LPC2290FBD144/01,5 [NXP]

LPC2290 - 16/32-bit ARM microcontroller with CAN, 10-bit ADC and external memory interface QFP 144-Pin;
LPC2290FBD144/01,5
型号: LPC2290FBD144/01,5
厂家: NXP    NXP
描述:

LPC2290 - 16/32-bit ARM microcontroller with CAN, 10-bit ADC and external memory interface QFP 144-Pin

时钟 PC 外围集成电路
文件: 总41页 (文件大小:198K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC2290  
16/32-bit ARM microcontroller with CAN, 10-bit ADC and  
external memory interface  
Rev. 03 — 16 November 2006  
Product data sheet  
1. General description  
The LPC2290 microcontroller is based on a 16/32-bit ARM7TDMI-S CPU with real-time  
emulation and embedded trace support. For critical code size applications, the alternative  
16-bit Thumb mode reduces code by more than 30 % with minimal performance penalty.  
With its 144-pin package, low power consumption, various 32-bit timers, 8-channel 10-bit  
ADC, two advanced CAN channels, PWM channels and up to nine external interrupt pins  
this microcontroller is particularly suitable for automotive and industrial control  
applications as well as medical systems and fault-tolerant maintenance buses. The  
LPC2290 provides up to 76 GPIOs depending on bus configuration. With a wide range of  
additional serial communications interfaces, it is also suited for communication gateways  
and protocol converters as well as many other general-purpose applications.  
Remark: Throughout the data sheet, the term ‘LPC2290’ will apply to devices with and  
without the /01 suffix. New devices will use the /01 suffix to differentiate from the original  
devices only when necessary.  
2. Features  
2.1 Enhancements introduced with LPC2290/01 device  
I CPU clock up to 72 MHz and 64 kB of on-chip static RAM.  
I Fast GPIO ports enable port pin toggling up to 3.5 times faster than the original  
LPC2290. A port pin can be read at any time regardless of its function.  
I Dedicated result registers for ADC reduce interrupt overhead.  
I UART0/1 include fractional baud rate generator, auto-bauding capabilities and  
handshake flow-control fully implemented in hardware.  
I SSP serial controller supporting SPI, 4-wire SSI, and Microwire buses.  
2.2 Key features common for LPC2290 and LPC2290/01  
I 16/32-bit ARM7TDMI-S microcontroller in a LQFP144 package.  
I 16/64 kB on-chip static RAM.  
I Serial bootloader using UART0 provides in-system download and programming  
capabilities.  
I EmbeddedICE-RT and Embedded Trace interfaces offer real-time debugging with the  
on-chip RealMonitor software as well as high-speed real-time tracing of instruction  
execution.  
I Two interconnected CAN interfaces with advanced acceptance filters. Additional serial  
interfaces include two UARTs (16C550), Fast I2C-bus (400 kbit/s) and two SPIs.  
 
