LPC2214FBD144 [NXP]

16/32-bit ARM microcontrollers; 128/256 kB ISP/IAP Flash with 10-bit ADC and external memory interface; 16位/ 32位ARM微控制器; 128/256 KB ISP / IAP闪存与10位ADC和外部存储器接口
LPC2214FBD144
型号: LPC2214FBD144
厂家: NXP    NXP
描述:

16/32-bit ARM microcontrollers; 128/256 kB ISP/IAP Flash with 10-bit ADC and external memory interface
16位/ 32位ARM微控制器; 128/256 KB ISP / IAP闪存与10位ADC和外部存储器接口

闪存 存储 微控制器和处理器 外围集成电路 时钟
文件: 总40页 (文件大小:178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC2212/LPC2214  
16/32-bit ARM microcontrollers; 128/256 kB ISP/IAP Flash  
with 10-bit ADC and external memory interface  
Rev. 02 — 23 December 2004  
Product data  
1. General description  
The LPC2212/LPC2214 are based on a 16/32 bit ARM7TDMI-S™ CPU with real-time  
emulation and embedded trace support, together with 128/256 kilobytes (kB) of  
embedded high speed flash memory. A 128-bit wide memory interface and a unique  
accelerator architecture enable 32-bit code execution at maximum clock rate. For  
critical code size applications, the alternative 16-bit Thumb® Mode reduces code by  
more than 30 % with minimal performance penalty.  
With their 144 pin package, low power consumption, various 32-bit timers, 8-channel  
10-bit ADC, PWM channels and up to 9 external interrupt pins these microcontrollers  
are particularly suitable for industrial control, medical systems, access control and  
point-of-sale. Number of available GPIOs ranges from 76 (with external memory)  
through 112 pins (single-chip). With a wide range of serial communications  
interfaces, they are also very well suited for communication gateways, protocol  
converters and embedded soft modems as well as many other general-purpose  
applications.  
2. Features  
2.1 Key features  
16/32-bit ARM7TDMI-S microcontroller in a LQFP144 package.  
16 kB on-chip Static RAM and 128/256 kB on-chip Flash Program Memory.  
128-bit wide interface/accelerator enables high speed 60 MHz operation.  
In-System Programming (ISP) and In-Application Programming (IAP) via on-chip  
boot-loader software. Flash programming takes 1 ms per 512 byte line. Single  
sector or full chip erase takes 400 ms.  
EmbeddedICE-RT and Embedded Trace interfaces offer real-time debugging with  
the on-chip RealMonitor™ software as well as high speed real-time tracing of  
instruction execution.  
Eight channel 10-bit A/D converter with conversion time as low as 2.44 µs.  
Two 32-bit timers (with 4 capture and 4 compare channels), PWM unit (6 outputs),  
Real Time Clock and Watchdog.  
Multiple serial interfaces including two UARTs (16C550), Fast I2C (400 kbits/s)  
and two SPIs.  
Vectored Interrupt Controller with configurable priorities and vector addresses.  
Configurable external memory interface with up to four banks, each up to 16 Mb  
and 8/16/32 bit data width.  
Up to 112 general purpose I/O pins (5 V tolerant). Up to 9 edge or level sensitive  
external interrupt pins available.  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
60 MHz maximum CPU clock available from programmable on-chip  
Phase-Locked Loop with settling time of 100 µs.  
On-chip crystal oscillator with an operating range of 1 MHz to 30 MHz.  
Two low power modes, Idle and Power-down.  
Processor wake-up from Power-down mode via external interrupt.  
Individual enable/disable of peripheral functions for power optimization.  
Dual power supply:  
CPU operating voltage range of 1.65 V to 1.95 V (1.8 V ± 0.15 V).  
I/O power supply range of 3.0 V to 3.6 V (3.3 V ± 10 %) with 5 V tolerant I/O  
pads. 16/32-bit ARM7TDMI-S processor.  
3. Ordering information  
Table 1:  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC2212FBD144 LQFP144 plastic low-profile quad flat package; 144  
SOT486-1  
leads; body 20 × 20 × 1.4 mm  
LPC2214FBD144 LQFP144 plastic low-profile quad flat package; 144  
SOT486-1  
leads; body 20 × 20 × 1.4 mm  
3.1 Ordering options  
Table 2:  
Part options  
Type number  
Flash memory RAM  
CAN  
Temperature  
range (°C)  
LPC2212FBD144  
LPC2214FBD144  
128 kB  
256 kB  
16 kB  
16 kB  
-
-
40 to +85  
40 to +85  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
2 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
4. Block diagram  
TEST/DEBUG  
INTERFACE  
SYSTEM  
PLL  
FUNCTIONS  
ARM7TDMI-S  
system  
clock  
VECTORED INTERRUPT  
CONTROLLER  
AHB BRIDGE  
ARM7 LOCAL BUS  
AMBA AHB  
(Advanced High-performance Bus)  
INTERNAL SRAM  
CONTROLLER  
INTERNAL  
FLASH  
AHB  
CONTROLLER  
DECODER  
CS3:0*  
AHB TO VPB  
BRIDGE  
VPB  
DIVIDER  
16 kB  
SRAM  
A23:0*  
BLS3:0*  
OE, WE*  
D31:0*  
128/256 kB  
FLASH  
EXTERNAL MEMORY  
CONTROLLER  
VPB (VLSI  
peripheral bus)  
SCL  
SDA  
2
EINT3:0  
EXTERNAL  
INTERRUPTS  
I C SERIAL  
INTERFACE  
SCK0,1  
MOSI0,1  
MISO0,1  
SSEL0,1  
8 x CAP0  
8 x MAT  
CAPTURE/  
COMPARE  
TIMER 0 & 1  
SPI SERIAL  
INTERFACES 0 & 1  
TxD0,1  
RxD0,1  
Ain3:0  
Ain7:4  
A/D  
CONVERTER  
UART 0 & 1  
DSR1,CTS1,  
DCD1, RI1  
P0.30:0  
P1.31:16, 1:0  
P2.31:0  
GENERAL  
PURPOSE I/O  
P3.31:0  
PWM6:1  
PWM0  
WATCHDOG  
TIMER  
REAL TIME  
CLOCK  
SYSTEM  
CONTROL  
002aaa732  
*Shared with GPIO  
(1) When test/debug interface is used, GPIO/other functions sharing these pins are not available.  
Fig 1. Block diagram.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
3 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
5. Pinning information  
5.1 Pinning  
handbook, full pagewidth  
P2.22/D22  
1
2
3
4
5
6
7
8
9
108 P2.3/D3  
V
3
107 V  
SS  
106 P2.2/D2  
V
SS  
P0.21/PWM5/CAP1.3  
P0.22/CAP0.0/MAT0.0  
P0.23  
105 P2.1/D1  
104  
103  
V
V
3
SS  
P1.19/TRACEPKT3  
P0.24  
102 P1.20/TRACESYNC  
101 P0.17/CAP1.2/SCK1/MAT1.2  
100 P0.16/EINT0/MAT0.2/CAP0.2  
99 P0.15/RI1/EINT2  
98 P2.0/D0  
V
SS  
P2.23/D23 10  
P2.24/D24 11  
P2.25/D25 12  
97 P3.30/BLS1  
P2.26/D26/BOOT0 13  
96 P3.31/BLS0  
V
14  
95 P1.21/PIPESTAT0  
3A  
P1.18/TRACEPKT2 15  
P2.27/D27/BOOT1 16  
P2.28/D28 17  
94  
93  
V
V
3
SS  
92 P0.14/DCD1/EINT1  
91 P1.0/CS0  
P2.29/D29 18  
LPC2212/LPC2214  
P2.30/D30/AIN4 19  
P2.31/D31/AIN5 20  
P0.25 21  
90 P1.1/OE  
89 P3.0/A0  
88 P3.1/A1  
NC 22  
87 P3.2/A2  
P0.27/AIN0/CAP0.1/MAT0.1 23  
P1.17/TRACEPKT1 24  
P0.28/AIN1/CAP0.2/MAT0.2 25  
86 P1.22/PIPESTAT1  
85 P0.13/DTR1/MAT1.1  
84 P0.12/DSR1/MAT1.0  
83 P0.11/CTS1/CAP1.1  
82 P1.23/PIPESTAT2  
81 P3.3/A3  
V
26  
SS  
P3.29/BLS2/AIN6 27  
P3.28/BLS3/AIN7 28  
P3.27/WE 29  
80 P3.4/A4  
P3.26/CS1 30  
79  
78 P0.10/RTS1/CAP1.0  
77  
V
SS  
V
31  
3
P0.29/AIN2/CAP0.3/MAT0.3 32  
P0.30/AIN3/EINT3/CAP0.0 33  
P1.16/TRACEPKT0 34  
P3.25/CS2 35  
V
3
76 P0.9/RxD1/PWM6/EINT3  
75 P0.8/TxD1/PWM4  
74 P3.5/A5  
P3.24/CS3 36  
73 P3.6/A6  
002aaa733  
Fig 2. LQFP144 pinning.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
4 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
5.2 Pin description  
Table 3:  
Pin description  
Symbol  
Pin  
Type  
Description  
P0.0 to P0.31  
I/O  
Port 0: Port 0 is a 32-bit bi-directional I/O port with individual direction  
controls for each bit. The operation of port 0 pins depends upon the pin  
function selected via the Pin Connect Block.  
Pins 26 and 31 of port 0 are not available.  
TxD0 — Transmitter output for UART0.  
P0.0  
P0.1  
42  
49  
O
O
I
PWM1 — Pulse Width Modulator output 1.  
RxD0 — Receiver input for UART0.  
O
I
PWM3 — Pulse Width Modulator output 3.  
EINT0 — External interrupt 0 input  
P0.2  
P0.3  
50  
58  
I/O  
I
SCL — I2C clock input/output. Open drain output (for I2C compliance).  
CAP0.0 — Capture input for Timer0, channel 0.  
