LPC51U68JBD48E [NXP]

RISC Microcontroller;
LPC51U68JBD48E
型号: LPC51U68JBD48E
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器
文件: 总93页 (文件大小:2298K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC51U68  
32-bit ARM Cortex-M0+ MCU; 96 KB SRAM; 256 KB flash,  
Crystal-less USB operation, Flexcomm Interface, 32-bit  
counter/ timers, SCTimer/PWM, 12-bit 5.0 Msamples/sec ADC,  
Temperature sensor  
Rev. 1.3 — 18 May 2018  
Product data sheet  
1. General description  
The LPC51U68 are ARM Cortex-M0+ based microcontrollers for embedded applications.  
These devices include 96 KB of on-chip SRAM, 256 KB on-chip flash, full-speed USB  
device interface, an I2S, three general-purpose timers, one versatile timer with PWM and  
many other capabilities (SCTimer/PWM), one RTC/alarm timer, one 24-bit Multi-Rate  
Timer (MRT), a Windowed Watchdog Timer (WWDT), eight flexible serial communication  
peripherals (each of which can be a USART, SPIs, or I2C interface), and one 12-bit 5.0  
Msamples/sec ADC, and a temperature sensor.  
The LPC51U68 LQFP64 devices are pin-function compatible with LPC5410x and  
LPC5411x devices in the same package/pinout versions.  
2. Features and benefits  
ARM Cortex-M0+ processor, running at a frequency of up to 100 MHz.  
Single cycle multiplier.  
ARM Cortex-M0+ built-in Nested Vectored Interrupt Controller (NVIC).  
Non-maskable Interrupt (NMI) with a selection of sources.  
Serial Wire Debug (SWD) with 4 breakpoints and 2 watchpoints.  
System tick timer.  
On-Chip memory:  
256 KB on-chip flash programming memory with flash accelerator and 256 Byte  
page write and erase.  
Up to 96 KB total SRAM composed of up to 64 KB main SRAM, plus an additional  
32 KB SRAM.  
ROM API support:  
Flash In-Application Programming (IAP) and In-System Programming (ISP).  
ROM-based USB drivers (HID, CDC, MSC, DFU). Flash updates via USB.  
Booting from valid user code in flash, USART, SPI, and I2C.  
Legacy, Single, and Dual image boot.  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Serial interfaces:  
Eight Flexcomm Interface serial peripherals. Each can be selected by software to  
be a USART, SPI, or I2C interface. Two Flexcomm Interfaces also include an I2S  
interface, for a total of 2 channel pairs. Each Flexcomm Interface includes a FIFO  
that supports USART, SPI, and I2S if supported by that Flexcomm Interface. A  
variety of clocking options are available to each Flexcomm Interface, and include a  
shared Fractional Rate Generator.  
I2C supports Fast mode and Fast-mode Plus with data rates of up to 1 Mbit/s and  
with multiple address recognition and monitor mode. Two sets of true open drain  
I2C pins also support high-speed Mode (up to 3.4 Mbit/s) as a slave.  
USB 2.0 full-speed host or device controller with on-chip PHY and dedicated DMA  
controller supporting crystal-less operation in device mode using software library.  
See Technical note TN00035 for more details.  
Digital peripherals:  
DMA controller with 18 channels and 16 programmable triggers, able to access all  
memories and DMA-capable peripherals.  
Up to 48 General-Purpose I/O (GPIO) pins. Most GPIOs have configurable  
pull-up/pull-down resistors, open-drain mode, and input inverter.  
GPIO registers are located on AHB for fast access.  
Up to four GPIOs can be selected as pin interrupts (PINT), triggered by rising,  
falling or both input edges.  
Two GPIO grouped interrupts (GINT) enable an interrupt based on a logical  
(AND/OR) combination of input states.  
CRC engine.  
Analog peripherals:  
12-bit ADC with 12 input channels and with multiple internal and external trigger  
inputs and sample rates of up to 5.0 MS/s. The ADC supports two independent  
conversion sequences.  
Integrated temperature sensor connected to the ADC.  
Timers  
Three standard general purpose timers/counters, four of which support up to 4  
capture inputs and 4 compare outputs, PWM mode, and external count input.  
Specific timer events can be selected to generate DMA requests.  
One SCTimer/PWM (SCT) 8 input and 8 output functions (including capture and  
match). Inputs and outputs can be routed to/from external pins and internally  
to/from selected peripherals. Internally, the SCT supports 10 captures/matches, 10  
events and 10 states.  
32-bit Real-time clock (RTC) with 1 s resolution running in the always-on power  
domain. A timer in the RTC can be used for wake-up from all low power modes  
including deep power-down, with 1 ms resolution.  
Multiple-channel multi-rate 24-bit timer (MRT) for repetitive interrupt generation at  
up to four programmable, fixed rates.  
Windowed Watchdog timer (WWDT).  
Ultra-low power Micro-tick Timer, running from the Watchdog oscillator, that can be  
used to wake up the device from most low power modes.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
2 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Clock generation:  
Internal FRO oscillator, factory trimmed for accuracy, that can optionally be used as  
a system clock as well as other purposes. This oscillator provides a selectable 48  
MHz or 96 MHz output, and a 12 MHz output (divided down from the selected  
higher frequency) that can optionally be used as a system clock as well as other  
purposes.  
External clock input for up to 25 MHz.  
Watchdog oscillator with a frequency range of 6 kHz to 1.5 MHz.  
32 kHz low-power RTC oscillator.  
System PLL allows CPU operation up to the maximum CPU rate without the need  
for a high-frequency external clock. May be run from the internal FRO 12 MHz  
output, the external clock input CLKIN, or the RTC oscillator.  
Clock output function with divider that can reflect many internal clocks.  
Frequency measurement unit for measuring the frequency of any on-chip or  
off-chip clock signal.  
Power control:  
Integrated PMU (Power Management Unit) to minimize power consumption.  
Reduced power modes: sleep mode, deep-sleep mode, and deep power-down  
mode.  
Wake-up from deep-sleep mode on activity on USART, SPI, and I2C peripherals  
when operating as slaves.  
Wake-up from sleep, deep-sleep and deep power-down modes from the RTC  
alarm.  
The Micro-tick Timer can wake-up the device from most reduced power modes by  
using the watchdog oscillator when no other on-chip resources are running, for  
ultra-low power wake-up.  
Power-On Reset (POR).  
Brownout detect.  
JTAG boundary scan supported.  
Unique device serial number for identification.  
Single power supply 1.62 V to 3.6 V.  
Operating temperature range of -40°C to +105°C.  
Available as LQFP64 and LQFP48 packages.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
3 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC51U68JBD48  
LPC51U68JBD64  
LQFP48  
LQFP64  
plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm  
plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm  
SOT313-2  
SOT314-2  
3.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Flash in KB  
SRAM in KB  
GPIO  
SRAMX  
32  
SRAM0  
64  
Total  
96  
LPC51U68JBD48  
LPC51U68JBD64  
256  
256  
37  
48  
32  
64  
96  
4. Marking  
Terminal 1  
index area  
n
1
Terminal 1 index area  
aaa-011231  
aaa-015675  
Fig 1. LQFP48 and LQFP64 package marking  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
4 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
The LPC51U68 LQFP48 and LQFP64 packages have the following top-side marking:  
First line: LPC51U68  
Second line: JBD48  
Third line: xx xx  
Fourth line: xxxyy  
Fifth: wwxR[x]  
yyww: Date code with yy = year and ww = week.  
xR = Boot code version and device revision.  
First line: LPC51U68  
Second line: JBD64  
Third line: xxxxxxxxxxxx  
Fourth line: xxxyywwx[R]x  
yyww: Date code with yy = year and ww = week.  
xR = Boot code version and device revision.  
Table 3.  
Device revision table  
Device revision  
0A  
Revision description  
Initial device revision with boot code version 18.0.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
5 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
5. Block diagram  
JTAG  
boundary scan  
Serial Wire  
Debug  
CLKIN  
CLKOUT  
RESET  
USB bus  
DEBUG INTERFACE  
POWER-ON-RESET  
BROWNOUT DETECT  
INTERNAL OSCILLATOR  
SYSTEM PLL  
CLOCK GENERATION,  
POWER CONTROL,  
AND OTHER  
USB FS  
DEVICE  
CONTROLLER  
SYSTEM  
DMA  
CONTROLLER  
ARM  
CORTEX M0+  
SYSTEM FUNCTIONS  
FLASH  
ACCELERATOR  
FLASH  
256 KB  
BOOT AND DRIVER  
ROM 32 KB  
SRAMX  
32 KB  
SRAM0  
64 KB  
DMA  
REGISTERS  
GPIO  
SCTIMER/PWM  
USB  
REGISTERS  
FLEXCOMM Interfaces  
(1)  
0 THROUGH 4  
CRC  
ENGINE  
FLEXCOMM Interfaces  
(1)  
5 THROUGH 7  
ADC: 5 Ms/s, 12 BIT, 12 ch.  
TEMPERATURE SENSOR  
MULTILAYER AHB MATRIX  
2x 32-BIT TIMER (TIMER 3)  
ASYNC APB  
BRIDGE  
APB  
BRIDGE 0  
APB  
BRIDGE 1  
PMU REGISTERS  
GPIO PIN INTERRUPTS  
SYSTEM FUNCTIONS: CLOCKING,  
RESET, POWER, FLASH, ETC.  
2x 32-BIT TIMER (TIMER 0, 1)  
FLASH REGISTERS  
I/O CONFIGURATION  
GPIO GROUP INTERRUPTS 0 AND 1  
PERIPHERAL INPUT MUXES  
MULTI-RATE TIMER  
WATCHDOG  
OSCILLATOR  
WINDOWED  
WATCHDOG  
RTC Power Domain  
MICRO TICK  
TIMER  
REAL TIME  
CLOCK,  
ALARM AND  
WAKEUP  
32.768 kHz  
OSCILLATOR  
FREQUENCY MEASUREMENT UNIT  
FRACTIONAL RATE GENERATOR  
aaa-028910  
Fig 2. LPC51U68 Block diagram  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
6 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
6. Pinning information  
6.1 Pinning  
PIO0_14 49  
32 PIO0_1  
31 PIO0_0  
30 PIO1_10  
29 PIO1_9  
28 PIO1_8  
27 PIO1_7  
26 PIO1_6  
25 VSS  
PIO0_15 50  
PIO1_12 51  
SWCLK/ PIO0_16 52  
SWDIO/ PIO0_17 53  
PIO1_13 54  
VSS 55  
VDD 56  
LPC51U68  
PIO1_14 57  
PIO0_18 58  
PIO0_19 59  
PIO0_20 60  
PIO0_21 61  
PIO1_15 62  
PIO0_22 63  
RESET 64  
24 VDD  
23 VDDA  
22 VREFP  
21 VREFN  
20 VSSA  
19 PIO1_5  
18 PIO1_4  
17 PIO1_3  
aaa-028915  
Fig 3. LQFP64 Pin configuration  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
7 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PIO0_23  
PIO0_24  
PIO0_25  
PIO0_26  
USB_DP  
USB_DM  
PIO0_29  
PIO0_30  
PIO0_31  
PIO1_0  
PIO0_13  
PIO0_12  
PIO0_11  
PIO0_10  
PIO0_9  
PIO0_8  
PIO0_7  
PIO0_6  
PIO0_5  
PIO0_4  
RTCXOUT  
RTCXIN  
3
4
5
6
LPC51U68  
7
8
9
10  
11  
12  
PIO1_1  
PIO1_2  
aaa-028916  
Fig 4. LQFP48 Pin configuration  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
8 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
6.2 Pin description  
On the LPC51U68, digital pins are grouped into two ports. Each digital pin may support up  
to four different digital functions and one analog function, including General Purpose I/O  
(GPIO).  
Table 4.  
Symbol  
Pin description  
Description  
[2]  
PIO0_0  
31 23  
PU I/O PIO0_0 — General-purpose digital input/output pin.  
Remark: In ISP mode, this pin is set to the Flexcomm Interface 0 USART RXD  
function.  
I/O FC0_RXD_SDA_MOSI — Flexcomm Interface 0: USART RXD, I2C SDA, SPI  
MOSI.  
I/O FC3_CTS_SDA_SSEL0 — Flexcomm Interface 3: USART CTS, I2C SDA, SPI  
SSEL0.  
I
CTimer0_CAP0 — 32-bit CTimer0 capture input 0.  
R — Reserved.  
O
SCT0_OUT3 — SCT0 output 3. PWM output 3.  
[2]  
PIO0_1  
32 24  
PU I/O PIO0_1 — General-purpose digital input/output pin.  
Remark: In ISP mode, this pin is set to the Flexcomm Interface 0 USART TXD  
function.  
I/O FC0_TXD_SCL_MISO — Flexcomm Interface 0: USART TXD, I2C SCL, SPI MISO.  
I/O FC3_RTS_SCL_SSEL1 — Flexcomm Interface 3: USART RTS, I2C SCL, SPI  
SSEL1.  
I
CTimer0_CAP1 — 32-bit CTimer0 capture input 1.  
R — Reserved.  
O
SCT0_OUT1 — SCT0 output 1. PWM output 1.  
[2]  
[2]  
PIO0_2  
PIO0_3  
36  
37  
-
-
PU I/O PIO0_2 — General-purpose digital input/output pin.  
I/O FC0_CTS_SDA_SSEL0 — Flexcomm Interface 0: USART CTS, I2C SDA, SPI  
SSEL0.  
I/O FC3_SSEL3 — Flexcomm Interface 3: SPI SSEL3.  
PU I/O PIO0_3 — General-purpose digital input/output pin.  
I/O FC0_RTS_SCL_SSEL1 — Flexcomm Interface 0: USART RTS, I2C SCL, SPI  
SSEL1.  
I/O FC2_SSEL2 — Flexcomm Interface 2: SPI SSEL2.  
O
CTimer1_MAT3 — 32-bit CTimer1 match output 3.  
[2]  
PIO0_4  
38 27  
PU I/O PIO0_4 — General-purpose digital input/output pin.  
Remark: The state of this pin at Reset in conjunction with PIO0_31 and PIO1_6 will  
determine the boot source for the part or if ISP handler is invoked. See the Boot  
Process chapter in UM11071 for more details.  
I/O FC0_SCK — Flexcomm Interface 0: USART or SPI clock.  
I/O FC3_SSEL2 — Flexcomm Interface 3: SPI SSEL2.  
I
CTimer0_CAP2 — 32-bit CTimer0 capture input 2.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
9 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO0_5  
PIO0_6  
39 28  
PU I/O PIO0_5 — General-purpose digital input/output pin.  
I/O FC6_RXD_SDA_MOSI_DATA — Flexcomm Interface 6: USART RXD, I2C SDA,  
SPI MOSI, I2S data.  
O
O
SCT0_OUT6 — SCT0 output 6. PWM output 6.  
CTimer0_MAT0 — 32-bit CTimer0 match output 0.  
[2]  
40 29  
PU I/O PIO0_6 — General-purpose digital input/output pin.  
I/O FC6_TXD_SCL_MISO_WS — Flexcomm Interface 6: USART TXD, I2C SCL, SPI  
MISO, I2S WS.  
R — Reserved.  
O
I
CTimer0_MAT1 — 32-bit CTimer0 match output 1.  
R — Reserved.  
UTICK_CAP0 — Micro-tick timer capture input 0.  
[2]  
PIO0_7  
41 30  
PU I/O PIO0_7 — General-purpose digital input/output pin.  
I/O FC6_SCK — Flexcomm Interface 6: USART, SPI, or I2S clock.  
O
O
SCT0_OUT0 — SCT0 output 0. PWM output 0.  
CTimer0_MAT2 — 32-bit CTimer0 match output 2.  
R — Reserved.  
I
CTimer0_CAP2 — 32-bit CTimer0 capture input 2.  
[2]  
PIO0_8  
PIO0_9  
43 31  
PU I/O PIO0_8 — General-purpose digital input/output pin.  
I/O FC2_RXD_SDA_MOSI — Flexcomm Interface 2: USART RXD, I2C SDA, SPI  
MOSI.  
O
O
SCT0_OUT1 — SCT0 output 1. PWM output 1.  
CTimer0_MAT3 — 32-bit CTimer0 match output 3.  
[2]  
44 32  
PU I/O PIO0_9 — General-purpose digital input/output pin.  
I/O FC2_TXD_SCL_MISO — Flexcomm Interface 2: USART TXD, I2C SCL, SPI MISO.  
O
I
SCT0_OUT2 — SCT0 output 2. PWM output 2.  
CTimer3_CAP0 — 32-bit CTimer3 capture input 0.  
R — Reserved.  
I/O FC3_CTS_SDA_SSEL0 — Flexcomm Interface 3: USART CTS, I2C SDA, SPI  
SSEL0.  
[2]  
[2]  
PIO0_10  
PIO0_11  
45 33  
PU I/O PIO0_10 — General-purpose digital input/output pin.  
I/O FC2_SCK — Flexcomm Interface 2: USART or SPI clock.  
O
O
SCT0_OUT3 — SCT0 output 3. PWM output 3.  
CTimer3_MAT0 — 32-bit CTimer3 match output 0.  
46 34  
PU I/O PIO0_11 — General-purpose digital input/output pin. In ISP mode, this pin is set to  
the Flexcomm 3 SPI SCK function.  
I/O FC3_SCK — Flexcomm Interface 3: USART or SPI clock.  
I/O FC6_RXD_SDA_MOSI_DATA — Flexcomm Interface 6: USART RXD, I2C SDA,  
SPI MOSI, I2S DATA.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
10 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO0_12  
PIO0_13  
47 35  
PU I/O PIO0_12 — General-purpose digital input/output pin. In ISP mode, this pin is set to  
the Flexcomm 3 SPI MOSI function.  
I/O FC3_RXD_SDA_MOSI — Flexcomm Interface 3: USART RXD, I2C SDA, SPI  
MOSI.  
I/O FC6_TXD_SCL_MISO_WS — Flexcomm Interface 6: USART TXD, I2C SCL, SPI  
MISO, I2S WS.  
[2]  
[2]  
48 36  
PU I/O PIO0_13 — General-purpose digital input/output pin. In ISP mode, this pin is set to  
the Flexcomm 3 SPI MISO function.  
I/O FC3_TXD_SCL_MISO — Flexcomm Interface 3: USART TXD, I2C SCL, SPI MISO.  
O
SCT0_OUT4 — SCT0 output 4. PWM output 4.  
PIO0_14/  
TCK  
49 37  
PU I/O PIO0_14 — General-purpose digital input/output pin. In boundary scan mode: TCK  
(Test Clock In). In ISP mode, this pin is set to the Flexcomm 3 SPI SSELN0 function.  
I/O FC3_CTS_SDA_SSEL0 — Flexcomm Interface 3: USART CTS, I2C SDA, SPI  
SSEL0.  
O
SCT0_OUT5 — SCT0 output 5. PWM output 5.  
R — Reserved.  
R — Reserved.  
I/O FC1_SCK — Flexcomm Interface 1: USART or SPI clock.  
[2]  
PIO0_15/  
TDO  
50 38  
PU I/O PIO0_15 — General-purpose digital input/output pin. In boundary scan mode: TDO  
(Test Data Out).  
I/O FC3_RTS_SCL_SSEL1 — Flexcomm Interface 3: USART RTS, I2C SCL, SPI  
SSEL1.  
R — Reserved.  
R — Reserved.  
R — Reserved.  
I/O FC4_SCK — Flexcomm Interface 4: USART or SPI clock.  
PU I/O PIO0_16 — General-purpose digital input/output pin.  
I/O FC3_SSEL2 — Flexcomm Interface 3: SPI SSEL2.  
[2]  
SWCLK/  
PIO0_16  
52 39  
I/O FC6_CTS_SDA_SSEL0 — Flexcomm Interface 6: USART CTS, I2C SDA, SPI  
SSEL0.  
O
CTimer3_MAT1 — 32-bit CTimer3 match output 1.  
R — Reserved.  
I/O SWCLK — Serial Wire Clock. JTAG Test Clock. This is the default function after  
booting.  
R — Reserved.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
11 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
SWDIO/  
PIO0_17  
53 40  
PU I/O PIO0_17 — General-purpose digital input/output pin.  
I/O FC3_SSEL3 — Flexcomm Interface 3: SPI SSEL3.  
I/O FC6_RTS_SCL_SSEL1 — Flexcomm Interface 6: USART RTS, I2C SCL, SPI  
SSEL1.  
O
CTimer3_MAT2 — 32-bit CTimer3 match output 2.  
R — Reserved.  
I/O SWDIO — Serial Wire Debug I/O. This is the default function after booting.  
[2]  
[2]  
[2]  
PIO0_18/  
TRST  
58 43  
59 44  
60 45  
PU I/O PIO0_18 — General-purpose digital input/output pin. In boundary scan mode: TRST  
(Test Reset).  
I/O FC5_TXD_SCL_MISO — Flexcomm Interface 5: USART TXD, I2C SCL, SPI MISO.  
O
O
SCT0_OUT0 — SCT0 output 0. PWM output 0.  
CTimer0_MAT0 — 32-bit CTimer0 match output 0.  
PIO0_19/  
TDI  
PU I/O PIO0_19 — General-purpose digital input/output pin. In boundary scan mode: TDI  
(Test Data In).  
I/O FC5_SCK — Flexcomm Interface 5: USART or SPI clock.  
O
O
SCT0_OUT1 — SCT0 output 1. PWM output 1.  
CTimer0_MAT1 — 32-bit CTimer0 match output 1.  
PIO0_20/  
TMS  
PU I/O PIO0_20 — General-purpose digital input/output pin. In boundary scan mode: TMS  
(Test Mode Select).  
I/O FC5_RXD_SDA_MOSI — Flexcomm Interface 5: USART RXD, I2C SDA, SPI  
MOSI.  
I/O FC0_SCK — Flexcomm Interface 0: USART or SPI clock.  
I
CTimer3_CAP0 — 32-bit CTimer3 capture input 0.  
PU I/O PIO0_21 — General-purpose digital input/output pin.  
CLKOUT — Clock output.  
I/O FC0_TXD_SCL_MISO — Flexcomm Interface 0: USART TXD, I2C SCL, SPI MISO.  
CTimer3_MAT0 — 32-bit CTimer3 match output 0.  
PU I/O PIO0_22 — General-purpose digital input/output pin.  
CLKIN — Clock input.  
[2]  
[2]  
PIO0_21  
PIO0_22  
61 46  
O
O
63 47  
I
I/O FC0_RXD_SDA_MOSI — Flexcomm Interface 0: USART RXD, I2C SDA, SPI  
MOSI.  
O
CTimer3_MAT3 — 32-bit CTimer3 match output 3.  
[3]  
PIO0_23  
1
1
Z
I/O PIO0_23 — General-purpose digital input/output pin. In ISP mode, this pin is set to  
the Flexcomm 1 I2C SCL function.  
I/O FC1_RTS_SCL_SSEL1 — Flexcomm Interface 1: USART CTS, I2C SCL, SPI  
SSEL1.  
R — Reserved.  
I
I
CTimer0_CAP0 — 32-bit CTimer0 capture input 0.  
R — Reserved.  
UTICK_CAP1 — Micro-tick timer capture input 1.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
12 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[3]  
PIO0_24  
PIO0_25  
PIO0_26  
2
2
Z
Z
Z
I/O PIO0_24 — General-purpose digital input/output pin. In ISP mode, this pin is set to  
the Flexcomm 1 I2C SDA function.  
I/O FC1_CTS_SDA_SSEL0 — Flexcomm Interface 1: USART CTS, I2C SDA, SPI  
SSEL0.  
R — Reserved.  
I
CTimer0_CAP1 — 32-bit CTimer0 capture input 1.  
R — Reserved.  
O
CTimer0_MAT0 — 32-bit CTimer0 match output 0.  
[3]  
3
3
I/O PIO0_25 — General-purpose digital input/output pin.  
I/O FC4_RTS_SCL_SSEL1 — Flexcomm Interface 4: USART CTS, I2C SCL, SPI  
SSEL1.  
I/O FC6_CTS_SDA_SSEL0 — Flexcomm Interface 6: USART CTS, I2C SDA, SPI  
SSEL0.  
I
I
CTimer0_CAP2 — 32-bit CTimer0 capture input 2.  
R — Reserved.  
CTimer1_CAP1 — 32-bit CTimer1 capture input 1.  
[3]  
4
4
7
I/O PIO0_26 — General-purpose digital input/output pin.  
I/O FC4_CTS_SDA_SSEL0 — Flexcomm Interface 4: USART CTS, I2C SDA, SPI  
SSEL0.  
R — Reserved.  
I
CTimer0_CAP3 — 32-bit CTimer0 capture input 3.  
PU I/O; PIO0_29/ADC0_0 — General-purpose digital input/output pin. ADC input channel 0  
AI if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
[4]  
PIO0_29/  
ADC0_0  
11  
I/O FC1_RXD_SDA_MOSI — Flexcomm Interface 1: USART RXD, I2C SDA, SPI  
MOSI.  
O
O
SCT0_OUT2 — SCT0 output 2. PWM output 2.  
CTimer0_MAT3 — 32-bit CTimer0 match output 3.  
R — Reserved.  
I
CTimer0_CAP1 — 32-bit CTimer0 capture input 1.  
R — Reserved.  
O
CTimer0_MAT1 — 32-bit CTimer0 match output 1.  
[4]  
PIO0_30/  
ADC0_1  
12  
8
PU I/O; PIO0_30/ADC0_1 — General-purpose digital input/output pin. ADC input channel 1  
AI if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
I/O FC1_TXD_SCL_MISO — Flexcomm Interface 1: USART TXD, I2C SCL, SPI MISO.  
O
O
SCT0_OUT3 — SCT0 output 3. PWM output 3.  
CTimer0_MAT2 — 32-bit CTimer0 match output 2.  
R — Reserved.  
I
CTimer0_CAP2 — 32-bit CTimer0 capture input 2.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
13 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[4]  
PIO0_31/  
ADC0_2  
13  
9
PU I/O; PIO0_31/ADC0_2 — General-purpose digital input/output pin. ADC input channel 2  
AI  
if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
Remark: This pin is also used to invoke ISP mode after device reset. Secondary  
selection of boot source for ISP mode also uses PIO0_4 and PIO1_6. See the Boot  
Process chapter in UM11071 for more details.  
R — Reserved.  
I/O FC2_CTS_SDA_SSEL0 — Flexcomm Interface 2: USART CTS, I2C SDA, SPI  
SSEL0.  
R — Reserved.  
R — Reserved.  
I
CTimer0_CAP3 — 32-bit CTimer0 capture input 3.  
CTimer0_MAT3 — 32-bit CTimer0 match output 3.  
O
[4]  
PIO1_0/  
ADC0_3  
14 10  
PU I/O; PIO1_0/ADC0_3 — General-purpose digital input/output pin. ADC input channel 3 if  
AI  
the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
R — Reserved.  
I/O FC2_RTS_SCL_SSEL1 — Flexcomm Interface 2: USART RTS, I2C SCL, SPI  
SSEL1.  
O
I
CTimer3_MAT1 — 32-bit CTimer3 match output 1.  
R — Reserved.  
CTimer0_CAP0 — 32-bit CTimer0 capture input 0.  
[4]  
PIO1_1/  
ADC0_4  
15 11  
PU I/O; PIO1_1/ADC0_4 — General-purpose digital input/output pin. ADC input channel 4 if  
AI  
the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
R — Reserved.  
R — Reserved.  
O
SCT0_OUT4 — SCT0 output 4. PWM output 4.  
I/O FC5_SSEL2 — Flexcomm Interface 5: SPI SSEL2.  
I/O FC4_TXD_SCL_MISO — Flexcomm Interface 4: USART TXD, I2C SCL, SPI MISO.  
PU I/O; PIO1_2/ADC0_5 — General-purpose digital input/output pin. ADC input channel 5 if  
[4]  
PIO1_2/  
ADC0_5  
16 12  
AI  
the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
I/O MCLK — MCLK input or output for I2S and/or digital microphone.  
I/O FC7_SSEL3 — Flexcomm Interface 7: SPI SSEL3.  
O
SCT0_OUT5 — SCT0 output 5. PWM output 5.  
I/O FC5_SSEL3 — Flexcomm Interface 5: SPI SSEL3.  
I/O FC4_RXD_SDA_MOSI — Flexcomm Interface 4: USART RXD, I2C SDA, SPI  
MOSI.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
14 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[4]  
PIO1_3/  
ADC0_6  
17 13  
PU I/O; PIO1_3/ADC0_6 — General-purpose digital input/output pin. ADC input channel 6 if  
AI  
the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
R — Reserved.  
I/O FC7_SSEL2 — Flexcomm Interface 7: SPI SSEL2.  
O
SCT0_OUT6 — SCT0 output 6. PWM output 6.  
R — Reserved.  
I/O FC3_SCK — Flexcomm Interface 3: USART or SPI clock.  
I
CTimer0_CAP1 — 32-bit CTimer0 capture input 1.  
O
USB_UP_LED — USB port 2 GoodLink LED indicator. It is LOW when the device is  
configured (non-control endpoints enabled). It is HIGH when the device is not  
configured or during global suspend.  
[4]  
PIO1_4/  
ADC0_7  
18 14  
PU I/O; PIO1_4/ADC0_7 — General-purpose digital input/output pin. ADC input channel 7 if  
AI  
the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
R — Reserved.  
I/O FC7_RTS_SCL_SSEL1 — Flexcomm Interface 7: USART RTS, I2C SCL, SPI  
SSEL1.  
O
SCT0_OUT7 — SCT0 output 7. PWM output 7.  
R — Reserved.  
I/O FC3_TXD_SCL_MISO — Flexcomm Interface 3: USART TXD, I2C SCL, SPI MISO.  
CTimer0_MAT1 — 32-bit CTimer0 match output 1.  
PU I/O; PIO1_5/ADC0_8 — General-purpose digital input/output pin. ADC input channel 8 if  
O
[4]  
PIO1_5/  
ADC0_8  
19 15  
AI  
the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
R — Reserved.  
I/O FC7_CTS_SDA_SSEL0 — Flexcomm Interface 7: USART CTS, I2C SDA, SPI  
SSEL0.  
I
CTimer1_CAP0 — 32-bit CTimer1 capture input 0.  
R — Reserved.  
O
O
CTimer1_MAT3 — 32-bit CTimer1 match output 3.  
R — Reserved.  
USB_FRAME — USB start-of-frame signal derived from host signaling.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
15 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[4]  
PIO1_6/  
ADC0_9  
26 20  
PU I/O; PIO1_6/ADC0_9 — General-purpose digital input/output pin. ADC input channel 9 if  
AI  
the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
Remark: This pin is also used as part of secondary selection of boot source for ISP  
mode after device reset, in connection with PIO0_31 and PIO0_4. See the Boot  
Process chapter in UM11071 for more details.  
R — Reserved.  
I/O FC7_SCK — Flexcomm Interface 7: USART, SPI, or I2S clock.  
I
CTimer1_CAP2 — 32-bit CTimer1 capture input 2.  
R — Reserved.  
O
I
CTimer1_MAT2 — 32-bit CTimer1 match output 2.  
R — Reserved.  
USB_VBUS — Monitors the presence of USB bus power. This signal must be HIGH  
for USB reset to occur.  
[4]  
[4]  
[2]  
PIO1_7/  
ADC0_10  
27 21  
PU I/O; PIO1_7/ADC0_10 — General-purpose digital input/output pin. ADC input channel  
AI  
10 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
R — Reserved.  
I/O FC7_RXD_SDA_MOSI_DATA — Flexcomm Interface 7: USART RXD, I2C SDA,  
SPI MOSI, I2S DATA.  
O
I
CTimer1_MAT2 — 32-bit CTimer1 match output 2.  
R — Reserved.  
CTimer1_CAP2 — 32-bit CTimer1 capture input 2.  
PIO1_8/  
ADC0_11  
28 22  
PU I/O; PIO1_8/ADC0_11 — General-purpose digital input/output pin. ADC input channel 11  
AI  
if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
R — Reserved.  
I/O FC7_TXD_SCL_MISO_WS — Flexcomm Interface 7: USART TXD, I2C SCL, SPI  
MISO, I2S WS.  
O
CTimer1_MAT3 — 32-bit CTimer1 match output 3.  
R — Reserved.  
I
CTimer1_CAP3 — 32-bit CTimer1 capture input 3.  
PIO1_9  
29  
-
PU I/O PIO1_9 — General-purpose digital input/output pin.  
R — Reserved.  
I/O FC3_RXD_SDA_MOSI — Flexcomm Interface 3: USART RXD, I2C SDA, SPI  
MOSI.  
I
CTimer0_CAP2 — 32-bit CTimer0 capture input 2.  
R — Reserved.  
R — Reserved.  
O
USB_UP_LED — USB port 2 GoodLink LED indicator. It is LOW when the device is  
configured (non-control endpoints enabled). It is HIGH when the device is not  
configured or during global suspend.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
16 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO1_10  
30  
-
PU I/O PIO1_10 — General-purpose digital input/output pin.  
R — Reserved.  
I/O FC6_TXD_SCL_MISO_WS — Flexcomm Interface 6: USART TXD, I2C SCL, SPI  
MISO, I2S WS.  
O
SCT0_OUT4 — SCT0 output 4. PWM output 4.  
I/O FC1_SCK — Flexcomm Interface 1: USART or SPI clock.  
R — Reserved.  
R — Reserved.  
I
USB_FRAME — USB start-of-frame signal derived from host signaling.  
[2]  
PIO1_11  
42  
-
PU I/O PIO1_11 — General-purpose digital input/output pin.  
R — Reserved.  
I/O FC6_RTS_SCL_SSEL1 — Flexcomm Interface 6: USART RTS, I2C SCL, SPI  
SSEL1.  
I
CTimer1_CAP0 — 32-bit CTimer1 capture input 0.  
I/O FC4_SCK — Flexcomm Interface 4: USART or SPI clock.  
R — Reserved.  
R — Reserved.  
I
USB_VBUS — Monitors the presence of USB bus power. This signal must be HIGH  
for USB reset to occur.  
[2]  
PIO1_12  
51  
-
PU I/O PIO1_12 — General-purpose digital input/output pin.  
R — Reserved.  
I/O FC5_RXD_SDA_MOSI — Flexcomm Interface 5: USART RXD, I2C SDA, SPI  
MOSI.  
O
CTimer1_MAT0 — 32-bit CTimer1 match output 0.  
I/O FC7_SCK — Flexcomm Interface 7: USART, SPI, or I2S clock.  
UTICK_CAP2 — Micro-tick timer capture input 2.  
I
[2]  
PIO1_13  
PIO1_14  
54  
57  
-
-
PU I/O PIO1_13 — General-purpose digital input/output pin.  
R — Reserved.  
I/O FC5_TXD_SCL_MISO — Flexcomm Interface 5: USART TXD, I2C SCL, SPI MISO.  
O
CTimer1_MAT1 — 32-bit CTimer1 match output 1.  
I/O FC7_RXD_SDA_MOSI_DATA — Flexcomm Interface 7: USART RXD, I2C SDA,  
SPI MOSI, I2S DATA.  
[2]  
PU I/O PIO1_14 — General-purpose digital input/output pin.  
R — Reserved.  
I/O FC2_RXD_SDA_MOSI — Flexcomm Interface 2: USART RXD, I2C SDA, SPI  
MOSI.  
O
SCT0_OUT7 — SCT0 output 7. PWM output 7.  
I/O FC7_TXD_SCL_MISO_WS — Flexcomm Interface 7: USART TXD, I2C SCL, SPI  
MISO, I2S WS.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
17 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
[2]  
[2]  
PIO1_15  
PIO1_16  
PIO1_17  
62  
-
-
-
PU I/O PIO1_15 — General-purpose digital input/output pin.  
R — Reserved.  
O
I
SCT0_OUT5 — SCT0 output 5. PWM output 5.  
CTimer1_CAP3 — 32-bit CTimer1 capture input 3.  
I/O FC7_CTS_SDA_SSEL0 — Flexcomm Interface 7: USART CTS, I2C SDA, SPI  
SSEL0.  
7
PU I/O PIO1_16 — General-purpose digital input/output pin.  
R — Reserved.  
O
I
CTimer0_MAT0 — 32-bit CTimer0 match output 0.  
CTimer0_CAP0 — 32-bit CTimer0 capture input 0.  
I/O FC7_RTS_SCL_SSEL1 — Flexcomm Interface 7: USART RTS, I2C SCL, SPI  
SSEL1.  
10  
PU I/O PIO1_17 — General-purpose digital input/output pin.  
R — Reserved.  
R — Reserved.  
R — Reserved.  
I/O MCLK — MCLK input or output for I2S and/or digital microphone.  
I
UTICK_CAP3 — Micro-tick timer capture input 3.  
[6]  
[6]  
[5]  
USB_DP  
USB_DM  
RESETN  
5
6
5
6
F
I/O USB0 bidirectional D+ line.  
I/O USB0 bidirectional D- line.  
F
64 48  
PU  
I
External reset input: A LOW on this pin resets the device, causing I/O ports and  
peripherals to take on their default states, and processor execution to begin at  
address 0. Wakes up the part from deep power-down mode.  
RTCXIN  
33 25  
-
-
-
-
-
-
RTC oscillator input.  
RTC oscillator output.  
RTCXOUT 35 26  
VREFP  
22  
-
ADC positive reference voltage. On LQFP48, VREFP is internally tied to the VDDA  
pin.  
VREFN  
21  
-
-
-
ADC negative reference voltage. On LQFP48, VREFN is internally tied to the VDDA  
pin.  
VDDA  
VDD  
23 17  
-
-
-
-
Analog supply voltage.  
8, 18,  
24, 42  
34,  
Single 1.62 V to 3.6 V power supply powers internal digital functions and I/Os.  
56  
VSS  
9, 19,  
25, 41  
55  
-
-
-
-
Ground.  
VSSA  
20 16  
Analog ground.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
18 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
[1] PU = input mode, pull-up enabled (pull-up resistor pulls up pin to VDD). Z = high impedance; pull-up or pull-down disabled, AI = analog  
input, I = input, O = output, F = floating. Reset state reflects the pin state at reset without boot code operation. For pin states in the  
different power modes, see Section 6.2.2 “Pin states in different power modes”. For termination on unused pins, see Section 6.2.1  
Termination of unused pins”.  
[2] 5 V tolerant pad with programmable glitch filter (5 V tolerant if VDD present; if VDD not present, do not exceed 3.6 V); provides digital I/O  
functions with TTL levels and hysteresis; normal drive strength. See Figure 29. Pulse width of spikes or glitches suppressed by input  
filter is from 3 ns to 16 ns (simulated value).  
[3] True open-drain pin. I2C-bus pins compliant with the I2C-bus specification for I2C standard mode, I2C Fast-mode, and I2C Fast-mode  
Plus. The pin requires an external pull-up to provide output functionality. When power is switched off, this pin is floating and does not  
disturb the I2C lines. Open-drain configuration applies to all functions on this pin.  
[4] 5 V tolerant pin providing standard digital I/O functions with configurable modes, configurable hysteresis, and analog input. When  
configured as an analog input, the digital section of the pin is disabled, and the pin is not 5 V tolerant.  
[5] Reset pad.5 V tolerant pad with glitch filter with hysteresis. Pulse width of spikes or glitches suppressed by input filter is from 3 ns to  
20 ns (simulated value)  
[6] 5 V tolerant transparent analog pad.  
6.2.1 Termination of unused pins  
Table 5shows how to terminate pins that are not used in the application. In many cases,  
unused pins should be connected externally or configured correctly by software to  
minimize the overall power consumption of the part.  
Unused pins with GPIO function should be configured as outputs set to LOW with their  
internal pull-up disabled. To configure a GPIO pin as output and drive it LOW, select the  
GPIO function in the IOCON register, select output in the GPIO DIR register, and write a 0  
to the GPIO PORT register for that pin. Disable the pull-up in the pin’s IOCON register.  
In addition, it is recommended to configure all GPIO pins that are not bonded out on  
smaller packages as outputs driven LOW with their internal pull-up disabled.  
Table 5.  
Pin  
Termination of unused pins  
Default Recommended termination of unused pins  
state[1]  
RESET  
I; PU  
The RESET pin can be left unconnected if the application does not use it.  
all PIOn_m (not open-drain) I; PU  
Can be left unconnected if driven LOW and configured as GPIO output with pull-up  
disabled by software.  
PIOn_m (I2C open-drain)  
USB_DP  
IA  
F
Can be left unconnected if driven LOW and configured as GPIO output by software.  
If USB interface is not used, pin can be left unconnected except in deep  
power-down mode where it must be externally pulled low.  
USB_DM  
F
If USB interface is not used, pin can be left unconnected except in deep  
power-down mode where it must be externally pulled low.  
RTCXIN  
RTCXOUT  
VREFP  
VREFN  
VDDA  
-
-
-
-
-
-
Connect to ground. When grounded, the RTC oscillator is disabled.  
Can be left unconnected.  
Tie to VDD  
.
Tie to VSS  
.
Tie to VDD  
.
VSSA  
Tie to VSS.  
[1] I = Input, IA = Inactive (no pull-up/pull-down enabled), PU = Pull-Up enabled, F = Floating  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
19 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
6.2.2 Pin states in different power modes  
Table 6.  
Pin  
Pin states in different power modes  
Active  
Sleep  
Deep-sleep  
Deep power-down  
PIOn_m pins (not I2C)  
As configured in the IOCON[1]. Default: internal pull-up enabled. Floating.  
PIO0_23 to PIO0_26 (open-drain As configured in the IOCON[1].  
I2C-bus pins)  
Floating.  
RESET  
Reset function enabled. Default: input, internal pull-up enabled.  
[1] Default and programmed pin states are retained in sleep and deep-sleep modes.  
7. Functional description  
7.1 ARM Cortex-M0+ co-processor  
The ARM Cortex-M0+ co-processor offers high performance and very low power  
consumption. This processor uses a 2-stage pipeline von Neumann architecture and a  
small but powerful instruction set providing high-end processing hardware. The processor  
includes a single-cycle multiplier, an NVIC with 32 interrupts, and a separate system tick  
timer.  
7.2 Nested Vectored Interrupt Controller (NVIC) for Cortex-M0+  
The NVIC is an integral part of the Cortex-M0+. The tight coupling to the CPU allows for  
low interrupt latency and efficient processing of late arriving interrupts.  
7.2.1 Features  
Controls system exceptions and peripheral interrupts.  
32 vectored interrupt slots.  
Four programmable interrupt priority levels, with hardware priority level masking.  
Relocatable vector table using VTOR.  
Non-Maskable Interrupt (NMI).  
Software interrupt generation.  
7.2.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags.  
7.3 System Tick timer (SysTick)  
The ARM Cortex-M0+ cores include a system tick timer (SysTick) that is intended to  
generate a dedicated SYSTICK exception. The clock source for the SysTick can be the  
system clock or the SYSTICK clock.  
7.4 On-chip static RAM  
The LPC51U68 supports 96 KB SRAM with separate bus master access for higher  
throughput and individual power control for low-power operation.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
20 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
7.5 On-chip flash  
The LPC51U68 supports 256 KB of on-chip flash memory.  
7.6 On-chip ROM  
The 32 KB on-chip ROM contains the boot loader and the following Application  
Programming Interfaces (API):  
In-System Programming (ISP) and In-Application Programming (IAP) support for flash  
programming.  
ROM-based USB drivers (HID, CDC, MSC, and DFU). Flash updates via USB is  
supported.  
Supports booting from valid user code in flash, USART, SPI, and I2C.  
Legacy, Single, and Dual image boot.  
7.7 Memory mapping  
The LPC51U68 incorporates several distinct memory regions. The APB peripheral area is  
64 KB in size and is divided to allow for up to 32 peripherals. Each peripheral is allocated  
4 KB of space simplifying the address decoding.  
Figure 5 shows the overall map of the entire address space from the user program  
viewpoint following reset.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
21 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Memory space  
APB peripherals  
0x400A 1000  
0x400A 0000  
0x4009 D000  
0x4009 C000  
0x4009 9000  
0x4009 8000  
0x4009 7000  
0x4009 6000  
0x4009 5000  
0x4009 1000  
0x4009 0000  
0x4008 C000  
0x4008 B000  
0x4008 A000  
0x4008 9000  
0x4008 8000  
0x4008 7000  
0x4008 6000  
0x4008 5000  
0x4008 4000  
0x4008 3000  
0x4008 2000  
0x4008 1000  
0xFFFF FFFF  
0xE010 0000  
0xE000 0000  
0x4400 0000  
ADC  
(reserved)  
private peripheral bus  
(reserved)  
(1)  
(reserved)  
ISP-AP interface  
(reserved)  
(reserved)  
Flexcomm Interface 7  
Flexcomm Interface 6  
Flexcomm Interface 5  
CRC engine  
0x4200 0000  
0x400A 1000  
(reserved)  
AHB  
peripherals  
0x4008 0000  
0x4006 0000  
(reserved)  
(reserved)  
(reserved)  
Asynchronous  
APB peripherals  
High Speed GPIO  
(reserved)  
0x4004 0000  
0x4002 0000  
see APB  
memory  
map figure  
APB peripherals on  
APB bridge 1  
Flexcomm Interface 4  
Flexcomm Interface 3  
Flexcomm Interface 2  
Flexcomm Interface 1  
APB peripherals on  
APB bridge 0  
0x4000 0000  
0x2400 0000  
(reserved)  
(reserved)  
(reserved)  
(reserved)  
Flexcomm Interface 0  
SCTimer / PWM  
FS USB device  
(reserved)  
0x2200 0000  
0x2002 8000  
DMA controller  
(reserved)  
0x2002 0000  
0x2001 0000  
(reserved)  
SRAM0  
(64 KB)  
0x2000 0000  
0x0400 8000  
(reserved)  
SRAMX  
(32 KB)  
0x0400 0000  
0x0300 8000  
(reserved)  
Boot ROM  
(reserved)  
0x0300 0000  
0x0004 0000  
Flash memory  
256 KB  
0x0000 0000  
0x0000 00C0  
0x0000 0000  
active interrupt vectors  
aaa-028911  
[1] The private peripheral bus includes CPU peripherals such as the NVIC, SysTick, and the core control registers.  
[2] The total size of flash and SRAM is part dependent. See Table 1 on page 4.  
Fig 5. LPC51U68 Memory mapping  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
22 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
APB bridge 0  
APB bridge 1  
0x4001 FFFF  
0x4003 FFFF  
(reserved)  
Micro-tick timer  
Multi-rate timer  
Watchdog timer  
(reserved)  
(reserved)  
Flash controller  
(reserved)  
RTC  
31-15  
31-21  
20  
0x4000 F000  
0x4000 E000  
0x4000 D000  
0x4000 C000  
0x4000 A000  
0x4000 9000  
0x4000 8000  
0x4000 6000  
0x4000 5000  
0x4000 4000  
0x4000 3000  
0x4000 2000  
0x4000 1000  
0x4000 0000  
0x4003 5000  
0x4003 4000  
0x4002 D000  
0x4002 C000  
0x4002 9000  
0x4002 8000  
0x4002 0000  
14  
13  
12  
11-10  
9
19-13  
12  
(reserved)  
(reserved)  
11-9  
8
CTIMER 1  
CTIMER 0  
(reserved)  
8
7-0  
(reserved)  
7-6  
5
Input muxes  
Pin Interrupts (PINT)  
GINT 1  
4
Asynchronous APB bridge  
3
0x4005 FFFF  
GINT 0  
(reserved)  
(reserved)  
2
31-10  
0x4004 A000  
0x4004 9000  
0x4004 8000  
0x4004 1000  
0x4004 0000  
aaa-028913  
IOCON  
1
9
8
Syscon  
CTIMER 3  
2
(reserved)  
7-1  
0
Asynch. Syscon  
Fig 6. LPC51U68 APB Memory map  
7.8 System control  
7.8.1 Clock sources  
The LPC51U68 supports two external and three internal clock sources:  
The Free Running Oscillator (FRO).  
Watchdog oscillator (WDTOSC).  
External clock source from the digital I/O pin CLKIN.  
External RTC 32.768 kHz clock.  
Output of the system PLL.  
7.8.1.1 FRO  
The internal FRO can be used as a CPU clock or a clock source to the system PLL. On  
power-up, or any chip reset, the LPC51U68 uses an internal 12 MHz FRO as the clock  
source. Software may later switch to one of the available clock sources. A selectable 48  
MHz or 96 MHz FRO is also available as a clock source.  
The 48 MHz FRO can be used as a clock source to the USB.  
The FRO is trimmed to 1 % accuracy over the entire voltage and temperature range.  
7.8.1.2 Watchdog oscillator (WDTOSC)  
The watchdog oscillator is a low-power internal oscillator. The WDTOSC can be used to  
provide a clock to the WWDT and to the entire chip. The watchdog oscillator has a  
selectable frequency in the range of 6 kHz to 1.5 MHz.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
23 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
7.8.1.3 Clock input  
An external square-wave clock source (up to 25 MHz) can be supplied on the digital I/O  
pin CLKIN.  
7.8.1.4 RTC Oscillator  
An external RTC (32.768 kHz) can be used to create the main clock when the PLL input or  
output is selected as the clock source to the main clock.  
7.8.1.5 System PLL  
The system PLL allows CPU operation up to the maximum CPU rate without the need for  
a high-frequency external clock. The system PLL can run from the internal FRO 12 MHz  
output, the external clock input CLKIN, or the RTC oscillator.  
The system PLL accepts an input clock frequency in the range of 32 kHz to 25 MHz. The  
input frequency is multiplied up to a high frequency with a Current Controlled Oscillator  
(CCO) The PLL can be enabled or disabled by software.  
7.8.2 Clock Generation  
The system control block facilitates the clock generation. Many clocking variations are  
possible. Figure 7 gives an overview of the potential clock options.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
24 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
system clock to  
CPU, AHB bus,  
fro_12m  
00  
00  
10  
11  
main_clk  
(1)  
clk_in  
01  
pll_clk  
32k_clk  
Sync APB, etc.  
CPU CLOCK  
wdt_clk  
10  
DIVIDER  
fro_hf  
11  
(1)  
main_clk  
pll_clk  
fro_hf  
AHBCLKDIV  
000  
Main clock select B  
MAINCLKSELB[1:0]  
001  
010  
111  
Main clock select A  
MAINCLKSELA[1:0]  
to ADC  
ADC CLOCK  
DIVIDER  
“none”  
fro_12m  
000  
001  
010  
011  
111  
ADCCLKDIV  
clk_in  
wdt_clk  
32k_clk  
“none”  
ADC clock select  
ADCCLKSEL[2:0]  
SYSTEM PLL  
(PLL0)  
fro_hf  
System PLL  
settings  
000  
001  
010  
111  
pll_clk  
main_clk  
“none”  
to FS USB  
USB CLOCK  
DIVIDER  
PLL clock select  
SYSPLLCLKSEL[2:0]  
USBCLKDIV  
USB clock select  
USBCLKSEL[2:0]  
to async  
APB bridge  
main_clk  
fro_12m  
00  
01  
fro_hf  
(1)  
000  
001  
010  
111  
MCLK pin  
(output)  
pll_clk  
main_clk  
“none”  
MCLK  
DIVIDER  
APB clock select B  
ASYNCAPBCLKSELB[1:0]  
MCLKDIV  
MCLK clock select  
MCLKCLKSEL[2:0]  
(1): synchronized multiplexer,  
see register descriptions for details.  
to CLK32K of all  
Flexcomm Interfaces  
32k_clk  
(1 per device)  
(1 per Flexcomm Interface)  
fro_12  
main_clk  
000  
main_clk  
pll_clk  
fro_12m  
fro_hf  
clk_in  
001  
000  
000  
001  
010  
011  
100  
111  
fcn_fclk  
fro_hf  
pll_clk  
wdt_clk  
010  
(function clock  
of Flexcomm [n]  
001  
010  
011  
111  
fro_hf  
011  
CLKOUT  
CLKOUT  
mclk_in  
frg_clk  
“none”  
pll_clk  
fro_12m  
(up to 8 Flexcomm  
interfaces on  
these devices)  
DIVIDER  
100  
101  
110  
111  
“none”  
FRG CLOCK  
DIVIDER  
32k_clk  
“none”  
CLKOUTDIV  
FRGCTRL[15:0]  
FRG clock select  
FRGCLKSEL[2:0]  
Function clock select  
FXCOMCLKSEL[n][2:0]  
CLKOUT select  
CLKOUTSELA[2:0]  
aaa-028912  
Fig 7. LPC51U68 clock generation  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
25 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 9 describes signals on the clocking diagram.  
Table 7.  
Name  
Clocking diagram signal name descriptions  
Description  
32k_clk  
clk_in  
The 32 kHz output of the RTC oscillator. The 32 kHz clock must be enabled in the RTCOSCCTRL register.  
This is the internal clock that comes from the main CLK_IN pin function. That function must be connected to the  
pin by selecting it in the IOCON block.  
frg_clk  
The output of the Fractional Rate Generator.  
fro_12m The 12 MHz output of the currently selected on-chip FRO oscillator.  
fro_hf The currently selected FRO high speed output. This may be either 96 MHz or 48 MHz.  
main_clk The main clock used by the CPU and AHB bus, and potentially many others.  
mclk_in  
pll_clk  
The MCLK input function, when it is connected to a pin by selecting it in the IOCON block.  
The output of the PLL.  
wdt_clk  
The output of the watchdog oscillator, which has a selectable target frequency. It must also be enabled in the  
PDRINCFG0 register.  
“none”  
A tied-off source that should be selected to save power when the output of the related multiplexer is not used.  
7.8.3 Brownout detection  
The LPC51U68 includes a monitor for the voltage level on the VDD pin. If this voltage falls  
below a fixed level, the BOD sets a flag that can be polled or cause an interrupt. In  
addition, a separate threshold levels can be selected to cause chip reset and interrupt.  
7.8.4 Safety  
The LPC51U68 includes a Windowed WatchDog Timer (WWDT), which can be enabled  
by software after reset. Once enabled, the WWDT remains locked and cannot be modified  
in any way until a reset occurs.  
7.9 Code security (Code Read Protection - CRP)  
This feature of the LPC51U68 allows user to enable different levels of security in the  
system so that access to the on-chip flash and use of the Serial Wire Debugger (SWD)  
and In-System Programming (ISP) can be restricted. When needed, CRP is invoked by  
programming a specific pattern into a dedicated flash location. IAP commands are not  
affected by the CRP.  
In addition, ISP entry can be invoked by pulling a pin on the LPC51U68 LOW on reset.  
This pin is called the ISP entry pin.  
There are three levels of Code Read Protection:  
1. CRP1 disables access to the chip via the SWD and allows partial flash update  
(excluding flash sector 0) using a limited set of the ISP commands. This mode is  
useful when CRP is required and flash field updates are needed but all sectors cannot  
be erased.  
2. CRP2 disables access to the chip via the SWD and only allows full flash erase and  
update using a reduced set of the ISP commands.  
3. CRP3 fully disables any access to the chip via SWD and ISP. It is up to the user’s  
application to provide (if needed) flash update mechanism using IAP calls or a call to  
reinvoke ISP command to enable a flash update via USART.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
26 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
4. In addition to the three CRP levels, sampling of the ISP entry pin for valid user code  
can be disabled (No_ISP mode). For details, see the LPC51U68 user manual.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
7.10 Power control  
The LPC51U68 support a variety of power control features. In Active mode, when the chip  
is running, power and clocks to selected peripherals can be adjusted for power  
consumption. In addition, there are four special modes of processor power reduction with  
different peripherals running: sleep mode, deep-sleep mode, and deep power-down  
mode, activated by the power mode configure API.  
7.10.1 Sleep mode  
In sleep mode, the system clock to the CPU is stopped and execution of instructions is  
suspended until either a reset or an interrupt occurs. Peripheral functions, if selected to be  
clocked can continue operation during Sleep mode and may generate interrupts to cause  
the processor to resume execution. Sleep mode eliminates dynamic power used by the  
processor itself, memory systems and related controllers, internal buses, and unused  
peripherals. The processor state and registers, peripheral registers, and internal SRAM  
values are maintained, and the logic levels of the pins remain static.  
7.10.2 Deep-sleep mode  
In deep-sleep mode, the system clock to the processor is disabled as in sleep mode. All  
analog blocks are powered down by default but can be selected to keep running through  
the power API if needed as wake-up sources. The main clock and all peripheral clocks are  
disabled. The FRO is disabled. The flash memory is put in standby mode.  
Deep-sleep mode eliminates all power used by analog peripherals and all dynamic power  
used by the processor itself, memory systems and related controllers, and internal buses.  
The processor state and registers, peripheral registers, and internal SRAM values are  
maintained, and the logic levels of the pins remain static.  
GPIO Pin Interrupts, GPIO Group Interrupts, and selected peripherals such as USB, SPI,  
I2C, USART, WWDT, RTC, Micro-tick Timer, and BOD can be left running in deep sleep  
mode The FRO, RTC oscillator, and the watchdog oscillator can be left running. In some  
cases, DMA can operate in deep-sleep mode. For more details, see LPC51U68 user  
manual.  
7.10.3 Deep power-down mode  
In deep power-down mode, power is shut off to the entire chip except for the RTC power  
domain and the RESET pin. The LPC51U68 can wake up from deep power-down mode  
via the RESET pin and the RTC alarm. The ALARM1HZ flag in RTC control register  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
27 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
generates an RTC wake-up interrupt request, which can wake up the part. During deep  
power-down mode, the contents of the SRAM and registers are not retained. All functional  
pins are tri-stated in deep power-down mode.  
Table 8 shows the peripheral configuration in reduced power modes.  
Table 8.  
Peripheral configuration in reduced power modes  
Reduced power mode  
Peripheral  
Sleep  
Deep-sleep  
Deep power-down  
FRO  
Flash  
BOD  
PLL  
Software configured Software configured  
Software configured Standby  
Off  
Off  
Off  
Off  
Off  
Software configured Software configured  
Software configured Off  
Watchdog osc and  
WWDT  
Software configured Software configured  
Micro-tick Timer  
DMA  
Software configured Software configured  
Off  
Off  
Active  
Configurable some for operations, see Section 7.8.2  
USART  
Software configured Off; but can create a wake-up interrupt in synchronous Off  
slave mode or 32 kHz clock mode  
SPI  
I2C  
Software configured Off; but can create a wake-up interrupt in slave mode Off  
Software configured Off; but can create a wake-up interrupt in slave mode Off  
USB  
Software configured Software configured  
Off  
Other digital peripherals Software configured Off  
RTC oscillator Software configured Software configured  
Off  
Software configured  
Table 9 shows the wake-up sources for reduced power modes.  
Table 9.  
Wake-up sources for reduced power modes  
Power mode Wake-up source  
Conditions  
Sleep  
Any interrupt  
HWWAKE  
Enable interrupt in NVIC.  
Certain Flexcomm Interface activity.  
Deep-sleep  
Pin interrupts  
BOD interrupt  
Enable pin interrupts in NVIC and STARTER0 and/or STARTER1 registers.  
Enable interrupt in NVIC and STARTER0 registers.  
Enable interrupt in BODCTRL register.  
Configure the BOD to keep running in this mode with the power API.  
BOD reset  
Enable reset in BODCTRL register.  
Watchdog interrupt  
Enable the watchdog oscillator in the PDRUNCFG0 register.  
Enable the watchdog interrupt in NVIC and STARTER0 registers.  
Enable the watchdog in the WWDT MOD register and feed.  
Enable interrupt in WWDT MOD register.  
Configure the WDTOSC to keep running in this mode with the power API.  
Enable the watchdog oscillator in the PDRUNCFG0 register.  
Enable the watchdog and watchdog reset in the WWDT MOD register and feed.  
Always available.  
Watchdog reset  
Reset pin  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
28 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 9.  
Wake-up sources for reduced power modes  
Power mode Wake-up source  
RTC 1 Hz alarm timer  
Conditions  
Enable the RTC 1 Hz oscillator in the RTCOSCCTRL register.  
Enable the RTC bus clock in the AHBCLKCTRL0 register.  
Start RTC alarm timer by writing a time-out value to the RTC COUNT register.  
Enable the RTCALARM interrupt in the STARTER0 register.  
RTC 1 kHz timer  
time-out and alarm  
Enable the RTC 1 Hz oscillator and the RTC 1 kHz oscillator in the RTC CTRL  
register.  
Start RTC 1 kHz timer by writing a value to the WAKE register of the RTC.  
Enable the RTC wake-up interrupt in the STARTER0 register.  
Enable the watchdog oscillator in the PDRUNCFG0 register.  
Enable the Micro-tick timer clock by writing to the AHBCLKCTRL1 register.  
Start the Micro-tick timer by writing UTICK CTRL register.  
Enable the Micro-tick timer interrupt in the STARTER0 register.  
Interrupt from I2C in slave mode.  
Micro-tick timer  
(intended for ultra-low  
power wake-up from  
deep-sleep mode  
I2C interrupt  
SPI interrupt  
USART interrupt  
Interrupt from SPI in slave mode.  
Interrupt from USART in slave or 32 kHz mode.  
USB need clock  
interrupt  
Interrupt from USB when activity is detected that requires a clock.  
HWWAKE  
Certain Flexcomm Interface activity.  
Deep  
power-down  
RTC 1 Hz alarm timer  
Enable the RTC 1 Hz oscillator in the RTC CTRL register.  
Start RTC alarm timer by writing a time-out value to the RTC COUNT register.  
RTC 1 kHz timer  
time-out and alarm  
Enable the RTC 1 Hz oscillator and the RTC 1 kHz oscillator in the  
RTCOSCCTRL register.  
Enable the RTC bus clock in the AHBCLKCTRL0 register.  
Start RTC 1 kHz timer by writing a value to the WAKE register of the RTC.  
Always available.  
Reset pin  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
29 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
7.11 General Purpose I/O (GPIO)  
The LPC51U68 provides two GPIO ports with a total of 48 GPIO pins.  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate  
registers allow setting or clearing any number of outputs simultaneously. The current level  
of a port pin can be read back no matter what peripheral is selected for that pin.  
See Table 4 for the default state on reset.  
7.11.1 Features  
Accelerated GPIO functions:  
GPIO registers are located on the AHB so that the fastest possible I/O timing can  
be achieved.  
Mask registers allow treating sets of port bits as a group, leaving other bits  
unchanged.  
All GPIO registers are byte and half-word addressable.  
Entire port value can be written in one instruction.  
Bit-level set, clear, and toggle registers allow a single instruction set, clear or toggle of  
any number of bits in one port.  
Direction control of individual bits.  
All I/O default to inputs after reset.  
All GPIO pins can be selected to create an edge or level-sensitive GPIO interrupt  
request.  
One GPIO group interrupt can be triggered by a combination of any pin or pins.  
7.12 Pin interrupt/pattern engine  
The pin interrupt block configures up to eight pins from all digital pins for providing four  
external interrupts connected to the NVIC. The pattern match engine can be used in  
conjunction with software to create complex state machines based on pin inputs. Any  
digital pin, independent of the function selected through the switch matrix can be  
configured through the SYSCON block as an input to the pin interrupt or pattern match  
engine. The registers that control the pin interrupt or pattern match engine are located on  
the I/O+ bus for fast single-cycle access.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
30 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
7.12.1 Features  
Pin interrupts:  
Up to eight pins can be selected from all GPIO pins on ports 0 and 1 as  
edge-sensitive or level-sensitive interrupt requests. Each request creates a  
separate interrupt in the NVIC.  
Edge-sensitive interrupt pins can interrupt on rising or falling edges or both.  
Level-sensitive interrupt pins can be HIGH-active or LOW-active.  
Level-sensitive interrupt pins can be HIGH-active or LOW-active.  
Pin interrupts can wake up the device from sleep mode and deep-sleep mode.  
Pattern match engine:  
Up to eight pins can be selected from all digital pins on ports 0 and 1 to contribute  
to a boolean expression. The boolean expression consists of specified levels  
and/or transitions on various combinations of these pins.  
Each bit slice minterm (product term) comprising of the specified boolean  
expression can generate its own, dedicated interrupt request.  
Any occurrence of a pattern match can also be programmed to generate an RXEV  
notification to the CPU. The RXEV signal can be connected to a pin.  
Pattern match can be used in conjunction with software to create complex state  
machines based on pin inputs.  
Pattern match engine facilities wake-up only from active and sleep modes.  
7.13 AHB peripherals  
7.13.1 DMA controller  
The DMA controller allows peripheral-to memory, memory-to-peripheral, and  
memory-to-memory transactions. Each DMA stream provides unidirectional DMA  
transfers for a single source and destination.  
7.13.1.1 Features  
18 channels, 16 of which are connected to peripheral DMA requests. These come  
from the Flexcomm Interfaces (USART, SPI, I2C, and I2S).  
DMA operations can be triggered by on-chip or off-chip events.  
Priority is user selectable for each channel (up to eight priority levels).  
Continuous priority arbitration.  
Address cache with four entries.  
Efficient use of data bus.  
Supports single transfers up to 1,024 words.  
Address increment options allow packing and/or unpacking data.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
31 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
7.14 Digital serial peripherals  
7.14.1 USB 2.0 device controller  
7.14.1.1 Features  
USB2.0 full-speed device controller.  
Supports ten physical (five logical) endpoints including one control endpoint.  
Supports Single and double-buffering.  
Supports Crystal-less operation and calibration of FRO using USB frames.  
Each non-control endpoint supports bulk, interrupt, or isochronous endpoint types.  
Link Power Management (LPM) supported.  
7.14.2 Flexcomm Interface serial communication  
Each Flexcomm Interface provides a choice of peripheral functions, one of which the user  
must choose before the function can be configured and used.  
7.14.2.1 Features  
USART with asynchronous operation or synchronous master or slave operation.  
SPI master or slave, with up to four slave selects.  
I2C, including separate master, slave, and monitor functions.  
Flexcomm Interfaces 6 and 7 support I2S function.  
Data for USART, SPI, and I2S traffic uses the Flexcomm Interface FIFO. The I2C  
function does not use the FIFO.  
7.14.3 USART  
7.14.3.1 Features  
Synchronous mode with master or slave operation. Includes data phase selection and  
continuous clock option.  
Maximum bit rates of 6.25 Mbit/s in asynchronous mode.  
Maximum data rates of 20 Mbit/s in synchronous master mode and 16 Mbit/s in  
synchronous slave mode.  
Multiprocessor/multidrop (9-bit) mode with software address compare.  
RS-485 transceiver output enable.  
Autobaud mode for automatic baud rate detection.  
Parity generation and checking: odd, even, or none.  
Software selectable oversampling from 5 to 16 clocks in asynchronous mode.  
One transmit and one receive data buffer.  
RTS/CTS for hardware signaling for automatic flow control. Software flow control can  
be performed using Delta CTS detect, Transmit Disable control, and any GPIO as an  
RTS output.  
Received data and status can optionally be read from a single register.  
Break generation and detection.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
32 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Receive data is 2 of 3 sample "voting". Status flag set when one sample differs.  
Built-in Baud Rate Generator with auto-baud function.  
A fractional rate divider is shared among all USARTs.  
Interrupts available for FIFO receive level reached, FIFO transmit level reached,  
Transmit Idle, change in receiver break detect, Framing error, Parity error, Overrun,  
Underrun, Delta CTS detect, and receiver sample noise detected.  
Loopback mode for testing of data and flow control.  
In synchronous slave mode, wakes up the part from deep-sleep mode.  
Special operating mode allows operation at up to 9600 baud using the 32.768 kHz  
RTC oscillator as the UART clock. This mode can be used while the device is in  
deep-sleep mode and can wake-up the device when a character is received.  
USART transmit and receive functions work with the system DMA controller.  
Activity on the USART synchronous slave mode allows wake-up from deep-sleep  
mode on any enabled interrupt  
7.14.4 SPI serial I/O controller  
7.14.4.1 Features  
Master and slave operation.  
Maximum data rate of 71 Mbit/s in master mode and 15 Mbit/s in slave mode for SPI  
functions.  
Data frames of 1 to 16 bits supported directly. Larger frames supported by software or  
DMA set-up.  
Master and slave operation.  
Data can be transmitted to a slave without the need to read incoming data. This can  
be useful while setting up an SPI memory.  
Control information can optionally be written along with data. This allows very  
versatile operation, including “any length” frames.  
Four Slave Select input/outputs with selectable polarity and flexible usage.  
Activity on the SPI in slave mode allows wake-up from deep-sleep mode on any  
enabled interrupt.  
Remark: Texas Instruments SSI and National Microwire modes are not supported.  
7.14.5 I2C-bus interface  
The I2C-bus is bidirectional for inter-IC control using only two wires: a serial clock line  
(SCL) and a serial data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (for example, an LCD driver) or a transmitter  
with the capability to both receive and send information (such as memory). Transmitters  
and/or receivers can operate in either master or slave mode, depending on whether the  
chip has to initiate a data transfer or is only addressed. The I2C is a multi-master bus and  
can be controlled by more than one bus master connected to it.  
7.14.6 Features  
Independent Master, Slave, and Monitor functions.  
Bus speeds supported:  
All information provided in this document is subject to legal disclaimers.  
Rev. 1.3 — 18 May 2018  
LPC51U68  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
33 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Standard mode, up to 100 kbits/s.  
Fast-mode, up to 400 kbits/s.  
Fast-mode Plus, up to 1 Mbits/s (on specific I2C pins).  
High speed mode, 3.4 Mbits/s as a Slave only (on specific I2C pins).  
Supports both Multi-master and Multi-master with Slave functions.  
Multiple I2C slave addresses supported in hardware.  
One slave address can be selectively qualified with a bit mask or an address range in  
order to respond to multiple I2C bus addresses.  
10-bit addressing supported with software assist.  
Supports System Management Bus (SMBus).  
Separate DMA requests for Master, Slave, and Monitor functions.  
No chip clocks are required in order to receive and compare an address as a Slave,  
so this event can wake up the device from deep-sleep mode.  
7.14.7 I2S-bus interface  
The I2S bus provides a standard communication interface for streaming data transfer  
applications such as digital audio or data collection. The I2S bus specification defines a  
3-wire serial bus, having one data, one clock, and one word select/frame trigger signal,  
providing single or dual (mono or stereo) audio data transfer as well as other  
configurations. In the LPC51U68, the I2S function is included in Flexcomm Interface 6 and  
Flexcomm Interface 7. Each of these Flexcomm Interfaces implement four I2S channel  
pairs.  
The I2S interface within one Flexcomm Interface provides at least one channel pair that  
can be configured as a master or a slave. Other channel pairs, if present, always operate  
as slaves. All of the channel pairs within one Flexcomm Interface share one set of I2S  
signals, and are configured together for either transmit or receive operation, using the  
same mode, same data configuration and frame configuration. All such channel pairs can  
participate in a time division multiplexing (TDM) arrangement. For cases requiring an  
MCLK input and/or output, this is handled outside of the I2S block in the system level  
clocking scheme.  
7.14.7.1 Features  
A Flexcomm Interface may implement one or more I2S channel pairs, the first of which  
could be a master or a slave, and the rest of which would be slaves. All channel pairs  
are configured together for either transmit or receive and other shared attributes. The  
number of channel pairs is defined for each Flexcomm Interface, and may be from 0  
to 4.  
Configurable data size for all channels within one Flexcomm Interface, from 4 bits to  
32 bits. Each channel pair can also be configured independently to act as a single  
channel (mono as opposed to stereo operation).  
All channel pairs within one Flexcomm Interface share a single bit clock (SCK) and  
word select/frame trigger (WS), and data line (SDA).  
Data for all I2S traffic within one Flexcomm Interface uses the Flexcomm Interface  
FIFO. The FIFO depth is 8 entries.  
Left justified and right justified data modes.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
34 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
DMA support using FIFO level triggering.  
TDM (Time Division Multiplexing) with a several stereo slots and/or mono slots is  
supported. Each channel pair can act as any data slot. Multiple channel pairs can  
participate as different slots on one TDM data line.  
The bit clock and WS can be selectively inverted.  
Sampling frequencies supported depends on the specific device configuration and  
applications constraints (e.g. system clock frequency, PLL availability, etc.) but  
generally supports standard audio data rates. See the data rates section in I2S  
chapter (UM11071) to calculate clock and sample rates.  
Remark: The Flexcomm Interface function clock frequency should not be above 48 MHz.  
7.15 Standard counter/timers (CTimer 0, 1, 3)  
The LPC51U68 includes three general-purpose 32-bit timer/counters.  
The timer/counter is designed to count cycles of the system derived clock or an  
externally-supplied clock. It can optionally generate interrupts, generate timed DMA  
requests, or perform other actions at specified timer values, based on four match  
registers. Each timer/counter also includes two capture inputs to trap the timer value when  
an input signal transitions, optionally generating an interrupt.  
7.15.1 Features  
A 32-bit timer/counter with a programmable 32-bit prescaler.  
Counter or timer operation.  
Up to four 32-bit capture channels per timer, that can take a snapshot of the timer  
value when an input signal transitions. A capture event may also generate an  
interrupt.  
The timer and prescaler may be configured to be cleared on a designated capture  
event. This feature permits easy pulse width measurement by clearing the timer on  
the leading edge of an input pulse and capturing the timer value on the trailing edge.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Up to four external outputs per timer corresponding to match registers with the  
following capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
Up to two match registers can be used to generate timed DMA requests.  
PWM mode using up to three match channels for PWM output.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
35 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
7.15.2 SCTimer/PWM subsystem  
The SCTimer/PWM is a flexible timer module capable of creating complex PWM  
waveforms and performing other advanced timing and control operations with minimal or  
no CPU intervention.  
The SCTimer/PWM can operate as a single 32-bit counter or as two independent, 16-bit  
counters in uni-directional or bi-directional mode. It supports a selection of match registers  
against which the count value can be compared, and capture registers where the current  
count value can be recorded when some pre-defined condition is detected.  
The SCTimer/PWM module supports multiple separate events that can be defined by the  
user based on some combination of parameters including a match on one of the match  
registers, and/or a transition on one of the SCTimer/PWM inputs or outputs, the direction  
of count, and other factors.  
Every action that the SCTimer/PWM block can perform occurs in direct response to one of  
these user-defined events without any software overhead. Any event can be enabled to:  
Start, stop, or halt the counter.  
Limit the counter which means to clear the counter in unidirectional mode or change  
its direction in bi-directional mode.  
Set, clear, or toggle any SCTimer/PWM output.  
Force a capture of the count value into any capture registers.  
Generate an interrupt of DMA request.  
7.15.2.1 Features  
The SCTimer/PWM Supports:  
Eight inputs.  
Eight outputs.  
Ten match/capture registers.  
Ten events.  
Ten states.  
Counter/timer features:  
Each SCTimer/PWM is configurable as two 16-bit counters or one 32-bit counter.  
Counters clocked by system clock or selected input.  
Configurable number of match and capture registers. Up to five match and capture  
registers total.  
Ten events.  
Ten states.  
Upon match and/or an input or output transition create the following events:  
interrupt; stop, limit, halt the timer or change counting direction; toggle outputs;  
change the state.  
Counter value can be loaded into capture register triggered by a match or  
input/output toggle.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
36 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
PWM features:  
Counters can be used in conjunction with match registers to toggle outputs and  
create time-proportioned PWM signals.  
Up to eight single-edge or four dual-edge PWM outputs with independent duty  
cycle and common PWM cycle length.  
Event creation features:  
The following conditions define an event: a counter match condition, an input (or  
output) condition such as an rising or falling edge or level, a combination of match  
and/or input/output condition.  
Selected events can limit, halt, start, or stop a counter or change its direction.  
Events trigger state changes, output toggles, interrupts, and DMA transactions.  
Match register 0 can be used as an automatic limit.  
In bi-directional mode, events can be enabled based on the count direction.  
Match events can be held until another qualifying event occurs.  
State control features:  
A state is defined by events that can happen in the state while the counter is  
running.  
A state changes into another state as a result of an event.  
Each event can be assigned to one or more states.  
State variable allows sequencing across multiple counter cycles.  
7.15.3 Windowed WatchDog Timer (WWDT)  
The purpose of the Watchdog Timer is to reset or interrupt the microcontroller within a  
programmable time if it enters an erroneous state. When enabled, a watchdog reset is  
generated if the user program fails to feed (reload) the Watchdog within a predetermined  
amount of time.  
7.15.3.1 Features  
Internally resets chip if not reloaded during the programmable time-out period.  
Optional windowed operation requires reload to occur between a minimum and  
maximum time period, both programmable.  
Optional warning interrupt can be generated at a programmable time prior to  
watchdog time-out.  
Programmable 24-bit timer with internal fixed pre-scaler.  
Selectable time period from 1,024 watchdog clocks (TWDCLK × 256 × 4) to over 67  
million watchdog clocks (TWDCLK × 224 × 4) in increments of four watchdog clocks.  
“Safe” watchdog operation. Once enabled, requires a hardware reset or a Watchdog  
reset to be disabled.  
Incorrect feed sequence causes immediate watchdog event if enabled.  
The watchdog reload value can optionally be protected such that it can only be  
changed after the “warning interrupt” time is reached.  
Flag to indicate Watchdog reset.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
37 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
The Watchdog clock (WDCLK) source is a selectable frequency in the range of 6 kHz  
to 1.5 MHz. The accuracy of this clock is limited to +/- 40% over temperature, voltage,  
and silicon processing variations.  
The Watchdog timer can be configured to run in deep-sleep mode.  
Debug mode.  
7.15.4 RTC timer  
The RTC block has two timers: main RTC timer, and high-resolution/wake-up timer. The  
main RTC timer is a 32-bit timer that uses a 1 Hz clock and is intended to run continuously  
as a real-time clock. When the timer value reaches a match value, an interrupt is raised.  
The alarm interrupt can also wake up the part from any low power mode, if enabled.  
The high-resolution or wake-up timer is a 16-bit timer that uses a 1 kHz clock and  
operates as a one-shot down timer. When the timer is loaded, it starts counting down to 0  
at which point an interrupt is raised. The interrupt can be used to wake-up the part from  
any low power modes. This timer is intended to be used for timed wake-up from  
deep-sleep or deep power-down modes. The high-resolution wake-up timer can be  
disabled to conserve power if not used.  
The RTC timer uses the 32.768 kHz clock input to create a 1 Hz or 1 kHz clock.  
7.15.4.1 Features  
The RTC oscillator has the following clock outputs:  
32.768 kHz clock, selectable for system clock and CLKOUT pin.  
1 Hz clock for RTC timing.  
1 kHz clock for high-resolution RTC timing.  
32-bit, 1 Hz RTC counter and associated match register for alarm generation.  
Separate 16-bit high-resolution/wake-up timer clocked at 1 kHz for 1 ms resolution  
with a more that one minute maximum time-out period.  
RTC alarm and high-resolution/wake-up timer time-out each generate independent  
interrupt requests. Either time-out can wake up the part from any of the low power  
modes, including deep power-down.  
7.15.5 Multi-Rate Timer (MRT)  
The Multi-Rate Timer (MRT) provides a repetitive interrupt timer with four channels. Each  
channel can be programmed with an independent time interval, and each channel  
operates independently from the other channels.  
7.15.5.1 Features  
24-bit interrupt timer.  
Four channels independently counting down from individually set values.  
Repeat interrupt, one-shot interrupt, and one-shot bus stall modes.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
38 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
7.15.6 Micro-tick timer (UTICK)  
The ultra-low power Micro-tick Timer, running from the Watchdog oscillator, can be used  
to wake up the device from low power modes.  
7.15.6.1 Features  
Ultra simple timer.  
Write once to start.  
Interrupt or software polling.  
Four capture registers that can be triggered by external pin transitions.  
7.16 12-bit Analog-to-Digital Converter (ADC)  
The ADC supports a resolution of 12-bit and fast conversion rates of up to 5.0  
Msamples/s. Sequences of analog-to-digital conversions can be triggered by multiple  
sources. Possible trigger sources are the SCTimer/PWM, external pins, and the ARM  
TXEV interrupt.  
The ADC supports a variable clocking scheme with clocking synchronous to the system  
clock or independent, asynchronous clocking for high-speed conversions  
The ADC includes a hardware threshold compare function with zero-crossing detection.  
The threshold crossing interrupt is connected internally to the SCTimer/PWM inputs for  
tight timing control between the ADC and the SCTimer/PWM.  
7.16.1 Features  
12-bit successive approximation analog to digital converter.  
Input multiplexing up to 12 pins.  
Two configurable conversion sequences with independent triggers.  
Optional automatic high/low threshold comparison and “zero crossing” detection.  
Measurement range VREFN to VREFP (not to exceed VDDA voltage level).  
12-bit conversion rate of 5.0 MHz. Options for reduced resolution at higher conversion  
rates.  
Burst conversion mode for single or multiple inputs.  
Synchronous or asynchronous operation. Asynchronous operation maximizes  
flexibility in choosing the ADC clock frequency, Synchronous mode minimizes trigger  
latency and can eliminate uncertainty and jitter in response to a trigger.  
A temperature sensor is connected as an alternative input for ADC channel 0.  
7.17 Temperature sensor  
The temperature sensor transducer uses an intrinsic pn-junction diode reference and  
outputs a Complement To Absolute Temperature (VCTAT) voltage. The output voltage  
varies inversely with device temperature with an absolute accuracy of better than 3 C  
over the full temperature range (-40 C to +105 C). The temperature sensor is only  
approximately linear with a slight curvature. The output voltage is measured over different  
ranges of temperatures and fit with linear-least-square lines.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
39 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
After power-up, the temperature sensor output must be allowed to settle to its stable value  
before it can be used as an accurate ADC input.  
For an accurate measurement of the temperature sensor by the ADC, the ADC must be  
configured in single-channel burst mode. The last value of a nine-conversion (or more)  
burst provides an accurate result.  
7.18 Emulation and debugging  
Debug and trace functions are integrated into the ARM Cortex-M0+. Serial wire debug  
and trace functions are supported. The ARM Cortex-M0+ is configured to support up to  
four breakpoints and two watch points. In addition, JTAG boundary scan mode is  
provided.  
The ARM SYSREQ reset is supported and causes the processor to reset the peripherals,  
execute the boot code, restart from address 0x0000 0000, and break at the user entry  
point.  
The SWD pins are multiplexed with other digital I/O pins. On reset, the pins assume the  
SWD functions by default.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
40 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8. Limiting values  
Table 10. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
[2]  
VDD  
supply voltage (core and on pin VDD  
external rail)  
0.5  
+4.6  
V
VDDA  
Vref  
VI  
analog supply voltage  
reference voltage  
input voltage  
on pin VDDA  
0.5  
0.5  
0.5  
+4.6  
+4.6  
+5.0  
V
V
V
on pin VREFP  
-
[6][7]  
[5]  
only valid when the VDD > 1.8 V;  
5 V tolerant I/O pins  
on I2C open-drain pins  
USB_DM,  
VI  
input voltage  
0.5  
0.5  
+5.0  
+5.0  
V
V
USB_DP pins  
[8][9]  
VIA  
analog input voltage  
on digital pins configured for an  
analog function  
0.5  
VDD  
V
[3]  
[3]  
IDD  
total supply current  
total ground current  
I/O latch-up current  
per supply pin  
-
-
-
60  
mA  
mA  
mA  
ISS  
per ground pin  
60  
Ilatch  
(0.5VDD) < VI < (1.5VDD);  
Tj < 125 C  
100  
[2]  
[9]  
Vi(rtcx)  
32.768 kHz oscillator  
input voltage  
0.5  
+4.6  
V
Tstg  
storage temperature  
65  
+150  
+150  
C  
C  
Tj(max)  
maximum junction  
temperature  
-
Ptot(pack)  
VESD  
total power dissipation  
(per package)  
based on package heat transfer,  
not device power consumption  
-
1.5  
W
V
[3]  
electrostatic discharge  
voltage  
human body model; all pins  
2000  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
c) The limiting values are stress ratings only and operating the part at these values is not recommended and proper operation is not  
guaranteed. The conditions for functional operation are specified in Table 20.  
[2] Maximum/minimum voltage above the maximum operating voltage (see Table 20) and below ground that can be applied for a short time  
(< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.  
[3] The peak current is limited to 25 times the corresponding maximum current.  
[4] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
[5] VDD present or not present. Compliant with the I2C-bus standard. 5.5 V can be applied to this pin when VDD is powered down.  
[6] Applies to all 5 V tolerant I/O pins except true open-drain pins.  
[7] Including the voltage on outputs in 3-state mode.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
41 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
[8] An ADC input voltage above 3.6 V can be applied for a short time without leading to immediate, unrecoverable failure. Accumulated  
exposure to elevated voltages at 4.6 V must be less than 106 s total over the lifetime of the device. Applying an elevated voltage to the  
ADC inputs for a long time affects the reliability of the device and reduces its lifetime.  
[9] It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage supply pin.  
[10] Dependent on package type.  
9. Thermal characteristics  
The average chip junction temperature, Tj (C), can be calculated using the following  
equation:  
Tj = Tamb + PD Rthj a  
(1)  
Tamb = ambient temperature (C),  
Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)  
PD = sum of internal and I/O power dissipation  
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of  
the I/O pins is often small and many times can be negligible. However it can be significant  
in some applications.  
Table 11. Thermal resistance  
Symbol Parameter  
LQFP64 Package  
Conditions  
Max/Min  
Unit  
Rth(j-a)  
thermal resistance from  
JEDEC (4.5 in 4 in); still air  
58 15 % C/W  
junction to ambient  
Single-layer (4.5 in 3 in); still air 81 15 % C/W  
18 15 % C/W  
Rth(j-c)  
thermal resistance from  
junction to case  
LQFP48 Package  
Rth(j-a) thermal resistance from  
JEDEC (4.5 in 4 in); still air  
67 15 % C/W  
junction to ambient  
Single-layer (4.5 in 3 in); still air 81 15 % C/W  
15 15 % C/W  
Rth(j-c)  
thermal resistance from  
junction to case  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
42 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
10. Static characteristics  
10.1 General operating conditions  
Table 12. General operating conditions  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
-
Typ[1]  
Max  
100  
100  
Unit  
MHz  
MHz  
fclk  
clock frequency  
internal CPU/system clock  
-
-
For USB full-speed device  
operation  
12  
VDD  
supply voltage (core  
and external rail)  
1.62  
3.0  
-
-
-
-
-
3.6  
V
V
V
V
V
For USB operation only  
3.6  
VDDA  
Vrefp  
analog supply voltage  
1.62  
2.0  
3.6  
ADC positive reference VDDA 2 V  
voltage  
VDDA  
VDDA  
VDDA < 2 V  
VDDA  
RTC oscillator pins  
Vi(rtcx) 32.768 kHz oscillator  
on pin RTCXIN  
0.5  
0.5  
-
-
+3.6  
+3.6  
V
V
input voltage  
Vo(rtcx)  
32.768 kHz oscillator  
output voltage  
on pin RTCXOUT  
[1] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply voltages.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
43 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
10.2 CoreMark data  
Table 13. CoreMark score  
amb = 25C, VDD = 3.3V  
T
Parameter Conditions  
ARM Cortex-M0+ in active mode  
Typ  
Unit  
CoreMark score  
CoreMark score  
CoreMark code executed from SRAMX;  
[1][2][3][5][6]  
[1][2][3][5][6]  
[1][2][3][5][6]  
CCLK = 12 MHz  
2.0  
2.0  
2.0  
(Iterations/s) / MHz  
(Iterations/s) / MHz  
(Iterations/s) / MHz  
CCLK = 48 MHz  
CCLK = 96 MHz  
CoreMark code executed from flash;  
CCLK = 12 MHz; 1 system clock flash  
access time.  
[1][2][3][4][6]  
[1][2][3][4][6]  
2.0  
1.9  
(Iterations/s) / MHz  
(Iterations/s) / MHz  
CCLK = 48 MHz; 3 system clock flash  
access time.  
[1][2][3][4][6]  
CCLK = 96 MHz; 6 system clock flash  
access time.  
1.7  
(Iterations/s) / MHz  
[1] Clock source FRO. PLL disabled.  
[2] Characterized through bench measurements using typical samples.  
[3] Compiler settings: Keil µVision v.5.17., optimization level 3, optimized for time ON.  
[4] See the FLASHCFG register in the LPC51U68 User Manual for system clock flash access time settings.  
[5] Flash is powered down  
[6] SRAM0 and SRAMX powered.  
DDDꢀꢁꢂꢃꢄꢅꢆ  
&RUHPDUNꢊVVFFRRUUHH  
ꢋLWHUDWLLRQVꢍVV00++]]ꢌ  
ꢁꢉꢄ  
ꢁꢉꢁ  
0ꢆꢎꢊ65$$00  
ꢀꢉꢅ  
ꢀꢉꢂ  
0ꢆꢎꢊ)ODVVKK  
ꢀꢁ  
ꢁꢂ  
ꢃꢄ  
ꢂꢅ  
ꢄꢆ  
ꢇꢁ  
ꢅꢂ  
ꢈꢄ  
ꢀꢆꢅ  
)UHTXHQF\ꢊꢋ0+]ꢌ  
Conditions: VDD = 3.3 V; Tamb = 25 °C; active mode; all peripherals disabled; BOD disabled; See  
the FLASHCFG register in the LPC51U68, UM11071 User Manual for system clock flash access  
time settings. Measured with Keil uVision 5.17. Optimization level 3, optimized for time ON.  
12 MHz, 48 MHz, and 96 MHz: FRO enabled; PLL disabled.  
24 MHz, 36 MHz, 60 MHz, 72 MHz, 84 MHz, and 100 MHz: FRO enabled; PLL enabled.  
Fig 8. Typical CoreMark score  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
44 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
10.3 Power consumption  
Power measurements in active, sleep, and deep-sleep modes were performed under the  
following conditions:  
Configure all pins as GPIO with pull-up resistor disabled in the IOCON block.  
Configure GPIO pins as outputs using the GPIO DIR register.  
Write 1 to the GPIO CLR register to drive the outputs LOW.  
All peripherals disabled.  
Table 14. Static characteristics: Power consumption in active mode  
Tamb = 40 C to +105 C, unless otherwise specified.1.62 V VDD 3.6 V.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
ARM Cortex-M0+ in active mode  
IDD  
supply current  
CoreMark code executed from  
SRAMX; flash powered down:  
[2][3][4][6][7]  
[2][3][4][6][7]  
[2][3][4][6]  
CCLK = 12 MHz  
-
-
-
1.1  
3.0  
7.1  
-
-
-
mA  
mA  
mA  
CCLK = 48 MHz  
CCLK = 96 MHz  
IDD  
supply current  
CoreMark code executed from flash;  
CCLK = 12 MHz; 1 system clock  
flash access time.  
[2][3][4][5][7]  
[2][3][4][5][7]  
-
-
1.3  
3.6  
-
-
mA  
mA  
CCLK = 48 MHz; 3 system clock  
flash access time.  
[2][3][4][5]  
CCLK = 96 MHz; 7 system clock  
flash access time.  
-
8.0  
-
mA  
[1] Typical ratings are not guaranteed. Typical values listed are at room temperature (25 C), 3.3V.  
[2] Clock source FRO. PLL disabled.  
[3] Characterized through bench measurements using typical samples.  
[4] Compiler settings: Keil µVision 5.17., optimization level 0, optimized for time off.  
[5] Prefetch disabled in FLASHCFG register. SRAM0 powered. SRAMX powered down. All peripheral clocks disabled.  
[6] Flash is powered down; SRAM0 and SRAMX are powered. All peripheral clocks disabled.  
[7] Characterized using low power regulation mode.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
45 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
DDDꢀꢁꢂꢃꢄꢅꢃ  
ꢀꢅꢆ  
—$ꢍ0+]  
ꢀꢄꢆ  
ꢀꢂꢆ  
ꢀꢁꢆ  
ꢀꢆꢆ  
ꢅꢆ  
0ꢆꢎꢊ)/$6+  
0ꢆꢎꢊ65$0  
ꢄꢆ  
ꢀꢁ  
ꢁꢂ  
ꢃꢄ  
ꢂꢅ  
ꢄꢆ  
ꢇꢁ  
ꢅꢂ  
ꢈꢄ  
ꢀꢆꢅ  
)UHTXHQF\ꢊꢋ0+]ꢌ  
Conditions: VDD = 3.3 V; Tamb = 25 °C; active mode; all peripherals disabled; BOD disabled; Prefetch disabled in FLASHCFG  
register. See the FLASHCFG register in the LPC51U68, UM11071 User Manual for system clock flash access time settings.  
SRAM0 and SRAMX powered. Measured with Keil uVision 5.17. Optimization level 0, optimized for time OFF.  
12 MHz, 48 MHz, and 96 MHz: FRO enabled; PLL disabled.  
24 MHz, 36 MHz, 60 MHz, 72 MHz, 84 MHz, and 100 MHz: FRO enabled; PLL enabled.  
Fig 9. CoreMark power consumption: typical A/MHz  
Table 15. Static characteristics: Power consumption in sleep mode  
Tamb = 40 C to +105 C, unless otherwise specified.1.62 V VDD 3.6 V.  
Symbol  
ARM Cortex-M0+ in sleep mode  
IDD supply current  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
[2][3]  
[2][3]  
[2][3]  
CCLK = 12 MHz  
CCLK = 48 MHz  
CCLK = 96 MHz  
-
-
-
900  
1.6  
3.0  
-
-
-
A  
mA  
mA  
[1] Typical ratings are not guaranteed. Typical values listed are at room temperature (25 C), 3.3V.  
[2] Characterized through bench measurements using typical samples.  
[3] Clock source FRO. PLL disabled. All SRAM powered. Compiler settings: Keil µVision 5.17., optimization level 0, optimized for time off.  
Table 16. Static characteristics: Power consumption in deep-sleep and deep power-down modes  
Tamb = 40 C to +105 C, 1.62 V . VDD 2.0 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1][2] Max[3] Unit  
IDD  
supply current  
Deep-sleep mode. Flash is powered down.  
SRAM0 (64 KB) powered. Tamb = 25 C  
SRAM0 (64 KB) powered. Tamb = 105 C  
Deep power-down mode;  
-
10  
17  
A  
167  
RTC oscillator input grounded (RTC oscillator disabled).  
Tamb = 25 C  
-
-
-
290  
-
330  
nA  
A  
nA  
Tamb = 105 C  
6
-
RTC oscillator running with external crystal.  
390  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
46 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
[1] Typical ratings are not guaranteed. Typical values listed are at room temperature (25 C).  
[2] Characterized through bench measurements using typical samples. VDD = 1.62 V.  
[3] Guaranteed by characterization, not tested in production. VDD = 2.0 V.  
Table 17. Static characteristics: Power consumption in deep-sleep and deep power-down modes  
Tamb = 40 C to +105 C, 2.7 V . VDD 3.6 V; unless otherwise specified.  
Symbol Parameter  
IDD  
Conditions  
Min Typ[1][2] Max[3] Unit  
supply current Deep-sleep mode. Flash is powered down.  
SRAM0 (64 KB) powered. Tamb = 25 C  
SRAM0 (64 KB) powered. Tamb = 105 C  
Deep power-down mode;  
-
12  
-
19  
A  
182  
RTC oscillator input grounded (RTC oscillator disabled).  
amb = 25 C  
T
-
-
-
360  
-
470  
10  
-
nA  
A  
nA  
Tamb = 105 C  
RTC oscillator running with external crystal.  
450  
[1] Typical ratings are not guaranteed. Typical values listed are at room temperature (25 C).  
[2] Characterized through bench measurements using typical samples. VDD = 3.3 V.  
[3] Tested in production, VDD = 3.6 V.  
DDDꢀꢁꢂꢂꢅꢇꢇ  
ꢅꢆ  
,
''  
ꢋ—$ꢌ  
ꢄꢆ  
ꢂꢆ  
ꢁꢆ  
ꢃꢉꢄ99  
ꢃꢉꢃ99  
ꢀꢉꢅ99  
ꢀꢉꢄ99  
ꢏꢂꢆ  
ꢏꢀꢆ  
ꢁꢆ  
ꢐꢆ  
ꢅꢆ  
7HPSHUDWXUHꢊꢋƒ&ꢌ  
ꢀꢀꢆ  
Conditions: SRAM0 disabled except SRAMX (32 KB).  
Fig 10. Deep-sleep mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
47 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
DDDꢀꢁꢂꢂꢅꢇꢆ  
,
''  
ꢋ—$ꢌ  
ꢃꢉꢄ99  
ꢃꢉꢃ99  
ꢀꢉꢅ99  
ꢀꢉꢄ99  
ꢏꢂꢆ  
ꢏꢀꢆ  
ꢁꢆ  
ꢐꢆ  
ꢅꢆ  
ꢀꢀꢆ  
7HPSHUDWXUHꢊꢋƒ&ꢌ  
Conditions: RTC disabled (RTC oscillator input grounded)  
Fig 11. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
48 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 18. Typical peripheral power consumption[1][2][3]  
VDD = 3.3 V; Tamb = 25 °C  
Peripheral  
IDD in uA  
100.0  
2.0  
FRO (12 MHz, 48 MHz, 96 MHz)  
WDT OSC  
Flash  
200.0  
2.0  
BOD  
[1] The supply current per peripheral is measured as the difference in supply current between the peripheral  
block enabled and the peripheral block disabled using PDRUNCFG0/1 registers. All other blocks are  
disabled and no code accessing the peripheral is executed.  
[2] The supply currents are shown for system clock frequencies of 12 MHz, 48 MHz, and 96 MHz.  
[3] Typical ratings are not guaranteed. Characterized through bench measurements using typical samples.  
Table 19. Typical AHB/APB peripheral power consumption [3][4][5]  
Tamb = 25 °C, VDD = 3.3 V;  
Peripheral  
IDD in uA/MHz  
IDD in uA/MHz  
IDD in uA/MHz  
AHB peripheral  
CPU: 12 MHz, sync  
APB bus: 12 MHz  
CPU: 48 MHz, sync  
APB bus: 48 MHz  
CPU: 96MHz, sync  
APB bus: 96 MHz  
USB  
2.09  
0.02  
0.65  
0.56  
0.34  
0.50  
1.65  
4.01  
1.1  
2.09  
0.01  
0.65  
0.56  
0.43  
0.54  
1.67  
4.05  
1.2  
2.09  
0.01  
0.65  
0.56  
0.43  
0.54  
1.67  
4.04  
1.2  
Temperature sensor  
[1]  
[1]  
GPIO0  
GPIO1  
DMA  
CRC  
ADC0  
SCTimer/PWM  
Flexcomm Interface 0 (USART, SPI, I2C)  
Flexcomm Interface1 (USART, SPI, I2C)  
Flexcomm Interface 2 (USART, SPI, I2C)  
Flexcomm Interface 3 (USART, SPI, I2C)  
Flexcomm Interface 4 (USART, SPI, I2C)  
Flexcomm Interface 5 (USART, SPI, I2C)  
Flexcomm Interface 6 (USART, SPI, I2C, I2S)  
Flexcomm Interface 7 (USART, SPI, I2C, I2S)  
Sync APB peripheral  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.1  
1.1  
1.1  
1.2  
1.2  
1.2  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.4  
CPU: 12 MHz, sync  
APB bus: 12 MHz  
CPU: 48 MHz, sync  
APB bus: 48 MHz  
CPU: 96MHz, sync  
APB bus: 96 MHz  
[1]  
[1]  
INPUTMUX  
IOCON  
PINT  
0.87  
5.04  
1.26  
1.20  
0.28  
0.65  
0.26  
0.13  
0.93  
5.12  
1.26  
1.20  
0.32  
0.65  
0.34  
0.16  
0.93  
5.12  
1.26  
1.20  
0.32  
0.66  
0.34  
0.16  
GINT  
WWDT  
RTC  
MRT  
UTICK  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
49 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 19. Typical AHB/APB peripheral power consumption [3][4][5]  
Tamb = 25 °C, VDD = 3.3 V;  
Peripheral  
IDD in uA/MHz  
0.52  
IDD in uA/MHz  
0.50  
IDD in uA/MHz  
0.50  
CTimer0  
CTimer1  
0.39  
0.46  
0.47  
Fractional Rate Generator  
Async APB peripheral  
0.46  
0.44  
0.44  
CPU: 12 MHz, Async CPU: 48 MHz, sync  
APB bus: 12 MHz  
CPU: 96MHz,  
Async APB bus: 12  
MHz[2]  
APB bus: 12 MHz[2]  
CTimer3  
0.36  
0.36  
0.36  
[1] Turn off the peripheral when the configuration is done.  
[2] For optimal system power consumption, use fixed low frequency Async APB bus when the CPU is at a  
higher frequency.  
[3] The supply current per peripheral is measured as the difference in supply current between the peripheral  
block enabled and the peripheral block disabled using ASYNCAPBCLKCTRL, AHBCLKCTRL0/1, and  
PDRUNCFG0 registers. All other blocks are disabled and no code accessing the peripheral is executed.  
[4] The supply currents are shown for system clock frequencies of 12 MHz, 48 MHz, and 96 MHz.  
[5] Typical ratings are not guaranteed. Characterized through bench measurements using typical samples.  
10.4 Pin characteristics  
Table 20. Static characteristics: pin characteristics  
Tamb = 40 C to +105 C, unless otherwise specified. 1.62 V VDD 3.6 V unless otherwise specified. Values tested in  
production unless otherwise specified.  
Symbol Parameter  
RESET pin  
Conditions  
Min  
Typ[1] Max  
Unit  
VIH  
VIL  
HIGH-level input voltage  
0.8 VDD  
0.5  
-
-
-
5.0  
V
V
V
LOW-level input voltage  
hysteresis voltage  
0.3 VDD  
[1][14]  
Vhys  
0.05 VDD  
-
Standard I/O pins  
Input characteristics  
IIL  
IIH  
IIH  
VI  
LOW-level input current  
VI = 0 V; on-chip pull-up resistor  
disabled.  
-
-
3.0  
3.0  
3.0  
180  
180  
180  
nA  
nA  
nA  
HIGH-level input current VI = VDD; VDD = 3.6 V; for RESETN  
pin.  
HIGH-level input current VI = VDD; on-chip pull-down resistor  
disabled  
[3]  
input voltage  
pin configured to provide a digital  
function;  
VDD 1.8 V  
0
-
-
-
-
-
-
-
5.0  
3.6  
5.0  
5.0  
+0.4  
+0.8  
-
V
V
V
V
V
V
V
VDD = 0 V  
0
VIH  
VIL  
HIGH-level input voltage 1.62 V VDD < 2.7 V  
2.7 V VDD 3.6 V  
1.5  
2.0  
LOW-level input voltage 1.62 V VDD < 2.7 V  
2.7 V VDD 3.6 V  
0.5  
0.5  
0.1 VDD  
[14]  
Vhys  
hysteresis voltage  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
50 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 20. Static characteristics: pin characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified. 1.62 V VDD 3.6 V unless otherwise specified. Values tested in  
production unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ[1] Max  
Unit  
Output characteristics  
VO  
IOZ  
output voltage  
output active  
0
-
-
VDD  
180  
V
OFF-state output current VO = 0 V; VO = VDD; on-chip  
pull-up/pull-down resistors disabled  
3
nA  
VOH  
VOL  
IOH  
HIGH-level output voltage IOH = 4 mA; 1.62 V VDD < 2.7 V  
IOH = 6 mA; 2.7 V VDD 3.6 V  
VDD 0.4  
-
-
V
VDD 0.4  
LOW-level output voltage IOL = 4 mA; 1.62 V VDD < 2.7 V  
IOL = 6 mA; 2.7 V VDD 3.6 V  
-
-
-
-
0.4  
0.4  
-
V
-
V
HIGH-level output current VOH = VDD 0.4 V;  
1.62 V VDD < 2.7 V  
4.0  
mA  
VOH = VDD 0.4 V;  
2.7 V VDD 3.6 V  
6.0  
-
-
mA  
IOL  
LOW-level output current VOL = 0.4 V; 1.62 V VDD < 2.7 V  
VOL = 0.4 V; 2.7 V VDD 3.6 V  
4.0  
6.0  
-
-
-
-
-
mA  
mA  
mA  
-
[2][4]  
[2][4]  
IOHS  
HIGH-level short-circuit  
output current  
1.62 V VDD < 2.7 V  
2.7 V VDD 3.6 V  
1.62 V VDD < 2.7 V  
2.7 V VDD 3.6 V  
35  
drive HIGH; connected to  
ground;  
-
-
-
-
-
-
87  
30  
77  
mA  
mA  
mA  
IOLS  
LOW-level short-circuit  
output current  
drive LOW; connected to  
VDD  
Weak input pull-up/pull-down characteristics  
Ipd  
pull-down current  
VI = VDD  
25  
80  
25  
6
80  
A  
A  
A  
A  
[2]  
VI = 5 V  
100  
80  
30  
Ipu  
pull-up current  
VI = 0 V  
[2][7]  
VDD < VI < 5 V  
Open-drain I2C pins  
VIH  
HIGH-level input voltage  
1.62 V VDD < 2.7 V  
2.7 V VDD 3.6 V  
1.62 V VDD < 2.7 V  
2.7 V VDD 3.6 V  
0.7 VDD  
-
-
V
0.7 VDD  
-
-
V
VIL  
LOW-level input voltage  
0
-
0.3 VDD  
V
0
-
0.3 VDD  
V
Vhys  
ILI  
hysteresis voltage  
0.1 VDD  
-
-
V
[5]  
input leakage current  
VI = VDD  
VI = 5 V  
-
2.5  
5.5  
-
3.5  
10  
-
A  
A  
mA  
-
IOL  
LOW-level output  
current  
VOL = 0.4 V; pin configured for  
standard mode or fast mode  
4.0  
VOL = 0.4V; pin configured for  
20  
-
-
mA  
Fast-mode Plus  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
51 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 20. Static characteristics: pin characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified. 1.62 V VDD 3.6 V unless otherwise specified. Values tested in  
production unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ[1] Max  
Unit  
USB_DM and USB_DP pins  
VI  
input voltage  
0
-
-
-
-
-
-
-
-
VDD  
-
V
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
hysteresis voltage  
2.0  
-
V
0.8  
-
V
Vhys  
Zout  
VOH  
VOL  
IOH  
0.4  
33.0  
2.8  
-
V
[11]  
[12]  
output impedance  
44  
-
HIGH-level output voltage  
LOW-level output voltage  
V
[13]  
0.3  
74  
9.0  
74  
9.0  
100  
V
[9][10]  
[10][11]  
[9][10]  
[10][11]  
[10]  
HIGH-level output current VOH = VDD 0.3 V  
VOH = VDD 0.3 V  
38  
6.0  
38  
6.0  
-
mA  
mA  
mA  
mA  
mA  
IOL  
LOW-level output current VOL = 0.3 V  
VOL = 0.3 V  
-
IOLS  
IOHS  
LOW-level short-circuit  
output current  
drive LOW; pad connected to  
ground  
-
-
[10]  
HIGH-level short-circuit  
output current  
drive HIGH; pad connected to  
ground  
-
100  
mA  
Pin capacitance  
Cio  
input/output capacitance I2C-bus pins  
[8]  
[6]  
[6]  
-
-
-
-
-
-
6.0  
2.0  
7.0  
pF  
pF  
pF  
pins with digital functions only  
Pins with digital and analog  
functions  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltage.  
[2] Based on characterization. Not tested in production.  
[3] With respect to ground.  
[4] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[5] To VSS  
.
[6] The values specified are simulated and absolute values, including package/bondwire capacitance.  
[7] The weak pull-up resistor is connected to the VDD rail and pulls up the I/O pin to the VDD level.  
[8] The value specified is a simulated value, excluding package/bondwire capacitance.  
[9] Without 33 2 % series external resistor.  
[10] The parameter values specified are simulated and absolute values.  
[11] With 33 2 % series external resistor.  
[12] With 15 K5 % resistor to VSS  
.
[13] With 1.5 K5% resistor to 3.6 V external pull-up.  
[14] Guaranteed by design, not tested in production.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
52 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
V
DD  
I
I
OL  
pd  
+
-
pin PIO0_n  
pin PIO0_n  
A
I
OH  
Ipu  
-
+
A
aaa-010819  
Fig 12. Pin input/output current measurement  
10.4.1 Electrical pin characteristics  
DDDꢀꢁꢅꢆꢈꢁꢄ  
DDDꢀꢁꢅꢆꢈꢅꢁ  
ꢄꢆ  
ꢐꢆ  
ꢂꢆ  
ꢃꢆ  
ꢁꢆ  
ꢀꢆ  
ꢄꢆ  
ꢏꢂꢆ&  
,
,
2/  
ꢋP$ꢌ  
2/  
ꢁꢐ&  
ꢋP$ꢌ  
ꢈꢆ&  
ꢀꢆꢐ&  
ꢏꢂꢆ&  
ꢁꢐ&&  
ꢂꢐ  
ꢃꢆ  
ꢀꢐ  
ꢈꢆ&&  
ꢀꢆ&&  
ꢆꢉꢀ  
ꢆꢉꢁ  
ꢆꢉꢃ  
ꢆꢉꢂ  
ꢆꢉꢐ  
2/  
ꢆꢉꢄ  
ꢆꢉꢀ  
ꢆꢉꢁ  
ꢆꢉꢃ  
ꢆꢉꢂ  
ꢆꢉꢐ  
ꢆꢉꢄ  
9
ꢊꢋ9ꢌ  
9
ꢊꢋ9ꢌ  
2/  
Conditions: VDD = 1.8 V; on pins PIO0_23 to PIO0_26.  
Conditions: VDD = 3.3 V; on pins PIO0_23 to PIO0_26.  
Fig 13. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus LOW-level output voltage  
VOL  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
53 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
DDDꢀꢁꢅꢆꢈꢅꢅ  
DDDꢀꢁꢅꢆꢈꢅꢂ  
ꢀꢁ  
ꢀꢐ  
ꢀꢁ  
ꢏꢂꢆ&  
ꢁꢐ&&  
,
,
2/  
ꢋP$ꢌ  
2/  
ꢋP$ꢌ  
ꢈꢆ&&  
ꢀꢆ  
ꢀꢆ&&  
ꢏꢂꢆ&  
ꢈꢆ&  
ꢁꢐ&  
ꢀꢆꢐ&  
ꢆꢉꢀ  
ꢆꢉꢁ  
ꢆꢉꢃ  
ꢆꢉꢂ  
ꢆꢉꢐ  
ꢆꢉꢄ  
ꢆꢉꢀ  
ꢆꢉꢁ  
ꢆꢉꢃ  
ꢆꢉꢂ  
ꢆꢉꢐ  
ꢆꢉꢄ  
9
2/  
ꢊꢋ9ꢌ  
9
ꢊꢋ9ꢌ  
2/  
Conditions: VDD = 1.8 V; on standard port pins.  
Conditions: VDD = 3.3 V; on standard port pins.  
Fig 14. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
DDDꢀꢁꢅꢆꢈꢅꢈ  
DDDꢀꢁꢅꢆꢈꢅꢉ  
ꢀꢉꢅ  
2+  
ꢃꢉꢐ  
9
2+  
ꢋ9ꢌ  
9
ꢋ9ꢌ  
ꢀꢉꢇ  
ꢀꢉꢄ  
ꢀꢉꢐ  
ꢀꢉꢂ  
ꢀꢉꢃ  
ꢀꢉꢁ  
ꢃꢉꢁ  
ꢁꢉꢈ  
ꢁꢉꢄ  
ꢁꢉꢃ  
ꢏꢂꢆ&  
ꢁꢐ&  
ꢏꢂꢆ&  
ꢁꢐ&&  
ꢈꢆ&&  
ꢈꢆ&  
ꢀꢆꢐ&  
ꢀꢆ&&  
ꢁꢉꢂ  
ꢂꢉꢅ  
ꢇꢉꢁ  
ꢈꢉꢄ  
ꢊꢋP$ꢌ  
ꢀꢁ  
ꢀꢂ  
ꢁꢀ  
ꢁꢅ  
ꢊꢋP$ꢌ  
ꢃꢐ  
,
,
2+  
2+  
Conditions: VDD = 1.8 V; on standard port pins.  
Conditions: VDD = 3.3 V; on standard port pins.  
Fig 15. Typical HIGH-level output voltage VOH versus HIGH-level output source current IOH  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
54 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
DDDꢀꢁꢅꢆꢈꢅꢊ  
DDDꢀꢁꢅꢆꢈꢅꢇ  
ꢂꢆ  
ꢐꢆ  
ꢃꢆ  
ꢀꢆ  
,
,
SX  
ꢋ—$ꢌ  
SX  
ꢋ—$ꢌ  
ꢁꢆ  
ꢏꢀꢆ  
ꢏꢃꢆ  
ꢏꢐꢆ  
ꢏꢇꢆ  
ꢏꢂꢆ&  
ꢁꢐ&  
ꢏꢂꢆ&  
ꢁꢐ&&  
ꢈꢆ&  
ꢈꢆ&&  
ꢏꢁꢆ  
ꢀꢆꢐ&  
ꢀꢆ&&  
ꢏꢂꢆ  
ꢆꢉꢆ  
ꢆꢉꢐ  
ꢀꢉꢆ  
ꢀꢉꢐ  
ꢁꢉꢆ  
ꢁꢉꢐ  
ꢃꢉꢆ  
9 ꢊꢋ9ꢌ  
ꢃꢉꢐ  
ꢆꢉꢆ  
ꢀꢉꢆ  
ꢁꢉꢆ  
ꢃꢉꢆ  
ꢂꢉꢆ  
9 ꢊꢋ9ꢌ  
ꢐꢉꢆ  
,
,
Conditions: VDD = 1.8 V; on standard port pins.  
Conditions: VDD = 3.3 V; on standard port pins.  
Fig 16. Typical pull-up current IPU versus input voltage VI  
DDDꢀꢁꢅꢆꢈꢅꢆ  
DDDꢀꢁꢅꢆꢈꢅꢃ  
ꢇꢆ  
ꢀꢆꢆ  
,
,
SG  
SG  
ꢋ—$ꢌ  
ꢋ—$ꢌ  
ꢐꢄ  
ꢂꢁ  
ꢁꢅ  
ꢀꢂ  
ꢅꢆ  
ꢄꢆ  
ꢂꢆ  
ꢁꢆ  
ꢁꢐ&  
ꢀꢆ&&  
ꢈꢆ&&  
ꢏꢂꢆ&  
ꢈꢆ&  
ꢁꢐ&&  
ꢀꢆꢐ&  
ꢏꢂꢆ&  
ꢆꢉꢆ  
ꢆꢉꢇ  
ꢀꢉꢂ  
ꢁꢉꢀ  
ꢁꢉꢅ  
9 ꢊꢋ9ꢌ  
ꢃꢉꢐ  
9 ꢊꢋ9ꢌ  
,
,
Conditions: VDD = 1.8V; on standard port pins.  
Conditions: VDD = 3.3 V; on standard port pins.  
Fig 17. Typical pull-down current IPD versus input voltage VI  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
55 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11. Dynamic characteristics  
11.1 Flash memory  
Table 21. Flash characteristics  
Tamb = 40 C to +105 C, unless otherwise specified. 1.62 V VDD 3.6 V unless otherwise  
specified.  
Symbol Parameter  
Nendu endurance  
Conditions  
Min  
Typ[1]  
Max  
Unit  
[2]  
sector erase/program  
10000  
1000  
-
-
-
-
cycles  
cycles  
page erase/program; page  
in a sector  
tret  
retention time powered  
unpowered  
10  
10  
-
-
-
-
-
years  
years  
ms  
-
ter  
erase time  
page, sector, or multiple  
consecutive sectors  
100  
[3]  
tprog  
programming  
time  
-
1
-
ms  
[1] Typical ratings are not guaranteed.  
[2] Number of erase/program cycles.  
[3] Programming times are given for writing 256 bytes from RAM to the flash.  
11.2 I/O pins  
Table 22. Dynamic characteristic: I/O pins[1]  
Tamb = 40 C to +85 C unless otherwise specified; 1.62 V VDD 3.6 V unless otherwise  
specified.  
Symbol Parameter Conditions  
Min  
Typ Max Unit  
Standard I/O pins - normal drive strength  
[2][3]  
[2][3]  
[2][3]  
[2][3]  
tr  
tf  
tr  
tf  
rise time  
fall time  
rise time  
fall time  
pin configured as output; SLEW = 1 (fast  
mode);  
2.7 V VDD 3.6 V  
1.0  
1.6  
-
-
2.5  
3.8  
ns  
ns  
1.62 V VDD 1.98 V  
pin configured as output; SLEW = 1 (fast  
mode);  
2.7 V VDD 3.6 V  
1.62 V VDD 1.98 V  
0.9  
1.7  
-
-
2.5  
4.1  
ns  
ns  
pin configured as output; SLEW = 0  
(standard mode);  
2.7 V VDD 3.6 V  
1.9  
2.9  
-
-
4.3  
7.8  
ns  
ns  
1.62 V VDD 1.98 V  
pin configured as output; SLEW = 0  
(standard mode);  
2.7 V VDD 3.6 V  
1.62 V VDD 1.98 V  
pin configured as input  
pin configured as input  
1.9  
2.7  
0.3  
0.2  
-
-
-
-
4.0  
6.7  
1.3  
1.2  
ns  
ns  
ns  
ns  
[4]  
[4]  
tr  
tf  
rise time  
fall time  
[1] Simulated data.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
56 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
[2] Simulated using 10 cm of 50 PCB trace with 5 pF receiver input. Rise and fall times measured between  
80 % and 20 % of the full output signal level.  
[3] The slew rate is configured in the IOCON block the SLEW bit. See the LPC51U68 UM11071 user manual.  
[4] CL = 20 pF. Rise and fall times measured between 90 % and 10 % of the full input signal level.  
11.3 Wake-up process  
Table 23. Dynamic characteristic: Typical wake-up times from low power modes  
VDD = 3.3 V;Tamb = 25 C; using FRO as the system clock.  
Symbol Parameter Conditions  
Min Typ[1]  
Max Unit  
[2][3]  
[2][3][5]  
[4][5]  
twake  
wake-up  
time  
from Sleep mode  
-
-
-
2.0  
19  
-
-
-
s  
s  
ms  
from Deep-sleep mode  
from deep power-down mode;  
RTC disabled; using RESET pin.  
1.2  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
[2] The wake-up time measured is the time between when a GPIO input pin is triggered to wake the device up  
from the low power modes and from when a GPIO output pin is set in the interrupt service routine (ISR)  
wake-up handler.  
[3] FRO enabled, all peripherals off. PLL disabled.  
[4] RTC disabled. Wake up from deep power-down causes the part to go through entire reset  
process. The wake-up time measured is the time between when the RESET pin is triggered to wake the  
device up and when a GPIO output pin is set in the reset handler.  
[5] FRO disabled.  
11.4 System PLL  
Table 24. PLL lock times and current  
Tamb = 40 C to +105 C. VDD = 1.62 V to 3.6 V.  
Symbol  
Parameter  
Conditions  
Min Typ Max  
Unit  
PLL configuration: input frequency 12 MHz; output frequency 75 MHz  
[2]  
tlock(PLL)  
IDD(PLL)  
PLL lock time  
PLL current  
PLL set-up procedure followed  
when locked  
-
-
-
-
400  
550  
s  
[1][3]  
A  
PLL configuration: input frequency 12 MHz; output frequency 100 MHz  
[2]  
tlock(PLL)  
IDD(PLL)  
PLL lock time  
PLL current  
PLL set-up procedure followed  
when locked  
-
-
-
-
400  
750  
s  
[1][3]  
A  
PLL configuration: input frequency 32.768 kHz; output frequency 75 MHz  
[1]  
tlock(PLL)  
IDD(PLL)  
PLL lock time  
PLL current  
-
-
-
-
-
6250  
450  
s  
[1][3]  
when locked  
A  
PLL configuration: input frequency 32.768 kHz; output frequency 100 MHz  
[1]  
tlock(PLL)  
IDD(PLL)  
PLL lock time  
PLL current  
-
-
-
-
-
6250  
560  
s  
[1][3]  
when locked  
A  
[1] Data based on characterization results, not tested in production.  
[2] PLL set-up requires high-speed start-up and transition to normal mode. Lock times are only valid when  
high-speed start-up settings are applied followed by normal mode settings. The procedure for setting up the  
PLL is described in the LPC51U68 user manual.  
[3] PLL current measured using lowest CCO frequency to obtain the desired output frequency.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
57 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 25. Dynamic characteristics of the PLL[1]  
Tamb = 40 C to +105 C. VDD = 1.62 V to 3.6 V.  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
Reference clock input  
Fin  
input frequency  
-
32.768 kHz  
-
25 MHz  
-
Clock output  
[2]  
[3]  
fo  
output frequency  
output duty cycle  
CCO frequency  
for PLL clkout output  
1.2  
46  
-
-
-
-
150  
54  
MHz  
%
do  
for PLL clkout output  
-
fCCO  
150  
MHz  
Lock detector output  
lock(PFD) PFD lock criterion  
-
1
2
4
ns  
Dynamic parameters at fout = fCCO = 100 MHz; standard bandwidth settings  
[4][5]  
Jrms-interval  
Jpp-period  
RMS interval jitter  
fref = 10 MHz  
-
-
15  
40  
30  
80  
ps  
ps  
[4][5]  
peak-to-peak, period jitter fref = 10 MHz  
[1] Data based on characterization results, not tested in production.  
[2] Excluding under- and overshoot which may occur when the PLL is not in lock.  
[3] A phase difference between the inputs of the PFD (clkref and clkfb) smaller than the PFD lock criterion  
means lock output is HIGH.  
[4] Actual jitter dependent on amplitude and spectrum of substrate noise.  
[5] Input clock coming from a crystal oscillator with less than 250 ps peak-to-peak period jitter.  
11.5 FRO  
The FRO is trimmed to 1 % accuracy over the entire voltage and temperature range.  
Table 26. Dynamic characteristic: FRO  
Tamb = 40 C to +105 C; 1.62 V VDD 3.6 V  
Symbol  
fosc(FRO)  
fosc(FRO)  
fosc(FRO)  
Parameter  
Min[2]  
11.88  
47.52  
95.04  
Typ[1]  
12  
Max[2]  
12.12  
48.48  
96.96  
Unit  
MHz  
MHz  
MHz  
FRO clock frequency  
FRO clock frequency  
FRO clock frequency  
48  
96  
[1] Tested in production.The values listed are at room temperature (25 C).  
[2] Data based on characterization results, not tested in production.  
11.6 RTC oscillator  
See Section 13.5 for connecting the RTC oscillator to an external clock source.  
Table 27. Dynamic characteristic: RTC oscillator  
Tamb = 40 C to +105 C; 1.62 V VDD 3.6 V[1]  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
fi  
input frequency  
-
32.768  
-
kHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
58 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.7 Watchdog oscillator  
Table 28. Dynamic characteristics: Watchdog oscillator  
amb = 40 C to +105 C; 1.62 V VDD 3.6 V  
T
Symbol  
Parameter  
Min  
Typ[1]  
Max  
Unit  
[2]  
fosc(int)  
internal watchdog oscillator  
frequency  
6
-
1500  
kHz  
Dclkout  
JPP-CC  
tstart  
clkout duty cycle  
peak-peak period jitter  
start-up time  
48  
-
-
52  
20  
-
%
[3][4]  
[4]  
1
4
ns  
s  
-
[1] Typical ratings are not guaranteed. The values listed are at nominal supply voltages.  
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +105 C) is 40 %.  
[3] Actual jitter dependent on amplitude and spectrum of substrate noise.  
[4] Guaranteed by design. Not tested in production samples.  
11.8 I2C-bus  
Table 29. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +105 C; 1.62 V VDD 3.6 V[2]  
Symbol Parameter  
fSCL SCL clock frequency  
Conditions  
Min  
Max  
100  
400  
1
Unit  
kHz  
kHz  
MHz  
ns  
Standard-mode  
Fast-mode  
0
0
0
-
Fast-mode Plus  
of both SDA and SCL signals  
Standard-mode  
Fast-mode  
[4][5][6][7]  
tf  
fall time  
300  
20 + 0.1 Cb  
300  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
Fast-mode Plus  
Standard-mode  
Fast-mode  
-
120  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
0
-
-
-
-
-
-
-
-
-
-
-
-
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
Fast-mode Plus  
Standard-mode  
Fast-mode  
[3][4][8]  
[9][10]  
tHD;DAT data hold time  
tSU;DAT data set-up time  
0
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
250  
100  
50  
Fast-mode Plus  
[1] Guaranteed by design. Not tested in production.  
[2] Parameters are valid over operating temperature range unless otherwise specified. See the I2C-bus specification UM10204 for details.  
[3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.  
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to  
bridge the undefined region of the falling edge of SCL.  
[5] Cb = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
59 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at  
250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines  
without exceeding the maximum specified tf.  
[7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should  
allow for this when considering bus timing.  
[8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or  
t
VD;ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If  
the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.  
[9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the  
acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met.  
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the  
LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.  
t
t
SU;DAT  
f
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
002aaf425  
Fig 18. I2C-bus pins clock timing  
11.9 I2S-bus interface  
Table 30. Dynamic characteristics: I2S-bus interface pins [1][4]  
Tamb = 40 C to 105 C; VDD = 1.62 V to 3.6 V; CL = 30 pF balanced loading on all pins; Input slew = 1.0 ns, SLEW setting =  
standard mode for all pins; Parameters sampled at the 90 % and 10 % level of the rising or falling edge.  
Symbol Parameter  
Conditions  
Min  
Typ[3] Max  
Unit  
Common to master and slave  
tWH  
pulse width HIGH  
pulse width LOW  
on pins I2Sx_TX_SCK and I2Sx_RX_SCK[5]  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
(Tcyc/2)-1 -  
(Tcyc/2) +1 ns  
(Tcyc/2)-1 -  
(Tcyc/2)-1 -  
(Tcyc/2) +1 ns  
(Tcyc/2) +1 ns  
tWL  
on pins I2Sx_TX_SCK and I2Sx_RX_SCK[5]  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
(Tcyc/2)-1 -  
(Tcyc/2) +1 ns  
(Tcyc/2) +1 ns  
(Tcyc/2) +1 ns  
(Tcyc/2)-1 -  
(Tcyc/2)-1 -  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
60 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 30. Dynamic characteristics: I2S-bus interface pins [1][4]  
Tamb = 40 C to 105 C; VDD = 1.62 V to 3.6 V; CL = 30 pF balanced loading on all pins; Input slew = 1.0 ns, SLEW setting =  
standard mode for all pins; Parameters sampled at the 90 % and 10 % level of the rising or falling edge.  
Symbol Parameter  
Conditions  
Min  
Typ[3] Max  
Unit  
Master; 1.62 V VDD 2.0 V  
[2]  
tv(Q)  
data output valid time on pin I2Sx_TX_SDA  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
32.7  
29.9  
29.0  
-
-
-
56.6  
48.9  
47.2  
ns  
ns  
ns  
on pin I2Sx_WS  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
35.1  
31.9  
31.0  
-
-
-
61.1  
51.8  
49.7  
ns  
ns  
ns  
[2]  
[2]  
tsu(D)  
data input set-up time on pin I2Sx_RX_SDA  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0.0  
0.0  
0.0  
-
-
-
-
-
-
ns  
ns  
ns  
th(D)  
data input hold time  
on pin I2Sx_RX_SDA  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0.0  
0.0  
0.0  
-
-
-
-
-
-
ns  
ns  
ns  
Slave; 1.62 V VDD 2.0 V  
[2]  
[2]  
tv(Q)  
data output valid time on pin I2Sx_TX_SDA  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
25.8  
23.0  
22.2  
-
-
-
47.0  
38.9  
37.1  
ns  
ns  
ns  
tsu(D)  
data input set-up time on pin I2Sx_RX_SDA  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0.0  
0.0  
0.0  
-
-
-
-
-
-
ns  
ns  
ns  
on pin I2Sx_RX_WS  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0.0  
0.0  
0.0  
-
-
-
-
-
-
ns  
ns  
ns  
[2]  
th(D)  
data input hold time  
on pin I2Sx_RX_SDA  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
1.0  
1.0  
1.0  
-
-
-
-
-
-
ns  
ns  
ns  
on pin I2Sx_RX_WS  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
2.0  
2.0  
2.0  
-
-
-
-
-
-
ns  
ns  
ns  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
61 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 30. Dynamic characteristics: I2S-bus interface pins [1][4]  
Tamb = 40 C to 105 C; VDD = 1.62 V to 3.6 V; CL = 30 pF balanced loading on all pins; Input slew = 1.0 ns, SLEW setting =  
standard mode for all pins; Parameters sampled at the 90 % and 10 % level of the rising or falling edge.  
Symbol Parameter  
Conditions  
Min  
Typ[3] Max  
Unit  
Master; 2.7 V VDD 3.6 V  
[2]  
tv(Q)  
data output valid time on pin I2Sx_TX_SDA  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
24.2  
22.0  
21.3  
-
-
-
40.8  
32.2  
30.3  
ns  
ns  
ns  
on pin I2Sx_WS  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
24.9  
22.6  
21.8  
-
-
-
44.3  
34.0  
31.7  
ns  
ns  
ns  
[2]  
[2]  
tsu(D)  
data input set-up time on pin I2Sx_RX_SDA  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0.0  
0.0  
0.0  
-
-
-
-
-
-
ns  
ns  
ns  
th(D)  
data input hold time  
on pin I2Sx_RX_SDA  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
1.7  
1.4  
1.2  
-
-
-
-
-
-
ns  
ns  
ns  
Slave; 2.7 V VDD 3.6 V  
[2]  
[2]  
tv(Q)  
data output valid time on pin I2Sx_TX_SDA  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
17.4  
15.2  
14.5  
-
-
-
33.8  
25.1  
23.0  
ns  
ns  
ns  
tsu(D)  
data input set-up time on pin I2Sx_RX_SDA  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0.0  
0.0  
0.0  
-
-
-
-
-
-
ns  
ns  
ns  
on pin I2Sx_RX_WS  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0.0  
0.0  
0.0  
-
-
-
-
-
-
ns  
ns  
ns  
[2]  
th(D)  
data input hold time  
on pin I2Sx_RX_SDA  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0.0  
0.0  
0.0  
-
-
-
-
-
-
ns  
ns  
ns  
on pin I2Sx_RX_WS  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
1.0  
1.0  
1.0  
-
-
-
-
-
-
ns  
ns  
ns  
[1] Based on characterization; not tested in production.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
62 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
[2] Clock Divider register (DIV) = 0x0.  
[3] Typical ratings are not guaranteed.  
[4] The Flexcomm Interface function clock frequency should not be above 48 MHz. See the data rates section  
in the I2S chapter (UM10912) to calculate clock and sample rates.  
[5] Based on simulation. Not tested in production.  
T
t
f
t
r
cy(clk)  
I2Sx_SCK  
t
t
WL  
WH  
I2Sx_TX_SDA  
t
v(Q)  
I2Sx_RX_SDA  
I2Sx_WS  
t
t
h(D)  
su(D)  
t
aaa-026799  
v(Q)  
Fig 19. I2S-bus timing (master)  
T
t
f
t
r
cy(clk)  
I2Sx_SCK  
t
t
WL  
WH  
I2Sx_TX_SDA  
t
v(Q)  
I2Sx_RX_SDA  
I2Sx_WS  
t
su(D)  
t
h(D)  
t
t
h(D)  
su(D)  
aaa-026800  
Fig 20. I2S-bus timing (slave)  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
63 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.10 SPI interfaces  
The actual SPI bit rate depends on the delays introduced by the external trace, the  
external device, system clock (CCLK), and capacitive loading. Excluding delays  
introduced by external device and PCB, the maximum supported bit rate for SPI master  
mode is 71 Mbit/s, and the maximum supported bit rate for SPI slave mode is 15 Mbit/s.  
Table 31. SPI dynamic characteristics[1]  
Tamb = 40 C to 105 C; VDD = 1.62 V to 3.6 V; CL = 30 pF balanced loading on all pins; Input slew = 1 ns, SLEW set to  
standard mode for all pins; Parameters sampled at the 90 % and 10 % level of the rising or falling edge.  
Symbol  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
SPI master 1.62 V VDD 2.0 V  
tDS  
data set-up time  
data hold time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0
0
0
7
7
7
0
0
0
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
tDH  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
-
-
-
tv(Q)  
data output valid time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
5
3
2
SPI slave 1.62 V VDD 2.0 V  
tDS  
data set-up time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
1
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
-
1
-
tDH  
data hold time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
2
-
3
-
3
-
tv(Q)  
data output valid time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
30  
23  
21  
58  
48  
45  
SPI master 2.7 V VDD 3.6 V  
tDS  
data set-up time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
3
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
-
4
-
tDH  
data hold time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
11  
11  
10  
0
-
-
-
tv(Q)  
data output valid time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
5
3
3
0
0
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
64 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 31. SPI dynamic characteristics[1]  
Tamb = 40 C to 105 C; VDD = 1.62 V to 3.6 V; CL = 30 pF balanced loading on all pins; Input slew = 1 ns, SLEW set to  
standard mode for all pins; Parameters sampled at the 90 % and 10 % level of the rising or falling edge.  
Symbol  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
SPI slave 2.7 V VDD 3.6 V  
tDS  
data set-up time  
data hold time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
2
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
-
1
-
tDH  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
1
-
1
-
1
-
tv(Q)  
data output valid time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
20  
15  
13  
44  
32  
30  
[1] Based on characterization; not tested in production.  
[2] Typical ratings are not guaranteed.  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
SSEL  
MOSI (CPHA = 0)  
MISO (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MOSI (CPHA = 1)  
MISO (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
IDLE  
IDLE  
DATA VALID (LSB)  
DATA VALID  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
aaa-014969  
Fig 21. SPI master timing  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
65 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
SSEL  
MISO (CPHA = 0)  
MOSI (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MISO (CPHA = 1)  
MOSI (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
IDLE  
IDLE  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
aaa-014970  
Fig 22. SPI slave timing  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
66 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.11 USART interface  
The actual USART bit rate depends on the delays introduced by the external trace, the  
external device, system clock (CCLK), and capacitive loading. Excluding delays  
introduced by external device and PCB, the maximum supported bit rate for USART  
master synchronous mode is 20 Mbit/s, and the maximum supported bit rate for USART  
slave synchronous mode is 16 Mbit/s  
Table 32. USART dynamic characteristics[1]  
Tamb = 40 C to 105 C; VDD = 1.62 V to 3.6 V; CL = 30 pF balanced loading on all pins; Input slew = 1 ns, SLEW set to  
standard mode for all pins; Parameters sampled at the 90 % and 10 % level of the rising or falling edge.  
Symbol Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
USART master (in synchronous mode) 1.62 V VDD 2.0 V  
tsu(D)  
th(D)  
tv(Q)  
data input set-up time CCLK = 1 MHz to 12 MHz  
45  
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK = 48 MHz to 60 MHz 39  
-
CCLK = 96 MHz  
38  
0
-
data input hold time  
data output valid time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
-
0
-
0
-
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
2
9
5
4
1
1
USART slave (in synchronous mode) 1.62 V VDD 2.0 V  
tsu(D)  
th(D)  
tv(Q)  
data input set-up time CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
1
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
-
CCLK = 96 MHz  
1
-
data input hold time  
data output valid time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
2
-
3
-
3
-
CCLK = 1 MHz to 12 MHz  
30  
55  
46  
46  
CCLK = 48 MHz to 60 MHz 23  
CCLK = 96 MHz  
USART master (in synchronous mode) 2.7 V VDD 3.6 V  
22  
tsu(D)  
th(D)  
tv(Q)  
data input set-up time CCLK = 1 MHz to 12 MHz  
35  
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK = 48 MHz to 60 MHz 27  
-
CCLK = 96 MHz  
25  
0
-
data input hold time  
data output valid time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
-
0
-
0
-
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
2
9
5
4
2
1
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
67 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 32. USART dynamic characteristics[1]  
Tamb = 40 C to 105 C; VDD = 1.62 V to 3.6 V; CL = 30 pF balanced loading on all pins; Input slew = 1 ns, SLEW set to  
standard mode for all pins; Parameters sampled at the 90 % and 10 % level of the rising or falling edge.  
Symbol Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
USART slave (in synchronous mode) 2.7 V VDD 3.6 V  
tsu(D)  
th(D)  
tv(Q)  
data input set-up time CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
2
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
-
CCLK = 96 MHz  
1
-
data input hold time  
data output valid time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
2
-
1
-
1
-
CCLK = 1 MHz to 12 MHz  
19  
42  
31  
28  
CCLK = 48 MHz to 60 MHz 14  
CCLK = 96 MHz 13  
[1] Based on characterization; not tested in production.  
[2] Typical ratings are not guaranteed.  
T
cy(clk)  
Un_SCLK (CLKPOL = 0)  
Un_SCLK (CLKPOL = 1)  
TXD  
t
t
vQ)  
v(Q)  
START  
BIT0  
BIT1  
t
t
su(D) h(D)  
BIT1  
START  
BIT0  
RXD  
aaa-015074  
Fig 23. USART timing  
11.12 SCTimer/PWM output timing  
Table 33. SCTimer/PWM output dynamic characteristics  
amb = 40 C to 105 C; 1.62 V VDD 3.6 V CL = 30 pF. Simulated skew (over process, voltage,  
T
and temperature) of any two SCT fixed-pin output signals; sampled at 10 % and 90 % of the signal  
level; values guaranteed by design.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tsk(o)  
output skew time  
-
-
-
2.7  
ns  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
68 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.13 USB interface characteristics  
Table 34. Dynamic characteristics: USB pins (Full-Speed)  
CL = 50 pF; Rpu = 1.5 kon D+ to VDD, unless otherwise specified; 3.0 V VDD 3.6 V.  
Symbol  
Parameter  
rise time  
fall time  
Conditions  
10 % to 90 %  
10 % to 90 %  
tr / tf  
Min  
4.0  
4.0  
90  
Typ  
Max  
20  
Unit  
ns  
tr  
-
-
-
tf  
20  
ns  
tFRFM  
differential rise and fall time match-  
ing  
111.11  
%
VCRS  
output signal crossover voltage  
source SE0 interval of EOP  
1.3  
160  
2  
-
-
-
2.0  
175  
+5  
V
tFEOPT  
tFDEOP  
see Figure 26  
ns  
ns  
source jitter for differential transition see Figure 26  
to SE0 transition  
tJR1  
receiver jitter to next transition  
18.5  
9  
-
-
-
+18.5  
+9  
ns  
ns  
ns  
tJR2  
receiver jitter for paired transitions  
EOP width at receiver  
10 % to 90 %  
[1]  
[1]  
tEOPR1  
must reject as  
EOP; see  
Figure 26  
40  
tEOPR2  
EOP width at receiver  
must accept as  
EOP; see  
82  
-
-
ns  
Figure 26  
[1] Characterized but not implemented as production test. Guaranteed by design.  
T
PERIOD  
crossover point  
extended  
crossover point  
differential  
data lines  
source EOP width: t  
FEOPT  
differential data to  
SE0/EOP skew  
n × T  
+ t  
PERIOD  
FDEOP  
receiver EOP width: t  
, t  
EOPR1 EOPR2  
002aab561  
Fig 24. Differential data-to-EOP transition skew and EOP width  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
69 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
12. Analog characteristics  
12.1 BOD  
Table 35. BOD static characteristics  
Tamb = 25 C; based on characterization; not tested in production.  
Symbol  
Parameter  
Conditions  
interrupt level 0  
assertion  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage  
-
-
1.97  
2.11  
-
-
V
V
de-assertion  
interrupt level 1  
assertion  
Vth  
Vth  
Vth  
threshold voltage  
threshold voltage  
threshold voltage  
-
-
2.36  
2.51  
-
-
V
V
de-assertion  
reset level 1  
assertion  
-
-
1.77  
1.92  
-
-
V
V
de-assertion  
interrupt level 2  
assertion  
-
-
2.66  
2.80  
-
-
V
V
de-assertion  
reset level 2  
assertion  
-
-
1.92  
2.06  
-
-
V
V
de-assertion  
interrupt level 3  
assertion  
-
-
2.95  
3.09  
-
-
V
V
de-assertion  
reset level 3  
assertion  
-
-
2.21  
2.36  
-
-
V
V
de-assertion  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
70 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
12.2 12-bit ADC characteristics  
Table 36. 12-bit ADC static characteristics  
amb = 40 C to +105 C; 1.62 V VDD 3.6 V; VSSA = VREFN = GND. ADC calibrated at Tamb = 25C.  
T
Symbol  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
[3]  
[4]  
VIA  
analog input  
voltage  
0
-
-
VDDA  
V
Cia  
analog input  
capacitance  
5
-
pF  
fclk(ADC)  
fs  
ADC clock  
frequency  
-
80  
5.0  
-
MHz  
sampling  
frequency  
-
-
-
Msamples/s  
LSB  
[1][5]  
[1][5]  
ED  
differential linearity 1.62 V VDDA 3.6 V  
error  
3.0  
1.62 V VREFP 3.6 V  
fclk(ADC) = 72 MHz  
2.0 V VDDA 3.6 V  
2.0 V VREFP 3.6 V  
fclk(ADC) = 80 MHz  
-
3.0  
-
LSB  
[1][5]  
[1][6]  
VDDA = VREFP = 1.62 V  
fclk(ADC) = 80 MHz  
-
-
7.1  
5.0  
-
-
LSB  
LSB  
EL(adj)  
integral  
non-linearity  
1.62 V VDDA 3.6 V  
1.62 V VREFP 3.6 V  
fclk(ADC) 72 MHz  
[1][6]  
[1][6]  
2.0 V VDDA 3.6 V  
2.0 V VREFP 3.6 V  
fclk(ADC) = 80 MHz  
-
-
4.0  
9.0  
-
LSB  
LSB  
VDDA = VREFP = 1.62 V  
-
-
fclk(ADC) = 80 MHz  
[1][7]  
[1][8]  
EO  
offset error  
calibration enabled  
-
-
1.2  
3.5  
mV  
Verr(FS)  
full-scale error  
voltage  
1.62 V VDDA 2.0 V  
LSB  
1.62 V VREFP 2.0 V  
2.0 V VDDA 3.6 V  
-
2.0  
LSB  
2.0 V VREFP 3.6 V  
[9][10]  
Zi  
input impedance  
fs = 5.0 Msamples/s  
17.0  
-
-
k  
[1] Based on characterization; not tested in production.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
[3] The input resistance of ADC channels 6 to 11 is higher than ADC channels 0 to 5.  
[4] Cia represents the external capacitance on the analog input channel for sampling speeds of  
5.0 Msamples/s. No parasitic capacitances included.  
[5] The differential linearity error (ED) is the difference between the actual step width and the ideal step width.  
See Figure 25.  
[6] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and  
the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 25.  
[7] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the  
straight line which fits the ideal curve. See Figure 25.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
71 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
[8] The full-scale error voltage or gain error (EG) is the difference between the straight-line fitting the actual  
transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See  
Figure 25.  
[9] Tamb = 25 C; maximum sampling frequency fs = 5.0 Msamples/s and analog input capacitance Cia = 5 pF.  
[10] Input impedance Zi is inversely proportional to the sampling frequency and the total input capacity including  
Cia and Cio: Zi 1 / (fs Ci). See Table 20 for Cio. See Figure 26.  
offset  
error  
O
gain  
error  
E
E
G
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
4090 4091 4092 4093 4094 4095 4096  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
offset error  
E
O
VREFP - VREFN  
1 LSB =  
4096  
aaa-016908  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 25. 12-bit ADC characteristics  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
72 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 37. ADC sampling times [1]  
Tamb = -40 C to 85 C; 1.62 V VDDA 3.6 V; 1.62 V VDD 3.6 V  
Symbol Parameter Conditions Min  
Typ Max Unit  
ADC inputs ADC_5 to ADC_0 (fast channels); ADC resolution = 12 bit  
[3]  
ts  
sampling time  
Zo < 0.05 k  
20  
23  
26  
31  
47  
75  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kZo < 0.1 kΩ  
0.1 kZo < 0.2 kΩ  
0.2 kZo < 0.5 kΩ  
0.5 kZo < 1 kΩ  
1 kZo < 5 kΩ  
ADC inputs ADC_5 to ADC_0 (fast channels); ADC resolution = 10 bit  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
15  
18  
20  
24  
38  
62  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kZo < 0.1 kΩ  
0.1 kZo < 0.2 kΩ  
0.2 kZo < 0.5 kΩ  
0.5 kZo < 1 kΩ  
1 kZo < 5 kΩ  
ADC inputs ADC_5 to ADC_0 (fast channels); ADC resolution = 8 bit  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
12  
13  
15  
19  
30  
48  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kZo < 0.1 kΩ  
0.1 kZo < 0.2 kΩ  
0.2 kZo < 0.5 kΩ  
0.5 kZo < 1 kΩ  
1 kZo < 5 kΩ  
ADC inputs ADC_5 to ADC_0 (fast channels); ADC resolution = 6 bit  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
9
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kZo < 0.1 kΩ  
0.1 kZo < 0.2 kΩ  
0.2 kZo < 0.5 kΩ  
0.5 kZo < 1 kΩ  
1 kZo < 5 kΩ  
10  
11  
13  
22  
36  
ADC inputs ADC_11 to ADC_6 (slow channels); ADC resolution = 12 bit  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
43  
46  
50  
56  
74  
105  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kZo < 0.1 kΩ  
0.1 kZo < 0.2 kΩ  
0.2 kZo < 0.5 kΩ  
0.5 kZo < 1 kΩ  
1 kZo < 5 kΩ  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
73 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
[1]  
Table 37. ADC sampling times …continued  
Tamb = -40 C to 85 C; 1.62 V VDDA 3.6 V; 1.62 V VDD 3.6 V  
Symbol Parameter Conditions Min  
Typ Max Unit  
ADC inputs ADC_11 to ADC_6 (slow channels); ADC resolution = 10 bit  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
35  
38  
40  
46  
61  
86  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kZo < 0.1 kΩ  
0.1 kZo < 0.2 kΩ  
0.2 kZo < 0.5 kΩ  
0.5 kZo < 1 kΩ  
1 kZo < 5 kΩ  
ADC inputs ADC_11 to ADC_6 (slow channels); ADC resolution = 8 bit  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
27  
29  
32  
36  
48  
69  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kZo < 0.1 kΩ  
0.1 kZo < 0.2 kΩ  
0.2 kZo < 0.5 kΩ  
0.5 kZo < 1 kΩ  
1 kZo < 5 kΩ  
ADC inputs ADC_11 to ADC_6 (slow channels); ADC resolution = 6 bit  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
20  
22  
23  
26  
36  
51  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kZo < 0.1 kΩ  
0.1 kZo < 0.2 kΩ  
0.2 kZo < 0.5 kΩ  
0.5 kZo < 1 kΩ  
1 kZo < 5 kΩ  
[1] Characterized through simulation. Not tested in production.  
[2] The ADC default sampling time is 2.5 ADC clock cycles. To match a given analog source output  
impedance, the sampling time can be extended by adding up to seven ADC clock cycles for a maximum  
sampling time of 9.5 ADC clock cycles. See the TSAMP bits in the ADC CTRL register.  
[3] Zo = analog source output impedance.  
12.2.1 ADC input impedance  
Figure 26 shows the ADC input impedance. In this figure:  
ADCx represents slow ADC input channels 6 to 11.  
ADCy represents fast ADC input channels 0 to 5.  
R1 and Rsw are the switch-on resistance on the ADC input channel.  
If fast channels (ADC inputs 0 to 5) are selected, the ADC input signal goes through  
R
sw to the sampling capacitor (Cia).  
If slow channels (ADC inputs 6 to 11) are selected, the ADC input signal goes through  
R1 + Rsw to the sampling capacitor (Cia).  
Typical values, R1 = 487 , Rsw = 278   
See Table 20 for Cio.  
See Table 36 for Cia.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
74 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
ADC  
R
1
ADCx  
ADCy  
C
io  
C
ia  
R
sw  
DAC  
C
io  
aaa-017600  
Fig 26. ADC input impedance  
12.3 Temperature sensor  
Table 38. Temperature sensor static and dynamic characteristics  
VDD = VDDA = 1.62 V to 3.6 V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[2]  
DTsen  
sensor  
temperature  
accuracy  
Tamb = 40 C to +105 C  
-
-
3
C  
EL  
linearity error  
Tamb = 40 C to +105 C  
-
-
-
3
C  
s  
ts(pu)  
power-up  
settling time  
to 99% of temperature  
sensor output value  
10  
15  
[1] Absolute temperature accuracy.  
[2] Based on simulation.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
75 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 39. Temperature sensor Linear-Least-Square (LLS) fit parameters  
DD = VDDA = 1.62 V to 3.6 V  
V
Fit parameter  
LLS slope  
Range  
Min  
Typ  
-2.0  
590.0  
-
Max  
Unit  
mV/C  
mV  
[1]  
[1]  
[2]  
Tamb = 40 C to +105 C  
-
-
LLS intercept at 0 C  
Value at 30 C  
T
amb = 40 C to +105 C  
-
-
521.0  
540.0  
mV  
[1] Measured over typical samples.  
[2] Measured for samples over process corners.  
DDDꢀꢁꢂꢉꢁꢁꢄ  
ꢅꢆꢆ  
9
R
ꢋP9ꢌ  
//66ILW  
ꢄꢆꢆ  
ꢂꢆꢆ  
ꢁꢆꢆ  
ꢏꢂꢆ  
ꢏꢀꢆ  
ꢁꢆ  
ꢐꢆ  
ꢅꢆ  
7HPSHUDWXUHꢊꢋƒꢊ&ꢌ  
ꢀꢀꢆ  
VDD = VDDA 3.3 V; measured on matrix samples.  
Fig 27. LLS fit of the temperature sensor output voltage  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
76 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
13. Application information  
13.1 Start-up behavior  
Figure 30 shows the start-up timing after reset. The FRO 12 MHz oscillator provides the  
default clock at Reset and provides a clean system clock shortly after the supply pins  
reach operating voltage.  
FRO  
starts  
FRO status  
internal reset  
V
DD  
valid threshold  
= 1.62 V  
t
a
μs  
t μs  
b
GND  
boot time  
supply ramp-up  
time  
user code  
t
c
μs  
processor status  
boot code  
execution  
finishes;  
user code starts  
aaa-023995  
Fig 28. Start-up timing  
Table 40. Typical start-up timing parameters  
Parameter Description  
Value  
20 s  
151 s  
931 s  
904  
ta  
tb  
tc  
FRO start time  
Internal reset de-asserted  
Legacy image  
Single image without CRC  
Dual image without CRC  
952  
13.2 Standard I/O pin configuration  
Figure 29 shows the possible pin modes for standard I/O pins:  
Digital output driver: enabled/disabled.  
Digital input: Pull-up enabled/disabled.  
Digital input: Pull-down enabled/disabled.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
77 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Digital input: Repeater mode enabled/disabled.  
Z mode; High impedance (no cross-bar currents for floating inputs).  
The default configuration for standard I/O pins is Z mode. The weak MOS devices provide  
a drive capability equivalent to pull-up and pull-down resistors.  
V
V
DD  
DD  
open-drain enable  
output enable  
data output  
strong  
pull-up  
ESD  
pin configured  
as digital output  
PIN  
strong  
pull-down  
ESD  
V
DD  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater  
mode enable  
pin configured  
as digital input  
pull-down enable  
digital  
input  
glitch filter  
enable  
input invert  
enable  
filter  
enable  
analog input  
pin configured  
as analog input  
analog  
input  
aaa-017273  
The glitch filter rejects pulses of typical 12 ns width.  
Fig 29. Standard I/O and RESET pin configuration  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
78 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
13.3 Connecting power, clocks, and debug functions  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
79 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
3.3 V  
3.3 V  
3.3 V  
SWD connector  
(4)  
(6)  
~10 kΩ - 100 kΩ  
SWDIO/PIO0_17  
1
2
~10 kΩ - 100 kΩ  
SWCLK/PIO0_16  
(6)  
3
5
4
6
n.c.  
n.c.  
7
9
n.c.  
8
RTCXIN  
RESETN  
10  
C3  
C4  
(1)  
V
SS  
RTCXOUT  
DGND  
DGND  
DGND  
V
(2)  
V
DD  
(2 to 4 pins)  
SSA  
3.3 V  
0.1 ꢀF  
0.01 ꢀF  
AGND  
LPC51U68  
DGND  
PIO0_4  
(3)  
V
DDA  
3.3 V  
PIO0_31  
PIO1_6  
ISP select pins  
(5)  
0.1 ꢀF  
10 ꢀF  
ADCx  
DGND  
(3)  
VREFP  
3.3 V  
0.1 ꢀF  
10 ꢀF  
0.1 ꢀF  
VREFN  
AGND  
AGND  
AGND  
DGND  
aaa-028919  
(1) See Section 13.5 “RTC oscillator” for the values of C3 and C4.  
(2) Position the decoupling capacitors of 0.1 μF and 0.01 μF as close as possible to the VDD pin. Add one set of decoupling  
capacitors to each VDD pin.  
(3) Position the decoupling capacitors of 0.1 μF as close as possible to the VREFN and VDDA pins. The 10 μF bypass capacitor  
filters the power line. Tie VDDA and VREFP to VDD if the ADC is not used. Tie VREFN to VSS if ADC is not used.  
(4) Uses the ARM 10-pin interface for SWD.  
(5) When measuring signals of low frequency, use a low-pass filter to remove noise and to improve ADC performance. Also see  
Ref. 1.  
(6) External pull-up resistors on SWDIO and SWCLK pins are optional because these pins have an internal pull-up enabled by  
default.  
Fig 30. Power, clock, and debug connections  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
80 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
13.4 I/O power consumption  
I/O pins can contribute to the overall static and dynamic power consumption of the part.  
If pins are configured as digital inputs with the pull-up resistor enabled, a static current can  
flow depending on the voltage level at the pin. This current can be obtained using the  
parameters Ipu and Ipd given in Table 20.  
If pins are configured as digital outputs, the static current is obtained from parameters IOH  
and IOL shown in Table 20, and any external load connected to the pin.  
When an I/O pin switches in an application, it contributes to the dynamic power  
consumption because the VDD supply provides the current to charge and discharge all  
internal and external capacitive loads connected to the pin.  
The contribution from the I/O switching current Isw can be calculated as follows for any  
given switching frequency fsw if the external capacitive load (Cext) is known (see Table 20  
for the internal I/O capacitance):  
Isw = VDD x fsw x (Cio + Cext  
)
13.5 RTC oscillator  
In the RTC oscillator circuit, only the crystal (XTAL) and the capacitances CX1 and CX2  
need to be connected externally on RTCXIN and RTCXOUT. See Figure 31.  
LPC51U68  
L
RTCXIN  
RTCXOUT  
C
R
C
P
=
L
XTAL  
S
C
C
X2  
X1  
aaa-018147  
Fig 31. RTC oscillator components  
For best results, it is very critical to select a matching crystal for the on-chip oscillator.  
Load capacitance (CL), series resistance (RS), and drive level (DL) are important  
parameters to consider while choosing the crystal. After selecting the proper crystal, the  
external load capacitor CX1 and CX2 values can also be generally determined by the  
following expression:  
C
X1 = CX2 = 2CL (CPad + CParasitic  
)
Where:  
CL - Crystal load capacitance  
Pad - Pad capacitance of the RTCXIN and RTCXOUT pins (~3 pF).  
C
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
81 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
CParasitic – Parasitic or stray capacitance of external circuit.  
Although CParasitic can be ignored in general, the actual board layout and placement of  
external components influences the optimal values of external load capacitors. Therefore,  
it is recommended to fine tune the values of external load capacitors on actual hardware  
board to get the accurate clock frequency. For fine tuning, output the RTC Clock to one of  
the GPIOs and optimize the values of external load capacitors for minimum frequency  
deviation.  
13.5.1 RTC Printed Circuit Board (PCB) design guidelines  
Connect the crystal and external load capacitors on the PCB as close as possible to  
the oscillator input and output pins of the chip.  
The length of traces in the oscillation circuit should be as short as possible and must  
not cross other signal lines.  
Ensure that the load capacitors CX1, CX2, and CX3, in case of third overtone crystal  
usage, have a common ground plane.  
Loops must be made as small as possible to minimize the noise coupled in through  
the PCB and to keep the parasitics as small as possible.  
Lay out the ground (GND) pattern under crystal unit.  
Do not lay out other signal lines under crystal unit for multi-layered PCB.  
13.6 Suggested USB interface solutions  
The USB device can be connected to the USB as self-powered device (see Figure 32) or  
bus-powered device (see Figure 33).  
On the LPC51U68, the USB_VBUS pin is 5 V tolerant only when VDD is applied and at  
operating voltage level. Therefore, if the USB_VBUS function is connected to the USB  
connector and the device is self-powered, the USB_VBUS pin must be protected for  
situations when VDD = 0 V.  
If VDD is always at operating level while VBUS = 5 V, the USB_VBUS pin can be  
connected directly to the VBUS pin on the USB connector.  
For systems where VDD can be 0 V and VBUS is directly applied to the VBUS pin,  
precautions must be taken to reduce the voltage to below 3.6 V, which is the maximum  
allowable voltage on the USB_VBUS pin in this case.  
One method is to use a voltage divider to connect the USB_VBUS pin to the VBUS on the  
USB connector. The voltage divider ratio should be such that the USB_VBUS pin is  
greater than 0.7 VDD to indicate a logic HIGH while below the 3.6 V allowable maximum  
voltage.  
For the following operating conditions  
VBUSmax = 5.25 V  
V
DD = 3.6 V,  
the voltage divider should provide a reduction of 3.6 V/5.25 V or ~0.686 V.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
82 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
LPCxxxx  
V
DD  
R2  
R3  
R1  
1.5 kꢁ  
USB  
USB_VBUS  
D+  
D-  
USB-B  
connector  
R
R
= 33 ꢁ  
= 33 ꢁ  
S
S
USB_DP  
USB_DM  
V
SS  
aaa-023996  
Fig 32. USB interface on a self-powered device where USB_VBUS = 5 V  
The internal pull-up (1.5 k) can be enabled by setting the DCON bit in the  
DEVCMDSTAT register to prevent the USB from timing out when there is a significant  
delay between power-up and handling USB traffic. External circuitry is not required.  
LPCxxxx  
V
DD  
REGULATOR  
(1)  
(2)  
USB_VBUS  
USB_VBUS  
USB  
R1  
1.5 kꢁ  
VBUS  
D+  
USB-B  
R
= 33 ꢁ  
= 33 ꢁ  
S
S
USB_DP  
D-  
connector  
R
USB_DM  
V
SS  
aaa-023997  
Two options exist for connecting VBUS to the USB_VBUS pin:  
(1) Connect the regulator output to USB_VBUS. In this case, the USB_VBUS signal is HIGH whenever the part is powered.  
(2) Connect the VBUS signal directly from the connector to the USB_VBUS pin. In this case, 5 V are applied to the USB_VBUS pin  
while the regulator is ramping up to supply VDD. Since the USB_VBUS pin is only 5 V tolerant when VDD is at operating level,  
this connection can degrade the performance of the part over its lifetime. Simulation shows that lifetime is reduced to 15 years  
at Tamb = 45 °C and 8 years at Tamb = 55 °C assuming that USB_VBUS = 5 V is applied continuously while VDD = 0 V.  
Fig 33. USB interface on a bus-powered device  
Remark: When a self-powered circuit is used without connecting VBUS, configure the  
USB_VBUS pin for GPIO (PIO1_6 or PIO1_11) and provide software that can detect the  
host presence through some other mechanism before enabling USB_CONNECT and the  
SoftConnect feature. Enabling the SoftConnect without host presence leads to USB  
compliance failure.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
83 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
14. Package outline  
LQFP48: plastic low pro le quad at package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
37  
24  
Z
E
e
H
E
E
A
2
A
(A )  
3
A
1
w M  
p
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v
M
M
D
A
e
w M  
b
p
D
B
H
v
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT313-2  
136E05  
MS-026  
Fig 34. LQFP48 Package outline  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
84 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm  
SOT314-2  
y
X
A
48  
33  
Z
49  
32  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
64  
17  
detail X  
1
16  
Z
v
M
A
D
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 10.1 10.1  
0.17 0.12 9.9 9.9  
12.15 12.15  
11.85 11.85  
0.75  
0.45  
1.45 1.45  
1.05 1.05  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT314-2  
136E10  
MS-026  
Fig 35. LQFP64 Package outline  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
85 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
15. Soldering  
Footprint information for re ow soldering of LQFP48 package  
SOT313-2  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy  
Gy  
By  
Ay  
C
D2 (8)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 10.350 10.350 7.350 7.350 1.500 0.280 0.500 7.500 7.500 10.650 10.650  
sot313-2_fr  
Fig 36. LQFP48 Soldering footprint  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
86 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Footprint information for re ow soldering of LQFP64 package  
SOT314-2  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy  
Gy  
By  
Ay  
C
D2 (8)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 13.300 13.300 10.300 10.300 1.500 0.280 0.400 10.500 10.500 13.550 13.550  
sot314-2_fr  
Fig 37. LQFP64 Soldering footprint  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
87 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
16. Abbreviations  
Table 41. Abbreviations  
Acronym  
AHB  
Description  
Advanced High-performance Bus  
Advanced Peripheral Bus  
Application Programming Interface  
Communication Device Class  
Direct Memory Access  
APB  
API  
CDC  
DMA  
FRO oscillator  
GPIO  
FRO  
Internal Free-Running Oscillator, tuned to the factory specified frequency  
General Purpose Input/Output  
Free Running Oscillator  
HID  
Human Interface Device  
LSB  
Least Significant Bit  
MCU  
MicroController Unit  
MSC  
Mass Storage Device  
PLL  
Phase-Locked Loop  
SPI  
Serial Peripheral Interface  
TCP/IP  
TTL  
Transmission Control Protocol/Internet Protocol  
Transistor-Transistor Logic  
USART  
Universal Asynchronous Receiver/Transmitter  
17. References  
[1] Technical note ADC design guidelines:  
https://www.nxp.com/docs/en/supporting-information/TN00009.pdf  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
88 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
18. Revision history  
Table 42. Revision history  
Document ID  
Release date Data sheet status  
20180517 Product data sheet  
Change notice Supersedes  
LPC51U68 v.1.3  
-
LPC51U68 v.1.2  
Updated Section 2 “Features and benefits”. Added text: USB 2.0 full-speed host/device  
controller with on-chip PHY and dedicated DMA controller supporting crystal-less operation in  
device mode using software library. See Technical note TN00035 for more details.  
Updated VREFP, VREFN, VDDA text in Table 4 “Pin description”.  
LPC51U68 v.1.2  
LPC51U68 v.1.1  
20180313  
Updated Section 1 “General description”. Removed text.  
20180309 Product data sheet  
Updated Table 11 “Thermal resistance”.  
Updated top-side markings of LQFP48 and LQFP64 packages. See Section 4 “Marking”.  
Product data sheet  
-
LPC51U68 v.1.1  
-
LPC51U68 v.1.0  
LPC51U68 v.1.0  
20171213  
Product data sheet  
-
-
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
89 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
19. Legal information  
19.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
19.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
19.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
90 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
19.4 Trademarks  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
20. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
91 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
21. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
7.14.2  
Flexcomm Interface serial communication. . . 32  
7.14.2.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7.14.3 USART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7.14.3.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7.14.4 SPI serial I/O controller . . . . . . . . . . . . . . . . . 33  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 4  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 4  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
3.1  
4
7.14.4.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
I2C-bus interface . . . . . . . . . . . . . . . . . . . . . . 33  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
I2S-bus interface . . . . . . . . . . . . . . . . . . . . . . 34  
5
7.14.5  
7.14.6  
7.14.7  
6
6.1  
6.2  
6.2.1  
6.2.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 7  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Termination of unused pins. . . . . . . . . . . . . . . 19  
Pin states in different power modes . . . . . . . . 20  
7.14.7.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
7.15  
7.15.1  
7.15.2  
Standard counter/timers (CTimer 0, 1, 3). . . . 35  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
SCTimer/PWM subsystem. . . . . . . . . . . . . . . 36  
7
Functional description . . . . . . . . . . . . . . . . . . 20  
ARM Cortex-M0+ co-processor . . . . . . . . . . . 20  
Nested Vectored Interrupt Controller (NVIC) for  
Cortex-M0+. . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 20  
System Tick timer (SysTick) . . . . . . . . . . . . . . 20  
On-chip static RAM. . . . . . . . . . . . . . . . . . . . . 20  
On-chip flash . . . . . . . . . . . . . . . . . . . . . . . . . 21  
On-chip ROM . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . 21  
System control . . . . . . . . . . . . . . . . . . . . . . . . 23  
Clock sources. . . . . . . . . . . . . . . . . . . . . . . . . 23  
FRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Watchdog oscillator (WDTOSC) . . . . . . . . . . . 23  
Clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
RTC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 24  
System PLL . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Clock Generation . . . . . . . . . . . . . . . . . . . . . . 24  
Brownout detection. . . . . . . . . . . . . . . . . . . . . 26  
Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Code security (Code Read Protection - CRP) 26  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Deep-sleep mode . . . . . . . . . . . . . . . . . . . . . . 27  
Deep power-down mode . . . . . . . . . . . . . . . . 27  
General Purpose I/O (GPIO) . . . . . . . . . . . . . 30  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Pin interrupt/pattern engine . . . . . . . . . . . . . . 30  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
AHB peripherals . . . . . . . . . . . . . . . . . . . . . . . 31  
DMA controller . . . . . . . . . . . . . . . . . . . . . . . . 31  
7.15.2.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.15.3 Windowed WatchDog Timer (WWDT) . . . . . . 37  
7.15.3.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
7.15.4 RTC timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.15.4.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.15.5 Multi-Rate Timer (MRT) . . . . . . . . . . . . . . . . . 38  
7.15.5.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.15.6 Micro-tick timer (UTICK) . . . . . . . . . . . . . . . . 39  
7.15.6.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7.1  
7.2  
7.2.1  
7.2.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.8.1  
7.8.1.1  
7.8.1.2  
7.8.1.3  
7.8.1.4  
7.8.1.5  
7.8.2  
7.8.3  
7.8.4  
7.9  
7.16  
7.16.1  
7.17  
12-bit Analog-to-Digital Converter (ADC). . . . 39  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Temperature sensor. . . . . . . . . . . . . . . . . . . . 39  
Emulation and debugging . . . . . . . . . . . . . . . 40  
7.18  
8
9
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 41  
Thermal characteristics . . . . . . . . . . . . . . . . . 42  
10  
Static characteristics . . . . . . . . . . . . . . . . . . . 43  
General operating conditions. . . . . . . . . . . . . 43  
CoreMark data . . . . . . . . . . . . . . . . . . . . . . . . 44  
Power consumption . . . . . . . . . . . . . . . . . . . . 45  
Pin characteristics . . . . . . . . . . . . . . . . . . . . . 50  
Electrical pin characteristics. . . . . . . . . . . . . . 53  
10.1  
10.2  
10.3  
10.4  
10.4.1  
7.10  
11  
Dynamic characteristics. . . . . . . . . . . . . . . . . 56  
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . 56  
I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 57  
System PLL . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
FRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
RTC oscillator . . . . . . . . . . . . . . . . . . . . . . . . 58  
Watchdog oscillator . . . . . . . . . . . . . . . . . . . . 59  
I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
I2S-bus interface . . . . . . . . . . . . . . . . . . . . . . 60  
SPI interfaces. . . . . . . . . . . . . . . . . . . . . . . . . 64  
USART interface . . . . . . . . . . . . . . . . . . . . . . 67  
SCTimer/PWM output timing . . . . . . . . . . . . . 68  
7.10.1  
7.10.2  
7.10.3  
7.11  
7.11.1  
7.12  
7.12.1  
7.13  
7.13.1  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
11.7  
11.8  
11.9  
11.10  
11.11  
11.12  
7.13.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
7.14  
7.14.1  
Digital serial peripherals . . . . . . . . . . . . . . . . . 32  
USB 2.0 device controller . . . . . . . . . . . . . . . . 32  
7.14.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
continued >>  
LPC51U68  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.3 — 18 May 2018  
92 of 93  
LPC51U68  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.13  
USB interface characteristics . . . . . . . . . . . . . 69  
12  
Analog characteristics . . . . . . . . . . . . . . . . . . 70  
BOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
12-bit ADC characteristics . . . . . . . . . . . . . . . 71  
ADC input impedance. . . . . . . . . . . . . . . . . . . 74  
Temperature sensor . . . . . . . . . . . . . . . . . . . . 75  
12.1  
12.2  
12.2.1  
12.3  
13  
Application information. . . . . . . . . . . . . . . . . . 77  
Start-up behavior . . . . . . . . . . . . . . . . . . . . . . 77  
Standard I/O pin configuration . . . . . . . . . . . . 77  
Connecting power, clocks, and debug  
13.1  
13.2  
13.3  
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
I/O power consumption. . . . . . . . . . . . . . . . . . 81  
RTC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . 81  
RTC Printed Circuit Board (PCB) design  
13.4  
13.5  
13.5.1  
guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Suggested USB interface solutions . . . . . . . . 82  
13.6  
14  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 84  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 88  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 89  
15  
16  
17  
18  
19  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 90  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 90  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
19.1  
19.2  
19.3  
19.4  
20  
21  
Contact information. . . . . . . . . . . . . . . . . . . . . 91  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2018.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 18 May 2018  
Document identifier: LPC51U68  

相关型号:

LPC54005JBD100

32-bit ARM Cortex-M4 microcontroller
NXP

LPC54005JET100

32-bit ARM Cortex-M4 microcontroller
NXP

LPC54016JBD100

32-bit ARM Cortex-M4 microcontroller
NXP

LPC54016JBD208

32-bit ARM Cortex-M4 microcontroller
NXP

LPC54016JET100

32-bit ARM Cortex-M4 microcontroller
NXP

LPC54016JET180

32-bit ARM Cortex-M4 microcontroller
NXP

LPC54018J2MET180E

RISC Microcontroller
NXP

LPC54018JBD208

32-bit ARM Cortex-M4 microcontroller
NXP

LPC54018JET180

32-bit ARM Cortex-M4 microcontroller
NXP

LPC540XX

32-bit ARM Cortex-M4 microcontroller
NXP

LPC54101J256BD64

32-bit ARM Cortex-M4/M0 MCU; 104 kB SRAM; 512 kB flash, 3 x I2C, 2 x SPI, 4 x USART, 32-bit counter/ timers, SCTimer/PWM, 12-bit 5.0 Msamples/sec ADC
NXP

LPC54101J256BD64QL

LPC54101J256BD64 - Low Power 32-bit Microcontroller based on ARM® Cortex®-M4 QFP 64-Pin
NXP