 
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
I Eight channel 10-bit ADC with conversion time as low as 2.44 µs.  
I Two 32-bit timers (with four capture and four compare channels), PWM unit (six  
outputs), Real-Time Clock (RTC) and watchdog.  
I Vectored Interrupt Controller (VIC) with configurable priorities and vector addresses.  
I Configurable external memory interface with up to four banks, each up to 16 MB and  
8/16/32-bit data width.  
I Up to 76 general purpose I/O pins (5 V tolerant). Up to nine edge/level sensitive  
external interrupt pins available.  
I 60/72 MHz maximum CPU clock available from programmable on-chip PLL with  
settling time of 100 µs.  
I On-chip crystal oscillator with an operating range of 1 MHz to 30 MHz.  
I Power saving modes include Idle and Power-down.  
I Processor wake-up from Power-down mode via external interrupt.  
I Individual enable/disable of peripheral functions for power optimization.  
I Dual power supply:  
N CPU operating voltage range of 1.65 V to 1.95 V (1.8 V ± 0.15 V).  
N I/O power supply range of 3.0 V to 3.6 V (3.3 V ± 10 %) with 5 V tolerant I/O pads.  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC2290FBD144  
LQFP144  
plastic low profile quad flat package;  
SOT486-1  
144 leads; body 20 × 20 × 1.4 mm  
LPC2290FBD144/01  
LQFP144  
plastic low profile quad flat package;  
SOT486-1  
144 leads; body 20 × 20 × 1.4 mm  
3.1 Ordering options  
Table 2.  
Ordering options  
Type number  
LPC2290FBD144  
RAM CAN  
Enhancements  
Temperature range  
40 °C to +85 °C  
40 °C to +85 °C  
16 kB 2 channels None  
LPC2290FBD144/01 64 kB 2 channels Higher CPU clock, more  
on-chip SRAM, Fast I/Os,  
improved UARTs, added SSP,  
upgraded ADC  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
2 of 41  
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
4. Block diagram  
(1)  
(1)  
TMS  
(1)  
TDI  
(1)  
XTAL2  
XTAL1 RST  
(1)  
TRST  
TCK  
TDO  
TEST/DEBUG  
INTERFACE  
LPC2290  
LPC2290/01  
SYSTEM  
FUNCTIONS  
PLL  
ARM7TDMI-S  
system  
clock  
P0[31:0]  
FAST GENERAL  
PURPOSE I/O  
VECTORED  
INTERRUPT  
CONTROLLER  
(3)  
AHB BRIDGE  
P1[31:16], P1[1:0]  
ARM7 local  
bus  
AMBA Advanced High-performance  
Bus(AHB)  
INTERNAL  
SRAM  
CONTROLLER  
AHB  
DECODER  
(2)  
16/64 kB  
SRAM  
CS3 to CS0  
(2)  
AHB TO APB  
BRIDGE  
APB  
DIVIDER  
A23 to A0  
EXTERNAL MEMORY  
CONTROLLER  
(2)  
BLS3 to BLS0  
(2)  
OE, WE  
Advanced  
Peripheral Bus  
(APB)  
(2)  
D31 to D0  
SCL  
2
EXTERNAL  
INTERRUPTS  
I C-BUS SERIAL  
INTERFACE  
EINT3 to EINT0  
SDA  
SCK0, SCK1  
4 × CAP0  
4 × CAP1  
4 × MAT0  
4 × MAT1  
(3)  
CAPTURE/  
COMPARE  
TIMER 0/TIMER 1  
SPI AND SSP  
MOSI0, MOSI1  
MISO0, MISO1  
SSEL0, SSEL1  
SERIAL INTERFACES  
0 AND 1  
TXD0, TXD1  
RXD0, RXD1  
AIN3 to AIN0  
AIN7 to AIN4  
A/D CONVERTER  
UART0/UART1  
DSR1, CTS1,  
DCD1, RI1  
P0[30:0]  
P1[31:16], P1[1:0]  
P2[31:0]  
TD2, TD1  
RD2, RD1  
GENERAL  
PURPOSE I/O  
CAN  
P3[31:0]  
WATCHDOG  
TIMER  
PWM6 to PWM1  
PWM0  
SYSTEM  
CONTROL  
REAL-TIME CLOCK  
002aaa796  
(1) When test/debug interface is used, GPIO/other functions sharing these pins are not available.  
(2) Pins shared with GPIO.  
(3) Available in LPC2290/01 only.  
Fig 1. Block diagram  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
3 of 41  
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
5. Pinning information  
5.1 Pinning  
1
108  
LPC2290  
36  
73  
002aaa797  
Fig 2. LQFP144 pinning  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
4 of 41  
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
5.2 Pin description  
Table 3.  
Symbol  
Pin description  
Pin  
Type  
Description  
P0.0 to P0.31  
I/O  
Port 0: Port 0 is a 32-bit bidirectional I/O port with individual direction controls  
for each bit. The operation of port 0 pins depends upon the pin function  
selected via the Pin Connect Block.  
Pins 26 and 31 of port 0 are not available.  
P0.0 — General purpose digital input/output pin.  
TXD0 — Transmitter output for UART0.  
PWM1 — Pulse Width Modulator output 1.  
P0.1 — General purpose digital input/output pin.  
RXD0 — Receiver input for UART0.  
P0.0/TXD0/  
PWM1  
42[1]  
I/O  
O
O
P0.1/RXD0/  
PWM3/EINT0  
49[2]  
I/O  
I
O
PWM3 — Pulse Width Modulator output 3.  
EINT0 — External interrupt 0 input  
I
P0.2/SCL/  
CAP0.0  
50[3]  
I/O  
I/O  
P0.2 — General purpose digital input/output pin.  
SCL — I2C-bus clock input/output. Open-drain output (for I2C-bus  
compliance).  
I
CAP0.0 — Capture input for Timer 0, channel 0.  
P0.3 — General purpose digital input/output pin.  
SDA — I2C-bus data input/output. Open-drain output (for I2C-bus  
P0.3/SDA/  
58[3]  
I/O  
I/O  
MAT0.0/EINT1  
compliance).  
O
MAT0.0 — Match output for Timer 0, channel 0.  
EINT1 — External interrupt 1 input.  
I
P0.4/SCK0/  
CAP0.1  
59[1]  
I/O  
I/O  
I
P0.4 — General purpose digital input/output pin.  
SCK0 — Serial clock for SPI0. SPI clock output from master or input to slave.  
CAP0.1 — Capture input for Timer 0, channel 1.  
P0.5 — General purpose digital input/output pin.  
P0.5/MISO0/  
MAT0.1  
61[1]  
I/O  
I/O  
MISO0 — Master In Slave OUT for SPI0. Data input to SPI master or data  
output from SPI slave.  
O
MAT0.1 — Match output for Timer 0, channel 1.  
P0.6 — General purpose digital input/output pin.  
P0.6/MOSI0/  
CAP0.2  
68[1]  
I/O  
I/O  
MOSI0 — Master Out Slave In for SPI0. Data output from SPI master or data  
input to SPI slave.  
I
CAP0.2 — Capture input for Timer 0, channel 2.  
P0.7 — General purpose digital input/output pin.  
SSEL0 — Slave Select for SPI0. Selects the SPI interface as a slave.  
PWM2 — Pulse Width Modulator output 2.  
EINT2 — External interrupt 2 input.  
P0.7/SSEL0/  
PWM2/EINT2  
69[2]  
I/O  
I
O
I
P0.8/TXD1/  
PWM4  
75[1]  
I/O  
O
O
P0.8 — General purpose digital input/output pin.  
TXD1 — Transmitter output for UART1.  
PWM4 — Pulse Width Modulator output 4.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
5 of 41  
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Table 3.  
Symbol  
Pin description …continued  
Pin  
Type  
Description  
P0.9/RXD1/  
PWM6/EINT3  
76[2]  
I/O  
I
P0.9 — General purpose digital input/output pin.  
RXD1 — Receiver input for UART1.  
O
I
PWM6 — Pulse Width Modulator output 6.  
EINT3 — External interrupt 3 input.  
P0.10/RTS1/  
CAP1.0  
78[1]  
83[1]  
84[1]  
85[1]  
92[2]  
I/O  
O
I
P0.10 — General purpose digital input/output pin.  
RTS1 — Request to Send output for UART1.  
CAP1.0 — Capture input for Timer 1, channel 0.  
P0.11 — General purpose digital input/output pin.  
CTS1 — Clear to Send input for UART1.  
P0.11/CTS1/  
CAP1.1  
I/O  
I
I
CAP1.1 — Capture input for Timer 1, channel 1.  
P0.12 — General purpose digital input/output pin.  
DSR1 — Data Set Ready input for UART1.  
MAT1.0 — Match output for Timer 1, channel 0.  
P0.13 — General purpose digital input/output pin.  
DTR1 — Data Terminal Ready output for UART1.  
MAT1.1 — Match output for Timer 1, channel 1.  
P0.14 — General purpose digital input/output pin.  
DCD1 — Data Carrier Detect input for UART1.  
EINT1 — External interrupt 1 input.  
P0.12/DSR1/  
MAT1.0  
I/O  
I
O
I/O  
O
O
I/O  
I
P0.13/DTR1/  
MAT1.1  
P0.14/DCD1/  
EINT1  
I
Note: LOW on this pin while RESET is LOW forces on-chip bootloader to take  
over control of the part after reset.  
P0.15/RI1/  
EINT2  
99[2]  
I/O  
P0.15 — General purpose digital input/output pin.  
RI1 — Ring Indicator input for UART1.  
I
I
EINT2 — External interrupt 2 input.  
P0.16/EINT0/  
MAT0.2/CAP0.2  
100[2]  
I/O  
I
P0.16 — General purpose digital input/output pin.  
EINT0 — External interrupt 0 input.  
O
I
MAT0.2 — Match output for Timer 0, channel 2.  
CAP0.2 — Capture input for Timer 0, channel 2.  
P0.17 — General purpose digital input/output pin.  
CAP1.2 — Capture input for Timer 1, channel 2.  
P0.17/CAP1.2/ 101[1]  
SCK1/MAT1.2  
I/O  
I
I/O  
SCK1 — Serial Clock for SPI1/SSP. SPI clock output from master or input to  
slave (SSP is available in LPC2290/01 only).  
O
MAT1.2 — Match output for Timer 1, channel 2.  
P0.18 — General purpose digital input/output pin.  
CAP1.3 — Capture input for Timer 1, channel 3.  
P0.18/CAP1.3/ 121[1]  
MISO1/MAT1.3  
I/O  
I
I/O  
MISO1 — Master In Slave Out for SPI1/SSP. Data input to SPI master or data  
output from SPI slave (SSP is available in LPC2290/01 only).  
O
MAT1.3 — Match output for Timer 1, channel 3.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
6 of 41  
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Table 3.  
Symbol  
P0.19/MAT1.2/ 122[1]  
MOSI1/CAP1.2  
Pin description …continued  
Pin  
Type  
I/O  
O
Description  
P0.19 — General purpose digital input/output pin.  
MAT1.2 — Match output for Timer 1, channel 2.  
I/O  
MOSI1 — Master Out Slave In for SPI1/SSP. Data output from SPI master or  
data input to SPI slave (SSP is available in LPC2290/01 only).  
I
CAP1.2 — Capture input for Timer 1, channel 2.  
P0.20 — General purpose digital input/output pin.  
MAT1.3 — Match output for Timer 1, channel 3.  
P0.20/MAT1.3/ 123[2]  
SSEL1/EINT3  
I/O  
O
I
SSEL1 — Slave Select for SPI1/SSP. Selects the SPI interface as a slave  
(SSP is available in LPC2290/01 only).  
I
EINT3 — External interrupt 3 input.  
P0.21/PWM5/  
CAP1.3  
4[1]  
I/O  
O
I
P0.21 — General purpose digital input/output pin.  
PWM5 — Pulse Width Modulator output 5.  
CAP1.3 — Capture input for Timer 1, channel 3.  
P0.22 — General purpose digital input/output pin.  
CAP0.0 — Capture input for Timer 0, channel 0.  
MAT0.0 — Match output for Timer 0, channel 0.  
P0.23 — General purpose digital input/output pin.  
RD2 — CAN2 receiver input.  
P0.22/CAP0.0/ 5[1]  
MAT0.0  
I/O  
I
O
I/O  
I
P0.23/RD2  
P0.24/TD2  
P0.25  
6[1]  
8[1]  
I/O  
O
I/O  
I
P0.24 — General purpose digital input/output pin.  
TD2 — CAN2 transmitter output.  
21[1]  
23[4]  
P0.25 — General purpose digital input/output pin.  
RD1 — CAN1 receiver input.  
P0.27/AIN0/  
CAP0.1/MAT0.1  
I/O  
I
P0.27 — General purpose digital input/output pin.  
AIN0 — ADC, input 0. This analog input is always connected to its pin.  
CAP0.1 — Capture input for Timer 0, channel 1.  
MAT0.1 — Match output for Timer 0, channel 1.  
P0.28 — General purpose digital input/output pin.  
AIN1 — ADC, input 1. This analog input is always connected to its pin.  
CAP0.2 — Capture input for Timer 0, channel 2.  
MAT0.2 — Match output for Timer 0, channel 2.  
P0.29 — General purpose digital input/output pin.  
AIN2 — ADC, input 2. This analog input is always connected to its pin.  
CAP0.3 — Capture input for Timer 0, Channel 3.  
MAT0.3 — Match output for Timer 0, channel 3.  
P0.30 — General purpose digital input/output pin.  
AIN3 — ADC, input 3. This analog input is always connected to its pin.  
EINT3 — External interrupt 3 input.  
I
O
I/O  
I
P0.28/AIN1/  
CAP0.2/MAT0.2  
25[4]  
32[4]  
33[4]  
I
O
I/O  
I
P0.29/AIN2/  
CAP0.3/MAT0.3  
I
O
I/O  
I
P0.30/AIN3/  
EINT3/CAP0.0  
I
I
CAP0.0 — Capture input for Timer 0, channel 0.  
P1.0 to P1.31  
I/O  
Port 1: Port 1 is a 32-bit bidirectional I/O port with individual direction controls  
for each bit. The operation of port 1 pins depends upon the pin function  
selected via the Pin Connect Block.  
Pins 2 through 15 of port 1 are not available.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
7 of 41  
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Table 3.  
Symbol  
P1.0/CS0  
Pin description …continued  
Pin  
Type  
I/O  
O
Description  
91[5]  
P1.0 — General purpose digital input/output pin.  
CS0 — LOW-active Chip Select 0 signal.  
(Bank 0 addresses range 0x8000 0000 to 0x80FF FFFF)  
P1.1 — General purpose digital input/output pin.  
P1.1/OE  
90[5]  
34[5]  
24[5]  
15[5]  
7[5]  
I/O  
O
OE — LOW-active Output Enable signal.  
P1.16/  
TRACEPKT0  
I/O  
O
P1.16 — General purpose digital input/output pin.  
TRACEPKT0 — Trace Packet, bit 0. Standard I/O port with internal pull-up.  
P1.17 — General purpose digital input/output pin.  
P1.17/  
TRACEPKT1  
I/O  
O
TRACEPKT1 — Trace Packet, bit 1. Standard I/O port with internal pull-up.  
P1.18 — General purpose digital input/output pin.  
P1.18/  
TRACEPKT2  
I/O  
O
TRACEPKT2 — Trace Packet, bit 2. Standard I/O port with internal pull-up.  
P1.19 — General purpose digital input/output pin.  
P1.19/  
TRACEPKT3  
I/O  
O
TRACEPKT3 — Trace Packet, bit 3. Standard I/O port with internal pull-up.  
P1.20 — General purpose digital input/output pin.  
P1.20/  
TRACESYNC  
102[5]  
I/O  
O
TRACESYNC — Trace Synchronization. Standard I/O port with internal  
pull-up.  
Note: LOW on this pin while RESET is LOW, enables pins P1[25:16] to  
operate as Trace port after reset.  
P1.21/  
PIPESTAT0  
95[5]  
86[5]  
82[5]  
70[5]  
I/O  
O
P1.21 — General purpose digital input/output pin.  
PIPESTAT0 — Pipeline Status, bit 0. Standard I/O port with internal pull-up.  
P1.22 — General purpose digital input/output pin.  
P1.22/  
PIPESTAT1  
I/O  
O
PIPESTAT1 — Pipeline Status, bit 1. Standard I/O port with internal pull-up.  
P1.23 — General purpose digital input/output pin.  
P1.23/  
PIPESTAT2  
I/O  
O
PIPESTAT2 — Pipeline Status, bit 2. Standard I/O port with internal pull-up.  
P1.24 — General purpose digital input/output pin.  
P1.24/  
TRACECLK  
I/O  
O
TRACECLK — Trace Clock. Standard I/O port with internal pull-up.  
P1.25 — General purpose digital input/output pin.  
P1.25/EXTIN0 60[5]  
I/O  
I
EXTIN0 — External Trigger Input. Standard I/O with internal pull-up.  
P1.26 — General purpose digital input/output pin.  
P1.26/RTCK  
52[5]  
I/O  
I/O  
RTCK — Returned Test Clock output. Extra signal added to the JTAG port.  
Assists debugger synchronization when processor frequency varies.  
Bidirectional pin with internal pull-up.  
Note: LOW on this pin while RESET is LOW, enables pins P1[31:26] to  
operate as Debug port after reset.  
P1.27/TDO  
P1.28/TDI  
P1.29/TCK  
P1.30/TMS  
144[5]  
140[5]  
126[5]  
113[5]  
I/O  
O
P1.27 — General purpose digital input/output pin.  
TDO — Test Data out for JTAG interface.  
I/O  
I
P1.28 — General purpose digital input/output pin.  
TDI — Test Data in for JTAG interface.  
I/O  
I
P1.29 — General purpose digital input/output pin.  
TCK — Test Clock for JTAG interface.  
I/O  
I
P1.30 — General purpose digital input/output pin.  
TMS — Test Mode Select for JTAG interface.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
8 of 41  
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Table 3.  
Pin description …continued  
Symbol  
Pin  
43[5]  
Type  
I/O  
I
Description  
P1.31/TRST  
P1.31 — General purpose digital input/output pin.  
TRST — Test Reset for JTAG interface.  
P2.0 to P2.31  
I/O  
Port 2 — Port 2 is a 32-bit bidirectional I/O port with individual direction  
controls for each bit. The operation of port 2 pins depends upon the pin  
function selected via the Pin Connect Block.  
P2.0/D0  
98[5]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P2.0 — General purpose digital input/output pin.  
D0 — External memory data line 0.  
P2.1/D1  
105[5]  
106[5]  
108[5]  
109[5]  
114[5]  
115[5]  
116[5]  
117[5]  
118[5]  
120[5]  
124[5]  
125[5]  
127[5]  
129[5]  
130[5]  
131[5]  
132[5]  
P2.1 — General purpose digital input/output pin.  
D1 — External memory data line 1.  
P2.2/D2  
P2.2 — General purpose digital input/output pin.  
D2 — External memory data line 2.  
P2.3/D3  
P2.3 — General purpose digital input/output pin.  
D3 — External memory data line 3.  
P2.4/D4  
P2.4 — General purpose digital input/output pin.  
D4 — External memory data line 4.  
P2.5/D5  
P2.5 — General purpose digital input/output pin.  
D5 — External memory data line 5.  
P2.6/D6  
P2.6 — General purpose digital input/output pin.  
D6 — External memory data line 6.  
P2.7/D7  
P2.7 — General purpose digital input/output pin.  
D7 — External memory data line 7.  
P2.8/D8  
P2.8 — General purpose digital input/output pin.  
D8 — External memory data line 8.  
P2.9/D9  
P2.9 — General purpose digital input/output pin.  
D9 — External memory data line 9.  
P2.10/D10  
P2.11/D11  
P2.12/D12  
P2.13/D13  
P2.14/D14  
P2.15/D15  
P2.16/D16  
P2.17/D17  
P2.10 — General purpose digital input/output pin.  
D10 — External memory data line 10.  
P2.11 — General purpose digital input/output pin.  
D11 — External memory data line 11.  
P2.12 — General purpose digital input/output pin.  
D12 — External memory data line 12.  
P2.13 — General purpose digital input/output pin.  
D13 — External memory data line 13.  
P2.14 — General purpose digital input/output pin.  
D14 — External memory data line 14.  
P2.15 — General purpose digital input/output pin.  
D15 — External memory data line 15.  
P2.16 — General purpose digital input/output pin.  
D16 — External memory data line 16.  
P2.17 — General purpose digital input/output pin.  
D17 — External memory data line 17.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
9 of 41  
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Table 3.  
Symbol  
Pin description …continued  
Pin  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Description  
P2.18/D18  
133[5]  
P2.18 — General purpose digital input/output pin.  
D18 — External memory data line 18.  
P2.19/D19  
P2.20/D20  
P2.21/D21  
P2.22/D22  
P2.23/D23  
P2.24/D24  
P2.25/D25  
134[5]  
136[5]  
137[5]  
1[5]  
P2.19 — General purpose digital input/output pin.  
D19 — External memory data line 19.  
P2.20 — General purpose digital input/output pin.  
D20 — External memory data line 20.  
P2.21 — General purpose digital input/output pin.  
D21 — External memory data line 21.  
P2.22 — General purpose digital input/output pin.  
D22 — External memory data line 22.  
10[5]  
11[5]  
12[5]  
13[5]  
P2.23 — General purpose digital input/output pin.  
D23 — External memory data line 23.  
P2.24 — General purpose digital input/output pin.  
D24 — External memory data line 24.  
P2.25 — General purpose digital input/output pin.  
D25 — External memory data line 25.  
P2.26/D26/  
BOOT0  
P2.26 — General purpose digital input/output pin.  
D26 — External memory data line 26.  
BOOT0 — While RESET is low, together with BOOT1 controls booting and  
internal operation. Internal pull-up ensures high state if pin is left  
unconnected.  
P2.27/D27/  
BOOT1  
16[5]  
I/O  
I/O  
I
P2.27 — General purpose digital input/output pin.  
D27 — External memory data line 27.  
BOOT1 — While RESET is low, together with BOOT0 controls booting and  
internal operation. Internal pull-up ensures high state if pin is left  
unconnected.  
BOOT1:0 = 00 selects 8-bit memory on CS0 for boot.  
BOOT1:0 = 01 selects 16-bit memory on CS0 for boot.  
BOOT1:0 = 10 selects 32-bit memory on CS0 for boot.  
BOOT1:0 = 11 selects internal flash memory.  
P2.28/D28  
P2.29/D29  
17[5]  
18[5]  
19[2]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
P2.28 — General purpose digital input/output pin.  
D28 — External memory data line 28.  
P2.29 — General purpose digital input/output pin.  
D29 — External memory data line 29.  
P2.30/D30/  
AIN4  
P2.30 — General purpose digital input/output pin.  
D30 — External memory data line 30.  
AIN4 — ADC, input 4. This analog input is always connected to its pin.  
P2.31 — General purpose digital input/output pin.  
D31 — External memory data line 31.  
P2.31/D31/  
AIN5  
20[2]  
I/O  
I/O  
I
AIN5 — ADC, input 5. This analog input is always connected to its pin.  
P3.0 to P3.31  
I/O  
Port 3 — Port 3 is a 32-bit bidirectional I/O port with individual direction  
controls for each bit. The operation of port 3 pins depends upon the pin  
function selected via the Pin Connect Block.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
10 of 41  
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Table 3.  
Symbol  
P3.0/A0  
Pin description …continued  
Pin  
Type  
I/O  
O
Description  
89[5]  
P3.0 — General purpose digital input/output pin.  
A0 — External memory address line 0.  
P3.1/A1  
88[5]  
87[5]  
81[5]  
80[5]  
74[5]  
73[5]  
72[5]  
71[5]  
66[5]  
65[5]  
64[5]  
63[5]  
62[5]  
56[5]  
55[5]  
53[5]  
48[5]  
47[5]  
46[5]  
I/O  
O
P3.1 — General purpose digital input/output pin.  
A1 — External memory address line 1.  
P3.2/A2  
I/O  
O
P3.2 — General purpose digital input/output pin.  
A2 — External memory address line 2.  
P3.3/A3  
I/O  
O
P3.3 — General purpose digital input/output pin.  
A3 — External memory address line 3.  
P3.4/A4  
I/O  
O
P3.4 — General purpose digital input/output pin.  
A4 — External memory address line 4.  
P3.5/A5  
I/O  
O
P3.5 — General purpose digital input/output pin.  
A5 — External memory address line 5.  
P3.6/A6  
I/O  
O
P3.6 — General purpose digital input/output pin.  
A6 — External memory address line 6.  
P3.7/A7  
I/O  
O
P3.7 — General purpose digital input/output pin.  
A7 — External memory address line 7.  
P3.8/A8  
I/O  
O
P3.8 — General purpose digital input/output pin.  
A8 — External memory address line 8.  
P3.9/A9  
I/O  
O
P3.9 — General purpose digital input/output pin.  
A9 — External memory address line 9.  
P3.10/A10  
P3.11/A11  
P3.12/A12  
P3.13/A13  
P3.14/A14  
P3.15/A15  
P3.16/A16  
P3.17/A17  
P3.18/A18  
P3.19/A19  
I/O  
O
P3.10 — General purpose digital input/output pin.  
A10 — External memory address line 10.  
P3.11 — General purpose digital input/output pin.  
A11 — External memory address line 11.  
P3.12 — General purpose digital input/output pin.  
A12 — External memory address line 12.  
P3.13 — General purpose digital input/output pin.  
A13 — External memory address line 13.  
P3.14 — General purpose digital input/output pin.  
A14 — External memory address line 14.  
P3.15 — General purpose digital input/output pin.  
A15 — External memory address line 15.  
P3.16 — General purpose digital input/output pin.  
A16 — External memory address line 16.  
P3.17 — General purpose digital input/output pin.  
A17 — External memory address line 17.  
P3.18 — General purpose digital input/output pin.  
A18 — External memory address line 18.  
P3.19 — General purpose digital input/output pin.  
A19 — External memory address line 19.  
I/O  
O
I/O  
O
I/O  
O
I/O  
O
I/O  
O
I/O  
O
I/O  
O
I/O  
O
I/O  
O
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
11 of 41  
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Table 3.  
Symbol  
P3.20/A20  
Pin description …continued  
Pin  
Type  
I/O  
O
Description  
45[5]  
P3.20 — General purpose digital input/output pin.  
A20 — External memory address line 20.  
P3.21/A21  
P3.22/A22  
44[5]  
41[5]  
40[5]  
I/O  
O
P3.21 — General purpose digital input/output pin.  
A21 — External memory address line 21.  
I/O  
O
P3.22 — General purpose digital input/output pin.  
A22 — External memory address line 22.  
P3.23/A23/  
XCLK  
I/O  
I/O  
O
P3.23 — General purpose digital input/output pin.  
A23 — External memory address line 23.  
XCLK — Clock output.  
P3.24/CS3  
P3.25/CS2  
P3.26/CS1  
P3.27/WE  
36[5]  
35[5]  
30[5]  
I/O  
O
P3.24 — General purpose digital input/output pin.  
CS3 — LOW-active Chip Select 3 signal.  
(Bank 3 addresses range 0x8300 0000 to 0x83FF FFFF)  
P3.25 — General purpose digital input/output pin.  
CS2 — LOW-active Chip Select 2 signal.  
I/O  
O
(Bank 2 addresses range 0x8200 0000 to 0x82FF FFFF)  
P3.26 — General purpose digital input/output pin.  
CS1 — LOW-active Chip Select 1 signal.  
I/O  
O
(Bank 1 addresses range 0x8100 0000 to 0x81FF FFFF)  
P3.27 — General purpose digital input/output pin.  
WE — LOW-active Write enable signal.  
29[5]  
28[2]  
I/O  
O
P3.28/BLS3/  
AIN7  
I/O  
O
P3.28 — General purpose digital input/output pin.  
BLS3 — LOW-active Byte Lane Select signal (Bank 3).  
AIN7 — ADC, input 7. This analog input is always connected to its pin.  
P3.29 — General purpose digital input/output pin.  
BLS2 — LOW-active Byte Lane Select signal (Bank 2).  
AIN6 — ADC, input 6. This analog input is always connected to its pin.  
P3.30 — General purpose digital input/output pin.  
BLS1 — LOW-active Byte Lane Select signal (Bank 1).  
P3.31 — General purpose digital input/output pin.  
BLS0 — LOW-active Byte Lane Select signal (Bank 0).  
TD1: CAN1 transmitter output.  
I
P3.29/BLS2/  
AIN6  
27[4]  
I/O  
O
I
P3.30/BLS1  
P3.31/BLS0  
97[4]  
96[4]  
I/O  
O
I/O  
O
TD1  
22[5]  
O
RESET  
135[6]  
I
External Reset input: A LOW on this pin resets the device, causing I/O ports  
and peripherals to take on their default states, and processor execution to  
begin at address 0. TTL with hysteresis, 5 V tolerant.  
XTAL1  
XTAL2  
VSS  
142[7]  
141[7]  
I
Input to the oscillator circuit and internal clock generator circuits.  
Output from the oscillator amplifier.  
O
I
3, 9, 26, 38,  
54, 67, 79,  
93, 103, 107,  
111, 128  
Ground: 0 V reference.  
VSSA  
139  
I
Analog ground: 0 V reference. This should nominally be the same voltage  
as VSS, but should be isolated to minimize noise and error.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
12 of 41  
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Table 3.  
Symbol  
VSSA(PLL)  
Pin description …continued  
Pin  
Type  
Description  
138  
I
PLL analog ground: 0 V reference. This should nominally be the same  
voltage as VSS, but should be isolated to minimize noise and error.  
VDD(1V8)  
37, 110  
143  
I
I
1.8 V core power supply: This is the power supply voltage for internal  
circuitry.  
VDDA(1V8)  
Analog 1.8 V core power supply: This is the power supply voltage for  
internal circuitry. This should be nominally the same voltage as VDD(1V8) but  
should be isolated to minimize noise and error.  
VDD(3V3)  
2, 31, 39, 51,  
57, 77, 94,  
104, 112, 119  
I
I
3.3 V pad power supply: This is the power supply voltage for the I/O ports.  
VDDA(3V3)  
14  
Analog 3.3 V pad power supply: This should be nominally the same voltage  
as VDD(3V3) but should be isolated to minimize noise and error.  
[1] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control.  
[2] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control. If configured for an input  
function, this pad utilizes built-in glitch filter that blocks pulses shorter than 3 ns.  
[3] Open-drain 5 V tolerant digital I/O I2C-bus 400 kHz specification compatible pad. It requires external pull-up to provide an output  
functionality.  
[4] 5 V tolerant pad providing digital I/O (with TTL levels and hysteresis and 10 ns slew rate control) and analog input function. If configured  
for a digital input function, this pad utilizes built-in glitch filter that blocks pulses shorter than 3 ns. When configured as an ADC input,  
digital section of the pad is disabled.  
[5] 5 V tolerant pad with built-in pull-up resistor providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control.  
The pull-up resistor’s value ranges from 60 kto 300 k.  
[6] 5 V tolerant pad providing digital input (with TTL levels and hysteresis) function only.  
[7] Pad provides special analog functionality.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
13 of 41  
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
6. Functional description  
6.1 Architectural overview  
The ARM7TDMI-S is a general purpose 32-bit microprocessor, which offers high  
performance and very low power consumption. The ARM architecture is based on RISC  
principles, and the instruction set and related decode mechanism are much simpler than  
those of microprogrammed CISC. This simplicity results in a high instruction throughput  
and impressive real-time interrupt response from a small and cost-effective processor  
core.  
Pipeline techniques are employed so that all parts of the processing and memory systems  
can operate continuously. Typically, while one instruction is being executed, its successor  
is being decoded, and a third instruction is being fetched from memory.  
The ARM7TDMI-S processor also employs a unique architectural strategy known as  
Thumb, which makes it ideally suited to high-volume applications with memory  
restrictions, or applications where code density is an issue.  
The key idea behind Thumb is that of a super-reduced instruction set. Essentially, the  
ARM7TDMI-S processor has two instruction sets:  
The standard 32-bit ARM set.  
A 16-bit Thumb set.  
The Thumb set’s 16-bit instruction length allows it to approach twice the density of  
standard ARM code while retaining most of the ARM’s performance advantage over a  
traditional 16-bit processor using 16-bit registers. This is possible because Thumb code  
operates on the same 32-bit register set as ARM code.  
Thumb code is able to provide up to 65 % of the code size of ARM, and 160 % of the  
performance of an equivalent ARM processor connected to a 16-bit memory system.  
6.2 On-chip SRAM  
On-chip SRAM may be used for code and/or data storage. The SRAM may be accessed  
as 8-bit, 16-bit, and 32-bit. The LPC2290 provides 16 kB of SRAM and the LPC2290/01  
provides 64 kB of SRAM.  
6.3 Memory map  
The LPC2290 memory maps incorporate several distinct regions, as shown in Figure 3.  
In addition, the CPU interrupt vectors may be re-mapped to allow them to reside in either  
on-chip bootloader, external memory BANK0 or on-chip static RAM. This is described in  
Section 6.18 “System control”.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
14 of 41  
 