SDA — I2C data input/output. Open drain output (for I2C compliance).  
MAT0.0 — Match output for Timer0, channel 0.  
EINT1 — External interrupt 1 input.  
I/O  
O
I
P0.4  
P0.5  
P0.6  
P0.7  
59  
61  
68  
69  
I/O  
SCK0 — Serial clock for SPI0. SPI™ clock output from master or input to  
slave.  
I
CAP0.1 — Capture input for Timer0, channel 1.  
I/O  
MISO0 — Master In Slave OUT for SPI0. Data input to SPI master or data  
output from SPI slave.  
O
MAT0.1 — Match output for Timer0, channel 1.  
I/O  
MOSI0 — Master Out Slave In for SPI0. Data output from SPI master or data  
input to SPI slave.  
I
CAP0.2 — Capture input for Timer0, channel 2.  
SSEL0 — Slave Select for SPI0. Selects the SPI interface as a slave.  
PWM2 — Pulse Width Modulator output 2.  
EINT2 — External interrupt 2 input.  
I
O
I
P0.8  
P0.9  
75  
76  
O
O
I
TxD1 — Transmitter output for UART1.  
PWM4 — Pulse Width Modulator output 4.  
RxD1 — Receiver input for UART1.  
O
I
PWM6 — Pulse Width Modulator output 6.  
EINT3 — External interrupt 3 input.  
P0.10  
P0.11  
P0.12  
78  
83  
84  
O
I
RTS1 — Request to Send output for UART1.  
CAP1.0 — Capture input for Timer1, channel 0.  
CTS1 — Clear to Send input for UART1.  
CAP1.1 — Capture input for Timer1, channel 1.  
DSR1 — Data Set Ready input for UART1.  
I
I
I
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
5 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Table 3:  
Symbol  
Pin description…continued  
Pin  
Type  
Description  
O
O
O
I
MAT1.0 — Match output for Timer1, channel 0.  
DTR1 — Data Terminal Ready output for UART1.  
MAT1.1 — Match output for Timer1, channel 1.  
DCD1 — Data Carrier Detect input for UART1.  
EINT1 — External interrupt 1 input.  
P0.13  
P0.14  
85  
92  
I
Note: LOW on this pin while RESET is LOW forces on-chip boot-loader to  
take over control of the part after reset.  
P0.15  
P0.16  
99  
I
RI1 — Ring Indicator input for UART1.  
I
EINT2 — External interrupt 2 input.  
100  
I
EINT0 — External interrupt 0 input.  
O
I
MAT0.2 — Match output for Timer0, channel 2.  
CAP0.2 — Capture input for Timer0, channel 2.  
CAP1.2 — Capture input for Timer1, channel 2.  
SCK1 — Serial Clock for SPI1. SPI clock output from master or input to slave.  
MAT1.2 — Match output for Timer1, channel 2.  
CAP1.3 — Capture input for Timer1, channel 3.  
P0.17  
P0.18  
101  
121  
I
I/O  
O
I
I/O  
MISO1 — Master In Slave Out for SPI1. Data input to SPI master or data  
output from SPI slave.  
O
MAT1.3 — Match output for Timer1, channel 3.  
MAT1.2 — Match output for Timer1, channel 2.  
P0.19  
P0.20  
122  
123  
O
I/O  
MOSI1 — Master Out Slave In for SPI1. Data output from SPI master or data  
input to SPI slave.  
I
CAP1.2 — Capture input for Timer1, channel 2.  
MAT1.3 — Match output for Timer1, channel 3.  
SSEL1 — Slave Select for SPI1. Selects the SPI interface as a slave.  
EINT3 — External interrupt 3 input.  
O
I
I
P0.21  
P0.22  
4
5
O
I
PWM5 — Pulse Width Modulator output 5.  
CAP1.3 — Capture input for TIMER1, channel 3.  
CAP0.0 — Capture input for Timer0, channel 0.  
MAT0.0 — Match output for Timer0, channel 0.  
General purpose bidirectional digital port only.  
General purpose bidirectional digital port only.  
General purpose bidirectional digital port only.  
I
O
I/O  
I/O  
I/O  
I
P0.23  
P0.24  
P0.25  
P0.27  
6
8
21  
23  
AIN0 — A/D converter, input 0. This analog input is always connected to its  
pin.  
I
CAP0.1 — Capture input for Timer0, channel 1.  
MAT0.1 — Match output for Timer0, channel 1.  
O
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
6 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Table 3:  
Symbol  
P0.28  
Pin description…continued  
Pin  
Type  
Description  
25  
I
AIN1 — A/D converter, input 1. This analog input is always connected to its  
pin.  
I
CAP0.2 — Capture input for Timer0, channel 2.  
MAT0.2 — Match output for Timer0, channel 2.  
O
I
P0.29  
P0.30  
32  
33  
AIN2 — A/D converter, input 2. This analog input is always connected to its  
pin.  
I
CAP0.3 — Capture input for Timer0, Channel 3.  
MAT0.3 — Match output for Timer0, channel 3.  
O
I
AIN3 — A/D converter, input 3. This analog input is always connected to its  
pin.  
I
EINT3 — External interrupt 3 input.  
I
CAP0.0 — Capture input for Timer0, channel 0.  
P1.0 to P1.31  
P1.0  
I/O  
Port 1: Port 1 is a 32-bit bi-directional I/O port with individual direction  
controls for each bit. The operation of port 1 pins depends upon the pin  
function selected via the Pin Connect Block.  
Pins 0 through 15 of port 1 are not available.  
91  
O
CS0 — Low-active Chip Select 0 signal.  
(Bank 0 addresses range 8000 0000 - 80FF FFFF)  
P1.1  
90  
34  
24  
15  
7
O
O
O
O
O
O
OE — Low-active Output Enable signal.  
P1.16  
P1.17  
P1.18  
P1.19  
P1.20  
TRACEPKT0 — Trace Packet, bit 0. Standard I/O port with internal pull-up.  
TRACEPKT1 — Trace Packet, bit 1. Standard I/O port with internal pull-up.  
TRACEPKT2 — Trace Packet, bit 2. Standard I/O port with internal pull-up.  
TRACEPKT3 — Trace Packet, bit 3. Standard I/O port with internal pull-up.  
102  
TRACESYNC — Trace Synchronization. Standard I/O port with internal  
pull-up.  
Note: LOW on this pin while RESET is LOW, enables pins P1.25:16 to  
operate as Trace port after reset.  
P1.21  
P1.22  
P1.23  
P1.24  
P1.25  
P1.26  
95  
86  
82  
70  
60  
52  
O
O
O
O
I
PIPESTAT0 — Pipeline Status, bit 0. Standard I/O port with internal pull-up.  
PIPESTAT1 — Pipeline Status, bit 1. Standard I/O port with internal pull-up.  
PIPESTAT2 — Pipeline Status, bit 2. Standard I/O port with internal pull-up.  
TRACECLK — Trace Clock. Standard I/O port with internal pull-up.  
EXTIN0 — External Trigger Input. Standard I/O with internal pull-up.  
I/O  
RTCK — Returned Test Clock output. Extra signal added to the JTAG port.  
Assists debugger synchronization when processor frequency varies.  
Bi-directional pin with internal pull-up.  
Note: LOW on this pin while RESET is LOW, enables pins P1.31:26 to  
operate as Debug port after reset.  
P1.27  
P1.28  
P1.29  
P1.30  
P1.31  
144  
140  
126  
113  
43  
O
I
TDO — Test Data out for JTAG interface.  
TDI — Test Data in for JTAG interface.  
TCK — Test Clock for JTAG interface.  
TMS — Test Mode Select for JTAG interface.  
TRST — Test Reset for JTAG interface.  
I
I
I
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
7 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Table 3:  
Pin description…continued  
Symbol  
Pin  
Type  
Description  
P2.0 to P2.31  
I/O  
Port 2 — Port 2 is a 32-bit bi-directional I/O port with individual direction  
controls for each bit. The operation of port 2 pins depends upon the pin  
function selected via the Pin Connect Block.  
P2.0  
98  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
D0 — External memory data line 0.  
D1 — External memory data line 1.  
D2 — External memory data line 2.  
D3 — External memory data line 3.  
D4 — External memory data line 4.  
D5 — External memory data line 5.  
D6 — External memory data line 6.  
D7 — External memory data line 7.  
D8 — External memory data line 8.  
D9 — External memory data line 9.  
D10 — External memory data line 10.  
D11 — External memory data line 11.  
D12 — External memory data line 12.  
D13 — External memory data line 13.  
D14 — External memory data line 14.  
D15 — External memory data line 15.  
D16 — External memory data line 16.  
D17 — External memory data line 17.  
D18 — External memory data line 18.  
D19 — External memory data line 19.  
D20 — External memory data line 20.  
D21 — External memory data line 21.  
D22 — External memory data line 22.  
D23 — External memory data line 23.  
D24 — External memory data line 24.  
D25 — External memory data line 25.  
D26 — External memory data line 26.  
P2.1  
105  
106  
108  
109  
114  
115  
116  
117  
118  
120  
124  
125  
127  
129  
130  
131  
132  
133  
134  
136  
137  
1
P2.2  
P2.3  
P2.4  
P2.5  
P2.6  
P2.7  
P2.8  
P2.9  
P2.10  
P2.11  
P2.12  
P2.13  
P2.14  
P2.15  
P2.16  
P2.17  
P2.18  
P2.19  
P2.20  
P2.21  
P2.22  
P2.23  
P2.24  
P2.25  
P2.26  
10  
11  
12  
13  
BOOT0 — While RESET is low, together with BOOT1 controls booting and  
internal operation. Internal pull-up ensures high state if pin is left  
unconnected.  
P2.27  
16  
I/O  
I
D27 — External memory data line 27.  
BOOT1 — While RESET is low, together with BOOT0 controls booting and  
internal operation. Internal pull-up ensures high state if pin is left  
unconnected.  
BOOT1:0=00 selects 8-bit memory on CS0 for boot.  
BOOT1:0=01 selects 16-bit memory on CS0 for boot.  
BOOT1:0=10 selects 32-bit memory on CS0 for boot.  
BOOT1:0=11 selects Internal Flash memory.  
D28 — External memory data line 28.  
P2.28  
17  
I/O  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
8 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Table 3:  
Symbol  
P2.29  
Pin description…continued  
Pin  
18  
Type  
I/O  
I/O  
I
Description  
D29 — External memory data line 29.  
D30 — External memory data line 30.  
P2.30  
19  
AIN4 — A/D converter, input 4. This analog input is always connected to its  
pin.  
P2.31  
20  
I/O  
I
D31 — External memory data line 31.  
AIN5 — A/D converter, input 5. This analog input is always connected to its  
pin.  
P3.0 to P3.31  
I/O  
Port 3 — Port 3 is a 32-bit bi-directional I/O port with individual direction  
controls for each bit. The operation of port 3 pins depends upon the pin  
function selected via the Pin Connect Block.  
P3.0  
89  
88  
87  
81  
80  
74  
73  
72  
71  
66  
65  
64  
63  
62  
56  
55  
53  
48  
47  
46  
45  
44  
41  
40  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
A0 — External memory address line 0.  
A1 — External memory address line 1.  
A2 — External memory address line 2.  
A3 — External memory address line 3.  
A4 — External memory address line 4.  
A5 — External memory address line 5.  
A6 — External memory address line 6.  
A7 — External memory address line 7.  
A8 — External memory address line 8.  
A9 — External memory address line 9.  
A10 — External memory address line 10.  
A11 — External memory address line 11.  
A12 — External memory address line 12.  
A13 — External memory address line 13.  
A14 — External memory address line 14.  
A15 — External memory address line 15.  
A16 — External memory address line 16.  
A17 — External memory address line 17.  
A18 — External memory address line 18.  
A19 — External memory address line 19.  
A20 — External memory address line 20.  
A21 — External memory address line 21.  
A22 — External memory address line 22.  
A23 — External memory address line 23.  
XCLK — Clock output.  
P3.1  
P3.2  
P3.3  
P3.4  
P3.5  
P3.6  
P3.7  
P3.8  
P3.9  
P3.10  
P3.11  
P3.12  
P3.13  
P3.14  
P3.15  
P3.16  
P3.17  
P3.18  
P3.19  
P3.20  
P3.21  
P3.22  
P3.23  
P3.24  
P3.25  
P3.26  
P3.27  
36  
35  
30  
29  
CS3 — Low-active Chip Select 3 signal.  
(Bank 3 addresses range 8300 0000 - 83FF FFFF)  
CS2 — Low-active Chip Select 2signal.  
(Bank 2 addresses range 8200 0000 - 82FF FFFF)  
CS1 — Low-active Chip Select 1 signal.  
(Bank 1 addresses range 8100 0000 - 81FF FFFF)  
WE — Low-active Write enable signal.  
O
O
O
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
9 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Table 3:  
Symbol  
P3.28  
Pin description…continued  
Pin  
Type  
Description  
28  
O
I
BLS3 — Low-active Byte Lane Select signal (Bank 3).  
AIN7 — A/D converter, input 7. This analog input is always connected to its  
pin.  
P3.29  
27  
O
I
BLS2 — Low-active Byte Lane Select signal (Bank 2).  
AIN6 — A/D converter, input 6. This analog input is always connected to its  
pin.  
P3.30  
P3.31  
NC  
97  
O
O
BLS1 — Low-active Byte Lane Select signal (Bank 1).  
BLS0 — Low-active Byte Lane Select signal (Bank 0).  
Pin not connected.  
96  
22  
RESET  
135  
I
External Reset input: A LOW on this pin resets the device, causing I/O ports  
and peripherals to take on their default states, and processor execution to  
begin at address 0. TTL with hysteresis, 5 V tolerant.  
XTAL1  
XTAL2  
VSS  
142  
141  
I
Input to the oscillator circuit and internal clock generator circuits.  
Output from the oscillator amplifier.  
O
I
3, 9, 26, 38,  
54, 67, 79,  
93, 103, 107,  
111, 128  
Ground: 0 V reference.  
VSSA  
139  
I
I
I
I
Analog Ground: 0 V reference. This should nominally be the same voltage  
as VSS, but should be isolated to minimize noise and error.  
VSSA_PLL  
V18  
138  
PLL Analog Ground: 0 V reference. This should nominally be the same  
voltage as VSS, but should be isolated to minimize noise and error.  
37, 110  
143  
1.8 V Core Power Supply: This is the power supply voltage for internal  
circuitry.  
V18A  
Analog 1.8 V Core Power Supply: This is the power supply voltage for  
internal circuitry. This should be nominally the same voltage as V18 but should  
be isolated to minimize noise and error.  
V3  
2, 31, 39, 51,  
57, 77, 94,  
104, 112, 119  
I
I
3.3 V Pad Power Supply: This is the power supply voltage for the I/O ports.  
V3A  
14  
Analog 3.3 V Pad Power Supply: This should be nominally the same voltage  
as V3 but should be isolated to minimize noise and error.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
10 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
6. Functional description  
Details of the LPC2212/LPC2214 systems and peripheral functions are described in  
the following sections.  
6.1 Architectural overview  
The ARM7TDMI-S is a general purpose 32-bit microprocessor, which offers high  
performance and very low power consumption. The ARM® architecture is based on  
Reduced Instruction Set Computer (RISC) principles, and the instruction set and  
related decode mechanism are much simpler than those of microprogrammed  
Complex Instruction Set Computers. This simplicity results in a high instruction  
throughput and impressive real-time interrupt response from a small and  
cost-effective processor core.  
Pipeline techniques are employed so that all parts of the processing and memory  
systems can operate continuously. Typically, while one instruction is being executed,  
its successor is being decoded, and a third instruction is being fetched from memory.  
The ARM7TDMI-S processor also employs a unique architectural strategy known as  
Thumb, which makes it ideally suited to high-volume applications with memory  
restrictions, or applications where code density is an issue.  
The key idea behind Thumb is that of a super-reduced instruction set. Essentially, the  
ARM7TDMI-S processor has two instruction sets:  
The standard 32-bit ARM set.  
A 16-bit Thumb set.  
The Thumb set’s 16-bit instruction length allows it to approach twice the density of  
standard ARM code while retaining most of the ARM’s performance advantage over a  
traditional 16-bit processor using 16-bit registers. This is possible because Thumb  
code operates on the same 32-bit register set as ARM code.  
Thumb code is able to provide up to 65 % of the code size of ARM, and 160 % of the  
performance of an equivalent ARM processor connected to a 16-bit memory system.  
6.2 On-Chip Flash program memory  
The LPC2212/LPC2214 incorporate a 128 kB and 256 kB Flash memory system  
respectively. This memory may be used for both code and data storage.  
Programming of the Flash memory may be accomplished in several ways. It may be  
programmed In System via the serial port. The application program may also erase  
and/or program the Flash while the application is running, allowing a great degree of  
flexibility for data storage field firmware upgrades, etc. When on-chip bootloader is  
used, 120/248 kB of Flash memory is available for user code.  
The LPC2212/LPC2214 Flash memory provides a minimum of 100,000 erase/write  
cycles and 20 years of data retention.  
On-chip bootloader (as of revision 1.60) provides Code Read Protection (CRP) for the  
LPC2212/LPC2214 on-chip Flash memory. When the CRP is enabled, the JTAG  
debug port, external memory boot and ISP commands accessing either the on-chip  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
11 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
RAM or Flash memory are disabled. However, the ISP Flash Erase command can be  
executed at any time (no matter whether the CRP is on or off). Removal of CRP is  
achieved by erasure of full on-chip user Flash. With the CRP off, full access to the  
chip via the JTAG and/or ISP is restored.  
6.3 On-Chip static RAM  
On-Chip static RAM may be used for code and/or data storage. The SRAM may be  
accessed as 8-bits, 16-bits, and 32-bits. The LPC2212/LPC2214 provide 16 kB of  
static RAM.  
6.4 Memory map  
The LPC2212/LPC2214 memory maps incorporate several distinct regions, as shown  
in the following figures.  
In addition, the CPU interrupt vectors may be re-mapped to allow them to reside in  
either Flash memory (the default) or on-chip static RAM. This is described in Section  
6.20 “System control”.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
12 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
4.0 GB  
0xFFFF FFFF  
AHB PERIPHERALS  
VPB PERIPHERALS  
0xF000 0000  
0xEFFF FFFF  
3.75 GB  
3.5 GB  
0xE000 0000  
0xDFFF FFFF  
0xC000 0000  
3.0 GB  
RESERVED ADDRESS SPACE  
0x8000 0000  
0x7FFF FFFF  
2.0 GB  
BOOT BLOCK (RE-MAPPED FROM  
ON-CHIP FLASH MEMORY  
0x7FFF E000  
0x7FFF DFFF  
RESERVED ADDRESS SPACE  
16 KBYTE ON-CHIP STATIC RAM  
0x4004 0000  
0x4000 3FFF  
0x4000 0000  
0x3FFF FFFF  
1.0 GB  
RESERVED ADDRESS SPACE  
0x0004 0000  
0x0003 FFFF  
256 KBYTE ON-CHIP FLASH MEMORY (LPC2214)  
128 KBYTE ON-CHIP FLASH MEMORY (LPC2212)  
0x0002 0000  
0x0001 FFFF  
0x0000 0000  
0.0 GB  
002aaa751  
Fig 3. LPC2212/LPC2214 memory map.  
6.5 Interrupt controller  
The Vectored Interrupt Controller (VIC) accepts all of the interrupt request inputs and  
categorizes them as FIQ, vectored IRQ, and non-vectored IRQ as defined by  
programmable settings. The programmable assignment scheme means that priorities  
of interrupts from the various peripherals can be dynamically assigned and adjusted.  
