LPC54018J2MET180E [NXP]

RISC Microcontroller;
LPC54018J2MET180E
型号: LPC54018J2MET180E
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器 外围集成电路
文件: 总150页 (文件大小:5544K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC54018JxM/LPC54S018JxM  
32-bit ARM Cortex-M4 microcontroller; 4MB on-chip Quad SPI  
Serial Flash; 360 kB SRAM; High-speed USB device/host +  
PHY; Full-speed USB device/host; Ethernet AVB; LCD; EMC;  
SPIFI; CAN FD, SDIO; 12-bit 5 Msamples/s ADC; DMIC  
subsystem  
Rev. 1.1 — 27 January 2019  
Product data sheet  
1. General description  
The LPC54018JxM/LPC54S018JxM is a family of ARM Cortex-M4 based microcontrollers  
for embedded applications featuring a rich peripheral set with very low power  
consumption and enhanced debug features.  
The ARM Cortex-M4 is a 32-bit core that offers system enhancements such as low power  
consumption, enhanced debug features, and a high level of support block integration. The  
ARM Cortex-M4 CPU incorporates a 3-stage pipeline, uses a Harvard architecture with  
separate local instruction and data buses as well as a third bus for peripherals, and  
includes an internal prefetch unit that supports speculative branching. The ARM  
Cortex-M4 supports single-cycle digital signal processing and SIMD instructions. A  
hardware floating-point processor is integrated into the core.  
The LPC54018JxM/LPC54S018JxM family includes 4 MB of on-chip Quad SPI Serial  
Flash (connected on SPIFI interface), 360 KB of on-chip SRAM, one high-speed and one  
full-speed USB host and device controller, Ethernet AVB, LCD controller, Smart Card  
Interfaces, SD/MMC, CAN FD, an External Memory Controller (EMC), a DMIC subsystem  
with PDM microphone interface and I2S, five general-purpose timers, SCTimer/PWM,  
RTC/alarm timer, Multi-Rate Timer (MRT), a Windowed Watchdog Timer (WWDT), ten  
flexible serial communication peripherals (USART, SPI, I2S, I2C interface), Secure Hash  
Algorithm (SHA), AES-256 engine, Physical Unclonable Function (PUF), secure boot  
features, 12-bit 5.0 Msamples/sec ADC, and a temperature sensor.  
2. Features and benefits  
ARM Cortex-M4 core (version r0p1):  
ARM Cortex-M4 processor, running at a frequency of up to 180 MHz.  
Floating Point Unit (FPU) and Memory Protection Unit (MPU).  
ARM Cortex-M4 built-in Nested Vectored Interrupt Controller (NVIC).  
Non-maskable Interrupt (NMI) input with a selection of sources.  
Serial Wire Debug (SWD) with six instruction breakpoints, two literal comparators,  
and four watch points. Includes Serial Wire Output and ETM Trace for enhanced  
debug capabilities, and a debug timestamp counter.  
System tick timer.  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
On-chip memory:  
Up to 4 MB of on-chip Quad SPI Serial Flash (connected on SPIFI interface).  
Up to 360 KB total SRAM consisting of 160 KB contiguous main SRAM and an  
additional 192 KB SRAM on the I&D buses. 8 KB of SRAM bank intended for USB  
traffic.  
General-purpose One-Time Programmable (OTP) memory for user application  
specific data and for AES keys.  
ROM API support:  
In-Application Programming (IAP) and In-System Programming (ISP).  
ROM-based USB drivers (HID, CDC, MSC, and DFU).  
Supports serial interface booting (UART, I2C, SPI) from an application processor,  
automated booting from NOR flash (SPI, quad SPIFI, 8/16/32-bit external parallel  
flash), and USB booting (full-speed, high-speed).  
FRO API for selecting FRO output frequency.  
OTP API for programming OTP memory.  
Random Number Generator (RNG) API.  
RSA API calls (LPC54S018Jx only).  
Execute in place (XIP) from internal serial flash (in quad, dual SPIFI mode or single-bit  
SPI mode), and parallel NOR flash.  
Secure Boot features on LPC54S018Jx devices:  
Supports boot image authentication using RSASSA-PKCS1-v1_5 signature  
verification with 2048-bit public keys (2048-bit modulus, 32-bit exponent).  
Supports Root of Trust (RoT) establishment by comparing the SHA-256 hash  
digest of the RoT public key with OTP memory contents.  
Supports secure anti-rollback of images through revocation of image key  
certificate. Supports up to 8 revocations through OTP fuses.  
Supports boot of AES-GCM encrypted images with a 128-bit symmetric key stored  
in OTP memory or a 256-bit symmetric key stored using on-chip SRAM PUF.  
Secure Authentication Only Boot. Enforce booting of RSA-2048 signed images  
only.  
Encrypted Image Boot. Enforce booting of AES-GCM encrypted images only.  
Enhanced Image Boot. Enforce booting of encrypted then signed images only.  
Security features:  
AES-256 encryption/decryption engine with keys stored in polyfuse OTP  
(LPC54S018Jx only).  
Random number generator can be used to create keys with DMA support.  
Secure Hash Algorithm (SHA1/SHA2) module supports boot with dedicated DMA  
controller.  
Physical Unclonable Function (PUF) root key using dedicated SRAM for silicon  
fingerprint. PUF can generate, store, and reconstruct key sizes from 64 to 4096 bits  
(LPC54S018Jx only).  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
2 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Serial interfaces:  
Flexcomm Interface contains up to 11 serial peripherals. Each Flexcomm Interface  
(except flexcomm 10, which is dedicated for SPI) can be selected by software to be  
a USART, SPI, or I2C interface. Two Flexcomm Interfaces also include an I2S  
interface. Each Flexcomm Interface includes a FIFO that supports USART, SPI,  
and I2S if supported by that Flexcomm Interface. A variety of clocking options are  
available to each Flexcomm Interface and include a shared fractional baud-rate  
generator.  
I2C-bus interfaces support Fast-mode and Fast-mode Plus with data rates of up to  
1Mbit/s and with multiple address recognition and monitor mode. Two sets of true  
I2C pads also support High Speed Mode (3.4 Mbit/s) as a slave.  
Two ISO 7816 Smart Card Interfaces with DMA support.  
USB 2.0 high-speed host/device controller with on-chip high-speed PHY.  
USB 2.0 full-speed host/device controller with on-chip PHY and dedicated DMA  
controller supporting crystal-less operation in device mode using software library.  
See Technical note TN00033 for more details.  
SPIFI with XIP feature connected to on-chip Quad SPI Serial Flash.  
Ethernet MAC with MII/RMII interface with Audio Video Bridging (AVB) support and  
dedicated DMA controller.  
Two CAN FD modules with dedicated DMA controller.  
Digital peripherals:  
DMA controller with 30 channels and up to 24 programmable triggers, able to  
access all memories and DMA-capable peripherals.  
LCD Controller supporting both Super-Twisted Nematic (STN) and Thin-Film  
Transistor (TFT) displays. It has a dedicated DMA controller, selectable display  
resolution (up to 1024 x 768 pixels), and supports up to 24-bit true-color mode.  
External Memory Controller (EMC) provides support for asynchronous static  
memory devices such as RAM, ROM and flash, in addition to dynamic memories  
such as single data rate SDRAM with an SDRAM clock of up to 100 MHz. EMC bus  
width (bit) supports up to 8/16 data line wide static memory.  
Secured digital input/output (SD/MMC and SDIO) card interface with DMA support.  
CRC engine block can calculate a CRC on supplied data using one of three  
standard polynomials with DMA support.  
Up to 137 General-Purpose Input/Output (GPIO) pins.  
GPIO registers are located on the AHB for fast access. The DMA supports GPIO  
ports.  
Up to eight GPIOs can be selected as Pin Interrupts (PINT), triggered by rising,  
falling or both input edges.  
Two GPIO Grouped Interrupts (GINT) enable an interrupt based on a logical  
(AND/OR) combination of input states.  
Analog peripherals:  
12-bit ADC with 12 input channels and with multiple internal and external trigger  
inputs and sample rates of up to 5.0 MSamples/sec. The ADC supports two  
independent conversion sequences.  
Integrated temperature sensor connected to the ADC.  
DMIC subsystem includes a dual-channel PDM microphone interface with decimators,  
filtering, and hardware voice activity detection. The processed output data can be  
routed directly to an I2S interface if needed.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
3 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Timers:  
Five 32-bit general purpose timers/counters. All five timers support up to four  
capture inputs and four compare outputs, PWM mode, and external count input.  
Specific timer events can be selected to generate DMA requests.  
One SCTimer/PWM with eight input and ten output functions (including capture  
and match). Inputs and outputs can be routed to or from external pins and internally  
to or from selected peripherals. Internally, the SCTimer/PWM supports 16  
match/captures, 16 events, and 16 states.  
32-bit Real-time clock (RTC) with 1 s resolution running in the always-on power  
domain. A timer in the RTC can be used for wake-up from all low power modes  
including deep power-down, with 1 ms resolution.  
Multiple-channel multi-rate 24-bit timer (MRT) for repetitive interrupt generation at  
up to four programmable, fixed rates.  
Windowed Watchdog Timer (WWDT).  
Repetitive Interrupt Timer (RIT) for debug time stamping and for general purpose  
use.  
Clock generation:  
12 MHz internal Free Running Oscillator (FRO). This oscillator provides a  
selectable 48 MHz or 96 MHz output, and a 12 MHz output (divided down from the  
selected higher frequency) that can be used as a system clock. The FRO is  
trimmed to 1 % accuracy over the entire voltage and temperature range.  
Crystal oscillator with an operating range of 1 MHz to 25 MHz.  
Watchdog Oscillator (WDTOSC) with a frequency range of 6 kHz to 1.5 MHz.  
32.768 kHz low-power RTC oscillator.  
System PLL allows CPU operation up to the maximum CPU rate and can run from  
the main oscillator, the internal FRO, the watchdog oscillator or the 32.768 KHz  
RTC oscillator.  
Two additional PLLs for USB clock and audio subsystem.  
Independent clocks for the SPIFI interface, ADC, USBs, and the audio subsystem.  
Clock output function with divider.  
Frequency measurement unit for measuring the frequency of any on-chip or  
off-chip clock signal.  
Power control:  
Programmable PMU (Power Management Unit) to minimize power consumption  
and to match requirements at different performance levels.  
Reduced power modes: sleep, deep-sleep, and deep power-down.  
Wake-up from deep-sleep modes due to activity on the USART, SPI, and I2C  
peripherals when operating as slaves.  
Ultra-low power Micro-tick Timer, running from the Watchdog oscillator that can be  
used to wake up the device from low power modes.  
Power-On Reset (POR).  
Brown-Out Detect (BOD) with separate thresholds for interrupt and forced reset.  
Single power supply 2.7 V to 3.6 V.  
Power-On Reset (POR).  
Brown-Out Detect (BOD) with separate thresholds for interrupt and forced reset.  
JTAG boundary scan supported.  
128 bit unique device serial number for identification.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
4 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Operating temperature range 40 °C to +105 °C.  
Available in TFBGA180 package.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
5 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC54018J2MET180 TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 ´ 12 ´ 0.8 mm SOT570-3  
LPC54018J4MET180 TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 ´ 12 ´ 0.8 mm SOT570-3  
LPC54S018J2MET180 TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 ´ 12 ´ 0.8 mm SOT570-3  
LPC54S018J4MET180 TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 ´ 12 ´ 0.8 mm SOT570-3  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
6 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
3.1 Ordering options  
Table 2.  
Ordering options  
LPC54018Jx devices (HS/FS USB, Ethernet, CAN 2.0+CAN FD, LCD, SHA)  
LPC54018J2MET180  
LPC54018J4MET180  
TFBGA180  
TFBGA180  
2
4
360  
360  
yes yes yes yes yes yes 8/16 11 137 yes -  
yes yes yes yes yes yes 8/16 11 137 yes -  
-
-
LPC54S018Jx devices (HS/FS USB, Ethernet, CAN 2.0+CAN FD, LCD, SHA, AES, PUF)  
LPC54S018J2MET180  
LPC54S018J4MET180  
TFBGA180  
TFBGA180  
2
4
360  
360  
yes yes yes yes yes yes 8/16 11 137 yes yes yes  
yes yes yes yes yes yes 8/16 11 137 yes yes yes  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
7 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
4. Marking  
Terminal 1 index area  
aaa-025721  
Fig 1. TFBGA180 marking  
The LPC54018JxM/LPC54S018JxM TFBGA180 package have the following top-side  
marking:  
First line: LPC54018JxM/LPC54S018JxM  
Second line: ET180  
Third line: xxxxxxxxxxxx  
Fourth line: xxxyywwx[R]x  
yyww: Date code with yy = year and ww = week.  
xR = boot code version and device revision.  
Table 3.  
Device revision table  
Revision identifier (R)  
Revision description  
1B  
Initial device revision with Boot ROM version 21.1  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
8 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
5. Block diagram  
Figure 2 shows the LPC54018JxM/LPC54S018JxM block diagram. In this figure, orange  
shaded blocks support general purpose DMA and yellow shaded blocks include dedicated  
DMA control.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
9 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
JTAG test and  
FS USB  
bus  
ISP access boundary scan  
ethernet  
PHY interface  
LCD  
panel  
SDIO  
interface  
CAN  
interface  
port  
interface  
Xtalin Xtalout RST  
CLOCK GENERATION,  
POWER CONTROL,  
AND OTHER  
DEBUG INTERFACE  
GENERAL  
PURPOSE  
DMA  
ETHERNET  
10/100  
MAC  
USB 2.0  
HOST/  
LCD  
clocks  
and  
controls  
CAN  
FD  
CAN  
FD  
CLK  
OUT  
SDIO  
SHA  
PANEL  
ARM CORTEX-M4  
WITH FPU/MPU  
DEVICE  
INTERFACE  
SYSTEM FUNCTIONS  
CONTROLLER  
+AVB  
H
D
internal  
power  
I-code D-code system  
Vdd  
VOLTAGE REGULATOR  
bus  
bus  
bus  
BOOT ROM  
64 kB  
HS USB  
PHY  
HS USB  
bus  
SRAM  
192 kB  
SPI FLASH  
INTERFACE  
Quad SPI FLASH  
4 MB  
SRAM  
64 kB  
SRAM  
32 kB  
MULTILAYER  
AHB MATRIX  
SRAM  
32 kB  
SRAM  
32 kB  
FS USB  
HOST  
HS USB  
HOST  
SHA SLAVE  
INTERFACE  
AES256 12b ADC  
ADC  
inputs  
ENGINE  
12-CH  
REGISTERS REGISTERS  
POLYFUSE OTP  
256 b  
TEMP  
SENSOR  
USB RAM  
INTERFACE  
SRAM  
8 kB  
D[31:0]  
A[25:0]  
control  
GPIO  
STATIC/DYNAMIC EXT  
MEMORY CONTROLLER  
HS GPIO  
0-5  
SPIFI  
REGISTERS  
EMC  
REGISTERS  
DMA  
REGISTERS  
LCD  
REGISTERS  
FS USB  
DEVICE  
REGISTERS  
SCTimer/  
PWM  
FlexComms 0-4  
-UARTs 0-4 - I2Cs 0-4  
-SPI0s 0-4  
CAN 0  
CAN 1  
ETHERNET  
REGISTERS  
HS USB  
DEVICE  
CRC  
SDIO  
FlexComms 5-9  
-UARTs 5-9  
REGISTERS REGISTERS  
ENGINE  
REGISTERS  
REGISTERS  
-SPI0s 5-9  
-I2Cs 5-9 - I2Ss 0,1  
AUDIO SUBSYS  
D-MIC,  
AHB TO  
APB slave group 0  
DECIMATOR, ETC  
APB BRIDGE  
ASYNC AHB TO  
APB BRIDGE  
APB slave group 2  
SYSTEM CONTROL  
SYSTEM CONTROL (async regs)  
I/O CONFIGURATION  
AHB TO  
APB BRIDGE  
2 x 32-BIT TIMERS (T3, 4)  
GPIO GLOBAL INTRPTS (0, 1)  
GPIO INTERRUPT CONTROL  
PERIPH INPUT MUX SELECTS  
2 x 32-BIT TIMERS (T0, 1)  
MULTI-RATE TIMER  
APB slave group 1  
PMU REGS (+BB, PVT)  
32-BIT TIMERS (T2)  
RIT  
2 x SMARTCARDS  
RANDOM NUMBER GEN  
OTP CONTROLLER  
RTC POWER  
DOMAIN  
RTC ALARM  
WATCHDOG  
OSC  
WINDOWED WDT  
REAL TIME  
CLOCK  
32 kHz  
Osc  
DIVIDER  
MICRO TICK TIMER  
PUF  
Note:  
- Orange shaded blocks support Gen. Purpose DMA.  
- Yellow shaded blocks include dedicated DMA Ctrl.  
aaa-030339-x  
Fig 2. LPC54018JxM/LPC54S018JxM Block diagram  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
10 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
6. Pinning information  
6.1 Pinning  
ball A1  
index area  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
aaa-026026  
Transparent top view  
Fig 3. TFBGA 180 Pin configuration  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
11 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
6.2 Pin description  
On the LPC54018JxM/LPC54S018JxM, digital pins are grouped into several ports. Each  
digital pin can support several different digital functions (including General Purpose I/O  
(GPIO)) and an additional analog function.  
Table 4.  
Symbol  
Pin description  
Description  
[2]  
PIO0_0  
D6  
Z
I/O PIO0_0 — General-purpose digital input/output pin.  
Remark: In ISP mode, this pin is set to the Flexcomm 3 SPI SCK  
function.  
I
CAN1_RD — Receiver input for CAN 1.  
I/O FC3_SCK — Flexcomm 3: USART or SPI clock.  
O
I
CTimer_MAT0 — Match output 0 from Timer 0.  
SCT0_GPI0 — Pin input 0 to SCTimer/PWM.  
O
PDM0_CLK — Clock for PDM interface 0, for digital microphone.  
[2]  
PIO0_1  
A1  
Z
I/O PIO0_1 — General-purpose digital input/output pin.  
Remark: In ISP mode, this pin is set to the Flexcomm 3 SPI SSEL0  
function.  
O
CAN1_TD — Transmitter output for CAN 1.  
I/O FC3_CTS_SDA_SSEL0 — Flexcomm 3: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
I
I
I
CT0_CAP0 — Capture input 0 to Timer 0.  
SCT0_GPI1 — Pin input 1 to SCTimer/PWM.  
PDM0_DATA — Data for PDM interface 0 (digital microphone).  
[2]  
PIO0_2/  
TRST  
E9  
Z
I/O PIO0_2 — General-purpose digital input/output pin. In boundary scan  
mode: TRST (Test Reset).  
Remark: In ISP mode, this pin is set to the Flexcomm 3 SPI MISO  
function.  
I/O FC3_TXD_SCL_MISO — Flexcomm 3: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
I
CT0_CAP1 — Capture input 1 to Timer 0.  
SCT0_OUT0 — SCTimer/PWM output 0.  
SCT0_GPI[2] — Pin input 2 to SCTimer/PWM.  
O
I
I/O EMC_D[0] — External Memory interface data [0].  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
12 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO0_3/  
TCK  
A10  
Z
I/O PIO0_3 — General-purpose digital input/output pin. In boundary scan  
mode: TCK (Test Clock In).  
Remark: In ISP mode, this pin is set to the Flexcomm 3 SPI MOSI  
function.  
I/O FC3_RXD_SDA_MOSI — Flexcomm 3: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
O
O
I
CT0_MAT1 — Match output 1 from Timer 0.  
SCT0_OUT1 — SCTimer/PWM output 1.  
SCT0_GPI3 — Pin input 3 to SCTimer/PWM.  
R — Reserved.  
I/O EMC_D[1] — External Memory interface data [1].  
[2]  
PIO0_4/  
TMS  
C8  
Z
I/O PIO0_4 — General-purpose digital input/output pin. In boundary scan  
mode: TMS (Test Mode Select).  
Remark: The state of this pin at Reset in conjunction with PIO0_5 and  
PIO0_6 will determine the boot source for the part or if ISP handler is  
invoked. See the Boot Process chapter in UM11060 for more details.  
I
CAN0_RD — Receiver input for CAN 0.  
I/O FC4_SCK — Flexcomm 4: USART or SPI clock.  
I
I
CT3_CAP0 — Capture input 0 to Timer 3.  
SCT0_GPI4 — Pin input 4 to SCTimer/PWM.  
R — Reserved.  
I/O EMC_D[2] — External Memory interface data [2].  
ENET_MDC — Ethernet management data clock.  
O
[2]  
PIO0_5/  
TDI  
E7  
Z
I/O PIO0_5 — General-purpose digital input/output pin.  
In boundary scan mode: TDI (Test Data In).  
Remark: The state of this pin at Reset in conjunction with PIO0_4 and  
PIO0_6 will determine the boot source for the part or if ISP handler is  
invoked. See the Boot Process chapter in UM11060 for more details.  
O
CAN0_TD — Transmitter output for CAN 0.  
I/O FC4_RXD_SDA_MOSI — Flexcomm 4: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
O
I
CT3_MAT0 — Match output 0 from Timer 3.  
SCT0_GPI5 — Pin input 5 to SCTimer/PWM.  
R — Reserved.  
I/O EMC_D[3] — External Memory interface data [3].  
I/O ENET_MDIO — Ethernet management data I/O.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
13 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO0_6/  
TDO  
A5  
Z
I/O PIO0_6 — General-purpose digital input/output pin. In boundary scan  
mode: TDO (Test Data Out).  
Remark: The state of this pin at Reset in conjunction with PIO0_4 and  
PIO0_5 will determine the boot source for the part or if ISP handler is  
invoked. See the Boot Process chapter in UM11060 for more details.  
I/O FC3_SCK — Flexcomm 3: USART or SPI clock.  
I
CT3_CAP1 — Capture input 1 to Timer 3.  
CT4_MAT0 — Match output 0 from Timer 4.  
SCT0_GPI6 — Pin input 6 to SCTimer/PWM.  
R — Reserved.  
O
I
I/O EMC_D[4] — External Memory interface data [4].  
ENET_RX_DV — Ethernet receive data valid.  
I
[2]  
PIO0_7  
H12  
Z
I/O PIO0_7 — General-purpose digital input/output pin.  
I/O FC3_RTS_SCL_SSEL1 — Flexcomm 3: USART request-to-send,  
I2C clock, SPI slave select 1.  
O
SD_CLK — SD/MMC clock.  
I/O FC5_SCK — Flexcomm 5: USART or SPI clock.  
I/O FC1_SCK — Flexcomm 1: USART or SPI clock.  
O
PDM1_CLK — Clock for PDM interface 1, for digital microphone.  
I/O EMC_D[5] — External Memory interface data [5].  
I
ENET_RX_CLK — Ethernet Receive Clock (MII interface) or Ethernet  
Reference Clock (RMII interface).  
[2]  
PIO0_8  
H10  
Z
I/O PIO0_8 — General-purpose digital input/output pin.  
I/O FC3_SSEL3 — Flexcomm 3: SPI slave select 3.  
I/O SD_CMD — SD/MMC card command I/O.  
I/O FC5_RXD_SDA_MOSI — Flexcomm 5: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
O
I
SWO — Serial Wire Debug trace output.  
PDM1_DATA — Data for PDM interface 1 (digital microphone).  
I/O EMC_D[6] — External Memory interface data [6].  
I/O PIO0_9 — General-purpose digital input/output pin.  
I/O FC3_SSEL2 — Flexcomm 3: SPI slave select 2.  
[2]  
PIO0_9  
G12  
Z
O
SD_POW_EN — SD/MMC card power enable.  
I/O FC5_TXD_SCL_MISO — Flexcomm 5: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
R — Reserved.  
I/O SCI1_IO — SmartCard Interface 1 data I/O.  
I/O EMC_D[7] — External Memory interface data [7].  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
14 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[4]  
PIO0_10/  
ADC0_0  
P2  
Z
I/O; PIO0_10/ADC0_0 — General-purpose digital input/output pin. ADC  
AI  
input channel 0 if the DIGIMODE bit is set to 0 in the IOCON register  
for this pin.  
I/O FC6_SCK — Flexcomm 6: USART, SPI, or I2S clock.  
I
CT2_CAP2 — Capture input 2 to Timer 2.  
CT2_MAT0 — Match output 0 from Timer 2.  
O
I/O FC1_TXD_SCL_MISO — Flexcomm 1: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
R — Reserved.  
O
SWO — Serial Wire Debug trace output.  
[4]  
PIO0_11/  
ADC0_1  
L3  
Z
I/O; PIO0_11/ADC0_1 — General-purpose digital input/output pin. ADC  
AI  
input channel 1 if the DIGIMODE bit is set to 0 in the IOCON register  
for this pin.  
I/O FC6_RXD_SDA_MOSI_DATA — Flexcomm 6: USART receiver, I2C  
data I/O, SPI master-out/slave-in data, I2S data I/O.  
O
I
CT2_MAT2 — Match output 2 from Timer 2.  
FREQME_GPIO_CLK_A — Frequency Measure pin clock input A.  
R — Reserved.  
R — Reserved.  
I
SWCLK — Serial Wire Debug clock. This is the default function after  
booting.  
[4]  
PIO0_12/  
ADC0_2  
M3  
Z
I/O; PIO0_12/ADC0_2 — General-purpose digital input/output pin. ADC  
AI  
input channel 2 if the DIGIMODE bit is set to 0 in the IOCON register  
for this pin.  
I/O FC3_TXD_SCL_MISO — Flexcomm 3: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
R — Reserved.  
I
I
FREQME_GPIO_CLK_B — Frequency Measure pin clock input B.  
SCT0_GPI7 — Pin input 7 to SCTimer/PWM.  
R — Reserved.  
I/O SWDIO — Serial Wire Debug I/O. This is the default function after  
booting.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
15 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[3]  
[3]  
[4]  
PIO0_13  
F11  
E13  
L4  
Z
Z
Z
I/O PIO0_13 — General-purpose digital input/output pin.  
Remark: In ISP mode, this pin is set to the Flexcomm 1 I2C SDA  
function.  
I/O FC1_CTS_SDA_SSEL0 — Flexcomm 1: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
I
I
I
UTICK_CAP0 — Micro-tick timer capture input 0.  
CT0_CAP0 — Capture input 0 to Timer 0.  
SCT0_GPI0 — Pin input 0 to SCTimer/PWM.  
R — Reserved.  
R — Reserved.  
I
ENET_RXD0 — Ethernet receive data 0.  
PIO0_14  
I/O PIO0_14 — General-purpose digital input/output pin.  
Remark: In ISP mode, this pin is set to the Flexcomm 1 I2C SCL  
function.  
I/O FC1_RTS_SCL_SSEL1 — Flexcomm 1: USART request-to-send,  
I2C clock, SPI slave select 1.  
I
I
I
UTICK_CAP1 — Micro-tick timer capture input 1.  
CT0_CAP1 — Capture input 1 to Timer 0.  
SCT0_GPI1 — Pin input 1 to SCTimer/PWM.  
R — Reserved.  
R — Reserved.  
I
ENET_RXD1 — Ethernet receive data 1.  
PIO0_15/  
ADC0_3  
I/O; PIO0_15/ADC0_3 — General-purpose digital input/output pin. ADC  
AI  
input channel 3 if the DIGIMODE bit is set to 0 in the IOCON register  
for this pin.  
I/O FC6_CTS_SDA_SSEL0 — Flexcomm 6: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
I
UTICK_CAP2 — Micro-tick timer capture input 2.  
CT4_CAP0 — Capture input 4 to Timer 0.  
I
O
SCT0_OUT2 — SCTimer/PWM output 2.  
R — Reserved.  
O
O
EMC_WEN — External memory interface Write Enable (active low).  
ENET_TX_EN — Ethernet transmit enable (RMII/MII interface).  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
16 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[4]  
PIO0_16/  
ADC0_4  
M4  
Z
I/O; PIO0_16/ADC0_4 — General-purpose digital input/output pin. ADC  
AI  
input channel 4 if the DIGIMODE bit is set to 0 in the IOCON register  
for this pin.ws  
I/O FC4_TXD_SCL_MISO — Flexcomm 4: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
O
I
CLKOUT — Output of the CLKOUT function.  
CT1_CAP0 — Capture input 0 to Timer 1.  
R — Reserved.  
R — Reserved.  
O
O
EMC_CSN[0] — External memory interface static chip select 0 (active  
low).  
ENET_TXD0 — Ethernet transmit data 0.  
[2]  
PIO0_17  
E14  
Z
I/O PIO0_17 — General-purpose digital input/output pin.  
I/O FC4_SSEL2 — Flexcomm 4: SPI slave select 2.  
I
SD_CARD_DET_N — SD/MMC card detect (active low).  
SCT0_GPI7 — Pin input 7 to SCTimer/PWM.  
SCT0_OUT0 — SCTimer/PWM output 0.  
R — Reserved.  
I
O
O
O
EMC_OEN — External memory interface output enable (active low)  
ENET_TXD1 — Ethernet transmit data 1.  
[2]  
PIO0_18  
C14  
Z
I/O PIO0_18 — General-purpose digital input/output pin.  
I/O FC4_CTS_SDA_SSEL0 — Flexcomm 4: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
I
SD_WR_PRT — SD/MMC write protect.  
O
O
O
O
CT1_MAT0 — Match output 0 from Timer 1.  
SCT0_OUT1 — SCTimer/PWM output 1.  
SCI1_SCLK — SmartCard Interface 1 clock.  
EMC_A[0] — External memory interface address 0.  
[2]  
PIO0_19  
C6  
Z
I/O PIO0_19 — General-purpose digital input/output pin.  
I/O FC4_RTS_SCL_SSEL1 — Flexcomm 4: USART request-to-send,  
I2C clock, SPI slave select 1.  
I
UTICK_CAP0 — Micro-tick timer capture input 0.  
CT0_MAT2 — Match output 2 from Timer 0.  
SCT0_OUT2 — SCTimer/PWM output 2.  
R — Reserved.  
O
O
O
EMC_A[1] — External memory interface address 1.  
I/O FC7_TXD_SCL_MISO_WS — Flexcomm 7: USART transmitter, I2C  
clock, SPI master-in/slave-out data I/O, I2S word-select/frame.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
17 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO0_20  
D13  
Z
I/O PIO0_20 — General-purpose digital input/output pin.  
I/O FC3_CTS_SDA_SSEL0 — Flexcomm 3: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
O
I
CT1_MAT1 — Match output 1 from Timer 1.  
CT3_CAP3 — Capture input 3 to Timer 3.  
SCT0_GPI2 — Pin input 2 to SCTimer/PWM.  
I
I/O SCI0_IO — SmartCard Interface 0 data I/O.  
EMC_A[2] — External memory interface address 2.  
O
I/O FC7_RXD_SDA_MOSI_DATA — Flexcomm 7: USART receiver, I2C  
data I/O, SPI master-out/slave-in data, I2S data I/O.  
[2]  
PIO0_21  
PIO0_22  
PIO0_29  
C13  
B12  
B13  
Z
Z
Z
I/O PIO0_21 — General-purpose digital input/output pin.  
I/O FC3_RTS_SCL_SSEL1 — Flexcomm 3: USART request-to-send,  
I2C clock, SPI slave select 1.  
I
UTICK_CAP3 — Micro-tick timer capture input 3.  
CT3_MAT3 — Match output 3 from Timer 3.  
SCT0_GPI3 — Pin input 3 to SCTimer/PWM.  
SCI0_SCLK — SmartCard Interface 0 clock.  
EMC_A[3] — External memory interface address 3.  
O
I
O
O
I/O FC7_SCK — Flexcomm 7: USART, SPI, or I2S clock.  
I/O PIO0_22 — General-purpose digital input/output pin.  
[2][8]  
I/O FC6_TXD_SCL_MISO_WS — Flexcomm 6: USART transmitter, I2C  
clock, SPI master-in/slave-out data I/O, I2S word-select/frame.  
I
UTICK_CAP1 — Micro-tick timer capture input 1.  
CT3_CAP3 — Capture input 3 to Timer 3.  
SCT0_OUT3 — SCTimer/PWM output 3.  
R — Reserved.  
I
O
R — Reserved.  
I
USB0_VBUS — Monitors the presence of USB0 bus power.  
[2]  
I/O PIO0_29 — General-purpose digital input/output pin.  
Remark: In ISP mode, this pin is set to the Flexcomm 0 USART RXD  
function.  
I/O FC0_RXD_SDA_MOSI — Flexcomm 0: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
R — Reserved.  
O
O
O
CT2_MAT3 — Match output 3 from Timer 2.  
SCT0_OUT8 — SCTimer/PWM output 8.  
TRACEDATA[2] — Trace data bit 2.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
18 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO0_30  
A2  
Z
I/O PIO0_30 — General-purpose digital input/output pin.  
Remark: In ISP mode, this pin is set to the Flexcomm 0 USART TXD  
function.  
I/O FC0_TXD_SCL_MISO — Flexcomm 0: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
R — Reserved.  
O
O
O
CT0_MAT0 — Match output 0 from Timer 0.  
SCT0_OUT9 — SCTimer/PWM output 9.  
TRACEDATA[1] — Trace data bit 1.  
[4]  
[4]  
[2]  
PIO0_31/  
ADC0_5  
M5  
Z
Z
Z
I/O; PIO0_31/ADC0_5 — General-purpose digital input/output pin. ADC  
AI  
input channel 5 if the DIGIMODE bit is set to 0 in the IOCON register  
for this pin.  
I/O FC0_CTS_SDA_SSEL0 — Flexcomm 0: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
I/O SD_D[2] — SD/MMC data 2.  
O
O
O
CT0_MAT1 — Match output 1 from Timer 0.  
SCT0_OUT3 — SCTimer/PWM output 3.  
TRACEDATA[0] — Trace data bit 0.  
PIO1_0/  
ADC0_6  
N3  
I/O; PIO1_0/ADC0_6 — General-purpose digital input/output pin. ADC  
AI  
input channel 6 if the DIGIMODE bit is set to 0 in the IOCON register  
for this pin.  
I/O FC0_RTS_SCL_SSEL1 — Flexcomm 0: USART request-to-send,  
I2C clock, SPI slave select 1.  
I/O SD_D[3] — SD/MMC data 3.  
I
CT0_CAP2 — Capture 2 input to Timer 0.  
SCT0_GPI4 — Pin input 4 to SCTimer/PWM.  
TRACECLK — Trace clock.  
I
O
PIO1_1  
K12  
I/O PIO1_1/ — General-purpose digital input/output pin.  
I/O FC3_RXD_SDA_MOSI — Flexcomm 3: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
R — Reserved.  
I
I
CT0_CAP3 — Capture 3 input to Timer 0.  
SCT0_GPI5 — Pin input 5 to SCTimer/PWM.  
R — Reserved.  
I/O FC10_MOSI — Flexcomm 10: SPI master-out/slave-in data.  
I
USB1_OVERCURRENTN — USB1 bus overcurrent indicator (active  
low).  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
19 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO1_2  
L14  
Z
I/O PIO1_2 — General-purpose digital input/output pin.  
O
CAN0_TD — Transmitter output for CAN0.  
R — Reserved.  
O
I
CT0_MAT3 — Match output 3 from Timer0.  
SCT0_GPI6 — Pin input 6 to SCTimer/PWM.  
PDM1_CLK — Clock for PDM interface 1, for digital microphone.  
O
I/O FC10_MISO — Flexcomm 10: SPI master-in/slave-out data.  
O
USB1_PORTPWRN — USB1 VBUS drive indicator (Indicates VBUS  
must be driven).  
[2]  
PIO1_3  
J13  
Z
I/O PIO1_3 — General-purpose digital input/output pin.  
I
CAN0_RD — Receiver input for CAN0.  
R — Reserved.  
R — Reserved.  
O
I
SCT0_OUT4 — SCTimer/PWM output 4.  
PDM1_DATA — Data for PDM interface 1 (digital microphone).  
O
USB0_PORTPWRN — USB0 VBUS drive indicator (Indicates VBUS  
must be driven).  
R — Reserved.  
I/O FC10_SCK — Flexcomm 10: SPI clock.  
I/O PIO1_4 — General-purpose digital input/output pin.  
I/O FC0_SCK — Flexcomm 0: USART or SPI clock.  
I/O SD_D[0] — SD/MMC data 0.  
[2]  
PIO1_4  
D4  
Z
O
O
I
CT2_MAT1 — Match output 1 from Timer 2.  
SCT0_OUT0 — SCTimer/PWM output 0.  
FREQME_GPIO_CLK_A — Frequency Measure pin clock input A.  
I/O EMC_D[11]) — External Memory interface data [11].  
I/O PIO1_5 — General-purpose digital input/output pin.  
[2]  
PIO1_5  
E4  
Z
I/O FC0_RXD_SDA_MOSI — Flexcomm 0: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
I/O SD_D[2] — SD/MMC data 2.  
O
I
CT2_MAT0 — Match output 0 from Timer 2.  
SCT0_GPI0 — Pin input 0 to SCTimer/PWM.  
R — Reserved.  
O
EMC_A[4] — External memory interface address 4.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
20 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
[2]  
[2]  
[2]  
PIO1_6  
PIO1_7  
PIO1_8  
PIO1_9  
G4  
N1  
P8  
K6  
Z
I/O PIO1_6 — General-purpose digital input/output pin.  
I/O FC0_TXD_SCL_MISO — Flexcomm 0: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
I/O SD_D[3] — SD/MMC data 3.  
O
I
CT2_MAT1 — Match output 1 from Timer 2.  
SCT0_GPI3 — Pin input 3 to SCTimer/PWM.  
R — Reserved.  
O
EMC_A[5] — External memory interface address 5.  
Z
I/O PIO1_7 — General-purpose digital input/output pin.  
I/O FC0_RTS_SCL_SSEL1 — Flexcomm 0: USART request-to-send,  
I2C clock, SPI slave select 1.  
I/O SD_D[1] — SD/MMC data 1.  
O
I
CT2_MAT2 — Match output 2 from Timer 2.  
SCT0_GPI4 — Pin input 4 to SCTimer/PWM.  
R — Reserved.  
O
EMC_A[6] — External memory interface address 6.  
Z
I/O PIO1_8 — General-purpose digital input/output pin.  
I/O FC0_CTS_SDA_SSEL0 — Flexcomm 0: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
O
O
SD_CLK — SD/MMC clock.  
R — Reserved.  
SCT0_OUT1 — SCTimer/PWM output 1.  
I/O FC4_SSEL2 — Flexcomm 4: SPI slave select 2.  
EMC_A[7] — External memory interface address 7.  
I/O PIO1_9 — General-purpose digital input/output pin.  
ENET_TXD0 — Ethernet transmit data 0.  
I/O FC1_SCK — Flexcomm 1: USART or SPI clock.  
O
ZZ  
O
I
CT1_CAP0 — Capture 0 input to Timer 1.  
SCT0_OUT2 — SCTimer/PWM output 2.  
O
I/O FC4_CTS_SDA_SSEL0 — Flexcomm 4: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
O
EMC_CASN — External memory interface column access strobe  
(active low).  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
21 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO1_10  
N9  
Z
I/O PIO1_10 — General-purpose digital input/output pin.  
O
ENET_TXD1 — Ethernet transmit data 1.  
I/O FC1_RXD_SDA_MOSI — Flexcomm 1: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
O
O
CT1_MAT0 — Match output 0 from Timer 1.  
SCT0_OUT3 — SCTimer/PWM output 3.  
R — Reserved.  
O
EMC_RASN — External memory interface row address strobe (active  
low).  
[2][8]  
PIO1_11  
B4  
Z
I/O PIO1_11 — General-purpose digital input/output pin.  
ENET_TX_EN — Ethernet transmit enable (RMII/MII interface).  
O
I/O FC1_TXD_SCL_MISO — Flexcomm 1: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
I
I
CT1_CAP1 — Capture 1 input to Timer 1.  
USB0_VBUS — Monitors the presence of USB0 bus power.  
R — Reserved.  
O
EMC_CLK[0] — External memory interface clock 0.  
[2]  
PIO1_12  
K9  
Z
I/O PIO1_12 — General-purpose digital input/output pin.  
ENET_RXD0 — Ethernet receive data 0.  
I/O FC6_SCK — Flexcomm 6: USART, SPI, or I2S clock.  
I
O
O
CT1_MAT1 — Match output 1 from Timer 1.  
USB0_PORTPWRN — USB0 VBUS drive indicator (Indicates VBUS  
must be driven).  
O
EMC_DYCSN[0] — External Memory interface SDRAM chip select 0  
(active low).  
[2]  
PIO1_13  
G10  
Z
I/O PIO1_13 — General-purpose digital input/output pin.  
ENET_RXD1 — Ethernet receive data 1.  
I
I/O FC6_RXD_SDA_MOSI_DATA — Flexcomm 6: USART receiver, I2C  
data I/O, SPI master-out/slave-in data, I2S data I/O.  
I
I
CT1_CAP2 — Capture 2 input to Timer 1.  
USB0_OVERCURRENTN — USB0 bus overcurrent indicator (active  
low).  
O
O
USB0_FRAME — USB0 frame toggle signal.  
