LPC2214FBD14400 [NXP]

16/32-bit ARM microcontrollers; 128/256 kB ISP/IAP flash with 10-bit ADC and external memory interface; 16位/ 32位ARM微控制器; 128/256 KB ISP / IAP闪存与10位ADC和外部存储器接口
LPC2214FBD14400
型号: LPC2214FBD14400
厂家: NXP    NXP
描述:

16/32-bit ARM microcontrollers; 128/256 kB ISP/IAP flash with 10-bit ADC and external memory interface
16位/ 32位ARM微控制器; 128/256 KB ISP / IAP闪存与10位ADC和外部存储器接口

闪存 存储 微控制器
文件: 总45页 (文件大小:197K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC2212/2214  
16/32-bit ARM microcontrollers; 128/256 kB ISP/IAP flash with  
10-bit ADC and external memory interface  
Rev. 04 — 3 January 2008  
Product data sheet  
1. General description  
The LPC2212/2214 are based on a 16/32-bit ARM7TDMI-S CPU with real-time emulation  
and embedded trace support, together with 128/256 kB of embedded high-speed flash  
memory. A 128-bit wide memory interface and a unique accelerator architecture enable  
32-bit code execution at maximum clock rate. For critical code size applications, the  
alternative 16-bit Thumb mode reduces code by more than 30 % with minimal  
performance penalty.  
With their 144-pin package, low power consumption, various 32-bit timers, 8-channel  
10-bit ADC, PWM channels and up to nine external interrupt pins these microcontrollers  
are particularly suitable for industrial control, medical systems, access control and  
point-of-sale. Number of available fast GPIOs ranges from up to 76 pins (with external  
memory) through up to 112 pins (single-chip). With a wide range of serial communications  
interfaces, they are also very well suited for communication gateways, protocol converters  
and embedded soft modems as well as many other general-purpose applications.  
Remark: Throughout the data sheet, the term LPC2212/2214 will apply to devices with  
and without the /00 or /01 suffixes. The /00 or the /01 suffix will be used to differentiate  
from other devices only when necessary.  
2. Features  
2.1 Key features brought by LPC2212/2214/01 devices  
I Fast GPIO ports enable port pin toggling up to 3.5 times faster than the original device.  
They also allow for a port pin to be read at any time regardless of its function.  
I Dedicated result registers for ADC(s) reduce interrupt overhead. The ADC pads are  
5 V tolerant when configured for digital I/O function(s).  
I UART0/1 include fractional baud rate generator, auto-bauding capabilities and  
handshake flow-control fully implemented in hardware.  
I Buffered SSP serial controller supporting SPI, 4-wire SSI, and Microwire formats.  
I SPI programmable data length and master mode enhancement.  
I Diversified Code Read Protection (CRP) enables different security levels to be  
implemented. This feature is available in LPC2212/2214/00 devices as well.  
I General purpose timers can operate as external event counters.  
2.2 Key features common for all devices  
I 16/32-bit ARM7TDMI-S microcontroller in a LQFP144 package.  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
I 16 kB on-chip static RAM and 128/256 kB on-chip flash program memory. 128-bit wide  
interface/accelerator enables high speed 60 MHz operation.  
I In-System Programming (ISP) and In-Application Programming (IAP) via on-chip  
bootloader software. Flash programming takes 1 ms per 512 B line. Single sector or  
full chip erase takes 400 ms.  
I EmbeddedICE-RT and Embedded Trace interfaces offer real-time debugging with the  
on-chip RealMonitor software as well as high speed real-time tracing of instruction  
execution.  
I Eight-channel 10-bit ADC with conversion time as low as 2.44 µs.  
I Two 32-bit timers (with four capture and four compare channels), PWM unit (six  
outputs), Real-Time Clock and Watchdog.  
I Multiple serial interfaces including two UARTs (16C550), Fast I2C-bus (400 kbit/s) and  
two SPIs.  
I Vectored Interrupt Controller with configurable priorities and vector addresses.  
I Configurable external memory interface with up to four banks, each up to 16 MB and  
8/16/32-bit data width.  
I Up to 112 general purpose I/O pins (5 V tolerant). Up to nine edge or level sensitive  
external interrupt pins available.  
I 60 MHz maximum CPU clock available from programmable on-chip Phase-Locked  
Loop with settling time of 100 µs.  
I On-chip crystal oscillator with an operating range of 1 MHz to 30 MHz.  
I Two low power modes, Idle and Power-down.  
I Processor wake-up from Power-down mode via external interrupt.  
I Individual enable/disable of peripheral functions for power optimization.  
I Dual power supply:  
N CPU operating voltage range of 1.65 V to 1.95 V (1.8 V ± 0.15 V).  
N I/O power supply range of 3.0 V to 3.6 V (3.3 V ± 10 %) with 5 V tolerant I/O pads.  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC2212FBD144  
LQFP144 plastic low profile quad flat package; 144 leads; SOT486-1  
body 20 × 20 × 1.4 mm  
LPC2212FBD144/00 LQFP144 plastic low profile quad flat package; 144 leads; SOT486-1  
body 20 × 20 × 1.4 mm  
LPC2212FBD144/01 LQFP144 plastic low profile quad flat package; 144 leads; SOT486-1  
body 20 × 20 × 1.4 mm  
LPC2214FBD144  
LQFP144 plastic low profile quad flat package; 144 leads; SOT486-1  
body 20 × 20 × 1.4 mm  
LPC2214FBD144/00 LQFP144 plastic low profile quad flat package; 144 leads; SOT486-1  
body 20 × 20 × 1.4 mm  
LPC2214FBD144/01 LQFP144 plastic low profile quad flat package; 144 leads; SOT486-1  
body 20 × 20 × 1.4 mm  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
2 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
3.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Flash memory RAM  
Fast GPIO/  
Temperature range  
SSP/  
Enhanced  
UART, ADC,  
Timer  
LPC2212FBD144  
128 kB  
128 kB  
128 kB  
256 kB  
256 kB  
256 kB  
16 kB  
16 kB  
16 kB  
16 kB  
16 kB  
16 kB  
no  
40 °C to +85 °C  
40 °C to +85 °C  
40 °C to +85 °C  
40 °C to +85 °C  
40 °C to +85 °C  
40 °C to +85 °C  
LPC2212FBD144/00  
LPC2212FBD144/01  
LPC2214FBD144  
no  
yes  
no  
LPC2214FBD144/00  
LPC2214FBD144/01  
no  
yes  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
3 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
4. Block diagram  
(2)  
(2)  
TMS  
(2)  
TDI  
(2)  
RTCK  
(2)  
XTAL2  
TRST  
TCK  
TDO  
XTAL1  
RESET  
TEST/DEBUG  
INTERFACE  
V
V
V
LPC2212  
LPC2214  
DD(3V3)  
DD(1V8)  
SS  
SYSTEM  
FUNCTIONS  
PLL  
ARM7TDMI-S  
system  
clock  
HIGH-SPEED  
VECTORED  
INTERRUPT  
CONTROLLER  
(3)  
P0, P1  
GPI/O  
AHB BRIDGE  
48 PINS TOTAL  
AMBA Advanced High-performance  
Bus (AHB)  
ARM7 LOCAL BUS  
INTERNAL  
INTERNAL  
SRAM  
FLASH  
CONTROLLER  
CONTROLLER  
AHB  
DECODER  
(1)  
CS[3:0]  
A[23:0]  
16 kB  
SRAM  
128/256 kB  
FLASH  
AHB TO APB  
BRIDGE  
APB  
DIVIDER  
(1)  
EXTERNAL MEMORY  
CONTROLLER  
(1)  
BLS[3:0]  
(1)  
OE, WE  
(1)  
D[31:0]  
EXTERNAL  
(1)  
EINT[3:0]  
INTERRUPTS  
(1)  
SCL  
2
I C-BUS SERIAL  
INTERFACE  
(1)  
(1)  
(1)  
(1)  
4 × CAP0  
4 × CAP1  
4 × MAT0  
4 × MAT1  
(1)  
SDA  
CAPTURE/  
COMPARE  
TIMER 0/TIMER 1  
(1)  
SCK1  
(1)  
(3)  
MOSI1  
MISO1  
SSEL1  
SPI1/SSP SERIAL  
(1)  
(1)  
INTERFACE  
(1)  
(1)  
AIN[3:0]  
AIN[7:4]  
A/D CONVERTER  
(1)  
SCK0  
P0[30:27],  
P0[25:0]  
(1)  
(1)  
(1)  
MOSI0  
MISO0  
SSEL0  
SPI0 SERIAL  
INTERFACE  
P1[31:16],  
P1[1:0]  
GENERAL  
PURPOSE I/O  
P2[31:0]  
P3[31:0]  
(1)  
TXD[1:0]  
(1)  
UART0/UART1  
RXD[1:0]  
(1)  
(1)  
DSR1 , CTS1  
RTS1 , DTR1  
DCD1 , RI1  
,
(1)  
PWM[6:1]  
PWM0  
(1)  
(1)  
,
(1)  
(1)  
WATCHDOG  
TIMER  
SYSTEM CONTROL  
REAL-TIME CLOCK  
002aad181  
(1) Shared with GPIO.  
(2) When test/debug interface is used, GPIO/other functions sharing these pins are not available.  
(3) SSP interface and high-speed GPIO are available on LPC2212/01 and LPC2214/01 only.  
Fig 1. Block diagram  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
4 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
5. Pinning information  
5.1 Pinning  
1
108  
LPC2212  
LPC2214(1)  
36  
73  
002aad182  
(1) Pin configuration is identical for devices with and without /00 and /01 suffixes.  
Fig 2. Pin configuration (LQFP144)  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
5 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
5.2 Pin description  
Table 3.  
Pin description  
Symbol  
Pin  
Type Description  
P0[0] to P0[31]  
I/O  
Port 0 is a 32-bit bidirectional I/O port with individual direction controls for  
each bit. The operation of port 0 pins depends upon the pin function selected  
via the Pin Connect Block.  
Pins 26 and 31 of port 0 are not available.  
TXD0 — Transmitter output for UART0.  
PWM1 — Pulse Width Modulator output 1.  
RXD0 — Receiver input for UART0.  