 
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
4.0 GB  
3.75 GB  
3.5 GB  
0xFFFF FFFF  
AHB PERIPHERALS  
0xF000 0000  
0xEFFF FFFF  
VPB PERIPHERALS  
0xE000 0000  
0xDFFF FFFF  
RESERVED ADDRESS SPACE  
3.0 GB  
0x8400 0000  
0x83FF FFFF  
EXTERNAL MEMORY BANK3  
0x8300 0000  
0x82FF FFFF  
EXTERNAL MEMORY BANK2  
0x8200 0000  
0x81FF FFFF  
EXTERNAL MEMORY BANK1  
0x8100 0000  
0x80FF FFFF  
EXTERNAL MEMORY BANK0  
0x8000 0000  
0x7FFF FFFF  
2.0 GB  
BOOT BLOCK (RE-MAPPED FROM  
ON-CHIP ROM MEMORY  
0x7FFF E000  
0x7FFF DFFF  
RESERVED ADDRESS SPACE  
0x4001 0000  
0x4000 FFFF  
64 KBYTE ON-CHIP STATIC RAM (/01 ONLY)  
16 KBYTE ON-CHIP STATIC RAM  
0x4000 4000  
0x4000 3FFF  
0x4000 0000  
0x3FFF FFFF  
1.0 GB  
RESERVED ADDRESS SPACE  
0x0000 0000  
002aaa798  
0.0 GB  
Fig 3. LPC2290 and LPC2290/01 memory map  
6.4 Interrupt controller  
The Vectored Interrupt Controller (VIC) accepts all of the interrupt request inputs and  
categorizes them as Fast Interrupt Request (FIQ), vectored Interrupt Request (IRQ), and  
non-vectored IRQ as defined by programmable settings. The programmable assignment  
scheme means that priorities of interrupts from the various peripherals can be dynamically  
assigned and adjusted.  
FIQ has the highest priority. If more than one request is assigned to FIQ, the VIC  
combines the requests to produce the FIQ signal to the ARM processor. The fastest  
possible FIQ latency is achieved when only one request is classified as FIQ, because then  
the FIQ service routine can simply start dealing with that device. But if more than one  
request is assigned to the FIQ class, the FIQ service routine can read a word from the VIC  
that identifies which FIQ source(s) is (are) requesting an interrupt.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
15 of 41  
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Vectored IRQs have the middle priority. Sixteen of the interrupt requests can be assigned  
to this category. Any of the interrupt requests can be assigned to any of the 16 vectored  
IRQ slots, among which slot 0 has the highest priority and slot 15 has the lowest.  
Non-vectored IRQs have the lowest priority.  
The VIC combines the requests from all the vectored and non-vectored IRQs to produce  
the IRQ signal to the ARM processor. The IRQ service routine can start by reading a  
register from the VIC and jumping there. If any of the vectored IRQs are requesting, the  
VIC provides the address of the highest-priority requesting IRQs service routine,  
otherwise it provides the address of a default routine that is shared by all the non-vectored  
IRQs. The default routine can read another VIC register to see what IRQs are active.  
6.4.1 Interrupt sources  
Table 4 lists the interrupt sources for each peripheral function. Each peripheral device has  
one interrupt line connected to the VIC, but may have several internal interrupt flags.  
Individual interrupt flags may also represent more than one interrupt source.  
Table 4.  
Block  
Interrupt sources  
Flag(s)  
VIC channel #  
WDT  
Watchdog Interrupt (WDINT)  
0
1
2
3
4
-
Reserved for software interrupts only  
EmbeddedICE, DbgCommRx  
ARM Core  
ARM Core  
Timer 0  
EmbeddedICE, DbgCommTx  
Match 0 to 3 (MR0, MR1, MR2, MR3)  
Capture 0 to 3 (CR0, CR1, CR2, CR3)  
Match 0 to 3 (MR0, MR1, MR2, MR3)  
Capture 0 to 3 (CR0, CR1, CR2, CR3)  
RX Line Status (RLS)  
Timer 1  
UART0  
5
6
Transmit Holding Register Empty (THRE)  
RX Data Available (RDA)  
Character Time-out Indicator (CTI)  
Auto-Baud Time-Out (ABTO) (available in LPC2290/01 only)  
End of Auto-Baud (ABEO)  
UART1  
RX Line Status (RLS)  
7
Transmit Holding Register empty (THRE)  
RX Data Available (RDA)  
Character Time-out Indicator (CTI)  
Modem Status Interrupt (MSI)  
Auto-Baud Time-Out (ABTO) (available in LPC2290/01 only)  
End of Auto-Baud (ABEO)  
PWM0  
I2C-bus  
SPI0  
Match 0 to 6 (MR0, MR1, MR2, MR3, MR4, MR5, MR6)  
SI (state change)  
8
9
SPIF, MODF  
10  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
16 of 41  
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Table 4.  
Interrupt sources …continued  
Flag(s)  
Block  
VIC channel #  
SPI1/SSP  
Source: SPI1 SPI Interrupt Flag (SPIF), Mode Fault (MODF) 11  
Source: SSP (available in LPC2290/01 only)  
TX FIFO at least half empty (TXRIS)  
RX FIFO at least half full (RXRIS)  
Receive Timeout condition (RTRIS)  
Receive Overrun (RORRIS)  
PLL  
PLL Lock (PLOCK)  
12  
RTC  
RTCCIF (Counter Increment), RTCALF (Alarm)  
13  
System Control External Interrupt 0 (EINT0)  
External Interrupt 1 (EINT1)  
14  
15  
External Interrupt 2 (EINT2)  
16  
External Interrupt 3 (EINT3)  
17  
A/D  
ADC  
18  
CAN  
1 ORed CAN Acceptance Filter  
CAN1 (TX int, RX int)  
CAN2 (TX int, RX int)  
19  
20, 21  
22, 23  
6.5 Pin connect block  
The pin connect block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on-chip peripherals. Peripherals should be connected to the appropriate pins  
prior to being activated, and prior to any related interrupt(s) being enabled. Activity of any  
enabled peripheral function that is not mapped to a related pin should be considered  
undefined.  
6.6 External memory controller  
The external Static Memory Controller is a module which provides an interface between  
the system bus and external (off-chip) memory devices. It provides support for up to four  
independently configurable memory banks (16 MB each with byte lane enable control)  
simultaneously. Each memory bank is capable of supporting SRAM, ROM, flash EPROM,  
burst ROM memory, or some external I/O devices.  
Each memory bank may be 8-bit, 16-bit, or 32-bit wide.  
6.7 General purpose parallel I/O and Fast I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate  
registers allow setting or clearing any number of outputs simultaneously. The value of the  
output register may be read back, as well as the current state of the port pins.  
6.7.1 Features  
Direction control of individual bits.  
Separate control of output set and clear.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
17 of 41  
 
 
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
All I/O default to inputs after reset.  
6.7.2 Fast I/O features available in LPC2290/01 only  
Fast I/O registers are located on the ARM local bus for the fastest possible I/O timing.  
All GPIO registers are byte addressable.  
Entire port value can be written in one instruction.  
Mask registers allow single instruction to set or clear any number of bits in one port.  
6.8 10-bit ADC  
The LPC2290 each contain a single 10-bit successive approximation ADC with eight  
multiplexed channels.  
6.8.1 Features  
Measurement range of 0 V to 3.3 V.  
Capable of performing more than 400000 10-bit samples per second.  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition on input pin or Timer Match signal.  
6.8.2 ADC features available in LPC2290/01 only  
Every analog input has a dedicated result register to reduce interrupt overhead.  
Every analog input can generate an interrupt once the conversion is completed.  
6.9 CAN controllers and acceptance filter  
The LPC2290 contains two CAN controllers. The CAN is a serial communications protocol  
which efficiently supports distributed real-time control with a very high level of security. Its  
domain of application ranges from high-speed networks to low cost multiplex wiring.  
6.9.1 Features  
Data rates up to 1 Mbit/s on each bus.  
32-bit register and RAM access.  
Compatible with CAN specification 2.0B, ISO 11898-1.  
Global Acceptance Filter recognizes 11-bit and 29-bit RX identifiers for all CAN buses.  
Acceptance Filter can provide FullCAN-style automatic reception for selected  
Standard identifiers.  
Full CAN messages can generate interrupts.  
6.10 UARTs  
The LPC2290 contains two UARTs. In addition to standard transmit and receive data  
lines, UART1 also provides a full modem control handshake interface.  
6.10.1 Features  
16 B Receive and Transmit FIFOs.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
18 of 41  
 
