LPC82X [NXP]

32-bit ARM® Cortex®-M0 microcontroller; up to 32 kB flash and 8 kB SRAM; 12-bit ADC; comparator;
LPC82X
型号: LPC82X
厂家: NXP    NXP
描述:

32-bit ARM® Cortex®-M0 microcontroller; up to 32 kB flash and 8 kB SRAM; 12-bit ADC; comparator

静态存储器
文件: 总83页 (文件大小:2412K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC82x  
32-bit ARM® Cortex®-M0+ microcontroller; up to 32 kB flash  
and 8 kB SRAM; 12-bit ADC; comparator  
Rev. 1.4 — 19 March 2021  
Product data sheet  
1. General description  
The LPC82x are an ARM Cortex-M0+ based, low-cost 32-bit MCU family operating at  
CPU frequencies of up to 30 MHz. The LPC82x support up to 32 KB of flash memory and  
8 KB of SRAM.  
The peripheral complement of the LPC82x includes a CRC engine, four I2C-bus  
interfaces, up to three USARTs, up to two SPI interfaces, one multi-rate timer,  
self-wake-up timer, and state-configurable timer with PWM function (SCTimer/PWM), a  
DMA, one 12-bit ADC and one analog comparator, function-configurable I/O ports through  
a switch matrix, an input pattern match engine, and up to 29 general-purpose I/O pins.  
For additional documentation related to the LPC82x parts, see Section 18.  
2. Features and benefits  
System:  
ARM Cortex-M0+ processor (revision r0p1), running at frequencies of up to  
30 MHz with single-cycle multiplier and fast single-cycle I/O port.  
ARM Cortex-M0+ built-in Nested Vectored Interrupt Controller (NVIC).  
System tick timer.  
AHB multilayer matrix.  
Serial Wire Debug (SWD) with four break points and two watch points. JTAG  
boundary scan (BSDL) supported.  
MTB  
Memory:  
Up to 32 KB on-chip flash programming memory with 64 Byte page write and  
erase. Code Read Protection (CRP) supported.  
8 KB SRAM.  
ROM API support:  
Boot loader.  
On-chip ROM APIs for ADC, SPI, I2C, USART, power configuration (power  
profiles) and integer divide.  
Flash In-Application Programming (IAP) and In-System Programming (ISP).  
Digital peripherals:  
High-speed GPIO interface connected to the ARM Cortex-M0+ IO bus with up to 29  
General-Purpose I/O (GPIO) pins with configurable pull-up/pull-down resistors,  
programmable open-drain mode, input inverter, and digital filter. GPIO direction  
control supports independent set/clear/toggle of individual bits.  
High-current source output driver (20 mA) on four pins.  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
High-current sink driver (20 mA) on two true open-drain pins.  
GPIO interrupt generation capability with boolean pattern-matching feature on  
eight GPIO inputs.  
Switch matrix for flexible configuration of each I/O pin function.  
CRC engine.  
DMA with 18 channels and 9 trigger inputs.  
Timers:  
State Configurable Timer (SCTimer/PWM) with input and output functions  
(including capture and match) for timing and PWM applications. Each  
SCTimer/PWM input is multiplexed to allow selecting from several input sources  
such as pins, ADC interrupt, or comparator output.  
Four channel Multi-Rate Timer (MRT) for repetitive interrupt generation at up to  
four programmable, fixed rates.  
Self-Wake-up Timer (WKT) clocked from either the IRC, a low-power,  
low-frequency internal oscillator, or an external clock input in the always-on power  
domain.  
Windowed Watchdog timer (WWDT).  
Analog peripherals:  
One 12-bit ADC with up to 12 input channels with multiple internal and external  
trigger inputs and with sample rates of up to 1.2 Msamples/s. The ADC supports  
two independent conversion sequences.  
Comparator with four input pins and external or internal reference voltage.  
Serial peripherals:  
Three USART interfaces with pin functions assigned through the switch matrix and  
one common fractional baud rate generator.  
Two SPI controllers with pin functions assigned through the switch matrix.  
Four I2C-bus interfaces. One I2C supports Fast-mode Plus with 1 Mbit/s data rates  
on two true open-drain pins and listen mode. Three I2Cs support data rates up to  
400 kbit/s on standard digital pins.  
Clock generation:  
12 MHz internal RC oscillator trimmed to 1.5 % accuracy that can optionally be  
used as a system clock.  
Crystal oscillator with an operating range of 1 MHz to 25 MHz.  
Programmable watchdog oscillator with a frequency range of 9.4 kHz to 2.3 MHz.  
PLL allows CPU operation up to the maximum CPU rate without the need for a  
high-frequency crystal. May be run from the system oscillator, the external clock  
input, or the internal RC oscillator.  
Clock output function with divider that can reflect all internal clock sources.  
Power control:  
Power consumption in active mode as low as 90 uA/MHz in low-current mode  
using the IRC as the clock source.  
Integrated PMU (Power Management Unit) to minimize power consumption.  
Reduced power modes: Sleep mode, Deep-sleep mode, Power-down mode, and  
Deep power-down mode.  
Wake-up from Deep-sleep and Power-down modes on activity on USART, SPI, and  
I2C peripherals.  
Timer-controlled self wake-up from Deep power-down mode.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
2 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Power-On Reset (POR).  
Brownout detect (BOD).  
Unique device serial number for identification.  
Single power supply (1.8 V to 3.6 V).  
Operating temperature range -40 °C to +105 °C.  
Available in a TSSOP20 and HVQFN33 (5x5) package.  
3. Applications  
Sensor gateways  
Industrial  
Simple motor control  
Portables and wearables  
Lighting  
Gaming controllers  
8/16-bit applications  
Consumer  
Motor control  
Fire and security applications  
Climate control  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC824M201JHI33  
LPC822M101JHI33  
HVQFN33  
HVQFN: plastic thermal enhanced very thin quad flat package; no leads; n/a  
33 terminals; body 5 5 0.85 mm  
HVQFN33  
HVQFN: plastic thermal enhanced very thin quad flat package; no leads; n/a  
33 terminals; body 5 5 0.85 mm  
LPC824M201JDH20 TSSOP20  
LPC822M101JDH20 TSSOP20  
plastic thin shrink small outline package; 20 leads; body width 4.4 mm  
plastic thin shrink small outline package; 20 leads; body width 4.4 mm  
SOT360-1  
SOT360-1  
4.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Flash/ SRAM/ USART I2C  
KB KB  
SPI ADC  
channels  
Comparator GPIO  
Package  
LPC824M201JHI33  
LPC822M101JHI33  
LPC824M201JDH20  
LPC822M101JDH20  
32  
8
3
3
3
3
4
4
4
4
2
2
2
2
12  
Y
Y
Y
y
29  
29  
16  
16  
HVQFN33  
HVQFN33  
TSSOP20  
TSSOP20  
16  
32  
16  
4
8
4
12  
5
5
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
3 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
5. Marking  
20  
Terminal 1 index area  
Terminal 1 index area  
1
aaa-014766  
aaa-014382  
Fig 1. TSSOP20 package marking  
Fig 2. HVQFN33 package marking  
The HVQFN33 packages typically have the following top-side marking:  
82xJ  
xx xx  
yywwxR  
The TSSOP20 packages typically have the following top-side marking:  
LPC82x  
Mx01J  
xxxxxxxx  
zzywwxR  
In the last line, field ‘y’ or ‘yy’ states the year the device was manufactured. Field ‘ww’  
states the week the device was manufactured during that year. Field ‘R’ states the chip  
revision.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
4 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
6. Block diagram  
LPC82xM  
SWCLK, SWD  
TEST/DEBUG  
INTERFACE  
29 x  
PIO0  
HIGH-SPEED  
GPIO  
ARM  
CORTEX-M0+  
FLASH  
16/32 KB  
SRAM  
4/8 KB  
ROM  
PIN INTERRUPTS/  
PATTERN MATCH  
slave  
slave  
slave  
SCT_PIN[3:0]  
SCT_OUT[6:0]  
SCTIMER/  
PWM  
AHB-LITE BUS  
slave master  
slave  
CRC  
DMA  
AHB TO APB  
BRIDGE  
TXD, RTS  
RXD, CTS  
SCLK  
WWDT  
IOCON  
USART0/1/2  
SPI0/1  
SCK, SSEL  
MISO, MOSI  
29 x  
SWITCH  
MATRIX  
MULTI-RATE TIMER  
SCL  
SDA  
2
I C0/1/2/3  
XTALOUT  
XTALIN  
PMU  
XTAL  
SYSCON  
RESET, CLKIN  
CLKOUT  
SELF  
WAKE-UP TIMER  
ALWAYS-ON POWER DOMAIN  
IRC  
CLOCK  
GENERATION,  
POWER CONTROL,  
SYSTEM  
WDOsc  
BOD  
ADC_[11:0]  
ADC  
FUNCTIONS  
POR  
ACMP_I[4:1]  
VDDCMP  
ACMP_O  
COMPARATOR  
clocks and  
controls  
aaa-014399  
Gray-shaded blocks show peripherals that can provide hardware triggers or fixed DMA requests for DMA transfers.  
Fig 3. LPC82x block diagram  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
5 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
7. Pinning information  
7.1 Pinning  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
PIO0_23/ADC_3/ACMP_I4  
PIO0_14/ADC_2/ACMP_I3  
PIO0_0/ACMP_I1/TDO  
VREFP  
PIO0_17/ADC_9  
PIO0_13/ADC_10  
3
4
PIO0_12  
VREFN  
5
RESET/PIO0_5  
V
SS  
V
DD  
TSSOP20  
6
PIO0_4/ADC_11/WAKEUP/TRST  
SWCLK/PIO0_3/TCK  
SWDIO/PIO0_2/TMS  
PIO0_11/I2C0_SDA  
PIO0_10/I2C0_SCL  
7
PIO0_8/XTALIN  
8
PIO0_9/XTALOUT  
PIO0_1/ACMP_I2/CLKIN/TDI  
PIO0_15  
9
10  
aaa-011391  
Fig 4.  
Pin configuration TSSOP20 package  
terminal 1  
index area  
1
2
3
4
5
6
7
8
24  
PIO0_13/ADC_10  
PIO0_12  
PIO0_0/ACMP_I1/TDO  
PIO0_6/ADC_1/VDDCMP  
PIO0_7/ADC_0  
VREFP  
23  
22  
21  
20  
19  
18  
17  
PIO0_5/RESET  
PIO0_4/ADC_11/TRST  
PIO0_28/WKTCLKIN  
SWCLK/PIO0_3/TCK  
SWDIO/PIO0_2/TMS  
PIO0_11/I2C0_SDA  
VREFN  
V
DD  
PIO0_8/XTALIN  
33 V  
SS  
PIO0_9/XTALOUT  
aaa-011396  
Transparent top view  
Fig 5.  
Pin configuration HVQFN33 package  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
6 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
7.2 Pin description  
The pin description table Table 3 shows the pin functions that are fixed to specific pins on  
each package. These fixed-pin functions are selectable through the switch matrix  
between GPIO and the comparator, ADC, SWD, RESET, and the XTAL pins. By default,  
the GPIO function is selected except on pins PIO0_2, PIO0_3, and PIO0_5. JTAG  
functions are available in boundary scan mode only.  
Movable function for the I2C, USART, SPI, and SCT pin functions can be assigned  
through the switch matrix to any pin that is not power or ground in place of the pin’s fixed  
functions.  
The following exceptions apply:  
Do not assign more than one output to any pin. However, more than one input can be  
assigned to a pin. Once any function is assigned to a pin, the pin’s GPIO functionality is  
disabled.  
Pin PIO0_4 triggers a wake-up from Deep power-down mode. If the part must wake up  
from Deep power-down mode via an external pin, do not assign any movable function to  
this pin.  
The JTAG functions TDO, TDI, TCK, TMS, and TRST are selected on pins PIO0_0 to  
PIO0_4 by hardware when the part is in boundary scan mode.  
Table 3.  
Symbol  
Pin description  
Reset  
state[1]  
Type  
Description  
[2]  
[2]  
PIO0_0/ACMP_I1/  
TDO  
19 24  
I; PU  
I; PU  
IO  
PIO0_0 — General-purpose port 0 input/output 0.  
In ISP mode, this is the U0_RXD pin.  
In boundary scan mode: TDO (Test Data Out).  
ACMP_I1 — Analog comparator input 1.  
PIO0_1 — General-purpose port 0 input/output 1.  
In boundary scan mode: TDI (Test Data In).  
ACMP_I2 — Analog comparator input 2.  
CLKIN — External clock input.  
A
PIO0_1/ACMP_I2/  
CLKIN/TDI  
12 16  
IO  
A
I
[4]  
[4]  
SWDIO/PIO0_2/  
TMS  
8
7
7
6
I; PU  
I; PU  
IO  
SWDIO — Serial Wire Debug I/O. SWDIO is enabled by default  
on this pin. In boundary scan mode: TMS (Test Mode Select).  
I/O  
I
PIO0_2 — General-purpose port 0 input/output 2.  
SWCLK/PIO0_3/  
TCK  
SWCLK — Serial Wire Clock. SWCLK is enabled by default on  
this pin.  
In boundary scan mode: TCK (Test Clock).  
IO  
PIO0_3 — General-purpose port 0 input/output 3.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
7 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 3.  
Symbol  
Pin description  
Reset  
state[1]  
Type  
Description  
[3]  
PIO0_4/ADC_11/  
TRSTN/WAKEUP  
6
4
I; PU  
IO  
PIO0_4 — General-purpose port 0 input/output 4.  
In boundary scan mode: TRST (Test Reset).  
In ISP mode, this pin is the U0_TXD pin.  
This pin triggers a wake-up from Deep power-down mode. If the  
part must wake up from Deep power-down mode via an external  
pin, do not assign any movable function to this pin. This pin  
should be pulled HIGH externally before entering Deep  
power-down mode. A LOW-going pulse as short as 50 ns causes  
the chip to exit Deep power-down mode and wakes up the part.  
A
ADC_11 — ADC input 11.  
[7]  
RESET/PIO0_5  
5
3
I; PU  
IO  
RESET — External reset input: A LOW-going pulse as short as  
50 ns on this pin resets the device, causing I/O ports and  
peripherals to take on their default states, and processor  
execution to begin at address 0.  
In deep power-down mode, this pin must be pulled HIGH  
externally. The RESET pin can be left unconnected or be used as  
a GPIO or for any movable function if an external RESET function  
is not needed and the Deep power-down mode is not used.  
I
PIO0_5 — General-purpose port 0 input/output 5.  
PIO0_6 — General-purpose port 0 input/output 6.  
ADC_1 — ADC input 1.  
[10]  
PIO0_6/ADC_1/  
VDDCMP  
-
-
23  
22  
I; PU  
IO  
A
A
VDDCMP — Alternate reference voltage for the analog  
comparator.  
[2]  
[8]  
PIO0_7/ADC_0  
PIO0_8/XTALIN  
I; PU  
I; PU  
IO  
A
PIO0_7 — General-purpose port 0 input/output 7.  
ADC_0 — ADC input 0.  
14 18  
13 17  
IO  
A
PIO0_8 — General-purpose port 0 input/output 8.  
XTALIN — Input to the oscillator circuit and internal clock  
generator circuits. Input voltage must not exceed 1.95 V.  
[8]  
[6]  
PIO0_9/XTALOUT  
I; PU  
IO  
A
PIO0_9 — General-purpose port 0 input/output 9.  
XTALOUT — Output from the oscillator circuit.  
PIO0_10/I2C0_SCL 10  
9
Inactive I; F  
PIO0_10 — General-purpose port 0 input/output 10 (open-drain).  
I2C0_SCL — Open-drain I2C-bus clock input/output. High-current  
sink if I2C Fast-mode Plus is selected in the I/O configuration  
register.  
[6]  
PIO0_11/I2C0_SDA  
9
8
Inactive I; F  
PIO0_11 — General-purpose port 0 input/output 11 (open-drain).  
I2C0_SDA — Open-drain I2C-bus data input/output. High-current  
sink if I2C Fast-mode Plus is selected in the I/O configuration  
register.  
[4]  
[2]  
PIO0_12  
4
3
2
1
I; PU  
I; PU  
IO  
PIO0_12 — General-purpose port 0 input/output 12. ISP entry  
pin. A LOW level on this pin during reset starts the ISP command  
handler.  
PIO0_13/ADC_10  
IO  
A
PIO0_13 — General-purpose port 0 input/output 13.  
ADC_10 — ADC input 10.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
8 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 3.  
Symbol  
Pin description  
Reset  
state[1]  
Type  
Description  
[2]  
PIO0_14/  
ACMP_I3/ADC_2  
20 25  
11 15  
I; PU  
IO  
A
PIO0_14 — General-purpose port 0 input/output 14.  
ACMP_I3 — Analog comparator common input 3.  
ADC_2 — ADC input 2.  
A
[5]  
[4]  
[2]  
PIO0_15  
I; PU  
I; PU  
I; PU  
IO  
IO  
IO  
A
PIO0_15 — General-purpose port 0 input/output 15.  
PIO0_16 — General-purpose port 0 input/output 16.  
PIO0_17 — General-purpose port 0 input/output 17.  
ADC_9 — ADC input 9.  
PIO0_16  
-
10  
32  
PIO0_17/ADC_9  
2
[2]  
[2]  
[2]  
[2]  
[2]  
[2]  
PIO0_18/ADC_8  
PIO0_19/ADC_7  
PIO0_20/ADC_6  
PIO0_21/ADC_5  
PIO0_22/ADC_4  
-
31  
30  
29  
28  
27  
26  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
IO  
A
PIO0_18 — General-purpose port 0 input/output 18.  
ADC_8 — ADC input 8.  
-
IO  
A
PIO0_19 — General-purpose port 0 input/output 19.  
ADC_7 — ADC input 7.  
-
IO  
A
PIO0_20 — General-purpose port 0 input/output 20.  
ADC_6 — ADC input 6.  
-
IO  
A
PIO0_21 — General-purpose port 0 input/output 21.  
ADC_5 — ADC input 5.  
-
IO  
A
PIO0_22 — General-purpose port 0 input/output 22.  
ADC_4 — ADC input 4.  
PIO0_23/ADC_3/  
ACMP_I4  
1
IO  
A
PIO0_23 — General-purpose port 0 input/output 23.  
ADC_3 — ADC input 3.  
A
ACMP_I4 — Analog comparator common input 4.  
PIO0_24 — General-purpose port 0 input/output 24.  
PIO0_25 — General-purpose port 0 input/output 25.  
PIO0_26 — General-purpose port 0 input/output 26.  
PIO0_27 — General-purpose port 0 input/output 27.  
[5]  
[5]  
[5]  
[5]  
[3]  
PIO0_24  
PIO0_25  
PIO0_26  
PIO0_27  
-
-
-
-
-
14  
13  
12  
11  
5
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
IO  
IO  
IO  
IO  
IO  
PIO0_28/  
PIO0_28 — General-purpose port 0 input/output 28. This pin can  
host an external clock for the self-wake-up timer. To use the pin  
as a self-wake-up timer clock input, select the external clock in the  
wake-up timer CTRL register. The external clock input is active in  
all power modes, including deep power-down.  
WKTCLKIN  
VDD  
15 19  
-
-
Supply voltage for the I/O pad ring, the core voltage regulator, and  
the analog peripherals.  
VSS  
16 33[11]  
17 20  
-
-
-
-
-
-
Ground.  
VREFN  
VREFP  
ADC negative reference voltage.  
18 21  
ADC positive reference voltage. Must be equal or lower than VDD.  
[1] Pin state at reset for default function: I = Input; AI = Analog Input; O = Output; PU = internal pull-up enabled (pins pulled up to full VDD  
level); IA = inactive, no pull-up/down enabled; F = floating. For pin states in the different power modes, see Section 14.5 “Pin states in  
different power modes”. For termination on unused pins, see Section 14.4 “Termination of unused pins”.  
[2] 5 V tolerant pin providing standard digital I/O functions with configurable modes, configurable hysteresis, and analog input. When  
configured as an analog input, the digital section of the pin is disabled, and the pin is not 5 V tolerant.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
9 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis. This pin is  
active in Deep power-down mode and includes a 20 ns glitch filter (active in all power modes). In Deep power-down mode, pulling the  
WAKEUP pin LOW wakes up the chip. The wake-up pin function can be disabled and the pin can be used for other purposes, if the  
WKT low-power oscillator is enabled for waking up the part from Deep power-down mode. See Table 17 “Dynamic characteristics:  
WKTCLKIN pin” for the WKTCLKIN input.  
[4] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis; includes  
high-current output driver.  
[5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis.  
[6] True open-drain pin. I2C-bus pins compliant with the I2C-bus specification for I2C standard mode, I2C Fast-mode, and I2C Fast-mode  
Plus. Do not use this pad for high-speed applications such as SPI or USART. The pin requires an external pull-up to provide output  
functionality. When power is switched off, this pin is floating and does not disturb the I2C lines. Open-drain configuration applies to all  
functions on this pin.  
[7] See Figure 10 for the reset pad configuration. This pin includes a 20 ns glitch filter (active in all power modes). RESET functionality is  
not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. An  
external pull-up resistor is required on this pin for the Deep power-down mode.  
[8] 5 V tolerant pin providing standard digital I/O functions with configurable modes, configurable hysteresis, and analog I/O for the system  
oscillator. When configured for XTALIN and XTALOUT, the digital section of the pin is disabled, and the pin is not 5 V tolerant.  
[9] The WKTCLKIN function is enabled in the DPDCTRL register in the PMU. See the LPC82x user manual.  
[10] The digital part of this pin is 3 V tolerant pin due to special analog functionality. Pin provides standard digital I/O functions with  
configurable modes, configurable hysteresis, and an analog input. When configured as an analog input, the digital section of the pin is  
disabled.  
[11] Thermal pad for HVQFN33.  
Table 4.  
Movable functions (assign to pins PIO0_0 to PIO0_28 through switch matrix)  
Function name  
U0_TXD  
Type  
O
Description  
Transmitter output for USART0.  
Receiver input for USART0.  
U0_RXD  
I
U0_RTS  
O
Request To Send output for USART0.  
Clear To Send input for USART0.  
Serial clock input/output for USART0 in synchronous mode.  
Transmitter output for USART1.  
Receiver input for USART1.  
U0_CTS  
I
U0_SCLK  
U1_TXD  
I/O  
O
U1_RXD  
I
U1_RTS  
O
Request To Send output for USART1.  
Clear To Send input for USART1.  
Serial clock input/output for USART1 in synchronous mode.  
Transmitter output for USART2.  
Receiver input for USART2.  
U1_CTS  
I
U1_SCLK  
U2_TXD  
I/O  
O
U2_RXD  
I
U2_RTS  
O
Request To Send output for USART1.  
Clear To Send input for USART1.  
Serial clock input/output for USART1 in synchronous mode.  
Serial clock for SPI0.  
U2_CTS  
I
U2_SCLK  
SPI0_SCK  
SPI0_MOSI  
SPI0_MISO  
SPI0_SSEL0  
SPI0_SSEL1  
SPI0_SSEL2  
SPI0_SSEL3  
SPI1_SCK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Master Out Slave In for SPI0.  
Master In Slave Out for SPI0.  
Slave select 0 for SPI0.  
Slave select 1 for SPI0.  
Slave select 2 for SPI0.  
Slave select 3 for SPI0.  
Serial clock for SPI1.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
10 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 4.  
Movable functions (assign to pins PIO0_0 to PIO0_28 through switch matrix)  
Function name  
SPI1_MOSI  
SPI1_MISO  
SPI1_SSEL0  
SPI1_SSEL1  
SCT_PIN0  
Type  
I/O  
I/O  
I/O  
I/O  
I
Description  
Master Out Slave In for SPI1.  
Master In Slave Out for SPI1.  
Slave select 0 for SPI1.  
Slave select 1 for SPI1.  
Pin input 0 to the SCT input multiplexer.  
Pin input 1 to the SCT input multiplexer.  
Pin input 2 to the SCT input multiplexer.  
Pin input 3 to the SCT input multiplexer.  
SCT output 0.  
SCT_PIN1  
I
SCT_PIN2  
I
SCT_PIN3  
I
SCT_OUT0  
SCT_OUT1  
SCT_OUT2  
SCT_OUT3  
SCT_OUT4  
SCT_OUT5  
I2C1_SDA  
O
O
SCT output 1.  
O
SCT output 2.  
O
SCT output 3.  
O
SCT output 4.  
O
SCT output 5.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I2C1-bus data input/output.  
I2C1-bus clock input/output.  
I2C2-bus data input/output.  
I2C2-bus clock input/output.  
I2C3-bus data input/output.  
I2C3-bus clock input/output.  
ADC external pin trigger input 0.  
ADC external pin trigger input 1.  
Analog comparator output.  
Clock output.  
I2C1_SCL  
I2C2_SDA  
I2C2_SCL  
I2C3_SDA  
I2C3_SCL  
ADC_PINTRIG0  
ADC_PINTRIG1  
ACMP_O  
I
O
CLKOUT  
O
GPIO_INT_BMAT  
O
Output of the pattern match engine.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
11 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8. Functional description  
8.1 ARM Cortex-M0+ core  
The ARM Cortex-M0+ core runs at an operating frequency of up to 30 MHz using a  
two-stage pipeline. The core revision is r0p1.  
Integrated in the core are the NVIC and Serial Wire Debug with four breakpoints and two  
watchpoints. The ARM Cortex-M0+ core supports a single-cycle I/O enabled port for fast  
GPIO access.  
The core includes a single-cycle multiplier and a system tick timer.  
8.2 On-chip flash program memory  
The LPC82x contain up to 32 KB of on-chip flash program memory. The flash memory  
supports a 64 Byte page size with page write and erase.  
8.3 On-chip SRAM  
The LPC82x contain a total of 8 KB on-chip static RAM data memory in two separate  
SRAM blocks with one combined clock for both SRAM blocks.  
8.4 On-chip ROM  
The on-chip ROM contains the bootloader and the following Application Programming  
Interfaces (APIs):  
In-System Programming (ISP) and In-Application Programming (IAP) support for flash  
including IAP erase page command.  
Power profiles for configuring power consumption and PLL settings  
32-bit integer division routines  
APIs to use the following peripherals:  
SPI  
USART  
I2C  
ADC  
8.5 Memory map  
The LPC82x incorporates several distinct memory regions. Figure 6 shows the overall  
map of the entire address space from the user program viewpoint following reset. The  
interrupt vector area supports address remapping.  
The ARM private peripheral bus includes the ARM core registers for controlling the NVIC,  
the system tick timer (SysTick), and the reduced power modes.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
12 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
LPC82x  
4 GB  
0xFFFF FFFF  
0xE010 0000  
0xE000 0000  
reserved  
APB peripherals  
0x4008 0000  
private peripheral bus  
reserved  
30 - 31 reserved  
0x4007 8000  
0xA000 8000  
I2C3  
29  
28  
27  
26  
25  
24  
23  
22  
0x4007 4000  
0x4007 0000  
0x4006 C000  
GPIO PINT  
GPIO  
0xA000 4000  
0xA000 0000  
I2C2  
USART2  
USART1  
USART0  
reserved  
SPI1  
0x4006 8000  
0x4006 4000  
reserved  
0x4006 0000  
0x4005 C000  
0x5000 C000  
0x5000 8000  
0x5000 4000  
0x5000 0000  
DMA  
SCTimer/PWM  
CRC  
SPI0  
0x4005 8000  
0x4005 4000  
0x4005 0000  
I2C1  
I2C0  
21  
20  
19  
reserved  
APB peripherals  
reserved  
reserved  
0x4004 C000  
0x4004 8000  
0x4004 4000  
0x4004 0000  
system control (SYSCON)  
IOCON  
18  
17  
0x4008 0000  
0x4000 0000  
1 GB  
flash controller  
reserved  
16  
15  
0x4003 C000  
0x4003 8000  
0x4003 4000  
14  
reserved  
reserved  
13  
12  
reserved  
input mux  
0x2000 0000  
0x4003 0000  
0x4002 C000  
0x4002 8000  
0.5 GB  
11  
10  
9
reserved  
DMA TRIGMUX  
analog comparator  
0x1FFF 3000  
0x1FFF 0000  
0x4002 4000  
0x4002 0000  
12 KB boot ROM  
PMU  
8
reserved  
12-bit ADC  
reserved  
7
0x4001 C000  
0x4001 8000  
0x1400 1000  
0x1400 0000  
4 KB MTB registers  
6
reserved  
reserved  
5
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
4
reserved  
switch matrix  
self wake-up timer  
MRT  
3
0x1001 2000  
0x1000 1000  
0x1000 0000  
4 KB SRAM1  
4 KB SRAM0  
2
1
0
0x4000 4000  
0x4000 0000  
WWDT  
reserved  
0x0000 8000  
0x0000 0000  
0x0000 00C0  
active interrupt vectors  
32 KB on-chip flash  
0x0000 0000  
0 GB  
aaa-015072  
Fig 6. LPC82x Memory mapping  
8.6 Nested Vectored Interrupt Controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC) is part of the Cortex-M0+. The tight  
coupling to the CPU allows for low interrupt latency and efficient processing of late arriving  
interrupts.  
8.6.1 Features  
Nested Vectored Interrupt Controller is a part of the ARM Cortex-M0+.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
13 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Tightly coupled interrupt controller provides low interrupt latency.  
Controls system exceptions and peripheral interrupts.  
Supports 32 vectored interrupts.  
In the LPC82x, the NVIC supports vectored interrupts for each of the peripherals and  
the eight pin interrupts.  
Four programmable interrupt priority levels with hardware priority level masking.  
Software interrupt generation using the ARM exceptions SVCall and PendSV.  
Supports NMI.  
8.6.2 Interrupt sources  
Each peripheral device has at least one interrupt line connected to the NVIC but can have  
several interrupt flags. Individual interrupt flags can also represent more than one interrupt  
source.  
8.7 System tick timer  
The ARM Cortex-M0+ includes a 24-bit system tick timer (SysTick) that is intended to  
generate a dedicated SysTick exception at a fixed time interval (typically 10 ms).  
8.8 I/O configuration  
The IOCON block controls the configuration of the I/O pins. Each digital or mixed  
digital/analog pin with the PIO0_n designator (except the true open-drain pins PIO0_10  
and PIO0_11) in Table 3 can be configured as follows:  
Enable or disable the weak internal pull-up and pull-down resistors.  
Select a pseudo open-drain mode. The input cannot be pulled up above VDD. The  
pins are not 5 V tolerant when VDD is grounded.  
Program the input glitch filter with different filter constants using one of the IOCON  
divided clock signals (IOCONCLKCDIV, see Figure 9 “LPC82x clock generation”).  
You can also bypass the glitch filter.  
Invert the input signal.  
Hysteresis can be enabled or disabled.  
For pins PIO0_10 and PIO0_11, select the I2C-mode and output driver for standard  
digital operation, for I2C standard and fast modes, or for I2C Fast mode+.  
The switch matrix setting enables the analog input mode on pins with analog and  
digital functions. Enabling the analog mode disconnects the digital functionality.  
Remark: The functionality of each I/O pin is flexible and is determined entirely through the  
switch matrix. See Section 8.9 for details.  
8.8.1 Standard I/O pad configuration  
Figure 7 shows the possible pin modes for standard I/O pins with analog input function:  
Digital output driver with configurable open-drain output.  
Digital input: Weak pull-up resistor (PMOS device) enabled/disabled.  
Digital input: Weak pull-down resistor (NMOS device) enabled/disabled.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
14 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Digital input: Repeater mode enabled/disabled.  
Digital input: Programmable input digital filter selectable on all pins.  
Analog input: Selected through the switch matrix.  
V
V
DD  
DD  
open-drain enable  
output enable  
strong  
pull-up  
ESD  
data output  
PIN  
pin configured  
as digital output  
driver  
strong  
pull-down  
ESD  
V
SS  
V
DD  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater mode  
enable  
pull-down enable  
data input  
PROGRAMMABLE  
DIGITAL FILTER  
pin configured  
as digital input  
select data  
inverter  
SWM PINENABLE for  
analog input  
analog input  
pin configured  
as analog input  
aaa-014392  
Fig 7. Standard I/O pad configuration  
8.9 Switch Matrix (SWM)  
The switch matrix controls the function of each digital or mixed analog/digital pin in a  
highly flexible way by allowing to connect many functions like the USART, SPI, SCT, and  
I2C functions to any pin that is not power or ground. These functions are called movable  
functions and are listed in Table 4.  
Functions that need specialized pads like the oscillator pins XTALIN and XTALOUT can  
be enabled or disabled through the switch matrix. These functions are called fixed-pin  
functions and cannot move to other pins. The fixed-pin functions are listed in Table 3. If a  
fixed-pin function is disabled, any other movable function can be assigned to this pin.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
15 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.10 Fast General-Purpose parallel I/O (GPIO)  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs  
can be set or cleared in one write operation.  
LPC82x use accelerated GPIO functions:  
GPIO registers are on the ARM Cortex-M0+ IO bus for fastest possible single-cycle  
I/O timing, allowing GPIO toggling with rates of up to 15 MHz.  
An entire port value can be written in one instruction.  
Mask, set, and clear operations are supported for the entire port.  
All GPIO port pins are fixed-pin functions that are enabled or disabled on the pins by the  
switch matrix. Therefore each GPIO port pin is assigned to one specific pin and cannot be  
moved to another pin. Except for pins SWDIO/PIO0_2, SWCLK/PIO0_3, and  
RESET/PIO0_5, the switch matrix enables the GPIO port pin function by default.  
8.10.1 Features  
Bit level port registers allow a single instruction to set and clear any number of bits in  
one write operation.  
Direction control of individual bits.  
All I/O default to GPIO inputs with internal pull-up resistors enabled after reset -  
except for the I2C-bus true open-drain pins PIO0_10 and PIO0_11.  
Pull-up/pull-down configuration, repeater, and open-drain modes can be programmed  
through the IOCON block for each GPIO pin (see Figure 7).  
Direction (input/output) can be set and cleared individually.  
Pin direction bits can be toggled.  
8.11 Pin interrupt/pattern match engine  
The pin interrupt block configures up to eight pins from all digital pins for providing eight  
external interrupts connected to the NVIC.  
The pattern match engine can be used, with software, to create complex state machines  
based on pin inputs.  
Any digital pin, independently of the function selected through the switch matrix, can be  
configured through the SYSCON block as input to the pin interrupt or pattern match  
engine. The registers that control the pin interrupt or pattern match engine are on the IO+  
bus for fast single-cycle access.  
8.11.1 Features  
Pin interrupts  
Up to eight pins can be selected from all digital pins as edge- or level-sensitive  
interrupt requests. Each request creates a separate interrupt in the NVIC.  
Edge-sensitive interrupt pins can interrupt on rising or falling edges or both.  
Level-sensitive interrupt pins can be HIGH- or LOW-active.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
16 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Pin interrupts can wake up the LPC82x from sleep mode, deep-sleep mode, and  
power-down mode.  
Pin interrupt pattern match engine  
Up to eight pins can be selected from all digital pins to contribute to a boolean  
expression. The boolean expression consists of specified levels and/or transitions  
on various combinations of these pins.  
Each minterm (product term) comprising the specified boolean expression can  
generate its own, dedicated interrupt request.  
Any occurrence of a pattern match can be also programmed to generate an RXEV  
notification to the ARM CPU. The RXEV signal can be connected to a pin.  
The pattern match engine does not facilitate wake-up.  
8.12 DMA controller  
The DMA controller can access all memories and the USART, SPI, I2C, and ADC  
peripherals using DMA requests or triggers. DMA transfers can also be triggered by  
internal events like the ADC interrupts, the pin interrupts (PININT0 and PININT1), the  
SCTimer DMA requests, and the DMA trigger outputs.  
8.12.1 Features  
18 channels with each channel connected to peripheral request inputs.  
DMA operations can be triggered by on-chip events or by two pin interrupts. Each  
DMA channel can select one trigger input from 9 sources.  
Priority is user selectable for each channel.  
Continuous priority arbitration.  
Address cache with two entries.  
Efficient use of data bus.  
Supports single transfers up to 1,024 words.  
Address increment options allow packing and/or unpacking data.  
8.12.2 DMA trigger input MUX (TRIGMUX)  
Each DMA trigger is connected to a programmable multiplexer which connects the trigger  
input to one of multiple trigger sources. Each multiplexer supports the same trigger  
sources: the ADC sequence interrupts, the SCT DMA request lines, and pin interrupts  
PININT0 and PININT1, and the outputs of the DMA triggers 0 and 1 for chaining DMA  
triggers.  
8.13 USART0/1/2  
All USART functions are movable functions and are assigned to pins through the switch  
matrix.  
8.13.1 Features  
Maximum bit rates of 1.875 Mbit/s in asynchronous mode and 10 Mbit/s in  
synchronous mode for USART functions connected to all digital pins except the  
open-drain pins.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
17 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
7, 8, or 9 data bits and 1 or 2 stop bits  
Synchronous mode with master or slave operation. Includes data phase selection and  
continuous clock option.  
Multiprocessor/multidrop (9-bit) mode with software address compare. (RS-485  
possible with software address detection and transceiver direction control.)  
Parity generation and checking: odd, even, or none.  
One transmit and one receive data buffer.  
RTS/CTS for hardware signaling for automatic flow control. Software flow control can  
be performed using Delta CTS detect, Transmit Disable control, and any GPIO as an  
RTS output.  
Received data and status can optionally be read from a single register  
Break generation and detection.  
Receive data is 2 of 3 sample "voting". Status flag set when one sample differs.  
Built-in Baud Rate Generator.  
A fractional rate divider is shared among all UARTs.  
Interrupts available for Receiver Ready, Transmitter Ready, Receiver Idle, change in  
receiver break detect, Framing error, Parity error, Overrun, Underrun, Delta CTS  
detect, and receiver sample noise detected.  
Separate data and flow control loopback modes for testing.  
Baud rate clock can also be output in asynchronous mode.  
Supported by on-chip ROM API.  
8.14 SPI0/1  
All SPI functions are movable functions and are assigned to pins through the switch  
matrix.  
8.14.1 Features  
Maximum data rates of up to 30 Mbit/s in master mode and up to 18 Mbit/s in slave  
mode for SPI functions connected to all digital pins except the open-drain pins.  
Data frames of 1 to 16 bits supported directly. Larger frames supported by software.  
Master and slave operation.  
Data can be transmitted to a slave without the need to read incoming data, which can  
be useful while setting up an SPI memory.  
Control information can optionally be written along with data, which allows very  
versatile operation, including “any length” frames.  
One Slave Select input/output with selectable polarity and flexible usage.  
Remark: Texas Instruments SSI and National Microwire modes are not supported.  
8.15 I2C-bus interface (I2C0/1/2/3)  
The I2C-bus is bidirectional for inter-IC control using only two wires: a serial clock line  
(SCL) and a serial data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
18 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be  
controlled by more than one bus master.  
The I2C0-bus functions are fixed-pin functions. All other I2C-bus functions for I2C1/2/3  
are movable functions and can be assigned through the switch matrix to any pin.  
However, only the true open-drain pins provide the electrical characteristics to support the  
full I2C-bus specification (see Ref. 3).  
8.15.1 Features  
I2C0 supports Fast-mode Plus with data rates of up to 1 Mbit/s in addition to standard  
and fast modes on two true open-drain pins.  
True open-drain pins provide fail-safe operation: When the power to an I2C-bus  
device is switched off, the SDA and SCL pins connected to the I2C0-bus are floating  
and do not disturb the bus.  
I2C1/2/3 support standard and fast mode with data rates of up to 400 kbit/s.  
Independent Master, Slave, and Monitor functions.  
Supports both Multi-master and Multi-master with Slave functions.  
Multiple I2C slave addresses supported in hardware.  
One slave address can be selectively qualified with a bit mask or an address range in  
order to respond to multiple I2C bus addresses.  
10-bit addressing supported with software assist.  
Supports SMBus.  
8.16 SCTimer/PWM  
The state configurable timer can perform basic 16-bit and 32-bit timer/counter functions  
with match outputs and external and internal capture inputs. In addition, the  
SCTimer/PWM can employ up to eight different programmable states, which can change  
under the control of events, to provide complex timing patterns.  
The inputs to the SCT are multiplexed between movable functions from the switch matrix  
and internal connections such as the ADC threshold compare interrupt, the comparator  
output, and the ARM core signals ARM_TXEV and DEBUG_HALTED. The signal on each  
SCT input is selected through the INPUT MUX.  
All outputs of the SCT are movable functions and are assigned to pins through the switch  
matrix. One SCT output can also be selected as one of the ADC conversion triggers.  
8.16.1 Features  
Each SCTimer/PWM supports:  
Eight match/capture registers.  
Eight events.  
Eight states.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
19 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Four inputs. Each input is configurable through an input multiplexer to use one of  
four external pins (connected through the switch matrix) or one of four internal  
sources. The maximum input signal frequency is 25 MHz.  
Six outputs. Connected to pins through the switch matrix.  
Counter/timer features:  
Each SCTimer is configurable as two 16-bit counters or one 32-bit counter.  
Counters can be clocked by the system clock or selected input.  
Configurable as up counters or up-down counters.  
Configurable number of match and capture registers. Up to eight match and  
capture registers total.  
Upon match create the following events: interrupt; stop, limit, halt the timer or  
change counting direction; toggle outputs.  
Counter value can be loaded into capture register triggered by a match or  
input/output toggle.  
PWM features:  
Counters can be used with match registers to toggle outputs and create  
time-proportioned PWM signals.  
Up to six single-edge or dual-edge PWM outputs with independent duty cycle and  
common PWM cycle length.  
Event creation features:  
The following conditions define an event: a counter match condition, an input (or  
output) condition such as a rising or falling edge or level, a combination of match  
and/or input/output condition.  
Selected events can limit, halt, start, or stop a counter or change its direction.  
Events trigger state changes, output toggles, interrupts, and DMA transactions.  
Match register 0 can be used as an automatic limit.  
In bidirectional mode, events can be enabled based on the count direction.  
Match events can be held until another qualifying event occurs.  
State control features:  
A state is defined by events that can happen in the state while the counter is  
running.  
A state changes into another state as a result of an event.  
Each event can be assigned to one or more states.  
State variable allows sequencing across multiple counter cycles.  
One SCTimer match output can be selected as ADC hardware trigger input.  
8.16.2 SCTimer/PWM input MUX (INPUT MUX)  
Each input of the SCTimer/PWM is connected to a programmable multiplexer which  
allows to connect one of multiple internal or external sources to the input. The available  
sources are the same for each SCTimer/PWM input and can be selected from four pins  
configured through the switch matrix, the ADC threshold compare interrupt, the  
comparator output, and the ARM core signals ARM_TXEV and DEBUG_HALTED.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
20 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.17 Multi-Rate Timer (MRT)  
The Multi-Rate Timer (MRT) provides a repetitive interrupt timer with four channels. Each  
channel can be programmed with an independent time interval, and each channel  
operates independently from the other channels.  
8.17.1 Features  
31-bit interrupt timer  
Four channels independently counting down from individually set values  
Bus stall, repeat and one-shot interrupt modes  
8.18 Windowed WatchDog Timer (WWDT)  
The watchdog timer resets the controller if software fails to service the watchdog timer  
periodically within a programmable time window.  
8.18.1 Features  
Internally resets chip if not periodically reloaded during the programmable time-out  
period.  
Optional windowed operation requires reload to occur between a minimum and  
maximum time period, both programmable.  
Optional warning interrupt can be generated at a programmable time prior to  
watchdog time-out.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect feed sequence causes reset or interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in  
multiples of Tcy(WDCLK) 4.  
The WatchDog Clock (WDCLK) is generated by the dedicated watchdog oscillator  
(WDOSC).  
8.19 Self-Wake-up Timer (WKT)  
The self-wake-up timer is a 32-bit, loadable down counter. Writing any non-zero value to  
this timer automatically enables the counter and launches a count-down sequence. When  
the counter is used as a wake-up timer, this write can occur prior to entering a reduced  
power mode.  
8.19.1 Features  
32-bit loadable down counter. Counter starts automatically when a count value is  
loaded. Time-out generates an interrupt/wake up request.  
The WKT resides in a separate, always-on power domain.  
The WKT supports three clock sources: an external clock on the WKTCLKIN pin, the  
low-power oscillator, and the IRC. The low-power oscillator is located in the always-on  
power domain, so it can be used as the clock source in Deep power-down mode.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
21 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
The WKT can be used for waking up the part from any reduced power mode,  
including Deep power-down mode, or for general-purpose timing.  
8.20 Analog comparator (ACMP)  
The analog comparator with selectable hysteresis can compare voltage levels on external  
pins and internal voltages.  
After power-up and after switching the input channels of the comparator, the output of the  
voltage ladder must be allowed to settle to its stable value before it can be used as a  
comparator reference input. Settling times are given in Table 25.  
The analog comparator output is a movable function and is assigned to a pin through the  
switch matrix. The comparator inputs and the voltage reference are enabled through the  
switch matrix.  
COMPARATOR ANALOG BLOCK  
COMPARATOR DIGITAL BLOCK  
V
DD  
VDDCMP  
4
32  
comparator  
level ACMP_O,  
ADC trigger  
sync  
edge detect  
comparator  
edge NVIC  
ADC_0  
internal  
voltage  
reference  
4
ACMP_I[4:1]  
aaa-012135  
Fig 8. Comparator block diagram  
8.20.1 Features  
Selectable 0 mV, 10 mV (5 mV), and 20 mV (10 mV), 40 mV (20 mV) input  
hysteresis.  
Two selectable external voltages (VDD or VDDCMP on pin PIO0_6); fully configurable  
on either positive or negative input channel.  
Internal voltage reference from band gap selectable on either positive or negative  
input channel.  
32-stage voltage ladder with the internal reference voltage selectable on either the  
positive or the negative input channel.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
22 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Voltage ladder source voltage is selectable from an external pin or the main 3.3 V  
supply voltage rail.  
Voltage ladder can be separately powered down for applications only requiring the  
comparator function.  
Interrupt output is connected to NVIC.  
Comparator level output is connected to output pin ACMP_O.  
One comparator output is internally collected to the ADC trigger input multiplexer.  
8.21 Analog-to-Digital Converter (ADC)  
The ADC supports a resolution of 12 bit and fast conversion rates of up to  
1.2 MSamples/s. Sequences of analog-to-digital conversions can be triggered by multiple  
sources. Possible trigger sources are the pin triggers, the SCT output SCT_OUT3, the  
analog comparator output, and the ARM TXEV.  
The ADC includes a hardware threshold compare function with zero-crossing detection.  
Remark: For best performance, select VREFP and VREFN at the same voltage levels as  
V
DD and VSS. When selecting VREFP and VREFN different from VDD and VSS, ensure  
that the voltage midpoints are the same:  
(VREFP-VREFN)/2 + VREFN = VDD/2  
8.21.1 Features  
12-bit successive approximation analog to digital converter.  
12-bit conversion rate of up to 1.2 MSamples/s.  
Two configurable conversion sequences with independent triggers.  
Optional automatic high/low threshold comparison and zero-crossing detection.  
Power-down mode and low-power operating mode.  
Measurement range VREFN to VREFP (not to exceed VDD voltage level).  
Burst conversion mode for single or multiple inputs.  
Hardware calibration mode.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
23 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.22 Clocking and power control  
SYSCON  
AHB clock 0  
(core, system;  
main clock  
system clock  
always-on)  
CLOCK DIVIDER  
SYSAHBCLKDIV  
29  
memories  
and peripherals,  
peripheral clocks  
SYSAHBCLKCTRL[1:29]  
(system clock enable)  
USART0  
USART1  
USART2  
FRACTIONAL RATE  
GENERATOR  
CLOCK DIVIDER  
UARTCLKDIV  
IRC oscillator  
7
IOCON  
glitch filter  
CLOCK DIVIDER  
IOCONCLKDIV  
watchdog oscillator  
MAINCLKSEL  
(main clock select)  
IRC oscillator  
IRC oscillator  
system oscillator  
watchdog oscillator  
CLOCK DIVIDER  
CLKOUTDIV  
CLKOUT pin  
XTALIN  
XTALOUT  
SYSTEM  
OSCILLATOR  
SYSTEM PLL  
CLKIN  
CLKOUTSEL  
(CLKOUT clock select)  
SYSPLLCLKSEL  
system PLL clock select  
WWDT  
WKT  
watchdog oscillator  
IRC oscillator  
PMU  
WKT  
low-power oscillator  
aaa-012136  
Fig 9. LPC82x clock generation  
8.22.1 Crystal and internal oscillators  
The LPC82x include four independent oscillators:  
1. The crystal oscillator (SysOsc) operating at frequencies between 1 MHz and 25 MHz.  
2. The internal RC Oscillator (IRC) with a fixed frequency of 12 MHz.  
3. The internal low-power, low-frequency Oscillator with a nominal frequency of 10 kHz  
with 40% accuracy for use with the self-wake-up timer.  
4. The dedicated Watchdog Oscillator (WDOsc) with a programmable nominal  
frequency between 9.4 kHz and 2.3 MHz with 40% accuracy.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
24 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Each oscillator, except the low-frequency oscillator, can be used for more than one  
purpose as required in a particular application.  
Following reset, the LPC82x operates from the IRC until switched by software allowing the  
part to run without any external crystal and the bootloader code to operate at a known  
frequency.  
See Figure 9 for an overview of the LPC82x clock generation.  
8.22.1.1 Internal RC Oscillator (IRC)  
The IRC may be used as the clock source for the WWDT, and/or as the clock that drives  
the PLL and then the CPU. The nominal IRC frequency is 12 MHz. The IRC is trimmed to  
1.5 % accuracy over the entire voltage and temperature range.  
The IRC can be used as a clock source for the CPU with or without using the PLL. The  
IRC frequency can be boosted to a higher frequency, up to the maximum CPU operating  
frequency, by the system PLL.  
Upon power-up or any chip reset, the LPC82x use the IRC as the clock source. Software  
may later switch to one of the other available clock sources.  
8.22.1.2 Crystal Oscillator (SysOsc)  
The crystal oscillator can be used as the clock source for the CPU, with or without using  
the PLL.  
The SysOsc operates at frequencies of 1 MHz to 25 MHz. This frequency can be boosted  
to a higher frequency, up to the maximum CPU operating frequency, by the system PLL.  
8.22.1.3 Internal Low-power Oscillator and Watchdog Oscillator (WDOsc)  
The nominal frequency of the WDOsc is programmable between 9.4 kHz and 2.3 MHz.  
The frequency spread over silicon process variations is 40%.  
The WDOsc is a dedicated oscillator for the windowed WWDT.  
The internal low-power 10 kHz (40% accuracy) oscillator serves as the clock input to the  
WKT. This oscillator can be configured to run in all low-power modes.  
8.22.2 Clock input  
An external clock source can be supplied on the selected CLKIN pin directly to the PLL  
input. When selecting a clock signal for the CLKIN pin, follow the specifications for digital  
I/O pins in Table 8 “Static characteristics, supply pins” and Table 16 “Dynamic  
characteristics: I/O pins[1].  
An 1.8 V external clock source can be supplied on the XTALIN pins to the system  
oscillator limiting the voltage of this signal (see Section 14.1).  
The maximum frequency for both clock signals is 25 MHz.  
8.22.3 System PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO).  
The multiplier can be an integer value from 1 to 32. The CCO operates in the range of  
156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
25 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
its frequency range while the PLL is providing the desired output frequency. The output  
divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. Since the  
minimum output divider value is 2, it is insured that the PLL output has a 50 % duty cycle.  
The PLL is turned off and bypassed following a chip reset and may be enabled by  
software. The program must configure and activate the PLL, wait for the PLL to lock, and  
then connect to the PLL as a clock source. The PLL settling time is nominally 100 s.  
8.22.4 Clock output  
The LPC82x features a clock output function that routes the IRC, the SysOsc, the  
watchdog oscillator, or the main clock to the CLKOUT function. The CLKOUT function can  
be connected to any digital pin through the switch matrix.  
8.22.5 Wake-up process  
The LPC82x begin operation at power-up by using the IRC as the clock source allowing  
chip operation to resume quickly. If the SysOsc, the external clock source, or the PLL are  
needed by the application, software must enable these features and wait for them to  
stabilize before they are used as a clock source.  
8.22.6 Power control  
The LPC82x supports the ARM Cortex-M0 Sleep mode. The CPU clock rate may also be  
controlled as needed by changing clock sources, reconfiguring PLL values, and/or altering  
the CPU clock divider value. This allows a trade-off of power versus processing speed  
based on application requirements. In addition, a register is provided for shutting down the  
clocks to individual on-chip peripherals, allowing to fine-tune power consumption by  
eliminating all dynamic power use in any peripherals that are not required for the  
application. Selected peripherals have their own clock divider which provides even better  
power control.  
8.22.6.1 Power profiles  
The power consumption in Active and Sleep modes can be optimized for the application  
through simple calls to the power profile API. The API is accessible through the on-chip  
ROM.  
The power configuration routine configures the LPC82x for one of the following power  
modes:  
Default mode corresponding to power configuration after reset.  
CPU performance mode corresponding to optimized processing capability.  
Efficiency mode corresponding to optimized balance of current consumption and CPU  
performance.  
Low-current mode corresponding to lowest power consumption.  
In addition, the power profile includes routines to select the optimal PLL settings for a  
given system clock and PLL input clock.  
8.22.6.2 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence but re-enabling the clock to the ARM core.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
26 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
In Sleep mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and may generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, and internal  
buses.  
8.22.6.3 Deep-sleep mode  
In Deep-sleep mode, the LPC82x core is in Sleep mode and all peripheral clocks and all  
clock sources are off except for the IRC and watchdog oscillator or low-power oscillator if  
selected. The IRC output is disabled. In addition, all analog blocks are shut down and the  
flash is in standby mode. In Deep-sleep mode, the application can keep the watchdog  
oscillator and the BOD circuit running for self-timed wake-up and BOD protection.  
The LPC82x can wake up from Deep-sleep mode via a reset, digital pins selected as  
inputs to the pin interrupt block, a watchdog timer interrupt, or an interrupt from the  
USART (if the USART is configured in synchronous slave mode), the SPI, or the I2C  
blocks (in slave mode).  
Any interrupt used for waking up from Deep-sleep mode must be enabled in one of the  
SYSCON wake-up enable registers and the NVIC.  
Deep-sleep mode saves power and allows for short wake-up times.  
8.22.6.4 Power-down mode  
In Power-down mode, the LPC82x is in Sleep mode and all peripheral clocks and all clock  
sources are off except for watchdog oscillator or low-power oscillator if selected. In  
addition, all analog blocks and the flash are shut down. In Power-down mode, the  
application can keep the watchdog oscillator and the BOD circuit running for self-timed  
wake-up and BOD protection.  
The LPC82x can wake up from Power-down mode via a reset, digital pins selected as  
inputs to the pin interrupt block, a watchdog timer interrupt, or an interrupt from the  
USART (if the USART is configured in synchronous slave mode), the SPI, or the I2C  
blocks (in slave mode).  
Any interrupt used for waking up from Power-down mode must be enabled in one of the  
SYSCON wake-up enable registers and the NVIC.  
Power-down mode reduces power consumption compared to Deep-sleep mode at the  
expense of longer wake-up times.  
8.22.6.5 Deep power-down mode  
In Deep power-down mode, power is shut off to the entire chip except for the WAKEUP  
pin and the self-wake-up timer if enabled. Four general-purpose registers are available to  
store information during Deep power-down mode. The LPC82x can wake up from Deep  
power-down mode via the WAKEUP pin, or without an external signal by using the  
time-out of the self-wake-up timer (see Section 8.19).  
The LPC82x can be prevented from entering Deep power-down mode by setting a lock bit  
in the PMU block. Locking out Deep power-down mode enables the application to keep  
the watchdog timer or the BOD running at all times.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
27 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
When entering Deep power-down mode, an external pull-up resistor is required on the  
WAKEUP pin to hold it HIGH. Pull the RESET pin HIGH to prevent it from floating while in  
Deep power-down mode.  
8.23 System control  
8.23.1 Reset  
Reset has four sources on the LPC82x: the RESET pin, the Watchdog reset, power-on  
reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt  
trigger input pin. Assertion of chip reset by any source, once the operating voltage attains  
a usable level, starts the IRC and initializes the flash controller.  
A LOW-going pulse as short as 50 ns resets the part.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the boot block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
In Deep power-down mode, an external pull-up resistor is required on the RESET pin.  
V
DD  
V
DD  
V
DD  
R
pu  
ESD  
20 ns RC  
GLITCH FILTER  
reset  
PIN  
ESD  
V
SS  
aaa-004613  
Fig 10. Reset pad configuration  
8.23.2 Brownout detection  
The LPC82x includes up to four levels for monitoring the voltage on the VDD pin. If this  
voltage falls below one of the selected levels, the BOD asserts an interrupt signal to the  
NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC  
to cause a CPU interrupt. Alternatively, software can monitor the signal by reading a  
dedicated status register. Four threshold levels can be selected to cause a forced reset of  
the chip.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
28 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.23.3 Code security (Code Read Protection - CRP)  
CRP provides different levels of security in the system so that access to the on-chip flash  
and use of the Serial Wire Debugger (SWD) and In-System Programming (ISP) can be  
restricted. Programming a specific pattern into a dedicated flash location invokes CRP.  
IAP commands are not affected by the CRP.  
In addition, ISP entry via the ISP entry pin can be disabled without enabling CRP. For  
details, see the LPC82x user manual.  
There are three levels of Code Read Protection:  
1. CRP1 disables access to the chip via the SWD and allows partial flash update  
(excluding flash sector 0) using a limited set of the ISP commands. This mode is  
useful when CRP is required and flash field updates are needed but all sectors cannot  
be erased.  
2. CRP2 disables access to the chip via the SWD and only allows full flash erase and  
update using a reduced set of the ISP commands.  
3. Running an application with level CRP3 selected, fully disables any access to the chip  
via the SWD pins and the ISP. This mode effectively disables ISP override using the  
ISP entry pin as well. If necessary, the application must provide a flash update  
mechanism using IAP calls or using a call to the reinvoke ISP command to enable  
flash update via the USART.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
In addition to the three CRP levels, sampling of the ISP entry pin for valid user code can  
be disabled. For details, see the LPC82x user manual.  
8.23.4 APB interface  
The APB peripherals are located on one APB bus.  
8.23.5 AHBLite  
The AHBLite connects the CPU bus of the ARM Cortex-M0+ to the flash memory, the  
main static RAM, the CRC, the DMA, the ROM, and the APB peripherals.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
29 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.24 Emulation and debugging  
Debug functions are integrated into the ARM Cortex-M0+. Serial wire debug functions are  
supported in addition to a standard JTAG boundary scan. The ARM Cortex-M0+ is  
configured to support up to four breakpoints and two watch points.  
The Micro Trace Buffer is implemented on the LPC82x.  
The RESET pin selects between the JTAG boundary scan (RESET = LOW) and the ARM  
SWD debug (RESET = HIGH). The ARM SWD debug port is disabled while the LPC82x is  
in reset. The JTAG boundary scan pins are selected by hardware when the part is in  
boundary scan mode on pins PIO0_0 to PIO0_3 (see Table 3).  
To perform boundary scan testing, follow these steps:  
1. Erase any user code residing in flash.  
2. Power up the part with the RESET pin pulled HIGH externally.  
3. Wait for at least 250 s.  
4. Pull the RESET pin LOW externally.  
5. Perform boundary scan operations.  
6. Once the boundary scan operations are completed, assert the TRST pin to enable the  
SWD debug mode, and release the RESET pin (pull HIGH).  
Remark: The JTAG interface cannot be used for debug purposes.  
V
DD  
3.3 V  
LPC82x  
~10 kΩ -  
100 kΩ  
VTREF  
SWDIO  
SWCLK  
nRESET  
GND  
SWDIO  
SWCLK  
from SWD  
connector  
RESET  
~10 kΩ -  
100 kΩ  
DGND  
PIO0_12  
ISP entry  
aaa-015075  
Fig 11. Connecting the SWD pins to a standard SWD connector  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
30 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
9. Limiting values  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
[2]  
VDD  
supply voltage (core and external  
0.5  
+4.6  
V
rail)  
Vref  
VI  
reference voltage  
input voltage  
on pin VREFP  
0.5  
0.5  
VDD  
V
V
[3][4]  
[5]  
5 V tolerant I/O pins; VDD  
1.8 V  
+5.5  
on I2C open-drain pins  
PIO0_10, PIO0_11  
0.5  
+5.5  
V
[6]  
3 V tolerant I/O pin PIO0_6  
0.5  
0.5  
+3.6  
+4.6  
V
V
[7][8]  
[9]  
VIA  
analog input voltage  
[2]  
Vi(xtal)  
IDD  
crystal input voltage  
supply current  
0.5  
+2.5  
100  
100  
100  
V
per supply pin  
-
-
-
mA  
mA  
mA  
ISS  
ground current  
per ground pin  
Ilatch  
I/O latch-up current  
(0.5VDD) < VI < (1.5VDD);  
Tj < 125 C  
[10]  
[11]  
Tstg  
storage temperature  
65  
+150  
150  
1.5  
C  
C  
W
Tj(max)  
maximum junction temperature  
-
-
Ptot(pack) total power dissipation (per  
package)  
based on package heat  
transfer, not device power  
consumption  
Vesd  
electrostatic discharge voltage  
human body model; all pins  
-
-
3500  
1200  
V
V
charged device model;  
HVQFN33 package  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Maximum/minimum voltage above the maximum operating voltage (see Table 7) and below ground that can be applied for a short time  
(< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.  
[3] Applies to all 5 V tolerant I/O pins except true open-drain pins PIO0_10 and PIO0_11 and except the 3 V tolerant pin PIO0_6.  
[4] Including the voltage on outputs in 3-state mode.  
[5] VDD present or not present. Compliant with the I2C-bus standard. 5.5 V can be applied to this pin when VDD is powered down.  
[6] VDD present or not present.  
[7] An ADC input voltage above 3.6 V can be applied for a short time without leading to immediate, unrecoverable failure. Accumulated  
exposure to elevated voltages at 4.6 V must be less than 106 s total over the lifetime of the device. Applying an elevated voltage to the  
ADC inputs for a long time affects the reliability of the device and reduces its lifetime.  
[8] If the comparator is configured with the common mode input VIC = VDD, the other comparator input can be up to 0.2 V above or below  
VDD without affecting the hysteresis range of the comparator function.  
[9] It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage supply pin.  
[10] Dependent on package type.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
31 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
[11] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
10. Thermal characteristics  
The average chip junction temperature, Tj (C), can be calculated using the following  
equation:  
T j = Tamb + PD Rthj a  
(1)  
Tamb = ambient temperature (C),  
Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)  
PD = sum of internal and I/O power dissipation  
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of  
the I/O pins is often small and many times can be negligible. However it can be significant  
in some applications.  
Table 6.  
Symbol  
Thermal resistance  
Parameter  
Conditions  
Max/min  
Unit  
HVQFN33 package  
Rth(j-a) thermal resistance from  
JEDEC (4.5 in 4 in); still air 40 +/- 15 % C/W  
junction-to-ambient  
single-layer (4.5 in 3 in); still 114 +/- 15 % C/W  
air  
Rth(j-c)  
thermal resistance from  
junction-to-case  
18 +/- 15 % C/W  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
32 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11. Static characteristics  
11.1 General operating conditions  
Table 7.  
General operating conditions  
Tamb = 40 °C to +105 °C, unless otherwise specified.  
Symbol  
fclk  
Parameter  
Conditions  
Min  
-
Typ[1]  
-
Max  
30  
Unit  
MHz  
V
clock frequency  
internal CPU/system clock  
VDD  
supply voltage (core  
and external rail)  
1.8  
3.3  
3.6  
Vref  
reference voltage  
on pin VREFP  
2.4  
-
VDD  
V
Oscillator pins  
Vi(xtal)  
crystal input voltage  
crystal output voltage  
on pin XTALIN  
0.5  
0.5  
1.8  
1.8  
1.95  
1.95  
V
V
Vo(xtal)  
on pin XTALOUT  
Pin capacitance  
Cio input/output  
capacitance  
[2]  
[2]  
[2]  
pins with analog and digital  
functions  
I2C-bus pins (PIO0_10 and  
PIO0_11)  
-
-
-
-
-
-
7.1  
2.5  
2.8  
pF  
pF  
pF  
pins with digital functions only  
[1] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply voltages.  
[2] Including bonding pad capacitance. Based on simulation, not tested in production.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
33 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.2 Supply pins  
Table 8.  
Static characteristics, supply pins  
Tamb = 40 °C to +105 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
IDD  
supply current  
Active mode; code  
while(1){}  
executed from flash;  
[2][3][4]  
[6][7]  
system clock = 12 MHz; default  
mode; VDD = 3.3 V  
-
-
-
-
1.85  
1.04  
3.95  
3.2  
-
-
-
-
mA  
mA  
mA  
mA  
[2][3][4]  
[6][7]  
system clock = 12 MHz;  
low-current mode; VDD = 3.3 V  
[2][3][6]  
[7][9]  
system clock = 30 MHz; default  
mode; VDD = 3.3 V  
[2][3][6]  
[7][9]  
system clock = 30 MHz;  
low-current mode; VDD = 3.3 V  
Sleep mode  
[2][3][4]  
[6][7]  
system clock = 12 MHz; default  
mode; VDD = 3.3 V  
-
-
-
-
-
1.35  
0.8  
-
-
-
-
mA  
mA  
mA  
mA  
[2][3][4]  
[6][7]  
system clock = 12 MHz;  
low-current mode; VDD = 3.3 V  
[2][3][9]  
[6][7]  
system clock = 30 MHz; default  
mode; VDD = 3.3 V  
2.55  
2.1  
[2][3][9]  
[6][7]  
system clock = 30 MHz;  
low-current mode; VDD = 3.3 V  
[2][3][10]  
[2][3][10]  
[2][11]  
IDD  
IDD  
IDD  
supply current  
supply current  
supply current  
Deep-sleep mode;  
DD = 3.3 V;  
V
Tamb = 25 C  
Tamb = 105 C  
158  
-
300  
400  
A  
A  
-
-
Power-down mode;  
DD = 3.3 V  
V
Tamb = 25 C  
Tamb = 105 C  
1.6  
-
10  
50  
A  
A  
-
Deep power-down mode; VDD  
=
3.3 V; 10 kHz low-power oscillator  
and self-wake-up timer (WKT)  
disabled  
T
amb = 25 C  
-
-
0.2  
-
1
4
A  
A  
Tamb = 105 C  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
34 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 8.  
Static characteristics, supply pins …continued  
Tamb = 40 °C to +105 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
IDD  
supply current  
Deep power-down mode; VDD  
=
-
1.1  
-
A  
3.3 V; 10 kHz low-power oscillator  
and self-wake-up timer (WKT)  
enabled  
Deep power-down mode; VDD  
3.3 V; external clock input  
WKTCLKIN @ 10 kHz with  
self-wake-up timer enabled  
=
=
-
-
0.4  
0.7  
-
-
A  
A  
Deep power-down mode; VDD  
3.3 V; external clock input  
WKTCLKIN @ 32 kHz with  
self-wake-up timer enabled  
[1] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply voltages.  
[2] Tamb = 25 C.  
[3] IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled.  
[4] IRC enabled; system oscillator disabled; system PLL disabled.  
[5] System oscillator enabled; IRC disabled; system PLL disabled.  
[6] BOD disabled.  
[7] All peripherals disabled in the SYSAHBCLKCTRL register. Peripheral clocks to USART, CLKOUT, and IOCON disabled in system  
configuration block.  
[8] IRC enabled; system oscillator disabled; system PLL enabled.  
[9] IRC disabled; system oscillator enabled; system PLL enabled.  
[10] All oscillators and analog blocks turned off.  
[11] WAKEUP pin pulled HIGH externally.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
35 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.3 Electrical pin characteristics  
Table 9.  
Static characteristics, electrical pin characteristics  
Tamb = 40 °C to +105 °C, unless otherwise specified.  
Symbol Parameter Conditions  
Standard port pins configured as digital pins, RESET  
Min  
Typ[1]  
Max  
Unit  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up resistor  
disabled  
-
0.5  
0.5  
0.5  
-
10[2]  
10[2]  
10[2]  
5
nA  
nA  
nA  
V
IIH  
IOZ  
VI  
HIGH-level input  
current  
VI = VDD; on-chip pull-down resistor  
disabled  
-
OFF-state output  
current  
VO = 0 V; VO = VDD; on-chip  
pull-up/down resistors disabled  
-
[4]  
[6]  
input voltage  
VDD 1.8 V; 5 V tolerant pins  
0
except PIO0_6  
VDD = 0 V  
0
-
-
-
3.6  
VDD  
-
V
V
V
VO  
output voltage  
output active  
0
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
0.3VDD  
V
Vhys  
VOH  
0.4  
-
V
HIGH-level output  
voltage  
IOH = 4 mA; 2.5 V <= VDD <= 3.6 V  
IOH = 3 mA; 1.8 V <= VDD < 2.5 V  
IOL = 4 mA; 2.5 V <= VDD <= 3.6 V  
IOL = 3 mA; 1.8 V <= VDD < 2.5 V  
VOH = VDD 0.4 V;  
VDD 0.4 -  
VDD 0.4 -  
-
V
-
V
VOL  
LOW-level output  
voltage  
-
-
-
-
0.4  
0.4  
-
V
-
V
IOH  
HIGH-level output  
current  
4
mA  
2.5 V VDD 3.6 V  
1.8 V VDD < 2.5 V  
3
4
-
-
-
-
mA  
mA  
IOL  
LOW-level output  
current  
VOL = 0.4 V  
2.5 V VDD 3.6 V  
1.8 V VDD < 2.5 V  
3
-
-
-
-
mA  
mA  
[7]  
[7]  
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
45  
LOW-level short-circuit VOL = VDD  
output current  
-
-
50  
mA  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V;  
10  
50  
150  
A  
2.0 V VDD 3.6 V  
15  
10  
0
50  
50  
0
85  
85  
0
A  
A  
1.8 V VDD < 2.0 V  
VDD < VI < 5 V  
High-drive output pin configured as digital pin (PIO0_2, PIO0_3, PIO0_12, PIO0_16)  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up resistor  
disabled  
-
-
-
0.5  
0.5  
0.5  
10[2]  
10[2]  
10[2]  
nA  
nA  
nA  
IIH  
IOZ  
HIGH-level input  
current  
VI = VDD; on-chip pull-down resistor  
disabled  
OFF-state output  
current  
VO = 0 V; VO = VDD; on-chip  
pull-up/down resistors disabled  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
36 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 9.  
Static characteristics, electrical pin characteristics …continued  
Tamb = 40 °C to +105 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
[4]  
[6]  
VI  
input voltage  
VDD 1.8 V  
0
-
5.0  
V
VDD = 0 V  
0
-
-
-
3.6  
VDD  
-
V
V
V
VO  
output voltage  
output active  
0
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
0.3VDD  
V
V
V
V
V
Vhys  
VOH  
0.4  
-
HIGH-level output  
voltage  
IOH = 20 mA; 2.5 V <= VDD < 3.6 V  
IOH = 12 mA; 1.8 V <= VDD < 2.5 V  
IOL = 4 mA  
VDD 0.4 -  
VDD 0.4 -  
-
-
VOL  
IOH  
LOW-level output  
voltage  
-
-
-
-
-
0.4  
HIGH-level output  
current  
VOH = VDD 0.4 V;  
2.5 V <= VDD < 3.6 V  
20  
12  
4
-
-
-
mA  
mA  
mA  
VOH = VDD 0.4 V;  
1.8 V <= VDD < 2.5 V  
IOL  
LOW-level output  
current  
VOL = 0.4 V  
2.5 V VDD 3.6 V  
1.8 V VDD < 2.5 V  
3
-
-
-
-
mA  
mA  
[7]  
IOLS  
LOW-level short-circuit VOL = VDD  
output current  
50  
[8]  
[8]  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
10  
10  
0
50  
50  
0
150  
85  
0
A  
A  
A  
VI = 0 V  
VDD < VI < 5 V  
I2C-bus pins (PIO0_10 and PIO0_11)  
VIH  
HIGH-level input  
voltage  
0.7VDD  
-
-
V
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
0.3VDD  
-
V
V
Vhys  
IOL  
0.05VDD  
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as standard mode pins  
2.5 V <= VDD < 3.6 V  
3.5  
3
-
-
-
-
mA  
mA  
1.8 V <= VDD < 2.5 V  
IOL  
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as Fast-mode Plus pins;  
2.5 V <= VDD < 3.6 V  
1.8 V <= VDD < 2.5 V  
VI = VDD  
20  
16  
-
-
-
mA  
mA  
A  
-
-
[9]  
ILI  
input leakage current  
2
10  
4
22  
VI = 5 V  
-
A  
[1] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply voltages.  
[2] Based on characterization. Not tested in production.  
[3] Low-current mode PWR_LOW_CURRENT selected when running the set_power routine in the power profiles.  
[4] Including voltage on outputs in 3-state mode.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
37 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
[5] VDD supply voltage must be present.  
[6] 3-state outputs go into 3-state mode in Deep power-down mode.  
[7] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[8] Pull-up and pull-down currents are measured across the weak internal pull-up/pull-down resistors. See Figure 12.  
[9] To VSS  
.
V
DD  
I
I
OL  
pd  
+
-
pin PIO0_n  
pin PIO0_n  
A
I
OH  
Ipu  
-
+
A
aaa-010819  
Fig 12. Pin input/output current measurement  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
38 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.4 Power consumption  
Power measurements in Active, Sleep, Deep-sleep, and Power-down modes were  
performed under the following conditions:  
Configure all pins as GPIO with pull-up resistor disabled in the IOCON block.  
Configure GPIO pins as outputs using the GPIO DIR register.  
Write 1 to the GPIO CLR register to drive the outputs LOW.  
aaa-013992  
4
30 MHz  
I
DD  
24 MHz  
12 MHz  
6 MHz  
4 MHz  
3 MHz  
2 MHz  
1 MHz  
(mA)  
3
2
1
0
1.8  
2.4  
3
3.6  
V
(V)  
DD  
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL =0x1F); all peripheral  
clocks disabled; internal pull-up resistors disabled; BOD disabled; low-current mode.  
1 MHz - 6 MHz: external clock; IRC, PLL disabled.  
12 MHz: IRC enabled; PLL disabled.  
24 MHz: IRC enabled; PLL enabled.  
30 MHz: system oscillator enabled; PLL enabled.  
Fig 13. Active mode: Typical supply current IDD versus supply voltage VDD  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
39 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
aaa-013993  
4
3
2
1
0
30 MHz  
24 MHz  
12 MHz  
6 MHz  
4 MHz  
3 MHz  
2 MHz  
1 MHz  
I
DD  
(mA)  
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
Conditions: VDD = 3.3 V; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL =0x1F); all peripheral  
clocks disabled; internal pull-up resistors disabled; BOD disabled; low-current mode.  
1 MHz - 6 MHz: external clock; IRC, PLL disabled.  
12 MHz: IRC enabled; PLL disabled.  
24 MHz: IRC enabled; PLL enabled.  
30 MHz: system oscillator enabled; PLL enabled.  
Fig 14. Active mode: Typical supply current IDD versus temperature  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
40 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
aaa-013994  
2.5  
30 MHz  
24 MHz  
12 MHz  
6 MHz  
4 MHz  
3 MHz  
2 MHz  
1 MHz  
I
DD  
(mA)  
2
1.5  
1
0.5  
0
-40  
10  
60  
110  
temperature (°C)  
Conditions: VDD = 3.3 V; sleep mode entered from flash; all peripherals disabled in the  
SYSAHBCLKCTRL register (SYSAHBCLKCTRL =0x1F); all peripheral clocks disabled; internal  
pull-up resistors disabled; BOD disabled; low-current mode.  
1 MHz - 6 MHz: external clock; IRC, PLL disabled.  
12 MHz: IRC enabled; PLL disabled.  
24 MHz: IRC enabled; PLL enabled.  
30 MHz: system oscillator enabled; PLL enabled.  
Fig 15. Sleep mode: Typical supply current IDD versus temperature for different system  
clock frequencies  
aaa-013983  
180  
DD  
(μuAA))  
170  
V3.6 V= 3.6 V  
DD  
I
3.3 VV  
2.7 VV  
2 V  
1.8 VV  
160  
150  
140  
130  
120  
-40  
-10  
20  
50  
80  
temperature (°C)  
110  
Conditions: BOD disabled; all oscillators and analog blocks disabled in the PDSLEEPCFG register  
(PDSLEEPCFG = 0x0000 18FF).  
Fig 16. Deep-sleep mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
41 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
aaa-013984  
25  
20  
15  
10  
5
I
DD  
(μA)  
VDD==33..66VV  
DD  
3.3 VV  
1.8 VV  
0
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
Conditions: BOD disabled; all oscillators and analog blocks disabled in the PDSLEEPCFG register  
(PDSLEEPCFG = 0x0000 18FF).  
Fig 17. Power-down mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
aaa-013985  
2
I
DD  
(μuAA))  
1.5  
1
V
= 3.63.V6  
3.33.V3  
2.72.V7  
1.81.V8  
DD  
0.5  
0
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
WKT not running.  
Fig 18. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
42 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
aaa-013991  
3
2.5  
2
I
DD  
(μA)  
V
= 3.6 V  
3.6  
DD  
3.3 V  
2.4 V  
1.8 V  
1.5  
1
0.5  
0
-40  
-10  
20  
50  
80  
temperature (°C)  
110  
WKT running with internal 10 kHz low-power oscillator.  
Fig 19. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD (internal clock)  
aaa-014386  
2
I
DD  
(μA)  
VDD==33..66VV  
DD  
1.5  
1
3.3 VV  
2.7 VV  
1.8 VV  
0.5  
0
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
WKT running with external 10 kHz clock. Clock input waveform: square wave with rise time and fall  
time of 5 ns.  
Fig 20. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD (external 10 kHz input clock)  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
43 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
aaa-014388  
3
2.5  
2
I
DD  
(μA)  
VDD==33..66VV  
DD  
3.3 VV  
2.7 VV  
1.8 VV  
1.5  
1
0.5  
0
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
WKT running with external 32 kHz clock. Clock input waveform: square wave with rise time and fall  
time of 5 ns.  
Fig 21. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD (external 32 kHz input clock)  
aaa-014389  
25  
I
DD  
(μA)  
20  
15  
10  
5
VDD = 33..66 VV  
3.3 VV  
2.7 VV  
1.8 VV  
20  
0
-40  
-10  
50  
80  
110  
temperature (°C)  
WKT running with external 1 MHz clock. Clock input waveform: square wave with rise time and fall  
time of 5 ns.  
Fig 22. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD (external 1 MHz input clock)  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
44 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.5 CoreMark data  
aaa-014006  
2.5  
coremark score  
((iterations/s)/MHz)  
CPU/epfeffiirccfoiieernnmccayynce/efficiency  
2
1.5  
1
default  
low-current  
0.5  
0
0
6
12  
18  
24  
30  
system clock frequency (MHz)  
Conditions: VDD = 3.3 V; Tamb = 25 °C; active mode; all peripherals except one UART and the SCT  
disabled in the SYSAHBCLKCTRL register; BOD disabled; internal pull-up resistors enabled.  
Measured with Keil uVision 5.10.  
1 MHz - 6 MHz: external clock; IRC, PLL disabled.12 MHz: IRC enabled; PLL disabled. 24 MHz:  
IRC enabled; PLL enabled.30 MHz: system oscillator enabled; PLL enabled.  
Fig 23. CoreMark score  
aaa-014007  
8
6
4
2
0
I
DD  
(mA)  
default  
CPU//peefffiirccfoiieernnmccayynce/efficiency  
low-current  
0
6
12  
18  
24  
30  
system clock frequency (MHz)  
Conditions: VDD = 3.3 V; Tamb = 25 °C; active mode; all peripherals except one UART and the SCT  
disabled in the SYSAHBCLKCTRL register; BOD disabled; internal pull-up resistors enabled.  
Measured with Keil uVision 5.10.  
1 MHz - 6 MHz: external clock; IRC, PLL disabled.12 MHz: IRC enabled; PLL disabled.24 MHz:  
IRC enabled; PLL enabled.30 MHz: system oscillator enabled; PLL enabled.  
Fig 24. Active mode: CoreMark power consumption IDD  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
45 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.6 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG.  
and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both  
registers and no code accessing the peripheral is executed. Measured on a typical  
sample at Tamb = 25 C. Unless noted otherwise, the system oscillator and PLL are  
running in both measurements.  
The supply currents are shown for system clock frequencies of 12 MHz and 30 MHz.  
Table 10. Power consumption for individual analog and digital blocks  
Peripheral  
Typical supply current in μA  
Notes  
System clock frequency =  
n/a  
12 MHz  
30 MHz  
IRC  
261  
-
-
System oscillator running; PLL off;  
independent of main clock frequency; IRC  
output disabled.  
System oscillator at 12 MHz  
Watchdog oscillator  
274  
2
-
-
-
-
IRC running; PLL off; independent of main  
clock frequency.  
System oscillator running; PLL off;  
independent of main clock frequency.  
BOD  
39  
-
-
-
Independent of main clock frequency.  
-
Main PLL  
CLKOUT  
301  
67  
-
-
150  
Main clock divided by 4 in the CLKOUTDIV  
register.  
ROM  
-
-
27  
95  
68  
-
GPIO + pin interrupt/pattern  
match  
233  
GPIO pins configured as outputs and set to  
LOW. Direction and pin state are maintained if  
the GPIO is disabled in the SYSAHBCLKCFG  
register.  
SWM  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
59  
45  
168  
89  
29  
54  
49  
52  
57  
55  
55  
50  
54  
56  
34  
145  
110  
411  
220  
71  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
IOCON  
SCTimer/PWM  
MRT  
WWDT  
I2C0  
132  
122  
127  
142  
136  
136  
124  
134  
138  
82  
I2C1  
I2C2  
I2C3  
SPI0  
SPI1  
USART0  
USART1  
USART2  
Comparator ACMP  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
46 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 10. Power consumption for individual analog and digital blocks …continued  
Peripheral  
Typical supply current in μA  
Notes  
System clock frequency =  
n/a  
12 MHz  
30 MHz  
ADC  
-
57  
141  
Digital controller only. Analog portion of the  
ADC disabled in the PDRUNCFG register.  
-
-
57  
141  
Combined analog and digital logic. ADC  
enabled in the PDRUNCFG register and  
LPWRMODE bit set to 1 in the ADC CTRL  
register (ADC in low-power mode).  
1990  
2070  
Combined analog and digital logic. ADC  
enabled in the PDRUNCFG register and  
LPWRMODE bit set to 0 in the ADC CTRL  
register (ADC powered).  
DMA  
CRC  
-
-
324  
34  
793  
85  
-
11.7 Electrical pin characteristics  
aaa-013973  
aaa-013974  
1.8  
OLH  
3.5  
V
OHL  
(V)  
V
(V)  
1.7  
3.2  
2.9  
2.6  
2.3  
2
-40 CC°C  
25 °CC  
90 °CC  
105 °CC  
-40 °CC  
25 °CC  
90 °CC  
105 °CC  
1.6  
1.5  
1.4  
1.3  
1.2  
0
4
8
12  
16  
20  
24  
0
20  
40  
60  
OH  
80  
I
(mA)  
I
(mA)  
OH  
Conditions: VDD = 1.8 V; on pin PIO0_12.  
Conditions: VDD = 3.3 V; on pin PIO0_12.  
Fig 25. High-drive output: Typical HIGH-level output voltage VOH versus HIGH-level output current IOH  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
47 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
aaa-013964  
aaa-013972  
40  
60  
45  
30  
15  
0
I
I
OLL  
(mA)  
OLL  
(mA)  
-40 CC°C  
25 °CC  
90 °CC  
105 °CC  
-40 °CC  
25 °CC  
90 °CC  
105 °CC  
30  
20  
10  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
(V)  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
(V)  
0.6  
V
V
OL  
OL  
Conditions: VDD = 1.8 V; on pins PIO0_10 and PIO0_11.  
Conditions: VDD = 3.3 V; on pins PIO0_10 and PIO0_11.  
Fig 26. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus LOW-level output voltage  
VOL  
aaa-013975  
aaa-013976  
10  
8
15  
12  
9
I
I
OLL  
(mA)  
OLL  
(mA)  
-40 CC°C  
25 °CC  
90 °CC  
105 °CC  
-40 °CC  
25 °CC  
90 °CC  
105 °CC  
6
4
6
2
3
0
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
(V)  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
(V)  
0.6  
V
V
OL  
OL  
Conditions: VDD = 1.8 V; standard port pins and  
high-drive pin PIO0_12.  
Conditions: VDD = 3.3 V; standard port pins and  
high-drive pin PIO0_12.  
Fig 27. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
48 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
aaa-013977  
aaa-013978  
1.8  
OHH  
3.5  
-40 CC°C  
25 °CC  
90 °CC  
105 °CC  
V
(V)  
V
OHH  
(V)  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
3.2  
2.9  
2.6  
2.3  
2
-40 °CC  
25 °CC  
90 °CC  
105 °CC  
0
1.5  
3
4.5  
OH  
6
0
8
16  
24  
I
(mA)  
I
(mA)  
OH  
Conditions: VDD = 1.8 V; standard port pins.  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 28. Typical HIGH-level output voltage VOH versus HIGH-level output source current IOH  
aaa-013979  
aaa-013980  
0
-4  
-8  
0
I
I
pu  
(μuAA))  
pu  
(uμAA))  
-14  
-28  
-42  
-56  
-70  
-40 CC°C  
105 °CC  
90 °CC  
25 °CC  
105 °CC  
-40 °CC  
90 °CC  
25 °CC  
-12  
-16  
0
0.7  
1.4  
2.1  
2.8  
V (V)  
3.5  
0
1
2
3
4
5
V (V)  
I
I
Conditions: VDD = 1.8 V; standard port pins.  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 29. Typical pull-up current IPU versus input voltage VI  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
49 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
aaa-013981  
aaa-013982  
35  
80  
60  
40  
20  
0
I
I
pd  
(μuAA))  
puud  
(uμAA))  
28  
21  
14  
7
-40 CC°C  
-40 °CC  
25 °CC  
90 °CC  
105 °CC  
25 °CC  
90 °CC  
105 °CC  
0
0
0.7  
1.4  
2.1  
2.8  
3.5  
0
1
2
3
4
5
V (V)  
V (V)  
I
I
Conditions: VDD = 1.8 V; standard port pins.  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 30. Typical pull-down current IPD versus input voltage VI  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
50 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
12. Dynamic characteristics  
12.1 Power-up ramp conditions  
Table 11. Power-up characteristics  
Tamb = 40 °C to +105 °C; 1.8 V VDD 3.6 V  
Symbol Parameter  
Conditions  
Min  
0
Typ  
Max  
500  
-
Unit  
ms  
s  
[1][3]  
[1][2][3]  
[3]  
tr  
rise time  
VI 200 mV  
-
-
-
twait  
VI  
wait time  
12  
0
input voltage  
at t = t1 on pin VDD  
200  
mV  
[1] See Figure 31.  
[2] The wait time specifies the time the power supply must be at levels below 200 mV before ramping up. See  
the LPC82x errata sheet.  
[3] Based on characterization, not tested in production.  
t
r
V
DD  
200 mV  
0
t
wait  
t = t  
1
aaa-017426  
Condition: 0 < VI 200 mV at start of power-up (t = t1)  
Fig 31. Power-up ramp  
12.2 Flash/EEPROM memory  
Table 12. Flash characteristics  
Tamb = 40 °C to +105 °C. Based on JEDEC NVM qualification. Failure rate < 10 ppm for parts as  
specified below.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
Nendu  
endurance  
10000  
100000  
-
cycles  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
51 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 12. Flash characteristics  
Tamb = 40 °C to +105 °C. Based on JEDEC NVM qualification. Failure rate < 10 ppm for parts as  
specified below.  
Symbol  
Parameter  
Conditions  
powered  
Min  
10  
Typ  
20  
Max  
Unit  
years  
years  
ms  
tret  
retention time  
-
not powered  
20  
40  
-
ter  
erase time  
page or multiple  
consecutivepages,  
sector or multiple  
consecutive  
95  
100  
105  
sectors  
[2]  
tprog  
programming  
time  
0.95  
1
1.05  
ms  
[1] Number of program/erase cycles.  
[2] Programming times are given for writing 64 bytes to the flash. Tamb <= +85 C. Flash programming with IAP  
calls (see LPC82x user manual).  
12.3 External clock for the oscillator in slave mode  
Remark: The input voltage on the XTALIN and XTALOUT pins must be 1.95 V (see  
Table 7). For connecting the oscillator to the XTAL pins, also see Section 12.3.  
Table 13. Dynamic characteristic: external clock (XTALIN input)  
Tamb = 40 °C to +105 °C; VDD over specified ranges.[1]  
Symbol  
fosc  
Parameter  
Min  
Typ[2]  
Max  
Unit  
MHz  
ns  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
40  
1000  
Tcy(clk) 0.4  
-
ns  
Tcy(clk) 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply  
voltages.  
t
CHCX  
t
t
t
CLCH  
CHCL  
CLCX  
T
cy(clk)  
aaa-004648  
Fig 32. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
52 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
12.4 Internal oscillators  
Table 14. Dynamic characteristics: IRC  
Tamb = 40 °C to +105 °C; 2.7 V VDD 3.6 V[1].  
Symbol Parameter  
Conditions  
Min  
Typ[2] Max  
12 12.18  
Unit  
fosc(RC)  
internal RC  
-
11.82  
MHz  
oscillator frequency  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply  
voltages.  
aaa-014008  
12.2  
V3.6 V= 3.6 V  
DD  
3.3 VV  
3 V  
f
(MHz)  
2.7 VV  
2.4 VV  
2.1 VV  
2 V  
12.1  
1.8 VV  
12  
11.9  
11.8  
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
Conditions: Frequency values are typical values. 12 MHz 1.5 % accuracy is guaranteed for  
2.7 V VDD 3.6 V. Variations between parts may cause the IRC to fall outside the 12 MHz   
1.5 % accuracy specification for voltages below 2.7 V.  
Fig 33. Typical Internal RC oscillator frequency versus temperature  
Table 15. Dynamic characteristics: Watchdog oscillator  
Symbol  
Parameter  
Conditions  
Min Typ[1 Max Unit  
]
[2][3]  
[2][3]  
fosc(int)  
internal oscillator DIVSEL = 0x1F, FREQSEL = 0x1  
-
-
9.4  
-
-
kHz  
kHz  
frequency  
in the WDTOSCCTRL register;  
DIVSEL = 0x00, FREQSEL = 0xF  
in the WDTOSCCTRL register  
2300  
[1] Typical ratings are not guaranteed. The values listed are at nominal supply voltages.  
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +105 C) is 40 %.  
[3] See the LPC82x user manual.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
53 of 82  
LPC82x  
NXP Semiconductors  
12.4.1 I/O pins  
32-bit ARM Cortex-M0+ microcontroller  
Table 16. Dynamic characteristics: I/O pins[1]  
Tamb = 40 °C to +105 °C; 3.0 V VDD 3.6 V.  
Symbol Parameter Conditions  
Min  
3.0  
2.5  
Typ  
Max  
5.0  
Unit  
ns  
tr  
tf  
rise time  
fall time  
pin configured as output  
pin configured as output  
-
-
5.0  
ns  
[1] Applies to standard port pins and RESET pin.  
12.4.2 WKTCLKIN pin (wake-up clock input)  
Table 17. Dynamic characteristics: WKTCLKIN pin  
Tamb = 40 °C to +105 °C; 1.8 V VDD 3.6 V.  
Symbol Parameter  
Conditions  
Min Max  
Unit  
[1]  
fclk  
clock frequency  
deep power-down mode and  
power-down mode  
-
1
MHz  
[1]  
deep-sleep, sleep, and active mode  
-
10  
-
MHz  
ns  
tCHCX  
tCLCX  
clock HIGH time  
clock LOW time  
-
-
50  
50  
-
ns  
[1] Assuming a square-wave input clock.  
12.4.3 SCTimer/PWM output timing  
Table 18. SCTimer/PWM output dynamic characteristics  
Tamb = 40 °C to 105 °C; 2.4 V <= VDD <= 3.6 V; CL = 10 pF. Simulated skew (over process, voltage,  
and temperature) of any two SCT output signals routed to standard I/O pins; sampled at the 50 %  
level of the falling or rising edge; values guaranteed by design.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tsk(o)  
output skew time  
-
-
-
4
ns  
12.4.4 I2C-bus  
Table 19. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 °C to +105 °C; values guaranteed by design.[2]  
Symbol  
Parameter  
Conditions  
Standard-mode  
Fast-mode  
Min  
Max  
Unit  
fSCL  
SCL clock  
frequency  
0
0
0
100  
400  
1
kHz  
kHz  
MHz  
Fast-mode Plus; on  
pins PIO0_10 and  
PIO0_11  
[4][5][6][7]  
tf  
fall time  
of both SDA and  
SCL signals  
-
300  
ns  
Standard-mode  
Fast-mode  
20 + 0.1 Cb 300  
120  
ns  
ns  
Fast-mode Plus;  
on pins PIO0_10  
and PIO0_11  
-
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
54 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 19. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 °C to +105 °C; values guaranteed by design.[2]  
Symbol  
Parameter  
Conditions  
Standard-mode  
Fast-mode  
Min  
4.7  
1.3  
Max  
Unit  
s  
tLOW  
LOW period of  
the SCL clock  
-
-
-
s  
Fast-mode Plus; on 0.5  
pins PIO0_10 and  
PIO0_11  
s  
tHIGH  
HIGH period of  
the SCL clock  
Standard-mode  
Fast-mode  
4.0  
0.6  
-
-
-
s  
s  
s  
Fast-mode Plus; on 0.26  
pins PIO0_10 and  
PIO0_11  
[3][4][8]  
tHD;DAT  
data hold time  
Standard-mode  
Fast-mode  
0
0
0
-
-
-
s  
s  
s  
Fast-mode Plus; on  
pins PIO0_10 and  
PIO0_11  
[9][10]  
tSU;DAT  
data set-up  
time  
Standard-mode  
Fast-mode  
250  
100  
-
-
-
ns  
ns  
ns  
Fast-mode Plus; on 50  
pins PIO0_10 and  
PIO0_11  
[1] See the I2C-bus specification UM10204 for details.  
[2] Parameters are valid over operating temperature range unless otherwise specified.  
[3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission  
and the acknowledge.  
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the  
VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
[5] Cb = total capacitance of one bus line in pF.  
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA  
output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the  
SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.  
[7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors  
are used, designers should allow for this when considering bus timing.  
[8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than  
the maximum of tVD;DAT or tVD;ACK by a transition time (see UM10204). This maximum must only be met if  
the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the  
data must be valid by the set-up time before it releases the clock.  
[9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in  
transmission and the acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement  
tSU;DAT = 250 ns must then be met. This will automatically be the case if the device does not stretch the  
LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must  
output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must  
meet this set-up time.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
55 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
t
f
t
SU;DAT  
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
aaa-004643  
Fig 34. I2C-bus pins clock timing  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
56 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
12.4.5 SPI interfaces  
In master mode, the maximum supported bit rate is limited by the maximum system clock  
to 30 Mbit/s. In slave mode, assuming a set-up time of 3 ns for the external device and  
neglecting any PCB trace delays, the maximum supported bit rate is 1/(2 x (26 ns + 3 ns))  
= 17 Mbit/s at 3.0 V <= VDD <= 3.6 V and 13 Mbit/s at 1.8 V <= VDD < 3.0 V. The actual  
bit rate depends on the delays introduced by the external trace and the external device.  
Remark: SPI functions can be assigned to all digital pins. The characteristics are valid for  
all digital pins except the open-drain pins PIO0_10 and PIO0_11.  
Table 20. SPI dynamic characteristics  
Tamb = 40 °C to 105 °C; CL = 20 pF; input slew = 1 ns. Simulated parameters sampled at the 30 %  
and 70 % level of the rising or falling edge; values guaranteed by design. Delays introduced by the  
external trace or external device are not considered.  
Symbol  
SPI master  
tDS  
Parameter  
Conditions  
Min  
Max  
Unit  
data set-up time  
data hold time  
1.8 V <= VDD <= 3.6 V  
1.8 V <= VDD <= 3.6 V  
2
-
ns  
ns  
ns  
tDH  
6
-
tv(Q)  
data output valid time 1.8 V <= VDD <= 3.6 V  
-3  
4
SPI slave  
tDS  
data set-up time  
data hold time  
1.8 V <= VDD <= 3.6 V  
1.8 V <= VDD <= 3.6 V  
2
4
0
0
-
ns  
ns  
ns  
ns  
tDH  
-
tv(Q)  
data output valid time 3.0 V <= VDD <= 3.6 V  
1.8 V <= VDD < 3.0 V  
26  
35  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
57 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
SSEL  
MOSI (CPHA = 0)  
MISO (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MOSI (CPHA = 1)  
MISO (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
IDLE  
IDLE  
DATA VALID (LSB)  
DATA VALID  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
aaa-014969  
Tcy(clk) = CCLK/DIVVAL with CCLK = system clock frequency. DIVVAL is the SPI clock divider. See the LPC82x User manual.  
Fig 35. SPI master timing  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
58 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
SSEL  
MISO (CPHA = 0)  
MOSI (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MISO (CPHA = 1)  
MOSI (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
IDLE  
IDLE  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
aaa-014970  
Fig 36. SPI slave timing  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
59 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
12.4.6 USART interface  
The maximum USART bit rate is 10 Mbit/s in synchronous mode master mode and  
10 Mbit/s in synchronous slave mode.  
Remark: USART functions can be assigned to all digital pins. The characteristics are  
valid for all digital pins except the open-drain pins PIO0_10 and PIO0_11.  
Table 21. USART dynamic characteristics  
Tamb = 40 °C to 105 °C; 1.8 V <= VDD <= 3.6 V unless noted otherwise; CL = 10 pF; input slew =  
10 ns. Simulated parameters sampled at the 30 %/70 % level of the falling or rising edge; values  
guaranteed by design.  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
USART master (in synchronous mode)  
tsu(D)  
data input set-up time  
3.0 V <= VDD <= 3.6 V  
1.8 V <= VDD < 3.0 V  
31  
37  
0
-
ns  
th(D)  
tv(Q)  
data input hold time  
data output valid time  
-
ns  
ns  
0
5
USART slave (in synchronous mode)  
tsu(D)  
th(D)  
tv(Q)  
data input set-up time  
data input hold time  
data output valid time  
6
2
0
0
-
ns  
ns  
ns  
ns  
-
3.0 V <= VDD <= 3.6 V  
1.8 V <= VDD < 3.0 V  
28  
37  
T
cy(clk)  
Un_SCLK (CLKPOL = 0)  
Un_SCLK (CLKPOL = 1)  
TXD  
t
t
vQ)  
v(Q)  
START  
BIT0  
BIT1  
t
t
su(D) h(D)  
BIT1  
START  
BIT0  
RXD  
aaa-015074  
In master mode, Tcy(clk) = U_PCLK/BRGVAL. See the LPC82x User manual.  
Fig 37. USART timing  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
60 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
13. Characteristics of analog peripherals  
13.1 BOD  
Table 22. BOD static characteristics[1]  
Tamb = 25 °C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage interrupt level 1  
assertion  
-
-
2.25  
2.40  
-
-
V
V
de-assertion  
interrupt level 2  
assertion  
-
-
2.54  
2.68  
-
-
V
V
de-assertion  
interrupt level 3  
assertion  
-
-
2.85  
2.95  
-
-
V
V
de-assertion  
reset level 1  
assertion  
-
-
2.05  
2.20  
-
-
V
V
de-assertion  
reset level 2  
assertion  
-
-
2.34  
2.49  
-
-
V
V
de-assertion  
reset level 3  
assertion  
-
-
2.63  
2.78  
-
-
V
V
de-assertion  
[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see the  
LPC82x user manual. Interrupt level 0 is reserved.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
61 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
13.2 ADC  
Table 23. 12-bit ADC static characteristics  
Tamb = 40 °C to +105 °C unless noted otherwise; VDD = 2.4 V to 3.6 V; VREFP = VDD; VREFN = VSS  
.
Symbol  
VIA  
Parameter  
Conditions  
Min  
0
Typ  
Max  
VDD  
VDD  
0.32  
Unit  
V
analog input voltage  
reference voltage  
-
-
-
Vref  
on pin VREFP  
2.4  
-
V
Cia  
analog input  
capacitance  
pF  
[2]  
[3]  
fclk(ADC)  
ADC clock frequency  
2.7 V <= VDD <= 3.6 V  
2.4 V <= VDD < 2.7 V  
2.7 V <= VDD <= 3.6 V  
2.4 V <= VDD < 2.7 V  
Tamb = 105 °C  
-
-
-
-
-
-
30  
25  
1.2  
1
MHz  
-
MHz  
[2]  
fs  
sampling frequency  
-
Msamples/s  
Msamples/s  
LSB  
[3]  
-
[5][4]  
ED  
differential linearity  
error  
+/- 2.5  
-
[6][4]  
[7][4]  
[8][4]  
EL(adj)  
EO  
integral non-linearity  
offset error  
Tamb = 105 °C  
Tamb = 105 °C  
-
+/- 2.5  
+/- 4.5  
+/- 0.5  
-
-
-
-
-
LSB  
LSB  
%
-
Verr(fs)  
Zi  
full-scale error voltage 1.2 Msamples/s; Tamb = 105 °C  
input impedance fs = 1.2 Msamples/s  
-
[1][9]  
[10]  
0.1  
M  
[1] The input resistance of ADC channel 0 is higher than for all other channels. See Figure 38.  
[2] In the ADC TRM register, set VRANGE = 0 (default).  
[3] In the ADC TRM register, set VRANGE = 1 (default).  
[4] Based on characterization. Not tested in production.  
[5] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 39.  
[6] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 39.  
[7] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 39.  
[8] The full-scale error voltage or gain error (EG) is the difference between the straight line fitting the actual transfer curve after removing  
offset error, and the straight line which fits the ideal transfer curve. See Figure 39.  
[9] Tamb = 25 C; maximum sampling frequency fs = 1.2 Msamples/s and analog input capacitance Cia = 0.1 pF.  
[10] Input impedance Zi is inversely proportional to the sampling frequency and the total input capacity including Cia and Cio: Zi 1 / (fs Ci).  
See Table 7 for Cio.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
62 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
ADC  
R
= 0.25 kΩ...2.5 kΩ  
1
ADCn_0  
C
io  
R
= 5 Ω...25 Ω  
sw  
ADCn_[1:11]  
DAC  
C
DAC  
C
io  
C
ia  
aaa-011748  
Fig 38. ADC input impedance  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
63 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
offset  
error  
O
gain  
error  
E
E
G
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
4090 4091 4092 4093 4094 4095 4096  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
offset error  
E
O
VREFP - V  
4096  
SS  
1 LSB =  
002aaf436  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 39. 12-bit ADC characteristics  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
64 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
13.3 Comparator and internal voltage reference  
Table 24. Internal voltage reference static and dynamic characteristics  
Tamb = 40 °C to +105 °C; VDD = 3.3 V; hysteresis disabled in the comparator CTRL register.  
Symbol Parameter  
Conditions  
Min  
Typ  
-
Max  
Unit  
mV  
mV  
VO  
output voltage Tamb = 25 C to 105C  
Tamb = 25 C  
860  
940  
904  
aaa-014424  
0.910  
V
Oref  
(m(VV))  
0.905  
0.900  
0.895  
0.890  
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
VDD = 3.3 V; characterized through bench measurements on typical samples.  
Fig 40. Typical internal voltage reference output voltage  
Table 25. Comparator characteristics  
Tamb = 40 °C to +105 °C unless noted otherwise; VDD = 1.8 V to 3.6 V.  
Symbol Parameter  
Static characteristics  
Conditions  
Min Typ  
Max  
Unit  
Vref(cmp)  
comparator reference  
voltage  
pin PIO0_6/VDDCMP configured for  
function VDDCMP  
1.5  
-
3.6  
V
[2]  
[2]  
IDD  
supply current  
VP > VM; Tamb = 25 °C; VDD = 3.3 V  
VM > VP; Tamb = 25 °C; VDD = 3.3 V  
-
90  
-
A  
A  
V
-
60  
-
VIC  
common-mode input voltage  
output voltage variation  
offset voltage  
0
0
-
-
VDD  
DVO  
Voffset  
-
VDD  
V
[2]  
[2]  
[2]  
VIC = 0.1 V; VDD = 2.4 V; Tamb = 105 °C  
VIC = 1.5 V; VDD = 2.4 V; Tamb = 105 °C  
VIC = 2.9 V; VDD = 2.4 V; Tamb = 105 °C  
+/- 4  
+/- 2  
+/- 4  
-
-
-
mV  
mV  
mV  
-
-
Dynamic characteristics  
tstartup  
start-up time  
nominal process; VDD = 3.3 V; Tamb  
=
-
13  
-
s  
25 °C  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
65 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 25. Comparator characteristics …continued  
Tamb = 40 °C to +105 °C unless noted otherwise; VDD = 1.8 V to 3.6 V.  
Symbol Parameter  
tPD propagation delay  
Conditions  
Min Typ  
Max  
Unit  
HIGH to LOW; VDD = 3.0 V; Tamb  
=
105 °C  
[1][2][4]  
[1][2]  
VIC = 0.1 V; 100 mV overdrive input  
-
-
-
-
-
-
140  
190  
130  
120  
220  
80  
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
VIC = 0.1 V; rail-to-rail input  
[1][2][4]  
[1][2]  
VIC = 1.5 V; 100 mV overdrive input  
VIC = 1.5 V; rail-to-rail input  
[1][2][4]  
[1][2]  
VIC = 2.9 V; 100 mV overdrive input  
VIC = 2.9 V; rail-to-rail input  
tPD  
propagation delay  
LOW to HIGH; VDD = 3.0 V; Tamb =  
105 °C  
[1][2][4]  
[1][2]  
VIC = 0.1 V; 100 mV overdrive input  
-
-
-
-
-
-
-
240  
60  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
VIC = 0.1 V; rail-to-rail input  
[1][2][4]  
[1][2]  
VIC = 1.5 V; 100 mV overdrive input  
VIC = 1.5 V; rail-to-rail input  
160  
150  
150  
260  
[1][2][4]  
[1][2]  
VIC = 2.9 V; 100 mV overdrive input  
VIC = 2.9 V; rail-to-rail input  
[3]  
Vhys  
Vhys  
Rlad  
hysteresis voltage  
hysteresis voltage  
ladder resistance  
positive hysteresis; VDD = 3.0 V;  
V
IC = 1.5 V; Tamb = 105 °C; settings:  
5 mV  
6
mV  
mV  
mV  
10 mV  
20 mV  
-
-
11  
23  
-
-
[1][3]  
negative hysteresis; VDD = 3.0 V;  
V
IC = 1.5 V; Tamb = 105 °C; settings:  
5 mV  
-
-
-
-
10  
15  
27  
1
-
-
-
-
mV  
mV  
mV  
M  
10 mV  
20 mV  
-
[1] CL = 10 pF  
[2] Characterized on typical samples, not tested in production.  
[3] Input hysteresis is relative to the reference input channel and is software programmable.  
[4] 100 mV overdrive corresponds to a square wave from 50 mV below the reference (VIC) to 50 mV above the reference.  
Table 26. Comparator voltage ladder dynamic characteristics  
Tamb = 40 °C to +105 °C; VDD = 1.8 V to 3.6 V.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[1]  
ts(pu) power-up settling  
to 99% of voltage  
ladder output value  
-
17  
-
s  
time  
ts(sw)  
switching settling  
time  
to 99% of voltage  
ladder output value  
-
18  
-
s  
[1] Characterized on typical samples, not tested in production.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
66 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 27. Comparator voltage ladder reference static characteristics  
VDD = 1.8 V to 3.6 V. Tamb = -40 °C to + 105°C; external or internal reference.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1] Max  
Unit  
mV  
%
[2]  
EV(O)  
output voltage error  
decimal code = 00  
decimal code = 08  
decimal code = 16  
decimal code = 24  
decimal code = 30  
decimal code = 31  
-
-
-
-
-
-
+/- 6  
+/- 1  
+/- 1  
+/- 1  
+/- 1  
+/- 1  
-
-
-
-
-
-
%
%
%
%
[1] Characterized though limited samples. Not tested in production.  
[2] All peripherals except comparator, temperature sensor, and IRC turned off.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
67 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
14. Application information  
14.1 XTAL input  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended to couple the input through a capacitor with Ci =  
100 pF. To limit the input voltage to the specified range, choose an additional capacitor to  
ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave mode, a  
minimum of 200 mV(RMS) is needed.  
LPC800  
XTALIN  
C
i
C
g
100 pF  
aaa-004646  
Fig 41. Slave mode operation of the on-chip oscillator  
In slave mode the input clock signal should be coupled with a capacitor of 100 pF  
(Figure 41), with an amplitude between 200 mV (RMS) and 1000 mV (RMS). This  
corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V.  
The XTALOUT pin in this configuration can be left unconnected.  
External components and models used in oscillation mode are shown in Figure 42 and in  
Table 28 and Table 29. Since the feedback resistance is integrated on chip, only a crystal  
and the capacitances CX1 and CX2 must be connected externally in case of fundamental  
mode oscillation (the fundamental frequency is represented by L, CL and RS).  
Capacitance CP in Figure 42 represents the parallel package capacitance and should not  
be larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal  
manufacturer (see Table 28).  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
68 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
LPC800  
L
XTALIN  
XTALOUT  
C
R
C
P
=
L
XTAL  
S
C
C
X2  
X1  
aaa-004647  
Fig 42. Oscillator modes and models: oscillation mode of operation and external crystal  
model used for CX1/CX2 evaluation  
Table 28. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) low frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
1 MHz to 5 MHz  
10 pF  
< 300   
< 300   
< 300   
< 300   
< 200   
< 100   
< 160   
< 60   
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
20 pF  
30 pF  
5 MHz to 10 MHz  
10 pF  
20 pF  
30 pF  
10 MHz to 15 MHz  
15 MHz to 20 MHz  
10 pF  
20 pF  
10 pF  
< 80   
Table 29. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) high frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
15 MHz to 20 MHz  
10 pF  
< 180   
< 100   
< 160   
< 80   
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
39 pF, 39 pF  
20 pF  
20 MHz to 25 MHz  
10 pF  
20 pF  
14.2 XTAL Printed-Circuit Board (PCB) layout guidelines  
The crystal should be connected on the PCB as close as possible to the oscillator input  
and output pins of the chip. Take care that the load capacitors Cx1,Cx2, and Cx3 in case of  
third overtone crystal usage have a common ground plane. The external components  
must also be connected to the ground plain. Loops must be made as small as possible in  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
69 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
order to keep the noise coupled in via the PCB as small as possible. Also parasitics  
should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller  
according to the increase in parasitics of the PCB layout.  
14.3 Connecting power, clocks, and debug functions  
Figure 43 shows the basic board connections used to power the LPC82x, connect the  
external crystal, and provide debug capabilities via the serial wire port.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
70 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
3.3 V  
SWD connector  
Note 4  
3.3 V  
~10 kΩ - 100 kΩ  
SWDIO/PIO0_2  
SWCLK/PIO0_3  
1
2
4
3
5
7
PIO0_8/XTALIN  
~10 kΩ - 100 kΩ  
n.c.  
n.c.  
6
8
C1  
Note 1  
n.c.  
DGND  
C2  
PIO0_9/XTALOUT  
RESET/PIO0_5  
9
10  
DGND  
V
SS  
DGND  
DGND  
Note 2  
3.3 V  
V
DD  
LPC82x  
0.1 μF  
0.01 μF  
PIO0_12  
ADC_0  
DGND  
ISP select pin  
Note 5 (ADC_1),  
Note 3 (VDDCMP)  
PIO0_6/ADC_1/VDDCMP  
Note 5  
Note 3  
3.3 V  
VREFP  
0.1 μF  
0.1 μF  
10 μF  
VREFN  
AGND  
AGND  
AGND  
DGND  
aaa-015073  
(1) See Section 14.1 “XTAL input” for the values of C1 and C2.  
(2) Position the decoupling capacitors of 0.1 μF and 0.01 μF as close as possible to the VDD pin. Add one set of decoupling  
capacitors to each VDD pin.  
(3) Position the decoupling capacitors of 0.1 μF as close as possible to the VREFN and VDD pins. The 10 μF bypass capacitor  
filters the power line. Tie VREFP to VDD if the ADC is not used. Tie VREFN to VSS if ADC is not used.  
(4) Uses the ARM 10-pin interface for SWD.  
(5) When measuring signals of low frequency, use a low-pass filter to remove noise and to improve ADC performance. Also see  
Ref. 4.  
Fig 43. Power, clock, and debug connections  
14.4 Termination of unused pins  
Table 30 shows how to terminate pins that are not used in the application. In many cases,  
unused pins may should be connected externally or configured correctly by software to  
minimize the overall power consumption of the part.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
71 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Unused pins with GPIO function should be configured as outputs set to LOW with their  
internal pull-up disabled. To configure a GPIO pin as output and drive it LOW, select the  
GPIO function in the IOCON register, select output in the GPIO DIR register, and write a 0  
to the GPIO PORT register for that pin. Disable the pull-up in the pin’s IOCON register.  
In addition, it is recommended to configure all GPIO pins that are not bonded out on  
smaller packages as outputs driven LOW with their internal pull-up disabled.  
Table 30. Termination of unused pins  
Pin  
Default Recommended termination of unused pins  
state[1]  
RESET/PIO0_5  
I; PU  
In an application that does not use the RESET pin or its GPIO function, the  
termination of this pin depends on whether Deep power-down mode is used:  
Deep power-down used: Connect an external pull-up resistor and keep pin in  
default state (input, pull-up enabled) during all other power modes.  
Deep power-down not used and no external pull-up connected: can be left  
unconnected if internal pull-up is disabled and pin is driven LOW and  
configured as output by software.  
all PIOn_m (not  
open-drain)  
I; PU  
Can be left unconnected if driven LOW and configured as GPIO output with pull-up  
disabled by software.  
PIOn_m (I2C open-drain)  
VREFP  
IA  
-
Can be left unconnected if driven LOW and configured as GPIO output by software.  
Tie to VDD.  
Tie to VSS.  
VREFN  
-
[1] I = Input, O = Output, IA = Inactive (no pull-up/pull-down enabled), F = floating, PU = Pull-Up.  
14.5 Pin states in different power modes  
Table 31. Pin states in different power modes  
Pin  
Active  
Sleep  
Deep-sleep/Power- Deep power-down  
down  
PIOn_m pins (not As configured in the IOCON[1]. Default: internal pull-up  
I2C) enabled.  
Floating.  
PIO0_4, PIO0_5 As configured in the IOCON[1].  
Floating.  
(open-drain  
I2C-bus pins)  
RESET  
Reset function enabled. Default: input, internal pull-up  
enabled.  
Reset function disabled; floating; if the part  
is in deep power-down mode, the RESET  
pin needs an external pull-up to reduce  
power consumption.  
PIO0_16/  
WAKEUP  
As configured in the IOCON[1]. WAKEUP function inactive. Wake-up function enabled; can be disabled  
by software.  
[1] Default and programmed pin states are retained in sleep, deep-sleep, and power-down modes.  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
72 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
15. Package outline  
TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm  
SOT360-1  
D
E
A
X
c
H
v
M
A
y
E
Z
11  
20  
Q
A
2
(A )  
3
A
A
1
pin 1 index  
L
p
L
1
10  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
1
2
3
p
E
p
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
6.6  
6.4  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.5  
0.2  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT360-1  
MO-153  
Fig 44. Package outline SOT360-1 (TSSOP20)  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
73 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
HVQFN33: plastic thermal enhanced very thin quad flat package; no leads;  
32 terminals; body 5 x 5 x 0.85 mm  
D
B
A
terminal 1  
index area  
A
A
1
E
c
detail X  
C
e
1
y
y
v
w
C
C
A
B
C
1
e
1/2 e  
b
9
16  
L
17  
8
e
e
E
h
2
1/2 e  
24  
1
terminal 1  
index area  
32  
25  
X
D
h
0
2.5  
scale  
5 mm  
Dimensions (mm are the original dimensions)  
(1)  
(1)  
(1)  
(1)  
Unit  
A
A
b
c
D
D
E
E
e
e
e
L
v
w
y
y
1
1
h
h
1
2
max  
0.05 0.30  
5.1 3.75 5.1 3.75  
0.5  
mm nom 0.85  
min  
0.2  
0.5 3.5 3.5  
0.1 0.05 0.05 0.1  
0.00 0.18  
4.9 3.45 4.9 3.45  
0.3  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
hvqfn33f_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
11-10-11  
11-10-17  
MO-220  
Fig 45. Package outline (HVQFN33 5x5)  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
74 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
16. Soldering  
Footprint information for reflow soldering of TSSOP20 package  
SOT360-1  
Hx  
Gx  
P2  
(0.125)  
(0.125)  
Hy Gy  
By Ay  
C
D2 (4x)  
P1  
D1  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ay  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.650 0.750 7.200 4.500 1.350 0.400 0.600 6.900 5.300 7.300 7.450  
sot360-1_fr  
Fig 46. Reflow soldering of the TSSOP20 package  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
75 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Footprint information for reflow soldering of HVQFN33 package  
Hx  
Gx  
see detail X  
P
nSPx  
Ay  
By  
SLy  
Hy Gy  
nSPy  
C
D
SLx  
Bx  
Ax  
0.60  
0.30  
solder land  
solder paste  
occupied area  
detail X  
Dimensions in mm  
P
Ax  
Ay  
Bx  
By  
C
D
Gx  
Gy  
Hx  
Hy  
6.2  
SLx  
SLy  
nSPx nSPy  
0.5  
5.95  
5.95  
4.25  
4.25  
0.85  
0.27  
5.25  
5.25  
6.2  
3.75  
3.75  
3
3
11-11-15  
11-11-20  
Issue date  
002aag766  
Fig 47. Reflow soldering of the HVQFN33 package (5x5)  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
76 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
17. Abbreviations  
Table 32. Abbreviations  
Acronym  
AHB  
Description  
Advanced High-performance Bus  
Advanced Peripheral Bus  
BrownOut Detection  
APB  
BOD  
GPIO  
PLL  
General-Purpose Input/Output  
Phase-Locked Loop  
RC  
Resistor-Capacitor  
SPI  
Serial Peripheral Interface  
System Management Bus  
Transverse ElectroMagnetic  
SMBus  
TEM  
UART  
Universal Asynchronous Receiver/Transmitter  
18. References  
[1] LPC82x User manual UM10800:  
http://www.nxp.com/documents/user_manual/UM10800.pdf  
[2] LPC82x Errata sheet:  
http://www.nxp.com/documents/errata_sheet/ES_LPC82X.pdf  
[3] I2C-bus specification UM10204.  
[4] Technical note ADC design guidelines:  
http://www.nxp.com/documents/technical_note/TN00009.pdf  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
77 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
19. Revision history  
Table 33. Revision history  
Document ID  
Release date  
Data sheet status  
Change notice Supersedes  
LPC82X v.1.4  
20210319  
Product data sheet  
-
LPC82X v.1.3  
Modifications:  
Updated footnotes for Table 23.  
Updated Table 9 , For Vi input voltage tolerant pin is changed to PIO0_6 instead of  
PIO0_12.  
Updated Table 11, Condition changed for rise time spec.  
LPC82X v.1.3  
Modifications:  
LPC82X v.1.2  
Modifications:  
20180404  
Updated table note 2 of Section 12.1 “Power-up ramp conditions”.  
20161003 Product data sheet LPC82X v.1.1  
Product data sheet  
201804004I  
LPC82X v.1.2  
-
Added text to Table 4 “Movable functions (assign to pins PIO0_0 to PIO0_28 through  
switch matrix)”:  
SPI0_SSEL1 - Slave select 1 for SPI0.  
SPI0_SSEL2 - Slave select 2 for SPI0.  
SPI0_SSEL3 - Slave select 3 for SPI0.  
Changed the cross reference in the remark of Section 12.3 “External clock for the  
oscillator in slave mode” to Table 7 “General operating conditions”.  
Updated table note section 2 in Table 5 “Limiting values” to make the reference to  
Table 7 “General operating conditions”.  
LPC82X v.1.1  
Modifications:  
20160602  
Product data sheet  
-
LPC82X v.1  
Updated Power, clock, and debug connections diagram. See Figure 43.  
Changed PIO0_13 to PIO0_16 in High-drive output pin configured as digital pin  
(PIO0_2, PIO0_3, PIO0_12, PIO0_16). See Table 9 “Static characteristics, electrical  
pin characteristics”.  
Changed the table header of Table 10 “Power consumption for individual analog and  
digital blocks” from main clock to system clock.  
Added Section 12.1 “Power-up ramp conditions”.  
Removed BOD reset level 0 specifications in Table 22 “BOD static characteristics[1]”.  
LPC82X v.1  
20141001  
Product data sheet  
-
-
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
78 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
22. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
8.20.1  
8.21  
8.21.1  
8.22  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Analog-to-Digital Converter (ADC). . . . . . . . . 23  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Clocking and power control . . . . . . . . . . . . . . 24  
Crystal and internal oscillators . . . . . . . . . . . . 24  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Ordering options . . . . . . . . . . . . . . . . . . . . . . . . 3  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
4
4.1  
5
8.22.1  
8.22.1.1 Internal RC Oscillator (IRC) . . . . . . . . . . . . . . 25  
8.22.1.2 Crystal Oscillator (SysOsc) . . . . . . . . . . . . . . 25  
8.22.1.3 Internal Low-power Oscillator and Watchdog  
Oscillator (WDOsc) . . . . . . . . . . . . . . . . . . . . 25  
8.22.2  
8.22.3  
8.22.4  
8.22.5  
8.22.6  
8.22.6.1 Power profiles . . . . . . . . . . . . . . . . . . . . . . . . 26  
8.22.6.2 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
8.22.6.3 Deep-sleep mode. . . . . . . . . . . . . . . . . . . . . . 27  
8.22.6.4 Power-down mode . . . . . . . . . . . . . . . . . . . . . 27  
8.22.6.5 Deep power-down mode . . . . . . . . . . . . . . . . 27  
6
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 6  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
System PLL . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Clock output . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 26  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 26  
8
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.6.1  
8.6.2  
8.7  
8.8  
8.8.1  
8.9  
8.10  
8.10.1  
8.11  
8.11.1  
8.12  
8.12.1  
8.12.2  
8.13  
8.13.1  
8.14  
8.14.1  
8.15  
8.15.1  
8.16  
8.16.1  
8.16.2  
8.17  
8.17.1  
8.18  
8.18.1  
8.19  
8.19.1  
8.20  
Functional description . . . . . . . . . . . . . . . . . . 12  
ARM Cortex-M0+ core . . . . . . . . . . . . . . . . . . 12  
On-chip flash program memory . . . . . . . . . . . 12  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . 12  
On-chip ROM . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Nested Vectored Interrupt Controller (NVIC) . 13  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 14  
System tick timer . . . . . . . . . . . . . . . . . . . . . . 14  
I/O configuration . . . . . . . . . . . . . . . . . . . . . . . 14  
Standard I/O pad configuration. . . . . . . . . . . . 14  
Switch Matrix (SWM) . . . . . . . . . . . . . . . . . . . 15  
Fast General-Purpose parallel I/O (GPIO) . . . 16  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Pin interrupt/pattern match engine . . . . . . . . . 16  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
DMA controller . . . . . . . . . . . . . . . . . . . . . . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
DMA trigger input MUX (TRIGMUX). . . . . . . . 17  
USART0/1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SPI0/1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
I2C-bus interface (I2C0/1/2/3) . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SCTimer/PWM . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SCTimer/PWM input MUX (INPUT MUX). . . . 20  
Multi-Rate Timer (MRT) . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Windowed WatchDog Timer (WWDT) . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Self-Wake-up Timer (WKT). . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Analog comparator (ACMP) . . . . . . . . . . . . . . 22  
8.23  
System control . . . . . . . . . . . . . . . . . . . . . . . . 28  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Brownout detection . . . . . . . . . . . . . . . . . . . . 28  
Code security (Code Read Protection - CRP) 29  
APB interface . . . . . . . . . . . . . . . . . . . . . . . . . 29  
AHBLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Emulation and debugging . . . . . . . . . . . . . . . 30  
8.23.1  
8.23.2  
8.23.3  
8.23.4  
8.23.5  
8.24  
9
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 31  
Thermal characteristics . . . . . . . . . . . . . . . . . 32  
10  
11  
Static characteristics . . . . . . . . . . . . . . . . . . . 33  
General operating conditions . . . . . . . . . . . . . 33  
Supply pins. . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Electrical pin characteristics. . . . . . . . . . . . . . 36  
Power consumption . . . . . . . . . . . . . . . . . . . . 39  
CoreMark data . . . . . . . . . . . . . . . . . . . . . . . . 45  
Peripheral power consumption. . . . . . . . . . . . 46  
Electrical pin characteristics. . . . . . . . . . . . . . 47  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
11.7  
12  
12.1  
12.2  
12.3  
Dynamic characteristics. . . . . . . . . . . . . . . . . 51  
Power-up ramp conditions . . . . . . . . . . . . . . . 51  
Flash/EEPROM memory . . . . . . . . . . . . . . . . 51  
External clock for the oscillator in slave mode 52  
Internal oscillators . . . . . . . . . . . . . . . . . . . . . 53  
I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
WKTCLKIN pin (wake-up clock input) . . . . . . 54  
SCTimer/PWM output timing . . . . . . . . . . . . . 54  
12.4  
12.4.1  
12.4.2  
12.4.3  
12.4.4  
12.4.5  
12.4.6  
I2  
C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
SPI interfaces. . . . . . . . . . . . . . . . . . . . . . . . . 57  
USART interface . . . . . . . . . . . . . . . . . . . . . . 60  
continued >>  
LPC82x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.4 — 19 March 2021  
81 of 82  
LPC82x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
13  
Characteristics of analog peripherals . . . . . . 61  
13.1  
13.2  
13.3  
BOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Comparator and internal voltage reference . . 65  
14  
14.1  
14.2  
Application information. . . . . . . . . . . . . . . . . . 68  
XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
XTAL Printed-Circuit Board (PCB) layout  
guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Connecting power, clocks, and debug  
14.3  
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Termination of unused pins. . . . . . . . . . . . . . . 71  
Pin states in different power modes . . . . . . . . 72  
14.4  
14.5  
15  
16  
17  
18  
19  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 73  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 77  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 78  
20  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 79  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 79  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
20.1  
20.2  
20.3  
20.4  
21  
22  
Contact information. . . . . . . . . . . . . . . . . . . . . 80  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
How To Reach Us  
Home Page:  
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However,  
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the consequences of use of such information. NXP  
Semiconductors takes no responsibility for the content in this document if provided by an information source outside  
of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special  
or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related  
to the removal or replacement of any products or rework charges) whether or not such damages are based on tort  
(including negligence), warranty, breach of contract or any other legal theory.  
nxp.com  
Web Support:  
nxp.com/support  
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate  
and cumulative liability towards customer for the products described herein shall be limited in accordance with the  
Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this  
document, including without limitation specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the publication hereof.  
Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.  
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to  
reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also  
extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications.  
NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow  
up appropriately.  
Customer shall select products with security features that best meet rules, regulations, and standards of the intended  
application and make the ultimate design decisions regarding its products and is solely responsible for compliance  
with all legal, regulatory, and security related requirements concerning its products, regardless of any information or  
support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable  
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of  
NXP products.  
Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use  
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of  
an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property  
or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors  
product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in  
accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion  
and/or use of non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in automotive applications to automotive  
specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b) whenever customer uses the product for  
automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk,  
and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting  
from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard  
warranty and NXP Semiconductors’ product specifications.  
Applications — Applications that are described herein for any of these products are for illustrative purposes only.  
NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use  
without further testing or modification.  
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors  
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product  
Table continues on the next page...  
design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit  
for the customer’s applications and products planned, as well as for the planned application and use of customer’s  
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks  
associated with their applications and products.  
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on  
any weakness or default in the customer’s applications or products, or the application or use by customer’s third party  
customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using  
NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or  
use by customer’s third party customer(s). NXP does not accept any liability in this respect.  
Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of  
IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation  
of the device at these or any other conditions above those given in the Recommended operating conditions section (if  
present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting  
values will permanently and irreversibly affect the quality and reliability of the device.  
Terms and conditions of commerical sale — NXP Semiconductors products are sold subject to the general terms  
and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a  
valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the  
respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general  
terms and conditions with regard to the purchase of NXP Semiconductors products by customer.  
No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that  
is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other  
industrial or intellectual property rights.  
Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V  
may appear when operating this product, depending on settings and application. Customers incorporating or otherwise  
using these products in applications where such high voltages may appear during operation, assembly, test etc. of such  
application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting  
from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60  
950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages.  
Bare die — All die are tested on compliance with their related technical specifications as stated in this data sheet up  
to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and transportation  
conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are  
no post-packing tests performed on individual die or wafers.  
NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die.  
Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems  
after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and  
qualify their application in which the die is used. All die sales are conditioned upon and subject to the customer entering  
into a written die sale agreement with NXP Semiconductors through its legal department.  
Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and  
Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.  
Export control — This document as well as the item(s) described herein may be subject to export control regulations.  
Export might require a prior authorization from competent authorities.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, GREENCHIP, HITAG, ICODE,  
JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS,  
MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,  
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the  
Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,  
QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, BeeKit, BeeStack,  
CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and  
Table continues on the next page...  
Immersive3D are trademarks of NXP B.V. All other product or service names are the property of their respective  
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,  
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates,  
Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or  
registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may  
be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are  
registered trademarks of Oracle and/or its affiliates. M, M Mobileye and other Mobileye trademarks or logos appearing  
herein are trademarks of Mobileye Vision Technologies Ltd. in the United States, the EU and/or other jurisdictions.  
©
NXP B.V. 2014-2021.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 03/19/2021  
Document identifier:  
LPC82X  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY