MC08XS6421DEK [NXP]

Dual 8.0 mOhm and dual 21 mOhm high-side switch;
MC08XS6421DEK
型号: MC08XS6421DEK
厂家: NXP    NXP
描述:

Dual 8.0 mOhm and dual 21 mOhm high-side switch

文件: 总71页 (文件大小:1667K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC12XS6D4  
Rev. 6.0, 1/2021  
NXP Semiconductors  
Data sheet: Technical Data  
Dual 8.0 mOhm and dual 21 mOhm  
high-side switch  
MC08XS6421BEK; MC08XS6421CEK;  
MC08XS6421DEK  
The 12XS6 is the latest SMARTMOS achievement in automotive lighting drivers.  
It belongs to an expanding family that helps to control and diagnose incandescent  
lamps and light-emitting diodes (LEDs) with enhanced precision. It combines  
flexibility through daisy chainable SPI 5.0 MHz, extended digital and analog  
feedback, safety, and robustness.  
QUAD HIGH-SIDE SWITCH  
Output edge shaping helps to improve electromagnetic performance. To avoid  
shutting off the device upon inrush current, while still being able to closely track  
the load current, a dynamic overcurrent threshold profile is featured. Current of  
each channel can be sensed with a programmable sensing ratio. Whenever  
communication with the external microcontroller is lost, the device enters a fail  
operation mode, but remains operational, controllable, and protected.  
BEK and DEK SUFFIX  
(PB-FREE)  
98ASA00368D  
32-PIN SOICW-EP  
CEK SUFFIX  
(PB-FREE)  
98ASA00894D  
32-PIN SOICW-EP  
This new generation of high-side switch products family 12XS6 facilitates ECU  
design due to compatible MCU software and PCB foot prints for each device  
variant.  
Features  
Applications  
• Dual 8.0 mΩ and dual 21 mΩ high-side switches with high transient current  
capability  
• 16-bit 5.0 MHz SPI control of overcurrent profiles, channel control including  
PWM duty-cycles, output On and Off openload detections, thermal shut-down  
and prewarning, and fault reporting  
• Low-voltage automotive lighting  
• Halogen lamps  
• Incandescent bulbs  
• Light-emitting diodes (LEDs)  
• HID Xenon ballasts  
• Output current monitoring with programmable synchronization signal and  
battery voltage feedback  
• Limp home mode  
• External smart power switch control  
• Operating voltage is 7.08 V to 18 V with sleep current < 5.0 µA, extended  
mode from 6.08 V to 28 V  
• -16 V reverse polarity and ground disconnect protections  
• Compatible PCB foot print and SPI software driver among the family  
VBAT  
VBAT  
VCC  
5.0 V  
Regulator  
VBAT  
08XS6421  
VBAT  
CP  
VCC  
SI  
VCC  
SO  
CSB  
SCLK  
SI  
GND  
CSB  
SCLK  
SO  
RSTB  
CLK  
CSNS  
SYNCB  
LIMP  
IN1  
OUT1  
OUT2  
OUT3  
OUT4  
RSTB  
CLK  
A/D1  
Main  
MCU  
TRG1  
PORT  
PORT  
PORT  
PORT  
PORT  
A/D2  
IN2  
IN3  
IN4  
OUT  
Smart Power  
CSNS  
VBAT  
IN  
OUT6  
GND  
GND  
GND  
Figure 1. Dual 8.0 mΩ and dual 21 mΩ simplified application diagram  
© NXP B.V. 2021.  
1
Orderable parts  
This section describes the part numbers available to be purchased along with their differences. Valid orderable part numbers are provided  
on the web. To determine the orderable part numbers for this device, go to http://www.nxp.com and perform a part number search for the  
following device numbers.  
Table 1. Orderable part variations  
OUT1  
RDS(on)  
OUT2  
RDS(on)  
OUT3  
RDS(on)  
OUT4  
RDS(on)  
Temperature (T )  
Part number  
Notes  
Package  
OUT6  
A
MC08XS6421BEK  
MC08XS6421CEK  
MC08XS6421DEK  
SOICW 32-pin  
exposed pad  
(1)  
-40 °C to 125 °C  
21 mΩ  
21 mΩ  
8.0 mΩ  
8.0 mΩ  
Yes  
Notes  
1.  
To order parts in tape and reel, add the R2 suffix to the part number.  
12XS6D4  
2
NXP Semiconductors  
Table of contents  
1
2
3
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.1 Relationship between ratings and operating requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.2 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.4 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.5 Supply currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
General IC functional description and application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
5.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
5.3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.5 Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.6 SPI interface and configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Functional block requirements and behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.1 Self-protected high-side switches description and application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.2 Power supply functional block description and application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
6.3 Communication interface and device control functional block description and application information . . . . . . . . . . . . 54  
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
7.2 EMC and EMI considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
7.3 PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
7.3 PCB layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
7.4 Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
8.1 Marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
8.2 Package mechanical dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
4
5
6
7
8
9
12XS6D4  
NXP Semiconductors  
3
2
Internal block diagram  
CP  
VCC  
VBAT  
Power  
Supply  
VS  
Reverse  
Battery  
Protection  
VBAT_PROTECTED  
UVF Undervoltage  
Detection  
Battery  
Clamp  
Power-on  
Reset  
OVF  
Charge  
CPF  
Pump  
OTW1  
OTW2  
SO  
Thermal  
Prewarning  
OTS1  
Temperature  
Shutdown  
CSB  
SPI  
Selectable  
Slope Control  
SCLK  
SI  
SPIF  
Selectable Overcurrent  
OC1  
Protection  
RSTB  
OLON1  
OLOFF1  
Fault  
Management  
Selectable OpenLoad  
Detection  
Selectable  
Current Sensing  
LIMP  
IN1  
IN2  
IN3  
IN4  
Output Voltage  
Monitoring  
OUT1  
OUT1  
OUT2  
OUT1 Channel  
OUT2 Channel  
OUT3 Channel  
PWM Module  
OUT3  
OUT4  
Logic  
VCC  
WAKEB OR  
RSTB  
OUT4 Channel  
Clock Failure  
Detection  
CLK  
VCC  
CSNS  
SYNCB  
VBAT_PROTECTED  
Selectable  
Delay  
OUT6  
Selectable  
Analog  
VBAT_PROTECTED  
CSNS  
Feedback  
Control die  
Temperature  
Monitoring  
Battery  
Voltage  
Monitoring  
GND  
Figure 2. Simplified internal block diagram (quad version)  
12XS6D4  
4
NXP Semiconductors  
3
Pin connections  
3.1  
Pinout diagram  
Transparent top view  
1
CLK  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
CP  
2
LIMP  
IN4  
RSTB  
CSB  
3
IN3  
4
SCLK  
SI  
IN2  
5
IN1  
6
VCC  
SO  
CSNS SYNCB  
CSNS  
GND  
OUT1  
OUT1  
OUT3  
OUT3  
OUT3  
NC  
7
OUT6  
8
VBAT  
33  
9
GND  
OUT2  
OUT2  
OUT4  
10  
11  
12  
13  
14  
15  
16  
OUT4  
OUT4  
NC  
NC  
NC  
Figure 3. 12XS6 pinout diagram  
3.2  
Pin definitions  
Table 2. 12XS6 pin definitions  
Pin number  
Pin name  
Pin function  
Formal name  
Definition  
1
CP  
Internal supply  
Charge pump  
This pin is the connection for an external capacitor for charge pump use only.  
This input pin is used to initialize the device configuration and fault registers, as  
well as place the device in a low-current sleep mode. This pin has a passive  
internal pull-down.  
2
3
RSTB  
CSB  
SPI  
Reset  
This input pin is connected to a chip select output of a master microcontroller  
(MCU). When this digital signal is high, SPI signals are ignored. Asserting this pin  
low starts the SPI transaction. The transaction is indicated as completed when this  
signal returns to a high level. This pin has a passive internal pull-up to VCC through  
a diode.  
SPI  
Chip select  
This input pin is connected to the MCU providing the required bit shift clock for SPI  
communication. This pin has a passive internal pull-down.  
4
5
6
7
SCLK  
SI  
SPI  
SPI  
Serial clock  
Serial input  
This pin is the data input of the SPI communication interface. The data at the input  
is sampled on the positive edge of the SCLK. This pin has a passive internal pull-  
down.  
This pin is a power supply pin is for internal logic, the SPI I/Os, and the OUT6  
driver.  
VCC  
SO  
Power supply MCU power supply  
This output pin is connected to the SPI serial data input pin of the MCU, or to the  
SI pin of the next device of a daisy chain of devices. The SPI changes on the  
negative edge of SCLK. When CSB is high, this pin is high-impedance.  
SPI  
Serial output  
12XS6D4  
NXP Semiconductors  
5
Table 2. 12XS6 pin definitions (continued)  
Pin number  
Pin name  
Pin function  
Formal name  
Definition  
This output pin controls an external smart power switch by logic level. This pin has  
a passive internal pull-down.  
8
OUT6  
Output  
External solid state  
These pins are the ground for the logic and analog circuitries of the device. For  
ESD and electrical parameter accuracy purpose, the ground pins must be shorted  
in the board.  
9, 24  
GND  
Ground  
Ground  
10, 11  
12, 13, 14  
15, 16, 17, 18  
19, 20, 21  
22, 23  
OUT2  
OUT4  
NC  
Output  
Output  
N/A  
Channel #2  
Channel #4  
Not connected  
Channel #3  
Channel #1  
Protected high-side power output pins to the load.  
Protected high-side power output pins to the load.  
These pins may not be connected. It is recommended to put these pins to ground.  
Protected high-side power output pins to the load.  
OUT3  
OUT1  
Output  
Output  
Protected high-side power output pins to the load.  
This pin reports an analog value proportional to the designated OUT[1:5] output  
current, or the temperature of the exposed pad, or the battery voltage. It is used  
externally to generate a ground referenced voltage for the microcontroller (MCU).  
Current recopy and analog voltage feedbacks are SPI programmable.  
25  
26  
27  
CSNS  
CSNS SYNCB  
IN1  
Feedback  
Feedback  
Input  
Current sense  
Current sense  
synchronization  
This open drain output pin allows synchronizing the MCU A/D conversion. This pin  
requires an external pull-up resistor to VCC.  
This input wakes up the device. This input pin is used to directly control  
corresponding channel in fail mode. During normal mode, the control of the  
outputs by the control inputs is SPI programmable.This pin has a passive internal  
pull-down.  
Direct input #1  
Direct input #2  
Direct input #3  
This input wakes up the device. This input pin is used to directly control  
corresponding channel in fail mode. During normal mode, the control of the  
outputs by the control inputs is SPI programmable.This pin has a passive internal  
pull-down.  
28  
29  
IN2  
IN3  
Input  
Input  
This input wakes up the device. This input pin is used to directly control  
corresponding channel in fail mode. During normal mode, the control of the  
outputs by the control inputs is SPI programmable.This pin has a passive internal  
pull-down.  
This input wakes up the device. This input pin is used to directly control  
corresponding channel in fail mode. During normal mode the control of the outputs  
by the control inputs is SPI programmable.This pin has a passive internal pull-  
down.  
30  
31  
IN4  
Input  
Input  
Direct input #4  
Limp home  
The fail mode can be activated by this digital input. This pin has a passive internal  
pull-down.  
LIMP  
Device mode  
feedback  
This pin is an input/output pin. It is used to report the device sleep-state  
information. It is also used to apply the reference PWM clock which is divided by  
28 in normal operating mode. This pin has a passive internal pull-down.  
32  
33  
CLK  
Input/Output  
Reference PWM  
clock  
This exposed pad connects to the positive power supply and is the source of  
operational power for the device.  
VBAT  
Power supply Battery power supply  
12XS6D4  
6
NXP Semiconductors  
4
General product characteristics  
4.1  
Relationship between ratings and operating requirements  
The analog portion of device is supplied by the voltage applied to the VBAT exposed pad. Thereby the supply of internal circuitry (logic in  
case of a VCC disconnect, charge pump, gate drive,...) is derived from the VBAT pin.  
In case of a reverse battery:  
• the internal supply rail is protected (max. -16 V)  
• the output drivers (OUT1:OUT4) are switched on, to reduce the power consumption in the drivers when using incandescent  
bulbs  
Fatal range  
Reverse  
protection  
Degraded operating Normaloperating Degraded operating  
range range range  
Potential failure  
Fatal range  
Probable  
permanent  
failure  
- Reduced performance  
- Probable failure in  
case of short-circuit  
Probable  
permanent  
failure  
- Reduced performance Full performance - Reduced performance  
- Full protection but  
accuracy not  
- Full protection but  
accuracy not  
guaranteed  
guaranteed  
- no PMW feature for  
UV to 6.0 V  
Operating Range  
V
6
V
0
4
1
-
Fatal Range  
Accepted Industry  
Standard Practices  
Fatal Range  
Probable  
Probable  
permanent failure  
Correct operation  
permanent failure  
Handling conditions (power OFF)  
Figure 4. Ratings vs. operating requirements (VBAT pin)  
The device’s digital circuitry is powered by the voltage applied to the VCC pin. If VCC is disconnected, the logic part is supplied by the  
VBAT pin.  
The output driver for SPI signals, CLK pin (wake feedback), and OUT6 are supplied by the VCC pin only. This pin must be protected  
externally in case of a reverse polarity, and in case of a high-voltage disturbance.  
Fatal range  
Not operating range Degraded Operating Normal Operating  
Degraded operating  
range  
Fatal range  
Probable  
Range  
Range  
Probable  
permanent failure  
Reduced  
Full performance Reduced performance permanent failure  
performance  
Operating Range  
Figure 5. Ratings vs. operating requirements (VCC pin)  
12XS6D4  
NXP Semiconductors  
7
4.2  
Maximum ratings  
Table 3. Maximum ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
Description (rating)  
Min.  
Max.  
Unit  
Notes  
Electrical ratings  
VBAT  
VCC  
VBAT voltage range  
-16  
40  
V
V
VCC logic supply voltage  
-0.3  
7.0  
(2)  
(2)  
Digital input voltage  
• IN1:IN4 and LIMP  
VIN  
-0.3  
-0.3  
40  
20  
V
• CLK, SI, SCLK, CSB, and RSTB  
Digital output voltage  
VOUT  
ICL  
V
• SO, CSNS, SYNC, OUT6, CLK  
-0.3  
20  
(3)  
(4)  
Negative digital input clamp current  
5.0  
mA  
Power channel current  
• 8.0 mΩ channel  
• 21 mΩ channel  
IOUT  
11  
5.5  
A
(5)  
(6)  
Power channel clamp energy capability  
• 8.0 mΩ channel - Initial TJ = 25 °C  
200  
100  
75  
• 8.0 mΩ channel - Initial TJ = 150 °C  
• 21 mΩ channel - Initial TJ = 25 °C  
• 21 mΩ channel - Initial TJ = 150 °C  
ECL  
mJ  
50  
ESD voltage  
• Human body model (HBM) - VBAT, power channel, and GND pins  
• Human body model (HBM) - All other pins  
• Charge device model (CDM) - Corner pins  
• Charge device model (CDM) - All other pins  
-8000  
-2000  
-750  
+8000  
+2000  
+750  
VESD  
V
-500  
+500  
Notes  
2.  
3.  
4.  
Exceeding voltage limits on those pins may cause a malfunction or permanent damage to the device.  
Maximum current in negative clamping for IN1:IN4, LIMP, RSTB, CLK, SI, SO, SCLK, and CSB pins.  
Continuous high-side output current rating so long as maximum junction temperature is not exceeded. Calculation of maximum output current  
using package thermal resistance is required.  
5.  
6.  
Active clamp energy using single-pulse method (L = 2.0 mH, RL = 0 Ω, VBAT = 14 V). Refer to 6.1.4. Output clamps, page 37 section.  
ESD testing is performed in accordance with the human body model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), and the charge device model.  
12XS6D4  
8
NXP Semiconductors  
4.3  
Thermal characteristics  
Table 4. Thermal ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
Description (rating)  
Min.  
Max.  
Unit  
Notes  
Thermal ratings  
Operating temperature  
• Ambient  
TA  
TJ  
-40  
-40  
+125  
+150  
°C  
• Junction  
TSTG  
Storage temperature  
-55  
+ 150  
260  
°C  
°C  
(7) (8)  
TPPRT  
Peak package reflow temperature during reflow  
Thermal resistance and package dissipation ratings  
(9)  
(10) (11)  
(12)  
RΘJB  
RΘJA  
RΘJC  
Junction-to-board  
8.0  
21  
17  
°C/W  
°C/W  
°C/W  
Junction-to-ambient, natural convection, four-layer board (2s2p)  
Junction-to-case (case top surface)  
Notes  
7.  
Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause  
malfunction or permanent damage to the device.  
8.  
NXP’s package reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For peak package reflow temperature and  
moisture sensitivity levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes), enter the core ID to view all orderable  
parts, and review parametrics.  
9.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the  
board near the package.  
10.  
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.  
11.  
12.  
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
4.4  
Operating Conditions  
This section describes the operating conditions of the device. Conditions apply to all the following data, unless otherwise noted.  
Table 5. Operating conditions  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
Ratings  
Min.  
Max.  
Unit  
Notes  
Functional operating supply voltage - Device is fully functional. All features are  
operating.  
7.0  
18  
V
Overvoltage range  
• Jump start  
VBAT  
28  
40  
V
• Load dump  
Reverse battery  
-16  
4.5  
V
V
Functional operating supply voltage - Device is fully functional. All features are  
operating.  
VCC  
5.5  
12XS6D4  
NXP Semiconductors  
9
4.5  
Supply currents  
This section describes the current consumption characteristics of the device.  
Table 6. Supply currents  
Characteristics noted under conditions 4.5 V VCC 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Ratings  
Min.  
Typ.  
Max.  
Unit  
Notes  
VBAT current consumptionS  
Sleep mode measured at VPWR = 12 V  
• TA = 25 °C  
(13) (14)  
(14)  
IQVBAT  
1.2  
10  
5.0  
30  
µA  
• TA = 125 °C  
IVBAT  
Operating mode measured at VPWR = 18 V  
7.0  
8.0  
mA  
VCC current consumptionS  
IQVCC Sleep mode measured at VCC = 5.5 V  
0.05  
2.8  
5.0  
4.0  
µA  
IVCC  
Operating mode measured at VPWR = 5.5 V (SPI frequency 5.0 MHz)  
mA  
Notes  
13.  
With the OUT1:OUT4 power channels grounded.  
With the OUT1:OUT4 power channels opened.  
14.  
12XS6D4  
10  
NXP Semiconductors  
5
General IC functional description and application  
information  
5.1  
Introduction  
The 12XS6 is the latest SMARTMOS achievement in automotive drivers for all types of centralized automotive lighting applications. It is  
an evolution of the successful 12XS3 by providing improved features of a complete family of devices using NXP's latest and unique  
technologies for the controller and the power stages.  
It consists of a scalable family of devices compatible in terms of software driver and package footprint. It allows diagnosing the light-  
emitting diodes (LEDs) with an enhanced current sense precision with synchronization pin. It combines flexibility through daisy chainable  
SPI 5.0 MHz, extended digital and analog feedbacks, safety, and robustness. It integrates an enhanced PWM module with 8-bit duty cycle  
capability and PWM frequency prescaler per power channel.  
5.2  
Features  
The main attributes of 12XS6 are:  
• Dual, triple, quad, or penta high-side switches with overload, overtemperature, and undervoltage protection  
• Control output for one external smart power switch  
• 16-Bit SPI communication interface with daisy chain capability  
• Dedicated control inputs for use in fail mode  
• Analog feedback pin with SPI programmable multiplexer and sync signal  
• Channel diagnosis by SPI communication  
• Advanced current sense mode for LED usage  
• Synchronous PWM module with external clock, prescaler, and multiphase feature  
• Excellent EMC behavior  
• Power net and reverse polarity protection  
• Ultra low-power mode  
• Scalable and flexible family concept  
• Board layout compatible SOIC54 and SOIC32 package with exposed pad  
• AEC-Q100 grade 1 automotive qualified  
12XS6D4  
NXP Semiconductors  
11  
5.3  
Block diagram  
The choice of multi-die technology in SOIC exposed pad package including low cost vertical trench FET power die associated with Smart  
Power control die lead to an optimized solution.  
12XS6 - functional block diagram  
Power supply  
MCU interface and device control  
SPI interface  
Self-protected  
high-side  
switches  
OUT[x]  
Parallel control inputs  
PWM controller  
MCU  
interface  
Supply  
MCU interface and output control  
Self-protected high-side switches  
Figure 6. Functional block diagram  
5.3.1 Self-protected high-side switches  
OUT1:OUT4 are the output pins of the power switches. The power channels are protected against various kinds of short-circuits and have  
active clamp circuitry that may be activated when switching off inductive loads. Many protective and diagnostic functions are available.  
5.3.2 Power supply  
The device operates with supply voltages from 5.5 V to 40 V (VBAT), but is full spec. compliant only between 7.0 V and 18 V. The VBAT  
pin supplies power to the internal regulator, analog, and logic circuit blocks. The VCC pin (5.0 V typ.) supplies the output register of the  
serial peripheral interface (SPI). Consequently, the SPI registers cannot be read without presence of VCC. The employed IC architecture  
guarantees a low quiescent current in sleep mode.  
5.3.3 MCU interface and device control  
In normal mode, the power output channels are controlled by the embedded PWM module, which is configured by the SPI register settings.  
VCC must be in the authorized range for bidirectional SPI communication. Failure diagnostics and configuration are also performed through  
the SPI port. The reported failure types are: openload, short-circuit to battery, severe short-circuit to ground, overcurrent, overtemperature,  
clock-fail, and under and overvoltage.  
The device allows driving loads at different frequencies up to 400 Hz.  
5.4  
Functional description  
The device has four fundamental operating modes: sleep, normal, fail, and power off. It possesses multiple high-side switches (power  
channels) each of which can be controlled independently:  
• In normal mode by SPI interface. A second supply voltage (VCC) is required for bidirectional SPI communication  
• In fail mode by the corresponding direct inputs IN1:IN4. OUT6 is off in this mode  
12XS6D4  
12  
NXP Semiconductors  
5.5  
Modes of operation  
The operating modes are based on the signals:  
• wake = (IN1_ON) OR (IN2_ON) OR (IN3_ON) OR (IN4_ON) OR (RSTB). More details in 6.3.3.2. Logic I/O plausibility check,  
page 55 section  
• fail = (SPI_fail) OR (LIMP). More details in 6.3.3.1. Loss of communication interface, page 55 section  
Sleep  
wake = [0]  
wake = [0]  
wake = [1]  
(VBAT < VBATPOR) and  
(VCC < VCCPOR  
(VBAT > VBATPOR) or  
(VCC > VCCPOR  
)
)
(VBAT < VBATPOR) and  
(VCC < VCCPOR  
(VBAT < VBATPOR) and  
(VCC < VCCPOR  
Power  
off  
)
)
Normal  
fail = [0] and valid watchdog toggle  
fail = [1]  
Fail  
Figure 7. General IC operating modes  
5.5.1 Power off mode  
The power off mode is applied when VBAT and VCC are below the power on reset threshold (VBAT POR, VCC POR). In power off, no  
functionality is available but the device is protected by the clamping circuits. Refer to 6.2.3. Supply voltages disconnection, page 53.  
5.5.2 Sleep mode  
The sleep mode is used to provide ultra low current consumption. During sleep mode:  
• the component is inactive and all outputs are disabled  
• the outputs are protected by the clamping circuits  
• the pull-up/pull-down resistors are present  
The sleep mode is the default mode of the device after applying the supply voltages (VBAT or VCC) prior to any wake-up condition  
(wake = [0]). The wake-up from sleep mode is provided by the wake signal.  
5.5.3 Normal mode  
The normal mode is the regular operating mode of the device. The device is in normal mode, when the device is in the wake state  
(wake = [1]) and no fail condition (fail = [0]) is detected.  
During normal mode:  
• the power outputs are under control of the SPI  
• the power outputs are controlled by the programmable PWM module  
• the power outputs are protected by the overload protection circuit  
• the control of the power outputs by SPI programming  
• the digital diagnostic feature transfers status of the smart switch via the SPI  
• the analog feedback output (CSNS and CSNS SYNC) can be controlled by the SPI  
12XS6D4  
NXP Semiconductors  
13  
The channel control (CHx) can be summarized:  
• CH1:4 controlled by ONx or iINx (if it is programmed by the SPI)  
• CH6 controlled by ONx  
• Rising CHx by definition means starting overcurrent window for OUT1:4  
5.5.4 Fail mode  
The device enters the fail mode, when:  
• the LIMP input pin is high (logic [1])  
• or the SPI failure is detected  
During fail mode (wake = [1] & fail = [1]):  
• the OUT1:OUT4 outputs are directly controlled by the corresponding control inputs (IN1:IN4)  
• the OUT6 is turned off  
• the PWM module is not available  
• while no SPI control is feasible, the SPI diagnosis is functional (depending on the fail mode condition):  
• the SO must report the content of SO register defined by SOA0 to 3 bits  
• the outputs are fully protected in case of an overload, overtemperature, and undervoltage  
• no analog feedback is available  
• the max. output overcurrent profile is activated (OCLO and window times)  
• in case of an overload condition or undervoltage, the autorestart feature controls the OUT1:OUT4 outputs  
• in case of an overtemperature condition, OCHI1 detection, or severe short-circuit detection, the corresponding output is  
latched OFF until a new wake-up event.  
The channel control (CHx) can be summarized:  
• CH1:4 controlled by iINx, while the overcurrent windows are controlled by IN_ONx  
• CH6 is off  
5.5.5 Mode transitions  
After a wake-up:  
• a power on reset is applied and all SPI SI and SO registers are cleared (logic[0])  
• the faults are blanked during tBLANKING  
The device enters in normal mode after start-up if following sequence is provided:  
• VBAT and VCC power supplies must be above their undervoltage thresholds (sleep mode)  
• generate wake-up event (wake =1) setting RSTB from 0 to 1  
The device initialization is completed after 50 µsec (typ). During this time, the device is robust in case of VBAT interrupts higher than  
150 nsec.  
The transition from “normal mode” to “fail mode” is executed immediately when a fail condition is detected.  
During the transition, the SPI SI settings are cleared and the SPI SO registers are not cleared.  
When the fail mode condition was a:  
• LIMP input, WD toggle timeout, WD toggle sequence, or the SPI modulo 16 error, the SPI diagnosis is available during fail  
mode  
• SI/SO stuck to static level, the SPI diagnosis is not available during fail mode  
The transition from “fail mode” to “normal mode” is enabled, when:  
• the fail condition is removed and  
• two SPI commands are sent within a valid watchdog cycle (first WD=[0] and then WD=[1])  
During this transition:  
• all SPI SI and SO registers are cleared (logic[0])  
• the DSF (device status flag) in the registers #1:#7 and the RCF (register clearer flag) in the device status register #1 are set  
(logic[1])  
To delatch the RCF diagnosis, a read command of the quick status register #1 must be performed.  
12XS6D4  
14  
NXP Semiconductors  
5.6  
SPI interface and configurations  
5.6.1 Introduction  
The SPI is used to:  
• control the device in case of normal mode  
• provide diagnostics in case of normal and fail mode  
The SPI is a 16 Bit full-duplex synchronous data transfer interface with daisy chain capability.  
The interface consists of four I/O lines with 5.0 V CMOS logic levels and termination resistors:  
• The SCLK pin clocks the internal shift registers of the device  
• The SI pin accepts data into the input shift register on the rising edge of the SCLK signal  
• The SO pin changes its state on the rising edge of SCLK and reads out on the falling edge  
• The CSB enables the SPI interface  
• with the leading edge of CSB the registers are loaded  
• while CSB is logic [0] SI/SO data are shifted  
• with the trailing edge of the CSB signal, SPI data is latched into the internal registers  
• when CSB is logic [1], the signals at the SCLK and SI pins are ignored and SO is high-impedance  
When the RSTB input is:  
• low (logic [0]), the SPI and the fault registers are reset. The Wake state then depends on the status of the input pins  
(IN_ON1:IN_ON4)  
• high (logic[1]), the device is in Wake status and the SPI is enabled  
The functionality of the SPI is checked by a plausibility check. In case of the SPI failure the device enters the fail mode.  
5.6.2 SPI input register and bit descriptions  
The first nibble of the 16-bit data word (D15:D12) serves as address bits.  
SI address  
D14  
SI data  
Register  
#
D15  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
name  
8
4 Bit address  
WD  
11 Bit address  
11 bits (D10:D1) are used as data bits.  
The D11 bit is the WD toggle bit. This bit has to be toggled with each write command.  
When the toggling of the bit is not executed within the WD timeout, the SPI fail is detected.  
All register values are logic [0] after a reset. The predefined value is off/inactive unless otherwise noted.  
12XS6D4  
NXP Semiconductors  
15  
Register  
SI address  
SI data  
#
0
D15  
D14  
D13  
D12  
0
D11  
WD  
WD  
WD  
WD  
WD  
WD  
WD  
WD  
WD  
WD  
WD  
WD  
WD  
WD  
WD  
WD  
WD  
D10  
D9  
D8  
D7  
D6  
MUX1  
X
D5  
D4  
D3  
D2  
D1  
D0  
SYNC  
EN1  
SYNC  
EN0  
SOA  
MODE  
OCHI  
OD3  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
0
0
1
0
0
0
1
1
1
0
0
0
0
WD SEL  
MUX2  
MUX0  
SOA3  
SOA2  
SOA1  
SOA0  
Initialisation 1  
initialisation 2  
CH1 control  
CH2 control  
CH3 control  
CH4 control  
CH6 control  
OCHI  
OD4  
OCHI  
OD2  
OCHI  
OD1  
PWM  
sync  
OTW  
SEL  
OCHI  
THERMAL  
OCHI  
0
1
NO HID1 NO HID0  
TRANSIENT  
1
0
0
PH11  
PH01  
PH02  
PH03  
PH04  
PH06  
PSF4  
X
ON1  
ON2  
ON3  
ON4  
ON6  
PSF3  
X
PWM71 PWM61 PWM51 PWM41 PWM31 PWM21 PWM11 PWM01  
PWM72 PWM62 PWM52 PWM42 PWM32 PWM22 PWM12 PWM02  
PWM73 PWM63 PWM53 PWM43 PWM33 PWM23 PWM13 PWM03  
PWM74 PWM64 PWM54 PWM44 PWM34 PWM24 PWM14 PWM04  
PWM76 PWM66 PWM56 PWM46 PWM36 PWM26 PWM16 PWM06  
2
0
1
PH12  
3
1
0
PH13  
4
1
1
PH14  
5
1
1
PH16  
7
output  
control  
0
0
X
0
1
0
1
0
0
1
0
1
PSF2  
X
PSF1  
X
ON6  
X
X
ON4  
ON3  
ON2  
ON1  
8
GPWM  
EN6  
GPWM  
EN4  
GPWM  
EN3  
GPWM  
EN2  
GPWM  
EN1  
0
1
9-1  
9-2  
10-1  
10-2  
11  
12-1  
12-2  
13-1  
13-2  
Global PWM  
control  
0
1
X
X
GPWM7 GPWM6 GPWM5 GPWM4 GPWM3 GPWM2 GPWM1 GPWM0  
ACM  
0
0
X
OCLO4 OCLO3 OCLO2 OCLO1  
X
X
ACM EN4 ACM EN3 ACM EN2  
over current  
control  
EN1  
SHORT SHORT SHORT SHORT  
OCHI4 OCHI3 OCHI2 OCHI1  
NO  
OCHI4  
NO  
OCHI3  
NO  
OCHI2  
NO  
OCHI1  
0
0
X
0
1
X
X
X
X
INEN14 INEN04 INEN13 INEN03 INEN12 INEN02 INEN11 INEN01  
input enable  
1
0
X
PRS14  
X
PRS04  
X
PRS13  
X
PRS03  
PRS12  
X
PRS02  
X
PRS11  
PRS16  
PRS01  
PRS06  
prescaler  
settings  
1
0
X
X
X
X
OLON  
DGL4  
OLON  
DGL3  
OLON  
DGL2  
OLON  
DGL1  
OLOFF OLOFF OLOFF OLOFF  
EN4  
OLLED  
EN4  
1
1
X
OL control  
EN3  
OLLED  
EN3  
EN2  
OLLED  
EN2  
EN1  
OLLED  
EN1  
OLLED  
TRIG  
1
1
res  
res  
res  
res  
OLLED control  
INCR  
SGN  
X
increment /  
dercrement  
testmode  
1
1
1
1
1
1
0
1
WD  
X
X
X
X
X
INCR14 INCR04 INCR13 INCR03 INCR12 INCR02 INCR11 INCR01  
14  
15  
X
X
X
X
X
X
X
X
WD #0~#14 = watchdog toggle bit  
#0  
MUX2  
MUX1  
MUX0 CSNS  
SOA0 ~ SOA3  
SOA MODE  
MUX0 ~ MUX2  
#0  
#0  
#0  
#0  
#0  
#1  
#1  
#1  
#1  
#1  
#1  
= address of next SO data word  
= single read address of next SO data word  
= CSNS multiplexer setting  
= SYNC delay setting  
= watchdog timeout select  
= over temperature warning threshold selection  
= reset clock module  
= OCHI window on load demand  
= HID outputs selection  
= OCHI1 level depending on control die temperature  
= OCHIx levels adjusted during OFF-to-ON transition  
0
0
0
0
1
1
1
1
0
0
1
1
0
1
0
1
0
1
0
1
off  
OUT1 current  
OUT2 current  
OUT3 current  
OUT4 current  
N/A  
SYNC EN0~ SYNC EN1  
WD SEL  
OTW SEL  
PWM SYNC  
OCHI ODx  
NO HIDx  
0
0
1
VBAT monitor  
control die temp.monitor  
1
#0  
SYNC  
SYNC Sync status  
EN0  
0
1
0
1
OCHI THERMAL  
OCHI TRANSIENT  
PWM0x ~ PWM7x #2~#7 = PWM value (8Bit)  
PH0x ~ PH1x #2~#7 = phase control  
ONx #2~#8 = channel on/off incl. OCHI control  
PSFx  
GPWM ENx  
GPWM1 ~ GPWM7  
EN1  
0
0
1
1
sync off  
valid  
trig0  
trig1/2  
#8  
= pulse skipping feature for power output channels  
#9-1 = global PWM enable  
#2~#7  
#11  
PH 1x  
PH 0x  
Phase  
#9-2 = global PWM value (8Bit)  
0
0
1
1
0
1
0
1
0°  
ACM ENx #10-1 = advanced current sense mode enable  
OCLOx #10-1 = OCLO level control  
SHORT N/A #10-2 = use short OCHI window time  
NO OCHIx #10-2 = start with OCLO threshold  
90°  
180°  
270°  
GPWM  
ENx  
INx=0  
INx=1  
ONx  
INEN1x INEN0x  
INEN0x ~ INEN1x  
PRS0x ~ PRS1x  
OLOFF ENx #13-1 = OL load in off state enable  
OLON DGLx #13-1 = OL ON deglitch time  
OLLED ENx #13-2 = OL LED mode enable  
OLLED TRIG #13-2 = trigger for OLLED detetcion in 100% d.c.  