Fast Interrupt reQuest (FIQ) has the highest priority. If more than one request is  
assigned to FIQ, the VIC combines the requests to produce the FIQ signal to the  
ARM processor. The fastest possible FIQ latency is achieved when only one request  
is classified as FIQ, because then the FIQ service routine can simply start dealing  
with that device. But if more than one request is assigned to the FIQ class, the FIQ  
service routine can read a word from the VIC that identifies which FIQ source(s) is  
(are) requesting an interrupt.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
13 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Vectored IRQs have the middle priority. Sixteen of the interrupt requests can be  
assigned to this category. Any of the interrupt requests can be assigned to any of the  
16 vectored IRQ slots, among which slot 0 has the highest priority and slot 15 has the  
lowest.  
Non-vectored IRQs have the lowest priority.  
The VIC combines the requests from all the vectored and non-vectored IRQs to  
produce the IRQ signal to the ARM processor. The IRQ service routine can start by  
reading a register from the VIC and jumping there. If any of the vectored IRQs are  
requesting, the VIC provides the address of the highest-priority requesting IRQs  
service routine, otherwise it provides the address of a default routine that is shared by  
all the non-vectored IRQs. The default routine can read another VIC register to see  
what IRQs are active.  
6.5.1 Interrupt sources  
Table 4 lists the interrupt sources for each peripheral function. Each peripheral device  
has one interrupt line connected to the Vectored Interrupt Controller, but may have  
several internal interrupt flags. Individual interrupt flags may also represent more than  
one interrupt source.  
Table 4:  
Block  
Interrupt sources  
Flag(s)  
VIC channel #  
WDT  
Watchdog Interrupt (WDINT)  
0
1
2
3
4
5
6
-
Reserved for software interrupts only  
Embedded ICE, DbgCommRx  
Embedded ICE, DbgCommTx  
Match 0 - 3 (MR0, MR1, MR2, MR3)  
Match 0 - 3 (MR0, MR1, MR2, MR3)  
Rx Line Status (RLS)  
ARM Core  
ARM Core  
Timer0  
Timer1  
UART0  
Transmit Holding Register empty (THRE)  
Rx Data Available (RDA)  
Character Time-out Indicator (CTI)  
Rx Line Status (RLS)  
UART1  
7
Transmit Holding Register empty (THRE)  
Rx Data Available (RDA)  
Character Time-out Indicator (CTI)  
Modem Status Interrupt (MSI)  
Match 0 - 6 (MR0, MR1, MR2, MR3, MR4, MR5, MR6)  
SI (state change)  
PWM0  
I2C  
8
9
SPI0  
SPI1  
PLL  
SPIF, MODF  
10  
11  
12  
13  
SPIF, MODF  
PLL Lock (PLOCK)  
RTC  
RTCCIF (Counter Increment), RTCALF (Alarm)  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
14 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Table 4:  
Block  
Interrupt sources…continued  
Flag(s)  
VIC channel #  
System Control External Interrupt 0 (EINT0)  
External Interrupt 1 (EINT1)  
14  
15  
16  
17  
18  
External Interrupt 2 (EINT2)  
External Interrupt 3 (EINT3)  
A/D  
A/D Converter  
6.6 Pin connect block  
The pin connect block allows selected pins of the microcontroller to have more than  
one function. Configuration registers control the multiplexers to allow connection  
between the pin and the on chip peripherals. Peripherals should be connected to the  
appropriate pins prior to being activated, and prior to any related interrupt(s) being  
enabled. Activity of any enabled peripheral function that is not mapped to a related  
pin should be considered undefined.  
The Pin Control Module contains three registers as shown in Table 5.  
Table 5:  
Address  
Name  
Description  
Access  
0xE002C000  
0xE002C004  
0xE002C014  
PINSEL0  
PINSEL1  
PINSEL2  
Pin function select register 0  
Pin function select register 1  
Pin function select register 2  
Read/Write  
Read/Write  
Read/Write  
6.7 Pin function select register 0 (PINSEL0 - 0xE002C000)  
The PINSEL0 register controls the functions of the pins as per the settings listed in  
Table 6. The direction control bit in the IODIR register is effective only when the GPIO  
function is selected for a pin. For other functions, direction is controlled automatically.  
Settings other than those shown in Table 6 are reserved, and should not be used  
Table 6:  
PINSEL0  
1:0  
Pin function select register 0 (PINSEL0 - 0xE002C000)  
Pin name Value  
Function  
Value after Reset  
P0.0  
P0.1  
P0.2  
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
GPIO Port 0.0  
TxD (UART0)  
PWM1  
0
Reserved  
3:2  
5:4  
GPIO Port 0.1  
RxD (UART0)  
PWM3  
0
0
EINT0  
GPIO Port 0.2  
SCL (I2C)  
Capture 0.0 (Timer0)  
Reserved  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
15 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Table 6:  
Pin function select register 0 (PINSEL0 - 0xE002C000)…continued  
PINSEL0  
Pin name Value  
Function  
Value after Reset  
7:6  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
P0.8  
P0.9  
P0.10  
P0.11  
P0.12  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GPIO Port 0.3  
SDA (I2C)  
0
Match 0.0 (Timer0)  
EINT1  
9:8  
GPIO Port 0.4  
SCK (SPI0)  
0
0
0
0
0
0
0
0
0
Capture 0.1 (Timer0)  
Reserved  
11:10  
13:12  
15:14  
17:16  
19:18  
21:20  
23:22  
25:24  
GPIO Port 0.5  
MISO (SPI0)  
Match 0.1 (Timer0)  
Reserved  
GPIO Port 0.6  
MOSI (SPI0)  
Capture 0.2 (Timer0)  
Reserved  
GPIO Port 0.7  
SSEL (SPI0)  
PWM2  
EINT2  
GPIO Port 0.8  
TxD UART1  
PWM4  
Reserved  
GPIO Port 0.9  
RxD (UART1)  
PWM6  
EINT3  
GPIO Port 0.10  
RTS (UART1)  
Capture 1.0 (Timer1)  
Reserved  
GPIO Port 0.11  
CTS (UART1)  
Capture 1.1 (Timer1)  
Reserved  
GPIO Port 0.12  
DSR (UART1)  
Match 1.0 (Timer1)  
Reserved  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
16 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Table 6:  
Pin function select register 0 (PINSEL0 - 0xE002C000)…continued  
PINSEL0  
Pin name Value  
Function  
Value after Reset  
27:26  
P0.13  
P0.14  
P0.15  
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
GPIO Port 0.13  
DTR (UART1)  
Match 1.1 (Timer1)  
Reserved  
0
29:28  
31:30  
GPIO Port 0.14  
DCD (UART1)  
EINT1  
0
0
Reserved  
GPIO Port 0.15  
RI (UART1)  
EINT2  
Reserved  
6.8 Pin function select register 1 (PINSEL1 - 0xE002C004)  
The PINSEL1 register controls the functions of the pins as per the settings listed in  
Table 7. The direction control bit in the IODIR register is effective only when the GPIO  
function is selected for a pin. For other functions direction is controlled automatically.  
Settings other than those shown in the table are reserved, and should not be used.  
Table 7:  
Pin function select register 1 (PINSEL1 - 0xE002C004)  
PINSEL1  
Pin Name  
Value  
Function  
Value after  
Reset  
1:0  
3:2  
5:4  
7:6  
9:8  
P0.16  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GPIO Port 0.16  
EINT0  
0
0
0
0
0
Match 0.2 (Timer0)  
Capture 0.2 (Timer0)  
GPIO Port 0.17  
Capture 1.2 (Timer1)  
SCK (SPI1)  
P0.17  
P0.18  
P0.19  
P0.20  
Match 1.2 (Timer1)  
GPIO Port 0.18  
Capture 1.3 (Timer1)  
MISO (SPI1)  
Match 1.3 (Timer1)  
GPIO Port 0.19  
Match 1.2 (Timer1)  
MOSI (SPI1)  
Capture 1.2 (Timer1)  
GPIO Port 0.20  
Match 1.3 (Timer1)  
SSEL (SPI1)  
EINT3  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
17 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Table 7:  
Pin function select register 1 (PINSEL1 - 0xE002C004)…continued  
PINSEL1  
Pin Name  
Value  
Function  
Value after  
Reset  
11:10  
P0.21  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GPIO Port 0.21  
PWM5  
0
0
0
0
0
0
1
1
1
1
Reserved  
Capture 1.3 (Timer1)  
GPIO Port 0.22  
Reserved  
13:12  
15:14  
17:16  
19:18  
21:20  
23:22  
25:24  
27:26  
29:28  
P0.22  
P0.23  
P0.24  
P0.25  
P0.26  
P0.27  
P0.28  
P0.29  
P0.30  
Capture 0.0 (Timer0)  
Match 0.0 (Timer0)  
GPIO Port 0.23  
Reserved  
Reserved  
Reserved  
GPIO Port 0.24  
Reserved  
Reserved  
Reserved  
GPIO Port 0.25  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
GPIO Port 0.27  
AIN0 (A/D input 0)  
Capture 0.1 (Timer0)  
Match 0.1 (Timer0)  
GPIO Port 0.28  
AIN1 (A/D input 1)  
Capture 0.2 (Timer0)  
Match 0.2 (Timer0)  
GPIO Port 0.29  
AIN2 (A/D input 2)  
Capture 0.3 (Timer0)  
Match 0.3 (Timer0)  
GPIO Port 0.30  
AIN3 (A/D input 0)  
EINT3  
Capture 0.0 (Timer0)  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
18 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Table 7:  
Pin function select register 1 (PINSEL1 - 0xE002C004)…continued  
PINSEL1  
Pin Name  
Value  
Function  
Value after  
Reset  
31:30  
P0.31  
0
0
1
1
0
1
0
1
Reserved  
Reserved  
Reserved  
Reserved  
0
6.9 Pin function select register 2 (PINSEL2 - 0xE002C014)  
The PINSEL2 register controls the functions of the pins as per the settings listed in  
Table 8. The direction control bit in the IODIR register is effective only when the GPIO  
function is selected for a pin. For other functions direction is controlled automatically.  
Settings other than those shown in the table are reserved, and should not be used.  
Table 8:  
Pin function select register 2 (PINSEL2 - 0xE002C014)  
PINSEL2 bits  
Description  
Reset value  
1:0  
2
Reserved.  
-
When 0, pins P1.36:26 are used as GPIO pins. When 1, P1.31:26 are used as a P1.26/RTCK  
Debug port.  
3
When 0, pins P1.25:16 are used as GPIO pins. When 1, P1.25:16 are used as a P1.20/  
Trace port.  
TRACESYNC  
5:4  
Controls the use of the data bus and strobe pins:  
BOOT1:0  
Pins P2.7:0  
Pin P1.0  
11 = P2.7:0  
0x or 10 = D7:0  
0x or 10 = CS0  
0x or 10 = OE  
0x or 10 = BLS0  
01 or 10 = D15:8  
01 or 10 = BLS1  
10 = D27:16  
11 = P1.0  
Pin P1.1  
11 = P1.1  
Pin P3.31  
11 = P3.31  
Pins P2.15:8  
Pin P3.30  
00 or 11 = P2.15:8  
00 or 11 = P3.30  
Pins P2.27:16  
Pins P2.29:28  
Pins P2.31:30  
Pins P3.29:28  
0x or 11 = P2.27:16  
0x or 11 = P2.29:28 or reserved  
0x or 11 = P2.31:30 or AIN5:4  
0x or 11 = P3.29:28 or AIN6:7  
10 = D29:28  
10 = D31:30  
10 = BLS2:3  
6
7
If bits 5:4 are not 10, controls the use of pin P3.29: 0 enables P3.29, 1 enables  
AIN6.  
1
1
If bits 5:4 are not 10, controls the use of pin P3.28: 0 enables P3.28, 1 enables  
AIN7.  
8
Controls the use of pin P3.27: 0 enables P3.27, 1 enables WE.  
0
-
10:9  
11  
12  
13  
Reserved.  
Controls the use of pin P3.26: 0 enables P3.26, 1 enables CS1.  
Reserved.  
0
-
If bits 25:23 are not 111, controls the use of pin P3.23/A23/XCLK: 0 enables  
P3.23, 1 enables XCLK.  
0
15:14  
17:16  
Controls the use of pin P3.25: 00 enables P3.25, 01 enables CS2, 10 and 11  
are reserved values.  
00  
00  
Controls the use of pin P3.24: 00 enables P3.24, 01 enables CS3, 10 and 11  
are reserved values.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
19 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Table 8:  
PINSEL2 bits  
19:18  
Pin function select register 2 (PINSEL2 - 0xE002C014)…continued  
Description  
Reset value  
Reserved.  
-
20  
If bits 5:4 are not 10, controls the use of pin P2.29:28: 0 enables P2.29:28, 1 is  
reserved  
0
1
1
21  
22  
23  
If bits 5:4 are not 10, controls the use of pin P2.30: 0 enables P2.30, 1 enables  
AIN4.  
If bits 5:4 are not 10, controls the use of pin P2.31: 0 enables P2.31, 1 enables  
AIN5.  
Controls whether P3.0/A0 is a port pin (0) or an address line (1).  
1 if BOOT1:0=00  
at RESET=0,  
0 otherwise  
24  
Controls whether P3.1/A1 is a port pin (0) or an address line (1).  
BOOT1 during  
Reset  
27:25  
Controls the number of pins among P3.23/A23/XCLK and P3.22:2/A2.22:2 that 000 if  
are address lines:  
BOOT1:0=11 at  
Reset, 111  
otherwise  
000 = None  
100 = A11:2 are address lines.  
101 = A15:2 are address lines.  
001 = A3:2 are address  
lines.  
010 = A5:2 are address  
lines.  
110 = A19:2 are address lines.  
111 = A23:2 are address lines.  
011 = A7:2 are address  
lines.  
31:28  
Reserved.  
6.10 External memory controller  
The external Static Memory Controller is a module which provides an interface  
between the system bus and external (off-chip) memory devices. It provides support  
for up to four independently configurable memory banks (16 MBytes each with byte  
lane enable control) simultaneously. Each memory banks is capable of supporting  
SRAM, ROM, Flash EPROM, Burst ROM memory, or some external I/O devices.  
Each memory bank may be 8, 16, or 32 bits wide.  
6.11 General purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by  
the GPIO registers. Pins may be dynamically configured as inputs or outputs.  
Separate registers allow setting or clearing any number of outputs simultaneously.  
The value of the output register may be read back, as well as the current state of the  
port pins.  
6.11.1 Features  
Direction control of individual bits.  
Separate control of output set and clear.  
All I/O default to inputs after reset.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
20 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
6.12 10-bit A/D converter  
The LPC2212/LPC2214 each contain single 10-bit successive approximation analog  
to digital converter with eight multiplexed channels.  
6.12.1 Features  
Measurement range of 0 V to 3 V.  
Capable of performing more than 400,000 10-bit samples per second.  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition on input pin or Timer Match signal.  
6.13 UARTs  
The LPC2212/LPC2214 each contain two UARTs. One UART provides a full modem  
control handshake interface, the other provides only transmit and receive data lines.  
6.13.1 Features  
16 byte Receive and Transmit FIFOs.  
Register locations conform to ‘550 industry standard.  
Receiver FIFO trigger points at 1, 4, 8, and 14 bytes  
Built-in baud rate generator.  
Standard modem interface signals included on UART1.  
6.14 I2C serial I/O controller  
I2C is a bi-directional bus for inter-IC control using only two wires: a serial clock line  
(SCL), and a serial data line (SDA). Each device is recognized by a unique address  
and can operate as either a receiver-only device (e.g. an LCD driver or a transmitter  
with the capability to both receive and send information (such as memory).  
Transmitters and/or receivers can operate in either master or slave mode, depending  
on whether the chip has to initiate a data transfer or is only addressed. I2C is a  
multi-master bus, it can be controlled by more than one bus master connected to it.  
I2C implemented in LPC2212/LPC2214 supports bit rate up to 400 kbit/s (Fast I2C).  
6.14.1 Features  
Standard I2C compliant bus interface.  
Easy to configure as Master, Slave, or Master/Slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of  
serial data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate  
via one serial bus.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
21 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Serial clock synchronization can be used as a handshake mechanism to suspend  
and resume serial transfer.  
The I2C bus may be used for test and diagnostic purposes.  
6.15 SPI serial I/O controller  
The LPC2212/LPC2214 each contain two SPIs. The SPI is a full duplex serial  
interface, designed to be able to handle multiple masters and slaves connected to a  
given bus. Only a single master and a single slave can communicate on the interface  
during a given data transfer. During a data transfer the master always sends a byte of  
data to the slave, and the slave always sends a byte of data to the master.  
6.15.1 Features  
Compliant with Serial Peripheral Interface (SPI) specification.  
Synchronous, Serial, Full Duplex, Communication.  
Combined SPI master and slave.  
Maximum data bit rate of one eighth of the input clock rate.  
6.16 General purpose timers  
The Timer is designed to count cycles of the peripheral clock (PCLK) and optionally  
generate interrupts or perform other actions at specified timer values, based on four  
match registers. It also includes four capture inputs to trap the timer value when an  
input signal transitions, optionally generating an interrupt. Multiple pins can be  
selected to perform a single capture or match function, providing an application with  
‘or’ and ‘and’, as well as ‘broadcast’ functions among them.  
6.16.1 Features  
A 32-bit Timer/Counter with a programmable 32-bit Prescaler.  
Four 32-bit capture channels per timer that can take a snapshot of the timer value  
when an input signal transitions. A capture event may also optionally generate an  
interrupt.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Four external outputs per timer corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
22 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
6.17 Watchdog timer  
The purpose of the Watchdog is to reset the microcontroller within a reasonable  
amount of time if it enters an erroneous state. When enabled, the Watchdog will  
generate a system reset if the user program fails to ‘feed’ (or reload) the Watchdog  
within a predetermined amount of time.  
6.17.1 Features  
Internally resets chip if not periodically reloaded.  
Debug mode.  
Enabled by software but requires a hardware reset or a Watchdog reset/interrupt to  
be disabled.  
Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.  
Flag to indicate Watchdog reset.  
Programmable 32-bit timer with internal pre-scaler.  
Selectable time period from (tpclk × 256 × 4) to (tpclk × 232 × 4) in multiples of  
t
pclk × 4.  
6.18 Real time clock  
The Real Time Clock (RTC) is designed to provide a set of counters to measure time  
when normal or idle operating mode is selected. The RTC has been designed to use  
little power, making it suitable for battery powered systems where the CPU is not  
running continuously (Idle mode).  
6.18.1 Features  
Measures the passage of time to maintain a calendar and clock.  
Ultra Low Power design to support battery powered systems.  
Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and  
Day of Year.  
Programmable Reference Clock Divider allows adjustment of the RTC to match  
various crystal frequencies.  
6.19 Pulse width modulator  
The PWM is based on the standard Timer block and inherits all of its features,  
although only the PWM function is pinned out on the LPC2212/LPC2214. The Timer  
is designed to count cycles of the peripheral clock (PCLK) and optionally generate  
interrupts or perform other actions when specified timer values occur, based on  
seven match registers. The PWM function is also based on match register events.  
The ability to separately control rising and falling edge locations allows the PWM to  
be used for more applications. For instance, multi-phase motor control typically  
requires three non-overlapping PWM outputs with individual control of all three pulse  
widths and positions.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
23 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Two match registers can be used to provide a single edge controlled PWM output.  
One match register (MR0) controls the PWM cycle rate, by resetting the count upon  
match. The other match register controls the PWM edge position. Additional single  
edge controlled PWM outputs require only one match register each, since the  
repetition rate is the same for all PWM outputs. Multiple single edge controlled PWM  
outputs will all have a rising edge at the beginning of each PWM cycle, when an MR0  
match occurs.  
Three match registers can be used to provide a PWM output with both edges  
controlled. Again, the MR0 match register controls the PWM cycle rate. The other  
match registers control the two PWM edge positions. Additional double edge  
controlled PWM outputs require only two match registers each, since the repetition  
rate is the same for all PWM outputs.  
With double edge controlled PWM outputs, specific match registers control the rising  
and falling edge of the output. This allows both positive going PWM pulses (when the  
rising edge occurs prior to the falling edge), and negative going PWM pulses (when  
the falling edge occurs prior to the rising edge).  
6.19.1 Features  
Seven match registers allow up to six single edge controlled or three double edge  
controlled PWM outputs, or a mix of both types.  
The match registers also allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Supports single edge controlled and/or double edge controlled PWM outputs.  
Single edge controlled PWM outputs all go HIGH at the beginning of each cycle  
unless the output is a constant LOW. Double edge controlled PWM outputs can  
have either edge occur at any position within a cycle. This allows for both positive  
going and negative going pulses.  
Pulse period and width can be any number of timer counts. This allows complete  
flexibility in the trade-off between resolution and repetition rate. All PWM outputs  
will occur at the same repetition rate.  
Double edge controlled PWM outputs can be programmed to be either positive  
going or negative going pulses.  
Match register updates are synchronized with pulse outputs to prevent generation  
of erroneous pulses. Software must ‘release’ new match values before they can  
become effective.  
May be used as a standard timer if the PWM mode is not enabled.  
A 32-bit Timer/Counter with a programmable 32-bit Prescaler.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
24 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
6.20 System control  
6.20.1 Crystal oscillator  
The oscillator supports crystals in the range of 1 MHz to 30 MHz. The oscillator  
output frequency is called fosc and the ARM processor clock frequency is referred to  
as cclk for purposes of rate equations, etc. fosc and cclk are the same value unless  
the PLL is running and connected. Refer to Section 6.20.2 “PLLfor additional  
information.  
6.20.2 PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The  
input frequency is multiplied up into the range of 10 MHz to 60 MHz with a Current  
Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32 (in  
practice, the multiplier value cannot be higher than 6 on this family of microcontrollers  
due to the upper frequency limit of the CPU). The CCO operates in the range of  
156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO  
within its frequency range while the PLL is providing the desired output frequency.  
The output divider may be set to divide by 2, 4, 8, or 16 to produce the output clock.  
Since the minimum output divider value is 2, it is insured that the PLL output has a  
50 % duty cycle.The PLL is turned off and bypassed following a chip Reset and may  
be enabled by software. The program must configure and activate the PLL, wait for  
the PLL to Lock, then connect to the PLL as a clock source. The PLL settling time is  
100 µs.  
6.20.3 Reset and wake-up timer  
Reset has two sources on the LPC2212/LPC2214: the RESET pin and Watchdog  
Reset. The RESET pin is a Schmitt trigger input pin with an additional glitch filter.  
Assertion of chip Reset by any source starts the Wake-up Timer (see Wake-up Timer  
description below), causing the internal chip reset to remain asserted until the  
external Reset is de-asserted, the oscillator is running, a fixed number of clocks have  
passed, and the on-chip Flash controller has completed its initialization.  
When the internal Reset is removed, the processor begins executing at address 0,  
which is the Reset vector. At that point, all of the processor and peripheral registers  
have been initialized to predetermined values.  
The wake-up timer ensures that the oscillator and other analog functions required for  
chip operation are fully functional before the processor is allowed to execute  
instructions. This is important at power on, all types of Reset, and whenever any of  
the aforementioned functions are turned off for any reason. Since the oscillator and  
other functions are turned off during Power-down mode, any wake-up of the  
processor from Power-down mode makes use of the Wake-up Timer.  
The Wake-up Timer monitors the crystal oscillator as the means of checking whether  
it is safe to begin code execution. When power is applied to the chip, or some event  
caused the chip to exit Power-down mode, some time is required for the oscillator to  
produce a signal of sufficient amplitude to drive the clock logic. The amount of time  
depends on many factors, including the rate of VDD ramp (in the case of power on),  
the type of crystal and its electrical characteristics (if a quartz crystal is used), as well  
as any other external circuitry (e.g. capacitors), and the characteristics of the  
oscillator itself under the existing ambient conditions.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
25 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
6.20.4 External interrupt inputs  
The LPC2212/LPC2214 include up to nine edge or level sensitive External Interrupt  
Inputs as selectable pin functions. When the pins are combined, external events can  
be processed as four independent interrupt signals. The External Interrupt Inputs can  
optionally be used to wake up the processor from Power-down mode.  
6.20.5 Memory Mapping Control  
The Memory Mapping Control alters the mapping of the interrupt vectors that appear  
beginning at address 0x00000000. Vectors may be mapped to the bottom of the  
on-chip Flash memory, or to the on-chip static RAM. This allows code running in  
different memory spaces to have control of the interrupts.  
6.20.6 Power Control  
The LPC2212/LPC2214 support two reduced power modes: Idle mode and  
Power-down mode. In Idle mode, execution of instructions is suspended until either a  
Reset or interrupt occurs. Peripheral functions continue operation during Idle mode  
and may generate interrupts to cause the processor to resume execution. Idle mode  
eliminates power used by the processor itself, memory systems and related  
controllers, and internal buses.  
In Power-down mode, the oscillator is shut down and the chip receives no internal  
clocks. The processor state and registers, peripheral registers, and internal SRAM  
values are preserved throughout Power-down mode and the logic levels of chip  
output pins remain static. The Power-down mode can be terminated and normal  
operation resumed by either a Reset or certain specific interrupts that are able to  
function without clocks. Since all dynamic operation of the chip is suspended,  
Power-down mode reduces chip power consumption to nearly zero.  
A Power Control for Peripherals feature allows individual peripherals to be turned off if  
they are not needed in the application, resulting in additional power savings.  
6.20.7 VPB bus  
The VPB divider determines the relationship between the processor clock (CCLK)  
and the clock used by peripheral devices (PCLK). The VPB divider serves two  
purposes. The first is to provide peripherals with the desired PCLK via VPB bus so  
that they can operate at the speed chosen for the ARM processor. In order to achieve  
this, the VPB bus may be slowed down to 12 to 14 of the processor clock rate.  
Because the VPB bus must work properly at power-up (and its timing cannot be  
altered if it does not work since the VPB divider control registers reside on the VPB  
bus), the default condition at reset is for the VPB bus to run at 14 of the processor  
clock rate. The second purpose of the VPB divider is to allow power savings when an  
application does not require any peripherals to run at the full processor rate. Because  
the VPB divider is connected to the PLL output, the PLL remains active (if it was  
running) during Idle mode.  
6.21 Emulation and debugging  
The LPC2212/LPC2214 support emulation and debugging via a JTAG serial port. A  
trace port allows tracing program execution. Debugging and trace functions are  
multiplexed only with GPIOs on Port 1. This means that all communication, timer and  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
26 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
interface peripherals residing on Port 0 are available during the development and  
debugging phase as they are when the application is run in the embedded system  
itself.  
6.21.1 Embedded ICE  
Standard ARM EmbeddedICE® logic provides on-chip debug support. The debugging  
of the target system requires a host computer running the debugger software and an  
EmbeddedICE protocol convertor. EmbeddedICE protocol convertor converts the  
Remote Debug Protocol commands to the JTAG data needed to access the ARM  
core.  
The ARM core has a Debug Communication Channel function built-in. The debug  
communication channel allows a program running on the target to communicate with  
the host debugger or another separate host without stopping the program flow or  
even entering the debug state. The debug communication channel is accessed as a  
co-processor 14 by the program running on the ARM7TDMI-S core. The debug  
communication channel allows the JTAG port to be used for sending and receiving  
data without affecting the normal program flow. The debug communication channel  
data and control registers are mapped in to addresses in the EmbeddedICE logic.  
6.21.2 Embedded trace  
Since the LPC2212/LPC2214 have significant amounts of on-chip memory, it is not  
possible to determine how the processor core is operating simply by observing the  
external pins. The Embedded Trace Macrocell™ provides real-time trace capability  
for deeply embedded processor cores. It outputs information about processor  
execution to the trace port.  
The ETM is connected directly to the ARM core and not to the main AMBA system  
bus. It compresses the trace information and exports it through a narrow trace port.  
An external trace port analyzer must capture the trace information under software  
debugger control. Instruction trace (or PC trace) shows the flow of execution of the  
processor and provides a list of all the instructions that were executed. Instruction  
trace is significantly compressed by only broadcasting branch addresses as well as a  
set of status signals that indicate the pipeline status on a cycle by cycle basis. Trace  
information generation can be controlled by selecting the trigger resource. Trigger  
resources include address comparators, counters and sequencers. Since trace  
information is compressed the software debugger requires a static image of the code  
being executed. Self-modifying code can not be traced because of this restriction.  
6.21.3 RealMonitor  
RealMonitor is a configurable software module, developed by ARM Inc., which  
enables real time debug. It is a lightweight debug monitor that runs in the background  
while users debug their foreground application. It communicates with the host using  
the DCC (Debug Communications Channel), which is present in the EmbeddedICE  
logic. The LPC2212/LPC2214 contain a specific configuration of RealMonitor  
software programmed into the on-chip Flash memory.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
27 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
7. Limiting values  
Table 9:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
Max  
+2.5  
+3.6  
4.6  
Unit  
V
V18  
V3  
Supply voltage, internal rail  
0.5  
0.5  
0.5  
0.5  
Supply voltage, external rail  
V
V3A  
AVIN  
Analog 3.3 V pad supply voltage  
V
Analog input voltage on A/D related  
pins  
5.1  
V
Vi  
DC input voltage, 5 V tolerant I/O  
pins[3][4]  
0.5  
6.0  
V
Vi  
DC input voltage, other I/O pins[2][3]  
DC supply current per supply pin[5]  
DC ground current per ground pin[5]  
Storage temperature[6]  
0.5  
-
V3 + 0.5 V  
I
100  
100  
150  
-
mA  
I
-
mA  
°C  
W
Tstg  
P
65  
1.5  
Power dissipation (based on  
package heat transfer, not device  
power consumption)  
[1] The following applies to the Limiting values:  
a) Stresses above those listed under Limiting values may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at these or any conditions other  
than those described in Section 8 “Static characteristics” and Section 9 “Dynamic characteristics”  
of this specification is not implied.  
b) This product includes circuitry specifically designed for the protection of its internal devices from  
the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional  
precautions be taken to avoid applying greater than the rated maximum.  
c) Parameters are valid over operating temperature range unless otherwise specified. All voltages  
are with respect to VSS unless otherwise noted.  
[2] Not to exceed 4.6 V.  
[3] Including voltage on outputs in 3-state mode.  
[4] Only valid when the V3 supply voltage is present.  
[5] The peak current is limited to 25 times the corresponding maximum current.  
[6] Dependent on package type.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
28 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
8. Static characteristics  
Table 10: Static characteristics  
Tamb = 40 °C to +85 °C for commercial, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
1.65  
3.0  
Typ[1]  
1.8  
Max  
1.95  
3.6  
Unit  
V
V18  
V3  
Supply voltage  
External rail supply voltage  
3.3  
V
V3A  
Analog 3.3 V pad supply  
voltage  
2.5  
3.3  
3.6  
V
Standard Port pins, RESET, RTCK  
IIL  
Low level input current, no  
pull-up  
Vi = 0  
-
-
-
-
-
3
3
3
-
µA  
µA  
µA  
mA  
IIH  
High level input current, no Vi = V3  
pull down  
-
IOZ  
3-state output leakage, no  
pull-up/down  
Vo = 0, Vo = V3  
-
Ilatchup  
I/O latch-up current  
(0.5 V3) < V < (1.5 V3)  
Tj < 125 °C  
100  
Vi  
Input voltage[3][4][5]  
0
-
5.5  
V3  
-
V
Vo  
Output voltage, output active  
High level input voltage  
Low level input voltage  
Hysteresis voltage  
High level output voltage[6]  
Low level output voltage[6]  
High level output current[6]  
Low level output current[6]  
0
-
V
VIH  
VIL  
Vhys  
VOH  
VOL  
IOH  
IOL  
IOH  
2.0  
-
V
-
-
0.8  
-
V
-
0.4  
V
IOH = 4 mA  
IOL = 4 mA  
VOH = V3 0.4 V  
VOL = 0.4 V  
VOH = 0  
V3 0.4  
-
-
-
-
-
-
V
-
0.4  
-
V
4  
4
-
mA  
mA  
mA  
-
High level short circuit  
current[7]  
45  
IOL  
Low level short circuit  
current[7]  
VOL = V3  
-
-
50  
mA  
IPD  
IPU  
Pull-down current  
Vi = 5 V[8]  
Vi = 0  
V3 < Vi< 5 V[8]  
10  
15  
0
50  
50  
0
150  
85  
0
µA  
µA  
µA  
mA  
Pull-up current (applies to  
P1.16 - P1.25)  
I18  
Active Mode  
V18 = 1.8 V, cclk = 60 MHz,  
-
60  
-
Tamb = 25 °C, code  
while(1){}  
executed from FLASH, no active  
peripherals  
Power-down Mode  
V18 = 1.8 V, Tamb = +25 °C,  
V18 = 1.8 V, Tamb = +85 °C  
-
-
10  
-
µA  
µA  
110  
500  
I2C pins  
VIH  
High level input voltage  
Low level input voltage  
Hysteresis voltage  
VTOL is from 4.5 V to 5.5 V  
VTOL is from 4.5 V to 5.5 V  
VTOL is from 4.5 V to 5.5 V  
0.7 VTOL  
-
-
V
V
V
VIL  
-
-
-
0.3 VTOL  
-
Vhys  
0.5 VTOL  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
29 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Table 10: Static characteristics…continued  
Tamb = 40 °C to +85 °C for commercial, unless otherwise specified.  
Symbol Parameter  
Conditions  
IOL = 3 mA  
Vi = V3  
Min  
Typ[1]  
Max  
0.4  
4
Unit  
V
VOL  
Ilkg  
Low level output voltage[6]  
-
-
-
-
Input leakage to VSS  
2
µA  
µA  
Vi = 5 V  
10  
22  
Oscillator pins  
X1 input Voltages  
0
0
-
-
V18  
V18  
X2 output Voltages  
On-chip Flash program memory  
endurance (write and erase)  
data retention  
100,000  
20  
-
-
-
-
cycles  
years  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (+25 ˚C), nominal supply voltages.  
[2] Pin capacitance is characterized but not tested.  
[3] Including voltage on outputs in 3-state mode.  
[4] V3 supply voltages must be present.  
[5] 3-state outputs go into 3-state mode when V3 is grounded.  
[6] Accounts for 100 mV voltage drop in all supply lines.  
[7] Only allowed for a short time period.  
[8] Minimum condition for Vi = 4.5 V, maximum condition for Vi = 5.5 V.  
Table 11: A/D converter DC electrical characteristics  
V3A = 2.5 V to 3.6 V unless otherwise specified; Tamb = 40 °C to +85 °C unless otherwise specified; A/D converter frequency  
4.5 MHz.  
Symbol  
AVIN  
CIN  
Parameter  
Min  
Max  
V3A  
1
Unit  
V
Analog input voltage  
Analog input capacitance  
Differential non-linearity[1][2][3]  
Integral non-linearity[1][4]  
Offset error[1][5]  
0
-
-
-
-
-
-
pF  
DLe  
ILe  
±1  
LSB  
LSB  
LSB  
%
±2  
OSe  
Ge  
±3  
Gain error[1][6]  
Absolute error[1][7]  
±0.5  
±4  
Ae  
LSB  
[1] Conditions: VSSA = 0 V, V3A = 3.3 V.  
[2] The A/D is monotonic, there are no missing codes.  
[3] The differential non-linearity (DLe) is the difference between the actual step width and the ideal step width. See Figure 4.  
[4] The integral no-linearity (ILe) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 4.  
[5] The offset error (OSe) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 4.  
[6] The gain error (Ge) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 4.  
[7] The absolute voltage error (Ae) is the maximum difference between the center of the steps of the actual transfer curve of the  
non-calibrated A/D and the ideal transfer curve. See Figure 4.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
30 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
gain  
error  
offset  
error  
E
E
O
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
(LSB  
)
IA  
ideal  
V
V  
SSA  
DDA  
1 LSB =  
offset  
error  
1024  
002aaa668  
E
O
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential non-linearity (DLe).  
(4) Integral non-linearity (ILe).  
(5) Center of a step of the actual transfer curve.  
Fig 4. A/D conversion characteristics.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
31 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
9. Dynamic characteristics  
Table 12: Characteristics  
Tamb = 0 °C to +70 °C for commercial, 40 °C to +85 °C for industrial, V18, V3 over specified ranges[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
External Clock  
fosc  
Oscillator frequency supplied by an  
external oscillator (signal generator)  
1
-
-
-
-
50  
30  
25  
25  
MHz  
MHz  
MHz  
MHz  
External clock frequency supplied by  
an external crystal oscillator  
1
External clock frequency if on-chip  
PLL is used  
10  
10  
External clock frequency if ISP is  
used for initial code download  
tC  
Oscillator clock period  
Clock high time  
Clock low time  
20  
-
-
-
-
-
1000  
ns  
ns  
ns  
ns  
ns  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
Port Pins  
tRISE  
tc × 0.4  
-
tc × 0.4  
-
Clock rise time  
Clock fall time  
-
-
5
5
Port output rise time (except P0.2,  
P0.3)  
-
-
10  
10  
-
-
ns  
ns  
tFALL  
Port output fall time (except P0.2,  
P0.3)  
I2C pins  
tf  
Output fall time from VIH to VIL  
20 +  
0.1 × Cb  
-
-
ns  
[2]  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Bus capacitance Cb in pF, from 10 pF to 400 pF.  
Table 13: External memory interface AC characteristics. CL = 25 pF. Tamb = 40 °C  
Symbol  
Description  
Min  
Max  
Unit  
Common to Read and Write Cycles  
tCHAVR  
tCHCSL  
tCHCSH  
tCHANV  
XCLK HIGH to Address Valid  
-
-
-
-
10  
10  
10  
10  
ns  
ns  
ns  
ns  
XCLK HIGH to CS LOW  
XCLK HIGH to CS HIGH  
XCLK HIGH to Address Invalid  
Read Cycle Parameters  
tCSLAV  
tOELAVR  
tCSLOEL  
tAVDV  
CS LOW to Address Valid  
5[1]  
5[1]  
5  
10  
10  
5
ns  
ns  
ns  
ns  
OE LOW to Address Valid  
CS LOW to OE LOW  
Memory Access Time (latest of Address (tCYC*(2 + WST1)) + (20) -  
Valid, CS LOW, OE LOW to Data Valid)  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
32 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Table 13: External memory interface AC characteristics. CL = 25 pF. Tamb = 40 °C…continued  
Symbol  
Description  
Min  
Max  
Unit  
tAVDV  
Burst-ROM Initial Memory Access Time (tCYC*(2 + WST1)) + (20) -  
(latest of Address Valid, CS LOW, OE  
ns  
LOW to Data Valid)  
tAVDV  
Burst-ROM Subsequent Memory Access tCYC + (20)  
Time (Address Valid to Data Valid)  
-
-
ns  
ns  
tSTHDNV  
Data Hold Time (earliest of CS HIGH, OE  
HIGH, Address Change to Data Invalid)  
0
tCSHOEH  
tOEHANV  
tCHOEL  
CS HIGH to OE HIGH  
5  
5  
5  
5  
5
5
5
5
ns  
ns  
ns  
ns  
OE HIGH to Address Invalid  
XCLK HIGH to OE LOW  
XCLK HIGH to OE HIGH  
tCHOEH  
Write Cycle Parameters  
tAVCSLW  
tCSLDVW  
tCSLWEL  
tCSLBLSL  
tWELDV  
Address Valid to CS LOW  
t
CYC 10 [1]  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS LOW to Data Valid  
5  
5  
5  
5  
5  
5
CS LOW to WE LOW  
5
CS LOW to BLS LOW  
5
WE LOW to Data Valid  
CS LOW to Data Valid  
5
tCSLDV  
5
tWELWEH  
tWELWEH  
tWEHANV  
tWEHDNV  
tBLSHANV  
tBLSHDNV  
tCHDV  
WE LOW to WE HIGH  
BLS LOW to BLS HIGH  
WE HIGH to Address Invalid  
WE HIGH to Data Invalid  
BLS HIGH to Address Invalid  
BLS HIGH to Data Invalid  
XCLK HIGH to Data Valid  
XCLK HIGH to WE LOW  
XCLK HIGH to BLS LOW  
XCLK HIGH to WE HIGH  
XCLK HIGH to BLS HIGH  
XCLK HIGH to Data Invalid  
t
t
t
CYC × (1 + WST2) 5  
tCYC*(1 + WST2) + 5  
CYC × (1 + WST2) 5  
CYC5  
tCYC*(1 + WST2) + 5  
tCYC + 5  
(2 × tCYC)5  
CYC5  
(2 × tCYC) + 5  
t
tCYC + 5  
(2 × tCYC)5  
(2 × tCYC) + 5  
-
-
-
-
-
-
10  
10  
10  
10  
10  
10  
tCHWEL  
tCHHBLSL  
tAVCSL  
tAVCSL  
tAVCSL  
[1] Except on initial access, in which case the address is set up tCYC earlier.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
33 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Table 14: Standard read access specifications  
Access cycle  
Max frequency  
WST setting  
Memory access time  
requirement  
WST 0; round up to  
integer  
Standard read  
2 + WST1  
RAM + 20ns  
tRAM + 20ns  
tRAM tCYC × (2 + WST1) 20ns  
f MAX  
f MAX  
f MAX  
f MAX  
------------------------------  
WST1 ≥  
WST2 ≥  
2  
------------------------------  
t
tCYC  
Standard write  
1 + WST2  
t
WRITE tCYC + 5  
tWRITE tCYC × (1 + WST2) 5ns  
--------------------------------  
-------------------------------------------  
t
WRITE + 5ns  
tCYC  
Burst read - initial  
Burst read - subsequent 3×  
2 + WST1  
tINIT + 20ns  
tINIT tCYC × (2 + WST1) 20ns  
------------------------------  
WST1 ≥  
2  
------------------------------  
tINIT + 20ns  
tCYC  
N/A  
1
t
ROM tCYC 20ns  
------------------------------  
tROM + 20ns  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
34 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
9.1 Timing  
XCLK  
CS  
t
CSHOEH  
t
CLSAV  
Addr  
Data  
OE  
t
t
AVDV  
STHDNV  
t
CSLOEL  
t
t
OEHANV  
OELAVR  
t
t
CHOEH  
CHOEL  
002aaa749  
Fig 5. External memory read access.  
XCLK  
CS  
t
CSLDVW  
t
AVCSLW  
t
WELWEH  
t
BLSLBLSH  
BLS/WE  
Addr  
t
CSLWEL  
t
WEHANV  
t
t
CSLBLSL  
t
WELDV  
BLSHANV  
t
WEHDNV  
t
CSLDV  
t
Data  
BLSHDNV  
OE  
002aaa750  
Fig 6. External memory write access.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
35 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
V
- 0.5 V  
0.45 V  
DD  
0.2 V  
+ 0.9  
DD  
- 0.1 V  
0.2 V  
DD  
t
CHCX  
t
t
CLCX  
t
CHCL  
CLCH  
t
C
002aaa416  
Fig 7. External clock timing.  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
36 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
10. Package outline  
LQFP144: plastic low profile quad flat package; 144 leads; body 20 x 20 x 1.4 mm  
SOT486-1  
y
X
A
108  
109  
73  
72  
Z
E
e
H
A
E
2
A
E
(A )  
3
A
1
θ
w M  
p
L
p
b
L
pin 1 index  
detail X  
37  
144  
1
36  
v M  
Z
A
w M  
D
b
p
e
D
B
H
v M  
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 20.1 20.1  
0.17 0.09 19.9 19.9  
22.15 22.15  
21.85 21.85  
0.75  
0.45  
1.4  
1.1  
1.4  
1.1  
mm  
1.6  
0.25  
1
0.2 0.08 0.08  
0.5  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-03-14  
03-02-20  
SOT486-1  
136E23  
MS-026  
Fig 8. SOT486-1 (LQFP144).  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
37 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
11. Revision history  
Table 15: Revision history  
Rev Date  
CPCN  
-
Description  
02 20041223  
Product data (9397 750 13149)  
Modifications:  
Section 6.2 “On-Chip Flash program memory” on page 11; updated text.  
Section 6.20.2 “PLLon page 25; updated text.  
Section 6.20.7 “VPB bus” on page 26; updated text.  
Table 9 “Limiting values” on page 28; updated storage temperature specs.  
Table 10 “Static characteristics” on page 29; adjusted I18 typical value; added On-chip  
Flash program memory specs.  
01 20040202  
-
Preliminary data (9397 750 12747)  
9397 750 13149  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 02 — 23 December 2004  
38 of 40  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
12. Data sheet status  
Level Data sheet status[1]  
Product status[2][3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
performance. When the product is in full production (status ‘Production’),  
13. Definitions  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
licence or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
15. Licenses  
Purchase of Philips I2C components  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
Purchase of Philips I2C components conveys a license  
under the Philips’ I2C patent to use the components in the  
I2C system provided the system conforms to the I2C  
specification defined by Philips. This specification can be  
ordered using the code 9398 393 40011.  
14. Disclaimers  
16. Trademarks  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
ARM — is a registered trademark of ARM, Inc.  
ARM7TDMI-S — is a trademark of ARM, Inc.  
EmbeddedICE — is a registered trademark of ARM, Inc.  
Embedded Trace Macrocell is a trademark of ARM, Inc.  
RealMonitor — is a trademark of ARM, Inc.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
SPI — is a trademark of Motorola, Inc.  
Thumb — is a registered trademark of ARM, Inc.  
Contact information  
For additional information, please visit http://www.semiconductors.philips.com.  
For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
39 of 40  
9397 750 13149  
Product data  
Rev. 02 — 23 December 2004  
LPC2212/LPC2214  
16/32-bit ARM microcontrollers with external memory interface  
Philips Semiconductors  
Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Key features . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
6.20.7  
6.21  
6.21.1  
6.21.2  
6.21.3  
VPB bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Emulation and debugging. . . . . . . . . . . . . . . . 26  
Embedded ICE. . . . . . . . . . . . . . . . . . . . . . . . 27  
Embedded trace. . . . . . . . . . . . . . . . . . . . . . . 27  
RealMonitor . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2
2.1  
3
3.1  
4
7
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 28  
Static characteristics . . . . . . . . . . . . . . . . . . . 29  
Dynamic characteristics. . . . . . . . . . . . . . . . . 32  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 37  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 38  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 39  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Licenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
9
9.1  
10  
11  
12  
13  
14  
15  
16  
6
Functional description . . . . . . . . . . . . . . . . . . 11  
Architectural overview. . . . . . . . . . . . . . . . . . . 11  
On-Chip Flash program memory . . . . . . . . . . 11  
On-Chip static RAM . . . . . . . . . . . . . . . . . . . . 12  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . 13  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 14  
Pin connect block . . . . . . . . . . . . . . . . . . . . . . 15  
Pin function select register 0 (PINSEL0  
6.1  
6.2  
6.3  
6.4  
6.5  
6.5.1  
6.6  
6.7  
- 0xE002C000). . . . . . . . . . . . . . . . . . . . . . . . 15  
Pin function select register 1 (PINSEL1  
- 0xE002C004). . . . . . . . . . . . . . . . . . . . . . . . 17  
Pin function select register 2 (PINSEL2  
6.8  
6.9  
- 0xE002C014). . . . . . . . . . . . . . . . . . . . . . . . 19  
External memory controller. . . . . . . . . . . . . . . 20  
General purpose parallel I/O. . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
10-bit A/D converter . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
UARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
I2C serial I/O controller . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
SPI serial I/O controller. . . . . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
General purpose timers . . . . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Watchdog timer. . . . . . . . . . . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Real time clock . . . . . . . . . . . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Pulse width modulator . . . . . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
System control . . . . . . . . . . . . . . . . . . . . . . . . 25  
Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . 25  
PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Reset and wake-up timer . . . . . . . . . . . . . . . . 25  
External interrupt inputs . . . . . . . . . . . . . . . . . 26  
Memory Mapping Control . . . . . . . . . . . . . . . . 26  
Power Control . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6.10  
6.11  
6.11.1  
6.12  
6.12.1  
6.13  
6.13.1  
6.14  
6.14.1  
6.15  
6.15.1  
6.16  
6.16.1  
6.17  
6.17.1  
6.18  
6.18.1  
6.19  
6.19.1  
6.20  
6.20.1  
6.20.2  
6.20.3  
6.20.4  
6.20.5  
6.20.6  
© Koninklijke Philips Electronics N.V. 2004.  
Printed in the U.S.A.  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or  
contract, is believed to be accurate and reliable and may be changed without notice. No  
liability will be accepted by the publisher for any consequence of its use. Publication  
thereof does not convey nor imply any license under patent- or other industrial or  
intellectual property rights.  
Date of release: 23 December 2004  
Document order number: 9397 750 13149  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY