LPC2220FET144 [NXP]

16/32-bit ARM microcontrollers; flashless with 64 kB, with 10-bit ADC and external memory interface; 16位/ 32位ARM微控制器;无毛边,64 KB ,10位ADC和外部存储器接口
LPC2220FET144
型号: LPC2220FET144
厂家: NXP    NXP
描述:

16/32-bit ARM microcontrollers; flashless with 64 kB, with 10-bit ADC and external memory interface
16位/ 32位ARM微控制器;无毛边,64 KB ,10位ADC和外部存储器接口

存储 微控制器和处理器 外围集成电路 时钟
文件: 总49页 (文件大小:243K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC2210/2220  
16/32-bit ARM microcontrollers; flashless with 64 kB,  
with 10-bit ADC and external memory interface  
Rev. 02 — 30 May 2005  
Product data sheet  
1. General description  
The LPC2210/2220 microcontrollers are based on a 32/16 bit ARM7TDMI-S CPU with  
real-time emulation and embedded trace support. For critical code size applications, the  
alternative 16-bit Thumb mode reduces code by more than 30 % with minimal  
performance penalty.  
With a 144 pin package, low power consumption, various 32-bit timers, 8-channel 10-bit  
ADC, PWM channels and up to nine external interrupt pins this microcontroller is  
particularly suitable for industrial control, medical systems, access control and  
point-of-sale. The LPC2210/2220 can provide up to 76 GPIOs depending on bus  
configuration. With a wide range of serial communications interfaces, it is also very well  
suited for communication gateways, protocol converters and embedded soft modems as  
well as many other general-purpose applications.  
2. Features  
2.1 Key features  
16/32-bit ARM7TDMI-S microcontroller in a LQFP144 and TFBGA144 package.  
16/64 kB on-chip static RAM (LPC2210/2220).  
Serial boot-loader using UART0 provides in-system download and programming  
capabilities.  
EmbeddedICE-RT and Embedded Trace interfaces offer real-time debugging with the  
on-chip RealMonitor software as well as high speed real-time tracing of instruction  
execution.  
Eight channel 10-bit A/D converter with conversion time as low as 2.44 µs.  
Two 32-bit timers (LPC2220 also external event counters) with four capture and four  
compare channels, PWM unit (six outputs), Real-Time Clock (RTC) and watchdog.  
Multiple serial interfaces including two UARTs (16C550), Fast I2C-bus (400 kbit/s) and  
two SPIs. On the LPC2220 a Synchronous Serial Port (SSP) with data buffers and  
variable length transfers can be selected to replace one SPI.  
Vectored Interrupt Controller (VIC) with configurable priorities and vector addresses.  
Configurable external memory interface with up to four banks, each up to 16 MB and  
8/16/32 bit data width.  
Up to 76 general purpose I/O pins (5 V tolerant). Up to nine edge or level sensitive  
external interrupt pins available.  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
60/75 MHz (LPC2210/2220) maximum CPU clock available from programmable  
on-chip Phase-Locked Loop (PLL) with settling time of 100 µs.  
On-chip integrated oscillator operates with external crystal in range of 1 MHz to  
30 MHz and with external oscillator up to 50 MHz.  
Power saving modes include Idle and Power-down.  
Processor wake-up from Power-down mode via external interrupt.  
Individual enable/disable of peripheral functions for power optimization.  
Dual power supply:  
CPU operating voltage range of 1.65 V to 1.95 V (1.8 V ± 0.15 V).  
I/O power supply range of 3.0 V to 3.6 V (3.3 V ± 10 %) with 5 V tolerant I/O pads.  
16/32-bit ARM7TDMI-S processor.  
3. Ordering information  
Table 1:  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC2210FBD144 LQFP144  
plastic low profile quad flat package; 144  
SOT486-1  
leads; body 20 × 20 × 1.4 mm  
LPC2220FBD144 LQFP144  
plastic low profile quad flat package; 144  
leads; body 20 × 20 × 1.4 mm  
SOT486-1  
SOT569-1  
LPC2220FET144 TFBGA144 plastic thin fine-pitch ball grid array package;  
144 balls; body 12 × 12 × 0.8 mm  
3.1 Ordering options  
Table 2:  
Ordering options  
Type number  
Flash memory  
RAM  
CAN  
Temperature  
range (°C)  
LPC2210FBD144  
LPC2220FBD144  
LPC2220FET144  
-
-
-
16 kB  
64 kB  
64 kB  
-
-
-
40 to +85  
40 to +85  
40 to +85  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
2 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
4. Block diagram  
(1)  
(1)  
TMS  
(1)  
TDI  
(1)  
XTAL2  
XTAL1 RST  
(1)  
TRST  
TCK  
TDO  
TEST/DEBUG  
INTERFACE  
LPC2210/2220  
SYSTEM  
FUNCTIONS  
PLL  
ARM7TDMI-S  
system  
clock  
VECTORED  
INTERRUPT  
CONTROLLER  
AHB BRIDGE  
ARM7 local bus  
AMBA AHB  
(Advanced High-performance Bus)  
INTERNAL  
SRAM  
CONTROLLER  
AHB  
DECODER  
(2)  
16/64 kB  
SRAM  
CS3 to CS0  
(2)  
AHB TO VPB  
BRIDGE  
VPB  
DIVIDER  
A23 to A0  
EXTERNAL MEMORY  
(2)  
BLS3 to BLS0  
CONTROLLER  
(2)  
OE, WE  
VPB (VLSI  
(2)  
D31 to D0  
peripheral bus)  
SCL  
2
EXTERNAL  
I C SERIAL  
EINT3 to EINT0  
INTERRUPTS  
INTERFACE  
SDA  
SCK0, SCK1  
4 × CAP0  
4 × CAP1  
4 × MAT0  
4 × MAT1  
CAPTURE/  
COMPARE  
TIMER 0/TIMER 1  
SPI AND SSP  
SERIAL INTERFACES  
0 AND 1  
MOSI0, MOSI1  
MISO0, MISO1  
SSEL0, SSEL1  
TXD0, TXD1  
RXD0, RXD1  
AIN3 to AIN0  
AIN7 to AIN4  
A/D CONVERTER  
UART0/UART1  
DSR1, CTS1,  
DCD1, RI1  
P0[30:0]  
P1[31:16], P1[1:0]  
P2[31:0]  
GENERAL  
PURPOSE I/O  
REAL TIME CLOCK  
P3[31:0]  
WATCHDOG  
TIMER  
PWM6 to PWM1  
PWM0  
SYSTEM  
CONTROL  
002aaa793  
(1) When test/debug interface is used, GPIO/other functions sharing these pins are not available.  
(2) Shared with GPIO.  
Fig 1. Block diagram  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
3 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
5. Pinning information  
5.1 Pinning  
1
108  
LPC2210FBD144  
LPC2220FBD144  
36  
73  
002aaa794  
Fig 2. Pin configuration for LQFP144  
ball A1  
index area  
LPC2220FET144  
1
2 3 4 5 6 7 8 9 10 11 12 13  
A
B
C
D
E
F
G
H
J
K
L
M
N
002aab245  
Transparent top view  
Fig 3. Ball configuration diagram for TFBGA144  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
4 of 49  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Ball allocation  
Table 3:  
Row Column  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
A
P2.22/  
D22  
VDDA(1V8) P1.28/  
TDI  
P2.21/  
D21  
P2.18/  
D18  
P2.14/  
D14  
P1.29/  
TCK  
P2.11/  
D11  
P2.10/  
D10  
P2.7/D7  
VDD(3V3)  
VDD(1V8)  
P2.4/D4  
B
VDD(3V3)  
P1.27/  
TDO  
XTAL2  
XTAL1  
P0.23  
P2.23  
VSSA(PLL) P2.19/  
D19  
P2.15/  
D15  
P2.12/  
D12  
P0.20/  
VDD(3V3)  
P2.9/D9  
P2.8/D8  
P2.6/D6  
P2.5/D5  
VSS  
P2.3/D3  
P2.1/D1  
P1.20/  
VSS  
MAT1.3/  
SSEL1/  
EINT3  
C
D
E
P0.21/  
PWM5/  
CAP1.3  
VSS  
VSSA  
RESET  
P2.16/  
D16  
P2.13/  
D13  
P0.19/  
P2.2/D2  
VSS  
VDD(3V3)  
MAT1.2/  
MOSI1/  
CAP1.2  
P0.24  
P1.19/  
TRACEP  
KT3  
P0.22/  
CAP0.0/  
MAT0.0  
P2.20/  
D20  
P2.17/  
D17  
VSS  
P0.18/  
P1.30/  
TMS  
P0.17/  
CAP1.3/  
MISO1/  
MAT1.3  
TRACES CAP1.2/  
YNC  
SCK1/  
MAT1.2  
P2.25/  
D25  
P2.24/  
D24  
VSS  
P0.16/  
P0.15/  
RI1/  
EINT2  
P2.0/D0  
P3.30/  
BLS1  
EINT0/  
MAT0.2/  
CAP0.2  
F
P2.27/  
D27/  
BOOT1  
P1.18/  
TRACEP  
KT2  
VDDA(3V3) P2.26/  
D26/  
P3.31/  
BLS0  
P1.21/  
PIPESTAT  
0
VDD(3V3)  
VSS  
BOOT0  
G
H
P2.29/  
D29  
P2.28/  
D28  
P2.30/  
D30/AIN4 D31/AIN5  
P2.31/  
P0.14/  
DCD1/  
EINT1  
P1.0/CS0 VSS  
P1.1/OE  
P3.1/A1  
P0.25  
n.c.  
P0.27/  
AIN0/  
CAP0.1/  
MAT0.1  
P1.17/  
TRACEP  
KT1  
P0.13/  
DTR1/  
MAT1.1  
P1.22/  
PIPESTAT  
1
P3.2/A2  
J
P0.28/  
AIN1/  
CAP0.2/  
MAT0.2  
VSS  
P3.29/  
BLS2/  
AIN6  
P3.28/  
BLS3/  
AIN7  
P3.3/A3  
P1.23/  
PIPESTAT CTS1/  
2
P0.11/  
P0.12/  
DSR1/  
MAT1.0  
CAP1.1  
K
P3.27/WE P3.26/  
CS1  
VDD(3V3)  
P3.22/  
A22  
P3.20/  
A20  
P0.1/  
P3.14/  
A14  
P1.25/  
EXTIN0  
P3.11/  
A11  
VDD(3V3)  
P0.10/  
RTS1/  
CAP1.0  
VSS  
P3.4/A4  
RXD0/  
PWM3/  
EINT0  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Ball allocation …continued  
Table 3:  
Row Column  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
L
P0.29/  
AIN2/  
CAP0.3/  
MAT0.3  
P0.30/  
AIN3/  
EINT3/  
CAP0.0  
P1.16/  
TRACEP TXD0/  
KT0  
P0.0/  
P3.19/  
A19  
P0.2/  
SCL/  
CAP0.0  
P3.15/  
A15  
P0.4/  
SCK0/  
CAP0.1  
P3.12/  
A12  
VSS  
P1.24/  
TRACEC TXD1/  
LK  
P0.8/  
P0.9/  
RXD1/  
PWM6/  
EINT3  
PWM1  
PWM4  
M
N
P3.25/  
CS2  
P3.24/  
CS3  
VDD(3V3)  
P1.31/  
TRST  
P3.18/  
A18  
VDD(3V3)  
P3.16/  
A16  
P0.3/  
SDA/  
MAT0.0/  
EINT1  
P3.13/  
A13  
P3.9/A9  
P0.7/  
P3.7/A7  
P3.5/A5  
P3.6/A6  
SSEL0/  
PWM2/  
EINT2  
VDD(1V8)  
VSS  
P3.23/  
A23/  
XCLK  
P3.21/  
A21  
P3.17/  
A17  
P1.26/  
RTCK  
VSS  
VDD(3V3)  
P0.5/  
MISO0/  
MAT0.1  
P3.10/  
A10  
P0.6/  
MOSI0/  
CAP0.2  
P3.8/A8  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
5.2 Pin description  
Table 4:  
Pin description  
Symbol  
Pin (LQFP)  
Pin (TFBGA) Type  
Description  
P0.0 to P0.31  
I/O  
Port 0: Port 0 is a 32-bit bidirectional I/O port with individual  
direction controls for each bit. The operation of port 0 pins  
depends upon the pin function selected via the Pin Connect  
Block.  
Pins 26 and 31 of port 0 are not available.  
TXD0 — Transmitter output for UART0.  
PWM1 — Pulse Width Modulator output 1.  
RXD0 — Receiver input for UART0.  
P0.0/TXD0/  
PWM1  
42[1]  
49[2]  
L4[1]  
K6[2]  
O
O
I
P0.1/RXD0/  
PWM3/EINT0  
O
I
PWM3 — Pulse Width Modulator output 3.  
EINT0 — External interrupt 0 input  
P0.2/SCL/  
CAP0.0  
50[3]  
L6[3]  
I/O  
SCL — I2C-bus clock input/output. Open drain output (for  
I2C-bus compliance).  
I
CAP0.0 — Capture input for Timer 0, channel 0.  
P0.3/SDA/  
MAT0.0/EINT1  
58[3]  
M8[3]  
I/O  
SDA — I2C-bus data input/output. Open drain output (for  
I2C-bus compliance).  
O
I
MAT0.0 — Match output for Timer 0, channel 0.  
EINT1 — External interrupt 1 input.  
P0.4/SCK0/  
CAP0.1  
59[1]  
61[1]  
68[1]  
69[2]  
L8[1]  
I/O  
SCK0 — Serial clock for SPI0. SPI clock output from master  
or input to slave.  
I
CAP0.1 — Capture input for Timer 0, channel 1.  
P0.5/MISO0/  
MAT0.1  
N9[1]  
I/O  
MISO0 — Master In Slave OUT for SPI0. Data input to SPI  
master or data output from SPI slave.  
O
MAT0.1 — Match output for Timer 0, channel 1.  
P0.6/MOSI0/  
CAP0.2  
N11[1]  
M11[2]  
I/O  
MOSI0 — Master Out Slave In for SPI0. Data output from SPI  
master or data input to SPI slave.  
I
I
CAP0.2 — Capture input for Timer 0, channel 2.  
P0.7/SSEL0/  
PWM2/EINT2  
SSEL0 — Slave Select for SPI0. Selects the SPI interface as  
a slave.  
O
I
PWM2 — Pulse Width Modulator output 2.  
EINT2 — External interrupt 2 input.  
P0.8/TXD1/  
PWM4  
75[1]  
76[2]  
L12[1]  
L13[2]  
O
O
I
TXD1 — Transmitter output for UART1.  
PWM4 — Pulse Width Modulator output 4.  
RXD1 — Receiver input for UART1.  
P0.9/RXD1/  
PWM6/EINT3  
O
I
PWM6 — Pulse Width Modulator output 6.  
EINT3 — External interrupt 3 input.  
P0.10/RTS1/  
CAP1.0  
78[1]  
83[1]  
84[1]  
K11[1]  
J12[1]  
J13[1]  
O
I
RTS1 — Request to Send output for UART1.  
CAP1.0 — Capture input for Timer 1, channel 0.  
CTS1 — Clear to Send input for UART1.  
CAP1.1 — Capture input for Timer 1, channel 1.  
DSR1 — Data Set Ready input for UART1.  
MAT1.0 — Match output for Timer 1, channel 0.  
P0.11/CTS1/  
CAP1.1  
I
I
P0.12/DSR1/  
MAT1.0  
I
O
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
7 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 4:  
Symbol  
Pin description …continued  
Pin (LQFP)  
Pin (TFBGA) Type  
Description  
P0.13/DTR1/  
MAT1.1  
85[1]  
H10[1]  
O
O
I
DTR1 — Data Terminal Ready output for UART1.  
MAT1.1 — Match output for Timer 1, channel 1.  
DCD1 — Data Carrier Detect input for UART1.  
EINT1 — External interrupt 1 input.  
P0.14/DCD1/  
EINT1  
92[2]  
G10[2]  
I
Note: LOW on this pin while RESET is LOW forces on-chip  
boot-loader to take over control of the part after reset.  
P0.15/RI1/  
EINT2  
99[2]  
E11[2]  
E10[2]  
I
RI1 — Ring Indicator input for UART1.  
I
EINT2 — External interrupt 2 input.  
P0.16/EINT0/  
100[2]  
I
EINT0 — External interrupt 0 input.  
MAT0.2/CAP0.2  
O
MAT0.2 — Match output for Timer 0, channel 2.  
CAP0.2 — Capture input for Timer 0, channel 2.  
CAP1.2 — Capture input for Timer 1, channel 2.  
I
P0.17/CAP1.2/ 101[1]  