INCR SGN  
#11  
#12  
= input enable control  
= pre scaler setting  
OUTx  
OFF  
ON  
PWMx  
OUTx  
OFF  
ON  
PWMx  
0
x
x
x
x
x
0
individual  
global  
individual  
global  
individual  
global  
individual  
global  
global  
0
0
1
ON  
ON  
0
OFF  
OFF  
OFF  
OFF  
ON  
individual  
global  
individual  
global  
individual  
global  
ON  
0
1
1
1
0
1
1
ON  
1
0
ON  
#14  
#14  
= PWM increment / decrement sign  
= PWM increment / decrement setting  
1
ON  
INCR0x ~ INCR1x  
0
ON  
1
ON  
ON  
individual  
#12  
#1  
NO HID1 NO HID0  
HID Selection  
available for all channels  
available for channel 3 only  
available for channels 3 and 4 only  
unavailable for all channels  
25Hz .... 100Hz  
0
0
1
1
0
1
0
1
#14  
#14  
12XS6D4  
16  
NXP Semiconductors  
5.6.3 SPI output register and bit descriptions  
The first nibble of the 16-bit data word (D12:D15) serves as address bits.  
All register values are logic [0] after a reset, except DSF and RCF bits. The predefined value is off/inactive unless otherwise noted.  
Register  
SO address  
SO data  
#
0
D15  
D14  
D13  
D12  
0
D11  
X
D10  
X
D9  
X
D8  
X
D7  
X
D6  
D5  
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
0
0
0
0
0
X
X
not used  
1
0
1
FM  
DSF  
OVLF  
OLF  
CPF  
RCF  
CLKF  
X
QSF4  
QSF3  
QSF2  
QSF1  
quick status  
2
3
4
5
7
8
9
0
0
0
0
0
1
1
0
0
1
1
1
0
0
1
1
0
0
1
0
0
0
1
0
1
1
0
1
FM  
FM  
FM  
FM  
FM  
FM  
FM  
DSF  
DSF  
DSF  
DSF  
DSF  
res  
OVLF  
OVLF  
OVLF  
OVLF  
OVLF  
TOGGLE  
res  
OLF  
OLF  
OLF  
OLF  
OLF  
iIN4  
res  
res  
res  
res  
res  
res  
iIN3  
OTS1  
OTS2  
OTS3  
OTS4  
res  
OTW1  
OTW2  
OTW3  
OTW4  
res  
OC21  
OC22  
OC23  
OC24  
TMF  
X
OC11  
OC12  
OC13  
OC14  
OVF  
OC01  
OC02  
OC03  
OC04  
UVF  
OLON1 OLOFF1  
OLON2 OLOFF2  
OLON3 OLOFF3  
OLON4 OLOFF4  
CH1 status  
CH2 status  
CH3 status  
CH4 status  
device status  
I/O status  
SPIF  
iLIMP  
OUT1  
iIN2  
iIN1  
OUT4  
OUT3  
OUT2  
DEVID  
7
DEVID  
6
DEVID  
5
DEVID  
4
DEVID  
3
DEVID  
2
DEVID  
1
DEVID  
0
res  
device ID  
address from 1010 to 1110  
10-14  
15  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
not used  
testmode  
1
1
1
1
QSFx  
CLKF  
RCF  
#1  
#1  
#1  
#1  
= quick status (OC or OTW or OTS or OLON or OLOFF)  
= PWM clock fail flag  
#2~#6  
OC2x  
OC1x OC0x over current status  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
no overcurrent  
OCHI1  
= registers clear flag  
CPF  
= charge pump flag  
OCHI2  
OLF #1~#7 = open load flag (wired or of all OL signals)  
OVLF #1~#7 = over load flag (wired or of all OC and OTS signals)  
OCHI3  
OCLO  
DSF #1~#7 = device status flag (RCF or UVF or OVF or CPF or CLKF or TMF)  
FM #1~#8 = fail mode flag  
OLOFFx #2~#6 = open load in off state status bit  
OLONx #2~#6 = open load in on state status bit  
OTWx #2~#6 = over temperature warning bit  
OTSx #2~#6 = over temperature shutdown bit  
iLIMP  
SPIF  
UVF  
OVF  
TMF  
OUTx  
iINx  
TOGGLE  
OCHIOD  
SSC  
not used  
#9  
DEVID2 DEVID1 DEVID0 device type  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Penta3/2  
Penta0/5  
Quad2/2  
Quad0/4  
Triple1/2  
Triple0/3  
res  
#7  
#7  
#7  
#7  
#7  
#8  
#8  
#8  
#9  
#9  
#9  
= limp input pin status  
= SPI fail flag  
= under voltage flag  
= over voltage flag  
= testmode activation flag  
= status of VBAT/2 comparator (reported in real time)  
= status of iINx signal (reported in real time)  
res  
= status of INx_ON signals (IN1_ON or IN2_ON or IN3_ON or IN4_ON)  
DEVID0 ~ DEVID2  
DEVID3 ~ DEVID4  
DEVID5 ~ DEVID7  
= device type  
= device family  
= design status (incremented number)  
12XS6D4  
NXP Semiconductors  
17  
5.6.4 Timing diagrams  
RSTB  
V
V
IH  
IL  
10% VCC  
t
t
CS  
ENBL  
t
WRST  
CSB  
90% VCC  
V
V
IH  
IL  
10% VCC  
t
RSI  
t
WSCLKh  
t
LAG  
t
LEAD  
V
V
IH  
IL  
90% VCC  
10% VCC  
SCLK  
t
SI(SU)  
t
WSCLKl  
t
FSI  
t
SI(H)  
V
V
IH  
IL  
90% VCC  
10% VCC  
SI  
Must be Valid  
Don’t Care  
Must be Valid  
Don’t Care  
Don’t Care  
t
t
SOEN  
SODIS  
V
V
IH  
IL  
Tri-stated  
Tri-stated  
SO  
Figure 8. Timing requirements during SPI Communication  
t
t
FSI  
RSI  
V
OH  
90% VCC  
50%  
SCLK  
10% VCC  
V
V
OL  
OH  
10% VCC  
SO  
V
OL  
t
RSO  
Low to High  
t
VALID  
t
FSO  
SO  
V
V
OH  
OL  
High To Low  
90% VCC  
10% VC  
Figure 9. Timing diagram for serial output (SO) data communication  
12XS6D4  
18  
NXP Semiconductors  
5.6.5 Electrical characterization  
Table 7. Electrical characteristics  
Characteristics noted under conditions 4.5 V VCC 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
SPI signals CSB, SI, SO, SCLK, SO  
fSPI  
VIH  
SPI clock frequency  
0.5  
5.0  
MHz  
V
Logic input high state level (SI, SCLK, CSB, RSTB)  
Logic input high state level for wake-up (RSTB)  
Logic input low state level (SI, SCLK, CSB, RSTB)  
Logic output high state level (SO)  
3.5  
VIH(WAKE)  
VIL  
3.75  
V
VCC - 0.4  
0.85  
V
VOH  
V
VOL  
Logic output low state level (SO)  
0.4  
V
Logic input leakage current in inactive state (SI = SCLK = RSTB = [0]  
and CSB = [1])  
IIN  
-0.5  
+0.5  
µA  
IOUT  
RPULL  
RPULL-CSB  
CIN  
Logic output tri-state leakage current (SO from 0 V to VCC  
Logic input pull-up/pull-down resistor  
Logic pull-up resistor for CSB  
)
-10  
25  
25  
+1.0  
100  
130  
20  
µA  
kΩ  
kΩ  
pF  
µs  
ns  
ns  
ns  
(15)  
Logic input capacitance  
tRST_DGL  
tSO  
tWCLKh  
tWCLKl  
RSTB deglitch time  
7.5  
10  
12.5  
20  
SO rising and falling edges with 80 pF  
Required high state duration of SCLK (required setup time)  
Required low state duration of SCLK (required setup time)  
80  
80  
Required duration from the rising to the falling edge of CSB (required  
setup time)  
tCS  
1.0  
µs  
tRST  
tLEAD  
tLAG  
Required low state duration for reset RSTB  
1.0  
320  
100  
20  
20  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
Falling edge of CSB to rising edge of SCLK (required setup time)  
Falling edge of SCLK to rising edge of CSB (required setup lag time)  
SI to falling edge of SCLK (required setup time)  
tSI(SU)  
tSI(H)  
tRSI  
Falling edge of SCLK to SI (required hold time of the SI signal)  
SI, CSB, SCLK, Max. rise time allowing operation at maximum fSPI  
SI, CSB, SCLK, Max. fall time allowing operation at maximum fSPI  
20  
20  
50  
50  
tFSI  
Time from falling edge of CSB to reach low-impedance on SO  
(access time)  
tSO(EN)  
60  
ns  
tSO(DIS)  
tWRST  
Time from rising edge of CSB to reach tri-state on SO  
Required low state of RSTB  
60  
ns  
µs  
1.0  
Notes  
15.  
Parameter is derived from simulations.  
12XS6D4  
NXP Semiconductors  
19  
6
Functional block requirements and behaviors  
6.1  
Self-protected high-side switches description and application  
information  
6.1.1 Features  
Up to four power outputs are foreseen to drive automotive light applications. The outputs are optimized for driving automotive bulbs, but  
also HID ballasts, LEDs, and other primarily resistive loads.  
The smart switches are controlled by use of high sophisticated gate drivers. The gate drivers provide:  
• output pulse shaping  
• output protections  
• active clamps  
• output diagnostics  
6.1.2 Output pulse shaping  
The outputs are controlled with a closed loop active pulse shaping to provide the best compromise between:  
• low switching losses  
• low EMC emission performance  
• minimum propagation delay time  
Depending on the programming of the prescaler setting register #12-1, #12-2, the switching speeds of the outputs are adjusted to the  
output frequency range of each channel.  
The edge shaping must be designed according the following table:  
PWM freq. (Hz)  
PWM period (ms)  
d.c. range (hex)  
min. max.  
03 FB  
d.c. range (LSB)  
min. max  
252  
min. on/off  
duty cycle  
time (μs)  
divider  
factor  
min.  
max.  
min.  
max.  
4
2
1
25  
50  
100  
200  
400  
10  
5
40  
20  
10  
4
156  
156  
78  
07  
07  
F7  
F7  
8
8
248  
248  
100  
2.5  
The edge shaping provides full symmetry for rising and falling transition:  
• the slopes for the rising and falling edge are matched to provide the best EMC emission performance  
• the shaping of the upper edges and the lower edges are matched to provide the best EMC emission performance  
• the propagation delay time for the rising edge and the falling edge is matched to provide true duty cycle control of the output  
duty cycle error, < 1 LSB at max. frequency  
• a digital regulation loop is used to minimize the duty cycle error of the output signal  
12XS6D4  
20  
NXP Semiconductors  
Figure 10. Typical power output switching (slow and fast slew rate)  
6.1.2.1  
SPI control and configuration  
For optimized control of the outputs, a synchronous clock module is integrated. The PWM frequency and output timing during normal mode  
are generated from the clock input (CLK) by the integrated PWM module. In case of clock fail (very low frequency, very high frequency),  
the output duty cycle is 100%.  
Each output (OUT1:OUT6) can be controlled by an individual channel control register:  
SI address  
D14  
SI data  
Register  
#
D15  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PWM7 PWM6 PWM5 PWM4 PWM3 PWM2 PWM1 PWM0  
CHx control 2-7  
channel address  
WD  
PH1x PH0x Onx  
x
x
x
x
x
x
x
x
where:  
• PH0x:PH1x: phase assignment of the output channel x  
• ONx: on/off control including overcurrent window control of the output channel x  
• PWM0x:PWM7x: 8-bit PWM value individually for each output channel x  
The ONx bits are duplicated in the output control register #8 to control the outputs with either the CHx control register or the output control  
register.  
The PRS1x:PRS0x prescaler settings can be set in the prescaler settings register #12-1 and #12-2.  
The following changes of the duty cycle are performed asynchronous (with pos. edge of CSB signal):  
• turn-on with 100% duty cycle (CHx = ON)  
• change of duty cycle value to 100%  
• turn-off (CHx = OFF)  
• phase setting (PH0x:PH1x)  
• prescaler setting (PRS1x:PRS0x)  
A change in phase setting or prescaler setting during CHx = ON may cause an unwanted long on-time. Therefore it is recommended to  
turn-off the output(s) before execution of this change.  
The following changes of the duty cycle are performed synchronous (with the next PWM cycle):  
• turn-on with less than 100% duty cycle (OUTx = ONx)  
• change of duty cycle value to less than 100%  
A change of the duty cycle value can be achieved by a change of the:  
• PWM0x:PWM7x bits in individual channel control register #2:#7  
• GPWM EN1: GPWM EN6 bits (change between individual PWM and global PWM settings) in global PWM control register #9-1  
• incremental/decremental register #14  
The synchronization of the switching phases between different devices is provided by the PWM SYNC bit in the initialization 2 register #1.  
12XS6D4  
NXP Semiconductors  
21  
On the SPI write into initialization 2 register (#1):  
• initialization when the bit D1 (PWM SYNC) is logic[1], all counters of the PWM module are reset with the positive edge of the  
CSB, i.e. the phase synchronization is performed immediately within one SPI frame. It could help to synchronize different  
12XS6 devices in the board  
• when the bit D1 is logic[0], no action is executed  
The switching frequency can be adjusted for the corresponding channel as described in the following table:  
CLK freq. (kHz)  
Prescaler setting  
PRS1x PRS0x  
PWM freq. (Hz)  
PWM resolution)  
Divider  
factor  
slew rate  
min.  
max.  
min.  
max.  
(Bit)  
(steps)  
0
0
4
2
1
25  
50  
100  
200  
400  
slow  
slow  
fast  
25.6  
102.4  
0
1
1
8
256  
X
100  
No PWM feature is provided in case of:  
• Fail mode  
• Clock input signal failure  
6.1.2.2  
Global PWM control  
In addition to the individual PWM register, each channel can be assigned independently to a global PWM register.  
The setting is controlled by the GPWM EN bits inside the global PWM control register #9-1. When no control by direct input pin is enabled  
and the GPWM EN bit is:  
• low (logic[0]), the output is assigned to individual PWM (default status)  
• high (logic[1]), the output is assigned to global PWM  
The PWM value of the global PWM channel is controlled by the global PWM control register #9-2.  
Table 8. Global PWM register  
INx = 0  
INx = 1  
ONx  
INEN1x  
INEN0x  
GPWM ENx  
CHx  
PWMx  
CHx  
PWMx  
0
x
x
x
0
1
0
1
0
1
OFF  
ON  
x
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
x
individual  
global  
individual  
global  
0
0
ON  
0
1
1
0
OFF  
OFF  
ON  
individual  
global  
individual  
global  
1
individual  
global  
global  
1
1
ON  
individual  
When a channel is assigned to global PWM, the switching phase the prescaler and the pulse skipping are according the corresponding  
output channel setting.  
6.1.2.3  
Incremental PWM control  
To reduce the control overhead during soft start/stop of bulbs (e.g. theatre dimming), an incremental PWM control feature is implemented.  
With the incremental PWM control feature the PWM values of all internal channels OUT1:OUT4 can be incremented or decremented with  
one SPI frame.  
The incremental PWM feature is not available for:  
• the global PWM channel  
• the external channel OUT6  
The control is according the increment/decrement register #14:  
• INCR SGN: sign of incremental dimming (valid for all channels)  
• INCR 1x, INCR 0x increment/decrement  
12XS6D4  
22  
NXP Semiconductors  
INCR SGN increment/decrement  
0
1
decrement  
increment  
INCR 1x INCR 0x increment/decrement  
0
0
1
1
0
1
0
1
no increment/decrement  
4
8
16  
This feature limits the duty cycle to the rails (00 resp. FF) to avoid any overflow.  
6.1.2.4  
Pulse skipping  
Due to the output pulse shaping feature and the resulting switching delay time of the smart switches, duty cycles close to 0% resp. 100%  
can not be generated by the device. Therefore the pulse skipping feature (PSF) is integrated to interpolate this output duty cycle range in  
normal mode.  
The pulse skipping provides a fixed duty cycle pattern with eight states to interpolate the duty cycle values between F7 (Hex) and FF (Hex).  
The range between 00 (Hex) and 07 (Hex) is not considered to be provided.  
The pulse skipping feature:  
• is available individually for the power output channels (OUT1:OUT4)  
• is not available for the external channel (OUT6)  
The feature is enabled with the PSF bits in the output control register #8.  
When the corresponding PSF bit is:  
• low (logic[0]), the pulse skipping feature is disabled on this channel (default status)  
• high (logic[1]), the pulse skipping feature is enabled on this channel  
PWMduty cycle  
pulse skippingframe  
S0 S1 S2 S3 S4 S5 S6 S7  
FF FF FF FF FF FF FF FF  
F7 FF FF FF FF FF FF FF  
F7 FF FF FF F7 FF FF FF  
F7 FF F7 FF F7 FF FF FF  
F7 FF F7 FF F7 FF F7 FF  
F7 F7 F7 FF F7 FF F7 FF  
F7 F7 F7 FF F7 F7 F7 FF  
F7 F7 F7 F7 F7 F7 F7 FF  
hex  
FF  
FE  
FD  
FC  
FB  
FA  
F9  
F8  
F7  
F6  
F5  
dec  
256  
255  
254  
253  
252  
251  
250  
249  
248  
247  
246  
[%]  
100,00%  
99,61%  
99,22%  
98,83%  
98,44%  
98,05%  
97,66%  
97,27%  
96,88%  
96,48%  
96,09%  
245  
F4  
95,70%  
.
.
.
.
.
.
.
.
.
.
.
.
4
3
2
1
03  
02  
01  
00  
1,56%  
1,17%  
0,78%  
0,39%  
12XS6D4  
NXP Semiconductors  
23  
6.1.2.5  
Input control  
Up to four dedicated control inputs (IN1:IN4) are foreseen to:  
• wake-up the device  
• fully control the corresponding output in case of fail mode  
• control the corresponding output in case of normal mode  
The control during normal mode is according the INEN0x and INEN1x bits in the input enable register #11. See Table 8.  
An input deglitcher is provided at each control input to avoid high frequency control of the outputs. The internal signal is called iINx.  
The channel control (CHx) can be summarized:  
• Normal mode:  
• CH1:4 controlled by ONx or INx (if it is programmed by the SPI)  
• CH6 controlled by ONx  
• Rising CHx by definition means starting overcurrent window for OUT1:4  
• Fail mode:  
• CH1:4 controlled by iINx, while the over current windows are controlled by IN_ONx  
• CH6 are off  
The input thresholds are logic level compatible, so the input structure of the pins are able to withstand battery voltage level (max.40 V)  
without damage. External current limit resistors (i.e. 1.0 kΩ:10 kΩ) can be used to handle reverse current conditions.  
The inputs have an integrated pull-down resistor.  
6.1.2.6  
Electrical characterization  
Table 9. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Power outputs OUT1:OUT4  
On-resistance, drain-to-source for 8.0 mΩ power channel  
• TJ = 25 °CV  
7.5  
14.8  
14  
• TJ = 150 °C  
RDS(on)  
mΩ  
• TJ = 25 °C, VBAT = -12 V  
• TJ = 150 °C, VBAT = -12 V  
18  
On-resistance, drain-to-source for 21 mΩ power channel  
• TJ = 25 °C  
19  
35.7  
36  
• TJ = 150 °C  
RDS(on)  
mΩ  
• TJ = 25 °C, VBAT = -12 V  
• TJ = 150 °C, VBAT = -12 V  
47  
Sleep mode output leakage current (output shorted to GND) per  
channel  
0.5  
5.0  
5.0  
25  
• TJ = 25 °C, VBAT = 12 V  
• TJ = 125 °C, VBAT = 12 V  
• TJ = 25 °C, VBAT = 35 V  
• TJ = 125 °C, VBAT = 35 V  
ILEAK SLEEP  
µA  
µA  
Operational output leakage current in off-state per channel  
• TJ = 25 °C, VBAT = 18 V  
IOUT OFF  
10  
20  
• TJ = 125 °C, VBAT = 18 V  
Output PWM duty cycle range (measured at VOUT = VBAT/2  
)
• Low frequency range (25 Hz to 100 Hz)  
• Medium frequency range (50 Hz to 200 Hz)  
• High frequency range (100 Hz to 400 Hz)  
4.0  
8.0  
8.0  
252  
248  
248  
δPWM  
LSB  
12XS6D4  
24  
NXP Semiconductors  
Table 9. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Power outputs OUT1:OUT4 (continued)  
Rising and falling edges slew-rate at VBAT = 14 V (measured from  
V
OUT = 2.5 V to VBAT - 2.5 V)  
• Low frequency range  
• Medium frequency range  
• High frequency range  
(16)  
SR  
0.25  
0.25  
0.5  
0.42  
0.42  
0.84  
0.6  
0.6  
1.25  
V/µs  
(16)  
(16)  
ΔSR  
Rising and falling edges slew rate matching at VBAT = 14 V (SRr/SRf)  
0.9  
1.0  
1.1  
Turn-on and turn-off delay times at VBAT = 14 V  
• Low frequency range  
20  
20  
10  
60  
60  
30  
100  
100  
50  
tDLY  
µs  
• Medium frequency range  
• High frequency range  
Turn-on and turn-off delay times matching at VBAT = 14 V  
• Low frequency range  
-20  
-20  
-10  
0.0  
0.0  
0.0  
20  
20  
10  
(16)  
ΔtDLY  
µs  
µs  
• Medium frequency range  
• High frequency range  
tOUTPUT SD  
Shutdown delay time in case of fault  
0.5  
2.5  
4.5  
Reference PWM clock  
fCLK Clock input frequency range  
25.6  
102.4  
kHz  
Notes  
16.  
With nominal resistive load: 2.5 Ω and 5.0 Ω respectively for 8.0 mΩ and 21 mΩ channel.  
6.1.3 Output protections  
The power outputs are protected against fault conditions in normal and fail mode in case of:  
• overload conditions  
• harness short-circuit  
• overcurrent protection against ultra-low resistive short-circuit conditions thanks to smart overcurrent profile and severe short-  
circuit protection  
• overtemperature protection including overtemperature warning  
• under and overvoltage protections  
• charge pump monitoring  
• reverse battery protection  
In case a fault condition is detected, the corresponding output is commanded off immediately after the deglitch time tFAULT SD  
.
The turn-off in case of a fault shutdown (OCHI1, OCHI2, OCHI3, OCLO, OTS, UV, CPF, OLOFF) is provided by the FTO feature (fast  
turn-off).  
The FTO:  
• does not use edge shaping  
• is provided with high slew rate to minimize the output turn-off time tOUTPUT SD, in regards to the detected fault  
• uses a latch which keeps the FTO active during an undervoltage condition (0 < VBAT < VBAT UVF  
)
12XS6D4  
NXP Semiconductors  
25  
Figure 11. Power output switching in nominal operation and in case of fault  
Normal mode  
In case of a fault condition during normal mode:  
• the status is reported in the quick status register #1 and the corresponding channel status register #2:#5.  
To restart the output:  
• the channel must be restarted by writing the corresponding ON bit in the channel control register #2:#5 or output control register  
#8  
12XS6D4  
26  
NXP Semiconductors  
OLOFF  
(Ioutx > I oloff thres) or (t > t oloff)  
OUTx = 1  
(OLOFF ENx = 1)  
(rewrite CHx=1) & (tochi1+tochi2< t <tochi1+tochi2+tochi3)  
(rewrite CHx=1) & (tochi1< t <tochi1+tochi2)  
[(set CHx=1) & (fault x=0)] or  
[(rewrite CHx=1) & (t<tochi1)]  
(t>tochi1 + tochi2)  
& (fault x=0)  
(t > tochi1) & (fault x=0)  
off  
OCHI1  
OCHI2  
OCHI3  
OUTx = HSONx  
OUTx = HSONx  
OUTx = HSONx  
OUTx = off  
(CHx=0) or (fault x=1)  
(CHx=0) or (fault x=1)  
(CHx=0) or (fault x=1)  
(OCLOx=1) & (OCHI ODx=1)  
(NO OCHIx=1) & (fault x=0)  
(NO OCHIx =1) & (fault x=0)  
(CHx=0) or (fault x=1)  
OCLO  
OUTx = HSONx  
[(t > tochi1+tochi2+tochi3) & (fault x=0)] or  
[(NO OCHIx=1) & (fault x=0)]  
[(rewrite CHx=1) & (t>tochi1+tochi2+tochi3)] or  
[(set CHx=1) & (NO OCHIx=1)]  
Definitions of key logic signals  
(fault x):= (UV) or (OCHI1x) or (OCHI2x) or (OCHI3x) or (OCLOx) or (OTx) or (SSCx)  
(set CHx=1):= [(ONx=0) then (ONx=1)] or [(iINx=0) then (iINx=1)]  
(rewrite CHx=1):= (rewrite ONx=1) after (fault x=1)  
SSCx:= severe short circuit detection  
tochi2 is depending on NO_HID settings and output current during OCHI2 state  
Figure 12. Output control diagram in normal mode  
12XS6D4  
NXP Semiconductors  
27  
Fail mode  
In case of an overcurrent (OCHI2, OCHI3, OCLO) or undervoltage, the restart is controlled by the autorestart feature  
Ithreshold  
IOCHI2  
driver turned off incaseof  
fault_fail x ( =OC or UV)  
event during autorestart  
IOCHI3  
driver turned on againwith  
OCHI2 after fault_fail x  
IOCLO  
In case of successful autorestart  
(nofault_fail x event)  
time  
OCLO remains active  
tOCHI2  
t AUTORESTART  
Figure 13. Autorestart in fail mode  
In case of overtemperature (OTSx), severe short-circuit (SSCx), or OCHI1 overcurrent, the corresponding output enters latch off state until  
the next wake-up cycle or mode change.  
auto  
(INx_ON=0)  
restart  
autorestart x=1  
OC_fail x=0  
OUTx=off  
(UV =1) or  
(OCLOx=1)  
(UV =1)  
(UV =1) or  
(OCHI3x=1)  
(UV =1) or  
(OCHI2x=1)  
(UV=0) &  
(t > t autorestart)  
(t > tochi1+tochi2)  
& (autorestart=1)  
(INx_ON=1)  
(INx_ON=0)  
(t >tochi1+  
off  
autorestart x=0  
OCHI1  
OCHI2 (t > tochi1+tochi2) OCHI3  
OCLO  
(t > tochi1)  
tochi2+ tochi3)  
& (autorestart x=0)  
OUTx=off  
OUTx=iINx  
OUTx=iINx  
OUTx=iINx  
OUTx=iINx  
(INx_ON=0)  
(INx_ON=0)  
(INx_ON=0)  
(OTSx=1) or  
(SSCx=1)  
(OTSx=1) or  
(SSCx=1)  
(OTSx=1) or  
(SSCx=1) or  
(OCHI1x=1)  
(OTSx=1) or  
(SSCx=1)  
latch  
OFF  
Definitions of key signals  
OUTx=off  
iINx:= external Inputs IN1~IN4 after deglitcher  
SSCx := severe short circuit detection  
tochi2 is depending on output current during OCHI2 state  
Figure 14. Output control diagram in fail mode  
12XS6D4  
28  
NXP Semiconductors  
6.1.3.1  
Overcurrent protections  
Each output channel is protected against overload conditions by use of a multilevel overcurrent shutdown.  
current  
I
OCHI1  
I
I
OCHI2  
OCHI3  
Overcurrent threshold profile  
I
OCLO  
Lamp current  
tOCHI2  
tOC HI3  
tOC HI1  
Figure 15. Transient overcurrent profile  
The current thresholds and the threshold window times are fixed for each type of power channel.  
When the output is in PWM mode, the clock for the OCHI time counters (tOCHI1:tOCHI3) is gated (logic AND) with the referring output control  
signal:  
• the clock for the tOCHI counter is activated when the output = [1] respectively CHx = 1  
• the clock for the tOCHI counter is stopped when the output = [0] respectively CHx= 0  
current  
I
OCHI1  
I
I
OCHI2  
OCHI3  
I
OCLO  
time  
cumulative  
cumulative  
cumulative  
t
OCHI1  
t
OCHI2  
tO CHI3  
Figure 16. Transient overcurrent profile in PWM mode  
This strategy counts the OCHI time only when the bulb is actually heated up. The window counting is stopped in case of UV, CPF and OTS.  
A severe short-circuit protection (SSC) is implemented in order to limit the power dissipation in normal and fail modes, in case of severe  
short-circuit event. This feature is active only for a very short period of time, during off-to-on transition. The load impedance is monitored  
during the output turn-on.  
12XS6D4  
NXP Semiconductors  
29  
Normal mode  
The enabling of the high current window (OCHI1:OCHI3) is dependent on CHx signal.  
When no control input pin is enabled, the control of the overcurrent window depends on the on bits inside channel control registers #2:#7  
or the output control register #8.  
When the corresponding CHx signal is:  
• toggled (turn off and then on), the OCHI window counter is reset and the full OCHI windows are applied  
current  
IOCHI1  
Overcurrent threshold profile  
IOCHI2  
IOCHI3  
OCLO fault detection  
IOCLO  
Channel current  
time  
ON bit =0  
ON bit=1  
Figure 17. Resetable overcurrent profile  
• rewritten (logic [1]), the OCHI window time is proceeding without reset of the OCHI counter  
current  
OCLO fault detection  
IOCLO  
time  
ON bit=1 rewriting  
Figure 18. Overcurrent level fixed to OCLO  
Fail mode  
The enabling of the high current window (OCHI1:OCHI3) is dependent on INx_ON toggle signal.  
The enabling of output (OUT1:4) is dependent on CHx signal.  
12XS6D4  
30  
NXP Semiconductors  
6.1.3.1.1  
Overcurrent Control Programming  
A set of overcurrent control programming functions are implemented to provide a flexible and robust system behavior: HID ballast profile  
(NO_HID). A smart overcurrent window control strategy is implemented to turn-on an HID ballast, even in the case of a long power on  
reset time.  
When the output is in 100% PWM mode (including PWM clock failure in normal mode and iINx=1 in fail mode), the clock for the OCHI2  
time counter is divided by eight, when no load current is demanded from the output driver.  