 
 
 
 
 
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in baud rate generator.  
Standard modem interface signals included on UART1.  
6.10.2 UART features available in LPC2290/01 only  
The transmission FIFO control enables implementation of software (XON/XOFF) flow  
control on both UARTs and hardware (CTS/RTS) flow control on UART1 only.  
Fractional baud rate generator enables standard baud rates such as 115200 to be  
achieved with any crystal frequency above 2 MHz.  
Auto-bauding.  
Auto-CTS/RTS flow-control fully implemented in hardware.  
6.11 I2C-bus serial I/O controller  
The I2C-bus is bidirectional, for inter-IC control using only two wires: a serial clock line  
(SCL), and a serial data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C-bus is a multi-master bus, it can be  
controlled by more than one bus master connected to it.  
The I2C-bus implemented in LPC2290 supports bit rate up to 400 kbit/s (Fast I2C-bus).  
6.11.1 Features  
Compliant with standard I2C-bus interface.  
Easy to configure as master, slave, or master/slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus may be used for test and diagnostic purposes.  
6.12 SPI serial I/O controller  
The LPC2290 contains two SPIs. The SPI is a full duplex serial interface, designed to be  
able to handle multiple masters and slaves connected to a given bus. Only a single master  
and a single slave can communicate on the interface during a given data transfer. During a  
data transfer the master always sends a byte of data to the slave, and the slave always  
sends a byte of data to the master.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
19 of 41  
 
 
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
6.12.1 Features  
Compliant with SPI specification.  
Synchronous, serial, full duplex, communication.  
Combined SPI master and slave.  
Maximum data bit rate of one eighth of the input clock rate.  
6.13 SSP serial I/O controller (available in LPC2290/01 only)  
The LPC2290/01 contains one Serial Synchronous Port controller (SSP). The SSP  
controller is capable of operation on a SPI, 4-wire SSI, or Microwire bus. It can interact  
with multiple masters and slaves on the bus. However, only a single master and a single  
slave can communicate on the bus during a given data transfer. The SSP supports full  
duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the  
slave and from the slave to the master. Often only one of these data flows carries  
meaningful data.  
The SSP and SPI1 share the same pins on LPC2290/01. After a reset, SPI1 is enabled  
and SSP is disabled.  
6.13.1 Features  
Synchronous Serial Communication.  
8-frame FIFOs for both transmit and receive.  
Compatible with Motorola SPI, 4-wire TI SSI and National Semiconductor Microwire  
buses.  
Master or slave operation.  
Four bits to 16 bits per SPI frame.  
6.14 General purpose timers  
The TIMER0 and TIMER1 are designed to count cycles of the peripheral clock (PCLK)  
and optionally generate interrupts or perform other actions at specified timer values,  
based on four match registers. It also includes four capture inputs to trap the timer value  
when an input signal transitions, optionally generating an interrupt. Multiple pins can be  
selected to perform a single capture or match function, providing an application with ‘or’  
and ‘and’, as well as ‘broadcast’ functions among them.  
6.14.1 Features  
A 32-bit Timer/Counter with a programmable 32-bit prescaler.  
Four 32-bit capture channels per timer that can take a snapshot of the timer value  
when an input signal transitions. A capture event may also optionally generate an  
interrupt.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
20 of 41  
 
 
 
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Four external outputs per timer corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
6.14.2 Timer features available in LPC2290/01 only  
Timers can count cycles of the externally supplied clock providing external event  
counting functionality  
6.15 Watchdog timer  
The purpose of the watchdog is to reset the microcontroller within a reasonable amount of  
time if it enters an erroneous state. When enabled, the watchdog will generate a system  
reset if the user program fails to ‘feed’ (or reload) the watchdog within a predetermined  
amount of time.  
6.15.1 Features  
Internally resets chip if not periodically reloaded.  
Debug mode.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect/incomplete feed sequence causes reset/interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 32-bit timer with internal pre-scaler.  
Selectable time period from (Tcy(PCLK) × 256 × 4) to (Tcy(PCLK) × 232 × 4) in multiples of  
T
cy(PCLK) × 4.  
6.16 Real-time clock  
The Real-Time Clock (RTC) is designed to provide a set of counters to measure time  
when normal or idle operating mode is selected. The RTC has been designed to use little  
power, making it suitable for battery powered systems where the CPU is not running  
continuously (Idle mode).  
6.16.1 Features  
Measures the passage of time to maintain a calendar and clock.  
Ultra-low power design to support battery powered systems.  
Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and Day  
of Year.  
Programmable Reference Clock Divider allows adjustment of the RTC to match  
various crystal frequencies.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
21 of 41  
 
 
 
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
6.17 Pulse width modulator  
The PWM is based on the standard Timer block and inherits all of its features, although  
only the PWM function is pinned out on the LPC2290. The Timer is designed to count  
cycles of the peripheral clock (PCLK) and optionally generate interrupts or perform other  
actions when specified timer values occur, based on seven match registers. The PWM  
function is also based on match register events.  
The ability to separately control rising and falling edge locations allows the PWM to be  
used for more applications. For instance, multi-phase motor control typically requires three  
non-overlapping PWM outputs with individual control of all three pulse widths and  
positions.  
Two match registers can be used to provide a single edge controlled PWM output. One  
match register (MR0) controls the PWM cycle rate, by resetting the count upon match.  
The other match register controls the PWM edge position. Additional single edge  
controlled PWM outputs require only one match register each, since the repetition rate is  
the same for all PWM outputs. Multiple single edge controlled PWM outputs will all have a  
rising edge at the beginning of each PWM cycle, when an MR0 match occurs.  
Three match registers can be used to provide a PWM output with both edges controlled.  
Again, the MR0 match register controls the PWM cycle rate. The other match registers  
control the two PWM edge positions. Additional double edge controlled PWM outputs  
require only two match registers each, since the repetition rate is the same for all PWM  
outputs.  
With double edge controlled PWM outputs, specific match registers control the rising and  
falling edge of the output. This allows both positive going PWM pulses (when the rising  
edge occurs prior to the falling edge), and negative going PWM pulses (when the falling  
edge occurs prior to the rising edge).  
6.17.1 Features  
Seven match registers allow up to six single edge controlled or three double edge  
controlled PWM outputs, or a mix of both types.  
The match registers also allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Supports single edge controlled and/or double edge controlled PWM outputs. Single  
edge controlled PWM outputs all go HIGH at the beginning of each cycle unless the  
output is a constant LOW. Double edge controlled PWM outputs can have either edge  
occur at any position within a cycle. This allows for both positive going and negative  
going pulses.  
Pulse period and width can be any number of timer counts. This allows complete  
flexibility in the trade-off between resolution and repetition rate. All PWM outputs will  
occur at the same repetition rate.  
Double edge controlled PWM outputs can be programmed to be either positive going  
or negative going pulses.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
22 of 41  
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Match register updates are synchronized with pulse outputs to prevent generation of  
erroneous pulses. Software must ‘release’ new match values before they can become  
effective.  
May be used as a standard timer if the PWM mode is not enabled.  
A 32-bit Timer/Counter with a programmable 32-bit prescaler.  
6.18 System control  
6.18.1 Crystal oscillator  
The oscillator supports crystals in the range of 1 MHz to 30 MHz. The oscillator output  
frequency is called fosc and the ARM processor clock frequency is referred to as CCLK for  
purposes of rate equations, etc. fosc and CCLK are the same value unless the PLL is  
running and connected. Refer to Section 6.18.2 “PLLfor additional information.  
6.18.2 PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up into the range of 10 MHz to 60 MHz with a Current Controlled  
Oscillator (CCO). The multiplier can be an integer value from 1 to 32 (in practice, the  
multiplier value cannot be higher than 6 on this family of microcontrollers due to the upper  
frequency limit of the CPU). The CCO operates in the range of 156 MHz to 320 MHz, so  
there is an additional divider in the loop to keep the CCO within its frequency range while  
the PLL is providing the desired output frequency. The output divider may be set to divide  
by 2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2,  
it is insured that the PLL output has a 50 % duty cycle.The PLL is turned off and bypassed  
following a chip reset and may be enabled by software. The program must configure and  
activate the PLL, wait for the PLL to Lock, then connect to the PLL as a clock source. The  
PLL settling time is 100 µs.  
6.18.3 Reset and wake-up timer  
Reset has two sources on the LPC2290: the RESET pin and watchdog reset. The RESET  
pin is a Schmitt trigger input pin with an additional glitch filter. Assertion of chip reset by  
any source starts the Wake-up Timer (see Wake-up Timer description below), causing the  
internal chip reset to remain asserted until the external reset is de-asserted, the oscillator  
is running, a fixed number of clocks have passed, and the on-chip flash controller has  
completed its initialization.  
When the internal reset is removed, the processor begins executing at address 0, which is  
the reset vector. At that point, all of the processor and peripheral registers have been  
initialized to predetermined values.  
The Wake-up Timer ensures that the oscillator and other analog functions required for  
chip operation are fully functional before the processor is allowed to execute instructions.  
This is important at power-on, all types of reset, and whenever any of the aforementioned  
functions are turned off for any reason. Since the oscillator and other functions are turned  
off during Power-down mode, any wake-up of the processor from Power-down mode  
makes use of the Wake-up Timer.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
23 of 41  
 
 
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
The Wake-up Timer monitors the crystal oscillator as the means of checking whether it is  
safe to begin code execution. When power is applied to the chip, or some event caused  
the chip to exit Power-down mode, some time is required for the oscillator to produce a  
signal of sufficient amplitude to drive the clock logic. The amount of time depends on  
many factors, including the rate of VDD ramp (in the case of power-on), the type of crystal  
and its electrical characteristics (if a quartz crystal is used), as well as any other external  
circuitry (e.g. capacitors), and the characteristics of the oscillator itself under the existing  
ambient conditions.  
6.18.4 External interrupt inputs  
The LPC2290 include up to nine edge or level sensitive External Interrupt Inputs as  
selectable pin functions. When the pins are combined, external events can be processed  
as four independent interrupt signals. The External Interrupt Inputs can optionally be used  
to wake up the processor from Power-down mode.  
6.18.5 Memory mapping control  
The Memory Mapping Control alters the mapping of the interrupt vectors that appear  
beginning at address 0x0000 0000. Vectors may be mapped to the bottom of the on-chip  
flash memory, or to the on-chip static RAM. This allows code running in different memory  
spaces to have control of the interrupts.  
6.18.6 Power control  
The LPC2290 support two reduced power modes: Idle mode and Power-down mode. In  
Idle mode, execution of instructions is suspended until either a reset or interrupt occurs.  
Peripheral functions continue operation during Idle mode and may generate interrupts to  
cause the processor to resume execution. Idle mode eliminates power used by the  
processor itself, memory systems and related controllers, and internal buses.  
In Power-down mode, the oscillator is shut down and the chip receives no internal clocks.  
The processor state and registers, peripheral registers, and internal SRAM values are  
preserved throughout Power-down mode and the logic levels of chip output pins remain  
static. The Power-down mode can be terminated and normal operation resumed by either  
a reset or certain specific interrupts that are able to function without clocks. Since all  
dynamic operation of the chip is suspended, Power-down mode reduces chip power  
consumption to nearly zero.  
A Power Control for Peripherals feature allows individual peripherals to be turned off if  
they are not needed in the application, resulting in additional power savings.  
6.18.7 APB bus  
The APB divider determines the relationship between the processor clock (CCLK) and the  
clock used by peripheral devices (PCLK). The APB divider serves two purposes. The first  
is to provide peripherals with the desired PCLK via APB bus so that they can operate at  
the speed chosen for the ARM processor. In order to achieve this, the APB bus may be  
slowed down to 12 to 14 of the processor clock rate. Because the APB bus must work  
properly at power-up (and its timing cannot be altered if it does not work since the APB  
divider control registers reside on the APB bus), the default condition at reset is for the  
APB bus to run at 14 of the processor clock rate. The second purpose of the APB divider  
is to allow power savings when an application does not require any peripherals to run at  
the full processor rate. Because the APB divider is connected to the PLL output, the PLL  
remains active (if it was running) during Idle mode.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
24 of 41  
 
 
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
6.19 Emulation and debugging  
The LPC2290 support emulation and debugging via a JTAG serial port. A trace port  
allows tracing program execution. Debugging and trace functions are multiplexed only with  
GPIOs on Port 1. This means that all communication, timer and interface peripherals  
residing on Port 0 are available during the development and debugging phase as they are  
when the application is run in the embedded system itself.  
6.19.1 EmbeddedICE  
Standard ARM EmbeddedICE logic provides on-chip debug support. The debugging of  
the target system requires a host computer running the debugger software and an  
EmbeddedICE protocol convertor. EmbeddedICE protocol convertor converts the remote  
debug protocol commands to the JTAG data needed to access the ARM core.  
The ARM core has a Debug Communication Channel function built-in. The debug  
communication channel allows a program running on the target to communicate with the  
host debugger or another separate host without stopping the program flow or even  
entering the debug state. The debug communication channel is accessed as a  
coprocessor 14 by the program running on the ARM7TDMI-S core. The debug  
communication channel allows the JTAG port to be used for sending and receiving data  
without affecting the normal program flow. The debug communication channel data and  
control registers are mapped in to addresses in the EmbeddedICE logic.  
6.19.2 Embedded trace  
Since the LPC2290 has significant amounts of on-chip memory, it is not possible to  
determine how the processor core is operating simply by observing the external pins. The  
Embedded Trace Macrocell (ETM) provides real-time trace capability for deeply  
embedded processor cores. It outputs information about processor execution to the trace  
port.  
The ETM is connected directly to the ARM core and not to the main AMBA system bus. It  
compresses the trace information and exports it through a narrow trace port. An external  
trace port analyzer must capture the trace information under software debugger control.  
Instruction trace (or PC trace) shows the flow of execution of the processor and provides a  
list of all the instructions that were executed. Instruction trace is significantly compressed  
by only broadcasting branch addresses as well as a set of status signals that indicate the  
pipeline status on a cycle by cycle basis. Trace information generation can be controlled  
by selecting the trigger resource. Trigger resources include address comparators,  
counters and sequencers. Since trace information is compressed the software debugger  
requires a static image of the code being executed. Self-modifying code can not be traced  
because of this restriction.  
6.19.3 RealMonitor  
RealMonitor is a configurable software module, developed by ARM Inc., which enables  
real-time debug. It is a lightweight debug monitor that runs in the background while users  
debug their foreground application. It communicates with the host using the DCC (Debug  
Communications Channel), which is present in the EmbeddedICE logic. The LPC2290  
contain a specific configuration of RealMonitor software programmed into the on-chip  
flash memory.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
25 of 41  
 
 
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
7. Limiting values  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
VDD(1V8)  
VDD(3V3)  
VDDA(3V3)  
VIA  
Parameter  
Conditions  
internal rail  
external rail  
Min  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
-
Max  
Unit  
V
supply voltage (1.8 V)  
supply voltage (3.3 V)  
analog supply voltage (3.3 V)  
analog input voltage  
input voltage  
+2.5  
+3.6  
V
+4.6  
V
+5.1  
V
[2][3]  
[2][4]  
[5]  
VI  
5 V tolerant I/O pins  
other I/O pins  
+6.0  
V
VDD(3V3) + 0.5  
100  
V
IDD  
supply current  
per supply pin  
mA  
mA  
°C  
W
[5]  
ISS  
ground current  
per ground pin  
-
100  
[6]  
Tstg  
storage temperature  
65  
-
+150  
1.5  
Ptot(pack)  
total power dissipation (per  
package)  
based on package heat  
transfer, not device power  
consumption  
[7]  
Vesd  
electrostatic discharge voltage human body model; all  
pins  
2000  
+2000  
V
[1] The following applies to Table 5:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Including voltage on outputs in 3-state mode.  
[3] Only valid when the VDD(3V3) supply voltage is present.  
[4] Not to exceed 4.6 V.  
[5] The peak current is limited to 25 times the corresponding maximum current.  
[6] Dependent on package type.  
[7] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
26 of 41  
 
 
 
 
 
 
 
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
8. Static characteristics  
Table 6.  
Static characteristics  
Tamb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
Symbol Parameter  
Conditions  
internal rail  
external rail  
Min  
1.65  
3.0  
Typ[1]  
1.8  
Max  
1.95  
3.6  
Unit  
V
VDD(1V8) supply voltage (1.8 V)  
VDD(3V3) supply voltage (3.3 V)  
3.3  
V
VDDA(3V3) analog supply voltage  
(3.3 V)  
2.5  
3.3  
3.6  
V
Standard port pins, RESET, RTCK  
IIL  
LOW-level input current  
VI = 0 V; no pull-up  
-
-
-
-
-
-
3
3
3
µA  
µA  
µA  
IIH  
IOZ  
HIGH-level input current VI = VDD(3V3); no pull-down  
OFF-state output current VO = 0 V, VO = VDD(3V3)  
;
no pull-up/down  
Ilatch  
I/O latch-up current  
(0.5VDD(3V3)) < VI <  
100  
-
-
mA  
(1.5VDD(3V3)); Tj < 125 °C  
[2][3][4]  
VI  
input voltage  
0
-
5.5  
V
VO  
output voltage  
output active  
0
-
VDD(3V3)  
V
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
hysteresis voltage  
2.0  
-
-
-
V
-
0.8  
V
Vhys  
VOH  
VOL  
IOH  
IOL  
-
0.4  
-
V
[5]  
[5]  
[5]  
[5]  
[6]  
HIGH-level output voltage IOH = 4 mA  
LOW-level output voltage IOL = 4 mA  
HIGH-level output current VOH = VDD(3V3) 0.4 V  
LOW-level output current VOL = 0.4 V  
VDD(3V3) 0.4 -  
-
V
-
-
-
-
-
0.4  
-
V
4  
4
-
mA  
mA  
mA  
-
IOHS  
HIGH-level short-circuit  
output current  
VOH = 0 V  
45  
[6]  
IOLS  
LOW-level short-circuit  
output current  
VOL = VDD(3V3)  
-
-
50  
mA  
[7]  
[8]  
[7]  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
10  
15  
0
50  
50  
0
150  
85  
0
µA  
µA  
µA  
mA  
VI = 0 V  
VDD(3V3) < VI < 5 V  
IDD(act)  
active mode supply  
current  
VDD(1V8) = 1.8 V,  
CCLK = 60 MHz,  
-
50  
-
T
amb = 25 °C, code  
while(1){}  
executed from flash, no  
active peripherals  
IDD(pd)  
Power-down mode supply VDD(1V8) = 1.8 V,  
current amb = 25 °C,  
-
-
-
10  
-
µA  
µA  
µA  
T
VDD(1V8) = 1.8 V,  
amb = 85 °C  
110  
300  
500  
1000  
T
VDD(1V8) = 1.8 V,  
amb = 125 °C  
T
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
27 of 41  
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Table 6.  
Static characteristics …continued  
Tamb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
Symbol Parameter  
I2C-bus pins  
Conditions  
Min  
Typ[1]  
Max  
Unit  
VIH  
VIL  
Vhys  
VOL  
ILI  
HIGH-level input voltage  
0.7VDD(3V3)  
-
-
V
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
-
-
0.3VDD(3V3)  
V
0.5VDD(3V3)  
-
V
[5]  
LOW-level output voltage IOLS = 3 mA  
input leakage current VI = VDD(3V3); to VSS  
VI = 5 V  
-
0.4  
4
V
2
µA  
µA  
10  
22  
Oscillator pins  
Vi(XTAL1) input voltage on pin  
XTAL1  
0
0
-
-
1.8  
1.8  
V
V
Vo(XTAL2) output voltage on pin  
XTAL2  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (+25 °C), nominal supply voltages.  
[2] Including voltage on outputs in 3-state mode.  
[3] VDD(3V3) supply voltages must be present.  
[4] 3-state outputs go into 3-state mode when VDD(3V3) is grounded.  
[5] Accounts for 100 mV voltage drop in all supply lines.  
[6] Only allowed for a short time period.  
[7] Minimum condition for VI = 4.5 V, maximum condition for VI = 5.5 V.  
[8] Applies to P1[25:16].  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
28 of 41  
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Table 7.  
ADC static characteristics  
VDDA = 2.5 V to 3.6 V; Tamb = 40 °C to +125 °C unless otherwise specified. ADC frequency 4.5 MHz.  
Symbol  
VIA  
Parameter  
Conditions  
Min  
Typ  
Max  
VDDA  
1
Unit  
V
analog input voltage  
0
-
-
-
Cia  
analog input  
capacitance  
pF  
ED  
differential linearity  
error  
-
-
±1  
LSB  
[1][2][3]  
[1][4]  
[1][5]  
[1][6]  
[1][7]  
EL(adj)  
EO  
integral non-linearity  
offset error  
-
-
-
-
-
-
-
-
±2  
LSB  
LSB  
%
±3  
EG  
gain error  
±0.5  
±4  
ET  
absolute error  
LSB  
[1] Conditions: VSSA = 0 V, VDDA = 3.3 V.  
[2] The ADC is monotonic, there are no missing codes.  
[3] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 4.  
[4] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 4.  
[5] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 4.  
[6] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 4.  
[7] The absolute voltage error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the  
non-calibrated ADC and the ideal transfer curve. See Figure 4.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
29 of 41  
 
 
 
 
 
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
gain  
error  
offset  
error  
E
E
O
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
V
V  
SSA  
DDA  
1 LSB =  
offset  
error  
1024  
002aaa668  
E
O
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 4. ADC characteristics  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
30 of 41  
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
9. Dynamic characteristics  
Table 8.  
Dynamic characteristics  
Tamb = 40 °C to +125 °C; VDD(1V8), VDD(3V3) over specified ranges.[1]  
Symbol  
External clock  
fosc  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
oscillator frequency  
supplied by an external  
oscillator (signal generator)  
1
1
-
-
50  
30  
MHz  
MHz  
external clock frequency  
supplied by an external  
crystal oscillator  
external clock frequency if  
on-chip PLL is used  
10  
10  
-
-
25  
25  
MHz  
MHz  
external clock frequency if  
on-chip bootloader is used  
for initial code download  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
20  
-
-
-
-
-
1000  
ns  
ns  
ns  
ns  
ns  
T
T
-
cy(clk) × 0.4  
-
cy(clk) × 0.4  
-
5
5
-
Port pins (except P0.2 and P0.3)  
tr  
tf  
rise time  
-
-
10  
10  
-
-
ns  
ns  
fall time  
I2C-bus pins (P0.2 and P0.3)  
[2]  
tf fall time  
VIH to VIL  
20 + 0.1 × Cb  
-
-
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Bus capacitance Cb in pF, from 10 pF to 400 pF.  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
31 of 41  
 
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Table 9.  
External memory interface dynamic characteristics  
CL = 25 pF, Tamb = 40 °C  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
Common to read and write cycles  
tCHAV  
XCLK HIGH to address valid  
time  
-
-
10  
ns  
tCHCSL  
tCHCSH  
XCLK HIGH to CS LOW time  
-
-
-
-
10  
10  
ns  
ns  
XCLK HIGH to CS HIGH  
time  
tCHANV  
XCLK HIGH to address  
invalid time  
-
-
10  
ns  
Read cycle parameters  
tCSLAV CS LOW to address valid  
[1]  
[1]  
5  
5  
5  
-
-
+10  
+10  
ns  
ns  
time  
tOELAV  
OE LOW to address valid  
time  
tCSLOEL  
tam  
CS LOW to OE LOW time  
memory access time  
-
-
+5  
-
ns  
ns  
[2][3]  
[2][3]  
[2][4]  
[5]  
(Tcy(CCLK) × (2 + WST1)) +  
(20)  
tam(ibr)  
tam(sbr)  
memory access time (initial  
burst-ROM)  
(Tcy(CCLK) × (2 + WST1)) +  
(20)  
-
-
-
-
ns  
ns  
memory access time  
Tcy(CCLK) + (20)  
(subsequent burst-ROM)  
th(D)  
data hold time  
0
-
-
-
-
ns  
ns  
ns  
tCSHOEH  
tOEHANV  
CS HIGH to OE HIGH time  
5  
5  
+5  
+5  
OE HIGH to address invalid  
time  
tCHOEL  
tCHOEH  
XCLK HIGH to OE LOW time  
5  
5  
-
-
+5  
+5  
ns  
ns  
XCLK HIGH to OE HIGH  
time  
Write cycle parameters  
[1]  
tAVCSL  
address valid to CS LOW  
T
cy(CCLK) 10  
-
-
ns  
time  
tCSLDV  
CS LOW to data valid time  
CS LOW to WE LOW time  
CS LOW to BLS LOW time  
WE LOW to data valid time  
CS LOW to data valid time  
WE LOW to WE HIGH time  
5  
5  
5  
5  
5  
-
-
-
-
-
-
+5  
+5  
+5  
+5  
+5  
ns  
ns  
ns  
ns  
ns  
ns  
tCSLWEL  
tCSLBLSL  
tWELDV  
tCSLDV  
[2]  
[2]  
[2]  
tWELWEH  
T
T
T
cy(CCLK) × (1 + WST2) 5  
cy(CCLK) × (1 + WST2) 5  
cy(CCLK) 5  
T
cy(CCLK) × (1 +  
WST2) + 5  
tBLSLBLSH BLS LOW to BLS HIGH time  
-
-
Tcy(CCLK)  
(1 + WST2) + 5  
×
ns  
ns  
tWEHANV  
tWEHDNV  
WE HIGH to address invalid  
time  
Tcy(CCLK) + 5  
[2]  
[2]  
WE HIGH to data invalid time  
(2 × Tcy(CCLK)) 5  
Tcy(CCLK) 5  
-
-
(2 × Tcy(CCLK)) + 5 ns  
Tcy(CCLK) + 5 ns  
tBLSHANV BLS HIGH to address invalid  
time  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
32 of 41  
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
Table 9.  
External memory interface dynamic characteristics …continued  
CL = 25 pF, Tamb = 40 °C  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
[2]  
tBLSHDNV BLS HIGH to data invalid  
time  
(2 × Tcy(CCLK)) 5  
-
-
-
-
-
-
-
(2 × Tcy(CCLK)) + 5 ns  
tCHDV  
XCLK HIGH to data valid  
time  
-
-
-
-
-
-
10  
10  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
tCHWEL  
tCHBLSL  
tCHWEH  
tCHBLSH  
tCHDNV  
XCLK HIGH to WE LOW  
time  
XCLK HIGH to BLS LOW  
time  
XCLK HIGH to WE HIGH  
time  
XCLK HIGH to BLS HIGH  
time  
XCLK HIGH to data invalid  
time  
[1] Except on initial access, in which case the address is set up Tcy(CCLK) earlier.  
[2] Tcy(CCLK) = 1CCLK.  
[3] Latest of address valid, CS LOW, OE LOW to data valid.  
[4] Address valid to data valid.  
[5] Earliest of CS HIGH, OE HIGH, address change to data invalid.  
Table 10. Standard read access specifications  
Access cycle  
Max frequency  
WST setting  
Memory access time requirement  
WST 0; round up to  
integer  
standard read  
2 + WST1  
RAM + 20 ns  
t
RAM + 20 ns  
tRAM tcy(CCLK) × (2 + WST1) 20 ns  
f MAX  
f MAX  
f MAX  
f MAX  
--------------------------------  
WST1 ≥  
WST2 ≥  
2  
--------------------------------  
tcy(CCLK)  
t
standard write  
1 + WST2  
t
WRITE tCYC + 5  
tWRITE tcy(CCLK) × (1 + WST2) 5 ns  
tINIT tcy(CCLK) × (2 + WST1) 20 ns  
---------------------------------  
-------------------------------------------  
t
WRITE + 5 ns  
tcy(CCLK)  
burst read - initial  
burst read - subsequent 3×  
2 + WST1  
tINIT + 20 ns  
-------------------------------  
WST1 ≥  
2  
-------------------------------  
tINIT + 20 ns  
tcy(CCLK)  
N/A  
1
t
ROM tcy(CCLK) 20 ns  
--------------------------------  
tROM + 20 ns  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
33 of 41  
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
9.1 Timing  
XCLK  
t
t
CSHOEH  
CSLAV  
CS  
addr  
data  
t
t
h(D)  
am  
t
CSLOEL  
t
t
OEHANV  
OELAV  
OE  
t
t
CHOEH  
CHOEL  
002aaa749  
Fig 5. External memory read access  
XCLK  
CS  
t
CSLDV  
t
AVCSL  
t
WELWEH  
t
CSLWEL  
t
BLSLBLSH  
BLS/WE  
t
WEHANV  
t
t
WELDV  
CSLBLSL  
t
BLSHANV  
addr  
data  
t
t
WEHDNV  
BLSHDNV  
t
CSLDV  
OE  
002aaa750  
Fig 6. External memory write access  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
34 of 41  
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
V
DD  
0.5 V  
0.2V  
+ 0.9 V  
DD  
0.2V  
0.1 V  
DD  
0.45 V  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 7. External clock timing  
9.2 LPC2290 power consumption measurements  
002aab452  
60  
I
current  
DD  
(mA)  
(1)  
(2)  
40  
20  
0
0
10  
20  
30  
40  
50  
60  
frequency (MHz)  
Test conditions: code executed from on-chip RAM; all peripherals are enabled in PCONP register; PCLK = CCLK4.  
(1) 1.8 V core at 25 °C (typical)  
(2) 1.65 V core at 25 °C (typical)  
Fig 8. LPC2290 IDD(act) measured at different frequencies (CCLK) and temperatures  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
35 of 41  
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
002aab453  
15  
I
current  
DD  
(mA)  
10  
(1)  
(2)  
5
0
0
10  
20  
30  
40  
50  
60  
frequency (MHz)  
Test conditions: Idle mode entered executing code from on-chip RAM; all peripherals are enabled in PCONP register;  
PCLK = CCLK4.  
(1) 1.8 V core at 25 °C (typical)  
(2) 1.65 V core at 25 °C (typical)  
Fig 9. LPC2290 IDD idle measured at different frequencies (CCLK) and temperatures  
002aab454  
500  
I
current  
(µA)  
DD  
(1)  
(2)  
(3)  
400  
300  
200  
100  
0
100  
50  
0
50  
100  
150  
temp (°C)  
Test conditions: Power-down mode entered executing code from on-chip RAM; all peripherals are enabled in PCONP  
register.  
(1) 1.95 V core  
(2) 1.8 V core  
(3) 1.65 V core  
Fig 10. LPC2290 IDD(pd) measured at different temperatures  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
36 of 41  
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
10. Package outline  
LQFP144: plastic low profile quad flat package; 144 leads; body 20 x 20 x 1.4 mm  
SOT486-1  
y
X
A
108  
109  
73  
72  
Z
E
e
H
A
E
2
A
E
(A )  
3
A
1
θ
w M  
p
L
p
b
L
pin 1 index  
detail X  
37  
144  
1
36  
v
M
A
Z
w M  
D
b
p
e
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 20.1 20.1  
0.17 0.09 19.9 19.9  
22.15 22.15  
21.85 21.85  
0.75  
0.45  
1.4  
1.1  
1.4  
1.1  
mm  
1.6  
0.25  
1
0.2 0.08 0.08  
0.5  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-03-14  
03-02-20  
SOT486-1  
136E23  
MS-026  
Fig 11. Package outline SOT486-1 (LQFP144)  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
37 of 41  
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
11. Abbreviations  
Table 11. Abbreviations  
Acronym  
ADC  
Description  
Analog-to-Digital Converter  
Advanced Microcontroller Bus Architecture  
AMBA Peripheral Bus  
AMBA  
APB  
CAN  
Controller Area Network  
CISC  
CPU  
Complex Instruction Set Computer  
Central Processing Unit  
FIFO  
GPIO  
PLL  
First In, First Out  
General Purpose Input/Output  
Phase-Locked Loop  
PWM  
RAM  
RISC  
SPI  
Pulse Width Modulator  
Random Access Memory  
Reduced Instruction Set Computer  
Serial Peripheral Interface  
Static Random Access Memory  
Synchronous Serial Port  
SRAM  
SSP  
TTL  
Transistor-Transistor Logic  
Universal Asynchronous Receiver/Transmitter  
UART  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
38 of 41  
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
12. Revision history  
Table 12. Revision history  
Document ID  
LPC2290_3  
Release date  
20061116  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
LPC2290-02  
Modifications:  
The format of this data sheet has been redesigned to comply with the new identity  
guidelines of NXP Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
New features specific to the LPC2290/01 have been added throughout.  
LPC2290-02  
LPC2290-01  
20041223  
Product data  
-
LPC2290-01  
20040209  
Preliminary data  
-
-
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
39 of 41  
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
13. Legal information  
13.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
result in personal injury, death or severe property or environmental damage.  
13.2 Definitions  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
13.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
13.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of a NXP Semiconductors product can reasonably be expected to  
I2C-bus — logo is a trademark of NXP B.V.  
14. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
LPC2290_3  
© NXP B.V. 2006. All rights reserved.  
Product data sheet  
Rev. 03 — 16 November 2006  
40 of 41  
 
 
 
 
 
 
LPC2290  
NXP Semiconductors  
16/32-bit ARM microcontroller with external memory interface  
15. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
6.17.1  
6.18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
System control . . . . . . . . . . . . . . . . . . . . . . . . 23  
Crystal oscillator. . . . . . . . . . . . . . . . . . . . . . . 23  
PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Reset and wake-up timer . . . . . . . . . . . . . . . . 23  
External interrupt inputs. . . . . . . . . . . . . . . . . 24  
Memory mapping control . . . . . . . . . . . . . . . . 24  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 24  
APB bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Emulation and debugging. . . . . . . . . . . . . . . . 25  
EmbeddedICE . . . . . . . . . . . . . . . . . . . . . . . . 25  
Embedded trace. . . . . . . . . . . . . . . . . . . . . . . 25  
RealMonitor . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
2
2.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Enhancements introduced with LPC2290/01  
device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Key features common for LPC2290 and  
6.18.1  
6.18.2  
6.18.3  
6.18.4  
6.18.5  
6.18.6  
6.18.7  
6.19  
2.2  
LPC2290/01 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
3
3.1  
4
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
6.19.1  
6.19.2  
6.19.3  
6
6.1  
6.2  
6.3  
6.4  
6.4.1  
6.5  
6.6  
6.7  
Functional description . . . . . . . . . . . . . . . . . . 14  
Architectural overview. . . . . . . . . . . . . . . . . . . 14  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . 14  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . 15  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 16  
Pin connect block . . . . . . . . . . . . . . . . . . . . . . 17  
External memory controller. . . . . . . . . . . . . . . 17  
General purpose parallel I/O and Fast I/O . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Fast I/O features available in LPC2290/01  
only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
10-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
ADC features available in LPC2290/01 only. . 18  
CAN controllers and acceptance filter . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
UARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
UART features available in LPC2290/01 only. 19  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SPI serial I/O controller. . . . . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
SSP serial I/O controller (available in  
7
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 26  
Static characteristics . . . . . . . . . . . . . . . . . . . 27  
9
9.1  
9.2  
Dynamic characteristics. . . . . . . . . . . . . . . . . 31  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
LPC2290 power consumption measurements 35  
10  
11  
12  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 37  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 39  
6.7.1  
6.7.2  
13  
Legal information . . . . . . . . . . . . . . . . . . . . . . 40  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 40  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
13.1  
13.2  
13.3  
13.4  
6.8  
6.8.1  
6.8.2  
6.9  
6.9.1  
6.10  
6.10.1  
6.10.2  
6.11  
6.11.1  
6.12  
14  
15  
Contact information . . . . . . . . . . . . . . . . . . . . 40  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
6.12.1  
6.13  
LPC2290/01 only). . . . . . . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
General purpose timers . . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Timer features available in LPC2290/01 only . 21  
Watchdog timer. . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Real-time clock . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Pulse width modulator . . . . . . . . . . . . . . . . . . 22  
6.13.1  
6.14  
6.14.1  
6.14.2  
6.15  
6.15.1  
6.16  
6.16.1  
6.17  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2006.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 16 November 2006  
Document identifier: LPC2290_3  
 

相关型号:

LPC2292

16/32-bit ARM microcontrollers 256 kB ISP/IAP Flash with CAN, 10-bit ADC and external memory interface
NXP

LPC2292FBD144

16/32-bit ARM microcontrollers 256 kB ISP/IAP Flash with CAN, 10-bit ADC and external memory interface
NXP

LPC2292FBD144,551

LPC2292FBD144
NXP

LPC2292FBD144/00

16/32-bit ARM microcontrollers; 256 kB ISP/IAP flash with CAN, 10-bit ADC and external memory interface
NXP

LPC2292FBD144/01

16/32-bit ARM microcontrollers; 256 kB ISP/IAP flash with CAN, 10-bit ADC and external memory interface
NXP

LPC2292FBD144/01,5

LPC2292/2294 - 16/32-bit ARM microcontrollers; 256 kB ISP/IAP flash with CAN, 10-bit ADC and external memory interface QFP 144-Pin
NXP

LPC2292FBD144/01-S

IC,MICROCONTROLLER,32-BIT,ARM7 CPU,QFP,144PIN,PLASTIC
NXP

LPC2292FET144

Microcontroller, 32-Bit, FLASH, ARM7 CPU, 30MHz, CMOS, PQFP144,
PHILIPS

LPC2292FET144

IC 32-BIT, FLASH, 60 MHz, RISC MICROCONTROLLER, PBGA144, 12 X 12 MM, 0.80 MM HEIGHT, PLASTIC, MO-216, SOT-569-1, TFBGA-144, Microcontroller
NXP

LPC2292FET144/00

16/32-bit ARM microcontrollers; 256 kB ISP/IAP flash with CAN, 10-bit ADC and external memory interface
NXP

LPC2292FET144/00,5

LPC2292/2294 - 16/32-bit ARM microcontrollers; 256 kB ISP/IAP flash with CAN, 10-bit ADC and external memory interface BGA 144-Pin
NXP

LPC2292FET144/01

16/32-bit ARM microcontrollers; 256 kB ISP/IAP flash with CAN, 10-bit ADC and external memory interface
NXP