . . . . . . . . . . . . . . 30  
USB PLL (PLL1). . . . . . . . . . . . . . . . . . . . . . . 30  
RTC clock output . . . . . . . . . . . . . . . . . . . . . . 30  
Wake-up timer . . . . . . . . . . . . . . . . . . . . . . . . 30  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 31  
7.29.6.1 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
7.29.6.2 Deep-sleep mode. . . . . . . . . . . . . . . . . . . . . . 31  
7.29.6.3 Power-down mode . . . . . . . . . . . . . . . . . . . . . 32  
7.29.6.4 Deep power-down mode . . . . . . . . . . . . . . . . 32  
7.29.6.5 Wakeup interrupt controller . . . . . . . . . . . . . . 32  
7.12.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.12.2 USB host controller (LPC1758/56/54 only). . . 20  
7.12.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.12.3 USB OTG controller (LPC1758/56/54 only).. . 20  
7.12.3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.13  
7.13.1  
7.14  
7.14.1  
7.15  
7.15.1  
7.16  
7.16.1  
7.17  
7.17.1  
7.18  
7.29.7  
7.29.8  
7.30  
Peripheral power control . . . . . . . . . . . . . . . . 32  
Power domains. . . . . . . . . . . . . . . . . . . . . . . . 33  
System control . . . . . . . . . . . . . . . . . . . . . . . . 34  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Brownout detection . . . . . . . . . . . . . . . . . . . . 35  
Code security (Code Read Protection - CRP) 35  
APB interface . . . . . . . . . . . . . . . . . . . . . . . . . 35  
AHB multilayer matrix. . . . . . . . . . . . . . . . . . . 36  
External interrupt inputs. . . . . . . . . . . . . . . . . 36  
Memory mapping control . . . . . . . . . . . . . . . . 36  
Emulation and debugging. . . . . . . . . . . . . . . . 36  
CAN controller and acceptance filters . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
12-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10-bit DAC (LPC1758/56/54 only) . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
UARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SPI serial I/O controller. . . . . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SSP serial I/O controller . . . . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
I2C-bus serial I/O controllers. . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
7.30.1  
7.30.2  
7.30.3  
7.30.4  
7.30.5  
7.30.6  
7.30.7  
7.31  
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 36  
Thermal characteristics . . . . . . . . . . . . . . . . . 38  
Thermal characteristics . . . . . . . . . . . . . . . . . 38  
7.18.1  
7.19  
7.19.1  
9
9.1  
continued >>  
LPC1758_56_54_52_51_2  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 02 — 11 February 2009  
70 of 71  
LPC1758/56/54/52/51  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
10  
Static characteristics. . . . . . . . . . . . . . . . . . . . 39  
10.1  
10.2  
Power consumption . . . . . . . . . . . . . . . . . . . . 42  
Electrical pin characteristics . . . . . . . . . . . . . . 45  
11  
Dynamic characteristics . . . . . . . . . . . . . . . . . 47  
Flash memory. . . . . . . . . . . . . . . . . . . . . . . . . 47  
External clock . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Internal oscillators. . . . . . . . . . . . . . . . . . . . . . 48  
I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
SSP interface . . . . . . . . . . . . . . . . . . . . . . . . . 50  
USB interface . . . . . . . . . . . . . . . . . . . . . . . . . 51  
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Ethernet (LPC1758 only) . . . . . . . . . . . . . . . . 55  
I2S-bus interface (LPC1758/56 only) . . . . . . . 57  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
11.7  
11.8  
11.9  
12  
13  
ADC electrical characteristics . . . . . . . . . . . . 59  
DAC electrical characteristics  
(LPC1758/56/54 only). . . . . . . . . . . . . . . . . . . . 62  
14  
14.1  
15  
Application information. . . . . . . . . . . . . . . . . . 63  
Suggested USB interface solutions . . . . . . . . 63  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 66  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 68  
16  
17  
18  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 69  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 69  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
18.1  
18.2  
18.3  
18.4  
19  
20  
Contact information. . . . . . . . . . . . . . . . . . . . . 69  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 11 February 2009  
Document identifier: LPC1758_56_54_52_51_2  

相关型号:

LPC1756FBD80

32-bit ARM Cortex-M3 MCU; up to 512 kB flash and 64 kB SRAM with Ethernet, USB 2.0 Host/Device/OTG, CAN
NXP

LPC1756FBD80K

RISC Microcontroller
NXP

LPC1756FBD80Y

LPC1756FBD80 - 256kB flash, 32kB SRAM, USB, LQFP80 package QFP 80-Pin
NXP

LPC1758

32-bit ARM Cortex-M3 MCU; up to 512 kB flash and 64 kB SRAM with Ethernet, USB 2.0 Host/Device/OTG, CAN
NXP

LPC1758FBD80

32-bit ARM Cortex-M3 MCU; up to 512 kB flash and 64 kB SRAM with Ethernet, USB 2.0 Host/Device/OTG, CAN
NXP

LPC1759

32-bit ARM Cortex-M3 MCU; up to 512 kB flash and 64 kB SRAM with Ethernet, USB 2.0 Host/Device/OTG, CAN
NXP

LPC1759FBD80

LPC17xx User manual
NXP

LPC1759_11

32-bit ARM Cortex-M3 MCU; up to 512 kB flash and 64 kB SRAM with Ethernet, USB 2.0 Host/Device/OTG, CAN
NXP

LPC175CTP

VERTICAL CLIPLITE 4MM LITEPIPE
VCC

LPC175X/6X

NXP LPC microcontrollers
NXP

LPC1763

32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 64 kB SRAM with Ethernet
NXP

LPC1763FBD100

32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 64 kB SRAM with Ethernet
NXP