P0[0]/TXD0/PWM1  
42  
49  
O
O
I
P0[1]/RXD0/PWM3/  
EINT0  
O
I
PWM3 — Pulse Width Modulator output 3.  
EINT0 — External interrupt 0 input  
P0[2]/SCL/CAP0[0]  
50  
58  
I/O  
SCL — I2C-bus clock input/output. Open-drain output (for I2C-bus  
compliance).  
I
CAP0[0] — Capture input for Timer 0, channel 0.  
SDA — I2C-bus data input/output. Open-drain output (for I2C-bus  
compliance).  
P0[3]/SDA/MAT0[0]/  
EINT1  
I/O  
O
I
MAT0[0] — Match output for Timer 0, channel 0.  
EINT1 — External interrupt 1 input.  
P0[4]/SCK0/CAP0[1]  
P0[5]/MISO0/MAT0[1]  
59  
61  
I/O  
I
SCK0 — Serial clock for SPI0. SPI clock output from master or input to slave.  
CAP0[1] — Capture input for Timer 0, channel 1.  
I/O  
MISO0 — Master In Slave OUT for SPI0. Data input to SPI master or data  
output from SPI slave.  
O
MAT0[1] — Match output for Timer 0, channel 1.  
P0[6]/MOSI0/CAP0[2]  
68  
69  
I/O  
MOSI0 — Master Out Slave In for SPI0. Data output from SPI master or data  
input to SPI slave.  
I
CAP0[2] — Capture input for Timer 0, channel 2.  
SSEL0 — Slave Select for SPI0. Selects the SPI interface as a slave.  
PWM2 — Pulse Width Modulator output 2.  
EINT2 — External interrupt 2 input.  
P0[7]/SSEL0/PWM2/  
EINT2  
I
O
I
P0[8]/TXD1/PWM4  
75  
76  
O
O
I
TXD1 — Transmitter output for UART1.  
PWM4 — Pulse Width Modulator output 4.  
RXD1 — Receiver input for UART1.  
P0[9]/RXD1/PWM6/  
EINT3  
O
I
PWM6 — Pulse Width Modulator output 6.  
EINT3 — External interrupt 3 input.  
P0[10]/RTS1/CAP1[0]  
P0[11]/CTS1/CAP1[1]  
P0[12]/DSR1/MAT1[0]  
P0[13]/DTR1/MAT1[1]  
78  
83  
84  
85  
O
I
RTS1 — Request to Send output for UART1.  
CAP1[0] — Capture input for Timer 1, channel 0.  
CTS1 — Clear to Send input for UART1.  
I
I
CAP1[1] — Capture input for Timer 1, channel 1.  
DSR1 — Data Set Ready input for UART1.  
MAT1[0] — Match output for Timer 1, channel 0.  
DTR1 — Data Terminal Ready output for UART1.  
MAT1[1] — Match output for Timer 1, channel 1.  
I
O
O
O
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
6 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
Table 3.  
Pin description …continued  
Symbol  
Pin  
Type Description  
P0[14]/DCD1/EINT1  
92  
I
I
DCD1 — Data Carrier Detect input for UART1.  
EINT1 — External interrupt 1 input.  
Note: LOW on this pin while RESET is LOW forces on-chip bootloader to take  
over control of the part after reset.  
P0[15]/RI1/EINT2  
99  
I
RI1 — Ring Indicator input for UART1.  
I
EINT2 — External interrupt 2 input.  
P0[16]/EINT0/MAT0[2]/ 100  
CAP0[2]  
I
EINT0 — External interrupt 0 input.  
O
MAT0[2] — Match output for Timer 0, channel 2.  
CAP0[2] — Capture input for Timer 0, channel 2.  
CAP1[2] — Capture input for Timer 1, channel 2.  
I
P0[17]/CAP1[2]/SCK1/  
MAT1[2]  
101  
I
I/O  
SCK1 — Serial Clock for SPI1/SSP[1]. SPI clock output from master or input  
to slave.  
O
I
MAT1[2] — Match output for Timer 1, channel 2.  
P0[18]/CAP1[3]/MISO1/ 121  
MAT1[3]  
CAP1[3] — Capture input for Timer 1, channel 3.  
MISO1 — Master In Slave Out for SPI1/SSP[1]. Data input to SPI master or  
I/O  
data output from SPI slave.  
O
MAT1[3] — Match output for Timer 1, channel 3.  
P0[19]/MAT1[2]/MOSI1/ 122  
CAP1[2]  
O
MAT1[2] — Match output for Timer 1, channel 2.  
MOSI1 — Master Out Slave In for SPI1/SSP[1]. Data output from SPI master  
I/O  
or data input to SPI slave.  
I
CAP1[2] — Capture input for Timer 1, channel 2.  
MAT1[3] — Match output for Timer 1, channel 3.  
SSEL1 — Slave Select for SPI1/SSP[1]. Selects the SPI interface as a slave.  
EINT3 — External interrupt 3 input.  
P0[20]/MAT1[3]/SSEL1/ 123  
EINT3  
O
I
I
P0[21]/PWM5/CAP1[3]  
P0[22]/CAP0[0]/MAT0[0]  
4
5
O
I
PWM5 — Pulse Width Modulator output 5.  
CAP1[3] — Capture input for Timer 1, channel 3.  
CAP0[0] — Capture input for Timer 0, channel 0.  
MAT0[0] — Match output for Timer 0, channel 0.  
General purpose bidirectional digital port only.  
I
O
I/O  
I/O  
I/O  
I
P0[23]  
P0[24]  
P0[25]  
6
8
General purpose bidirectional digital port only.  
21  
23  
General purpose bidirectional digital port only.  
P0[27]/AIN0/CAP0[1]/  
MAT0[1]  
AIN0 — ADC, input 0. This analog input is always connected to its pin.  
CAP0[1] — Capture input for Timer 0, channel 1.  
MAT0[1] — Match output for Timer 0, channel 1.  
AIN1 — ADC, input 1. This analog input is always connected to its pin.  
CAP0[2] — Capture input for Timer 0, channel 2.  
MAT0[2] — Match output for Timer 0, channel 2.  
AIN2 — ADC, input 2. This analog input is always connected to its pin.  
CAP0[3] — Capture input for Timer 0, Channel 3.  
MAT0[3] — Match output for Timer 0, channel 3.  
I
O
I
P0[28]/AIN1/CAP0[2]/  
MAT0[2]  
25  
32  
I
O
I
P0[29]/AIN2/CAP0[3]/  
MAT0[3]  
I
O
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
7 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
Table 3.  
Symbol  
Pin description …continued  
Pin  
Type Description  
P0[30]/AIN3/EINT3/  
CAP0[0]  
33  
I
AIN3 — ADC, input 3. This analog input is always connected to its pin.  
EINT3 — External interrupt 3 input.  
I
I
CAP0[0] — Capture input for Timer 0, channel 0.  
P1[0] to P1[31]  
P1[0]/CS0  
I/O  
Port 1 is a 32-bit bidirectional I/O port with individual direction controls for  
each bit. The operation of port 1 pins depends upon the pin function selected  
via the Pin Connect Block.  
Pins 2 through 15 of port 1 are not available.  
91  
O
LOW-active Chip Select 0 signal.  
(Bank 0 addresses range 0x8000 0000 to 0x80FF FFFF)  
LOW-active Output Enable signal.  
P1[1]/OE  
90  
34  
24  
15  
7
O
O
O
O
O
O
P1[16]/TRACEPKT0  
P1[17]/TRACEPKT1  
P1[18]/TRACEPKT2  
P1[19]/TRACEPKT3  
P1[20]/TRACESYNC  
Trace Packet, bit 0. Standard I/O port with internal pull-up.  
Trace Packet, bit 1. Standard I/O port with internal pull-up.  
Trace Packet, bit 2. Standard I/O port with internal pull-up.  
Trace Packet, bit 3. Standard I/O port with internal pull-up.  
Trace Synchronization; standard I/O port with internal pull-up.  
102  
Note: LOW on this pin while RESET is LOW, enables pins P1[25:16] to  
operate as Trace port after reset.  
P1[21]/PIPESTAT0  
P1[22]/PIPESTAT1  
P1[23]/PIPESTAT2  
P1[24]/TRACECLK  
P1[25]/EXTIN0  
95  
86  
82  
70  
60  
52  
O
O
O
O
I
Pipeline Status, bit 0. Standard I/O port with internal pull-up.  
Pipeline Status, bit 1. Standard I/O port with internal pull-up.  
Pipeline Status, bit 2. Standard I/O port with internal pull-up.  
Trace Clock. Standard I/O port with internal pull-up.  
External Trigger Input. Standard I/O with internal pull-up.  
P1[26]/RTCK  
I/O  
Returned Test Clock output. Extra signal added to the JTAG port. Assists  
debugger synchronization when processor frequency varies. Bidirectional pin  
with internal pull-up.  
Note: LOW on this pin while RESET is LOW, enables pins P1[31:26] to  
operate as Debug port after reset.  
P1[27]/TDO  
P1[28]/TDI  
P1[29]/TCK  
144  
140  
126  
O
I
Test Data out for JTAG interface.  
Test Data in for JTAG interface.  
Test Clock for JTAG interface. This clock must be slower than 16 of the CPU  
I
clock (CCLK) for the JTAG interface to operate.  
P1[30]/TMS  
113  
43  
I
Test Mode Select for JTAG interface.  
Test Reset for JTAG interface.  
P1[31]/TRST  
P2[0] to P2[31]  
I
I/O  
Port 2 is a 32-bit bidirectional I/O port with individual direction controls for  
each bit. The operation of port 2 pins depends upon the pin function selected  
via the Pin Connect Block.  
P2[0]/D0  
P2[1]/D1  
P2[2]/D2  
P2[3]/D3  
P2[4]/D4  
P2[5]/D5  
P2[6]/D6  
98  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
External memory data line 0.  
External memory data line 1.  
External memory data line 2.  
External memory data line 3.  
External memory data line 4.  
External memory data line 5.  
External memory data line 6.  
105  
106  
108  
109  
114  
115  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
8 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
Table 3.  
Pin description …continued  
Type Description  
External memory data line 7.  
Symbol  
Pin  
116  
117  
118  
120  
124  
125  
127  
129  
130  
131  
132  
133  
134  
136  
137  
1
P2[7]/D7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
P2[8]/D8  
External memory data line 8.  
External memory data line 9.  
External memory data line 10.  
External memory data line 11.  
External memory data line 12.  
External memory data line 13.  
External memory data line 14.  
External memory data line 15.  
External memory data line 16.  
External memory data line 17.  
External memory data line 18.  
External memory data line 19.  
External memory data line 20.  
External memory data line 21.  
External memory data line 22.  
External memory data line 23.  
External memory data line 24.  
External memory data line 25.  
D26 — External memory data line 26.  
P2[9]/D9  
P2[10]/D10  
P2[11]/D11  
P2[12]/D12  
P2[13]/D13  
P2[14]/D14  
P2[15]/D15  
P2[16]/D16  
P2[17]/D17  
P2[18]/D18  
P2[19]/D19  
P2[20]/D20  
P2[21]/D21  
P2[22]/D22  
P2[23]/D23  
P2[24]/D24  
P2[25]/D25  
P2[26]/D26/BOOT0  
10  
11  
12  
13  
BOOT0 — While RESET is LOW, together with BOOT1 controls booting and  
internal operation. Internal pull-up ensures HIGH state if pin is left  
unconnected.  
P2[27]/D27/BOOT1  
16  
I/O  
I
D27 — External memory data line 27.  
BOOT1 — While RESET is LOW, together with BOOT0 controls booting and  
internal operation. Internal pull-up ensures HIGH state if pin is left  
unconnected.  
BOOT1:0 = 00 selects 8-bit memory on CS0 for boot.  
BOOT1:0 = 01 selects 16-bit memory on CS0 for boot.  
BOOT1:0 = 10 selects 32-bit memory on CS0 for boot.  
BOOT1:0 = 11 selects internal flash memory.  
External memory data line 28.  
P2[28]/D28  
17  
18  
19  
I/O  
I/O  
I/O  
I
P2[29]/D29  
External memory data line 29.  
P2[30]/D30/AIN4  
D30 — External memory data line 30.  
AIN4 — ADC, input 4. This analog input is always connected to its pin.  
D31 — External memory data line 31.  
P2[31]/D31/AIN5  
P3[0] to P3[31]  
20  
I/O  
I
AIN5 — ADC, input 5. This analog input is always connected to its pin.  
I/O  
Port 3 is a 32-bit bidirectional I/O port with individual direction controls for  
each bit. The operation of port 3 pins depends upon the pin function selected  
via the Pin Connect Block.  
P3[0]/A0  
P3[1]/A1  
P3[2]/A2  
89  
88  
87  
O
O
O
External memory address line 0.  
External memory address line 1.  
External memory address line 2.  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
9 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
Table 3.  
Pin description …continued  
Type Description  
External memory address line 3.  
Symbol  
Pin  
81  
80  
74  
73  
72  
71  
66  
65  
64  
63  
62  
56  
55  
53  
48  
47  
46  
45  
44  
41  
40  
P3[3]/A3  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
P3[4]/A4  
External memory address line 4.  
External memory address line 5.  
External memory address line 6.  
External memory address line 7.  
External memory address line 8.  
External memory address line 9.  
External memory address line 10.  
External memory address line 11.  
External memory address line 12.  
External memory address line 13.  
External memory address line 14.  
External memory address line 15.  
External memory address line 16.  
External memory address line 17.  
External memory address line 18.  
External memory address line 19.  
External memory address line 20.  
External memory address line 21.  
External memory address line 22.  
A23 — External memory address line 23.  
XCLK — Clock output.  
P3[5]/A5  
P3[6]/A6  
P3[7]/A7  
P3[8]/A8  
P3[9]/A9  
P3[10]/A10  
P3[11]/A11  
P3[12]/A12  
P3[13]/A13  
P3[14]/A14  
P3[15]/A15  
P3[16]/A16  
P3[17]/A17  
P3[18]/A18  
P3[19]/A19  
P3[20]/A20  
P3[21]/A21  
P3[22]/A22  
P3[23]/A23/XCLK  
P3[24]/CS3  
P3[25]/CS2  
P3[26]/CS1  
36  
35  
30  
LOW-active Chip Select 3 signal.  
(Bank 3 addresses range 0x8300 0000 to 0x83FF FFFF)  
LOW-active Chip Select 2 signal.  
O
O
(Bank 2 addresses range 0x8200 0000 to 0x82FF FFFF)  
LOW-active Chip Select 1 signal.  
(Bank 1 addresses range 0x8100 0000 to 0x81FF FFFF)  
LOW-active Write enable signal.  
P3[27]/WE  
29  
28  
O
O
I
P3[28]/BLS3/AIN7  
BLS3 — LOW-active Byte Lane Select signal (Bank 3).  
AIN7 — ADC, input 7. This analog input is always connected to its pin.  
BLS2 — LOW-active Byte Lane Select signal (Bank 2).  
AIN6 — ADC, input 6. This analog input is always connected to its pin.  
LOW-active Byte Lane Select signal (Bank 1).  
LOW-active Byte Lane Select signal (Bank 0).  
Pin not connected.  
P3[29]/BLS2/AIN6  
27  
O
I
P3[30]/BLS1  
P3[31]/BLS0  
n.c.  
97  
O
O
96  
22  
RESET  
135  
I
external reset input; a LOW on this pin resets the device, causing I/O ports  
and peripherals to take on their default states, and processor execution to  
begin at address 0. TTL with hysteresis, 5 V tolerant.  
XTAL1  
XTAL2  
142  
141  
I
input to the oscillator circuit and internal clock generator circuits.  
output from the oscillator amplifier.  
O
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
10 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
Table 3.  
Symbol  
VSS  
Pin description …continued  
Pin  
Type Description  
3, 9, 26,  
38, 54, 67,  
79, 93,  
I
ground: 0 V reference  
103, 107,  
111, 128  
VSSA  
139  
I
I
analog ground; 0 V reference. This should nominally be the same voltage as  
VSS, but should be isolated to minimize noise and error.  
VSSA(PLL)  
138  
PLL analog ground; 0 V reference. This should nominally be the same voltage  
as VSS, but should be isolated to minimize noise and error.  
VDD(1V8)  
37, 110  
143  
I
I
1.8 V core power supply; this is the power supply voltage for internal circuitry.  
VDDA(1V8)  
analog 1.8 V core power supply; this is the power supply voltage for internal  
circuitry. This should be nominally the same voltage as VDD(1V8) but should be  
isolated to minimize noise and error.  
VDD(3V3)  
2, 31, 39,  
51, 57, 77,  
94, 104,  
I
I
3.3 V pad power supply; this is the power supply voltage for the I/O ports  
112, 119  
VDDA(3V3)  
14  
analog 3.3 V pad power supply; this should be nominally the same voltage as  
VDD(3V3) but should be isolated to minimize noise and error  
[1] SSP interface is available on LPC2212/01 and LPC2214/01 only.  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
11 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
6. Functional description  
Details of the LPC2212/2214 systems and peripheral functions are described in the  
following sections.  
6.1 Architectural overview  
The ARM7TDMI-S is a general purpose 32-bit microprocessor, which offers high  
performance and very low power consumption. The ARM architecture is based on  
Reduced Instruction Set Computer (RISC) principles, and the instruction set and related  
decode mechanism are much simpler than those of microprogrammed Complex  
Instruction Set Computers. This simplicity results in a high instruction throughput and  
impressive real-time interrupt response from a small and cost-effective processor core.  
Pipeline techniques are employed so that all parts of the processing and memory systems  
can operate continuously. Typically, while one instruction is being executed, its successor  
is being decoded, and a third instruction is being fetched from memory.  
The ARM7TDMI-S processor also employs a unique architectural strategy known as  
Thumb, which makes it ideally suited to high-volume applications with memory  
restrictions, or applications where code density is an issue.  
The key idea behind Thumb is that of a super-reduced instruction set. Essentially, the  
ARM7TDMI-S processor has two instruction sets:  
The standard 32-bit ARM set.  
A 16-bit Thumb set.  
The Thumb set’s 16-bit instruction length allows it to approach twice the density of  
standard ARM code while retaining most of the ARM’s performance advantage over a  
traditional 16-bit processor using 16-bit registers. This is possible because Thumb code  
operates on the same 32-bit register set as ARM code.  
Thumb code is able to provide up to 65 % of the code size of ARM, and 160 % of the  
performance of an equivalent ARM processor connected to a 16-bit memory system.  
6.2 On-chip flash program memory  
The LPC2212/2214 incorporate a 128 kB and 256 kB flash memory system respectively.  
This memory may be used for both code and data storage. Programming of the flash  
memory may be accomplished in several ways. It may be programmed In System via the  
serial port. The application program may also erase and/or program the flash while the  
application is running, allowing a great degree of flexibility for data storage field firmware  
upgrades, etc. When on-chip bootloader is used, 120/248 kB of flash memory is available  
for user code.  
The LPC2212/2214 flash memory provides a minimum of 100000 erase/write cycles and  
20 years of data retention.  
On-chip bootloader (as of revision 1.60) provides Code Read Protection (CRP) for the  
LPC2212/2214 on-chip flash memory. When the CRP is enabled, the JTAG debug port,  
external memory boot and ISP commands accessing either the on-chip RAM or flash  
memory are disabled. However, the ISP flash erase command can be executed at any  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
12 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
time (no matter whether the CRP is on or off). Removal of CRP is achieved by erasure of  
full on-chip user flash. With the CRP off, full access to the chip via the JTAG and/or ISP is  
restored.  
6.3 On-chip static RAM  
On-chip static RAM may be used for code and/or data storage. The SRAM may be  
accessed as 8 bit, 16 bit, and 32 bit. The LPC2212/2214 provide 16 kB of static RAM.  
6.4 Memory map  
The LPC2212/2214 memory maps incorporate several distinct regions, as shown in the  
following figures.  
In addition, the CPU interrupt vectors may be re-mapped to allow them to reside in either  
flash memory (the default) or on-chip static RAM. This is described in Section 6.18  
“System control”.  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
13 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
4.0 GB  
3.75 GB  
3.5 GB  
0xFFFF FFFF  
AHB PERIPHERALS  
APB PERIPHERALS  
0xF000 0000  
0xEFFF FFFF  
0xE000 0000  
0xDFFF FFFF  
0xC000 0000  
3.0 GB  
RESERVED ADDRESS SPACE  
0x8000 0000  
0x7FFF FFFF  
2.0 GB  
BOOT BLOCK (RE-MAPPED FROM  
ON-CHIP FLASH MEMORY)  
0x7FFF E000  
0x7FFF DFFF  
RESERVED ADDRESS SPACE  
16 kB ON-CHIP STATIC RAM  
0x4000 4000  
0x4000 3FFF  
0x4000 0000  
0x3FFF FFFF  
1.0 GB  
RESERVED ADDRESS SPACE  
0x0004 0000  
0x0003 FFFF  
256 kB ON-CHIP FLASH MEMORY (LPC2214)  
128 kB ON-CHIP FLASH MEMORY (LPC2212)  
0x0002 0000  
0x0001 FFFF  
0x0000 0000  
002aad183  
0.0 GB  
Fig 3. LPC2212/2214 memory map  
6.5 Interrupt controller  
The Vectored Interrupt Controller (VIC) accepts all of the interrupt request inputs and  
categorizes them as Fast Interrupt reQuest (FIQ), vectored Interrupt Request (IRQ), and  
non-vectored IRQ as defined by programmable settings. The programmable assignment  
scheme means that priorities of interrupts from the various peripherals can be dynamically  
assigned and adjusted.  
The FIQ has the highest priority. If more than one request is assigned to FIQ, the VIC  
combines the requests to produce the FIQ signal to the ARM processor. The fastest  
possible FIQ latency is achieved when only one request is classified as FIQ, because then  
the FIQ service routine can simply start dealing with that device. But if more than one  
request is assigned to the FIQ class, the FIQ service routine can read a word from the VIC  
that identifies which FIQ source(s) is (are) requesting an interrupt.  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
14 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
Vectored IRQs have the middle priority. Sixteen of the interrupt requests can be assigned  
to this category. Any of the interrupt requests can be assigned to any of the 16 vectored  
IRQ slots, among which slot 0 has the highest priority and slot 15 has the lowest.  
Non-vectored IRQs have the lowest priority.  
The VIC combines the requests from all the vectored and non-vectored IRQs to produce  
the IRQ signal to the ARM processor. The IRQ service routine can start by reading a  
register from the VIC and jumping there. If any of the vectored IRQs are requesting, the  
VIC provides the address of the highest-priority requesting IRQs service routine,  
otherwise it provides the address of a default routine that is shared by all the non-vectored  
IRQs. The default routine can read another VIC register to see what IRQs are active.  
6.5.1 Interrupt sources  
Table 4 lists the interrupt sources for each peripheral function. Each peripheral device has  
one interrupt line connected to the Vectored Interrupt Controller, but may have several  
internal interrupt flags. Individual interrupt flags may also represent more than one  
interrupt source.  
Table 4.  
Block  
Interrupt sources  
Flag(s)  
VIC channel #  
WDT  
Watchdog Interrupt (WDINT)  
0
1
2
3
4
5
6
-
Reserved for software interrupts only  
EmbeddedICE, DbgCommRx  
EmbeddedICE, DbgCommTx  
Match 0 to 3 (MR0, MR1, MR2, MR3)  
Match 0 to 3 (MR0, MR1, MR2, MR3)  
Rx Line Status (RLS)  
ARM Core  
ARM Core  
Timer 0  
Timer 1  
UART0  
Transmit Holding Register empty (THRE)  
Rx Data Available (RDA)  
Character Time-out Indicator (CTI)  
Rx Line Status (RLS)  
UART1  
7
Transmit Holding Register empty (THRE)  
Rx Data Available (RDA)  
Character Time-out Indicator (CTI)  
Modem Status Interrupt (MSI)  
Match 0 to 6 (MR0, MR1, MR2, MR3, MR4, MR5, MR6)  
SI (state change)  
PWM0  
I2C-bus  
SPI0  
8
9
SPIF, MODF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
SPI1 and SSP[1] SPIF, MODF and TXRIS, RXRIS, RTRIS, RORRIS  
PLL  
PLL Lock (PLOCK)  
RTC  
RTCCIF (Counter Increment), RTCALF (Alarm)  
System Control External Interrupt 0 (EINT0)  
External Interrupt 1 (EINT1)  
External Interrupt 2 (EINT2)  
External Interrupt 3 (EINT3)  
ADC  
ADC  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
15 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
[1] SSP interface available on LPC2212/01 and LPC2214/01 only.  
6.6 Pin connect block  
The pin connect block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on chip peripherals. Peripherals should be connected to the appropriate pins  
prior to being activated, and prior to any related interrupt(s) being enabled. Activity of any  
enabled peripheral function that is not mapped to a related pin should be considered  
undefined.  
6.7 External memory controller  
The external Static Memory Controller (SMC) is a module which provides an interface  
between the system bus and external (off-chip) memory devices. It provides support for  
up to four independently configurable memory banks (16 MB each with byte lane enable  
control) simultaneously. Each memory bank is capable of supporting SRAM, ROM, flash  
EPROM, burst ROM memory, or some external I/O devices.  
Each memory bank may be 8-bit, 16-bit, or 32-bit wide.  
6.8 General purpose parallel I/O (GPIO) and Fast I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
parallel I/O registers. Pins may be dynamically configured as inputs or outputs. Separate  
registers allow setting or clearing any number of outputs simultaneously. The value of the  
output register may be read back, as well as the current state of the port pins.  
6.8.1 Features  
Bit-level set and clear registers allow a single instruction set or clear of any number of  
bits in one port.  
Direction control of individual bits.  
Separate control of output set and clear.  
All I/O default to inputs after reset.  
6.8.2 Features added with the Fast GPIO set of registers available on  
LPC2212/2214/01 only  
Fast GPIO registers are relocated to the ARM local bus for the fastest possible I/O  
timing, enabling port pin toggling up to 3.5 times faster than earlier LPC2000 devices.  
Mask registers allow treating sets of port bits as a group, leaving other bits  
unchanged.  
All Fast GPIO registers are byte addressable.  
Entire port value can be written in one instruction.  
Ports are accessible via either the legacy group of registers (GPIOs) or the group of  
registers providing accelerated port access (Fast GPIOs).  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
16 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
6.9 10-bit ADC  
The LPC2212/2214 each contain a single 10-bit successive approximation ADC with four  
multiplexed channels.  
6.9.1 Features  
Measurement range of 0 V to 3 V.  
Capable of performing more than 400000 10-bit samples per second.  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition on input pin or Timer Match signal.  
6.9.2 ADC features available in LPC2212/2214/01 only  
Every analog input has a dedicated result register to reduce interrupt overhead.  
Every analog input can generate an interrupt once the conversion is completed.  
The ADC pads are 5 V tolerant when configured for digital I/O function(s).  
6.10 UARTs  
The LPC2212/2214 each contain two UARTs. In addition to standard transmit and receive  
data lines, the UART1 also provides a full modem control handshake interface.  
6.10.1 Features  
16 B Receive and Transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
Transmission FIFO control enables implementation of software (XON/XOFF) flow  
control on both UARTs.  
UART1 is equipped with standard modem interface signals. This module also  
provides full support for hardware flow control (auto-CTS/RTS).  
6.10.2 UART features available in LPC2212/2214/01 only  
Compared to previous LPC2000 microcontrollers, UARTs in LPC2212/2214/01 introduce  
a fractional baud rate generator for both UARTs, enabling these microcontrollers to  
achieve standard baud rates such as 115200 Bd with any crystal frequency above 2 MHz.  
In addition, auto-CTS/RTS flow-control functions are fully implemented in hardware.  
Fractional baud rate generator enables standard baud rates such as 115200 Bd to be  
achieved with any crystal frequency above 2 MHz.  
Auto-bauding.  
Auto-CTS/RTS flow-control fully implemented in hardware.  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
17 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
6.11 I2C-bus serial I/O controller  
The I2C-bus is a bidirectional bus for inter-IC control using only two wires: a serial clock  
line (SCL), and a serial data line (SDA). Each device is recognized by a unique address  
and can operate as either a receiver-only device (e.g. an LCD driver or a transmitter with  
the capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C-bus is a multi-master bus; it can be  
controlled by more than one bus master connected to it.  
The I2C-bus implemented in LPC2212/2214 supports a bit rate up to 400 kbit/s (Fast  
I2C-bus).  
6.11.1 Features  
Standard I2C-bus compliant interface.  
Easy to configure as Master, Slave, or Master/Slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus may be used for test and diagnostic purposes.  
6.12 SPI serial I/O controller  
The LPC2212/2214 each contain two SPIs. The SPI is a full duplex serial interface,  
designed to be able to handle multiple masters and slaves connected to a given bus. Only  
a single master and a single slave can communicate on the interface during a given data  
transfer. During a data transfer the master always sends a byte of data to the slave, and  
the slave always sends a byte of data to the master.  
6.12.1 Features  
Compliant with Serial Peripheral Interface (SPI) specification.  
Synchronous, Serial, Full Duplex communication.  
Combined SPI master and slave.  
Maximum data bit rate of 18 of the input clock rate.  
6.12.2 Features available in LPC2212/2214/01 only  
Eight to 16 bits per frame.  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
18 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
When the SPI interface is used in Master mode, the SSEL pin is not needed (can be  
used for a different function).  
6.13 SSP controller (LPC2212/2214/01 only)  
The SSP is a controller capable of operation on a SPI, 4-wire SSI, or Microwire bus. It can  
interact with multiple masters and slaves on the bus. Only a single master and a single  
slave can communicate on the bus during a given data transfer. Data transfers are in  
principle full duplex, with frames of four to 16 bits of data flowing from the master to the  
slave and from the slave to the master.  
While the SSP and SPI1 peripherals share the same physical pins, it is not possible to  
have both of these two peripherals active at the same time. Application can switch on the  
fly from SPI1 to SSP and back.  
6.13.1 Features  
Compatible with Motorola’s SPI, Texas Instrument’s 4-wire SSI, and National  
Semiconductor’s Microwire buses.  
Synchronous serial communication.  
Master or slave operation.  
8-frame FIFOs for both transmit and receive.  
Four to 16 bits per frame.  
6.14 General purpose timers  
The Timer/Counter is designed to count cycles of the peripheral clock (PCLK) or an  
externally supplied clock and optionally generate interrupts or perform other actions at  
specified timer values, based on four match registers. It also includes four capture inputs  
to trap the timer value when an input signal transitions, optionally generating an interrupt.  
Multiple pins can be selected to perform a single capture or match function, providing an  
application with ‘or’ and ‘and’, as well as ‘broadcast’ functions among them.  
6.14.1 Features  
A 32-bit Timer/Counter with a programmable 32-bit Prescaler.  
Timer or external event counter operation  
Four 32-bit capture channels per timer that can take a snapshot of the timer value  
when an input signal transitions. A capture event may also optionally generate an  
interrupt.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Four external outputs per timer corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
19 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
Toggle on match.  
Do nothing on match.  
6.14.2 Features available in LPC2212/2214/01 only  
The LPC2212/2214/01 can count external events on one of the capture inputs if the  
external pulse lasts at least one half of the period of the PCLK. In this configuration,  
unused capture lines can be selected as regular timer capture inputs, or used as external  
interrupts.  
Timer can count cycles of either the peripheral clock (PCLK) or an externally supplied  
clock.  
When counting cycles of an externally supplied clock, only one of the timer’s capture  
inputs can be selected as the timer’s clock. The rate of such a clock is limited to  
PCLK / 4. Duration of high/low levels on the selected CAP input cannot be shorter  
than 1 / (2PCLK).  
6.15 Watchdog timer  
The purpose of the Watchdog is to reset the microcontroller within a reasonable amount of  
time if it enters an erroneous state. When enabled, the Watchdog will generate a system  
reset if the user program fails to ‘feed’ (or reload) the Watchdog within a predetermined  
amount of time.  
6.15.1 Features  
Internally resets chip if not periodically reloaded.  
Debug mode.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect/incomplete feed sequence causes reset/interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 32-bit timer with internal prescaler.  
Selectable time period from (Tcy(PCLK) × 256 × 4) to (Tcy(PCLK) × 232 × 4) in multiples of  
T
cy(PCLK) × 4.  
6.16 Real-time clock  
The RTC is designed to provide a set of counters to measure time when normal or idle  
operating mode is selected. The RTC has been designed to use little power, making it  
suitable for battery powered systems where the CPU is not running continuously (Idle  
mode).  
6.16.1 Features  
Measures the passage of time to maintain a calendar and clock.  
Ultra low power design to support battery powered systems.  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
20 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and Day  
of Year.  
Programmable reference clock divider allows adjustment of the RTC to match various  
crystal frequencies.  
6.17 Pulse width modulator  
The PWM is based on the standard Timer block and inherits all of its features, although  
only the PWM function is pinned out on the LPC2212/2214. The Timer is designed to  
count cycles of the peripheral clock (PCLK) and optionally generate interrupts or perform  
other actions when specified timer values occur, based on seven match registers. The  
PWM function is also based on match register events.  
The ability to separately control rising and falling edge locations allows the PWM to be  
used for more applications. For instance, multi-phase motor control typically requires three  
non-overlapping PWM outputs with individual control of all three pulse widths and  
positions.  
Two match registers can be used to provide a single edge controlled PWM output. One  
match register (MR0) controls the PWM cycle rate, by resetting the count upon match.  
The other match register controls the PWM edge position. Additional single edge  
controlled PWM outputs require only one match register each, since the repetition rate is  
the same for all PWM outputs. Multiple single edge controlled PWM outputs will all have a  
rising edge at the beginning of each PWM cycle, when an MR0 match occurs.  
Three match registers can be used to provide a PWM output with both edges controlled.  
Again, the MR0 match register controls the PWM cycle rate. The other match registers  
control the two PWM edge positions. Additional double edge controlled PWM outputs  
require only two match registers each, since the repetition rate is the same for all PWM  
outputs.  
With double edge controlled PWM outputs, specific match registers control the rising and  
falling edge of the output. This allows both positive going PWM pulses (when the rising  
edge occurs prior to the falling edge), and negative going PWM pulses (when the falling  
edge occurs prior to the rising edge).  
6.17.1 Features  
Seven match registers allow up to six single edge controlled or three double edge  
controlled PWM outputs, or a mix of both types.  
The match registers also allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Supports single edge controlled and/or double edge controlled PWM outputs. Single  
edge controlled PWM outputs all go HIGH at the beginning of each cycle unless the  
output is a constant LOW. Double edge controlled PWM outputs can have either edge  
occur at any position within a cycle. This allows for both positive going and negative  
going pulses.  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
21 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
Pulse period and width can be any number of timer counts. This allows complete  
flexibility in the trade-off between resolution and repetition rate. All PWM outputs will  
occur at the same repetition rate.  
Double edge controlled PWM outputs can be programmed to be either positive going  
or negative going pulses.  
Match register updates are synchronized with pulse outputs to prevent generation of  
erroneous pulses. Software must ‘release’ new match values before they can become  
effective.  
May be used as a standard timer if the PWM mode is not enabled.  
A 32-bit Timer/Counter with a programmable 32-bit Prescaler.  
6.18 System control  
6.18.1 Crystal oscillator  
The oscillator supports crystals in the range of 1 MHz to 30 MHz. The oscillator output  
frequency is called fosc and the ARM processor clock frequency is referred to as CCLK for  
purposes of rate equations, etc. fosc and CCLK are the same value unless the PLL is  
running and connected. Refer to Section 6.18.2 “PLLfor additional information.  
6.18.2 PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up into the range of 10 MHz to 60 MHz with a Current Controlled  
Oscillator (CCO). The multiplier can be an integer value from 1 to 32 (in practice, the  
multiplier value cannot be higher than 6 on this family of microcontrollers due to the upper  
frequency limit of the CPU). The CCO operates in the range of 156 MHz to 320 MHz, so  
there is an additional divider in the loop to keep the CCO within its frequency range while  
the PLL is providing the desired output frequency. The output divider may be set to divide  
by 2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2,  
it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off and  
bypassed following a chip Reset and may be enabled by software. The program must  
configure and activate the PLL, wait for the PLL to Lock, then connect to the PLL as a  
clock source. The PLL settling time is 100 µs.  
6.18.3 Reset and wake-up timer  
Reset has two sources on the LPC2212/2214: the RESET pin and Watchdog Reset. The  
RESET pin is a Schmitt trigger input pin with an additional glitch filter. Assertion of chip  
Reset by any source starts the Wake-up Timer (see Wake-up Timer description below),  
causing the internal chip reset to remain asserted until the external Reset is de-asserted,  
the oscillator is running, a fixed number of clocks have passed, and the on-chip flash  
controller has completed its initialization.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is the Reset vector. At that point, all of the processor and peripheral registers have been  
initialized to predetermined values.  
The Wake-up Timer ensures that the oscillator and other analog functions required for  
chip operation are fully functional before the processor is allowed to execute instructions.  
This is important at power on, all types of Reset, and whenever any of the aforementioned  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
22 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
functions are turned off for any reason. Since the oscillator and other functions are turned  
off during Power-down mode, any wake-up of the processor from Power-down mode  
makes use of the Wake-up Timer.  
The Wake-up Timer monitors the crystal oscillator as the means of checking whether it is  
safe to begin code execution. When power is applied to the chip, or some event caused  
the chip to exit Power-down mode, some time is required for the oscillator to produce a  
signal of sufficient amplitude to drive the clock logic. The amount of time depends on  
many factors, including the rate of VDD ramp (in the case of power on), the type of crystal  
and its electrical characteristics (if a quartz crystal is used), as well as any other external  
circuitry (e.g., capacitors), and the characteristics of the oscillator itself under the existing  
ambient conditions.  
6.18.4 Code security (Code Read Protection - CRP)  
This feature of the LPC2212/2214 allows the user to enable different levels of security in  
the system so that access to the on-chip flash and use of the JTAG and ISP can be  
restricted. When needed, CRP is invoked by programming a specific pattern into a  
dedicated flash location. IAP commands are not affected by the CRP.  
There are three levels of the Code Read Protection.  
CRP1 disables access to chip via the JTAG and allows partial flash update (excluding  
flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is  
required and flash field updates are needed but all sectors can not be erased.  
CRP2 disables access to chip via the JTAG and only allows full flash erase and update  
using a reduced set of the ISP commands.  
Running an application with level CRP3 selected fully disables any access to chip via the  
JTAG pins and the ISP. This mode effectively disables ISP override using P0[14] pin, too. It  
is up to the user’s application to provide (if needed) flash update mechanism using IAP  
calls or call reinvoke ISP command to enable flash update via UART0.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
Remark: Devices without the suffix /00 or /01 have only a security level equivalent to  
CRP2 available.  
6.18.5 External interrupt inputs  
The LPC2212/2214 include up to nine edge or level sensitive External Interrupt Inputs as  
selectable pin functions. When the pins are combined, external events can be processed  
as four independent interrupt signals. The External Interrupt Inputs can optionally be used  
to wake up the processor from Power-down mode.  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
23 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
6.18.6 Memory mapping control  
The Memory Mapping Control alters the mapping of the interrupt vectors that appear  
beginning at address 0x0000 0000. Vectors may be mapped to the bottom of the on-chip  
flash memory, or to the on-chip static RAM. This allows code running in different memory  
spaces to have control of the interrupts.  
6.18.7 Power control  
The LPC2212/2214 support two reduced power modes: Idle mode and Power-down  
mode. In Idle mode, execution of instructions is suspended until either a Reset or interrupt  
occurs. Peripheral functions continue operation during Idle mode and may generate  
interrupts to cause the processor to resume execution. Idle mode eliminates power used  
by the processor itself, memory systems and related controllers, and internal buses.  
In Power-down mode, the oscillator is shut down and the chip receives no internal clocks.  
The processor state and registers, peripheral registers, and internal SRAM values are  
preserved throughout Power-down mode and the logic levels of chip output pins remain  
static. The Power-down mode can be terminated and normal operation resumed by either  
a Reset or certain specific interrupts that are able to function without clocks. Since all  
dynamic operation of the chip is suspended, Power-down mode reduces chip power  
consumption to nearly zero.  
A Power Control for Peripherals feature allows individual peripherals to be turned off if  
they are not needed in the application, resulting in additional power savings.  
6.18.8 APB  
The APB divider determines the relationship between the processor clock (CCLK) and the  
clock used by peripheral devices (PCLK). The APB divider serves two purposes. The first  
is to provide peripherals with the desired PCLK via APB so that they can operate at the  
speed chosen for the ARM processor. In order to achieve this, the APB may be slowed  
down to 12 to 14 of the processor clock rate. Because the APB bus must work properly at  
power-up (and its timing cannot be altered if it does not work since the APB divider control  
registers reside on the APB), the default condition at reset is for the APB to run at 14 of the  
processor clock rate. The second purpose of the APB divider is to allow power savings  
when an application does not require any peripherals to run at the full processor rate.  
Because the APB divider is connected to the PLL output, the PLL remains active (if it was  
running) during Idle mode.  
6.19 Emulation and debugging  
The LPC2212/2214 support emulation and debugging via a JTAG serial port. A trace port  
allows tracing program execution. Debugging and trace functions are multiplexed only with  
GPIOs on Port 1. This means that all communication, timer and interface peripherals  
residing on Port 0 are available during the development and debugging phase as they are  
when the application is run in the embedded system itself.  
6.19.1 EmbeddedICE  
Standard ARM EmbeddedICE logic provides on-chip debug support. The debugging of  
the target system requires a host computer running the debugger software and an  
EmbeddedICE protocol convertor. EmbeddedICE protocol convertor converts the Remote  
Debug Protocol commands to the JTAG data needed to access the ARM core.  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
24 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
The ARM core has a Debug Communication Channel function built-in. The debug  
communication channel allows a program running on the target to communicate with the  
host debugger or another separate host without stopping the program flow or even  
entering the debug state. The debug communication channel is accessed as a  
co-processor 14 by the program running on the ARM7TDMI-S core. The debug  
communication channel allows the JTAG port to be used for sending and receiving data  
without affecting the normal program flow. The debug communication channel data and  
control registers are mapped in to addresses in the EmbeddedICE logic.  
The JTAG clock (TCK) must be slower than 16 of the CPU clock (CCLK) for the JTAG  
interface to operate.  
6.19.2 Embedded trace macrocell  
Since the LPC2212/2214 have significant amounts of on-chip memory, it is not possible to  
determine how the processor core is operating simply by observing the external pins. The  
Embedded Trace Macrocell (ETM) provides real-time trace capability for deeply  
embedded processor cores. It outputs information about processor execution to the trace  
port.  
The ETM is connected directly to the ARM core and not to the main AMBA system bus. It  
compresses the trace information and exports it through a narrow trace port. An external  
trace port analyzer must capture the trace information under software debugger control.  
Instruction trace (or PC trace) shows the flow of execution of the processor and provides a  
list of all the instructions that were executed. Instruction trace is significantly compressed  
by only broadcasting branch addresses as well as a set of status signals that indicate the  
pipeline status on a cycle by cycle basis. Trace information generation can be controlled  
by selecting the trigger resource. Trigger resources include address comparators,  
counters and sequencers. Since trace information is compressed the software debugger  
requires a static image of the code being executed. Self-modifying code can not be traced  
because of this restriction.  
6.19.3 RealMonitor  
RealMonitor is a configurable software module, developed by ARM Inc., which enables  
real time debug. It is a lightweight debug monitor that runs in the background while users  
debug their foreground application. It communicates with the host using the DCC (Debug  
Communications Channel), which is present in the EmbeddedICE logic. The  
LPC2212/2214 contain a specific configuration of RealMonitor software programmed into  
the on-chip flash memory.  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
25 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
7. Limiting values  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
VDD(1V8)  
VDD(3V3)  
VDDA(3V3)  
VIA  
Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
-
Max  
Unit  
V
[2]  
[3]  
supply voltage (1.8 V)  
supply voltage (3.3 V)  
analog supply voltage (3.3 V)  
analog input voltage  
input voltage  
+2.5  
+3.6  
V
+4.6  
V
+5.1  
V
[4][5]  
[4][6]  
[7][8]  
[8][9]  
VI  
5 V tolerant I/O pins  
other I/O pins  
+6.0  
V
VDD(3V3) + 0.5  
100  
V
IDD  
supply current  
mA  
mA  
°C  
°C  
W
ISS  
ground current  
-
100  
Tj  
junction temperature  
storage temperature  
-
150  
[10]  
Tstg  
Ptot(pack)  
65  
-
+150  
1.5  
total power dissipation (per  
package)  
based on package heat  
transfer, not device power  
consumption  
[11]  
[12]  
Vesd  
electrostatic discharge voltage human body model  
all pins  
2000  
200  
+2000  
+200  
V
V
machine model  
all pins  
[1] The following applies to Table 5:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Internal rail.  
[3] External rail.  
[4] Including voltage on outputs in 3-state mode.  
[5] Only valid when the VDD(3V3) supply voltage is present.  
[6] Not to exceed 4.6 V.  
[7] Per supply pin.  
[8] The peak current is limited to 25 times the corresponding maximum current.  
[9] Per ground pin.  
[10] Dependent on package type.  
[11] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
[12] Machine model: equivalent to discharging a 200 pF capacitor through a 0.75 µH coil and a 10 series resistor.  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
26 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
8. Static characteristics  
Table 6.  
Static characteristics  
Tamb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
1.65  
3.0  
Typ[1]  
1.8  
Max  
1.95  
3.6  
Unit  
V
[2]  
[3]  
VDD(1V8) supply voltage (1.8 V)  
VDD(3V3) supply voltage (3.3 V)  
3.3  
V
VDDA(3V3) analog supply voltage  
(3.3 V)  
2.5  
3.3  
3.6  
V
Standard port pins, RESET, RTCK  
IIL  
LOW-level input current  
HIGH-level input current  
OFF-state output current  
VI = 0 V; no pull-up  
-
-
-
-
-
-
3
3
3
µA  
µA  
µA  
IIH  
IOZ  
VI = VDD(3V3); no pull-down  
VO = 0 V; VO = VDD(3V3)  
;
no pull-up/down  
Ilatch  
I/O latch-up current  
(0.5VDD(3V3)) < VI <  
100  
-
-
mA  
(1.5VDD(3V3)); Tj < 125 °C  
[4][5][6]  
VI  
input voltage  
0
-
5.5  
V
VO  
output voltage  
output active  
0
-
VDD(3V3)  
V
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
hysteresis voltage  
2.0  
-
-
-
V
-
0.8  
V
Vhys  
VOH  
VOL  
IOH  
IOL  
-
0.4  
-
V
[7]  
[7]  
[7]  
[7]  
[8]  
HIGH-level output voltage  
LOW-level output voltage  
HIGH-level output current  
LOW-level output current  
IOH = 4 mA  
IOL = 4 mA  
VDD(3V3) 0.4 -  
-
V
-
-
-
-
-
0.4  
-
V
VOH = VDD(3V3) 0.4 V  
VOL = 0.4 V  
4  
4
-
mA  
mA  
mA  
-
IOHS  
HIGH-level short-circuit  
output current  
VOH = 0 V  
45  
[8]  
IOLS  
LOW-level short-circuit  
output current  
VOL = VDD(3V3)  
-
-
50  
mA  
[9]  
[10]  
[9]  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
10  
15  
0
50  
50  
0
150  
85  
0
µA  
µA  
µA  
VI = 0 V  
VDD(3V3) < VI < 5 V  
Power consumption LPC2212, LPC2212/00, LPC2214, LPC2214/00  
IDD(act)  
active mode supply current VDD(1V8) = 1.8 V;  
CCLK = 60 MHz;  
-
60  
-
mA  
T
amb = 25 °C; code  
while(1){}  
executed from flash; all  
peripherals enabled via  
PCONP[11] register but not  
configured to run  
IDD(pd)  
Power-down mode supply  
current  
VDD(1V8) = 1.8 V;  
-
-
10  
-
µA  
µA  
T
amb = 25 °C  
VDD(1V8) = 1.8 V;  
amb = 85 °C  
110  
500  
T
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
27 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
Table 6.  
Static characteristics …continued  
Tamb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
Power consumption LPC2212/01 and LPC2214/01  
IDD(act)  
active mode supply current VDD(1V8) = 1.8 V;  
CCLK = 60 MHz;  
-
41  
-
mA  
T
amb = 25 °C; code  
while(1){}  
executed from flash; all  
peripherals enabled via  
PCONP[11] register but not  
configured to run  
IDD(idle)  
Idle mode supply current  
VDD(1V8) = 1.8 V;  
CCLK = 60 MHz;  
-
6.5  
-
mA  
T
amb = 25 °C;  
executed from flash; all  
peripherals enabled via  
PCONP[11] register but not  
configured to run  
IDD(pd)  
Power-down mode supply  
current  
VDD(1V8) = 1.8 V;  
-
-
10  
-
-
µA  
µA  
T
amb = 25 °C  
VDD(1V8) = 1.8 V;  
amb = 85 °C  
180  
T
I2C-bus pins  
VIH  
VIL  
Vhys  
VOL  
ILI  
HIGH-level input voltage  
0.7VDD(3V3)  
-
-
V
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
-
-
0.3VDD(3V3)  
V
0.5VDD(3V3)  
-
V
[7]  
LOW-level output voltage  
input leakage current  
IOLS = 3 mA  
VI = VDD(3V3)  
VI = 5 V  
-
0.4  
4
V
[12]  
2
µA  
µA  
10  
22  
Oscillator pins  
Vi(XTAL1) input voltage on pin XTAL1  
0
0
-
-
1.8  
1.8  
V
V
Vo(XTAL2) output voltage on pin  
XTAL2  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.  
[2] Internal rail.  
[3] External rail.  
[4] Including voltage on outputs in 3-state mode.  
[5] VDD(3V3) supply voltages must be present.  
[6] 3-state outputs go into 3-state mode when VDD(3V3) is grounded.  
[7] Accounts for 100 mV voltage drop in all supply lines.  
[8] Only allowed for a short time period.  
[9] Minimum condition for VI = 4.5 V, maximum condition for VI = 5.5 V.  
[10] Applies to P1[25:16].  
[11] See the LPC2114/2124/2212/2214 User Manual.  
[12] To VSS  
.
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
28 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
Table 7.  
ADC static characteristics  
VDDA = 2.5 V to 3.6 V unless otherwise specified; Tamb = 40 °C to +85 °C unless otherwise specified. ADC frequency  
4.5 MHz.  
Symbol  
VIA  
Parameter  
Conditions  
Min  
Typ  
Max  
VDDA  
1
Unit  
V
analog input voltage  
0
-
-
-
Cia  
analog input  
capacitance  
pF  
[1][2][3]  
ED  
differential linearity  
error  
-
-
±1  
LSB  
[1][4]  
[1][5]  
[1][6]  
[1][7]  
EL(adj)  
EO  
integral non-linearity  
offset error  
-
-
-
-
-
-
-
-
±2  
LSB  
LSB  
%
±3  
EG  
gain error  
±0.5  
±4  
ET  
absolute error  
LSB  
[1] Conditions: VSSA = 0 V, VDDA = 3.3 V.  
[2] The ADC is monotonic, there are no missing codes.  
[3] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 4.  
[4] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 4.  
[5] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 4.  
[6] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 4.  
[7] The absolute voltage error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the  
non-calibrated ADC and the ideal transfer curve. See Figure 4.  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
29 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
gain  
error  
offset  
error  
E
E
O
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
V
V  
SSA  
DDA  
1 LSB =  
offset  
error  
1024  
002aaa668  
E
O
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 4. ADC characteristics  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
30 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
8.1 Power consumption measurements for LPC2212/01 and LPC2214/01  
The power consumption measurements represent typical values for the given conditions.  
The peripherals were enabled through the PCONP register, but for these measurements,  
the peripherals were not configured to run. Peripherals were disabled through the PCONP  
register. For a description of the PCONP register refer to the LPC2114/2124/2212/2214  
User Manual.  
002aad140  
50  
I
DD(act)  
(mA)  
40  
30  
20  
10  
0
all peripherals enabled  
all peripherals disabled  
12  
20  
28  
36  
44  
52  
60  
frequency (MHz)  
Test conditions: Active mode entered executing code from on-chip flash; PCLK = CCLK4;  
Tamb = 25 °C; core voltage 1.8 V.  
Fig 5. Typical LPC2212/01 and LPC2214/01 IDD(act) measured at different frequencies  
002aad142  
55  
I
DD(act)  
(mA)  
45  
35  
25  
15  
5
60 MHz  
48 MHz  
12 MHz  
1.65  
1.80  
1.95  
voltage (V)  
Test conditions: Active mode entered executing code from on-chip flash; PCLK = CCLK4;  
Tamb = 25 °C; core voltage 1.8 V; all peripherals enabled.  
Fig 6. Typical LPC2212/01 and LPC2214/01 IDD(act) measured at different voltages  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
31 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
002aad141  
45  
60 MHz  
48 MHz  
I
DD(act)  
(mA)  
35  
25  
15  
5
12 MHz  
1.65  
1.80  
1.95  
voltage (V)  
Test conditions: Active mode entered executing code from on-chip flash; PCLK = CCLK4;  
Temp = 25 °C; core voltage 1.8 V; all peripherals disabled.  
Fig 7. Typical LPC2212/01 and LPC2214/01 IDD(act) measured at different voltages  
002aad143  
8
I
DD(idle)  
(mA)  
6
all peripherals enabled  
all peripherals disabled  
4
2
0
12  
20  
28  
36  
44  
52  
60  
frequency (MHz)  
Test conditions: Idle mode entered executing code from on-chip flash; PCLK = CCLK4;  
Tamb = 25 °C; core voltage 1.8 V.  
Fig 8. Typical LPC2212/01 and LPC2214/01 IDD(idle) measured at different frequencies  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
32 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
002aad145  
8
I
DD(idle)  
(mA)  
60 MHz  
48 MHz  
6
4
2
0
12 MHz  
1.65  
1.80  
1.95  
voltage (V)  
Test conditions: Idle mode entered executing code from on-chip flash; PCLK = CCLK4;  
Tamb = 25 °C; core voltage 1.8 V; all peripherals enabled.  
Fig 9. Typical LPC2212/01 and LPC2214/01 IDD(idle) measured at different voltages  
002aad144  
8
I
DD(idle)  
(mA)  
60 MHz  
48 MHz  
6
4
2
0
12 MHz  
1.65  
1.80  
1.95  
voltage (V)  
Test conditions: Idle mode entered executing code from on-chip flash; PCLK = CCLK4;  
Temp = 25 °C; core voltage 1.8 V; all peripherals disabled.  
Fig 10. Typical LPC2212/01 and LPC2214/01 IDD(idle) measured at different voltages  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
33 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
002aad146  
45  
60 MHz  
48 MHz  
I
DD(act)  
(mA)  
35  
25  
15  
5
12 MHz  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Test conditions: Active mode entered executing code from on-chip flash; PCLK = CCLK4;  
core voltage 1.8 V; all peripherals disabled.  
Fig 11. Typical LPC2212/01 and LPC2214/01 IDD(act) measured at different temperatures  
002aad147  
6.0  
I
DD(idle)  
(mA)  
5.0  
4.0  
3.0  
2.0  
1.0  
60 MHz  
48 MHz  
12 MHz  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Test conditions: Idle mode entered executing code from on-chip flash; PCLK = CCLK4;  
core voltage 1.8 V; all peripherals disabled.  
Fig 12. Typical LPC2212/01 and LPC2214/01 IDD(idle) measured at different temperatures  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
34 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
002aad148  
200  
I
DD(pd)  
(µA)  
1.95 V  
1.8 V  
160  
120  
80  
1.65 V  
40  
0
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Test conditions: Power-down mode entered executing code from on-chip flash.  
Fig 13. Typical LPC2212/01 and LPC2214/01 core power-down current IDD(pd) measured at different temperatures  
Table 8.  
Typical LPC2212/01 and LPC2214/01 peripheral power consumption in active  
mode  
Core voltage 1.8 V; Tamb = 25 °C; all measurements in µA; PCLK = CCLK4.  
Peripheral  
Timer0  
Timer1  
UART0  
UART1  
PWM0  
I2C-bus  
SPI0/1  
RTC  
CCLK = 12 MHz  
CCLK = 48 MHz  
CCLK = 60 MHz  
43  
46  
98  
103  
103  
9
141  
150  
320  
351  
341  
37  
184  
180  
398  
421  
407  
53  
6
27  
29  
16  
33  
306  
55  
78  
ADC  
128  
994  
167  
1205  
EMC  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
35 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
9. Dynamic characteristics  
Table 9.  
Dynamic characteristics  
Tamb = 40 °C to +85 °C for industrial applications; VDD(1V8), VDD(3V3) over specified ranges.[1]  
Symbol  
External clock  
fosc  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
oscillator frequency  
supplied by an external  
oscillator (signal generator)  
1
1
-
-
50  
30  
MHz  
MHz  
external clock frequency  
supplied by an external  
crystal oscillator  
external clock frequency if  
on-chip PLL is used  
10  
10  
-
-
25  
25  
MHz  
MHz  
external clock frequency if  
on-chip bootloader is used  
for initial code download  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
20  
-
-
-
-
-
1000  
ns  
ns  
ns  
ns  
ns  
T
T
-
cy(clk) × 0.4  
-
cy(clk) × 0.4  
-
5
5
-
Port pins (except P0[2] and P0[3])  
tr  
tf  
rise time  
-
-
10  
10  
-
-
ns  
ns  
fall time  
I2C-bus pins (P0[2] and P0[3])  
[2]  
tf fall time  
VIH to VIL  
20 + 0.1 × Cb  
-
-
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Bus capacitance Cb in pF, from 10 pF to 400 pF.  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
36 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
Table 10. External memory interface dynamic characteristics  
CL = 25 pF; Tamb = 40 °C.  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
Common to read and write cycles  
tCHAV  
XCLK HIGH to address valid  
time  
-
-
10  
ns  
tCHCSL  
tCHCSH  
XCLK HIGH to CS LOW time  
-
-
-
-
10  
10  
ns  
ns  
XCLK HIGH to CS HIGH  
time  
tCHANV  
XCLK HIGH to address  
invalid time  
-
-
10  
ns  
Read cycle parameters  
tCSLAV CS LOW to address valid  
[1]  
[1]  
5  
5  
5  
-
-
+10  
+10  
ns  
ns  
time  
tOELAV  
OE LOW to address valid  
time  
tCSLOEL  
tam  
CS LOW to OE LOW time  
memory access time  
-
-
+5  
-
ns  
ns  
[2][3]  
[2][3]  
[2][4]  
[5]  
(Tcy(CCLK) × (2 + WST1)) +  
(20)  
tam(ibr)  
tam(sbr)  
memory access time (initial  
burst-ROM)  
(Tcy(CCLK) × (2 + WST1)) +  
(20)  
-
-
-
-
ns  
ns  
memory access time  
Tcy(CCLK) + (20)  
(subsequent burst-ROM)  
th(D)  
data hold time  
0
-
-
-
-
ns  
ns  
ns  
tCSHOEH  
tOEHANV  
CS HIGH to OE HIGH time  
5  
5  
+5  
+5  
OE HIGH to address invalid  
time  
tCHOEL  
tCHOEH  
XCLK HIGH to OE LOW time  
5  
5  
-
-
+5  
+5  
ns  
ns  
XCLK HIGH to OE HIGH  
time  
Write cycle parameters  
[1]  
tAVCSL  
address valid to CS LOW  
T
cy(CCLK) 10  
-
-
ns  
time  
tCSLDV  
CS LOW to data valid time  
CS LOW to WE LOW time  
CS LOW to BLS LOW time  
WE LOW to data valid time  
CS LOW to data valid time  
WE LOW to WE HIGH time  
5  
5  
5  
5  
5  
-
-
-
-
-
-
+5  
+5  
+5  
+5  
+5  
ns  
ns  
ns  
ns  
ns  
ns  
tCSLWEL  
tCSLBLSL  
tWELDV  
tCSLDV  
[2]  
[2]  
[2]  
tWELWEH  
T
T
T
cy(CCLK) × (1 + WST2) 5  
cy(CCLK) × (1 + WST2) 5  
cy(CCLK) 5  
T
cy(CCLK) × (1 +  
WST2) + 5  
tBLSLBLSH BLS LOW to BLS HIGH time  
-
-
Tcy(CCLK)  
(1 + WST2) + 5  
×
ns  
ns  
tWEHANV  
tWEHDNV  
WE HIGH to address invalid  
time  
Tcy(CCLK) + 5  
[2]  
[2]  
WE HIGH to data invalid time  
(2 × Tcy(CCLK)) 5  
Tcy(CCLK) 5  
-
-
(2 × Tcy(CCLK)) + 5 ns  
Tcy(CCLK) + 5 ns  
tBLSHANV BLS HIGH to address invalid  
time  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
37 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
Table 10. External memory interface dynamic characteristics …continued  
CL = 25 pF; Tamb = 40 °C.  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
[2]  
tBLSHDNV BLS HIGH to data invalid  
time  
(2 × Tcy(CCLK)) 5  
-
-
-
-
-
-
-
(2 × Tcy(CCLK)) + 5 ns  
tCHDV  
XCLK HIGH to data valid  
time  
-
-
-
-
-
-
10  
10  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
tCHWEL  
tCHBLSL  
tCHWEH  
tCHBLSH  
tCHDNV  
XCLK HIGH to WE LOW  
time  
XCLK HIGH to BLS LOW  
time  
XCLK HIGH to WE HIGH  
time  
XCLK HIGH to BLS HIGH  
time  
XCLK HIGH to data invalid  
time  
[1] Except on initial access, in which case the address is set up Tcy(CCLK) earlier.  
[2] Tcy(CCLK) = 1CCLK.  
[3] Latest of address valid, CS LOW, OE LOW to data valid.  
[4] Address valid to data valid.  
[5] Earliest of CS HIGH, OE HIGH, address change to data invalid.  
Table 11. Standard read access specifications  
Access cycle  
Max frequency  
WST[1] setting  
Memory access time requirement  
WST 0; round up to  
integer  
standard read  
2 + WST1  
RAM + 20 ns  
t
RAM + 20 ns  
tRAM tcy(CCLK) × (2 + WST1) 20 ns  
f MAX  
f MAX  
f MAX  
f MAX  
--------------------------------  
WST1 ≥  
WST2 ≥  
2  
--------------------------------  
tcy(CCLK)  
t
standard write  
1 + WST2  
t
WRITE tCYC + 5  
tWRITE tcy(CCLK) × (1 + WST2) 5 ns  
tINIT tcy(CCLK) × (2 + WST1) 20 ns  
---------------------------------  
-------------------------------------------  
t
WRITE + 5 ns  
tcy(CCLK)  
burst read - initial  
burst read - subsequent 3×  
2 + WST1  
tINIT + 20 ns  
-------------------------------  
WST1 ≥  
2  
-------------------------------  
tINIT + 20 ns  
tcy(CCLK)  
N/A  
1
t
ROM tcy(CCLK) 20 ns  
--------------------------------  
tROM + 20 ns  
[1] See the LPC2114/2124/2212/2214 User Manual for a description of the WSTn bits.  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
38 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
9.1 Timing  
XCLK  
t
t
CSHOEH  
CSLAV  
CS  
addr  
data  
t
t
h(D)  
am  
t
CSLOEL  
t
t
OEHANV  
OELAV  
OE  
t
t
CHOEH  
CHOEL  
002aaa749  
Fig 14. External memory read access  
XCLK  
CS  
t
CSLDV  
t
AVCSL  
t
WELWEH  
t
CSLWEL  
t
BLSLBLSH  
BLS/WE  
t
WEHANV  
t
t
WELDV  
CSLBLSL  
t
BLSHANV  
addr  
data  
t
t
WEHDNV  
BLSHDNV  
t
CSLDV  
OE  
002aaa750  
Fig 15. External memory write access  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
39 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
V
DD  
0.5 V  
0.2V  
+ 0.9 V  
DD  
0.2V  
0.1 V  
DD  
0.45 V  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
VDD = 1.8 V.  
Fig 16. External clock timing  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
40 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
10. Package outline  
LQFP144: plastic low profile quad flat package; 144 leads; body 20 x 20 x 1.4 mm  
SOT486-1  
y
X
A
108  
109  
73  
72  
Z
E
e
H
A
E
2
A
E
(A )  
3
A
1
θ
w M  
p
L
p
b
L
pin 1 index  
detail X  
37  
144  
1
36  
v M  
Z
A
w M  
D
b
p
e
D
B
H
v M  
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 20.1 20.1  
0.17 0.09 19.9 19.9  
22.15 22.15  
21.85 21.85  
0.75  
0.45  
1.4  
1.1  
1.4  
1.1  
mm  
1.6  
0.25  
1
0.2 0.08 0.08  
0.5  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-03-14  
03-02-20  
SOT486-1  
136E23  
MS-026  
Fig 17. Package outline SOT486-1 (LQFP144)  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
41 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
11. Abbreviations  
Table 12. Abbreviations  
Acronym  
ADC  
AMBA  
APB  
Description  
Analog-to-Digital Converter  
Advanced Microcontroller Bus Architecture  
Advanced Peripheral Bus  
Central Processing Unit  
Debug Communications Channel  
External Memory Controller  
First In, First Out  
CPU  
DCC  
EMC  
FIFO  
GPIO  
JTAG  
PLL  
General Purpose Input/Output  
Joint Test Action Group  
Phase-Locked Loop  
POR  
PWM  
RAM  
SPI  
Power-On Reset  
Pulse Width Modulator  
Random Access Memory  
Serial Peripheral Interface  
Static Random Access Memory  
Synchronous Serial Interface  
Synchronous Serial Port  
Transistor-Transistor Logic  
SRAM  
SSI  
SSP  
TTL  
UART  
Universal Asynchronous Receiver/Transmitter  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
42 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
12. Revision history  
Table 13. Revision history  
Document ID  
LPC2212_2214_4  
Modifications:  
Release date  
20080103  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
LPC2212_2214_3  
The format of this data sheet has been redesigned to comply with the new identity  
guidelines of NXP Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
Type number LPC2212FBD144/01 has been added.  
Type number LPC2214FBD144/01 has been added.  
Details introduced with /01 devices on new peripherals/features (Fast I/O Ports, SSP, CRP)  
and enhancements to existing ones (UART0/1, Timers, ADC, and SPI) added.  
Power consumption measurements for LPC2212/01 and LPC2214/01 added.  
Description of JTAG pin TCK has been updated.  
LPC2212_2214_3  
LPC2212_2214-02  
LPC2212_2214-01  
20060719  
20041223  
20040202  
Product data sheet  
-
-
-
LPC2212_2214-02  
Product data  
LPC2212_2214-01  
-
Preliminary data  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
43 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
13. Legal information  
13.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
to result in personal injury, death or severe property or environmental  
13.2 Definitions  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
13.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
13.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
I2C-bus — logo is a trademark of NXP B.V.  
14. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
LPC2212_2214_4  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 04 — 3 January 2008  
44 of 45  
LPC2212/2214  
NXP Semiconductors  
16/32-bit ARM microcontrollers  
15. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
6.17  
6.17.1  
6.18  
6.18.1  
6.18.2  
6.18.3  
6.18.4  
Pulse width modulator . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
System control . . . . . . . . . . . . . . . . . . . . . . . . 22  
Crystal oscillator. . . . . . . . . . . . . . . . . . . . . . . 22  
PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Reset and wake-up timer . . . . . . . . . . . . . . . . 22  
Code security  
(Code Read Protection - CRP). . . . . . . . . . . . 23  
External interrupt inputs. . . . . . . . . . . . . . . . . 23  
Memory mapping control . . . . . . . . . . . . . . . . 24  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 24  
APB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Emulation and debugging. . . . . . . . . . . . . . . . 24  
EmbeddedICE . . . . . . . . . . . . . . . . . . . . . . . . 24  
Embedded trace macrocell . . . . . . . . . . . . . . 25  
RealMonitor . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2
2.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Key features brought by LPC2212/2214/01  
devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Key features common for all devices . . . . . . . . 1  
2.2  
3
3.1  
4
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
6.18.5  
6.18.6  
6.18.7  
6.18.8  
6.19  
6.19.1  
6.19.2  
6.19.3  
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
6
Functional description . . . . . . . . . . . . . . . . . . 12  
Architectural overview. . . . . . . . . . . . . . . . . . . 12  
On-chip flash program memory . . . . . . . . . . . 12  
On-chip static RAM. . . . . . . . . . . . . . . . . . . . . 13  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . 14  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 15  
Pin connect block . . . . . . . . . . . . . . . . . . . . . . 16  
External memory controller. . . . . . . . . . . . . . . 16  
General purpose parallel I/O (GPIO)  
6.1  
6.2  
6.3  
6.4  
6.5  
6.5.1  
6.6  
6.7  
6.8  
7
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 26  
8
8.1  
Static characteristics . . . . . . . . . . . . . . . . . . . 27  
Power consumption measurements for  
LPC2212/01 and LPC2214/01 . . . . . . . . . . . . 31  
9
Dynamic characteristics. . . . . . . . . . . . . . . . . 36  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 41  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 43  
9.1  
10  
11  
12  
and Fast I/O . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Features added with the Fast GPIO set of  
6.8.1  
6.8.2  
registers available on LPC2212/2214/01 only 16  
10-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
ADC features available in LPC2212/2214/01  
only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
UARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
UART features available in LPC2212/2214/01  
only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SPI serial I/O controller. . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Features available in LPC2212/2214/01 only . 18  
SSP controller (LPC2212/2214/01 only). . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
General purpose timers . . . . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features available in LPC2212/2214/01 only . 20  
Watchdog timer. . . . . . . . . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Real-time clock . . . . . . . . . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.9  
6.9.1  
6.9.2  
13  
Legal information . . . . . . . . . . . . . . . . . . . . . . 44  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 44  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
13.1  
13.2  
13.3  
13.4  
6.10  
6.10.1  
6.10.2  
14  
15  
Contact information . . . . . . . . . . . . . . . . . . . . 44  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
6.11  
6.11.1  
6.12  
6.12.1  
6.12.2  
6.13  
6.13.1  
6.14  
6.14.1  
6.14.2  
6.15  
6.15.1  
6.16  
6.16.1  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2008.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 3 January 2008  
Document identifier: LPC2212_2214_4  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY