MC145507P [NXP]

A/MU-LAW, PCM CODEC, PDIP16, PLASTIC, DIP-16;
MC145507P
型号: MC145507P
厂家: NXP    NXP
描述:

A/MU-LAW, PCM CODEC, PDIP16, PLASTIC, DIP-16

PC 电信 光电二极管 电信集成电路
文件: 总24页 (文件大小:404K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
SEMICONDUCTOR TECHNICAL DATA  
Order this document  
by MC145506/D  
Advance Information  
The MC145506, MC145507, and MC145508 are per channel codec–filter  
PCM mono–circuits. These devices perform the voice digitization and  
reconstruction, as well as the band limiting and smoothing required for PCM  
systems. These devices have HCMOS compatible digital outputs and otherwise  
supplement the MC145500 – MC145505 series of PCM codec–filters. The  
MC145506, MC145507, and MC145508 are functionally similar to the  
MC145502, MC145503, and MC145505, respectively. They are designed to  
operate in both synchronous and asynchronous applications and contain an  
on–chip precision reference voltage. The MC145506 is offered in a 22–pin  
package and has the capability of selecting from three peak overload voltages  
(2.5 V, 3.15 V, and 3.78 V). The MC145507 and MC145508 offer versatility and  
low cost in 16–pin DIP and wide body SOIC packages. Most of the features of  
these devices can be made available in a lower pin count package tailored to a  
specific user’s application. Contact the factory for further details.  
16  
1
P SUFFIX  
PLASTIC DIP  
CASE 648  
16  
1
These devices maintain compatibility with Motorola’s family of MC3419/  
MC33120 SLIC products.  
The MC145500 family of PCM codec–filter mono–circuits utilize CMOS due  
to its reliable low–power performance and proven capability for complex  
analog/digital VLSI functions.  
DW SUFFIX  
SO PACKAGE  
CASE 751G  
MC145507/08  
MC145506 (22–Pin Package, HCMOS Output Version of MC145502)  
Selectable Peak Overload Voltages (2.5 V, 3.15 V, 3.78 V)  
Push–Pull Analog Output with Gain Adjust  
64 kHz to 4.1 MHz Transmit and/or Receive Data Clock Rate  
All the Features of the MC145507 Listed Below  
22  
1
P SUFFIX  
PLASTIC DIP  
CASE 708  
MC145507 (16–Pin Package, HCMOS Output Version of MC145503)  
Transmit Bandpass and Receive Low–Pass Filters on Chip  
Pin Selectable Mu/A Law Companding with Corresponding Data Format  
On–Chip Precision Reference Voltage (3.15 V)  
Power Dissipation of 50 mW, Power Down of 0.1 mW at ±5 V  
Three Terminal Transmit Input Operational Amplifier  
Automatic Prescaler Accepts 128 kHz, 1.536 MHz, 1.544 MHz, 2.048 MHz,  
and 2.56 MHz for Internal Sequencing  
MC145506  
Separate Transmit and Receive Data Clocks  
MC145508 (16–Pin Package, HCMOS Output Version of MC145505) Same  
as MC145507 Except:  
Common 64 kHz to 4.1 MHz Transmit/Receive Data Clock  
Separate CCI Pin with Automatic Prescaler Accepts 128 kHz, 1.536 MHz,  
1.544 MHz, 2.048 MHz, and 2.56 MHz for Internal Sequencing  
This document contains information on a new product. Specifications and information herein are subject to change without notice.  
REV 0  
2/00  
Motorola, Inc. 2000  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC145506/07/08 PCM CODEC–FILTER MONO–CIRCUIT BLOCK DIAGRAM  
RDD  
RCE  
RDC  
RECEIVE SHIFT  
REGISTER  
1
RxO  
RxG  
RxO  
D/A  
FREQUENCY  
Rx  
Rx  
V
DD  
SHARED  
DAC  
400 µA  
÷ 1, 12, 16, 20  
CCI  
MSI  
CCI PRESCALER  
+
V
DD  
V
SS  
V
AG  
2.5 V  
REF  
+
SEQUENCE  
AND  
V
LS  
CONTROL  
PDI  
V
SS  
V
RSI  
ref  
RSI  
TxI  
CIRCUITRY  
TDD  
–Tx  
TRANSMIT SHIFT  
REGISTER  
A/D  
TDE  
TDC  
+Tx  
+
FREQUENCY  
FREQUENCY  
NOTES:  
Controlled by V  
.
LS  
Rx 100 k(internal resistors).  
PIN ASSIGNMENTS  
(Drawings Do Not Reflect Relative Size)  
MC145506P  
MC145507P  
MC145508P  
V
1
2
3
4
5
6
7
8
9
22 RSI  
21  
V
1
2
3
4
5
6
7
8
16  
15  
14  
V
V
1
2
3
4
5
6
7
8
16  
15  
14  
V
DD  
ref  
AG  
DD  
AG  
RxO  
+Tx  
TxI  
RxO  
+Tx  
TxI  
RDD  
RCE  
RDD  
RCE  
V
AG  
V
DD  
RxO  
20 RDD  
19 RCE  
18 RDC  
17 TDC  
16 CCI  
15 TDD  
14 TDE  
13 MSI  
RxG  
RxO  
+Tx  
13 RDC  
13 DC  
12  
11  
10  
9
12  
11  
10  
9
–Tx  
TDC  
TDD  
TDE  
–Tx  
CCI  
Mu/A  
PDI  
Mu/A  
PDI  
TDD  
TDE  
TxI  
–Tx  
V
SS  
V
SS  
V
LS  
V
LS  
Mu/A  
PDI 10  
11  
MC145507DW  
MC145508DW  
V
12  
V
LS  
SS  
1
2
3
4
5
6
7
8
16  
1
2
3
4
5
6
7
8
16  
V
V
V
V
DD  
AG  
DD  
AG  
RxO  
+Tx  
TxI  
15 RDD  
14 RCE  
13 RDC  
12 TDC  
11 TDD  
10 TDE  
RxO  
+Tx  
TxI  
15 RDD  
14 RCE  
13 DC  
–Tx  
–Tx  
12 CCI  
11 TDD  
10 TDE  
Mu/A  
PDI  
Mu/A  
PDI  
9
9
V
LS  
V
LS  
V
SS  
V
SS  
MC145506MC145507MC145508  
2
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
ABSOLUTE MAXIMUM RATINGS (Voltage Referenced to V  
)
SS  
This device contains circuitry to protect  
against damage due to high static voltages or  
electric fields; however, it is advised that  
normal precautions be taken to avoid applica-  
tion of any voltage higher than maximum rated  
voltages to this high–impedance circuit. For  
Rating  
DC Supply Voltage  
Voltage, Any Pin to V  
Symbol  
Value  
Unit  
V
V
– V  
–0.5 to 13  
DD  
SS  
V
I
–0.5 to V  
DD  
+ 0.5  
V
SS  
DC Drain Per Pin (Excluding V , V  
)
10  
mA  
°C  
°C  
DD SS  
proper operation, it is recommended that V  
in  
Operating Temperature Range  
Storage Temperature Range  
T
A
–40 to 85  
and V  
out  
be constrained to the range V  
SS  
(V or V ) V  
.
T
stg  
–85 to 150  
in out DD  
Unused inputs must always be tied to an  
appropriate logic voltage level (e.g., V  
,
SS  
V , V , or V ).  
DD LS AG  
RECOMMENDED OPERATING CONDITIONS (T = –40° to 85°C)  
A
Characteristic  
Min  
Typ  
Max  
Unit  
DC Supply Voltage  
V
Dual Supplies: V  
Single Supply: V  
= –V  
(V  
SS AG  
= V = 0 V)  
LS  
4.75  
5.0  
6.3  
DD  
DD  
to V  
(V  
is an Output, V = V  
or V  
)
SS  
SS AG LS  
DD  
MC145506, MC145507, MC145508 Using Internal 3.15 V Reference  
MC145506 Using Internal 2.5 V Reference  
MC145506 Using Internal 3.78 V Reference  
8.5  
7.0  
9.5  
12.6  
12.6  
12.6  
12.6  
MC145506 Using External 1.5 V Reference, Referenced to V  
AG  
4.75  
Power Dissipation  
CMOS Logic Mode (V  
HCMOS Logic Mode (V  
mW  
to V  
= 10 V, V = V )  
DD  
SS  
40  
50  
70  
90  
DD  
SS  
= 5 V, V  
LS  
= –5 V, V = V = 0 V)  
LS AG  
DD  
Power Down Dissipation  
0.1  
8.0  
1.0  
8.5  
mW  
kHz  
kHz  
Frame Rate Transmit and Receive  
7.5  
CCI Clock Rate (TDC Clock Rate for MC145507)  
MC145506, MC145508  
128  
1536  
1544  
2048  
2560  
Must Use One of These Frequencies ±2%, Relative to MSI Frequency of 8 kHz  
Data Rate for MC145506, MC145508  
64  
4096  
kHz  
Full Scale Analog Input and Output Level  
MC145507, MC145508  
V
P
3.15  
3.78  
3.15  
MC145506 (V = V  
)
RSI = V  
DD  
ref  
SS  
RSI = V  
SS  
AG  
DD  
SS  
AG  
RSI = V  
RSI = V  
RSI = V  
2.5  
1.51 x V  
1.26 x V  
MC145506 Using an External Reference Voltage Applied at V Pin  
ref  
ref  
ref  
RSI = V  
V
ref  
DIGITAL LEVELS (V  
SS  
to V  
= 4.75 V to 12.6 V, T = 40° to 85°C)  
DD  
A
Characteristic  
Symbol  
Min  
Max  
Unit  
Input Voltage Levels (TDE, TDC, RCE, RDC, RDD, DC, MSI, CCI, PDI)  
V
CMOS Mode (V = V , V  
is Digital Ground)  
“0”  
“1”  
V
0.7 x V  
0.3 x V  
LS  
DD SS  
IL  
DD  
V
V
V
IH  
IL  
DD  
V
LS  
+ 0.8 V  
HCMOS Mode (V V – 4.0 V, V is Digital Ground)  
DD LS  
“0”  
“1”  
LS  
V
LS  
+ 2.0 V  
IH  
Output Current for TDD (Transmit Digital Data)  
mA  
CMOS Mode (V = V , V  
= 0 V and is Digital Ground)  
(V  
LS  
DD SS  
= 5 V, V  
= 10 V, V  
= 5 V, V  
= 10 V, V  
= 0.4 V)  
= 0.5 V)  
= 4.5 V)  
= 9.5 V)  
I
1.6  
1.6  
–1.6  
–1.6  
1.6  
DD  
out  
out  
out  
out  
OL  
(V  
DD  
(V  
DD  
I
OH  
(V  
DD  
I
HCMOS Mode (V V  
– 4.75 V, V = 0 V and is Digital Ground) (V  
= 0.4 V)  
– 0.5 V)  
OL  
LS  
DD  
LS  
OL  
DD  
I
–1.6  
(V  
OH  
= V  
OH  
MOTOROLA  
MC145506MC145507MC145508  
For More Information On This Product,  
Go to: www.freescale.com  
3
Freescale Semiconductor, Inc.  
ANALOG TRANSMISSION PERFORMANCE  
(V  
= 5 V ± 5%, V  
= –5 V ± 5%, V = V  
= 0 V, V = RSI = V  
(Internal 3.15 V Reference),  
SS  
DD  
SS  
0 dBm0 = 1.546 Vrms = 6 dBm @ 600 , T = –40° to 85°C, TDC = RDC = CCI, TDE = RCE = MSI, Unless Otherwise Noted)  
LS AG  
ref  
A
End–to–End  
A/D  
D/A  
Characteristic  
Unit  
dB  
dB  
dB  
dB  
dB  
Min  
Max  
Min  
–0.30  
Max  
0.30  
Min  
–0.30  
Max  
0.30  
Absolute Gain (0 dBm0 @ 1.02 kHz, T = 25°C, V  
= 5 V, V  
= –5 V)  
SS  
A
DD  
Absolute Gain Variation with Temperature 0° to 70°C  
Absolute Gain Variation with Temperature –40° to 85°C  
Absolute Gain Variation with Power Supply (V = 5 V, V  
±0.03  
±0.1  
±0.03  
±0.1  
= –5 V, 5%)  
SS  
±0.02  
±0.02  
DD  
Gain vs Level Tone (Relative to –10 dBm0, 1.02 kHz)  
3 to –40 dBm0  
–40 to –50 dBm0  
–50 to –55 dBm0  
–0.4  
–0.8  
–1.6  
0.4  
0.8  
1.6  
–0.2  
–0.4  
–0.8  
0.2  
0.4  
0.8  
–0.2  
–0.4  
–0.8  
0.2  
0.4  
0.8  
Gain vs Level Pseudo Noise (A–Law Relative to –10 dBm0)  
dB  
CCITT G.714  
–10 to –40 dBm0  
–40 to –50 dBm0  
–50 to –55 dBm0  
–0.25  
–0.30  
–0.45  
0.25  
0.30  
0.45  
–0.25  
–0.30  
–0.45  
0.25  
0.30  
0.45  
Total Distortion – 1.02 kHz Tone (C–Message)  
0 to –30 dBm0  
–40 dBm0  
35  
29  
24  
36  
29  
24  
36  
30  
25  
dBC  
dB  
–45 dBm0  
Total Distortion With Pseudo Noise (A–Law)  
CCITT G.714  
–3 dBm0  
–6 to –27 dBm0  
–34 dBm0  
27.5  
35  
33.1  
28.2  
13.2  
28  
28.5  
36  
34.2  
30.0  
15.0  
35.5  
33.5  
28.5  
13.5  
–40 dBm0  
–55 dBm0  
Idle Channel Noise (For End–End and A/D, See Note 1)  
(Mu–Law, C–Message Weighted)  
(A–Law, Psophometric Weighted)  
15  
–69  
15  
–69  
9
–78  
dBrnC0  
dBm0p  
Frequency Response (Relative to 1.02 kHz @ 0 dBm0)  
15 to 60 Hz  
300 to 3000 Hz  
3400 Hz  
–0.3  
–1.6  
–23  
0.3  
0
–28  
–60  
–0.15  
–0.8  
–23  
0.15  
0
–14  
–32  
–0.15  
–0.8  
0.15  
0.15  
0
–14  
–30  
dB  
4000 Hz  
4600 Hz  
Inband Spurious (1.02 kHz @ 0 dBm0, Transmit and RxO)  
–43  
–43  
dBm0  
dB  
300 to 3000 Hz  
Out–of–Band Spurious at RxO (300 – 3400 Hz @ 0 dBm0 In)  
4600 to 7600 Hz  
–30  
–40  
–30  
–30  
–40  
–30  
7600 to 8400 Hz  
8400 to 100,000 Hz  
Idle Channel Noise Selective @ 8 kHz, Input = V , 30 Hz Bandwidth  
AG  
–70  
–70  
dBm0  
µs  
Absolute Delay @ 1020 Hz (TDC = 2.048 MHz, TDE = 8 kHz)  
Group Delay Referenced to 1600 Hz (TDC = 2048 kHz,  
µs  
TDE = 8 kHz)  
500 to 600 Hz  
600 to 800 Hz  
800 to 1000 Hz  
1000 to 1600 Hz  
1600 to 2600 Hz  
2600 to 2800 Hz  
2800 to 3000 Hz  
Crosstalk of 1020 Hz @ 0 dBm0 From A/D or D/A (Note 2)  
–75  
–41  
–80  
–41  
dB  
dB  
Intermodulation Distortion of Two Frequencies of Amplitudes –4 to  
–21 dBm0 from the Range 300 to 3400 Hz  
NOTES:  
1. Extrapolated from a 1020 Hz @ –50 dBm0 distortion measurement to correct for encoder enhancement.  
2. Selectively measured while the A/D is stimulated with 2667 Hz @ –50 dBm0.  
MC145506MC145507MC145508  
For More Information On This Product,  
MOTOROLA  
Go to: www.freescale.com  
4
Freescale Semiconductor, Inc.  
ANALOG ELECTRICAL CHARACTERISTICS (V  
= –V  
= 5 V to 6 V ±5%, T = –40° to 85°C)  
SS A  
DD  
Characteristic  
Symbol  
Min  
5
Typ  
±0.01  
10  
Max  
±0.2  
Unit  
µA  
Input Current  
+Tx, –Tx  
+Tx, –Tx  
+Tx, –Tx  
I
in  
AC Input Impedance to V  
Input Capacitance  
(1 kHz)  
Z
in  
MΩ  
pF  
AG  
10  
Input Offset Voltage of Txl Op Amp  
Input Common Mode Voltage Range  
Input Common Mode Rejection Ratio  
Txl Unity Gain Bandwidth  
< ±30  
mV  
V
+Tx, –Tx  
+Tx, –Tx  
V
V
+ 1.0  
V
– 2.0  
ICR  
CMRR  
BW  
SS  
DD  
0
70  
dB  
R
R
10 kΩ  
10 kΩ  
1000  
75  
kHz  
dB  
L
p
Txl Open Loop Gain  
A
VOL  
L
Equivalent Input Noise (C–Message) Between +Tx and –Tx, at Txl  
Output Load Capacitance for Txl Op Amp  
–20  
dBrnC0  
pF  
100  
Output Voltage Range Txl Op Amp, RxO or RxO  
V
out  
V
R
R
= 10 kto V  
= 600 to V  
V
SS  
V
SS  
+ 0.8  
+ 1.5  
V
DD  
V
DD  
– 1.0  
– 1.5  
L
L
AG  
AG  
±5.5  
mA  
Output Current Txl, RxO, RxO  
Output Impedance RxO, RxO*  
V
+ 1.5 V V  
out  
V – 1.5 V  
DD  
SS  
0 to 3.4 kHz  
Z
out  
0
3
Output Load Capacitance for RxO and RxO*  
Output dc Offset Voltage Referenced to V  
200  
pF  
mV  
Pin  
RxO  
RxO*  
±100  
±150  
AG  
Internal Gainsetting Resistors for RxG to RxO and RxO  
62  
0.5  
100  
225  
kΩ  
V
External Reference Voltage Applied to V (Referenced to V  
)
V
– 1.0  
ref AG  
DD  
V
ref  
Input Current  
20  
µA  
V
V
AG  
Output Bias Voltage  
0.53 V  
0.47 V  
+
DD  
SS  
V
Output Current  
Source  
Sink  
I
0.4  
10.0  
0.8  
mA  
µA  
AG  
VAG  
Output Leakage Current During Power Down for the Txl Op Amp, V  
RxO, and RxO  
,
±30  
AG  
Positive Power Supply Rejection Ratio,  
0 – 100 kHz @ 250 mV, C–Message Weighting  
Transmit  
Receive  
45  
55  
50  
65  
dBC  
dBC  
Negative Power Supply Rejection Ratio,  
0 – 100 kHz @ 250 mV, C–Message Weighting  
Transmit  
Receive  
50  
50  
55  
60  
* Assumes that RxG is not connected for gain modifications to RxO.  
MOTOROLA  
MC145506MC145507MC145508  
For More Information On This Product,  
Go to: www.freescale.com  
5
Freescale Semiconductor, Inc.  
MODE CONTROL LOGIC (V  
SS  
to V  
= 4.75 V to 12.6 V, T = 40° to 85°C)  
A
DD  
Characteristic  
Voltage for HCMOS Mode (HCMOS Logic Levels Referenced to V  
Min  
Typ  
Max  
V – 4.0  
DD  
Unit  
V
V
V
)
LS  
V
SS  
LS  
Voltage for CMOS Mode (CMOS Logic Levels of V  
SS  
to V  
)
V
V
– 0.5  
V
V
LS  
DD  
DD  
DD  
Mu/A Select Voltage  
V
Mu–Law Mode  
Sign Magnitude Mode  
A–Law Mode  
– 0.5  
– 0.5  
V
DD  
DD  
V
AG  
V
+ 0.5  
+ 0.5  
AG  
V
SS  
V
SS  
RSI Voltage for Reference Select Input (MC145506)  
3.78 V Mode  
2.5 V Mode  
3.15 V Mode  
V
– 0.5  
– 0.5  
V
V
V
DD  
DD  
V
AG  
V
+ 0.5  
+ 0.5  
AG  
V
SS  
V
SS  
V
ref  
Voltage for Internal or External Reference (MC145506 Only)  
Internal Reference Mode  
External Reference Mode  
V
V
V
+ 0.5  
– 1.0  
SS  
+ 0.5  
SS  
DD  
V
AG  
Analog Test Mode Selection Frequency, MS = CCI (MC145506 Only)  
See Pin Description; Test Modes  
128  
kHz  
SWITCHING CHARACTERISTICS (V  
SS  
to V  
= 9.5 V to 12.6 V, T = 40° to 85°C, C = 150 pF, CMOS or HCMOS Mode)  
DD A L  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Rise Time  
Output Fall Time  
TDD  
t
t
30  
30  
80  
80  
ns  
TLH  
THL  
Input Rise Time  
Input Fall Time  
TDE, TDC, RCE, RDC, DC, MSI, CCI  
t
t
4
4
µs  
TLH  
THL  
Pulse Width  
TDE Low, TDC, RCE, RDC, DC, MSI, CCI  
TDC, RDC, DC  
t
100  
64  
ns  
w
Data Clock Pulse Frequency  
f
4096  
kHz  
kHz  
CL  
CCI Clock Pulse Frequency (MSI = 8 kHz)  
This Pin Will Accept One of These Discrete Clock Frequencies and  
Will Compensate to Produce Internal Sequencing  
f
f
f
f
f
128  
CL1  
CL2  
CL3  
CL4  
CL5  
1536  
1544  
2048  
2560  
Propagation Delay Time  
ns  
TDE Rising to TDD Low Impedance  
HCMOS  
t
t
t
t
90  
90  
90  
90  
90  
90  
180  
150  
55  
P1  
P2  
P3  
P4  
CMOS  
HCMOS  
CMOS  
HCMOS  
CMOS  
TDE Falling to TDD High Impedance  
40  
TDC Rising Edge to TDD Data, During TDE High  
TDE Rising Edge to TDD Data, During TDC High  
180  
150  
180  
150  
HCMOS  
CMOS  
TDC Falling Edge to TDE Rising Edge Setup Time  
TDE Rising Edge to TDC Falling Edge Setup Time  
t
20  
100  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
µA  
pF  
µA  
su1  
su2  
su8  
su3  
su4  
su5  
su6  
su7  
t
t
t
t
t
t
t
TDE Falling Edge to TDC Rising Edge to Preserve the Next TDD Data  
RDC Falling Edge to RCE Rising Edge Setup Time  
RCE Rising Edge to RDC Falling Edge Setup Time  
RDD Valid to RDC Falling Edge Setup Time  
20  
100  
60  
CCI Falling Edge to MSI Rising Edge Setup Time  
MSI Rising Edge to CCI Falling Edge Setup Time  
RDD Hold Time from RDC Falling Edge  
20  
100  
100  
t
h
TDE, TDC, RCE, RDC, RDD, DC, MSI, CCI Input Capacitance  
TDE,TDC, RCE, RDC, RDD, DC, MSI, CCI Input Current  
TDD Capacitance During High Impedance (TDE Low)  
TDD Input Current During High Impedance (TDE Low)  
10  
±0.01  
12  
±0.2  
15  
±0.1  
±10.0  
MC145506MC145507MC145508  
6
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
maximum flexibility. The MC145506 contains all the features  
DEVICE DESCRIPTIONS  
of the MC145507 and MC145508. The MC145506 is in-  
tended for bit interleaved or byte interleaved applications with  
data clock frequencies which are nonstandard or time vary-  
ing. One of the five standard frequencies (listed below) is ap-  
plied to the CCI input, and the data clock inputs can be any  
A codec–filter is a device which is used for digitizing and  
reconstructing the human voice. These devices were devel-  
oped primarily for the telephone network to facilitate voice  
switching and transmission. Once the voice is digitized, it  
may be switched by digital switching methods or transmitted  
long distance (T1, microwave, satellites, etc.) without degra-  
dation. The name codec is an acronym from “coder” for the  
A/D used to digitize voice, and “decoder” for the D/A used for  
reconstructing voice. A codec is a single device that does  
both the A/D and D/A conversions.  
frequency between 64 kHz and 4.096 MHz. The V  
pin  
ref  
allows for use of an external shared reference or selection of  
the internal reference. The RxG pin accommodates gain ad-  
justments for the inverted analog output. All three pins of the  
input gainsetting operational amplifier are present which pro-  
vide maximum flexibility for the analog interface.  
To digitize intelligible voice requires a signal to distortion of  
about 30 dB for a dynamic range of about 40 dB. This may be  
accomplished with a linear 13–bit A/D and D/A, but will far ex-  
ceed the required signal to distortion at amplitudes greater  
than 40 dB below the peak amplitude. This excess perform-  
ance is at the expense of data per sample. Two methods of  
data reduction are implemented by compressing the 13–bit  
linear scheme to companded 8–bit schemes. These com-  
panding schemes follow a segmented or “piecewise–linear”  
curve formatted as a sign bit, 3 chord bits, and 4 step bits. For  
a given chord, all 16 of the steps have the same voltage  
weighting. As the voltage of the analog input increases, the 4  
step bits increment and carry to the 3 chord bits which incre-  
ment. With the chord bits incremented, the step bits double  
their voltage weighting. This results in an effective resolution  
of 6 bits (sign + chord + 4 step bits) across a 42 dB dynamic  
range (7 chords above 0, by 6 dB per chord). There are two  
companding schemes used; Mu–255 Law specifically in  
North America, and A–Law specifically in Europe. These  
companding schemes are accepted world wide. The tables  
show the linear quantization levels to PCM words for the two  
companding schemes.  
MC145507  
The MC145507 PCM mono–circuit is intended for standard  
byte interleaved synchronous or asynchronous applications.  
TDC can be one of five discrete frequencies. These are  
128 kHz (40% to 60% duty cycle), 1.536 MHz, 1.544 MHz,  
2.048 MHz, or 2.56 MHz. (For other data clock frequencies,  
see MC145506 or MC145508.) The internal reference is set  
for 3.15 V peak full scale, and the full scale input level at TxI  
and output level at RxO is 6.3 Vp–p. This is the 3 dBm0 level  
of the PCM codec–filter. The +Tx and –Tx inputs provide  
maximum flexibility for analog interface. All other functions  
are described in the pin description.  
MC145508  
The MC145508 PCM mono–circuit is intended for byte in-  
terleaved synchronous applications. The MC145508 has all  
the features of the MC145507 but internally connects TDC  
and RDC (see pin description) to the DC pin. One of the five  
standard frequencies (listed above) should be applied to CCI.  
The data clock input (DC) can be any frequency between  
64 kHz and 4.069 MHz.  
In a sampling environment, Nyquist theory says that to  
properly sample a continuous signal, it must be sampled at a  
frequency higher than twice the signal’s highest frequency  
component. Voice contains spectral energy above 3 kHz, but  
its absence is not detrimental to intelligibility. To reduce the  
digital data rate, which is proportional to the sampling rate, a  
sample rate of 8 kHz was adopted, consistent with a band-  
width of 3 kHz. This sampling requires a low–pass filter to  
limit the high frequency energy above 3 kHz from distorting  
the inband signal. The telephone line is also subject to  
50/60 Hz power line coupling which must be attenuated from  
the signal by a high–pass filter before the A/D converter.  
The D/A process reconstructs a staircase version of the  
desired inband signal which has spectral images of the in-  
band signal modulated about the sample frequency and its  
harmonics. These spectral images are called aliasing compo-  
nents which need to be attenuated to obtain the desired sig-  
nal. The low–pass filter used to attenuate these aliasing  
components is typically called a reconstruction or smoothing  
filter.  
PIN DESCRIPTIONS  
DIGITAL  
V
LS  
Logic Level Select Input and HCMOS Digital Ground  
V
controls the logic levels and digital ground reference  
LS  
for all digital inputs and the digital output. These devices can  
operate with logic levels from full supply (V to V ) or  
SS  
DD  
with TTL logic levels using V as digital ground. For V  
=
LS  
LS  
swing) with CMOS  
V
, all I/O is full supply (V to V  
DD  
switch points. For V  
SS  
LS  
DD  
< (V – 4 V), all inputs are  
DD  
< V  
SS  
TTL compatible with V being the digital ground while TDD  
LS  
outputs HCMOS levels from V to V . The pins controlled  
LS  
DD  
by V  
are inputs MSI, CCI, TDE, TDC, RCE, RDC, RDD,  
LS  
PDI, and output TDD.  
MSI  
Master Synchronization Input  
MSI is used for determining the sample rate of the transmit  
side and as a time base for selecting the internal prescale  
divider for the convert clock input (CCI) pin. The MSI pin  
should be tied to an 8 kHz clock which may be a frame sync  
or system sync signal. MSI has no relation to transmit or  
receive data timing, except for determining the internal trans-  
mit strobe as described under the TDE pin description. MSI  
should be derived from the transmit timing in asynchronous  
applications. In many applications, MSI can be tied to TDE.  
(MSI is tied internally to TDE in the MC145507/08.)  
The MC145500 series PCM codec–filters have the codec,  
both presampling and reconstruction filters, a precision volt-  
age reference on chip, and require no external components.  
There are three distinct versions of the Motorola MC145500  
series with HCMOS compatible outputs.  
MC145506  
The MC145506 PCM codec–filter is the full–featured  
22–pin device. It is intended for use in applications requiring  
MOTOROLA  
MC145506MC145507MC145508  
For More Information On This Product,  
Go to: www.freescale.com  
7
Freescale Semiconductor, Inc.  
CCI  
RDC  
Convert Clock Input  
Receive Data Clock Input  
RDC can be any frequency from 64 kHz to 4.096 MHz. This  
pin is often tied to the TDC pin for applications that can use a  
common clock for both transmit and receive data transfers.  
The receive shift register is controlled by the receive clock  
enable (RCE) pin to clock data into the receive digital data  
(RDD) pin on falling RDC edges. These three signals can be  
asynchronous with all other digital pins. The RDC input is in-  
ternally tied to the TDC input on the MC145508 and called  
DC.  
CCI is designed to accept five discrete clock frequencies.  
These are 128 kHz, 1.536 MHz, 1.544 MHz, 2.048 MHz, or  
2.56 MHz. The frequency at this input is compared with MSI  
and prescale divided to produce the internal sequencing  
clock at 128 kHz (or 16 times the sampling rate). The duty  
cycle of CCI is dictated by the minimum pulse width except for  
128 kHz, which is used directly for internal sequencing and  
must have a 40% to 60% duty cycle. In asynchronous appli-  
cations, CCI should be derived from transmit timing. (CCI is  
tied internally to TDC in the MC145507.)  
RCE  
Receive Clock Enable Input  
TDC  
The rising edge of RCE should identify the sign bit of a  
receive PCM word on RDD. The next falling edge of RDC,  
after a rising RCE, loads the first bit of the PCM word into the  
receive register. The next seven falling edges enter the  
remainder of the PCM word. On the ninth rising edge, the  
receive PCM word is transferred to the receive buffer register  
and the A/D sequence is interrupted to commence the  
decode process. In asynchronous applications with an 8 kHz  
transmit sample rate, the receive sample rate should be be-  
tween 7.5 kHz and 8.5 kHz. Two receive PCM words may be  
decoded and analog summed each transmit frame to allow  
on–chip conferencing. The two PCM words should be  
clocked in as two single PCM words, a minimum of 31.25 µs  
apart, with a receive data clock of 512 kHz or faster.  
Transmit Data Clock Input  
TDC can be any frequency from 64 kHz to 4.096 MHz, and  
is often tied to CCI if the data rate is equal to one of the five  
discrete frequencies. This clock is the shift clock for the trans-  
mit shift register and its rising edges produce successive data  
bits at TDD. TDE should be derived from this clock. (TDC and  
RDC are tied together internally in the MC145508 and are  
called DC.)  
TDE  
Transmit Data Enable Input  
TDE serves three major functions. The first TDE rising  
edge following an MSI rising edge, generates the internal  
transmit strobe which initiates an A/D conversion. The inter-  
nal transmit strobe also transfers a new PCM data word into  
the transmit shift register (sign bit first) ready to be output at  
TDD. The TDE pin is the high–impedance control for the  
transmit digital data (TDD) output. As long as this pin is high,  
the TDD output stays low impedance. This pin also enables  
the output shift register for clocking out the 8–bit serial PCM  
word. The logical AND of the TDE pin with the TDC pin,  
clocks out a new data bit at TDD. TDE should be held high for  
eight consecutive TDC cycles to clock out a complete PCM  
word for byte interleaved applications. The transmit shift reg-  
ister feeds back on itself to allow multiple reads of the transmit  
data. If the PCM word is clocked out once per frame in a byte  
interleaved system, the MSI pin function is transparent and  
may be connected to TDE.  
RDD  
Receive Digital Data Input  
RDD is the receive digital data input. The timing for this pin  
is controlled by RDC and RCE. The data format is determined  
by the Mu/A pin.  
Mu/A  
Mu/A Select  
This pin selects the companding law and the data format at  
TDD and RDD.  
Mu/A = V ; Mu–255 Companding D3 Data Format with  
DD  
Zero Code Suppress  
Mu/A = V ; Mu–255 Companding with Sign Magnitude  
AG  
Data Format  
Mu/A = V ; A–Law Companding with CCITT Data Format  
SS  
The TDE pin may be cycled during a PCM word for bit inter-  
leaved applications. TDE controls both the high–impedance  
state of the TDD output and the internal shift clock. TDE must  
Bit Inversions  
Sign/  
A–Law  
fall before TDC rises (t  
) to ensure integrity of the next data  
su8  
Magnitude  
(CCITT)  
Code  
Mu–Law  
bit. There must be at least two TDC falling edges between the  
last TDE rising edge of one frame and the first TDE rising  
edge of the next frame. MSI must be available separate from  
TDE for bit interleaved applications.  
+ Full Scale  
+ Zero  
– Zero  
1111 1111  
1000 0000  
0000 0000  
0111 1111  
1000 0000  
1111 1111  
0111 1111  
0000 0010  
1010 1010  
1101 0101  
0101 0101  
0010 1010  
– Full Scale  
TDD  
SIGN  
BIT  
Transmit Digital Data Output  
CHORD BITS  
STEP BITS  
The output levels at this pin are controlled by the V pin.  
LS  
connected to V , the output levels are from V  
For V  
0
1
2
3
4
5
6
7
LS  
DD  
SS  
to V . For a voltage of V between V  
– 4 V and V , the  
DD LS  
DD  
SS  
output levels are HCMOS compatible with V  
LS  
being the  
NOTE: Starting from sign magnitude, to change format:  
To Mu–Law —  
digital ground supply and V  
DD  
being the positive logic supply.  
The TDD pin is a three–state output controlled by the TDE  
pin. The timing of this pin is controlled by TDC and TDE. The  
data format (Mu–Law, A–Law, or sign magnitude) is con-  
trolled by the Mu/A pin.  
MSB is unchanged (sign)  
Invert remaining 7 bits  
If code is 0000 0000, change to 0000 0010 (for zero  
code suppression)  
MC145506MC145507MC145508  
For More Information On This Product,  
MOTOROLA  
Go to: www.freescale.com  
8
Freescale Semiconductor, Inc.  
To A–Law —  
reference voltage gain selection circuitry associated with RSI  
must be considered to arrive at the desired codec–filter gain.  
Internal Mode — In the internal reference mode (V  
MSB is unchanged (sign)  
Invert odd numbered bits  
Ignore zero code suppression  
=
ref  
), an internal 2.5 V reference supplies the reference volt-  
V
SS  
age for the RSI circuitry. The V  
pin is functionally con-  
ref  
for the MC145507 and MC145508 pinouts.  
nected to V  
PDI  
SS  
Power Down Input  
RSI  
The power down input disables the bias circuitry and gates  
off all clock inputs. This puts the V , Txl, RxO, RxO, and  
TDD outputs into a high–impedance state. The power dissi-  
pation is reduced to 0.1 mW when PDI is a low logic level. The  
circuit operates normally with PDI = V  
Reference Select Input (MC145506 Only)  
AG  
The RSI input allows the selection of three different over-  
load or full–scale A/D and D/A converter reference voltages  
independent of the internal or external reference mode. The  
RSI pin is a digital input that senses three different logic  
states: V , V , and V  
DD  
voltage is used directly for the converters. The internal refer-  
or with a logic high  
DD  
as defined by connection at V . TDD will not come out of  
high impedance for two MSI cycles after PDI goes high.  
LS  
. For RSI = V , the reference  
SS AG  
AG  
ence is 2.5 V. For RSI = V , the reference voltage is multi-  
plied by the ratio of 1.26, which results in an internal converter  
SS  
DC  
Data Clock Input  
reference of 3.15 V. For RSI = V  
multiplied by 1.51, which results in an internal converter refer-  
ence of 3.78 V. The device requires a minimum of 1.0 V of  
, the reference voltage is  
DD  
In the MC145508, TDC and RDC are internally connected  
to DCLK.  
headroom between the internal converter reference to V  
.
DD  
has this same absolute valued minimum, also measured  
V
ANALOG  
SS  
from the V  
pin. The various modes of operation are sum-  
AG  
marized in Table 2. The RSI pin is functionally connected to  
for the MC145507 and MC145508 pinouts.  
V
AG  
Analog Ground Input/Output Pin  
V
SS  
V
is the analog ground power supply input/output. All  
AG  
RxO, RxO  
Receive Analog Outputs  
analog signals into and out of the device use this as their  
ground reference. Each version of the MC145500 PCM  
codec–filter family can provide its own analog ground supply  
internally. The dc voltage of this internal supply is 6% positive  
These two complimentary outputs are generated from the  
output of the receive filter. They are equal in magnitude and  
out of phase. The maximum signal output of each is equal to  
the maximum peak–to–peak signal described with the refer-  
of the midway between V  
and V . This supply can sink  
DD  
SS  
more than 8 mA but has a current source limited to 400 µA.  
The output of this supply is internally connected to the analog  
ground input of the part. The node where this supply and the  
analog ground are connected is brought out to the V  
symmetric dual supply systems (±5, ±6, etc.), V  
AG  
externally tied to the system analog ground supply. When  
RxO or RxO drive low–impedance loads tied to V , a pull–  
up resistor to V  
capability if V  
AG  
signals for the part are referenced to V , including noise;  
therefore, decoupling capacitors (0.1 µF) should be used  
from V  
ence. If a 3.15 V reference is used with RSI tied to V  
and a  
AG  
3 dBm0 sine wave is decoded, the RxO output will be a 6.3 V  
peak–to–peak signal. RxO will also have an inverted signal  
output of 6.3 V peak–to–peak. External loads may be con-  
nected from RxO to RxO for a 6 dB push–pull signal gain or  
from either RxO or RxO to V . With a 3.15 V reference, each  
output will drive 600 to 9 dBm. With RSI tied to V , each  
pin. In  
may be  
AG  
AG  
AG  
will be required to boost the source current  
is not tied to the supply ground. All analog  
DD  
DD  
output will drive 900 to 9 dBm.  
AG  
RxG  
Receive Output Gain Adjust (MC145506 Only)  
to V  
and V  
to V .  
DD  
AG  
SS  
AG  
The purpose of the RxG pin is to allow external gain adjust-  
ment for the RxO pin. If RxG is left open, then the output sig-  
nal at RxO will be inverted and output at RxO. Thus, the  
push–pull gain to a load from RxO to RxO is two times the out-  
put level at RxO. If external resistors are applied from RxO to  
RxG (RI) and from RxG to RxO (RG), the gain of RxO can be  
set differently from inverting unity. These resistors should be  
in the range of 10 k. The RxO output level is unchanged by  
the resistors and the RxO gain is approximately equal to  
minus RG/RI. The actual gain is determined by taking into  
account the internal resistors which will be in parallel to these  
external resistors. The internal resistors have a large toler-  
ance, but they match each other very closely. This matching  
tends to minimize the effects of their tolerance on external  
gain configurations. The circuit for RxG and RxO is shown in  
the Block Diagram.  
V
ref  
Positive Voltage Reference Input (MC145506 Only)  
The V  
pin allows an external reference voltage to be  
ref  
used for the A/D and D/A conversions. If V is tied to V  
the internal reference is selected. If V > V , then the ex-  
ternal mode is selected and the voltage applied to V  
ref  
used for generating the internal converter reference voltage.  
In either internal or external reference mode, the actual volt-  
age used for conversion is multiplied by the ratio selected by  
the RSI pin. The RSI pin circuitry is explained under its pin  
description below. Both the internal and external references  
are inverted within the PCM codec–filter for negative input  
voltages such that only one reference is required.  
,
ref  
SS  
ref  
AG  
is  
External Mode — In the external reference mode (V  
), a 2.5 V reference like the MC1403 may be connected  
>
ref  
V
AG  
from V to V . A single external reference may be shared  
Txl  
ref  
AG  
Transmit Analog Input  
by tying together a number of V pins and V  
ref AG  
different codec–filters. In special applications, the external  
reference voltage may be between 0.5 and 5 V. However, the  
pins from  
TxI is the input to the transmit filter. It is also the output of  
the transmit gain amplifier. The TxI input has an internal gain  
MOTOROLA  
MC145506MC145507MC145508  
For More Information On This Product,  
Go to: www.freescale.com  
9
Freescale Semiconductor, Inc.  
of 1.0, such that a 3 dBm0 signal at TxI corresponds to the  
peak converter reference voltage as described in the V  
and RSI pin descriptions. For a 3.15 V reference, the 3 dBm0  
input should be 6.3 V peak–to–peak.  
ground accommodating TTL logic levels), and V = 0 V  
AG  
being tied to system analog ground.  
ref  
For single–supply applications, typical power supply con-  
figurations include:  
V
V
V
= 10 V to 12 V  
= 0 V  
generates a mid supply voltage for referencing all ana-  
DD  
SS  
+Tx / –Tx  
Positive Tx Amplifier Input  
Negative Tx Amplifier Input  
AG  
log signals.  
controls the logic levels. This pin should be connected  
V
LS  
to V  
The Txl pin is the input to the transmit band–pass filter. If  
+Tx or –Tx is available, then there is an internal amplifier  
preceding the filter whose pins are +Tx, –Tx, and TxI. These  
pins allow access to the amplifier terminals to tailor the input  
gain with external resistors. The resistors should be in the  
range of 10 k.  
for CMOS logic levels from V  
to V . This pin  
DD  
should be connected to digital ground for true TTL logic input  
levelsreferencedtoV , withHCMOSoutputlevelsfromV  
SS DD  
LS  
LS  
to V  
.
DD  
TESTING CONSIDERATIONS (MC145506 ONLY)  
POWER SUPPLIES  
An analog test mode is activated by connecting MSI and  
CCI to 128 kHz. In this mode, the input of the A/D (the output  
of the Tx filter) is available at the PDI pin. This input is direct  
coupled to the A/D side of the codec. The A/D is a differential  
design. This results in the gain of this input being effectively  
attenuated by half. If monitored with a high–impedance buff-  
er, the output of the Tx low–pass filter can also be measured  
at the PDI pin. This test mode allows independent evaluation  
of the transmit low–pass filter and A/D side of the codec. The  
transmit and receive channels of these devices are tested  
with the codec–filter fully functional.  
V
DD  
Most Positive Power Supply  
V
is typically 5 V to 12 V.  
DD  
V
SS  
Most Negative Power Supply  
V
is typically 10 V to 12 V negative of V  
.
DD  
SS  
For a ±5 V dual–supply system, the typical power supply  
configuration is V = 5 V, V = 5 V, V = 0 V (digital  
DD  
SS  
LS  
5 V  
0.1 µF  
MC145507  
V
AG  
Rx  
Tx  
51 k*  
1
16  
V
V
DD  
AG  
600 Ω  
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
10  
9
RxO  
+Tx  
RDD  
RCE  
ENABLE  
CLOCK  
5 kΩ  
10 kΩ  
TxI  
RDC  
–Tx  
TDC  
TDD  
TDE  
681  
Mu/A  
PDI  
V
V
LS  
SS  
0.1 µF  
–5 V  
* To define RDD when TDD is high Z.  
Figure 1. Test Circuit  
Table 1. MC145506 Options Available by Pin Selection  
RSI*  
Pin Level  
V
*
Peak–to–Peak Overload Voltage  
(Txl, RxO)  
ref  
Pin Level  
V
V
V
7.56 Vp–p  
DD  
SS  
V
+ V  
(3.02 x V ) Vp–p  
EXT  
DD  
AG  
EXT  
EXT  
EXT  
V
AG  
V
SS  
5 Vp–p  
(2 x V ) Vp–p  
V
AG  
V
+ V  
AG  
EXT  
6.3 Vp–p  
(2.52 x V ) Vp–p  
V
V
V
SS  
SS  
V
+ V  
SS  
AG  
EXT  
* On MC145507/08, RSI and V  
ref  
are tied internally to V  
.
SS  
MC145506MC145507MC145508  
10  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 2. Summary of Operation Conditions User Programmed Through Pins V , V , and V  
DD AG  
SS  
Pin  
RSI  
Programmed  
Peak  
Logic  
Level  
Overload  
Voltage  
Mu/A  
V
LS  
V
Mu–Law Companding Curve and D3/D4 Digital  
Formats with Zero Code Suppress  
3.78  
2.50  
3.15  
CMOS  
Logic Levels  
DD  
V
AG  
Mu–Law Companding Curve and Sign Magnitude  
Data Format  
TTL Input Levels, V  
HCMOS Output Levels, V  
Up;  
AG  
to V  
to V  
AG  
DD  
V
A–Law Companding Curve and CCITT Digital  
Format  
TTL Levels, V  
HCMOS Output Levels, V  
Up;  
SS  
SS  
SS  
DD  
TDE  
t
P4  
t
w
f
CL  
t
su2  
t
t
t
w
su8  
su1  
TDC  
1
2
3
t
4
5
6
7
8
t
9
10  
11  
t
P2  
t
P3  
P3  
P2  
t
P1  
MSB  
LSB  
*
TDD  
PCM WORD REPEATED  
* Data output during this time will vary depending on TDC rate and TDE timing.  
Figure 2. Transmit Timing Diagram  
t
w
RCE  
t
su4  
f
CL  
t
w
t
su3  
t
w
RDC  
RDD  
1
2
3
4
5
6
7
8
9
10  
11  
t
h
t
su5  
DON’T  
CARE  
DON’T  
CARE  
MSB  
LSB  
Figure 3. Receive Timing Diagram  
t
w
MSI  
CCI  
t
t
w
su7  
t
t
w
su6  
1
2
3
4
5
6
7
8
9
10  
11  
Figure 4. MSI/CCI Timing Diagram  
MOTOROLA  
MC145506MC145507MC145508  
For More Information On This Product,  
Go to: www.freescale.com  
11  
Freescale Semiconductor, Inc.  
1.00  
0.80  
1.00  
V
= 5 V  
= –5 V  
V
= 5 V  
= –5 V  
DD  
DD  
0.80  
0.60  
0.40  
0.20  
0
V
V
SS  
SS  
2048 kHz CLOCK  
0.60  
0.40  
0.20  
0
2048 kHz CLOCK  
GUARANTEED  
PERFORMANCE  
GUARANTEED  
PERFORMANCE  
TYPICAL  
PERFORMANCE  
TYPICAL  
PERFORMANCE  
–0.20  
–0.40  
–0.60  
–0.20  
–0.40  
–0.60  
–0.80  
–1.00  
–0.80  
–1.00  
–60  
–50  
–40  
–30  
–20  
–10  
0
–60  
–50  
–40  
–30  
–20  
–10  
0
INPUT LEVEL AT 1.02 kHz  
INPUT LEVEL AT 1.02 kHz  
Figure 5. MC145506 Gain vs Level Mu–Law Transmit  
Figure 6. MC145506 Gain vs Level Mu–Law Receive  
45.0  
45.0  
40.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
TYPICAL  
PERFORMANCE  
TYPICAL  
PERFORMANCE  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
C–MESSAGE WEIGHTED  
C–MESSAGE WEIGHTED  
V
V
SS  
= 5 V  
= –5 V  
V
V
SS  
= 5 V  
= –5 V  
DD  
DD  
2048 kHz CLOCK  
2048 kHz CLOCK  
GUARANTEED  
PERFORMANCE  
GUARANTEED  
PERFORMANCE  
–60  
–50  
–40  
–30  
–20  
–10  
0
–60  
–50  
–40  
–30  
–20  
–10  
0
INPUT LEVEL AT 1.02 kHz  
INPUT LEVEL AT 1.02 kHz  
Figure 7. MC145506 Quantization  
Distortion Mu–Law Transmit  
Figure 8. MC145506 Quantization  
Distortion Mu–Law Receive  
0.8  
0.6  
0.4  
0.8  
0.6  
0.4  
V
= 5 V  
= –5 V  
V
= 5 V  
= –5 V  
DD  
DD  
V
V
SS  
SS  
2048 kHz CLOCK  
2048 kHz CLOCK  
0.2  
0
0.2  
0
TYPICAL PERFORMANCE  
TYPICAL PERFORMANCE  
GUARANTEED  
–0.2  
–0.4  
–0.2  
–0.4  
PERFORMANCE  
GUARANTEED  
PERFORMANCE  
–0.6  
–0.8  
–0.6  
–0.8  
–60  
–50  
–40  
–30  
–20  
–10  
–60  
–50  
–40  
–30  
–20  
–10  
INPUT LEVEL PSEUDO NOISE (dBm0)  
INPUT LEVEL PSEUDO NOISE (dBm0)  
Figure 9. MC145506 Gain vs Level A–Law Transmit  
Figure 10. MC145506 Gain vs Level A–Law Receive  
MC145506MC145507MC145508  
For More Information On This Product,  
MOTOROLA  
Go to: www.freescale.com  
12  
Freescale Semiconductor, Inc.  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
40.0  
TYPICAL  
PERFORMANCE  
TYPICAL  
PERFORMANCE  
GUARANTEED  
PERFORMANCE  
35.0  
GUARANTEED  
PERFORMANCE  
30.0  
PSOPHOMETRIC  
WEIGHTED  
25.0  
20.0  
15.0  
10.0  
PSOPHOMETRIC  
WEIGHTED  
V
= 5 V  
= –5 V  
V
V
= 5 V  
= –5 V  
2048 kHz  
DD  
DD  
SS  
V
SS  
2048 kHz  
–60  
–50  
–40  
–30  
–20  
–10  
0
–60  
–50  
–40  
–30  
–20  
–10  
0
INPUT LEVEL PSEUDO NOISE (dBm0)  
INPUT LEVEL PSEUDO NOISE (dBm0)  
Figure 11. MC145506 Quantization Distortion  
A–Law Transmit  
Figure 12. MC145506 Quantization Distortion  
A–Law Receive  
70  
60  
70  
TYPICAL PERFORMANCE  
TYPICAL PERFORMANCE  
60  
50  
40  
30  
50  
40  
30  
20  
10  
0
20  
10  
0
0
10  
20  
30  
40 50  
60 70 80  
90 100  
0
10 20  
30 40  
50 60  
70  
80  
90 100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 13. MC145506 Power Supply Rejection  
Ratio Positive Transmit VAC = 250 mVrms,  
C–Message Weighted  
Figure 14. MC145506 Power Supply Rejection  
Ratio Negative Transmit VAC = 250 mVrms,  
C–Message Weighted  
70  
70  
TYPICAL PERFORMANCE  
TYPICAL PERFORMANCE  
60  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
0
10 20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20 30  
40  
50 60  
70  
80  
90 100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 15. MC145506 Power Supply Rejection  
Ratio Positive Receive VAC = 250 mVrms,  
C–Message Weighted  
Figure 16. MC145506 Power Supply Rejection  
Ratio Negative Receive VAC = 250 mVrms,  
C–Message Weighted  
MOTOROLA  
MC145506MC145507MC145508  
For More Information On This Product,  
Go to: www.freescale.com  
13  
Freescale Semiconductor, Inc.  
0.2  
0.1  
2.0  
0
0
–2.0  
TYPICAL  
PERFORMANCE  
–4.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
–0.8  
–6.0  
–8.0  
GUARANTEED  
PERFORMANCE  
TYPICAL  
PERFORMANCE  
–10.0  
GUARANTEED  
PERFORMANCE  
–12.0  
–14.0  
–16.0  
–18.0  
GUARANTEED  
PERFORMANCE  
0
0.4  
0.8  
1.2  
1.6  
2.0 2.4  
2.8  
3.2  
3.6  
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 17. MC145506 Pass–Band  
Filter Response Transmit  
Figure 18. MC145506 Low–Pass Filter  
Response Transmit  
2.0  
–2.0  
0.2  
0.1  
TYPICAL  
PERFORMANCE  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–6.0  
TYPICAL  
PERFORMANCE  
–10.0  
–14.0  
–18.0  
–22.0  
–26.0  
–30.0  
GUARANTEED  
PERFORMANCE  
GUARANTEED  
PERFORMANCE  
–0.6  
–0.7  
–0.8  
0
0.4  
0.8  
1.2  
1.6  
2.0 2.4  
2.8  
3.2  
3.6  
0
0.04  
0.08  
0.12  
0.16  
0.20  
0.24  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 19. MC145506 High–Pass Filter  
Response Transmit  
Figure 20. MC145506 Pass–Band  
Filter Response Receive  
2.0  
0
GUARANTEED  
–2.0  
PERFORMANCE  
–4.0  
–6.0  
–8.0  
TYPICAL  
PERFORMANCE  
–10.0  
–12.0  
GUARANTEED  
PERFORMANCE  
–14.0  
–16.0  
–18.0  
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2  
FREQUENCY (kHz)  
Figure 21. MC145506 Low–Pass Filter Response Receive  
MC145506MC145507MC145508  
For More Information On This Product,  
MOTOROLA  
Go to: www.freescale.com  
14  
Freescale Semiconductor, Inc.  
2.048 MHz  
18 pF  
18 pF  
10 MΩ  
300 Ω  
2.048 MHz  
5 V  
(TDC, RDC, CCI)  
V
CC  
R
OSC  
IN  
OSC  
OUT 1 OUT 2  
OSC  
8 kHz  
(TDE, RCE, MSI)  
0.1 µF  
MC74HC4060  
GND Q8  
Q4  
5 V  
V
CC  
J
Q
J
Q
Q
1/2  
MC74HC73  
1/2  
MC74HC73  
K
Q
K
GND  
R
R
5 V  
255  
256  
1
2
3
4
5
6
7
8
9
10  
2.048 MHz  
8 kHz  
Figure 22. Simple Clock Circuit for Driving MC145506/07/08 Codec–Filters  
MOTOROLA  
MC145506MC145507MC145508  
For More Information On This Product,  
Go to: www.freescale.com  
15  
Freescale Semiconductor, Inc.  
V
AG  
V
DD  
N = 1  
R0  
RxO  
RDD  
RCE  
R0  
N = 2  
+Tx  
TxI  
–48 V  
10 kΩ  
N = 1  
RDC  
TDC  
10 kΩ  
–Tx  
TDD  
TDE  
Mu/A  
PDI  
V
SS  
V
LS  
MC145507  
(a) Simplified Transformer Hybrid Using MC145507  
V
AG  
V
DD  
N = 1  
R3  
RxO  
+Tx  
TxI  
RDD  
RCE  
R0  
R5  
R6  
N = 2 R4  
–48 V  
R1  
N = 1  
RDC  
TDC  
R2  
–Tx  
TDD  
TDE  
Mu/A  
PDI  
R0 = R3 R4 (R2 + R1) R3 R4  
R0 R4 (R2 + R1)  
R0 R4  
A
=
V
out  
R3 + R0 R4 (R2 + R1)  
R3 + R0 R4  
V
SS  
V
LS  
– R1  
A
=
V
MC145507  
in  
R2  
NOTE: Hybrid balance by R5 and R6 to equate the RxO signal gain at Txl through the  
inverting and non–inverting signal paths.  
(b) Universal Transformer Hybrid Using MC145507  
Figure 23. Hybrid Interfaces to the MC145507 PCM Codec–Filter Mono–Circuit  
MC145506MC145507MC145508  
16  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
R0 = 600 Ω  
R0 = 900 Ω  
+V  
ref  
RSI  
V
SS  
V
V
AG  
DD  
RDD  
RCE  
RDC  
TDC  
N = 1  
RxO  
RxG  
R5  
R6  
R4  
R3  
R0  
N = 2  
RxO  
+Tx  
–48 V  
N = 1  
R0  
TxI  
CCI  
TDD  
TDE  
MSI  
R2  
R1  
–Tx  
NOTE: Balance by R5 and R6 to equate the Txl gains through the inverting  
and non–inverting input signal paths, respectively, is given by:  
Mu/A  
PDI  
R1  
R3  
R4  
R1  
R2  
R6  
R3  
R5  
1 –  
=
1 +  
2 × R2  
R5 + R6  
R4 R5 + R6  
V
SS  
V
LS  
Tx Gain = R1/R2  
Rx Gain = 1 + R3/R4  
R5, R6 10 kΩ  
MC145506  
Adjust Rx Gain with R3  
Adjust Tx Gain with R1  
(a) Universal Transformer Hybrid Using MC145506  
R0 = 600 Ω  
R0 = 900 Ω  
T
+V  
ref  
RSI  
N = 1  
N = 1  
V
SS  
V
AG  
10 kΩ  
V
DD  
N = 2  
R0  
R0  
RxO  
RxG  
RDD  
RCE  
RDC  
TDC  
20 kΩ  
–48 V  
RxO  
R
+Tx  
TxI  
CCI  
TDD  
TDE  
MSI  
20 kΩ  
–Tx  
10 kΩ  
Mu/A  
PDI  
V
SS  
V
LS  
MC145506  
(b) Single–Ended Hybrid Using MC145506  
Figure 24. Hybrid Interfaces to the MC145506 PCM Codec–Filter Mono–Circuit  
MOTOROLA  
MC145506MC145507MC145508  
For More Information On This Product,  
Go to: www.freescale.com  
17  
Freescale Semiconductor, Inc.  
Figure 25. A Complete Single Party Channel Unit Using  
MC3419 SLIC and MC145507 PCM Mono–Circuit  
MC145506MC145507MC145508  
18  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC145406  
MC145428  
MC145426  
MC34119  
MC145507  
MC145412  
Figure 26. Digital Telephone Schematic  
MOTOROLA  
MC145506MC145507MC145508  
For More Information On This Product,  
Go to: www.freescale.com  
19  
Freescale Semiconductor, Inc.  
Table 3. Mu–Law Encode–Decode Characteristics  
Normalized  
Digital Code  
Encode  
Normalized  
Decode  
Levels  
1
2
3
4
5
6
7
8
Chord  
Number  
Number  
of Steps  
Step  
Size  
Decision  
Levels  
Sign  
Chord Chord Chord Step  
Step Step  
Step  
8159  
7903  
4319  
4063  
2143  
2015  
1055  
991  
511  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
8031  
4191  
2079  
1023  
495  
231  
99  
8
16  
256  
7
6
5
4
3
2
1
16  
16  
16  
16  
16  
16  
128  
64  
32  
16  
8
479  
239  
223  
103  
95  
4
35  
33  
31  
15  
1
2
1
3
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
2
0
NOTES:  
1. Characteristics are symmetrical about analog zero with sign bit = 0 for negative analog values.  
2. Digital code includes inversion of all magnitude bits.  
MC145506MC145507MC145508  
For More Information On This Product,  
MOTOROLA  
Go to: www.freescale.com  
20  
Freescale Semiconductor, Inc.  
Table 4. A–Law Encode–Decode Characteristics  
Normalized  
Digital Code  
Encode  
Normalized  
Decode  
Levels  
1
2
3
4
5
6
7
8
Chord  
Number  
Number  
of Steps  
Step  
Size  
Decision  
Levels  
Sign  
Chord Chord Chord Step  
Step Step  
Step  
4096  
3968  
2176  
2048  
1088  
1024  
544  
512  
272  
256  
136  
128  
68  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
0
1
0
1
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
4032  
2112  
1056  
528  
264  
132  
66  
7
16  
128  
6
5
4
3
2
16  
16  
16  
16  
16  
32  
64  
32  
16  
8
4
64  
1
2
2
1
0
NOTES:  
1. Characteristics are symmetrical about analog zero with sign bit = 0 for negative analog values.  
2. Digital code includes alternate bit inversion, as specified by CCITT.  
MOTOROLA  
MC145506MC145507MC145508  
For More Information On This Product,  
Go to: www.freescale.com  
21  
Freescale Semiconductor, Inc.  
PACKAGE DIMENSIONS  
DW SUFFIX  
SOG PACKAGE  
CASE 751–03  
(MC145507/08)  
A
D
16  
9
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
3. DIMENSIONS D AND E DO NOT INLCUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
1
8
MILLIMETERS  
B
16X B  
DIM MIN  
MAX  
2.65  
0.25  
0.49  
0.32  
10.45  
7.60  
A
A1  
B
C
D
E
2.35  
0.10  
0.35  
0.23  
10.15  
7.40  
M
S
S
0.25  
T A  
B
e
1.27 BSC  
H
h
L
10.05  
0.25  
0.50  
0
10.55  
0.75  
0.90  
7
SEATING  
PLANE  
14X  
e
C
T
P SUFFIX  
PLASTIC DIP  
CASE 648–08  
(MC145507/08)  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
1
9
B
S
8
INCHES  
DIM MIN MAX  
0.770 18.80  
MILLIMETERS  
MIN  
MAX  
19.55  
6.85  
4.44  
0.53  
1.77  
F
A
B
C
D
F
0.740  
0.250  
0.145  
0.015  
0.040  
C
L
0.270  
0.175  
0.021  
0.70  
6.35  
3.69  
0.39  
1.02  
SEATING  
–T–  
G
H
J
K
L
M
S
0.100 BSC  
0.050 BSC  
2.54 BSC  
1.27 BSC  
PLANE  
K
M
0.008  
0.015  
0.130  
0.305  
10  
0.21  
0.38  
3.30  
7.74  
10  
H
J
0.110  
0.295  
0
2.80  
7.50  
0
G
D 16 PL  
0.020  
0.040  
0.51  
1.01  
M
M
0.25 (0.010)  
T A  
MC145506MC145507MC145508  
22  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
P SUFFIX  
PLASTIC DIP  
CASE 708–04  
(MC145506)  
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS (D), SHALL  
BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL  
CONDITION, IN RELATION TO SEATING PLANE  
AND EACH OTHER.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
22  
1
12  
11  
B
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
1.115  
0.360  
0.200  
0.022  
0.070  
A
B
C
D
F
27.56  
8.64  
3.94  
0.36  
1.27  
28.32 1.085  
9.14 0.340  
5.08 0.155  
0.56 0.014  
1.78 0.050  
L
A
N
G
H
J
K
L
2.54 BSC  
0.100 BSC  
C
K
1.02  
0.20  
2.92  
1.52 0.040  
0.38 0.008  
3.43  
0.060  
0.015  
0.135  
0.115  
10.16 BSC  
0.400 BSC  
M
N
0
0.51  
15  
0
15  
0.040  
SEATING  
PLANE  
J
H
G
F
D
M
1.02 0.020  
MOTOROLA  
MC145506MC145507MC145508  
For More Information On This Product,  
Go to: www.freescale.com  
23  
Freescale Semiconductor, Inc.  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado, 80217. 1-303-675-2140 or 1-800-441-2447 3-20-1, Minami-Azabu. Minato-ku, Tokyo 106-8573 Japan. 81-3-3440-3569  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1-602-244-6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,  
– US & Canada ONLY 1-800-774-1848 2 Dai King Street, Tai Po Industrial Estate, Tao Po, N.T., Hong Kong.  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center,  
Motorola Fax Back System  
– http://sps.motorola.com/mfax/  
852-26668334  
HOME PAGE: http://motorola.com/sps/  
CUSTOMER FOCUS CENTER: 1-800-521-6274  
MC145506/D  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

MC145508

PCM CODEC FILTER MONO CIRCUIT
MOTOROLA

MC145508DW

PCM Codec, A/MU-Law, 1-Func, CMOS, PDSO16, SOG-16
MOTOROLA

MC145512

Pulse/Tone Repertory Dialer Low Power SIilicon-Gate CMOS
MOTOROLA

MC145512P

Pulse/Tone Repertory Dialer Low Power SIilicon-Gate CMOS
MOTOROLA

MC145516

Tone/Pulse repertory dialler with flash
MOTOROLA

MC145516DW

Telephone Circuit, CMOS, PDSO20
MOTOROLA

MC145516P

Telephone Circuit, CMOS, PDIP20
MOTOROLA

MC14551B

Quad 2-Channel Analog Multiplexer/Demultiplexer
ONSEMI

MC14551B

Quad 2-Channel Analog Multiplezer/Demultiplexer
MOTOROLA

MC14551BCL

IC,ANALOG SWITCH,QUAD,SPDT,CMOS,DIP,16PIN,CERAMIC
ONSEMI

MC14551BCL

Differential Multiplexer, 4 Func, 2 Channel, CMOS, CDIP16, CERAMIC, DIP-16
MOTOROLA

MC14551BCLD

SPDT, 4 Func, CMOS, CDIP16
MOTOROLA