SCK1/MAT1.2  
D13[1]  
D8[1]  
C8[1]  
I
I/O  
SCK1 — Serial Clock for SPI1/SSI/Microwire.  
SPI/SSI/Microwire clock output from master or input to slave.  
O
I
MAT1.2 — Match output for Timer 1, channel 2.  
CAP1.3 — Capture input for Timer 1, channel 3.  
P0.18/CAP1.3/ 121[1]  
MISO1/MAT1.3  
I/O  
MISO1 — Master In Slave Out for SPI1. Data input to SPI  
master or data output from SPI slave.  
O
MAT1.3 — Match output for Timer 1, channel 3.  
MAT1.2 — Match output for Timer 1, channel 2.  
P0.19/MAT1.2/ 122[1]  
MOSI1/CAP1.2  
O
I/O  
MOSI1 — Master Out Slave In for SPI1. Data output from SPI  
master or data input to SPI slave.  
SPI interface: MOSI line.  
SSI: DX/RX line (SPI1 as a master/slave).  
Microwire: SO/SI line (SPI1 as a master/slave).  
CAP1.2 — Capture input for Timer 1, channel 2.  
MAT1.3 — Match output for Timer 1, channel 3.  
I
P0.20/MAT1.3/ 123[2]  
SSEL1/ EINT3  
B8[2]  
O
I
SSEL1 — Slave Select for SPI1/Microwire. Used to select the  
SPI or Microwire interface as a slave. Frame synchronization  
in case of 4-wire SSI.  
I
EINT3 — External interrupt 3 input.  
P0.21/PWM5/  
CAP1.3  
4[1]  
C1[1]  
D4[1]  
O
I
PWM5 — Pulse Width Modulator output 5.  
CAP1.3 — Capture input for Timer 1, channel 3.  
CAP0.0 — Capture input for Timer 0, channel 0.  
MAT0.0 — Match output for Timer 0, channel 0.  
General purpose bidirectional digital port only.  
General purpose bidirectional digital port only.  
General purpose bidirectional digital port only.  
P0.22/CAP0.0/ 5[1]  
MAT0.0  
I
O
I/O  
I/O  
I/O  
I
P0.23  
P0.24  
P0.25  
6[1]  
8[1]  
21[1]  
23[4]  
D3[1]  
D1[1]  
H1[1]  
H3[4]  
P0.27/AIN0/  
AIN0 — A/D converter, input 0. This analog input is always  
CAP0.1/MAT0.1  
connected to its pin.  
I
CAP0.1 — Capture input for Timer 0, channel 1.  
MAT0.1 — Match output for Timer 0, channel 1.  
O
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
8 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 4:  
Symbol  
Pin description …continued  
Pin (LQFP)  
Pin (TFBGA) Type  
Description  
P0.28/AIN1/  
CAP0.2/MAT0.2  
25[4]  
32[4]  
33[4]  
J1[4]  
L1[4]  
L2[4]  
I
AIN1 — A/D converter, input 1. This analog input is always  
connected to its pin.  
I
CAP0.2 — Capture input for Timer 0, channel 2.  
MAT0.2 — Match output for Timer 0, channel 2.  
O
I
P0.29/AIN2/  
CAP0.3/MAT0.3  
AIN2 — A/D converter, input 2. This analog input is always  
connected to its pin.  
I
CAP0.3 — Capture input for Timer 0, Channel 3.  
MAT0.3 — Match output for Timer 0, channel 3.  
O
I
P0.30/AIN3/  
AIN3 — A/D converter, input 3. This analog input is always  
EINT3/CAP0.0  
connected to its pin.  
I
EINT3 — External interrupt 3 input.  
I
CAP0.0 — Capture input for Timer 0, channel 0.  
P1.0 to P1.31  
I/O  
Port 1: Port 1 is a 32-bit bidirectional I/O port with individual  
direction controls for each bit. The operation of port 1 pins  
depends upon the pin function selected via the Pin Connect  
Block.  
Pins 0 through 15 of port 1 are not available.  
CS0 — LOW-active Chip Select 0 signal.  
(Bank 0 addresses range 8000 0000 to 80FF FFFF)  
OE — LOW-active Output Enable signal.  
P1.0/CS0  
P1.1/OE  
91[5]  
G11[5]  
O
90[5]  
34[5]  
G13[5]  
L3[5]  
O
O
P1.16/  
TRACEPKT0 — Trace Packet, bit 0. Standard I/O port with  
TRACEPKT0  
internal pull-up.  
P1.17/  
TRACEPKT1  
24[5]  
15[5]  
7[5]  
H4[5]  
F2[5]  
O
O
O
O
TRACEPKT1 — Trace Packet, bit 1. Standard I/O port with  
internal pull-up.  
P1.18/  
TRACEPKT2  
TRACEPKT2 — Trace Packet, bit 2. Standard I/O port with  
internal pull-up.  
P1.19/  
TRACEPKT3  
D2[5]  
D12[5]  
TRACEPKT3 — Trace Packet, bit 3. Standard I/O port with  
internal pull-up.  
P1.20/  
102[5]  
TRACESYNC — Trace Synchronization. Standard I/O port  
TRACESYNC  
with internal pull-up.  
Note: LOW on this pin while RESET is LOW, enables pins  
P1[25:16] to operate as Trace port after reset.  
P1.21/  
PIPESTAT0  
95[5]  
86[5]  
82[5]  
70[5]  
F11[5]  
H11[5]  
J11[5]  
L11[5]  
K8[5]  
O
O
O
O
I
PIPESTAT0 — Pipeline Status, bit 0. Standard I/O port with  
internal pull-up.  
P1.22/  
PIPESTAT1  
PIPESTAT1 — Pipeline Status, bit 1. Standard I/O port with  
internal pull-up.  
P1.23/  
PIPESTAT2  
PIPESTAT2 — Pipeline Status, bit 2. Standard I/O port with  
internal pull-up.  
P1.24/  
TRACECLK  
P1.25/EXTIN0 60[5]  
TRACECLK — Trace Clock. Standard I/O port with internal  
pull-up.  
EXTIN0 — External Trigger Input. Standard I/O with internal  
pull-up.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
9 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 4:  
Symbol  
Pin description …continued  
Pin (LQFP)  
Pin (TFBGA) Type  
Description  
P1.26/RTCK  
52[5]  
N6[5]  
I/O  
RTCK — Returned Test Clock output. Extra signal added to  
the JTAG port. Assists debugger synchronization when  
processor frequency varies. Bidirectional pin with internal  
pull-up.  
Note: LOW on this pin while RESET is LOW, enables pins  
P1[31:26] to operate as Debug port after reset.  
P1.27/TDO  
P1.28/TDI  
144[5]  
140[5]  
126[5]  
113[5]  
43[5]  
B2[5]  
A3[5]  
A7[5]  
D10[5]  
M4[5]  
O
TDO — Test Data out for JTAG interface.  
TDI — Test Data in for JTAG interface.  
TCK — Test Clock for JTAG interface.  
TMS — Test Mode Select for JTAG interface.  
TRST — Test Reset for JTAG interface.  
I
P1.29/TCK  
P1.30/TMS  
P1.31/TRST  
P2.0 to P2.31  
I
I
I
I/O  
Port 2 — Port 2 is a 32-bit bidirectional I/O port with individual  
direction controls for each bit. The operation of port 2 pins  
depends upon the pin function selected via the Pin Connect  
Block.  
P2.0/D0  
98[5]  
E12[5]  
C12[5]  
C11[5]  
B12[5]  
A13[5]  
C10[5]  
B10[5]  
A10[5]  
D9[5]  
C9[5]  
A9[5]  
A8[5]  
B7[5]  
C7[5]  
A6[5]  
B6[5]  
C6[5]  
D6[5]  
A5[5]  
B5[5]  
D5[5]  
A4[5]  
A1[5]  
E3[5]  
E2[5]  
E1[5]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D0 — External memory data line 0.  
D1 — External memory data line 1.  
D2 — External memory data line 2.  
D3 — External memory data line 3.  
D4 — External memory data line 4.  
D5 — External memory data line 5.  
D6 — External memory data line 6.  
D7 — External memory data line 7.  
D8 — External memory data line 8.  
D9 — External memory data line 9.  
D10 — External memory data line 10.  
D11 — External memory data line 11.  
D12 — External memory data line 12.  
D13 — External memory data line 13.  
D14 — External memory data line 14.  
D15 — External memory data line 15.  
D16 — External memory data line 16.  
D17 — External memory data line 17.  
D18 — External memory data line 18.  
D19 — External memory data line 19.  
D20 — External memory data line 20.  
D21 — External memory data line 21.  
D22 — External memory data line 22.  
D23 — External memory data line 23.  
D24 — External memory data line 24.  
D25 — External memory data line 25.  
P2.1/D1  
105[5]  
106[5]  
108[5]  
109[5]  
114[5]  
115[5]  
116[5]  
117[5]  
118[5]  
120[5]  
124[5]  
125[5]  
127[5]  
129[5]  
130[5]  
131[5]  
132[5]  
133[5]  
134[5]  
136[5]  
137[5]  
1[5]  
P2.2/D2  
P2.3/D3  
P2.4/D4  
P2.5/D5  
P2.6/D6  
P2.7/D7  
P2.8/D8  
P2.9/D9  
P2.10/D10  
P2.11/D11  
P2.12/D12  
P2.13/D13  
P2.14/D14  
P2.15/D15  
P2.16/D16  
P2.17/D17  
P2.18/D18  
P2.19/D19  
P2.20/D20  
P2.21/D21  
P2.22/D22  
P2.23/D23  
P2.24/D24  
P2.25/D25  
10[5]  
11[5]  
12[5]  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
10 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 4:  
Symbol  
Pin description …continued  
Pin (LQFP)  
Pin (TFBGA) Type  
Description  
P2.26/D26/  
BOOT0  
13[5]  
F4[5]  
I/O  
I
D26 — External memory data line 26.  
BOOT0 — While RESET is LOW, together with BOOT1  
controls booting and internal operation. Internal pull-up  
ensures HIGH state if pin is left unconnected.  
P2.27/D27/  
BOOT1  
16[5]  
F1[5]  
I/O  
I
D27 — External memory data line 27.  
BOOT1 — While RESET is LOW, together with BOOT0  
controls booting and internal operation. Internal pull-up  
ensures HIGH state if pin is left unconnected.  
BOOT1:0 = 00 selects 8-bit memory on CS0 for boot.  
BOOT1:0 = 01 selects 16-bit memory on CS0 for boot.  
BOOT1:0 = 10 selects 32-bit memory on CS0 for boot.  
BOOT1:0 = 11 selects 16-bit memory on CS0 for boot.  
D28 — External memory data line 28.  
P2.28/D28  
P2.29/D29  
17[5]  
18[5]  
19[2]  
G2[5]  
G1[5]  
G3[2]  
I/O  
I/O  
I/O  
I
D29 — External memory data line 29.  
P2.30/D30/  
AIN4  
D30 — External memory data line 30.  
AIN4 — A/D converter, input 4. This analog input is always  
connected to its pin.  
P2.31/D31/  
AIN5  
20[2]  
G4[2]  
I/O  
I
D31 — External memory data line 31.  
AIN5 — A/D converter, input 5. This analog input is always  
connected to its pin.  
P3.0 to P3.31  
I/O  
Port 3 — Port 3 is a 32-bit bidirectional I/O port with individual  
direction controls for each bit. The operation of port 3 pins  
depends upon the pin function selected via the Pin Connect  
Block.  
P3.0/A0  
89[5]  
88[5]  
87[5]  
81[5]  
80[5]  
74[5]  
73[5]  
72[5]  
71[5]  
66[5]  
65[5]  
64[5]  
63[5]  
62[5]  
56[5]  
55[5]  
53[5]  
48[5]  
47[5]  
G12[5]  
H13[5]  
H12[5]  
J10[5]  
K13[5]  
M13[5]  
N13[5]  
M12[5]  
N12[5]  
M10[5]  
N10[5]  
K9[5]  
L9[5]  
M9[5]  
K7[5]  
L7[5]  
M7[5]  
N5[5]  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
A0 — External memory address line 0.  
A1 — External memory address line 1.  
A2 — External memory address line 2.  
A3 — External memory address line 3.  
A4 — External memory address line 4.  
A5 — External memory address line 5.  
A6 — External memory address line 6.  
A7 — External memory address line 7.  
A8 — External memory address line 8.  
A9 — External memory address line 9.  
A10 — External memory address line 10.  
A11 — External memory address line 11.  
A12 — External memory address line 12.  
A13 — External memory address line 13.  
A14 — External memory address line 14.  
A15 — External memory address line 15.  
A16 — External memory address line 16.  
A17 — External memory address line 17.  
A18 — External memory address line 18.  
P3.1/A1  
P3.2/A2  
P3.3/A3  
P3.4/A4  
P3.5/A5  
P3.6/A6  
P3.7/A7  
P3.8/A8  
P3.9/A9  
P3.10/A10  
P3.11/A11  
P3.12/A12  
P3.13/A13  
P3.14/A14  
P3.15/A15  
P3.16/A16  
P3.17/A17  
P3.18/A18  
M5[5]  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
11 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 4:  
Pin description …continued  
Symbol  
Pin (LQFP)  
Pin (TFBGA) Type  
Description  
P3.19/A19  
P3.20/A20  
P3.21/A21  
P3.22/A22  
46[5]  
45[5]  
44[5]  
41[5]  
40[5]  
L5[5]  
K5[5]  
N4[5]  
K4[5]  
N3[5]  
O
O
O
O
O
O
O
A19 — External memory address line 19.  
A20 — External memory address line 20.  
A21 — External memory address line 21.  
A22 — External memory address line 22.  
A23 — External memory address line 23.  
XCLK — Clock output.  
P3.23/A23/  
XCLK  
P3.24/CS3  
P3.25/CS2  
P3.26/CS1  
P3.27/WE  
36[5]  
35[5]  
30[5]  
M2[5]  
M1[5]  
K2[5]  
CS3 — LOW-active Chip Select 3 signal.  
(Bank 3 addresses range 8300 0000 to 83FF FFFF)  
CS2 — LOW-active Chip Select 2 signal.  
(Bank 2 addresses range 8200 0000 to 82FF FFFF)  
CS1 — LOW-active Chip Select 1 signal.  
(Bank 1 addresses range 8100 0000 to 81FF FFFF)  
WE — LOW-active Write enable signal.  
BLS3 — LOW-active Byte Lane Select signal (Bank 3).  
O
O
29[5]  
28[2]  
K1[5]  
J4[2]  
O
O
I
P3.28/BLS3/  
AIN7  
AIN7 — A/D converter, input 7. This analog input is always  
connected to its pin.  
P3.29/BLS2/  
AIN6  
27[4]  
J3[4]  
O
I
BLS2 — LOW-active Byte Lane Select signal (Bank 2).  
AIN6 — A/D converter, input 6. This analog input is always  
connected to its pin.  
P3.30/BLS1  
P3.31/BLS0  
n.c.  
97[4]  
96[4]  
22[5]  
E13[4]  
F10[4]  
H2[5]  
O
O
BLS1 — LOW-active Byte Lane Select signal (Bank 1).  
BLS0 — LOW-active Byte Lane Select signal (Bank 0).  
Not connected. This pin MUST NOT be pulled LOW or the  
device might not operate properly.  
RESET  
135[6]  
C5[6]  
I
External reset input: A LOW on this pin resets the device,  
causing I/O ports and peripherals to take on their default  
states, and processor execution to begin at address 0. TTL  
with hysteresis, 5 V tolerant.  
XTAL1  
142[7]  
141[7]  
C3[7]  
B3[7]  
I
Input to the oscillator circuit and internal clock generator  
circuits.  
XTAL2  
VSS  
O
I
Output from the oscillator amplifier.  
3, 9, 26, 38, C2, E4, J2,  
54, 67, 79, N2, N7, L10,  
93, 103, 107, K12, F13,  
Ground: 0 V reference.  
111, 128  
D11, B13,  
B11, D7  
VSSA  
139  
C4  
I
I
I
Analog ground: 0 V reference. This should nominally be the  
same voltage as VSS, but should be isolated to minimize noise  
and error.  
VSSA(PLL)  
138  
B4  
PLL analog ground: 0 V reference. This should nominally be  
the same voltage as VSS, but should be isolated to minimize  
noise and error.  
VDD(1V8)  
37, 110  
N1, A12  
1.8 V core power supply: This is the power supply voltage  
for internal circuitry.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
12 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 4:  
Symbol  
VDDA(1V8)  
Pin description …continued  
Pin (LQFP)  
Pin (TFBGA) Type  
Description  
143  
A2  
I
I
I
Analog 1.8 V core power supply: This is the power supply  
voltage for internal circuitry. This should be nominally the  
same voltage as VDD(1V8) but should be isolated to minimize  
noise and error.  
VDD(3V3)  
2, 31, 39, 51, B1, K3, M3,  
57, 77, 94, M6, N8, K10,  
104, 112, 119 F12, C13,  
A11, B9  
3.3 V pad power supply: This is the power supply voltage for  
the I/O ports.  
VDDA(3V3)  
14  
F3  
Analog 3.3 V pad power supply: This should be nominally  
the same voltage as VDD(3V3) but should be isolated to  
minimize noise and error.  
[1] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control.  
[2] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control. If configured for an input  
function, this pad utilizes built-in glitch filter that blocks pulses shorter than 3 ns.  
[3] Open drain 5 V tolerant digital I/O I2C-bus 400 kHz specification compatible pad. It requires external pull-up to provide an output  
functionality.  
[4] 5 V tolerant pad providing digital I/O (with TTL levels and hysteresis and 10 ns slew rate control) and analog input function. If configured  
for a digital input function, this pad utilizes built-in glitch filter that blocks pulses shorter than 3 ns. When configured as an ADC input,  
digital section of the pad is disabled.  
[5] 5 V tolerant pad with built-in pull-up resistor providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control.  
The pull-up resistor’s value ranges from 60 kto 300 k.  
[6] 5 V tolerant pad providing digital input (with TTL levels and hysteresis) function only.  
[7] Pad provides special analog functionality.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
13 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
6. Functional description  
6.1 Architectural overview  
The ARM7TDMI-S is a general purpose 32-bit microprocessor, which offers high  
performance and very low power consumption. The ARM architecture is based on  
Reduced Instruction Set Computer (RISC) principles, and the instruction set and related  
decode mechanism are much simpler than those of microprogrammed Complex  
Instruction Set Computers. This simplicity results in a high instruction throughput and  
impressive real-time interrupt response from a small and cost-effective processor core.  
Pipeline techniques are employed so that all parts of the processing and memory systems  
can operate continuously. Typically, while one instruction is being executed, its successor  
is being decoded, and a third instruction is being fetched from memory.  
The ARM7TDMI-S processor also employs a unique architectural strategy known as  
Thumb, which makes it ideally suited to high-volume applications with memory  
restrictions, or applications where code density is an issue.  
The key idea behind Thumb is that of a super-reduced instruction set. Essentially, the  
ARM7TDMI-S processor has two instruction sets:  
The standard 32-bit ARM set.  
A 16-bit Thumb set.  
The Thumb set’s 16-bit instruction length allows it to approach twice the density of  
standard ARM code while retaining most of the ARM’s performance advantage over a  
traditional 16-bit processor using 16-bit registers. This is possible because Thumb code  
operates on the same 32-bit register set as ARM code.  
Thumb code is able to provide up to 65 % of the code size of ARM, and 160 % of the  
performance of an equivalent ARM processor connected to a 16-bit memory system.  
6.2 On-chip static RAM  
On-chip static RAM may be used for code and/or data storage. The SRAM may be  
accessed as 8-bits, 16-bits, and 32-bits. The LPC2210/2220 provides 16 kB of static RAM  
and the LPC2220 provides 64 kB of static RAM.  
6.3 Memory map  
The LPC2210/2220 memory maps incorporate several distinct regions, as shown in the  
following figures.  
In addition, the CPU interrupt vectors may be re-mapped to allow them to reside in either  
on-chip boot-loader, external memory BANK0 or on-chip static RAM. This is described in  
Section 6.20 “System control”.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
14 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
4.0 GB  
3.75 GB  
3.5 GB  
0xFFFF FFFF  
AHB PERIPHERALS  
0xF000 0000  
0xEFFF FFFF  
VPB PERIPHERALS  
0xE000 0000  
0xDFFF FFFF  
RESERVED ADDRESS SPACE  
3.0 GB  
0x8400 0000  
0x83FF FFFF  
EXTERNAL MEMORY BANK3  
0x8300 0000  
0x82FF FFFF  
EXTERNAL MEMORY BANK2  
0x8200 0000  
0x81FF FFFF  
EXTERNAL MEMORY BANK1  
0x8100 0000  
0x80FF FFFF  
EXTERNAL MEMORY BANK0  
0x8000 0000  
0x7FFF FFFF  
2.0 GB  
BOOT BLOCK (RE-MAPPED FROM  
ON-CHIP ROM MEMORY  
0x7FFF E000  
0x7FFF DFFF  
RESERVED ADDRESS SPACE  
0x4001 0000  
0x4000 FFFF  
64 KBYTE ON-CHIP STATIC RAM (LPC2220)  
16 KBYTE ON-CHIP STATIC RAM (LPC2210)  
0x4000 4000  
0x4000 3FFF  
0x4000 0000  
0x3FFF FFFF  
1.0 GB  
RESERVED ADDRESS SPACE  
0x0000 0000  
0.0 GB  
002aaa795  
Fig 4. LPC2210/2220 memory map  
6.4 Interrupt controller  
The VIC accepts all of the interrupt request inputs and categorizes them as Fast Interrupt  
reQuest (FIQ), vectored IRQ, and non-vectored IRQ as defined by programmable  
settings. The programmable assignment scheme means that priorities of interrupts from  
the various peripherals can be dynamically assigned and adjusted.  
FIQ has the highest priority. If more than one request is assigned to FIQ, the VIC  
combines the requests to produce the FIQ signal to the ARM processor. The fastest  
possible FIQ latency is achieved when only one request is classified as FIQ, because then  
the FIQ service routine can simply start dealing with that device. But if more than one  
request is assigned to the FIQ class, the FIQ service routine can read a word from the VIC  
that identifies which FIQ source(s) is (are) requesting an interrupt.  
Vectored IRQs have the middle priority. Sixteen of the interrupt requests can be assigned  
to this category. Any of the interrupt requests can be assigned to any of the 16 vectored  
IRQ slots, among which slot 0 has the highest priority and slot 15 has the lowest.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
15 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Non-vectored IRQs have the lowest priority.  
The VIC combines the requests from all the vectored and non-vectored IRQs to produce  
the IRQ signal to the ARM processor. The IRQ service routine can start by reading a  
register from the VIC and jumping there. If any of the vectored IRQs are requesting, the  
VIC provides the address of the highest-priority requesting IRQs service routine,  
otherwise it provides the address of a default routine that is shared by all the non-vectored  
IRQs. The default routine can read another VIC register to see what IRQs are active.  
6.4.1 Interrupt sources  
Table 5 lists the interrupt sources for each peripheral function. Each peripheral device has  
one interrupt line connected to the Vectored Interrupt Controller, but may have several  
internal interrupt flags. Individual interrupt flags may also represent more than one  
interrupt source.  
Table 5:  
Block  
Interrupt sources  
Flag(s)  
VIC channel #  
WDT  
Watchdog Interrupt (WDINT)  
0
1
2
3
4
5
6
-
Reserved for software interrupts only  
Embedded ICE, DbgCommRX  
Embedded ICE, DbgCommTX  
Match 0 to 3 (MR0, MR1, MR2, MR3)  
Match 0 to 3 (MR0, MR1, MR2, MR3)  
RX Line Status (RLS)  
ARM Core  
ARM Core  
TIMER0  
TIMER1  
UART0  
Transmit Holding Register empty (THRE)  
RX Data Available (RDA)  
Character Time-out Indicator (CTI)  
RX Line Status (RLS)  
UART1  
7
Transmit Holding Register empty (THRE)  
RX Data Available (RDA)  
Character Time-out Indicator (CTI)  
Modem Status Interrupt (MSI)  
Match 0 to 6 (MR0, MR1, MR2, MR3, MR4, MR5, MR6)  
SI (state change)  
PWM0  
I2C  
8
9
SPI0  
SPIF, MODF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
SPI1 and SSP  
PLL  
SPIF, MODF and TXRIS, RXRIS, RTRIS, RORRIS  
PLL Lock (PLOCK)  
RTC  
RTCCIF (Counter Increment), RTCALF (Alarm)  
System Control External Interrupt 0 (EINT0)  
External Interrupt 1 (EINT1)  
External Interrupt 2 (EINT2)  
External Interrupt 3 (EINT3)  
A/D  
A/D converter  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
16 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
6.5 Pin connect block  
The pin connect block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on chip peripherals. Peripherals should be connected to the appropriate pins  
prior to being activated, and prior to any related interrupt(s) being enabled. Activity of any  
enabled peripheral function that is not mapped to a related pin should be considered  
undefined.  
The pin control module contains three registers as shown in Table 6.  
Table 6:  
Pin control module registers  
Address  
Name  
Description  
Access  
0xE002 C000  
0xE002 C004  
0xE002 C014  
PINSEL0  
PINSEL1  
PINSEL2  
pin function select register 0  
pin function select register 1  
pin function select register 2  
read/write  
read/write  
read/write  
6.6 Pin function select register 0 (PINSEL0 - 0xE002 C000)  
The PINSEL0 register controls the functions of the pins as per the settings listed in  
Table 7. The direction control bit in the IODIR register is effective only when the GPIO  
function is selected for a pin. For other functions, direction is controlled automatically.  
Settings other than those shown in Table 7 are reserved, and should not be used  
Table 7:  
PINSEL0  
1:0  
Pin function select register 0 (PINSEL0 - 0xE002 C000)  
Pin name  
Value  
Function  
Value after reset  
P0.0  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GPIO Port 0.0  
TXD (UART0)  
PWM1  
0
reserved  
3:2  
5:4  
7:6  
9:8  
P0.1  
P0.2  
P0.3  
P0.4  
GPIO Port 0.1  
RXD (UART0)  
PWM3  
0
0
0
0
EINT0  
GPIO Port 0.2  
SCL (I2C-bus)  
Capture 0.0 (Timer 0)  
reserved  
GPIO Port 0.3  
SDA (I2C-bus)  
Match 0.0 (Timer 0)  
EINT1  
GPIO Port 0.4  
SCK (SPI0)  
Capture 0.1 (Timer 0)  
reserved  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
17 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 7:  
PINSEL0  
11:10  
Pin function select register 0 (PINSEL0 - 0xE002 C000) …continued  
Pin name  
Value  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
Function  
Value after reset  
P0.5  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GPIO Port 0.5  
MISO (SPI0)  
Match 0.1 (Timer 0)  
reserved  
0
13:12  
15:14  
17:16  
19:18  
21:20  
23:22  
25:24  
27:26  
29:28  
P0.6  
GPIO Port 0.6  
MOSI (SPI0)  
Capture 0.2 (Timer 0)  
reserved  
0
0
0
0
0
0
0
0
0
P0.7  
GPIO Port 0.7  
SSEL (SPI0)  
PWM2  
EINT2  
P0.8  
GPIO Port 0.8  
TXD UART1  
PWM4  
reserved  
P0.9  
GPIO Port 0.9  
RXD (UART1)  
PWM6  
EINT3  
P0.10  
P0.11  
P0.12  
P0.13  
P0.14  
GPIO Port 0.10  
RTS (UART1)  
Capture 1.0 (Timer 1)  
reserved  
GPIO Port 0.11  
CTS (UART1)  
Capture 1.1 (Timer 1)  
reserved  
GPIO Port 0.12  
DSR (UART1)  
Match 1.0 (Timer 1)  
reserved  
GPIO Port 0.13  
DTR (UART1)  
Match 1.1 (Timer 1)  
reserved  
GPIO Port 0.14  
DCD (UART1)  
EINT1  
reserved  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
18 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 7:  
PINSEL0  
31:30  
Pin function select register 0 (PINSEL0 - 0xE002 C000) …continued  
Pin name  
Value  
Function  
GPIO Port 0.15  
RI (UART1)  
EINT2  
Value after reset  
P0.15  
0
0
1
1
0
1
0
1
0
reserved  
6.7 Pin function select register 1 (PINSEL1 - 0xE002 C004)  
The PINSEL1 register controls the functions of the pins as per the settings listed in  
Table 8. The direction control bit in the IODIR register is effective only when the GPIO  
function is selected for a pin. For other functions direction is controlled automatically.  
Settings other than those shown in the Table 8 are reserved, and should not be used.  
Table 8:  
PINSEL1  
1:0  
Pin function select register 1 (PINSEL1 - 0xE002 C004)  
Pin name  
Value  
0
Function  
Value after reset  
P0.16  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GPIO Port 0.16  
EINT0  
0
0
1
Match 0.2 (Timer 0)  
Capture 0.2 (Timer 0)  
GPIO Port 0.17  
Capture 1.2 (Timer 1)  
SCK (SPI1)  
1
3:2  
P0.17  
P0.18  
P0.19  
P0.20  
P0.21  
P0.22  
0
0
0
0
0
0
0
0
1
1
Match 1.2 (Timer 1)  
GPIO Port 0.18  
Capture 1.3 (Timer 1)  
MISO (SPI1)  
5:4  
0
0
1
1
Match 1.3 (Timer 1)  
GPIO Port 0.19  
Match 1.2 (Timer 1)  
MOSI (SPI1)  
7:6  
0
0
1
1
Capture 1.2 (Timer 1)  
GPIO Port 0.20  
Match 1.3 (Timer 1)  
SSEL (SPI1)  
9:8  
0
0
1
1
EINT3  
11:10  
13:12  
0
GPIO Port 0.21  
PWM5  
0
1
reserved  
1
Capture 1.3 (Timer 1)  
GPIO Port 0.22  
reserved  
0
0
1
Capture 0.0 (Timer 0)  
Match 0.0 (Timer 0)  
1
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
19 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 8:  
PINSEL1  
15:14  
Pin function select register 1 (PINSEL1 - 0xE002 C004) …continued  
Pin name  
Value  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
Function  
Value after reset  
P0.23  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GPIO Port 0.23  
reserved  
0
reserved  
reserved  
17:16  
19:18  
21:20  
23:22  
25:24  
27:26  
29:28  
31:30  
P0.24  
P0.25  
P0.26  
P0.27  
P0.28  
P0.29  
P0.30  
P0.31  
GPIO Port 0.24  
reserved  
0
0
0
1
1
1
1
0
reserved  
reserved  
GPIO Port 0.25  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
GPIO Port 0.27  
AIN0 (A/D input 0)  
Capture 0.1 (Timer 0)  
Match 0.1 (Timer 0)  
GPIO Port 0.28  
AIN1 (A/D input 1)  
Capture 0.2 (Timer 0)  
Match 0.2 (Timer 0)  
GPIO Port 0.29  
AIN2 (A/D input 2)  
Capture 0.3 (Timer 0)  
Match 0.3 (Timer 0)  
GPIO Port 0.30  
AIN3 (A/D input 0)  
EINT3  
Capture 0.0 (Timer 0)  
reserved  
reserved  
reserved  
reserved  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
20 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
6.8 Pin function select register 2 (PINSEL2 - 0xE002 C014)  
The PINSEL2 register controls the functions of the pins as per the settings listed in  
Table 9. The direction control bit in the IODIR register is effective only when the GPIO  
function is selected for a pin. For other functions direction is controlled automatically.  
Settings other than those shown in the Table 9 are reserved, and should not be used.  
Table 9:  
Pin function select register 2 (PINSEL2 - 0xE002 C014)  
PINSEL2 bits  
Description  
Reset value  
1:0  
2
reserved.  
-
When 0, pins P1[36:26] are used as GPIO pins. When 1, P1[31:26] are used as a P1.26/RTCK  
Debug port.  
3
When 0, pins P1[25:16] are used as GPIO pins. When 1, P1[25:16] are used as a P1.20/  
Trace port.  
TRACESYNC  
5:4  
Controls the use of the data bus and strobe pins:  
BOOT1:0  
Pins P2[7:0]  
Pin P1.0  
11 = P2[7:0]  
11 = P1.0  
0x or 10 = D7 to D0  
0x or 10 = CS0  
0x or 10 = OE  
Pin P1.1  
11 = P1.1  
Pin P3.31  
11 = P3.31  
0x or 10 = BLS0  
01 or 10 = D15:8  
01 or 10 = BLS1  
10 = D27 to D16  
10 = D29, D28  
10 = D31, D30  
10 = BLS2, BLS3  
Pins P2[15:8]  
Pin P3.30  
00 or 11 = P2[15:8]  
00 or 11 = P3.30  
Pins P2[27:16]  
Pins P2[29:28]  
Pins P2[31:30]  
Pins P3[29:28]  
0x or 11 = P2[27:16]  
0x or 11 = P2[29:28] or reserved  
0x or 11 = P2[31:30] or AIN5:4  
0x or 11 = P3[29:28] or AIN6:7  
6
7
If bits 5:4 are not 10, controls the use of pin P3.29: 0 enables P3.29, 1 enables  
AIN6.  
1
1
If bits 5:4 are not 10, controls the use of pin P3.28: 0 enables P3.28, 1 enables  
AIN7.  
8
Controls the use of pin P3.27: 0 enables P3.27, 1 enables WE.  
0
-
10:9  
11  
12  
13  
reserved.  
Controls the use of pin P3.26: 0 enables P3.26, 1 enables CS1.  
reserved.  
0
-
If bits 27:25 are not 111, controls the use of pin P3.23/A23/XCLK: 0 enables P3.23,  
1 enables XCLK.  
0
15:14  
17:16  
Controls the use of pin P3.25: 00 enables P3.25, 01 enables CS2, 10 and 11 are 00  
reserved values.  
Controls the use of pin P3.24: 00 enables P3.24, 01 enables CS3, 10 and 11 are 00  
reserved values.  
19:18  
20  
reserved.  
-
If bits 5:4 are not 10, controls the use of pin P2[29:28]: 0 enables P2[29:28], 1 is  
reserved  
0
21  
22  
If bits 5:4 are not 10, controls the use of pin P2.30: 0 enables P2.30, 1 enables  
AIN4.  
1
1
If bits 5:4 are not 10, controls the use of pin P2.31: 0 enables P2.31, 1 enables  
AIN5.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
21 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 9:  
PINSEL2 bits  
23  
Pin function select register 2 (PINSEL2 - 0xE002 C014) …continued  
Description  
Reset value  
Controls whether P3.0/A0 is a port pin (0) or an address line (1).  
1 if BOOT1:0 = 00  
at RESET = 0,  
0 otherwise  
24  
Controls whether P3.1/A1 is a port pin (0) or an address line (1).  
BOOT1 during  
Reset  
27:25  
Controls the number of pins among P3.23/A23/XCLK and P3[22:2]/A2[22:2] that  
are address lines:  
000 if  
BOOT1:0 = 11 at  
Reset, 111  
otherwise  
000 = None  
100 = A11:2 are address lines.  
001 = A3:2 are address lines. 101 = A15:2 are address lines.  
010 = A5:2 are address lines. 110 = A19:2 are address lines.  
011 = A7:2 are address lines. 111 = A23:2 are address lines.  
reserved.  
31:28  
6.9 External memory controller  
The external Static Memory Controller is a module which provides an interface between  
the system bus and external (off-chip) memory devices. It provides support for up to four  
independently configurable memory banks (16 MB each with byte lane enable control)  
simultaneously. Each memory bank is capable of supporting SRAM, ROM, Flash EPROM,  
Burst ROM memory, or some external I/O devices.  
Each memory bank may be 8, 16, or 32 bits wide.  
6.10 General purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate  
registers allow setting or clearing any number of outputs simultaneously. The value of the  
output register may be read back, as well as the current state of the port pins.  
6.10.1 Features  
Direction control of individual bits.  
Separate control of output set and clear.  
All I/O default to inputs after reset.  
6.11 10-bit A/D converter  
The LPC2210/2220 contains a single 10-bit successive approximation analog to digital  
converter with eight multiplexed channels.  
6.11.1 Features  
Measurement range of 0 V to 3 V.  
Capable of performing more than 400,000 10-bit samples per second.  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition on input pin or Timer Match signal.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
22 of 49  
LPC2210/2220  
Philips Semiconductors  
6.12 UARTs  
16/32-bit ARM microcontrollers with external memory interface  
The LPC2210/2220 contains two UARTs. One UART provides a full modem control  
handshake interface, the other provides only transmit and receive data lines.  
6.12.1 Features  
16 byte Receive and Transmit FIFOs.  
Register locations conform to ‘550’ industry standard.  
Receiver FIFO trigger points at 1, 4, 8, and 14 bytes  
Built-in baud rate generator.  
Standard modem interface signals included on UART1.  
LPC2220 provides enhanced UARTs with fractional baud-rate generators,  
mechanism for software flow control, and hardware (CTS/RTS) flow control on UART1  
only.  
6.13 I2C-bus serial I/O controller  
The I2C-bus is a bidirectional bus for inter-IC control using only two wires: a serial clock  
line (SCL), and a serial data line (SDA). Each device is recognized by a unique address  
and can operate as either a receiver-only device (e.g., an LCD driver or a transmitter with  
the capability to both receive and send information (such as memory)). Transmitters  
and/or receivers can operate in either master or slave mode, depending on whether the  
chip has to initiate a data transfer or is only addressed. The I2C-bus is a multi-master bus,  
it can be controlled by more than one bus master connected to it.  
The I2C-bus implemented in LPC2210/2220 supports a bit rate up to 400 kbit/s (Fast  
I2C-bus).  
6.13.1 Features  
Compliant with standard I2C-bus interface.  
Easy to configure as Master, Slave, or Master/Slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus may be used for test and diagnostic purposes.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
23 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
6.14 SPI serial I/O controller  
The LPC2210/2220 contains two SPIs. The SPI is a full duplex serial interface, designed  
to be able to handle multiple masters and slaves connected to a given bus. Only a single  
master and a single slave can communicate on the interface during a given data transfer.  
During a data transfer the master always sends a byte of data to the slave, and the slave  
always sends a byte of data to the master.  
6.14.1 Features  
Compliant with SPI specification.  
Synchronous, Serial, Full Duplex, Communication.  
Combined SPI master and slave.  
Maximum data bit rate of one eighth of the input clock rate.  
6.15 SSP controller  
This peripheral is available in LPC2220 only.  
6.15.1 Features  
Compatible with Motorola’s SPI, TI’s 4-wire SSI, and National Semiconductor’s  
Microwire buses.  
Synchronous Serial Communication.  
Master or slave operation.  
8-frame FIFOs for both transmit and receive.  
Four to 16 bits per frame.  
6.15.2 Description  
The SSP is a controller capable of operation on a SPI, 4-wire SSI, or Microwire bus. It can  
interact with multiple masters and slaves on the bus. Only a single master and a single  
slave can communicate on the bus during a given data transfer. Data transfers are in  
principle full duplex, with frames of four to 16 bits of data flowing from the master to the  
slave and from the slave to the master.  
While the SSP and SPI1 peripherals share the same physical pins, it is not possible to  
have both of these two peripherals active at the same time. Application can switch on the  
fly from SPI1 to SSP and back.  
6.16 General purpose timers  
The Timer/Counter is designed to count cycles of the peripheral clock (PCLK) or an  
externally supplied clock and optionally generate interrupts or perform other actions at  
specified timer values, based on four match registers. It also includes four capture inputs  
to trap the timer value when an input signal transitions, optionally generating an interrupt.  
Multiple pins can be selected to perform a single capture or match function, providing an  
application with ‘or’ and ‘and’, as well as ‘broadcast’ functions among them.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
24 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
The LPC2220 can count external events on one of the capture inputs if the minimum  
external pulse is equal or longer than a period of the PCLK. In this configuration, unused  
capture lines can be selected as regular timer capture inputs.  
6.16.1 Features  
A 32-bit Timer/Counter with a programmable 32-bit Prescaler.  
Timer operation (LPC2210/2220) or external Event Counter (LPC2220 only).  
Four 32-bit capture channels per timer/counter that can take a snapshot of the timer  
value when an input signal transitions. A capture event may also optionally generate  
an interrupt.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Four external outputs per timer/counter corresponding to match registers, with the  
following capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
6.17 Watchdog timer  
The purpose of the watchdog is to reset the microcontroller within a reasonable amount of  
time if it enters an erroneous state. When enabled, the watchdog will generate a system  
reset if the user program fails to ‘feed’ (or reload) the watchdog within a predetermined  
amount of time.  
6.17.1 Features  
Internally resets chip if not periodically reloaded.  
Debug mode.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 32-bit timer with internal pre-scaler.  
Selectable time period from (tpclk × 256 × 4) to (tpclk × 232 × 4) in multiples of tpclk × 4.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
25 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
6.18 Real-time clock  
The RTC is designed to provide a set of counters to measure time when normal or idle  
operating mode is selected. The RTC has been designed to use little power, making it  
suitable for battery powered systems where the CPU is not running continuously (Idle  
mode).  
6.18.1 Features  
Measures the passage of time to maintain a calendar and clock.  
Ultra-low power design to support battery powered systems.  
Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and Day  
of Year.  
Programmable Reference Clock Divider allows adjustment of the RTC to match  
various crystal frequencies.  
6.19 Pulse width modulator  
The PWM is based on the standard Timer block and inherits all of its features, although  
only the PWM function is pinned out on the LPC2210/2220. The Timer is designed to  
count cycles of the peripheral clock (PCLK) and optionally generate interrupts or perform  
other actions when specified timer values occur, based on seven match registers. The  
PWM function is also based on match register events.  
The ability to separately control rising and falling edge locations allows the PWM to be  
used for more applications. For instance, multi-phase motor control typically requires three  
non-overlapping PWM outputs with individual control of all three pulse widths and  
positions.  
Two match registers can be used to provide a single edge controlled PWM output. One  
match register (MR0) controls the PWM cycle rate, by resetting the count upon match.  
The other match register controls the PWM edge position. Additional single edge  
controlled PWM outputs require only one match register each, since the repetition rate is  
the same for all PWM outputs. Multiple single edge controlled PWM outputs will all have a  
rising edge at the beginning of each PWM cycle, when an MR0 match occurs.  
Three match registers can be used to provide a PWM output with both edges controlled.  
Again, the MR0 match register controls the PWM cycle rate. The other match registers  
control the two PWM edge positions. Additional double edge controlled PWM outputs  
require only two match registers each, since the repetition rate is the same for all PWM  
outputs.  
With double edge controlled PWM outputs, specific match registers control the rising and  
falling edge of the output. This allows both positive going PWM pulses (when the rising  
edge occurs prior to the falling edge), and negative going PWM pulses (when the falling  
edge occurs prior to the rising edge).  
6.19.1 Features  
Seven match registers allow up to six single edge controlled or three double edge  
controlled PWM outputs, or a mix of both types.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
26 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
The match registers also allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Supports single edge controlled and/or double edge controlled PWM outputs. Single  
edge controlled PWM outputs all go HIGH at the beginning of each cycle unless the  
output is a constant LOW. Double edge controlled PWM outputs can have either edge  
occur at any position within a cycle. This allows for both positive going and negative  
going pulses.  
Pulse period and width can be any number of timer counts. This allows complete  
flexibility in the trade-off between resolution and repetition rate. All PWM outputs will  
occur at the same repetition rate.  
Double edge controlled PWM outputs can be programmed to be either positive going  
or negative going pulses.  
Match register updates are synchronized with pulse outputs to prevent generation of  
erroneous pulses. Software must ‘release’ new match values before they can become  
effective.  
May be used as a standard timer if the PWM mode is not enabled.  
A 32-bit Timer/Counter with a programmable 32-bit Prescaler.  
6.20 System control  
6.20.1 Crystal oscillator  
On-chip integrated oscillator operates with external crystal in range of 1 MHz to 30 MHz  
and with external oscillator up to 50 MHz. The oscillator output frequency is called fosc and  
the ARM processor clock frequency is referred to as CCLK for purposes of rate equations,  
etc. fosc and CCLK are the same value unless the PLL is running and connected. Refer to  
Section 6.20.2 “PLLfor additional information.  
6.20.2 PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up into the range of 10 MHz to 60/75 MHz (LPC2210/2220) with a  
Current Controlled Oscillator (CCO). The multiplier can be an integer value from 1 to 32  
(in practice, the multiplier value cannot be higher than 6 on this family of microcontrollers  
due to the upper frequency limit of the CPU). The CCO operates in the range of 156 MHz  
to 320 MHz, so there is an additional divider in the loop to keep the CCO within its  
frequency range while the PLL is providing the desired output frequency. The output  
divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. Since the  
minimum output divider value is 2, it is insured that the PLL output has a 50 % duty cycle.  
The PLL is turned off and bypassed following a chip Reset and may be enabled by  
software. The program must configure and activate the PLL, wait for the PLL to Lock, then  
connect to the PLL as a clock source. The PLL settling time is 100 µs.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
27 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
6.20.3 Reset and wake-up timer  
Reset has two sources on the LPC2210/2220: the RESET pin and watchdog reset. The  
RESET pin is a Schmitt trigger input pin with an additional glitch filter. Assertion of chip  
Reset by any source starts the wake-up timer (see wake-up timer description below),  
causing the internal chip reset to remain asserted until the external Reset is de-asserted,  
the oscillator is running, a fixed number of clocks have passed, and the on-chip circuitry  
has completed its initialization.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is the Reset vector. At that point, all of the processor and peripheral registers have been  
initialized to predetermined values.  
The wake-up timer ensures that the oscillator and other analog functions required for chip  
operation are fully functional before the processor is allowed to execute instructions. This  
is important at power on, all types of Reset, and whenever any of the aforementioned  
functions are turned off for any reason. Since the oscillator and other functions are turned  
off during Power-down mode, any wake-up of the processor from Power-down mode  
makes use of the wake-up timer.  
The wake-up timer monitors the crystal oscillator as the means of checking whether it is  
safe to begin code execution. When power is applied to the chip, or some event caused  
the chip to exit Power-down mode, some time is required for the oscillator to produce a  
signal of sufficient amplitude to drive the clock logic. The amount of time depends on  
many factors, including the rate of VDD ramp (in the case of power on), the type of crystal  
and its electrical characteristics (if a quartz crystal is used), as well as any other external  
circuitry (e.g. capacitors), and the characteristics of the oscillator itself under the existing  
ambient conditions.  
6.20.4 External interrupt inputs  
The LPC2210/2220 includes up to nine edge or level sensitive External Interrupt Inputs as  
selectable pin functions. When the pins are combined, external events can be processed  
as four independent interrupt signals. The External Interrupt Inputs can optionally be used  
to wake up the processor from Power-down mode.  
6.20.5 Memory mapping control  
The Memory Mapping Control alters the mapping of the interrupt vectors that appear  
beginning at address 0x0000 0000. Vectors may be mapped to the bottom of the BANK0  
external memory, or to the on-chip static RAM. This allows code running in different  
memory spaces to have control of the interrupts.  
6.20.6 Power control  
The LPC2210/2220 supports two reduced power modes: Idle mode and Power-down  
mode.  
In Idle mode, execution of instructions is suspended until either a reset or interrupt occurs.  
Peripheral functions continue operation during Idle mode and may generate interrupts to  
cause the processor to resume execution. Idle mode eliminates power used by the  
processor itself, memory systems and related controllers, and internal buses.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
28 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
In Power-down mode, the oscillator is shut down and the chip receives no internal clocks.  
The processor state and registers, peripheral registers, and internal SRAM values are  
preserved throughout Power-down mode and the logic levels of chip output pins remain  
static. The Power-down mode can be terminated and normal operation resumed by either  
a Reset or certain specific interrupts that are able to function without clocks. Since all  
dynamic operation of the chip is suspended, Power-down mode reduces chip power  
consumption to nearly zero.  
A Power Control for Peripherals feature allows individual peripherals to be turned off if  
they are not needed in the application, resulting in additional power savings.  
6.20.7 VPB bus  
The VPB divider determines the relationship between the processor clock (CCLK) and the  
clock used by peripheral devices (PCLK). The VPB divider serves two purposes. The first  
is to provide peripherals with the desired PCLK via VPB bus so that they can operate at  
the speed chosen for the ARM processor. In order to achieve this, the VPB bus may be  
slowed down to 12 to 14 of the processor clock rate. Because the VPB bus must work  
properly at power-up (and its timing cannot be altered if it does not work since the VPB  
divider control registers reside on the VPB bus), the default condition at reset is for the  
VPB bus to run at 14 of the processor clock rate. The second purpose of the VPB divider  
is to allow power savings when an application does not require any peripherals to run at  
the full processor rate. Because the VPB divider is connected to the PLL output, the PLL  
remains active (if it was running) during Idle mode.  
6.21 Emulation and debugging  
The LPC2210/2220 supports emulation and debugging via a JTAG serial port. A trace port  
allows tracing program execution. Debugging and trace functions are multiplexed only with  
GPIOs on Port 1. This means that all communication, timer and interface peripherals  
residing on Port 0 are available during the development and debugging phase as they are  
when the application is run in the embedded system itself.  
6.21.1 Embedded ICE  
Standard ARM EmbeddedICE logic provides on-chip debug support. The debugging of  
the target system requires a host computer running the debugger software and an  
EmbeddedICE protocol convertor. EmbeddedICE protocol convertor converts the Remote  
Debug Protocol commands to the JTAG data needed to access the ARM core.  
The ARM core has a Debug Communication Channel function built-in. The debug  
communication channel allows a program running on the target to communicate with the  
host debugger or another separate host without stopping the program flow or even  
entering the debug state. The debug communication channel is accessed as a  
co-processor 14 by the program running on the ARM7TDMI-S core. The debug  
communication channel allows the JTAG port to be used for sending and receiving data  
without affecting the normal program flow. The debug communication channel data and  
control registers are mapped in to addresses in the EmbeddedICE logic.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
29 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
6.21.2 Embedded trace  
Since the LPC2210/2220 has significant amounts of on-chip memory, it is not possible to  
determine how the processor core is operating simply by observing the external pins. The  
Embedded Trace Macrocell (ETM) provides real-time trace capability for deeply  
embedded processor cores. It outputs information about processor execution to the trace  
port.  
The ETM is connected directly to the ARM core and not to the main AMBA system bus. It  
compresses the trace information and exports it through a narrow trace port. An external  
trace port analyzer must capture the trace information under software debugger control.  
Instruction trace (or PC trace) shows the flow of execution of the processor and provides a  
list of all the instructions that were executed. Instruction trace is significantly compressed  
by only broadcasting branch addresses as well as a set of status signals that indicate the  
pipeline status on a cycle by cycle basis. Trace information generation can be controlled  
by selecting the trigger resource. Trigger resources include address comparators,  
counters and sequencers. Since trace information is compressed the software debugger  
requires a static image of the code being executed. Self-modifying code cannot be traced  
because of this restriction.  
6.21.3 RealMonitor  
RealMonitor is a configurable software module, developed by ARM Inc., which enables  
real time debug. It is a lightweight debug monitor that runs in the background while users  
debug their foreground application. It communicates with the host using the Debug  
Communications Channel (DCC), which is present in the EmbeddedICE logic. The  
LPC2210/2220 contains a specific configuration of RealMonitor software programmed into  
the on-chip memory.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
30 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
7. Limiting values  
Table 10: Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). [1]  
Symbol  
VDD(1V8)  
VDD(3V3)  
VDDA(3V3)  
VIA  
Parameter  
Conditions  
Min  
Max  
+2.5  
+3.6  
4.6  
Unit  
V
supply voltage, internal rail  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
supply voltage, external rail  
analog 3.3 V pad supply voltage  
analog input voltage on A/D related pins  
DC input voltage, 5 V tolerant I/O pins  
DC input voltage, other I/O pins  
V
V
5.1  
V
[2] [3]  
[2]  
VI  
6.0  
V
VDD(3V3)  
0.5[4]  
+
V
IDD  
DC supply current per supply pin  
DC ground current per ground pin  
storage temperature[6]  
-
100[5]  
100[5]  
150  
mA  
mA  
°C  
ISS  
-
Tstg  
65  
Ptot(pack)  
total power dissipation  
based on package  
heat transfer, not  
device power  
-
1.5  
W
consumption  
[1] The following applies to the Limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Including voltage on outputs in 3-state mode.  
[3] Only valid when the VDD(3V3) supply voltage is present.  
[4] Not to exceed 4.6 V.  
[5] The peak current is limited to 25 times the corresponding maximum current.  
[6] Dependent on package type.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
31 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
8. Static characteristics  
Table 11: Static characteristics  
Tamb = 40 °C to +85 °C for commercial applications, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
1.65  
3.0  
Typ [1]  
1.8  
Max  
1.95  
3.6  
Unit  
V
VDD(1V8) supply voltage  
VDD(3V3) external rail supply voltage  
3.3  
V
VDDA(3V3) analog 3.3 V pad supply  
voltage  
2.5  
3.3  
3.6  
V
Standard port pins, RESET, RTCK  
IIL  
LOW-state input current  
HIGH-state input current  
VI = 0 V; no pull-up  
-
-
-
-
-
-
3
3
3
µA  
µA  
µA  
IIH  
IOZ  
VI = VDD(3V3); no pull-down  
3-state output leakage  
current  
VO = 0 V, VO = VDD(3V3)  
no pull-up/down  
;
Ilatch  
I/O latch-up current  
(0.5VDD(3V3)) < V <  
100  
0
-
-
-
mA  
V
(1.5VDD(3V3)  
)
Tj < 125 °C  
[2] [3]  
[4]  
VI  
input voltage  
5.5  
VO  
output voltage  
output active  
0
-
VDD(3V3)  
V
V
V
V
V
VIH  
VIL  
HIGH-state input voltage  
LOW-state input voltage  
hysteresis voltage  
2.0  
-
-
-
-
-
0.8  
Vhys  
VOH  
0.4  
-
-
-
HIGH-state output voltage[5] IOH = 4 mA  
VDD(3V3)  
0.4  
VOL  
IOH  
LOW-state output voltage [5] IOL = 4 mA  
HIGH-state output current [5] VOH = VDD(3V3) 0.4 V  
LOW-state output current [5] VOL = 0.4 V  
-
-
-
-
-
0.4  
-
V
4  
4
-
mA  
mA  
mA  
IOL  
-
IOHS  
HIGH-state short circuit  
current[6]  
VOH = 0 V  
45  
IOLS  
LOW-state short circuit  
current[6]  
VOL = VDD(3V3)  
-
-
50  
mA  
Ipd  
Ipu  
pull-down current  
VI = 5 V[7]  
10  
15  
0
50  
50  
0
150  
85  
0
µA  
µA  
µA  
pull-up current (applies to  
P1[25:16])  
VI = 0 V  
VDD(3V3) < VI < 5 V[7]  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
32 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 11: Static characteristics …continued  
Tamb = 40 °C to +85 °C for commercial applications, unless otherwise specified.  
Symbol Parameter  
Conditions  
active mode supply current VDD(1V8) = 1.8 V,  
amb = 25 °C,  
code  
Min  
Typ [1]  
Max  
Unit  
IDD  
T
while(1){}  
executed from on-chip RAM,  
no active peripherals  
CCLK = 60 MHz (LPC2210)  
CCLK = 75 MHz (LPC2220)  
-
-
-
50  
50  
10  
70  
70  
-
mA  
mA  
µA  
Power-down mode  
V
DD(1V8) = 1.8 V,  
T
amb = +25 °C,  
VDD(1V8) = 1.8 V,  
amb = +85 °C  
-
-
110  
10  
500  
-
µA  
kΩ  
T
RPDB  
pull-down boot resistor on  
BOOT1:0 pins for system  
configuration selection  
unloaded data bus lines D26  
and/or D27  
data bus lines D26 and/or  
D27 are loaded with  
external memory and/or  
memory mapped I/Os  
leaking total additional  
current Ilkgt  
-
-
0.7 V  
70 µA + Ilkgt  
--------------------------------  
I2C-bus pins  
VIH  
VIL  
Vhys  
VOL  
ILI  
HIGH-state input voltage  
0.7VDD(3V3)  
-
-
V
LOW-state input voltage  
hysteresis voltage  
-
-
-
-
-
-
0.3VDD(3V3)  
V
0.5VDD(3V3)  
-
V
[5]  
LOW-state output voltage  
IOLS = 3 mA  
-
0.4  
4
V
input leakage current to VSS VI = VDD(3V3)  
VI = 5 V  
2
µA  
µA  
10  
22  
Oscillator pins  
VXTAL1 XTAL1 input voltages  
VXTAL2 XTAL2 output voltages  
0
0
-
-
1.8  
1.8  
V
V
[1] Typical ratings are not guaranteed. The values listed are at room temperature (+25 °C), nominal supply voltages.  
[2] Including voltage on outputs in 3-state mode.  
[3] VDD(3V3) supply voltages must be present.  
[4] 3-state outputs go into 3-state mode when VDD(3V3) is grounded.  
[5] Accounts for 100 mV voltage drop in all supply lines.  
[6] Only allowed for a short time period.  
[7] Minimum condition for VI = 4.5 V, maximum condition for VI = 5.5 V.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
33 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 12: A/D converter static characteristics  
VDDA(3V3) = 2.5 V to 3.6 V; Tamb = 40 °C to +85 °C unless otherwise specified. A/D converter frequency 4.5 MHz.  
Symbol  
VIA  
Parameter  
Conditions  
Min  
Typ  
Max  
VDDA(3V3)  
1
Unit  
V
analog input voltage  
analog input capacitance  
differential non-linearity  
integral non-linearity  
offset error  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
Ciss  
ED  
pF  
[1] [2] [3]  
[1] [4]  
±1  
LSB  
LSB  
LSB  
%
EL(adj)  
EO  
±2  
[1] [5]  
±3  
[1] [6]  
EG  
gain error  
±0.5  
±4  
[1] [7]  
ET  
absolute error  
LSB  
[1] Conditions: VSSA = 0 V, VDDA(3V3) = 3.3 V.  
[2] The A/D is monotonic, there are no missing codes.  
[3] The differential non-linearity (ED) is the difference between the actual step width and the ideal step width. See Figure 5.  
[4] The integral no-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 5.  
[5] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 5.  
[6] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 5.  
[7] The absolute voltage error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the  
non-calibrated A/D and the ideal transfer curve. See Figure 5.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
34 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
gain  
error  
offset  
error  
E
E
O
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
V
V  
SSA  
DDA  
1 LSB =  
offset  
error  
1024  
002aaa668  
E
O
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential non-linearity (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 5. A/D conversion characteristics  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
35 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
9. Dynamic characteristics  
Table 13: Dynamic characteristics  
Tamb = 0 °C to +70 °C for commercial applications, 40 °C to +85 °C for industrial applications, VDD(1V8), VDD(3V3) over  
specified ranges[1]  
Symbol  
External clock  
fosc  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
oscillator frequency supplied by an  
external oscillator (signal generator)  
1
-
-
-
-
50  
30  
25  
25  
MHz  
MHz  
MHz  
MHz  
external clock frequency supplied by  
an external crystal oscillator  
1
external clock frequency if on-chip  
PLL is used  
10  
10  
external clock frequency if on-chip  
boot-loader is used for initial code  
download  
Tclk  
clock period  
20  
-
-
-
-
-
1000  
ns  
ns  
ns  
ns  
ns  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
T
T
-
clk × 0.4  
clk × 0.4  
-
-
5
5
-
Port pins (except P0.2 and P0.3)  
tr  
tf  
rise time  
-
-
10  
10  
-
-
ns  
ns  
fall time  
I2C-bus pins (P0.2 and P0.3)  
[2]  
tf fall time  
VIH to VIL  
20 + 0.1 × Cb  
-
-
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Bus capacitance Cb in pF, from 10 pF to 400 pF.  
Table 14: External memory interface dynamic characteristics  
CL = 25 pF, Tamb = 40 °C  
Symbol Parameter  
Conditions  
Min  
Typ Max  
Unit  
Common to Read and Write Cycles  
tCHAVR  
tCHCSL  
tCHCSH  
tCHANV  
XCLK HIGH to address valid  
XCLK HIGH to CS LOW  
-
-
-
-
-
-
-
-
10  
10  
10  
10  
ns  
ns  
ns  
ns  
XCLK HIGH to CS HIGH  
XCLK HIGH to address invalid  
Read cycle parameters  
[1]  
[1]  
tCSLAV  
CS LOW to address valid  
5  
5  
5  
-
-
-
10  
10  
5
ns  
ns  
ns  
tOELAVR  
tCSLOEL  
OE LOW to address valid  
CS LOW to OE LOW  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
36 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 14: External memory interface dynamic characteristics …continued  
CL = 25 pF, Tamb = 40 °C  
Symbol Parameter  
tAVDV memory access time (latest of  
Conditions  
Min  
Typ Max  
Unit  
T
cclk × (2 + WST1) + (20) -  
-
ns  
address valid, CS LOW, OE  
LOW to data valid)  
burst-ROM initial memory  
access time (latest of address  
valid, CS LOW, OE LOW to  
data valid)  
T
cclk × (2 + WST1) + (20) -  
-
ns  
burst-ROM subsequent  
memory access time (address  
valid to data valid)  
T
0
cclk + (20)  
-
-
-
-
ns  
ns  
tSTHDNV data hold time (earliest of CS  
HIGH, OE HIGH, address  
change to data invalid)  
tCSHOEH CS HIGH to OE HIGH  
5  
5  
5  
5  
-
-
-
-
5
5
5
5
ns  
ns  
ns  
ns  
tOEHANV OE HIGH to address invalid  
tCHOEL  
tCHOEH  
XCLK HIGH to OE LOW  
XCLK HIGH to OE HIGH  
Write cycle parameters  
[1]  
tAVCSLW address valid to CS LOW  
tCSLDVW CS LOW to data valid  
tCSLWEL CS LOW to WE LOW  
tCSLBLSL CS LOW to BLS LOW  
T
cclk 10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
5  
5  
5  
5  
5  
5
5
5
5
5
T
T
tWELDV  
tCSLDV  
WE LOW to data valid  
CS LOW to data valid  
tWELWEH WE LOW to WE HIGH  
tBLSLBLSH BLS LOW to BLS HIGH  
tWEHANV WE HIGH to address invalid  
tWEHDNV WE HIGH to data invalid  
tBLSHANV BLS HIGH to address invalid  
tBLSHDNV BLS HIGH to data invalid  
T
T
T
cclk × (1 + WST2) 5  
cclk × (1 + WST2) + 5 ns  
cclk × (1 + WST2) + 5 ns  
cclk × (1 + WST2) 5  
cclk 5  
Tcclk + 5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(2 × Tcclk) 5  
cclk 5  
(2 × Tcclk) + 5  
T
Tcclk + 5  
(2 × Tcclk) 5  
(2 × Tcclk) + 5  
tCHDV  
XCLK HIGH to data valid  
XCLK HIGH to WE LOW  
-
-
-
-
-
-
10  
10  
10  
10  
10  
10  
tCHWEL  
tCHHBLSL XCLK HIGH to BLS LOW  
tCHWEH XCLK HIGH to WE HIGH  
tCHBLSH XCLK HIGH to BLS HIGH  
tCHDNV XCLK HIGH to data invalid  
[1] Except on initial access, in which case the address is set up Tcclk earlier.  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
37 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 15: Standard read access specifications  
Access cycle  
Max frequency  
WST setting  
Memory access time  
requirement  
WST 0; round up to  
integer  
standard read  
2 + WST1  
-------------------------------  
tRAM + 20 ns  
t
RAM + 20 ns  
t
t
RAM tCYC × (2 + WST1) 20 ns  
WRITE tCYC × (1 + WST2) 5 ns  
f MAX  
f MAX  
f MAX  
f MAX  
WST1 ≥  
WST2 ≥  
2  
-------------------------------  
tCYC  
standard write  
t
WRITE tCYC + 5  
1 + WST2  
---------------------------------  
-------------------------------------------  
t
WRITE + 5 ns  
tCYC  
burst read - initial  
burst read - subsequent 3×  
2 + WST1  
tINIT + 20 ns  
tINIT tCYC × (2 + WST1) 20 ns  
-------------------------------  
WST1 ≥  
2  
-------------------------------  
tINIT + 20 ns  
tCYC  
N/A  
1
t
ROM tCYC 20 ns  
--------------------------------  
t
ROM + 20 ns  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
38 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
9.1 Timing  
XCLK  
t
t
CSHOEH  
CSLAV  
CS  
addr  
data  
t
t
STHDNV  
AVDV  
t
CSLOEL  
t
t
OEHANV  
OELAVR  
OE  
t
t
CHOEH  
CHOEL  
002aaa749  
Fig 6. External memory read access  
XCLK  
CS  
t
CSLDVW  
t
AVCSLW  
t
WELWEH  
t
BLSLBLSH  
t
CSLWEL  
BLS/WE  
addr  
t
WEHANV  
t
t
WELDV  
CSLBLSL  
t
BLSHANV  
t
WEHDNV  
t
CSLDV  
t
BLSHDNV  
data  
OE  
002aaa750  
Fig 7. External memory write access  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
39 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
V
DD  
0.5 V  
0.2V  
+ 0.9 V  
DD  
0.2V  
0.1 V  
DD  
0.45 V  
t
CHCX  
t
t
CHCL  
t
CLCH  
CLCX  
T
clk  
002aaa416  
Fig 8. External clock timing  
9.2 LPC2210 power consumption measurements  
002aab452  
60  
I
current  
DD  
(mA)  
(1)  
(2)  
40  
20  
0
0
10  
20  
30  
40  
50  
60  
frequency (MHz)  
Test conditions: code executed from on-chip RAM; all peripherals are enabled in PCONP register; PCLK = CCLK/4.  
(1) 1.8 V core at 25 °C (typical)  
(2) 1.65 V core at 25 °C (typical)  
Fig 9. LPC2210 IDD(1V8) active measured at different frequencies (CCLK) and temperatures  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
40 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
002aab453  
15  
I
current  
DD  
(mA)  
10  
(1)  
(2)  
5
0
0
10  
20  
30  
40  
50  
60  
frequency (MHz)  
Test conditions: Idle mode entered executing code from on-chip RAM; all peripherals are enabled in PCONP register;  
PCLK = CCLK/4.  
(1) 1.8 V core at 25 °C (typical)  
(2) 1.65 V core at 25 °C (typical)  
Fig 10. LPC2210 IDD(1V8) idle measured at different frequencies (CCLK) and temperatures  
002aab454  
500  
I
current  
(µA)  
DD  
(1)  
(2)  
(3)  
400  
300  
200  
100  
0
100  
50  
0
50  
100  
150  
temp (°C)  
Test conditions: Power-down mode entered executing code from on-chip RAM; all peripherals are enabled in PCONP  
register.  
(1) 1.95 V core  
(2) 1.8 V core  
(3) 1.65 V core  
Fig 11. LPC2210 IDD(1V8) power-down measured at different temperatures  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
41 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
9.3 LPC2220 power consumption measurements  
002aab455  
40  
(1)  
I
current  
DD  
(mA)  
(2)  
(3)  
30  
20  
10  
0
0
10  
20  
30  
40  
50  
60  
frequency (MHz)  
Test conditions: code executed from on-chip RAM; all peripherals are enabled in PCONP register; PCLK = CCLK/4.  
(1) 1.8 V core at 85 °C (typical)  
(2) 1.8 V core at 25 °C (typical)  
(3) 1.65 V core at 25 °C (typical)  
Fig 12. LPC2220 IDD(1V8) active measured at different frequencies (CCLK) and temperatures  
002aab456  
10  
(1)  
(2)  
I
current  
(mA)  
DD  
8
6
4
2
0
(3)  
0
10  
20  
30  
40  
50  
60  
frequency (MHz)  
Test conditions: Idle mode entered executing code from on-chip RAM; all peripherals are enabled in PCONP register;  
PCLK = CCLK/4.  
(1) 1.8 V core at 85 °C (typical)  
(2) 1.8 V core at 25 °C (typical)  
(3) 1.65 V core at 25 °C (typical)  
Fig 13. LPC2220 IDD(1V8) idle measured at different frequencies (CCLK) and temperatures  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
42 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
002aab457  
(1)  
800  
I
current  
DD  
(mA)  
(2)  
600  
400  
200  
0
0
20  
20  
60  
100  
140  
temp (°C)  
Test conditions: Power-down mode entered executing code from on-chip RAM; all peripherals are enabled in PCONP  
register.  
(1) 1.8 V core (typical)  
(2) 1.65 V core (typical)  
Fig 14. LPC2220 IDD(1V8) power-down measured at different temperatures  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
43 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
10. Package outline  
LQFP144: plastic low profile quad flat package; 144 leads; body 20 x 20 x 1.4 mm  
SOT486-1  
y
X
A
108  
109  
73  
72  
Z
E
e
H
A
E
2
A
E
(A )  
3
A
1
θ
w M  
p
L
p
b
L
pin 1 index  
detail X  
37  
144  
1
36  
v M  
Z
A
w M  
D
b
p
e
D
B
H
v M  
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 20.1 20.1  
0.17 0.09 19.9 19.9  
22.15 22.15  
21.85 21.85  
0.75  
0.45  
1.4  
1.1  
1.4  
1.1  
mm  
1.6  
0.25  
1
0.2 0.08 0.08  
0.5  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-03-14  
03-02-20  
SOT486-1  
136E23  
MS-026  
Fig 15. Package outline SOT486-1 (LQFP144)  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
44 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
TFBGA144: plastic thin fine-pitch ball grid array package; 144 balls; body 12 x 12 x 0.8 mm  
SOT569-1  
B
D
A
D
1
ball A1  
index area  
A
2
A
E
E
A
1
1
detail X  
C
e
1
y
y
v M  
C
C
A B  
C
1
b
e
w M  
P
N
M
L
e
K
J
H
G
F
e
2
E
D
C
B
A
ball A1  
index area  
1
2
3
4
5
6
7
8
9 10 111213  
shape  
X
optional (4×)  
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
A
b
E
e
e
e
2
y
D
D
E
v
w
y
1
1
2
1
1
1
max.  
0.36 0.84 0.53 12.2 11.9 12.2 11.9  
0.24 0.74 0.43 11.8 11.7 11.8 11.7  
mm  
1.2  
0.1  
0.1  
0.8  
9.6  
9.6  
0.15 0.08  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
03-03-03  
03-07-09  
SOT569-1  
MO-216  
Fig 16. Package outline SOT569-1 (TFBGA144)  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
45 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
11. Abbreviations  
Table 16: Acronym list  
Acronym  
ADC  
Description  
Analog-to-Digital Converter  
Central Processing Unit  
CPU  
FIFO  
GPIO  
PWM  
RAM  
SPI  
First In, First Out  
General Purpose Input/Output  
Pulse Width Modulator  
Random Access Memory  
Serial Peripheral Interface  
Serial Synchronous Interface  
Static Random Access Memory  
Universal Asynchronous Receiver/Transmitter  
VLSI Peripheral Bus  
SSI  
SRAM  
UART  
VPB  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
46 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
12. Revision history  
Table 17: Revision history  
Document ID  
LPC2210_2220_2  
Modifications:  
Release date Data sheet status  
20050530 Product data sheet  
Change notice Doc. number  
Supersedes  
-
9397 750 14061 LPC2210-01  
The format of this data sheet has been redesigned to comply with the new presentation and  
information standard of Philips Semiconductors.  
Added new devices LPC2220FET144 and LPC2220FBD144.  
Section 6.20.2: updated  
Section 6.20.7: updated  
Table 11 “Static characteristics” on page 32: adjusted IDD typical value  
LPC2210-01  
20040209  
Preliminary data  
-
9397 750 12872 -  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
47 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
13. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
14. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
16. Trademarks  
Notice — All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
I2C-bus — wordmark and logo are trademarks of Koninklijke Philips  
Electronics N.V.  
15. Disclaimers  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
17. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 14061  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 02— 30 May 2005  
48 of 49  
LPC2210/2220  
Philips Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
18. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Key features . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
6.20.3  
6.20.4  
6.20.5  
6.20.6  
6.20.7  
6.21  
6.21.1  
6.21.2  
6.21.3  
Reset and wake-up timer . . . . . . . . . . . . . . . . 28  
External interrupt inputs. . . . . . . . . . . . . . . . . 28  
Memory mapping control . . . . . . . . . . . . . . . . 28  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 28  
VPB bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Emulation and debugging. . . . . . . . . . . . . . . . 29  
Embedded ICE. . . . . . . . . . . . . . . . . . . . . . . . 29  
Embedded trace. . . . . . . . . . . . . . . . . . . . . . . 30  
RealMonitor . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2
2.1  
3
3.1  
4
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 7  
7
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 31  
Static characteristics . . . . . . . . . . . . . . . . . . . 32  
6
Functional description . . . . . . . . . . . . . . . . . . 14  
Architectural overview. . . . . . . . . . . . . . . . . . . 14  
On-chip static RAM. . . . . . . . . . . . . . . . . . . . . 14  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . 15  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 16  
Pin connect block . . . . . . . . . . . . . . . . . . . . . . 17  
Pin function select register 0  
(PINSEL0 - 0xE002 C000) . . . . . . . . . . . . . . . 17  
Pin function select register 1  
(PINSEL1 - 0xE002 C004) . . . . . . . . . . . . . . . 19  
Pin function select register 2  
(PINSEL2 - 0xE002 C014) . . . . . . . . . . . . . . . 21  
External memory controller. . . . . . . . . . . . . . . 22  
General purpose parallel I/O. . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
10-bit A/D converter . . . . . . . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
UARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
SPI serial I/O controller. . . . . . . . . . . . . . . . . . 24  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SSP controller. . . . . . . . . . . . . . . . . . . . . . . . . 24  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
General purpose timers . . . . . . . . . . . . . . . . . 24  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Watchdog timer. . . . . . . . . . . . . . . . . . . . . . . . 25  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Real-time clock . . . . . . . . . . . . . . . . . . . . . . . . 26  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Pulse width modulator . . . . . . . . . . . . . . . . . . 26  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
System control . . . . . . . . . . . . . . . . . . . . . . . . 27  
Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . 27  
PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.1  
6.2  
6.3  
6.4  
6.4.1  
6.5  
6.6  
9
Dynamic characteristics. . . . . . . . . . . . . . . . . 36  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
LPC2210 power consumption measurements 40  
LPC2220 power consumption measurements 42  
9.1  
9.2  
9.3  
10  
11  
12  
13  
14  
15  
16  
17  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 44  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 47  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 48  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Contact information . . . . . . . . . . . . . . . . . . . . 48  
6.7  
6.8  
6.9  
6.10  
6.10.1  
6.11  
6.11.1  
6.12  
6.12.1  
6.13  
6.13.1  
6.14  
6.14.1  
6.15  
6.15.1  
6.15.2  
6.16  
6.16.1  
6.17  
6.17.1  
6.18  
6.18.1  
6.19  
6.19.1  
6.20  
6.20.1  
6.20.2  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 30 May 2005  
Document number: 9397 750 14061  
Published in the Netherlands  

相关型号:

LPC2220FET144/G

16/32-bit ARM microcontrollers; flashless, with 10-bit ADC and external memory interface
NXP

LPC2220FET144/G,51

LPC2210/2220 - 16/32-bit ARM microcontrollers; flashless, with 10-bit ADC and external memory interface BGA 144-Pin
NXP

LPC2220FET144/G,518

RISC Microcontroller, 32-Bit, CMOS, PBGA144
NXP

LPC2220FET144/G,55

LPC2210/2220 - 16/32-bit ARM microcontrollers; flashless, with 10-bit ADC and external memory interface BGA 144-Pin
NXP

LPC2220FET144/G-S

IC,MICROCONTROLLER,32-BIT,ARM7 CPU,BGA,144PIN,PLASTIC
NXP

LPC2290

16/32-bit ARM microcontrollers with CAN, 10-bit ADC and external memory interface
NXP

LPC2290FBD144

16/32-bit ARM microcontrollers with CAN, 10-bit ADC and external memory interface
NXP

LPC2290FBD144/01

16/32-bit ARM microcontroller with CAN, 10-bit ADC and external memory interface
NXP

LPC2290FBD144/01,5

LPC2290 - 16/32-bit ARM microcontroller with CAN, 10-bit ADC and external memory interface QFP 144-Pin
NXP

LPC2292

16/32-bit ARM microcontrollers 256 kB ISP/IAP Flash with CAN, 10-bit ADC and external memory interface
NXP

LPC2292FBD144

16/32-bit ARM microcontrollers 256 kB ISP/IAP Flash with CAN, 10-bit ADC and external memory interface
NXP

LPC2292FBD144,551

LPC2292FBD144
NXP