• the clock for the tOCHI2 counter is divided by eight when the openload signal is high (logic[1]), to accommodate the HID ballast  
while in power on reset mode  
• the clock for the tOCHI2 counter is connected directly to the window time counter when the openload signal is low (logic[0]), to  
accommodate the HID demanding load current from the output  
current  
IOCHI1  
IOCHI2  
Overcurrent threshold profile  
IOCHI3  
IOCLO  
Channel current  
8 x tOCHI2  
tOCHI3  
time  
tOCHI1  
Figure 19. HID ballast overcurrent profile  
This feature extends the OCHI2 time, depending on the status of the HID ballast, and ensures to bypass even a long power on reset time  
of HID ballast. Nominal tOCHI2 duration is up to 64 ms (instead of 8.0 ms).  
This feature is automatically active at the beginning of smart overcurrent window, except for OCHI on demand as described by the  
following. The functionality is controlled by the NO_HID1 and NO_HID0 bits inside the initialization #2 register.  
When the NO_HID1 and NO_HID0 bits are respectively:  
• [0 0]: smart HID feature is available for all channels (default status and during fail mode)  
• [0 1]: smart HID feature is available for channel 3 only  
• [1 0]: smart HID feature is available for channels 3 and 4 only  
• [1 1]: smart HID feature is not available for any channel  
OCHI on demand (OCHI OD)  
In some instances, a lamp might be de-powered when its supply is interrupted by the opening of a switch (as in a door), or by disconnecting  
the load (as in a trailer harness). In these cases, the driver should be tolerant of the inrush current that will occur when the load is  
reconnected. The OCHI on demand feature allows such control individually for each channel through the OCHI ODx bits inside the  
Initialization #2 register.  
When the OCHI ODx bit is:  
• low (logic[0]), the channel operates in its normal, default mode. After end of OCHI window timeout the output is protected with  
an OCLO threshold  
• high (logic[1], the channel operates in the OCHI on demand mode and uses the OCHI2 and OCHI3 windows and times after  
an OCLO event  
To reset the OCHI ODx bit (logic[0]) and change the response of the channel, first change the bit in the Initialization #2 register and then  
turn the channel off. The OCHI ODx bit is also reset after an overcurrent event at the corresponding output.  
12XS6D4  
NXP Semiconductors  
31  
The fault detection status is reported in the quick status register #1 and the corresponding channel status registers #2:#6, as presented  
in Figure 20.  
current  
solid line: nominal operation  
OCHI2 fault reported  
dotted lines: fault conditions  
IOCHI2  
OCHI3 fault reported  
IOCHI3  
OCLO fault reported  
IOCLO  
OCHI OD fault reported  
tOCHI2  
tOCHI3  
time  
Figure 20. OCHI on demand profile  
OCLO threshold setting  
The static overcurrent threshold can be programmed individually for each output in two levels to adapt low duty cycle dimming and a variety  
of loads. The CSNS recopy factor and OCLO threshold depend on OCLO and ACM settings.  
The OCLO setting is controlled by the OCLOx bits inside the overcurrent control register #10-1.  
When the OCLOx bit is:  
• low (logic[0]), the output is protected with the higher OCLO threshold (default status and during fail mode)  
• high (logic[1]), the lower OCLO threshold is applied  
Short OCHI  
The length of the OCHI windows can be shortened by a factor of 2, to accelerate the availability of the CSNS diagnosis and to reduce the  
potential stress inside the switch during an overload condition. The setting is controlled individually for each output by the SHORT OCHIx  
bits inside the overload control register #10-2.  
When the short OCHIx bit is:  
• low (logic[0]), the default OCHI window times are applied (default status and during fail mode)  
• high (logic[1]), the short OCHI window times are applied (50% of the regular OCHI window time)  
No OCHI  
The switch on process of an output can be done without an OCHI window, to accelerate the availability of the CSNS diagnosis. The setting  
is controlled individually for each channel by the no OCHIx bits inside the overcurrent control register #10-2.  
When the no OCHIx bit is:  
• low (logic[0]), the regular OCHI window is applied (default status and during fail mode)  
• high (logic[1]), the turn-on of the output is provided without OCHI windows  
The no OCHI bit is applied in real time. The OCHI window is left immediately when the no OCHI is high (logic[1]).  
The overcurrent threshold is set to OCLO when:  
• the no OCHIx bit is set to logic [1] while CHx is on or  
• CHx turns on if no OCHIx is already set  
12XS6D4  
32  
NXP Semiconductors  
Thermal OCHI  
To minimize the electro-thermal stress inside the device in case of a short-circuit, the OCHI1 level can be automatically adjusted in regards  
to the control die temperature. The functionality is controlled for all channels by the OCHI thermal bit inside the initialization 2.  
When the OCHI thermal bit is:  
• low (logic[0]), the output is protected with default OCHI1 level  
• high (logic[1]), the output is protected with the OCHI1 level reduced by RTHERMAL OCHI = 15% (typ) when the control die  
temperature is above TTHERMAL OCHI = 63 °C (typ)  
Transient OCHI  
To minimize the electro-thermal stress inside the device in case of a short-circuit, the OCHIx levels can be dynamically evaluated during  
the off-to-on output transition. The functionality is controlled for all channels by the OCHI transient bit inside the initialization 2 register.  
When the OCHI transient bit is:  
• low (logic[0]), the output is protected with default OCHIx levels  
• high (logic[1]), the output is protected with an OCHIx levels depending on the output voltage (VOUT):  
• OCHIx level reduced by RTRANSIENT OCHI = 50% typ for 0 < VOUT < VOUT DETECT (VBAT/2 typ),  
• Default OCHIx level for VOUT DETECT < VOUT  
If the resistive load is less than VBAT/IOCHI1, the overcurrent threshold is exceeded before output reaches VBAT/2, and the output current  
reaches IOCHI1. The output is then switched off at much lower and safer currents.  
When the load has significant series inductance, the output current transition falls behind voltage with LLOAD/RLOAD constant time. The  
intermediate overcurrent threshold could not reach and the output current continues to rise up to OCHIx levels.  
6.1.3.1.2  
Electrical characterization  
Table 10. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Power outputs OUT1:OUT4  
IOCHI1  
IOCHI2  
IOCHI3  
High overcurrent level 1 for 8.0 mΩ power channel  
High overcurrent level 2 for 8.0 mΩ power channel  
High overcurrent level 3 for 8.0 mΩ power channel  
96  
60  
111  
70  
126.5  
77.5  
43.5  
A
A
A
A
33.5  
39  
Low overcurrent for 8.0 mΩ power channel  
IOCLO  
• High level  
• Low level  
21.9  
10.8  
26.4  
13.2  
17.6  
8.8  
Low overcurrent for 8.0 mΩ power channel in ACM mode  
A
IOCLO ACM  
• High level  
• Low level  
10.8  
5.5  
13.2  
6.6  
8.8  
4.4  
IOCHI1  
IOCHI2  
IOCHI3  
High overcurrent level 1 for 21 mΩ power channel  
High overcurrent level 2 for 21 mΩ power channel  
High overcurrent level 3 for 21 mΩ power channel  
40  
48  
54.4  
32.2  
19.5  
A
A
A
24.5  
14.8  
28.2  
17.3  
Low overcurrent for 21 mΩ power channel  
IOCLO  
• High level  
• Low level  
10.8  
5.3  
13.2  
6.6  
A
A
8.8  
4.4  
Low overcurrent for 21 mΩ power channel in ACM mode  
IOCLO ACM  
• High level  
• Low level  
5.3  
2.6  
6.6  
3.3  
4.4  
2.2  
RTRANSIENT OCHI High overcurrent ratio 1  
0.45  
0.835  
50  
0.5  
0.85  
63  
0.55  
0.865  
70  
RTHERMAL OCHI High overcurrent ratio 2  
TTHERMAL OCHI Temperature threshold for IOCHI1 level adjustment  
°C  
12XS6D4  
NXP Semiconductors  
33  
Table 10. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Power outputs OUT1:OUT4 (continued)  
High overcurrent time 1  
tOCHI1  
• Default value  
• Short OCHI option  
1.5  
0.75  
2.0  
1.0  
2.5  
1.25  
ms  
ms  
ms  
mΩ  
µs  
High overcurrent time 2  
• Default value  
tOCHI2  
6.0  
3.0  
8.0  
4.0  
10  
5.0  
• Short OCHI option  
High overcurrent time 3  
• Default value  
tOCHI3  
48  
24  
64  
32  
80  
40  
• Short OCHI option  
Minimum severe short-circuit detection  
• 8.0 mΩ power channel  
RSC MIN  
5.0  
10  
• 21 mΩ power channel  
Fault deglitch time  
(17)  
tFAULT SD  
• OCLO and OCHI OD  
• OCHI1:3 and SSC  
1.0  
1.0  
2.0  
2.0  
3.0  
3.0  
tAUTORESTART  
tBLANKING  
Notes  
Fault autorestart time in fail mode  
Fault blanking time after wake-up  
48  
64  
50  
80  
ms  
µs  
100  
17.  
Guaranteed by test mode.  
6.1.3.2  
Overtemperature protection  
A dedicated temperature sensor is located on each power transistor, to protect the transistors and provide SPI status monitoring. The  
protection is based on a two stage strategy.  
When the temperature at the sensor exceeds the:  
• selectable overtemperature warning threshold (TOTW1, TOTW2), the output stays on and the event is reported in the SPI  
• overtemperature threshold (TOTS), the output is switched off immediately after the deglitch time tFAULT SD and the event is  
reported in the SPI after the deglitch time tFAULT SD  
6.1.3.2.1  
Overtemperature warning (OTW)  
Receiving an overtemperature warning:  
• the output remains in current state  
• the status is reported in the quick status register #1 and the corresponding channel status register #2:#5  
The OTW threshold can be selected by the OTW SEL bit inside the initialization 2 register #1.  
When the bit is:  
• low (logic[0]), the high overtemperature threshold is enabled (default status)  
• high (logic[1]), the low overtemperature threshold is enabled  
To delatch the OTW bit (OTWx):  
• the temperature has to drop below the corresponding overtemperature warning threshold  
• a read command of the corresponding channel status register #2:#5 must be performed  
12XS6D4  
34  
NXP Semiconductors  
6.1.3.2.2  
Overtemperature shutdown (OTS)  
During an overtemperature shutdown:  
• the corresponding output is disabled immediately after the deglitch time tFAULT SD  
• the status is reported after tFAULT SD in the quick status register #1 and the corresponding channel status register #2:#5.  
To restart the output after an overtemperature shutdown event in normal mode:  
• the overtemperature condition must be removed, and the channel must be restarted by a write command of the ON bit in the  
corresponding channel control register #2:#5, or in the output control register #8  
To delatch the diagnosis:  
• the overtemperature condition must be removed:  
• a read command of the corresponding channel status register #2:#5 must be performed  
To restart the output after an overtemperature shutdown event in fail mode:  
• a mode transition is needed. See 5.5.5. Mode transitions, page 14.  
6.1.3.2.3  
Electrical characterization  
Table 11. Electrical characteristic  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Power outputs OUT1:OUT4  
(18)  
Overtemperature warning  
• TOW1 level  
• TOW2 level  
TOW  
100  
120  
115  
135  
130  
150  
°C  
(18)  
TOTS  
Overtemperature shutdown  
155  
170  
185  
°C  
µs  
Fault deglitch time  
• OTS  
tFAULT SD  
2.0  
5.0  
10  
Notes  
18.  
Guaranteed by test mode.  
6.1.3.3  
6.1.3.3.1  
Undervoltage and overvoltage protections  
Undervoltage  
During an undervoltage condition (VBATPOR < VBAT < VBAT UVF), all outputs (OUT1:OUT4) are switched off immediately after deglitch time  
tFAULT SD  
.
The undervoltage condition is reported after the deglitch time tFAULT SD  
• in the device status flag (DSF) in the registers #1:#7  
• in the undervoltage flag (UVF) inside the device status register #7  
Normal mode  
The reactivation of the outputs is controlled by the microcontroller.  
To restart, the output the undervoltage condition must be removed and:  
• a write command of the ON Bit must be performed in the corresponding channel control register #2:#5 or in the output control  
register #8  
To delatch the diagnosis:  
• the undervoltage condition must be removed  
• a read command of the device status register #7 must be performed  
Fail mode  
When the device is in fail mode, the restart of the outputs is controlled by the autorestart feature.  
12XS6D4  
NXP Semiconductors  
35  
6.1.3.3.2  
Overvoltage  
The device is protected against overvoltage on VBAT  
During:  
.
• jump start condition, the device may be operated, but with respect to the device limits  
• load dump condition (VBAT LD MAX = 40 V) the device does not conduct energy to the loads  
The overvoltage condition (VBAT > VBAT OVF) is reported in the:  
• device status flag (DSF) in the registers #1:#7  
• overvoltage flag (OVF) inside the device status register #7  
To delatch the diagnosis:  
• the overvoltage condition must be removed  
• a read command of the device status register #7 must be performed  
In case of an overvoltage (VBAT > VBAT HIGH), the device is not ‘short-circuit’ proof.  
6.1.3.3.3  
Electrical characterization  
Table 12. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Battery VBAT  
VBAT UVF  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Battery undervoltage  
5.0  
200  
28  
5.25  
350  
30  
1.0  
5.5  
500  
32  
1.5  
V
mV  
V
VBAT UVF HYS  
VBAT OVF  
Battery undervoltage hysteresis  
Battery overvoltage  
VBAT OVF HYS  
VBAT LD MAX  
VBAT HIGH  
Battery overvoltage hysteresis  
0.5  
40  
V
Battery load dump voltage (2.0 min at 25 °C)  
Maximum battery voltage for short-circuit protection  
V
32  
V
Fault deglitch time  
• UV and OV  
tFAULT SD  
2.0  
3.5  
5.5  
µs  
6.1.3.4  
Charge pump protection  
The charge pump voltage is monitored in order to protect the smart switches in case of:  
• power up  
• failure of external capacitor  
• failure of charge pump circuitry  
During power up, when the charge pump voltage has not yet settled to its nominal output voltage range, the outputs can not be turned on.  
Any turn-on command during this phase is executed immediately after settling of the charge pump.  
When the charge pump voltage is not within its nominal output voltage range:  
• the power outputs are disabled immediately after the deglitch time tFAULT SD  
• the failure status is reported after tFAULT SD in the device status flag DSF in the registers #1:#7 and the CPF in the quick status  
register #1  
• any turn-on command during this phase is executed including the OCHI windows immediately after the charge pump output  
voltage has reached its valid range  
To delatch the diagnosis:  
• the charge pump failure condition must be removed  
• a read command of the quick status register #1 is necessary  
12XS6D4  
36  
NXP Semiconductors  
6.1.3.4.1  
Electrical characterization  
Table 13. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Charge pump CP  
CCP  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Charge pump capacitor range (ceramic type X7R)  
Maximum charge pump voltage  
47  
220  
16  
nF  
V
VCP MAX  
Fault deglitch time  
• CPF  
tFAULT SD  
4.0  
6.0  
µs  
6.1.3.5  
Reverse battery protection  
The device is protected against reverse polarity of the VBAT line.  
In reverse polarity condition:  
• the output transistors OUT1:4 are turned on to prevent the device from thermal overload  
• the OUT6 pin is pulled down to GND. An external current limit resistor must be added in series with the OUT6 pin  
• no output protection is available in this condition  
6.1.4 Output clamps  
6.1.4.1  
Negative output clamp  
In case of an inductive load (L), the energy is dissipated after the turn-off inside the N-channel MOSFET. When tCL (= Io x L/VCL) > 1.0 ms,  
the turn-off waveform can be simplified with a rectangle as shown in Figure 21.  
Output Current  
Io  
time  
tCL  
Output Voltage  
V
BAT  
time  
time  
V
CL  
Figure 21. Simplified negative output clamp waveform  
The energy dissipated in the N-channel MOSFET is: ECL = 1/2 x L x Io² x (1+ VBAT/|VCL|). In the case tCL < 1.0 ms, contact the factory for  
guidance.  
12XS6D4  
NXP Semiconductors  
37  
6.1.4.2  
Battery clamp  
The device is protected against dynamic overvoltage on the VBAT line by means of an active gate clamp, which activates the output  
transistors in order to limit the supply voltage (VDCClamp). In case of an overload on an output, the corresponding switch is turned off, which  
leads to high voltage at VBAT with an inductive VBAT line. The maximum VBAT voltage is limited at VDCCLAMP by active clamp circuitry  
through the load.  
In case of an openload condition, the positive transient pulses (acc. ISO 7637/pulse 2 and inductive battery line) are handled by the  
application. In case of negative transients on the VBAT line (acc. ISO7637-2/pulse 1), the energy of the pulses are dissipated inside the  
load, or drained by an external clamping circuit, during a high ohmic load.  
6.1.4.3  
Electrical characterization  
Table 14. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Battery VBAT  
VDCCLAMP  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
V
Notes  
Battery clamp voltage  
41  
50  
Power outputs OUT1:OUT4  
Negative power channel clamp voltage  
VCL  
• 8.0 mΩ  
• 21 mΩ  
-20.5  
-21  
-17.5  
-18  
V
6.1.5 Digital diagnostics  
The device offers several modes for load status detection in ON state and OFF state through the SPI.  
6.1.5.1  
Openload detections  
Openload in ON state  
6.1.5.1.1  
Openload detection during ON state is provided for each power output (OUT1:OUT4), based on the current monitoring circuit. The  
detection is activated automatically when the output is in ON state.  
The detection threshold is dependent on:  
• the OLLED EN bits inside the OLLED control register #13-2  
The detection result is reported in:  
• the corresponding QSFx bit in the quick status register #1  
• the global openload flag OLF (registers #1:#7)  
• the OLON bit of the corresponding channel status registers #2:#5  
To delatch the diagnosis:  
• the openload condition must be removed  
• a read command of the corresponding channel status register #2:#5 must be performed  
When an openload has been detected, the output remains in ON state. The deglitch time of the openload in ON state can be controlled  
individually for each output in order to be compliant with different load types.  
The setting is dependent on the OLON DGL bits inside the openload control register #13-1:  
• low (logic[0]) the deglitch time is tOLON DGL = 64 µs typ (bulb mode)  
• high (logic[1]) the deglitch time is tOLON DGL = 2.0 ms typ (converter mode)  
The deglitching filter is reset whenever output falls low and is only active when the output is high.  
12XS6D4  
38  
NXP Semiconductors  
6.1.5.1.2  
Openload in ON state for LED  
For detection of small load currents (e.g. LED) in ON state of the switch a special low current detection mode is implemented by using the  
OLLED EN bit. The detection principle is based on a digital decision during regular switch off of the output. Thereby a current source  
(IOLLED) is switched on and the falling edge of the output voltage is evaluated by a comparator at VBAT - 0.75 V (typ).  
Figure 22. Openload in ON state diagram for LED  
The OLLED fault is reported when the output voltage is above VBAT - 0.75 V after 2.0 ms off-time or at each turn-on command in case of  
off-time < 2.0 ms. The detection mode is enabled individually for each channel with the OLLED EN bits inside the LED control register  
#13-2.  
When the corresponding OLLED EN bit is:  
• low (logic[0]), the standard openload in ON state (OLON) is enabled  
• high (logic[1]), the OLLED detection is enabled  
The detection result is reported in:  
• the corresponding QSFx bit in the quick status register #1  
• the global openload flag OLF (register #1:#7)  
• the OLON bit of the corresponding channel status register #2:#5  
When an openload has been detected, the output remains in ON state.  
When output is in PWM operation:  
• the detection is performed at the end of the on time of each PWM cycle  
• the detection is active during the off time of the PWM signal, up to 2.0 ms max.  
The current source (IOLLED) is disabled after “no OLLED” detection or after 2.0 ms.  
12XS6D4  
NXP Semiconductors  
39  
hson_1  
128*DCLOCK (prescaler=0’)  
En_OLLed_1  
OUT_1  
VBAT-0.75  
OUT_high  
check  
Analog Comparator output  
1 : olled detected  
0 : no olled detected  
TimeOut = 2.0 msec  
Figure 23. Openload in ON state for LED in PWM operation (Off time > 2.0 ms)  
hson_1  
128*DCLOCK(prescaler=‘0’)  
En_OLLed_1  
OUT_1  
VBAT-0.75  
OUT_high  
check  
Analog Comparator output  
1 : olled detected  
0 : no olled detected  
TimeOut = 2.0 msec  
Figure 24. Openload in ON state for LED in PWM operation (Off time < 2.0 ms)  
When output is in fully on operation (100 % PWM):  
• the detection on all outputs is triggered by setting the OLLED TRIG bit inside the LED control register #13-2  
• at the end of detection time, the current source (IOLLED) is disabled 100 µsec (typ.) after the output reactivation  
12XS6D4  
40  
NXP Semiconductors  
OLLED TRIG 1  
Note: OLLED TRIG bit is reset after the detection  
ONoff & PWM  
hson_1  
FF  
100 sec  
100 sec  
En_OLLed_1  
VBAT-0.75  
OUT_1  
check  
OUT_high  
Analog Comparator output  
Check  
Precision ~9600 ns  
1 : olled detected  
0 : no olled detected  
TimeOut = 2.0 msec  
Figure 25. Openload in ON state for LED in fully on operation  
The OLLED TRIG bit is reset after the detection.  
To delatch the diagnosis:  
• a read command of the corresponding channel status register #2:#6 must be performed  
A false ‘open’ result could be reported in the OLON bit:  
• for high duty cycles, the PWM off-time becomes too short  
• for capacitive load, the output voltage slope becomes too slow  
6.1.5.1.3  
Openload in OFF state  
An openload in OFF state detection is provided individually for each power output (OUT1:OUT4).  
The detection is enabled individually for each channel by the OLOFF EN bits inside the openload control register #13-1.  
When the corresponding OLOFF EN is:  
• low (logic[0]), the diagnosis mode is disabled (default status)  
• high (logic[1]), the diagnosis mode is started for tOLOFF. It is not possible to restart any OLOFF or disable the diagnosis mode  
during active OLOFF state  
This detection can be activated independently for each power output (OUT1:OUT4). When it is activated, it is always activated  
synchronously for all selected outputs (with positive edge of CSB). When the detection is started, the corresponding output channel is  
turned on with a fixed overcurrent threshold of IOLOFF threshold.  
When this overcurrent threshold is:  
• reached within the detection timeout tOLOFF, the output is turned off and the OLOFF EN bit is reset. No OCLOx and no OLOFFx  
is reported  
• not reached within the detection timeout tOLOFF, the output is turned off after tOLOFF and the OLOFF EN bit is reset. The  
OLOFFx is reported  
The overcurrent behavior as commanded by the overcurrent control settings (NO OCHIx, OCHI ODx, SHORTOCHIx, OCLOx, and ACM  
ENx) is not be affected by applying the OLOFF ENx bit. The same is true for the output current feedback and the current sense  
synchronization.  
The detection result is reported in:  
• the corresponding QSFx bit in the quick status register #1  
• the global openload flag OLF (register #1:#7)  
• the OLOFF bit of the corresponding channel status register #2:#5  
To delatch the diagnosis, a read command of the corresponding channel status register #2:#5 must be performed. During any fault during  
tOLOFF (OTS, UV, CPF,), the openload in off state detection is disabled and the output(s) is (are) turned off after the deglitch time  
tFAULT SD. The corresponding fault is reported in the SPI SO registers.  
12XS6D4  
NXP Semiconductors  
41  
6.1.5.1.4  
Electrical characterization  
Table 15. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Power outputs OUT1:OUT4  
Openload current threshold in ON state  
• 8.0 mΩ power channel at TJ = -40 °C  
• 8.0 mΩ power channel at TJ = 25 °C and 125 °C  
• 21 mΩ power channel at TJ = -40 °C  
50  
100  
30  
200  
200  
100  
100  
350  
300  
160  
150  
IOL  
mA  
50  
• 21 mΩ power channel at TJ = 25 °C and 125 °C  
Output PWM duty cycle range for openload detection in ON state  
• Low frequency range (25 Hz to 100 Hz)  
18  
18  
17  
δPWM OLON  
LSB  
• Medium frequency range (100 Hz to 200 Hz)  
• High frequency range (200 Hz to 400 Hz)  
IOLLED  
tOLLED100  
tOLOFF  
Openload current threshold in ON state/OLLED mode  
2.0  
1.5  
0.9  
4.0  
2.0  
1.2  
5.0  
2.6  
1.5  
mA  
ms  
ms  
Maximum openload detection time/OLLED mode with 100 % duty  
cycle  
Openload detection time in off state  
Fault deglitch time  
• OLOFF  
• OLON with OLON DGL = 0  
• OLON with OLON DGL = 1  
2.0  
48  
1.5  
3.3  
64  
2.0  
5.0  
80  
2.5  
µs  
µs  
ms  
tFAULT SD  
Openload current threshold in OFF state  
• 8.0 mΩ power channel  
IOLOFF  
0.77  
1.1  
1.43  
A
• 21 mΩ power channel  
0.385  
0.55  
0.715  
6.1.5.2  
Output shorted to V  
in off state  
BAT  
A short to VBAT detection during off state is provided individually for each power output OUT1:OUT4, based on an output voltage  
comparator referenced to VBAT/2 (VOUT DETECT) and an external pull-down circuitry. The detection result is reported in the OUTx bits of  
the I/O status register #8 in real time. In case of UVF, the OUTx bits are undefined.  
6.1.5.2.1  
Electrical characterization  
Table 16. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Power outputs OUT1:OUT4  
VOUTDETECT  
Output voltage comparator threshold  
0.42  
0.5  
0.58  
VBAT  
12XS6D4  
42  
NXP Semiconductors  
6.1.5.3  
SPI fault reporting  
Protection and monitoring of the outputs during normal mode is provided by digital switch diagnosis via the SPI. The selection of the SO  
data word is controlled by the SOA0:SOA3 bits inside the initialization 1 register #0. The device provides two different reading modes,  
depending on the SOA MODE bit.  
When the SOA MODE bit is:  
• low (logic[0]), the programmed SO address is used for a single read command. After the reading the SO address returns to  
quick status register #1 (default state)  
• high (logic[1]), the programmed SO address is used for the next and all further read commands until a new programming  
The “quick status register” #1 provides one glance failure overview. As long as no failure flag is set (logic[1]), no control action by the  
microcontroller is necessary.  
SO address  
D14  
SO data  
D6 D5  
RCF CLKF  
Register  
#
D15  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D4  
D3  
D2  
D1  
D0  
quick  
address  
1
0
0
0
1
FM  
DSF OVLF OLF  
CPF  
X
QSF4 QSF3 QSF2 QSF1  
• FM: Fail mode indication. This bit is also present in all other SO data words, and indicates the fail mode by a logic[1]. When  
the device is in normal mode, the bit is logic[0]  
• global device status flags (D10:D8): These flags are also present in the channel status registers #2:#5, the device status  
register #7, and are cleared when all fault bits are cleared by reading the registers #2:#7  
• DSF = device status flag (RCF, or UVF, or OVF, or CPF, or CLKF, or TMF). UVF and TMF are also reported in the device status  
register #7  
• OVLF = overload flag (wired OR of all OC and OTS signals)  
• OLF = openload flag  
• CPF: charge pump flag  
• RCF: registers clear flag: this flag is set (logic[1]) when all SI and SO registers are reset  
• CLKF: clock fail flag. See 6.3.3.2. Logic I/O plausibility check, page 55  
• QSF1:QSF5: channel quick status flags (QSFx = OC0x, or OC1x, or OC2x, or OTWx, or OTSx, or OLONx, or OLOFFx)  
The SOA address #0 is also mapped to register #1 (D15:D12 bits report logic [0001]).  
When a fault condition is indicated by one of the quick status bits (QSF1:QSF5, OVLF, OLF), the detailed status can be evaluated by  
reading of the corresponding channel status registers #2:#6.  
SO address  
SO data  
D6 D5  
Register  
#
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D4  
D3  
D2  
D1  
D0  
OLON OLOFF  
CH1 status  
CH2 status  
CH3 status  
CH4 status  
2
0
0
0
0
0
1
1
0
0
0
FM  
DSF OVLF OLF  
DSF OVLF OLF  
DSF OVLF OLF  
DSF OVLF OLF  
res  
OTS1 OTW1 OC21 OC11 OC01  
OTS2 OTW2 OC22 OC12 OC02  
OTS3 OTW3 OC23 OC13 OC03  
OTS4 OTW4 OC24 OC14 OC04  
1
1
OLON OLOFF  
3
4
5
0
1
1
1
0
1
FM  
FM  
FM  
res  
res  
res  
2
2
OLON OLOFF  
3
3
OLON OLOFF  
4
4
• OTSx: overtemperature shutdown flag  
• OTWx: overtemperature warning flag  
• OC0x:OC2x: overcurrent status flags  
• OLONx: Openload in ON state flag  
• OLOFFx: Openload in OFF state flag  
The most recent OC fault is reported by the OC0x:OC2x bits, if a new OC occurs before an old OC on the same output that was read:  
12XS6D4  
NXP Semiconductors  
43  
#2~#6  
OC2x OC1x OC0x over currentstatus  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
no ov erc urrent  
OCHI1  
OCHI2  
OCHI3  
OCLO  
OCHIOD  
SSC  
not us ed  
When a fault condition is indicated by one of the global status bits (FM, DSF), the detailed status can be evaluated by reading of the device  
status registers #7:  
SO address  
D14  
SO data  
Register  
#
D15  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
res  
D5  
D4  
D3  
D2  
D1  
D0  
device  
status  
7
0
1
1
1
FM  
DSF OVLF OLF  
res  
res  
TMF  
OVF  
UVF  
SPIF iLMP  
• TMF: test mode activation flag. Test mode is used for manufacturing testing only. If this bit is set to logic [1], the MCU must  
reset the device  
• OVF: overvoltage flag  
• UVF: undervoltage flag  
• SPIF: SPI fail flag  
• iLIMP (real time reporting after the tIN_DGL, not latched)  
The I/O status register #8 can be used for system test, fail mode test and the power down procedure:  
SO address  
D14  
SO data  
Register  
#
D15  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
iIN2  
D5  
D4  
D3  
D2  
D1  
D0  
TOGG  
LE  
I/O status  
8
1
0
0
0
FM  
res  
iIN4  
iIN3  
iIN1  
X
OUT4 OUT3 OUT2 OUT1  
The register provides the status of the control inputs, the toggle signal, and the power outputs state in real time (not latched).  
• TOGGLE = status of the 4 input toggle signals (IN1_ON, or IN2_ON, or IN3_ON, or IN4_ON), reported in real time  
• iINx = status of iINx signal (real time reporting after the tIN_DGL, not latched)  
• OUTx = status of output pins OUTx (the detection threshold is VBAT/2) when undervoltage condition does not occur  
The device can be clearly identified by the device ID register #9 when the battery voltage is within its nominal range:  
SO address  
D14  
SO data  
Register  
#
D15  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DEVID DEVID DEVID DEVID DEVID DEVID DEVID DEVID  
device ID  
9
1
0
0
1
X
X
X
X
7
6
5
4
3
2
1
0
The register delivers DEVIDx bits = 42hex for the 08XS6421. During an undervoltage condition (UVF = 1), DEVIDx bits report 00hex.  
12XS6D4  
44  
NXP Semiconductors  
6.1.6 Analog diagnostics  
The analog feedback circuit (CSNS) is implemented to provide load and device diagnostics during Normal mode. During fail and sleep  
modes, the analog feedback is not available. The routing of the integrated multiplexer is controlled by MUX0:MUX2 bits inside the  
initialization 1 register #0.  
6.1.6.1  
Output current monitoring  
The current sense monitor provides a current proportional to the current of the selected output (OUT1:OUT4). CSNS output delivers  
1.0 mA full scale range current source reporting channel 1:4 current feedback (IFSR).  
ICSNS  
1.0 mA  
ICSNS / IOUT = 1.0 mA / (100% FSR) typ  
Note: FSR value depends on SPI setting  
IOUT  
0 mA  
1% FSR  
Figure 26. Output current sensing  
100% FSR  
The feedback is suppressed during OCHI window (t < tOCHI1 + tOCHI2 + tOCHI3) and only enabled during low overcurrent shutdown  
threshold (OCLO). During PWM operation, the current feedback circuit (CSNS) delivers current only during the on time of the output  
switch. Current sense settling time, tCSNS(SET), varies with current amplitude. Current sense valid time, tCSNS(VAL), depends on the PWM  
frequency (see 6.1.6.5. Electrical characterization, page 50).  
An advanced current sense mode (ACM) is implemented in order to diagnose LED loads in normal mode and to improve current sense  
accuracy for low current loads. In the ACM mode, the offset sign of current sense amplifier is toggled on every CSNS SYNCB rising edge.  
The error amplifier offset contribution to the CSNS error can be fully eliminated from the measurement result by averaging each two  
sequential current sense measurements. The ACM mode is enabled with the ACM ENx bits inside the ACM control register #10-1.  
When the ACM ENx bit is:  
• low (logic[0]), ACM disabled (default status and during fail mode)  
• high (logic[1]), ACM enabled  
In ACM mode:  
• the precision of the current recopy feature (CSNS) is improved especially at low output current by averaging CSNS reporting  
on sequential PWM periods  
• the current sense full scale range (FSR) is reduced by a factor of two  
• the overcurrent protection threshold OCLO is reduced by a factor of two  
Figure 27 describes the timings between the selected channel current and the analog feedback current. Current sense validation time  
pertains to stabilization time needed after turn-on. Current sense settling time pertains to the stabilization time needed after the load  
current changes while the output is continuously on or when another output signal is selected.  
12XS6D4  
NXP Semiconductors  
45  
HSONx  
time  
time  
time  
tDLY(ON)  
tDLY(OFF)  
IOUTx  
tCSNS(SET)  
tCSNS(VAL)  
CSNS  
+/- 5% of new value  
Figure 27. Current sensing response time  
Internal circuitry limits the voltage of the CSNS pin when its sense resistor is absent. This feature prevents damage to other circuitry  
sharing that electrical node, such as a microcontroller pin, for example. Several devices from the 12XS6 family may be connected to one  
shared CSNS resistor.  
6.1.6.2  
Battery voltage monitoring  
The VBAT monitor provides a voltage proportional to the battery supply tab. The CSNS voltage is proportional to the VBAT voltage as shown  
in Figure 28.  
VCSNS  
5.0 V  
VCSNS / VBAT = ¼ typ  
0 V  
VBAT  
V
BATPOR  
20 V  
Figure 28. Battery voltage reporting  
12XS6D4  
46  
NXP Semiconductors  
6.1.6.3  
Temperature monitoring  
The average temperature of the control die is monitored by an analog temperature sensor. The CSNS pin can report the voltage of this  
sensor. The chip temperature monitor output voltage is independent of the resistor connected to the CSNS pin, provided the resistor is  
within the min/max range of 5.0 kΩ to 50 kΩ. Temperature feedback range, TFB, -40 °C to 150 °C.  
VCSNS  
VCSNS / TJ = VFBS  
VFB  
TJ  
25°C  
Figure 29. Temperature reporting  
-40°C  
150°C  
6.1.6.4  
Analog diagnostic synchronization  
A current sense synchronization pin is provided to simplify the synchronous sampling of the CSNS signal. The CSNS SYNCB pin is an  
open drain requiring an external 5.0 kΩ (min) pull-up resistor to VCC  
The CSNS SYNC signal is  
.
• available during normal mode only  
• behavior depends on the type of signal selected by the MUX2:MUX0 bits in the initialization 1 register #0. This signal is either  
a current proportional to an output current or a voltage proportional to temperature or the battery voltage  
Current sense signal  
When a current sense signal is selected:  
• the pin delivers a recopy of the output control signal during on phase of the PWM defined by the SYNC EN0, SYNC EN1 bits  
inside the initialization 1 register #0  
SYNC EN1  
SYNC EN0  
Setting  
Behavior  
0
0
OFF  
CSNS SYNC is inactive (high)  
CSNS SYNC is active (low) when CSNS is valid. During switching the output of MUXMUX, the CSNS SYNC  
is inactive (high)  
0
1
1
1
0
1
VALID  
TRIG0  
As in setting VALID, but after a change of the MUX, the CSNS SYNC is inactive (high) until the next PWM  
cycle is started  
Pulses (active low) from the middle of the CSNS pulse to its end are generated. Switching phases (output  
and MUX) and the time from the MUX switching to the next middle of the CSNS pulse are blanked (high)  
TRIG1/2  
12XS6D4  
NXP Semiconductors  
47  
OUT1  
OUT2  
time  
time  
time  
CSNS SYNC\ blanked  
CSNS SYNC\  
active (low)  
CSNS  
SYNCB  
tDLY(ON)+tCSNS(SET)  
change of CSNS MUX  
from OUT1 to OUT2  
OUT1 for  
OUT2 for CSNS selected  
CSNS selected  
Figure 30. CSNS SYNCB valid setting  
OUT1  
time  
OUT2  
CSNS SYNC\ blanked until  
rising edge of the 1st  
complete PWM cycle  
time  
time  
CSNS  
SYNC\  
change of CSNS MUX  
from OUT1 to OUT2  
OUT1 for  
OUT2 for CSNS selected  
CSNS selected  
Figure 31. CSNS SYNCB TRIG0 setting  
12XS6D4  
48  
NXP Semiconductors  
OUT1  
OUT2  
time  
time  
time  
CSNS SYNC\ blanked until 1rst valid edge  
generated in the middle of the OUT2 pulse  
CSNS  
SYNC\  
change of CSNS MUX  
from OUT1 to OUT2  
OUT1 for  
OUT2 for CSNS selected  
CSNS selected  
Figure 32. CSNS SYNCB TRIG1/2 setting  
• the CSNS SYNCB pulse is suppressed during OCHI and during OFF phase of the PWM  
• the CSNS SYNCB is blanked during settling time of the CSNS multiplexer and ACM switching by a fixed time of tDLY(on)  
tCSNS(SET)  
+
• when a PWM clock fail is detected, the CSNS SYNCB delivers a signal with 50 % duty cycle at a fixed period of 6.5 ms  
• when the output is programmed with 100 % PWM, the CSNS SYNCB delivers a logic[0] a high pulse with the length of 100 µs  
(typ.) during the PWM counter overflow for TRIG0 and TRIG1/2 settings, as shown in Figure 33  
12XS6D4  
NXP Semiconductors  
49  
OUT1  
OUT2  
time  
time  
time  
CSNS  
SYNC\  
tDLY(ON)+tCSNS(SET)  
change of CSNS MUX  
from OUT1 to OUT2  
OUT1 for  
OUT2 for CSNS selected  
CSNS selected  
Figure 33. CSNS SYNCB when the output is programmed for 100 %  
• During an output fault, the CSNS SYNCB signal for current sensing does not deliver a trigger signal until the output is enabled  
again  
Temperature signal or VBAT monitor signal  
When a voltage signal (average control die temperature or battery voltage) is selected:  
• the CSNS SYNCB delivers a signal with 50 % duty cycle and the period of the lowest prescaler setting (fCLK/1024)  
• and a PWM clock fail is detected, the CSNS SYNCB delivers a signal with 50% duty cycle at a fixed period of 6.5 ms  
(tSYNC DEFAULT  
)
6.1.6.5  
Electrical characterization  
Table 17. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Current sense CSNS  
RCSNS  
ICSNS LEAK  
VCS  
Current sense resistor range  
5.0  
-1.0  
6.0  
50  
+1.0  
8.0  
kΩ  
µA  
V
Current sense leakage current when CSNS is disabled  
Current sense clamp voltage  
Current sense full scale range for 8.0 mΩ power channel  
• High OCLO and ACM = 0  
22  
11  
11  
5.5  
IFSR  
• Low OCLO and ACM = 0  
• High OCLO and ACM = 1  
• Low OCLO and ACM = 1  
A
Current sense accuracy for 9.0 V < VBAT < 18 V for 8.0 mΩ power  
channel  
• IOUT = 80 % FSR  
• IOUT = 25 % FSR  
• IOUT = 10 % FSR  
• IOUT = 5.0 % FSR  
-11  
-14  
-20  
-29  
+11  
+14  
+20  
+29  
(19)  
ACC ICSNS  
%
12XS6D4  
50  
NXP Semiconductors  
Table 17. Electrical characteristics (continued)  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Current sense CSNS (continued)  
Current sense accuracy for 9.0 V < VBAT < 18 V with one calibration  
point at 25 °C for 2.0 % or 50 % FSR and VBAT = 14 V for 8.0 mΩ  
power channel  
• IOUT = 80 % FSR  
• IOUT = 25 % FSR  
• IOUT = 10 % FSR  
• IOUT = 5.0 % FSR  
(23) (21)  
ACC ICSNS 1 CAL  
-7.0  
-7.0  
-20  
-29  
+7.0  
+7.0  
+20  
+29  
%
Current sense accuracy for 9.0 V < VBAT < 18 V with two calibration  
points at 25 °C for 2.0 % and 50 % FSR and VBAT = 14 V for 8.0 mΩ  
power channel  
• IOUT = 80 % FSR  
• IOUT = 25 % FSR  
• IOUT = 10 % FSR  
• IOUT = 5.0 % FSR  
(23) (21)  
(19)(22)  
ACC ICSNS 2 CAL  
-6.0  
-6.0  
-8.0  
-11  
+6.0  
+6.0  
+8.0  
+11  
%
Minimum current sense reporting for 8.0 mΩ  
ICSNSMIN  
1.0  
%
A
• 9.0 V < VBAT < 18 V  
Current sense full scale range for 21 mΩ power channel  
• High OCLO and ACM = 0  
11  
5.5  
5.5  
IFSR  
• Low OCLO and ACM = 0  
• High OCLO and ACM = 1  
• Low OCLO and ACM = 1  
2.75  
Current sense accuracy for 9.0 V < VBAT < 18 V for 21 mΩ power  
channel  
• IOUT = 80 % FSR  
• IOUT = 25 % FSR  
• IOUT = 10 % FSR  
• IOUT = 5.0 % FSR  
-11  
-14  
-20  
-29  
+11  
+14  
+20  
+29  
(19)  
ACC ICSNS  
%
%
Current sense accuracy for 9.0 V < VBAT < 18 V with one calibration  
point at 25 °C for 2.0 % or 50 % FSR and VBAT = 14 V for 21 mΩ power  
channel  
• IOUT = 80 % FSR  
• IOUT = 25 % FSR  
• IOUT = 10 % FSR  
• IOUT = 5.0 % FSR  
(19) (21)  
ACC ICSNS 1 CAL  
-7.0  
-7.0  
-20  
-29  
+7.0  
+7.0  
+20  
+29  
Current sense accuracy for 9.0 V < VBAT < 18 V with two calibration  
points at 25 °C for 2.0% and 50% FSR and VBAT = 14 V for 21 mΩ  
power channel  
• IOUT = 80 % FSR  
• IOUT = 25 % FSR  
• IOUT = 10 % FSR  
• IOUT = 5.0 % FSR  
(19) (21)  
(19) (22)  
ACC ICSNS 2 CAL  
-6.0  
-6.0  
-10  
-17  
+6.0  
+6.0  
+10  
+17  
%
Minimum current sense reporting for 21 mΩ  
ICSNSMIN  
VBAT  
1.0  
20  
%
V
• for 9.0 V < VBAT < 18 V  
Battery voltage feedback range  
VBATMAX  
Battery feedback precision  
• Default  
-6.0  
-1.5  
+6.0  
+1.5  
• 1 calibration point at 25 °C and VBAT = 12 V,  
for 7.0 V < VBAT < 20 V  
(21)  
ACC VBAT  
%
• 1 calibration point at 25 °C and VBAT = 12 V,  
for 6.0 V < VBAT < 7.0 V  
-2.2  
+2.2  
12XS6D4  
NXP Semiconductors  
51  
Table 17. Electrical characteristics (continued)  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
CURRENT SENSE CSNS (Continued)  
(20)  
TFB  
VFB  
Temperature feedback range  
-40  
150  
°C  
V
Temperature feedback voltage at 25 °C  
Temperature feedback thermal coefficient  
2.31  
7.72  
(21)  
(21)  
COEF VFB  
mV/°C  
Temperature feedback voltage precision  
• Default  
ACC TFB  
-15  
-5.0  
+15  
+5.0  
°C  
µs  
• 1 calibration point at 25 °C and VBAT = 7.0 V  
Current sense settling time  
• Current sensing feedback for IOUT from 75 % FSR to 50 % FSR  
40  
260  
10  
(20)  
(23)  
tCSNS(SET)  
• Current sensing feedback for IOUT from 10 % FSR to 1.0 % FSR  
Temperature and battery voltage feedbacks  
Current sense valid time  
Current sensing feedback  
• Low/medium frequency ranges for IOUT > 20 % FSR  
10  
70  
5.0  
70  
150  
300  
75  
300  
10  
• Low/medium frequency ranges for IOUT < 20 % FSR  
• High frequency range for IOUT > 20 % FSR  
• High frequency range for IOUT < 20 % FSR  
tCSNS(VAL)  
µs  
Temperature voltage feedback  
Battery voltage feedback  
15  
tSYNC DEFAULT  
Current sense synchronization period for PWM clock failure  
4.8  
6.5  
8.2  
ms  
Current sense synchronization CSNS SYNCB  
RCSNS SYNC Pull-up current sense synchronization resistor range  
VOL  
5.0  
kΩ  
Current sense synchronization logic output low state level at 1.0 mA  
0.4  
V
Current sense synchronization leakage current in tri-state (CSNS  
SYNC from 0 V to 5.5 V)  
IOUT max  
-1.0  
+1.0  
µA  
Notes  
19.  
20.  
21.  
22.  
23.  
Precision either OCLO and ACM setting.  
Parameter is derived mainly from simulations.  
Parameter is guaranteed by design characterization. Measurements are taken from a statistically relevant sample size across process variations.  
Error of 100 % without calibration and 50 % with 1 calibration point done at 25 °C in ACM mode ( 85 % in non-ACM mode).  
Tested at 5.0 % of final value at VBAT = 14 V, current step from 0 A to 2.8 A (or 5.6 A). Parameter guaranteed by design at 1.0 % of final value.  
6.2  
Power supply functional block description and application  
information  
6.2.1 Introduction  
The device is functional when wake = [1] with supply voltages from 5.5 V to 40 V (VBAT), but is fully specification compliant only between  
7.0 V and 18 V. The VBAT pin supplies power to the internal regulator, analog, and logic circuit blocks. The VCC pin (5.0 V typ.) supplies  
the output register of the serial peripheral interface (SPI) and the OUT6 driver. Consequently, the SPI registers cannot be read without  
presence of VCC. The employed IC architecture guarantees a low quiescent current in sleep mode (wake= [0]).  
12XS6D4  
52  
NXP Semiconductors  
6.2.2 Wake state reporting  
The CLK input/output pin is also used to report the wake state of the device to the microcontroller as long as RSTB is logic [0].  
When the device is in:  
• “wake state” and RSTB is inactive, the CLK pin reports a high signal (logic[1])  
• “sleep mode” or the device is wake by the RSTB pin, the CLK is an input pin  
6.2.2.1 Electrical characterization  
Table 18. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit Notes  
Clock input/output CLK  
VOH  
Logic output high state level (CLK) at 1.0 mA  
VCC - 0.6  
V
6.2.3 Supply voltages disconnection  
6.2.3.1 Loss of V  
BAT  
In case of a VBAT disconnection (VBAT < VBAT POR), the device behavior depends on the VCC voltage value:  
• VCC < VCC POR: the device enters the power off mode. All outputs are shut off immediately. All registers and faults are cleared  
• VCC > VCC POR: all registers and faults are maintained. OUT1:4 are shut off immediately. The ON/OFF state of OUT6 depends  
on the current SPI configuration. SPI reporting is available when VCC remains within its operating voltage range (4.5 V to 5.5 V)  
The wake-up event is not reported to the CLK pin. The clamping structures (battery clamp, negative output clamp) are available to protect  
the device. No current is conducted from VCC to VBAT. An external current path must be available to drain the energy from an inductive  
load, in case a battery disconnection occurs when an output is on.  
6.2.3.2 Loss of V  
CC  
In case of a VCC disconnection, the device behavior depends on VBAT voltage:  
• VBAT < VBAT POR: the device enters the power off mode. All outputs are shut off immediately. All registers and faults are cleared  
• VBAT > VBAT POR: the SPI is not available. Therefore, the device enters WD timeout  
The clamping structures (battery clamp, negative output clamp) are available to protect the device. No current is conducted from VBAT to  
VCC  
.
6.2.3.3 Loss of device GND  
During loss of ground, the device cannot drive the loads, therefore the OUT1:OUT4 outputs are switched off and the OUT6 voltage is  
pulled up. The device must not be damaged by this failure condition. For protection of the digital inputs series resistors (1.0 kΩ typ) can  
be provided externally in order to limit the current to I  
.
CL  
12XS6D4  
NXP Semiconductors  
53  
6.2.3.4  
Electrical characterization  
Table 19. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Battery VBAT  
VBAT POR  
Characteristic  
Min.  
Typ.  
3.0  
3.0  
Max.  
Unit  
V
Notes  
Battery power on reset  
VCC power on reset  
2.0  
4.0  
VCC  
VCC POR  
2.0  
4.0  
V
Ground GND  
VGND SHIFT  
Maximum ground shift between GND pin and load grounds  
-1.5  
+1.5  
V
6.3  
Communication interface and device control functional block  
description and application information  
6.3.1 Introduction  
In normal mode, the power output channels are controlled by the embedded PWM module, which is configured by the SPI register settings.  
For bidirectional SPI communication, VCC has to be in the authorized range. Failure diagnostics and configuration are also performed  
through the SPI port. The reported failure types are: openload, short-circuit to battery, severe short-circuit to ground, overcurrent,  
overtemperature, clock fail, and under and overvoltage. For direct input control, the device must be in fail-safe mode. VCC is not required  
and this mode can be forced by the LIMP input pin.  
6.3.2 Fail mode input (LIMP)  
The fail mode of the component can be activated by LIMP direct input. The fail mode is activated when the input is logic [1].  
In fail mode, the channel power outputs are controlled by the corresponding inputs. Even though the input thresholds are logic level  
compatible, the input structure of the pins are able to withstand battery voltage level (max. 40 V) without damage. External current limit  
resistors (i.e. 1.0 kΩ:10 kΩ) can be used to handle reverse current conditions. The direct inputs have an integrated pull-down resistor. The  
LIMP input has an integrated pull-down resistor. The status of the LIMP input can be monitored by the LIMP IN bit inside the device status  
register #7.  
6.3.2.1  
Electrical characterization  
Table 20. Electrical characteristics  
Characteristics noted under conditions 4.5 V VBAT 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Fail mode input LIMP  
VIH  
VIL  
Logic input high state level  
Logic input low state level  
3.5  
V
V
1.5  
+0.5  
100  
20  
IIN  
Logic input leakage current in inactive state (LIMP = [0])  
Logic input pull-down resistor  
-0.5  
25  
µA  
kΩ  
pF  
RPULL  
CIN  
(24)  
Logic input capacitance  
12XS6D4  
54  
NXP Semiconductors  
Table 20. Electrical characteristics (continued)  
Characteristics noted under conditions 4.5 V VBAT 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Direct inputs IN1:IN4  
VIH  
VIH(WAKE)  
VIL  
Logic input high state level  
3.5  
3.75  
V
V
Logic input high state level for wake-up  
Logic input low state level  
1.5  
+0.5  
100  
20  
V
IIN  
Logic input leakage current in inactive state (forced to [0])  
Logic input pull-down resistor  
-0.5  
25  
µA  
kΩ  
pF  
RPULL  
CIN  
(24)  
Logic input capacitance  
Notes  
24.  
Parameter is derived mainly from simulations.  
6.3.3 MCU communication interface protections  
6.3.3.1  
Loss of communication interface  
If the SPI communication error occurs, the device is switched into fail mode.  
The SPI communication fault is detected if:  
• the WD bit is not toggled with each SPI message or  
• WD timeout is reached or  
• protocol length error (modulo 16 check)  
The SI stuck to static levels during CSB period and VCC fail (SPI not functional) are indirectly detected by a WD toggle error.  
The SPI communication error is reported in:  
• SPI failure flag (SPIF) inside the device status register #7 in the next SPI communication  
As long as the device is in fail mode, the SPIF bit retains its state. The SPIF bit is delatched during the transition from fail-to-normal modes.  
6.3.3.2  
Logic I/O plausibility check  
The logic and signal I/O are protected against fatal mistreatment by a signal plausibility check, according following table:  
I/O  
Signal check strategy  
IN1 ~ IN4  
LIMP  
frequency above limit (low pass filter)  
frequency above limit (low pass filter)  
frequency above limit (low pass filter)  
frequency above limit (low pass filter)  
RSTB  
CLK  
The LIMP and IN1:IN4 have an input symmetrically deglitch time tIN_DGL = 200 µs (typ). If the LIMP input is set to logic [1] for a delay  
longer than 200 µs typ, the device is switched into fail mode (internal signal called iLIMP).  
12XS6D4  
NXP Semiconductors  
55  
LIMP  
iLIMP  
tIN_DGL  
200µs typ.  
tIN_DGL  
200µs typ.  
time  
time  
Figure 34. LIMP and iLIMP signal  
In case the INx input is set to logic [1] for a delay longer than 200 µs (typ.), the corresponding channel is controlled by the direct signal  
(internal signal called iINx).  
INx  
tIN_DGL  
time  
tIN_DGL  
tIN_DGL  
tIN_DGL  
tIN_DGL  
tIN_DGL  
iINx  
200µs typ.  
time  
ttoggle  
1024ms typ.  
ttoggle  
INx_ON  
time  
Figure 35. IN, iIN and IN_ON signal  
The RSTB has an input deglitch time tRST_DGL = 10 µs (typ) for the falling edge only. The CLK has an input symmetrically deglitch time  
tCLK_DGL = 2.0 µs (typ). Due to the input deglitcher (at the CLK input) a very high input frequency leads to a clock fail detection. The CLK  
fail detection (clock input frequency detection fCLK LOW) is started immediately with the positive edge of RSTB signal. If the CLK frequency  
is below fCLK LOW limit, the output state will depend on the corresponding CHx signal. As soon as the CLK signal is valid, the output duty  
cycle depends on the corresponding SPI configuration.  
To delatch the CLK fail diagnosis  
• the clock failure condition must be removed  
• a read command of the quick status register #1 must be performed  
12XS6D4  
56  
NXP Semiconductors  
6.3.3.3  
Electrical characterization  
Table 21. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Logic I/O LIMP IN1:IN4 CLK  
SPI watchdog timeout  
tWD  
• WD SEL = 0  
• WD SEL = 1  
24  
96  
32  
128  
40  
160  
ms  
ms  
tTOGGLE  
Input toggle time for IN1:IN4  
768  
1024  
1280  
Input deglitching time  
• LIMP and IN1:IN4  
• CLK  
150  
1.5  
7.5  
200  
2.0  
10  
250  
2.5  
12.5  
tDGL  
µs  
• RSTB  
fCLOCK LOW  
Clock low frequency detection  
50  
100  
200  
Hz  
6.3.4 External smart power control (OUT6)  
The device provides a control output to drive an external smart power device in normal mode only. The control is according to the channel  
6 settings in the SPI input data register.  
• The protection and current feedback of the external SMARTMOS device are under the responsibility of the microcontroller  
• The output delivers a 5.0 V CMOS logic signal from VCC  
The output is protected against overvoltage. An external current limit resistor (i.e. 1.0 kΩ:10 kΩ) is used to handle negative output voltage  
conditions. The output has an integrated pull-down resistor to provide a stable off condition in sleep mode and fail mode. In case of a  
ground disconnection, the OUT6 voltage is pulled up. External components are mandatory to define the state of external smart power  
device and to limit possible reverse OUT6 current (i.e. resistor in series).  
6.3.4.1  
Electrical characterization  
Table 22. Electrical characteristics  
Characteristics noted under conditions 7.0 V VBAT 18 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise noted. Typical values  
noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
External smart power output OUT6  
tOUT6 RISE  
ROUT6 DWN  
VOH  
OUT6 rising edge for 100 pF capacitive load  
OUT6 pull-down resistor  
5.0  
10  
5.0  
30  
µs  
kΩ  
V
Logic output high state level (OUT6)  
Logic output low state level (OUT6)  
VCC - 0.6  
VOL  
0.6  
V
12XS6D4  
NXP Semiconductors  
57  
7
Typical applications  
7.1  
Introduction  
The 12XS6 family is the latest achievement in automotive drivers for all types of centralized automotive lighting applications.  
7.1.1 Application diagram  
VBAT RIGHT  
20V  
5V Regulator  
VBAT  
VCC  
10µ  
10n…100n  
100n  
GND  
100n  
5k  
VCC VBAT  
VCC  
SI  
CP  
SO  
CS\  
CS\  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
10n  
10n  
10n  
10n  
10n  
Parking Light  
Flasher  
SCLK  
SI  
SCLK  
VCC  
SO  
Main MCU  
VCC Clamp  
RST\  
RST\  
CLK  
CSNS  
SYNC\  
LIMP  
IN1  
GND  
CLK  
A/D1  
Low Beam  
Fog Light  
High Beam  
Spare  
10k  
TRIG1  
A/D2  
A/D3  
GND  
10n  
IN2  
1k  
1k  
5k  
VBAT  
IN3  
IN  
OUT  
Smart Power  
CSNS  
10n  
1k  
IN4  
GND  
GND  
1k  
GND  
CSNS  
GND  
IN4  
Smart Power  
IN OUT  
Spare  
High Beam  
Fog Light  
1k  
IN3  
OUT6  
OUT5  
OUT4  
OUT3  
OUT2  
OUT1  
VBAT  
10n  
IN2  
IN1  
10n  
LIMP  
SYNC\  
CSNS  
CLK  
RST\  
SO  
10n  
10n  
Low Beam  
Flasher  
VBAT  
Watchdog  
GND  
LIMP  
1k  
10n  
10n  
IN1  
1k  
1k  
1k  
1k  
SCLK  
CS\  
Parking Light  
IN2  
IN3  
IN4  
SI  
CP  
VCC VBAT  
100n  
10n…100n  
100n  
20V  
VBAT LEFT  
Figure 36. Typical automotive front lighting  
12XS6D4  
58  
NXP Semiconductors  
7.1.2 Bill of materials  
Table 23. 12XS6 Bill of materials (25)  
Signal  
Location  
Mission  
Value  
close to 12XS6  
eXtreme Switch  
VBAT  
improve emission and immunity performances  
100 nF (X7R 50 V)  
close to 12XS6  
eXtreme Switch  
CP  
charge pump tank capacitor  
100 nF (X7R 50 V)  
close to 12XS6  
eXtreme Switch  
VCC  
improve emission and immunity performances  
10 to 100 nF (X7R 16 V)  
close to output  
connector  
sustain ESG gun and fast transient pulses improve emission and  
immunity performances  
OUT1:OUT4  
CSNS  
10 to 22 nF (X7R 50 V)  
5.0 k ( 1.0 %)  
close to MCU  
close to MCU  
output current sensing  
10 kΩ ( 1.0 %) and  
10 nF (X7R 16V)  
CSNS  
low pass filter removing noise  
CSNS SYNCB N/A  
pull-up resistor for the synchronization of A/D conversion  
sustain high-voltage  
5.0 k ( 1.0 %)  
1.0 kΩ ( 1.0 %)  
1.0 kΩ ( 1.0 %)  
IN1:IN4  
OUT6  
N/A  
N/A  
sustain reverse battery  
To Increase Fast Transient Pulses Robustness  
20 V zener diode and diode in series  
per battery line  
VBAT  
VBAT  
close to connector  
sustain pulse #1 in case of LED loads or without loads  
close to 12XS6  
eXtreme Switch  
sustain pulse #2 without loads  
additional 10 µF (X7R 50 V)  
To Sustain 5.0 V Voltage Regulator Failure Mode  
prevent high-voltage application on the MCU  
close to 5.0 V  
voltage regulator  
5.0 V zener diode and a bipolar  
transistor  
VCC  
Notes  
25.  
NXP does not assume liability, endorse, or warrant components from external manufacturers that are referenced in circuit drawings or tables.  
While NXP offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.  
12XS6D4  
NXP Semiconductors  
59  
7.2  
EMC and EMI considerations  
7.2.1 EMC/EMI tests  
This paragraph gives EMC/EMI performances. Further generic design recommendations can be found on the NXP website www.nxp.com.  
Table 24. 12XS6 EMC/EMI performances  
Test  
Signals  
Conditions  
Standard  
Criteria  
VPWR  
CISPR25  
Class 5  
150 Ω Method  
Global pins: 12-K level for  
VBAT pin - 11-L for OUT1:5 pins  
Local pins: 10-J level  
150 Ω Method  
Conducted Emission  
Global pins: VBAT and OUT1:OUT4  
Local pins: VCC, CP, and CSNS  
IEC 61967-4  
IEC 62132-4  
outputs off  
outputs on  
in PWM  
Class A related to the outputs state and  
the analog diagnostics ( 20 %)  
Global pins: VBAT and OUT1:OUT4  
Local pins: VCC  
Conducted Immunity  
30 dBm for Global pins  
12 dBm for Local pins  
7.2.2 Fast transient pulse tests  
This paragraph gives the device performances.against fast transient disturbances.  
Table 25. 12XS6 fast transient capability on VBAT  
Test  
Conditions  
Standard  
Criteria  
Pulse 1  
Pulse 2a  
outputs loaded with lamps  
other cases with external transient voltage suppressor  
ISO 7637-2  
Class A  
Pulse 3a/3b  
Pulse 5b (40 V)  
outputs loaded  
outputs unloaded  
12XS6D4  
60  
NXP Semiconductors  
7.3  
PCB layout recommendations  
This new generation of high-side switch products family facilitates ECU design thanks to compatible MCU software and PCB foot print for  
each device variant. The PCB copper layer is similar for all devices in the 12XS6 family, only the solder stencil opening is different.  
Figure 37 shows superposition of SOIC54 (in black) and SOIC32 packages (in blue). To keep pin-to-pin compatibility in the same PCB  
footprint, pin 1 of the SOIC32 package must be located at pin 3 of the SOIC54 package.  
Figure 37. PCB copper layer and solder stencil opening recommendations  
12XS6D4  
NXP Semiconductors  
61  
7.4  
Thermal information  
This section is to provide thermal information.  
7.4.1 Thermal transient  
Figure 38. Transient thermal response curve  
7.4.2 R/C thermal model  
Contact our local field application engineer (email: support@nxp.com).  
12XS6D4  
62  
NXP Semiconductors  
8
Packaging  
8.1  
Marking information  
Device markings indicate information on the week and year of manufacturing. The date is coded with the last four characters of the nine  
character build information code (e.g. “CTKAH1229”). The date is coded as four numerical digits where the first two digits indicate the year  
and the last two digits indicate the week. For instance, the date code “1229” indicates the 29th week of the year 2012.  
8.2  
Package mechanical dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and  
perform a keyword search for the drawing’s document number.  
Table 26. Package outline  
Package  
Suffix  
Package outline drawing number  
32-pin SOICW-EP  
32-pin SOICW-EP  
BEK and DEK  
CEK  
98ASA00368D  
98ASA00894D  
12XS6D4  
NXP Semiconductors  
63  
12XS6D4  
64  
NXP Semiconductors  
12XS6D4  
NXP Semiconductors  
65  
12XS6D4  
66  
NXP Semiconductors  
12XS6D4  
NXP Semiconductors  
67  
12XS6D4  
68  
NXP Semiconductors  
12XS6D4  
NXP Semiconductors  
69  
9
Revision history  
Revision  
Date  
Description of changes  
10/2014  
Initial release  
Updated Features section (deleted “Integrated Fail mode (ASIL B compliant functional safety behavior)”)  
Updated values in Table 17, Electrical characteristics  
1.0  
12/2014  
1/2015  
6/2016  
Fixed typo in SPI input and output register table on page 16 and 17  
Added MC08XS6421BEK to Table 1  
Updated to NXP form and style  
2.0  
3.0  
4.0  
Removed MC08XS6421EK device due to end of life  
Added MC08XS6421CEK device and associated 98ASA00894D package information  
4/2018  
Added note 15 to Table 7, Electrical characteristics and note 26 to Table 22, Electrical characteristics as  
per CIN 201811005I  
11/2018  
Changed document status from Advance Information to Technical Data  
Added values for RPULL-CSB to Table 7, Electrical characteristics  
Updated the max value for ROUT6 DWN in Table 22, Electrical characteristics (replaced 20 by 30)  
5.0  
9/2020  
Updated as per CIN 202012022I  
Added MC08XS6421DEK to Table 1, Orderable part variations  
Updated Features list (added “AEC-Q100 grade 1 automotive qualified”)  
Added values for tWRST to Table 7, Electrical characteristics  
6.0  
1/2021  
Updated package outline drawings (98ASA00368D: Rev A drawings replaced by Rev B)  
12XS6D4  
70  
NXP Semiconductors  
Information in this document is provided solely to enable system and software implementers to use NXP products. There  
are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on  
the information in this document. NXP reserves the right to make changes without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose,  
nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims  
any and all liability, including without limitation, consequential or incidental damages. "Typical" parameters that may be  
provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including "typicals," must be validated for each customer application by the  
customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells  
products pursuant to standard terms and conditions of sale, which can be found at the following address:  
http://www.nxp.com/terms-of-use.html.  
NXP, the NXP logo, Freescale, the Freescale logo, and SMARTMOS, are trademarks of NXP B.V. All other product or  
service names are the property of their respective owners. All rights reserved.  
© NXP B.V. 2021.  
Document Number: MC12XS6D4  
Rev. 6.0  
1/2021  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY