LPC2458FET180,529 [NXP]

LPC2458 - Single-chip 16-bit/32-bit micro; 512 kB flash, Ethernet, CAN, ISP/IAP, USB 2.0 device/host/OTG, external memory interface BGA 180-Pin;
LPC2458FET180,529
型号: LPC2458FET180,529
厂家: NXP    NXP
描述:

LPC2458 - Single-chip 16-bit/32-bit micro; 512 kB flash, Ethernet, CAN, ISP/IAP, USB 2.0 device/host/OTG, external memory interface BGA 180-Pin

PC
文件: 总81页 (文件大小:506K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC2458  
Single-chip 16-bit/32-bit micro; 512 kB flash, Ethernet, CAN,  
ISP/IAP, USB 2.0 device/host/OTG, external memory interface  
Rev. 4.1 — 15 October 2013  
Product data sheet  
1. General description  
NXP Semiconductors designed the LPC2458 microcontroller around a 16-bit/32-bit  
ARM7TDMI-S CPU core with real-time debug interfaces that include both JTAG and  
embedded trace. The LPC2458 has 512 kB of on-chip high-speed flash memory. This  
flash memory includes a special 128-bit wide memory interface and accelerator  
architecture that enables the CPU to execute sequential instructions from flash memory at  
the maximum 72 MHz system clock rate. This feature is available only on the LPC2000  
ARM microcontroller family of products. The LPC2458 can execute both 32-bit ARM and  
16-bit Thumb instructions. Support for the two instruction sets means engineers can  
choose to optimize their application for either performance or code size at the sub-routine  
level. When the core executes instructions in Thumb state it can reduce code size by  
more than 30 % with only a small loss in performance while executing instructions in ARM  
state maximizes core performance.  
The LPC2458 microcontroller is ideal for multi-purpose communication applications. It  
incorporates a 10/100 Ethernet Media Access Controller (MAC), a USB full-speed  
Device/Host/OTG Controller with 4 kB of endpoint RAM, four UARTs, two Controller Area  
Network (CAN) channels, an SPI interface, two Synchronous Serial Ports (SSP), three I2C  
interfaces, and an I2S interface. Supporting this collection of serial communications  
interfaces are the following feature components; an on-chip 4 MHz internal precision  
oscillator, 98 kB of total RAM consisting of 64 kB of local SRAM, 16 kB SRAM for  
Ethernet, 16 kB SRAM for general purpose DMA, 2 kB of battery powered SRAM, and an  
External Memory Controller (EMC). These features make this device optimally suited for  
communication gateways and protocol converters. Complementing the many serial  
communication controllers, versatile clocking capabilities, and memory features are  
various 32-bit timers, an improved 10-bit ADC, 10-bit DAC, two PWM units, four external  
interrupt pins, and up to 136 fast GPIO lines. The LPC2458 connects 64 of the GPIO pins  
to the hardware based Vector Interrupt Controller (VIC) that means these external inputs  
can generate edge-triggered interrupts. All of these features make the LPC2458  
particularly suitable for industrial control and medical systems.  
2. Features and benefits  
ARM7TDMI-S processor, running at up to 72 MHz.  
512 kB on-chip flash program memory with In-System Programming (ISP) and  
In-Application Programming (IAP) capabilities. Flash program memory is on the ARM  
local bus for high performance CPU access.  
98 kB on-chip SRAM includes:  
64 kB of SRAM on the ARM local bus for high performance CPU access.  
16 kB SRAM for Ethernet interface. Can also be used as general purpose SRAM.  
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
16 kB SRAM for general purpose DMA use also accessible by the USB.  
2 kB SRAM data storage powered from the Real-Time Clock (RTC) power domain.  
Dual Advanced High-performance Bus (AHB) system allows simultaneous Ethernet  
DMA, USB DMA, and program execution from on-chip flash with no contention.  
EMC provides support for asynchronous static memory devices such as RAM, ROM  
and flash, as well as dynamic memories such as Single Data Rate SDRAM.  
Advanced Vectored Interrupt Controller (VIC), supporting up to 32 vectored interrupts.  
General Purpose DMA controller (GPDMA) on AHB that can be used with the SSP,  
I2S, and SD/MM interface as well as for memory-to-memory transfers.  
Serial Interfaces:  
Ethernet MAC with MII/RMII interface and associated DMA controller. These  
functions reside on an independent AHB.  
USB 2.0 full-speed dual port Device/Host/OTG Controller with on-chip PHY and  
associated DMA controller.  
Four UARTs with fractional baud rate generation, one with modem control I/O, one  
with IrDA support, all with FIFO.  
CAN controller with two channels.  
SPI controller.  
Two SSP controllers, with FIFO and multi-protocol capabilities. One is an alternate  
for the SPI port, sharing its interrupt. SSPs can be used with the GPDMA controller.  
Three I2C-bus interfaces (one with open-drain and two with standard port pins).  
I2S (Inter-IC Sound) interface for digital audio input or output. It can be used with  
the GPDMA.  
Other peripherals:  
SD/MMC memory card interface.  
136 General purpose I/O pins with configurable pull-up/down resistors.  
10-bit ADC with input multiplexing among 8 pins.  
10-bit DAC.  
Four general purpose timers/counters with 8 capture inputs and 10 compare  
outputs. Each timer block has an external count input.  
Two PWM/timer blocks with support for three-phase motor control. Each PWM has  
an external count inputs.  
RTC with separate power domain, clock source can be the RTC oscillator or the  
APB clock.  
2 kB SRAM powered from the RTC power pin, allowing data to be stored when the  
rest of the chip is powered off.  
WatchDog Timer (WDT). The WDT can be clocked from the internal RC oscillator,  
the RTC oscillator, or the APB clock.  
Standard ARM test/debug interface for compatibility with existing tools.  
Emulation trace module supports real-time trace.  
Single 3.3 V power supply (3.0 V to 3.6 V).  
Four reduced power modes: idle, sleep, power-down, and deep power-down.  
Four external interrupt inputs configurable as edge/level sensitive. All pins on port 0  
and port 2 can be used as edge sensitive interrupt sources.  
Processor wake-up from Power-down mode via any interrupt able to operate during  
Power-down mode (includes external interrupts, RTC interrupt, USB activity, Ethernet  
wake-up interrupt, CAN bus activity, port 0/2 pin interrupt).  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
2 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Two independent power domains allow fine tuning of power consumption based on  
needed features.  
Each peripheral has its own clock divider for further power saving. These dividers help  
reduce active power by 20 % to 30 %.  
Brownout detect with separate thresholds for interrupt and forced reset.  
On-chip power-on reset.  
On-chip crystal oscillator with an operating range of 1 MHz to 25 MHz.  
4 MHz internal RC oscillator trimmed to 1 % accuracy that can optionally be used as  
the system clock. When used as the CPU clock, does not allow CAN and USB to run.  
On-chip PLL allows CPU operation up to the maximum CPU rate without the need for  
a high frequency crystal. May be run from the main oscillator, the internal RC oscillator,  
or the RTC oscillator.  
Boundary scan for simplified board testing.  
Versatile pin function selections allow more possibilities for using on-chip peripheral  
functions.  
3. Applications  
Industrial control  
Medical systems  
Protocol converter  
Communications  
4. Ordering information  
Table 1.  
Ordering information  
Package  
Name  
Type number  
Description  
Version  
LPC2458FET180 TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 12 0.8 mm  
SOT570-3  
4.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Flash  
(kB)  
SRAM (kB)  
External  
bus  
Ethernet USB  
OTG/  
SD/  
MMC DMA  
GP  
Temp  
range  
OHC/  
DEV  
+ 4 kB  
FIFO  
LPC2458FET180  
512  
64 16 16 2 98 16-bit  
MII/  
RMII  
yes  
2
yes  
yes  
8
1
40 C to  
+85 C  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
3 of 81  
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
5. Block diagram  
XTAL1  
V
XTAL2  
DD(3V3)  
DDA  
TMS TDI  
trace signals  
V
TRST TCK TDO  
RESET  
EXTIN0 DBGEN  
VREF  
SYSTEM  
FUNCTIONS  
LPC2458  
PLL  
V
V
, V  
V
P0, P1, P2,  
SSA SSIO, SSCORE  
64 kB  
SRAM  
512 kB  
FLASH  
TEST/DEBUG  
INTERFACE  
DD(DCDC)(3V3)  
P3, P4  
system  
clock  
INTERNAL RC  
OSCILLATOR  
HIGH-SPEED  
GPIO  
136 PINS  
TOTAL  
INTERNAL  
CONTROLLERS  
ARM7TDMI-S  
SRAM FLASH  
D[15:0]  
A[19:0]  
EXTERNAL  
MEMORY  
CONTROLLER  
16 kB  
SRAM  
VIC  
control lines  
AHB1  
AHB2  
AHB  
BRIDGE  
AHB  
BRIDGE  
V
BUS  
USB DEVICE/  
HOST/OTG WITH  
4 kB RAM AND DMA  
16 kB  
SRAM  
MASTER AHB TO SLAVE  
PORT AHB BRIDGE PORT  
ETHERNET  
MAC WITH  
DMA  
port 1  
port 2  
MII/RMII  
AHB TO  
GPDMA  
CONTROLLER  
APB BRIDGE  
EINT3 to EINT0  
P0, P2  
I2SRX_CLK  
I2STX_CLK  
I2SRX_WS  
I2STX_WS  
I2SRX_SDA  
I2STX_SDA  
EXTERNAL INTERRUPTS  
2
I S INTERFACE  
2 × CAP0/CAP1/  
CAP2/CAP3  
4 × MAT2,  
2 × MAT3,  
2 × MAT1/MAT0  
CAPTURE/COMPARE  
TIMER0/TIMER1/  
TIMER2/TIMER3  
SCK, SCK0  
MOSI, MOSI0  
MISO, MISO0  
SSEL, SSEL0  
SPI, SSP0 INTERFACE  
SSP1 INTERFACE  
6 × PWM0, PWM1  
PWM0, PWM1  
1 × PCAP0,  
2 × PCAP1  
SCK1  
MOSI1  
MISO1  
SSEL1  
LEGACY GPI/O  
64 PINS TOTAL  
P0, P1  
MCICLK, MCIPWR  
SD/MMC CARD  
INTERFACE  
8 × AD0  
A/D CONVERTER  
D/A CONVERTER  
2 kB BATTERY RAM  
MCICMD,  
MCIDAT[3:0]  
AOUT  
TXD0, TXD2, TXD3  
RXD0, RXD2, RXD3  
UART0, UART2, UART3  
UART1  
VBAT  
TXD1  
RXD1  
DTR1, RTS1  
power domain 2  
REAL-  
TIME  
RTCX1  
RTCX2  
RTC  
OSCILLATOR  
DSR1, CTS1, DCD1,  
RI1  
CLOCK  
ALARM  
RD1, RD2  
TD1, TD2  
CAN1, CAN2  
WATCHDOG TIMER  
SCL0, SCL1, SCL2  
SDA0, SDA1, SDA2  
2
2
2
I C0, I C1, I C2  
SYSTEM CONTROL  
002aad093  
Fig 1. LPC2458 block diagram  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
4 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
6. Pinning information  
6.1 Pinning  
ball A1  
index area  
LPC2458  
1
2 3 4 5 6 7 8 9 10 11 12 13 14  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
002aad094  
Transparent top view  
Fig 2. LPC2458 pinning TFBGA180 package  
Table 3.  
Pin allocation table  
Pin Symbol  
Row A  
Pin Symbol  
Pin Symbol  
Pin Symbol  
1
5
P3[12]/D12  
2
6
P3[2]/D2  
P3[8]/D8  
3
7
P0[3]/RXD0  
P1[10]/ENET_RXD1  
4
8
P3[9]/D9  
P1[1]/ENET_TXD1  
P1[15]/  
ENET_REF_CLK/  
ENET_RX_CLK  
9
P1[3]/ENET_TXD3/  
MCICMD/PWM0[2]  
10 VSSCORE  
11 P0[4]/I2SRX_CLK/RD2/ 12 P1[11]/ENET_RXD2/  
CAP2[0]  
MCIDAT2/PWM0[6]  
13 P0[9]/I2STX_SDA/  
MOSI1/MAT2[3]  
14 P1[12]/ENET_RXD3/  
MCIDAT3/PCAP0[0]  
15  
-
16  
-
Row B  
1
5
TDO  
2
6
P3[11]/D11  
3
7
P3[10]/D10  
4
8
VSSIO  
P1[0]/ENET_TXD0  
P1[8]/ENET_CRS_DV/  
ENET_CRS  
P1[2]/ENET_TXD2/  
MCICLK/PWM0[1]  
P1[16]/ENET_MDC  
9
P4[29]/  
MAT2[1]/RXD3  
10 P1[6]/ENET_TX_CLK/  
MCIDAT0/PWM0[4]  
11 P0[5]/I2SRX_WS/TD2/ 12 P0[7]/I2STX_CLK/SCK1  
CAP2[1]  
/MAT2[1]  
13 P1[5]/ENET_TX_ER/  
MCIPWR/PWM0[3]  
14 P4[13]/A13  
15  
-
16  
-
Row C  
1
5
9
P3[13]/D13  
2
6
TMS  
3
7
TDI  
4
8
RTCK  
VDD(3V3)  
P1[4]/ENET_TX_EN  
P4[30]/CS0  
P4[24]/OE  
P1[17]/ENET_MDIO  
10 P4[15]/A15  
11 VSSIO  
12 P0[8]/I2STX_WS/  
MISO1/MAT2[2]  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
5 of 81  
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 3.  
Pin allocation table …continued  
Pin Symbol  
Pin Symbol  
Pin Symbol  
Pin Symbol  
13 P1[7]/ENET_COL/  
MCIDAT1/PWM0[5]  
14 P2[1]/PWM1[2]/RXD1/  
PIPESTAT0  
15  
-
16  
-
Row D  
1
P0[26]/AD0[3]/  
AOUT/RXD3  
2
6
TCK  
3
7
P3[4]/D4  
4
8
TRST  
5
9
P0[2]/TXD0  
P4[25]/WE  
P3[0]/D0  
P1[9]/ENET_RXD0  
P1[14]/ENET_RX_ER  
10 P4[28]/  
MAT2[0]/TXD3  
11 P0[6]/I2SRX_SDA/  
SSEL1/MAT2[0]  
12 P2[0]/PWM1[1]/TXD1/  
TRACECLK  
13 VSSIO  
14 P1[13]/ENET_RX_DV  
15  
-
16  
-
Row E  
1
P0[24]/AD0[1]/  
I2SRX_WS/CAP3[1]  
2
6
VDD(3V3)  
P3[1]/D1  
3
7
P3[5]/D5  
4
8
P0[25]/AD0[2]/  
I2SRX_SDA/TXD3  
5
9
DBGEN  
P4[31]/CS1  
P4[14]/A14  
VDD(DCDC)(3V3)  
10 VDD(3V3)  
11 P2[2]/PWM1[3]/  
CTS1/PIPESTAT1  
12 VDD(3V3)  
13 P2[3]/PWM1[4]/  
DCD1/PIPESTAT2  
14 P2[4]/PWM1[5]/  
DSR1/TRACESYNC  
15  
-
16  
-
Row F  
1
5
P3[14]/D14  
2
6
VDDA  
3
7
VSSA  
4
8
P3[6]/D6  
P0[23]/AD0[0]/  
I2SRX_CLK/CAP3[0]  
9
10 P4[12]/A12  
14 P4[27]/BLS1  
11 P4[11]/A11  
12 P2[5]/PWM1[6]/  
DTR1/TRACEPKT0  
13 P2[6]/PCAP1[0]/  
RI1/TRACEPKT1  
15  
-
16  
-
Row G  
1
5
9
VDD(DCDC)(3V3)  
P3[3]/D3  
2
6
VREF  
3
7
P3[7]/D7  
4
8
P3[15]/D15  
10 n.c.  
11 P2[7]/RD2/  
RTS1/TRACEPKT2  
12 P4[10]/A10  
13 VSSIO  
14 P2[8]/TD2/  
15  
-
16  
-
TXD2/TRACEPKT3  
Row H  
1
5
9
n.c.  
2
6
RSTOUT  
3
7
VSSCORE  
4
8
VSSIO  
ALARM  
10 P4[5]/A5  
11 P2[9]/  
USB_CONNECT1/  
12 P4[9]/A9  
RXD2/EXTIN0  
13 P0[15]/TXD1/  
SCK0/SCK  
14 P0[16]/RXD1/  
SSEL0/SSEL  
15  
-
16  
-
Row J  
1
RESET  
2
6
RTCX1  
3
7
RTCX2  
4
8
P0[12]/USB_PPWR2/  
MISO1/AD0[6]  
5
P0[13]/USB_UP_LED2/  
MOSI1/AD0[7]  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
6 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 3. Pin allocation table …continued  
Pin Symbol  
Pin Symbol  
Pin Symbol  
Pin Symbol  
9
10 P0[19]/DSR1/  
MCICLK/SDA1  
11 P4[8]/A8  
12 P0[17]/CTS1/  
MISO0/MISO  
13 P0[18]/DCD1/  
MOSI0/MOSI  
14 VDD(3V3)  
15  
-
16  
-
Row K  
1
5
9
VBAT  
2
6
P1[31]/USB_OVRCR2/  
SCK1/AD0[5]  
3
7
P1[30]/USB_PWRD2/  
VBUS/AD0[4]  
4
8
XTAL2  
P0[29]/USB_D+1  
P4[3]/A3  
P1[20]/USB_TX_DP1/  
PWM1[2]/SCK0  
P3[26]/MAT0[1]/  
PWM1[3]  
VDD(3V3)  
10 P4[6]/A6  
11 P0[21]/RI1/  
MCIPWR/RD1  
12 P4[7]/A7  
13 P4[26]/BLS0  
14 P0[20]/DTR1/  
MCICMD/SCL1  
15  
-
16  
-
Row L  
1
5
P2[29]/DQMOUT1  
2
6
XTAL1  
3
7
P0[27]/SDA0  
4
8
VDD(3V3)  
VSSCORE  
P1[18]/USB_UP_LED1/  
PWM1[1]/CAP1[0]  
P4[0]/A0  
P1[25]/USB_LS1/  
USB_HSTEN1/MAT1[1]  
9
VSSIO  
10 P0[10]/TXD2/SDA2/  
MAT3[0]  
11 VDD(3V3)  
12 n.c.  
13 VSSIO  
14 P0[22]/RTS1/  
MCIDAT0/TD1  
15  
-
16  
-
Row M  
1
P0[28]/SCL0  
2
6
P2[28]/DQMOUT0  
3
7
P3[25]/MAT0[0]/  
PWM1[2]  
4
8
P3[23]/CAP0[0]/  
PCAP1[0]  
5
P0[14]/USB_HSTEN2/  
USB_CONNECT2/  
SSEL1  
P1[22]/USB_RCV1/  
USB_PWRD1/MAT1[0]  
P4[1]/A1  
P4[2]/A2  
9
P1[27]/USB_INT1/  
USB_OVRCR1/CAP0[1]  
10 P0[0]/RD1/TXD3/SDA1 11 P2[13]/EINT3/  
MCIDAT3/I2STX_SDA  
12 P2[11]/EINT1/  
MCIDAT1/I2STX_CLK  
13 P2[10]/EINT0  
14 P4[19]/A19  
15  
-
16  
-
Row N  
1
5
9
P0[31]/USB_D+2  
P2[19]/CLKOUT1  
VDD(DCDC)(3V3)  
2
6
USB_D2  
3
7
P3[24]/CAP0[1]/  
PWM1[1]  
4
8
P0[30]/USB_D1  
P1[21]/USB_TX_DM1/  
PWM1[3]/SSEL0  
P1[23]/USB_RX_DP1/  
PWM1[4]/MISO0  
P2[21]/DYCS1  
10 P1[29]/USB_SDA1/  
PCAP1[1]/MAT0[1]  
11 P0[1]/TD1/RXD3/SCL1 12 P4[16]/A16  
13 P4[17]/A17  
14 P2[12]/EINT2/  
15  
-
16  
-
MCIDAT2/I2STX_WS  
Row P  
1
5
P2[24]/CKEOUT0  
2
6
P2[25]/CKEOUT1  
P2[20]/DYCS0  
3
7
P2[18]/CLKOUT0  
4
8
VSSIO  
P1[19]/USB_TX_E1/  
USB_PPWR1/CAP1[1]  
P1[24]/USB_RX_DM1/  
PWM1[5]/MOSI0  
P1[26]/USB_SSPND1/  
PWM1[6]/CAP0[0]  
9
P2[16]/CAS  
10 P1[28]/USB_SCL1/  
PCAP1[0]/MAT0[0]  
11 P2[17]/RAS  
12 P0[11]/RXD2/SCL2/  
MAT3[1]  
13 P4[4]/A4  
14 P4[18]/A18  
15  
-
16  
-
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
7 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
6.2 Pin description  
Table 4.  
Symbol  
Pin description  
Ball  
Type  
Description  
P0[0] to P0[31]  
I/O  
Port 0: Port 0 is a 32-bit I/O port with individual direction controls for each bit. The  
operation of port 0 pins depends upon the pin function selected via the Pin  
Connect block.  
P0[0]/RD1/  
TXD3/SDA1  
M10[1]  
I/O  
I
P0[0] — General purpose digital input/output pin.  
RD1 — CAN1 receiver input.  
O
TXD3 — Transmitter output for UART3.  
I/O  
I/O  
O
SDA1 — I2C1 data input/output (this is not an open-drain pin).  
P0[1] — General purpose digital input/output pin.  
TD1 — CAN1 transmitter output.  
P0[1]/TD1/RXD3/  
SCL1  
N11[1]  
I
RXD3 — Receiver input for UART3.  
I/O  
I/O  
O
SCL1 — I2C1 clock input/output (this is not an open-drain pin).  
P0[2] — General purpose digital input/output pin.  
TXD0 — Transmitter output for UART0.  
P0[2]/TXD0  
P0[3]/RXD0  
D5[1]  
A3[1]  
A11[1]  
I/O  
I
P0[3] — General purpose digital input/output pin.  
RXD0 — Receiver input for UART0.  
P0[4]/  
I2SRX_CLK/  
RD2/CAP2[0]  
I/O  
I/O  
P0[4] — General purpose digital input/output pin.  
I2SRX_CLK — Receive Clock. It is driven by the master and received by the  
slave. Corresponds to the signal SCK in the I2S-bus specification.  
I
RD2 — CAN2 receiver input.  
I
CAP2[0] — Capture input for Timer 2, channel 0.  
P0[5] — General purpose digital input/output pin.  
P0[5]/  
I2SRX_WS/  
TD2/CAP2[1]  
B11[1]  
D11[1]  
B12[1]  
C12[1]  
I/O  
I/O  
I2SRX_WS — Receive Word Select. It is driven by the master and received by  
the slave. Corresponds to the signal WS in the I2S-bus specification.  
O
TD2 — CAN2 transmitter output.  
I
CAP2[1] — Capture input for Timer 2, channel 1.  
P0[6] — General purpose digital input/output pin.  
P0[6]/  
I2SRX_SDA/  
SSEL1/MAT2[0]  
I/O  
I/O  
I2SRX_SDA — Receive data. It is driven by the transmitter and read by the  
receiver. Corresponds to the signal SD in the I2S-bus specification.  
I/O  
O
SSEL1 — Slave Select for SSP1.  
MAT2[0] — Match output for Timer 2, channel 0.  
P0[7] — General purpose digital input/output pin.  
P0[7]/  
I2STX_CLK/  
SCK1/MAT2[1]  
I/O  
I/O  
I2STX_CLK — Transmit Clock. It is driven by the master and received by the  
slave. Corresponds to the signal SCK in the I2S-bus specification.  
I/O  
O
SCK1 — Serial Clock for SSP1.  
MAT2[1] — Match output for Timer 2, channel 1.  
P0[8] — General purpose digital input/output pin.  
P0[8]/  
I/O  
I/O  
I2STX_WS/  
MISO1/MAT2[2]  
I2STX_WS — Transmit Word Select. It is driven by the master and received by  
the slave. Corresponds to the signal WS in the I2S-bus specification.  
I/O  
O
MISO1 — Master In Slave Out for SSP1.  
MAT2[2] — Match output for Timer 2, channel 2.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
8 of 81  
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 4.  
Symbol  
Pin description …continued  
Ball  
Type  
I/O  
Description  
P0[9]/  
A13[1]  
P0[9] — General purpose digital input/output pin.  
I2STX_SDA/  
MOSI1/MAT2[3]  
I/O  
I2STX_SDA — Transmit data. It is driven by the transmitter and read by the  
receiver. Corresponds to the signal SD in the I2S-bus specification.  
I/O  
O
MOSI1 — Master Out Slave In for SSP1.  
MAT2[3] — Match output for Timer 2, channel 3.  
P0[10] — General purpose digital input/output pin.  
TXD2 — Transmitter output for UART2.  
P0[10]/TXD2/  
SDA2/MAT3[0]  
L10[1]  
P12[1]  
J4[2]  
I/O  
O
I/O  
O
SDA2 — I2C2 data input/output (this is not an open-drain pin).  
MAT3[0] — Match output for Timer 3, channel 0.  
P0[11] — General purpose digital input/output pin.  
RXD2 — Receiver input for UART2.  
P0[11]/RXD2/  
SCL2/MAT3[1]  
I/O  
I
I/O  
O
SCL2 — I2C2 clock input/output (this is not an open-drain pin).  
MAT3[1] — Match output for Timer 3, channel 1.  
P0[12] — General purpose digital input/output pin.  
USB_PPWR2 — Port Power enable signal for USB port 2.  
MISO1 — Master In Slave Out for SSP1.  
P0[12]/  
I/O  
O
USB_PPWR2/  
MISO1/AD0[6]  
I/O  
I
AD0[6] — A/D converter 0, input 6.  
P0[13]/  
USB_UP_LED2/  
MOSI1/AD0[7]  
J5[2]  
I/O  
O
P0[13] — General purpose digital input/output pin.  
USB_UP_LED2 — USB port 2 GoodLink LED indicator. It is LOW when device is  
configured (non-control endpoints enabled), or when host is enabled and has  
detected a device on the bus. It is HIGH when the device is not configured, or  
when host is enabled and has not detected a device on the bus, or during global  
suspend. It transitions between LOW and HIGH (flashes) when host is enabled  
and detects activity on the bus.  
I/O  
I
MOSI1 — Master Out Slave In for SSP1.  
AD0[7] — A/D converter 0, input 7.  
P0[14]/  
M5[1]  
I/O  
O
P0[14] — General purpose digital input/output pin.  
USB_HSTEN2 — Host Enabled status for USB port 2.  
USB_HSTEN2/  
USB_CONNECT2/  
SSEL1  
O
USB_CONNECT2 — SoftConnect control for USB port 2. Signal used to switch  
an external 1.5 kresistor under software control. Used with the SoftConnect  
USB feature.  
I/O  
I/O  
O
SSEL1 — Slave Select for SSP1.  
P0[15]/TXD1/  
SCK0/SCK  
H13[1]  
P0[15] — General purpose digital input/output pin.  
TXD1 — Transmitter output for UART1.  
SCK0 — Serial clock for SSP0.  
I/O  
I/O  
I/O  
I
SCK — Serial clock for SPI.  
P0[16]/RXD1/  
SSEL0/SSEL  
H14[1]  
P0[16] — General purpose digital input/output pin.  
RXD1 — Receiver input for UART1.  
SSEL0 — Slave Select for SSP0.  
I/O  
I/O  
SSEL — Slave Select for SPI.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
9 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 4.  
Symbol  
Pin description …continued  
Ball  
Type  
I/O  
I
Description  
P0[17]/CTS1/  
MISO0/MISO  
J12[1]  
P0[17] — General purpose digital input/output pin.  
CTS1 — Clear to Send input for UART1.  
I/O  
I/O  
I/O  
I
MISO0 — Master In Slave Out for SSP0.  
MISO — Master In Slave Out for SPI.  
P0[18]/DCD1/  
MOSI0/MOSI  
J13[1]  
J10[1]  
K14[1]  
K11[1]  
L14[1]  
F5[2]  
P0[18] — General purpose digital input/output pin.  
DCD1 — Data Carrier Detect input for UART1.  
MOSI0 — Master Out Slave In for SSP0.  
I/O  
I/O  
I/O  
I
MOSI — Master Out Slave In for SPI.  
P0[19]/DSR1/  
MCICLK/SDA1  
P0[19] — General purpose digital input/output pin.  
DSR1 — Data Set Ready input for UART1.  
MCICLK — Clock output line for SD/MMC interface.  
SDA1 — I2C1 data input/output (this is not an open-drain pin).  
P0[20] — General purpose digital input/output pin.  
DTR1 — Data Terminal Ready output for UART1.  
MCICMD — Command line for SD/MMC interface.  
SCL1 — I2C1 clock input/output (this is not an open-drain pin).  
P0[21] — General purpose digital input/output pin.  
RI1 — Ring Indicator input for UART1.  
O
I/O  
I/O  
O
P0[20]/DTR1/  
MCICMD/SCL1  
I/O  
I/O  
I/O  
I
P0[21]/RI1/  
MCIPWR/RD1  
O
MCIPWR — Power Supply Enable for external SD/MMC power supply.  
RD1 — CAN1 receiver input.  
I
P0[22]/RTS1/  
MCIDAT0/TD1  
I/O  
O
P0[22] — General purpose digital input/output pin.  
RTS1 — Request to Send output for UART1.  
MCIDAT0 — Data line 0 for SD/MMC interface.  
TD1 — CAN1 transmitter output.  
I/O  
O
P0[23]/AD0[0]/  
I2SRX_CLK/  
CAP3[0]  
I/O  
I
P0[23] — General purpose digital input/output pin.  
AD0[0] — A/D converter 0, input 0.  
I/O  
I2SRX_CLK — Receive Clock. It is driven by the master and received by the  
slave. Corresponds to the signal SCK in the I2S-bus specification.  
I
CAP3[0] — Capture input for Timer 3, channel 0.  
P0[24] — General purpose digital input/output pin.  
AD0[1] — A/D converter 0, input 1.  
P0[24]/AD0[1]/  
I2SRX_WS/  
CAP3[1]  
E1[2]  
I/O  
I
I/O  
I2SRX_WS — Receive Word Select. It is driven by the master and received by  
the slave. Corresponds to the signal WS in the I2S-bus specification.  
I
CAP3[1] — Capture input for Timer 3, channel 1.  
P0[25] — General purpose digital input/output pin.  
AD0[2] — A/D converter 0, input 2.  
P0[25]/AD0[2]/  
I2SRX_SDA/  
TXD3  
E4[2]  
I/O  
I
I/O  
I2SRX_SDA — Receive data. It is driven by the transmitter and read by the  
receiver. Corresponds to the signal SD in the I2S-bus specification.  
O
TXD3 — Transmitter output for UART3.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
10 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 4.  
Symbol  
Pin description …continued  
Ball  
Type  
I/O  
I
Description  
P0[26]/AD0[3]/  
AOUT/RXD3  
D1[2][3]  
P0[26] — General purpose digital input/output pin.  
AD0[3] — A/D converter 0, input 3.  
O
AOUT — D/A converter output.  
I
RXD3 — Receiver input for UART3.  
P0[27]/SDA0  
L3[4]  
M1[4]  
K5[5]  
N4[5]  
N1[5]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P0[27] — General purpose digital input/output pin. Output is open-drain.  
SDA0 — I2C0 data input/output. Open-drain output (for I2C-bus compliance).  
P0[28] — General purpose digital input/output pin. Output is open-drain.  
SCL0 — I2C0 clock input/output. Open-drain output (for I2C-bus compliance).  
P0[29] — General purpose digital input/output pin.  
USB_D+1 — USB port 1 bidirectional D+ line.  
P0[28]/SCL0  
P0[29]/USB_D+1  
P0[30]/USB_D1  
P0[31]/USB_D+2  
P1[0] to P1[31]  
P0[30] — General purpose digital input/output pin.  
USB_D1 — USB port 1 bidirectional Dline.  
P0[31] — General purpose digital input/output pin.  
USB_D+2 — USB port 2 bidirectional D+ line.  
Port 1: Port 1 is a 32 bit I/O port with individual direction controls for each bit. The  
operation of port 1 pins depends upon the pin function selected via the Pin  
Connect block.  
P1[0]/  
ENET_TXD0  
B5[1]  
A5[1]  
B7[1]  
I/O  
O
P1[0] — General purpose digital input/output pin.  
ENET_TXD0 — Ethernet transmit data 0 (RMII/MII interface).  
P1[1] — General purpose digital input/output pin.  
ENET_TXD1 — Ethernet transmit data 1 (RMII/MII interface).  
P1[2] — General purpose digital input/output pin.  
ENET_TXD2 — Ethernet transmit data 2 (MII interface).  
MCICLK — Clock output line for SD/MMC interface.  
PWM0[1] — Pulse Width Modulator 0, output 1.  
P1[1]/  
ENET_TXD1  
I/O  
O
P1[2]/  
I/O  
O
ENET_TXD2/  
MCICLK/  
PWM0[1]  
O
O
P1[3]/  
A9[1]  
I/O  
O
P1[3] — General purpose digital input/output pin.  
ENET_TXD3 — Ethernet transmit data 3 (MII interface).  
MCICMD — Command line for SD/MMC interface.  
PWM0[2] — Pulse Width Modulator 0, output 2.  
ENET_TXD3/  
MCICMD/  
PWM0[2]  
I/O  
O
P1[4]/  
ENET_TX_EN  
C6[1]  
I/O  
O
P1[4] — General purpose digital input/output pin.  
ENET_TX_EN — Ethernet transmit data enable (RMII/MII interface).  
P1[5] — General purpose digital input/output pin.  
ENET_TX_ER — Ethernet Transmit Error (MII interface).  
MCIPWR — Power Supply Enable for external SD/MMC power supply.  
PWM0[3] — Pulse Width Modulator 0, output 3.  
P1[5]/  
B13[1]  
I/O  
O
ENET_TX_ER/  
MCIPWR/  
PWM0[3]  
O
O
P1[6]/  
B10[1]  
I/O  
I
P1[6] — General purpose digital input/output pin.  
ENET_TX_CLK — Ethernet Transmit Clock (MII interface).  
MCIDAT0 — Data line 0 for SD/MMC interface.  
ENET_TX_CLK/  
MCIDAT0/  
PWM0[4]  
I/O  
O
PWM0[4] — Pulse Width Modulator 0, output 4.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
11 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 4.  
Symbol  
Pin description …continued  
Ball  
C13[1]  
Type  
I/O  
I
Description  
P1[7]/  
P1[7] — General purpose digital input/output pin.  
ENET_COL — Ethernet Collision detect (MII interface).  
MCIDAT1 — Data line 1 for SD/MMC interface.  
PWM0[5] — Pulse Width Modulator 0, output 5.  
P1[8] — General purpose digital input/output pin.  
ENET_COL/  
MCIDAT1/  
PWM0[5]  
I/O  
O
P1[8]/  
ENET_CRS_DV/  
ENET_CRS  
B6[1]  
I/O  
I
ENET_CRS_DV/ENET_CRS — Ethernet Carrier Sense/Data Valid (RMII  
interface)/ Ethernet Carrier Sense (MII interface).  
P1[9]/  
ENET_RXD0  
D7[1]  
A7[1]  
A12[1]  
I/O  
I
P1[9] — General purpose digital input/output pin.  
ENET_RXD0 — Ethernet receive data 0 (RMII/MII interface).  
P1[10] — General purpose digital input/output pin.  
ENET_RXD1 — Ethernet receive data 1 (RMII/MII interface).  
P1[11] — General purpose digital input/output pin.  
ENET_RXD2 — Ethernet Receive Data 2 (MII interface).  
MCIDAT2 — Data line 2 for SD/MMC interface.  
P1[10]/  
ENET_RXD1  
I/O  
I
P1[11]/  
I/O  
I
ENET_RXD2/  
MCIDAT2/  
PWM0[6]  
I/O  
O
I/O  
I
PWM0[6] — Pulse Width Modulator 0, output 6.  
P1[12]/  
A14[1]  
P1[12] — General purpose digital input/output pin.  
ENET_RXD3 — Ethernet Receive Data (MII interface).  
MCIDAT3 — Data line 3 for SD/MMC interface.  
ENET_RXD3/  
MCIDAT3/  
PCAP0[0]  
I/O  
I
PCAP0[0] — Capture input for PWM0, channel 0.  
P1[13] — General purpose digital input/output pin.  
ENET_RX_DV — Ethernet Receive Data Valid (MII interface).  
P1[14] — General purpose digital input/output pin.  
ENET_RX_ER — Ethernet receive error (RMII/MII interface).  
P1[15] — General purpose digital input/output pin.  
P1[13]/  
ENET_RX_DV  
D14[1]  
D8[1]  
A8[1]  
I/O  
I
P1[14]/  
ENET_RX_ER  
I/O  
I
P1[15]/  
ENET_REF_CLK/  
ENET_RX_CLK  
I/O  
I
ENET_REF_CLK/ENET_RX_CLK — Ethernet Reference Clock (RMII interface)/  
Ethernet Receive Clock (MII interface).  
P1[16]/  
ENET_MDC  
B8[1]  
C9[1]  
L5[1]  
I/O  
O
P1[16] — General purpose digital input/output pin.  
ENET_MDC — Ethernet MIIM clock.  
P1[17]/  
ENET_MDIO  
I/O  
I/O  
I/O  
O
P1[17] — General purpose digital input/output pin.  
ENET_MDIO — Ethernet MI data input and output.  
P1[18] — General purpose digital input/output pin.  
P1[18]/  
USB_UP_LED1/  
PWM1[1]/  
CAP1[0]  
USB_UP_LED1 — USB port 1 GoodLink LED indicator. It is LOW when device is  
configured (non-control endpoints enabled), or when host is enabled and has  
detected a device on the bus. It is HIGH when the device is not configured, or  
when host is enabled and has not detected a device on the bus, or during global  
suspend. It transitions between LOW and HIGH (flashes) when host is enabled  
and detects activity on the bus.  
O
I
PWM1[1] — Pulse Width Modulator 1, channel 1 output.  
CAP1[0] — Capture input for Timer 1, channel 0.  
P1[19]/  
P5[1]  
I/O  
O
O
I
P1[19] — General purpose digital input/output pin.  
USB_TX_E1/  
USB_PPWR1/  
CAP1[1]  
USB_TX_E1 — Transmit Enable signal for USB port 1 (OTG transceiver).  
USB_PPWR1 — Port Power enable signal for USB port 1.  
CAP1[1] — Capture input for Timer 1, channel 1.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
12 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 4.  
Symbol  
Pin description …continued  
Ball  
K6[1]  
Type  
I/O  
O
Description  
P1[20]/  
USB_TX_DP1/  
PWM1[2]/SCK0  
P1[20] — General purpose digital input/output pin.  
USB_TX_DP1 — D+ transmit data for USB port 1 (OTG transceiver).  
PWM1[2] — Pulse Width Modulator 1, channel 2 output.  
SCK0 — Serial clock for SSP0.  
O
I/O  
I/O  
O
P1[21]/  
USB_TX_DM1/  
PWM1[3]/SSEL0  
N6[1]  
M6[1]  
N7[1]  
P7[1]  
L7[1]  
P1[21] — General purpose digital input/output pin.  
USB_TX_DM1 — Dtransmit data for USB port 1 (OTG transceiver).  
PWM1[3] — Pulse Width Modulator 1, channel 3 output.  
SSEL0 — Slave Select for SSP0.  
O
I/O  
I/O  
I
P1[22]/  
P1[22] — General purpose digital input/output pin.  
USB_RCV1 — Differential receive data for USB port 1 (OTG transceiver).  
USB_PWRD1 — Power Status for USB port 1 (host power switch).  
MAT1[0] — Match output for Timer 1, channel 0.  
USB_RCV1/  
USB_PWRD1/  
MAT1[0]  
I
O
P1[23]/  
USB_RX_DP1/  
PWM1[4]/MISO0  
I/O  
I
P1[23] — General purpose digital input/output pin.  
USB_RX_DP1 — D+ receive data for USB port 1 (OTG transceiver).  
PWM1[4] — Pulse Width Modulator 1, channel 4 output.  
MISO0 — Master In Slave Out for SSP0.  
O
I/O  
I/O  
I
P1[24]/  
USB_RX_DM1/  
PWM1[5]/MOSI0  
P1[24] — General purpose digital input/output pin.  
USB_RX_DM1 — Dreceive data for USB port 1 (OTG transceiver).  
PWM1[5] — Pulse Width Modulator 1, channel 5 output.  
MOSI0 — Master Out Slave in for SSP0.  
O
I/O  
I/O  
O
P1[25]/  
P1[25] — General purpose digital input/output pin.  
USB_LS1 — Low-speed status for USB port 1 (OTG transceiver).  
USB_HSTEN1 — Host Enabled status for USB port 1.  
MAT1[1] — Match output for Timer 1, channel 1.  
USB_LS1/  
USB_HSTEN1/  
MAT1[1]  
O
O
P1[26]/  
P8[1]  
M9[1]  
P10[1]  
N10[1]  
I/O  
O
P1[26] — General purpose digital input/output pin.  
USB_SSPND1 — USB port 1 Bus Suspend status (OTG transceiver).  
PWM1[6] — Pulse Width Modulator 1, channel 6 output.  
CAP0[0] — Capture input for Timer 0, channel 0.  
P1[27] — General purpose digital input/output pin.  
USB_INT1 — USB port 1 OTG transceiver interrupt.  
USB_OVRCR1 — USB port 1 Over-Current status.  
CAP0[1] — Capture input for Timer 0, channel 1.  
P1[28] — General purpose digital input/output pin.  
USB_SCL1 — USB port 1 I2C serial clock (OTG transceiver).  
PCAP1[0] — Capture input for PWM1, channel 0.  
MAT0[0] — Match output for Timer 0, channel 0.  
USB_SSPND1/  
PWM1[6]/  
CAP0[0]  
O
I
P1[27]/  
I/O  
I
USB_INT1/  
USB_OVRCR1/  
CAP0[1]  
I
I
P1[28]/  
I/O  
I/O  
I
USB_SCL1/  
PCAP1[0]/  
MAT0[0]  
O
P1[29]/  
I/O  
I/O  
I
P1[29] — General purpose digital input/output pin.  
USB_SDA1 — USB port 1 I2C serial data (OTG transceiver).  
PCAP1[1] — Capture input for PWM1, channel 1.  
MAT0[1] — Match output for Timer 0, channel 0.  
USB_SDA1/  
PCAP1[1]/  
MAT0[1]  
O
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
13 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 4.  
Symbol  
Pin description …continued  
Ball  
Type  
Description  
P1[30]/  
USB_PWRD2/  
VBUS/AD0[4]  
K3[2]  
I/O  
P1[30] — General purpose digital input/output pin.  
USB_PWRD2 — Power Status for USB port 2.  
VBUS Monitors the presence of USB bus power.  
Note: This signal must be HIGH for USB reset to occur.  
AD0[4] — A/D converter 0, input 4.  
I
I
I
P1[31]/  
USB_OVRCR2/  
SCK1/AD0[5]  
K2[2]  
I/O  
I
P1[31] — General purpose digital input/output pin.  
USB_OVRCR2 — Over-Current status for USB port 2.  
SCK1 — Serial Clock for SSP1.  
I/O  
I
AD0[5] — A/D converter 0, input 5.  
P2[0] to P2[31]  
I/O  
Port 2: Port 2 is a 32-bit I/O port with individual direction controls for each bit. The  
operation of port 2 pins depends upon the pin function selected via the Pin  
Connect block.  
Pins P2[14:15], P2[22:23], P[26:27] and P2[30:31] are not available.  
P2[0] — General purpose digital input/output pin.  
PWM1[1] — Pulse Width Modulator 1, channel 1 output.  
TXD1 — Transmitter output for UART1.  
P2[0]/PWM1[1]/  
TXD1/  
TRACECLK  
D12[1]  
C14[1]  
E11[1]  
E13[1]  
E14[1]  
F12[1]  
I/O  
O
O
O
I/O  
O
I
TRACECLK — Trace Clock.  
P2[1]/PWM1[2]/  
RXD1/  
PIPESTAT0  
P2[1] — General purpose digital input/output pin.  
PWM1[2] — Pulse Width Modulator 1, channel 2 output.  
RXD1 — Receiver input for UART1.  
O
I/O  
O
I
PIPESTAT0 — Pipeline Status, bit 0.  
P2[2]/PWM1[3]/  
CTS1/  
PIPESTAT1  
P2[2] — General purpose digital input/output pin.  
PWM1[3] — Pulse Width Modulator 1, channel 3 output.  
CTS1 — Clear to Send input for UART1.  
O
I/O  
O
I
PIPESTAT1 — Pipeline Status, bit 1.  
P2[3]/PWM1[4]/  
DCD1/  
PIPESTAT2  
P2[3] — General purpose digital input/output pin.  
PWM1[4] — Pulse Width Modulator 1, channel 4 output.  
DCD1 — Data Carrier Detect input for UART1.  
PIPESTAT2 — Pipeline Status, bit 2.  
O
I/O  
O
I
P2[4]/PWM1[5]/  
DSR1/  
TRACESYNC  
P2[4] — General purpose digital input/output pin.  
PWM1[5] — Pulse Width Modulator 1, channel 5 output.  
DSR1 — Data Set Ready input for UART1.  
TRACESYNC — Trace Synchronization.  
O
I/O  
O
O
O
I/O  
I
P2[5]/PWM1[6]/  
DTR1/  
TRACEPKT0  
P2[5] — General purpose digital input/output pin.  
PWM1[6] — Pulse Width Modulator 1, channel 6 output.  
DTR1 — Data Terminal Ready output for UART1.  
TRACEPKT0 — Trace Packet, bit 0.  
P2[6]/PCAP1[0]/RI1/ F13[1]  
TRACEPKT1  
P2[6] — General purpose digital input/output pin.  
PCAP1[0] — Capture input for PWM1, channel 0.  
RI1 — Ring Indicator input for UART1.  
I
O
TRACEPKT1 — Trace Packet, bit 1.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
14 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 4.  
Symbol  
Pin description …continued  
Ball  
G11[1]  
Type  
I/O  
I
Description  
P2[7]/RD2/  
RTS1/  
TRACEPKT2  
P2[7] — General purpose digital input/output pin.  
RD2 — CAN2 receiver input.  
O
RTS1 — Request to Send output for UART1.  
TRACEPKT2 — Trace Packet, bit 2.  
O
P2[8]/TD2/  
TXD2/  
TRACEPKT3  
G14[1]  
I/O  
O
P2[8] — General purpose digital input/output pin.  
TD2 — CAN2 transmitter output.  
O
TXD2 — Transmitter output for UART2.  
TRACEPKT3 — Trace Packet, bit 3.  
O
P2[9]/  
USB_CONNECT1/  
RXD2/  
H11[1]  
I/O  
O
P2[9] — General purpose digital input/output pin.  
USB_CONNECT1 — USB1 SoftConnect control. Signal used to switch an  
external 1.5 kresistor under the software control. Used with the SoftConnect  
USB feature.  
EXTIN0  
I
RXD2 — Receiver input for UART2.  
I
EXTIN0 — External Trigger Input.  
P2[10]/EINT0  
M13[6]  
M12[6]  
I/O  
P2[10] — General purpose digital input/output pin.  
Note: LOW on this pin while RESET is LOW forces on-chip bootloader to take  
over control of the part after a reset.  
I
EINT0 — External interrupt 0 input.  
P2[11]/EINT1/  
MCIDAT1/  
I2STX_CLK  
I/O  
I
P2[11] — General purpose digital input/output pin.  
EINT1 — External interrupt 1 input.  
I/O  
I/O  
MCIDAT1 — Data line 1 for SD/MMC interface.  
I2STX_CLK — Transmit Clock. It is driven by the master and received by the  
slave. Corresponds to the signal SCK in the I2S-bus specification.  
P2[12]/EINT2/  
MCIDAT2/  
I2STX_WS  
N14[6]  
I/O  
I
P2[12] — General purpose digital input/output pin.  
EINT2 — External interrupt 2 input.  
I/O  
I/O  
MCIDAT2 — Data line 2 for SD/MMC interface.  
I2STX_WS — Transmit Word Select. It is driven by the master and received by  
the slave. Corresponds to the signal WS in the I2S-bus specification.  
P2[13]/EINT3/  
MCIDAT3/  
I2STX_SDA  
M11[6]  
I/O  
I
P2[13] — General purpose digital input/output pin.  
EINT3 — External interrupt 3 input.  
I/O  
I/O  
MCIDAT3 — Data line 3 for SD/MMC interface.  
I2STX_SDA — Transmit data. It is driven by the transmitter and read by the  
receiver. Corresponds to the signal SD in the I2S-bus specification.  
P2[16]/CAS  
P2[17]/RAS  
P9[1]  
P11[1]  
P3[1]  
N5[1]  
I/O  
O
P2[16] — General purpose digital input/output pin.  
CAS — LOW active SDRAM Column Address Strobe.  
P2[17] — General purpose digital input/output pin.  
RAS — LOW active SDRAM Row Address Strobe.  
P2[18] — General purpose digital input/output pin.  
CLKOUT0 — SDRAM clock 0.  
I/O  
O
P2[18]/  
CLKOUT0  
I/O  
O
P2[19]/  
CLKOUT1  
I/O  
O
P2[19] — General purpose digital input/output pin.  
CLKOUT1 — SDRAM clock 1.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
15 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 4.  
Pin description …continued  
Symbol  
Ball  
P6[1]  
Type  
I/O  
O
Description  
P2[20]/DYCS0  
P2[20] — General purpose digital input/output pin.  
DYCS0 — SDRAM chip select 0.  
P2[21]/DYCS1  
N8[1]  
P1[1]  
P2[1]  
M2[1]  
L1[1]  
I/O  
O
P2[21] — General purpose digital input/output pin.  
DYCS1 — SDRAM chip select 1.  
P2[24]/  
CKEOUT0  
I/O  
O
P2[24] — General purpose digital input/output pin.  
CKEOUT0 — SDRAM clock enable 0.  
P2[25]/  
CKEOUT1  
I/O  
O
P2[25] — General purpose digital input/output pin.  
CKEOUT1 — SDRAM clock enable 1.  
P2[28]/  
DQMOUT0  
I/O  
O
P2[28] — General purpose digital input/output pin.  
DQMOUT0 — Data mask 0 used with SDRAM and static devices.  
P2[29] — General purpose digital input/output pin.  
DQMOUT1 — Data mask 1 used with SDRAM and static devices.  
P2[29]/  
DQMOUT1  
I/O  
O
P3[0] to P3[31]  
I/O  
Port 3: Port 3 is a 32-bit I/O port with individual direction controls for each bit. The  
operation of port 3 pins depends upon the pin function selected via the Pin  
Connect block.  
Pins P3[16:22] and P3[27:31] are not available.  
P3[0] — General purpose digital input/output pin.  
D0 — External memory data line 0.  
P3[0]/D0  
P3[1]/D1  
P3[2]/D2  
P3[3]/D3  
P3[4]/D4  
P3[5]/D5  
P3[6]/D6  
P3[7]/D7  
P3[8]/D8  
P3[9]/D9  
P3[10]/D10  
P3[11]/D11  
D6[1]  
E6[1]  
A2[1]  
G5[1]  
D3[1]  
E3[1]  
F4[1]  
G3[1]  
A6[1]  
A4[1]  
B3[1]  
B2[1]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P3[1] — General purpose digital input/output pin.  
D1 — External memory data line 1.  
P3[2] — General purpose digital input/output pin.  
D2 — External memory data line 2.  
P3[3] — General purpose digital input/output pin.  
D3 — External memory data line 3.  
P3[4] — General purpose digital input/output pin.  
D4 — External memory data line 4.  
P3[5] — General purpose digital input/output pin.  
D5 — External memory data line 5.  
P3[6] — General purpose digital input/output pin.  
D6 — External memory data line 6.  
P3[7] — General purpose digital input/output pin.  
D7 — External memory data line 7.  
P3[8] — General purpose digital input/output pin.  
D8 — External memory data line 8.  
P3[9] — General purpose digital input/output pin.  
D9 — External memory data line 9.  
P3[10] — General purpose digital input/output pin.  
D10 — External memory data line 10.  
P3[11] — General purpose digital input/output pin.  
D11 — External memory data line 11.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
16 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 4.  
Pin description …continued  
Symbol  
Ball  
A1[1]  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Description  
P3[12]/D12  
P3[12] — General purpose digital input/output pin.  
D12 — External memory data line 12.  
P3[13]/D13  
P3[14]/D14  
P3[15]/D15  
C1[1]  
F1[1]  
G4[1]  
M4[1]  
P3[13] — General purpose digital input/output pin.  
D13 — External memory data line 13.  
P3[14] — General purpose digital input/output pin.  
D14 — External memory data line 14.  
P3[15] — General purpose digital input/output pin.  
D15 — External memory data line 15.  
P3[23]/CAP0[0]/  
PCAP1[0]  
P3[23] — General purpose digital input/output pin.  
CAP0[0] — Capture input for Timer 0, channel 0.  
PCAP1[0] — Capture input for PWM1, channel 0.  
P3[24] — General purpose digital input/output pin.  
CAP0[1] — Capture input for Timer 0, channel 1.  
PWM1[1] — Pulse Width Modulator 1, output 1.  
P3[25] — General purpose digital input/output pin.  
MAT0[0] — Match output for Timer 0, channel 0.  
PWM1[2] — Pulse Width Modulator 1, output 2.  
P3[26] — General purpose digital input/output pin.  
MAT0[1] — Match output for Timer 0, channel 1.  
PWM1[3] — Pulse Width Modulator 1, output 3.  
I
P3[24]/CAP0[1]/  
PWM1[1]  
N3[1]  
M3[1]  
K7[1]  
I/O  
I
O
P3[25]/MAT0[0]/  
PWM1[2]  
I/O  
O
O
P3[26]/MAT0[1]/  
PWM1[3]  
I/O  
O
O
P4[0] to P4[31]  
I/O  
Port 4: Port 4 is a 32-bit I/O port with individual direction controls for each bit. The  
operation of port 4 pins depends upon the pin function selected via the Pin  
Connect block.  
Pins P4[20:23] are not available.  
P4[0]/A0  
P4[1]/A1  
P4[2]/A2  
P4[3]/A3  
P4[4]/A4  
P4[5]/A5  
P4[6]/A6  
P4[7]/A7  
L6[1]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P4[0] — General purpose digital input/output pin.  
A0 — External memory address line 0.  
M7[1]  
M8[1]  
K9[1]  
P4[1] — General purpose digital input/output pin.  
A1 — External memory address line 1.  
P4[2] — General purpose digital input/output pin.  
A2 — External memory address line 2.  
P4[3] — General purpose digital input/output pin.  
A3 — External memory address line 3.  
P13[1]  
H10[1]  
K10[1]  
K12[1]  
P4[4] — General purpose digital input/output pin.  
A4 — External memory address line 4.  
P4[5] — General purpose digital input/output pin.  
A5 — External memory address line 5.  
P4[6] — General purpose digital input/output pin.  
A6 — External memory address line 6.  
P4[7] — General purpose digital input/output pin.  
A7 — External memory address line 7.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
17 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 4.  
Symbol  
P4[8]/A8  
Pin description …continued  
Ball  
J11[1]  
Type  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
Description  
P4[8] — General purpose digital input/output pin.  
A8 — External memory address line 8.  
P4[9]/A9  
H12[1]  
G12[1]  
F11[1]  
F10[1]  
B14[1]  
E8[1]  
P4[9] — General purpose digital input/output pin.  
A9 — External memory address line 9.  
P4[10]/A10  
P4[11]/A11  
P4[12]/A12  
P4[13]/A13  
P4[14]/A14  
P4[15]/A15  
P4[16]/A16  
P4[17]/A17  
P4[18]/A18  
P4[19]/A19  
P4[24]/OE  
P4[25]/WE  
P4[26]/BLS0  
P4[27]/BLS1  
P4[10] — General purpose digital input/output pin.  
A10 — External memory address line 10.  
P4[11] — General purpose digital input/output pin.  
A11 — External memory address line 11.  
P4[12] — General purpose digital input/output pin.  
A12 — External memory address line 12.  
P4[13] — General purpose digital input/output pin.  
A13 — External memory address line 13.  
P4[14] — General purpose digital input/output pin.  
A14 — External memory address line 14.  
C10[1]  
N12[1]  
N13[1]  
P14[1]  
M14[1]  
C8[1]  
P4[15] — General purpose digital input/output pin.  
A15 — External memory address line 15.  
P4[16] — General purpose digital input/output pin.  
A16 — External memory address line 16.  
P4[17] — General purpose digital input/output pin.  
A17 — External memory address line 17.  
P4[18] — General purpose digital input/output pin.  
A18 — External memory address line 18.  
P4[19] — General purpose digital input/output pin.  
A19 — External memory address line 19.  
P4[24] — General purpose digital input/output pin.  
OE — LOW active Output Enable signal.  
D9[1]  
I/O  
O
P4[25] — General purpose digital input/output pin.  
WE — LOW active Write Enable signal.  
K13[1]  
F14[1]  
D10[1]  
I/O  
O
P4[26] — General purpose digital input/output pin.  
BLS0 — LOW active Byte Lane select signal 0.  
P4[27] — General purpose digital input/output pin.  
BLS1 — LOW active Byte Lane select signal 1.  
P4[28] — General purpose digital input/output pin.  
MAT2[0] — Match output for Timer 2, channel 0.  
TXD3 — Transmitter output for UART3.  
I/O  
O
P4[28]/MAT2[0]/  
TXD3  
I/O  
O
O
P4[29]/MAT2[1]/  
RXD3  
B9[1]  
C7[1]  
I/O  
O
P4[29] — General purpose digital input/output pin.  
MAT2[1] — Match output for Timer 2, channel 1.  
RXD3 — Receiver input for UART3.  
I
P4[30]/CS0  
I/O  
O
P4[30] — General purpose digital input/output pin.  
CS0 — LOW active Chip Select 0 signal.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
18 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 4.  
Pin description …continued  
Symbol  
Ball  
E7[1]  
Type  
I/O  
O
Description  
P4[31]/CS1  
P4[31] — General purpose digital input/output pin.  
CS1 — LOW active Chip Select 1 signal.  
ALARM  
H5[7]  
O
ALARM — RTC controlled output. This is a 1.8 V pin. It goes HIGH when a RTC  
alarm is generated.  
USB_D2  
DBGEN  
TDO  
N2  
I/O  
USB_D2 — USB port 2 bidirectional Dline.  
DBGEN — JTAG interface control signal. Also used for boundary scan.  
TDO — Test Data Out for JTAG interface.  
E5[1][8]  
B1[1][9]  
C3[1][8]  
C2[1][8]  
D4[1][8]  
D2[1][9]  
I
O
I
TDI  
TDI — Test Data In for JTAG interface.  
TMS  
I
TMS — Test Mode Select for JTAG interface.  
TRST  
TCK  
I
TRST — Test Reset for JTAG interface.  
TCK — Test Clock for JTAG interface. This clock must be slower than 16 of the  
I
CPU clock (CCLK) for the JTAG interface to operate.  
RTCK  
C4[1][8]  
I/O  
RTCK — JTAG interface control signal.  
Note: LOW on this pin while RESET is LOW enables ETM pins (P2[9:0]) to  
operate as Trace port after reset.  
RSTOUT  
RESET  
H2  
O
I
RSTOUT — This is a 3.3 V pin. LOW on this pin indicates LPC2458 being in  
Reset state.  
J1[10]  
external reset input: A LOW on this pin resets the device, causing I/O ports and  
peripherals to take on their default states, and processor execution to begin at  
address 0. TTL with hysteresis, 5 V tolerant.  
XTAL1  
XTAL2  
RTCX1  
RTCX2  
VSSIO  
L2[7][11]  
K4[7][11]  
J2[7][12]  
J3[7][12]  
I
Input to the oscillator circuit and internal clock generator circuits.  
Output from the oscillator amplifier.  
O
I
Input to the RTC oscillator circuit.  
O
I
Output from the RTC oscillator circuit.  
H4, P4,  
L9, L13,  
G13,  
ground: 0 V reference for the digital IO pins.  
D13,  
C11,  
B4[13]  
VSSCORE  
VSSA  
H3, L8,  
A10[13]  
F3[14]  
I
I
I
ground: 0 V reference for the core.  
analog ground: 0 V reference. This should nominally be the same voltage as  
VSSIO/VSSCORE, but should be isolated to minimize noise and error.  
VDD(3V3)  
E2, L4,  
K8, L11,  
J14, E12,  
E10,  
3.3 V supply voltage: This is the power supply voltage for the I/O ports.  
C5[15]  
n.c.  
H1, L12,  
G10[16]  
I
I
not connected pins: These pins must be left unconnected (floating).  
VDD(DCDC)(3V3)  
G1, N9,  
E9[17]  
3.3 V DC-to-DC converter supply voltage: This is the power supply for the  
on-chip DC-to-DC converter.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
19 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 4.  
Symbol  
VDDA  
Pin description …continued  
Ball  
Type  
Description  
F2[18]  
I
analog 3.3 V pad supply voltage: This should be nominally the same voltage as  
VDD(3V3) but should be isolated to minimize noise and error. This voltage is used  
to power the ADC and DAC.  
VREF  
VBAT  
G2[18]  
I
I
ADC reference: This should be nominally the same voltage as VDD(3V3) but  
should be isolated to minimize noise and error. The level on this pin is used as a  
reference for ADC and DAC.  
K1[18]  
RTC power supply: 3.3 V on this pin supplies the power to the RTC peripheral.  
[1] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis.  
[2] 5 V tolerant pad providing digital I/O functions (with TTL levels and hysteresis) and analog input. When configured as a ADC input,  
digital section of the pad is disabled.  
[3] 5 V tolerant pad providing digital I/O with TTL levels and hysteresis and analog output function. When configured as the DAC output,  
digital section of the pad is disabled.  
[4] Open-drain 5 V tolerant digital I/O pad, compatible with I2C-bus 400 kHz specification. It requires an external pull-up to provide output  
functionality. When power is switched off, this pin connected to the I2C-bus is floating and does not disturb the I2C lines. Open-drain  
configuration applies to all functions on this pin.  
[5] Pad provides digital I/O and USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and  
Low-speed mode only).  
[6] 5 V tolerant pad with 10 ns glitch filter providing digital I/O functions with TTL levels and hysteresis.  
[7] Pad provides special analog functionality.  
[8] This pin has a built-in pull-up resistor.  
[9] This pin has no built-in pull-up and no built-in pull-down resistor.  
[10] 5 V tolerant pad with 20 ns glitch filter providing digital I/O function with TTL levels and hysteresis.  
[11] When the main oscillator is not used, connect XTAL1 and XTAL2 as follows: XTAL1 can be left floating or can be grounded (grounding  
is preferred to reduce susceptibility to noise). XTAL2 should be left floating.  
[12] If the RTC is not used, these pins can be left floating.  
[13] Pad provides special analog functionality.  
[14] Pad provides special analog functionality.  
[15] Pad provides special analog functionality.  
[16] Pad provides special analog functionality.  
[17] Pad provides special analog functionality.  
[18] Pad provides special analog functionality.  
7. Functional description  
7.1 Architectural overview  
The LPC2458 microcontroller consists of an ARM7TDMI-S CPU with emulation support,  
the ARM7 local bus for closely coupled, high-speed access to the majority of on-chip  
memory, the AMBA AHB interfacing to high-speed on-chip peripherals and external  
memory, and the AMBA APB for connection to other on-chip peripheral functions. The  
microcontroller permanently configures the ARM7TDMI-S processor for little-endian byte  
order.  
The LPC2458 implements two AHB in order to allow the Ethernet block to operate without  
interference caused by other system activity. The primary AHB, referred to as AHB1,  
includes the VIC, GPDMA controller, and EMC.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
20 of 81  
 
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
The second AHB, referred to as AHB2, includes only the Ethernet block and an  
associated 16 kB SRAM. In addition, a bus bridge is provided that allows the secondary  
AHB to be a bus master on AHB1, allowing expansion of Ethernet buffer space into  
off-chip memory or unused space in memory residing on AHB1.  
In summary, bus masters with access to AHB1 are the ARM7 itself, the GPDMA function,  
and the Ethernet block (via the bus bridge from AHB2). Bus masters with access to AHB2  
are the ARM7 and the Ethernet block.  
AHB peripherals are allocated a 2 MB range of addresses at the very top of the 4 GB  
ARM memory space. Each AHB peripheral is allocated a 16 kB address space within the  
AHB address space. Lower speed peripheral functions are connected to the APB. The  
AHB to APB bridge interfaces the APB to the AHB. APB peripherals are also allocated a  
2 MB range of addresses, beginning at the 3.5 GB address point. Each APB peripheral is  
allocated a 16 kB address space within the APB address space.  
The ARM7TDMI-S processor is a general purpose 32-bit microprocessor, which offers  
high performance and very low power consumption. The ARM architecture is based on  
Reduced Instruction Set Computer (RISC) principles, and the instruction set and related  
decode mechanism are much simpler than those of microprogrammed complex  
instruction set computers. This simplicity results in a high instruction throughput and  
impressive real-time interrupt response from a small and cost-effective processor core.  
Pipeline techniques are employed so that all parts of the processing and memory systems  
can operate continuously. Typically, while one instruction is being executed, its successor  
is being decoded, and a third instruction is being fetched from memory.  
The ARM7TDMI-S processor also employs a unique architectural strategy known as  
Thumb, which makes it ideally suited to high-volume applications with memory  
restrictions, or applications where code density is an issue.  
The key idea behind Thumb is that of a super-reduced instruction set. Essentially, the  
ARM7TDMI-S processor has two instruction sets:  
the standard 32-bit ARM set  
a 16-bit Thumb set  
The Thumb set’s 16-bit instruction length allows it to approach higher density compared to  
standard ARM code while retaining most of the ARM’s performance.  
7.2 On-chip flash programming memory  
The LPC2458 incorporates 512 kB flash memory system. This memory may be used for  
both code and data storage. Programming of the flash memory may be accomplished in  
several ways. It may be programmed In System via the serial port (UART0). The  
application program may also erase and/or program the flash while the application is  
running, allowing a great degree of flexibility for data storage field and firmware upgrades.  
The flash memory is 128 bits wide and includes pre-fetching and buffering techniques to  
allow it to operate at speeds of 72 MHz.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
21 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
7.3 On-chip SRAM  
The LPC2458 includes a SRAM memory of 64 kB reserved for the ARM processor  
exclusive use. This RAM may be used for code and/or data storage and may be accessed  
as 8 bits, 16 bits, and 32 bits.  
A 16 kB SRAM block serving as a buffer for the Ethernet controller and a 16 kB SRAM  
associated with the second AHB can be used both for data and code storage. The 2 kB  
RTC SRAM can be used for data storage only. The RTC SRAM is battery powered and  
retains the content in the absence of the main power supply.  
7.4 Memory map  
The LPC2458 memory map incorporates several distinct regions as shown in Table 5 and  
Figure 3.  
In addition, the CPU interrupt vectors may be remapped to allow them to reside in either  
flash memory (default), boot ROM, or SRAM (see Section 7.26.6).  
Table 5.  
LPC2458 memory usage and details  
Address range General use  
Address range details and description  
0x0000 0000 to on-chip  
0x0000 0000 to 0x0007 FFFF  
flash memory (512 kB)  
0x3FFF FFFF  
non-volatile  
memory and fast  
I/O  
0x3FFF C000 to 0x3FFF FFFF fast GPIO registers  
0x4000 0000 to on-chip RAM  
0x7FFF FFFF  
0x4000 0000 to 0x4000 FFFF  
RAM (64 kB)  
0x7FE0 0000 to 0x7FE0 3FFF Ethernet RAM (16 kB)  
0x7FD0 0000 to 0x7FD0 3FFF USB RAM (16 kB)  
0x8000 0000 to off-chip memory two static memory banks, 1 MB each  
0xBFFF FFFF  
0x8000 0000 to 0x800F FFFF  
0x8100 0000 to 0x810F FFFF  
static memory bank 0  
static memory bank 1  
two dynamic memory banks, 256 MB each  
0xA000 0000 to 0xAFFF FFFF dynamic memory bank 0  
0xB000 0000 to 0xBFFF FFFF dynamic memory bank 1  
0xE000 0000 to APB peripherals 36 peripheral blocks, 16 kB each  
0xEFFF FFFF  
0xF000 0000 to AHB peripherals  
0xFFFF FFFF  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
22 of 81  
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
4.0 GB  
0xFFFF FFFF  
0xF000 0000  
AHB PERIPHERALS  
APB PERIPHERALS  
3.75 GB  
3.5 GB  
0xE000 0000  
0xDFFF FFFF  
RESERVED ADDRESS SPACE  
0xC000 0000  
0xBFFF FFFF  
EXTERNAL STATIC AND DYNAMIC MEMORY  
2.0 GB  
0x8000 0000  
0x7FFF FFFF  
BOOT ROM AND BOOT FLASH  
(BOOT FLASH REMAPPED FROM ON-CHIP FLASH)  
RESERVED ADDRESS SPACE  
ON-CHIP STATIC RAM  
SPECIAL REGISTERS  
1.0 GB  
0x4000 0000  
0x3FFF FFFF  
0x3FFF 8000  
RESERVED ADDRESS SPACE  
ON-CHIP NON-VOLATILE MEMORY  
0.0 GB  
0x0000 0000  
002aad657  
Fig 3. LPC2458 memory map  
7.5 Interrupt controller  
The ARM processor core has two interrupt inputs called Interrupt Request (IRQ) and Fast  
Interrupt Request (FIQ). The VIC takes 32 interrupt request inputs which can be  
programmed as FIQ or vectored IRQ types. The programmable assignment scheme  
means that priorities of interrupts from the various peripherals can be dynamically  
assigned and adjusted.  
FIQs have the highest priority. If more than one request is assigned to FIQ, the VIC ORs  
the requests to produce the FIQ signal to the ARM processor. The fastest possible FIQ  
latency is achieved when only one request is classified as FIQ, because then the FIQ  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
23 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
service routine can simply start dealing with that device. But if more than one request is  
assigned to the FIQ class, the FIQ service routine can read a word from the VIC that  
identifies which FIQ source(s) is (are) requesting an interrupt.  
Vectored IRQs, which include all interrupt requests that are not classified as FIQs, have a  
programmable interrupt priority. When more than one interrupt is assigned the same  
priority and occur simultaneously, the one connected to the lowest numbered VIC channel  
will be serviced first.  
The VIC ORs the requests from all of the vectored IRQs to produce the IRQ signal to the  
ARM processor. The IRQ service routine can start by reading a register from the VIC and  
jumping to the address supplied by that register.  
7.5.1 Interrupt sources  
Each peripheral device has one interrupt line connected to the VIC but may have several  
interrupt flags. Individual interrupt flags may also represent more than one interrupt  
source.  
Any pin on port 0 and port 2 (total of 64 pins) regardless of the selected function, can be  
programmed to generate an interrupt on a rising edge, a falling edge, or both. Such  
interrupt request coming from port 0 and/or port 2 will be combined with the EINT3  
interrupt requests.  
7.6 Pin connect block  
The pin connect block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on chip peripherals.  
Peripherals should be connected to the appropriate pins prior to being activated and prior  
to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is  
not mapped to a related pin should be considered undefined.  
7.7 External memory controller  
The LPC2458 EMC is an ARM PrimeCell MultiPort Memory Controller peripheral offering  
support for asynchronous static memory devices such as RAM, ROM, and flash. In  
addition, it can be used as an interface with off-chip memory-mapped devices and  
peripherals. The EMC is an Advanced Microcontroller Bus Architecture (AMBA) compliant  
peripheral.  
7.7.1 Features  
Dynamic memory interface support including single data rate SDRAM.  
Asynchronous static memory device support including RAM, ROM, and flash, with or  
without asynchronous page mode.  
Low transaction latency.  
Read and write buffers to reduce latency and to improve performance.  
8/16 data and 20 address lines wide static memory support.  
16 bit wide chip select SDRAM memory support.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
24 of 81  
 
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Static memory features include:  
Asynchronous page mode read  
Programmable Wait States  
Bus turnaround delay  
Output enable and write enable delays  
Extended wait  
Two chip selects for synchronous memory and two chip selects for static memory  
devices.  
Power-saving modes dynamically control CKE and CLKOUT to SDRAMs.  
Dynamic memory self-refresh mode controlled by software.  
Controller supports 2048 (A0 to A10), 4096 (A0 to A11), and 8192 (A0 to A12) row  
address synchronous memory parts. That is typical 512 MB, 256 MB, and 128 MB  
parts, with 4, 8, and 16 data bits per device.  
Separate reset domains allow auto-refresh through a chip reset if desired.  
Note: Synchronous static memory devices (synchronous burst mode) are not supported.  
7.8 General purpose DMA controller  
The GPDMA is an AMBA AHB compliant peripheral allowing selected LPC2458  
peripherals to have DMA support.  
The GPDMA enables peripheral-to-memory, memory-to-peripheral,  
peripheral-to-peripheral, and memory-to-memory transactions. Each DMA stream  
provides unidirectional serial DMA transfers for a single source and destination. For  
example, a bidirectional port requires one stream for transmit and one for receive. The  
source and destination areas can each be either a memory region or a peripheral, and  
can be accessed through the AHB master.  
7.8.1 Features  
Two DMA channels. Each channel can support a unidirectional transfer.  
The GPDMA can transfer data between the 16 kB SRAM, external memory, and  
peripherals such as the SD/MMC, two SSPs, and the I2S interface.  
Single DMA and burst DMA request signals. Each peripheral connected to the  
GPDMA can assert either a burst DMA request or a single DMA request. The DMA  
burst size is set by programming the GPDMA.  
Memory-to-memory, memory-to-peripheral, peripheral-to-memory, and  
peripheral-to-peripheral transfers.  
Scatter or gather DMA is supported through the use of linked lists. This means that  
the source and destination areas do not have to occupy contiguous areas of memory.  
Hardware DMA channel priority. Each DMA channel has a specific hardware priority.  
DMA channel 0 has the highest priority and channel 1 has the lowest priority. If  
requests from two channels become active at the same time, the channel with the  
highest priority is serviced first.  
AHB slave DMA programming interface. The GPDMA is programmed by writing to the  
DMA control registers over the AHB slave interface.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
25 of 81  
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
One AHB master for transferring data. This interface transfers data when a DMA  
request goes active.  
32-bit AHB master bus width.  
Incrementing or non-incrementing addressing for source and destination.  
Programmable DMA burst size. The DMA burst size can be programmed to more  
efficiently transfer data. Usually the burst size is set to half the size of the FIFO in the  
peripheral.  
Internal four-word FIFO per channel.  
Supports 8-bit, 16-bit, and 32-bit wide transactions.  
An interrupt to the processor can be generated on a DMA completion or when a DMA  
error has occurred.  
Interrupt masking. The DMA error and DMA terminal count interrupt requests can be  
masked.  
Raw interrupt status. The DMA error and DMA count raw interrupt status can be read  
prior to masking.  
7.9 Fast general purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate  
registers allow setting or clearing any number of outputs simultaneously. The value of the  
output register may be read back as well as the current state of the port pins.  
LPC2458 use accelerated GPIO functions:  
GPIO registers are relocated to the ARM local bus so that the fastest possible I/O  
timing can be achieved.  
Mask registers allow treating sets of port bits as a group, leaving other bits  
unchanged.  
All GPIO registers are byte and half-word addressable.  
Entire port value can be written in one instruction.  
Additionally, any pin on port 0 and port 2 (total of 64 pins) that is not configured as an  
analog input/output can be programmed to generate an interrupt on a rising edge, a falling  
edge, or both. The edge detection is asynchronous, so it may operate when clocks are not  
present such as during Power-down mode. Each enabled interrupt can be used to wake  
the chip up from Power-down mode.  
7.9.1 Features  
Bit level set and clear registers allow a single instruction to set or clear any number of  
bits in one port.  
Direction control of individual bits.  
All I/O default to inputs after reset.  
Backward compatibility with other earlier devices is maintained with legacy port 0 and  
port 1 registers appearing at the original addresses on the APB.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
26 of 81  
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
7.10 Ethernet  
The Ethernet block contains a full featured 10 Mbit/s or 100 Mbit/s Ethernet MAC  
designed to provide optimized performance through the use of DMA hardware  
acceleration. Features include a generous suite of control registers, half or full duplex  
operation, flow control, control frames, hardware acceleration for transmit retry, receive  
packet filtering and wake-up on LAN activity. Automatic frame transmission and reception  
with scatter-gather DMA off-loads many operations from the CPU.  
The Ethernet block and the CPU share a dedicated AHB subsystem that is used to access  
the Ethernet SRAM for Ethernet data, control, and status information. All other AHB traffic  
in the LPC2458 takes place on a different AHB subsystem, effectively separating Ethernet  
activity from the rest of the system. The Ethernet DMA can also access off-chip memory  
via the EMC, as well as the SRAM located on another AHB. However, using memory  
other than the Ethernet SRAM, especially off-chip memory, will slow Ethernet access to  
memory and increase the loading of its AHB.  
The Ethernet block interfaces between an off-chip Ethernet PHY using the Media  
Independent Interface (MII) or Reduced MII (RMII) protocol and the on-chip Media  
Independent Interface Management (MIIM) serial bus.  
7.10.1 Features  
Ethernet standards support:  
Supports 10 Mbit/s or 100 Mbit/s PHY devices including 10 Base-T, 100 Base-TX,  
100 Base-FX, and 100 Base-T4.  
Fully compliant with IEEE standard 802.3.  
Fully compliant with 802.3x full duplex flow control and half duplex back pressure.  
Flexible transmit and receive frame options.  
Virtual Local Area Network (VLAN) frame support.  
Memory management:  
Independent transmit and receive buffers memory mapped to shared SRAM.  
DMA managers with scatter/gather DMA and arrays of frame descriptors.  
Memory traffic optimized by buffering and pre-fetching.  
Enhanced Ethernet features:  
Receive filtering.  
Multicast and broadcast frame support for both transmit and receive.  
Optional automatic Frame Check Sequence (FCS) insertion with Circular  
Redundancy Check (CRC) for transmit.  
Selectable automatic transmit frame padding.  
Over-length frame support for both transmit and receive allows any length frames.  
Promiscuous receive mode.  
Automatic collision back-off and frame retransmission.  
Includes power management by clock switching.  
Wake-on-LAN power management support allows system wake-up: using the  
receive filters or a magic frame detection filter.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
27 of 81  
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Physical interface:  
Attachment of external PHY chip through standard MII or RMII interface.  
PHY register access is available via the MIIM interface.  
7.11 USB interface  
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a  
host and one or more (up to 127) peripherals. The Host Controller allocates the USB  
bandwidth to attached devices through a token-based protocol. The bus supports hot  
plugging and dynamic configuration of the devices. All transactions are initiated by the  
Host Controller.  
The LPC2458 USB interface includes a device, Host, and OTG Controller. Details on  
typical USB interfacing solutions can be found in Section 14.1 “Suggested USB interface  
solutions” on page 65  
7.11.1 USB device controller  
The device controller enables 12 Mbit/s data exchange with a USB Host Controller. It  
consists of a register interface, serial interface engine, endpoint buffer memory, and a  
DMA controller. The serial interface engine decodes the USB data stream and writes data  
to the appropriate endpoint buffer. The status of a completed USB transfer or error  
condition is indicated via status registers. An interrupt is also generated if enabled. When  
enabled, the DMA controller transfers data between the endpoint buffer and the USB  
RAM.  
7.11.1.1 Features  
Fully compliant with USB 2.0 specification (full speed).  
Supports 32 physical (16 logical) endpoints with a 4 kB endpoint buffer RAM.  
Supports Control, Bulk, Interrupt and Isochronous endpoints.  
Scalable realization of endpoints at run time.  
Endpoint Maximum packet size selection (up to USB maximum specification) by  
software at run time.  
Supports SoftConnect and GoodLink features.  
While USB is in the Suspend mode, LPC2458 can enter one of the reduced power  
modes and wake up on USB activity.  
Supports DMA transfers with the DMA RAM of 16 kB on all non-control endpoints.  
Allows dynamic switching between CPU-controlled and DMA modes.  
Double buffer implementation for Bulk and Isochronous endpoints.  
7.11.2 USB Host Controller  
The Host Controller enables full- and low-speed data exchange with USB devices  
attached to the bus. It consists of a register interface, a serial interface engine and a DMA  
controller. The register interface complies with the OHCI specification.  
7.11.2.1 Features  
OHCI compliant.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
28 of 81  
 
 
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Two downstream ports.  
Supports per-port power switching.  
7.11.3 USB OTG Controller  
USB OTG is a supplement to the USB 2.0 specification that augments the capability of  
existing mobile devices and USB peripherals by adding host functionality for connection to  
USB peripherals.  
The OTG Controller integrates the Host Controller, device controller, and a master-only  
I2C interface to implement OTG dual-role device functionality. The dedicated I2C interface  
controls an external OTG transceiver.  
7.11.3.1 Features  
Fully compliant with On-The-Go supplement to the USB 2.0 Specification, Revision  
1.0a.  
Hardware support for Host Negotiation Protocol (HNP).  
Includes a programmable timer required for HNP and Session Request Protocol  
(SRP).  
Supports any OTG transceiver compliant with the OTG Transceiver Specification  
(CEA-2011), Rev. 1.0.  
7.12 CAN controller and acceptance filters  
The Controller Area Network (CAN) is a serial communications protocol which efficiently  
supports distributed real-time control with a very high level of security. Its domain of  
application ranges from high-speed networks to low cost multiplex wiring.  
The CAN block is intended to support multiple CAN buses simultaneously, allowing the  
device to be used as a gateway, switch, or router between two of CAN buses in industrial  
or automotive applications.  
Each CAN controller has a register structure similar to the NXP SJA1000 and the PeliCAN  
Library block, but the 8-bit registers of those devices have been combined in 32-bit words  
to allow simultaneous access in the ARM environment. The main operational difference is  
that the recognition of received Identifiers, known in CAN terminology as Acceptance  
Filtering, has been removed from the CAN controllers and centralized in a global  
Acceptance Filter.  
7.12.1 Features  
Two CAN controllers and buses.  
Data rates to 1 Mbit/s on each bus.  
32-bit register and RAM access.  
Compatible with CAN specification 2.0B, ISO 11898-1.  
Global Acceptance Filter recognizes 11-bit and 29-bit receive identifiers for all CAN  
buses.  
Acceptance Filter can provide FullCAN-style automatic reception for selected  
Standard Identifiers.  
FullCAN messages can generate interrupts.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
29 of 81  
 
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
7.13 10-bit ADC  
The LPC2458 contains one ADC. It is a single 10-bit successive approximation ADC with  
eight channels.  
7.13.1 Features  
10-bit successive approximation ADC  
Input multiplexing among 8 pins  
Power-down mode  
Measurement range 0 V to Vi(VREF)  
10-bit conversion time 2.44 s  
Burst conversion mode for single or multiple inputs  
Optional conversion on transition of input pin or Timer Match signal  
Individual result registers for each ADC channel to reduce interrupt overhead  
7.14 10-bit DAC  
The DAC allows the LPC2458 to generate a variable analog output. The maximum output  
value of the DAC is Vi(VREF)  
.
7.14.1 Features  
10-bit DAC  
Resistor string architecture  
Buffered output  
Power-down mode  
Selectable output drive  
7.15 UARTs  
The LPC2458 contains four UARTs. In addition to standard transmit and receive data  
lines, UART1 also provides a full modem control handshake interface.  
The UARTs include a fractional baud rate generator. Standard baud rates such as  
115200 Bd can be achieved with any crystal frequency above 2 MHz.  
7.15.1 Features  
16 B Receive and Transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
Fractional divider for baud rate control, auto baud capabilities and FIFO control  
mechanism that enables software flow control implementation.  
UART1 equipped with standard modem interface signals. This module also provides  
full support for hardware flow control (auto-CTS/RTS).  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
30 of 81  
 
 
 
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
UART3 includes an IrDA mode to support infrared communication.  
7.16 SPI serial I/O controller  
The LPC2458 contains one SPI controller. SPI is a full duplex serial interface designed to  
handle multiple masters and slaves connected to a given bus. Only a single master and a  
single slave can communicate on the interface during a given data transfer. During a data  
transfer the master always sends 8 bits to 16 bits of data to the slave, and the slave  
always sends 8 bits to 16 bits of data to the master.  
7.16.1 Features  
Compliant with SPI specification  
Synchronous, Serial, Full Duplex Communication  
Combined SPI master and slave  
Maximum data bit rate of one eighth of the input clock rate  
8 bits to 16 bits per transfer  
7.17 SSP serial I/O controller  
The LPC2458 contains two SSP controllers. The SSP controller is capable of operation on  
a SPI, 4-wire SSI, or Microwire bus. It can interact with multiple masters and slaves on the  
bus. Only a single master and a single slave can communicate on the bus during a given  
data transfer. The SSP supports full duplex transfers, with frames of 4 bits to 16 bits of  
data flowing from the master to the slave and from the slave to the master. In practice,  
often only one of these data flows carries meaningful data.  
7.17.1 Features  
Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National  
Semiconductor Microwire buses  
Synchronous serial communication  
Master or slave operation  
8-frame FIFOs for both transmit and receive  
4-bit to 16-bit frame  
Maximum SPI bus data bit rate of one half (Master mode) and one twelfth (Slave  
mode) of the input clock rate  
DMA transfers supported by GPDMA  
7.18 SD/MMC card interface  
The Secure Digital and Multimedia Card Interface (MCI) allows access to external SD  
memory cards. The SD card interface conforms to the SD Multimedia Card Specification  
Version 2.11.  
7.18.1 Features  
The MCI interface provides all functions specific to the SD/MMC memory card. These  
include the clock generation unit, power management control, and command and data  
transfer.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
31 of 81  
 
 
 
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Conforms to Multimedia Card Specification v2.11.  
Conforms to Secure Digital Memory Card Physical Layer Specification, v0.96.  
Can be used as a multimedia card bus or a secure digital memory card bus host. The  
SD/MMC can be connected to several multimedia cards or a single secure digital  
memory card.  
DMA supported through the GPDMA controller.  
7.19 I2C-bus serial I/O controller  
The LPC2458 contains three I2C-bus controllers.  
The I2C-bus is bidirectional, for inter-IC control using only two wires: a serial clock line  
(SCL), and a serial data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C-bus is a multi-master bus and can  
be controlled by more than one bus master connected to it.  
The I2C-bus implemented in LPC2458 supports bit rates up to 400 kbit/s (Fast I2C-bus).  
7.19.1 Features  
I2C0 is a standard I2C compliant bus interface with open-drain pins.  
I2C1 and I2C2 use standard I/O pins and do not support powering off of individual  
devices connected to the same bus lines.  
Easy to configure as master, slave, or master/slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can be used for test and diagnostic purposes.  
7.20 I2S-bus serial I/O controllers  
The I2S-bus provides a standard communication interface for digital audio applications.  
The I2S-bus specification defines a 3-wire serial bus using one data line, one clock line,  
and one word select signal. The basic I2S connection has one master, which is always the  
master, and one slave. The I2S interface on the LPC2458 provides a separate transmit  
and receive channel, each of which can operate as either a master or a slave.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
32 of 81  
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
7.20.1 Features  
The interface has separate input/output channels each of which can operate in master  
or slave mode.  
Capable of handling 8-bit, 16-bit, and 32-bit word sizes.  
Mono and stereo audio data supported.  
The sampling frequency can range from 16 kHz to 48 kHz (16, 22.05, 32, 44.1,  
48) kHz.  
Configurable word select period in master mode (separately for I2S input and output).  
Two 8 word FIFO data buffers are provided, one for transmit and one for receive.  
Generates interrupt requests when buffer levels cross a programmable boundary.  
Two DMA requests, controlled by programmable buffer levels. These are connected  
to the GPDMA block.  
Controls include reset, stop and mute options separately for I2S input and I2S output.  
7.21 General purpose 32-bit timers/external event counters  
The LPC2458 includes four 32-bit Timer/Counters. The Timer/Counter is designed to  
count cycles of the system derived clock or an externally-supplied clock. It can optionally  
generate interrupts or perform other actions at specified timer values, based on four  
match registers. The Timer/Counter also includes four capture inputs to trap the timer  
value when an input signal transitions, optionally generating an interrupt.  
7.21.1 Features  
A 32-bit Timer/Counter with a programmable 32-bit prescaler.  
Counter or Timer operation.  
Up to four 32-bit capture channels per timer, that can take a snapshot of the timer  
value when an input signal transitions. A capture event may also optionally generate  
an interrupt.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Up to four external outputs corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
33 of 81  
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
7.22 Pulse width modulator  
The PWM is based on the standard Timer block and inherits all of its features, although  
only the PWM function is pinned out on the LPC2458. The Timer is designed to count  
cycles of the system derived clock and optionally switch pins, generate interrupts or  
perform other actions when specified timer values occur, based on seven match registers.  
The PWM function is in addition to these features and is based on match register events.  
The ability to separately control rising and falling edge locations allows the PWM to be  
used for more applications. For instance, multi-phase motor control typically requires  
three non-overlapping PWM outputs with individual control of all three pulse widths and  
positions.  
Two match registers can be used to provide a single edge controlled PWM output. A  
dedicated match register controls the PWM cycle rate, by resetting the count upon match.  
The other match register controls the PWM edge position. Additional single edge  
controlled PWM outputs require only one match register each, since the repetition rate is  
the same for all PWM outputs. Multiple single edge controlled PWM outputs will all have a  
rising edge at the beginning of each PWM cycle, when an PWMMR0 match occurs.  
Three match registers can be used to provide a PWM output with both edges controlled.  
Again, a dedicated match register controls the PWM cycle rate. The other match registers  
control the two PWM edge positions. Additional double edge controlled PWM outputs  
require only two match registers each, since the repetition rate is the same for all PWM  
outputs.  
With double edge controlled PWM outputs, specific match registers control the rising and  
falling edge of the output. This allows both positive going PWM pulses (when the rising  
edge occurs prior to the falling edge), and negative going PWM pulses (when the falling  
edge occurs prior to the rising edge).  
7.22.1 Features  
LPC2458 has two PWMs with the same operational features. These may be operated  
in a synchronized fashion by setting them both up to run at the same rate, then  
enabling both simultaneously. PWM0 acts as the master and PWM1 as the slave for  
this use.  
Counter or Timer operation (may use the peripheral clock or one of the capture inputs  
as the clock source).  
Seven match registers allow up to 6 single edge controlled or 3 double edge  
controlled PWM outputs, or a mix of both types. The match registers also allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Supports single edge controlled and/or double edge controlled PWM outputs. Single  
edge controlled PWM outputs all go HIGH at the beginning of each cycle unless the  
output is a constant LOW. Double edge controlled PWM outputs can have either edge  
occur at any position within a cycle. This allows for both positive going and negative  
going pulses.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
34 of 81  
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Pulse period and width can be any number of timer counts. This allows complete  
flexibility in the trade-off between resolution and repetition rate. All PWM outputs will  
occur at the same repetition rate.  
Double edge controlled PWM outputs can be programmed to be either positive going  
or negative going pulses.  
Match register updates are synchronized with pulse outputs to prevent generation of  
erroneous pulses. Software must ‘release’ new match values before they can become  
effective.  
May be used as a standard timer if the PWM mode is not enabled.  
A 32-bit Timer/Counter with a programmable 32-bit Prescaler.  
7.23 Watchdog timer (WDT)  
The purpose of the watchdog is to reset the microcontroller within a reasonable amount of  
time if it enters an erroneous state. When enabled, the watchdog will generate a system  
reset if the user program fails to ‘feed’ (or reload) the watchdog within a predetermined  
amount of time.  
7.23.1 Features  
Internally resets chip if not periodically reloaded.  
Debug mode.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 32-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 232 4) in  
multiples of Tcy(WDCLK) 4.  
The Watchdog Clock (WDCLK) source can be selected from the RTC clock, the  
Internal RC oscillator (IRC), or the APB peripheral clock. This gives a wide range of  
potential timing choices of Watchdog operation under different power reduction  
conditions. It also provides the ability to run the WDT from an entirely internal source  
that is not dependent on an external crystal and its associated components and  
wiring, for increased reliability.  
7.24 RTC and battery RAM  
The RTC is a set of counters for measuring time when system power is on, and optionally  
when power is off. It uses little power in Power-down and Deep power-down modes. On  
the LPC2458, the RTC can be clocked by a separate 32.768 kHz oscillator or by a  
programmable prescale divider based on the APB clock. The RTC is powered by its own  
power supply pin, VBAT, which can be connected to a battery or to the same 3.3 V supply  
used by the rest of the device.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
35 of 81  
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
The VBAT pin supplies power only to the RTC and the Battery RAM. These two functions  
require a minimum of power to operate, which can be supplied by an external battery.  
When the CPU and the rest of chip functions are stopped and power is removed, the RTC  
can supply an alarm output that can be used by external hardware to restore chip power  
and resume operation.  
7.24.1 Features  
Measures the passage of time to maintain a calendar and clock.  
Ultra low power design to support battery powered systems.  
Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and  
Day of Year.  
Dedicated 32 kHz oscillator or programmable prescaler from APB clock.  
Dedicated power supply pin can be connected to a battery or to the main 3.3 V.  
An alarm output pin is included to assist in waking up when the chip has had power  
removed to all functions except the RTC and Battery RAM.  
Periodic interrupts can be generated from increments of any field of the time registers,  
and selected fractional second values. This enhancement enables the RTC to be  
used as a System Timer.  
2 kB data SRAM powered by VBAT.  
RTC and Battery RAM power supply is isolated from the rest of the chip.  
7.25 Clocking and power control  
7.25.1 Crystal oscillators  
The LPC2458 includes three independent oscillators. These are the Main Oscillator, the  
Internal RC oscillator, and the RTC oscillator. Each oscillator can be used for more than  
one purpose as required in a particular application. Any of the three clock sources can be  
chosen by software to drive the PLL and ultimately the CPU.  
Following reset, the LPC2458 will operate from the Internal RC oscillator until switched by  
software. This allows systems to operate without any external crystal and the bootloader  
code to operate at a known frequency.  
7.25.1.1 Internal RC oscillator  
The IRC may be used as the clock source for the WDT, and/or as the clock that drives the  
PLL and subsequently the CPU. The nominal IRC frequency is 4 MHz. The IRC is  
trimmed to 1 % accuracy.  
Upon power-up or any chip reset, the LPC2458 uses the IRC as the clock source.  
Software may later switch to one of the other available clock sources.  
7.25.1.2 Main oscillator  
The main oscillator can be used as the clock source for the CPU, with or without using the  
PLL. The main oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can  
be boosted to a higher frequency, up to the maximum CPU operating frequency, by the  
PLL. The clock selected as the PLL input is PLLCLKIN. The ARM processor clock  
frequency is referred to as CCLK elsewhere in this document. The frequencies of  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
36 of 81  
 
 
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
PLLCLKIN and CCLK are the same value unless the PLL is active and connected. The  
clock frequency for each peripheral can be selected individually and is referred to as  
PCLK. Refer to Section 7.25.2 for additional information.  
7.25.1.3 RTC oscillator  
The RTC oscillator can be used as the clock source for the RTC and/or the WDT. Also, the  
RTC oscillator can be used to drive the PLL and the CPU.  
7.25.2 PLL  
The PLL accepts an input clock frequency in the range of 32 kHz to 25 MHz. The input  
frequency is multiplied up to a high frequency, then divided down to provide the actual  
clock used by the CPU and the USB block.  
The PLL input, in the range of 32 kHz to 25 MHz, may initially be divided down by a value  
‘N’, which may be in the range of 1 to 256. This input division provides a wide range of  
output frequencies from the same input frequency.  
Following the PLL input divider is the PLL multiplier. This can multiply the input divider  
output through the use of a Current Controlled Oscillator (CCO) by a value ‘M’, in the  
range of 1 through 32768. The resulting frequency must be in the range of 275 MHz to  
550 MHz. The multiplier works by dividing the CCO output by the value of M, then using a  
phase-frequency detector to compare the divided CCO output to the multiplier input. The  
error value is used to adjust the CCO frequency.  
The PLL is turned off and bypassed following a chip Reset and by entering Power-down  
mode. PLL is enabled by software only. The program must configure and activate the PLL,  
wait for the PLL to lock, then connect to the PLL as a clock source.  
7.25.3 Wake-up timer  
The LPC2458 begins operation at power-up and when awakened from Power-down and  
Deep power-down modes by using the 4 MHz IRC oscillator as the clock source. This  
allows chip operation to resume quickly. If the main oscillator or the PLL is needed by the  
application, software will need to enable these features and wait for them to stabilize  
before they are used as a clock source.  
When the main oscillator is initially activated, the wake-up timer allows software to ensure  
that the main oscillator is fully functional before the processor uses it as a clock source  
and starts to execute instructions. This is important at power on, all types of Reset, and  
whenever any of the aforementioned functions are turned off for any reason. Since the  
oscillator and other functions are turned off during Power-down and Deep power-down  
modes, any wake-up of the processor from Power-down modes makes use of the  
Wake-up Timer.  
The Wake-up Timer monitors the crystal oscillator to check whether it is safe to begin  
code execution. When power is applied to the chip, or when some event caused the chip  
to exit Power-down mode, some time is required for the oscillator to produce a signal of  
sufficient amplitude to drive the clock logic. The amount of time depends on many factors,  
including the rate of VDD(3V3) ramp (in the case of power on), the type of crystal and its  
electrical characteristics (if a quartz crystal is used), as well as any other external circuitry  
(e.g., capacitors), and the characteristics of the oscillator itself under the existing ambient  
conditions.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
37 of 81  
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
7.25.4 Power control  
The LPC2458 supports a variety of power control features. There are four special modes  
of processor power reduction: Idle mode, Sleep mode, Power-down mode, and Deep  
power-down mode. The CPU clock rate may also be controlled as needed by changing  
clock sources, reconfiguring PLL values, and/or altering the CPU clock divider value. This  
allows a trade-off of power versus processing speed based on application requirements.  
In addition, Peripheral power control allows shutting down the clocks to individual on-chip  
peripherals, allowing fine tuning of power consumption by eliminating all dynamic power  
use in any peripherals that are not required for the application. Each of the peripherals  
has its own clock divider which provides even better power control.  
The LPC2458 also implements a separate power domain in order to allow turning off  
power to the bulk of the device while maintaining operation of the RTC and a small SRAM,  
referred to as the Battery RAM.  
7.25.4.1 Idle mode  
In Idle mode, execution of instructions is suspended until either a Reset or interrupt  
occurs. Peripheral functions continue operation during Idle mode and may generate  
interrupts to cause the processor to resume execution. Idle mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, and internal  
buses.  
7.25.4.2 Sleep mode  
In Sleep mode, the oscillator is shut down and the chip receives no internal clocks. The  
processor state and registers, peripheral registers, and internal SRAM values are  
preserved throughout Sleep mode and the logic levels of chip pins remain static. The  
output of the IRC is disabled but the IRC is not powered down for a fast wake-up later. The  
32 kHz RTC oscillator is not stopped because the RTC interrupts may be used as the  
wake-up source. The PLL is automatically turned off and disconnected. The CCLK and  
USB clock dividers automatically get reset to zero.  
The Sleep mode can be terminated and normal operation resumed by either a Reset or  
certain specific interrupts that are able to function without clocks. Since all dynamic  
operation of the chip is suspended, Sleep mode reduces chip power consumption to a  
very low value. The flash memory is left on in Sleep mode, allowing a very quick wake-up.  
On the wake-up from Sleep mode, if the IRC was used before entering Sleep mode, the  
code execution and peripherals activities will resume after 4 cycles expire. If the main  
external oscillator was used, the code execution will resume when 4096 cycles expire.  
The customers need to reconfigure the PLL and clock dividers accordingly.  
7.25.4.3 Power-down mode  
Power-down mode does everything that Sleep mode does, but also turns off the IRC  
oscillator and the flash memory. This saves more power, but requires waiting for  
resumption of flash operation before execution of code or data access in the flash memory  
can be accomplished.  
On the wake-up from Power-down mode, if the IRC was used before entering  
Power-down mode, it will take IRC 60 s to start-up. After this 4 IRC cycles will expire  
before the code execution can then be resumed if the code was running from SRAM. In  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
38 of 81  
 
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
the meantime, the flash wake-up timer then counts 4 MHz IRC clock cycles to make the  
100 s flash start-up time. When it times out, access to the flash will be allowed. The  
customers need to reconfigure the PLL and clock dividers accordingly.  
7.25.4.4 Deep power-down mode  
Deep power-down mode is similar to the Power-down mode, but now the on-chip  
regulator that supplies power to the internal logic is also shut off. This produces the lowest  
possible power consumption without removing power from the entire chip. Since the Deep  
power-down mode shuts down the on-chip logic power supply, there is no register or  
memory retention, and resumption of operation involves the same activities as a full chip  
reset.  
If power is supplied to the LPC2458 during Deep power-down mode, wake-up can be  
caused by the RTC Alarm interrupt or by external Reset.  
While in Deep power-down mode, external device power may be removed. In this case,  
the LPC2458 will start up when external power is restored.  
Essential data may be retained through Deep power-down mode (or through complete  
powering off of the chip) by storing data in the Battery RAM, as long as the external power  
to the VBAT pin is maintained.  
7.25.4.5 Power domains  
The LPC2458 provides two independent power domains that allow the bulk of the device  
to have power removed while maintaining operation of the RTC and the Battery RAM.  
On the LPC2458, I/O pads are powered by the 3.3 V (VDD(3V3)) pins, while the  
V
DD(DCDC)(3V3) pins power the on-chip DC-to-DC converter which in turn provides power to  
the CPU and most of the peripherals.  
Although both the I/O pad ring and the core require a 3.3 V supply, different powering  
schemes can be used depending on the actual application requirements.  
The first option assumes that power consumption is not a concern and the design ties the  
VDD(3V3) and VDD(DCDC)(3V3) pins together. This approach requires only one 3.3 V power  
supply for both pads, the CPU, and peripherals. While this solution is simple, it does not  
support powering down the I/O pad ring “on the fly” while keeping the CPU and  
peripherals alive.  
The second option uses two power supplies; a 3.3 V supply for the I/O pads (VDD(3V3)) and  
a dedicated 3.3 V supply for the CPU (VDD(DCDC)(3V3)). Having the on-chip DC-DC  
converter powered independently from the I/O pad ring enables shutting down of the I/O  
pad power supply “on the fly”, while the CPU and peripherals stay active.  
The VBAT pin supplies power only to the RTC and the Battery RAM. These two functions  
require a minimum of power to operate, which can be supplied by an external battery.  
When the CPU and the rest of chip functions are stopped and power removed, the RTC  
can supply an alarm output that may be used by external hardware to restore chip power  
and resume operation.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
39 of 81  
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
7.26 System control  
7.26.1 Reset  
Reset has four sources on the LPC2458: the RESET pin, the Watchdog reset, power-on  
reset, and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt trigger input  
pin. Assertion of chip Reset by any source, once the operating voltage attains a usable  
level, starts the Wake-up timer (see description in Section 7.25.3 “Wake-up timer”),  
causing reset to remain asserted until the external Reset is de-asserted, the oscillator is  
running, a fixed number of clocks have passed, and the flash controller has completed its  
initialization.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the Boot Block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
7.26.2 Brownout detection  
The LPC2458 includes 2-stage monitoring of the voltage on the VDD(DCDC)(3V3) pins. If this  
voltage falls below 2.95 V, the BOD asserts an interrupt signal to the Vectored Interrupt  
Controller. This signal can be enabled for interrupt in the Interrupt Enable Register in the  
VIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading a  
dedicated status register.  
The second stage of low-voltage detection asserts Reset to inactivate the LPC2458 when  
the voltage on the VDD(DCDC)(3V3) pins falls below 2.65 V. This Reset prevents alteration of  
the flash as operation of the various elements of the chip would otherwise become  
unreliable due to low voltage. The BOD circuit maintains this reset down below 1 V, at  
which point the power-on reset circuitry maintains the overall Reset.  
Both the 2.95 V and 2.65 V thresholds include some hysteresis. In normal operation, this  
hysteresis allows the 2.95 V detection to reliably interrupt, or a regularly-executed event  
loop to sense the condition.  
7.26.3 Code security (Code Read Protection - CRP)  
This feature of the LPC2458 allows user to enable different levels of security in the system  
so that access to the on-chip flash and use of the JTAG and ISP can be restricted. When  
needed, CRP is invoked by programming a specific pattern into a dedicated flash location.  
IAP commands are not affected by the CRP.  
There are three levels of the Code Read Protection.  
CRP1 disables access to chip via the JTAG and allows partial flash update (excluding  
flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is  
required and flash field updates are needed but all sectors can not be erased.  
CRP2 disables access to chip via the JTAG and only allows full flash erase and update  
using a reduced set of the ISP commands.  
Running an application with level CRP3 selected fully disables any access to chip via the  
JTAG pins and the ISP. This mode effectively disables ISP override using P2[10] pin, too.  
It is up to the user’s application to provide (if needed) flash update mechanism using IAP  
calls or call reinvoke ISP command to enable flash update via UART0.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
40 of 81  
 
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
7.26.4 AHB  
The LPC2458 implements two AHB in order to allow the Ethernet block to operate without  
interference caused by other system activity. The primary AHB, referred to as AHB1,  
includes the Vectored Interrupt Controller, GPDMA controller, USB interface, and 16 kB  
SRAM.  
The second AHB, referred to as AHB2, includes only the Ethernet block and an  
associated 16 kB SRAM. In addition, a bus bridge is provided that allows the secondary  
AHB to be a bus master on AHB1, allowing expansion of Ethernet buffer space into  
off-chip memory or unused space in memory residing on AHB1.  
In summary, bus masters with access to AHB1 are the ARM7 itself, the USB block, the  
GPDMA function, and the Ethernet block (via the bus bridge from AHB2). Bus masters  
with access to AHB2 are the ARM7 and the Ethernet block.  
7.26.5 External interrupt inputs  
The LPC2458 includes up to 68 edge sensitive interrupt inputs combined with up to four  
level sensitive external interrupt inputs as selectable pin functions. The external interrupt  
inputs can optionally be used to wake up the processor from Power-down mode.  
7.26.6 Memory mapping control  
The memory mapping control alters the mapping of the interrupt vectors that appear at the  
beginning at address 0x0000 0000. Vectors may be mapped to the bottom of the Boot  
ROM, the SRAM, or external memory. This allows code running in different memory  
spaces to have control of the interrupts.  
7.27 Emulation and debugging  
The LPC2458 support emulation and debugging via a JTAG serial port. A trace port allows  
tracing program execution. Debugging and trace functions are multiplexed only with  
GPIOs on P2[0] to P2[9]. This means that all communication, timer, and interface  
peripherals residing on other pins are available during the development and debugging  
phase as they are when the application is run in the embedded system itself.  
7.27.1 EmbeddedICE  
The EmbeddedICE logic provides on-chip debug support. The debugging of the target  
system requires a host computer running the debugger software and an EmbeddedICE  
protocol convertor. The EmbeddedICE protocol convertor converts the Remote Debug  
Protocol commands to the JTAG data needed to access the ARM7TDMI-S core present  
on the target system.  
The ARM core has a Debug Communication Channel (DCC) function built-in. The DCC  
allows a program running on the target to communicate with the host debugger or another  
separate host without stopping the program flow or even entering the debug state. The  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
41 of 81  
 
 
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
DCC is accessed as a coprocessor 14 by the program running on the ARM7TDMI-S core.  
The DCC allows the JTAG port to be used for sending and receiving data without affecting  
the normal program flow. The DCC data and control registers are mapped in to addresses  
in the EmbeddedICE logic.  
The JTAG clock (TCK) must be slower than 16 of the CPU clock (CCLK) for the JTAG  
interface to operate.  
7.27.2 Embedded trace  
Since the LPC2458 have significant amounts of on-chip memories, it is not possible to  
determine how the processor core is operating simply by observing the external pins. The  
ETM provides real-time trace capability for deeply embedded processor cores. It outputs  
information about processor execution to a trace port. A software debugger allows  
configuration of the ETM using a JTAG interface and displays the trace information that  
has been captured.  
The ETM is connected directly to the ARM core and not to the main AMBA system bus. It  
compresses the trace information and exports it through a narrow trace port. An external  
Trace Port Analyzer captures the trace information under software debugger control. The  
trace port can broadcast the Instruction trace information. Instruction trace (or PC trace)  
shows the flow of execution of the processor and provides a list of all the instructions that  
were executed. Instruction trace is significantly compressed by only broadcasting branch  
addresses as well as a set of status signals that indicate the pipeline status on a cycle by  
cycle basis. Trace information generation can be controlled by selecting the trigger  
resource. Trigger resources include address comparators, counters and sequencers.  
Since trace information is compressed the software debugger requires a static image of  
the code being executed. Self-modifying code can not be traced because of this  
restriction.  
7.27.3 RealMonitor  
RealMonitor is a configurable software module, developed by ARM Inc., which enables  
real-time debug. It is a lightweight debug monitor that runs in the background while users  
debug their foreground application. It communicates with the host using the DCC, which is  
present in the EmbeddedICE logic. The LPC2458 contain a specific configuration of  
RealMonitor software programmed into the on-chip ROM memory.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
42 of 81  
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
8. Limiting values  
Table 6.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VDD(3V3)  
supply voltage (3.3 V)  
core and external  
rail  
3.0  
3.6  
V
VDD(DCDC)(3V3) DC-to-DC converter supply voltage  
(3.3 V)  
3.0  
3.6  
V
VDDA  
analog 3.3 V pad supply voltage  
input voltage on pin VBAT  
input voltage on pin VREF  
analog input voltage  
0.5  
0.5  
0.5  
0.5  
+4.6  
+4.6  
+4.6  
+5.1  
V
V
V
V
Vi(VBAT)  
Vi(VREF)  
VIA  
for the RTC  
on ADC related  
pins  
[2]  
VI  
input voltage  
5 V tolerant I/O  
pins; only valid  
when the VDD(3V3)  
supply voltage is  
present  
0.5  
+6.0  
V
[2][3]  
other I/O pins  
0.5  
VDD(3V3)  
0.5  
+
V
[4]  
[4]  
[5]  
IDD  
supply current  
per supply pin  
per ground pin  
non-operating  
-
100  
100  
+150  
1.5  
mA  
mA  
C  
ISS  
ground current  
-
Tstg  
storage temperature  
total power dissipation (per package)  
65  
Ptot(pack)  
based on package  
heat transfer, not  
device power  
-
W
consumption  
[6]  
VESD  
electrostatic discharge voltage  
human body  
2500  
+2500  
V
model; all pins  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSSIO/VSSCORE  
unless otherwise noted.  
[2] Including voltage on outputs in 3-state mode.  
[3] Not to exceed 4.6 V.  
[4] The peak current is limited to 25 times the corresponding maximum current.  
[5] The maximum non-operating storage temperature is different than the temperature for required shelf life which should be determined  
based on required shelf lifetime. Please refer to the JEDEC spec (J-STD-033B.1) for further details.  
[6] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
43 of 81  
 
 
 
 
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
9. Thermal characteristics  
The average chip junction temperature, Tj (C), can be calculated using the following  
equation:  
Tj = Tamb + PD Rthj a  
(1)  
Tamb = ambient temperature (C),  
Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)  
PD = sum of internal and I/O power dissipation  
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of  
the I/O pins is often small and many times can be negligible. However it can be significant  
in some applications.  
Table 7.  
Thermal characteristics  
VDD = 3.0 V to 3.6 V; Tamb = 40 C to +85 C unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Tj(max)  
maximum junction  
temperature  
-
-
125  
C  
Table 8.  
Thermal resistance value (C/W): ±15 %  
VDD = 3.0 V to 3.6 V; Tamb = 40 C to +85 C unless otherwise specified  
TFBGA180  
ja  
JEDEC (4.5 in 4 in)  
0 m/s  
45.5  
38.3  
33.8  
1 m/s  
2.5 m/s  
8-layer (4.5 in 3 in)  
0 m/s  
1 m/s  
2.5 m/s  
jc  
38  
33.5  
29.8  
8.9  
12  
jb  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
44 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
10. Static characteristics  
Table 9.  
Static characteristics  
Tamb = 40 C to +85 C for commercial applications, unless otherwise specified.  
Symbol  
VDD(3V3)  
VDD(DCDC)(3V3)  
Parameter  
Conditions  
Min  
3.0  
3.0  
Typ[1]  
3.3  
Max  
3.6  
Unit  
V
supply voltage (3.3 V) core and external rail  
DC-to-DC converter  
supply voltage (3.3 V)  
3.3  
3.6  
V
VDDA  
analog 3.3 V pad  
supply voltage  
3.0  
2.0  
2.5  
3.3  
3.3  
3.3  
3.6  
V
V
V
[2]  
Vi(VBAT)  
Vi(VREF)  
input voltage on pin  
VBAT  
3.6  
input voltage on pin  
VREF  
VDDA  
IDD(DCDC)act(3V3) active mode DC-to-DC VDD(DCDC)(3V3) = 3.3 V;  
converter supply  
current (3.3 V)  
Tamb = 25 C; code  
while(1){}  
executed from flash; no  
peripherals enabled;  
PCLK = CCLK  
CCLK = 10 MHz  
CCLK = 72 MHz  
-
-
15  
63  
-
-
mA  
mA  
all peripherals enabled;  
PCLK = CCLK / 8  
CCLK = 10 MHz  
CCLK = 72 MHz  
-
-
21  
92  
-
-
mA  
mA  
all peripherals enabled;  
PCLK = CCLK  
CCLK = 10 MHz  
CCLK = 72 MHz  
-
-
27  
-
-
mA  
mA  
125  
[3]  
[3]  
IDD(DCDC)pd(3V3) Power-down mode  
DC-to-DC converter  
VDD(DCDC)(3V3) = 3.3 V;  
Tamb = 25 C  
supply current (3.3 V)  
-
113  
-
A  
IDD(DCDC)dpd(3V3) Deep power-down  
mode DC-to-DC  
converter supply  
current (3.3 V)  
-
20  
-
A  
[4]  
[3]  
IBATact  
IBAT  
active mode battery  
supply current  
-
-
20  
20  
-
-
A  
A  
battery supply current Deep power-down mode  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
45 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 9.  
Static characteristics …continued  
Tamb = 40 C to +85 C for commercial applications, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
Standard port pins, RESET, RTCK  
IIL  
LOW-level input  
current  
VI = 0 V; no pull-up  
-
-
-
-
-
-
-
-
3
A  
A  
A  
mA  
IIH  
HIGH-level input  
current  
VI = VDD(3V3); no pull-down  
3
IOZ  
Ilatch  
OFF-state output  
current  
VO = 0 V; VO = VDD(3V3)  
no pull-up/down  
;
3
I/O latch-up current  
(0.5VDD(3V3)) < VI <  
100  
(1.5VDD(3V3));  
Tj < 125 C  
[5][6][7]  
[8]  
VI  
input voltage  
pin configured to provide a  
digital function  
0
-
5.5  
V
VO  
output voltage  
output active  
0
-
-
VDD(3V3)  
-
V
V
VIH  
HIGH-level input  
voltage  
2.0  
VIL  
LOW-level input  
voltage  
-
-
0.8  
V
Vhys  
VOH  
hysteresis voltage  
0.4  
-
-
-
-
V
V
[9]  
[9]  
HIGH-level output  
voltage  
IOH = 4 mA  
VDD(3V3)  
0.4  
VOL  
IOH  
LOW-level output  
voltage  
IOL = 4 mA  
-
-
-
-
-
0.4  
V
[9]  
HIGH-level output  
current  
VOH = VDD(3V3) 0.4 V  
VOL = 0.4 V  
4  
4
-
-
mA  
mA  
mA  
[9]  
IOL  
LOW-level output  
current  
-
[10]  
IOHS  
HIGH-level  
VOH = 0 V  
45  
short-circuit output  
current  
[10]  
[11]  
IOLS  
LOW-level short-circuit VOL = VDDA  
output current  
-
-
50  
mA  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
10  
15  
0
50  
50  
0
150  
85  
0
A  
A  
A  
VI = 0 V  
[11]  
VDD(3V3) < VI < 5 V  
I2C-bus pins (P0[27] and P0[28])  
VIH  
HIGH-level input  
voltage  
0.7VDD(3V3)  
-
-
-
-
V
V
VIL  
LOW-level input  
voltage  
0.3VDD(3V3)  
Vhys  
VOL  
hysteresis voltage  
-
-
0.05VDD(3V3)  
-
-
V
V
[9]  
LOW-level output  
voltage  
IOLS = 3 mA  
0.4  
[12]  
ILI  
input leakage current VI = VDD(3V3)  
VI = 5 V  
-
-
2
4
A  
A  
10  
22  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
46 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 9.  
Static characteristics …continued  
Tamb = 40 C to +85 C for commercial applications, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
Oscillator pins  
Vi(XTAL1)  
input voltage on pin  
XTAL1  
0.5  
0.5  
0.5  
0.5  
1.8  
1.8  
1.8  
1.8  
1.95  
1.95  
1.95  
1.95  
V
V
V
V
Vo(XTAL2)  
Vi(RTCX1)  
Vo(RTCX2)  
output voltage on pin  
XTAL2  
input voltage on pin  
RTCX1  
output voltage on pin  
RTCX2  
USB pins  
IOZ  
OFF-state output  
current  
0 V < VI < 3.3 V  
-
-
10  
A  
VBUS  
VDI  
bus supply voltage  
-
-
-
5.25  
-
V
V
differential input  
(D+) (D)  
0.2  
sensitivity voltage  
VCM  
differential common  
mode voltage range  
includes VDI range  
0.8  
0.8  
-
-
2.5  
2.0  
V
V
Vth(rs)se  
single-ended receiver  
switching threshold  
voltage  
VOL  
LOW-level output  
voltage for  
low-/full-speed  
RL of 1.5 kto 3.6 V  
RL of 15 kto GND  
pin to GND  
-
-
-
0.18  
3.5  
V
V
VOH  
HIGH-level output  
voltage (driven) for  
low-/full-speed  
2.8  
Ctrans  
ZDRV  
transceiver  
capacitance  
-
-
-
20  
pF  
[13]  
driver output  
with 33 series resistor;  
36  
44.1  
impedance for driver  
which is not  
steady state drive  
high-speed capable  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages  
[2] The RTC typically fails when Vi(VBAT) drops below 1.6 V.  
[3] VDD(DCDC)(3V3) = 3.3 V; VDD(3V3) = 3.3 V; Vi(VBAT) = 3.3 V; Tamb = 25 C.  
[4] On pin VBAT.  
[5] Including voltage on outputs in 3-state mode.  
[6]  
VDD(3V3) supply voltages must be present.  
[7] 3-state outputs go into 3-state mode when VDD(3V3) is grounded.  
[8] Please also see the errata note mentioned in errata sheet.  
[9] Accounts for 100 mV voltage drop in all supply lines.  
[10] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[11] Minimum condition for VI = 4.5 V, maximum condition for VI = 5.5 V.  
[12] To VSSIO  
.
[13] Includes external resistors of 33   1 % on D+ and D.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
47 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
10.1 Power-down mode  
002aae049  
4
I
DD(IO)  
(μA)  
2
0
V
= 3.3 V  
= 3.0 V  
DD(3V3)  
V
DD(3V3)  
2  
4  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Vi(VBAT) = VDD(DCDC)(3V3) = 3.3 V; Tamb = 25 C.  
Fig 4. I/O maximum supply current IDD(IO) versus temperature in Power-down mode  
002aae050  
40  
I
BAT  
(μA)  
30  
V
= 3.3 V  
= 3.0 V  
i(VBAT)  
V
i(VBAT)  
20  
10  
0
40  
15  
10  
35  
60  
85  
temperature (°C)  
VDD(3V3) = VDD(DCDC)(3V3) = 3.3 V; Tamb = 25 C.  
Fig 5. RTC battery maximum supply current IBAT versus temperature in Power-down  
mode  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
48 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
002aae051  
800  
I
DD(DCDC)pd(3v3)  
(μA)  
600  
400  
200  
V
= 3.3 V  
= 3.0 V  
DD(DCDC)(3V3)  
V
DD(DCDC)(3V3)  
0
40  
15  
10  
35  
60  
85  
temperature (°C)  
VDD(3V3) = Vi(VBAT) = 3.3 V; Tamb = 25 C.  
Fig 6. Total DC-to-DC converter supply current IDD(DCDC)pd(3V3) at different temperatures  
in Power-down mode  
10.2 Deep power-down mode  
002aae046  
300  
I
DD(IO)  
(μA)  
200  
100  
0
V
V
= 3.3 V  
= 3.0 V  
DD(3V3)  
DD(3V3)  
40  
15  
10  
35  
60  
85  
temperature (°C)  
VDD(3V3) = VDD(DCDC)(3V3) = 3.3 V; Tamb = 25 C.  
Fig 7. I/O maximum supply current IDD(IO) versus temperature in Deep power-down  
mode  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
49 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
002aae047  
40  
I
BAT  
(μA)  
30  
V
V
= 3.3 V  
= 3.0 V  
i(VBAT)  
i(VBAT)  
20  
10  
0
40  
15  
10  
35  
60  
85  
temperature (°C)  
VDD(3V3) = VDD(DCDC)(3V3) = 3.3 V; Tamb = 25 C  
Fig 8. RTC battery maximum supply current IBAT versus temperature in Deep  
power-down mode  
002aae048  
100  
I
DD(DCDC)dpd(3v3)  
(μA)  
80  
60  
V
= 3.3 V  
= 3.0 V  
DD(DCDC)(3V3)  
40  
20  
0
V
DD(DCDC)(3V3)  
40  
15  
10  
35  
60  
85  
temperature (°C)  
VDD(3V3) = Vi(VBAT) = 3.3 V; Tamb = 25 C.  
Fig 9. Total DC-to-DC converter maximum supply current IDD(DCDC)dpd(3V3) versus  
temperature in Deep power-down mode  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
50 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
10.3 Electrical pin characteristics  
002aaf112  
3.6  
V
OH  
(V)  
T = 85 °C  
25 °C  
40 °C  
3.2  
2.8  
2.4  
2.0  
0
8
16  
24  
I
(mA)  
OH  
Conditions: VDD(3V3) = 3.3 V; standard port pins.  
Fig 10. Typical HIGH-level output voltage VOH versus HIGH-level output source current  
IOH  
002aaf111  
15  
I
OL  
T = 85 °C  
25 °C  
40 °C  
(mA)  
10  
5
0
0
0.2  
0.4  
0.6  
V
(V)  
OL  
Conditions: VDD(3V3) = 3.3 V; standard port pins.  
Fig 11. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
51 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
11. Dynamic characteristics  
Table 10. Dynamic characteristics  
T
amb = 40 C to +85 C for commercial applications; VDD(3V3) over specified ranges.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
External clock  
fosc  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
1
-
-
-
-
-
-
25  
MHz  
ns  
Tcy(clk)  
tCHCX  
40  
1000  
Tcy(clk) 0.4  
-
ns  
tCLCX  
Tcy(clk) 0.4  
-
ns  
tCLCH  
-
-
5
5
ns  
tCHCL  
clock fall time  
ns  
I2C-bus pins (P0[27] and P0[28])  
[3]  
tf(o)  
output fall time  
VIH to VIL  
20 + 0.1 Cb  
-
-
-
ns  
ns  
SSP interface  
tsu(SPI_MISO)  
SPI_MISO set-up time  
Tamb = 25 C;  
measured in  
SPI Master  
mode; see  
Figure 16  
-
11  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
[3] Bus capacitance Cb in pF, from 10 pF to 400 pF.  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 12. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
52 of 81  
 
 
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
11.1 Internal oscillators  
Table 11. Dynamic characteristic: Internal oscillators  
Tamb = 40 C to +85 C; 3.0 V VDD(3V3) 3.6 V.[1]  
Symbol  
fosc(RC)  
fi(RTC)  
Parameter  
Conditions  
Min  
3.96  
-
Typ[2]  
4.02  
Max  
4.04  
-
Unit  
MHz  
kHz  
internal RC oscillator frequency  
RTC input frequency  
-
-
32.768  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
11.2 I/O pins  
Table 12. Dynamic characteristic: I/O pins[1]  
Tamb = 40 C to +85 C; VDD(3V3) over specified ranges.  
Symbol  
Parameter  
rise time  
fall time  
Conditions  
Min  
3.0  
2.5  
Typ  
Max  
Unit  
ns  
tr  
tf  
pin configured as output  
pin configured as output  
-
-
5.0  
5.0  
ns  
[1] Applies to standard I/O pins and RESET pin.  
11.3 USB interface  
Table 13. Dynamic characteristics of USB pins  
CL = 50 pF; Rpu = 1.5 kon D+ to VDD(3V3),unless otherwise specified.  
Symbol  
Parameter  
rise time  
fall time  
Conditions  
10 % to 90 %  
10 % to 90 %  
tr / tf  
Min  
8.5  
7.7  
-
Typ  
Max  
Unit  
ns  
tr  
-
-
-
13.8  
13.7  
109  
tf  
ns  
tFRFM  
differential rise and fall time  
matching  
%
VCRS  
output signal crossover voltage  
source SE0 interval of EOP  
1.3  
160  
2  
-
-
-
2.0  
175  
+5  
V
tFEOPT  
tFDEOP  
see Figure 15  
ns  
ns  
source jitter for differential transition see Figure 15  
to SE0 transition  
tJR1  
receiver jitter to next transition  
18.5  
9  
-
-
-
+18.5  
ns  
ns  
ns  
tJR2  
receiver jitter for paired transitions  
EOP width at receiver  
10 % to 90 %  
+9  
-
[1]  
[1]  
tEOPR1  
must reject as  
EOP; see  
Figure 15  
40  
tEOPR2  
EOP width at receiver  
must accept as  
EOP; see  
82  
-
-
ns  
Figure 15  
[1] Characterized but not implemented as production test. Guaranteed by design.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
53 of 81  
 
 
 
 
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
11.4 Flash memory  
Table 14. Dynamic characteristics of flash  
Tamb = 40 C to +85 C, unless otherwise specified; VDD(3V3) = 3.0 V to 3.6 V; all voltages are measured with respect to  
ground.  
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
10000  
10  
Typ  
Max  
Unit  
[1]  
[2]  
100000  
-
cycles  
years  
years  
ms  
retention time  
powered; < 100 cycles  
-
-
unpowered; < 100 cycles  
20  
-
-
ter  
erase time  
sector or multiple  
95  
100  
105  
consecutive sectors  
[2]  
tprog  
programming time  
0.95  
1
1.05  
ms  
[1] Number of program/erase cycles.  
[2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash in blocks of 256 bytes.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
54 of 81  
 
 
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
11.5 Static external memory interface  
Table 15. Dynamic characteristics: Static external memory interface  
CL = 30 pF, Tamb = 40 C to 85 C, VDD(DCDC)(3V3) = VDD(3V3) = 3.0 V to 3.6 V  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Common to read and write cycles[1]  
tCSLAV  
CS LOW to address valid  
time  
0.29  
0.20  
2.54  
ns  
Read cycle parameters[1][2]  
tOELAV  
OE LOW to address valid  
0.29  
0.20  
2.54  
ns  
time  
tCSLOEL  
tam  
CS LOW to OE LOW time  
memory access time  
0.78 + Tcy(CCLK) WAITOEN 0 + Tcy(CCLK) WAITOEN  
0.49 + Tcy(CCLK) WAITOEN ns  
[3][4]  
[5]  
(WAITRD WAITOEN + 1) (WAITRD WAITOEN + 1) (WAITRD WAITOEN + 1) ns  
Tcy(CCLK) 12.70  
Tcy(CCLK) 9.57  
Tcy(CCLK) 8.11  
th(D)  
data input hold time  
0
-
-
ns  
ns  
ns  
tCSHOEH CS HIGH to OE HIGH time  
0.49  
0.20  
0
0.20  
2.44  
tOEHANV OE HIGH to address invalid  
time  
0.20  
tOELOEH OE LOW to OE HIGH time  
0.59 + (WAITRD   
0 + (WAITRD WAITOEN + 0.10 + (WAITRD   
WAITOEN + 1) Tcy(CCLK)  
1) Tcy(CCLK)  
WAITOEN + 1) Tcy(CCLK)  
tBLSLAV  
BLS LOW to address valid  
time  
0.39  
0.88  
0
2.54  
0.68  
ns  
ns  
tCSHBLSH CS HIGH to BLS HIGH time  
0.49  
Write cycle parameters[1][6]  
tCSLWEL  
CS LOW to WE LOW time  
0.88 + Tcy(CCLK) (1 +  
0.10 + Tcy(CCLK) (1 +  
0.20 + Tcy(CCLK) (1 +  
ns  
WAITWEN)  
WAITWEN)  
WAITWEN)  
tCSLBLSL CS LOW to BLS LOW time  
0.88  
0.68  
0
0.49  
0.98  
5.86  
4.79  
ns  
ns  
ns  
ns  
tWELDV  
tCSLDV  
WE LOW to data valid time  
CS LOW to data valid time  
2.54  
2.64  
[3]  
[3]  
[3]  
tWELWEH WE LOW to WE HIGH time  
0.78 + Tcy(CCLK)  
0 + Tcy(CCLK) (WAITWR   
0.10 + Tcy(CCLK)  
(WAITWR WAITWEN + 1)  
(WAITWR WAITWEN + 1) WAITWEN + 1)  
0.88 + Tcy(CCLK) 0 + Tcy(CCLK) (WAITWR   
(WAITWR WAITWEN + 3) WAITWEN + 3)  
0 + Tcy(CCLK) 0.20 + Tcy(CCLK)  
tBLSLBLSH BLS LOW to BLS HIGH  
time  
0.59 + Tcy(CCLK)  
(WAITWR WAITWEN + 3)  
ns  
ns  
tWEHANV WE HIGH to address invalid  
time  
2.74 + Tcy(CCLK)  
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 15. Dynamic characteristics: Static external memory interface …continued  
CL = 30 pF, Tamb = 40 C to 85 C, VDD(DCDC)(3V3) = VDD(3V3) = 3.0 V to 3.6 V  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[3]  
[3]  
[3]  
tWEHDNV WE HIGH to data invalid  
time  
0.78 + Tcy(CCLK)  
2.54 + Tcy(CCLK)  
5.96 + Tcy(CCLK)  
ns  
tBLSHANV BLS HIGH to address  
invalid time  
0.29  
0.20  
2.54  
2.54  
5.37  
ns  
ns  
tBLSHDNV BLS HIGH to data invalid  
time  
0
[1] VOH = 2.5 V, VOL = 0.2 V.  
[2] VIH = 2.5 V, VIL = 0.5 V.  
[3]  
T .  
cy(CCLK) = 1CCLK  
[4] Latest of address valid, CS LOW, OE LOW to data valid.  
[5] Earliest of CS HIGH, OE HIGH, address change to data invalid.  
[6] Byte lane state bit (PB) = 1.  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
11.6 Dynamic external memory interface  
Table 16. Dynamic characteristics: Dynamic external memory interface  
CL = 30 pF, Tamb = 40 C to 85 C, VDD(DCDC)(3V3) = VDD(3V3) = 3.0 V to 3.6 V, EMC Dynamic Read Config Register = 0x0  
(RD = 00)  
Symbol  
Common  
td(SV)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
chip select valid delay time  
chip select hold time  
-
1.05  
1.02  
1.51  
1.51  
0.98  
0.97  
0.84  
0.84  
0.95  
1
1.76  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
th(S)  
0.1  
-
-
td(RASV)  
th(RAS)  
td(CASV)  
th(CAS)  
td(WV)  
th(W)  
row address strobe valid delay time  
row address strobe hold time  
column address strobe valid delay time  
column address strobe hold time  
write valid delay time  
1.95  
0.5  
-
-
1.27  
0.1  
-
-
1.95  
write hold time  
0.1  
-
-
td(GV)  
output enable valid delay time  
output enable hold time  
1.86  
th(G)  
0.1  
-
-
td(AV)  
address valid delay time  
address hold time  
0.87  
0.81  
1.95  
-
th(A)  
0.1  
Read cycle parameters  
tsu(D) data input set-up time  
th(D) data input hold time  
Write cycle parameters  
td(QV) data output valid delay time  
th(Q) data output hold time  
[1]  
[1]  
0.51  
0.57  
2.24  
2.41  
-
-
ns  
ns  
[1]  
[1]  
-
2.65  
2.61  
4.36  
-
ns  
ns  
0.49  
[1] See Figure 17.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
57 of 81  
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 17. Dynamic characteristics: Dynamic external memory interface  
CL = 30 pF on all pins, Tamb = 40 C to 85 C, VDD(DCDC)(3V3) = VDD(3V3) = 3.3 V, EMC Dynamic Read Config Register = 0x1  
(RD = 01), Tcy(CCLK) = 1/CCLK  
Symbol  
Common  
td(SV)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
chip select valid delay  
time  
-
3 + Tcy(CCLK)  
1.5 + Tcy(CCLK) ns  
[1]  
[1]  
th(S)  
chip select hold time  
4 + Tcy(CCLK)  
3 + Tcy(CCLK)  
3 + Tcy(CCLK)  
-
ns  
td(RASV)  
row address strobe valid  
delay time  
-
1.5 + Tcy(CCLK) ns  
[1]  
[1]  
[1]  
th(RAS)  
td(CASV)  
th(CAS)  
row address strobe hold  
time  
3 + Tcy(CCLK)  
2.3 + Tcy(CCLK)  
-
ns  
column address strobe  
valid delay time  
-
3.4 + Tcy(CCLK) 2.1 + Tcy(CCLK) ns  
3 + Tcy(CCLK) ns  
3.4 + Tcy(CCLK) 2.1 + Tcy(CCLK) ns  
column address strobe  
hold time  
4 + Tcy(CCLK)  
-
[1]  
[1]  
[1]  
td(WV)  
th(W)  
write valid delay time  
write hold time  
-
4 + Tcy(CCLK)  
3 + Tcy(CCLK)  
3 + Tcy(CCLK)  
-
ns  
td(GV)  
output enable valid delay  
time  
-
1.3 + Tcy(CCLK) ns  
[1]  
[1]  
[1]  
th(G)  
td(AV)  
th(A)  
output enable hold time  
address valid delay time  
address hold time  
4 + Tcy(CCLK)  
2.1 + Tcy(CCLK)  
-
ns  
-
2.6 + Tcy(CCLK) 1.4 + Tcy(CCLK) ns  
4 + Tcy(CCLK)  
2.3 + Tcy(CCLK)  
-
ns  
Read cycle parameters  
tsu(D) data input set-up time  
th(D) data input hold time  
Write cycle parameters  
td(QV) data output valid delay  
[1]  
[1]  
2.6 + Tcy(CCLK) 1.5 + Tcy(CCLK)  
2.6 + Tcy(CCLK) 1.3 + Tcy(CCLK)  
-
-
ns  
ns  
[1]  
[1]  
-
2.6 + Tcy(CCLK)/2 4.8 + Tcy(CCLK)/2 ns  
time  
th(Q)  
data output hold time  
3.8 + Tcy(CCLK) 3.4 + Tcy(CCLK)  
-
ns  
[1] See Figure 17.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
58 of 81  
 
 
LPC2458  
NXP Semiconductors  
11.7 Timing  
Single-chip 16-bit/32-bit micro  
t
t
CSHOEH  
CSLAV  
CS  
addr  
data  
t
t
h(D)  
am  
t
CSLOEL  
t
t
OEHANV  
OELAV  
t
OELOEH  
OE  
t
CSHBLSH  
t
BLSLAV  
BLS  
002aad955  
Fig 13. External memory read access  
CS  
t
CSLAV  
t
WELWEH  
t
CSLWEL  
t
BLSLBLSH  
BLS/WE  
addr  
t
WEHANV  
t
t
WELDV  
CSLBLSL  
t
BLSHANV  
t
WEHDNV  
t
CSLDV  
t
BLSHDNV  
data  
OE  
002aad956  
Fig 14. External memory write access  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
59 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
T
PERIOD  
crossover point  
extended  
crossover point  
differential  
data lines  
source EOP width: t  
FEOPT  
differential data to  
SE0/EOP skew  
n × T  
+ t  
PERIOD  
FDEOP  
receiver EOP width: t  
, t  
EOPR1 EOPR2  
002aab561  
Fig 15. Differential data-to-EOP transition skew and EOP width  
shifting edges  
SCK  
sampling edges  
MOSI  
MISO  
t
su(SPI_MISO)  
002aad326  
Fig 16. MISO line set-up time in SSP Master mode  
reference  
clock  
t
t
h(XXX)  
d(XXX)  
output signal (O)  
t
t
su(D)  
h(D)  
input signal (I)  
002aad636  
Fig 17. Signal timing  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
60 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
12. ADC electrical characteristics  
Table 18. ADC static characteristics  
VDDA = 2.5 V to 3.6 V; Tamb = 40 C to +85 C unless otherwise specified; ADC frequency 4.5 MHz.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
VDDA  
1
Unit  
V
VIA  
Cia  
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
pF  
[1][2][3]  
[1][4]  
[1][5]  
[1][6]  
[1][7]  
[8]  
ED  
1  
LSB  
LSB  
LSB  
%
EL(adj)  
EO  
2  
3  
EG  
gain error  
0.5  
4  
ET  
absolute error  
LSB  
k  
Rvsi  
voltage source interface  
resistance  
40  
[1] Conditions: VSSA = 0 V, VDDA = 3.3 V.  
[2] The ADC is monotonic, there are no missing codes.  
[3] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 18.  
[4] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 18.  
[5] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 18.  
[6] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 18.  
[7] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated  
ADC and the ideal transfer curve. See Figure 18.  
[8] See Figure 19.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
61 of 81  
 
 
 
 
 
 
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
offset  
error  
gain  
error  
E
E
O
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
(LSB  
)
ideal  
IA  
offset error  
E
O
V
V  
SSA  
i(VREF)  
1 LSB =  
1024  
002aae604  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 18. ADC characteristics  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
62 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
LPC2XXX  
R
vsi  
20 kΩ  
AD0[y]  
AD0[y]  
SAMPLE  
3 pF  
5 pF  
V
EXT  
V
V
SSIO, SSCORE  
002aad586  
Fig 19. Suggested ADC interface - LPC2458 AD0[y] pin  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
63 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
13. DAC electrical characteristics  
Table 19. DAC electrical characteristics  
VDDA = 3.0 V to 3.6 V; Tamb = 40 C to +85 C unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
1  
Max  
Unit  
LSB  
LSB  
%
ED  
differential linearity error  
integral non-linearity  
offset error  
-
-
-
-
-
-
-
-
EL(adj)  
EO  
1.5  
0.6  
0.6  
200  
-
-
EG  
gain error  
-
%
CL  
load capacitance  
load resistance  
-
pF  
RL  
1
k  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
64 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
14. Application information  
14.1 Suggested USB interface solutions  
V
DD(3V3)  
USB_UP_LED  
USB_CONNECT  
LPC24XX  
soft-connect switch  
R1  
1.5 kΩ  
V
BUS  
R
R
= 33 Ω  
= 33 Ω  
S
USB-B  
connector  
USB_D+  
S
USB_D−  
V
V
SSIO, SSCORE  
002aad587  
Fig 20. LPC2458 USB interface on a self-powered device  
V
DD(3V3)  
R2  
LPC24XX  
R1  
1.5 kΩ  
USB_UP_LED  
V
BUS  
USB-B  
connector  
R
R
= 33 Ω  
= 33 Ω  
S
USB_D+  
S
USB_D−  
V
V
SSIO, SSCORE  
002aad588  
Fig 21. LPC2458 USB interface on a bus-powered device  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
65 of 81  
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
V
DD  
R1  
R2  
R3  
R4  
V
BUS  
RSTOUT  
RESET_N  
ADR/PSW  
OE_N/INT_N  
SPEED  
ID  
33 Ω  
DP  
V
DD  
Mini-AB  
33 Ω  
connector  
DM  
ISP1302  
SUSPEND  
R4  
R5  
R6  
V
SSIO,  
SCL  
SDA  
USB_SCL1  
USB_SDA1  
USB_INT1  
V
SSCORE  
INT_N  
USB_D+1  
USB_D1  
V
DD  
USB_UP_LED1  
R7  
LPC24XX  
5 V  
V
DD  
IN  
ENA  
OUTA  
FLAGA  
LM3526-L  
USB_PPWR2  
USB_OVRCR2  
V
USB_PWRD2  
USB_D+2  
BUS  
33 Ω  
33 Ω  
D+  
USB-A  
connector  
D−  
USB_D2  
V
SSIO,  
SSCORE  
15 kΩ  
15 kΩ  
V
V
DD  
USB_UP_LED2  
R8  
002aad589  
Fig 22. LPC2458 USB OTG port configuration: USB port 1 OTG dual-role device, USB port 2 host  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
66 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
V
DD  
RSTOUT  
RESET_N  
OE_N/INT_N  
DAT_VP  
USB_TX_E1  
USB_TX_DP1  
USB_TX_DM1  
SE0_VM  
RCV  
VP  
USB_RCV1  
V
BUS  
USB_RX_DP1  
USB_RX_DM1  
VM  
ID  
V
DD  
33 Ω  
33 Ω  
USB MINI-AB  
connector  
DP  
DM  
ISP1302  
LPC24XX  
ADR/PSW  
SPEED  
V
SSIO,  
SSCORE  
V
SUSPEND  
USB_SCL1  
USB_SDA1  
USB_INT1  
SCL  
SDA  
INT_N  
V
DD  
USB_UP_LED1  
002aad590  
Fig 23. LPC2458 USB OTG port configuration: VP_VM mode  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
67 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
V
DD  
USB_UP_LED1  
V
SSIO,  
SSCORE  
V
33 Ω  
33 Ω  
D+  
USB_D+1  
USB_D1  
D−  
USB-A  
connector  
15 kΩ  
15 kΩ  
V
DD  
V
USB_PWRD1  
USB_OVRCR1  
BUS  
USB_PPWR1  
FLAGA  
OUTA  
ENA  
5 V  
LM3526-L  
IN  
LPC24XX  
V
DD  
USB_UP_LED2  
V
DD  
USB_CONNECT2  
V
SSIO,  
SSCORE  
V
33 Ω  
33 Ω  
USB_D+2  
D+  
USB-B  
connector  
D−  
USB_D2  
V
BUS  
V
BUS  
002aad595  
Fig 24. LPC2458 USB OTG port configuration: USB port 2 device, USB port 1 host  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
68 of 81  
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
V
DD  
USB_UP_LED1  
V
SSIO,  
SSCORE  
V
33 Ω  
D+  
USB_D+1  
33 Ω  
USB_D1  
D−  
USB-A  
connector  
15 kΩ  
15 kΩ  
V
DD  
V
USB_PWRD1  
USB_OVRCR1  
BUS  
USB_PPWR1  
FLAGA  
OUTA  
ENA  
5 V  
V
DD  
IN  
LM3526-L  
OUTB  
LPC24XX  
USB_PPWR2  
ENB  
FLAGB  
USB_OVRCR2  
USB_PWRD2  
V
BUS  
USB-A  
connector  
33 Ω  
33 Ω  
USB_D+2  
D+  
D−  
USB_D2  
V
SSIO,  
SSCORE  
15 kΩ  
15 kΩ  
V
V
DD  
USB_UP_LED2  
002aad596  
Fig 25. LPC2458 USB OTG port configuration: USB port 1 host, USB port 2 host  
14.2 Crystal oscillator XTAL input and component selection  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci / (Ci + Cg). In  
slave mode, a minimum of 200 mV (RMS) is needed.  
LPC2xxx  
XTAL1  
C
i
C
g
100 pF  
002aae718  
Fig 26. Slave mode operation of the on-chip oscillator  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
69 of 81  
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF  
(Figure 26), with an amplitude between 200 mV (RMS) and 1000 mV (RMS). This  
corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V.  
The XTAL2 pin in this configuration can be left unconnected.  
External components and models used in oscillation mode are shown in Figure 27 and in  
Table 20 and Table 21. Since the feedback resistance is integrated on chip, only a crystal  
and the capacitances CX1 and CX2 need to be connected externally in case of  
fundamental mode oscillation (the fundamental frequency is represented by L, CL and  
RS). Capacitance CP in Figure 27 represents the parallel package capacitance and should  
not be larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal  
manufacturer.  
LPC2xxx  
L
XTAL1  
XTAL2  
C
L
C
P
=
XTAL  
R
S
C
X2  
C
X1  
002aag469  
Fig 27. Oscillator modes and models: oscillation mode of operation and external crystal  
model used for CX1/CX2 evaluation  
Table 20. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters): low frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1/CX2  
1 MHz to 5 MHz  
10 pF  
< 300   
< 300   
< 300   
< 300   
< 200   
< 100   
< 160   
< 60   
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
20 pF  
30 pF  
5 MHz to 10 MHz  
10 pF  
20 pF  
30 pF  
10 MHz to 15 MHz  
15 MHz to 20 MHz  
10 pF  
20 pF  
10 pF  
< 80   
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
70 of 81  
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Table 21. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters): high frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
series resistance RS  
External load  
capacitors CX1,  
CX2  
frequency FOSC  
capacitance CL  
15 MHz to 20 MHz  
10 pF  
< 180   
< 100   
< 160   
< 80   
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
39 pF, 39 pF  
20 pF  
20 MHz to 25 MHz  
10 pF  
20 pF  
14.3 RTC 32 kHz oscillator component selection  
LPC2xxx  
L
RTCX1  
RTCX2  
C
L
C
P
=
32 kHz XTAL  
R
S
C
X2  
C
X1  
002aaf495  
Fig 28. RTC oscillator modes and models: oscillation mode of operation and external  
crystal model used for CX1/CX2 evaluation  
The RTC external oscillator circuit is shown in Figure 28. Since the feedback resistance is  
integrated on chip, only a crystal, the capacitances CX1 and CX2 need to be connected  
externally to the microcontroller.  
Table 22 gives the crystal parameters that should be used. CL is the typical load  
capacitance of the crystal and is usually specified by the crystal manufacturer. The actual  
CL influences oscillation frequency. When using a crystal that is manufactured for a  
different load capacitance, the circuit will oscillate at a slightly different frequency  
(depending on the quality of the crystal) compared to the specified one. Therefore for an  
accurate time reference it is advised to use the load capacitors as specified in Table 22  
that belong to a specific CL. The value of external capacitances CX1 and CX2 specified in  
this table are calculated from the internal parasitic capacitances and the CL. Parasitics  
from PCB and package are not taken into account.  
Table 22. Recommended values for the RTC external 32 kHz oscillator CX1/CX2 components  
Crystal load capacitance Maximum crystal series  
External load capacitors CX1/CX2  
CL  
resistance RS  
11 pF  
13 pF  
15 pF  
< 100 k  
18 pF, 18 pF  
22 pF, 22 pF  
27 pF, 27 pF  
< 100 k  
< 100 k  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
71 of 81  
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
14.4 XTAL and RTCX Printed Circuit Board (PCB) layout guidelines  
The crystal should be connected on the PCB as close as possible to the oscillator input  
and output pins of the chip. Take care that the load capacitors Cx1, Cx2, and Cx3 in case of  
third overtone crystal usage have a common ground plane. The external components  
must also be connected to the ground plain. Loops must be made as small as possible in  
order to keep the noise coupled in via the PCB as small as possible. Also parasitics  
should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller  
accordingly to the increase in parasitics of the PCB layout.  
14.5 Standard I/O pin configuration  
Figure 29 shows the possible pin modes for standard I/O pins with analog input function:  
Digital output driver  
Digital input: Pull-up enabled/disabled  
Digital input: Pull-down enabled/disabled  
Analog input (for ADC input channels)  
The default configuration for standard I/O pins is input with pull-up enabled. The weak  
MOS devices provide a drive capability equivalent to pull-up and pull-down resistors.  
V
DD  
output enable  
ESD  
pin configured  
as digital output  
driver  
output  
PIN  
ESD  
V
V
DD  
SS  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
pin configured  
as digital input  
pull-down enable  
data input  
select analog input  
pin configured  
as analog input  
analog input  
002aaf496  
Fig 29. Standard I/O pin configuration with analog input  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
72 of 81  
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
14.6 Reset pin configuration  
V
DD  
V
DD  
V
DD  
R
pu  
ESD  
20 ns RC  
GLITCH FILTER  
reset  
PIN  
ESD  
V
SS  
002aaf274  
Fig 30. Reset pin configuration  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
73 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
15. Package outline  
TFBGA180: thin fine-pitch ball grid array package; 180 balls  
SOT570-3  
D
B
A
ball A1  
index area  
A
2
E
A
A
1
detail X  
e
1
C
M
M
v  
w  
C
C
A
B
e
1/2 e  
b
y
1
y
C
P
N
M
K
H
L
J
e
e
2
G
E
F
1/2 e  
D
B
C
A
ball A1  
index area  
1
3
5
7
9
11  
13  
2
4
6
8
10  
12  
14  
X
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
UNIT  
A
A
1
A
2
b
D
E
e
e
1
e
2
v
w
y
y
1
max 1.20 0.40 0.80 0.50 12.1 12.1  
nom 1.06 0.35 0.71 0.45 12.0 12.0  
mm  
0.8  
10.4 10.4 0.15 0.05 0.12  
0.1  
min  
0.95 0.30 0.65 0.40 11.9 11.9  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
JEITA  
08-07-09  
10-04-15  
SOT570-3  
Fig 31. Package outline SOT570-3 (TFBGA180)  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
74 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
16. Soldering  
Footprint information for reflow soldering of TFBGA180 package  
SOT570-3  
Hx  
P
P
Hy  
see detail X  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
solder paste deposit  
solder land plus solder paste  
SL  
SP  
SR  
occupied area  
solder resist  
detail X  
DIMENSIONS in mm  
P
SL  
SP  
SR  
Hx  
Hy  
0.80  
0.400 0.400 0.550 12.575 12.575  
sot570-3_fr  
Fig 32. Reflow soldering of the TFBGA180 package  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
75 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
17. Abbreviations  
Table 23. Acronym list  
Acronym  
ADC  
AHB  
AMBA  
APB  
Description  
Analog-to-Digital Converter  
Advanced High-performance Bus  
Advanced Microcontroller Bus Architecture  
Advanced Peripheral Bus  
BrownOut Detection  
BOD  
CAN  
DAC  
DCC  
DMA  
EOP  
ETM  
GPIO  
IrDA  
Controller Area Network  
Digital-to-Analog Converter  
Debug Communication Channel  
Direct Memory Access  
End Of Packet  
Embedded Trace Macrocell  
General Purpose Input/Output  
Infrared Data Association  
Joint Test Action Group  
Media Independent Interface  
Open Host Controller  
JTAG  
MII  
OHC  
OHCI  
OTG  
PHY  
PLL  
Open Host Controller Interface  
On-The-Go  
PHYsical Layer  
Phase-Locked Loop  
PWM  
RMII  
SD/MMC  
SE0  
Pulse Width Modulator  
Reduced Media Independent Interface  
Secure Digital/MultiMediaCard  
Single Ended Zero  
SPI  
Serial Peripheral Interface  
Synchronous Serial Interface  
Synchronous Serial Port  
Transistor-Transistor Logic  
SSI  
SSP  
TTL  
UART  
USB  
Universal Asynchronous Receiver/Transmitter  
Universal Serial Bus  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
76 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
18. Revision history  
Table 24. Revision history  
Document ID  
LPC2458 v.4.1  
Modifications:  
Release date  
20131015  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
LPC2458 v.4  
Table 4 “Pin description”, Table note 6: Changed glitch filter spec from 5 ns to 10 ns.  
Table 10 “Dynamic characteristics”: Changed min clock cycle time from 42 to 40.  
Table 17 “Dynamic characteristics: Dynamic external memory interface”: Changed td(QV) typ  
and max.  
SOT570-2 obsolete; replaced with SOT570-3.  
LPC2458 v.4  
Modifications:  
20110901  
Product data sheet  
-
LPC2458 v.3  
Table 4 “Pin description”: Updated description for USB_UP_LED1 and USB_UP_LED2.  
Table 6 “Limiting values”: Added “non-operating” to conditions column of Tstg  
Table 6 “Limiting values”: Updated Table note [5].  
.
Table 8 “Thermal resistance value (C/W): ±15 %”: Added new table.  
Table 9 “Static characteristics”: Changed Vhys typ value from 0.5VDD(3V3) to 0.05VDD(3V3)  
.
Table 14 “Dynamic characteristics of flash”: Updated table.  
Table 15 “Dynamic characteristics: Static external memory interface”: Removed “AHB clock  
= 1 MHz”.  
Table 15 “Dynamic characteristics: Static external memory interface”: Swapped min/max  
values for tam  
.
Table 15 “Dynamic characteristics: Static external memory interface”: Updated tWEHDNV  
spec.  
Table 16 “Dynamic characteristics: Dynamic external memory interface”: Removed “AHB  
clock = 1 MHz”.  
Table 17 “Dynamic characteristics: Dynamic external memory interface”: Added new table.  
Section 14.5 “Standard I/O pin configuration” Updated bullets.  
LPC2458 v.3  
LPC2458 v.2  
LPC2458 v.1  
20101005  
20081125  
20080623  
Product data sheet  
Product data sheet  
Product data sheet  
-
-
-
LPC2458 v.2  
LPC2458 v.1  
-
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
77 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
19. Legal information  
19.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
19.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
19.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
78 of 81  
 
 
 
 
 
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
19.4 Trademarks  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
20. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
79 of 81  
 
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
21. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
7.19.1  
7.20  
7.20.1  
7.21  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
I2S-bus serial I/O controllers . . . . . . . . . . . . . 32  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
General purpose 32-bit timers/external event  
counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Pulse width modulator . . . . . . . . . . . . . . . . . . 34  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Watchdog timer (WDT) . . . . . . . . . . . . . . . . . 35  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
RTC and battery RAM . . . . . . . . . . . . . . . . . . 35  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Clocking and power control . . . . . . . . . . . . . . 36  
Crystal oscillators. . . . . . . . . . . . . . . . . . . . . . 36  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
4
4.1  
5
7.21.1  
7.22  
7.22.1  
7.23  
7.23.1  
7.24  
7.24.1  
7.25  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 8  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.5.1  
7.6  
7.7  
7.7.1  
7.8  
7.8.1  
7.9  
7.9.1  
7.10  
7.10.1  
7.11  
7.11.1  
Functional description . . . . . . . . . . . . . . . . . . 20  
Architectural overview . . . . . . . . . . . . . . . . . . 20  
On-chip flash programming memory . . . . . . . 21  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . 22  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . 23  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 24  
Pin connect block . . . . . . . . . . . . . . . . . . . . . . 24  
External memory controller. . . . . . . . . . . . . . . 24  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
General purpose DMA controller . . . . . . . . . . 25  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Fast general purpose parallel I/O . . . . . . . . . . 26  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
USB interface . . . . . . . . . . . . . . . . . . . . . . . . . 28  
USB device controller . . . . . . . . . . . . . . . . . . . 28  
7.25.1  
7.25.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 36  
7.25.1.2 Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.25.1.3 RTC oscillator . . . . . . . . . . . . . . . . . . . . . . . . 37  
7.25.2  
7.25.3  
7.25.4  
7.25.4.1 Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.25.4.2 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.25.4.3 Power-down mode. . . . . . . . . . . . . . . . . . . . . 38  
7.25.4.4 Deep power-down mode . . . . . . . . . . . . . . . . 39  
7.25.4.5 Power domains . . . . . . . . . . . . . . . . . . . . . . . 39  
PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Wake-up timer . . . . . . . . . . . . . . . . . . . . . . . . 37  
Power control. . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.26  
System control . . . . . . . . . . . . . . . . . . . . . . . . 40  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Brownout detection . . . . . . . . . . . . . . . . . . . . 40  
Code security (Code Read Protection - CRP) 40  
AHB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
External interrupt inputs. . . . . . . . . . . . . . . . . 41  
Memory mapping control . . . . . . . . . . . . . . . . 41  
Emulation and debugging . . . . . . . . . . . . . . . 41  
EmbeddedICE . . . . . . . . . . . . . . . . . . . . . . . . 41  
Embedded trace. . . . . . . . . . . . . . . . . . . . . . . 42  
RealMonitor . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.26.1  
7.26.2  
7.26.3  
7.26.4  
7.26.5  
7.26.6  
7.27  
7.27.1  
7.27.2  
7.27.3  
7.11.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7.11.2 USB Host Controller . . . . . . . . . . . . . . . . . . . . 28  
7.11.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7.11.3 USB OTG Controller. . . . . . . . . . . . . . . . . . . . 29  
7.11.3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.12  
7.12.1  
7.13  
7.13.1  
7.14  
7.14.1  
7.15  
7.15.1  
7.16  
7.16.1  
7.17  
CAN controller and acceptance filters . . . . . . 29  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
10-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
10-bit DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
UARTs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
SPI serial I/O controller. . . . . . . . . . . . . . . . . . 31  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
SSP serial I/O controller . . . . . . . . . . . . . . . . . 31  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
SD/MMC card interface . . . . . . . . . . . . . . . . . 31  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 32  
8
9
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 43  
Thermal characteristics . . . . . . . . . . . . . . . . . 44  
10  
Static characteristics . . . . . . . . . . . . . . . . . . . 45  
Power-down mode. . . . . . . . . . . . . . . . . . . . . 48  
Deep power-down mode . . . . . . . . . . . . . . . . 49  
Electrical pin characteristics. . . . . . . . . . . . . . 51  
10.1  
10.2  
10.3  
11  
Dynamic characteristics. . . . . . . . . . . . . . . . . 52  
Internal oscillators . . . . . . . . . . . . . . . . . . . . . 53  
I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
USB interface. . . . . . . . . . . . . . . . . . . . . . . . . 53  
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . 54  
11.1  
11.2  
11.3  
11.4  
7.17.1  
7.18  
7.18.1  
7.19  
continued >>  
LPC2458  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 4.1 — 15 October 2013  
80 of 81  
 
LPC2458  
NXP Semiconductors  
Single-chip 16-bit/32-bit micro  
11.5  
11.6  
11.7  
Static external memory interface . . . . . . . . . . 55  
Dynamic external memory interface. . . . . . . . 57  
Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
12  
13  
ADC electrical characteristics . . . . . . . . . . . . 61  
DAC electrical characteristics . . . . . . . . . . . . 64  
14  
14.1  
14.2  
Application information. . . . . . . . . . . . . . . . . . 65  
Suggested USB interface solutions . . . . . . . . 65  
Crystal oscillator XTAL input and component  
selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
RTC 32 kHz oscillator component selection. . 71  
XTAL and RTCX Printed Circuit Board (PCB)  
layout guidelines. . . . . . . . . . . . . . . . . . . . . . . 72  
Standard I/O pin configuration . . . . . . . . . . . . 72  
Reset pin configuration. . . . . . . . . . . . . . . . . . 73  
14.3  
14.4  
14.5  
14.6  
15  
16  
17  
18  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 74  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 77  
19  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 78  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 78  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
19.1  
19.2  
19.3  
19.4  
20  
21  
Contact information. . . . . . . . . . . . . . . . . . . . . 79  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2013.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 15 October 2013  
Document identifier: LPC2458  

相关型号:

LPC2458_11

Single-chip 16-bit/32-bit micro; 512 kB flash, Ethernet, CAN, ISP/IAP, USB 2.0 device/host/OTG, external memory interface
NXP

LPC2460

Flashless 16-bit/32-bit micro; Ethernet, CAN, ISP/IAP, USB 2.0 device/host/OTG, external memory interface
NXP

LPC2460FBD208

Flashless 16-bit/32-bit micro; Ethernet, CAN, ISP/IAP, USB 2.0 device/host/OTG, external memory interface
NXP

LPC2460FBD208-S

LPC2460FBD208-S
NXP

LPC2460FET208

Flashless 16-bit/32-bit micro; Ethernet, CAN, ISP/IAP, USB 2.0 device/host/OTG, external memory interface
NXP

LPC2460FET208-S

LPC2460FET208-S
NXP

LPC2460_08

Flashless 16-bit/32-bit micro; Ethernet, CAN, ISP/IAP, USB 2.0 device/host/OTG, external memory interface
NXP

LPC2468

Single-chip 16-bit/32-bit micro; 512 kB flash, Ethernet, CAN, ISP/IAP, USB 2.0 device/host/OTG, external memory interface
NXP

LPC2468FB5D208

IC 32-BIT, FLASH, 72 MHz, RISC MICROCONTROLLER, PQFP208, 28 X 28 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT459-1, LQFP-208, Microcontroller
NXP

LPC2468FBD208

Single-chip 16-bit/32-bit micro; 512 kB flash, Ethernet, CAN, ISP/IAP, USB 2.0 device/host/OTG, external memory interface
NXP

LPC2468FBD208-S

暂无描述
NXP

LPC2468FBD208K

RISC Microcontroller
NXP