EMC_DQM[0] — External memory interface data mask 0.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
22 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO1_14  
C12  
Z
I/O PIO1_14 — General-purpose digital input/output pin.  
I
ENET_RX_DV — Ethernet receive data valid.  
UTICK_CAP2 — Micro-tick timer capture input 2.  
CT1_MAT2 — Match output 2 from Timer 1.  
I
O
I/O FC5_CTS_SDA_SSEL0 — Flexcomm 5: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
O
O
USB0_LEDN — USB0-configured LED indicator (active low).  
EMC_DQM[1] — External memory interface data mask 0.  
[2]  
PIO1_15  
A11  
Z
I/O PIO1_15 — General-purpose digital input/output pin.  
I
ENET_RX_CLK — Ethernet Receive Clock (MII interface) or Ethernet  
Reference Clock (RMII interface).  
I
I
UTICK_CAP3 — Micro-tick timer capture input 3.  
CT1_CAP3 — Capture 3 input to Timer 1.  
I/O FC5_RTS_SCL_SSEL1 — Flexcomm 5: USART request-to-send,  
I2C clock, SPI slave select 1.  
I/O FC4_RTS_SCL_SSEL1 — Flexcomm 4: USART request-to-send,  
I2C clock, SPI slave select 1.  
O
EMC_CKE[0] — External memory interface SDRAM clock enable 0.  
I/O PIO1_16 — General-purpose digital input/output pin.  
ENET_MDC — Ethernet management data clock.  
[2]  
PIO1_16  
B7  
Z
O
I/O FC6_TXD_SCL_MISO_WS — Flexcomm 6: USART transmitter, I2C  
clock, SPI master-in/slave-out data I/O, I2S word-select/frame.  
O
CT1_MAT3 — Match output 3 from Timer 1.  
I/O SD_CMD — SD/MMC card command I/O.  
R — Reserved.  
O
EMC_A[10] — External memory interface address 10.  
[2]  
PIO1_17  
N12  
Z
I/O PIO1_17 — General-purpose digital input/output pin.  
I/O ENET_MDIO — Ethernet management data I/O.  
I/O FC8_RXD_SDA_MOSI — Flexcomm 8: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
R — Reserved.  
O
O
O
SCT0_OUT4 — SCTimer/PWM output 4.  
CAN1_TD — Transmitter output for CAN 1.  
EMC_BLSN[0] — External memory interface byte lane select 0  
(active low).  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
23 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO1_18  
D1  
Z
I/O PIO1_18 — General-purpose digital input/output pin.  
R — Reserved.  
I/O FC8_TXD_SCL_MISO — Flexcomm 8: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
R — Reserved.  
O
I
SCT0_OUT5 — SCTimer/PWM output 5.  
CAN1_RD — Receiver input for CAN 1.  
O
EMC_BLSN[1] — External memory interface byte lane select 1  
(active low).  
[2]  
PIO1_19  
L1  
Z
I/O PIO1_19 — General-purpose digital input/output pin.  
I/O FC8_SCK — Flexcomm 8: USART or SPI clock.  
O
O
I
SCT0_OUT7 — SCTimer/PWM output 7.  
CT3_MAT1 — Match output 1 from Timer 3.  
SCT0_GPI7 — Pin input 7 to SCTimer/PWM.  
I/O FC4_SCK — Flexcomm 4: USART or SPI clock.  
I/O EMC_D[8] — External Memory interface data [8].  
I/O PIO1_20 — General-purpose digital input/output pin.  
[2]  
PIO1_20  
M1  
Z
I/O FC7_RTS_SCL_SSEL1 — Flexcomm 7: USART request-to-send,  
I2C clock, SPI slave select 1.  
R — Reserved.  
I
CT3_CAP2 — Capture 2 input to Timer 3.  
R — Reserved.  
I/O FC4_TXD_SCL_MISO — Flexcomm 4: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
I/O EMC_D[9] — External Memory interface data [9].  
I/O PIO1_21 — General-purpose digital input/output pin.  
[2]  
PIO1_21  
N8  
Z
I/O FC7_CTS_SDA_SSEL0 — Flexcomm 7: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
R — Reserved.  
O
CT3_MAT2 — Match output 2 from Timer 3.  
R — Reserved.  
I/O FC4_RXD_SDA_MOSI — Flexcomm 4: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
I/O EMC_D[10] — External Memory interface data [10].  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
24 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO1_22  
P11  
Z
I/O PIO1_22 — General-purpose digital input/output pin.  
I/O FC8_RTS_SCL_SSEL1 — Flexcomm 8: USART request-to-send,  
I2C clock, SPI slave select 1.  
I/O SD_CMD — SD/MMC card command I/O.  
O
I
CT2_MAT3 — Match output 3 from Timer 2.  
SCT0_GPI5 — Pin input 5 to SCTimer/PWM.  
I/O FC4_SSEL3 — Flexcomm 4: SPI slave select 3.  
EMC_CKE[1] — External memory interface SDRAM clock enable 1.  
O
[2]  
PIO1_23  
M10  
Z
I/O PIO1_23 — General-purpose digital input/output pin.  
I/O FC2_SCK — Flexcomm 2: USART or SPI clock.  
O
SCT0_OUT0 — SCTimer/PWM output 0.  
R — Reserved.  
I/O ENET_MDIO — Ethernet management data I/O.  
I/O FC3_SSEL2 — Flexcomm 3: SPI slave select 2.  
O
EMC_A[11] — External memory interface address 11.  
[2]  
PIO1_24  
N14  
Z
I/O PIO1_24 — General-purpose digital input/output pin.  
I/O FC2_RXD_SDA_MOSI — Flexcomm 2: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
O
SCT0_OUT1 — SCTimer/PWM output 1.  
R — Reserved.  
R — Reserved.  
I/O FC3_SSEL3 — Flexcomm 3: SPI slave select 3.  
EMC_A[12] — External memory interface address 12.  
O
[2]  
PIO1_25  
M12  
Z
I/O PIO1_25 — General-purpose digital input/output pin.  
I/O FC2_TXD_SCL_MISO — Flexcomm 2: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
O
I
SCT0_OUT2 — SCTimer/PWM output 2.  
R — Reserved.  
UTICK_CAP0 — Micro-tick timer capture input 0.  
R — Reserved.  
O
EMC_A[13] — External memory interface address 13.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
25 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO1_26  
J10  
Z
I/O PIO1_26 — General-purpose digital input/output pin.  
I/O FC2_CTS_SDA_SSEL0 — Flexcomm 2: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
O
I
SCT0_OUT3 — SCTimer/PWM output 3.  
CT0_CAP3 — Capture 3 input to Timer 0.  
UTICK_CAP1 — Micro-tick timer capture input 1.  
R — Reserved.  
I
O
EMC_A[8] — External memory interface address 8.  
[2]  
PIO1_27  
F10  
Z
I/O PIO1_27 — General-purpose digital input/output pin.  
I/O FC2_RTS_SCL_SSEL1 — Flexcomm 2: USART request-to-send,  
I2C clock, SPI slave select 1.  
I/O SD_D[4] — SD/MMC data 4.  
O
O
CT0_MAT3 — Match output 3 from Timer 0.  
CLKOUT — Output of the CLKOUT function.  
R — Reserved.  
O
EMC_A[9] — External memory interface address 9.  
[2]  
PIO1_28  
E12  
Z
I/O PIO1_28 — General-purpose digital input/output pin.  
I/O FC7_SCK — Flexcomm 7: USART, SPI, or I2S clock.  
I/O SD_D[5] — SD/MMC data 5.  
I
CT0_CAP2 — Capture 2 input to Timer 0.  
R — Reserved.  
R — Reserved.  
I/O EMC_D[12] — External Memory interface data [12].  
I/O PIO1_29 — General-purpose digital input/output pin.  
[2][8]  
PIO1_29  
C11  
Z
I/O FC7_RXD_SDA_MOSI_DATA — Flexcomm 7: USART receiver, I2C  
data I/O, SPI master-out/slave-in data, I2S data I/O.  
I/O SD_D[6] — SD/MMC data 6.  
I
SCT0_GPI6 — Pin input 6 to SCTimer/PWM.  
O
USB1_PORTPWRN — USB1 VBUS drive indicator (Indicates VBUS  
must be driven).  
O
USB1_FRAME — USB1 frame toggle signal.  
I/O EMC_D[13] — External Memory interface data [13].  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
26 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO1_30  
A8  
Z
I/O PIO1_30 — General-purpose digital input/output pin.  
I/O FC7_TXD_SCL_MISO_WS — Flexcomm 7: USART transmitter, I2C  
clock, SPI master-in/slave-out data I/O, I2S word-select/frame.  
I/O SD_D[7] — SD/MMC data 7.  
I
I
SCT0_GPI7 — Pin input 7 to SCTimer/PWM.  
USB1_OVERCURRENTN — USB1 bus overcurrent indicator (active  
low).  
O
USB1_LEDN — USB1-configured LED indicator (active low).  
I/O EMC_D[14] — External Memory interface data [14].  
I/O PIO1_31 — General-purpose digital input/output pin.  
I/O MCLK — MCLK input or output for I2S and/or digital microphone.  
R — Reserved.  
[2]  
PIO1_31  
C5  
Z
O
O
CT0_MAT2 — Match output 2 from Timer 0.  
SCT0_OUT6 — SCTimer/PWM output 6.  
I/O FC8_CTS_SDA_SSEL0 — Flexcomm 8: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
I/O EMC_D[15] — External Memory interface data [15].  
[4]  
[4]  
[2]  
PIO2_0/  
ADC0_7  
P3  
P4  
C3  
Z
Z
Z
I/O; PIO2_0/ADC0_7 — General-purpose digital input/output pin. ADC  
AI  
input channel 7 if the DIGIMODE bit is set to 0 in the IOCON register  
for this pin.  
R — Reserved.  
I/O FC0_RXD_SDA_MOSI — Flexcomm 0: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
R — Reserved.  
O
CT1_CAP0 — Capture input 0 to Timer 1.  
PIO2_1/  
ADC0_8  
I/O; PIO2_1/ADC0_8 — General-purpose digital input/output pin. ADC  
AI  
input channel 8 if the DIGIMODE bit is set to 0 in the IOCON register  
for this pin.  
R — Reserved.  
I/O FC0_TXD_SCL_MISO — Flexcomm 0: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
R — Reserved.  
O
CT1_MAT0 — Match output 0 from Timer 1.  
PIO2_2  
I/O PIO2_2 — General-purpose digital input/output pin.  
I
ENET_CRS — Ethernet Carrier Sense (MII interface) or Ethernet  
Carrier Sense/Data Valid (RMII interface).  
I/O FC3_SSEL3 — Flexcomm 3: SPI slave select 3.  
O
O
SCT0_OUT6 — SCTimer/PWM output 6.  
CT1_MAT1 — Match output 1 from Timer 1.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
27 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
[2]  
[2]  
[2]  
PIO2_3  
PIO2_4  
PIO2_5  
PIO2_6  
B1  
D3  
C1  
F3  
Z
Z
Z
Z
I/O PIO2_3 — General-purpose digital input/output pin.  
O
O
ENET_TXD2 — Ethernet transmit data 2 (MII interface).  
SD_CLK — SD/MMC clock.  
I/O FC1_RXD_SDA_MOSI — Flexcomm 1: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
O
CT2_MAT0 — Match output 0 from Timer 2.  
I/O PIO2_4 — General-purpose digital input/output pin.  
ENET_TXD3 — Ethernet transmit data 3 (MII interface).  
O
I/O SD_CMD — SD/MMC card command I/O.  
I/O FC1_TXD_SCL_MISO — Flexcomm 1: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
O
CT2_MAT1 — Match output 1 from Timer 2.  
I/O PIO2_5 — General-purpose digital input/output pin.  
O
O
ENET_TX_ER — Ethernet Transmit Error (MII interface).  
SD_POW_EN — SD/MMC card power enable  
I/O FC1_CTS_SDA_SSEL0 — Flexcomm 1: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
O
CT1_MAT2 — Match output 2 from Timer 1.  
I/O PIO2_6 — General-purpose digital input/output pin.  
ENET_TX_CLK — Ethernet Transmit Clock (MII interface).  
I
I/O SD_D[0] — SD/MMC data 0.  
I/O FC1_RTS_SCL_SSEL1 — Flexcomm 1: USART request-to-send,  
I2C clock, SPI slave select 1.  
I
CT0_CAP0 — Capture input 0 to Timer 0.  
I/O PIO2_7 — General-purpose digital input/output pin.  
ENET_COL — Ethernet Collision detect (MII interface).  
I/O SD_D(1) — SD/MMC data 1.  
[2]  
PIO2_7  
PIO2_8  
J2  
Z
Z
I
I
I
FREQME_GPIO_CLK_B — Frequency Measure pin clock input B.  
CT0_CAP1 — Capture input 1 to Timer 0.  
[2]  
F4  
I/O PIO2_8 — General-purpose digital input/output pin.  
ENET_RXD2 — Ethernet Receive Data 2 (MII interface).  
I
I/O SD_D[2] — SD/MMC data 2.  
R — Reserved.  
O
CT0_MAT0 — Match output 0 from Timer 0.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
28 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO2_9  
K2  
Z
I/O PIO2_9 — General-purpose digital input/output pin.  
I
ENET_RXD3 — Ethernet Receive Data 3 (MII interface).  
I/O SD_D[3] — SD/MMC data 3.  
R — Reserved.  
O
CT0_MAT1 — Match output 0 from Timer 1.  
[2]  
[2]  
PIO2_10  
PIO2_11  
P1  
K3  
Z
Z
I/O PIO2_10 — General-purpose digital input/output pin.  
I
I
ENET_RX_ER — Ethernet receive error (RMII/MII interface).  
SD_CARD_DET_N — SD/MMC card detect (active low).  
I/O PIO2_11 — General-purpose digital input/output pin.  
O
O
LCD_PWR — LCD panel power enable.  
SD_VOLT[0] — SD/MMC card regulator voltage control [0].  
R — Reserved.  
R — Reserved.  
I/O FC5_SCK — Flexcomm 5: USART or SPI clock.  
I/O PIO2_12 — General-purpose digital input/output pin.  
[2]  
PIO2_12  
M2  
Z
O
O
I
LCD_LE — LCD line end signal.  
SD_VOLT[1] — SD/MMC card regulator voltage control [1].  
USB0_IDVALUE — Indicates to the transceiver whether connected  
as an A-device (USB0_ID LOW) or B-device (USB0_ID HIGH).  
R — Reserved.  
I/O FC5_RXD_SDA_MOSI — Flexcomm 5: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
[2]  
PIO2_13  
P7  
Z
I/O PIO2_13 — General-purpose digital input/output pin.  
O
O
LCD_DCLK — LCD panel clock.  
SD_VOLT[2] — SD/MMC card regulator voltage control [2].  
R — Reserved.  
R — Reserved.  
I/O FC5_TXD_SCL_MISO — Flexcomm 5: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
[2][8]  
PIO2_14  
L7  
Z
I/O PIO2_14 — General-purpose digital input/output pin.  
O
LCD_FP — LCD frame pulse (STN). Vertical synchronization pulse  
(TFT).  
O
O
USB0_FRAME — USB0 frame toggle signal.  
USB0_PORTPWRN — USB0 VBUS drive indicator (Indicates VBUS  
must be driven).  
O
CT0_MAT2 — Match output 2 from Timer 0.  
I/O FC5_CTS_SDA_SSEL0 — Flexcomm 5: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
29 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO2_15  
PIO2_16  
PIO2_17  
M8  
Z
Z
Z
I/O PIO2_15 — General-purpose digital input/output pin.  
O
O
I
LCD_AC — LCD STN AC bias drive or TFT data enable output.  
USB0_LEDN — USB0-configured LED indicator (active low).  
USB0_OVERCURRENTN — USB0 bus overcurrent indicator (active  
low).  
O
CT0_MAT3 — Match output 3 from Timer 0.  
I/O FC5_RTS_SCL_SSEL1 — Flexcomm 5: USART request-to-send,  
I2C clock, SPI slave select 1.  
[2][8]  
L8  
I/O PIO2_16 — General-purpose digital input/output pin.  
O
LCD_LP — LCD line synchronization pulse (STN). Horizontal  
synchronization pulse (TFT).  
O
O
USB1_FRAME — USB1 frame toggle signal.  
USB1_PORTPWRN — USB1 VBUS drive indicator (Indicates VBUS  
must be driven).  
O
CT1_MAT3 — Match output 3 from Timer 1.  
I/O FC8_SCK — Flexcomm 8: USART or SPI clock.  
I/O PIO2_17 — General-purpose digital input/output pin.  
[2]  
P10  
I
LCD_CLKIN — LCD clock input.  
O
I
USB1_LEDN — USB1-configured LED indicator (active low).  
USB1_OVERCURRENTN — USB1 bus overcurrent indicator (active  
low).  
I
CT1_CAP1 — Capture 1 input to Timer 1.  
I/O FC8_RXD_SDA_MOSI — Flexcomm 8: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
[2]  
PIO2_18  
PIO2_19  
N10  
P12  
Z
Z
I/O PIO2_18 — General-purpose digital input/output pin.  
O
LCD_VD[0] — LCD Data [0].  
I/O FC3_RXD_SDA_MOSI — Flexcomm 3: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
I/O FC7_SCK — Flexcomm 7: USART, SPI, or I2S clock.  
O
CT3_MAT0 — Match output 0 from Timer 3.  
I/O PIO2_19 — General-purpose digital input/output pin.  
LCD_VD[1] — LCD Data [1].  
[2]  
O
I/O FC3_TXD_SCL_MISO — Flexcomm 3: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
I/O FC7_RXD_SDA_MOSI_DATA — Flexcomm 7: USART receiver, I2C  
data I/O, SPI master-out/slave-in data, I2S data I/O.  
O
CT3_MAT1 — Match output 1 from Timer 3.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
30 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO2_20  
P13  
Z
I/O PIO2_20 — General-purpose digital input/output pin.  
O
LCD_VD[2] — LCD Data [2].  
I/O FC3_RTS_SCL_SSEL1 — Flexcomm 3: USART request-to-send,  
I2C clock, SPI slave select 1.  
I/O FC7_TXD_SCL_MISO_WS — Flexcomm 7: USART transmitter, I2C  
clock, SPI master-in/slave-out data I/O, I2S word-select/frame.  
O
I
CT3_MAT2 — Match output 2 from Timer 3.  
CT4_CAP0 — Capture input 4 to Timer 0.  
[2]  
PIO2_21  
PIO2_22  
L10  
K10  
Z
Z
I/O PIO2_21 — General-purpose digital input/output pin.  
LCD_VD[3] — LCD Data [3].  
O
I/O FC3_CTS_SDA_SSEL0 — Flexcomm 3: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
I/O MCLK — MCLK input or output for I2S and/or digital microphone.  
O
CT3_MAT3 — Match output 3 from Timer 3.  
[2]  
I/O PIO2_22 — General-purpose digital input/output pin.  
O
O
LCD_VD[4] — LCD Data [4].  
SCT0_OUT7 — SCTimer/PWM output 7.  
R — Reserved.  
I
CT2_CAP0 — Capture input 0 to Timer 2.  
R — Reserved.  
FC10_SSEL1 — Flexcomm 10: SPI Slave Select 1.  
[2]  
PIO2_23  
PIO2_24  
PIO2_25  
M14  
K14  
J11  
Z
Z
Z
I/O PIO2_23 — General-purpose digital input/output pin.  
O
O
LCD_VD[5] — LCD Data [5].  
SCT0_OUT8 — SCTimer/PWM output 8.  
R — Reserved.  
R — Reserved.  
R — Reserved.  
I/O FC10_SSEL2 — Flexcomm 10: SPI Slave Select 2.  
I/O PIO2_24 — General-purpose digital input/output pin.  
[2]  
O
O
LCD_VD[6] — LCD Data [6].  
SCT0_OUT9 — SCTimer/PWM output 9.  
R — Reserved.  
R — Reserved.  
R — Reserved.  
I/O FC10_SSEL3 — Flexcomm 10: SPI Slave Select 3.  
I/O PIO2_25 — General-purpose digital input/output pin.  
[2][8]  
O
I
LCD_VD[7] — LCD Data [7].  
USB0_VBUS — Monitors the presence of USB0 bus power.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
31 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO2_26  
H11  
Z
I/O PIO2_26 — General-purpose digital input/output pin.  
O
LCD_VD[8] — LCD Data [8].  
R — Reserved.  
I/O FC3_SCK — Flexcomm 3: USART or SPI clock.  
CT2_CAP1 — Capture input 1 to Timer 2.  
I/O PIO2_27 — General-purpose digital input/output pin.  
LCD_VD[9] — LCD Data [9].  
I
[2]  
[2]  
PIO2_27  
PIO2_28  
H14  
G13  
Z
Z
O
I/O FC9_SCK — Flexcomm 9: USART or SPI clock.  
I/O FC3_SSEL2 — Flexcomm 3: SPI slave select 2.  
I/O PIO2_28 — General-purpose digital input/output pin.  
O
LCD_VD[10]) — LCD Data [10].  
I/O FC7_CTS_SDA_SSEL0 — Flexcomm 7: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
R — Reserved  
I
CT2_CAP2 — Capture input 2 to Timer 2.  
I/O PIO2_29 — General-purpose digital input/output pin.  
LCD_VD[11] — LCD Data [11].  
[2]  
PIO2_29  
G11  
Z
O
I/O FC7_RTS_SCL_SSEL1 — Flexcomm 7: USART request-to-send,  
I2C clock, SPI slave select 1.  
I/O FC8_TXD_SCL_MISO — Flexcomm 8: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
I
CT2_CAP3 — Capture 3 input to Timer 2.  
CLKOUT — Output of the CLKOUT function.  
O
[2]  
PIO2_30  
F12  
Z
I/O PIO2_30 — General-purpose digital input/output pin.  
O
LCD_VD[12] — LCD Data [12].  
R — Reserved.  
R — Reserved.  
O
CT2_MAT2 — Match output 2 from Timer 2.  
[2]  
[2]  
PIO2_31  
PIO3_0  
D14  
D12  
Z
Z
I/O PIO2_31 — General-purpose digital input/output pin.  
LCD_VD[13] — LCD Data [13].  
I/O PIO3_0 — General-purpose digital input/output pin.  
O
O
O
LCD_VD[14] — LCD Data [14].  
PDM0_CLK — Clock for PDM interface 0, for digital microphone.  
R — Reserved.  
O
CT1_MAT0 — Match output 0 from Timer 1.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
32 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO3_1  
PIO3_2  
D11  
C10  
Z
Z
I/O PIO3_1 — General-purpose digital input/output pin.  
O
I
LCD_VD[15] — LCD Data [15].  
PDM0_DATA — Data for PDM interface 0 (digital microphone).  
R — Reserved.  
O
CT1_MAT1 — Match output 1 from Timer 1.  
[2]  
I/O PIO3_2 — General-purpose digital input/output pin.  
LCD_VD[16] — LCD Data [16].  
O
I/O FC9_RXD_SDA_MOSI — Flexcomm 9: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
R — Reserved.  
O
CT1_MAT2 — Match output 2 from Timer 1.  
I/O PIO3_3 — General-purpose digital input/output pin.  
LCD_VD[17] — LCD Data [17].  
[2]  
[2]  
PIO3_3  
PIO3_4  
A13  
B11  
Z
Z
O
I/O FC9_TXD_SCL_MISO — Flexcomm 9: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
I/O PIO3_4 — General-purpose digital input/output pin.  
O
LCD_VD[18] — LCD Data [18].  
R — Reserved.  
I/O FC8_CTS_SDA_SSEL0 — Flexcomm 8: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
I
CT4_CAP1 — Capture input 4 to Timer 1.  
[2]  
PIO3_5  
B10  
Z
I/O PIO3_5 — General-purpose digital input/output pin.  
O
LCD_VD[19] — LCD Data [19].  
R — Reserved.  
I/O FC8_RTS_SCL_SSEL1 — Flexcomm 8: USART request-to-send,  
I2C clock, SPI slave select 1.  
O
CT4_MAT1 — Match output 1 from Timer 4.  
[2]  
PIO3_6  
PIO3_7  
C9  
B8  
Z
Z
I/O PIO3_6 — General-purpose digital input/output pin.  
O
O
LCD_VD[20] — LCD Data [20].  
LCD_VD[0] — LCD Data [0].  
R — Reserved.  
O
CT4_MAT2 — Match output 2 from Timer 4.  
[2]  
I/O PIO3_7 — General-purpose digital input/output pin.  
O
O
LCD_VD[21] — LCD Data [21].  
LCD_VD[1] — LCD Data [1].  
R — Reserved.  
I
CT4_CAP2 — Capture input 2 to Timer 4.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
33 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
[2]  
[2]  
PIO3_8  
PIO3_9  
PIO3_10  
A7  
C7  
A3  
Z
Z
Z
I/O PIO3_8 — General-purpose digital input/output pin.  
O
O
LCD_VD[22] — LCD Data [22].  
LCD_VD[2] — LCD Data [2].  
R — Reserved.  
I
CT4_CAP3 — Capture input 3 to Timer 4.  
I/O PIO3_9 — General-purpose digital input/output pin.  
O
O
LCD_VD[23] — LCD Data [23].  
LCD_VD[3] — LCD Data [3].  
R — Reserved.  
I
CT0_CAP2 — Capture input 2 to Timer 0.  
I/O PIO3_10 — General-purpose digital input/output pin.  
O
O
SCT0_OUT3 — SCTimer/PWM output 3.  
R — Reserved.  
CT3_MAT0 — Match output 0 from Timer 3.  
R — Reserved.  
R — Reserved.  
O
O
EMC_DYCSN[1] — External Memory interface SDRAM chip select  
1(active low).  
TRACEDATA[0] — Trace data bit 0.  
[2]  
PIO3_11  
B2  
Z
I/O PIO3_11 — General-purpose digital input/output pin.  
I/O MCLK — MCLK input or output for I2S and/or digital microphone.  
I/O FC0_SCK — Flexcomm 0: USART or SPI clock.  
I/O FC1_SCK — Flexcomm 1: USART or SPI clock.  
R — Reserved.  
R — Reserved.  
R — Reserved.  
O
TRACEDATA[3] — Trace data bit 3.  
[2]  
PIO3_12  
L2  
Z
I/O PIO3_12 — General-purpose digital input/output pin.  
O
I
SCT0_OUT8 — SCTimer/PWM output 8.  
R — Reserved.  
CT3_CAP0 — Capture input 0 to Timer 3.  
R — Reserved.  
O
O
O
CLKOUT — Output of the CLKOUT function.  
EMC_CLK[1] — External memory interface clock 1.  
TRACECLK — Trace clock.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
34 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO3_13  
H4  
Z
I/O PIO3_13 — General-purpose digital input/output pin.  
O
SCT0_OUT9 — SCTimer/PWM output 9.  
I/O FC9_CTS_SDA_SSEL0 — Flexcomm 9: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
I
CT3_CAP1 — Capture input 1 to Timer 3.  
R — Reserved.  
R — Reserved.  
I
EMC_FBCK — External memory interface feedback clock.  
TRACEDATA[1] — Trace data bit 1.  
O
[2]  
PIO3_14  
E3  
Z
I/O PIO3_14 — General-purpose digital input/output pin.  
SCT0_OUT4 — SCTimer/PWM output 4.  
O
I/O FC9_RTS_SCL_SSEL1 — Flexcomm 9: USART request-to-send,  
I2C clock, SPI slave select 1.  
O
O
CT3_MAT1 — Match output 1 from Timer 3.  
R — Reserved.  
R — Reserved.  
R — Reserved.  
TRACEDATA[2] — Trace data bit 2.  
[2]  
[2]  
PIO3_15  
PIO3_16  
D2  
E1  
Z
Z
I/O PIO3_15 — General-purpose digital input/output pin.  
I/O FC8_SCK — Flexcomm 8: USART or SPI clock.  
I
SD_WR_PRT — SD/MMC write protect.  
I/O PIO3_16 — General-purpose digital input/output pin.  
I/O FC8_RXD_SDA_MOSI — Flexcomm 8: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
I/O SD_D[4] — SD/MMC data 4.  
[2]  
[2]  
PIO3_17  
PIO3_18  
K1  
Z
Z
I/O PIO3_17 — General-purpose digital input/output pin.  
I/O FC8_TXD_SCL_MISO — Flexcomm 8: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
I/O SD_D[5] — SD/MMC data 5.  
M6  
I/O PIO3_18 — General-purpose digital input/output pin.  
I/O FC8_CTS_SDA_SSEL0 — Flexcomm 8: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
I/O SD_D[6] — SD/MMC data 6.  
O
O
O
CT4_MAT0 — Match output 0 from Timer 4.  
CAN0_TD — Transmitter output for CAN 0.  
SCT0_OUT5 — SCTimer/PWM output 5.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
35 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO3_19  
J3  
Z
I/O PIO3_19 — General-purpose digital input/output pin.  
I/O FC8_RTS_SCL_SSEL1 — Flexcomm 8: USART request-to-send,  
I2C clock, SPI slave select 1.  
I/O SD_D[7] — SD/MMC data 7.  
O
I
CT4_MAT1 — Match output 1 from Timer 4.  
CAN0_RD — Receiver input for CAN 0.  
SCT0_OUT6 — SCTimer/PWM output 6.  
O
[2]  
PIO3_20  
N2  
Z
Z
I/O PIO3_20 — General-purpose digital input/output pin.  
I/O FC9_SCK — Flexcomm 9: USART or SPI clock.  
I
SD_CARD_INT_N —  
O
CLKOUT — Output of the CLKOUT function.  
R — Reserved.  
O
SCT0_OUT7 — SCTimer/PWM output 7.  
[4]  
PIO3_21/  
ADC0_9  
P5  
I/O; PIO3_21/ADC0_9 — General-purpose digital input/output pin. ADC  
AI  
input channel 9 if the DIGIMODE bit is set to 0 in the IOCON register  
for this pin.  
I/O FC9_RXD_SDA_MOSI — Flexcomm 9: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
O
SD_BACKEND_PWR — SD/MMC back-end power supply for  
embedded device.  
O
I
CT4_MAT3 — Match output 3 from Timer 4.  
UTICK_CAP2 — Micro-tick timer capture input 2.  
[4]  
[3]  
PIO3_22/  
ADC0_10  
N5  
C2  
Z
Z
I/O; PIO3_22/ADC0_10 — General-purpose digital input/output pin. ADC  
AI  
input channel 10 if the DIGIMODE bit is set to 0 in the IOCON register  
for this pin.  
I/O FC9_TXD_SCL_MISO — Flexcomm 9: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
PIO3_23  
PIO3_24  
I/O PIO3_23 — General-purpose digital input/output pin.  
I/O FC2_CTS_SDA_SSEL0 — Flexcomm 2: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
R — Reserved.  
I
UTICK_CAP3 — Micro-tick timer capture input 3.  
[3]  
E2  
Z
I/O PIO3_24 — General-purpose digital input/output pin.  
I/O FC2_RTS_SCL_SSEL1 — Flexcomm 2: USART request-to-send,  
I2C clock, SPI slave select 1.  
I
I
CT4_CAP0 — Capture input 4 to Timer 0.  
USB0_VBUS — Monitors the presence of USB0 bus power.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
36 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO3_25  
P9  
Z
I/O PIO3_25 — General-purpose digital input/output pin.  
R — Reserved.  
I
CT4_CAP2 — Capture input 2 to Timer 4.  
I/O FC4_SCK — Flexcomm 4: USART or SPI clock.  
R — Reserved.  
R — Reserved.  
O
EMC_A[14] — External memory interface address 14.  
[2]  
PIO3_26  
K5  
Z
I/O PIO3_26 — General-purpose digital input/output pin.  
R — Reserved.  
O
SCT0_OUT0 — SCTimer/PWM output 0.  
I/O FC4_RXD_SDA_MOSI — Flexcomm 4: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
R — Reserved.  
R — Reserved.  
O
EMC_A[15] — External memory interface address 15.  
[2]  
PIO3_27  
P14  
Z
I/O PIO3_27 — General-purpose digital input/output pin.  
R — Reserved.  
O
SCT0_OUT1 — SCTimer/PWM output 1.  
I/O FC4_TXD_SCL_MISO — Flexcomm 4: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
R — Reserved.  
R — Reserved.  
O
EMC_A[16] — External memory interface address 16.  
[2]  
PIO3_28  
M11  
Z
I/O PIO3_28 — General-purpose digital input/output pin.  
R — Reserved.  
O
SCT0_OUT2 — SCTimer/PWM output 2.  
I/O FC4_CTS_SDA_SSEL0 — Flexcomm 4: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
R — Reserved.  
R — Reserved.  
O
EMC_A[17] — External memory interface address 17.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
37 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
[2]  
[2]  
[2]  
PIO3_29  
PIO3_30  
PIO3_31  
PIO4_0  
L13  
K13  
J14  
H13  
Z
Z
Z
Z
I/O PIO3_29 — General-purpose digital input/output pin.  
R — Reserved.  
O
SCT0_OUT3 — SCTimer/PWM output 3.  
I/O FC4_RTS_SCL_SSEL1 — Flexcomm 4: USART request-to-send,  
I2C clock, SPI slave select 1.  
R — Reserved.  
R — Reserved.  
O
EMC_A[18] — External memory interface address 18.  
I/O PIO3_30 — General-purpose digital input/output pin.  
I/O FC9_CTS_SDA_SSEL0 — Flexcomm 9: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
O
SCT0_OUT4 — SCTimer/PWM output 4.  
I/O FC4_SSEL2 — Flexcomm 4: SPI slave select 2.  
R — Reserved.  
R — Reserved.  
O
EMC_A[19] — External memory interface address 19.  
I/O PIO3_31 — General-purpose digital input/output pin.  
I/O FC9_RTS_SCL_SSEL1 — Flexcomm 9: USART request-to-send,  
I2C clock, SPI slave select 1.  
O
O
SCT0_OUT5 — SCTimer/PWM output 5.  
CT4_MAT2 — Match output 2 from Timer 4.  
R — Reserved.  
I
SCT0_GPI0 — Pin input 0 to SCTimer/PWM.  
EMC_A[20] — External memory interface address 20.  
O
I/O PIO4_0 — General-purpose digital input/output pin.  
R — Reserved.  
I/O FC6_CTS_SDA_SSEL0 — Flexcomm 6: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
I
CT4_CAP1 — Capture input 4 to Timer 1.  
R — Reserved.  
I
SCT0_GPI1 — Pin input 1 to SCTimer/PWM.  
O
EMC_CSN[1] — External memory interface static chip select 1(active  
low).  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
38 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO4_1  
G14  
Z
I/O PIO4_1 — General-purpose digital input/output pin.  
R — Reserved.  
I/O FC6_SCK — Flexcomm 6: USART, SPI, or I2S clock.  
R — Reserved.  
R — Reserved.  
I
SCT0_GPI2 — Pin input 2 to SCTimer/PWM.  
O
EMC_CSN[2] — External memory interface static chip select 2 (active  
low).  
[2]  
PIO4_2  
F14  
Z
I/O PIO4_2 — General-purpose digital input/output pin.  
R — Reserved.  
I/O FC6_RXD_SDA_MOSI_DATA — Flexcomm 6: USART receiver, I2C  
data I/O, SPI master-out/slave-in data, I2S data I/O.  
R — Reserved.  
R — Reserved.  
I
SCT0_GPI3 — Pin input 3 to SCTimer/PWM.  
O
EMC_CSN[3] — External memory interface static chip select 3 (active  
low).  
[2]  
PIO4_3  
F13  
Z
I/O PIO4_3 — General-purpose digital input/output pin.  
R — Reserved.  
I/O FC6_TXD_SCL_MISO_WS — Flexcomm 6: USART transmitter, I2C  
clock, SPI master-in/slave-out data I/O, I2S word-select/frame.  
I
CT0_CAP3 — Capture 3 input to Timer 0.  
R — Reserved.  
I
SCT0_GPI4 — Pin input 4 to SCTimer/PWM.  
O
EMC_DYCSN[2] — External Memory interface SDRAM chip select 2  
(active low).  
[2]  
PIO4_4  
D9  
Z
I/O PIO4_4 — General-purpose digital input/output pin.  
R — Reserved.  
I/O FC4_SSEL3 — Flexcomm 4: SPI slave select 3.  
I/O FC0_RTS_SCL_SSEL1 — Flexcomm 0: USART request-to-send,  
I2C clock, SPI slave select 1.  
R — Reserved.  
I
SCT0_GPI5 — Pin input 5 to SCTimer/PWM.  
O
EMC_DYCSN[3] — External Memory interface SDRAM chip select 3  
(active low).  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
39 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
PIO4_5  
E10  
Z
I/O PIO4_5 — General-purpose digital input/output pin.  
R — Reserved.  
I/O FC9_CTS_SDA_SSEL0 — Flexcomm 9: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
I/O FC0_CTS_SDA_SSEL0 — Flexcomm 0: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
O
I
CT4_MAT3 — Match output 3 from Timer 4.  
SCT0_GPI6 — Pin input 6 to SCTimer/PWM.  
O
EMC_CKE[2] — External memory interface SDRAM clock enable 2.  
[2]  
PIO4_6  
D10  
Z
I/O PIO4_6 — General-purpose digital input/output pin.  
R — Reserved.  
I/O FC9_RTS_SCL_SSEL1 — Flexcomm 9: USART request-to-send,  
I2C clock, SPI slave select 1.  
R — Reserved.  
R — Reserved.  
I
SCT0_GPI7 — Pin input 7 to SCTimer/PWM.  
O
EMC_CKE[3] — External memory interface SDRAM clock enable 3.  
[2][8]  
PIO4_7  
PIO4_8  
PIO4_9  
A14  
B14  
A12  
Z
Z
Z
I/O PIO4_7 — General-purpose digital input/output pin.  
R — Reserved.  
I
CT4_CAP3 — Capture input 3 to Timer 4.  
O
USB0_PORTPWRN — USB0 VBUS drive indicator (Indicates VBUS  
must be driven).  
O
I
USB0_FRAME — USB0 frame toggle signal.  
SCT0_GPI0 — Pin input 0 to SCTimer/PWM.  
[2]  
I/O PIO4_8 — General-purpose digital input/output pin.  
ENET_TXD0 — Ethernet transmit data 0.  
I/O FC2_SCK — Flexcomm 2: USART or SPI clock.  
O
I
USB0_OVERCURRENTN — USB0 bus overcurrent indicator (active  
low).  
O
I
USB0_LEDN — USB0-configured LED indicator (active low).  
SCT0_GPI1 — Pin input 1 to SCTimer/PWM.  
[2][8]  
I/O PIO4_9 — General-purpose digital input/output pin.  
ENET_TXD1 — Ethernet transmit data 1.  
O
I/O FC2_RXD_SDA_MOSI — Flexcomm 2: USART receiver, I2C data  
I/O, SPI master-out/slave-in data.  
O
USB1_PORTPWRN — USB1 VBUS drive indicator (Indicates VBUS  
must be driven).  
O
I
USB1_FRAME — USB1 frame toggle signal.  
SCT0_GPI2 — Pin input 2 to SCTimer/PWM.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
40 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
[2]  
[2]  
PIO4_10  
PIO4_11  
PIO4_12  
B9  
A9  
A6  
Z
Z
Z
I/O PIO4_10 — General-purpose digital input/output pin.  
I
ENET_RX_DV — Ethernet receive data valid.  
I/O FC2_TXD_SCL_MISO — Flexcomm 2: USART transmitter, I2C clock,  
SPI master-in/slave-out data.  
I
USB1_OVERCURRENTN — USB1 bus overcurrent indicator (active  
low).  
O
USB1_LEDN — USB1-configured LED indicator (active low).  
SCT0_GPI3 — Pin input 3 to SCTimer/PWM.  
I/O PIO4_11 — General-purpose digital input/output pin.  
ENET_RXD0 — Ethernet receive data 0.  
I
I/O FC2_CTS_SDA_SSEL0 — Flexcomm 2: USART clear-to-send, I2C  
data I/O, SPI Slave Select 0.  
I
USB0_IDVALUE — Indicates to the transceiver whether connected  
as an A-device (USB0_ID LOW) or B-device (USB0_ID HIGH).  
R — Reserved.  
I
SCT0_GPI4 — Pin input 4 to SCTimer/PWM.  
I/O PIO4_12 — General-purpose digital input/output pin.  
ENET_RXD1 — Ethernet receive data 1.  
I
I/O FC2_RTS_SCL_SSEL1 — Flexcomm 2: USART request-to-send,  
I2C clock, SPI slave select 1.  
R — Reserved.  
I
SCT0_GPI5 — Pin input 5 to SCTimer/PWM.  
[2]  
PIO4_13  
PIO4_14  
B6  
B5  
Z
Z
I/O PIO4_13 — General-purpose digital input/output pin.  
O
O
ENET_TX_EN — Ethernet transmit enable (RMII/MII interface).  
CT4_MAT0 — Match output 0 from Timer 4.  
R — Reserved.  
I
SCT0_GPI6 — Pin input 6 to SCTimer/PWM.  
[2]  
I/O PIO4_14 — General-purpose digital input/output pin.  
I
ENET_RX_CLK — Ethernet Receive Clock (MII interface) or Ethernet  
Reference Clock (RMII interface).  
O
CT4_MAT1 — Match output 1 from Timer 4.  
I/O FC9_SCK — Flexcomm 9: USART or SPI clock.  
R — Reserved.  
I
SCT0_GPI7 — Pin input 7 to SCTimer/PWM.  
USB1 analog 3.3 V ground.  
USB1_AVSSC  
USB1_REXT  
USB1_ID  
F2  
F1  
G1  
USB1 analog signal for reference resistor, 12.4 k+/-1%  
Indicates to the transceiver whether connected as an A-device  
(USB1_ID LOW) or B-device (USB1_ID HIGH).  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
41 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[6][8]  
USB1_VBUS  
G2  
I/O VBUS pin (power on USB cable). 5 V tolerant when USB1_AVDD3V3  
and USB1_AVDDTX3V3 = 0 V.  
USB1_AVDDC3V3  
USB1_AVDDTX3V3  
USB1_DP  
G3  
H1  
H3  
H2  
J1  
USB1 analog 3.3 V supply.  
USB1 analog 3.3 V supply for line drivers.  
I/O USB1 bidirectional D+ line.  
I/O USB1 bidirectional D- line.  
USB1 analog ground for line drivers.  
I/O USB0 bidirectional D+ line.  
I/O USB0 bidirectional D- line.  
[6]  
[6]  
USB1_DM  
USB1_AVSSTX3V3  
USB0_DP  
[6]  
[6]  
[5]  
E5  
D5  
N13  
USB0_DM  
RESETN  
External reset input: A LOW on this pin resets the device, causing I/O  
ports and peripherals to take on their default states, and the boot code  
to execute. Wakes up the part from deep power-down mode.  
VDD  
A4  
-
-
Single 2.7 V to 3.6 V power supply powers internal digital functions  
and I/Os.  
E6;  
E8;  
F5;  
G5;  
J12;  
L6;  
L11  
VSS  
B3;  
D7;  
D8;  
E11;  
H5;  
J5;  
-
-
Ground.  
K7  
VDDA  
N6  
N4  
P6  
L5  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Analog supply voltage.  
ADC negative reference voltage.  
ADC positive reference voltage.  
Analog ground.  
VREFN  
VREFP  
VSSA  
[7]  
[7]  
XTALIN  
XTALOUT  
VBAT  
K4  
J4  
Main oscillator input.  
Main oscillator output.  
N11  
Battery supply voltage. If no battery is used, tie VBAT to VDD or to  
ground.  
RTCXIN  
L12  
-
-
RTC oscillator input.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
42 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
RTCXOUT  
K11  
-
-
I
RTC oscillator output.  
Flash Enable  
N7;  
C4  
PU  
Flash Enable — Enables the internal serial flash memory. Pins C4  
and N7 must be connected to each other.  
N.C.  
K8;  
L9;  
-
-
Not Connected pins — These pins must be left unconnected  
(floating).  
M7;  
M9;  
M13  
[1] PU = input mode, pull-up enabled (pull-up resistor pulls up pin to VDD). Z = high impedance; pull-up or pull-down disabled, AI = analog  
input, I = input, O = output, F = floating. Reset state reflects the pin state at reset without boot code operation. For pin states in the  
different power modes, see Section 6.2.2 “Pin states in different power modes”. For termination on unused pins, see Section 6.2.1  
Termination of unused pins”.  
[2] 5 V tolerant pad with programmable glitch filter (5 V tolerant if VDD present; if VDD not present, do not exceed 3.6 V); provides digital I/O  
functions with TTL levels and hysteresis; normal drive strength. See Figure 39. Pulse width of spikes or glitches suppressed by input  
filter is from 3 ns to 16 ns (simulated value).  
[3] True open-drain pin. I2C-bus pins compliant with the I2C-bus specification for I2C standard mode, I2C Fast-mode, and I2C Fast-mode  
Plus. The pin requires an external pull-up to provide output functionality. When power is switched off, this pin is floating and does not  
disturb the I2C lines. Open-drain configuration applies to all functions on this pin.  
[4] 5 V tolerant pin providing standard digital I/O functions with configurable modes, configurable hysteresis, and analog input. When  
configured as an analog input, the digital section of the pin is disabled, and the pin is not 5 V tolerant.  
[5] Reset pad.5 V tolerant pad with glitch filter with hysteresis. Pulse width of spikes or glitches suppressed by input filter is from 3 ns to  
20 ns (simulated value)  
[6] 5 V tolerant transparent analog pad.  
[7] The oscillator input pin (XTALIN) cannot be driven by an external clock. Must connect a crystal between XTALIN and XTALOUT.  
[8] VBUS must be connected to supply voltage when using the USB peripheral.  
[9] Z = high impedance; pull-up or pull-down disabled. GPIO pins PIO0_12, PIO0_11, PIO0_2, PIO0_3, PIO0_4, PIO0_5, and PIO0_6 have  
the input buffer enabled (DIGIMODE, bit 8 is enabled in IOCON register) and will be floating by default. If unused, it is recommended to  
externally terminate this pins to prevent leakage.  
6.2.1 Termination of unused pins  
Table 5 shows how to terminate pins that are not used in the application. In many cases,  
unused pins should be connected externally or configured correctly by software to  
minimize the overall power consumption of the part.  
Unused pins with GPIO function should be configured as outputs set to LOW with their  
internal pull-up disabled. To configure a GPIO pin as output and drive it LOW, select the  
GPIO function in the IOCON register, select output in the GPIO DIR register, and write a 0  
to the GPIO PORT register for that pin. Disable the pull-up in the pin’s IOCON register.  
In addition, it is recommended to configure all GPIO pins that are not bonded out on  
smaller packages as outputs driven LOW with their internal pull-up disabled.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
43 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 5.  
Pin  
Termination of unused pins  
Default Recommended termination of unused pins  
state[1][2]  
RESET  
I; PU  
The RESET pin can be left unconnected if the application does not use it.  
all PIOn_m (not open-drain) I; Z  
Can be left unconnected if driven LOW and configured as GPIO output with pull-up  
disabled by software.  
PIOn_m (I2C open-drain)  
IA  
Can be left unconnected if driven LOW and configured as GPIO output by  
software.  
RTCXIN  
RTCXOUT  
XTALIN  
XTALOUT  
VREFP  
VREFN  
VDDA  
-
-
-
-
-
-
-
-
-
F
Connect to ground. When grounded, the RTC oscillator is disabled.  
Can be left unconnected.  
Connect to ground. When grounded, the RTC oscillator is disabled.  
Can be left unconnected.  
Tie to VDD.  
Tie to VSS.  
Tie to VDD.  
VSSA  
Tie to VSS.  
VBAT  
Tie to VDD.  
USBn_DP  
Can be left unconnected. If USB interface is not used, pin can be left unconnected  
except in deep power-down mode where it must be externally pulled low. When the  
USB PHY is disabled, the pins are floating.  
USBn_DM  
F
Can be left unconnected. If USB interface is not used, pin can be left unconnected  
except in deep power-down mode where it must be externally pulled low. When the  
USB PHY is disabled, the pins are floating.  
USB1_AVSCC  
USB1_VBUS  
F
F
F
F
F
F
Tie to VSS.  
Tie to VDD.  
USB1_AVDDC3V3  
USB1_AVDDTX3V3  
USB1_AVSSTX3V3  
USB1_ID  
Tie to VDD.  
Tie to VDD.  
Tie to VSS.  
Can be left unconnected. If USB interface is not used, pin can be left unconnected.  
[1] I = Input, IA = Inactive (no pull-up/pull-down enabled), PU = Pull-Up enabled, F = Floating  
[2] Z = high impedance; pull-up or pull-down disabled. GPIO pins PIO0_12, PIO0_11, PIO0_2, PIO0_3, PIO0_4, PIO0_5, and PIO0_6 have  
the input buffer enabled (DIGIMODE, bit 8 is enabled in IOCON register) and will be floating by default. If unused, it is recommended to  
externally terminate this pins to prevent leakage.  
6.2.2 Pin states in different power modes  
Table 6.  
Pin  
Pin states in different power modes  
Active  
Sleep  
Deep-sleep  
Deep  
power-down[3]  
PIOn_m pins (not I2C)  
As configured in the IOCON[1]. Default: internal pull-up enabled Floating  
or high Z [2]  
.
PIO0_13 to PIO0_14 (open-drain As configured in the IOCON[1].  
I2C-bus pins)  
Floating  
PIO3_23 to PIO3_24 (open-drain As configured in the IOCON[1].  
I2C-bus pins)  
Floating  
RESET  
Reset function enabled. Default: input, internal pull-up enabled.  
Reset function disabled.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
44 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
[1] Default and programmed pin states are retained in sleep and deep-sleep.  
[2] Z = high impedance; pull-up or pull-down disabled. GPIO pins PIO0_12, PIO0_11, PIO0_2, PIO0_3, PIO0_4, PIO0_5, and PIO0_6 have  
the input buffer enabled (DIGIMODE, bit 8 is enabled in IOCON register) and will be floating by default. If unused, it is recommended to  
externally terminate this pins to prevent leakage.  
[3] If VBAT> VDD, the external reset pin must be floating to prevent high VBAT leakage.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
45 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7. Functional description  
7.1 Architectural overview  
The ARM Cortex-M4 includes three AHB-Lite buses: the system bus, the I-code bus, and  
the D-code bus. The I-code and D-code core buses allow for concurrent code and data  
accesses from different slave ports.  
The LPC54018JxM/LPC54S018JxM uses a multi-layer AHB matrix to connect the ARM  
Cortex-M4 buses and other bus masters to peripherals in a flexible manner that optimizes  
performance by allowing peripherals that are on different slave ports of the matrix to be  
accessed simultaneously by different bus masters.  
7.2 ARM Cortex-M4 processor  
The ARM Cortex-M4 is a general purpose, 32-bit microprocessor, which offers high  
performance and very low power consumption. The ARM Cortex-M4 offers many new  
features, including a Thumb-2 instruction set, low interrupt latency, hardware multiply and  
divide, interruptable/continuable multiple load and store instructions, automatic state save  
and restore for interrupts, tightly integrated interrupt controller with wake-up interrupt  
controller, and multiple core buses capable of simultaneous accesses.  
A 3-stage pipeline is employed so that all parts of the processing and memory systems  
can operate continuously. Typically, while one instruction is being executed, its successor  
is being decoded, and a third instruction is being fetched from memory.  
7.3 ARM Cortex-M4 integrated Floating Point Unit (FPU)  
The FPU fully supports single-precision add, subtract, multiply, divide, multiply and  
accumulate, and square root operations. It also provides conversions between fixed-point  
and floating-point data formats, and floating-point constant instructions.  
The FPU provides floating-point computation functionality that is compliant with the  
ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point Arithmetic, referred to  
as the IEEE 754 standard.  
7.4 Memory Protection Unit (MPU)  
The Cortex-M4 includes a Memory Protection Unit (MPU) which can be used to improve  
the reliability of an embedded system by protecting critical data within the user  
application.  
The MPU allows separating processing tasks by disallowing access to each other's data,  
disabling access to memory regions, allowing memory regions to be defined as read-only  
and detecting unexpected memory accesses that could potentially break the system.  
The MPU separates the memory into distinct regions and implements protection by  
preventing disallowed accesses. The MPU supports up to eight regions each of which can  
be divided into eight subregions. Accesses to memory locations that are not defined in the  
MPU regions, or not permitted by the region setting, will cause the Memory Management  
Fault exception to take place.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
46 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7.5 Nested Vectored Interrupt Controller (NVIC) for Cortex-M4  
The NVIC is an integral part of the Cortex-M4. The tight coupling to the CPU allows for low  
interrupt latency and efficient processing of late arriving interrupts.  
7.5.1 Features  
Controls system exceptions and peripheral interrupts.  
Supports up to 54 vectored interrupts.  
Eight programmable interrupt priority levels, with hardware priority level masking.  
Relocatable vector table.  
Non-Maskable Interrupt (NMI).  
Software interrupt generation.  
7.5.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags.  
7.6 System Tick timer (SysTick)  
The ARM Cortex-M4 includes a system tick timer (SysTick) that is intended to generate a  
dedicated SYSTICK exception. The clock source for the SysTick can be the FRO or the  
Cortex-M4 core clock.  
7.7 On-chip serial flash  
The LPC54018JxM/LPC54S018JxM supports up to 4 MB of on-chip Quad SPI Serial  
Flash (connected on SPIFI interface).  
7.8 On-chip static RAM  
The LPC54018JxM/LPC54S018JxM support 360 kB SRAM with separate bus master  
access for higher throughput and individual power control for low-power operation.  
7.9 On-chip ROM  
The 64 kB on-chip ROM contains the boot loader and the following Application  
Programming Interfaces (API):  
In-Application Programming (IAP) and In-System Programming (ISP).  
ROM-based USB drivers (HID, CDC, MSC, and DFU).  
Supports serial interface booting (UART, I2C, SPI) from an application processor,  
automated booting from NOR flash (SPI, quad SPIFI, 8/16/32-bit external parallel  
flash), and USB booting (full-speed, high speed).  
Execute in place (XIP) from SPIFI NOR flash (in quad, dual SPIFI mode or single-bit  
SPI mode), and parallel NOR flash.  
FRO API for selecting FRO output frequency.  
OTP API for programming OTP memory.  
Random Number Generator (RNG) API.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
47 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
RSA API calls (LPC54S018Jx only).  
Secure Boot features on LPC54S018Jx devices:  
Supports boot image authentication using RSASSA-PKCS1-v1_5 signature  
verification with 2048-bit public keys (2048-bit modulus, 32-bit exponent).  
Supports Root of Trust (RoT) establishment by comparing the SHA-256 hash  
digest of the RoT public key with OTP memory contents.  
Supports secure anti-rollback of images through revocation of image key  
certificate. Supports up to 8 revocations through OTP fuses.  
Supports boot of AES-GCM encrypted images with a 128-bit symmetric key stored  
in OTP memory or a 256-bit symmetric key stored using on-chip SRAM PUF.  
Secure Authentication Only Boot. Enforce booting of RSA-2048 signed images  
only.  
Encrypted Image Boot. Enforce booting of AES-GCM encrypted images only.  
Enhanced Image Boot. Enforce booting of encrypted then signed images only.  
7.10 Memory mapping  
The LPC54018JxM/LPC54S018JxM incorporates several distinct memory regions. The  
APB peripheral area is 512 kB in size and is divided to allow for up to 32 peripherals.Each  
peripheral is allocated 4 kB of space simplifying the address decoding. The registers  
incorporated into the CPU, such as NVIC, SysTick, and sleep mode control, are located  
on the private peripheral bus.  
The ARM Cortex-M4 processor has a single 4 GB address space. The following table  
shows how this space is used on the LPC54018JxM/LPC54S018JxM.  
Table 7.  
Memory usage and details  
General Use  
Address range  
Address range details and description  
0x0000 0000 to 0x1FFF FFFF SRAMX  
Boot ROM  
0x0000 0000 - 0x0002 FFFF I&D SRAM bank (192 kB).  
0x0300 0000 - 0x0300 FFFF Boot ROM with API services in a 64 kB  
space.  
On-chip Serial  
0x1000 0000 - 0x103F FFFF Serial flash memory mapped access  
space (4 MB).  
Flash Memory  
(connected to  
SPIFI interface)  
0x2000 0000 to 0x3FFF FFFF Main SRAM  
Banks  
0x2000 0000 - 0x2002 7FFF SRAM0, SRAM1, SRAM2, SRAM3  
banks (Total 160 kB).  
SRAM bit band 0x2200 0000 - 0x23FF FFFF SRAM bit band alias addressing  
alias addressing  
(32 MB).  
SRAM Bank  
0x4010 0000 0x4010 2000  
USB SRAM (8 kB).  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
48 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 7.  
Memory usage and details …continued  
Address range  
General Use  
Address range details and description  
0x4000 0000 to 0x7FFF FFFF APB peripherals 0x4000 0000 - 0x4001 FFFF APB slave group 0 up to 32 peripheral  
blocks of 4 kB each (128 kB).  
0x4002 0000 - 0x4003 FFFF APB slave group 1 up to 32 peripheral  
blocks of 4 kB each (128 kB).  
0x4004 0000 - 0x4005 FFFF APB asynchronous slave group 2 up to  
32 peripheral blocks of 4 kB each  
(128 kB).  
AHB peripherals 0x4008 0000 - 0x400B FFFF AHB peripherals (256 kB).  
Peripheral bit  
band alias  
0x4200 0000 - 0x43FF FFFF Peripheral bit band alias addressing  
(32 MB).  
addressing  
0x8000 0000 to 0xDFFF FFFF Off-chip Memory Four static memory chip selects:  
via the External  
0x8000 0000 - 0x83FF FFFF Static memory chip select 0 (up to 64  
Memory  
Controller  
MB)[1]  
0x8800 0000 - 0x8BFF FFFF Static memory chip select 1 (up to 64  
MB)[2]  
0x9000 0000 – 0x93FF FFFF Static memory chip select 2 (up to 64  
MB).  
0x9800 0000 - 0x9BFF FFFF Static memory chip select 3 (up to 64  
MB).  
Four dynamic memory chip selects:  
0xA000 0000 - 0xA7FF FFFF Dynamic memory chip select 0 (up to  
256 MB).  
0xA800 0000 - 0xAFFF FFFF Dynamic memory chip select 1 (up to  
256 MB).  
0xB000 0000 - 0xB7FF FFFF Dynamic memory chip select 2 (up to  
256 MB).  
0xB800 0000 - 0xBFFF FFFF Dynamic memory chip select 3 (up to  
256 MB).  
0xE000 0000 to 0xE00F FFFF Cortex-M4  
Private  
0xE000 0000 - 0xE00F FFFF Cortex-M4 related functions, includes  
the NVIC and System Tick Timer.  
Peripheral Bus  
[1] Can be up to 256 MB, upper address 0x8FFF FFFF, if the address shift mode is enabled. See the  
EMCSYSCTRL register bit 0 in the LPC54018JxM/LPC54S018JxM user manual.  
[2] Can be up to 128 MB, upper address 0x97FF FFFF, if the address shift mode is enabled. See the  
EMCSYSCTRL register bit 0 in the LPC54018JxM/LPC54S018JxM user manual.  
Figure 4 shows the overall map of the entire address space from the user program  
viewpoint following reset.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
49 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Memory space  
AHB peripherals  
0xFFFF FFFF  
(reserved)  
private peripheral bus  
(EMC)  
0x4010 BFFF  
0x4010 2000  
0x4010 0000  
0xE010 0000  
0xE000 0000  
0x8000 0000  
0x4400 0000  
(reserved)  
USB SRAM (8 kB)  
(reserved)  
(reserved)  
0x400A 5000  
0x400A 4000  
0x400A 3000  
0x400A 2000  
0x400A 1000  
0x400A 0000  
0x4009 F000  
0x4009 E000  
0x4009 D000  
0x4009 C000  
0x4009 B000  
0x4009 A000  
0x4009 9000  
0x4009 8000  
0x4009 7000  
0x4009 6000  
0x4009 5000  
0x4009 4000  
0x4009 2000  
0x4009 1000  
SHA registers  
peripheral  
bit-band addressing  
HS USB host registers  
FS USB host registers  
0x4200 0000  
0x4010 C000  
(reserved)  
AES256  
ADC  
AHB  
peripheral  
0x4008 0000  
0x4006 0000  
Flexcomm 10  
(reserved)  
CAN 1  
CAN 0  
Asynchronous  
APB peripherals  
0x4004 0000  
0x4002 0000  
see APB  
memory  
map figure  
(reserved)  
SDIO  
APB peripherals on  
APB bridge 1  
Flexcomm 9  
Flexcomm 8  
APB peripherals on  
APB bridge 0  
0x4000 0000  
0x2400 0000  
Flexcomm 7  
Flexcomm 6  
(reserved)  
SRAM bit-band  
addressing  
Flexcomm 5  
0x2200 0000  
0x2002 8000  
0x2002 0000  
CRC engine  
(reserved)  
HS USB device  
Ethernet  
SRAM3  
(up to 32 kB)  
(reserved)  
SRAM2  
(up to 32 kB)  
DMIC interface  
High Speed GPIO  
(reserved)  
0x4009 0000  
0x4008 C000  
0x4008 B000  
0x4008 A000  
0x4008 9000  
0x4008 8000  
0x4008 7000  
0x4008 6000  
0x4008 5000  
0x4008 4000  
0x4008 3000  
0x4008 2000  
0x4008 1000  
0x4008 0000  
0x2001 8000  
0x2001 0000  
SRAM1  
(up to 32 kB)  
SRAM0  
(up to 64 kB)  
Flexcomm 4  
Flexcomm 3  
0x2000 0000  
0x1040 0000  
(reserved)  
Flexcomm 2  
On-chip Serial Flash  
(up to 4 MB)  
Flexcomm 1  
Flexcomm 0  
0x1000 0000  
0x0301 0000  
(reserved)  
Boot ROM  
SC Timer / PWM  
FS USB device registers  
0x0300 0000  
0x0003 0000  
LCD registers  
DMA registers  
(reserved)  
SRAMX (192 kB)  
EMC registers  
SPIFI registers  
0x0000 0000  
0x0000 00C0  
0x0000 0000  
active interrupt vectors  
aaa-030340-x  
The private peripheral bus includes CPU peripherals such as the NVIC, SysTick, and the core control registers.  
Fig 4. LPC54018JxM/LPC54S018JxM Memory mapping  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
50 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
APB bridge 1  
APB bridge 0  
0x4003 FFFF  
31-28  
27  
(reserved)  
PUF  
0x4003 C000  
0x4003 B000  
0x4003 A000  
0x4003 8000  
0x4003 7000  
0x4003 6000  
0x4002 E000  
0x4002 D000  
0x4001 FFFF  
0x4001 6000  
0x4001 5000  
(reserved)  
OTP controller  
(reserved)  
Micro-Tick  
MRT  
31-22  
21  
26  
25-24  
RNG  
(reserved)  
20-15  
14  
0x4001 F000  
0x4000 E000  
0x4000 D000  
0x4000 C000  
0x4000 A000  
0x4000 9000  
0x4000 8000  
23  
22  
21-14  
13  
Smart card 1  
Smart card 0  
(reserved)  
RIT  
13  
WDT  
12  
(reserved)  
11-10  
9
12  
11-9  
8
RTC  
(reserved)  
0x4002 C000  
0x4002 9000  
CTIMER1  
CTIMER0  
CTIMER2  
(reserved)  
8
0x4002 8000  
0x4002 0000  
7-0  
(reserved)  
(reserved)  
Input muxes  
7
6
5
4
3
2
1
0
0x4000 7000  
0x4000 6000  
0x4000 5000  
Pin Interrupts (PINT)  
0x4000 4000  
Asynchronous APB bridge  
GINT1  
0x4000 3000  
0x4000 2000  
0x4000 1000  
0x4000 0000  
0x4005 FFFF  
GINT0  
IOCON  
Syscon  
(reserved)  
CTIMER4  
31-10  
0x4004 A000  
0x4004 9000  
0x4004 8000  
0x4004 1000  
0x4004 0000  
aaa-030341  
9
8
CTIMER3  
(reserved)  
7-1  
0
Asynch. Syscon  
Fig 5. LPC54018JxM/LPC54S018JxM APB Memory map  
7.11 One-Time Programmable (OTP) memory  
The OTP memory contains four memory banks of 128 bits each. The first memory bank  
(OTP Bank 0) is reserved. The other three OTP banks are programmable. In LPC54018Jx  
devices, OTP banks 1 and 2 are available for storing general purpose data. In  
LPC54S018Jx devices, OTP banks 1 and 2 are used for storing the AES keys. OTP bank  
3 is used for customer programmable device configuration data.  
7.11.1 Features  
The OTP memory stores user settings in bank 3, register 0 to configure:  
ISP and boot source modes  
Secure boot  
SPIFI boot delay  
Customer definable bits  
Root of Trust (RoT) hash digest for secure authenticated boot (OTP Banks 1, 2).  
Scrambled 128-bit AES key for secure encrypted boot (OTP Bank 2).  
USB Vendor and Product IDs (OTP Bank 2).  
Boot ROM API support for programming the OTP memory provided.  
Remark: OTP programming requires a supply voltage of at least 3.3 V. To use the OTP  
API, the main system clock must be running from the 12 MHz clock.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
51 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7.12 System control  
7.12.1 Clock sources  
The LPC54018JxM/LPC54S018JxM supports one external and two internal clock  
sources:  
Free Running Oscillator (FRO).  
Watchdog oscillator (WDOSC).  
Crystal oscillator.  
7.12.1.1 Free Running Oscillator (FRO)  
The FRO 12 MHz oscillator provides the default clock at reset and provides a clean  
system clock shortly after the supply pins reach operating voltage.  
12 MHz internal FRO oscillator, factory trimmed for accuracy, that can optionally be  
used as a system clock as well as other purposes.  
Selectable 48 MHz or 96 MHz FRO oscillator, factory trimmed for accuracy, that can  
optionally be used as a system clock as well as other purposes.  
7.12.1.2 Watchdog oscillator (WDOSC)  
The watchdog oscillator is a low-power internal oscillator. The WDOSC can be used to  
provide a clock to the WWDT and to the entire chip. The low-power watchdog oscillator  
provides a selectable frequency in the range of 6 kHz to 1.5 MHz. The accuracy of this  
clock is limited to 40% over temperature, voltage, and silicon processing variations.  
7.12.1.3 Crystal oscillator  
The LPC54018JxM/LPC54S018JxM include four independent oscillators. These are the  
main oscillator, the FRO, the watchdog oscillator, and the RTC oscillator.  
Following reset, the LPC54018JxM/LPC54S018JxM will operate from the Internal FRO  
until switched by software. This allows systems to operate without any external crystal  
and the boot loader code to operate at a known frequency. See Figure 6 and Figure 7 for  
an overview of the LPC54018JxM/LPC54S018JxM clock generation.  
7.12.2 System PLL (PLL0)  
The system PLL accepts an input clock frequency in the range of 32.768 kHz to 25 MHz.  
The input frequency is multiplied up to a high frequency with a Current Controlled  
Oscillator (CCO).  
The PLL can be enabled or disabled by software.  
7.12.3 USB PLL (PLL1)  
The USB PLL accepts an input clock frequency in the range of 1 MHz to 25 MHz. The  
input frequency is multiplied up to a high frequency with a Current Controlled Oscillator  
(CCO).  
The PLL can be enabled or disabled by software.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
52 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7.12.4 Audio PLL (PLL2)  
The audio PLL accepts an input clock frequency in the range of 1 MHz to 25 MHz. The  
input frequency is multiplied up to a high frequency with a Current Controlled Oscillator  
(CCO).  
The PLL can be enabled or disabled by software.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
53 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7.12.5 Clock Generation  
00  
01  
10  
to CPU, AHB bus,  
Sync APB  
“none”  
CPU CLOCK  
DIVIDER  
pll_clk  
fro_12m  
00  
32k_clk  
(1)  
main_clk  
11  
clk_in  
01  
to EMC  
(function  
clock)  
EMC ClOCK  
DIVIDER  
AHBCLKDIV  
wdt_clk  
10  
Main clock select B  
MAINCLKSELB[1:0]  
fro_hf  
11  
(1)  
fro_hf  
pll_clk  
usb_pll_clk  
audio_pll_clk  
“none”  
EMCCLKDIV  
000  
001  
010  
011  
111  
Main clock select A  
MAINCLKSELA[1:0]  
to ADC  
ADC CLOCK  
DIVIDER  
fro_12m  
clk_in  
000  
001  
ADCCLKDIV  
ADC clock select  
ADCCLKSEL[2:0]  
32k_clk  
“none”  
pll_clk  
SYSTEM PLL  
011  
111  
fro_hf  
System PLL  
settings  
000  
001  
010  
111  
to USB0  
(FS USB)  
PLL clock select  
SYSPLLCLKSEL[2:0]  
pll_clk  
usb_pll_clk  
“none”  
USB0 CLOCK  
DIVIDER  
xtalin  
xtalout  
USB0CLKDIV  
clk_in  
Crystal  
oscillator  
USB0 clock select  
USB0CLKSEL[2:0]  
Range select  
SYSOSCCTRL[1:0]  
main_clk  
000  
001  
010  
111  
pll_clk  
usb_pll_clk  
“none”  
to USB1 PHY  
USB1 CLOCK  
DIVIDER  
fro_hf  
fro_hf_div  
FRO Clock  
Divider  
USB1CLKDIV  
USB1 clock select  
USB1CLKSEL[2:0]  
FROHFCLKDIV  
USB PLL  
usb_pll_clk  
clk_in  
fro_12  
to DMIC  
000  
001  
010  
011  
100  
101  
fro_hf_div  
audio_pll_clk  
mclk_in  
subsystem  
DMIC CLOCK  
DIVIDER  
USB PLL  
settings  
main_clk  
wdt_in  
DMICCLKDIV  
fro_12m  
clk_in  
000  
001  
111  
“none”  
audio_pll_clk  
111  
Audio PLL  
“none”  
DMIC clock select  
DMICCLKSEL[2:0]  
AUDIO PLL Settings  
Audio clock select  
AUDPLLCKSEL[2:0]  
fro_hf_div  
to MCLK pin  
(output)  
000  
001  
audio_pll_clk  
“none”  
MCLK  
DIVIDER  
main_clk  
111  
00  
fro_12m  
01  
audio_pll_clk  
10  
to Async APB  
MCLKDIV  
MCLK clock select  
MCLKCLKSEL[1:0]  
fc6_fclk  
(1)  
11  
main_clk  
000  
001  
010  
011  
100  
APB clock select B  
ASYNCAPBCLKSELA[1:0]  
pll_clk  
usb_pll_clk  
fro_hf  
to SDIO  
(function clock)  
SDIO CLOCK  
DIVIDER  
audio_pll_clk  
SDIOCLKDIV  
“none”  
111  
(1): synchronized multiplexer,  
see register descriptions for details.  
SDIO clock select  
SDIOCLKSEL[2:0]  
aaa-029067  
Fig 6. LPC54018JxM/LPC54S018JxM clock generation  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
54 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
(1 per Flexcomm)  
main_clk  
000  
fro_12m  
000  
001  
010  
011  
100  
111  
pll_clk  
001  
fcn_fclk  
fro_hf_div  
audio_pll_clk  
mclk_in  
(function clock  
of Flexcomm[0-9])  
fro_12m  
010  
fro_hf  
011  
“none”  
111  
(up to 11 Flexcomm  
Interfaces on these  
devices)  
FRG CLOCK  
DIVIDER  
frg_clk  
“none”  
to MCAN0  
main_clk  
main_clk  
function clock  
MCAN0 clock  
divider  
FRGCTRL[15:0]  
FRG clock select  
FRGCLKSEL[2:0]  
FCLKSEL[0-9]  
to CLK32K of all Flexcomms (fc0-fc9)  
32k_clk  
CAN0CLKDIV  
to MCAN1  
function clock  
MCAN1 clock  
divider  
main_clk  
000  
001  
010  
011  
100  
111  
fcn_fclk  
(function clock  
of Flexcomm10)  
pll_clk  
usb_pll_clk  
fro_hf  
audio_pll_clk  
“none”  
CAN1CLKDIV  
to Smartcard0  
function clock  
main_clk  
main_clk  
Smartcard0  
clock divider  
FCLKSEL10  
SC0CLKDIV  
to Smartcard1  
function clock  
main_clk  
pll_clk  
000  
001  
010  
011  
111  
to SCTimer/PWM  
input clock 7  
Smartcard1  
clock divider  
SCTimer/PWM  
fro_hf  
audio_pll_clk  
“none”  
Clock Divider  
SC1CLKDIV  
SCTCLKDIV  
to ARM Trace  
function clock  
SCT clock select  
SCTCLKSEL[2:0]  
main_clk  
ARM Trace  
clock divider  
ARMTRACECLKDIV  
main_clk  
lcdclkin  
fro_hf  
00  
01  
10  
11  
to LCD  
(function clock)  
LCD CLOCK  
DIVIDER  
“none”  
main_clk  
pll_clk  
usb_pll_clk  
000  
001  
010  
011  
100  
111  
LCDCLKDIV  
to SPIFI  
(function clock)  
LCD clock select  
LCDCLKSEL[1:0]  
SPIFI CLOCK  
DIVIDER  
fro_hf  
audio_pll_clk  
“none”  
SPIFI CLKDIV  
main_clk  
clk_in  
wdt_clk  
SPIFI clock select  
SPIFICLKSEL[2:0]  
000  
001  
010  
011  
100  
101  
fro_hf  
pll_clk  
usb_pll_clk  
to Cortex-M4  
System Tick  
Timer  
main_clk  
CLKOUT  
Systick Clock  
Divider  
CLKOUT  
000  
wdt_clk  
001  
DIVIDER  
32k_clk  
010  
audio_pll_clk  
32k_clk  
CLKOUTDIV  
SYSTICKCLKDIV  
fro_12  
110  
111  
011  
“none”  
111  
CLKOUT select  
CLKOUTSEL[2:0]  
Systic clock select  
SYSTICKCLKSEL[2:0]  
aaa-029070  
Fig 7. LPC54018JxM/LPC54S018JxM clock generation (continued)  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
55 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7.12.6 Brownout detection  
The LPC54018JxM/LPC54S018JxM includes a monitor for the voltage level on the VDD  
pin. If this voltage falls below a fixed level, the BOD sets a flag that can be polled or cause  
an interrupt. In addition, a separate threshold level can be selected to cause chip reset.  
7.12.7 Safety  
The LPC54018JxM/LPC54S018JxM includes a Windowed WatchDog Timer (WWDT),  
which can be enabled by software after reset. Once enabled, the WWDT remains locked  
and cannot be modified in any way until a reset occurs.  
7.13 Power control  
The LPC54018JxM/LPC54S018JxM support a variety of power control features. In Active  
mode, when the chip is running, power and clocks to selected peripherals can be adjusted  
for power consumption. In addition, there are three special modes of processor power  
reduction with different peripherals running: sleep mode, deep-sleep mode, and deep  
power-down mode that can be activated using the power API library from the SDK  
software package.  
7.13.1 Sleep mode  
In sleep mode, the system clock to the CPU is stopped and execution of instructions is  
suspended until either a reset or an interrupt occurs. Peripheral functions, if selected to be  
clocked can continue operation during Sleep mode and may generate interrupts to cause  
the processor to resume execution. Sleep mode eliminates dynamic power used by the  
processor itself, memory systems and related controllers, internal buses, and unused  
peripherals. The processor state and registers, peripheral registers, and internal SRAM  
values are maintained, and the logic levels of the pins remain static.  
7.13.2 Deep-sleep mode  
In deep-sleep mode, the system clock to the processor is disabled as in sleep mode. All  
analog blocks are powered down by default but can be selected to keep running through  
the power API if needed as wake-up sources. The main clock and all peripheral clocks are  
disabled by default. The FRO is disabled.  
Deep-sleep mode eliminates all power used by analog peripherals and all dynamic power  
used by the processor itself, memory systems and related controllers, and internal buses.  
The processor state and registers, peripheral registers, and internal SRAM values are  
maintained, and the logic levels of the pins remain static.  
GPIO Pin Interrupts, GPIO Group Interrupts, and selected peripherals such as USB0,  
USB1, DMIC, SPI, I2C, USART, WWDT, RTC, Micro-tick Timer, and BOD can be left  
running in deep sleep mode The FRO, RTC oscillator, and the watchdog oscillator can be  
left running.In some cases, DMA can operate in deep-sleep mode.  
7.13.3 Deep power-down mode  
In deep power-down mode, power is shut off to the entire chip except for the RTC power  
domain and the RESET pin. The LPC54018JxM/LPC54S018JxM can wake up from deep  
power-down mode via the RESET pin and the RTC alarm. The ALARM1HZ flag in RTC  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
56 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
control register generates an RTC wake-up interrupt request, which can wake up the part.  
During deep power-down mode, the contents of the SRAM and registers are not retained.  
All functional pins are tri-stated in deep power-down mode.  
Table 8 shows the peripheral configuration in reduced power modes.  
Table 8.  
Peripheral configuration in reduced power modes  
Reduced power mode  
Peripheral  
Sleep  
Deep-sleep  
Deep power-down  
FRO  
BOD  
PLL  
Software configured Software configured  
Software configured Software configured  
Software configured Off  
Off  
Off  
Off  
Off  
Watchdog osc and  
WWDT  
Software configured Software configured  
Micro-tick Timer  
DMA  
Software configured Software configured  
Off  
Off  
Active  
Configurable some for operations.  
USART  
Software configured Off; but can create a wake-up interrupt in synchronous Off  
slave mode or 32 kHz clock mode  
SPI  
Software configured Off; but can create a wake-up interrupt in slave mode Off  
Software configured Off; but can create a wake-up interrupt in slave mode Off  
I2C  
USB0  
USB1  
Ethernet  
DMIC  
Software configured Software configured  
Software configured Software configured  
Software configured Off  
Off  
Off  
Off  
Software configured Software configured  
Off  
Other digital peripherals Software configured Off  
Off  
RTC oscillator  
Software configured Software configured  
Software configured  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
57 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 9 shows wake-up sources for reduced power modes.  
Table 9.  
Wake-up sources for reduced power modes  
Conditions  
Power mode Wake-up source  
Sleep  
Any interrupt  
HWWAKE  
Enable interrupt in NVIC.  
Certain Flexcomm Interface and DMIC subsystem activity.  
Enable pin interrupts in NVIC and STARTER0 and/or STARTER1 registers.  
Enable interrupt in NVIC and STARTER0 registers.  
Enable interrupt in BODCTRL register.  
Deep-sleep  
Pin interrupts  
BOD interrupt  
Configure the BOD to keep running in this mode with the power API.  
BOD reset  
Enable reset in BODCTRL register.  
Watchdog interrupt  
Enable the watchdog oscillator in the PDRUNCFG0 register.  
Enable the watchdog interrupt in NVIC and STARTER0 registers.  
Enable the watchdog in the WWDT MOD register and feed.  
Enable interrupt in WWDT MOD register.  
Configure the WDTOSC to keep running in this mode with the power API.  
Enable the watchdog oscillator in the PDRUNCFG0 register.  
Enable the watchdog and watchdog reset in the WWDT MOD register and feed.  
Always available.  
Watchdog reset  
Reset pin  
RTC 1 Hz alarm timer  
Enable the RTC 1 Hz oscillator in the RTCOSCCTRL register.  
Enable the RTC bus clock in the AHBCLKCTRL0 register.  
Start RTC alarm timer by writing a time-out value to the RTC COUNT register.  
Enable the RTCALARM interrupt in the STARTER0 register.  
RTC 1 kHz timer  
time-out and alarm  
Enable the RTC 1 Hz oscillator and the RTC 1 kHz oscillator in the RTC CTRL  
register.  
Start RTC 1 kHz timer by writing a value to the WAKE register of the RTC.  
Enable the RTC wake-up interrupt in the STARTER0 register.  
Enable the watchdog oscillator in the PDRUNCFG0 register.  
Enable the Micro-tick timer clock by writing to the AHBCLKCTRL1 register.  
Start the Micro-tick timer by writing UTICK CTRL register.  
Enable the Micro-tick timer interrupt in the STARTER0 register.  
Interrupt from I2C in slave mode.  
Micro-tick timer  
(intended for ultra-low  
power wake-up from  
deep-sleep mode  
I2C interrupt  
SPI interrupt  
Interrupt from SPI in slave mode.  
USART interrupt  
Interrupt from USART in slave or 32 kHz mode.  
USB0 need clock  
interrupt  
Interrupt from USB0 when activity is detected that requires a clock.  
USB1 need clock  
interrupt  
Interrupt from USB1 when activity is detected that requires a clock.  
Ethernet interrupt  
DMA interrupt  
HWWAKE  
Interrupt from ethernet.  
Interrupt from DMA.  
Certain Flexcomm Interface and DMIC subsystem activity.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
58 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 9.  
Wake-up sources for reduced power modes  
Power mode Wake-up source  
Conditions  
Deep  
power-down  
RTC 1 Hz alarm timer  
Enable the RTC 1 Hz oscillator in the RTC CTRL register.  
Start RTC alarm timer by writing a time-out value to the RTC COUNT register.  
RTC 1 kHz timer  
time-out and alarm  
Enable the RTC 1 Hz oscillator and the RTC 1 kHz oscillator in the RTCOSCC-  
TRL register.  
Enable the RTC bus clock in the AHBCLKCTRL0 register.  
Start RTC 1 kHz timer by writing a value to the WAKE register of the RTC.  
Always available.  
Reset pin  
7.14 General Purpose I/O (GPIO)  
The LPC54018JxM/LPC54S018JxM provides a total of 137 GPIO pins.  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate  
registers allow setting or clearing any number of outputs simultaneously. The current level  
of a port pin can be read back no matter what peripheral is selected for that pin.  
7.14.1 Features  
Accelerated GPIO functions:  
GPIO registers are located on the AHB so that the fastest possible I/O timing can  
be achieved.  
Mask registers allow treating sets of port bits as a group, leaving other bits  
unchanged.  
All GPIO registers are byte and half-word addressable.  
Entire port value can be written in one instruction.  
Bit-level set and clear registers allow a single instruction set or clear of any number of  
bits in one port.  
Direction control of individual bits.  
All I/O default to inputs after reset.  
All GPIO pins can be selected to create an edge or level-sensitive GPIO interrupt  
request.  
One GPIO group interrupt can be triggered by a combination of any pin or pins.  
7.15 Pin interrupt/pattern engine  
The pin interrupt block configures up to eight pins from all digital pins for providing eight  
external interrupts connected to the NVIC. The pattern match engine can be used in  
conjunction with software to create complex state machines based on pin inputs. Any  
digital pin, independent of the function selected through the switch matrix can be  
configured through the SYSCON block as an input to the pin interrupt or pattern match  
engine. The registers that control the pin interrupt or pattern match engine are located on  
the I/O+ bus for fast single-cycle access.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
59 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7.15.1 Features  
Pin interrupts:  
Up to eight pins can be selected from all GPIO pins on ports 0 and 1 as  
edge-sensitive or level-sensitive interrupt requests. Each request creates a  
separate interrupt in the NVIC.  
Edge-sensitive interrupt pins can interrupt on rising or falling edges or both.  
Level-sensitive interrupt pins can be HIGH-active or LOW-active.  
Level-sensitive interrupt pins can be HIGH-active or LOW-active.  
Pin interrupts can wake up the device from sleep mode and deep-sleep mode.  
Pattern match engine:  
Up to eight pins can be selected from all digital pins on ports 0 and 1 to contribute  
to a boolean expression. The boolean expression consists of specified levels  
and/or transitions on various combinations of these pins.  
Each bit slice minterm (product term) comprising of the specified boolean  
expression can generate its own, dedicated interrupt request.  
Any occurrence of a pattern match can also be programmed to generate an RXEV  
notification to the CPU. The RXEV signal can be connected to a pin.  
Pattern match can be used in conjunction with software to create complex state  
machines based on pin inputs.  
Pattern match engine facilities wake-up only from active and sleep modes.  
7.16 Serial peripherals  
7.16.1 Full-speed USB Host/Device interface (USB0)  
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a  
host and one or more (up to 127) peripherals. The host controller allocates the USB  
bandwidth to attached devices through a token-based protocol. The bus supports hot  
plugging and dynamic configuration of the devices. All transactions are initiated by the  
host controller.  
7.16.1.1 USB0 device controller  
The device controller enables 12 Mbit/s data exchange with a USB host controller. It  
consists of a register interface, serial interface engine, endpoint buffer memory. The serial  
interface engine decodes the USB data stream and writes data to the appropriate  
endpoint buffer. The status of a completed USB transfer or error condition is indicated via  
status registers. An interrupt is also generated if enabled.  
Features  
Supports 10 physical (5 logical) endpoints including two control endpoints.  
Single and double-buffering supported.  
Each non-control endpoint supports bulk, interrupt, or isochronous endpoint types.  
Supports wake-up from reduced power mode on USB activity and remote wake-up.  
Supports SoftConnect.  
Link Power Management (LPM) supported.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
60 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7.16.1.2 USB0 host controller  
The host controller enables full- and low-speed data exchange with USB devices attached  
to the bus. It consists of register interface, serial interface engine and DMA controller. The  
register interface complies with the Open Host Controller Interface (OHCI) specification.  
Features  
OHCI compliant.  
Two downstream ports.  
7.16.2 High-speed USB Host/Device interface (USB1)  
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a  
host and one or more (up to 127) peripherals. The host controller allocates the USB  
bandwidth to attached devices through a token-based protocol. The bus supports hot  
plugging and dynamic configuration of the devices. All transactions are initiated by the  
host controller.  
7.16.2.1 USB1 device controller  
The device controller enables 480 Mbit/s data exchange with a USB host controller. It  
consists of a register interface, serial interface engine, endpoint buffer memory. The serial  
interface engine decodes the USB data stream and writes data to the appropriate  
endpoint buffer. The status of a completed USB transfer or error condition is indicated via  
status registers. An interrupt is also generated if enabled.  
Features  
Fully compliant with USB 2.0 Specification (high speed).  
Supports 8 physical (16 logical) endpoints with up to 8 kB endpoint buffer RAM.  
Supports Control, Bulk, Interrupt and Isochronous endpoints.  
Scalable realization of endpoints at run time.  
Endpoint Maximum packet size selection (up to USB maximum specification) by  
software at run time.  
While USB is in the Suspend mode, the LPC54018JxM/LPC54S018JxM can enter  
one of the reduced power modes and wake up on USB activity.  
Double buffer implementation for Bulk and Isochronous endpoints.  
7.16.2.2 USB1 host controller  
The host controller enables high speed data exchange with USB devices attached to the  
bus. It consists of register interface and serial interface engine. The register interface  
complies with the Enhanced Host Controller Interface (EHCI) specification.  
Features  
EHCI compliant.  
Two downstream ports.  
Supports per-port power switching.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
61 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7.16.3 Ethernet AVB  
The Ethernet block enables a host to transmit and receive data over Ethernet in  
compliance with the IEEE 802.3-2008 standard. The Ethernet interface contains a full  
featured 10 Mbps or 100 Mbps Ethernet MAC (Media Access Controller) designed to  
provide optimized performance through the use of DMA hardware acceleration.  
7.16.3.1 Features  
10/100 Mbit/s  
DMA support  
Power management remote wake-up frame and magic packet detection  
Supports both full-duplex and half-duplex operation  
Supports CSMA/CD Protocol for half-duplex operation.  
Supports IEEE 802.3x flow control for full-duplex operation.  
Optional forwarding of received pause control frames to the user application in  
full-duplex operation.  
Supports IEEE 802.1AS-2011 and 802.1-Qav-2009 for Audio Video (AV) traffic.  
Software support for AVB feature is available from NXP Professional Services. See  
nxp.com for more details.  
Back-pressure support for half-duplex operation.  
Automatic transmission of zero-quanta pause frame on deassertion of flow control  
input in full-duplex operation.  
Supports IEEE1588 time stamping and IEEE 1588 advanced time stamping (IEEE  
1588-2008 v2).  
7.16.4 SPI Flash Interface (SPIFI)  
The SPI Flash Interface is connected to the on-chip serial flash in the  
LPC54018JxM/LPC54S018JxM microcontroller with little performance penalty compared  
to parallel flash devices with higher pin count.  
After a few commands configure the interface at startup, the entire flash content is  
accessible as normal memory using byte, halfword, and word accesses by the processor  
and/or DMA channels. Simple sequences of commands handle erasure and  
programming.  
7.16.4.1 Features  
Connected to on-chip serial flash memory in the main memory map.  
Supports classic and 4-bit bidirectional serial protocols.  
Half-duplex protocol compatible with various vendors and devices.  
Quad SPI Flash Interface with 1-, 2-, or 4-bit data at rates of up to 52 MB per second.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
62 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Supports DMA access.  
Provides XIP (execute in place) feature to execute code directly from on-chip serial  
flash.  
7.16.5 CAN Flexible Data (CAN FD) interface  
The LPC54018JxM/LPC54S018JxM contains two CAN FD interfaces, CAN FD 1 and  
CAN FD 2.  
7.16.5.1 Features  
Conforms with CAN protocol version 2.0 part A, B and ISO 11898-1.  
CAN FD with up to 64 data bytes supported.  
CAN Error Logging.  
AUTOSAR support.  
SAE J1939 support.  
Improved acceptance filtering.  
7.16.6 DMIC subsystem  
7.16.6.1 Features  
Pulse-Density Modulation (PDM) data input for left and/or right channels on 1 or 2  
buses.  
Flexible decimation.  
16 entry FIFO for each channel.  
DC blocking or unaltered DC bias can be selected.  
Data can be transferred using DMA from deep-sleep mode without waking up the  
CPU, then automatically returning to deep-sleep mode.  
Data can be streamed directly to I2S on Flexcomm Interface 7.  
7.16.7 Smart card interface  
7.16.7.1 Features  
Two DMA supported ISO 7816 Smart Card Interfaces.  
Both asynchronous protocols, T = 0 and T = 1 are supported.  
7.16.8 Flexcomm Interface serial communication  
7.16.8.1 Features  
USART with asynchronous operation or synchronous master or slave operation.  
SPI master or slave, with up to 4 slave selects.  
I2C, including separate master, slave, and monitor functions.  
Two I2S functions using Flexcomm Interface 6 and Flexcomm Interface 7.  
Data for USART, SPI, and I2S traffic uses the Flexcomm Interface FIFO. The I2C  
function does not use the FIFO.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
63 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7.16.8.2 SPI serial I/O controller  
Features  
Maximum data rates of 48 Mbit/s in master mode and 14 Mbit/s in slave mode for SPI  
functions. (Flexcomm Interface 0-9).  
Maximum data rates of 50 Mbit/s in master mode and 50 Mbit/s in slave mode for SPI  
functions (Flexcomm Interface10).  
Data frames of 1 to 16 bits supported directly. Larger frames supported by software or  
DMA set-up.  
Master and slave operation.  
Data can be transmitted to a slave without the need to read incoming data. This can  
be useful while setting up an SPI memory.  
Control information can optionally be written along with data. This allows very  
versatile operation, including “any length” frames.  
Four Slave Select input/outputs with selectable polarity and flexible usage.  
Activity on the SPI in slave mode allows wake-up from deep-sleep mode on any  
enabled interrupt.  
Remark: Texas Instruments SSI and National Microwire modes are not supported.  
7.16.8.3 I2C-bus interface  
The I2C-bus is bidirectional for inter-IC control using only two wires: a serial clock line  
(SCL) and a serial data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (for example, an LCD driver) or a transmitter  
with the capability to both receive and send information (such as memory). Transmitters  
and/or receivers can operate in either master or slave mode, depending on whether the  
chip has to initiate a data transfer or is only addressed. The I2C is a multi-master bus and  
can be controlled by more than one bus master connected to it.  
Features  
All I2Cs support standard, Fast-mode, and Fast-mode Plus with data rates of up to  
1 Mbit/s.  
All I2Cs support high-speed slave mode with data rates of up to 3.4 Mbit/s.  
Independent Master, Slave, and Monitor functions.  
Supports both Multi-master and Multi-master with Slave functions.  
Multiple I2C slave addresses supported in hardware.  
One slave address can be selectively qualified with a bit mask or an address range in  
order to respond to multiple I2C-bus addresses.  
10-bit addressing supported with software assist.  
Supports SMBus.  
Activity on the I2C in slave mode allows wake-up from deep-sleep mode on any  
enabled interrupt.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
64 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7.16.8.4 USART  
Features  
Maximum bit rates of 6.25 Mbit/s in asynchronous mode.  
The maximum supported bit rate for USART master synchronous mode is 24 Mbit/s,  
and the maximum supported bit rate for USART slave synchronous mode is  
12.5 Mbit/s.  
7, 8, or 9 data bits and 1 or 2 stop bits.  
Synchronous mode with master or slave operation. Includes data phase selection and  
continuous clock option.  
Multiprocessor/multidrop (9-bit) mode with software address compare.  
RS-485 transceiver output enable.  
Autobaud mode for automatic baud rate detection  
Parity generation and checking: odd, even, or none.  
Software selectable oversampling from 5 to 16 clocks in asynchronous mode.  
One transmit and one receive data buffer.  
RTS/CTS for hardware signaling for automatic flow control. Software flow control can  
be performed using Delta CTS detect, Transmit Disable control, and any GPIO as an  
RTS output.  
Received data and status can optionally be read from a single register  
Break generation and detection.  
Receive data is 2 of 3 sample "voting". Status flag set when one sample differs.  
Built-in Baud Rate Generator with auto-baud function.  
A fractional rate divider is shared among all USARTs.  
Interrupts available for Receiver Ready, Transmitter Ready, Receiver Idle, change in  
receiver break detect, Framing error, Parity error, Overrun, Underrun, Delta CTS  
detect, and receiver sample noise detected.  
Loopback mode for testing of data and flow control.  
In synchronous slave mode, wakes up the part from deep-sleep mode.  
Special operating mode allows operation at up to 9600 baud using the 32.768 kHz  
RTC oscillator as the UART clock. This mode can be used while the device is in  
deep-sleep mode and can wake-up the device when a character is received.  
USART transmit and receive functions work with the system DMA controller.  
7.16.8.5 I2S-bus interface  
The I2S bus provides a standard communication interface for streaming data transfer  
applications such as digital audio or data collection. The I2S bus specification defines a  
3-wire serial bus, having one data, one clock, and one word select/frame trigger signal,  
providing single or dual (mono or stereo) audio data transfer as well as other  
configurations. In the LPC54018JxM/LPC54S018JxM, the I2S function is included in  
Flexcomm Interface 6 and Flexcomm Interface 7. Each of the Flexcomm Interface  
implements four I2S channel pairs.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
65 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
The I2S interface within one Flexcomm Interface provides at least one channel pair that  
can be configured as a master or a slave. Other channel pairs, if present, always operate  
as slaves. All of the channel pairs within one Flexcomm Interface share one set of I2S  
signals, and are configured together for either transmit or receive operation, using the  
same mode, same data configuration and frame configuration. All such channel pairs can  
participate in a time division multiplexing (TDM) arrangement. For cases requiring an  
MCLK input and/or output, this is handled outside of the I2S block in the system level  
clocking scheme.  
Features  
A Flexcomm Interface may implement one or more I2S channel pairs, the first of which  
could be a master or a slave, and the rest of which would be slaves. All channel pairs  
are configured together for either transmit or receive and other shared attributes. The  
number of channel pairs is defined for each Flexcomm Interface, and may be from 0  
to 4.  
Configurable data size for all channels within one Flexcomm Interface, from 4 bits to  
32 bits. Each channel pair can also be configured independently to act as a single  
channel (mono as opposed to stereo operation).  
All channel pairs within one Flexcomm Interface share a single bit clock (SCK) and  
word select/frame trigger (WS), and data line (SDA).  
Data for all I2S traffic within one Flexcomm Interface uses the Flexcomm Interface  
FIFO. The FIFO depth is 8 entries.  
Left justified and right justified data modes.  
DMA support using FIFO level triggering.  
TDM (Time Division Multiplexing) with a several stereo slots and/or mono slots is  
supported. Each channel pair can act as any data slot. Multiple channel pairs can  
participate as different slots on one TDM data line.  
The bit clock and WS can be selectively inverted.  
Sampling frequencies supported depends on the specific device configuration and  
applications constraints (for example, system clock frequency and PLL availability.)  
but generally supports standard audio data rates.  
Remark: The Flexcomm Interface function clock frequency should not be above 48 MHz.  
7.17 Digital peripheral  
7.17.1 LCD controller  
The LCD controller provides all of the necessary control signals to interface directly to  
various color and monochrome LCD panels. Both STN (single and dual panel) and TFT  
panels can be operated. The display resolution is selectable and can be up to 1024 768  
pixels. Several color modes are provided, up to a 24-bit true-color non-palettized mode.  
An on-chip 512 byte color palette allows reducing bus utilization (that is, memory size of  
the displayed data) while still supporting many colors.  
The LCD interface includes its own DMA controller to allow it to operate independently of  
the CPU and other system functions. A built-in FIFO acts as a buffer for display data,  
providing flexibility for system timing. Hardware cursor support can further reduce the  
amount of CPU time required to operate the display.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
66 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7.17.1.1 Features  
AHB master interface to access frame buffer.  
Setup and control via a separate AHB slave interface.  
Dual 16-deep programmable 64-bit wide FIFOs for buffering incoming display data.  
Supports single and dual-panel monochrome Super Twisted Nematic (STN) displays  
with 4-bit or 8-bit interfaces.  
Supports single and dual-panel color STN displays.  
Supports Thin Film Transistor (TFT) color displays.  
Programmable display resolution including, but not limited to: 320 200, 320 240,  
640 200, 640 240, 640 480, 800 600, and 1024 768.  
Hardware cursor support for single-panel displays.  
15 gray-level monochrome, 3375 color STN, and 32 K color palettized TFT support.  
1, 2, or 4 bits-per-pixel (bpp) palettized displays for monochrome STN.  
1, 2, 4, or 8 bpp palettized color displays for color STN and TFT.  
16 bpp true-color non-palettized for color STN and TFT.  
24 bpp true-color non-palettized for color TFT.  
Programmable timing for different display panels.  
256 entry, 16-bit palette RAM, arranged as a 128 32-bit RAM.  
Frame, line, and pixel clock signals.  
AC bias signal for STN, data enable signal for TFT panels.  
Supports little and big-endian, and Windows CE data formats.  
LCD panel clock may be generated from the peripheral clock, or from a clock input  
pin.  
7.17.2 SD/MMC card interface  
The SD/MMC card interface supports the following modes to control:  
7.17.2.1 Features  
Secure Digital memory (SD version 1.1).  
Secure Digital I/O (SDIO version 2.0).  
Consumer Electronics Advanced Transport Architecture (CE-ATA version 1.1).  
MultiMedia Cards (MMC version 4.1).  
Supports up to a maximum of 50 MHz of interface frequency.  
7.17.3 External memory controller  
The LPC54018JxM/LPC54S018JxM EMC is an ARM PrimeCell MultiPort Memory  
Controller peripheral offering support for asynchronous static memory devices such as  
RAM, ROM, and flash. In addition, it can be used as an interface with off-chip  
memory-mapped devices and peripherals. The EMC is an Advanced Microcontroller Bus  
Architecture (AMBA) compliant peripheral.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
67 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7.17.3.1 Features  
Read and write buffers to reduce latency and to improve performance.  
Low transaction latency.  
Asynchronous static memory device support including RAM, ROM, and flash, with or  
without asynchronous page mode.  
8/16 data and 16/20/26 address lines wide static memory support.  
Static memory features include:  
Asynchronous page mode read.  
Programmable Wait States.  
Bus turnaround delay.  
Output enable and write enable delays.  
Extended wait.  
Dynamic memory interface support including single data rate SDRAM.  
16 bit and 32 bit wide chip select SDRAM memory support.  
EMC bus width (bit) on TFBGA180 package supports up to 8/16 data line wide static  
memory.  
Four chip selects for synchronous memory and four chip selects for static memory  
devices.  
Power-saving modes dynamically control EMC_CKE and EMC_CLK outputs to  
SDRAMs.  
Dynamic memory self-refresh mode controlled by software.  
Controller supports 2048 (A0 to A10), 4096 (A0 to A11), and 8192 (A0 to A12) row  
address synchronous memory parts. That is typical 512 MB, 256 MB, and 128 MB  
parts, with 4, 8, 16, or 32 data bits per device.  
Separate reset domains allow the for auto-refresh through a chip reset if desired.  
Note: Synchronous static memory devices (synchronous burst mode) are not supported.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
68 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7.17.4 DMA controller  
The DMA controller allows peripheral-to memory, memory-to-peripheral, and  
memory-to-memory transactions. Each DMA stream provides unidirectional DMA  
transfers for a single source and destination.  
7.17.4.1 Features  
One channel per on-chip peripheral direction: typically one for input and one for output  
for most peripherals.  
DMA operations can optionally be triggered by on- or off-chip events.  
Priority is user selectable for each channel.  
Continuous priority arbitration.  
Address cache.  
Efficient use of data bus.  
Supports single transfers up to 1,024 words.  
Address increment options allow packing and/or unpacking data.  
7.18 Counter/timers  
7.18.1 General-purpose 32-bit timers/external event counter  
The LPC54018JxM/LPC54S018JxM includes five general-purpose 32-bit timer/counters.  
The timer/counter is designed to count cycles of the system derived clock or an  
externally-supplied clock. It can optionally generate interrupts, generate timed DMA  
requests, or perform other actions at specified timer values, based on four match  
registers. Each timer/counter also includes two capture inputs to trap the timer value when  
an input signal transitions, optionally generating an interrupt.  
7.18.1.1 Features  
A 32-bit timer/counter with a programmable 32-bit prescaler.  
Counter or timer operation.  
Up to four 32-bit captures can take a snapshot of the timer value when an input signal  
transitions. A capture event may also optionally generate an interrupt. The number of  
capture inputs for each timer that are actually available on device pins may vary by  
device.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Shadow registers are added for glitch-free PWM output.  
For each timer, up to four external outputs corresponding to match registers with the  
following capabilities (the number of match outputs for each timer that are actually  
available on device pins may vary by device):  
Set LOW on match.  
Set HIGH on match.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
69 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Toggle on match.  
Do nothing on match.  
Up to two match registers can be used to generate timed DMA requests.  
The timer and prescaler may be configured to be cleared on a designated capture  
event. This feature permits easy pulse width measurement by clearing the timer on  
the leading edge of an input pulse and capturing the timer value on the trailing edge.  
Up to four match registers can be configured for PWM operation, allowing up to three  
single edged controlled PWM outputs. (The number of match outputs for each timer  
that are actually available on device pins may vary by device.)  
7.18.2 SCTimer/PWM  
The SCTimer/PWM allows a wide variety of timing, counting, output modulation, and input  
capture operations. The inputs and outputs of the SCTimer/PWM are shared with the  
capture and match inputs/outputs of the 32-bit general-purpose counter/timers.  
The SCTimer/PWM can be configured as two 16-bit counters or a unified 32-bit counter. In  
the two-counter case, in addition to the counter value the following operational elements  
are independent for each half:  
State variable.  
Limit, halt, stop, and start conditions.  
Values of Match/Capture registers, plus reload or capture control values.  
In the two-counter case, the following operational elements are global to the  
SCTimer/PWM, but the last three can use match conditions from either counter:  
Clock selection  
Inputs  
Events  
Outputs  
Interrupts  
7.18.2.1 Features  
Two 16-bit counters or one 32-bit counter.  
Counter(s) clocked by bus clock or selected input.  
Up counter(s) or up-down counter(s).  
State variable allows sequencing across multiple counter cycles.  
Event combines input or output condition and/or counter match in a specified state.  
Events control outputs, interrupts, and the SCTimer/PWM states.  
Match register 0 can be used as an automatic limit.  
In bi-directional mode, events can be enabled based on the count direction.  
Match events can be held until another qualifying event occurs.  
Selected event(s) can limit, halt, start, or stop a counter.  
Supports:  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
70 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
8 inputs  
10 outputs  
16 match/capture registers  
16 events  
16 states  
PWM capabilities including dead time and emergency abort functions  
7.18.3 Windowed WatchDog Timer (WWDT)  
The purpose of the watchdog is to reset the controller if software fails to periodically  
service it within a programmable time window.  
7.18.3.1 Features  
Internally resets chip if not periodically reloaded during the programmable time-out  
period.  
Optional windowed operation requires reload to occur between a minimum and  
maximum time period, both programmable.  
Optional warning interrupt can be generated at a programmable time prior to  
watchdog time-out.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect feed sequence causes reset or interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in  
multiples of Tcy(WDCLK) 4.  
The Watchdog Clock (WDCLK) uses the WDOSC as the clock source.  
7.18.4 Real Time Clock (RTC) timer  
The RTC timer is a 32-bit timer which counts down from a preset value to zero. At zero,  
the preset value is reloaded and the counter continues. The RTC timer uses the 32.768  
kHz clock input to create a 1 Hz or 1 kHz clock.  
7.18.5 Multi-Rate Timer (MRT)  
The Multi-Rate Timer (MRT) provides a repetitive interrupt timer with four channels. Each  
channel can be programmed with an independent time interval, and each channel  
operates independently from the other channels.  
7.18.5.1 Features  
24-bit interrupt timer.  
Four channels independently counting down from individually set values.  
Repeat and one-shot interrupt modes.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
71 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7.18.6 Repetitive Interrupt Timer (RIT)  
The repetitive interrupt timer provides a free-running 48-bit counter which is compared to  
a selectable value, generating an interrupt when a match occurs. Any bits of the  
timer/compare can be masked such that they do not contribute to the match detection.  
The repetitive interrupt timer can be used to create an interrupt that repeats at  
predetermined intervals.  
7.18.6.1 Features  
48-bit counter running from the main clock. Counter can be free-running or can be  
reset when an RIT interrupt is generated.  
48-bit compare value.  
48-bit compare mask. An interrupt is generated when the counter value equals the  
compare value, after masking. This allows for combinations not possible with a simple  
compare.  
Can be used for ETM debug time stamping.  
7.19 12-bit Analog-to-Digital Converter (ADC)  
The ADC supports a resolution of 12-bit and fast conversion rates of up to 5 Msamples/s.  
Sequences of analog-to-digital conversions can be triggered by multiple sources. Possible  
trigger sources are the SCTimer/PWM, external pins, and the ARM TXEV interrupt.  
The ADC supports a variable clocking scheme with clocking synchronous to the system  
clock or independent, asynchronous clocking for high-speed conversions  
The ADC includes a hardware threshold compare function with zero-crossing detection.  
The threshold crossing interrupt is connected internally to the SCTimer/PWM inputs for  
tight timing control between the ADC and the SCTimer/PWM.  
7.19.1 Features  
12-bit successive approximation analog to digital converter.  
Input multiplexing among up to 12 pins.  
Two configurable conversion sequences with independent triggers.  
Optional automatic high/low threshold comparison and “zero crossing” detection.  
Measurement range VREFN to VREFP (typically 3 V; not to exceed VDDA voltage  
level).  
12-bit conversion rate of 5.0 Msamples/s. Options for reduced resolution at higher  
conversion rates.  
Burst conversion mode for single or multiple inputs.  
Synchronous or asynchronous operation. Asynchronous operation maximizes  
flexibility in choosing the ADC clock frequency, Synchronous mode minimizes trigger  
latency and can eliminate uncertainty and jitter in response to a trigger.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
72 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7.20 CRC engine  
The Cyclic Redundancy Check (CRC) generator with programmable polynomial settings  
supports several CRC standards commonly used. To save system power and bus  
bandwidth, the CRC engine supports DMA transfers.  
7.20.1 Features  
Supports three common polynomials CRC-CCITT, CRC-16, and CRC-32.  
CRC-CCITT: x16 + x12 + x5 + 1  
CRC-16: x16 + x15 + x2 + 1  
CRC-32: x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1  
Bit order reverse and 1’s complement programmable setting for input data and CRC  
sum.  
Programmable seed number setting.  
Supports CPU PIO or DMA back-to-back transfer.  
Accept any size of data width per write: 8, 16 or 32-bit.  
8-bit write: 1-cycle operation.  
16-bit write: 2-cycle operation (8-bit x 2-cycle).  
32-bit write: 4-cycle operation (8-bit x 4-cycle).  
7.21 Temperature sensor  
The temperature sensor transducer uses an intrinsic pn-junction diode reference and  
outputs a CTAT voltage (Complement To Absolute Temperature). The output voltage  
varies inversely with device temperature with an absolute accuracy of better than ±5 C  
over the full temperature range (40 C to +105 C). The temperature sensor is only  
approximately linear with a slight curvature. The output voltage is measured over different  
ranges of temperatures and fit with linear-least-square lines.  
After power-up, the temperature sensor output must be allowed to settle to its stable value  
before it can be used as an accurate ADC input.  
7.22 Security features  
The LPC54018JxM/LPC54S018JxM consists of an AES engine (LPC54S018Jx only), a  
SHA engine, a random number generator, and a key storage block that supports keys  
stored in OTP or keys from an SRAM based PUF (LPC54S018Jx only). Additionally, for  
each device there is a 128-bit unique device serial number for identification.  
7.22.1 SHA-1 and SHA-2  
All LPC54018JxM/LPC54S018JxM devices provide on-chip hash support to perform  
SHA-1 and SHA-2 with 256-bit digest (SHA-256). Hashing is a way to reduce arbitrarily  
large messages or code images to a relatively small fixed size “unique” number called a  
digest. The SHA-1 Hash produces a 160 bit digest (5 words), and the SHA-256 hash  
produces a 256 bit digest (8 words).  
7.22.1.1 Features  
Performs SHA-1 and SHA-2(256) based hashing.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
73 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Used with HMAC to support a challenge/response or to validate a message.  
7.22.2 AES encryption/decryption  
The LPC54S018Jx devices provide an on-chip hardware AES encryption and decryption  
engine to protect the image content and to accelerate processing for data encryption or  
decryption, data integrity, and proof of origin. Data can be encrypted or decrypted by the  
AES engine using the scrambled key from the OTP or a software supplied key.  
7.22.2.1 Features  
Encryption and Decryption of data.  
Secure storage of AES key that cannot be read.  
AES engine peak performance of 0.5 bytes/clock cycle.  
GF128 Hash Engine.  
AES engine supports 128, 192 or 256-bit key in:  
Electronic Codebook (ECB) mode.  
Cipher Block Chaining (CBC) mode.  
Cipher Feedback (CFB) mode.  
Output Feedback (OFB) mode.  
Counter (CTR) mode.  
Galois/Counter Mode (GCM).  
The AES engine is compliant with the FIPS (Federal Information Processing  
Standard) Publication 197, Advanced Encryption Standard (AES).  
Data is processed in little endian mode. This means that the first byte read from  
memory is integrated into the AES codeword as least significant byte. The 16th byte  
read from memory is the most significant byte of the first AES codeword.  
DMA transfers supported through the DMA controller.  
7.22.3 PUF  
The PUF controller on the LPC54S018Jx provides a secure key storage without injecting  
or provisioning device unique PUF root key.The PUF block can generate, store, and  
reconstruct key sizes from 64 to 4096 bits.  
7.22.3.1 PUF keys  
The PUF controller provides secure key storage without storing the key. This is done by  
using the digital fingerprint of a device derived from SRAM. Instead of storing the key, a  
Key Code is generated, which in combination with the digital fingerprint is used to  
reconstruct keys that are routed to the AES engine or for use by software. The PUF  
controller provides generation and secure storage for keys.  
7.22.3.2 PUF controller features  
The PUF controller has the following features:  
Key strength of 256 bits.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
74 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
The PUF constructs 256-bit strength device unique PUF root key using the digital  
fingerprint of a device derived from SRAM and error correction data called  
Activation Code (AC). The Activation Code is generated during enrollment  
process. The Activation Code should be stored on external non-volatile memory  
device in the system.  
Generation, storage, and reconstruction of keys.  
Key sizes from 64 to 4096 bits.  
PUF controller allows storage of keys, generated externally or on chip, of sizes 64  
to 4096 bits.  
PUF Controller combines keys with digital fingerprint of device to generate key  
codes. These key codes should be provided to the controller to reconstruct original  
key. They can be stored on external non-volatile memory device in the system.  
Key output via dedicated hardware interface or through register interface.  
PUF controller allows to assign a 4-bit index value for each key while generating  
key codes. Keys that are assigned index value zero are output through HW bus,  
accessible to AES engine only. Keys with non-zero index are available through  
APB register interface.  
32-bit APB interface.  
7.23 Emulation and debugging  
Debug and trace functions are integrated into the ARM Cortex-M4. Serial wire debug and  
trace functions are supported. The ARM Cortex-M4 is configured to support up to eight  
breakpoints and four watch points.  
The ARM SYSREQ reset is supported and causes the processor to reset the peripherals,  
execute the boot code, restart from address 0x0000 0000, and break at the user entry  
point.  
The SWD pins are multiplexed with other digital I/O pins. On reset, the pins assume the  
SWD functions by default.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
75 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
8. Limiting values  
Table 10. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
[2]  
VDD  
supply voltage (core and on pin VDD  
external rail)  
-0.5  
+4.6  
V
VDDA  
VBAT  
Vref  
VI  
analog supply voltage  
battery supply voltage  
reference voltage  
input voltage  
on pin VDDA  
-0.5  
-0.5  
-0.5  
-0.5  
+4.6  
+4.6  
+4.6  
+5.0  
V
V
V
V
on pin VBAT  
on pin VREFP  
-
[6][7]  
[5]  
only valid when the VDD > 1.8 V;  
5 V tolerant I/O pins  
on I2C open-drain pins  
-0.5  
-0.5  
+5.0  
+5.0  
V
V
USB_DM,  
USB_DP pins  
[8][9]  
VIA  
analog input voltage  
on digital pins configured for an  
analog function  
-0.5  
VDD  
V
[3]  
[3]  
IDD  
supply current  
per supply pin,  
-
-
-
300  
300  
100  
mA  
mA  
mA  
2.7 V VDD < 3.6 V  
per ground pin,  
ISS  
ground current  
2.7 V VDD < 3.6 V  
(0.5VDD) < VI < (1.5VDD);  
Tj < 125 C  
Ilatch  
I/O latch-up current  
[10]  
Tstg  
storage temperature  
-65  
-
+150  
+150  
C  
C  
Tj(max)  
maximum junction  
temperature  
[11]  
[13]  
[4]  
Ptot(pack)  
Based on package heat transfer,  
not device power consumption  
-
-
-
0.95  
1.2  
W
W
V
total power dissipation (per package)  
Based on package heat transfer,  
not device power consumption  
VESD  
electrostatic discharge  
voltage  
Human Body Model; all pins  
2000  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
c) The limiting values are stress ratings only and operating the part at these values is not recommended and proper operation is not  
guaranteed. The conditions for functional operation are specified in Table 19.  
[2] Maximum/minimum voltage above the maximum operating voltage (see Table 19) and below ground that can be applied for a short time  
(< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.  
[3] The peak current is limited to 25 times the corresponding maximum current.  
[4] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
[5] VDD present or not present. Compliant with the I2C-bus standard. 5.5 V can be applied to this pin when VDD is powered down.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
76 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
[6] Applies to all 5 V tolerant I/O pins except true open-drain pins.  
[7] Including the voltage on outputs in 3-state mode.  
[8] An ADC input voltage above 3.6 V can be applied for a short time without leading to immediate, unrecoverable failure. Accumulated  
exposure to elevated voltages at 4.6 V must be less than 106 s total over the lifetime of the device. Applying an elevated voltage to the  
ADC inputs for a long time affects the reliability of the device and reduces its lifetime.  
[9] It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage supply pin.  
[10] Dependent on package type.  
[11] JEDEC (4.5 in 4 in); still air.  
[12] Single layer (4.5 in 3 in); still air.  
[13] 8-layer (4.5 in 3 in); still air.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
77 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
9. Thermal characteristics  
The average chip junction temperature, Tj (C), can be calculated using the following  
equation:  
T j = Tamb + PD Rthj a  
(1)  
Tamb = ambient temperature (C),  
Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)  
PD = sum of internal and I/O power dissipation  
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of  
the I/O pins is often small and many times can be negligible. However it can be significant  
in some applications.  
Table 11. Thermal resistance  
Symbol Parameter  
TFBGA180 Package  
Conditions  
Max/Min  
Unit  
Rth(j-a)  
thermal resistance from  
junction to ambient  
JEDEC (4.5 in 4 in); still air  
8-layer (4.5 in 3 in); still air  
41 15 % C/W  
33 15 % C/W  
14 15 % C/W  
Rth(j-c)  
thermal resistance from  
junction to case  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
78 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
10. Static characteristics  
10.1 General operating conditions  
Table 12. General operating conditions  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min Typ[1] Max Unit  
fclk  
CPU clock frequency  
CPU clock frequency  
-
-
-
180  
180  
MHz  
MHz  
For USB high-speed device and host  
operations  
60  
CPU clock frequency  
For USB full-speed device and host  
operations  
12  
-
180  
MHz  
VDD  
supply voltage (core and  
external rail)  
2.7  
2.7  
3.0  
2.7  
2.7  
1.71  
2.7  
-
-
-
-
-
-
-
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
VDDA  
V
V
V
V
V
V
V
[2]  
For OTP programming only  
For USB Full-Speed operation only  
For USB High-Speed operation only  
VDDA  
VBAT  
Vrefp  
analog supply voltage  
battery supply voltage  
ADC positive reference  
voltage  
VDDA 2 V  
VDDA < 2 V  
VDDA  
3.0  
-
VDDA  
3.6  
V
V
USB1_AVDD3V3,  
USB1 analog supply  
3.3  
USB1_AVDDTX3V3  
RTC oscillator pins  
Vi(rtcx)  
32.768 kHz oscillator input on pin RTCXIN  
voltage  
-0.5  
-0.5  
-
-
+3.6  
+3.6  
V
V
Vo(rtcx)  
32.768 kHz oscillator  
output voltage  
on pin RTCXOUT  
Vi(xtal)  
crystal input voltage  
crystal output voltage  
on pin XTALIN  
0.5  
0.5  
-
-
1.95  
1.95  
V
V
Vo(xtal)  
on pin XTALOUT  
[1] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply voltages.  
[2] Attempting to program below 2.7 V will result in unpredictable results and the part might enter an unrecoverable state.  
10.2 CoreMark data  
Table 13. CoreMark score  
Tamb = 25C, VDD = 3.3V  
Parameter  
ARM Cortex-M4 in active mode  
CoreMark score CoreMark code executed from SRAMX;  
Conditions  
Typ  
Unit  
[1][3][4][5]  
[1][3][4][5]  
[2][3][4][5]  
CCLK = 12 MHz  
CCLK = 96 MHz  
CCLK = 180 MHz  
3.38  
3.38  
3.38  
(Iterations/s) / MHz  
(Iterations/s) / MHz  
(Iterations/s) / MHz  
[1] Clock source FRO. PLL disabled.  
[2] Clock source 12 MHz FRO. PLL enabled.  
[3] Characterized through bench measurements using typical samples.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
79 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
[4] Compiler settings: IAR C/C++ Compiler for Arm ver 8.22.2, optimization level 3, optimized for time on.  
[5] SRAM1, SRAM2, SRAM3, and USB SRAM powered down. SRAM0 and SRAMX powered.  
DDDꢀꢁꢂꢃꢄꢂꢁ  
&RUHPDUNꢊVFRUH  
ꢋLWHUDWLRQVꢍVꢍ0+]ꢌ  
0ꢄꢊ65$0  
ꢀꢁ  
ꢂꢂ  
ꢃꢄ  
ꢅꢃ  
ꢆꢇ  
ꢀꢀꢅ  
ꢀꢂꢈ  
ꢀꢃꢆ  
ꢀꢈꢉ  
)UHTXHQF\ꢊꢋ0+]ꢌ  
Conditions: VDD = 3.3 V; Tamb = 25 °C; active mode; all peripherals disabled; BOD disabled;  
Measured with IAR ver 8.22.2. Optimization level 3, optimized for time ON.  
12 MHz, 24 MHz, 48 MHz, and 96 MHz: FRO enabled; PLL disabled.  
36 MHz, 60 MHz, 72 MHz, 84 MHz, 108 MHz, 120 MHz, 132 MHz, 144 MHz, 156 MHz, 168 MHz,  
and 180 MHz: FRO enabled; PLL enabled.  
CoreMark score from SRAMX: SRAM0 is powered.  
Fig 8. Typical CoreMark score ((iterations/s)/MHz) vs. Frequency (MHz) from SRAMX  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
80 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
10.3 Power consumption  
Power measurements in Active, sleep, and deep-sleep modes were performed under the  
following conditions:  
Configure all pins as GPIO with pull-up resistor disabled in the IOCON block.  
Configure GPIO pins as outputs using the GPIO DIR register.  
Write 1 to the GPIO CLR register to drive the outputs LOW.  
All peripherals disabled.  
Table 14. Static characteristics: Power consumption in active and sleep mode  
Tamb = 40 C to +105 C, unless otherwise specified.2.7 V VDD 3.6 V.  
Symbol  
Active mode  
IDD  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
supply current  
CoreMark code executed from  
SRAMX:  
[2][3][4]  
[2][3][4]  
[3][4][5]  
CCLK = 12 MHz  
CCLK = 96 MHz  
CCLK = 180 MHz  
-
-
-
3.0  
-
-
-
mA  
mA  
mA  
16.0  
35.0  
Sleep mode  
[2][3][4]  
[2][3][4]  
[3][4][5]  
IDD  
supply current  
CCLK = 12 MHz  
CCLK = 96 MHz  
CCLK = 180 MHz  
-
-
-
1.7  
4.1  
8.3  
-
-
-
mA  
mA  
mA  
[1] Typical ratings are not guaranteed. Typical values listed are at room temperature (25 C), 3.3V.  
[2] Clock source FRO. PLL disabled.  
[3] Characterized through bench measurements using typical samples.  
[4] Compiler settings: Keil uVision v.5.23, optimization level 0, optimized for time off.  
[5] Clock source FRO. PLL enabled.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
81 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
DDDꢀꢁꢂꢃꢄꢂꢅ  
ꢂꢄꢉ  
ꢋ—$ꢍ0+]ꢌ  
ꢁꢆꢉ  
ꢁꢄꢉ  
ꢀꢆꢉ  
ꢀꢄꢉ  
ꢆꢉ  
0ꢄꢊ65$0ꢊ)52ꢎ33////ꢌ  
0ꢄꢊ65$0ꢊ)52ꢌ  
ꢀꢁ  
ꢄꢉ  
ꢇꢈ  
ꢆꢇ  
ꢀꢁꢄ  
ꢀꢃꢁ  
ꢀꢈꢉ  
)UHTXHQF\ꢊꢋ0+]ꢌ  
Conditions: VDD = 3.3 V; Tamb = 25 °C; active mode; all peripherals disabled; BOD disabled;  
Measured with Keil uVision v.5.23. Optimization level 0, optimized for time off.  
12 MHz, 24 MHz, 48 MHz, and 96 MHz: FRO enabled; PLL disabled.  
36 MHz, 60 MHz, 72 MHz, 84 MHz, 108 MHz, 120 MHz, 132 MHz, 144 MHz, 156 MHz, 168 MHz,  
and 180 MHz: FRO enabled; PLL enabled.  
CoreMark A/MHz from SRAMX: SRAM0 is powered.  
Fig 9. CoreMark power consumption: typical A/MHz vs. frequency (MHz) SRAMX  
Table 15. Static characteristics: Power consumption in deep-sleep and deep power-down modes  
Tamb = 40 C to +105 C, unless otherwise specified, 2.7 V VDD 3.6 V.  
Symbol Parameter  
IDD supply current Deep-sleep mode:  
SRAMX (64 KB) powered  
Conditions  
Min Typ[1][2] Max[3] Unit  
-
-
55  
-
175  
A  
A  
Tamb = 25 C  
SRAMX (64 KB) powered  
2020  
T
amb = 105 C  
Deep power-down mode  
RTC oscillator input grounded (RTC oscillator  
disabled)  
-
-
-
891  
-
1.6  
42  
-
A  
A  
nA  
Tamb = 25 C  
RTC oscillator input grounded (RTC oscillator  
disabled)  
T
amb = 105 C  
RTC oscillator running with external crystal  
VDD = VDDA= VREFP = 3.3 V, VBAT = 3.0 V  
660  
[1] Typical ratings are not guaranteed. Typical values listed are at room temperature (25 C), VDD = 3.3 V.  
[2] Characterized through bench measurements using typical samples.  
[3] Tested in production, VDD = 3.6 V.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
82 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 16. Static characteristics: Power consumption in deep power-down mode  
Tamb = 40 C to +105 C, unless otherwise specified, 2.7 V VDD 3.6 V.  
Symbol Parameter  
Conditions  
Min Typ[1][2] Max  
Unit  
IBAT  
battery supply deep power-down mode;  
current  
RTC oscillator running with external crystal  
VDD = VDDA= VREFP = 3.3 V, VBAT = 3.0 V  
-
-
0
-
-
nA  
nA  
VDD = VDDA= VREFP = 0 V or tied to ground, VBAT =  
3.0 V  
380[3]  
[1] Typical ratings are not guaranteed. Typical values listed are at room temperature (25 C).  
[2] Characterized through bench measurements using typical samples.  
[3] If VBAT> VDD, the external reset pin must be floating to prevent high VBAT leakage.  
DDDꢀꢁꢂꢃꢄꢂꢆ  
ꢀꢁꢉꢉ  
,
''  
ꢋ—$ꢌ  
ꢀꢉꢉꢉ  
ꢈꢉꢉ  
ꢇꢉꢉ  
ꢄꢉꢉ  
ꢁꢉꢉ  
ꢂꢐꢇꢊ99  
ꢂꢐꢂꢊ99  
ꢀꢐꢈꢊ99  
ꢀꢐꢅꢀꢊ99  
ꢏꢄꢉ  
ꢏꢀꢉ  
ꢁꢉ  
ꢃꢉ  
ꢈꢉ  
7HPSHUDWXUHꢊꢋƒ&ꢌ  
ꢀꢀꢉ  
Conditions: BOD disabled; all oscillators and analog blocks disabled; all SRAM disabled except  
64 KB SRAMX.  
Remark: At hot temperature and below 2.0 V, the supply current increases slightly because of  
reduction of available RBB (reverse body bias) voltage.  
Fig 10. Deep-sleep mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
83 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
DDDꢀꢁꢂꢃꢄꢂꢇ  
ꢁꢃ  
ꢁꢉ  
ꢀꢃ  
ꢀꢉ  
,
''  
ꢋ—$ꢌ  
ꢂꢐꢇꢊ99  
ꢂꢐꢂꢊ99  
ꢀꢐꢈꢊ99  
ꢀꢐꢅꢀꢊ99  
ꢏꢄꢉ  
ꢏꢀꢉ  
ꢁꢉ  
ꢃꢉ  
ꢈꢉ  
ꢀꢀꢉ  
7HPSHUDWXUHꢊꢋƒ&ꢌ  
RTC disabled (RTC oscillator input grounded).  
Fig 11. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD  
Table 17 shows the typical peripheral power consumption measured on a typical sample  
at Tamb = 25 °C and VDD = 3.3 V. The supply current per peripheral is measured as the  
difference in supply current between the peripheral block enabled and the peripheral block  
disabled using ASYNCAPBCLKCTRL, AHBCLKCTRL0/1/2, and PDRUNCFG0/1  
registers. All other blocks are disabled and no code accessing the peripheral is executed.  
The supply currents are shown for system clock frequencies of 12 MHz, 48 MHz, 96 MHz  
and 180MHz.  
Table 17. Typical peripheral power consumption[1][2]  
VDD = 3.3 V; Tamb = 25 °C  
Peripheral  
FRO  
IDD in uA  
100  
WDT OSC  
BOD  
2.0  
2.0  
[1] The supply current per peripheral is measured as the difference in supply current between the peripheral  
block enabled and the peripheral block disabled using PDRUNCFG0/1 registers. All other blocks are  
disabled and no code accessing the peripheral is executed.  
[2] Typical ratings are not guaranteed. Characterized through bench measurements using typical samples.  
Table 18. Typical AHB/APB peripheral power consumption [3][4][5]  
Tamb = 25 °C, VDD = 3.3 V;  
Peripheral  
IDD in uA/MHz  
IDD in uA/MHz  
IDD in uA/MHz  
IDD in uA/MHz  
AHB peripheral  
CPU: 12 MHz, sync CPU: 48 MHz, sync CPU: 96 MHz, sync CPU: 180 MHz, sync  
APB bus: 12 MHz  
APB bus: 48 MHz  
APB bus: 96 MHz  
APB bus: 180 MHz  
USB0 device  
USB1 device  
DMIC  
0.3  
4.4  
0.2  
0.9  
0.3  
4.4  
0.2  
0.9  
0.3  
4.4  
0.2  
0.9  
0.4  
5.0  
0.2  
1.0  
[1]  
GPIO0  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
84 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 18. Typical AHB/APB peripheral power consumption [3][4][5]  
Tamb = 25 °C, VDD = 3.3 V;  
Peripheral  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
DMA  
IDD in uA/MHz  
0.8  
IDD in uA/MHz  
0.8  
IDD in uA/MHz  
0.8  
IDD in uA/MHz  
1.0  
[1]  
[1]  
[1]  
[1]  
[1]  
1.0  
1.0  
1.0  
1.1  
1.1  
1.1  
1.1  
1.3  
1.0  
1.0  
1.0  
1.2  
0.7  
0.7  
0.7  
0.8  
0.7  
0.7  
0.7  
0.8  
CRC  
1.0  
1.0  
1.0  
1.0  
ADC0  
1.6  
1.6  
1.6  
1.9  
SCTimer/PWM  
Ethernet AVB  
LCD  
4.5  
4.5  
4.5  
5.3  
24.0  
13.0  
39.0  
10.8  
10.7  
7.9  
24.0  
13.0  
39.0  
10.8  
10.7  
7.9  
24.0  
13.0  
39.0  
10.8  
10.7  
7.9  
28.0  
15.0  
45.4  
12.6  
12.4  
9.3  
EMC  
CAN0  
CAN1  
SD/MMC  
Flexcomm Interface 0  
(USART, SPI, I2C)  
1.6  
1.6  
1.6  
1.9  
Flexcomm Interface1  
(USART, SPI, I2C)  
1.6  
1.7  
1.4  
1.4  
1.7  
2.0  
1.6  
1.5  
1.5  
1.5  
1.6  
1.7  
1.4  
1.5  
1.7  
2.0  
1.6  
1.5  
1.5  
1.5  
1.6  
1.7  
1.4  
1.5  
1.7  
2.0  
1.6  
1.5  
1.5  
1.5  
1.8  
1.9  
1.6  
1.7  
1.9  
2.3  
1.9  
1.8  
1.8  
1.8  
Flexcomm Interface 2  
(USART, SPI, I2C)  
Flexcomm Interface 3  
(USART, SPI, I2C)  
Flexcomm Interface 4  
(USART, SPI, I2C)  
Flexcomm Interface 5  
(USART, SPI, I2C)  
Flexcomm Interface 6  
(USART, SPI, I2C, I2S)  
Flexcomm Interface 7  
(USART, SPI, I2C, I2S)  
Flexcomm Interface 8  
(USART, SPI, I2C)  
Flexcomm Interface 9  
(USART, SPI, I2C)  
Flexcomm Interface 10  
(SPI)  
Sync APB peripheral  
CPU: 12 MHz, sync CPU: 48 MHz, sync CPU: 96 MHz, sync CPU: 180 MHz, sync  
APB bus: 12 MHz  
APB bus: 48 MHz  
APB bus: 96 MHz  
APB bus: 180 MHz  
[1]  
[1]  
INPUTMUX  
IOCON  
0.83  
2.67  
1.1  
0.85  
2.65  
1.1  
0.86  
2.65  
1.1  
1.0  
3.13  
1.3  
PINT  
GINT0 and GINT1  
1.33  
1.35  
1.34  
1.52  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
85 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 18. Typical AHB/APB peripheral power consumption [3][4][5]  
Tamb = 25 °C, VDD = 3.3 V;  
Peripheral  
WWDT  
RTC  
IDD in uA/MHz  
0.42  
0.3  
IDD in uA/MHz  
0.42  
0.3  
IDD in uA/MHz  
0.42  
0.3  
IDD in uA/MHz  
0.46  
0.3  
MRT  
0.3  
0.3  
0.3  
0.3  
RIT  
0.1  
0.1  
0.1  
0.1  
UTICK  
0.2  
0.2  
0.2  
0.2  
CTimer0  
CTimer1  
CTimer2  
Smart card0  
Smart card1  
RNG  
0.8  
0.8  
0.8  
0.9  
0.8  
0.9  
0.9  
1.0  
0.83  
2.5  
0.85  
2.5  
0.88  
2.5  
0.99  
2.8  
2.5  
2.5  
2.5  
2.8  
1.4  
1.4  
1.4  
1.5  
OTP controller  
SHA  
4.0  
4.0  
4.0  
4.5  
1.2  
1.2  
1.2  
1.3  
AES  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
PUF  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
86 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 18. Typical AHB/APB peripheral power consumption [3][4][5]  
Tamb = 25 °C, VDD = 3.3 V;  
Peripheral  
IDD in uA/MHz  
CPU: 12 MHz,  
IDD in uA/MHz  
IDD in uA/MHz  
IDD in uA/MHz  
CPU: 180 MHz,  
Async APB peripheral  
CPU: 48 MHz, sync CPU: 96 MHz,  
Async APB bus: 12 APB bus: 12 MHz[2] Async APB bus: 12 Async APB bus:  
MHz  
MHz[2]  
12 MHz[2]  
Timer3  
Timer4  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
0.9  
[1] Turn off the peripheral when the configuration is done.  
[2] For optimal system power consumption, use fixed low frequency Async APB bus when the CPU is at a  
higher frequency.  
[3] The supply current per peripheral is measured as the difference in supply current between the peripheral  
block enabled and the peripheral block disabled using ASYNCAPBCLKCTRL, AHBCLKCTRL0/1, and  
PDRUNCFG0/1 registers. All other blocks are disabled and no code accessing the peripheral is executed.  
[4] The supply currents are shown for system clock frequencies of 12 MHz, 48 MHz, 96 MHz and 180 MHz.  
[5] Typical ratings are not guaranteed. Characterized through bench measurements using typical samples.  
10.4 Pin characteristics  
Table 19. Static characteristics: pin characteristics  
Tamb = 40 C to +105 C, unless otherwise specified. 2.7 V VDD 3.6 V unless otherwise specified. Values tested in  
production unless otherwise specified.  
Symbol Parameter  
RESET pin  
Conditions  
Min  
Typ[1] Max  
Unit  
VIH  
VIL  
HIGH-level input voltage  
0.8 VDD  
0.5  
-
-
-
5.0  
V
V
V
LOW-level input voltage  
hysteresis voltage  
0.3 VDD  
[14]  
Vhys  
0.05 VDD  
-
Standard I/O pins  
Input characteristics  
IIL  
IIH  
IIH  
VI  
LOW-level input current  
VI = 0 V; on-chip pull-up resistor  
disabled.  
-
-
3.0  
3.0  
3.0  
180  
180  
180  
nA  
nA  
nA  
HIGH-level input current VI = VDD; VDD = 3.6 V; for RESETN  
pin.  
HIGH-level input current VI = VDD; on-chip pull-down resistor  
disabled  
[3]  
input voltage  
pin configured to provide a digital  
function;  
VDD 1.8 V  
0
-
-
-
-
-
5.0  
3.6  
5.0  
+0.8  
-
V
V
V
V
V
VDD = 0 V  
0
VIH  
VIL  
HIGH-level input voltage 2.7 V VDD 3.6 V  
LOW-level input voltage 2.7 V VDD 3.6 V  
hysteresis voltage  
2.0  
0.5  
[14]  
Vhys  
0.1 VDD  
Output characteristics  
VO  
IOZ  
output voltage  
output active  
0
-
-
VDD  
180  
V
OFF-state output current VO = 0 V; VO = VDD; on-chip  
pull-up/pull-down resistors disabled  
3
nA  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
87 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 19. Static characteristics: pin characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified. 2.7 V VDD 3.6 V unless otherwise specified. Values tested in  
production unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ[1] Max  
Unit  
V
VOH  
VOL  
IOH  
HIGH-level output voltage IOH = 6 mA; 2.7 V VDD 3.6 V  
LOW-level output voltage IOL = 6 mA; 2.7 V VDD 3.6 V  
VDD 0.4  
-
-
-
-
-
0.4  
-
V
HIGH-level output current VOH = VDD 0.4 V;  
2.7 V VDD 3.6 V  
6.0  
mA  
IOL  
LOW-level output current VOL = 0.4 V; 2.7 V VDD 3.6 V  
6.0  
-
-
-
-
mA  
mA  
[2][4]  
[2][4]  
IOHS  
HIGH-level short-circuit  
output current. Drive  
HIGH; connected to  
ground;  
2.7 V VDD < 2.7 V  
87  
IOLS  
LOW-level short-circuit  
output current. Drive  
2.7 V VDD < 2.7 V  
-
-
77  
mA  
LOW; connected to VDD  
Weak input pull-up/pull-down characteristics  
Ipd  
pull-down current  
VI = VDD  
25  
80  
25  
6
80  
A  
A  
A  
A  
[2]  
VI = 5 V  
100  
80  
30  
Ipu  
pull-up current  
VI = 0 V  
[2][7]  
VDD < VI < 5 V  
Open-drain I2C pins  
VIH  
VIL  
Vhys  
ILI  
HIGH-level input voltage  
2.7 V VDD < 2.7 V  
2.7 V VDD < 2.7 V  
0.7 VDD  
-
-
V
LOW-level input voltage  
hysteresis voltage  
0
-
0.3 VDD  
V
0.1 VDD  
-
-
V
[5]  
input leakage current  
VI = VDD  
VI = 5 V  
-
2.5  
5.5  
-
3.5  
10  
-
A  
A  
mA  
-
IOL  
LOW-level output  
current  
VOL = 0.4 V; pin configured for  
standard mode or fast mode  
4.0  
VOL = 0.4V; pin configured for  
Fast-mode Plus  
20  
-
-
mA  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
88 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 19. Static characteristics: pin characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified. 2.7 V VDD 3.6 V unless otherwise specified. Values tested in  
production unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ[1] Max  
Unit  
USB0_DM and USB0_DP pins  
VI  
input voltage  
0
-
-
-
-
-
-
-
-
VDD  
-
V
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
hysteresis voltage  
2.0  
-
V
0.8  
-
V
Vhys  
Zout  
VOH  
VOL  
IOH  
0.4  
33.0  
2.8  
-
V
[11]  
[12]  
output impedance  
44  
-
Ω
HIGH-level output voltage  
LOW-level output voltage  
V
[13]  
0.3  
74  
9.0  
74  
9.0  
100  
V
[9][10]  
[10][11]  
[9][10]  
[10][11]  
[10]  
HIGH-level output current VOH = VDD 0.3 V  
VOH = VDD 0.3 V  
38  
6.0  
38  
6.0  
-
mA  
mA  
mA  
mA  
mA  
IOL  
LOW-level output current VOL = 0.3 V  
VOL = 0.3 V  
-
IOLS  
IOHS  
LOW-level short-circuit  
output current  
drive LOW; pad connected to  
ground  
-
-
[10]  
HIGH-level short-circuit  
output current  
drive HIGH; pad connected to  
ground  
-
100  
mA  
Pin capacitance  
Cio  
input/output capacitance I2C-bus pins  
[8]  
[6]  
[6]  
-
-
-
-
-
-
6.0  
2.0  
7.0  
pF  
pF  
pF  
pins with digital functions only  
Pins with digital and analog  
functions  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltage.  
[2] Based on characterization. Not tested in production.  
[3] With respect to ground.  
[4] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[5] To VSS  
.
[6] The values specified are simulated and absolute values, including package/bondwire capacitance.  
[7] The weak pull-up resistor is connected to the VDD rail and pulls up the I/O pin to the VDD level.  
[8] The value specified is a simulated value, excluding package/bondwire capacitance.  
[9] Without 33 Ω 2 % series external resistor.  
[10] The parameter values specified are simulated and absolute values.  
[11] With 33 Ω 2 % series external resistor.  
[12] With 15 KΩ 5 % resistor to VSS  
.
[13] With 1.5 KΩ 5% resistor to 3.6 V external pull-up.  
[14] Guaranteed by design, not tested in production.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
89 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
V
DD  
I
I
OL  
pd  
+
-
pin PIO0_n  
pin PIO0_n  
A
I
OH  
Ipu  
-
+
A
aaa-010819  
Fig 12. Pin input/output current measurement  
10.4.1 Electrical pin characteristics  
DDDꢀꢁꢅꢈꢆꢁꢄ  
DDDꢀꢁꢅꢈꢆꢅꢁ  
ꢇꢉ  
ꢃꢉ  
ꢄꢉ  
ꢂꢉ  
ꢁꢉ  
ꢀꢉ  
ꢇꢉ  
ꢏꢄꢉ&  
,
,
2/  
ꢋP$ꢌ  
2/  
ꢁꢃ&  
ꢋP$ꢌ  
ꢆꢉ&  
ꢀꢉꢃ&  
ꢏꢄꢉ&  
ꢁꢃ&  
ꢄꢃ  
ꢂꢉ  
ꢀꢃ  
ꢆꢉ&  
ꢀꢉꢃ&  
ꢉꢐꢀ  
ꢉꢐꢁ  
ꢉꢐꢂ  
ꢉꢐꢄ  
ꢉꢐꢃ  
2/  
ꢉꢐꢇ  
ꢉꢐꢀ  
ꢉꢐꢁ  
ꢉꢐꢂ  
ꢉꢐꢄ  
ꢉꢐꢃ  
ꢉꢐꢇ  
9
ꢊꢋ9ꢌ  
9
ꢊꢋ9ꢌ  
2/  
Conditions: VDD = 1.8 V; on pins PIO0_13 to PIO0_14.  
Conditions: VDD = 3.3 V; on pins PIO0_13 to PIO0_16.  
Fig 13. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus LOW-level output voltage  
VOL  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
90 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
DDDꢀꢁꢅꢈꢆꢅꢅ  
DDDꢀꢁꢅꢈꢆꢅꢂ  
ꢀꢁ  
ꢀꢃ  
ꢏꢄꢉ&  
,
,
2/  
ꢋP$ꢌ  
2/  
ꢁꢃ&  
ꢋP$ꢌ  
ꢆꢉ&  
ꢀꢉꢃ&  
ꢀꢉ  
ꢀꢁ  
ꢏꢄꢉ&  
ꢆꢉ&  
ꢁꢃ&  
ꢀꢉꢃ&  
ꢉꢐꢀ  
ꢉꢐꢁ  
ꢉꢐꢂ  
ꢉꢐꢄ  
ꢉꢐꢃ  
ꢉꢐꢇ  
ꢉꢐꢀ  
ꢉꢐꢁ  
ꢉꢐꢂ  
ꢉꢐꢄ  
ꢉꢐꢃ  
ꢉꢐꢇ  
9
ꢊꢋ9ꢌ  
9
ꢊꢋ9ꢌ  
2/  
2/  
Conditions: VDD = 1.8 V; on standard port pins.  
Conditions: VDD = 3.3 V; on standard port pins.  
Fig 14. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
DDDꢀꢁꢅꢈꢆꢅꢆ  
DDDꢀꢁꢅꢈꢆꢅꢇ  
ꢀꢐꢈ  
2+  
ꢂꢐꢃ  
9
2+  
ꢋ9ꢌ  
9
ꢋ9ꢌ  
ꢀꢐꢅ  
ꢀꢐꢇ  
ꢀꢐꢃ  
ꢀꢐꢄ  
ꢀꢐꢂ  
ꢀꢐꢁ  
ꢂꢐꢁ  
ꢁꢐꢆ  
ꢁꢐꢇ  
ꢁꢐꢂ  
ꢏꢄꢉ&  
ꢁꢃ&  
ꢏꢄꢉ&  
ꢁꢃ&  
ꢆꢉ&  
ꢆꢉ&  
ꢀꢉꢃ&  
ꢀꢉꢃ&  
ꢁꢐꢄ  
ꢄꢐꢈ  
ꢅꢐꢁ  
ꢆꢐꢇ  
ꢊꢋP$ꢌ  
ꢀꢁ  
ꢀꢄ  
ꢁꢀ  
ꢁꢈ  
ꢊꢋP$ꢌ  
ꢂꢃ  
,
,
2+  
2+  
Conditions: VDD = 1.8 V; on standard port pins.  
Conditions: VDD = 3.3 V; on standard port pins.  
Fig 15. Typical HIGH-level output voltage VOH versus HIGH-level output source current IOH  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
91 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
DDDꢀꢁꢅꢈꢆꢅꢉ  
DDDꢀꢁꢅꢈꢆꢅꢊ  
ꢄꢉ  
ꢃꢉ  
,
,
SX  
ꢋ—$ꢌ  
SX  
ꢋ—$ꢌ  
ꢂꢉ  
ꢀꢉ  
ꢁꢉ  
ꢏꢀꢉ  
ꢏꢂꢉ  
ꢏꢃꢉ  
ꢏꢅꢉ  
ꢏꢄꢉ&  
ꢁꢃ&  
ꢏꢄꢉ&  
ꢁꢃ&  
ꢆꢉ&  
ꢆꢉ&  
ꢏꢁꢉ  
ꢏꢄꢉ  
ꢀꢉꢃ&  
ꢀꢉꢃ&  
ꢉꢐꢉ  
ꢉꢐꢃ  
ꢀꢐꢉ  
ꢀꢐꢃ  
ꢁꢐꢉ  
ꢁꢐꢃ  
ꢂꢐꢉ  
9 ꢊꢋ9ꢌ  
ꢂꢐꢃ  
ꢉꢐꢉ  
ꢀꢐꢉ  
ꢁꢐꢉ  
ꢂꢐꢉ  
ꢄꢐꢉ  
9 ꢊꢋ9ꢌ  
ꢃꢐꢉ  
,
,
Conditions: VDD = 1.8 V; on standard port pins.  
Conditions: VDD = 3.3 V; on standard port pins.  
Fig 16. Typical pull-up current IPU versus input voltage VI  
DDDꢀꢁꢅꢈꢆꢅꢈ  
DDDꢀꢁꢅꢈꢆꢅꢃ  
ꢅꢉ  
ꢀꢉꢉ  
,
,
SG  
SG  
ꢋ—$ꢌ  
ꢋ—$ꢌ  
ꢃꢇ  
ꢄꢁ  
ꢁꢈ  
ꢀꢄ  
ꢈꢉ  
ꢇꢉ  
ꢄꢉ  
ꢁꢉ  
ꢁꢃ&  
ꢀꢉꢃ&  
ꢆꢉ&  
ꢏꢄꢉ&  
ꢆꢉ&  
ꢁꢃ&  
ꢀꢉꢃ&  
ꢏꢄꢉ&  
ꢉꢐꢉ  
ꢉꢐꢅ  
ꢀꢐꢄ  
ꢁꢐꢀ  
ꢁꢐꢈ  
9 ꢊꢋ9ꢌ  
ꢂꢐꢃ  
9 ꢊꢋ9ꢌ  
,
,
Conditions: VDD = 1.8V; on standard port pins.  
Conditions: VDD = 3.3 V; on standard port pins.  
Fig 17. Typical pull-down current IPD versus input voltage VI  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
92 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
11. Dynamic characteristics  
11.1 I/O pins  
Table 20. Dynamic characteristic: I/O pins[1]  
Tamb = 40 C to +105 C; 2.7 V VDD 3.6 V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Standard I/O pins - normal drive strength  
[2][3]  
[2][3]  
[2][3]  
[2][3]  
tr  
tf  
tr  
tf  
rise time  
fall time  
rise time  
fall time  
pin configured as output; SLEW = 1  
(Fast-mode);  
2.7 V VDD <= 3.6 V  
1.0  
0.9  
1.9  
-
-
-
2.5  
2.5  
4.3  
ns  
ns  
ns  
pin configured as output; SLEW = 1  
(Fast-mode);  
2.7 V VDD <= 3.6 V  
pin configured as output; SLEW = 0 (standard  
mode);  
2.7 V VDD 3.6 V  
pin configured as output; SLEW = 0 (standard  
mode);  
2.7 V VDD 3.6 V  
pin configured as input  
pin configured as input  
1.9  
0.3  
0.2  
-
-
-
4.0  
1.3  
1.2  
ns  
ns  
ns  
[4]  
[4]  
tr  
tf  
rise time  
fall time  
[1] Simulated data, not tested in production.  
[2] Simulated using 10 cm of 50 Ω PCB trace with 5 pF receiver input. Rise and fall times measured between  
80 % and 20 % of the full output signal level.  
[3] The slew rate is configured in the IOCON block the SLEW bit.  
[4] CL = 20 pF. Rise and fall times measured between 90 % and 10 % of the full input signal level.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
93 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
11.2 Wake-up process  
Table 21. Dynamic characteristic: Typical wake-up times from low power modes  
VDD = 3.3 V;Tamb = 25 C; using FRO as the system clock.  
Symbol Parameter Conditions  
Min Typ[1]  
Max Unit  
[2][3]  
[2][5]  
twake  
wake-up  
time  
from sleep mode  
-
-
2.0  
-
-
s  
s  
from deep-sleep mode; SRAMx  
powered.  
150  
SRAM0, SRAM1, SRAM2,  
SRAM3, and USB SRAM powered  
down.  
[4][5]  
from deep power-down mode;  
RTC disabled; using RESET pin.  
-
1.2  
-
ms  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
[2] The wake-up time measured is the time between when a GPIO input pin is triggered to wake the device up  
from the low power modes and from when a GPIO output pin is set in the interrupt service routine (ISR)  
wake-up handler.  
[3] FRO enabled, all peripherals off. PLL disabled.  
[4] RTC disabled. Wake up from deep power-down causes the part to go through entire reset  
process. The wake-up time measured is the time between when the RESET pin is triggered to wake the  
device up and when a GPIO output pin is set in the reset handler.  
[5] FRO disabled.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
94 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
11.3 External memory interface  
Table 22. Dynamic characteristics: Static external memory interface  
CL = 10 pF balanced loading on all pins, Tamb = 40 C to 105 C, VDD = 2.7 V to 3.6 V. Max EMC clock = 100 MHz. Input  
slew = 1 ns; SLEW set to fast-mode. Parameters sampled at the 90 % and 10 % level of the rising or falling edge. Excluding  
delays introduced by external device and PCB; Values based on simulation.  
Symbol Parameter[1]  
Conditions[1]  
Min  
Typ  
Max  
Unit  
Read cycle parameters  
tCSLAV  
CS LOW to address  
valid time  
RD1  
RD2  
1.2  
-
-
-
-
1.6  
ns  
ns  
ns  
ns  
[2]  
[2][6]  
[2]  
tCSLOEL  
CS LOW to OE LOW  
time  
0.4+ Tcy(clk)  
WAITOEN  
0.8+ Tcy(clk)  
WAITOEN  
tCSLBLSL CS LOW to BLS LOW RD3; PB = 1  
time  
1.6  
0
tOELOEH OE LOW to OE HIGH RD4  
time  
(WAITRD   
WAITOEN + 1)   
Tcy(clk)  
0.3  
+ (WAITRD   
WAITOEN + 1)   
Tcy(clk)  
[2][3]  
tam  
memory access time  
RD5  
6.7  
-
-
ns  
+ (WAITRD   
WAITOEN +1)   
Tcy(clk)  
[2][4]  
[6]  
th(D)  
data input hold time  
RD6  
4.8  
-
-
-
ns  
ns  
tCSHBLSH CS HIGH to BLS HIGH PB = 1  
time  
0.8  
1.5  
[2]  
[2]  
[2]  
tCSHOEH CS HIGH to OE HIGH  
time  
0.5  
-
-
-
0.9  
0
ns  
ns  
ns  
tOEHANV OE HIGH to address  
invalid time  
0.4  
0.5  
tdeact  
Write cycle parameters  
tCSLAV CS LOW to address  
valid time  
deactivation time  
RD7  
0.9  
WR1  
0.1  
-
-
-
-
-
0.5  
2.2  
0
ns  
ns  
ns  
ns  
ns  
tCSLDV  
CS LOW to data valid WR2  
time  
1.0  
[2][6]  
[2][6]  
[2][6]  
tCSLWEL CS LOW to WE LOW  
time  
WR3; PB =1  
0.6  
1.2  
tCSLBLSL CS LOW to BLS LOW WR4; PB = 1  
time  
0
tWELWEH WE LOW to WE HIGH WR5; PB =1  
time  
(WAITWR   
WAITWEN + 1)   
Tcy(clk)  
0.1  
+ (WAITWR   
WAITWEN + 1)   
Tcy(clk)  
[2][6]  
[2][6]  
tBLSLBLSH BLS LOW to BLS  
HIGH time  
PB = 1  
2.5  
1.6  
0.6  
-
-
-
5.5  
2.9  
0.9  
ns  
ns  
ns  
tWEHDNV WE HIGH to data  
invalid time  
WR6; PB =1  
WR7; PB = 1  
[2][5][6]  
tWEHEOW WE HIGH to end of  
write time  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
95 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 22. Dynamic characteristics: Static external memory interface …continued  
CL = 10 pF balanced loading on all pins, Tamb = 40 C to 105 C, VDD = 2.7 V to 3.6 V. Max EMC clock = 100 MHz. Input  
slew = 1 ns; SLEW set to fast-mode. Parameters sampled at the 90 % and 10 % level of the rising or falling edge. Excluding  
delays introduced by external device and PCB; Values based on simulation.  
Symbol Parameter[1]  
Conditions[1]  
Min  
Typ  
Max  
Unit  
[6]  
[6]  
tBLSHDNV BLS HIGH to data  
invalid time  
PB = 1  
0.8  
-
0
ns  
tWEHANV WE HIGH to address  
invalid time  
PB = 1  
0.6  
-
-
-
0.9  
0
ns  
ns  
[2][6]  
[2][6]  
tdeact  
deactivation time  
WR8; PB = 0;  
PB = 1  
0.8  
1.2  
tCSLBLSL CS LOW to BLS LOW WR9; PB = 0  
(WAITWEN + 1) ns  
Tcy(clk)  
+ (WAITWEN + 1)  
Tcy(clk)  
[2][6]  
tBLSLBLSH BLS LOW to BLS  
HIGH time  
WR10; PB = 0  
2.5  
-
5.5  
ns  
+ (WAITWR   
WAITWEN + 1)   
Tcy(clk)  
+ (WAITWR   
WAITWEN + 1)   
Tcy(clk)  
[2][5][6]  
[2][6]  
tBLSHEOW BLS HIGH to end of  
write time  
WR11; PB = 0  
0.8  
-
-
Tcy(clk)  
ns  
ns  
+ Tcy(clk)  
0.2 + Tcy(clk)  
tBLSHDNV BLS HIGH to data  
invalid time  
WR12;  
PB = 0  
0.5 + Tcy(clk)  
[1] Parameters are shown as RDn or WDn in Figure 18 as indicated in the Conditions column.  
[2] Tcy(clk) = 1/EMC_CLK (see UM11060 LPC54018JxM/LPC54S018JxM manual).  
[3] Latest of address valid, EMC_CSx LOW, EMC_OE LOW, EMC_BLSx LOW (PB = 1).  
[4] After End Of Read (EOR): Earliest of EMC_CSx HIGH, EMC_OE HIGH, EMC_BLSx HIGH (PB = 1), address invalid.  
[5] End Of Write (EOW): Earliest of address invalid, EMC_CSx HIGH, EMC_BLSx HIGH (PB = 1).  
[6] The byte lane state bit, PB, enables different types of memory to be connected (see the STATICCONFIG[0:3] register in the UM11060  
LPC54018JxM/LPC54S018JxM manual).  
Table 23. Dynamic characteristics: Static external memory interface  
CL = 20 pF balanced loading on all pins, Tamb = 40 C to 105 C, VDD = 2.7 V to 3.6 V. Max EMC clock = 100 MHz. Input  
slew = 1 ns; SLEW set to fast-mode. Parameters sampled at the 90 % and 10 % level of the rising or falling edge. Excluding  
delays introduced by external device and PCB; Values based on simulation.  
Symbol Parameter[1]  
Conditions[1]  
Min  
Typ  
Max  
Unit  
Read cycle parameters  
tCSLAV  
CS LOW to address  
valid time  
RD1  
RD2  
1.2  
-
-
-
-
1.6  
ns  
[2]  
[2][6]  
[2]  
tCSLOEL  
CS LOW to OE LOW  
time  
0.5+ Tcy(clk)  
WAITOEN  
0.8+ Tcy(clk) WAITOEN ns  
tCSLBLSL CS LOW to BLS LOW RD3; PB = 1  
time  
2.3  
0
ns  
ns  
tOELOEH OE LOW to OE HIGH RD4  
time  
(WAITRD   
WAITOEN + 1)   
Tcy(clk)  
0.3  
+ (WAITRD   
WAITOEN + 1) Tcy(clk)  
[2][3]  
tam  
memory access time  
RD5  
7.9  
-
-
ns  
+ (WAITRD   
WAITOEN +1)   
Tcy(clk)  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
96 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 23. Dynamic characteristics: Static external memory interface …continued  
CL = 20 pF balanced loading on all pins, Tamb = 40 C to 105 C, VDD = 2.7 V to 3.6 V. Max EMC clock = 100 MHz. Input  
slew = 1 ns; SLEW set to fast-mode. Parameters sampled at the 90 % and 10 % level of the rising or falling edge. Excluding  
delays introduced by external device and PCB; Values based on simulation.  
Symbol Parameter[1]  
Conditions[1]  
Min  
5.5  
0.7  
Typ  
Max  
-
Unit  
ns  
[2][4]  
[6]  
th(D) data input hold time  
RD6  
-
-
tCSHBLSH CS HIGH to BLS HIGH PB = 1  
time  
1.5  
ns  
[2]  
[2]  
[2]  
tCSHOEH CS HIGH to OE HIGH  
time  
0.5  
-
-
-
0.9  
0
ns  
ns  
ns  
tOEHANV OE HIGH to address  
invalid time  
RD8  
RD7  
0.4  
0.5  
tdeact  
deactivation time  
0.9  
Write cycle parameters[2]  
tCSLAV  
tCSLDV  
CS LOW to address  
valid time  
WR1  
0.1  
1
-
-
-
0.5  
2.2  
ns  
ns  
CS LOW to data valid WR2  
time  
[2][6]  
tCSLWEL CS LOW to WE LOW  
time  
WR3; PB =1  
0.5 +  
(WAITWEN + 1)   
Tcy(clk)  
(WAITWEN + 1) Tcy(clk) ns  
[2][6]  
[2][6]  
tCSLBLSL CS LOW to BLS LOW WR4; PB = 1  
time  
1.9  
-
-
0
ns  
tWELWEH WE LOW to WE HIGH WR5; PB =1  
time  
0.1 +  
(WAITWEN + 1)   
Tcy(clk)  
(WAITWEN + 1) Tcy(clk) ns  
[2][6]  
[2][6]  
[2][5][6]  
[6]  
tBLSLBLSH BLS LOW to BLS  
HIGH time  
PB = 1  
3.1  
-
-
-
-
-
-
-
6.7  
ns  
ns  
ns  
ns  
ns  
ns  
tWEHDNV WE HIGH to data  
invalid time  
WR6; PB =1  
WR7; PB = 1  
PB = 1  
1.6 + Tcy(clk)  
0.5+Tcy(clk)  
0.8  
2.8 + Tcy(clk)  
tWEHEOW WE HIGH to end of  
write time  
0.8 + Tcy(clk)  
tBLSHDNV BLS HIGH to data  
invalid time  
0
[6]  
tWEHANV WE HIGH to address  
invalid time  
PB = 1  
0.5  
0.8  
0
[2][6]  
[2][6]  
tdeact  
deactivation time  
WR8; PB = 0;  
PB = 1  
0.8  
tCSLBLSL CS LOW to BLS LOW WR9; PB = 0  
1.9  
(WAITWEN + 1) Tcy(clk) ns  
+ (WAITWEN + 1)  
Tcy(clk)  
[2][6]  
tBLSLBLSH BLS LOW to BLS  
HIGH time  
WR10; PB = 0  
WR11; PB = 0  
3.1+ (WAITWR   
WAITWEN + 1)   
Tcy(clk)  
-
6.7+ (WAITWR   
WAITWEN + 1) Tcy(clk)  
ns  
[2][5][6]  
[2][6]  
tBLSHEOW BLS HIGH to end of  
write time  
0.8  
-
-
Tcy(clk)  
ns  
ns  
+ Tcy(clk)  
0.2 + Tcy(clk)  
tBLSHDNV BLS HIGH to data  
invalid time  
WR12;  
PB = 0  
0.5 + Tcy(clk)  
[1] Parameters are shown as RDn or WDn in Figure 18 as indicated in the Conditions column.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
97 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
[2] Tcy(clk) = 1/EMC_CLK (see UM11060 LPC54018JxM/LPC54S018JxM manual).  
[3] Latest of address valid, EMC_CSx LOW, EMC_OE LOW, EMC_BLSx LOW (PB = 1).  
[4] After End Of Read (EOR): Earliest of EMC_CSx HIGH, EMC_OE HIGH, EMC_BLSx HIGH (PB = 1), address invalid.  
[5] End Of Write (EOW): Earliest of address invalid, EMC_CSx HIGH, EMC_BLSx HIGH (PB = 1).  
[6] The byte lane state bit, PB, enables different types of memory to be connected (see the STATICCONFIG[0:3] register in the UM11060  
LPC54018JxM/LPC54S018JxM manual).  
EMC_Ax  
RD  
WR  
1
1
EMC_CSx  
EMC_OE  
WR  
8
RD  
8
RD  
2
RD  
4
RD  
7
WR  
WR  
WR  
11  
9
10  
EMC_BLSx  
EMC_WE  
RD  
5a  
RD  
5b  
WR  
2
WR  
12  
RD  
RD  
5
6
EMC_Dx  
EOW  
EOR  
aaa-026103  
Fig 18. External static memory read/write access (PB = 0)  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
98 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
EMC_Ax  
RD  
WR  
1
1
EMC_CSx  
EMC_OE  
RD  
RD  
WR  
8
2
8
RD  
4
RD  
WR  
4
RD  
RD  
3
7
7
EMC_BLSx  
EMC_WE  
WR  
8
WR  
WR  
WR  
7
3
5
RD  
5a  
RD  
5b  
RD  
5c  
WR  
WR  
6
2
RD  
6
RD  
5
EMC_Dx  
EOR  
EOW  
aaa026104  
Fig 19. External static memory read/write access (PB =1)  
EMC_Ax  
EMC_CSx  
EMC_OE  
EMC_BLSx  
EMC_WE  
RD  
RD  
RD  
RD  
5
5
5
5
EMC_Dx  
002aag216  
Fig 20. External static memory burst read cycle  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
99 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 24. Dynamic characteristics: Dynamic external memory interface, read strategy bits (RD bits) = 01 [2]  
CL = 10 pF balanced loading on all pins, Tamb = 40 C to 105 C, VDD = 2.7 V to 3.6 V. Max EMC clock = 100 MHz. Input  
slew = 1 ns; SLEW set to fast-mode. Parameters sampled at the 90 % and 10 % level of the rising or falling edge. Excluding  
delays introduced by external device and PCB. Values based on simulation. tcmddly is programmable delay value for EMC  
command outputs in command delayed mode; tfbdly is programmable delay value for the feedback clock that controls input  
data sampling.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
For RD = 1  
Common to read and write cycles  
[1]  
Tcy(clk)  
td(SV)  
clock cycle time  
10  
-
-
-
-
-
ns  
ns  
ns  
ns  
chip select valid delay time  
chip select hold time  
-
tcmddly + 3.7  
-
th(S)  
tcmddly + 1.7  
-
td(RASV)  
row address strobe valid  
delay time  
tcmddly + 4.1  
th(RAS)  
td(CASV)  
th(CAS)  
row address strobe hold  
time  
tcmddly + 1.8  
-
-
-
-
-
ns  
ns  
ns  
column address strobe valid  
delay time  
tcmddly + 4.4  
-
column address strobe hold  
time  
tcmddly + 1.9  
td(WV)  
th(W)  
td(AV)  
th(A)  
write valid delay time  
write hold time  
-
-
-
-
-
tcmddly + 5.1  
ns  
ns  
ns  
ns  
tcmddly + 2.4  
-
-
address valid delay time  
address hold time  
tcmddly + 4.8  
-
tcmddly + 1.7  
Read cycle parameters  
tsu(D) data input set-up time  
th(D) data input hold time  
Write cycle parameters  
td(QV) data output valid delay time  
th(Q) data output hold time  
0.5  
2.1  
-
-
-
-
ns  
ns  
-
-
-
8.1  
-
ns  
ns  
1.7  
[1] Refers to SDRAM clock signal EMC_CLKOUTn where n = 0 and 1.  
[2] See Table 26 for internal programmable delay.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
100 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 25. Dynamic characteristics: Dynamic external memory interface, read strategy bits (RD bits) = 01 [2]  
CL = 20 pF balanced loading on all pins, Tamb = 40 C to 105 C, VDD = 2.7 V to 3.6 V. Max EMC clock = 100 MHz. Input  
slew = 1 ns; SLEW set to fast-mode. Parameters sampled at the 90 % and 10 % level of the rising or falling edge. Excluding  
delays introduced by external device and PCB. Values based on simulation. tcmddly is programmable delay value for EMC  
command outputs in command delayed mode; tfbdly is programmable delay value for the feedback clock that controls input  
data sampling.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
For RD = 1  
Common to read and write cycles  
[1]  
Tcy(clk)  
td(SV)  
clock cycle time  
10  
-
-
-
-
-
ns  
ns  
ns  
ns  
chip select valid delay time  
chip select hold time  
-
tcmddly + 4.9  
-
th(S)  
tcmddly + 2.4  
-
td(RASV)  
row address strobe valid  
delay time  
tcmddly + 5.4  
th(RAS)  
td(CASV)  
th(CAS)  
row address strobe hold  
time  
tcmddly + 2.5  
-
-
-
-
-
ns  
ns  
ns  
column address strobe valid  
delay time  
tcmddly + 5.6  
-
column address strobe hold  
time  
tcmddly + 2.6  
td(WV)  
th(W)  
td(AV)  
th(A)  
write valid delay time  
write hold time  
-
-
-
-
-
tcmddly + 6.3  
ns  
ns  
ns  
ns  
tcmddly + 3.1  
-
-
address valid delay time  
address hold time  
tcmddly + 6.1  
-
tcmddly + 2.4  
Read cycle parameters  
tsu(D) data input set-up time  
th(D) data input hold time  
Write cycle parameters  
td(QV) data output valid delay time  
th(Q) data output hold time  
0.5  
2.1  
-
-
-
-
ns  
ns  
-
-
-
9.3  
-
ns  
ns  
2.4  
[1] Refers to SDRAM clock signal EMC_CLKOUTn where n = 0 and 1.  
[2] See Table 26 for internal programmable delay.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
101 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
T
cy(clk)  
EMC_CLKOUT0  
EMC_CLKOUT1  
EMC_DYCSn,  
EMC_RAS,  
t
t
h(x)  
d(xV)  
EMC_CAS,  
EMC_WE,  
EMC_CKEOUTn,  
EMC_A[22:0],  
EMC_DQMOUTn  
t
d(QV)  
t
t
h(Q)  
EMC_D[31:0]  
write  
t
su(D)  
h(D)  
EMC_D[31:0]  
read  
aaa-024988  
Fig 21. Dynamic external memory interface signal timing  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
102 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 26. Dynamic characteristics: Dynamic external memory interface programmable clock delays (CMDDLY,  
FBCLKDLY)  
Tamb = 40 C to 105 C, VDD = 2.7 V to 3.6 V.Values guaranteed by design. tcmddly is programmable delay value for EMC  
command outputs in command delayed mode; tfbdly is programmable delay value for the feedback clock that controls input  
data sampling.  
Symbols  
Parameter Five bit value for each delay in EMCDLYCTL[1] Min  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tcmddly, tfbdly  
delay time  
b00000  
b00001  
b00010  
b00011  
b00100  
b00101  
b00110  
b00111  
b01000  
b01001  
b01010  
b01011  
b01100  
b01101  
b01110  
b01111  
b10000  
b10001  
b10010  
b10011  
b10100  
b10101  
b10110  
b10111  
b11000  
b11001  
b11010  
b11011  
b11100  
b11101  
b11110  
b11111  
0.41  
0.52  
0.69  
0.8  
0.66 0.77  
0.85 1.03  
1.11 1.3  
1.3  
1.56  
0.95  
1.06  
1.23  
1.34  
1.45  
1.56  
1.73  
1.84  
1.99  
2.1  
1.53 1.77  
1.72 2.03  
1.98 2.3  
2.17 2.56  
2.3  
2.67  
2.49 2.93  
2.75 3.2  
2.94 3.46  
3.17 3.67  
3.36 3.93  
3.62 4.2  
3.81 4.46  
3.86 4.46  
4.05 4.72  
4.31 4.99  
2.27  
2.38  
2.45  
2.56  
2.73  
2.84  
2.99  
3.1  
4.5  
5.25  
4.73 5.46  
4.92 5.72  
5.18 5.99  
5.37 6.25  
3.27  
3.38  
3.49  
3.6  
5.5  
6.36  
5.69 6.62  
5.95 6.89  
6.14 7.15  
6.37 7.36  
6.56 7.62  
6.82 7.89  
7.01 8.15  
3.77  
3.88  
4.03  
4.14  
4.31  
4.42  
[1] The programmable delay blocks are controlled by the EMCDLYCTL register in the EMC register block. All  
delay times are incremental delays for each element starting from delay block 0.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
103 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
11.4 System PLL (PLL0)  
Table 27. PLL lock times and current  
Tamb = 40 C to +105 C, unless otherwise specified. VDD = 2.7 V to 3.6 V  
Symbol  
Parameter  
Conditions  
Min Typ Max  
Unit  
PLL0 configuration: input frequency 12 MHz; output frequency 100 MHz  
[1]  
tlock(PLL0)  
IDD(PLL0)  
PLL0 lock time  
PLL0 current  
96  
s  
[1][2]  
when locked  
-
-
2.0  
mA  
PLL0 configuration: input frequency 32 kHz; output frequency 100 MHz  
[1]  
tlock(PLL0)  
IDD(PLL0)  
PLL0 lock time  
PLL0 current  
-
-
-
-
108  
1.6  
s  
[1][2]  
when locked  
mA  
[1] Data based on characterization results, not tested in production.  
[2] PLL current measured using lowest CCO frequency to obtain the desired output frequency.  
Table 28. Dynamic characteristics of the PLL0[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
Reference clock input  
Fin  
input frequency  
32.768 kHz -  
25 MHz  
Clock output  
[2]  
[3]  
fo  
output frequency  
output duty cycle  
CCO frequency  
for PLL0 clkout output  
for PLL0 clkout output  
4.3  
46  
-
-
-
550  
54  
MHz  
%
do  
fCCO  
275  
550  
MHz  
Lock detector output  
lock(PFD) PFD lock criterion  
1
2
4
ns  
Dynamic parameters at fout = fCCO = 540 MHz; standard bandwidth settings  
[4][5]  
Jrms-interval  
Jpp-period  
RMS interval jitter  
fref = 10 MHz  
fref = 10 MHz  
-
-
15  
40  
30  
80  
ps  
ps  
[4][5]  
peak-to-peak, period jitter  
[1] Data based on characterization results, not tested in production.  
[2] Excluding under- and overshoot which may occur when the PLL is not in lock.  
[3] A phase difference between the inputs of the PFD (clkref and clkfb) smaller than the PFD lock criterion  
means lock output is HIGH.  
[4] Actual jitter dependent on amplitude and spectrum of substrate noise.  
[5] Input clock coming from a crystal oscillator with less than 250 ps peak-to-peak period jitter.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
104 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
11.5 USB PLL (PLL1)  
Table 29. PLL1 lock times and current  
Tamb = 40 C to +105 C, unless otherwise specified. VDD = 2.7 V to 3.6 V  
Symbol Parameter Conditions  
PLL1 configuration: input frequency 12 MHz; output frequency 48 MHz  
Min  
Typ Max  
Unit  
[1]  
tlock(PLL1)  
IDD(PLL1)  
PLL1 lock time  
PLL1 current  
-
-
7.4  
-
-
s  
[1][2]  
When locked  
260  
A  
[1] Data based on characterization results, not tested in production.  
[2] PLL current measured using lowest CCO frequency to obtain the desired output frequency.  
Table 30. Dynamic characteristics of the PLL1[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
Reference clock input  
Fin  
input frequency  
1
-
25  
MHz  
Clock output  
[2]  
fo  
output frequency  
for PLL1 clkout  
output  
9.75  
45  
-
-
-
160  
55  
MHz  
%
do  
output duty cycle  
CCO frequency  
for PLL1 clkout  
output  
fCCO  
156  
320  
MHz  
Dynamic parameters at fout = fCCO = 320 MHz; standard bandwidth settings  
[3][4]  
Jpp-period  
peak-to-peak, period fref = 4 MHz  
jitter  
-
-
300  
ps  
[1] Data based on simulation, not tested in production.  
[2] Excluding under- and overshoot which may occur when the PLL is not in lock.  
[3] Actual jitter dependent on amplitude and spectrum of substrate noise.  
[4] Input clock coming from a crystal oscillator with less than 250 ps peak-to-peak period jitter.  
11.6 Audio PLL (PLL2)  
Table 31. PLL2 lock times and current  
Tamb = 40 C to +105 C, unless otherwise specified. VDD = 2.7 V to 3.6 V  
Symbol  
Parameter  
Conditions  
Min Typ Max  
Unit  
PLL2 configuration: input frequency 12 MHz; output frequency 100 MHz  
[1]  
tlock(PLL2)  
IDD(PLL2)  
PLL2 lock time  
PLL2 current  
-
-
-
-
96  
s  
[1][2]  
when locked  
2.0  
mA  
PLL2 configuration: input frequency 12 MHz; output frequency 100 MHz  
[1]  
tlock(PLL2)  
IDD(PLL2)  
PLL2 lock time  
PLL2 current  
-
-
-
-
108  
1.6  
s  
[1][2]  
when locked  
mA  
[1] Data based on characterization results, not tested in production.  
[2] PLL current measured using lowest CCO frequency to obtain the desired output frequency.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
105 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 32. Dynamic characteristics of the PLL2[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
Reference clock input  
Fin  
input frequency  
1
-
25  
MHz  
Clock output  
[2]  
fo  
output frequency  
for PLL2 clkout  
output  
4.3  
46  
-
-
-
550  
54  
MHz  
%
do  
output duty cycle  
CCO frequency  
for PLL2 clkout  
output  
fCCO  
275  
550  
MHz  
Lock detector output  
lock(PFD) PFD lock criterion  
[3]  
1
2
4
ns  
Dynamic parameters at fout = fCCO = 540 MHz; standard bandwidth settings  
[4][5]  
Jrms-interval RMS interval jitter  
fref = 10 MHz  
-
-
15 30  
40 80  
ps  
ps  
[4][5]  
Jpp-period  
peak-to-peak, period fref = 10 MHz  
jitter  
[1] Data based on characterization results, not tested in production.  
[2] Excluding under- and overshoot which may occur when the PLL is not in lock.  
[3] A phase difference between the inputs of the PFD (clkref and clkfb) smaller than the PFD lock criterion  
means lock output is HIGH.  
[4] Actual jitter dependent on amplitude and spectrum of substrate noise.  
[5] Input clock coming from a crystal oscillator with less than 250 ps peak-to-peak period jitter.  
11.7 FRO  
The FRO is trimmed to 1 % accuracy over the entire voltage and temperature range.  
Table 33. Dynamic characteristic: FRO  
Tamb = 40 C to +105 C; 2.7 V VDD 3.6 V.  
Symbol  
fosc(RC)  
fosc(RC)  
fosc(RC)  
Parameter  
Conditions Min  
Typ[1]  
12  
Max  
Unit  
MHz  
MHz  
MHz  
FRO clock frequency  
FRO clock frequency  
FRO clock frequency  
-
-
-
11.88  
12.12  
48.48  
96.96  
47.52  
95.04  
48  
96  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
11.8 Crystal oscillator  
Table 34. Dynamic characteristic: oscillator  
Tamb = 40 C to +105 C; 2.7 V VDD 3.6 V.[1]  
Symbol  
Low-frequency mode (1-20 MHz)[4]  
tjit(per) period jitter time  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
[3]  
5 MHz crystal  
10 MHz crystal  
15 MHz crystal  
-
-
-
13.2  
6.6  
-
-
-
ps  
ps  
ps  
4.8  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
106 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 34. Dynamic characteristic: oscillator …continued  
Tamb = 40 C to +105 C; 2.7 V VDD 3.6 V.[1]  
Symbol Parameter Conditions  
High-frequency mode (20 - 25 MHz)[5]  
Min  
Typ[2]  
Max  
Unit  
[3]  
tjit(per)  
period jitter time  
20 MHz crystal  
25 MHz crystal  
-
-
4.3  
3.7  
-
-
ps  
ps  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
[3] Indicates RMS period jitter.  
[4] Select Low Frequency range = 0 in the SYSOSCCTRL register.  
[5] Select High Frequency = 1 in the SYSOSCCTRL register.  
11.9 RTC oscillator  
See Section 13.5 for connecting the RTC oscillator to an external clock source.  
Table 35. Dynamic characteristic: RTC oscillator  
Tamb = 40 C to +105 C; 2.7 VDD 3.6[1]  
Symbol Parameter  
fi input frequency  
Conditions  
Min  
Typ[1]  
Max  
Unit  
-
-
32.768  
-
kHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
107 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
11.10 Watchdog oscillator  
Table 36. Dynamic characteristics: Watchdog oscillator  
Tamb = 40 C to +105 C; 2.7 VDD 3.6[1]  
Symbol  
fosc(int)  
Dclkout  
JPP-CC  
tstart  
Parameter  
Conditions  
Min  
200  
48  
-
Typ[1]  
Max  
1500  
52  
Unit  
kHz  
%
[2]  
internal watchdog oscillator frequency  
clkout duty cycle  
-
-
[3][4]  
[4]  
peak-peak period jitter  
start-up time  
1
4
20  
ns  
-
-
s  
[1] Typical ratings are not guaranteed. The values listed are at nominal supply voltages.  
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +105 C) is 40 %.  
[3] Actual jitter dependent on amplitude and spectrum of substrate noise.  
[4] Guaranteed by design. Not tested in production samples.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
108 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
11.11 I2C-bus  
Table 37. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +105 C; 2.7 V VDD 3.6 V.[2]  
Symbol Parameter  
Conditions  
Min  
Max  
100  
400  
1
Unit  
kHz  
kHz  
MHz  
ns  
fSCL  
SCL clock frequency  
fall time  
Standard-mode  
Fast-mode  
0
0
0
-
Fast-mode Plus  
Both SDA and SCL signals  
Standard-mode  
Fast-mode  
[4][5][6][7]  
tf  
300  
20 + 0.1   
300  
ns  
Cb  
Fast-mode Plus  
Standard-mode  
Fast-mode  
-
120  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
data hold time  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
0
-
-
-
-
-
-
-
-
-
-
-
-
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
Fast-mode Plus  
Standard-mode  
Fast-mode  
[3][4][8]  
[9][10]  
tHD;DAT  
0
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
tSU;DAT  
data set-up time  
250  
100  
50  
Fast-mode Plus  
[1] Guaranteed by design. Not tested in production.  
[2] Parameters are valid over operating temperature range unless otherwise specified. See the I2C-bus specification UM10204 for details.  
[3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.  
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to  
bridge the undefined region of the falling edge of SCL.  
[5] Cb = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed.  
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at  
250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines  
without exceeding the maximum specified tf.  
[7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should  
allow for this when considering bus timing.  
[8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or  
tVD;ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If  
the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.  
[9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the  
acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met.  
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the  
LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
109 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
t
t
SU;DAT  
f
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
002aaf425  
Fig 22. I2C-bus pins clock timing  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
110 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
11.12 I2S-bus interface  
Table 38. Dynamic characteristics: I2S-bus interface pins [1][4]  
Tamb = 40 C to 105 C; VDD = 2.7 V to 3.6 V; CL = 30 pF balanced loading on all pins; Input slew = 1.0 ns, SLEW setting =  
standard mode for all pins; Parameters sampled at the 50 % level of the rising or falling edge.  
Symbol Parameter  
Conditions  
Min  
Typ[3] Max  
Unit  
Common to master and slave  
tWH  
pulse width HIGH  
on pins I2Sx_TX_SCK and I2Sx_RX_SCK[5]  
CCLK 100 MHz  
(Tcyc/2)-1 -  
(Tcyc/2)-1 -  
(Tcyc/2) +1 ns  
CCLK > 100 MHz  
(Tcyc/2) +1 ns  
tWL  
pulse width LOW  
on pins I2Sx_TX_SCK and I2Sx_RX_SCK[5]  
CCLK 100 MHz  
(Tcyc/2)-1 -  
(Tcyc/2)-1 -  
(Tcyc/2) +1 ns  
(Tcyc/2) +1 ns  
CCLK > 100 MHz  
Master; 2.7 V VDD 3.6 V  
[2]  
tv(Q)  
data output valid time on pin I2Sx_TX_SDA  
CCLK 100 MHz  
21.4  
20.6  
-
-
30.4  
28.7  
ns  
ns  
CCLK > 100 MHz  
on pin I2Sx_WS  
CCLK 100 MHz  
21.1  
20.3  
-
-
29  
ns  
ns  
CCLK > 100 MHz  
28.3  
[2]  
[2]  
tsu(D)  
data input set-up time on pin I2Sx_RX_SDA  
CCLK 100 MHz  
1.3  
1.0  
-
-
-
-
ns  
ns  
CCLK > 100 MHz  
th(D)  
data input hold time  
on pin I2Sx_RX_SDA  
CCLK 100 MHz  
CCLK > 100 MHz  
2.9  
3.3  
-
-
-
-
ns  
ns  
Slave; 2.7 V VDD 3.6 V  
[2]  
[2]  
tv(Q)  
data output valid time on pin I2Sx_TX_SDA  
CCLK 100 MHz  
13.8  
13  
-
-
23.6  
21.9  
ns  
ns  
CCLK > 100 MHz  
tsu(D)  
data input set-up time on pin I2Sx_RX_SDA  
CCLK 100 MHz  
4.7  
4.2  
-
-
-
-
ns  
ns  
CCLK > 100 MHz  
on pin I2Sx_WS  
CCLK 100 MHz  
0.9  
0.7  
-
-
-
-
ns  
ns  
CCLK > 100 MHz  
[2]  
th(D)  
data input hold time  
on pin I2Sx_RX_SDA  
CCLK 100 MHz  
CCLK > 100 MHz  
on pin I2Sx_WS  
0
0
-
-
-
-
ns  
ns  
CCLK 100 MHz  
CCLK > 100 MHz  
1.5  
1.3  
-
-
-
-
ns  
ns  
[1] Based on characterization; not tested in production.  
[2] Clock Divider register (DIV) = 0x0.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
111 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
[3] Typical ratings are not guaranteed.  
[4] The Flexcomm Interface function clock frequency should not be above 48 MHz. See the data rates section  
in the I2S chapter (UM11060) to calculate clock and sample rates.  
[5] Based on simulation. Not tested in production.  
T
t
f
t
r
cy(clk)  
I2Sx_SCK  
t
t
WL  
WH  
I2Sx_TX_SDA  
t
v(Q)  
I2Sx_RX_SDA  
I2Sx_WS  
t
t
h(D)  
su(D)  
t
aaa-026799  
v(Q)  
Fig 23. I2S-bus timing (master)  
T
t
f
t
r
cy(clk)  
I2Sx_SCK  
t
t
WL  
WH  
I2Sx_TX_SDA  
t
v(Q)  
I2Sx_RX_SDA  
I2Sx_WS  
t
su(D)  
t
h(D)  
t
t
h(D)  
su(D)  
aaa-026800  
Fig 24. I2S-bus timing (slave)  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
112 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
11.13 SPI interfaces (Flexcomm Interface 0-9)  
The actual SPI bit rate depends on the delays introduced by the external trace, the  
external device, system clock (CCLK), and capacitive loading. Excluding delays  
introduced by external device and PCB, the maximum supported bit rate for SPI master  
mode is 48 Mbit/s, and the maximum supported bit rate for SPI slave mode is 14 Mbit/s.  
Table 39. SPI dynamic characteristics[1]  
Tamb = 40 C to 105 C; 2.7 V VDD 3.6 V; CL = 30 pF balanced loading on all pins; Input slew = 1 ns, SLEW setting =  
standard mode for all pins;. Parameters sampled at the 50 % level of the rising or falling edge.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI master 2.7 V VDD 3.6 V  
tDS  
data set-up time  
CCLK 100 MHz  
CCLK > 100 MHz  
CCLK 100 MHz  
CCLK > 100 MHz  
2.4  
2.2  
4.2  
4.5  
1.8  
1.7  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
-
tDH  
data hold time  
-
-
tv(Q)  
data output valid time CCLK 100 MHz  
4.6  
4.0  
CCLK > 100 MHz  
SPI slave 2.7 V VDD 3.6 V  
tDS  
data set-up time  
CCLK 100 MHz  
CCLK > 100 MHz  
CCLK 100 MHz  
CCLK > 100 MHz  
1.2  
1.0  
0
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
-
tDH  
data hold time  
-
0
-
tv(Q)  
data output valid time CCLK 100 MHz  
14  
13.3  
23.9  
22.2  
CCLK > 100 MHz  
[1] Based on characterization; not tested in production.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
113 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
SSEL  
MOSI (CPHA = 0)  
MISO (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MOSI (CPHA = 1)  
MISO (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
IDLE  
IDLE  
DATA VALID (LSB)  
DATA VALID  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
aaa-014969  
Fig 25. SPI master timing  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
114 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
SSEL  
MISO (CPHA = 0)  
MOSI (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MISO (CPHA = 1)  
MOSI (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
IDLE  
IDLE  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
aaa-014970  
Fig 26. SPI slave timing  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
115 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
11.14 SPI interfaces (Flexcomm Interface 10)  
The actual SPI bit rate depends on the delays introduced by the external trace, the  
external device, system clock (CCLK), and capacitive loading. Excluding delays  
introduced by external device and PCB, the maximum supported bit rate for SPI master  
mode is 50 Mbit/s, and the maximum supported bit rate for SPI slave mode is 50 Mbit/s.  
Table 40. SPI dynamic characteristics[1]  
Tamb = 40 C to 105 C; 2.7 V VDD 3.6 V; CL = 30 pF balanced loading on all pins; Input slew =  
1 ns, SLEW setting = standard mode for all pins;. Parameters sampled at the 50 % level of the rising  
or falling edge.  
Symbol Parameter  
SPI master  
Conditions Min  
Typ  
Max  
Unit  
tDS  
data set-up time  
0
-
-
-
-
ns  
ns  
ns  
tDH  
data hold time  
10.0  
0.8  
-
tv(Q)  
SPI slave  
tDS  
data output valid time  
10.0  
data set-up time  
data hold time  
1.2  
-
-
-
-
ns  
ns  
ns  
tDH  
10.0  
4.28  
-
tv(Q)  
data output valid time  
10.0  
[1] Based on characterization; not tested in production.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
116 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
SSEL  
MOSI (CPHA = 0)  
MISO (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MOSI (CPHA = 1)  
MISO (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
IDLE  
IDLE  
DATA VALID (LSB)  
DATA VALID  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
aaa-014969  
Fig 27. SPI master timing  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
117 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
SSEL  
MISO (CPHA = 0)  
MOSI (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MISO (CPHA = 1)  
MOSI (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
IDLE  
IDLE  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
aaa-014970  
Fig 28. SPI slave timing  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
118 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
11.15 DMIC subsystem  
Table 41. Dynamic characteristics[1]  
Tamb = 40 C to 105 C; VDD = 2.7 V to 3.6 V; CL = 30 pF balanced loading on all pins; Input slew = 1 ns, SLEW set to  
standard mode for all pins; Bypass bit = 0; Parameters sampled at the 90 % and 10 % level of the rising or falling edge.  
Symbol Parameter  
Conditions  
Min  
14.3  
14.3  
0
Typ  
Max  
Unit  
ns  
tDS  
data set-up time CCLK 100 MHz  
-
-
-
-
-
-
-
-
CCLK > 100 MHz  
ns  
tDH  
data hold time  
CCLK 100 MHz  
ns  
CCLK > 100 MHz  
0
ns  
[1] Based on simulated values.  
CLOCK  
t
DH  
t
SU  
DATA  
aaa-017025  
Fig 29. DMIC timing diagram  
11.16 Smart card interface  
Table 42. Dynamic characteristics[1]  
Tamb = 40 C to 105 C; VDD = 2.7 V to 3.6 V; CL = 30 pF balanced loading on all pins; Input slew = 1 ns, SLEW setting =  
standard mode for all pins; Parameters sampled at the 90 % and 10 % level of the rising or falling edge.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
2.7 V VDD 3.6 V  
tDS  
data set-up time  
CCLK 100 MHz  
CCLK > 100 MHz  
CCLK 100 MHz  
CCLK > 100 MHz  
2.1  
2.1  
0
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
-
tDH  
data hold time  
-
0
-
tv(Q)  
data output valid time CCLK 100 MHz  
11.0  
11.0  
22.5  
22.5  
CCLK > 100 MHz  
[1] Based on simulated values. VDD = 2.7 V - 3.6 V.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
119 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
11.17 USART interface  
The actual USART bit rate depends on the delays introduced by the external trace, the  
external device, system clock (CCLK), and capacitive loading. Excluding delays  
introduced by external device and PCB, the maximum supported bit rate for USART  
master synchronous mode is 24 Mbit/s, and the maximum supported bit rate for USART  
slave synchronous mode is 12.5 Mbit/s.  
Table 43. USART dynamic characteristics[1]  
Tamb = 40 C to 105 C; VDD = 2.7 V to 3.6 V; CL = 30 pF balanced loading on all pins; Input slew = 1 ns, SLEW setting =  
standard mode for all pins; Parameters sampled at the 50 % level of the rising or falling edge.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
USART master (in synchronous mode) 2.7 V VDD 3.6 V  
tsu(D)  
th(D)  
tv(Q)  
data input set-up time  
data input hold time  
data output valid time  
CCLK 100 MHz  
CCLK > 100 MHz  
CCLK 100 MHz  
CCLK > 100 MHz  
CCLK 100 MHz  
CCLK > 100 MHz  
20.5  
18.9  
0
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
-
-
0
-
1.5  
1.3  
3.6  
3.2  
USART slave (in synchronous mode) 2.7 V VDD 3.6 V  
tsu(D)  
th(D)  
tv(Q)  
data input set-up time  
data input hold time  
data output valid time  
CCLK 100 MHz  
CCLK > 100 MHz  
CCLK 100 MHz  
CCLK > 100 MHz  
CCLK 100 MHz  
CCLK > 100 MHz  
1.2  
1
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
-
0
-
0
-
15.2  
14.3  
26.1  
24.2  
[1] Based on characterization; not tested in production.  
T
cy(clk)  
Un_SCLK (CLKPOL = 0)  
Un_SCLK (CLKPOL = 1)  
TXD  
t
t
vQ)  
v(Q)  
START  
BIT0  
BIT1  
t
t
su(D) h(D)  
BIT1  
START  
BIT0  
RXD  
aaa-015074  
Fig 30. USART timing  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
120 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
11.18 SCTimer/PWM output timing  
Table 44. SCTimer/PWM output dynamic characteristics  
Tamb = 40 C to 105 C; 2.7 V VDD 3.6 V CL = 30 pF. Simulated skew (over process, voltage, and temperature) of any two  
SCT fixed-pin output signals; sampled at the 90 % and 10 % level of the rising or falling edge; values guaranteed by design.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tsk(o)  
output skew time  
-
3.4  
-
4.5  
ns  
11.19 USB interface characteristics  
Table 45. Dynamic characteristics: USB0 pins (full-speed)  
CL = 50 pF; Rpu = 1.5 kon D+ to VDD, unless otherwise specified; 3.0 V VDD 3.6 V.  
Symbol  
tr  
Parameter  
rise time  
fall time  
Conditions  
10 % to 90 %  
10 % to 90 %  
Min  
4.0  
4.0  
90  
Typ  
Max  
20  
Unit  
ns  
ns  
%
tf  
20  
tFRFM  
VCRS  
tFEOPT  
tFDEOP  
differential rise and fall time matching tr / tf  
output signal crossover voltage  
111.11  
2.0  
1.3  
160  
2  
V
source SE0 interval of EOP  
see Figure 31  
175  
+5  
ns  
ns  
source jitter for differential transition see Figure 31  
to SE0 transition  
tJR1  
receiver jitter to next transition  
18.5  
9  
+18.5  
+9  
ns  
ns  
ns  
tJR2  
receiver jitter for paired transitions  
EOP width at receiver  
10 % to 90 %  
-
-
[1]  
[1]  
tEOPR1  
must reject as  
EOP; see  
Figure 31  
40  
tEOPR2  
EOP width at receiver  
must accept as  
EOP; see  
82  
-
-
ns  
Figure 31  
[1] Characterized but not implemented as production test. Guaranteed by design.  
11.20  
T
PERIOD  
crossover point  
extended  
crossover point  
differential  
data lines  
source EOP width: t  
FEOPT  
differential data to  
SE0/EOP skew  
n × T  
+ t  
PERIOD  
FDEOP  
receiver EOP width: t  
, t  
EOPR1 EOPR2  
002aab561  
Fig 31. Differential data-to-EOP transition skew and EOP width  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
121 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
11.21 Ethernet AVB  
Remark: The timing characteristics of the ENET_MDC and ENET_MDIO signals comply  
with the IEEE standard 802.3.  
Table 46. Dynamic characteristics: Ethernet  
Tamb = 40 C to 105 C, VDD = 2.7 V to 3.6 V. CL = 30 pF balanced loading on all pins; Input slew = 1 ns, SLEW setting =  
standard mode for all pins; Parameters sampled at the 90 % and 10 % level of the rising or falling edge. Based on simulation.  
Symbol  
RMII mode  
fclk  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
clock frequency  
clock duty cycle  
for ENET_RX_CLK  
-
-
-
50.0  
55.0  
MHz  
%
[1]  
clk  
45.0  
[1][2]  
tsu  
data input set-up  
time  
ENET_RXDn, ENET_RX_ER,  
ENET_RX_DV  
CCLK 100 MHz  
4.4  
4.4  
-
-
-
-
ns  
ns  
CCLK > 100 MHz  
[1][2]  
[1][2]  
th  
data input hold time for ENET_RXDn, ENET_RX_ER,  
ENET_RX_DV  
CCLK 100 MHz  
1.3  
1.3  
-
-
0
0
ns  
ns  
CCLK > 100 MHz  
tv(Q)  
data output valid  
time  
for ENET_TXDn, ENET_TX_EN  
CCLK 100 MHz  
9.9  
9.9  
-
-
17.3  
17.3  
ns  
ns  
CCLK > 100 MHz  
MII mode  
[1]  
fclk  
clk  
fclk  
clk  
tsu  
clock frequency  
clock duty cycle  
clock frequency  
clock duty cycle  
for ENET_TX_CLK  
for ENET_RX_CLK  
-
-
-
-
-
25.0  
55.0  
25.0  
55.0  
MHz  
%
[1]  
45.0  
-
[1]  
MHz  
%
[1]  
45.0  
[1][2]  
data input set-up  
time  
for ENET_RXDn, ENET_RX_ER,  
ENET_RX_DV  
CCLK 100 MHz  
4.7  
4.7  
-
-
-
-
ns  
ns  
CCLK > 100 MHz  
[1][2]  
[1][2]  
th  
data input hold time for ENET_RXDn, ENET_RX_ER,  
ENET_RX_DV  
CCLK 100 MHz  
1.2  
1.2  
-
-
0
0
ns  
ns  
CCLK > 100 MHz  
tv(Q)  
data output valid  
time  
for ENET_TXDn, ENET_TX_EN,  
ENET_TX_ER  
CCLK 100 MHz  
10.0  
10.0  
-
-
18.2  
18.2  
ns  
ns  
CCLK > 100 MHz  
[1] Output drivers can drive a load 25 pF accommodating over 12 inch of PCB trace and the input  
capacitance of the receiving device.  
[2] Timing values are given from the point at which the clock signal waveform crosses 1.4 V to the valid input or  
output level.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
122 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
ENET_RX_CLK  
t
v(Q)  
ENET_TX_EN  
ENET_TXDn  
t
su  
t
h
ENET_RXDn  
ENET_RX_DV  
aaa-025108  
Fig 32. Ethernet RMII timing  
ENET_RX_CLK  
t
su  
t
h
ENET_RXDn  
ENET_RX_DV  
ENET_RX_ER  
ENET_TX_CLK  
t
v(Q)  
ENET_TX_EN  
ENET_TXDn  
aaa-025109  
Fig 33. Ethernet MII timing  
11.22 SD/MMC and SDIO  
Table 47. Dynamic characteristics: SD/MMC and SDIO  
Tamb = 40 C to +105 C, VDD = 2.7 V to 3.6 V; CL = 20 pF. SAMPLE_DELAY = 0, DRV_DELAY = 0 in the SDDELAY  
register, SDIOCLKCTRL = 0x84, sampled at 90 % and 10 % of the signal level, SLEW = 1 ns for SD_CLK pin, SLEW = 1 ns  
for SD_DATn and SD_CMD pins. Simulated values in high-speed mode.  
Symbol  
fclk  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
clock frequency  
data input set-up time  
on pin SD_CLK; data transfer mode  
on pins SD_DATn as inputs  
CCLK 100 MHz  
-
-
50  
MHz  
tsu(D)  
14.4  
14.4  
-
-
-
-
ns  
ns  
CCLK > 100 MHz  
on pins SD_CMD as inputs  
CCLK 100 MHz  
14.4  
14.4  
-
-
-
-
ns  
ns  
CCLK > 100 MHz  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
123 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 47. Dynamic characteristics: SD/MMC and SDIO …continued  
Tamb = 40 C to +105 C, VDD = 2.7 V to 3.6 V; CL = 20 pF. SAMPLE_DELAY = 0, DRV_DELAY = 0 in the SDDELAY  
register, SDIOCLKCTRL = 0x84, sampled at 90 % and 10 % of the signal level, SLEW = 1 ns for SD_CLK pin, SLEW = 1 ns  
for SD_DATn and SD_CMD pins. Simulated values in high-speed mode.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
th(D)  
data input hold time  
on pins SD_DATn as inputs  
CCLK 100 MHz  
1.5  
1.5  
-
-
-
-
ns  
ns  
CCLK > 100 MHz  
on pins SD_CMD as inputs  
CCLK 100 MHz  
1.5  
1.5  
-
-
-
-
ns  
ns  
CCLK > 100 MHz  
tv(Q)  
data output valid time  
on pins SD_DATn as outputs  
CCLK 100 MHz  
1.9  
1.9  
-
-
3.5  
3.5  
ns  
ns  
CCLK > 100 MHz  
on pins SD_CMD as outputs  
CCLK 100 MHz  
1.9  
1.9  
-
-
3.5  
3.5  
ns  
ns  
CCLK > 100 MHz  
T
cy(clk)  
SD_CLK  
t
t
h(Q)  
d(QV)  
SD_CMD (O)  
SD_DATn (O)  
t
t
su(D)  
h(D)  
SD_CMD (I)  
SD_DATn (I)  
002aag204  
Fig 34. SD/MMC and SDIO timing  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
124 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
11.23 LCD  
Table 48. Dynamic characteristics: LCD  
Tamb = 40 C to 105 C; VDD = 2.7 V to 3.6 V; CL = 30 pF. Simulated values.  
Symbol  
fclk  
Parameter  
Conditions  
Min  
-
Typ  
Max  
50  
Unit  
MHz  
ns  
clock frequency  
on pin LCD_DCLK  
-
-
-
tv(Q)  
data output valid time on all CCLK 100 MHz  
LCD output pins  
0.9  
0.9  
1.6  
1.6  
CCLK > 100 MHz  
ns  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
125 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
12. Analog characteristics  
12.1 BOD  
Table 49. BOD static characteristics  
Tamb = 25 C; based on characterization; not tested in production.  
Symbol  
Parameter  
Conditions  
interrupt level 0  
assertion  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage  
1.5  
-
-
1.63  
1.69  
V
V
de-assertion  
reset level 0  
assertion  
1.55  
1.5  
-
-
1.62  
1.69  
V
V
de-assertion  
interrupt level 1  
assertion  
1.55  
Vth  
Vth  
Vth  
threshold voltage  
threshold voltage  
threshold voltage  
1.54  
1.6  
-
-
1.68  
1.75  
V
V
de-assertion  
reset level 1  
assertion  
1.55  
1.61  
-
-
1.68  
1.74  
V
V
de-assertion  
interrupt level 2  
assertion  
1.79  
1.85  
-
-
1.95  
2.02  
V
V
de-assertion  
reset level 2  
assertion  
2.04  
2.19  
-
-
2.21  
2.38  
V
V
de-assertion  
interrupt level 3  
assertion  
2.62  
2.77  
-
-
2.86  
3.03  
V
V
de-assertion  
reset level 3  
assertion  
2.62  
2.78  
-
-
2.85  
3.02  
V
V
de-assertion  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
126 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
12.2 12-bit ADC characteristics  
Table 50. 12-bit ADC static characteristics  
Tamb = 40 C to +105 C; 2.7 V VDD 3.6 V; VSSA = VREFN = GND. ADC calibrated at Tamb = 25C.  
Symbol  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
[3]  
[4]  
VIA  
analog input  
voltage  
0
-
-
VDDA  
V
Cia  
analog input  
capacitance  
5.0  
-
-
pF  
fclk(ADC)  
fs  
ADC clock  
frequency  
80  
5.3  
-
MHz  
sampling  
frequency  
-
-
5.0  
3.0  
Msamples/s  
LSB  
[1][5]  
[1][6]  
ED  
differential linearity 2.7 V VDDA 3.6 V  
error  
2.7 V < VREFP 3.6 V  
clk(ADC) = 80 MHz  
f
EL(adj)  
integral  
2.7 V VDDA 3.6 V  
-
4.0  
-
LSB  
non-linearity  
2.7 V < VREFP 3.6 V  
fclk(ADC) = 80 MHz  
[1][7]  
[1][8]  
EO  
offset error  
calibration enabled  
-
-
2.2  
3.0  
-
-
mV  
Verr(FS)  
full-scale error  
voltage  
2.7 V VDDA 3.6 V  
2.7 V < VREFP 3.6 V  
LSB  
fclk(ADC) = 80 MHz  
[9][10]  
Zi  
input impedance  
fs = 5.0 Msamples/s  
17.0  
-
-
k  
[1] Based on characterization; not tested in production.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
[3] The input resistance of ADC channels 6 to 11 is higher than ADC channels 0 to 5.  
[4] Cia represents the external capacitance on the analog input channel for sampling speeds of  
5.0 Msamples/s. No parasitic capacitances included.  
[5] The differential linearity error (ED) is the difference between the actual step width and the ideal step width.  
See Figure 35.  
[6] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and  
the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 35.  
[7] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the  
straight line which fits the ideal curve. See Figure 35.  
[8] The full-scale error voltage or gain error (EG) is the difference between the straight-line fitting the actual  
transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See  
Figure 35.  
[9] Tamb = 25 C; maximum sampling frequency fs = 5.0 Msamples/s and analog input capacitance Cia = 5 pF.  
[10] Input impedance Zi is inversely proportional to the sampling frequency and the total input capacity including  
Cia and Cio: Zi 1 / (fs Ci). See Table 19 for Cio. See Figure 36.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
127 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
offset  
error  
O
gain  
error  
E
E
G
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
4090 4091 4092 4093 4094 4095 4096  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
offset error  
E
O
VREFP - VREFN  
1 LSB =  
4096  
aaa-016908  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 35. 12-bit ADC characteristics  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
128 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 51. ADC sampling times[1]  
-40 C Tamb <= 85 C; 2.7 V VDDA 3.6 V; 2.7 V VDD 3.6 V  
Symbol Parameter Conditions  
ADC inputs ADC_5 to ADC_0 (fast channels); ADC resolution = 12 bit  
Min  
Typ  
Max  
Unit  
[3]  
[3]  
[3]  
[3]  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
20  
23  
26  
31  
47  
75  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kΩ <= Zo < 0.1 kΩ  
0.1 kΩ <= Zo < 0.2 kΩ  
0.2 kΩ <= Zo < 0.5 kΩ  
0.5 kΩ <= Zo < 1 kΩ  
1 kΩ <= Zo < 5 kΩ  
ADC inputs ADC_5 to ADC_0 (fast channels); ADC resolution = 10 bit  
ts  
sampling time  
Zo < 0.05 kΩ  
15  
18  
20  
24  
38  
62  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kΩ <= Zo < 0.1 kΩ  
0.1 kΩ <= Zo < 0.2 kΩ  
0.2 kΩ <= Zo < 0.5 kΩ  
0.5 kΩ <= Zo < 1 kΩ  
1 kΩ <= Zo < 5 kΩ  
ADC inputs ADC_5 to ADC_0 (fast channels); ADC resolution = 8 bit  
ts  
sampling time  
Zo < 0.05 kΩ  
12  
13  
15  
19  
30  
48  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kΩ <= Zo < 0.1 kΩ  
0.1 kΩ <= Zo < 0.2 kΩ  
0.2 kΩ <= Zo < 0.5 kΩ  
0.5 kΩ <= Zo < 1 kΩ  
1 kΩ <= Zo < 5 kΩ  
ADC inputs ADC_5 to ADC_0 (fast channels); ADC resolution = 6 bit  
ts  
sampling time  
Zo < 0.05 kΩ  
9
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kΩ <= Zo < 0.1 kΩ  
0.1 kΩ <= Zo < 0.2 kΩ  
0.2 kΩ <= Zo < 0.5 kΩ  
0.5 kΩ <= Zo < 1 kΩ  
1 kΩ <= Zo < 5 kΩ  
10  
11  
13  
22  
36  
ADC inputs ADC_11 to ADC_6 (slow channels); ADC resolution = 12 bit  
ts  
sampling time  
Zo < 0.05 kΩ  
43  
46  
50  
56  
74  
105  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kΩ <= Zo < 0.1 kΩ  
0.1 kΩ <= Zo < 0.2 kΩ  
0.2 kΩ <= Zo < 0.5 kΩ  
0.5 kΩ <= Zo < 1 kΩ  
1 kΩ <= Zo < 5 kΩ  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
129 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 51. ADC sampling times[1] …continued  
-40 C Tamb <= 85 C; 2.7 V VDDA 3.6 V; 2.7 V VDD 3.6 V  
Symbol Parameter Conditions  
ADC inputs ADC_11 to ADC_6 (slow channels); ADC resolution = 10 bit  
Min  
Typ  
Max  
Unit  
[3]  
[3]  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
35  
38  
40  
46  
61  
86  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kΩ <= Zo < 0.1 kΩ  
0.1 kΩ <= Zo < 0.2 kΩ  
0.2 kΩ <= Zo < 0.5 kΩ  
0.5 kΩ <= Zo < 1 kΩ  
1 kΩ <= Zo < 5 kΩ  
ADC inputs ADC_11 to ADC_6 (slow channels); ADC resolution = 8 bit  
ts  
sampling time  
Zo < 0.05 kΩ  
27  
29  
32  
36  
48  
69  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kΩ <= Zo < 0.1 kΩ  
0.1 kΩ <= Zo < 0.2 kΩ  
0.2 kΩ <= Zo < 0.5 kΩ  
0.5 kΩ <= Zo < 1 kΩ  
1 kΩ <= Zo < 5 kΩ  
ADC inputs ADC_11 to ADC_6 (slow channels); ADC resolution = 6 bit  
ts  
sampling time  
Zo < 0.05 kΩ  
20  
22  
23  
26  
36  
51  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kΩ <= Zo < 0.1 kΩ  
0.1 kΩ <= Zo < 0.2 kΩ  
0.2 kΩ <= Zo < 0.5 kΩ  
0.5 kΩ <= Zo < 1 kΩ  
1 kΩ <= Zo < 5 kΩ  
[1] Characterized through simulation. Not tested in production.  
[2] The ADC default sampling time is 2.5 ADC clock cycles. To match a given analog source output  
impedance, the sampling time can be extended by adding up to seven ADC clock cycles for a maximum  
sampling time of 9.5 ADC clock cycles. See the TSAMP bits in the ADC CTRL register.  
[3] Zo = analog source output impedance.  
[4] For VDD 2.5 V, add one additional clock cycle to the values in Table 51.  
12.2.1 ADC input impedance  
Figure 36 shows the ADC input impedance. In this figure:  
ADCx represents slow ADC input channels 6 to 11.  
ADCy represents fast ADC input channels 0 to 5.  
R1 and Rsw are the switch-on resistance on the ADC input channel.  
If fast channels (ADC inputs 0 to 5) are selected, the ADC input signal goes through  
Rsw to the sampling capacitor (Cia).  
If slow channels (ADC inputs 6 to 11) are selected, the ADC input signal goes through  
R1 + Rsw to the sampling capacitor (Cia).  
Typical values, R1 = 487 , Rsw = 278   
See Table 19 for Cio.  
See Table 50 for Cia.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
130 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
ADC  
R
1
ADCx  
ADCy  
C
io  
C
ia  
R
sw  
DAC  
C
io  
aaa-017600  
Fig 36. ADC input impedance  
12.3 Temperature sensor  
Table 52. Temperature sensor static and dynamic characteristics  
VDD = VDDA = 2.7 V to 3.6 V  
Symbol  
Parameter  
Conditions  
amb = 40 C to +105 C  
Min  
Typ  
Max  
Unit  
[1]  
[2]  
DTsen  
sensor  
temperature  
accuracy  
T
-
2.56  
C  
EL  
linearity error  
Tamb = 40 C to +105 C  
-
-
-
2.56  
15.0  
C  
s  
ts(pu)  
power-up  
settling time  
to 99% of temperature  
sensor output value  
10.0  
[1] Absolute temperature accuracy.  
[2] Based on simulation.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
131 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Table 53. Temperature sensor Linear-Least-Square (LLS) fit parameters  
VDD = VDDA = 2.7 V to 3.6 V  
Fit parameter  
LLS slope  
Range  
Min  
Typ  
2.04  
584.0  
-
Max  
Unit  
mV/C  
mV  
[1]  
[1]  
[2]  
Tamb = 40 C to +105 C  
Tamb = 40 C to +105 C  
-
-
LLS intercept at 0 C  
Value at 30 C  
-
-
520.3  
532.7  
mV  
[1] Measured over typical samples.  
[2] Measured for samples over process corners.  
DDDꢀꢁꢂꢉꢊꢄꢆ  
ꢈꢉꢉ  
9
R
ꢋP9ꢌ  
//6ꢊIILLWW  
ꢇꢉꢉ  
ꢄꢉꢉ  
ꢁꢉꢉ  
ꢏꢄꢉ  
ꢏꢀꢉ  
ꢁꢉ  
ꢃꢉ  
ꢈꢉ  
ꢀꢀꢉ  
7HPSHUDWXUHꢊꢋƒ&ꢌ  
VDD = VDDA 3.3 V; measured on matrix samples.  
Fig 37. LLS fit of the temperature sensor output voltage  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
132 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
13. Application information  
13.1 Start-up behavior  
Figure 38 shows the start-up timing after reset. The FRO 12 MHz oscillator provides the  
default clock at Reset and provides a clean system clock shortly after the supply pins  
reach operating voltage.  
FRO  
starts  
FRO status  
internal reset  
V
DD  
valid threshold  
= 1.71 V  
t
a
μs  
t μs  
b
GND  
boot time  
supply ramp-up  
time  
user code  
t
c
μs  
processor status  
boot code  
execution  
finishes;  
user code starts  
aaa-024049  
Fig 38. Start-up timing  
Table 54. Typical start-up timing parameters  
Parameter  
Description  
Value  
ta  
tb  
FRO start time  
20 s  
151 s  
Internal reset de-asserted  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
133 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
13.2 Standard I/O pin configuration  
Figure 39 shows the possible pin modes for standard I/O pins:  
Digital output driver: enabled/disabled.  
Digital input: Pull-up enabled/disabled.  
Digital input: Pull-down enabled/disabled.  
Digital input: Repeater mode enabled/disabled.  
Z mode; High impedance (no cross-bar currents for floating inputs).  
Default configuration for the standard I/O pins is Z mode (high impedance; pull-up or  
pull-down disabled). The weak MOS devices provide a drive capability equivalent to  
pull-up and pull-down resistors. GPIO pins PIO0_12, PIO0_11, PIO0_2, PIO0_3, PIO0_4,  
PIO0_5, and PIO0_6 have the input buffer enabled (DIGIMODE, bit 8 is enabled in  
IOCON register) and will be floating by default. If unused, it is recommended to externally  
terminate this pins to prevent leakage.  
VDD  
ESD  
enable output driver  
data output from core  
PIN  
slew rate bit SLEW  
input buffer enable bit EZI  
data input to core  
GLITCH  
FILTER  
filter select bit ZIF  
ESD  
VSS  
pull-up enable bit EPUN  
pull-down enable bit EPD  
analog I/O  
aaa-015595  
The glitch filter rejects pulses of typical 12 ns width.  
Fig 39. Standard I/O and RESET pin configuration  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
134 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
13.3 Connecting power, clocks, and debug functions  
Figure 40 shows the basic board connections used to power the  
LPC54018JxM/LPC54S018JxM devices, connect the external crystal and the 32 kHz  
oscillator for the RTC, and provide debug capabilities via the serial wire port.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
135 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
3.3 V  
3.3 V  
3.3 V  
SWD connector  
(4)  
(6)  
SWDIO/PIO0_12  
~10 kΩ - 100 kΩ  
XTALIN  
C1  
(1)  
1
2
C2  
XTALOUT  
DGND  
~10 kΩ - 100 kΩ  
SWCLK/PIO0_11  
(6)  
3
4
RTCXIN  
n.c.  
n.c.  
C3  
(1)  
6
8
5
7
9
C4  
n.c.  
RTCXOUT  
DGND  
RESETN  
10  
V
SS  
(2)  
3.3 V  
V
DD  
0.1 ꢀF  
0.01 ꢀF  
DGND  
DGND  
V
SSA  
DGND  
DGND  
LPC  
AGND  
PIO0_4  
(3)  
V
DDA  
3.3 V  
0.1 ꢀF  
10 ꢀF  
PIO0_5  
PIO0_6  
ISP select pins  
(5)  
(3)  
VREFP  
ADCx  
3.3 V  
0.1 ꢀF  
10 ꢀF  
0.1 ꢀF  
VREFN  
AGND  
AGND  
(7)  
VBAT  
3.3 V  
0.1 ꢀF  
DGND  
AGND  
DGND  
aaa-029082  
(1) See Section 13.6 “XTAL oscillator” for the values of C1, C2, C3, and C4.  
(2) Position the decoupling capacitors of 0.1 μF and 0.01 μF as close as possible to the VDD pin. Add one set of decoupling  
capacitors to each VDD pin.  
(3) Position the decoupling capacitors of 0.1 μF as close as possible to the VREFN and VDDA pins. The 10 μF bypass capacitor  
filters the power line. Tie VDDA and VREFP to VDD if the ADC is not used. Tie VREFN to VSS if ADC is not used.  
(4) Uses the ARM 10-pin interface for SWD.  
(5) When measuring signals of low frequency, use a low-pass filter to remove noise and to improve ADC performance. Also see  
Ref. 3.  
(6) External pull-up resistors on SWDIO and SWCLK pins are needed since these pins are in high Z mode (internal pull-up and  
pull-down disabled). GPIO pins SWDIO/PIO0_12, SWCLK/PIO0_11, PIO0_2, PIO0_3, PIO0_4, PIO0_5, and PIO0_6 have the  
input buffer enabled (DIGIMODE, bit 8 is enabled in IOCON register) and will be floating by default. If unused, it is  
recommended to externally terminate this pins to prevent leakage.  
(7) Position the decoupling capacitor of 0.1 F as close as possible to the VBAT pin. Tie VBAT to VDD if not used.  
Fig 40. Power, clock, and debug connections  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
136 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
13.4 I/O power consumption  
I/O pins are contributing to the overall dynamic and static power consumption of the part.  
If pins are configured as digital inputs, a static current can flow depending on the voltage  
level at the pin and the setting of the internal pull-up and pull-down resistors. This current  
can be calculated using the parameters Rpu and Rpd given in Table 19 for a given input  
voltage VI. For pins set to output, the current drive strength is given by parameters IOH and  
IOL in Table 19, but for calculating the total static current, you also need to consider any  
external loads connected to the pin.  
I/O pins also contribute to the dynamic power consumption when the pins are switching  
because the VDD supply provides the current to charge and discharge all internal and  
external capacitive loads connected to the pin in addition to powering the I/O circuitry.  
The contribution from the I/O switching current Isw can be calculated as follows for any  
given switching frequency fsw if the external capacitive load (Cext) is known (see Table 19  
for the internal I/O capacitance):  
I
sw = VDD x fsw x (Cio + Cext)  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
137 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
13.5 RTC oscillator  
In the RTC oscillator circuit, only the crystal (XTAL) and the capacitances CX1 and CX2  
need to be connected externally on RTCXIN and RTCXOUT. See Figure 41.  
LPC  
L
RTCXIN  
RTCXOUT  
C
R
C
P
=
L
XTAL  
S
C
C
X2  
X1  
aaa-029083  
Fig 41. RTC oscillator components  
For best results, it is very critical to select a matching crystal for the on-chip oscillator.  
Load capacitance (CL), series resistance (RS), and drive level (DL) are important  
parameters to consider while choosing the crystal. After selecting the proper crystal, the  
external load capacitor CX1 and CX2 values can also be generally determined by the  
following expression:  
CX1 = CX2 = 2CL (CPad + CParasitic  
)
Where:  
CL - Crystal load capacitance  
CPad - Pad capacitance of the RTCXIN and RTCXOUT pins (~3 pF).  
CParasitic – Parasitic or stray capacitance of external circuit.  
Although CParasitic can be ignored in general, the actual board layout and placement of  
external components influences the optimal values of external load capacitors. Therefore,  
it is recommended to fine tune the values of external load capacitors on actual hardware  
board to get the accurate clock frequency. For fine tuning, output the RTC Clock to the  
CLOCKOUT pin and optimize the values of external load capacitors for minimum  
frequency deviation.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
138 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
13.5.1 RTC Printed Circuit Board (PCB) design guidelines  
Connect the crystal and external load capacitors on the PCB as close as possible to  
the oscillator input and output pins of the chip.  
The length of traces in the oscillation circuit should be as short as possible and must  
not cross other signal lines.  
Ensure that the load capacitors CX1, CX2, and CX3, in case of third overtone crystal  
usage, have a common ground plane.  
Loops must be made as small as possible to minimize the noise coupled in through  
the PCB and to keep the parasitics as small as possible.  
Lay out the ground (GND) pattern under crystal unit.  
Do not lay out other signal lines under crystal unit for multi-layered PCB.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
139 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
13.6 XTAL oscillator  
In the XTAL oscillator circuit, only the crystal (XTAL) and the capacitances CX1 and CX2  
need to be connected externally on XTALIN and XTALOUT. See Figure 42.  
LPCxxxx  
L
XTALIN  
XTALOUT  
C
R
C
P
=
L
XTAL  
S
C
C
X2  
X1  
aaa-025725  
Fig 42. XTAL oscillator components  
For best results, it is very critical to select a matching crystal for the on-chip oscillator.  
Load capacitance (CL), series resistance (RS), and drive level (DL) are important  
parameters to consider while choosing the crystal. After selecting the proper crystal, the  
external load capacitor CX1 and CX2 values can also be generally determined by the  
following expression:  
CX1 = CX2 = 2CL (CPad + CParasitic  
)
Where:  
CL - Crystal load capacitance  
CPad - Pad capacitance of the XTALIN and XTALOUT pins (~3 pF).  
CParasitic – Parasitic or stray capacitance of external circuit.  
Although CParasitic can be ignored in general, the actual board layout and placement of  
external components influences the optimal values of external load capacitors. Therefore,  
it is recommended to fine tune the values of external load capacitors on actual hardware  
board to get the accurate clock frequency. For fine tuning, measure the clock on the  
XTALOUT pin and optimize the values of external load capacitors for minimum frequency  
deviation.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
140 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
13.6.1 XTAL Printed Circuit Board (PCB) design guidelines  
Connect the crystal and external load capacitors on the PCB as close as possible to  
the oscillator input and output pins of the chip.  
The length of traces in the oscillation circuit should be as short as possible and must  
not cross other signal lines.  
Ensure that the load capacitors CX1, CX2, and CX3, in case of third overtone crystal  
usage, have a common ground plane.  
Loops must be made as small as possible to minimize the noise coupled in through  
the PCB and to keep the parasitics as small as possible.  
Lay out the ground (GND) pattern under crystal unit.  
Do not lay out other signal lines under crystal unit for multi-layered PCB.  
13.7 Suggested USB interface solutions  
The USB device can be connected to the USB as self-powered device (see Figure 43) or  
bus-powered device (see Figure 44).  
On the LPC54018JxM/LPC54S018JxM, the USB_VBUS pin is 5 V tolerant only when VDD  
is applied and at operating voltage level. Therefore, if the USB_VBUS function is  
connected to the USB connector and the device is self-powered, the USB_VBUS pin must  
be protected for situations when VDD = 0 V.  
If VDD is always at operating level while VBUS = 5 V, the USB_VBUS pin can be  
connected directly to the VBUS pin on the USB connector.  
For systems where VDD can be 0 V and VBUS is directly applied to the VBUS pin,  
precautions must be taken to reduce the voltage to below 3.6 V, which is the maximum  
allowable voltage on the USB_VBUS pin in this case.  
One method is to use a voltage divider to connect the USB_VBUS pin to the VBUS on the  
USB connector. The voltage divider ratio should be such that the USB_VBUS pin is  
greater than 0.7 VDD to indicate a logic HIGH while below the 3.6 V allowable maximum  
voltage.  
For the following operating conditions  
VBUSmax = 5.25 V  
VDD = 3.6 V,  
the voltage divider should provide a reduction of 3.6 V/5.25 V or ~0.686 V.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
141 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
LPCxxxx  
V
DD  
R2  
R3  
R1  
1.5 kꢁ  
USB  
USB_VBUS  
D+  
D-  
USB-B  
connector  
R
R
= 33 ꢁ  
= 33 ꢁ  
S
S
USB_DP  
USB_DM  
V
SS  
aaa-023996  
Fig 43. USB interface on a self-powered device where USB_VBUS = 5 V  
The internal pull-up (1.5 k) can be enabled by setting the DCON bit in the  
DEVCMDSTAT register to prevent the USB from timing out when there is a significant  
delay between power-up and handling USB traffic. External circuitry is not required.  
LPCxxxx  
V
DD  
REGULATOR  
(1)  
(2)  
USB_VBUS  
USB_VBUS  
USB  
R1  
1.5 kꢁ  
VBUS  
D+  
USB-B  
R
= 33 ꢁ  
= 33 ꢁ  
S
S
USB_DP  
D-  
connector  
R
USB_DM  
V
SS  
aaa-023997  
Two options exist for connecting VBUS to the USB_VBUS pin:  
(1) Connect the regulator output to USB_VBUS. In this case, the USB_VBUS signal is HIGH whenever the part is powered.  
(2) Connect the VBUS signal directly from the connector to the USB_VBUS pin. In this case, 5 V are applied to the USB_VBUS pin  
while the regulator is ramping up to supply VDD. Since the USB_VBUS pin is only 5 V tolerant when VDD is at operating level,  
this connection can degrade the performance of the part over its lifetime. Simulation shows that lifetime is reduced to 15 years  
at Tamb = 45 °C and 8 years at Tamb = 55 °C assuming that USB_VBUS = 5 V is applied continuously while VDD = 0 V.  
Fig 44. USB interface on a bus-powered device  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
142 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
14. Package outline  
TFBGA180: thin fine-pitch ball grid array package; 180 balls  
SOT570-3  
D
B
A
ball A1  
index area  
A
2
E
A
A
1
detail X  
e
1
C
M
M
v  
w  
C
C
A
B
e
1/2 e  
b
y
y
C
1
P
N
M
K
H
L
J
e
e
2
G
E
F
1/2 e  
D
C
A
B
ball A1  
index area  
1
3
5
7
9
11  
13  
2
4
6
8
10  
12  
14  
X
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
UNIT  
A
A
1
A
2
b
D
E
e
e
1
e
2
v
w
y
y
1
max 1.20 0.40 0.80 0.50 12.1 12.1  
nom 1.06 0.35 0.71 0.45 12.0 12.0  
mm  
0.8  
10.4 10.4 0.15 0.05 0.12  
0.1  
min  
0.95 0.30 0.65 0.40 11.9 11.9  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
JEITA  
08-07-09  
10-04-15  
SOT570-3  
Fig 45. TFBGA180 package  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
143 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
15. Soldering  
Footprint information for reflow soldering of TFBGA180 package  
SOT570-3  
Hx  
P
P
Hy  
see detail X  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
solder paste deposit  
solder land plus solder paste  
SL  
SP  
SR  
occupied area  
solder resist  
detail X  
DIMENSIONS in mm  
P
SL  
SP  
SR  
Hx  
Hy  
0.80  
0.400 0.400 0.550 12.575 12.575  
sot570-3_fr  
Fig 46. Reflow soldering of the TFBGA180 package  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
144 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
16. Abbreviations  
Table 55. Abbreviations  
Acronym  
AHB  
Description  
Advanced High-performance Bus  
Advanced Peripheral Bus  
APB  
API  
Application Programming Interface  
Direct Memory Access  
DMA  
FRO oscillator  
GPIO  
FRO  
Internal Free-Running Oscillator, tuned to the factory specified frequency  
General Purpose Input/Output  
Free Running Oscillator  
LSB  
Least Significant Bit  
MCU  
MicroController Unit  
PDM  
Pulse Density Modulation  
PLL  
Phase-Locked Loop  
SPI  
Serial Peripheral Interface  
TCP/IP  
TTL  
Transmission Control Protocol/Internet Protocol  
Transistor-Transistor Logic  
USART  
Universal Asynchronous Receiver/Transmitter  
17. References  
[1] LPC54018JxM/LPC54S018JxM. User manual UM11155  
[2] LPC54018JxM/LPC54S018JxM. Errata sheet.  
[3] Technical note ADC design guidelines:  
http://www.nxp.com/documents/technical_note/TN00009.pdf  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
145 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
18. Revision history  
Table 56. Revision history  
Document ID  
Release date Data sheet status  
Change notice Supersedes  
- v.1.0  
LPC54018JxM/LPC54S018JxM v1.1 20190127  
Product data sheet  
Modifications:  
Updated Table 4 “Pin description”: Added text to USB1_VBUS.  
Updated Table 12 “General operating conditions”: Added USB1 analog supply.  
Updated Section 7.13.2 “Deep-sleep mode”: Added text: In deep-sleep mode, the  
system clock to the processor is disabled as in sleep mode. All analog blocks are  
powered down by default but can be selected to keep running through the power  
API if needed as wake-up sources. The main clock and all peripheral clocks are  
disabled by default.  
Updated part number in ordering information  
LPC54018JxM/LPC54S018JxM v1.0 20180918  
Product data sheet  
-
-
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
146 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
19. Legal information  
19.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
19.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
19.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
147 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
19.4 Trademarks  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
20. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
148 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
21. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
7.16  
Serial peripherals . . . . . . . . . . . . . . . . . . . . . . 60  
7.16.1  
Full-speed USB Host/Device interface (USB0) . .  
60  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 6  
Ordering options . . . . . . . . . . . . . . . . . . . . . . . . 7  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3
3.1  
4
7.16.1.1 USB0 device controller. . . . . . . . . . . . . . . . . . 60  
7.16.1.2 USB0 host controller . . . . . . . . . . . . . . . . . . . 61  
7.16.2  
High-speed USB Host/Device interface (USB1) .  
61  
5
6
6.1  
6.2  
6.2.1  
6.2.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . 11  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . 12  
Termination of unused pins. . . . . . . . . . . . . . . 43  
Pin states in different power modes . . . . . . . . 44  
7.16.2.1 USB1 device controller. . . . . . . . . . . . . . . . . . 61  
7.16.2.2 USB1 host controller . . . . . . . . . . . . . . . . . . . 61  
7.16.3  
7.16.3.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
7.16.4 SPI Flash Interface (SPIFI) . . . . . . . . . . . . . . 62  
7.16.4.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
7.16.5 CAN Flexible Data (CAN FD) interface . . . . . 63  
7.16.5.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.16.6 DMIC subsystem . . . . . . . . . . . . . . . . . . . . . . 63  
7.16.6.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.16.7 Smart card interface. . . . . . . . . . . . . . . . . . . . 63  
7.16.7.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.16.8 Flexcomm Interface serial communication. . . 63  
Ethernet AVB . . . . . . . . . . . . . . . . . . . . . . . . . 62  
7
Functional description . . . . . . . . . . . . . . . . . . 46  
Architectural overview. . . . . . . . . . . . . . . . . . . 46  
ARM Cortex-M4 processor . . . . . . . . . . . . . . . 46  
ARM Cortex-M4 integrated Floating Point Unit  
(FPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Memory Protection Unit (MPU). . . . . . . . . . . . 46  
Nested Vectored Interrupt Controller (NVIC) for  
Cortex-M4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 47  
System Tick timer (SysTick) . . . . . . . . . . . . . . 47  
On-chip serial flash. . . . . . . . . . . . . . . . . . . . . 47  
On-chip static RAM. . . . . . . . . . . . . . . . . . . . . 47  
On-chip ROM . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . 48  
One-Time Programmable (OTP) memory. . . . 51  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
System control . . . . . . . . . . . . . . . . . . . . . . . . 52  
Clock sources . . . . . . . . . . . . . . . . . . . . . . . . . 52  
7.1  
7.2  
7.3  
7.4  
7.5  
7.16.8.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.16.8.2 SPI serial I/O controller . . . . . . . . . . . . . . . . . 64  
7.16.8.3 I2C-bus interface . . . . . . . . . . . . . . . . . . . . . . 64  
7.16.8.4 USART. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
7.16.8.5 I2S-bus interface. . . . . . . . . . . . . . . . . . . . . . . 65  
7.5.1  
7.5.2  
7.6  
7.7  
7.8  
7.17  
7.17.1  
Digital peripheral . . . . . . . . . . . . . . . . . . . . . . 66  
LCD controller . . . . . . . . . . . . . . . . . . . . . . . . 66  
7.9  
7.10  
7.11  
7.11.1  
7.12  
7.12.1  
7.17.1.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
7.17.2 SD/MMC card interface . . . . . . . . . . . . . . . . . 67  
7.17.2.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
7.17.3 External memory controller . . . . . . . . . . . . . . 67  
7.17.3.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
7.17.4 DMA controller . . . . . . . . . . . . . . . . . . . . . . . . 69  
7.17.4.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
7.12.1.1 Free Running Oscillator (FRO). . . . . . . . . . . . 52  
7.12.1.2 Watchdog oscillator (WDOSC) . . . . . . . . . . . . 52  
7.12.1.3 Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . 52  
7.12.2  
7.12.3  
7.12.4  
7.12.5  
7.12.6  
7.12.7  
7.13  
7.13.1  
7.13.2  
7.13.3  
7.14  
7.14.1  
7.15  
7.18  
7.18.1  
Counter/timers . . . . . . . . . . . . . . . . . . . . . . . . 69  
General-purpose 32-bit timers/external event  
counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
System PLL (PLL0). . . . . . . . . . . . . . . . . . . . . 52  
USB PLL (PLL1) . . . . . . . . . . . . . . . . . . . . . . . 52  
Audio PLL (PLL2) . . . . . . . . . . . . . . . . . . . . . . 53  
Clock Generation . . . . . . . . . . . . . . . . . . . . . . 54  
Brownout detection. . . . . . . . . . . . . . . . . . . . . 56  
Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Sleep mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Deep-sleep mode . . . . . . . . . . . . . . . . . . . . . . 56  
Deep power-down mode. . . . . . . . . . . . . . . . . 56  
General Purpose I/O (GPIO) . . . . . . . . . . . . . 59  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Pin interrupt/pattern engine . . . . . . . . . . . . . . 59  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
7.18.1.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
7.18.2 SCTimer/PWM . . . . . . . . . . . . . . . . . . . . . . . . 70  
7.18.2.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
7.18.3 Windowed WatchDog Timer (WWDT) . . . . . . 71  
7.18.3.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
7.18.4  
7.18.5  
Real Time Clock (RTC) timer . . . . . . . . . . . . . 71  
Multi-Rate Timer (MRT) . . . . . . . . . . . . . . . . . 71  
7.18.5.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
7.18.6 Repetitive Interrupt Timer (RIT) . . . . . . . . . . . 72  
7.18.6.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
7.19  
12-bit Analog-to-Digital Converter (ADC). . . . 72  
7.15.1  
continued >>  
LPC54018JxM/LPC54S018JxM  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2019. All rights reserved.  
Product data sheet  
Rev. 1.1 — 27 January 2019  
149 of 150  
LPC54018JxM/LPC54S018JxM  
NXP Semiconductors  
32-bit ARM Cortex-M4 microcontroller  
7.19.1  
7.20  
7.20.1  
7.21  
7.22  
7.22.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
13  
Application information . . . . . . . . . . . . . . . . 133  
Start-up behavior . . . . . . . . . . . . . . . . . . . . . 133  
Standard I/O pin configuration . . . . . . . . . . . 134  
Connecting power, clocks, and debug functions .  
135  
I/O power consumption . . . . . . . . . . . . . . . . 137  
RTC oscillator. . . . . . . . . . . . . . . . . . . . . . . . 138  
RTC Printed Circuit Board (PCB) design  
guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
XTAL oscillator . . . . . . . . . . . . . . . . . . . . . . . 140  
XTAL Printed Circuit Board (PCB) design  
guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Suggested USB interface solutions . . . . . . . 141  
CRC engine . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Temperature sensor . . . . . . . . . . . . . . . . . . . . 73  
Security features. . . . . . . . . . . . . . . . . . . . . . . 73  
SHA-1 and SHA-2. . . . . . . . . . . . . . . . . . . . . . 73  
13.1  
13.2  
13.3  
13.4  
13.5  
13.5.1  
7.22.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
7.22.2 AES encryption/decryption . . . . . . . . . . . . . . . 74  
7.22.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
7.22.3 PUF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
7.22.3.1 PUF keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
7.22.3.2 PUF controller features. . . . . . . . . . . . . . . . . . 74  
13.6  
13.6.1  
7.23  
Emulation and debugging. . . . . . . . . . . . . . . . 75  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 76  
Thermal characteristics. . . . . . . . . . . . . . . . . . 78  
13.7  
14  
8
Package outline. . . . . . . . . . . . . . . . . . . . . . . 143  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . 145  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Revision history . . . . . . . . . . . . . . . . . . . . . . 146  
9
15  
10  
Static characteristics. . . . . . . . . . . . . . . . . . . . 79  
General operating conditions . . . . . . . . . . . . . 79  
CoreMark data . . . . . . . . . . . . . . . . . . . . . . . . 79  
Power consumption . . . . . . . . . . . . . . . . . . . . 81  
Pin characteristics. . . . . . . . . . . . . . . . . . . . . . 87  
Electrical pin characteristics . . . . . . . . . . . . . . 90  
16  
10.1  
10.2  
10.3  
10.4  
10.4.1  
17  
18  
19  
Legal information . . . . . . . . . . . . . . . . . . . . . 147  
Data sheet status . . . . . . . . . . . . . . . . . . . . . 147  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . 148  
19.1  
19.2  
19.3  
19.4  
11  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
11.7  
Dynamic characteristics . . . . . . . . . . . . . . . . . 93  
I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 94  
External memory interface . . . . . . . . . . . . . . . 95  
System PLL (PLL0) . . . . . . . . . . . . . . . . . . . 104  
USB PLL (PLL1) . . . . . . . . . . . . . . . . . . . . . 105  
Audio PLL (PLL2) . . . . . . . . . . . . . . . . . . . . . 105  
FRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . 106  
RTC oscillator . . . . . . . . . . . . . . . . . . . . . . . . 107  
Watchdog oscillator . . . . . . . . . . . . . . . . . . . 108  
I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
I2S-bus interface. . . . . . . . . . . . . . . . . . . . . . 111  
SPI interfaces (Flexcomm Interface 0-9) . . . 113  
SPI interfaces (Flexcomm Interface 10) . . . . 116  
DMIC subsystem . . . . . . . . . . . . . . . . . . . . . 119  
Smart card interface . . . . . . . . . . . . . . . . . . . 119  
USART interface. . . . . . . . . . . . . . . . . . . . . . 120  
SCTimer/PWM output timing . . . . . . . . . . . . 121  
USB interface characteristics . . . . . . . . . . . . 121  
Ethernet AVB . . . . . . . . . . . . . . . . . . . . . . . . 122  
SD/MMC and SDIO . . . . . . . . . . . . . . . . . . . 123  
LCD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
20  
21  
Contact information . . . . . . . . . . . . . . . . . . . 148  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
11.8  
11.9  
11.10  
11.11  
11.12  
11.13  
11.14  
11.15  
11.16  
11.17  
11.18  
11.19  
11.21  
11.22  
11.23  
12  
Analog characteristics . . . . . . . . . . . . . . . . . 126  
BOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
12-bit ADC characteristics . . . . . . . . . . . . . . 127  
ADC input impedance. . . . . . . . . . . . . . . . . . 130  
Temperature sensor . . . . . . . . . . . . . . . . . . . 131  
12.1  
12.2  
12.2.1  
12.3  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2019.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 27 January 2019  
Document identifier: LPC54018JxM/LPC54S018JxM  

相关型号:

LPC54018JBD208

32-bit ARM Cortex-M4 microcontroller
NXP

LPC54018JET180

32-bit ARM Cortex-M4 microcontroller
NXP

LPC540XX

32-bit ARM Cortex-M4 microcontroller
NXP

LPC54101J256BD64

32-bit ARM Cortex-M4/M0 MCU; 104 kB SRAM; 512 kB flash, 3 x I2C, 2 x SPI, 4 x USART, 32-bit counter/ timers, SCTimer/PWM, 12-bit 5.0 Msamples/sec ADC
NXP

LPC54101J256BD64QL

LPC54101J256BD64 - Low Power 32-bit Microcontroller based on ARM® Cortex®-M4 QFP 64-Pin
NXP

LPC54101J256UK49

32-bit ARM Cortex-M4/M0 MCU; 104 kB SRAM; 512 kB flash, 3 x I2C, 2 x SPI, 4 x USART, 32-bit counter/ timers, SCTimer/PWM, 12-bit 5.0 Msamples/sec ADC
NXP

LPC54101J256UK49Z

LPC54101J256UK49 - Low Power 32-bit Microcontroller based on ARM® Cortex®-M4
NXP

LPC54101J512BD64

32-bit ARM Cortex-M4/M0 MCU; 104 kB SRAM; 512 kB flash, 3 x I2C, 2 x SPI, 4 x USART, 32-bit counter/ timers, SCTimer/PWM, 12-bit 5.0 Msamples/sec ADC
NXP

LPC54101J512BD64QL

LPC54101J512BD64 - Low Power 32-bit Microcontroller based on ARM® Cortex®-M4 QFP 64-Pin
NXP

LPC54101J512UK49

32-bit ARM Cortex-M4/M0 MCU; 104 kB SRAM; 512 kB flash, 3 x I2C, 2 x SPI, 4 x USART, 32-bit counter/ timers, SCTimer/PWM, 12-bit 5.0 Msamples/sec ADC
NXP

LPC54101J512UK49Z

LPC54101J512UK49 - Low Power 32-bit Microcontroller based on ARM® Cortex®-M4
NXP

LPC54102J256BD64

32-bit ARM Cortex-M4/M0 MCU; 104 kB SRAM; 512 kB flash, 3 x I2C, 2 x SPI, 4 x USART, 32-bit counter/ timers, SCTimer/PWM, 12-bit 5.0 Msamples/sec ADC
NXP