MC34PF1550A0EP [NXP]

Power management integrated circuit (PMIC) for low power application processors;
MC34PF1550A0EP
型号: MC34PF1550A0EP
厂家: NXP    NXP
描述:

Power management integrated circuit (PMIC) for low power application processors

集成电源管理电路
文件: 总150页 (文件大小:1310K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PF1550  
Power management integrated circuit (PMIC) for low power  
application processors  
Rev. 5 — 10 June 2019  
Product data sheet  
1 General description  
The PF1550 is a power management integrated circuit (PMIC) designed specifically for  
use with i.MX processors on low-power portable, smart wearable and Internet-of-Things  
(IoT) applications. It is also capable of providing full power solution to i.MX 7ULP, i.MX  
6SL, 6UL, 6ULL, and 6SX processors.  
With three high-efficiency buck converter, three linear regulators, RTC supply, and  
battery linear charger, the PF1550 can provide power for a complete battery-powered  
system, including application processors, memory, and system peripherals.  
1.1 Features and benefits  
This section summarizes the PF1550 features:  
Input voltage range to PMIC VBUSIN pin via USB bus or AC adapter: 4.1 V to 6.0 V  
Buck converters:  
SW1, 1.0 A; 0.6 V to 1.3875 V in 12.5 mV steps, or 1.1 V to 3.3 V in variable steps  
SW2, 1.0 A; 0.6 V to 1.3875 V in 12.5 mV steps, or 1.1 V to 3.3 V in variable steps  
SW3, 1.0 A; 1.8 V to 3.3 V in 100 mV steps  
Soft start  
Quiescent current 1.0 μA in ULP mode with light load  
Peak efficiency > 90 %  
Dynamic voltage scaling on SW1 and SW2  
Modes: forced PWM quasi-fixed frequency mode, adaptive variable-frequency mode  
Programmable output voltage, current limit, and soft start  
LDO regulators  
LDO1, 0.75 V to 1.5 V/1.8 to 3.3 V, 300 mA with load switch mode  
LDO2, 1.8 V to 3.3 V, 400 mA  
LDO3, 0.75 V to 1.5 V/1.8 V to 3.3 V, 300 mA with load switch mode  
Quiescent current < 1.5 μA in Low-power mode  
Programmable output voltage  
Soft start and ramp  
Current limit protection  
Battery charger  
Supports single-cell Lithium Ion/Lithium Polymer batteries  
Linear charging (10 mA to 1500 mA input limit)  
Up to 6.5 V input operating range  
VSYS regulator can withstand transient and DC inputs from 0 V up to +22 V  
Programmable charge voltage (3.5 V to 4.44 V)  
Programmable charge current (100 mA to 1000 mA)  
Programmable charge termination current (5.0 mA to 50 mA)  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Integrated 50 mΩ battery isolation MOSFET for operation with no/low battery  
Battery supplement mode  
Battery discharge overcurrent protection, up to 3.0 A  
USB_PHY low dropout linear regulator  
Programmable LED driver (status indicator)  
JEITA-compliant battery temp sensing and charger control  
Key charging parameters can be configured and permanently stored in OTP  
I2C Control Interface permitting processor control and event detection  
LDO/switch supply  
RTC supply VSNVS 3.0 V, 2.0 mA  
Battery backed memory including coin cell charger  
DDR memory reference voltage, VREFDDR, 0.5 V to 0.9 V, 10 mA  
OTP (One time programmable) memory for device configuration  
User programmable start-up sequence, timing, soft-start, and power-down sequence  
Programmable regulator output voltages and charger parameters  
I2C interface  
User programmable Standby, Sleep/Low-power, and Off (REGS_DISABLE) modes  
Ambient temperature range −40 °C to 105 °C  
1.2 Applications  
Smart mobile/wearable devices  
Low-power IoT applications  
Wireless game controllers  
Embedded monitoring systems  
Home automation  
POS  
E-Read  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
2 / 150  
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
2 Application diagram  
PF1550  
Low-power application  
processor  
VREFDDR  
DDR memory  
DDR memory Interface  
Processor ARM core  
SW2  
SW1  
GPS  
MIPI  
Processor real-time  
SOC/GPU  
LDO1  
SW3  
FLASH  
NAND - NOR  
interfaces  
SD/MMC/  
NAND memory  
LDO2  
LDO3  
VSNVS  
WiFi  
External AMP  
microphones  
speakers  
Bluetooth  
SNVS_IN  
Audio codec  
Control signals  
Parallel control / GPIO  
2
2
I C communication  
I C communication  
Sensors  
Li-cell  
charger  
Coin cell  
Mini-USB  
linear charger  
Mini-USB connector  
USB_PHY  
aaa-023872  
Figure 1.ꢀApplication diagram  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
3 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
2.1 Functional block diagram  
PF1550 functional block diagram  
BUCK1  
(0.6 V to 1.3875 V, 1.0 A, DVS;  
1.1 V to 3.3 V, 1.0 A, no DVS)  
Linear Li-ion battery charger  
(22 V surge, power path,  
100 mA to 1000 mA charging current)  
BUCK2  
(0.6 V to 1.3875 V, 1.0 A, DVS;  
1.1 V to 3.3 V, 1.0 A, no DVS)  
Logic and Control  
I C/processor interface/  
2
BUCK3  
(1.8 V to 3.3 V, no DVS)  
LDO1  
regulator control/  
OTP  
(0.75 V to 3.3 V, 300 mA)  
(flexible configuration)  
LDO2  
VSNVS (RTC supply)  
(1.8 V to 3.3 V, 400 mA)  
(3.0 V, 2.0 mA)  
LDO3  
DDR voltage reference  
(0.75 V to 3.3 V, 300 mA)  
(V  
/2, 10 mA)  
INREFDDR  
aaa-023873  
Figure 2.ꢀFunctional block diagram  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
4 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
2.2 Internal block diagram  
PF1550 analog core  
(reference and bias current)  
SW1FB  
SW1IN  
SW1LX  
VCORE  
VCORE  
LDO  
PF1550 digital core  
and state machine  
SW1 DVS  
and misc  
reference  
VDIG  
LDO  
EA and  
driver  
VDIG  
EPAD  
coin cell  
charger  
OTP memory  
SW2FB  
SW2IN  
SW2LX  
LICELL  
VSNVS  
VSNVS  
Watchdog  
timer  
32 kHz clock  
SW2 DVS  
and misc  
reference  
EA and  
driver  
VSYS  
16 MHz clock  
EPAD  
VBUSIN  
SW3FB  
SW3IN  
SW3LX  
EPAD  
INT2P7  
LDO  
USBPHY  
LDO  
USBPHY  
INT2P7  
VBATT  
SW3  
and misc  
reference  
EA and  
driver  
Thermistor  
monitor  
THM  
LDO1  
LDO2  
LDO3  
VREFDDR  
divide input by 2  
Digital signal(s)  
Analog reference(s)  
16 MHz clock / derivative  
32 kHz clock / derivative  
aaa-023874  
Figure 3.ꢀInternal block diagram  
3 Orderable parts  
The PF1550 is available only with preprogrammed configurations. These preprogrammed  
devices are identified using the program code from Table 1, which also list the associated  
NXP reference designs where applicable. Details of the OTP programming for each  
device can be found in Table 85.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
5 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 1.ꢀOrderable part variations  
Part number[1]  
Temperature (TA)  
Package  
Programming options  
0 - Not programmed  
MC32PF1550A0EP  
MC32PF1550A1EP  
MC32PF1550A2EP  
MC32PF1550A3EP  
MC32PF1550A4EP  
MC32PF1550A5EP  
MC32PF1550A6EP  
MC32PF1550A7EP  
MC32PF1550A8EP  
1 (Default)  
2 (i.MX 7ULP with LPDDR3) [2]  
3 (i.MX 6UL with DDR3L)  
4 (i.MX 7ULP with LPDDR3)  
5 (i.MX 6UL with DDR3)  
6 (i.MX 6ULL with DDR3L)  
7 (i.MX 6UL with LPDDR2)  
−40 °C to 85 °C (for use  
in consumer applications)  
8 (i.MX 6UL with DDR3L, Edge  
Sensitive)  
MC32PF1550A9EP  
MC34PF1550A0EP  
MC34PF1550A1EP  
MC34PF1550A2EP  
MC34PF1550A3EP  
MC34PF1550A4EP  
MC34PF1550A5EP  
MC34PF1550A6EP  
MC34PF1550A7EP  
MC34PF1550A8EP  
9 (i.MX RT1050)  
98ASA00913D, 40-pin QFN 5.0  
mm x 5.0 mm with exposed pad  
0 - Not programmed  
1 (Default)  
2 (i.MX 7ULP with LPDDR3) [2]  
3 (i.MX 6UL with DDR3L)  
4 (i.MX 7ULP with LPDDR3)  
5 (i.MX 6UL with DDR3)  
6 (i.MX 6ULL with DDR3L)  
7 (i.MX 6UL with LPDDR2)  
−40 °C to 105 °C (for use  
in industrial applications)  
8 (i.MX 6UL with DDR3L, Edge  
Sensitive)  
MC34PF1550A9EP  
9 (i.MX RT1050)  
[1] For tape and reel, add an R2 suffix to the part number.  
[2] For internal validation only  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
6 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
4 Pinning information  
4.1 Pinning  
PF1550  
40 39 38 37 36 35 34 33 32 31  
WDI  
SDA  
1
2
30 VSNVS  
VLDO1  
29  
28  
27  
26  
25  
24  
23  
22  
21  
SCL  
VLDO1IN  
SW1FB  
SW1IN  
3
VDDIO  
4
VDDOTP  
PWRON  
STANDBY  
ONKEY  
INTB  
5
EPAD  
(41)  
SW1LX  
6
VCORE  
VDIG  
7
8
VINREFDDR  
VREFDDR  
9
RESETBMCU  
10  
11 12 13 14 15 16 17 18 19 20  
Transparent top view  
aaa-023875  
Figure 4.ꢀPinout diagram  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
7 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
4.2 Pin definitions  
Table 2.ꢀPin description  
Pin number Pin name  
Block  
Description  
1
2
3
4
WDI  
Watchdog input from processor  
SDA when used in I2C mode  
SCL when used in I2C mode  
SDA  
I/Os  
SCL  
VDDIO  
I/O supply voltage  
Connect to voltage rail between 1.7 V and 3.3 V  
5
VDDOTP  
PWRON  
STANDBY  
ONKEY  
INTB  
VDDOTP  
Connect to ground in application  
PWRON input  
6
7
STANDBY input  
8
I/Os  
ONKEY push-button input  
INTB open-drain output  
RESETBMCU open-drain output  
LDO3 input supply  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
RESETBMCU  
VLDO3IN  
VLDO3  
LDO3  
LDO3 output  
SW3LX  
SW3IN  
Buck 3 switching node  
Buck 3 input supply  
Buck 3  
SW3FB  
SW2FB  
SW2IN  
Buck 3 output voltage feedback  
Buck 2 output voltage feedback  
Buck 2 input supply  
Buck 2  
SW2LX  
VLDO2  
Buck 2 switching node  
LDO2 output  
LDO2  
VLDO2IN  
VREFDDR  
VINREFDDR  
VDIG  
LDO2 input supply  
VREFDDR output  
VREFDDR  
IC core  
VREFDDR input supply  
VDIG regulator output (used within PF1550)  
VCORE regulator output (used within PF1550)  
Buck 1 switching node  
Buck 1 input supply  
VCORE  
SW1LX  
SW1IN  
Buck 1  
SW1FB  
VLDO1IN  
VLDO1  
Buck 1 feedback input  
LDO1 input supply  
LDO1  
LDO1 output  
VSNVS  
LICELL  
VSNVS regulator output  
Coin cell input  
VSNVS  
THM  
Thermistor connection  
Connect thermistor to ground from this pin  
CHARGER  
IC core  
33  
34  
35  
36  
Battery input  
VBATT  
VSYS  
Main input voltage to PMIC and output of charger  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
8 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Pin number Pin name  
Block  
Description  
37  
38  
39  
40  
VBUSIN  
INT2P7  
USBPHY  
CHGB  
Charger input  
INT2P7 regulator output (used within PF1550 and as thermistor bias)  
USBPHY regulator output  
CHARGER  
EPAD  
Charger LED input connection  
Connect LED from VSYS to this pin  
41  
EPAD  
Exposed pad  
Connect to ground  
5 General product characteristics  
5.1 Thermal characteristics  
Table 3.ꢀThermal ratings  
Symbol  
Description (Rating)  
Min  
Max  
Unit  
THERMAL RATINGS  
TA  
Ambient operating temperature range (industrial)  
−40  
−40  
105  
85  
°C  
Ambient operating temperature range (consumer)  
Operating junction temperature range  
Storage temperature range  
[1]  
TJ  
−40  
−65  
125  
150  
°C  
°C  
°C  
TST  
TPPRT  
[2] [3]  
Peak package reflow temperature  
QFN40 THERMAL RESISTANCE AND PACKAGE DISSIPATION RATINGS  
[4] [5] [6]  
RΘJA  
Junction to ambient thermal resistance, natural convection  
Four layer board (2s2p)  
°C/W  
27  
Six layer board (2s4p)  
Eight layer board (2s6p)  
20.6  
17.8  
[4] [6]  
RΘJMA  
Junction to ambient (@200 ft/min)  
Four layer board (2s2p)  
°C/W  
21.4  
8.8  
[7]  
[8]  
[9]  
RΘJB  
Junction to board  
°C/W  
°C/W  
°C/W  
RΘJCBOTTOM Junction to case bottom  
ΨJT Junction to package top – Natural convection  
1.4  
0.6  
[1] Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See Thermal Protection  
Thresholds for thermal protection features.  
[2] Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a  
malfunction or permanent damage to the device.  
[3] NXP's package reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For peak package reflow temperature and moisture  
sensitivity levels (MSL), go to http://www.nxp.com, search by part number, and enter the core ID to view all orderable parts (for MC33xxxD enter 33xxx),  
and review parametrics.  
[4] Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
[5] The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5.  
[6] Per JEDEC JESD51-6 with the board horizontal.  
[7] Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board  
near the package.  
[8] Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
[9] Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.  
When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
9 / 150  
 
 
 
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
5.2 Absolute maximum ratings  
Table 4.ꢀMaximum ratings  
Symbol  
I/Os  
Description (Rating)  
Min  
Max  
Unit  
VDDIO  
SCL  
I/O supply voltage. Connect to voltage rail between 1.7 V and 3.3 V.  
SCL when used in I2C mode. SCLK when used in SPI mode.  
SDA when used in I2C mode. MISO when used in SPI mode.  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
4.8  
3.6  
3.6  
V
V
V
V
V
V
V
V
V
SDA  
RESETBMCU RESETBMCU open-drain output  
PWRON  
STANDBY  
ONKEY  
INTB  
PWRON input  
STANDBY input  
ONKEY push-button input  
INTB open-drain output  
Watchdog input from processor  
WDI  
VDDOTP  
VDDOTP  
BUCK 1  
SW1IN  
SW1LX  
SW1FB  
BUCK 2  
SW2IN  
SW2LX  
SW2FB  
BUCK 3  
SW3IN  
SW3LX  
SW3FB  
LDO1  
Connect to ground in the application  
−0.3  
10  
V
Buck 1 input supply  
Buck 1 switching node  
Buck 1 feedback input  
−0.3  
−0.3  
−0.3  
4.8  
4.8  
3.6  
V
V
V
Buck 2 input supply  
−0.3  
−0.3  
−0.3  
4.8  
4.8  
3.6  
V
V
V
Buck 2 switching node  
Buck 2 output voltage feedback  
Buck 3 input supply  
−0.3  
−0.3  
−0.3  
4.8  
4.8  
3.6  
V
V
V
Buck 3 switching node  
Buck 3 output voltage feedback  
VLDO1IN  
VLDO1  
LDO2  
LDO1 input supply  
LDO1 output  
−0.3  
−0.3  
4.8  
3.6  
V
V
VLDO2IN  
VLDO2  
LDO3  
LDO2 input supply  
LDO2 output  
−0.3  
−0.3  
4.8  
3.6  
V
V
VLDO3IN  
VLDO3  
VSNVS  
VSNVS  
LDO3 input supply  
LDO3 output  
−0.3  
−0.3  
4.8  
3.6  
V
V
VSNVS regulator output  
−0.3  
3.6  
V
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
10 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
LICELL  
CHARGER  
VBATT  
INT2P7  
THM  
Description (Rating)  
Min  
Max  
Unit  
Coin cell input  
−0.3  
3.6  
V
Battery input  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
4.8  
3.6  
3.6  
24  
V
V
V
V
V
V
INT2P7 regulator output (used within PF1550 and as thermistor bias)  
Thermistor connection. Connect thermistor to ground from this pin.  
Charger input  
VBUSIN  
USBPHY  
CHGB  
USBPHY regulator output  
5.5  
4.8  
Charger LED input connection. Connect LED from VSYS to this pin.  
INPUT/OUTPUT SUPPLY  
VINREFDDR  
VREFDDR  
IC CORE  
VSYS  
VREFDDR input supply  
−0.3  
−0.3  
3.6  
3.6  
V
V
VREFDDR output  
Main input voltage to PMIC and output of charger  
VCOREDIG regulator output (used within PF1550)  
VCORE regulator output (used within PF1550)  
−0.3  
−0.3  
−0.3  
4.8  
V
V
VDIG  
1.65  
1.65  
VCORE  
ELECTRICAL RATINGS  
ESD ratings  
[1]  
VESD  
Human body model  
±2000  
±750  
±500  
V
Charge device model (corner pins)  
Charge device model (all other pins)  
[1] Testing is performed in accordance with the human body model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), and the charge device model (CDM), Robotic  
(CZAP = 4.0 pF).  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
11 / 150  
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
5.3 Electrical characteristics  
5.3.1 Electrical characteristics – Battery charger  
All parameters are specified at TA = −40 °C to 105 °C, VBUSIN = 5.0 V, VSYS =  
3.7 V, typical external component values, unless otherwise noted. Typical values are  
characterized at VBUSIN = 5.0 V, VSYS = 3.7 V and 25 °C, unless otherwise noted.  
Table 5.ꢀGlobal conditions  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
CHARGER INPUTS  
VBUS  
VBUSIN voltage range  
Operating voltage  
VUVLO  
VOVLO  
22  
V
V
VBUS_WITHSTAND  
VBUSIN maximum withstand  
voltage rating  
VBUS_OVLO  
VOVLO_HYS  
VBUSIN overvoltage threshold  
Rising  
Falling  
6.0  
50  
6.5  
7.0  
V
VBUSIN overvoltage threshold  
hysteresis  
150  
250  
mV  
tD-OVLO  
VUVLO  
VBUSIN overvoltage delay  
5.0  
3.8  
10  
15  
µs  
V
VBUSIN to GND minimum turn VBUS rising  
on threshold accuracy  
4.0  
4.2  
VUVLO-HYS  
VIN2SYS_50  
VBUSIN UVLO hysteresis  
400  
500  
50  
600  
80  
mV  
mV  
VBUSIN to VSYS minimum turn VBUS_LIN rising, 50 mV setting 20  
on threshold accuracy  
VIN2SYS_175  
VBUSIN to VSYS minimum turn VBUS_LIN rising, 175 mV  
100  
175  
4.4  
250  
4.5  
mV  
V
on threshold accuracy  
setting  
VBUS_LIN_DPM_REG  
VBUSIN adaptive voltage  
regulation threshold  
4.4 V setting (default)  
4.3  
VDPM_REG  
VBUSIN adaptive voltage  
Programmable at 3.9 V to 4.6 V −100  
100  
mV  
regulation threshold accuracy  
Table 6.ꢀInput currents  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
VBUSIN INPUT CURRENT LIMIT  
ILIM10  
ILIM15  
ILIM20  
ILIM25  
ILIM30  
ILIM35  
ILIM40  
ILIM45  
ILIM50  
ILIM100  
Charger input current limit (10  
mA settings)  
10 mA  
15 mA  
20 mA  
25 mA  
6.0  
10.5  
14  
8.5  
11  
16  
21  
26  
30  
35  
40  
45  
50  
105  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Charger input current limit (15  
mA settings)  
12.75  
17  
Charger input current limit (20  
mA settings)  
Charger input current limit (25  
mA settings)  
17.5  
21  
21.25  
25.5  
29.75  
34  
Charger Input Current Limit (30 30 mA  
mA setting)  
Charger input current limit (35  
mA settings)  
35 mA  
40 mA  
45 mA  
50 mA  
24.5  
28  
Charger input current limit (40  
mA settings)  
Charger input current limit (45  
mA settings)  
31.5  
35  
38.25  
42.5  
95  
Charger input current limit (50  
mA settings)  
Charger input current limit (100 100 mA  
mA settings)  
85  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
12 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
ILIM150  
Charger input current limit (150 150 mA  
mA settings)  
125  
137.5  
160  
mA  
ILIM200  
ILIM300  
ILIM400  
ILIM500  
ILIM600  
ILIM700  
ILIM800  
ILIM900  
ILIM1000  
ILIM1500  
Charger input current limit (200 200 mA  
mA settings)  
170  
260  
345  
430  
520  
610  
690  
780  
855  
1260  
190  
285  
380  
475  
570  
665  
760  
855  
950  
1400  
210  
320  
425  
530  
640  
750  
850  
950  
1100  
1700  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Charger input current limit (300 300 mA  
mA setting)  
Charger input current limit (400 400 mA  
mA settings)  
Charger input current limit (500 500 mA  
mA settings)  
Charger input current limit (600 600 mA  
mA settings)  
Charger input current limit (700 700 mA  
mA settings)  
Charger input current limit (800 800 mA  
mA settings)  
Charger input current limit (900 900 mA  
mA settings)  
Charger input current limit (1000 1000 mA  
mA settings)  
Charger input current limit (1500 1500 mA  
mA settings)  
RINSD  
Input self-discharge resistance  
18  
0
30  
42  
kΩ  
µA  
IBATTLEAK  
Leakage current  
Leakage current from VBATT  
5.0  
to VBUSIN. VBATT = 4.2 V,  
BATFET closed, VBUSIN = 0 V.  
Current measured into VBATT  
pin at 25 °C  
IQ_CHARGER  
Charger quiescent current  
(BATFET enabled, normal  
mode)  
25 °C only; charger in CC state;  
ICC = 100 mA  
0
0
2.5  
1.5  
5.0  
3.0  
mA  
mA  
IQ_CHARGER_LQM  
Charger quiescent current (low 25 °C only; charger in CC state  
power mode, charging enabled,  
10 mA to 50 mA input current  
limit setting, VBATT > 2.8 V and  
LED driver OFF)  
TSSVBUS_LIN  
Soft start time (VBUSIN = 5.0  
V, time between input LDO  
enabled and VSYS going to 90  
% of regulation  
No input current limitation event,  
measured in Normal mode  
30  
ms  
Table 7.ꢀInternal 2.7 V Regulator (INT2P7)  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
2.7  
Max  
2.8  
Unit  
V
VGDRV  
Output voltage  
Output current  
Dropout voltage  
2.6  
5.0  
0
IGDRV  
mA  
mV  
VDO(GDRV)  
800  
Table 8.ꢀSwitch impedances and leakage currents  
Symbol  
Parameter  
Measurement condition  
Min  
100  
50  
Typ  
250  
75  
Max  
550  
120  
10  
Unit  
mΩ  
mΩ  
µA  
RVBUS_LIN2SYS  
RBATFET_QFN  
ISYS  
VBUSIN to VSYS resistance  
VBATT to VSYS resistance  
VSYS leakage current  
VSYS = 0 V, VBATT = 4.2 V,  
SHIP mode  
0
0.2  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
13 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
IBATT_OC  
VBATT reverse ILIM quiescent  
current when VBUSIN = 0 V  
VBUSIN = 0 V, VSYS = VBATT  
= 4.2 V, BATFET enabled,  
battery overcurrent enabled  
100  
µA  
Table 9.ꢀLinear transients  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
VPK-PK  
Load transient peak-to-peak  
VBUSIN = 5.0 V, VBATT = 3.6  
V, ICHG = 500 mA, VSYS load  
step 1.0 A/µs  
10  
400  
850  
mV  
VOV_SHT  
Load transient overshoot  
Load transient undershoot  
VBUSIN = 5.0 V, VBATT = 3.6  
V, ICHG = 500 mA, VSYS load  
step 1.0 A/µs  
0
0
200  
200  
500  
500  
mV  
mV  
VUND_SHT  
VBUSIN = 5.0 V, VBATT = 3.6  
V, ICHG = 500 mA, VSYS load  
step 1.0 A/µs  
Table 10.ꢀCharger characteristics  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
VCHGCV_RANGE  
CHGCV output voltage range  
See register map for constant  
voltage programmable range  
3.5  
4.44  
V
CVACC  
CHGCV output accuracy in  
normal charging  
±1  
%
V
VSYSMIN0  
VSYSMIN1  
VSYSMIN2  
VSYSMINLOOP0  
VSYSMINLOOP1  
VSYSMINLOOP2  
IFC  
VSYS output voltage (3.5 V  
option)  
VSYSMIN = 0x00 (3.5 V option) 3.395  
3.5  
3.7  
4.3  
3.2  
3.4  
4.0  
3.605  
3.811  
4.429  
3.39  
VSYS output voltage (3.7 V  
option)  
VSYSMIN = 0x01 (3.7 V option) 3.589  
V
VSYS output voltage (4.3 V  
option)  
VSYSMIN = 0x02 (4.3 V option) 4.171  
V
VSYSMIN loop threshold (3.5 V  
option)  
3.0  
V
VSYSMIN loop threshold (3.7 V  
option)  
3.2  
3.585  
4.17  
V
VSYSMIN loop threshold (4.3 V  
option)  
3.83  
V
Output current range  
Constant current programmable 100  
range CHG_CC[4:0]  
1000  
mA  
IFCACC1  
IEOC  
Output current accuracy  
Charger IEOC range  
−10  
5.0  
20  
32  
10  
50  
44  
%
mA  
ms  
tDB(IEOC)  
Debounce time for charge  
termination  
IEOC_ACC_5mA  
IEOC_ACC_10mA  
IEOC_ACC_50mA  
Charger IEOC accuracy (5.0 mA IEOC = 5 mA  
settings)  
1.0  
4.0  
40  
5.0  
10  
50  
12  
16  
60  
mA  
mA  
mA  
Charger IEOC accuracy (10 mA IEOC = 10 mA  
settings)  
Charger IEOC accuracy (50 mA IEOC = 50 mA  
setting)  
VPRECHG  
Precharge threshold  
VBATT rising  
2.7  
50  
2.8  
100  
45  
2.9  
V
VPRECHG_HYS  
IPRECHG  
Precharge threshold hysteresis  
Precharge current  
150  
60  
mV  
mA  
mA  
30  
IPRECHG.LPM  
Charging current in LPM and 2.8  
V < VBATT < 3.1 V  
0.75  
1.0  
1.25  
VRESTART  
Charger restart threshold (100  
mV settings)  
VBATT below CHGCV[5:0]  
50  
100  
150  
mV  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
14 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
VRESTART  
Charger restart threshold (150  
mV setting)  
VBATT below CHGCV[5:0]  
100  
150  
200  
mV  
VRESTART  
Charger restart threshold (200  
mV settings)  
VBATT below CHGCV[5:0]  
150  
20  
200  
32  
250  
44  
mV  
tDB(VRCH)  
VBATOV  
Debounce time on VRESTART  
BATTOVP range  
ms  
V
CHGCV x  
1.025  
CHGCV x 1.05 CHGCV x  
1.075  
VBATOV_HYS  
BATTOVP hysteresis  
VBATT falling from BATTOVP  
CHGCV x  
0.015  
CHGCV x  
0.025  
CHGCV x  
0.035  
V
Table 11.ꢀPower-path management  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
VSPLM  
Supplement mode voltage  
threshold  
Entering supplement mode  
when VSYS < VBATT  
10  
40  
75  
mV  
Table 12.ꢀWatchdog timer  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
80  
0
Max  
Unit  
s
tWD  
Watchdog timer period  
Watchdog timer accuracy  
tWDACC  
−20  
20  
%
Table 13.ꢀCharger timer  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
tPRECHG  
Precharge time (fixed 45 mA)  
Applies to low battery  
prequalification mode, 500 mA  
settings  
30  
min  
tFC  
Fast charge constant current  
and constant voltage time  
Adjustable from 2 to 14 in 2-hour  
steps  
−20  
0
4.0  
30  
hrs  
min  
%
tEOC  
End-of-charge time  
Adjustable from 0 to 70 in 10 min  
steps  
tacc  
Timer accuracy  
All timers associated with the  
charger block  
20  
tSCIDG  
Charger state change interrupt  
delay  
1.0  
100  
2.0  
200  
ms  
µs  
tINLIM  
VBUS_VOK delay from VDIG  
ready following VBUSIN  
insertion (see charger startup  
diagram)  
0
Table 14.ꢀBattery overcurrent protection  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
tBOVCR  
Battery overcurrent debounce  
time  
Response time to BATFET open 12.8  
(OTP option)  
16  
19.2  
ms  
tBOVCRI  
Battery overcurrent interrupt  
debounce time  
Response time to generate  
interrupt  
2.4  
3.0  
3.6  
4.0  
3.2  
ms  
A
IBOVCR  
Battery overcurrent threshold  
range  
Programmable from 2.0 A to 4.0 2.0  
A in three steps  
IBOVCRACC_2A  
Battery overcurrent threshold  
accuracy (2.2 A setting)  
1.0  
2.2  
A
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
15 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
IBOVCRACC_3A  
Battery overcurrent threshold  
accuracy (2.8 A setting)  
1.6  
2.8  
4
A
IBOVCRACC_4A  
Battery overcurrent threshold  
accuracy (3.2 A setting)  
2.0  
3.2  
4.6  
A
RSYSDISCH  
SYS self-discharge resistor in  
SHIP mode  
480  
600  
720  
Table 15.ꢀThermal regulation  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
TREG  
Thermal regulation threshold (80 Temperature at which charge  
80  
°C  
°C setting) current begins to decrease  
TREG  
Thermal regulation threshold (95 Temperature at which charge  
95  
°C  
°C  
°C Setting)  
current begins to decrease  
TREG  
Thermal regulation threshold  
(110 °C setting)  
Temperature at which charge  
current begins to decrease  
110  
Table 16.ꢀBattery thermistor monitor  
Symbol  
VNTECREF  
VTN10C  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
V
NTECREF voltage  
2.6  
2.7  
2.8  
Thermistor threshold (−10 °C  
settings)  
−10 °C  
0 °C  
0.79*VNTECREF 0.82*VNTECREF 0.85*VNTECREF  
0.71*VNTECREF 0.74*VNTECREF 0.77*VNTECREF  
0.62*VNTECREF 0.65*VNTECREF 0.68*VNTECREF  
0.31*VNTECREF 0.33*VNTECREF 0.35*VNTECREF  
0.25*VNTECREF 0.26*VNTECREF 0.27*VNTECREF  
0.22*VNTECREF 0.23*VNTECREF 0.24*VNTECREF  
V
VT0C  
Thermistor threshold (0 °C  
settings)  
V
VT10C  
VT45C  
VT55C  
VT60C  
VT_HYS  
Thermistor threshold (10 °C  
settings)  
10 °C  
V
Thermistor threshold (45 °C  
settings)  
45 °C  
V
Thermistor threshold (55 °C  
settings)  
55 °C  
V
Thermistor threshold (60 °C  
settings)  
60 °C  
V
Battery temperature hysteresis  
All settings  
0.5  
2.5  
5.0  
°C  
Table 17.ꢀUSBPHY LDO  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
VUSB_PHY  
Output voltage  
IOUT = 10 mA; 3.3 V and 4.9 V  
settings. VBUSIN = 5.5 V  
−5.0  
5.0  
%
IUSB_PHY  
Maximum output current  
60  
mA  
USBRDIS  
USBCAPSTA  
Internal discharge resistance  
500  
1000  
1.0  
1500  
2.2  
Output capacitor for stable  
operation  
0 µA < IOUT < 60 mA, MAX ESR 0.7  
= 10 mΩ  
µF  
IQUSB  
Quiescent supply current  
DC load regulation  
35  
µA  
USBPHYLDREG  
VBUSIN = 5.5 V, 30 µA < IOUT  
60 mA  
<
0
5.0  
13  
mV  
USBPHYDO  
USBPHYILIM  
PSRRUSB_PHY  
Dropout voltage  
Output current limit  
PSRR  
VBUSIN = 5.0 V, IOUT = 60 mA  
200  
150  
60  
350  
200  
75  
mV  
mA  
dB  
65  
VBUSIN = 5.5 V, COUT = 1.0 µF 55  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
16 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 18.ꢀLED characteristics  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
VLED  
LED input voltage operating  
range (anode to ground)  
3.5  
VSYS  
V
VCHGB_IN  
CHGB input voltage operating  
range, LED driver enabled  
1.0  
4.0  
3.0  
V
ILED  
TON  
LED current accuracy  
LED duty cycle range  
6.0  
8
mA  
%
Programmable from 10 % to 100 10  
% duty cycle in 10 % steps  
100  
TLEDRUP  
TLEDRDN  
FLED  
LED ramp up  
Settings depend on duty cycle  
Settings depend on duty cycle  
50  
50  
0.5  
500  
500  
256  
ms  
ms  
Hz  
LED ramp down  
LED frequency  
Programmable from 0.5 Hz to  
256 Hz  
5.3.2 Electrical characteristics – SW1 and SW2  
All parameters are specified at TA = −40 °C to 105 °C, VSYS = VSWxIN = 2.5 V to 4.5 V,  
VSWx = 1.2 V, ISWx = 200 mA, typical external component values, fSWx = 2.0 MHz, unless  
otherwise noted. Typical values are characterized at VSYS = VSWxIN = 3.6 V, VSWx  
1.1 V, ISWx = 100 mA, and 25 °C, unless otherwise noted.  
=
Table 19.ꢀSW1 and SW2 electrical characteristics  
Symbol  
VSWxIN  
ISWx  
Parameter  
Min  
2.5  
Typ  
Max  
4.5  
Unit  
Operating input voltage  
Rated output current  
V
1000  
−15  
mA  
mV  
VSWx  
Output voltage accuracy  
15  
DVS enabled mode (OTP_SWx_DVS_SEL = 0)  
Normal power mode, 2.5 V < VSWxIN < 4.5 V, 0 < ISWx < 1.0 A  
0.6 V ≤ VSWx ≤ 1.0 V  
VSWx  
VSWx  
VSWx  
VSWx  
VSWx  
VSWx  
VSWx  
Output voltage accuracy  
−2.0  
−30  
−3.0  
−45  
−3.0  
−55  
−4.0  
2.0  
30  
%
DVS enabled mode (OTP_SWx_DVS_SEL = 0)  
Normal power mode, 2.5 V < VSWxIN < 4.5 V, 0 < ISWx < 1.0 A  
1.0 V < VSWx ≤ 1.3875 V  
Output voltage accuracy  
mV  
%
DVS enabled mode (OTP_SWx_DVS_SEL = 0)  
Low-power mode, 2.5 V < VSWxIN < 4.5 V, 0 < ISWx < 0.1 A  
0.6 V ≤ VSWx ≤ 1.0 V  
Output voltage accuracy  
3.0  
45  
DVS enabled mode (OTP_SWx_DVS_SEL = 0)  
Low-power mode, 2.5 V < VSWxIN < 4.5 V, 0 < ISWx < 0.1 A  
1.0 V < VSWx ≤ 1.3875 V  
Output voltage accuracy  
mV  
%
DVS disabled mode (OTP_SWx_DVS_SEL = 1)  
Normal power mode, 2.5 V < VSWxIN < 4.5 V, 0 < ISWx < 1.0 A  
1.1 V ≤ VSWx ≤ 1.5 V  
Output voltage accuracy  
3.0  
55  
DVS disabled mode (OTP_SWx_DVS_SEL = 1)  
Normal power mode, 2.5 V < VSWxIN < 4.5 V, 0 < ISWx < 1.0 A  
1.8 V ≤ VSWx ≤ 3.3 V  
Output voltage accuracy  
mV  
%
DVS disabled mode (OTP_SWx_DVS_SEL = 1)  
Low-power mode, 2.5 V < VSWxIN < 4.5 V, 0 < ISWx < 0.1 A  
1.1 V < VSWx ≤ 1.5 V  
Output voltage accuracy  
4.0  
DVS disabled mode (OTP_SWx_DVS_SEL = 1)  
Low-power mode, 2.5 V < VSWxIN < 4.5 V, 0 < ISWx < 0.1 A  
1.8 V ≤ VSWx ≤ 3.3 V  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
17 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
ΔVSWx  
Parameter  
Min  
Typ  
5.0  
88  
Max  
Unit  
mV  
%
Output ripple  
SWxEFF  
Efficiency  
VSWxIN = 3.6 V, LSWx = 1.0 µH, DCR = 50 mΩ  
LP/ ULP mode, 1.2 V, 1.0 mA  
SWxEFF  
SWxEFF  
SWxEFF  
SWxEFF  
ISWxLIMH  
Efficiency  
90  
92  
89  
83  
%
%
%
%
A
VSWxIN = 3.6 V, LSWx = 1.0 µH, DCR = 50 mΩ  
Normal power mode, 1.2 V, 50 mA  
Efficiency  
VSWxIN = 3.6 V, LSWx = 1.0 µH, DCR = 50 mΩ  
Normal power mode, 1.2 V, 150 mA  
Efficiency  
VSWxIN = 3.6 V, LSWx = 1.0 µH, DCR = 50 mΩ  
Normal power mode, 1.2 V, 400 mA  
Efficiency  
VSWxIN = 3.6 V, LSWx = 1.0 µH, DCR = 50 mΩ  
Normal power mode, 1.2 V, 1000 mA  
Current limiter peak (high-side MOSFET) current detection  
SWxILIM[1:0] = 00  
0.7  
0.8  
1.0  
1.4  
1.0  
1.2  
1.5  
2.0  
1.3  
1.6  
2.0  
2.6  
SWxILIM[1:0] = 01  
SWxILIM[1:0] = 10  
SWxILIM[1:0] = 11  
ISWxLIML  
ISWxQ  
Current limiter low-side MOSFET current detection (sinking current)  
0.7  
1.0  
1.0  
6.0  
5.5  
1.3  
A
Quiescent current (at 25 °C)  
µA  
Low-power mode with DVS disabled (OTP_SWx_DVS_SEL = 1)  
ISWxQ  
Quiescent current (at 25 °C)  
µA  
µA  
Low-power mode with DVS enabled (OTP_SWx_DVS_SEL = 0)  
ISWxQ  
Quiescent current (at 25 °C)  
Normal power mode with DVS disabled (OTP_SWx_DVS_SEL = 1)  
ISWxQ  
Quiescent current (at 25 °C)  
µA  
Normal power mode with DVS enabled (OTP_SWx_DVS_SEL = 0)  
10  
VSWxOSH  
Startup overshoot (Normal mode)  
25  
mV  
ISWx = 0 mA  
DVS speed = 12.5 mV/4 µs, VSYS = VSWxIN = 3.6 V, VSWx = 1.35 V  
tONSWx  
Turn on time  
500  
µs  
10 % to 90 % of end value  
DVS speed = 12.5 mV/4 µs, VSYS = VSWxIN = 3.6 V, VSWx = 1.35 V  
VSWxLOTR  
Transient load regulation (Normal power mode)  
Transient load = 50 mA to 250 mA, di/dt = 200 mA/μs  
Overshoot  
mV  
25  
25  
Undershoot  
RONSWxP  
RONSWxN  
RSWxDIS  
SWx P-MOSFET RDS(on) at VSWxIN = 3.6 V  
SWx N-MOSFET RDS(on) at VSWxIN = 3.6 V  
Turn off discharge resistance  
200  
150  
500  
mΩ  
mΩ  
5.3.3 Electrical characteristics – SW3  
All parameters are specified at TA = −40 °C to 105 °C, VSYS = VSW3IN = 2.5 V to 4.5 V,  
VSW3 = 1.8 V, ISW3 = 200 mA, typical external component values, fSW3 = 2.0 MHz, unless  
otherwise noted. Typical values are characterized at VSYS = VSW3IN = 3.6 V, VSW3  
1.8 V, ISW3 = 200 mA, and 25 °C, unless otherwise noted.  
=
Table 20.ꢀSW3 electrical characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VSW3IN  
Operating input voltage  
2.5  
4.5  
V
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
18 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VSW3  
Output voltage accuracy (all voltage settings)  
%
Normal power mode, 2.5 V < VSW3IN < 4.5 V, 0 < ISW3 < 1.0 A  
−2.0  
2.0  
VSW3  
Output voltage accuracy (all voltage settings)  
%
Low-power mode, 2.5 V < VSW3IN < 4.5 V, 0 < ISW3 < 0.1 A  
−3.0  
3.0  
ΔVSW3  
SW3EFF  
Output ripple  
5.0  
mV  
%
Efficiency  
VSW3IN = 3.6 V, LSW3 = 1.0 µH, DCR = 50 mΩ  
LP/ ULP Mode, 1.8 V, 1.0 mA  
88  
90  
91  
92  
83  
Efficiency  
%
%
%
%
A
SW3EFF  
SW3EFF  
SW3EFF  
VSW3IN = 3.6 V, LSWx = 1.0 µH, DCR = 50 mΩ  
Normal power mode, 1.8 V, 50 mA  
Efficiency  
VSW3IN = 3.6 V, LSWx = 1.0 mH, DCR = 50 mΩ  
Normal power mode, 1.8 V, 100 mA  
Efficiency  
VSW3IN = 3.6 V, LSWx = 1.0 µH, DCR = 50 mΩ  
Normal power mode, 1.8 V, 400 mA  
Efficiency  
SW3EFF  
ISW3LIMH  
VSW3IN = 3.6 V, LSWx = 1.0 µH, DCR = 50 mΩ  
Normal power mode, 1.8 V, 1000 mA  
Current limiter peak (high-side MOSFET) current detection  
SW3ILIM[1:0] = 00  
0.7  
0.8  
1.0  
1.4  
1.0  
1.2  
1.5  
2.0  
1.3  
1.6  
2.0  
2.6  
SW3ILIM[1:0] = 01  
SW3ILIM[1:0] = 10  
SW3ILIM[1:0] = 11  
ISW3LIML  
ISW3Q  
Current limiter low-side MOSFET current detection (sinking current)  
0.7  
1.0  
1.3  
A
Quiescent current (at 25 °C)  
Low-power mode  
µA  
1.0  
VSW3OSH  
Start-up overshoot (Normal mode)  
ISW3 = 0 mA  
50  
mV  
µs  
VSYS = VSW3IN = 3.6 V, VSW3 = 1.8 V  
tONSW3  
Turn on time  
500  
10 % to 90 % of end value  
VSYS = VSW3IN = 3.6 V, VSW3 = 1.8 V  
VSW3LOTR  
Transient load regulation (Normal power mode)  
Transient load = 50 mA to 250 mA, di/dt = 200 mA/μs  
Overshoot  
mV  
50  
50  
Undershoot  
RONSW3N  
RONSW3P  
RSW3DIS  
SW3 N-MOSFET RDS(on) at VSW3IN = 3.6 V  
SW3 P-MOSFET RDS(on) at VSW3IN = 3.6 V  
Turn off discharge resistance  
150  
200  
300  
mΩ  
mΩ  
5.3.4 Electrical characteristics – LDO1  
All parameters are specified at TA = −40 °C to 105 °C, VSYS = 2.5 V to 4.5 V, VLDOIN1  
= 3.6 V, VLDO1[4:0] = 11111, ILDO1 = 10 mA, typical external component values, unless  
otherwise noted. Typical values are characterized at VSYS = 3.6 V, VLDOIN1 = 3.6 V,  
VLDO1[4:0] = 11111, ILDO1 = 10 mA, and 25 °C, unless otherwise noted.  
Table 21.ꢀLDO1 electrical characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VLDO1IN  
Operating input voltage  
V
VLDO1 + 250 mV ≤ VSYS ≤ 4.5 V  
1.0  
4.5  
VLDO1NOM  
Nominal output voltage  
See Table 41  
V
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
19 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
Parameter  
Min  
300  
10  
Typ  
Max  
Unit  
mA  
mA  
%
ILDO1MAX  
ILDO1MAXLPM  
VLDO1TOL  
Rated output load current, Normal mode  
Rated output load current, Low-power mode  
Output voltage tolerance, Normal mode  
VLDO1INMIN < VLDO1IN < 4.5 V, 0 mA < ILDO1 ≤ 300 mA  
0.8 V ≤ VLDO1 < 1.8 V  
−2.5  
−2.5  
2.5  
2.5  
4.0  
1.8 V ≤ VLDO1 ≤ 3.3 V  
VLDO1INMIN < VLDO1IN < 4.5 V, 0 mA < ILDO1 < 10 mA (Low-power −4.0  
mode)  
ILDO1LIM  
Current limit  
320  
1000  
1000  
mA  
ILDO1 when VLDO1 is forced to VLDO1NOM/2  
ILDO1OCP  
LDO1FAULTI threshold (also used to disable LDO1 when  
REGSCPEN = 1)  
320  
mA  
µA  
ILDO1Q  
Quiescent current (at 25 °C)  
No load, change in IVSYS and IVLDOIN1  
When LDO1 enabled in Normal mode  
When LDO1 enabled in Low-power mode  
17  
2.5  
RDSON_QFN_LDO1  
PSRRLDO1  
Dropout on resistance  
350  
mΩ  
dB  
PSRR  
ILDO1 = 150 mA, 20 Hz to 20 kHz  
VLDO1 = 3.30 V, VLDO1IN = 3.8 V, VSYS = 4.2 V  
56  
TRVLDO1  
Turn on time  
µs  
10 % to 90 % of end value  
VLDO1INMIN < VLDO1IN ≤ 4.5 V, ILDO1 = 0.0 mA  
200  
250  
1.0  
500  
RLDO1DIS  
Turn off discharge resistance  
LDO1OUTOSHT  
Start-up overshoot (% of final value)  
%
VLDO1INMIN < VLDO1IN ≤ 4.5 V, ILDO1 = 0.0 mA  
2.0  
VLDO1LOTR  
Transient load response  
mV  
VLDO1INMIN < VLDO1IN ≤ 4.5 V, ILDO1 = 10 mA to 200 mA in 10 μs  
Overshoot  
50  
50  
Undershoot  
5.3.5 Electrical characteristics – LDO2  
All parameters are specified at TA = −40 °C to 105 °C, VSYS = 3.6 V, VLDOIN2 = 3.6 V,  
VLDO2[3:0] = 1111, ILDO2 = 10 mA, typical external component values, unless otherwise  
noted. Typical values are characterized at VSYS = 3.6 V, VLDOIN2 = 3.6 V, VLDO2[3:0] =  
1111, ILDO2 = 10 mA, and 25 °C, unless otherwise noted.  
Table 22.ꢀLDO2 electrical characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VLDO2IN  
Operating input voltage  
1.8 V ≤ VLDO2NOM ≤ 2.5 V  
2.6 V ≤ VLDO2NOM ≤ 3.3 V  
V
2.8  
4.5  
4.5  
VLDO2NOM + 0.250  
VLDO2NOM  
ILDO2MAX  
ILDO2MAXLPM  
VLDO2TOL  
Nominal output voltage  
See Table 43  
V
Rated output load current, Normal mode  
Rated output load current, Low-power mode  
400  
10  
mA  
mA  
%
Output voltage tolerance  
VLDO2INMIN < VLDO2IN < 4.5 V  
10.0 mA ≤ ILDO2 < 400 mA  
−2.0  
−4.0  
2.0  
4.0  
0.0 mA < ILDO2 < 10 mA (Low-power mode)  
ILDO2LIM  
Current limit  
450  
750  
1050  
mA  
mA  
ILDO2 when VLDO2 is forced to VLDO2NOM/2  
ILDO2OCP  
LDO2FAULTI threshold (also used to disable LDO2  
when REGSCPEN = 1)  
450  
1050  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
20 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
ILDO2Q  
Quiescent Current (25 °C)  
µA  
No load, change in IVSYS and IVLDO2IN  
When VLDO2 enabled in Normal mode  
When VLDO2 enabled in Low-power mode  
15  
1.5  
RDSON_QFN_LDO2  
PSRRVLDO2  
Dropout on resistance  
300  
mΩ  
dB  
PSRR  
ILDO2 = 200 mA, 20 Hz to 20 kHz  
VLDO2 = 3.30 V, VLDO2IN = 3.9 V, VSYS = 4.2 V  
60  
tONLDO2  
Turn on time  
200  
500  
µs  
10 % to 90 % of end value  
VLDO2INMIN < VLDO2IN ≤ 4.5 V, ILDO2 = 0.0 mA  
RLDO2DIS  
Turn off discharge resistance  
250  
1.0  
LDO2OUTOSHT  
Start-up overshoot (% of final value)  
2.0  
%
VLDO2INMIN < VLDO2IN ≤ 4.5 V, ILDO2 = 0.0 mA  
VLDO2LOTR  
Transient load response  
mV  
VLDO2INMIN < VLDO2IN ≤ 4.5 V, ILDO2 = 10 mA to 100 mA in  
10 μs  
Overshoot  
50  
50  
Undershoot  
5.3.6 Electrical characteristics – LDO3  
All parameters are specified at TA = −40 °C to 105 °C, VSYS = 2.5 V to 4.5 V, VLDOIN3  
= 3.6 V, VLDO3[4:0] = 11111, ILDO3 = 10 mA, typical external component values, unless  
otherwise noted. Typical values are characterized at VSYS = 3.6 V, VLDOIN3 = 3.6 V,  
VLDO3[4:0] = 11111, ILDO3 = 10 mA, and 25 °C, unless otherwise noted.  
Table 23.ꢀLDO3 electrical characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VLDO3IN  
Operating input voltage  
1.0  
4.5  
V
VLDO3 + 250 mV ≤ VSYS ≤ 4.5 V  
VLDO3NOM  
ILDO3MAX  
ILDO3MAXLPM  
VLDO3TOL  
Nominal output voltage  
See Table 41  
V
Rated output load current, Normal mode  
Rated output load current, Low-power mode  
300  
10  
mA  
mA  
%
Output voltage tolerance, Normal mode  
VLDO3INMIN < VLDO3IN < 4.5 V, 0 mA < ILDO3 < 300 mA  
0.8 V ≤ VLDO3 < 1.8 V  
1.8 V ≤ VLDO3 ≤ 3.3 V  
−2.5  
−2.5  
−4.0  
2.5  
2.5  
4.0  
VLDO3INMIN < VLDO3IN < 4.5 V, 0 mA < ILDO3 < 10 mA  
(Low-power mode)  
ILDO3LIM  
Current limit  
320  
1000  
mA  
ILDO3 when VLDO3 is forced to VLDO3NOM/2  
ILDO3OCP  
LDO3FAULTI threshold (also used to disable LDO3  
when REGSCPEN = 1)  
320  
1000  
mA  
µA  
ILDO3Q  
Quiescent current (at 25 °C)  
No load, change in IVSYS and IVLDOIN3  
When LDO3 enabled in Normal mode  
When LDO3 enabled in Low-power mode  
17  
2.5  
RDSON_QFN_LDO3  
PSRRLDO3  
Dropout on resistance  
350  
mΩ  
dB  
PSRR  
ILDO3 = 150 mA, 20 Hz to 20 kHz  
VLDO3 = 3.30 V, VLDO3IN = 3.8 V, VSYS = 4.2 V  
56  
TRVLDO3  
Turn on time  
µs  
10 % to 90 % of end value  
VLDO3INMIN < VLDO3IN < 4.5 V, ILDO3 = 0.0 mA  
200  
500  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
21 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Ω
RLDO3DIS  
Turn off discharge resistance  
250  
LDO3OUTOSHT  
Start-up overshoot (% of final value)  
%
VLDO3INMIN < VLDO3IN ≤ 4.5 V, ILDO3 = 0.0 mA  
1.0  
2.0  
VLDO3LOTR  
Transient load response  
mV  
VLDO3INMIN < VLDO3IN ≤ 4.5 V, ILDO3 = 10 mA to 100 mA in  
10 μs  
Overshoot  
50  
50  
Undershoot  
5.3.7 Electrical characteristics – VREFDDR  
TA = −40 to 105 °C, VSYS = 2.5 V to 4.5 V, IREFDDR = 0.0 mA, VINREFDDR = 1.35 V  
and typical external component values, unless otherwise noted. Typical values are  
characterized at VSYS = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.35 V, and 25 °C, unless  
otherwise noted.  
Table 24.ꢀVREFDDR electrical characteristics  
Symbol  
Parameter  
Min  
0.9  
Typ  
Max  
1.8  
Unit  
V
VINREFDDR  
VREFDDR  
Operating input voltage range  
Output voltage, 0.9 V < VINREFDDR < 1.8 V, 0 mA < IREFDDR  
10 mA  
<
VINREFDDR/2  
V
VREFDDRTOL  
Output voltage tolerance, as a percentage of VINREFDDR, 1.2 V 49.25  
< VINREFDDR < 1.65 V, 0 mA < IREFDDR < 10 mA  
50  
50.75  
%
IREFDDRQ  
IREFDDRLM  
tONREFDDR  
Quiescent current (at 25 °C)  
1.1  
24  
µA  
mA  
µs  
Current limit, IREFDDR when VREFDDR is forced to VINREFDDR/4 10.5  
38  
Turn on time, 10 % to 90 % of end value, VINREFDDR = 1.2 V to  
1.65 V, IREFDDR = 0.0 mA  
100  
5.3.8 Electrical characteristics – VSNVS  
All parameters are specified at TA = −40 °C to 105 °C, VSYS = 3.6 V, VSNVS = 3.0 V,  
ISNVS = 5.0 μA, typical external component values, unless otherwise noted. Typical  
values are characterized at VSYS = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, and 25 °C,  
unless otherwise noted.  
Table 25.ꢀVSNVS electrical characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VSNVSIN  
Operating input voltage  
Valid coin cell range  
Valid VSYS  
V
1.8  
3.3  
4.5  
2.45  
ISNVS  
Operating load current  
2000  
µA  
VSNVSINMIN < VSNVSIN < VSNVSINMAX  
VTL1  
VSYS threshold (VSYS powered to coin cell powered)  
VSYS threshold (coin cell powered to VSYS powered)  
UVDET failing  
UVDET rising  
3.0  
V
V
V
VTH1  
VSNVS  
Output voltage (when running from VSYS)  
0 µA < ISNVS < 2000 µA  
−7.0 %  
7.0 %  
VCOIN − 0.20  
Output voltage (when running from LICELL)  
0 µA < ISNVS < 2000 µA  
2.84 V < VCOIN < 3.3 V  
VSNVSDROP  
Dropout voltage  
VSYS = 2.9 V  
220  
mV  
µA  
ISNVS = 2000 µA  
ISNVSLIM  
Current limit  
VSYS > VTH1  
5200  
24000  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
22 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VSNVSTON  
Turn on time (load capacitor, 0.47 µF)  
10 % to 90 % of final value VSNVS  
VCOIN = 0.0 V, ISNVS = 0 µA  
ms  
3.0  
VSNVSOSH  
Start-up overshoot  
ISNVS = 5.0 µA  
mV  
Ω
40  
70  
dVSYS/dt = 50 mV/µs  
RDSONSNVS  
Internal switch RDS(on)  
VCOIN = 2.6 V  
100  
5.3.9 Electrical characteristics – IC level bias currents  
All parameters are specified at 25 °C, VSYS = 3.6 V, VBUSIN = 0 V, typical external  
component values, unless otherwise noted. Typical values are characterized at VSYS =  
3.6 V, VSNVS = 3.0 V, and 25 °C, unless otherwise noted.  
Table 26.ꢀIC level electrical characteristics  
Mode  
PF1550 conditions  
System conditions  
Typ  
Max  
Unit  
Coin cell  
VSNVS from LICELL  
All other blocks off  
VSYS = 0.0 V  
No load on VSNVS  
1.5  
4.0  
µA  
CORE_OFF  
Sleep  
VSNVS from VSYS  
Wake-up from ONKEY active  
All other blocks off  
No load on VSNVS, PMIC able to wake up  
1.5  
4.0  
25  
µA  
µA  
VSYS > UVDET  
VSNVS from VSYS  
No load on VSNVS. DDR memories in self-  
refresh.  
12.5  
Wake-up from PWRON active  
Trimmed reference active  
DDR I/O rail in Low-power mode  
VREFDDR disabled  
Standby/Suspend  
VSNVS from either VSYS or LICELL  
SW1 in ultra Low-power mode  
SW2 in ultra Low-power mode  
SW3 in ultra Low-power mode  
Trimmed reference active  
No load on VSNVS. Processor enabled in  
Low-power mode.  
23  
46  
µA  
VLDO1 is disabled  
VLDO2 enabled in Low-power mode  
VLDO3 enabled in Low-power mode  
VREFDDR enabled  
REGS_DISABLE  
SHIP  
VSNVS from VSYS  
No load on VSNVS, PMIC able to wake up  
14  
20  
µA  
µA  
Wake-up from ONKEY active  
Most other blocks off  
VSYS > UVDET  
BATFET open, no LICELL connected  
0.45  
1.0  
VSYS = 0 V, only awake from ONKEY  
enabled  
6 Detailed description  
The PF1550 PMIC features three high efficiency low quiescent current buck regulators,  
three LDO regulators, a DDR voltage reference to supply voltages for the application  
processor and peripheral devices.  
Additionally, PF1550 incorporates a single cell Li-ion linear battery charger with a USB-  
PHY regulator.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
23 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
The buck regulators provide the supply to processor cores and to other low voltage  
circuits such as I/O and memory. Dynamic voltage scaling is provided to allow controlled  
supply rail adjustments for the processor cores for power optimization.  
The three LDO regulators are general purpose to power various processor rails, system  
connectivity devices and/or peripherals. Depending on the system power configuration,  
the general purpose LDO regulators can be directly supplied from the main system  
supply VSYS or from the switching regulators to power peripherals, such as audio,  
camera, Bluetooth, Wireless LAN.  
A specific VREFDDR voltage reference is included to provide accurate reference voltage  
for DDR memories operation.  
The VSNVS block behaves as an LDO, or as a bypass switch to supply the SNVS  
(Secure Non-Volatile Storage) /RTC (Real Time Clock) circuitry on the processor.  
VSNVS is powered from VSYS or from a coin cell.  
To accommodate applications that do not include Li-ion battery, the PF1550 battery  
charger regulates the input voltage at VBUSIN pin down to maximum of 4.5 V at VSYS  
through the power path circuit.  
Table 27.ꢀVoltage regulators  
Supply  
Output voltage (V)  
Programming  
step size (mV)  
Load current  
(mA)  
SW1 / SW2  
SW3  
0.60 to 1.3875 / 1.1 to 3.3  
1.80 to 3.30  
12.5 / variable  
100  
1000  
1000  
300  
LDO1  
0.75 to 1.50  
1.80 to 3.30  
50  
100  
LDO2  
LDO3  
1.80 to 3.30  
100  
400  
300  
0.75 to 1.50  
1.80 to 3.30  
50  
100  
USBPHY  
VSNVS  
3.3 or 4.9  
3.0  
60  
2
N/A  
N/A  
VREFDDR  
0.5*VINREFDDR  
10  
6.1 Buck regulators  
The PF1550 features three high-efficiency buck regulators with internal compensation.  
Each buck regulator is capable of meeting optimum power efficiency operation using  
reduced power variable-frequency pulse skip switching scheme at light loads as well  
as operating in forced PWM quasi-fixed frequency switching mode at higher loads. The  
switching regulator controller combines the advantages of hysteretic and voltage mode  
control which provides outstanding load regulation and transient response, low output  
ripple voltage, and seamless transition between pulse-skip mode and Active Quasi-  
fixed frequency switching mode. The control circuitry includes an AC loop which senses  
the output voltage (at SWxFB pin) and directly feeds it to a fast comparator stage. This  
comparator sets the switching frequency, which is almost constant for steady state  
operating conditions. It also provides immediate response to dynamic load changes.  
In order to achieve accurate DC load regulation, a voltage feedback loop is used. The  
internally compensated regulation network achieves fast and stable operation with small  
external components and low ESR capacitors. The transition into and out of low-power  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
24 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
pulse-skip switching mode takes place automatically according to the load current to  
maintain optimum power efficiency. Additionally, further power savings through cutting  
the buck circuitry quiescent current can be achieved by activating a Low-power mode  
upon entering either STANDBY or SLEEP PMIC power mode or as commanded via I2C  
control bits. In SW1 and SW2. An OTP option enables or disables DVS in the regulators.  
When DVS is disabled and the low-power bit is set, the regulator enters an Ultra Low  
Power (ULP) mode that cuts the operating quiescent current even, in order to reach  
extremely low standby power levels needed for ultra low power processors such as that  
from Kinetis K and L series.  
As indicated above, the buck controller supports PWM (Pulse Width Modulation) mode  
for medium and high load conditions and low-power variable-frequency pulse skip mode  
at light loads. During high current mode, it operates in continuous conduction and the  
switching frequency is up to 2.0 MHz with a controlled on-time variation depending on the  
input voltage and output voltage. If the load current decreases, the converter seamlessly  
enters the pulse-skip mode to cut the operating quiescent current and maintain high  
efficiency down to very light loads. In pulse-skip mode, the switching frequency varies  
linearly with the load current. Since the controller supports both power modes within one  
single building block, the transition from normal power mode to lower power pulse-skip  
mode and vice versa is seamless without dramatic effects on the output voltage.  
In the adopted pulse-skip scheme, the device generates a single switching pulse to ramp  
up the inductor current and recharge the output capacitor, followed by a non-switching  
(pause) period where most of the internal circuits are shut down to achieve a lowest  
quiescent current. During this time, the load current is supported by the output capacitor.  
The duration of the pause period depends on the load current and the inductor peak  
current.  
6.2 SW1 and SW2 detailed description  
SW1 and SW2 are identical buck regulators designed to carry a nominal load current  
of 1.0 A. Detailed characteristics and features of SW1 and SW2 are described in this  
section. Being identical, reference is made only to SWx though the same specifications  
apply to SW1 and SW2.  
6.2.1 SWx dynamic voltage scaling description  
SWx integrates an optional DVS circuit that is enabled via OTP. To reduce overall power  
consumption, when DVS is enabled SWx output voltage can be varied depending on the  
mode or activity level of the processor.  
• Normal operation:  
The output voltage is selected by I2C bits SWx_VOLT[5:0]. A voltage transition initiated  
by I2C is governed by the SWx_DVSSPEED I2C bit as shown in Table 28.  
• Standby mode:  
The output voltage can be selected by I2C bits SWx_STBY_VOLT[5:0]. Voltage  
transitions initiated by a Standby event are governed by the SWx_DVSSPEED I2C bit  
as shown in Table 28. This applies only when DVS is enabled.  
• Sleep mode:  
The output voltage can be higher or lower than in normal operation, but is typically  
selected to be the lowest state retention voltage of a given processor; it is selected  
by I2C bits SWx_SLP_VOLT[5:0]. Voltage transitions initiated by a turn off event are  
governed by the SWx_DVSSPEED I2C bit for SWx as shown in Table 28. This applies  
only when DVS is enabled.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
25 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
As shown in Figure 5, during a falling DVS transition, dv/dt of the output voltage  
depends on the load current. Setting the SWx_FPWM_IN_DVS bit forces the regulator  
in the FPWM mode during the falling transition allowing it to accurately track the DVS  
reference, removing the load dependency. The SWx_FPWM_IN_DVS bit is active only  
when OTP_SWx_DVS_SEL = 0.  
Table 28.ꢀSWx DVS setting selection  
SWx_DVS speed  
Function  
0
1
12.5 mV step each 2.0 µs  
12.5 mV step each 4.0 µs  
Requested  
set point  
Output voltage  
with light load  
Internally  
controlled steps  
Example  
actual output  
voltage  
Output  
voltage  
Initial  
set point  
Actual  
output voltage  
Internally  
controlled steps  
Possible  
output voltage  
window  
Request for  
higher voltage  
Request for  
lower voltage  
Voltage  
change  
request  
2
Initiated by I C programming, standby control or DVS control  
aaa-023876  
Figure 5.ꢀSWx DVS transitions  
6.2.2 SWx DVS and non-DVS operation  
SWx has two distinct modes of operation selectable via OTP:  
DVS enabled: a DVS reference is activated and output accuracy of the regulator  
is tight at the cost of slightly higher quiescent current. See Section 5.3 "Electrical  
characteristics" for details. In Figure 6, DVS FB and DVS REF are enabled via OTP for  
this mode of operation.  
DVS disabled: the regulator operates as a traditional buck converter with a fixed  
reference and soft-start. The quiescent current in this mode is lower at the cost of  
output accuracy and transient response. See Section 5.3 "Electrical characteristics"  
for details. In Figure 6, VREF FB and VREF are enabled via OTP for this mode of  
operation.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
26 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
V
IN  
TON  
iLim  
Low  
PWR  
ibias  
sel  
DVS FB  
V
OUT  
V
OUT  
CTRL  
logic  
VREF FB  
COMP  
ZCD  
iLim  
TOFF  
Low  
PWR  
Bias control  
Programmable resistor divider V  
Fixed bandgap reference with soft-start function  
Reduced accuracy and transient capabilities  
: 1.1, 1.2, 1.35, 1.5, 1.8, 2.5, 3.0, 3.3 (three bits)  
OUT  
VREF FB  
VREF  
OR  
DVS FB  
Fixed DVS feedback and compensation  
DVS REF  
Programmable DVS feedback and compensation  
aaa-023877  
Figure 6.ꢀSWx DVS and non-DVS selection  
6.2.3 Regulator control  
To improve system efficiency, the buck regulators can operate in different switching/  
bias modes. The changing between DCM (Discontinuous Conduction Mode) / CCM  
(Continuous Conduction Mode) takes place automatically based on detecting the load  
current level. It can be enforced by one of the following means: I2C programming, exiting/  
entering the Standby mode, exiting/entering Sleep/ Low-power mode.  
Available modes for buck regulators are presented in Table 29. These switching modes  
are available with OTP_SWx_DVS_SEL = 0 and OTP_SWx_DVS_SEL = 1. Table 30  
shows the bit settings for operating the buck converter is these modes based on the  
PMIC operating state.  
Table 29.ꢀBuck regulator operating modes  
Mode  
Description  
OFF  
The regulator is switched off and the output voltage is discharged using an internal resistor.  
Adaptive  
This is the default mode of operation of the buck regulator. In this mode, the regulator operates in a quasi-fixed  
frequency switching mode at moderate and high loads, with pulse skip (variable switching frequency) scheme at light  
load for optimized efficiency.  
F-PWM  
In this mode, the regulator is always in PWM mode operation regardless of load conditions.  
Low-power  
To further extend power savings when the load current is minimal, this mode cuts the quiescent current of the buck  
converter by reducing the bias to the comparator. The regulator is operated in Low-power modes (Standby and/or  
Sleep) with the proper I2C setting. See Table 30.  
The following table shows actions to control different bits for SW1 and SW2.  
Table 30.ꢀBuck mode control  
PMIC state  
Run/Standby/Sleep  
Run  
SWx_EN SWx_STBY SWx_OMODE SWx_LPWR SWx_FPWM SWx operating mode  
0
1
X
X
X
X
X
0
X
0
SW disabled  
SW enabled. Operates in DCM at light  
loads  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
27 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
PMIC state  
Run  
SWx_EN SWx_STBY SWx_OMODE SWx_LPWR SWx_FPWM SWx operating mode  
1
1
X
X
X
X
0
1
1
0
SW enabled. Forced PWM mode  
Run  
SW Enabled. Does not operate in Low-  
power mode.  
Run  
1
X
X
1
1
SW enabled. Forced PWM mode – not  
Low-power mode.  
Standby  
Standby  
1
1
0
1
X
X
X
0
X
0
SW disabled  
SW enabled. Operates in DCM at light  
loads.  
Standby  
Standby  
1
1
1
1
X
X
0
1
1
0
SW enabled. Forced PWM mode.  
SW enabled. Operates in Low-power  
mode.  
Standby  
1
1
X
1
1
SW enabled. Forced PWM mode – not  
Low-power mode.  
Sleep  
Sleep  
1
1
X
X
0
1
X
0
X
0
SW disabled  
SW enabled. Operates in DCM at light  
loads.  
Sleep  
Sleep  
1
1
X
X
1
1
0
1
1
0
SW enabled. Forced PWM mode.  
SW enabled. Operates in Low-power  
mode.  
Sleep  
1
X
1
1
1
SW enabled. Forced PWM mode – not  
Low-power mode.  
6.2.4 Current limit protection  
SWx features high and low-side FET current limit. When current through the FETs go  
above their respective thresholds, the FET is turned-off to prevent further increase in  
current.  
The protection is enabled in a cycle-by-cycle mode. Hitting either current limit sets  
the corresponding interrupt sense bits. If the faults persist for longer than the 8.0 ms  
debounce time, the interrupt status bit is set.  
6.2.5 Output voltage setting in SWx  
Output voltage of SWx is programmable via OTP. During startup (REGS_DISABLE  
mode to RUN mode), contents of the OTP_SWx_VOLT[5:0] are mapped into the  
SWx_VOLT[5:0], SWx_STBY_VOLT[5:0], and SWx_SLP_VOLT[5:0] register which set  
the regulator output voltage during Run, Standby, and Sleep modes respectively.  
In the DVS enabled mode (OTP_SWx_DVS_SEL = 0), values of SWx_VOLT[5:0],  
SWx_STBY[VOLT[5:0], and SWx_SLP_VOLT[5:0] can be changed via I2C after the  
PMIC starts up (RESETBMCU is released).  
In the DVS disabled mode (OTP_SWx_DVS_SEL = 1), value of SWx_VOLT[5:0],  
SWx_STBY[VOLT[5:0], and SWx_SLP_VOLT[5:0] are read-only and must not be written  
to.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
28 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 31.ꢀSW1 and SW2 output voltage setting  
Set  
point  
SWx_VOLT[5:0]  
SWx_STBY_VOLT[5:0]  
SWx_SLP_VOLT[5:0]  
Output voltage  
with DVS enabled  
Output voltage  
with DVS disabled  
OTP_SWx_DVS_SEL = 0  
OTP_SWx_DVS_SEL = 1  
0
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
100001  
100010  
0.6000  
0.6125  
0.6250  
0.6375  
0.6500  
0.6625  
0.6750  
0.6875  
0.7000  
0.7125  
0.7250  
0.7375  
0.7500  
0.7625  
0.7750  
0.7875  
0.8000  
0.8125  
0.8250  
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.10  
1.20  
1.35  
1.50  
1.80  
2.50  
3.00  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
29 / 150  
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Set  
point  
SWx_VOLT[5:0]  
SWx_STBY_VOLT[5:0]  
SWx_SLP_VOLT[5:0]  
Output voltage  
with DVS enabled  
Output voltage  
with DVS disabled  
OTP_SWx_DVS_SEL = 0  
OTP_SWx_DVS_SEL = 1  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.125  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
30 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
6.2.6 SWx external components  
Table 32 shows the combination of inductor and capacitor values that work with the SWx  
regulator.  
The design is optimized for a 1.0 µH inductor.  
Table 32.ꢀAcceptable inductance and capacitance values  
Inductance / capacitance  
1.0 µH  
2 x 10 µF  
Table 33 and Table 34 show example inductor and capacitor part numbers respectively.  
Table 33.ꢀExample inductor part numbers  
Part number  
DFE201610E  
DFE201610P  
DFE201210U  
DFE160810S  
DFE201208S  
DFE160808S  
Size (mm)  
2.0 x 1.6  
2.0 x 1.6  
2.0 x 1.2  
1.6 x 0.8  
2.0 x 1.2  
1.6 x 0.8  
1.0 µH  
57 mΩ, 3.6 A  
70 mΩ, 3.1 A  
95 mΩ, 3.1 A  
120 mΩ, 2.0 A  
86 mΩ, 2.4 A  
144 mΩ, 1.9 A  
Table 34.ꢀExample capacitor part numbers  
Murata part number  
Description  
GRM188R60J106ME47D  
GRM188D70J106MA73  
GRM188R61A106KE69  
GRM219R61A106KE44  
6.3 V, 10 µF, 0402, X5R  
6.3 V, 10 µF, 0402, X7R  
10 µF 10 V 10 % X5R 0603 .95 mm  
10 µF 10 V 10 % X5R 0805 .95 mm  
6.3 SW3 detailed description  
SW3 is a buck regulator designed to carry a nominal load current of 1.0 A. The output  
voltage is programmable from 1.8 V to 3.3 V in 100 mV steps. Dynamic voltage scaling is  
not supported in this regulator.  
V
IN  
V
OUT  
TON  
iLim  
Low  
PWR  
ibias  
V
OUT  
CTRL  
logic  
COMP  
ZCD  
iLim  
TOFF  
Low  
PWR  
Bias control  
Programmable resistor divider V  
Fixed bandgap reference with soft-start function  
Reduced accuracy and transient capabilities  
(four bits): 1.8 V to 3.3 V in 100 mV steps  
OUT  
VREF FB  
VREF  
aaa-023878  
Figure 7.ꢀSW3 block diagram  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
31 / 150  
 
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
6.3.1 Regulator control  
To improve system efficiency, the buck regulator can operate in different switching/  
bias modes. The changing between DCM/CCM takes place automatically based on  
detecting the load current level. It can be enforced by one of the following means: I2C  
programming, exiting/entering the Standby mode, exiting/entering Sleep/ Low-power  
mode.  
Available modes for buck regulators are presented in Table 35 .  
Table 36 shows the bit settings for operating the buck converter in these modes based  
on the PMIC operating state.  
Table 35.ꢀSW3 buck regulator operating modes  
Mode  
Description  
OFF  
The regulator is switched off and the output voltage is discharged using an internal resistor.  
Adaptive  
This is the default mode of operation of the buck regulator. In this mode, the regulator  
operates in a quasi-fixed frequency switching mode at moderate and high loads, with pulse  
skip (variable switching frequency) scheme at light load for optimized efficiency.  
F-PWM  
In this mode, the regulator is always in PWM mode operation regardless of load conditions.  
Low-power  
To further extend power savings when the load current is minimal, this mode cuts the  
quiescent current of the buck converter by reducing the bias to the comparator. The regulator  
is operated in low power modes (Standby and/or Sleep) with the proper I2C setting. See  
Table 36.  
Table 36.ꢀSW3 buck mode control  
PMIC state  
SW3_EN  
SW3_STBY  
SW3_OMODE  
SW3_LPWR  
SW3_FPWM  
SW3 operating mode  
Run/Stan  
dby/Sleep  
0
X
X
X
X
SW disabled  
Run  
1
X
X
0
0
SW enabled  
Operates in DCM at light  
loads  
Run  
Run  
1
1
X
X
X
X
0
1
1
0
SW enabled  
Forced PWM mode  
SW enabled  
Does not operate in Low-  
power mode  
Run  
1
X
X
1
1
SW enabled  
Forced PWM mode  
Standby  
Standby  
1
1
0
1
X
X
X
0
X
0
SW disabled  
SW enabled  
Operates in DCM at light  
loads  
Standby  
Standby  
Standby  
Sleep  
1
1
1
1
1
1
1
X
X
X
X
0
0
1
1
X
1
0
1
X
SW enabled  
Forced PWM mode  
SW Enabled  
Operates in Low-power mode  
SW enabled  
Forced PWM mode  
SW disabled  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
32 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
PMIC state  
SW3_EN  
SW3_STBY  
SW3_OMODE  
SW3_LPWR  
SW3_FPWM  
SW3 operating mode  
Sleep  
1
X
1
0
0
SW enabled  
Operates in DCM at light  
loads  
Sleep  
Sleep  
Sleep  
1
1
1
X
X
X
1
1
1
0
1
1
1
0
1
SW enabled  
Forced PWM mode  
SW enabled  
Operates in Low-power mode  
SW enabled  
Forced PWM mode  
6.3.2 Current limit protection  
SW3 features high and low-side FET current limit. When current through the FETs go  
above their respective thresholds, the FET is turned-off to prevent further increase in  
current.  
The protection is enabled in a cycle-by-cycle mode. Hitting either current limit sets  
the corresponding interrupt sense bits. If the faults persist for longer than the 8.0 ms  
debounce time, the interrupt status bit is set.  
6.3.3 Output voltage setting in SW3  
Output voltage of SW3 is programmable via OTP. During start-up (REGS_DISABLE  
mode to RUN mode), contents of the OTP_SW3_VOLT[5:0] are mapped into the  
SW3_VOLT[5:0], SW3_STBY_VOLT[5:0], and SW3_SLP_VOLT[5:0] register which set  
the regulator output voltage during Run, Standby, and Sleep modes respectively.  
Values of SW3_VOLT[5:0], SW3_STBY[VOLT[5:0], and SW3_SLP_VOLT[5:0] are read-  
only and cannot be written to.  
Table 37.ꢀSW3 output voltage setting  
Set point  
SW3_VOLT[3:0]  
SW3_STBY_VOLT[3:0]  
SW3_SLP_VOLT[3:0]  
Output voltage (V)  
0
1
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1.80  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
33 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Set point  
SW3_VOLT[3:0]  
SW3_STBY_VOLT[3:0]  
SW3_SLP_VOLT[3:0]  
Output voltage (V)  
14  
15  
1110  
1111  
3.20  
3.30  
6.3.4 SW3 external components  
Table 38 shows the combination of inductor and capacitor values that work with the SW3  
regulator.  
Table 38.ꢀAcceptable inductance and capacitance values  
Inductance / capacitance  
1.0 µH  
2 x 10 µF  
Table 39 and Table 40 show example inductor and capacitor part numbers respectively.  
Table 39.ꢀExample inductor part numbers  
Part number  
DFE201610E  
DFE201610P  
DFE201210U  
DFE160810S  
DFE201208S  
DFE160808S  
Size (mm)  
2.0 x 1.6  
2.0 x 1.6  
2.0 x 1.2  
1.6 x 0.8  
2.0 x 1.2  
1.6 x 0.8  
1.0 µH  
57 mΩ, 3.6 A  
70 mΩ, 3.1 A  
95 mΩ, 3.1 A  
120 mΩ, 2.0 A  
86 mΩ, 2.4 A  
144 mΩ, 1.9 A  
Table 40.ꢀExample capacitor part numbers  
Murata part number  
Description  
GRM188R60J106ME47D  
GRM188D70J106MA73  
GRM188R61A106KE69  
GRM219R61A106KE44  
6.3 V, 10 µF, 0402, X5R  
6.3 V, 10 µF, 0402, X7R  
10 µF 10 V 10 % X5R 0603 .95 mm  
10 µF 10 V 10 % X5R 0805 .95 mm  
7 Low dropout linear regulators, VREFDDR and VSNVS  
7.1 General description  
This section describes the LDO regulators provided by the PF1550. All regulators use the  
main band gap as reference.  
When a regulator is disabled, the output is discharged by an internal pulldown.  
VLDO1 and VLDO3 can be used as load switches by setting the corresponding Load  
Switch enable bit OTP_VLDOx_LS.  
All general-purpose LDOs have short-circuit protection capability. The short-circuit  
protection (SCP) system includes debounced fault condition detection, regulator  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
34 / 150  
 
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
shutdown, and processor interrupt generation, to contain failures and minimize the  
chance of product damage. If a short-circuit condition is detected and REGSCPEN  
bit is set, the LDO is disabled by resetting its VLDOxEN bit, while at the same time,  
an interrupt VLDOxFAULTI is generated to flag the fault to the system processor. The  
VLDOxFAULTI interrupt is maskable through the VLDOxFAULTM mask bit.  
The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, the  
regulators are not automatically be disabled upon a short-circuit detection. However,  
the current limiter continues to limit the output current of the regulator. By default, the  
REGSCPEN is not set; therefore, at start-up none of the regulators are disabled if an  
overloaded condition occurs. A fault interrupt, VLDOxFAULTI is generated in an overload  
condition regardless of the state of the REGSCPEN bit. Each LDO features a Low-power  
mode where the quiescent current consumed is significantly lower than in regulator  
operation. In the Low-power mode, load current of each regulator is limited to 10 mA.  
7.2 LDO1 and LDO3 detailed description  
LDO1 and LDO3 are identical 300 mA low dropout (LDO) regulators that provide output  
voltage with high accuracy and are programmable through I2C interface bits. Being  
identical, reference is made to these LDOs as LDOy.  
To support this wide input range, LDOy circuit incorporates a PMOS pass FET as well as  
an NMOS pass FET. The LDO uses the main band gap as its reference.  
The regulator incorporates a soft-start circuit that ramps the internal reference in order  
to provide smooth output waveform with minimal overshooting during power-up. When  
the regulator is disabled, the output is discharged by an internal pulldown resistor.  
Additionally, the LDO can be used as a load switch by setting the corresponding Load  
Switch enable bit OTP_LDOy_LS.  
Moreover, LDOy includes current limit protection with the option to turn off the LDO when  
an overcurrent is detected.  
7.2.1 Features summary  
Input range LDO from 1.0 V to 4.5 V  
Programmable output voltage between 0.75 V to 1.5 V (uses NMOS) or 1.8 V and  
3.3 V (uses PMOS) with 2 % accuracy  
Soft-start ramp control during power-up and discharge mechanism during power-down  
Low quiescent current (~ 2.5 µA) at Low-power mode  
Current limit protection  
Configurable into load switch via OTP bit  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
35 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
7.2.2 LDOy block diagram  
VINx  
VDD V  
REF  
LDOxIN  
LDOxEN  
LDOxLPWR  
LDOxOUT  
2
C
I C  
LDOx  
interface  
LDOx  
Discharge  
aaa-023879  
Figure 8.ꢀLDOy Block Diagram  
7.2.3 LDOy external components  
Use a 4.7 µF X5R/X7R capacitor from output to ground with a voltage rating at least 2  
times the nominal output voltage.  
7.2.4 LDOy output voltage setting  
LDOy output voltage is programmed by setting the LDOy[4:0] bits as shown in Table 41.  
Table 41.ꢀLDOy output voltage setting  
Set point  
LDOy[4:0]  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
LDOy output (V)  
0.7500  
0.8000  
0.8500  
0.9000  
0.9500  
1.0000  
1.0500  
1.1000  
1.1500  
1.2000  
1.2500  
1.3000  
1.3500  
1.4000  
1.4500  
1.5000  
1.8000  
1.9000  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
36 / 150  
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Set point  
18  
LDOy[4:0]  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
LDOy output (V)  
2.0000  
19  
2.1000  
20  
2.2000  
21  
2.3000  
22  
2.4000  
23  
2.5000  
24  
2.6000  
25  
2.7000  
26  
2.8000  
27  
2.9000  
28  
3.0000  
29  
3.1000  
30  
3.2000  
31  
3.3000  
7.2.5 LDOy low-power mode operation  
LDOy can operate in a Low-power mode with reduced quiescent current. The Low-power  
mode can be activated in Standby and Sleep modes by setting the LDOy_LPWR bit as  
shown in Table 42. Maximum load current is limited to 10 mA when operating in the Low-  
power mode.  
Table 42.ꢀLDOy control bits  
PMIC state  
Run/Standby/Sleep  
Run  
LDOy_EN  
LDOy_STBY  
LDOy_OMODE  
LDOy_LPWR LDOy operating mode  
0
1
1
1
1
1
1
1
X
X
0
X
X
X
X
X
0
X
X
X
0
1
X
0
1
LDO disabled  
LDO enabled  
Standby  
Standby  
Standby  
Sleep  
LDO disabled  
1
LDO enabled  
1
LDO enabled in Low-power mode  
LDO disabled  
X
X
X
Sleep  
1
LDO enabled  
Sleep  
1
LDO enabled in Low-power mode  
7.2.6 LDOy current limit protection  
LDOy has built in current limit protection. When the load current exceeds the current  
limit threshold, the regulator goes from a voltage regulation mode to a current regulation  
mode that limits the available output current.  
By setting the REGSCPEN bit, LDOy can be automatically disabled in the event of an  
overcurrent situation. In the event of an overcurrent, the LDO is disabled by resetting  
its LDOy_EN bit, while at the same time an interrupt LDOy_FAULTI is generated to flag  
the fault to the system processor. The LDOy_FAULTI interrupt is maskable through the  
LDOy_FAULTM mask bit.  
If REGSCPEN is not set, the regulator will not be automatically disabled, but will instead  
enter the current limit mode. By default, the REGSCPEN is not set; therefore, at start-  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
37 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
up none of the regulators will be disabled if an overloaded condition occurs. A fault  
interrupt, LDOy_FAULTI, is generated in an overload condition regardless of the state of  
the REGSCPEN bit.  
Current limit is not active when LDOy is operated in the load switch mode.  
7.2.7 LDOy load switch mode  
The LDOy path can be turned into a switch by setting the OTP_LDOy_LS bit. Setting this  
bit fully turns on the LDO pass FET. This could be useful if power domain partitioning  
or additional isolation is needed on the system application. Soft-start is engaged during  
start-up of the load switch to reduce inrush currents.  
7.3 LDO2 detailed description  
LDO2 is a 400 mA low dropout (LDO) regulator that provides output voltage with high  
accuracy and programmable through I2C/ interface bits. To support this wide input range,  
the LDO circuit incorporates a PMOS pass FET. The LDO uses the main bandgap as its  
reference.  
The regulator incorporates a soft-start circuit that ramps the internal reference in order  
to provide smooth output waveform with minimal overshooting during power-up. When  
the regulator is disabled, the output is discharged by an internal pull-down resistor. The  
pulldown is also activated when RESETBMCU is low.  
Moreover, LDO2 includes current limit protection with option to turn off the LDO when an  
overcurrent is detected.  
7.3.1 LDO2 features summary  
Input range LDO from 2.8 V to 4.5 V  
Programmable output voltage between 1.8 V and 3.3 V with 2 % accuracy  
Soft-start ramp control during power-up and discharge mechanism during power-down  
Low quiescent current (~ 1.5 µA) at Low-power mode  
Current limit protection  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
38 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
7.3.2 LDO2 block diagram  
LDOxIN  
LDOxIN  
V
REF  
LDOxEN  
LDOxLPWR  
LDOxOUT  
2
I C  
C
interface  
LDOx  
LDOx  
Discharge  
aaa-023880  
Figure 9.ꢀLDO2 block diagram  
7.3.3 LDO2 external components  
Use a 10 µF X5R/X7R capacitor from output to ground with a voltage rating at least 2  
times the nominal output voltage.  
7.3.4 LDO2 output voltage setting  
LDO2 output voltage is programmed by setting the VLDO2[3:0] bits as shown in  
Table 43.  
Table 43.ꢀLDO2 output voltage setting  
Set point  
VLDO2[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
VLDO2 output (V)  
1.80  
0
1
1.90  
2
2.00  
3
2.10  
4
2.20  
5
2.30  
6
2.40  
7
2.50  
8
2.60  
9
2.70  
10  
11  
12  
13  
14  
15  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
39 / 150  
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
7.3.5 LDO2 Low-power mode operation  
LDO2 can operate in a Low-power mode with reduced quiescent current. The Low-power  
mode can be activated in Standby and Sleep modes by setting the LDO2LPWR bit as  
shown in Table 44. Maximum load current is limited to 10 mA when operating in the Low-  
power mode.  
Table 44.ꢀLDO2 control bits  
PMIC state  
LDO2EN  
LDO2STBY  
LDO2OMODE  
LDO2LPWR  
LDO2 operating mode  
LDO disabled  
Run  
0
1
1
1
1
1
1
1
X
X
0
X
X
X
X
X
0
X
X
X
0
1
X
0
1
Run  
LDO enabled  
Standby  
Standby  
Standby  
Sleep  
LDO disabled  
1
LDO enabled  
1
LDO enabled in Low-power mode  
LDO disabled  
X
X
X
Sleep  
1
LDO enabled  
Sleep  
1
LDO enabled in Low-power mode  
7.3.6 LDO2 current limit protection  
LDO2 has built in current limit protection. When the load current exceeds the current  
limit threshold, the regulator goes from a voltage regulation mode to a current regulation  
mode limiting the available output current.  
By setting the REGSCPEN bit, LDO2 can be automatically disabled in the event of an  
overcurrent situation. In the event of an overcurrent, the LDO is disabled by resetting its  
VLDO2EN bit, while at the same time an interrupt VLDO2FAULTI is generated to flag  
the fault to the system processor. The VLDO2FAULTI interrupt is maskable through the  
VLDO2FAULTM mask bit.  
If REGSCPEN is not set, the regulator is not automatically disabled, but instead enters  
the current limit mode. By default, the REGSCPEN is not set; therefore, at start-up  
none of the regulators are disabled if an overloaded condition occurs. A fault interrupt,  
VLDO2FAULTI is generated in an overload condition regardless of the state of the  
REGSCPEN bit.  
7.4 VREFDDR reference  
VREFDDR is an internal NMOS half supply voltage follower capable of supplying up  
to 10 mA. The output voltage is at one half the input voltage. It is typically used as the  
reference voltage for DDR memories.  
A filtered resistor divider is utilized to create a low frequency pole. This divider then  
utilizes a voltage follower to drive the load.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
40 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
VINREFDDR  
VINREFDDR  
Discharge  
VREFDDR  
VREFDDR  
C
REFDDR  
1.0 µF  
aaa-023881  
Figure 10.ꢀVREFDDR block diagram  
7.5 VSNVS LDO/switch  
VSNVS powers the low-power SNVS/RTC domain on the processor. It derives its power  
from either VSYS or a coin cell. When powered by both, VSYS powers VSNVS if VSYS >  
VTH threshold and LICELL powers VSNVS when VSYS < VTL. When powered by VSYS,  
VSNVS is an LDO capable of supplying 2.0 mA at 3.0 V. When powered by coin cell,  
VSNVS output tracks the coin cell voltage with a switch. In this case, the VSNVS voltage  
is simply the coin cell voltage minus the voltage drop across the switch.  
Upon subsequent removal of VSYS, with the coin cell attached, VSNVS changes  
configuration from an LDO to a switch.  
PF1550  
V
SYS  
V
REF  
Input  
Coin cell  
sense  
charger  
selector  
1.8 to 3.3 V  
VSNVS  
Coin cell  
LDO/LOAD  
switch  
2
I C interface  
aaa-023882  
Figure 11.ꢀVSNVS block diagram  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
41 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
8 Battery charger description  
The PF1550 charger is an integrated 1-cell Li+ charger with a single VBUS power input  
and dual path output. All power switches for charging and switching the load between  
battery and external power are included on chip. No external MOSFETs, blocking diodes  
or current sense resistors are required.  
The VBUS input operates from 4.0 V to 6.5 V with up to 22 V overvoltage protection. The  
PF1550 internally blocks current from the battery and system back to the inputs when no  
input supply is present. Other features include precharge battery conditioning and timer,  
fast charge timer, battery overvoltage protection, charge status and fault outputs, battery  
thermistor monitor and thermal regulation.  
Figure 12 shows a high level internal block diagram of the charger block. The PMIC is  
powered from the VSYS node in the PF1550.  
HIGH VOLTAGE  
BLOCKING  
LDO MOSFET  
4.2 V  
VBUSIN  
5.0 V  
3.3 V  
37  
39  
VSYS1  
VSYS2  
35  
36  
VSYS  
22  
F
22 F  
10 V  
0603  
2.2  
25 V  
0603  
F
F
47  
0402  
10 V  
0603  
LED_PWM  
LED_FREQ  
6
2
2
USBPHY  
CHGB  
40  
VOUT  
LED  
LED driver  
PHY LDO  
ENABLE  
1.0  
6.3 V  
0603  
LED_CURRENT  
OVP  
VFB  
ILIM  
VSYS_MIN  
6.5 V  
BATTERY  
ISOLATION  
MOSFET  
5
5
LDO  
VBUS_ILIMIT  
Linear charger  
+
BATFET control  
CHARGER  
CC_CHARGE  
I_PRECHARGE  
I_EOC  
CV charge  
3.5 V to 4.44 V  
CV_CHARGE  
VBATT1  
VBATT2  
33  
34  
5
2
3
6
5
5
2
Battery pack  
+
V_PRECHARGE_THRESHOLD  
4.7  
F
10 V  
0603  
10 K  
0402  
WEAK_BATTERY _THRESHOLD  
2P7 supply  
CC charge  
100 mA to  
1.0 A  
INT2P7  
THM  
38  
32  
3.7 V  
Li-ion  
2.2  
6.3 V  
0603  
F
DPM_THRESHOLD  
3
RESTART _THRESHOLD  
CC TIMER  
PRECHARGE TIMER  
EOC TIMER  
CC_TIMEOUT  
3
1
3
T
-
PRECHARGE_TIMEOUT  
EOC_TIMEOUT  
REG_TEMP  
CC_ADJ  
Control  
logic  
2
2
2
t
+
1.8 V  
EPAD GND  
2
WATCHDOG  
ENABLE  
VDDIO  
I
C
10 K thermistor  
registers  
4
CV_ADJ  
0.1  
F
4.7 K 4.7 K  
6.3 V  
0603  
3
0402  
0402  
THM_HOT  
1
1
1
1
SCL  
SDA  
2
THM_WARM  
THM_COOL  
THM_COLD  
100 K  
0402  
100 K  
0402  
1
9
WDI  
INTB  
aaa-023883  
Figure 12.ꢀBattery charger internal block diagram  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
42 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
8.1 Operating modes and behavioral description  
Startup sequence, USB insert, VBATT = 0 V  
0 V  
VBATT  
5.0 V  
VBUSIN  
INT2P7  
VBUS_VALID  
INT2P7  
T
SSVBUS_LIN  
BGOK  
1.5 V  
1.5 V  
VCORE  
VCOREDIG  
4.3 V  
VSYSMIN  
> 100 ms (min)  
VSYS  
Default mode OTP  
selectable (linear on  
or charger on)  
Charger  
state  
SLEEP  
Linear on  
Charger on  
USBPHY  
(3.3 V)  
Commanded  
by processor  
1.8 V  
External  
supply  
VDDIO  
0 V  
Charger  
detection  
SLEEP  
Processor detection sequence  
SLEEP  
Based on  
adaptor type  
VBUS_ILIM  
0x00 (100 mA)  
aaa-025039  
Figure 13.ꢀCharger low battery (Startup sequence, USB insert, VBATT = 0 V)  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
43 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Startup sequence, USB insert, VBATT = 3.8 V  
VBATT  
3.8 V  
5.0 V  
VBUSIN  
2.7 V  
INT2P7  
VBUS_VALID  
1.5 V  
VCORE  
1.5 V  
VCOREDIG  
4.3 V  
VSYSMIN  
> 100 ms (min)  
VSYS  
3.8 V  
Default mode OTP  
selectable (linear on  
or charger on)  
Charger  
state  
SLEEP  
Linear on  
Charger on  
USBPHY  
(3.3 V)  
External  
supply  
1.8 V  
VDDIO  
0 V  
Charger  
detection  
SLEEP  
Processor detection sequence  
SLEEP  
Based on  
adaptor type  
0x00 (100 mA)  
VBUS_ILIM  
aaa-025040  
Figure 14.ꢀCharger healthy battery (Startup sequence, USB insert, VBATT = 3.8 V)  
Table 45.ꢀBattery regulation voltage register  
BATTERY REGULATION VOLTAGE REGISTER  
ADDR:  
0x8F  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
1
D2  
0
D1  
1
D0  
1
BITS:  
VSYSMIN  
CHGCV  
POR:  
ACCESS:  
The VSYSMIN value is programmable via OTP as per the following table.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
44 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 46.ꢀVSYSMIN setting  
VSYSMIN[1:0] setting  
VSYSMIN setting (V)  
00  
01  
10  
11  
3.5  
3.7  
4.3  
Reserved  
The VSYSMIN setting is the "normal" regulation point for VSYS. This parameter sets the  
point where the VSYS loop starts taking control and regulates the output. 4.3 V is the  
recommended setting to ensure that there is enough headroom before reaching UVDET  
(PMIC undervoltage detection, 2.9 V typ.).  
Selecting lower settings causes the VSYS loop to start regulating, and reduces charging  
current to lower the VSYS threshold, thus reducing the headroom.  
Typically, the VSYS output range can go as low as 300 mV below the VSYSMIN setting.  
Therefore, the recommended setting for the VSYS output should be between 4.0 V to  
4.3 V.  
8.2 Charger input source detection  
The charger input is compared with several voltage thresholds to determine if it is valid. A  
charger input must meet the following three characteristics to be valid:  
VBUS must be above VUVLO (4.2 V max.) to be valid  
VBUS must be below its overvoltage lockout threshold (VOVLO (6.0 V min.))  
VBUS must be above the system voltage by VIN2SYS (50 mV / 175 mV programmable  
via OTP)  
The VBUS input generates an input interrupt when its status changes. The input status  
can be read with VBUS_OK and VBUS_SNS registers. Interrupts can be masked with  
VBUS_M register.  
Note: Adaptor removal is defined as VBUS < VUVLO  
.
VBUS_xx  
VBUS_UVLO  
V
V
VBUS_xx_UVLO  
VBUS_xx_OVLO  
VBUS_xx  
VBUS_xx_INVLD  
VBUS_xx_OVLO  
LIN2SYS  
VBUS_INVLD  
V
IN2SYS  
SYS  
aaa-025038  
Figure 15.ꢀInput source detection delay  
8.3 Input self-discharge for reliable charger input interrupt  
To ensure that a rapid removal and reinsertion of a charge source always results in a  
charger input interrupt, the charger input presents loading to the input capacitor to ensure  
that when the charge source is removed the input voltage decays below the UVLO  
threshold in a reasonable time.  
A 2.2 µF input capacitance charged up to the maximum OVLO threshold (VOVLO) decays  
down to the minimum UVLO threshold within 300 ms (tINSD). The input self-discharge is  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
45 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
implemented by with a 30 kΩ resistor (RINSD) from VBUSIN input to ground. The input  
self-discharge resistor is deactivated in the low-power mode to reduce total quiescent  
current.  
8.4 Charger state diagram  
NO INPUT POWER or  
CHG_OPER[3:0]  
CHARGER DISABLED  
PROGRAMMED THE  
CHG_SNS = 0x08  
CHARGER TO BE OFF  
CHG_OK = 0  
I
= 0  
CHG  
CHG Timer = 0  
WD Timer = 0  
INPUT is  
INVALID  
INPUT is VALID  
(VBUS_VALID = 1)  
and MODE PROGRAMMED  
FOR CHARGER ENABLED  
(CHG Timer = Start)  
ANY STATE  
except thermal  
shutdown  
WATCHDOG Suspend  
WDT_SNS = 1  
T
< T  
J
SHDN  
CHG_OK = 0  
(CHG Timer = Suspend  
WD Timer = Suspend)  
T
> T  
SHDN  
J
I
= 0  
CHG  
(CHG Timer = 0  
WD Timer = 0)  
WD Timer > tWD  
(CHG Timer = Suspend,  
only if WDTEN = 1)  
WDTCLR=TRUE  
(WD Timer = 0 & Resume  
CHG Timer = Resume)  
Direct  
Transition  
Thermal Shutdown  
CHG_SNS = 0x0A  
CHG_OK = 0  
I
= 0  
CHG  
From: any prequal state, any fast charge state,  
end-of-charge, done or timer fault  
Returns to: the same state that it came from  
LOW-BATTERY  
PRECHARGE MODE  
CHG_SNS = 0x00  
CHG_OK = 1  
CHG Timer > t  
PRECHG  
I
≤ I  
TIMER FAULT  
CHG  
PRECHG.LB  
CHG_SNS = 0x06  
CHG_OK = 0  
V
> V  
BATT  
PRECHG.LB  
I
= 0  
(Soft Start, CHG Timer = 0)  
CHG  
Battery overvoltage  
BAT_SNS = 0x09  
BAT_OK = 0  
V
< V  
BATT PRECHG.LB  
(CHG Timer = 0)  
I
= 0  
FAST CHARGE (CC)  
CHG  
CHG_SNS = 0x01  
CHG_OK = 1  
CHG Timer > t  
FC  
V
> V  
BATOV  
V
< V  
BATOV  
BATT  
For time > t  
BATT  
(Resume charge timer)  
BATOV  
V
≤ V  
BATT  
BATREG  
> I  
EOC  
I
≤ I and I  
CHG  
FC  
CHG  
From: any precharge state, any fast charge state,  
end-of-charge, done  
Returns to: the same state that it came from  
V
= 99 % of V  
for 32 ms  
BATREG  
BATT  
V
<
BATT  
95 % of V  
BATREG  
FAST CHARGE (CV)  
CHG_SNS = 0x02  
CHG_OK = 1  
CHG Timer > t  
FC  
I
≤ I and I  
FC  
> I  
CHG  
CHG EOC  
I
< I  
for t  
SCIDG  
Battery Thermistor Suspend Mode  
CHG_SNS = 0x07  
CHG  
EOC  
V
< (V  
- V  
)
RESTART  
BATT  
BATREG  
(No Soft Start,  
CHG Timer = Restart)  
(CHG Timer = 0 and Suspend)  
CHG_OK = 0  
I
= 0  
CHG  
END-OF-CHARGE  
CHG_SNS = 0x03  
CHG_OK = 1  
Battery Temperature < T  
HOT  
AND  
Battery Temperature > T  
(Resume charge timer)  
Battery Temperature > T  
OR  
HOT  
I
≤ I  
CHG  
EOC  
COLD  
Battery Temperature < T  
V
< (V  
- V  
)
RESTART  
COLD  
BATT  
BATREG  
(No Soft Start,  
CHG Timer = Restart)  
CHG Timer > t  
EOC  
DONE  
CHG_SNS = 0x04  
CHG_OK = 0  
From: any precharge state, any fast charge state,  
end-of-charge, done  
Returns to: the same state that it came from  
I
= 0  
CHG  
aaa-025042  
Figure 16.ꢀCharger state diagram  
8.5 Charging profile  
The battery is charged in three modes. Linear control of the BATFET has two subset  
modes (Trickle and Linear constant current mode).  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
46 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Linear control of BATFET  
Trickle (programmable from 55 mA/100 mA based on battery voltage)  
Linear constant current mode from 100 mA to 1000 mA  
Constant current (CC)  
Constant voltage (CV)  
V
BATREG  
V
RESTART  
VSYS  
V
LOW_BATT  
VBATT (> 0 V)  
Time  
I
CHARGE_CC  
I
EOC  
PRECHARGE  
(0 A)  
I
I
BAT  
Time  
Fast charge  
Fast charge  
constant current (CC)  
constant voltage (CV)  
aaa-023884  
Figure 17.ꢀCharging profile  
8.5.1 Precharge state  
The precharge state is entered when the main-battery voltage is less than  
VPRECHG.LB which is precharge (low battery) charging voltage threshold set by  
PRECHGLB_THRS[6:5]. After being in this state for tSCIDG, a CHG_I interrupt is  
generated, CHG_OK bit is set, and CHG_SNS register is set to 0x00. In the precharge  
state, the charge current into the battery is equal or lower than IPRECHG.LB (45 mA typ).  
Following events causes the state machine to exit this state:  
1. When the main battery voltage rises above VPRECHG.LB, the charger enters the next  
state in the charging cycle: “Fast-Charge Constant Current" state.  
2. If the battery charger remains in this state for longer than tPRECHG, the charger state  
machine transitions to the “Timer Fault” state.  
3. If the watchdog timer is not serviced, the charger state machine transitions to the  
“Watchdog Suspend” state.  
Note: The precharge state works with battery voltages down to 0 V.  
The low 0 V operation typically allows this battery charger to revive batteries that have  
an “open” internal pack protector. Typically, the pack internal protection circuit isolates  
the Lithium-ion cell if the battery pack has detected an overcurrent, undervoltage, or  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
47 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
overvoltage. When a battery with an “open” internal pack protector is used with this  
charger, the low-battery precharge mode forces a small current into the 0 V battery. This  
current raises the pack’s terminal voltage above the pack revive threshold, causing the  
internal pack protection switch to reconnect the Lithium-ion cell.  
A normal battery pack typically could stay in the low-battery precharge state for several  
minutes. If a battery pack stays in low-battery precharge for longer than tPRECHG, it may  
be defective.  
8.5.2 Fast charge constant current state  
The fast-charge constant current (CC) state occurs when the main-battery voltage is  
greater than the precharge threshold and less than the battery regulation threshold  
(VPRECHG.LB < VBATT < VCHGCV). In the fast-charge CC state, the current into the battery  
is less than or equal to IFC (excluding accuracy IFCACC).  
Charge current may be less than IFC for any of the following reasons:  
The charger input is in input current limit  
The charger input voltage is low  
The system load is consuming adapter current. When the voltage drop between VBUS  
and VSYS is below the VIN2SYS threshold, charging stops and charge current drops  
down to 0 A.  
Note: The system load always gets priority over the battery charge current.  
The system load always gets priority over the battery charge current.  
The following events cause the state machine to exit this state:  
When the main battery voltage rises above VBATREG, the charger enters the next state  
in the charging cycle: "Fast Charge (CV)".  
If the battery charger remains in this state for longer than tFC, the charger state  
machine transitions to the "Timer Fault" state.  
If the watchdog timer is not serviced, the charger state machine transitions to the  
"Watchdog Suspend" state.  
The battery charger dissipates the most power in the fast-charge constant current  
state. This power dissipation causes the internal die temperature to rise. If the die  
temperature exceeds the threshold set by REGTEMP[1:0], IFC is reduced. This is  
covered in Section 8.8.1 "Thermal regulation".  
Table 47.ꢀCharger current control register  
CHARGER CURRENT CONTROL REGISTER  
ADDR:  
0x8E  
D7  
D6  
D5  
D4  
0
D3  
0
D2  
CHG_CC  
0
D1  
0
D0  
0
BITS:  
RESERVED  
PRECHGLB_THRESHOLD  
POR:  
0
0
0
ACCESS:  
The fast charge current is programmable via I2C using the bits in Table 48.  
Table 48.ꢀConstant current charge settings  
CHG_CC[4:0] setting  
IFC current (mA)  
00000  
00001  
100  
150  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
48 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
CHG_CC[4:0] setting  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
IFC current (mA)  
200  
250  
300  
350  
400  
450  
500  
550  
600  
650  
700  
750  
800  
850  
900  
950  
1000  
1050 (Reserved)  
1100 (Reserved)  
1150 (Reserved)  
1200 (Reserved)  
1250 (Reserved)  
1300 (Reserved)  
1350 (Reserved)  
1400 (Reserved)  
1450 (Reserved)  
1500 (Reserved)  
1550 (Reserved)  
1600 (Reserved)  
1650 (Reserved)  
To insure proper operation, the maximum CC current selected must be one setting below  
input current limit (in charger normal mode).  
In normal mode, when VSYS < VSYSMINLOOPx (VSYSMINLOOPx = VSYSMINx − 300 mV), digital  
logic automatically controls maximum CC current (one setting lower than charger input  
current limit ILIM setting). If 100 mA input current limit is selected, the charge current is  
forced to 50 mA to allow enough current for VSYS.  
The Charger Low-power mode (CLPM) is entered automatically when the 50 mA input  
current limit setting, or lower, is selected and when VBATT > 2.8 V.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
49 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
8.5.3 Fast charge constant voltage state  
The fast-charge constant voltage (CV) state occurs when the battery voltage rises to  
VBATREG from the fast-charge CC state.  
In the fast-charge CV state, the battery charger maintains VBATREG across the battery  
and the charge current is less than or equal to IFC. Charger current decreases  
exponentially in this state as the battery becomes fully charged.  
The BATFET control circuitry may reduce the charge current for any of the following  
reasons:  
The charger input is in input current limit  
The charger input voltage is low  
The system load is consuming adapter current. The system load always gets priority  
over the battery charge current.  
The following events cause the state machine to exit this state:  
When the charger current is below IEOC for tSCIDG, the charger enters the next state in  
the charging cycle: “End-of-Charge”.  
If the battery charger remains in this state for longer than tFC, the charger state  
machine transitions to the “Timer Fault” state.  
If the watchdog timer is not serviced, the charger state machine transitions to the  
“Watchdog Suspend” state.  
Note: During the CC to CV transition, the charge current can be momentarily higher  
than IFC. This current is safe and does not result in over charging the battery. After this  
transition, the charge current decays and is less than or equal to IFC  
.
Table 49.ꢀBattery regulation voltage register  
BATTERY REGULATION VOLTAGE REGISTER  
ADDR:  
0x8F  
D7  
0
D6  
0
D5  
1
D4  
0
D3  
1
D2  
0
D1  
1
D0  
1
BITS:  
VSYSMIN  
CHGCV  
POR:  
ACCESS:  
The CV setting is programmable via I2C using the bits in Table 50.  
Table 50.ꢀCV settings  
CHGCV[5:0]  
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
Output voltage (V)  
3.50  
3.50  
3.50  
3.50  
3.50  
3.50  
3.50  
3.50  
3.50  
3.52  
3.54  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
50 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
CHGCV[5:0]  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011 [1]  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
Output voltage (V)  
3.56  
3.58  
3.60  
3.62  
3.64  
3.66  
3.68  
3.70  
3.72  
3.74  
3.76  
3.78  
3.80  
3.82  
3.84  
3.86  
3.88  
3.90  
3.92  
3.94  
3.96  
3.98  
4.00  
4.02  
4.04  
4.06  
4.08  
4.10  
4.12  
4.14  
4.16  
4.18  
4.20  
4.22  
4.24  
4.26  
4.28  
4.30  
4.32  
4.34  
4.36  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
51 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
CHGCV[5:0]  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
Output voltage (V)  
4.38  
4.40  
4.42  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
4.44  
[1] Default setting  
Table 51.ꢀCharger timers register  
CHARGER TIMERS REGISTER  
ADDR:  
0x8A  
D7  
D6  
D5  
0
D4  
EOCTIME  
0
D3  
1
D2  
0
D1  
FCHGTIME  
1
D0  
0
BITS:  
TPRECHG  
0
RESERVED  
POR:  
0
ACCESS:  
The fast charge timer is programmable via I2C through the bits in Table 52:  
Table 52.ꢀFast charge timer settings  
FCHGTIME[2:0] setting  
Fast charge timer duration (Hours)  
000  
001  
010  
011  
100  
101  
110  
111  
Disable  
2
4
6
8
10  
12  
14  
The fast charge timer fault can occur in the fast charge mode, the system draws current  
such that the charger state machine is technically in the "fast charge" state but the  
battery is not really in "fast charge". This can happen if the current available from the  
charger input is not sufficient to provide system load as well as charge the battery. It is  
up to the processor to react to the timer fault accordingly. It can decide to restart charging  
(via CHG_OPER), or accept it as an actual timer fault.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
52 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
8.5.4 End-of-charge state  
The end-of-charge state can only be entered from the fast-charge CV state when the  
charger current decreases below IEOC for tSCIDG. After being in the top-off state for tSCIDG  
+ tDB(EOC), an interrupt is generated, CHG_OK is set and CHG_SNS = 0x03. In the end-  
of-charge state, the battery charger tries to maintain VCHGCV across the battery and  
typically the charge current is less than or equal to IEOC  
.
The BATFET control circuitry may reduce the charge current lower than the battery may  
otherwise consume for any of the following reasons:  
The charger input is in input current limit  
The charger input voltage is low  
The system load is consuming adapter current. The system load always gets priority  
over the battery charge current.  
The following events cause the state machine to exit this state:  
After being in this state for the end-of-charge time (tEOC), the charger enters the next  
state in the charging cycle: “DONE”.  
If VBATT < VBATREG – VRESTART, the charger goes back to the “FAST CHARGE (CC)”  
state.  
If the watchdog timer is not serviced, the charger state machine transitions to the  
“Watchdog Suspend” state.  
Table 53.ꢀCharger EOC configuration register  
CHARGER EOC CONFIGURATION REGISTER  
ADDR:  
0x8D  
D7  
D6  
1
D5  
D4  
0
D3  
D2  
D1  
D0  
1
BITS:  
EOC_MODE  
IEOC  
EOC_EXIT  
FRC_  
BATT_ISO  
CHG_RESTART  
POR:  
0
0
0
0
0
ACCESS:  
The EOC current value is programmable per the following table:  
Table 54.ꢀEOC current thresholds  
IEOC[2:0] setting  
IEOC current (mA)  
000  
001  
010  
011  
100  
101  
110  
111  
5
10  
20  
30  
50  
Reserved  
Reserved  
Reserved  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
53 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 55.ꢀCharger timers register  
CHARGER TIMERS REGISTER  
ADDR:  
0x8A  
D7  
D6  
D5  
0
D4  
EOCTIME  
0
D3  
1
D2  
0
D1  
FCHGTIME  
1
D0  
0
BITS:  
TPRECHG  
0
RESERVED  
POR:  
0
ACCESS:  
The EOC State timer is programmable per the following table:  
Table 56.ꢀEOC state timer settings  
EOCTIME[2:0] setting  
EOC timer duration (Minutes)  
000  
001  
010  
011  
100  
101  
110  
111  
0 (16 seconds debounce)  
10  
20  
30  
40  
50  
60  
70  
8.5.5 Done state  
The battery charger enters its done state after the charger has been in the end-of-  
charge state for tEOC. After being in this state for tSCIDG, a CHG_I interrupt is generated,  
CHG_OK is cleared and CHG_SNS = 0x04.  
The following events cause the state machine to exit this state:  
If VBATT < VBATREG – VRESTART, the charger goes back to the "FAST CHARGE (CC)"  
state  
If the watchdog timer is not serviced, the charger state machine transitions to the  
"Watchdog Suspend" state  
In the done state, the charge current into the battery (ICHG) is 0 A. In the done state,  
the charger presents a very light load to the battery. If the system load presented to the  
battery is low (<<100 µA), then a typical system can remain in the done state for many  
days.  
If left in the done state long enough, the battery voltage decays below the restart  
threshold (VRESTART) and the charger state machine transitions back into the fast-charge  
CC state. There is no soft start (di/dt limiting) during the done state to fast-charge state  
transition. In the done state, the BATFET is fully closed. The correct way to trigger restart  
feature is to pull loading from VSYS, in order to discharge VBATT.  
8.6 Battery supplement mode  
The Battery supplement mode is a powerful feature of the PF1550 charger, allowing the  
device to temporarily suspend charging, and draw supplemental current from the battery  
to maintain power to the system when the load demands more current than the VBUS  
supply can deliver. This provides more flexibility when architecting their system. The  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
54 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
battery capacity can be chosen to handle periods of peak loading, which may be currents  
higher than supported by the VBUS supply.  
If the system load current exceeds the VBUS input current limit, the VSYS supply current  
is no longer be able to support the load demand and the VSYS output voltage decreases.  
When VSYS falls below VBATT, the PF1550 suspends charging and enters the Battery  
supplement mode. In this mode, the battery provides current to support the VSYS load  
demand.  
If the load demand on VSYS now decreases, the VSYS output voltage recovers,  
and begins to rise. When VSYS rises above VBATT, the PF1550 exits the Battery  
supplement mode and resumes charging the battery in the CC charging phase.  
When VBATT decreases lower than the restart threshold, the part enters CC state from  
DONE. Then if the loading on VSYS decreases and VSYS > VBATT, charger starts to  
charge from the CC state.  
8.7 Power path features  
8.7.1 VSYS regulation  
In the case of a low battery, the LDO path regulates VSYS to either 3.5 V, 3.7 V, or 4.3 V.  
This allows the system to power up with a low battery while the battery gets charged. See  
Table 46.  
8.7.2 Input current limit  
The default settings of the VBUSIN and CHG_OPER control bits are such that when a  
charge source is applied to VBUSIN, the PF1550 turns on its linear regulator in LINEAR-  
ON or CHARGE-ON (via OTP), and limits the charge current to 100 mA (via OTP).  
See Section 12 "Register map" for the default values for specific registers/bits.  
The input current limit works by monitoring the current being drawn from the input and  
comparing it to the programmed current limit. The current limit should be set based on  
the current-handling capability of the input adapter. Generally, this limit is chosen to  
optimally fulfill the system-power requirements while achieving a satisfactory charging  
time for the batteries. If the adapter current exceeds its output capability, the charger  
responds by reducing the charger current, thus keeping the current drawn from the  
adapter within its capability.  
There is a precision current sense circuitry that monitors the input current whenever  
internal INT_2P7 is asserted. The input current limit logic signal is used to reduce  
quiescent current when the charger is not plugged in by turning off the current sense  
amplifier. The input current limit should include current consumed by the charger block.  
There is a low-power mode for the linear regulator where it consumes less than 2.5 mA  
bias current at 25 °C. This is useful for the 10 mA to 50 mA input current limit settings.  
The input current limit also includes a second control which is voltage-based. When  
it drops below the desired input, it generates an interrupt to decrease the fast-charge  
current. This is further covered in input voltage regulation mode.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
55 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 57.ꢀVBUS input current limit register  
VBUS INPUT CURRENT LIMIT REGISTER  
ADDR:  
0x94  
D7  
D6  
D5  
D4  
D3  
D2  
0
D1  
D0  
0
BITS:  
VBUS_LIN_ILIM  
RESERVED  
POR:  
0
1
1
0
1
0
ACCESS:  
R/W  
R/W  
R/W  
R/W  
R/W  
The table below shows valid input current limit settings.  
Table 58.ꢀInput current limit settings  
VBUS_LIN_ILIM[4:0] setting  
VBUS input current limit (mA)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101 to 11101  
11110  
11111  
10  
15  
20  
25  
30  
35  
40  
45  
50  
100  
150  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
1500  
Reserved  
Reserved  
Reserved  
8.7.3 Battery thermistor  
Thermistor is not supported when there is no valid charger inserted. A bank of  
comparators monitors the thermistor to provide battery temperature information for  
the battery charger. The comparator thresholds are based on the recommended NTC  
NCP15XH103F03RC (10 K) from Murata or equivalent. Each comparator has 3 #  
hysteresis. There are I2C selections for the THOT and TCOLD temperature threshold.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
56 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
8.7.4 BATFET soft start  
When the battery is first plugged into the PF1550, BATFET features an internal soft-start  
that prevents high inrush currents into the capacitors at the VSYS node.  
Note: This feature must be tested during lab validation for functionality. It is not required  
to cover this in production as there are no critical pass/fail criteria for this feature.  
8.8 Thermal  
8.8.1 Thermal regulation  
Thermal regulation maximizes the battery charge current while regulating the PF1550  
junction temperature. The target charge current reduction is achieved with a digital  
control loop. As shown in the following figure, when the die temperature exceeds the  
value programmed by REGTEMP[1:0], a thermal limiting circuit reduces the battery  
charger’s target current.  
I
= 100%  
FC  
100 %  
50 %  
I
= 50%  
FC  
I
= 25%  
FC  
25 %  
12.5 %  
100 mA  
I
= 12.5%  
FC  
80 °C  
95 °C  
110 °C  
125 °C  
Junction temperature (°C)  
aaa-025043  
Figure 18.ꢀThermal regulation  
Table 59.ꢀThermal regulation  
REGTEMP[1:0]  
50 % CC Thermal  
regulation set  
25 % CC Thermal 12.5 % CC Thermal  
regulation set regulation set  
100 mA CC  
Thermal regulation  
point (TJREG0  
)
point (TJREG1  
)
point (TJREG2  
110 °C  
N/A  
)
set point (TJREG3  
)
00  
01  
10  
11  
80 °C  
95 °C  
125 °C  
95 °C  
110 °C  
N/A  
125 °C  
110 °C  
N/A  
N/A  
125 °C  
N/A  
N/A  
125 °C  
As shown in the following figure, a hysteresis mechanism is implemented.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
57 / 150  
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
I
= 100%  
FC  
100 %  
50 %  
I
= 50%  
FC  
I
= 25%  
FC  
25 %  
12.5 %  
100 mA  
I
= 12.5%  
FC  
80 °C  
95 °C  
90 °C  
Junction temperature (°C)  
110 °C  
125 °C  
75 °C  
105 °C  
120 °C  
aaa-025044  
Figure 19.ꢀThermal regulation (Current versus Temp, example with REGTEMP[1:0] = 00 and  
hysteresis  
When thermal regulation changes state, a THM_I interrupt is generated. This is to allow  
time for the system’s microprocessor to read the status of the thermal regulation loop via  
the TREG_SNS status bit.  
This following diagram shows an example of the thermal regulation over time. The green  
arrows represent when the CHG_I interrupt is generated.  
I
= 100%  
= 50%  
FC  
80 °C  
I
FC  
75 °C  
25 °C  
Time (s)  
aaa-025045  
Figure 20.ꢀThermal regulation (Current, Temp versus Time, example with REGTEMP[1:0] =  
00 and hysteresis  
The thermal regulation does not affect the CHG_OK bit (only information contained within  
CHG_SNS affects CHG_OK).  
8.8.2 Thermal foldback  
The thermal foldback function reduces max. charging current which goes into the battery  
when the charger junction temperature (TJREGx) reaches a pre-defined temperature  
set by REGTEMP[1:0]. Thermal foldback loop being active is not considered to be an  
abnormal condition.  
After the temperature reaches TJREG0, the charging current is reduced to 50 % of the final  
CC charging current value.  
After the charger temperature rises above TJREG0, if the charger temperature falls back  
below TJREG0 −5 °C, charging current reverts to 100 % of the final CC charging current  
value.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
58 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
If the charger temperature rises and reaches TJREG1 but below 125 °C, charging current  
is reduced to 25 % of the final CC charging current value.  
After the charger temperature rises above TJREG1, if the charger temperature falls back  
below TJREG1 −5 °C, charging current reverts to 50 % of the final CC charging current  
value.  
If the charger temperature rises and reaches TJREG2 but below 125 °C, charging current  
is reduced to 12.5 % of the final CC charging current value.  
After the charger temperature rises above TJREG2, if the charger temperature falls back  
below TJREG2 −5 °C, charging current reverts to 25 % of the final CC charging current  
value.  
If the charger temperature reaches 125 °C, charging current is reduced to 100 mA.  
After the charger temperature rises above 125 °C, if the charger temperature falls back  
below 120 °C, charging current reverses back to 12.5 % of the final CC charging current  
value.  
The thermal foldback function is not available for LPM.  
At charger junction temperature above TJREGx, if the charger current is already set to  
100 mA, the thermal foldback function keeps the current 100 mA. The final charging  
current min. out of the fold back function is clamped at 100 mA.  
Table 60.ꢀTemperature regulation control register  
TEMPERATURE REGULATION CONTROL REGISTER  
ADDR:  
0x92  
D7  
D6  
D5  
THM_HOT  
0
D4  
THM_COLD  
0
D3  
0
D2  
1
D1  
0
D0  
1
BITS:  
TEMP_FB_EN  
0
RESERVED  
REGTEMP  
THM_CONFIG  
POR:  
0
ACCESS:  
The following table shows the different thermal regulation set point:  
Table 61.ꢀThermal regulation settings  
REGTEMP[1:0] setting  
Thermal regulation set point (°C)  
00  
01  
10  
11  
80  
95  
110  
Reserved  
8.8.3 Input voltage regulation mode  
An input-voltage regulation loop allows the charger to be well behaved when it is  
attached to a poor quality power source. The loop improves performance with relatively  
high-resistance charge sources that exist when long cables are used or devices are  
charged with non-compliant USB hub configurations. Additionally, this input-voltage  
regulation loop improves performance with current limited adapters. If the input current  
limit is programmed above the current limit threshold of given adapter, the input voltage  
loop allows regulation at the current limit of the adapter. Finally, the input-voltage  
regulation loop allows the charger to perform well with adapters that have poor transient  
load response times.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
59 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
The input-voltage regulation loop automatically reduces the input current limit in order to  
keep the input voltage at VVBUS_DPM_REG. Once VBUS drops to the 4.5 V threshold (this  
threshold itself is selectable via the VBUS_DPM_REG[2:0] bits), the charging current  
is scaled back and this brings back the VBUS voltage higher. The Dynamic Power  
Management (DPM) loop then regulates the charging current (indirectly by reducing  
input current limit) dynamically to maintain VBUS at the DPM threshold. An interrupt is  
generated after the debounce time to notify the processor of the DPM event.  
In the following figure, VBUS starts to drop as the charging current increases.  
VBUS  
voltage  
VBUS_DPM  
threshold (falling)  
4.5 V  
VBUS_DPM_STOP  
threshold  
4.3 V  
V
(falling)  
UVLO  
Charge  
current  
t
INTDEB  
INTB  
VBUS_DPM  
interrupt  
aaa-023886  
Figure 21.ꢀResponse to input voltage droop during charging  
The following figure describes a more stringent event.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
60 / 150  
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
VBUS  
voltage  
VBUS_DPM  
threshold (falling)  
4.5 V  
200 mV  
VBUS_DPM_STOP  
threshold  
4.3 V  
2.0 µs  
Charge  
current  
10 ms  
10 ms  
CC_Charge  
current incremented  
1 LSB  
100 mA  
aaa-025041  
Figure 22.ꢀDPM function  
There is a second comparator in the DPM loop which is set 200 mV below the  
VBUS_DPM_REG threshold. As seen in the second figure above, if the VBUS voltage  
continues to drop and hits the threshold of the second comparator, the charging current  
is immediately brought to the 100 mA setting to recover from the input voltage droop. At  
this point, the VBUS voltage should recover (assuming current drawn from VSYS is not  
causing the VBUS collapse).  
Now, the charging current is stepped up slowly (every 10 ms) to arrive at the maximum  
value that allows regulation of VBUS to or slightly above the DPM threshold. At every  
incrementing step, the digital logic monitors if the VBUS voltage is above the 4.5 V  
comparator. The incrementing continues only if it is.  
Table 62.ꢀVBUS linear dynamic input voltage register  
VBUS LINEAR DYNAMIC INPUT VOLTAGE REGISTER  
ADDR:  
0x95  
D7  
0
D6  
0
D5  
D4  
D3  
D2  
0
D1  
D0  
0
BITS:  
RESERVED  
VIN_DPM_STOP  
0
PRECHGDBATT_THRESHOLD  
VBUS_DPM_REG_VOLTAGE  
0
POR:  
0
0
ACCESS:  
The input DPM voltage regulation set point is selected by writing to the VBUS_REG  
register.  
Table 63.ꢀInput voltage regulation thresholds  
VBUS_REG[2:0] setting  
VBUS DPM REG voltage setting (V)  
000  
001  
010  
011  
100  
101  
110  
3.9  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
61 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
VBUS_REG[2:0] setting  
VBUS DPM REG voltage setting (V)  
111  
4.6  
8.8.4 JEITA thermal control  
The PF1550 includes a temperature control function that conforms to the  
recommendations specified in the Japan Electronics and Information Technology  
Industries Association (JEITA) guidelines for improving the safety when charging of  
lithium-ion batteries.  
The JEITA specification establishes five temperature zones, COLD, COOL, NORMAL,  
WARM, and HOT, with four temperature thresholds partitioning the zones. Battery  
temperature is monitored using an NTC thermistor, in close proximity of the cell, and the  
charger is carefully controlled as shown in the following table:  
Table 64.ꢀJEITA thermal control  
Zone  
COLD  
JEITA control function  
Charging inhibited  
COOL  
NORMAL  
WARM  
HOT  
Charger CC current and CV voltage adjusted  
No JEITA control  
Charger CC current and CV voltage adjusted  
Charging inhibited  
JEITA thermal control is enabled by selecting bits THM_CNFG[1:0] in the Temperature  
Regulation and Control Register 0x92.  
Table 65.ꢀTemperature regulation control register  
TEMPERATURE REGULATION CONTROL REGISTER  
ADDR:  
0x92  
D7  
D6  
D5  
THM_HOT  
0
D4  
THM_COLD  
0
D3  
0
D2  
1
D1  
0
D0  
1
BITS:  
TEMP_FB_EN  
0
RESERVED  
REGTEMP  
THM_CONFIG  
POR:  
0
ACCESS:  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
62 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
t
1
t
2
t
t
4
3
REG 0x9A: D[5:4]  
CC charge current  
CC charge  
adjustment  
CC charge  
adjustment  
100 %  
500 mA  
75 %  
50 %  
25 %  
OFF  
- 75 %  
- 75 %  
125 mA  
125 mA  
COLD  
Charge  
inhibited  
COOL  
CC current  
reduced  
WARM  
CC current  
reduced  
HOT  
Charge  
inhibited  
NORMAL  
CC charge current  
Battery temp (°C)  
0 °C  
Cold  
15 °C  
Cool  
45 °C  
Warm  
60 °C  
Hot  
threshold  
threshold  
threshold  
threshold  
REG 0x92: D[4]  
REG 0x9A: D[1]  
REG 0x9A: D[0]  
REG 0x92: D[5]  
t
t
2
t
3
t
4
1
REG 0x9A: D[3:2]  
- 60 mV  
4.14 V  
CV charge voltage  
- 60 mV  
4.14 V  
OFF  
60 mV  
100 mV  
160 mV  
200 mV  
4.20 V  
CV charge  
adjustment  
CV charge  
adjustment  
COLD  
Charge  
inhibited  
COOL  
CV voltage  
reduced  
WARM  
CV voltage  
reduced  
HOT  
NORMAL  
CV charge voltage  
Charge  
inhibited  
0 °C  
Cold  
15 °C  
Cool  
45 °C  
Warm  
60 °C  
Hot  
Battery temp (°C)  
threshold  
threshold  
threshold  
threshold  
REG 0x92: D[4]  
REG 0x9A: D[1]  
REG 0x9A: D[0]  
REG 0x92: D[5]  
aaa-023888  
Figure 23.ꢀCC charge current and CV charge voltage adjustment  
When the THM_CNFG[1:0] is set to 0x02, the charging current and CV voltage are  
adjusted based on CC_ADJ[1:0] and CV_ADJ[1:0] respectively whenever TCOOL and  
TWARM thresholds are crossed.  
When the THM_CNFG[1:0] is set to 0x03, and when the battery temperature rises  
above warm temp or goes below TCOOL, only the charging current is changed based on  
CC_ADJ[1:0]. CV voltage is not changed.  
This feature can be disabled if THM_CNFG[1:0] is set to 0x01.  
During THM_CNFG[1:0] =0x01, JEITA compliance can still be achieved but through  
software.  
The PF1550 helps with this implementation by providing an interrupt at the TCOOL and  
TWARM threshold when THM_CNFG[1:0] = 0x01.  
The charger parameters must not be locked by OTP to use this software function.  
If the thermistor functionality is not needed, THM_CNFG[1:0] can be set 0x00.  
Table 66.ꢀJEITA temperature control register  
JEITA TEMPERATURE CONTROL REGISTER  
ADDR:  
0x9A  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
THM_COOL  
0
D0  
BITS:  
RESERVED  
CC_ADJ  
CV_ADJ  
THM_WARM  
0
POR:  
ACCESS:  
CV_ADJ[1:0] has four settings, see Table 168 and register map:  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
63 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 67.ꢀCV voltage adjustment settings  
CV_ADJ[1:0]  
CV voltage adjustment (mV)  
00  
01  
10  
11  
60  
100  
160  
200  
CC_ADJ[1:0] has four settings, see Table 168 and register map:  
Table 68.ꢀCC current adjustment settings  
CC_ADJ[1:0]  
CC current adjustment (%)  
00  
01  
10  
11  
25 %  
50 %  
75 %  
100 %  
THM_HOT[0]  
THM_HOT setting (#)  
0
1
60  
55  
THM_COLD[0]  
THM_COLD setting (#)  
0
1
0
-10  
8.9 Fault states  
8.9.1 Timer fault state  
The battery charger provides both a charge timer and a watchdog timer to ensure safe  
charging.  
The charge timer prevents the battery from charging indefinitely. The time that the  
charger is allowed to remain in each of its pre-qualification states is tPRECHG  
.
The time that the charger is allowed to remain in the fast-charge CC and CV states is tFC  
which is programmable with FCHGTIME.  
Finally, the time that the charger is in the end-of-charge state is tEOC which is  
programmable with EOCTIME bits. Upon entering the timer fault state, a CHG_I interrupt  
is generated without a delay, CHG_OK is cleared and CHG_SNS = 0x06.  
In the timer fault state, the charger is off. The charger can exit the timer fault state by  
programming the charger to be off and then programming it to be on again through the  
CHG_OPER bits. Alternatively, the charger input can be removed and reinserted to exit  
the timer fault state.  
VSYS should continue to regulate while in the Timer fault state.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
64 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
8.9.2 Watchdog timer state  
The battery charger provides both a charge timer and a watchdog timer to ensure safe  
charging. The watchdog timer protects the battery from charging indefinitely in the event  
that the host hangs or otherwise cannot communicate correctly.  
The watchdog timer is disabled by default with WDTEN = 0. To use the watchdog timer  
feature, enable the feature by setting WDTEN. While enabled, the system controller must  
reset the watchdog timer within the timer period (tWD) for the charger to operate normally.  
Reset the watchdog timer by programming WDTCLR = 0x01. As long as WDTEN = 1, the  
timer continues to run and the processor continues to clear the register before the timer  
expires.  
The system processor clears the WDTEN bit to stop the timer.  
If the watchdog timer expires while the charger is in precharge mode, fast charge CC  
or CV, end-of-charge, done, or timer fault, the charging stops, a CHG_I interrupt is  
generated without a delay, CHG_OK is cleared, and CHG_SNS = 0x0B and indicates  
that the charger is off because the watchdog timer has expired.  
Once the watchdog timer has expired, the charger is restarted by programming  
WDTCLR=0x01. The VSYS node is supported by the battery and/or the adapter through  
the Linear regulator while the watchdog timer is expired.  
8.9.3 Thermal shutdown state  
The thermal shutdown state occurs when the battery charger is in any state and the  
junction temperature (TJ) exceeds the device’s thermal shutdown threshold (TSHDN),  
typical 140 °C.  
When TJ is close to TSHDN the charger folds back the charging current to 0 A, so the  
charger is effectively off. Upon entering this state, CHG_I interrupt is generated without  
a delay, CHG_OK is cleared. In the thermal shutdown state, the charger is off and timers  
are suspended.  
CHG_SNS = 0x0A and CHG_OK = 0 in the thermal shutdown state. The charger  
exits the temperature suspend state and returns to the state it came from once the die  
temperature has cooled. The timers resume once the charger exits this state. VSYS  
continues to regulate while in the thermal shutdown state.  
8.9.4 Battery overvoltage state  
A battery overvoltage fault occurs in any state when the battery voltage exceeds to  
VBATOV threshold.  
In this state, BAT_SNS = 0x09 and BAT_OK = 0. A BATT_I interrupt is generated in  
this state. In the event of a battery overvoltage state, the BATFET is opened and VSYS  
is regulated using the linear path. Once the battery overvoltage condition clears, the  
charger exits the battery overvoltage state and returns to the state it came from.  
8.9.5 Charger fault priority  
Some of the charger fault states occur at the same time. For example, battery  
overvoltage and thermal shutdown occur at the same time. In this section, which failure  
states take priority is discussed.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
65 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
In any given state, non-recoverable faults such as battery overcurrent timer fault take the  
highest priority. Recoverable faults such as a thermistor suspend, or battery overvoltage  
take lower priority.  
8.9.6 Battery overcurrent limit  
The VBATT to VSYS detector (BATFET) generates an overcurrent (OVRC) and provides  
the signal to the PMIC on/off controller.  
This feature protects the battery and the system from potential damage due to excessive  
battery discharge current. Excessive battery discharge current may occur for several  
reasons such as exposure to moisture, a software problem, a device failure, or  
mechanical failure that causes a short-circuit.  
The battery overcurrent protection feature is enabled with BATFET_OC[1:0] bit.  
Disabling this feature reduces the main battery current consumption. When the battery  
current to system exceeds the programmed overcurrent threshold for at least tBOVCRI  
a BAT2SOC_I interrupt is generated and BATTOC_SNS bit reports an overcurrent  
condition.  
,
If the overcurrent persists for tBOVCR, the VBATT to VSYS MOSFET is disabled or kept  
alive depending on the BOVRC_DISBATFET OTP bit. Typically, when the system’s  
processor detects this overcurrent interrupt, it executes a housekeeping routine that tries  
to mitigate the overcurrent situation. There is an OTP option (via BOVRC_DISBATFET  
bit) to either disable the BATFET after completion of housekeeping routine or remain on.  
Battery  
overcurrent  
t
= 3.0 ms  
BOVCRI  
Battery  
overcurrent  
interrupt  
VSYS  
VSYS shuts down  
t
= 16 ms  
BOVCR  
aaa-023885  
Figure 24.ꢀResponse to battery overcurrent  
The following table shows the different overcurrent threshold settings:  
Table 69.ꢀBattery overcurrent thresholds  
BATFET_OC[1:0] setting  
VBATT to VSYS overcurrent threshold (A)  
00  
01  
10  
11  
Disabled  
2.2  
2.8  
3.2  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
66 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
8.10 LED indicator  
CHGB is a 6.0 mA LED current sink with programmable blink timing. Blink period and  
on-time are programmable with 2-bits. The LED has indicator depending on the charger  
state as shown in the LED modes table. Blink frequency is programmable for 0.5 Hz, 1.0  
Hz, 8.0 Hz or 256 Hz. Blink duration is programmable from 0/32 duty cycle to 32/32 duty  
cycle in 1/32 increments.  
The LED_CFG bit allows the LEDs to operate in two modes as shown in the following  
table. With LED_CFG=0, the LEDs behave as follows: charging (on), fault (flashing),  
and charge complete (off). When LED_CFG = 1, the LED’s have the following behavior,  
charging (flashing), fault (on), and charge complete (off). The LEDs are activated  
automatically when charging is started and remain under control of the state machine.  
Software can take control over the charge LED’s by setting the LEDOVRD = 1. When  
LEDOVRD = 1 the LEDs are totally controlled by software, therefore the state machine  
no longer has control. With LEDOVRD = 0 software cannot force the LED’s on but can  
still set the current.  
The charging LED drivers include ramp up and ramp down patterns implemented in  
hardware. The ramp itself is generated by increasing or decreasing the PWM duty cycle  
with a 1/32 step every 1/64 seconds. The ramp time is therefore a function of the initial  
set PWM cycle and the final PWM cycle. As an example, starting from 0/32 and going to  
32/32 takes 500 ms whereas going to from 8/32 to 16/32 takes 125 ms.  
The ramp function is executed upon every change in PWM cycle setting. If a PWM  
change is programmed via I2C when LED_RAMP = 0, then the change is immediate  
rather than spread out over a PWM sweep. In addition, programmable blink rates are  
provided. Blinking is obtained by lowering the PWM repetition rate of each of the drivers  
through LED_FREQ[1:0] while the on period is determined by the duty cycle setting. To  
avoid high frequency spur coupling in the application, the switching edges of the output  
drivers are softened.  
Table 70.ꢀLED modes  
Condition  
Charger off  
Charging  
LED_CFG = 1  
LED_CFG = 0 (default)  
Current (mA)  
Off  
Off  
6
6
Flashing 1.0 Hz  
50 % duty cycle  
On steady  
100 % duty cycle  
Charging fault  
On steady  
Flashing 1.0 Hz  
50 % duty cycle  
6
6
100 % duty cycle  
Charge complete  
Off  
Off  
Table 71.ꢀLED enable conditions  
LED_EN  
CHGB  
LEDOVRD  
0 (default)  
Auto  
On  
0
1
1
1
0
Off  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
67 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 72.ꢀLED frequency setting  
LED_FREQ[1:0]  
Frequency  
Units  
Hz  
00 (default)  
1
0.5  
256  
8
01  
10  
11  
Hz  
Hz  
Hz  
9 Control and interface signals  
The PF1550 PMIC is fully programmable via the I2C interface. Additional communication  
is provided by direct logic interfacing including interrupt and reset pins as well as pins for  
power buttons.  
9.1 PWRON  
PWRON is an input signal to the IC that acts as an enable signal for the voltage  
regulators in the PF1550.  
The PWRON pin can be configured as either a level sensitive input (OTP_PWRON_CFG  
= 0), or as an edge sensitive input (OTP_PWRON_CFG = 1).  
As a level sensitive input, an active high signal turns on the part and an active low signal  
turns off the part, or puts it into Sleep mode.  
As an edge sensitive input, such as when connected to a mechanical switch, a falling  
edge turns on the part and if the switch is held low for greater than or equal to 4.0  
seconds, the part turns off or enters Sleep mode.  
Table 73.ꢀPWRON pin OTP configuration options  
OTP_PWRON_CFG  
Mode  
0
PWRON pin HIGH = ON  
PWRON pin LOW = OFF or Sleep mode  
1
PWRON pin pulled LOW momentarily = ON  
PWRON pin LOW for 4.0 seconds = OFF or Sleep mode  
Table 74.ꢀPWRON pin logic level  
Pin name  
Parameter  
Load condition Min  
Max  
0.4  
Unit  
V
PWRON  
VIL  
VIH  
0.0  
1.4  
3.6  
V
When OTP_PWRON_CFG = 1, PWRON pin pulled low momentarily takes the system  
from REGS_DISABLE/SLEEP to RUN mode. There is no effect if PWRON is pulled low  
momentarily while in RUN or STANDBY modes. Only an interrupt is generated.  
PWRON pin low for 4.0 seconds with PWRONRSTEN bit = 1: Enters REGS_DISABLE or  
Sleep mode.  
See Section 10 "PF1550 state machine" for detailed description.  
In this configuration, the PWRON input can be a mechanical switch de-bounced through  
a programmable de-bouncer, PWRONDBNC[1:0], to avoid a response to a very short key  
press. The interrupt is generated for both the falling and the rising edge of the PWRON  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
68 / 150  
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
pin. By default, a 31.25 ms interrupt debounce is applied to both falling and rising  
edges. The falling edge debounce timing can be extended with PWRONDBNC[1:0]. The  
interrupt is cleared by software, or when cycling through the REGS_DISABLE mode.  
Table 75.ꢀPWRONDBNC settings  
Bits  
State  
Turn on  
debounce (ms)  
Falling edge INT  
debounce (ms)  
Rising edge INT  
debounce (ms)  
PWRONDBNC[1:0]  
00  
01  
10  
11  
31.25  
31.25  
125  
31.25  
31.25  
125  
31.25  
31.25  
31.25  
31.25  
750  
750  
9.2 STANDBY  
STANDBY is an input signal to the IC. When it is asserted the part enters standby mode  
and when deasserted, the part exits standby mode. STANDBY can be configured as  
active high or active low using the STANDBYINV bit.  
Table 76.ꢀStandby pin polarity control  
STANDBY (pin)  
STANDBYINV (I2C bit)  
STANDBY control  
Not in Standby mode  
In Standby mode  
0
0
1
1
0
1
0
1
In Standby mode  
Not in Standby mode  
Table 77.ꢀSTANDBY pin logic level  
Pin name  
Parameter  
Load condition Min  
Max  
0.4  
Unit  
V
STANDBY  
VIL  
VIH  
0
1.4  
3.6  
V
Since STANDBY pin activity is driven asynchronously to the system, a finite time  
is required for the internal logic to qualify and respond to the pin level changes. A  
programmable delay is provided to hold off the system response to a Standby event. This  
allows the processor and peripherals some time after a standby instruction has been  
received to terminate processes to facilitate seamless entering into Standby mode. When  
enabled (STANDBYDLY = 01, 10, or 11), STANDBYDLY delays the Standby initiated  
response for the entire IC, until the STBYDLY counter expires. An allowance should be  
made for three additional 32 kHz cycles required to synchronize the Standby event.  
9.3 RESETBMCU  
RESETBMCU is an open-drain, active low output configurable via OTP for two modes of  
operation.  
In its default mode, it is deasserted at the end of the start-up sequence. In this mode, the  
signal can be used to bring the processor out of reset (POR), or as an indicator that all  
supplies have been enabled; it is only asserted during a turn off event.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
69 / 150  
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
When configured for its fault mode, RESETBMCU is deasserted after the startup  
sequence is completed only if no faults occurred during start-up. At any time, if a fault  
occurs and persists for 1.8 ms typically, RESETBMCU is asserted low.  
The PF1550 is turned off if the fault persists for more than 100 ms typically. The PWRON  
signal restarts the part, if the fault persists, the sequence described above is repeated.  
To enter the fault mode, set bit OTP_PWRGD_EN to 1.  
The time from the last regulator in the start-up sequence to when RESETBMCU is  
deasserted is programmable between 2.0 ms and 1024 ms via OTP_POR_DLY[2:0] bits.  
Table 78.ꢀRESETBMCU pin logic level  
Pin name  
Parameter  
Load condition Min  
Max  
Unit  
V
RESETBMCU  
VOL  
−2.0 mA  
0
0.2 * VDDIO  
3.6  
VOH  
Open drain  
0.8 * VDDIO  
V
9.4 INTB  
INTB is an open-drain, active low output. It is asserted when any interrupt occurs, if the  
interrupt is unmasked. INTB is deasserted after the fault interrupt is cleared by software,  
which requires writing a “1” to the interrupt bit.  
Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result,  
when a masked interrupt bit goes high, the INTB pin does not go low. A masked interrupt  
can still be read from the interrupt status register. This gives the processor the option of  
polling for status from the IC.  
The IC powers up with all interrupts masked, so the processor must initially poll the  
device to determine if any interrupts are active. Alternatively, the processor can unmask  
the interrupt bits of interest. If a masked interrupt bit was already high, the INTB pin goes  
low after unmasking. The sense registers contain status and input sense bits so the  
system processor can poll the current state of interrupt sources. They are read only, and  
not latched or clearable.  
Table 79.ꢀINTB pin logic level  
Pin name  
Parameter  
Load condition Min  
Max  
Unit  
V
INTB  
VOL  
−2.0 mA  
0
0.2 * VDDIO  
3.6  
VOH  
Open drain  
0.8 * VDDIO  
V
9.5 WDI  
WDI is an input signal to the IC. It is typically connected to the watchdog output of the  
processor. When the WDI pin is pulled low, the PMIC enters the “REGS_DISABLE”  
mode where all the regulators are turned off. The WDI acts as a hard reset input from the  
processor.  
During PMIC startup (REGS_DISABLE to RUN mode), the WDI pin is masked until  
RESETBMCU is deasserted.  
Table 80.ꢀWDI pin logic level  
Pin name  
Parameter  
Load condition  
Min  
Max  
Unit  
V
WDI  
VIL  
VIH  
0
0.2 * VDDIO  
3.6  
0.8 * VDDIO  
V
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
70 / 150  
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
9.6 ONKEY  
ONKEY is an input pin to the IC and is typically connected to a push-button switch. The  
ONKEY pin is pulled high when the switch is depressed, and is pulled low when the  
switch is pressed.  
Pressing the switch generates interrupts which the processor uses to initiate PMIC  
state transitions. Pressing the ONKEY for longer than the delay programmed  
by OTP_TGRESET[1:0] (ranges from 4.0 s to 16 s), forces the PMIC into the  
REGS_DISABLE state.  
Table 81.ꢀONKEY pin logic level  
Pin name  
Parameter  
Load condition Min  
Max  
0.4  
Unit  
V
ONKEY  
VIL  
VIH  
0
1.4  
4.8  
V
Table 82.ꢀONKEYDBNC settings  
Bits  
State  
Turn On  
debounce (ms)  
Falling edge INT  
debounce (ms)  
Rising edge INT  
debounce (ms)  
ONKEYDBNC[1:0]  
00  
01  
10  
11  
31.25  
31.25  
125  
31.25  
31.25  
125  
31.25  
31.25  
31.25  
31.25  
750  
750  
The ONKEY input can be a mechanical switch debounced through a programmable  
debouncer, ONKEYDBNC[1:0], to avoid a response to a very short (unintentional)  
keypress. The interrupt is generated during the rising edge of the ONKEY pin.  
The falling edge debounce timing can be extended with ONKEYDBNC[1:0] as  
defined Table 82. The interrupt is cleared by software, or when cycling through the  
REGS_DISABLE mode.  
See Section 12 "Register map" for detailed description of the ONKEY interrupt registers.  
9.7 Control interface I2C block description  
The PF1550 contains an I2C interface port which allows access by a processor, or  
any I2C master, to the register set. Via these registers, the resources of the IC can be  
controlled. The registers also provide status information about how the IC is operating.  
The SCL and SDA lines should be routed away from noisy signals and planes to  
minimize noise pickup. To prevent reflections in the SCL and SDA traces from creating  
false pulses, the rise and fall times of the SCL and SDA signals must be greater than  
20 ns. This can be accomplished by reducing the drive strength of the I2C master via  
software.  
9.7.1 I2C device ID  
I2C interface protocol requires a device ID for addressing the target IC on a multi-device  
bus. The PF1550 I2C device address is 0x08.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
71 / 150  
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
9.7.2 I2C operation  
The I2C mode of the interface is implemented generally following the fast mode definition  
which supports up to 400 kbits/s operation (exceptions to the standard are noted to be  
7-bit only addressing and no support for general call addressing). Timing diagrams,  
electrical specifications, and further details can be found in the I2C specification, which is  
available for download at:  
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf  
I2C read operations are also performed in byte increments separated by an ACK. Read  
operations also begin with the MSB and each byte is sent out unless a STOP command  
or NACK is received prior to completion.  
The following examples show how to write and read data to and from the IC. The host  
initiates and terminates all communication. The host sends a master command packet  
after driving the start condition. The device responds to the host if the master command  
packet contains the corresponding slave address. In the following examples, the device  
is shown always responding with an ACK to transmissions from the host. If at any time  
a NACK is received, the host should terminate the current transaction and retry the  
transaction.  
2
I C write example  
host can also drive  
another START  
instead of STOP  
device address  
register address  
master driven data  
DATA (byte 0)  
SDA  
S
0
A
A
A
P
acknowledge  
from slave  
acknowledge STOP  
from slave condition  
START condition  
R/W  
acknowledge  
from slave  
2
host can also drive  
another START  
instead of STOP  
I C read example  
device address  
register address  
device address  
PMIC driven data  
SDA  
S
0
A
A
S
1
A
NA P  
acknowledge  
from slave  
no acknowledge STOP  
from slave condition  
START condition  
START condition  
R/W  
R/W  
acknowledge  
from slave  
acknowledge  
from slave  
aaa-026501  
Figure 25.ꢀI2C sequence  
10 PF1550 state machine  
The PMIC part of the PF1550 can operate in a number of states as shown in Figure 26.  
The states can be split into two categories:  
1. “System On” that includes the RUN, STANDBY, and SLEEP modes  
2. “System Off” that includes the REGS_DISABLE, CORE_OFF, and SHIP modes  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
72 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
CORE_OFF  
VSNVS_ONLY  
(VSNVS from VSYS  
or LICELL)  
(MBATT ON,  
VCOREDIG OFF)  
I
A
STANDBY  
RUN  
H
B
K
REGS_DISABLE  
(VSNVS from VSYS  
or LICELL)  
C
E
F
(MBATT ON,  
VCOREDIG ON)  
G
SLEEP/LPSR  
SHIP  
J
L
(MBATT OFF,  
VCOREDIG OFF,  
VSNVS OFF)  
System running, VCOREDIG ON  
aaa-023889  
Figure 26.ꢀPMIC state machine  
In the “System On” modes, some or all of the PMIC regulators are powered and in  
general the system processor is powered.  
In the “System Off” modes, all (or all regulators except VSNVS) are powered  
off. In general, the system processor is powered off during these states. In the  
REGS_DISABLE and CORE_OFF modes, the VSNVS supply remains enabled keeping  
the system RTC running.  
The only way to transition from “System Off” to “System On” and vice versa is through  
the REGS_DISABLE mode. From the REGS_DISABLE mode, the only exit into a  
“System On” state is into the “Run” mode. Transition from the REGS_DISABLE mode to  
the Run mode requires a Turn On event. See Section 10.3 "Turn on events".  
Transition from any of the “System On” modes to the REGS_DISABLE state is allowed.  
This transition is referred to as a Turn Off event. See Section 10.4 "Turn off events".  
10.1 System ON states  
10.1.1 Run state  
In this state, the PMIC regulators are enabled and the system is powered up.  
RESETBMCU is de-asserted in this state.  
This mode can be entered in several ways:  
1. From REGS_DISABLE through a Turn On Event: During this transition, the PMIC  
regulators are powered up as per their programmed start-up sequence. After all the  
regulators are powered, the RESETBMCU pin is de-asserted.  
2. From STANDBY by using the STANDBY pin  
3. From SLEEP mode by using the PWRON pin: Typically, some of the regulators are  
turned off in the SLEEP mode compared to the RUN mode. In the SLEEP mode,  
some of the buck regulator output voltages are set lower than those in the RUN  
mode. While transitioning from the SLEEP to the RUN mode, regulators that were  
turned off in the SLEEP mode are turned back on in the RUN mode following the  
same sequence as the programmed OTP sequence. Output voltage transitions during  
transition from the SLEEP to the RUN mode also occurs at the same OTP sequence  
time slot. RESETBMCU is de-asserted through this state transition.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
73 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
10.1.2 STANDBY state  
This state is entered by controlling the logic level of the STANDBY pin. It can be entered  
only from the RUN mode.  
The STANDBY pin polarity is programmable through the STANDBYINV I2C bit. By  
default, STANDBYINV = 0 and a logic high on the STANDBY pin moves the state  
machine from the RUN state to the STANDBY state. When STANDBYINV = 1, a logic  
low moves the state machine from the RUN state to the STANDBY state.  
Regulator output voltage may be changed, or regulator outputs could be disabled while  
entering the STANDBY state and vice versa.  
For details on the power-down sequence, see Section 10.7 "Regulator power-down  
sequencer". While exiting STANDBY state into the RUN mode, regulator output voltage  
changes and regulator enables follow the power-up sequence.  
It is possible to exit STANDBY state and enter the SLEEP state. SLEEP state is  
generally a lower power system state compared to the STANDBY state. Exiting  
STANDBY into the SLEEP state follows the power-down sequence.  
RESETBMCU is de-asserted in the STANDBY state.  
10.1.3 SLEEP state  
This state is entered from either the RUN state or the STANDBY state by controlling  
the PWRON pin. The exact condition required for this transition depends on the OTP  
configuration of the PWRON pin. For details see Section 9.1 "PWRON".  
The power-down sequence is followed while entering this state and the power-up  
sequence is followed while exiting this state into the RUN state.  
RESETBMCU is de-asserted in the SLEEP state.  
10.2 System OFF states  
RESETBMCU is asserted (low) in all the System Off states.  
10.2.1 REGS_DISABLE  
This state can be considered the ‘home state’ for the state machine. In this state, the  
state machine waits for appropriate commands to proceed to other states.  
REGS_DISABLE can be entered from one of the “System On” state through a turn off  
event.  
REGS_DISABLE can be entered from the CORE_OFF and SHIP mode by a charger  
attach event.  
In the REGS_DISABLE state, the PMIC core circuitry is active. VSNVS is a best-of-  
supply output of VSYS and LICELL.  
10.2.2 CORE_OFF  
This state is entered in two ways:  
1. From the REGS_DISABLE mode by pressing and holding the ON_KEY button low >  
Tgreset  
2. From the REGS_DISABLE mode if the GOTO_CORE_OFF bit is set  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
74 / 150  
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
This state cannot be entered if a charger is plugged in.  
In this state, the internal core of the PMIC is turned off to reduce quiescent current.  
VSNVS is the only regulator that is supplied to external loads.  
10.2.3 SHIP  
In this mode, the MBATT switch between VSYS and VBATT is opened. All the PMIC  
supplies including VSNVS are turned off.  
The SHIP mode is entered if the GOTO_SHIP bit is set in the REGS_DISABLE state.  
The only way to exit from this mode is by a charger attach event. The state machine exits  
to the REGS_DISABLE state when this happens. A battery reattach can also be used to  
exit SHIP mode.  
10.3 Turn on events  
A turn on event takes the PMIC from the REGS_DISABLE state to the RUN state  
(transition H in Figure 26).  
The turn on events are:  
1. PWRON logic high with PWRON_CFG = 0  
2. PWRON H -> L with PWRON_CFG = 1  
VSYS > UVDETrising and TJ < TSHDN_fall are preconditions for a turn on event to occur.  
The turn on is to be completed after the RESETBMCU pin is deasserted. The WDI pin is  
masked till the RESETBMCU pin is deasserted.  
10.4 Turn off events  
A turn off event takes the PMIC state machine from one of the “System On” states (RUN,  
STANDBY, or SLEEP) to the REGS_DISABLE state. The power-down sequence is  
followed during all of the turn off events.  
The turn off events are:  
1. Thermal Shutdown (TJ > TSHDN_rise  
)
2. PWRON logic low with OTP_PWRON_CFG = 0  
3. PWRON low > 4.0 s with OTP_PWRON_CFG = 1 && PWRONRSTEN = 1  
4. WDI = 0. This occurs when the processor watchdog expires and pulls the WDI pin low  
to create a hard reset.  
5. ON_KEY pressed low > Tgreset && ON_KEY_RST_EN = 1. This facilitates creating a  
hard reset when pressing the ON_KEY button without processor intervention.  
6. GOTO_SHIP = 1. This is used to initiate the device to go into the SHIP mode. When  
GOTO_SHIP bit is set to 1, the state machine proceeds from one of the “System On”  
states to the REGS_DISABLE mode to the SHIP mode.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
75 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
10.5 State diagram and transition conditions  
Table 83.ꢀState transition table  
Transi Description  
tion  
PWRON_CFG = 0 (Level sensitive)  
PWRON_CFG = 1 (Edge sensitive)  
A
B
C
Standby to Run  
Run to Standby  
Standby to Sleep  
(STANDBY pin = 0 && STANDBYINV  
bit = 0)  
(STANDBY pin = 0 && STANDBYINV  
bit = 0)  
OR  
OR  
(STANDBY pin = 1 && STANDBYINV  
bit = 1)  
(STANDBY pin = 1 && STANDBYINV  
bit = 1)  
(STANDBY pin = 1 && STANDBYINV  
bit = 0)  
(STANDBY pin = 1 && STANDBYINV  
bit = 0)  
OR  
OR  
(STANDBY pin = 0 && STANDBYINV  
bit = 1)  
(STANDBY pin = 0 && STANDBYINV  
bit = 1)  
(PWRON = 0) && (Any SWxOMODE = (PWRON High to Low and PWRON = 0  
1 || Any LDOxOMODE = 1)  
> 4s) && (PWRONRSTEN = 1) && (Any  
SWxOMODE = 1 || Any LDOxOMODE  
= 1)  
E
F
Sleep to Run  
Run to Sleep  
PWRON = 1  
PWRON High to Low to High [1]  
(PWRON = 0) && (Any SWxOMODE = (PWRON High to Low and PWRON = 0  
1 || Any LDOxOMODE = 1)  
> 4s) && (PWRONRSTEN = 1) && (Any  
SWxOMODE = 1 || Any LDOxOMODE  
= 1)  
G
Run/Standby/  
Sleep to REGS_  
DISABLE  
(Thermal shutdown)  
(Thermal shutdown)  
OR  
OR  
(GOTO_SHIP = 1)  
OR  
(GOTO_SHIP = 1)  
OR  
(PWRON = 0 && All SWxOMODE = 0  
&& All LDOxOMODE = 0)  
(PWRON High to Low and PWRON =  
0 > 4s && PWRONRSTEN = 1 && All  
SWxOMODE = 0 && All LDOxOMODE  
= 0)  
OR  
(WDI = 0) [2]  
OR  
OR  
(PWRON High to Low and PWRON = 0  
> 4s when in Sleep state)  
(ONKEY High to Low and ONKEY = 0 >  
Tgreset && ONKEY_RST_EN = 1)  
OR  
OR  
(WDI = 0) [2]  
OR  
(VSYS < UVDET_Fall) [3][4]  
(ONKEY High to Low and ONKEY = 0 >  
Tgreset and ONKEY_RST_EN = 1)  
OR  
(VSYS < UVDET_Fall) [3]  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
76 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Transi Description  
tion  
PWRON_CFG = 0 (Level sensitive)  
PWRON_CFG = 1 (Edge sensitive)  
H
REGS_DISABLE  
to Run  
(PWRON = 1 )  
(PWRON High to Low )  
OR  
(Only if VSYS >  
UVDET and TJ <  
(If entered REGS_DISABLE via long  
press on PWRON && RESTARTEN = 1  
&& PWRON stays Low > 1.0s)  
TSHDN_fall  
)
OR  
(Charger attach)  
[5] [6]  
I
REGS_DISABLE  
to CORE_OFF  
(GOTO_CORE_OFF = 1 && ONKEY = (GOTO_CORE_OFF = 1 && ONKEY =  
1)  
1)  
(Only if VBUS_  
INVALID = 1)  
OR  
OR  
(ONKEY High to Low and ONKEY = 0 > (ONKEY High to Low and ONKEY = 0 >  
Tgreset && ONKEY_RST_EN = 1) [7][8] Tgreset && ONKEY_RST_EN = 1) [7][9]  
J
REGS_DISABLE  
to SHIP  
GOTO_SHIP = 1 && VBUS_INVALID = GOTO_SHIP = 1 && VBUS_INVALID =  
1 [10]  
1 [10]  
K
CORE_OFF to  
(ONKEY High to Low and ONKEY = 0 > (ONKEY High to Low and ONKEY = 0 >  
REGS_DISABLE  
1000 ms)  
1000 ms)  
OR  
OR  
(Charger attach)  
(Charger attach)  
L
SHIP to REGS_  
DISABLE  
(Charger attach)  
OR  
(Charger attach)  
OR  
(Battery reattach)  
(Battery reattach)  
[1] This low period is < 4.0s. If it is longer than 4.0s, it transitions to G  
[2] PWRON pin is pulled low by processor after WDI = 0.  
[3] Follows regulator power-down sequence for this transition  
[4] REGS_DISABLE is a transitionary state when GOTO_SHIP = 1. The state machine does not stay at G when GOTO_SHIP = 1  
[5] WDI pin is masked until RESETBMCU is deasserted.  
[6] Debounce on PWRON programmable via PWRONDBNC[1:0]  
[7] PWRON pin is pulled low by processor after ONKEY = 0 > Tgreset.  
[8] GOTO_CORE_OFF is set by user when system is ON. For other products, a secondary processor is used to set this bit while in REGS_DISABLE  
[9] GOTO_CORE_OFF must be set by user when system is ON  
[10] VBUSIN pin voltage < 1.0 V  
10.6 Regulator power-up sequencer  
Start-up sequence of all the switching and linear regulators in the PF1550 is  
programmable. VSNVS's sequence is not programmable but is always the first regulator  
to power up when the PF1550 is powered up via a cold start (from no input to valid input).  
When SYS is first applied to the PF1550 (either by applying a battery, or by plugging in a  
charger), VSNVS comes up first.  
The switching and linear regulators power up based on their programmed OTP sequence  
using the respective OTP_XX_SEQ[2:0] when transitioning from REGS_DISABLE to the  
RUN state.  
RESETBMCU is pulled low from VCOREDIG POR until the end of the power-up  
sequencer.  
RESETBMCU is pulled high 2.0 ms to 1024 ms after the last regulator powers up. This  
delay is OTP programmable through the OTP_POR_DLY[2:0] bits.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
77 / 150  
 
 
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
When transitioning from STANDBY mode to RUN mode, the power-up sequencer is  
activated only if any of the regulators turn back on during this transition.  
The power-up sequencer ends as soon as the last regulator powers up, rather than  
waiting for a fixed time.  
The power-up sequencer is always activated when transitioning from Sleep to Run  
modes. The sequencer ends as soon as the last regulator powers up, rather than waiting  
for a fixed time.  
The PWRUP_I interrupt is set to indicate completion of transition from STANDBY to RUN  
and SLEEP to RUN.  
The PWRUP_I interrupt is set while transitioning from STANDBY to RUN even if the  
sequencers were not used. This is used to indicate that the transition is complete.  
10.7 Regulator power-down sequencer  
The power-down sequencer performs the functional opposite to the power-up  
sequencer. Each regulator has an associated register setting (SW1_PWRDN_SEQ[2:0],  
SW2_PWRDN_SEQ[2:0], SW3_PWRDN_SEQ[2:0], LDO1_PWRDN_SEQ[2:0],  
LDO2_PWRDN_SEQ[2:0], LDO3_PWRDN_SEQ[2:0], VREFDDR_PWRDN_SEQ[2:0])  
that sets its power-down sequence.  
The default setting of the above registers is equal to the corresponding  
power-up sequence setting. For example, SW1_PWRDN_SEQ[2:0] =  
OTP_SW1_PWRUP_SEQ[2:0].  
When the power-down sequencer is activated, regulators are turned off one by one in  
the descending order of the XXX_PWRDN_SEQ[2:0] setting. This way, by default power-  
down is a mirror of the power-up sequence.  
In one of the "System On" states, the processor can change the values of the  
XXX_PWRDN_SEQ[2:0] registers. The power-up sequence is fixed by OTP (or TBB). If  
all XXX_PWRDN_SEQ[2:0] = 0x00, the power-down sequencer is bypassed and all the  
regulators are turned off at once. During transition from Run to Standby, the power-down  
sequencer is activated if any of the regulators are turned off during this transition.  
If regulators are not turned off during this transition, the power-down sequencer is  
bypassed and the transition happens at once (any associated DVS transitions still take  
time).  
During transition from Run to Sleep, the power-down sequencer is always activated.  
However, if all XXX_PWRDN_SEQ[2:0] = 0, the transition happens immediately.  
The PWRDN_I interrupt is set during transition from Run to Sleep and Run to Standby  
even if regulators are not turned off during these transitions.  
11 Device start up  
11.1 Startup timing diagram  
The startup timing of the regulators is programmable through OTP, Figure 27 shows the  
startup timing of the regulators as determined by their OTP A4 sequence.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
78 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
battery  
attach  
UVDET  
VSYS  
t
R1  
t
D1  
VSNVS  
t
R2  
t
D2  
PWRON  
t
R3  
t
D3  
Time Slot 0  
t
R3  
t
D3  
LDO1, 3  
Time Slot 1  
t
R3  
t
D5  
t
D3  
LDO2  
SW3  
t
R3  
t
D5  
Time Slot 2  
t
D3  
SW2  
VREFDDR  
Time Slot 3  
t
R3  
t
D5  
t
D3  
SW1  
Time Slot 4  
t
R4  
t
D4  
RESETBMCU  
aaa-028499  
Figure 27.ꢀA4 startup and power down sequence  
Table 84.ꢀA4 startup and power down sequence timing  
Parameter  
Description [1]  
Min.  
Typ.  
0.6  
Max.  
Unit  
ms  
ms  
ms  
ms  
ms  
tD1  
tR1  
tD2  
tR2  
tD3  
Turn-on delay of VSNVS  
Rise time of VSNVS  
User determined delay  
Rise time of PWRON  
0.1  
[2]  
Power up delay between regulators  
OTP_SEQ_CLK_SPEED = 0  
OTP_SEQ_CLK_SPEED = 1  
0.5  
2.0  
[3]  
[4]  
tR3  
tD4  
tR4  
tD5  
Rise time of regulators  
0.2  
2.0  
0.2  
2.0  
ms  
ms  
ms  
ms  
Turn-on delay of RESETBMCU  
Rise time of RESETBMCU  
Power down delay between  
regulators  
[1] All regulators avoid drop-out mode at startup  
[2] Depends on the external signal driving PWRON  
[3] A4 configuration  
[4] Rise time is a function of slew rate of regulators and nominal voltage selected.  
11.2 Device start up configuration  
Table 85.ꢀPF1550 start up configuration  
Pre-programmed OTP configuration  
Registers  
A1  
0x08  
3.0 V  
1.1 V  
1
A2  
0x08  
3.0 V  
1.0 V  
5
A3  
0x08  
3.0 V  
1.3875 V  
3
A4  
A5  
0x08  
3.0 V  
1.3875 V  
3
A6  
0x08  
A7  
0x08  
3.0 V  
1.3875 V  
3
A8  
0x08  
3.0 V  
1.3875 V  
3
A9  
0x08  
3.0 V  
3.3 V  
3
Default I2C address  
0x08  
3.0 V  
1.1 V  
4
OTP_VSNVS_VOLT[2:0]  
OTP_SW1_VOLT[5:0]  
OTP_SW1_PWRUP_SEQ[2:0]  
OTP_SW2_VOLT[5:0]  
OTP_SW2_PWRUP_SEQ[2:0]  
3.0 V  
1.275 V  
3
1.1 V  
2
1.2 V  
5
1.35 V  
3
1.2 V  
3
1.5 V  
3
1.35 V  
3
1.2 V  
3
1.35 V  
3
3.3 V  
3
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
79 / 150  
 
 
 
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Pre-programmed OTP configuration  
Registers  
A1  
A2  
1.8 V  
1
A3  
3.3 V  
3
A4  
1.8 V  
2
A5  
A6  
3.3 V  
3
A7  
1.8 V  
3
A8  
3.3 V  
3
A9  
OTP_SW3_VOLT[5:0]  
1.8 V  
3.3 V  
3.0 V  
OTP_SW3_PWRUP_SEQ[2:0]  
OTP_LDO1_VOLT[4:0]  
OTP_LDO1_PWRUP_SEQ[2:0]  
OTP_LDO2_VOLT[3:0]  
OTP_LDO2_PWRUP_SEQ[2:0]  
OTP_LDO3_VOLT[4:0]  
OTP_LDO3_PWRUP_SEQ[2:0]  
OTP_VREFDDR_PWRUP_SEQ[2:0]  
OTP_SW1_DVS_SEL  
3
3
3
1.0 V  
1.8 V  
1
1.8 V  
3
3.3 V  
1
1.8 V  
1.8 V  
3
3.3 V  
3
1.8 V  
3
2.8 V  
4
3
3
2.5 V  
3.3 V  
1
3.3 V  
2
3.3 V  
2
3.3 V  
3.3 V  
2
3.3 V  
2
3.3 V  
2
3.3 V  
4
2
3
1.0 V  
1.8 V  
1
3.3 V  
3
1.8 V  
1
3.3 V  
3.3 V  
3
3.3 V  
3
3.3 V  
3
1.8 V  
5
5
3
3
3
5
3
3
3
3
3
3
Non-DVS mode  
DVS mode  
DVS mode  
Non-DVS mode  
Non-DVS mode  
OTP_SW2_DVS_SEL  
Non-DVS mode  
DVS mode  
Non-DVS mode  
OTP_LDO1_LS_EN  
LDO Mode  
OTP_LDO3_LS_EN  
LS Mode  
LDO Mode  
OTP_SW1_RDIS_ENB  
OTP_SW2_RDIS_ENB  
OTP_SW3_RDIS_ENB  
OTP_SW1_DVSSPEED  
OTP_SW2_DVSSPEED  
Enabled  
Enabled  
Enabled  
12.5 mV step each 4.0 µs  
12.5 mV step each 4.0 µs  
Non-DVS mode  
Non-DVS mode  
12.5 mV step  
each 2.0 µs  
OTP_SWx_EN_AND_STBY_EN  
OTP_LDOx_EN_AND_STBY_EN  
OTP_PWRON_CFG  
SW1, SW2, SW3 Enabled in RUN and STANDBY  
LDO1, LDO2, LDO3, VREFDDR Enabled in RUN and STANDBY  
Level Sensitive  
Edge Sensitive  
Level Sensitive  
OTP_SEQ_CLK_SPEED  
0.5 ms  
2 ms Time Slots  
Time Slots  
OTP_TGRESET[1:0]  
OTP_POR_DLY[2:0]  
OTP_UVDET[1:0]  
4 secs Global Reset Timer  
2 ms RESETBMCU Power-Up Delay  
Rising 3.0 V; Falling 2.9 V  
OTP_I2C_DEGLITCH_EN  
OTP_CHGR_OPER[1:0]  
I2C Deglitch Filter Disabled  
Charger = ON, Charger = OFF, Charger = ON,  
Charger = ON,  
Linear = ON  
Charger = ON, Charger = OFF, Charger = ON,  
Charger = ON, Charger = OFF,  
Linear = ON  
Linear = ON  
Linear = ON  
Linear = ON  
Linear = ON  
Linear = ON  
Linear = ON  
Linear = ON  
OTP_CHGR_TPRECHG  
Pre-charge timer = 30 minutes  
End-Of-Charge Debounce = 16 secs  
Fast-Charge Timer Disabled  
Linear ON in the DONE state  
100 mV below CHGCV  
OTP_CHGR_EOCTIME[2:0]  
OTP_CHGR_FCHGTIME[2:0]  
OTP_CHGR_EOC_MODE  
OTP_CHGR_CHG_RESTART[1:0]  
OTP_CHGR_CHG_CC[4:0]  
OTP_CHGR_VSYSMIN[1:0]  
CC = 100 mA  
CC = 500 mA  
CC = 100 mA  
VSYSMIN = 4.3 V  
VSYSMIN  
= 3.7 V  
VSYSMIN = 4.3 V  
VSYSMIN  
= 3.7 V  
OTP_CHGR_CHGCV[5:0]  
CV = 4.2 V  
VBUS ILIM = 1500 mA  
OTP_CHGR_VBUS_LIN_ILIM[4:0]  
VBUS ILIM  
= 500 mA  
OTP_CHGR_VBUS_DPM_REG[2:0]  
OTP_CHGR_USBPHYLDO  
3.9 V  
3.9 V  
3.9 V  
4.5 V  
3.9 V  
3.9 V  
3.9 V  
3.9 V  
3.9 V  
USBPHY  
USBPHY LDO Enabled  
LDO Disabled  
OTP_CHGR_USBPHY  
USBPHY = 3.3 V  
USBPHY Active Discharge Enabled  
OTP_CHGR_ACTDISPHY  
USBPHY Active  
Discharge  
Disabled  
12 Register map  
12.1 Specific PMIC Registers (Offset is 0x00)  
The following pages contain description of the various registers in the PF1550.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
80 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 86.ꢀRegister DEVICE_ID - ADDR 0x00  
Name  
Bit  
R/W  
Default Description  
DEVICE_ID  
2 to 0  
R
100  
Loaded from fuses  
000 — Devices with "00" at the end of the part number, such as  
"PF1500"  
001 — Future use  
010 — Future use  
011 — Future use  
100 — Devices with "50" at the end of the part number, such as  
"PF1550"  
101 — Future use  
110 — Future use  
111 — Future use  
FAMILY  
7 to 3  
R
01111  
Identifies PMIC  
01111 — 0b0_1111 for "15" used to denote the "PF1550"  
Table 87.ꢀRegister OTP_FLAVOR - ADDR 0x01  
Name  
Bit  
R/W  
Default Description  
0x00 Blown by ATE to indicate flavor of OTP used  
UNUSED  
7 to 0  
R
0x00 — OTP not burned  
0x01 — A1  
0x02 — A2  
0x03 — A3  
continues...  
Table 88.ꢀRegister SILICON_REV - ADDR 0x02  
Name  
Bit  
R/W  
Default Description  
METAL_LAYER_REV  
FULL_LAYER_REV  
FAB_FIN  
2 to 0  
5 to 3  
7 to 6  
R
001  
010  
00  
Unused  
Unused  
Unused  
R
R
Table 89.ꢀRegister INT_CATEGORY - ADDR 0x06  
Name  
Bit  
R/W  
Default Description  
CHG_INT  
0
R
0
0
0
0
This bit is set high if any of the charger interrupt status bits are set  
0 — No charger interrupt bit is set, cleared, or did not occur  
1 — "OR" function of all charger interrupt status bit  
SW1_INT  
SW2_INT  
SW3_INT  
1
2
3
R
R
R
This bit is set high if any of the Buck 1 interrupt status bits are set  
0 — SW1 interrupts cleared or did not occur  
1 — Any of the SW1 interrupt status bits are set  
This bit is set high if any of the Buck 2 interrupt status bits are set  
0 — SW2 interrupts cleared or did not occur  
1 — Any of the SW2 interrupt status bits are set  
This bit is set high if any of the Buck 3 interrupt status bits are set  
0 — SW3 interrupts cleared or did not occur  
1 — any of the SW3 interrupt status bits are set  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
81 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
LDO_INT  
4
R
0
0
0
This bit is set high if any of the LDO interrupt status bits are set.  
This includes LDO1, LDO2, and LDO3.  
0 — LDO interrupts cleared or did not occur  
1 — Any of the LDO interrupt status bits are set  
ONKEY_INT  
TEMP_INT  
5
6
R
R
This bit is set high if any of the interrupts associated with ONKEY  
push-button are set.  
0 — ONKEY related interrupts cleared or did not occur  
1 — Any of the ONKEY interrupt status bits are set  
This bit is set if any of the interrupts associated with the die  
temperature monitor are set  
0 — PMIC junction temperature related interrupts cleared or did  
not occur  
1 — any of the PMIC junction temperature interrupts status bits  
are set  
MISC_INT  
7
R
0
This bit is set if interrupts not covered by the above mentioned  
categories occur  
0 — Other interrupts (not covered by categories above) cleared,  
or did not occur  
1 — Status bit of other interrupts (not covered by categories  
above) is set  
Table 90.ꢀRegister SW_INT_STAT0 - ADDR 0x08  
Name  
Bit  
R/W  
Default Description  
SW1_LS_I  
0
RW1C[1]  
0
SW1 low-side current limit interrupt status. This bit is set if the  
current limit fault persists for longer than the debounce time.  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
SW2_LS_I  
SW3_LS_I  
UNUSED  
1
2
RW1C  
RW1C  
0
SW2 low-side current limit interrupt status. This bit is set if the  
current limit fault persists for longer than the debounce time.  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
0
SW3 low-side current limit interrupt status. This bit is set if the  
current limit fault persists for longer than the debounce time.  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
7 to 3  
Unused  
[1] Read or Write 1 to clear the bit  
Table 91.ꢀRegister SW_INT_MASK0 - ADDR 0x09  
Name  
Bit  
R/W  
Default Description  
SW1_LS_M  
0
RW  
1
SW1 low-side current limit interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is NOT pulled low if corresponding  
interrupt status bit is set.  
SW2_LS_M  
1
RW  
1
SW2 low-side current limit interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is NOT pulled low if corresponding  
interrupt status bit is set.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
82 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
SW3_LS_M  
2
RW  
1
SW3 low-side current limit interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is NOT pulled low if corresponding  
interrupt status bit is set.  
UNUSED  
7 to 3  
Unused  
Table 92.ꢀRegister SW_INT_SENSE0 - ADDR 0x0A  
Name  
Bit  
R/W  
Default Description  
SW1_LS_S  
0
R
0
SW1 low-side current limit interrupt sense. Sense is high as long  
as fault persists (post-debounce).  
0 — Fault removed  
1 — Fault exists  
SW2_LS_S  
SW3_LS_S  
UNUSED  
1
2
R
R
0
SW2 low-side current limit interrupt sense. Sense is high as long  
as fault persists (post-debounce).  
0 — Fault removed  
1 — Fault exists  
0
SW3 low-side current limit interrupt sense. Sense is high as long  
as fault persists (post-debounce)  
0 — Fault removed  
1 — Fault exists  
7 to 3  
Unused  
Table 93.ꢀRegister SW_INT_STAT1 - ADDR 0x0B  
Name  
Bit  
R/W  
Default Description  
SW1_HS_I  
0
RW1C [1]  
0
SW1 high-side current limit interrupt  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
SW2_HS_I  
SW3_HS_I  
UNUSED  
1
2
RW1C  
RW1C  
0
SW2 high-side current limit interrupt  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
0
SW3 high-side current limit interrupt  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
7 to 3  
Unused  
[1] Read or Write 1 to clear the bit  
Table 94.ꢀRegister SW_INT_MASK1 - ADDR 0x0C  
Name  
Bit  
R/W  
Default Description  
SW1 high-side current limit interrupt mask  
SW1_HS_M  
0
RW  
1
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is NOT pulled low if corresponding  
interrupt status bit is set.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
83 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
SW2_HS_M  
1
RW  
1
SW2 high-side current limit interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is NOT pulled low if corresponding  
interrupt status bit is set.  
SW3_HS_M  
UNUSED  
2
RW  
1
SW3 high-side current limit interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is NOT pulled low if corresponding  
interrupt status bit is set.  
7 to 3  
Unused  
Table 95.ꢀRegister SW_INT_SENSE1 - ADDR 0x0D  
Name  
Bit  
R/W  
Default Description  
SW1_HS_S  
0
R
0
SW1 high-side current limit interrupt sense. This bit should not  
toggle within a switching cycle (at buck switching frequency), but  
report the sense status within the switching cycle.  
0 — Fault removed  
1 — Fault exists  
SW2_HS_S  
SW3_HS_S  
UNUSED  
1
2
R
R
0
SW2 high-side current limit interrupt sense. This bit should not  
toggle within a switching cycle (at buck switching frequency), but  
report the sense status within the switching cycle.  
0 — Fault removed  
1 — Fault exists  
0
SW3 high-side current limit interrupt sense. This bit should not  
toggle within a switching cycle (at buck switching frequency), but  
report the sense status within the switching cycle.  
0 — Fault removed  
1 — Fault exists  
7 to 3  
Unused  
Table 96.ꢀRegister SW_INT_STAT2 - ADDR 0x0E  
Name  
Bit  
R/W  
Default Description  
SW1_DVS_DONE_I  
0
RW1C[1]  
0
Interrupt to indicate SW1 DVS complete. This interrupt should  
occur every time regulator output voltage is changed (either via  
I2C within a given state, or if there is change in voltage when  
transitioning states, Run to Standby, for example).  
0 — DVS not complete and/or bit cleared  
1 — DVS complete  
SW2_DVS_DONE_I  
1
RW1C  
0
Interrupt to indicate SW2 DVS complete. This interrupt should  
occur every time regulator output voltage is changed (either via  
I2C within a given state, or if there is change in voltage when  
transitioning states, Run to Standby, for example).  
0 — DVS not complete and/or bit cleared  
1 — DVS complete  
UNUSED  
7 to 2  
Unused  
[1] Read or Write 1 to clear the bit  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
84 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 97.ꢀRegister SW_INT_MASK2 - ADDR 0x0F  
Name  
Bit  
R/W  
Default Description  
SW1_DVS_DONE_M  
0
RW  
1
1
Mask for interrupt that indicates SW1 DVS complete  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
SW2_DVS_DONE_M  
1
RW  
Mask for interrupt that indicates SW2 DVS complete  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
UNUSED  
7 to 2  
Unused  
Table 98.ꢀRegister SW_INT_SENSE2 - ADDR 0x10  
Name  
Bit  
R/W  
Default Description  
SW1_DVS_S  
0
R
0
Indicates DVS in progress for SW1  
0 — DVS not in progress  
1 — DVS in progress  
SW2_DVS_S  
UNUSED  
1
R
0
Indicates DVS in progress for SW2  
0 — DVS not in progress  
1 — DVS in progress  
7 to 2  
Unused  
Table 99.ꢀRegister LDO_INT_STAT0 - ADDR 0x18  
Name  
Bit  
R/W  
Default Description  
LDO1_FAULTI  
0
RW1C[1]  
0
LDO1 current limit interrupt  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
LDO2_FAULTI  
LDO3_FAULTI  
UNUSED  
1
2
RW1C  
RW1C  
0
LDO2 current limit interrupt  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
0
LDO3 current limit interrupt  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
7 to 3  
Unused  
[1] Read or Write 1 to clear the bit  
Table 100.ꢀRegister LDO_INT_MASK0 - ADDR 0x19  
Name  
Bit  
R/W  
Default Description  
LDO1 current limit fault interrupt mask  
LDO1_FAULTM  
0
RW  
1
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
85 / 150  
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
LDO2_FAULTM  
1
RW  
1
LDO2 current limit fault interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
LDO3_FAULTM  
UNUSED  
2
RW  
1
LDO3 current limit fault interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
7 to 3  
Unused  
Table 101.ꢀRegister LDO_INT_SENSE0 - ADDR 0x1A  
Name  
Bit  
R/W  
Default Description  
LDO1_FAULTS  
0
R
0
LDO1 fault interrupt sense  
0 — Fault removed  
1 — Fault exists  
LDO2_FAULTS  
LDO3_FAULTS  
UNUSED  
1
2
R
R
0
LDO2 fault interrupt sense  
0 — Fault removed  
1 — Fault exists  
0
LDO3 fault interrupt sense  
0 — Fault removed  
1 — Fault exists  
7 to 3  
Unused  
Table 102.ꢀRegister TEMP_INT_STAT0 - ADDR 0x20  
Name  
Bit  
R/W  
Default Description  
THERM110I  
0
RW1C[1]  
0
Die temperature crosses 110 °C interrupt. Bidirectional interrupt.  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
UNUSED  
1
2
0
Unused  
THERM125I  
RW1C  
Die temperature crosses 125 °C interrupt. Bidirectional interrupt.  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
UNUSED  
7 to 3  
Unused  
[1] Read or Write 1 to clear the bit  
Table 103.ꢀRegister TEMP_INT_MASK0 - ADDR 0x21  
Name  
Bit  
R/W  
Default Description  
THERM110M  
0
RW  
1
Die temperature crosses 110 °C interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is NOT pulled low if corresponding  
interrupt status bit is set.  
UNUSED  
1
Unused  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
86 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
THERM125M  
2
RW  
1
Die temperature crosses 125 °C interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
UNUSED  
7 to 3  
Unused  
Table 104.ꢀRegister TEMP_INT_SENSE0 - ADDR 0x22  
Name  
Bit  
R/W  
Default Description  
THERM110S  
0
R
0
110 °C interrupt sense  
0 — Die temperature below 110 °C  
1 — Die temperature above 110 °C  
UNUSED  
1
2
R
0
Unused  
THERM125S  
125 °C interrupt sense  
0 — Die temperature below 125 °C  
1 — Die temperature above 125 °C  
UNUSED  
7 to 3  
Unused  
Table 105.ꢀRegister ONKEY_INT_STAT0 - ADDR 0x24  
Name  
Bit  
R/W  
Default Description  
ONKEY_PUSHI  
0
RW1C [1]  
0
Interrupt to indicate a push of the ONKEY button. Goes high after  
debounce.  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared. Interrupt occurs  
whenever ONKEY button is pushed low for longer than the falling  
edge debounce setting.  
Interrupt also occurs whenever ONKEY button is released high  
for longer than the rising edge debounce setting, provided it went  
past the falling edge debounce time. In other words, this interrupt  
occurs whenever a change in status of the ONKEY_PUSHS  
sense bit occurs.  
ONKEY_1SI  
ONKEY_2SI  
ONKEY_3SI  
ONKEY_4SI  
ONKEY_8SI  
UNUSED  
1
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
0
0
Interrupt after ONKEY pressed for > 1 s  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
2
Interrupt after ONKEY pressed for > 2 s  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
3
4
0
Interrupt after ONKEY pressed for > 3 s  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
0
Interrupt after ONKEY pressed for > 4 s  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
5
0
Interrupt after ONKEY pressed for > 8 s  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
7 to 6  
Unused  
[1] Read or Write 1 to clear the bit  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
87 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 106.ꢀRegister ONKEY_INT_MASK0 - ADDR 0x25  
Name  
Bit  
R/W  
Default Description  
ONKEY_PUSHM  
0
RW  
1
Interrupt mask for ONKEY_PUSH_I  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
ONKEY_1SM  
ONKEY_2SM  
ONKEY_3SM  
ONKEY_4SM  
ONKEY_8SM  
UNUSED  
1
RW  
RW  
RW  
RW  
RW  
1
Interrupt mask for ONKEY_1SI  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
2
1
Interrupt mask for ONKEY_2SI  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is NOT pulled low if corresponding  
interrupt status bit is set.  
3
4
1
Interrupt mask for ONKEY_3SI  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
1
Interrupt mask for ONKEY_4SI  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
5
1
Interrupt mask for ONKEY_8SI  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
7 to 6  
Unused  
Table 107.ꢀRegister ONKEY_INT_SENSE0 - ADDR 0x26  
Name  
Bit  
R/W  
Default Description  
ONKEY_PUSHS  
0
R
0
Push interrupt sense  
0 — ONKEY not pushed low. This bit follows debounced version  
of the ONKEY button being released.  
1 — ONKEY pushed low. This follows the ONKEY button after the  
debounce circuit (debounce is programmable).  
ONKEY_1SS  
ONKEY_2SS  
1
2
R
R
0
1 s interrupt sense or cleared after ONKEY button is released  
0 — ONKEY not pushed low for >1 s or cleared after ONKEY  
button is released.  
1 — ONKEY pushed and being held low > 1 s. This bit is cleared  
when ONKEY_PUSHS goes back to 0 when the push-button is  
released.  
0
2 s interrupt sense or cleared after ONKEY button is released  
0 — ONKEY not pushed low for >1 s or cleared after ONKEY  
button is released.  
1 — ONKEY pushed and being held low > 1 s. This bit is cleared  
when ONKEY_PUSHS goes back to 0 when the push-button is  
released.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
88 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
ONKEY_3SS  
3
R
0
3 s interrupt sense or cleared after ONKEY button is released  
0 — ONKEY not pushed low for >1 s or cleared after ONKEY  
button is released  
1 — ONKEY pushed and being held low > 1 s. This bit is cleared  
when ONKEY_PUSHS goes back to 0 when the push-button is  
released.  
ONKEY_4SS  
ONKEY_8SS  
UNUSED  
4
5
R
R
0
4 s interrupt sense or cleared after ONKEY button is released  
0 — ONKEY not pushed low for >1 s or cleared after ONKEY  
button is released.  
1 — ONKEY pushed and being held low > 1 s. This bit is cleared  
when ONKEY_PUSHS goes back to 0 when the push-button is  
released.  
0
8 s interrupt sense or cleared after ONKEY button is released  
0 — ONKEY not pushed low for >1 s or cleared after ONKEY  
button is released.  
1 — ONKEY pushed and being held low > 1 s. This bit is cleared  
when ONKEY_PUSHS goes back to 0 when the push-button is  
released.  
7 to 6  
Unused  
Table 108.ꢀRegister MISC_INT_STAT0 - ADDR 0x28  
Name  
Bit  
R/W  
Default Description  
PWRUP_I  
0
RW1C[1]  
0
Interrupt to indicate completion of transition from STANDBY to  
RUN and from SLEEP to RUN  
0 — Interrupt cleared or has not occurred  
1 — Interrupt has occurred  
PWRDN_I  
1
RW1C  
0
Interrupt to indicate completion of transition from RUN to  
STANDBY and from RUN to SLEEP  
0 — Interrupt cleared or has not occurred  
1 — Interrupt has occurred  
PWRON_I  
2
3
RW1C  
RW1C  
RW1C  
0
0
Power on button event interrupt  
0 — Interrupt cleared or has not occurred  
1 — Interrupt has occurred  
LOW_SYS_WARN_I  
SYS_OVLO_I  
UNUSED  
LOW_SYS_WARN threshold crossed interrupt  
0 — Interrupt cleared or has not occurred  
1 — Interrupt has occurred  
4
0
SYS_OVLO threshold crossed interrupt  
0 — Interrupt cleared or has not occurred  
1 — Interrupt has occurred  
7 to 5  
Unused  
[1] Read or Write 1 to clear the bit  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
89 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 109.ꢀRegister MISC_INT_MASK0- ADDR 0x29  
Name  
Bit  
R/W  
Default Description  
PWRUP_M  
0
RW[1]  
1
Mask for Interrupt to indicate completion on transition from  
STANDBY to RUN and from SLEEP to RUN  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
PWRDN_M  
1
RW  
1
Mask for Interrupt to indicate completion on transition from RUN  
to STANDBY and from RUN to SLEEP  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
PWRON_M  
2
3
RW  
RW  
RW  
1
1
Power on button event interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
LOW_SYS_WARN_M  
SYS_OVLO_M  
UNUSED  
LOW_SYS_WARN threshold crossed interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
4
1
SYS_OVLO threshold crossed interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
7 to 5  
Unused  
[1] Asynchronous Set, Read, and Write  
Table 110.ꢀRegister MISC_INT_SENSE0 - ADDR 0x2A  
Name  
Bit  
R/W  
Default Description  
PWRUP_S  
0
R
0
Sense for interrupt to indicate completion on transition from  
STANDBY to RUN and from SLEEP to RUN  
0 — Transition not in progress  
1 — Transition in progress  
PWRDN_S  
1
R
0
Interrupt to indicate completion on transition from RUN to  
STANDBY and from RUN to SLEEP  
0 — Transition not in progress  
1 — Transition in progress  
PWRON_S  
2
3
R
R
0
0
Power on button event interrupt sense  
0 — PWRON low  
1 — PWRON high  
LOW_SYS_WARN_S  
SYS_OVLO_S  
UNUSED  
LOW_SYS_WARN threshold crossed interrupt sense  
0 — SYS > LOW_SYS_WARN  
1 — SYS < LOW_SYS_WARN  
4
R
0
SYS_OVLO threshold crossed interrupt sense  
0 — SYS < SYS_OVLO  
1 — SYS > SYS_OVLO  
7 to 5  
Unused  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
90 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 111.ꢀRegister COINCELL_CONTROL - ADDR 0x30  
Name  
Bit  
R/W  
Default Description  
VCOIN  
3 to 0  
RW  
0000  
Coin cell charger charging voltage  
0000 — 1.8 V  
0111 — 3.3 V (goes up in 100 mV step per LSB)  
COINCHEN  
UNUSED  
4
RW  
0
Coin cell charger enable  
0 — Charger disabled  
1 — Charger enabled  
7 to 5  
Unused  
Table 112.ꢀRegister SW1_VOLT - ADDR 0x32  
Name  
Bit  
R/W  
Default Description  
SW1_VOLT  
5 to 0  
RW1S[1]  
SW1 voltage setting register (Run mode)  
000000 — See Table 31 for voltage settings  
111111 — See Table 31 for voltage settings  
Reset condition — POR  
UNUSED  
7 to 5  
Unused  
[1] Load from OTP fuse, Read, and Write  
Table 113.ꢀRegister SW1_STBY_VOLT - ADDR 0x33  
Name  
Bit  
R/W  
Default Description  
SW1_STBY_VOLT  
5 to 0  
RW1S[1]  
SW1 output voltage setting register (Standby mode). The default  
value here should be identical to SW1_VOLT[5:0] register.  
000000 — See Table 31 for voltage settings  
111111 — See Table 31 for voltage settings  
UNUSED  
7 to 6  
Unused  
[1] Load from OTP fuse, Read, and Write  
Table 114.ꢀRegister SW1_SLP_VOLT - ADDR 0x34  
Name  
Bit  
R/W  
Default Description  
SW1_SLP_VOLT  
5 to 0  
RW1S[1]  
SW1 output voltage setting register (Sleep mode). The default  
value here should be identical to SW1_VOLT[5:0] register.  
000000 — See Table 31 for voltage settings  
111111 — See Table 31 for voltage settings  
UNUSED  
7 to 6  
Unused  
[1] Load from OTP fuse, Read, and Write  
Table 115.ꢀRegister SW1_CTRL - ADDR 0x35  
Name  
Bit  
R/W  
Default Description  
Enables buck regulator. Loaded from OTP based on the  
SW1_EN  
0
RW1S[1]  
0
sequence settings. User can turn off regulator by clearing this bit.  
0 — Regulator disabled in Run mode  
1 — Regulator enabled in Run mode  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
91 / 150  
 
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
SW1_STBY_EN  
1
RW1S  
0
Enables buck regulator in Standby mode. User can turn off  
regulator by clearing this bit. The default value of this bit should  
be equal to the SW1_EN bit (based on OTP).  
0 — Regulator disabled in Standby mode  
1 — Regulator enabled in Standby mode  
SW1_OMODE  
SW1_LPWR  
2
3
RW[2]  
0
0
Enables buck regulator in Sleep mode. User can turn off regulator  
by clearing this bit.  
0 — Regulator disabled in Sleep mode  
1 — Regulator enabled in Sleep mode  
RW  
Enables the buck to enter Low-power mode during Standby and  
Sleep  
0 — Regulator not in Low-power mode  
1 — Regulator in Low-power mode during Standby or Sleep  
modes  
SW1_DVSSPEED  
4
5
RW1S  
RW  
0
0
Controls slew rate of DVS transitions. Loaded from OTP and  
changeable by user after boot up. Not used when OTP_SW1_  
DVS_SEL = 1.  
0 — DVS rate at 12.5 mV/2 μs  
1 — DVS rate at 12.5 mV/4 μs  
SW1_FPWM_IN_DVS  
Enables CCM operation during DVS down  
0 — does not force FPWM during DVS  
1 — forces regulator to track the DVS reference while it is falling  
rather than relying on the load current to pull the voltage low  
SW1_FPWM  
6
7
RW  
0
0
Forces buck to go into CCM mode  
0 — Not in FPWM mode  
1 — Forced in PWM mode irrespective of load current  
SW1_RDIS_ENB  
RW1S  
Controls discharge resistor on output when regulator disabled  
0 — Enables discharge resistor on output when regulator  
disabled. Resistor connected at FB pin when regulator disabled to  
force capacitor discharge.  
1 — Disables discharge resistor on output when regulator  
disabled. Resistor not connected at FB pin when regulator  
disabled. Relies on leakage/residue load to discharge output  
capacitor.  
[1] Load from OTP fuse, Read, and Write  
[2] Asynchronous Set, Read, and Write  
Table 116.ꢀRegister SW1_SLP_VOLT - ADDR 0x36  
Name  
Bit  
R/W  
Default Description  
SW1_ILIM  
1 to 0  
RW1S[1]  
00  
Sets current limit of SW1 regulator  
00 — Typical current limit of 1.0 A  
01 — Typical current limit of 1.2 A  
10 — Typical current limit of 1.5 A  
11 — Typical current limit of 2.0 A  
UNUSED  
3 to 2  
4
0
Unused  
SW1_TMODE_SEL  
RW  
0 — TON control  
1 — TOFF control  
UNUSED  
7 to 5  
Unused  
[1] Load from OTP fuse, Read, and Write  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
92 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 117.ꢀRegister SW2_VOLT - ADDR 0x38  
Name  
Bit  
R/W  
Default Description  
SW2_VOLT  
5 to 0  
RW1S[1]  
SW2 voltage setting register (Run mode)  
000000 —See Table 31 for voltage settings  
111111 — See Table 31 for voltage settings  
UNUSED  
7 to 6  
Unused  
[1] Load from OTP fuse, Read, and Write  
Table 118.ꢀRegister SW2_STBY_VOLT - ADDR 0x39  
Name  
Bit  
R/W  
Default Description  
SW2_STBY_VOLT  
5 to 0  
RW1S[1]  
SW2 output voltage setting register (Standby mode). The default  
value here should be identical to SW2_VOLT[5:0] register.  
000000 — See Table 31 for voltage settings  
111111 — See Table 31 for voltage settings  
UNUSED  
7 to 6  
Unused  
[1] Load from OTP fuse, Read, and Write  
Table 119.ꢀRegister SW2_SLP_VOLT - ADDR 0x3A  
Name  
Bit  
R/W  
Default Description  
SW2_SLP_VOLT  
5 to 0  
RW1S[1]  
SW2 output voltage setting register (Sleep mode). The default  
value here should be identical to SW2_VOLT[5:0] register.  
000000 — See Table 31 for voltage settings  
111111 — See Table 31 for voltage settings  
UNUSED  
7 to 6  
Unused  
[1] Load from OTP fuse, Read, and Write  
Table 120.ꢀRegister SW2_CTRL - ADDR 0x3B  
Name  
Bit  
R/W  
Default Description  
SW2_EN  
0
RW1S[1]  
0
Enables buck regulator. Loaded from OTP based on the  
sequence settings. User can turn off regulator by clearing this bit.  
0 — Regulator disabled in Run mode  
1 — Regulator enabled in Run mode  
SW2_STBY_EN  
1
RW1S  
0
Enables buck regulator in Standby mode. User can turn off  
regulator by clearing this bit. The default value of this bit should  
be equal to the SW1_EN bit (based on OTP).  
0 — Regulator disabled in Standby mode  
1 — Regulator enabled in Standby mode  
SW2_OMODE  
SW2_LPWR  
2
3
RW  
RW  
0
0
Enables buck regulator in Sleep mode. User can turn off regulator  
by clearing this bit.  
0 — Regulator disabled in Sleep mode  
1 — Regulator enabled in Sleep mode  
Enables the buck to enter Low-power mode during Standby and  
Sleep modes  
0 — Regulator not in Low-power mode  
1 — Regulator in Low-power mode during Standby or Sleep  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
93 / 150  
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
SW2_DVSSPEED  
4
RW1S  
0
Controls slew rate of DVS transitions. Loaded from OTP and  
changeable by user after boot up. Not used when OTP_SW2_  
DVS_SEL = 1.  
0 — DVS rate at 12.5 mV/2 μs  
1 — DVS rate at 12.5 mV/4 μs  
SW2_FPWM_IN_DVS  
5
RW  
0
Enables CCM operation during DVS down  
0 — does not force FPWM during DVS  
1 — forces regulator to track the DVS reference while it is falling  
rather than relying on the load current to pull the voltage low  
SW2_FPWM  
6
7
RW  
0
0
Forces buck to go into CCM mode  
0 — Not in FPWM mode  
1 — Forced in PWM mode irrespective of load current.  
SW2_RDIS_ENB  
RW1S  
Controls discharge resistor on output when regulator disabled  
0 — Enables discharge resistor on output when regulator  
disabled. Resistor connected at FB pin when regulator disabled to  
force capacitor discharge.  
1 — Disables discharge resistor on output when regulator  
disabled. Resistor not connected at FB pin when regulator  
disabled. Relies on leakage/residue load to discharge output  
capacitor.  
[1] Load from OTP fuse, Read, and Write  
Table 121.ꢀRegister SW2_CTRL1 - ADDR 0x3C  
Name  
Bit  
R/W  
Default Description  
SW2_ILIM  
1 to 0  
RW1S  
00  
Sets current limit of SW2 regulator  
00 — Typical current limit of 1.0 A  
01 — Typical current limit of 1.2 A  
10 — Typical current limit of 1.5 A  
11 — Typical current limit of 2.0 A  
UNUSED  
3 to 2  
4
0
Unused  
SW2_TMODE_SEL  
RW  
0 — TON control  
1 — TOFF control  
UNUSED  
7 to 5  
Unused  
Table 122.ꢀRegister SW3_VOLT - ADDR 0x3E  
Name  
Bit  
R/W  
Default Description  
SW3_VOLT  
3 to 0  
RW1S  
SW3 voltage setting register (Run mode). Loaded from fuses.  
Read only because DVS is not supported in this regulator.  
0000 — See Table 37 for voltage settings  
1111 — See Table 37 for voltage settings  
UNUSED  
7 to 4  
Unused  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
94 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 123.ꢀRegister SW3_STBY_VOLT - ADDR 0x3F  
Name  
Bit  
R/W  
Default Description  
SW3_STBY_VOLT  
3 to 0  
RW1S  
SW3 voltage setting register (Standby mode). Loaded from fuses.  
Read only because DVS is not supported in this regulator.  
0000 — See Table 37 for voltage settings  
1111 —See Table 37 for voltage settings  
UNUSED  
7 to 4  
Unused  
Table 124.ꢀRegister SW3_SLP_VOLT - ADDR 0x40  
Name  
Bit  
R/W  
Default Description  
SW3_SLP_VOLT  
3 to 0  
RW1S  
SW3 voltage setting register (Sleep mode). Loaded from fuses.  
Read only because DVS is not supported in this regulator.  
0000 — See Table 37 for voltage settings  
1111 — See Table 37 for voltage settings  
UNUSED  
7 to 4  
Unused  
Table 125.ꢀRegister SW3_CTRL - ADDR 0x41  
Name  
Bit  
R/W  
Default Description  
SW3_EN  
0
RW1S  
0
Enables buck regulator. Loaded from OTP based on the  
sequence settings. User can turn off regulator by clearing this bit.  
0 — Regulator disabled in Run mode  
1 — Regulator enabled in Run mode  
SW3_STBY_EN  
1
RW1S  
0
Enables buck regulator in Standby mode. User can turn off  
regulator by clearing this bit. The default value of this bit should  
be equal to the SW1_EN bit (based on OTP).  
0 — Regulator disabled in Standby mode  
1 — Regulator enabled in Standby mode  
SW3_OMODE  
SW3_LPWR  
2
3
RW  
RW  
0
0
Enables buck regulator in Sleep mode. User can turn off regulator  
by clearing this bit.  
0 — Regulator disabled in Sleep mode  
1 — Regulator enabled in Sleep mode  
Enables the buck to enter Low-power mode during Standby and  
Sleep modes  
0 — Regulator not in Low-power mode  
1 — Regulator in Low-power mode while in Standby or Sleep  
UNUSED  
4
5
6
0
Unused  
Unused  
UNUSED  
SW3_FPWM  
RW  
Forces buck to go into CCM mode  
0 — Not in FPWM mode  
1 — Forced in PWM mode irrespective of load current  
SW3_RDIS_ENB  
7
RW1S  
0
Controls discharge resistor on output when regulator disabled  
0 — Enables discharge resistor on output when regulator  
disabled. Resistor connected at FB pin when regulator disabled to  
force capacitor discharge.  
1 — Disables discharge resistor on output when regulator  
disabled. Resistor not connected at FB pin when regulator  
disabled. Relies on leakage/residue load to discharge output  
capacitor.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
95 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 126.ꢀRegister SW3_CTRL1 - ADDR 0x42  
Name  
Bit  
R/W  
Default Description  
SW3_ILIM  
1 to 0  
RW1S  
00  
Sets current limit of SW3 regulator  
00 — Typical current limit of 1.0 A  
01 — Typical current limit of 1.2 A  
10 — Typical current limit of 1.5 A  
11 — Typical current limit of 2.0 A  
UNUSED  
3 to 2  
4
0
Unused  
SW3_TMODE_SEL  
RW  
0 — TON control  
1 — TOFF control  
UNUSED  
7 to 5  
Unused  
Table 127.ꢀRegister VSNVS_CTRL - ADDR 0x48  
Name  
Bit  
2 to 0  
3
R/W  
RW1S  
RW  
Default Description  
VSNVS_VOLT  
CLKPULSE  
FORCEBOS  
000  
0
Not used in PF1550. Placeholder for future products.  
Optional bit used for evaluation (see IP block)  
4
RW  
0
Optional bit for evaluation  
0 — BOS circuit activated only when VSYS < UVDET  
1 — Forces best of supply circuit irrespective of UVDET  
LIBGDIS  
UNUSED  
5
RW  
0
Use to reduce quiescent current in coin cell mode  
0 — VSNVS local band gap enabled in coin cell mode  
1 — VSNVS local band gap disabled in coin cell mode to save  
quiescent current  
7 to 6  
Unused  
Table 128.ꢀRegister VREFDDR_CTRL - ADDR 0x4A  
Name  
Bit  
R/W  
Default Description  
VREFDDR_EN  
0
RW1S  
0
0 — Disables VREFDDR regulator  
1 — Enables VREFDDR regulator. This is set by the OTP  
sequence.  
VREFDDR_STBY_EN  
1
RW1S  
0
The default value for this should be same as VREFDDREN  
0 — Disables VREFDDR regulator in Standby mode  
1 — Enables VREFDDR regulator in Standby mode if  
VREFDDREN = 1  
VREFDDR_OMODE  
VREFDDR_LPWR  
UNUSED  
2
3
RW  
RW  
0
0
0 — Keeps VREFDDR off in Off mode  
1 — Enables VREFDDR in Sleep mode if VREFDDREN = 1  
0 — Disables VREFDDR Low-power mode  
1 — Enables VREFDDR Low-power mode  
7 to 4  
Unused  
Table 129.ꢀRegister LDO1_VOLT - ADDR 0x4C  
Name  
Bit  
R/W  
Default Description  
LDO1 output voltage setting register. Loaded from OTP.  
LDO1_VOLT  
4 to 0  
RW1S  
00000 — See Table 41 for voltage settings  
11111 — See Table 41 for voltage settings  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
96 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
Unused  
UNUSED  
7 to 5  
Table 130.ꢀRegister LDO1_CTRL - ADDR 0x4D  
Name  
Bit  
R/W  
Default Description  
VLDO1_EN  
0
RW1S  
0
Enables LDO regulator. Loaded from OTP based on the  
sequence settings. User can turn off regulator by clearing this bit.  
0 — Disables regulator  
1 — Enables regulator  
VLDO1_STBY_EN  
1
RW1S  
0
Enables LDO in Standby mode. Default value of this bit should be  
same as VLDO1_EN.  
0 — Disables regulator  
1 — Enables regulator  
VLDO1_OMODE  
VLDO1_LPWR  
LDO1_LS_EN  
2
3
4
RW  
RW  
0
0
0
Enables LDO in Sleep mode  
0 — Disables regulator  
1 — Enables regulator  
Forces LDO to Low-power mode in Sleep and Standby modes  
0 — Not in Low-power mode during Standby and Sleep  
1 — Regulator in Low-power mode during Standby and Sleep  
RW1S  
This is loaded from OTP_LDOy_LS_EN and changeable from 0  
to 1 on power-up. Changing from 1 to 0 is not allowed.  
0 — Sets LDOy in LDO mode  
1 — Sets LDOy to a load switch (fully on) mode  
UNUSED  
7 to 5  
Unused  
Table 131.ꢀRegister LDO2_VOLT - ADDR 0x4F  
Name  
Bit  
R/W  
Default Description  
LDO2_VOLT  
3 to 0  
RW1S  
LDO2 output voltage setting register. Loaded from OTP.  
0000 — See Table 43 for voltage settings  
1111 — See Table 43 for voltage settings  
UNUSED  
7 to 4  
Unused  
Table 132.ꢀRegister LDO2_CTRL - ADDR 0x50  
Name  
Bit  
R/W  
Default Description  
VLDO2_EN  
0
RW1S  
0
0
0
Enables LDO regulator. Loaded from OTP based on the  
sequence settings. User can turn off regulator by clearing this bit.  
0 — Disables regulator  
1 — Enables regulator  
VLDO2_STBY_EN  
VLDO2_OMODE  
1
2
RW1S  
RW  
Enables LDO in Standby mode. Default value of this bit should be  
same as VLDO1_EN.  
0 — Disables regulator  
1 — Enables regulator  
Enables LDO in Sleep mode  
0 — Disables regulator  
1 — Enables regulator  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
97 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
VLDO2_LPWR  
3
RW  
0
Forces LDO to Low-power mode in Sleep and Standby modes  
0 — Not in Low-power mode during Standby and Sleep  
1 — Regulator in Low-power mode during Standby and Sleep  
UNUSED  
7 to 4  
Unused  
Table 133.ꢀRegister LDO3_VOLT - ADDR 0x52  
Name  
Bit  
R/W  
Default Description  
LDO3_VOLT  
4 to 0  
RW1S  
LDO3 output voltage setting register. Loaded from OTP.  
00000 — See Table 41 for voltage settings  
11111 — See Table 41 for voltage settings  
UNUSED  
7 to 5  
Unused  
Table 134.ꢀRegister LDO3_CTRL - ADDR 0x53  
Name  
Bit  
R/W  
Default Description  
VLDO3_EN  
0
RW1S  
0
Enables LDO regulator. Loaded from OTP based on the  
sequence settings. User can turn off regulator by clearing this bit.  
0 — Disables regulator  
1 — Enables regulator  
VLDO3_STBY_EN  
1
RW1S  
0
Enables LDO in Standby mode. Default value of this bit should be  
same as VLDO1_EN.  
0 — Disables regulator  
1 — Enables regulator  
VLDO3_OMODE  
VLDO3_LPWR  
LDO3_LS_EN  
2
3
4
RW  
RW  
0
0
0
Enables LDO in Sleep mode  
0 — Disables regulator  
1 — Enables regulator  
Forces LDO to Low-power mode in Sleep and Standby modes  
0 — Not in Low-power mode during Standby and Sleep  
1 — Regulator in Low-power mode during Standby and Sleep  
RW1S  
This is loaded from OTP_LDOy_LS_EN and changeable from 0  
to 1 on power up. Changing from 1 to 0 is not allowed.  
0 — sets LDOy in LDO mode  
1 — sets LDOy to a load switch (fully on) mode  
UNUSED  
7 to 5  
Unused  
Table 135.ꢀRegister PWRCTRL0 - ADDR 0x58  
Name  
Bit  
R/W  
Default Description  
01 Controls delay of Standby pin after synchronization  
STANDBYDLY  
1 to 0  
RW  
0 — No additional delay  
1 — 32 kHz cycle additional delay  
2 — 32 kHz cycle additional delay  
3 — 32 kHz cycle additional delay  
STANDBYINV  
2
RW  
0
Controls polarity of STANDBY pin  
0 — Standby pin input active high  
1 — Standby pin input active low  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
98 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
000 Controls delay of RESETBMCU pin after power up (loaded from  
POR_DLY  
5 to 3  
RW1S  
OTP)  
000 — RESETBMCU goes high 2 ms after last regulator  
010 — RESETBMCU goes high 4 ms after last regulator  
011 — RESETBMCU goes high 8 ms after last regulator  
100 — RESETBMCU goes high 16 ms after last regulator  
101 — RESETBMCU goes high 128 ms after last regulator  
110 — RESETBMCU goes high 256 ms after last regulator  
111 — RESETBMCU goes high 1024 ms after last regulator  
TGRESET  
7 to 6  
RW1S  
00  
Controls duration for which ONKEY has to be pushed low for a  
global reset (part goes to REGS_DISABLE)  
00 — 4 s  
01 — 8 s  
10 — 12 s  
11 — 16 s  
Table 136.ꢀRegister PWRCTRL1 - ADDR 0x59  
Name  
Bit  
R/W  
Default Description  
PWRONDBNC  
1 to 0  
RW  
00  
Controls debounce of PWRON when in push-button mode  
(PWRON_CFG = 1)  
00 — 31.25 ms falling edge; 31.25 ms rising edge  
01 — 31.25 ms falling edge; 31.25 ms rising edge  
10 — 125 ms falling edge; 31.25 ms rising edge  
11 — 750 ms falling edge; 31.25 ms rising edge  
ONKEYDBNC  
3 to 2  
RW  
RW  
00  
Controls debounce of ONKEY push-button  
00 — 31.25 ms falling edge; 31.25 ms rising edge  
01 — 31.25 ms falling edge; 31.25 ms rising edge  
10 — 125 ms falling edge; 31.25 ms rising edge  
11 — 750 ms falling edge; 31.25 ms rising edge  
PWRONRSTEN  
4
0
Enables going to REGS_DISABLE or Sleep mode when  
PWRON_CFG = 1. See Section 10 "PF1550 state machine" for  
details.  
0 — Long press on PWRON button does not take state to  
REGS_DISABLE or Sleep  
1 — Long press on PWRON button takes state to  
REGS_DISABLE or Sleep  
RESTARTEN  
5
RW  
0
Enables restart of system when PWRON push-button is held low  
for 5 s  
0 — No impact  
1 — When going to REGS_DISABLE via a long press of PWRON  
button, holding it low for 1 more second takes state back to RUN  
(Equally, a 5 second push restarts the system)  
REGSCPEN  
6
7
RW  
RW  
0
1
Shuts down LDO if it enters a current limit fault. Controls LDO1,  
LDO2, and LDO3.  
0 — LDO does not shut down in the event of a current limit fault.  
Continues to current limit  
1 — LDO is turned off when it encounters a current limit fault  
ONKEY_RST_EN  
Enables turning off of system via ONKEY. See Section 10  
"PF1550 state machine" for details.  
0 — ONKEY cannot be used to turn off or restart system  
1 — ONKEY can be used to turn off or restart system  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
99 / 150  
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 137.ꢀRegister PWRCTRL2 - ADDR 0x5A  
Name  
Bit  
R/W  
Default Description  
UVDET  
1 to 0  
RW1S  
00  
00  
Sets UVDET threshold  
00 — Rising 2.65 V; Falling 2.55 V  
01 — Rising 2.8 V; Falling 2.7 V  
10 — Rising 3.0 V; Falling 2.9 V  
11 — Rising 3.1 V; Falling 3.0 V  
LOW_SYS_WARN  
3 to 2  
7 to 4  
RW  
Sets LOW_SYS_WARN threshold  
00 — Rising 3.3 V; Falling 3.1 V  
01 — Rising 3.5 V; Falling 3.3 V  
10 — Rising 3.7 V; Falling 3.5 V  
11 — Rising 3.9 V; Falling 3.7 V  
UNUSED  
Unused  
Table 138.ꢀRegister PWRCTRL3 - ADDR 0x5B  
Name  
Bit  
R/W  
Default Description  
GOTO_SHIP  
0
RW  
0
Set this bit to go to SHIP mode from any state. See Section 10  
"PF1550 state machine" for details.  
0 — No impact  
1 — PF1550 enters SHIP mode  
GOTO_CORE_OFF  
UNUSED  
1
RW  
0
Set this bit to go to CORE_OFF mode once in REGS_DISABLE  
state  
0 — No impact  
1 — PF1550 enters CORE_OFF mode when in REGS_DISABLE  
state  
7 to 2  
Unused  
Table 139.ꢀRegister SW1_PWRDN_SEQ - ADDR 0x5F  
Name  
Bit  
R/W  
Default Description  
SW1_PWRDN_SEQ  
2 to 0  
RW1S  
000 This contains same value as power-up sequence value by  
default. Power-up sequence is in mirror registers.  
xxx = The power-down sequencer performs the function opposite  
to the power-up sequencer. Each regulator has an associated  
register setting (SW1_PWRDN_SEQ[2:0], SW2_PWRDN_  
SEQ[2:0], SW3_PWRDN_SEQ[2:0], LDO1_PWRDN_SEQ[2:0],  
LDO2_PWRDN_SEQ[2:0], LDO3_PWRDN_SEQ[2:0].  
VREFDDR_PWRDN_SEQ[2:0]) that sets its power-down  
sequence. The default setting of the above registers is equal  
to the corresponding power-up sequence setting. For example,  
SW1_PWRDN_SEQ[2:0] = OTP_SW1_PWRUP_SEQ[2:0].  
When the power-down sequencer is activated, regulators are  
turned off one by one in the descending order of the XXX_  
PWRDN_SEQ[2:0] setting. This way, by default, power-down  
is a mirror of the power-up sequence. In one of the "System  
On" states, the processor can change the values of the XXX_  
PWRDN_SEQ[2:0] registers. The power-up sequence is fixed by  
OTP (or TBB). If all XXX_PWRDN_SEQ[2:0] = 0x00, the power-  
down sequencer is bypassed and all the regulators are turned off  
at once.  
UNUSED  
7 to 3  
Unused  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
100 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 140.ꢀRegister SW2_PWRDN_SEQ - ADDR 0x60  
Name  
Bit  
R/W  
Default Description  
SW2_PWRDN_SEQ  
2 to 0  
RW1S  
000 This contains same value as power-up sequence value by  
default. Power-up sequence is in mirror registers.  
xxx = The power-down sequencer performs the function opposite  
to the power-up sequencer. Each regulator has an associated  
register setting (SW1_PWRDN_SEQ[2:0], SW2_PWRDN_  
SEQ[2:0], SW3_PWRDN_SEQ[2:0], LDO1_PWRDN_SEQ[2:0],  
LDO2_PWRDN_SEQ[2:0], LDO3_PWRDN_SEQ[2:0].  
VREFDDR_PWRDN_SEQ[2:0]) that sets its power-down  
sequence. The default setting of the above registers is equal  
to the corresponding power-up sequence setting. For example,  
SW1_PWRDN_SEQ[2:0] = OTP_SW1_PWRUP_SEQ[2:0].  
When the power-down sequencer is activated, regulators are  
turned off one by one in the descending order of the XXX_  
PWRDN_SEQ[2:0] setting. This way, by default, power-down  
is a mirror of the power-up sequence. In one of the "System  
On" states, the processor can change the values of the XXX_  
PWRDN_SEQ[2:0] registers. The power-up sequence is fixed by  
OTP (or TBB). If all XXX_PWRDN_SEQ[2:0] = 0x00, the power-  
down sequencer is bypassed and all the regulators are turned off  
at once.  
UNUSED  
7 to 3  
Unused  
Table 141.ꢀRegister SW2_PWRDN_SEQ - ADDR 0x61  
Name  
Bit  
R/W  
Default Description  
SW3_PWRDN_SEQ  
2 to 0  
RW1S  
000 This contains same value as power-up sequence value by  
default. Power-up sequence is in mirror registers.  
xxx = The power-down sequencer performs the function opposite  
to the power-up sequencer. Each regulator has an associated  
register setting (SW1_PWRDN_SEQ[2:0], SW2_PWRDN_  
SEQ[2:0], SW3_PWRDN_SEQ[2:0], LDO1_PWRDN_SEQ[2:0],  
LDO2_PWRDN_SEQ[2:0], LDO3_PWRDN_SEQ[2:0].  
VREFDDR_PWRDN_SEQ[2:0]) that sets its power-down  
sequence. The default setting of the above registers is equal  
to the corresponding power-up sequence setting. For example,  
SW1_PWRDN_SEQ[2:0] = OTP_SW1_PWRUP_SEQ[2:0].  
When the power-down sequencer is activated, regulators are  
turned off one by one in the descending order of the XXX_  
PWRDN_SEQ[2:0] setting. This way, by default, power-down  
is a mirror of the power-up sequence. In one of the "System  
On" states, the processor can change the values of the XXX_  
PWRDN_SEQ[2:0] registers. The power-up sequence is fixed by  
OTP (or TBB). If all XXX_PWRDN_SEQ[2:0] = 0x00, the power-  
down sequencer is bypassed and all the regulators are turned off  
at once.  
UNUSED  
7 to 3  
Unused  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
101 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 142.ꢀRegister LDO1_PWRDN_SEQ - ADDR 0x62  
Name  
Bit  
R/W  
Default Description  
LDO1_PWRDN_SEQ  
2 to 0  
RW1S  
000 This contains same value as power-up sequence value by  
default. Power-up sequence is in mirror registers.  
xxx = The power-down sequencer performs the function opposite  
to the power-up sequencer. Each regulator has an associated  
register setting (SW1_PWRDN_SEQ[2:0], SW2_PWRDN_  
SEQ[2:0], SW3_PWRDN_SEQ[2:0], LDO1_PWRDN_SEQ[2:0],  
LDO2_PWRDN_SEQ[2:0], LDO3_PWRDN_SEQ[2:0].  
VREFDDR_PWRDN_SEQ[2:0]) that sets its power-down  
sequence. The default setting of the above registers is equal  
to the corresponding power-up sequence setting. For example,  
SW1_PWRDN_SEQ[2:0] = OTP_SW1_PWRUP_SEQ[2:0].  
When the power-down sequencer is activated, regulators are  
turned off one by one in the descending order of the XXX_  
PWRDN_SEQ[2:0] setting. This way, by default, power-down  
is a mirror of the power-up sequence. In one of the "System  
On" states, the processor can change the values of the XXX_  
PWRDN_SEQ[2:0] registers. The power-up sequence is fixed by  
OTP (or TBB). If all XXX_PWRDN_SEQ[2:0] = 0x00, the power-  
down sequencer is bypassed and all the regulators are turned off  
at once.  
UNUSED  
7 to 3  
Unused  
Table 143.ꢀRegister LDO2_PWRDN_SEQ - ADDR 0x63  
Name  
Bit  
R/W  
Default Description  
LDO2_PWRDN_SEQ  
2 to 0  
RW1S  
000  
This contains same value as power-up sequence value by  
default. Power-up sequence is in mirror registers.  
xxx = The power-down sequencer performs the functional  
opposite to the power-up sequencer. Each regulator has an  
associated register setting (SW1_PWRDN_SEQ[2:0], SW2_  
PWRDN_SEQ[2:0], SW3_PWRDN_SEQ[2:0], LDO1_PWRDN_  
SEQ[2:0], LDO2_PWRDN_SEQ[2:0], LDO3_PWRDN_SEQ[2:0].  
VREFDDR_PWRDN_SEQ[2:0]) that sets its power-down  
sequence. The default setting of the above registers is equal  
to the corresponding power-up sequence setting. For example,  
SW1_PWRDN_SEQ[2:0] = OTP_SW1_PWRUP_SEQ[2:0].  
When the power-down sequencer is activated, regulators are  
turned off one by one in the descending order of the XXX_  
PWRDN_SEQ[2:0] setting. This way, by default, power-down  
is a mirror of the power-up sequence. In one of the "System  
On" states, the processor can change the values of the XXX_  
PWRDN_SEQ[2:0] registers. The power-up sequence is fixed by  
OTP (or TBB). If all XXX_PWRDN_SEQ[2:0] = 0x00, the power-  
down sequencer is bypassed and all the regulators are turned off  
at once.  
UNUSED  
7 to 3  
Unused  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
102 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 144.ꢀRegister LDO3_PWRDN_SEQ - ADDR 0x64  
Name  
Bit  
R/W  
Default Description  
LDO3_PWRDN_SEQ  
2 to 0  
RW1S  
000 This contains same value as power-up sequence value by  
default. Power-up sequence is in mirror registers.  
xxx = The power-down sequencer performs the function opposite  
to the power-up sequencer. Each regulator has an associated  
register setting (SW1_PWRDN_SEQ[2:0], SW2_PWRDN_  
SEQ[2:0], SW3_PWRDN_SEQ[2:0], LDO1_PWRDN_SEQ[2:0],  
LDO2_PWRDN_SEQ[2:0], LDO3_PWRDN_SEQ[2:0].  
VREFDDR_PWRDN_SEQ[2:0]) that sets its power-down  
sequence. The default setting of the above registers is equal  
to the corresponding power-up sequence setting. For example,  
SW1_PWRDN_SEQ[2:0] = OTP_SW1_PWRUP_SEQ[2:0].  
When the power-down sequencer is activated, regulators are  
turned off one by one in the descending order of the XXX_  
PWRDN_SEQ[2:0] setting. This way, by default, power-down  
is a mirror of the power-up sequence. In one of the "System  
On" states, the processor can change the values of the XXX_  
PWRDN_SEQ[2:0] registers. The power-up sequence is fixed by  
OTP (or TBB). If all XXX_PWRDN_SEQ[2:0] = 0x00, the power-  
down sequencer is bypassed and all the regulators are turned off  
at once.  
UNUSED  
7 to 3  
Unused  
Table 145.ꢀRegister VREFDDR_PWRDN_SEQ - ADDR 0x65  
Name  
Bit  
R/W  
Default Description  
VREFDDR_PWRDN_S  
EQ  
2 to 0  
RW1S  
000  
This contains same value as power-up sequence value by  
default. Power-up sequence is in mirror registers.  
xxx = The power-down sequencer performs the function opposite  
to the power-up sequencer. Each regulator has an associated  
register setting (SW1_PWRDN_SEQ[2:0], SW2_PWRDN_  
SEQ[2:0], SW3_PWRDN_SEQ[2:0], LDO1_PWRDN_SEQ[2:0],  
LDO2_PWRDN_SEQ[2:0], LDO3_PWRDN_SEQ[2:0].  
VREFDDR_PWRDN_SEQ[2:0]) that sets its power-down  
sequence. The default setting of the above registers is equal  
to the corresponding power-up sequence setting. For example,  
SW1_PWRDN_SEQ[2:0] = OTP_SW1_PWRUP_SEQ[2:0].  
When the power-down sequencer is activated, regulators are  
turned off one by one in the descending order of the XXX_  
PWRDN_SEQ[2:0] setting. This way, by default, power-down  
is a mirror of the power-up sequence. In one of the "System  
On" states, the processor can change the values of the XXX_  
PWRDN_SEQ[2:0] registers. The power-up sequence is fixed by  
OTP (or TBB). If all XXX_PWRDN_SEQ[2:0] = 0x00, the power-  
down sequencer is bypassed and all the regulators are turned off  
at once.  
UNUSED  
7 to 3  
Unused  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
103 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 146.ꢀRegister STATE_INFO - ADDR 0x67  
Name  
Bit  
R/W  
Default Description  
STATE  
5 to 0  
R
000000 Indicates machine state  
000000 — Wait status  
001100 — RUN state  
001101 — STANDBY state  
001110 — SLEEP/LPSR state  
101011 — REGS_DISABLE state  
Other bits are reserved  
UNUSED  
7 to 6  
Unused  
Table 147.ꢀRegister I2C_ADDR - ADDR 0x68  
Name  
Bit  
R/W  
Default Description  
000 Loaded from fuses. But read only in functional space.  
I2C_SLAVE_ADDR_L  
SBS  
2 to 0  
R
000 — Slave Address: 0x08  
001 — Slave Address: 0x09  
010 — Slave Address: 0x0A  
011 — Slave Address: 0x0B  
100 — Slave Address: 0x0C  
101 — Slave Address: 0x0D  
110 — Slave Address: 0x0E  
111 — Slave Address: 0x0F  
USE_DEFAULT_ADD R  
7
RW  
0
DEFAULT ADDR  
Table 148.ꢀRegister RC_16MHZ - ADDR 0x6B  
Name  
Bit  
R/W  
Default Description  
REQ_16MHZ  
0
RW  
0
Enables 16 MHz clock  
0 — 16 MHz clock enable controlled by state machine  
1 — 16 MHz clock always enabled  
REQ_ACORE_ON  
REQ_ACORE_HIPWR  
UNUSED  
1
2
RW  
RW  
0
Controls Analog core enable  
0 — Analog core enable controlled by state machine  
1 — Analog core always on  
0
Controls Low-power mode of the analog core  
0 — Analog core Low-power mode controlled by state machine  
1 — Analog core never in Low-power mode  
7 to 3  
Unused  
Table 149.ꢀRegister KEY1 - ADDR 0x6B  
Name  
Bit  
R/W  
Default Description  
0x00 Unused  
KEY1  
7 to 0  
RW  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
104 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
12.2 Specific Charger Registers (Offset is 0x80)  
Table 150.ꢀRegister CHG_INT - ADDR 0x00  
Name  
Bit  
R/W  
Default Description  
SUP_I  
0
RW1S[1]  
0
Supplement mode interrupt  
0 — The SUP_OK bit interrupt has not occurred or been cleared  
1 — The SUP_OK bit interrupt has occurred  
Reset condition — VCOREDIG_RSTB  
BAT2SOC_I  
1
RW1S  
0
VBATT to VSYS overcurrent interrupt  
0 — The BAT2SOC_OK interrupt has not occurred or been  
cleared  
1— The BAT2SOC _OK bit interrupt has occurred  
Reset condition — VCOREDIG_RSTB  
BAT_I  
2
3
RW1S  
RW1S  
0
0
Battery interrupt  
0 — The BAT_OK interrupt has not occurred or been cleared  
1 — The BAT_OK interrupt has occurred  
Reset condition — VCOREDIG_RSTB  
CHG_I  
Charger interrupt  
0 — The CHG_OK interrupt has not occurred or been cleared  
1 — The CHG_OK interrupt has occurred  
Reset condition — VCOREDIG_RSTB  
RSVD4  
VBUS_I  
4
5
RW1S  
RW1S  
0
0
Unused  
VBUS interrupt  
0 — The VBUS_OK interrupt has not occurred or been cleared  
1 — The VBUS_OK interrupt has occurred  
Reset condition — VCOREDIG_RSTB  
VBUS_DPM_I  
6
7
RW1S  
RW1S  
0
0
VBUS_DPM interrupt  
0 — The VBUS_DPM _OK interrupt has not occurred or been  
cleared  
1 — The VBUS_DPM _OK interrupt has occurred  
Reset condition — VCOREDIG_RSTB  
THM_I  
THM interrupt. Occurs when Warm/Cool thresholds are crossed  
or when thermal foldback is active. After the interrupt has  
occurred, THM_OK bit can be read to know the source of the  
interrupt.  
If THM_OK = 0, warm/cool thresholds are crossed  
If THM_OK = 1, thermal foldback is active  
0 — THM interrupt has not occurred or has been cleared  
1 — THM interrupt has occurred  
Reset condition — VCOREDIG_RSTB  
[1] Load from OTP fuse, Read, and Write  
Table 151.ꢀRegister CHG_INT_MASK - ADDR 0x02  
Name  
Bit  
R/W  
Default Description  
Supplement mode interrupt mask  
SUP_M  
0
RW  
1
0 — Unmasked  
1 — Masked  
Reset condition — VCOREDIG_RSTB  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
105 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
BAT2SOC_M  
1
RW  
1
1
1
VBATT to VSYS overcurrent interrupt mask  
0 — Unmasked  
1 — Masked  
Reset condition — VCOREDIG_RSTB  
BAT_M  
CHG_M  
2
3
RW  
RW  
Battery interrupt mask  
0 — Unmasked  
1 — Masked  
Reset condition — VCOREDIG_RSTB  
Charger interrupt mask  
0 — Unmasked  
1 — Masked  
Reset condition — VCOREDIG_RSTB  
RSVD4  
4
5
RW  
RW  
1
1
Unused  
VBUS_M  
VBUS interrupt mask  
0 — Unmasked  
1 — Masked  
Reset condition — VCOREDIG_RSTB  
VBUS_DPM_M  
THM_M  
6
7
RW  
RW  
1
1
VBUS_DPM interrupt mask  
0 — Unmasked  
1 — Masked  
Reset condition — VCOREDIG_RSTB  
THM interrupt mask  
0 — Unmasked  
1 — Masked  
Reset condition — VCOREDIG_RSTB  
Table 152.ꢀRegister CHG_INT_OK - ADDR 0x04  
Name  
Bit  
R/W  
Default Description  
SUP_OK  
0
R
0
Supplement mode indicator  
0 — Supplement mode not detected  
1 — Supplement mode detected  
Reset condition — VCOREDIG_RSTB  
BAT2SOC_OK  
BAT_OK  
1
2
R
R
0
Single-bit battery overcurrent indicator  
0 — Battery to VSYS has not hit overcurrent limit  
1 — Battery to VSYS has hit overcurrent limit (BATT_SNS Bit 5 =  
0b1)  
Reset condition — VCOREDIG_RSTB  
1
Single-bit battery status indicator. See BATT_SNS for more  
information.  
0 — The battery has an issue or the charger has been  
suspended, for example, BAT_SNS = 0x06 or 0x07 or 0x09  
1 — The battery is okay, for example, BAT_SNS ≠ 0x06 or 0x07  
or 0x09  
Reset condition — VCOREDIG_RSTB  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
106 / 150  
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
CHG_OK  
3
R
0
Single-bit charger status indicator. See CHG_SNS for more  
information.  
Reset condition — VCOREDIG_RSTB  
0 — The charger is not charging, has suspended charging or  
Thermal Reg = 1, for example, CHG_SNS ≠ 0x00 or 0x01 or 0x02  
or 0x03  
1 — The charger is okay, for example, CHG_SNS = 0x00 or 0x01  
or 0x02 or 0x03  
Reset condition — VCOREDIG_RSTB  
RSVD4  
4
5
R
R
0
0
Unused  
VBUS_OK  
Single-bit VBUS_LIN input status indicator. See VBUS_LIN_SNS  
for more information.  
0 — The VBUS_LIN input is invalid. For example, VBUS_VALID  
= 0.  
1 — The VBUS_LIN input is valid. For example, VBUS_VALID =  
1.  
Reset condition — VCOREDIG_RSTB  
VBUS_DPM_OK  
THM_OK  
6
7
R
R
0
1
VBUS_DPM status indicator. This register provides status of input  
Dynamic Power Management threshold.  
0 — Not in VBUS_DPM mode  
1 — VBUS_DPM mode  
Reset condition — VCOREDIG_RSTB  
Thermistor status indicator. This register provides information on  
whether battery temperature is within or outside the thermistor  
cool/warm thresholds.  
0 — Thermistor outside cool and warm thresholds  
1 — Thermistor between cool and warm thresholds  
Reset condition — VCOREDIG_RSTB  
Table 153.ꢀRegister VBUS_SNS - ADDR 0x06  
Name  
Bit  
1 to 0  
2
R/W  
Default Description  
RSVD0  
R
00  
1
Unused  
VBUS_UVLO_SNS  
R
0 — VBUS_ LIN > VBUS_LIN_UVLO  
1 — VBUS_ LIN < VBUS_LIN_UVLO or when VBUS is detached  
VBUS_IN2SYS_SNS  
VBUS_OVLO_SNS  
VBUS_VALID  
3
4
5
R
R
R
1
0
0
0 — VBUS_ LIN > VBATT + VIN2SYS  
1 — VBUS_ LIN < VBATT + VIN2SYS  
0 — VBUS_ LIN < VBUS_LIN_OVLO  
1 — VBUS_ LIN > VBUS_LIN_OVLO  
0 — VBUS is not valid  
1 — VBUS is valid, VBUS_LIN > VBUS_LIN_UVLO, VBUS_LIN >  
VBATT + VIN2SYS, VBUS_LIN < VBUS_LIN_OVLO  
Reset condition — VCOREDIG_RSTB  
RSVD6  
6
7
R
R
0
0
Unused  
VBUS_DPM_SNS  
VBUS_LIN DPM sense details  
0 — VBUS _LIN DPM threshold has not been triggered  
1 — VBUS_LIN DPM threshold has been triggered  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
107 / 150  
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 154.ꢀRegister CHG_SNS - ADDR 0x07  
Name  
Bit  
R/W  
Default Description  
CHG_SNS  
3 to 0  
R
1000  
Charger sense  
0 — Charger is in precharge mode, CHG_OK = 1, VBATT <  
VPRECHG.LB, TJ < TSHDN  
1 — Charger is in fast-charge constant current mode, CHG_OK =  
1, VBATT < VBATREG, TJ < TSHDN  
2 — Charger is in fast-charge constant voltage mode, CHG_OK =  
1, VBATT = VBATREG, TJ < TSHDN  
3 — Charger is in end-of-charge mode, CHG_OK = 1, VBATT ≥  
VBATREG, IBAT = IEOC, TJ < TSHDN  
4 — Charger is in done mode, CHG_OK = 0, VBATT >  
VBATREG-VRESTART, TJ < TSHDN  
5 — Reserved  
6 — Charger is in timer fault mode, CHG_OK = 0, VBATT <  
VBATOV, if BAT_SNS = 0b001 then VBATT < VBATPC, TJ <  
TSHDN  
7 — Charger is in thermistor suspend mode, CHG_OK =  
0, VBATT < VBATOV, if BAT_SNS = 0b001 then VBATT <  
VPRECHG.LB, TJ < TSHDN  
8 — Charger is off, input invalid and/or charger is disabled,  
CHG_OK = 0  
9 — Battery overvoltage condition  
10 — Charger is off and TJ > TSHDN, CHG_OK = 0  
11 — Reserved  
12 — Charger block is in Linear only mode, not charging,  
CHG_OK = 0  
13 — Reserved  
14 — Reserved  
15 — Reserved  
Reset condition — VCOREDIG_RSTB  
RSVD4  
4
5
R
R
0
0
Unused  
WDT_SNS  
Watchdog sense bit  
0 — Watchdog timer has not expired  
1 — Charger is off because the watchdog timer expired,  
CHG_OK = 0  
Reset condition — VCOREDIG_RSTB  
THM_SNS  
6
7
R
R
0
0
Cool/Warm sense bit  
0 — Thermistor temperature is between cool and warm  
thresholds  
1 — Thermistor temperature is < Cool, or > Warm threshold  
Reset condition — VCOREDIG_RSTB  
TREG_SNS  
Temperature regulation sense  
0 — The junction temperature is less than the threshold set by  
REGTEMP and the full charge current limit is available  
1 — The junction temperature is greater than the threshold set by  
REGTEMP and the charge current limit may be folding back to  
reduce power dissipation  
Reset condition — VCOREDIG_RSTB  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
108 / 150  
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 155.ꢀRegister BATT_SNS - ADDR 0x08  
Name  
Bit  
R/W  
Default Description  
BATT_SNS  
2 to 0  
R
000  
0 — 0x00 = No valid VBUS input  
1 — 0x01 = VBATT < VPRECHG.LB  
2 — 0x02 = the battery cannot charge beyond the precharge  
threshold and charging has suspended and is in timer fault mode.  
This condition is also reported in the CHG_SNS as 0x06.  
3 — Reserved  
4 — 0x04 = VPRECHG.LB < VBATT  
5 — 0x05 = the battery voltage is greater than the battery  
overvoltage flag threshold (VBATOV). Tthis flag is generated only  
when there is a valid input.  
6 — 0x06 = battery not detected with a valid input and after  
system wake-up  
7 — Reserved  
Reset condition — VCOREDIG_RSTB  
RSVD3  
4 to 3  
5
RW  
R
00  
0
Unused  
BATTOC_SNS  
VBATT to VSYS overcurrent fault  
0 — No fault  
1 — VBATT to VSYS in high current fault  
Reset condition — VCOREDIG_RSTB  
RSVD6  
7 to 6  
RW  
00  
Unused  
Table 156.ꢀRegister CHG_OPER- ADDR 0x09  
Name  
Bit  
R/W  
Default Description  
CHG_OPER  
1 to 0  
RW1S[1]  
01  
Charger operation configuration  
0 — charger = off, linear = off. The BATFET switch is on to allow  
the battery to support the system.  
1 — charger = off, linear = on. When there is a valid VBUS input  
and no battery, the linear regulator regulates the VSYS voltage to  
VSYSMIN[1:0].  
2 — charger = on, linear = on. When there is a valid input, the  
battery is charging. VSYS is the larger of VSYSMIN and VBATT +  
IBAT * RBATFET  
.
3 — Reserved  
Reset condition — VCOREDIG_RSTB  
UNUSED  
WDTEN  
2
3
RW  
RW  
0
0
Unused  
Enable watchdog timer bit. While enabled, the system controller  
must reset the watchdog timer within the timer period (tWD) for  
the charger to operate normally. Reset the watchdog timer by  
programming WDTCLR = 0x01.  
0 — Watchdog timer disabled  
1 — Watchdog timer enabled  
Reset condition — VCOREDIG_RSTB  
DISBATFET  
UNUSED  
4
RW  
RW  
0
VBATT to VSYS FET disable control  
0 — VBATT to VSYS FET is controlled by internal state machine  
1 — VBATT to VSYS FET is forced off  
Reset condition — VCOREDIG_RSTB  
7 to 5  
000  
Unused  
[1] Load from OTP fuse, Read, and Write  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
109 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 157.ꢀRegister CHG_TMR - ADDR 0x0A  
Name  
Bit  
R/W  
Default Description  
010 Fast-charge timer duration (tFC)  
FCHGTIME  
2 to 0  
RW1S  
0 — Disable  
1 — 2 hrs  
2 — 4 hrs  
3 — 6 hrs  
4 — 8 hrs  
5 — 10 hrs  
6 — 12 hrs  
7 — 14 hrs  
Reset condition — VCOREDIG_RSTB  
EOCTIME  
5 to 3  
RW1S  
001  
End-of-charge timer setting  
0 — 0 min (16 secs debounce)  
1 — 10 min  
2 — 20 min  
3 — 30 min  
4 — 40 min  
5 — 50 min  
6 — 60 min  
7 — 70 min  
Reset condition — VCOREDIG_RSTB  
RSVD6  
6
7
R
0
0
Unused  
TPRECHG  
RW1S  
Precharge timer value. Used for low battery.  
0 — Precharge timer value = 30 min  
1 — Precharge timer value = 45 min  
Reset condition — VCOREDIG_RSTB  
Table 158.ꢀRegister CHG_EOC_CNFG - ADDR 0x0D  
Name  
Bit  
R/W  
Default Description  
CHG_RESTART  
1 to 0  
RW1S  
01  
Charger restart threshold  
00 — 0x00 = 100 mV below the value programmed by  
CHG_CV_PRM  
01 — 0x01 = 150 mV below the value programmed by  
CHG_CV_PRM  
02 — 0x02 = 200 mV below the value programmed by  
CHG_CV_PRM  
03 — 0x03 = disabled  
Reset condition — VCOREDIG_RSTB  
FORCE_BATT_ISO  
EOC_EXIT  
2
3
RW1S  
RW1S  
0
0
Unused  
Unused  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
110 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
100 End-of-charge current threshold. End-of-charge occurs during  
IEOC  
6 to 4  
RW  
fast-charge constant voltage mode and end-of-charge current  
measured as battery decays to the value programmed in this  
register. This transition starts the end-of-charge timer (tEOC).  
0 — 5 mA  
1 — 10 mA  
2 — 20 mA  
3 — 30 mA  
4 — 50 mA  
5 — Reserved  
6 — Reserved  
7 — Reserved  
Reset condition — VCOREDIG_RSTB  
EOC_MODE  
7
RW1S  
0
Unused  
Table 159.ꢀRegister CHG_CURR_CNFG - ADDR 0x0E  
Name  
Bit  
R/W  
Default Description  
CHG_CC  
4 to 0  
RW1S  
00000 Fast charge current selection. When the charger is enabled, the  
charge current limit is set by these bits. These bits range from  
100 mA to 1.0 A.  
0 — 100 mA  
1 — 150 mA  
2 — 200 mA  
3 — 250 mA  
4 — 300 mA  
5 — 350 mA  
6 — 400 mA  
7 — 450 mA  
8 — 500 mA  
9 — 550 mA  
10 — 600 mA  
11 — 650 mA  
12 — 700 mA  
13 — 750 mA  
14 — 800 mA  
15 — 850 mA  
16 — 900 mA  
17 — 950 mA  
18 — 1000 mA  
19 — 1050 mA (Reserved)  
20 — 1100 mA (Reserved)  
21 — 1150 mA (Reserved)  
22 — 1200 mA (Reserved)  
23 — 1250 mA (Reserved)  
24 — 1300 mA (Reserved)  
25 — 1350 mA (Reserved)  
26 — 1400 mA (Reserved)  
27 — 1450 mA (Reserved)  
28 — 1500 mA (Reserved)  
29 — 1550 mA (Reserved)  
30 — 1600 mA (Reserved)  
31 — 1650 mA (Reserved)  
Reset condition — VCOREDIG_RSTB  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
111 / 150  
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
00 Precharge (low battery) charging voltage threshold setting  
PRECHGLB_THRS  
6 to 5  
RW1S  
0 — 2.8 V  
1 — 2.7 V (Reserved)  
2 — 2.9 V (Reserved)  
3 — 3.0 V (Reserved)  
Reset condition — VCOREDIG_RSTB  
RSVD7  
7
RW  
0
Reserved  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
112 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 160.ꢀRegister BATT_REG - ADDR 0x0F  
Name  
Bit  
R/W  
Default Description  
CHGCV  
5 to 0  
RW1S  
101011 Battery termination voltage setting  
0 — 3.50 V  
1 — 3.50 V  
2 — 3.50 V  
3 — 3.50 V  
4 — 3.50 V  
5 — 3.50 V  
6 — 3.50 V  
7 — 3.50 V  
8 — 3.50 V  
9 — 3.52 V  
10 — 3.54 V  
11 — 3.56 V  
12 — 3.58 V  
13 — 3.60 V  
14 — 3.62 V  
15 — 3.64 V  
16 — 3.66 V  
17 — 3.68 V  
18 — 3.70 V  
19 — 3.72 V  
20 — 3.74 V  
21 — 3.76 V  
22 — 3.78 V  
23 — 3.80 V  
24 — 3.82 V  
25 — 3.84 V  
26 — 3.86 V  
27 — 3.88 V  
28 — 3.90 V  
29 — 3.92 V  
30 — 3.94 V  
31 — 3.96 V  
32 — 3.98 V  
33 — 4.00 V  
34 — 4.02 V  
35 — 4.04 V  
36 — 4.06 V  
37 — 4.08 V  
38 — 4.10 V  
39 — 4.12 V  
40 — 4.14 V  
41 — 4.16 V  
42 — 4.18 V  
43 — 4.20 V  
44 — 4.22 V  
45 — 4.24 V  
46 — 4.26 V  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
113 / 150  
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
47 — 4.28 V  
48 — 4.30 V  
49 — 4.32 V  
50 — 4.34 V  
51 — 4.36 V  
52 — 4.38 V  
53 — 4.40 V  
54 — 4.42 V  
55 — 4.44 V  
56 — 4.44 V  
57 — 4.44 V  
58 — 4.44 V  
59 — 4.44 V  
60 — 4.44 V  
61 — 4.44 V  
62 — 4.44 V  
63 — 4.44 V  
Reset condition — VCOREDIG_RSTB  
VSYSMIN  
7 to 6  
RW1S  
00  
Minimum system regulation voltage (VSYSMIN)  
0 — 3.5 V  
1 — 3.7 V  
2 — 4.3 V  
3 — Reserved  
Reset condition — VCOREDIG_RSTB  
Table 161.ꢀRegister BATFET_CNFG - ADDR 0x11  
Name  
Bit  
R/W  
Default Description  
WDTCLR  
1 to 0  
RW  
00  
Watchdog timer clear bits. Writing "01" to these bits clears the  
watchdog timer when the watchdog timer is enabled.  
0 — The watchdog timer is not cleared  
1 — The watchdog timer is cleared  
2 — The watchdog timer is not cleared  
3 — The watchdog timer is not cleared  
Reset condition — VCOREDIG_RSTB  
WD_BATFET_OFF  
BOVRC_DISBATFET  
BATFET_OC  
2
3
RW  
0
0
Watchdog timer BATFET control  
0 — Not used in PF1550. See WDFLT_BFET_EN bit in  
Fault_BATFET_CNFG register.  
1 — Not used in PF1550. See WDFLT_BFET_EN bit in  
Fault_BATFET_CNFG register.  
Reset condition — VCOREDIG_RSTB  
RW1S  
RW1S  
Disable BATFET in case of battery overcurrent limit  
0 — Charger controls BATFET switch; BATFET is turned off in  
case of battery overcurrent occurs for 16 ms (default)  
1 — BATFET is not turned off when battery overcurrent occurs.  
Charger operation remains undisturbed by overcurrent event.  
Reset condition — VCOREDIG_RSTB  
5 to 4  
11  
VBATT to VSYS FET overcurrent threshold, 2 bits adjustment  
0 — Disabled  
1 — 2.2 A typ  
2 — 2.8 A typ  
3 — 3.2 A typ  
Reset condition — VCOREDIG_RSTB  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
114 / 150  
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
WD_TIME  
6
RW  
0
0
Sets watchdog timer value  
0 — 80 s  
0 — 32 s  
Reset condition — VCOREDIG_RSTB  
BOVRC_NOVBUS  
7
RW  
Enables/disables battery overcurrent protection when no VBUS is  
present  
0 — Disables battery overcurrent protection when no VBUS is  
present  
1 — Enables battery overcurrent protection when no VBUS is  
present  
Reset condition — VCOREDIG_RSTB  
Table 162.ꢀRegister THM_REG_CNFG - ADDR 0x12  
Name  
Bit  
R/W  
Default Description  
01 Thermistor configuration. 2 bits adjustment.  
THM_CNFG  
1 to 0  
RW1S  
0 — Thermistor not in control of charger. TCOOL and TWARM  
interrupts are still generated. Thermistor Suspend mode is not  
entered in this setting. CC and CV values are not altered when  
TCOOL/cold, TWARM/hot thresholds are crossed.  
1 — Thermistor control in charger. Charging stops when battery  
temperature > THOT or < TCOLD  
.
2 — JEITA 1 settings - Thermistor control in charger. Charging  
current and battery regulation voltage is reduced at battery  
temperature > TWARM and < TCOOL  
.
3 — JEITA 2 settings - Thermistor control in charger. Charging  
current is reduced at battery temperature > TWARM and < TCOOL  
Charger voltage is not changed.  
.
Reset condition — VCOREDIG_RSTB  
REGTEMP  
3 to 2  
RW1S  
01  
Junction temperature thermal regulation loop set point. 2-bit  
adjustments. The charger's target current limit starts to fold  
back and the TREG_SNS bit is set if the junction temperature is  
greater than the REGTEMP set point.  
0 — 80 °C  
1 — 95 °C  
2 — 110 °C  
3 — 125 °C (Reserved)  
Reset condition — VCOREDIG_RSTB  
THM_COLD  
THM_HOT  
4
5
RW1S  
RW1S  
0
0
Thermistor cold temperature selection  
0 — 0 °C  
1 — –10 °C  
Reset condition — VCOREDIG_RSTB  
Thermistor hot temperature selection  
0 — 60 °C  
1 — 55 °C  
Reset condition — VCOREDIG_RSTB  
RSVD6  
6
7
RW  
0
0
Unused  
TEMP_FB_EN  
RW1S  
Enable/disable thermal foldback current function  
0 — Thermal foldback disabled  
1 — Thermal foldback enabled  
Reset condition — VCOREDIG_RSTB  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
115 / 150  
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 163.ꢀRegister VBUS_INLIM_CNFG - ADDR 0x14  
Name  
Bit  
R/W  
Default Description  
RSVD0  
2 to 0  
7 to 3  
RW  
000  
Unused  
VBUS_LIN_ILIM  
RW1S  
01101  
Maximum input current limit selection. 5-bit adjustment from 10  
mA to 1500 mA.  
0 — 10 mA  
1 — 15 mA  
2 — 20 mA  
3 — 25 mA  
4 — 30 mA  
5 — 35 mA  
6 — 40 mA  
7 — 45 mA  
8 — 50 mA  
9 — 100 mA  
10 — 150 mA  
11 — 200 mA  
12 — 300 mA  
13 — 400 mA  
14 — 500 mA  
15 — 600 mA  
16 — 700 mA  
17 — 800 mA  
18 — 900 mA  
19 — 1000 mA  
20 — 1500 mA  
21 — Reserved  
22 — Reserved  
23 — Reserved  
24 — Reserved  
25 — Reserved  
26 — Reserved  
27 — Reserved  
28 — Reserved  
29 — Reserved  
30 — Reserved  
31 — Reserved  
Reset condition — CHGPOK_RSTB  
Table 164.ꢀRegister VBUS_LIN_DPM - ADDR 0x15  
Name  
Bit  
R/W  
Default Description  
000 VBUS regulation voltage (DPM mode)  
VBUS_DPM_REG  
2 to 0  
RW1S  
0 — 3.90 V  
1 — 4.00 V  
2 — 4.10 V  
3 — 4.20 V  
4 — 4.30 V  
5 — 4.40 V  
6 — 4.50 V  
7 — 4.60 V  
Reset condition — VCOREDIG_RSTB  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
116 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
00 Precharge threshold  
PRECHGDBATT_T  
HRSH  
4 to 3  
RW1S  
0 — Reserved  
1 — Reserved  
2 — Reserved  
3 — Reserved  
VIN_DPM_STOP  
5
RW1S  
0
Dynamic input power management panic stop threshold  
0 — 200 mV  
1 — 250 mV  
Reset condition — VCOREDIG_RSTB  
RSVD6  
6
7
R
0
0
Unused  
FET_SCALE  
RW1S  
Enables/disables BATFET scaling  
0 — Reserved  
1 — Reserved  
Reset condition — VCOREDIG_RSTB  
Table 165.ꢀRegister USB_PHY_LDO_CNFG - ADDR 0x16  
Name  
Bit  
R/W  
Default Description  
ACTDISPHY  
0
RW1S  
1
0
0
Active discharger enable bit for USBPHY  
0 — No active discharge  
1 — Active discharge when regulator disabled  
Reset condition — VCOREDIG_RSTB  
USBPHY  
1
2
RW1S  
RW1S  
USBPHY voltage setting register  
0 — 3.3 V  
1 — 4.9 V  
Reset condition — VCOREDIG_RSTB  
USBPHYLDO  
USBPHY LDO enable  
0 — Disabled  
1 — Enabled  
Reset condition — VCOREDIG_RSTB  
RSVD3  
RSVD4  
RSVD6  
3
RW  
RW  
RW  
0
Unused  
Unused  
Unused  
5 to 4  
7 to 6  
00  
00  
Table 166.ꢀRegister DBNC_DELAY_TIME - ADDR 0x18  
Name  
Bit  
R/W  
Default Description  
VBUS_OV_TDB  
1 to 0  
RW1S  
00  
VBUS overvoltage debounce delay  
0 — 10 µs (Reserved)  
1 — 100 µs  
2 — 1 ms  
3 — 10 ms  
Reset condition — VCOREDIG_RSTB  
USB_PHY_TDB  
3 to 2  
RW1S  
00  
USBPHY debounce timer - not used in PF1550  
0 — 0 ms  
1 — 16 ms  
2 — 32 ms  
3 — Not used  
Reset condition — VCOREDIG_RSTB  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
117 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
SYS_WKUP_DLY  
5 to 4  
RW1S  
00  
System wake-up time  
0 — 8.0 ms  
1 — 16 ms  
2 — 32 ms  
3 — 100 ms  
Reset condition — VCOREDIG_RSTB  
RSVD6  
7 to 6  
RW  
00  
Unused  
Table 167.ꢀRegister CHG_INT_CNFG - ADDR 0x19  
Name  
Bit  
R/W  
Default Description  
CHG_INT_GEN  
0
RW1S  
0
Determines if an interrupt is generated at every mode transition in  
charger  
0 — Interrupt is not generated at every mode transition except  
transition from Fast Charge to CV  
1 — Interrupt is generated at every mode transition (Fast Charge,  
CV, EOC, DONE, No Charger)  
Reset condition — VCOREDIG_RSTB  
EOC_INT  
RSVD2  
1
RW1S  
0
Interrupt bit generated at end-of-charge  
0 — No interrupt bit is generated when end-of- charge current is  
triggered  
1 — Interrupt bit is generated when end-of-charge current is  
triggered  
Reset condition — VCOREDIG_RSTB  
7 to 2  
RW  
000000 Unused  
Table 168.ꢀRegister THM_ADJ_SETTING - ADDR 0x1A  
Name  
Bit  
R/W  
Default Description  
THM_WARM  
0
RW1S  
0
Thermistor warm threshold setting  
0 — 45 °C  
1 — 50 °C  
Reset condition — VCOREDIG_RSTB  
THM_COOL  
CV_ADJ  
1
RW1S  
RW1S  
0
Thermistor cool threshold setting  
0 — 15 °C  
1 — 10 °C  
Reset condition — VCOREDIG_RSTB  
3 to 2  
00  
JEITA Thermistor battery termination voltage subtraction setting  
0 — 60 mV  
1 — 100 mV  
2 — 160 mV  
3 — 200 mv  
Reset condition — VCOREDIG_RSTB  
CC_ADJ  
5 to 4  
RW1S  
00  
JEITA Thermistor battery charging current setting (percentage of  
IFC)  
0 — 25 %  
1 — 50 %  
2 — 75 %  
3 — 100 %  
Reset condition — VCOREDIG_RSTB  
RSVD6  
7 to 6  
RW  
00  
Unused  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
118 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 169.ꢀRegister VBUS2SYS_CNFG - ADDR 0x1B  
Name  
Bit  
R/W  
Default Description  
VBUS2SYS_TDB  
1 to 0  
RW1S  
00  
VBUS to VSYS comparator debounce time  
0 — Reserved  
1 — 100 µs  
2 — 1 ms  
3 — 10 ms  
Reset condition — VCOREDIG_RSTB  
VBUS2SYS_THRSH  
RSVD3  
2
RW1S  
RW  
0
VBUS to VSYS comparator threshold setting  
0 — 50 mV  
1 — 175 mV  
Reset condition — VCOREDIG_RSTB  
7 to 3  
00000  
Unused  
Table 170.ꢀRegister LED_PWM - ADDR 0x1C  
Name  
Bit  
R/W  
Default Description  
LED_PWM  
5 to 0  
RW  
000000 LED PWM duty cycle setting  
0 — 0/32 (Off)  
1 — 1/32  
2 — 2/32  
3 — 3/32  
4 — 4/32  
5 — 5/32  
6 — 6/32  
7 — 7/32  
8 — 8/32  
9 — 9/32  
10 — 10/32  
11 — 11/32  
12 — 12/32  
13 — 13/32  
14 — 14/32  
15 — 15/32  
16 — 16/32  
17 — 17/32  
18 — 18/32  
19 — 19/32  
20 — 20/32  
21 — 21/32  
22 — 22/32  
23 — 23/32  
24 — 24/32  
25 — 25/32  
26 — 26/32  
27 — 27/32  
28 — 28/32  
29 — 29/32  
30 — 30/32  
31 — 31/32  
32 and higher — 32/32  
Reset condition — VCOREDIG_RSTB  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
119 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
LED_RAMP  
6
RW  
0
0
Enable PWM ramp enable  
0 — Ramp disable  
1 — Ramp enable  
Reset condition — VCOREDIG_RSTB  
LED_EN  
7
RW  
LED driver enable  
0 — Disabled  
1 — Enabled  
Reset condition — VCOREDIG_RSTB  
Table 171.ꢀRegister FAULT_BATFET_CNFG - ADDR 0x1D  
Name  
Bit  
R/W  
Default Description  
OVFLT_BFET_EN  
0
RW1S  
0
0
0
0
0
BATFET control during battery overvoltage  
0 — BATFET is opened during battery overvoltage  
1 — BATFET remains closed  
Reset condition — VCOREDIG_RSTB  
WDFLT_BFET_EN  
THMSUS_BFET_EN  
TSHDN_BFET_EN  
TMRFLT_BFET_EN  
RSVD5  
1
2
3
4
RW1S  
RW1S  
RW1S  
RW1S  
BATFET control during watchdog fault  
0 — BATFET is opened during watchdog fault  
1 — BATFET remains closed  
Reset condition — VCOREDIG_RSTB  
BATFET control during thermistor fault (< Cold or > Hot)  
0 — BATFET is opened during battery thermistor fault  
1 — BATFET remains closed  
Reset condition — VCOREDIG_RSTB  
BATFET control during thermal shutdown  
0 — BATFET is opened during thermal shutdown  
1 — BATFET remains closed  
Reset condition — VCOREDIG_RSTB  
BATFET control during charger timer fault  
0 — BATFET is opened during charger timer fault  
1 — BATFET remains closed  
Reset condition — POR  
5
RW1S  
RW1S  
0
Unused  
CTRL_CHGR_BET A_  
SEL  
7 to 6  
00  
Reserved  
Table 172.ꢀRegister LED_CNFG - ADDR 0x1E  
Name  
Bit  
R/W  
Default Description  
00 LED driver PWM frequency setting  
LED_FREQ  
1 to 0  
RW  
0 — 1.0 Hz  
1 — 0.5 Hz  
2 — 256 Hz  
3 — 8.0 Hz  
Reset condition — VCOREDIG_RSTB  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
120 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
00 LED driver current amplitude setting  
LED_CURRENT  
3 to 2  
RW1S  
0 — Reserved  
1 — 6.0 mA  
2 — Reserved  
3 — Reserved  
Reset condition — VCOREDIG_RSTB  
LED_CFG  
4
RW1S  
0
Controls LED on/blinking mode  
0 — LED on during charging; flashing during charger fault; off in  
DONE state  
1 — LED flashing during charging; on during charger fault; off in  
DONE state  
Reset condition — VCOREDIG_RSTB  
LEDOVRD  
RSVD4  
5
RW  
RW  
0
Enable software control of LED  
0 — LED controlled by state machine  
1 — LED controlled via software  
Reset condition — VCOREDIG_RSTB  
7 to 6  
00  
Unused  
Table 173.ꢀRegister LED_CNFG - ADDR 0x1F  
Name  
Bit  
R/W  
Default Description  
0x00 Reserved  
CHGR_KEY2  
7 to 0  
RW  
12.3 Register PMIC bitmap  
VCOREDIG_PORB [1]  
PS_END_RSTB [2]  
REGS_DISABLE_TOG_RSTB [3]  
[1] Bits reset by invalid VCOREDIG  
[2] Bits reset by PORB or RESETBMCU  
[3] Bits reset by pulse to REGS_DISABLE mode  
Table 174.ꢀRegister PMIC bitmap  
Addre  
ss  
Register name  
BITS[7:0]  
7
6
5
4
3
2
1
0
0x00  
0x01  
0x02  
0x06  
0x08  
DEVICE_ID  
Name  
Reset  
Type  
FAMILY[3:7]  
DEVICE_ID[2:0]  
0
R
1
R
1
1
1
1
0
0
R
R
R
R
R
R
OTP_FLAVOR  
SILICON_REV  
Name  
Reset  
Type  
0
0
OTP_FLAVOR[5:0]  
0
0
0
0
0
0
R
R
R
R
R
R
Name  
Reset  
Type  
FAB_FIN[7:6]  
FULL_LAYER_REV[5:3]  
METAL_LAYER_REV[2:0]  
0
0
0
0
1
0
0
0
R
R
R
R
R
R
R
R
INT_CATEGORY Name  
MISC_INT  
TEMP_INT  
ONKEY_INT  
LDO_INT  
SW3_INT  
SW2_INT  
SW1_INT  
CHG_INT  
Reset  
0
R
0
R
0
R
0
R
0
R
0
0
0
Type  
SW_INT_STAT0 Name  
Reset  
R
SW3_LS_I  
0
R
SW2_LS_I  
0
R
SW1_LS_I  
0
0
0
0
0
0
Type  
RW1C  
RW1C  
RW1C  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
121 / 150  
 
 
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Addre  
ss  
Register name  
BITS[7:0]  
7
6
5
4
3
2
1
0
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
SW_INT_MASK0 Name  
0
0
0
0
0
SW3_LS_M  
SW2_LS_M  
SW1_LS_M  
Reset  
Type  
1
1
1
0
0
0
0
0
RW  
RW  
RW  
SW_INT_  
SENSE0  
Name  
Reset  
Type  
SW3_LS_S  
SW2_LS_S  
SW1_LS_S  
0
0
0
0
0
0
0
0
R
R
R
SW_INT_STAT1 Name  
SW3_HS_I  
SW2_HS_I  
SW1_HS_I  
Reset  
0
0
0
Type  
SW_INT_MASK1 Name  
Reset  
0
0
0
0
0
RW1C  
RW1C  
RW1C  
SW3_HS_M  
SW2_HS_M  
SW1_HS_M  
1
1
1
Type  
0
0
0
0
0
RW  
RW  
RW  
SW_INT_  
SENSE1  
Name  
Reset  
Type  
SW3_HS_S  
SW2_HS_S  
SW1_HS_S  
0
R
0
0
R
R
SW_INT_STAT2 Name  
SW2_DVS_  
DONE_I  
SW1_DVS_  
DONE_I  
Reset  
Type  
0
0
0
0
0
0
0
0
RW1C  
RW1C  
0x0F  
SW_INT_MASK2 Name  
SW2_DVS_  
DONE_M  
SW1_DVS_  
DONE_M  
Reset  
Type  
0
0
0
0
0
0
1
1
0
0
0
0
0
RW  
RW  
0x10  
0x18  
0x19  
0x1A  
0x20  
0x21  
0x22  
SW_INT_  
SENSE2  
Name  
Reset  
Type  
SW2_DVS_S  
SW1_DVS_S  
0
0
0
0
0
0
0
0
R
R
LDO_INT_  
STAT0  
Name  
Reset  
Type  
LDO3_FAULTI  
LDO2_FAULTI  
LDO1_FAULTI  
0
0
0
0
0
0
0
0
RW1C  
RW1C  
RW1C  
LDO_INT_  
MASK0  
Name  
Reset  
Type  
LDO3_FAULTM  
LDO2_FAULTM  
LDO1_FAULTM  
1
1
1
0
0
0
0
0
RW  
RW  
RW  
LDO_INT_  
SENSE0  
Name  
Reset  
Type  
LDO3_FAULTS  
LDO2_FAULTS  
LDO1_FAULTS  
0
0
R
0
0
0
0
0
0
R
THERM125I  
0
R
THERM110I  
0
TEMP_INT_  
STAT0  
Name  
Reset  
Type  
0
0
0
0
0
1
RW1C  
1
RW1C  
TEMP_INT_  
MASK0  
Name  
Reset  
Type  
THERM125M  
1
THERM110M  
1
RW  
RW  
TEMP_INT_  
SENSE0  
Name  
THERM125S  
THERM110S  
Reset  
Type  
0
0
0
0
0
0
0
0
0
0
R
R
0x24  
0x25  
0x26  
0x28  
ONKEY_INT_  
STAT0  
Name  
Reset  
Type  
ONKEY_8SI  
ONKEY_4SI  
ONKEY_3SI  
ONKEY_2SI  
ONKEY_1SI  
ONKEY_PUSHI  
0
0
0
0
0
0
0
0
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
ONKEY_INT_  
MASK0  
Name  
Reset  
Type  
ONKEY_8SM  
ONKEY_4SM  
ONKEY_3SM  
ONKEY_2SM  
ONKEY_1SM  
ONKEY_PUSHM  
1
1
1
1
1
1
0
0
RW  
RW  
RW  
RW  
RW  
RW  
ONKEY_INT_  
SENSE0  
Name  
Reset  
Type  
ONKEY_8SS  
ONKEY_4SS  
ONKEY_3SS  
ONKEY_2SS  
ONKEY_1SS  
ONKEY_PUSHS  
0
R
0
R
0
0
R
0
R
0
R
R
MISC_INT_  
STAT0  
Name  
SYS_OVLO_I  
LOW_SYS_  
WARN_I  
PWRON_I  
PWRDN_I  
PWRUP_I  
Reset  
Type  
0
0
0
0
RW1C  
0
0
RW1C  
0
RW1C  
0
RW1C  
RW1C  
0x29  
MISC_INT_  
MASK0  
Name  
SYS_OVLO_M  
LOW_SYS_  
WARN_M  
PWRON_M  
PWRDN_M  
PWRUP_M  
Reset  
0
0
0
1
1
1
1
1
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
122 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Addre  
ss  
Register name  
BITS[7:0]  
7
6
5
4
RW  
3
2
RW  
1
RW  
0
RW  
Type  
RW  
0x2A  
MISC_INT_  
SENSE0  
Name  
SYS_OVLO_S  
LOW_SYS_  
WARN_S  
PWRON_S  
PWRDN_S  
PWRUP_S  
Reset  
Type  
0
0
0
0
0
0
0
0
R
R
R
R
R
0x30  
0x32  
0x33  
0x34  
0x35  
COINCELL_  
CONTROL  
Name  
Reset  
Type  
COINCHEN  
VCOIN[3:0]  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
SW1_VOLT  
Name  
Reset  
Type  
SW1_VOLT[5:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
SW1_STBY_  
VOLT  
Name  
Reset  
Type  
SW1_STBY_VOLT[5:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
SW1_SLP_VOLT Name  
SW1_SLP_VOLT[5:0]  
Reset  
Type  
0
0
0
0
0
RW1S  
0
RW1S  
0
RW1S  
0
RW1S  
RW1S  
RW1S  
SW1_CTRL  
Name  
SW1_RDIS_ENB  
SW1_FPWM  
SW1_FPWM_  
IN_DVS  
SW1_  
SW1_LPWR  
SW1_OMODE  
SW1_STBY_EN  
SW1_EN  
DVSSPEED  
Reset  
Type  
0
0
0
RW  
0
0
0
0
0
0
RW1S  
RW  
RW1S  
RW  
RW  
RW1S  
RW1S  
0x36  
0x38  
0x39  
0x3A  
0x3B  
SW1_CTRL1  
SW2_VOLT  
Name  
Reset  
Type  
SW1_TMODE_SEL  
SW1_ILIM[1:0]  
0
0
0
0
0
0
0
RW  
RW1S  
RW1S  
Name  
Reset  
Type  
SW2_VOLT[5:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
SW2_STBY_  
VOLT  
Name  
Reset  
Type  
SW2_STBY_VOLT[5:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
SW2_SLP_VOLT Name  
SW2_SLP_VOLT[5:0]  
Reset  
Type  
0
0
0
0
0
RW1S  
0
RW1S  
0
RW1S  
0
RW1S  
RW1S  
RW1S  
SW2_CTRL  
Name  
SW2_RDIS_ENB  
SW2_FPWM  
SW2_FPWM_  
IN_DVS  
SW2_  
SW2_LPWR  
SW2_OMODE  
SW2_STBY_EN  
SW2_EN  
DVSSPEED  
Reset  
Type  
0
0
0
RW  
0
0
0
RW  
0
0
RW  
0
0
0
RW1S  
RW  
RW1S  
RW1S  
RW1S  
0x3C  
0x3E  
0x3F  
0x40  
0x41  
SW2_CTRL1  
SW3_VOLT  
Name  
Reset  
Type  
SW2_TMODE_SEL  
SW2_ILIM[1:0]  
0
0
0
RW  
0
0
0
0
RW1S  
RW1S  
Name  
Reset  
Type  
SW3_VOLT[3:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
SW3_STBY_  
VOLT  
Name  
Reset  
Type  
SW3_STBY_VOLT[3:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
SW3_SLP_VOLT Name  
SW3_SLP_VOLT[3:0]  
Reset  
Type  
0
0
0
RW1S  
0
RW1S  
0
RW1S  
0
RW1S  
SW3_CTRL  
Name  
SW3_RDIS_ENB  
SW3_FPWM  
SW3_  
SW3_LPWR  
SW3_OMODE  
SW3_STBY_EN  
SW3_EN  
DVSSPEED  
Reset  
Type  
0
RW1S  
0
RW  
0
0
0
0
0
RW  
0
0
0
RW1S  
RW  
RW1S  
RW1S  
0x42  
0x48  
SW3_CTRL1  
Name  
Reset  
Type  
SW3_TMODE_SEL  
SW3_ILIM[1:0]  
0
0
0
0
0
0
0
RW  
RW1S  
RW1S  
VSNVS_CTRL  
Name  
Reset  
Type  
LIBGDIS  
FORCEBOS  
CLKPULSE  
VSNVS_VOLT[2:0]  
0
0
0
0
0
0
0
RW1S  
RW  
RW  
RW  
RW1S  
RW1S  
0x4A  
VREFDDR_  
CTRL  
Name  
VREFDDR_  
LPWR  
VREFDDR_  
OMODE  
VREFDDR_  
STBY_EN  
VREFDDR_EN  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
123 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Addre  
ss  
Register name  
BITS[7:0]  
7
0
6
0
5
0
4
0
3
0
2
1
0
0
0
Reset  
Type  
0
0
0
0
RW  
RW  
RW1S  
RW1S  
0x4C  
0x4D  
0x4F  
0x50  
0x52  
0x53  
0x58  
0x59  
015A  
0x5B  
LDO1_VOLT  
LDO1_CTRL  
LDO2_VOLT  
LDO2_CTRL  
LDO3_VOLT  
LDO3_CTRL  
PWRCTRL0  
PWRCTRL1  
PWRCTRL2  
PWRCTRL3  
Name  
Reset  
Type  
LDO1_VOLT[4:0]  
0
0
RW1S  
LDO1_LPWR  
0
0
0
0
RW1S  
0
0
0
RW1S  
RW1S  
RW1S  
Name  
Reset  
Type  
LDO1_LS_EN  
LDO1_OMODE  
LDO1_STB Y_EN  
VLDO1_EN  
0
0
RW1S  
0
0
0
0
0
RW  
RW  
RW1S  
RW1S  
Name  
Reset  
Type  
LDO2_VOLT[3:0]  
0
0
RW1S  
LDO2_LPWR  
0
0
0
0
RW1S  
0
0
0
RW1S  
RW1S  
Name  
Reset  
Type  
LDO2_OMODE  
LDO2_STB Y_EN  
VLDO2_EN  
0
0
0
0
0
0
0
RW  
RW  
RW1S  
RW1S  
Name  
Reset  
Type  
LDO3_VOLT[4:0]  
0
0
RW1S  
LDO3_LPWR  
0
0
0
0
RW1S  
0
0
0
RW1S  
RW1S  
RW1S  
Name  
Reset  
Type  
LDO3_LS_EN  
LDO3_OMODE  
LDO3_STB Y_EN  
VLDO3_EN  
0
0
0
0
RW1S  
RW  
RW  
RW1S  
RW1S  
Name  
Reset  
Type  
TGRESET[7:6]  
POR_DLY[5:3]  
STANDBYINV  
STANDBYDLY[1:0]  
0
0
0
0
0
0
0
1
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW  
RW  
RW  
Name  
Reset  
Type  
ONKEY_RST_EN  
REGSCPEN  
RESTARTEN  
PWRONRSTEN  
ONKEYDBNC[3:2]  
PWRONDBNC[1:0]  
1
RW  
0
0
RW  
0
0
RW  
0
0
RW  
0
0
0
0
0
RW  
RW  
RW  
RW  
Name  
Reset  
Type  
LOW_SYS_WARN[3:2]  
UVDET[1:0]  
0
0
0
0
RW  
RW  
RW1S  
RW1S  
Name  
GOTO_CORE_  
OFF  
GOTO_SHIP  
Reset  
Type  
0
RW  
0
0
RW  
0
0
RW  
0
0
RW  
0
0
RW  
0
0
0
0
RW  
RW  
RW  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x67  
0x68  
SW1_PWRDN_  
SEQ  
Name  
Reset  
Type  
SW1_PWRDN_SEQ[2:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
SW2_PWRDN_  
SEQ  
Name  
Reset  
Type  
SW2_PWRDN_SEQ[2:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
SW3_PWRDN_  
SEQ  
Name  
Reset  
Type  
SW3_PWRDN_SEQ[2:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
LDO1_PWRDN_ Name  
LDO1_PWRDN_SEQ[2:0]  
SEQ  
Reset  
0
0
0
Type  
0
0
0
0
0
RW1S  
RW1S  
RW1S  
LDO2_PWRDN_ Name  
LDO2_PWRDN_SEQ[2:0]  
SEQ  
Reset  
0
0
0
Type  
0
0
0
0
0
RW1S  
RW1S  
RW1S  
LDO3_PWRDN_ Name  
LDO3_PWRDN_SEQ[2:0]  
SEQ  
Reset  
0
0
0
Type  
0
0
0
0
0
RW1S  
RW1S  
RW1S  
VREFDDR_  
Name  
Reset  
Type  
VREFDDR_PWRDN_SEQ[2:0]  
PWRDN_S EQ  
0
0
0
0
0
RW1S  
RW1S  
RW1S  
STATE_INFO  
I2C_ADDR  
Name  
Reset  
Type  
STATE[5:0]  
0
R
0
R
0
R
0
0
0
R
R
R
Name  
USE_DEFAULT_  
ADDR  
I2C_SLAVE_ADDR_LSBS[2:0]  
Reset  
0
0
0
0
0
0
0
0
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
124 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Addre  
ss  
Register name  
IO_DRV0  
BITS[7:0]  
7
RW  
0
6
0
5
0
4
0
3
0
2
R
1
0
Type  
R
R
0x69  
0x6A  
0x6B  
Name  
Reset  
Type  
0
0
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
0
RW  
RW  
IO_DRV1  
Name  
Reset  
Type  
0
RW  
0
RW  
RC_16MHZ  
Name  
REQ_ACORE_  
HIPWR  
REQ_ACORE_ON  
REQ_16MHZ  
Reset  
Type  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
0x6F  
KEY1  
Name  
Reset  
Type  
KEY1[7:0]  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
125 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
12.4 Register charger bitmap  
CHGPOK_RSTB [1]  
VCOREDIG_RSTB [2]  
[1] Bits reset by invalid VBUSIN  
[2] Bits reset by invalid VCOREDIG  
Table 175.ꢀRegister charger bitmap  
Address  
Register name  
BITS[7:0]  
7
6
5
4
3
2
1
0
0x00  
CHG_INT  
Name  
Reset  
Type  
THM_I  
VBUS_DPM_I  
VBUS_I  
RSVD4  
CHG_I  
BAT_I  
BAT2SOC_I  
SUP_I  
0
0
0
0
0
0
0
0
RW1C  
THM_M  
RW1C  
RW1C  
VBUS_M  
RW1C  
RSVD4  
RW1C  
CHG_M  
RW1C  
BAT_M  
RW1C  
RW1C  
SUP_M  
0x02  
0x04  
0x06  
CHG_INT_MASK  
CHG_INT_OK  
VBUS_SNS  
Name  
Reset  
Type  
VBUS_DPM_M  
BAT2SOC_M  
1
1
1
1
1
1
1
1
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Name  
Reset  
Type  
THM_OK  
VBUS_DPM_OK  
VBUS_OK  
RSVD4  
CHG_OK  
BAT_OK  
BAT2SOC_OK  
SUP_OK  
1
0
R
0
0
0
1
0
0
R
R
R
R
R
R
R
Name  
VBUS_DPM_  
SNS  
RSVD6  
VBUS_VALID_  
SNS  
VBUS_OVLO_  
SNS  
VBUS_IN2SYS_  
SNS  
VBUS_UVLO_  
SNS  
RSVD0[1:0]  
Reset  
Type  
0
0
0
0
1
1
0
0
R
R
R
R
R
R
R
R
0x07  
0x08  
0x09  
0x0A  
0x0D  
CHG_SNS  
Name  
Reset  
Type  
TREG_SNS  
THM_SNS  
WDT_SNS  
RSVD4  
CHG_SNS[3:0]  
0
0
0
0
1
0
0
0
R
R
R
R
R
R
R
R
BATT_SNS  
Name  
Reset  
Type  
RSVD6[7:6]  
BATTOC_SNS  
RSVD3[4:3]  
BATT_SNS[2:0]  
0
0
0
0
0
0
0
0
RW  
RW  
R
RW  
RW  
R
R
R
CHG_OPER  
CHG_TMR  
Name  
Reset  
Type  
RSVD5[7:5]  
DISBATFET  
WDTEN  
RSVD2  
CHG_OPER[1:0]  
0
RW  
0
0
0
0
0
0
1
RW  
RW  
RW  
RW  
RW  
RW1S  
RW1S  
Name  
Reset  
Type  
TPRECHG  
0
RSVD6  
EOCTIME[5:3]FCHGTIME[2:0]  
0
0
0
1
RW1S  
0
1
0
RW1S  
R
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
CHG_EOC_CNFG  
Name  
EOC_MODE  
IEOC[6:4]  
EOC_EXIT  
FORCE_BATT_  
ISO  
CHG_RESTART[1:0]  
Reset  
Type  
0
RW1S  
RSVD7  
0
1
0
0
0
0
RW1S  
CHG_CC[4:0]  
0
0
1
RW  
RW  
RW  
RW1S  
RW1S  
RW1S  
0x0E  
0x0F  
0x11  
CHG_CURR_CNFG  
BATT_REG  
Name  
Reset  
Type  
PRECHGLB_THRSH[6:5]  
0
0
0
0
0
0
RW  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
Name  
Reset  
Type  
MINVSYS[7:6]  
CHGCV[5:0]  
0
0
RW1S  
1
0
1
0
1
1
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
BATFET_CNFG  
Name  
BOVRC_  
WD_TIME  
BATFET_OC[5:4]  
BOVRC_  
WD_BATFET_  
OFF  
WDTCLR[1:0]  
NOVBUS  
DISBATFET  
Reset  
Type  
0
0
1
1
RW1S  
0
0
0
0
RW  
RW  
RW1S  
RW1S  
RW  
RW  
RW  
0x12  
0x14  
0x15  
THM_REG_CNFG  
VBUS_INLIM_CNFG  
VBUS_LIN_DPM  
Name  
Reset  
Type  
TEMP_FB_EN  
RSVD6  
THM_HOT  
THM_COLD  
0
REGTEMP[3:2]  
THM_CNFG[1:0]  
0
0
0
0
1
0
1
RW1S  
RW  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
Name  
Reset  
Type  
VBUS_LIN_ILIM[7:3]  
RSVD0[2:0]  
0
RW1S  
1
1
0
1
0
0
RW  
0
RW1S  
RW1S  
RW1S  
RW1S  
RW  
RW  
Name  
FET_SCALE  
RSVD6  
VIN_DPM_  
STOP  
PRECHGDBATT_THRSH[4:3]  
VBUS_DPM_REG[2:0]  
Reset  
Type  
0
0
0
0
0
0
0
0
RW1S  
R
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
126 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Address  
Register name  
BITS[7:0]  
7
6
5
4
3
2
USBPHYLDO  
0
1
USBPHY  
0
0
ACTDISPHY  
1
0x16  
USB_PHY_LDO_CNFG  
Name  
Reset  
Type  
RSVD6[7:6]  
RSVD6[7:6]  
RSVD4[5:4]  
RSVD3  
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW1S  
RW1S  
RW1S  
0x18  
0x19  
0x1A  
0x1B  
DBNC_DELAY_TIME  
CHG_INT_CNFG  
Name  
Reset  
Type  
SYS_WKUP_DLY[5:4]  
USB_PHY_TDB[3:2]  
VBUS_OV_TDB[1:0]  
0
0
0
0
0
0
0
0
RW1S  
RW  
RW  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
Name  
Reset  
Type  
RSVD2[7:2]  
EOC_INT  
CHG_INT_GEN  
0
0
0
0
0
0
0
0
RW1S  
RW  
RW  
RW  
RW  
RW  
RW  
RW1S  
THM_ADJ_SETTING  
VBUS2SYS_CNFG  
Name  
Reset  
Type  
RSVD6[7:6]  
CC_ADJ[5:4]  
CV_ADJ[3:2]  
THM_COOL  
0
THM_WARM  
0
0
0
0
0
0
0
RW  
RW  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
Name  
RSVD3[7:3]  
VBUS2SYS_  
THRSH  
VBUS2SYS_TDB[1:0]  
Reset  
Type  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW1S  
RW1S  
RW1S  
0x1C  
0x1D  
LED_PWM  
Name  
Reset  
Type  
LED_EN  
LED_RAMP  
LED_PWM[5:0]  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
FAULT_BATFET_CNFG  
Name  
CTRL_CHGR_BETA_SEL[7:6]  
RSVD5  
TMRFLT_BFET_ TSHDN_BFET_  
EN EN  
THMSUS_  
BFET_EN  
WDFLT_  
OVFLT_BFEET_  
EN  
BFEET_EN  
Reset  
Type  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
0x1E  
0x1F  
LED_CNFG  
Name  
Reset  
Type  
RSVD4[7:6]  
LEDOVRD  
LED_CFG  
0
LED_CURRENT[3:2]  
LED_FREQ[1:0]  
0
0
0
0
0
0
0
RW  
RW  
RW  
RW1S  
RW1S  
RW1S  
RW  
RW  
CHGR_KEY2  
Name  
Reset  
Type  
CHGR_KEY2[7:0]  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
127 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
12.5 Register OTP bitmap  
Table 176.ꢀRegister OTP bitmap  
Address  
Register name  
Value  
BIT[7:0]  
4
7
6
5
3
2
1
0
0x1C  
OTP_PMIC_  
CFG0  
UNUSED  
UNUSED  
UNUSED  
OTP_PWRGD_  
EN  
OTP_SEQ_  
OTP_PWRON_  
CFG  
CLK_SPEED  
A1 (Default)  
0x00  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0x04  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0x1D  
OTP_SW1  
OTP_SW1_  
DVSSPEED  
OTP_SW1_RDIS_  
ENB  
OTP_SW1_VOLT[5:0]  
A1 (Default)  
0x80  
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
0
1
1
1
1
1
0
0
1
1
1
0
1
1
1
0
0
1
0
1
1
1
1
1
0
0
1
0
1
1
1
1
1
0
0
1
0
1
0
1
1
1
A2  
0xA0  
0XBF  
0XA8  
0XBF  
0XB6  
0XBF  
0XBF  
0XBF  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0x1E  
OTP_SW1_SW2  
OTP_SW2_VOLT[5:0]  
OTP_SW1_  
DVS_SEL  
OTP_SW1_  
EN_AND_  
STBY_EN  
A1 (Default)  
0XA3  
0x05  
0x09  
0xC1  
0x0D  
0x09  
0x05  
0x09  
0xFF  
1
0
0
1
0
0
0
0
1
0
0
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
1
0
1
1
0
1
1
0
1
0
0
1
0
1
0
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0x1F  
OTP_SW2_SW3  
OTP_SW3_VOLT[3:0]  
OTP_SW2_  
DVS_SEL  
OTP_SW2_  
EN_AND_  
STBY_EN  
OTP_SW2_  
DVSSPEED  
OTP_SW2_  
RDIS_ENB  
A1 (Default)  
0x04  
0x0E  
0xFE  
0x06  
0xFE  
0xFE  
0x0E  
0xFE  
0xCE  
0
0
1
0
1
1
0
1
1
0
0
1
0
1
1
0
1
1
0
0
1
0
1
1
0
1
0
0
0
1
0
1
1
0
1
0
0
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0x20  
OTP_SW3__  
SWxILIM  
OTP_SW3_ILIM[1:0]  
OTP_SW2_ILIM[1:0]  
OTP_SW1_ILIM[1:0]  
OTP_SW3_  
EN_AND_  
STBY_EN  
OTP_SW3_  
RDIS_ENB  
A1 (Default)  
0XFE  
0xFE  
0xFE  
0xFE  
0xFE  
0xFE  
0xFE  
0xFE  
0xFE  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
128 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Address  
Register name  
Value  
BIT[7:0]  
7
6
5
4
3
2
1
0
0x21  
OTP_VREF_  
LDO1  
OTP_LDO1_LS_EN  
OTP_LDO1_VOLT[4:0]  
OTP_  
UNUSED  
VREFDDREN_  
AND_STBY_EN  
A1 (Default)  
0x16  
0x42  
0x42  
0x7E  
0x42  
0x42  
0x7E  
0x42  
0x6A  
0
0
1
1
1
1
1
1
1
1
0
1
0
0
1
0
0
1
0
0
0
0
0
1
0
0
1
0
1
1
0
0
1
0
0
1
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0x22  
OTP_LDO1_  
LDO2  
UNUSED  
OTP_LDO2_EN_  
AND_STBY_EN  
UNUSED  
OTP_LDO2_VOLT[3:0]  
OTP_LDO1_  
EN_AND_  
STBY_EN  
A1 (Default)  
0x4F  
0x5F  
0x5F  
0x5F  
0x5F  
0x5F  
0x5F  
0x5F  
0x5F  
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A2  
0
1
A3  
0
1
A4  
0
1
A5  
0
1
A6  
0
1
A7  
0
1
A8  
0
0
1
A9  
1
0x23  
OTP_LDO3  
UNUSED  
OTP_LDO3_  
EN_AND_  
STBY_EN  
OTP_LDO3_  
LS_EN  
OTP_LDO3_VOLT[4:0]  
A1 (Default)  
0x65  
0x50  
0x5F  
0x50  
0x5F  
0x5F  
0x5F  
0x5F  
0x50  
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
0
1
1
1
1
0
1
0
1
0
1
1
1
1
0
0
0
1
0
1
1
1
1
0
1
0
1
0
1
1
1
1
0
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0
0
0
0
0
0
0
0
0x24  
OTP_PMIC_  
CFG1  
UNUSED  
OTP_UVDET[1:0]  
OTP_POR_DLY[2:0]  
OTP_TGRESET[1:0]  
A1 (Default)  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0x40  
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0x25  
OTP_SW1_  
SW2_SEQ  
UNUSED  
UNUSED  
OTP_SW2_PWRUP_SEQ[2:0]  
OTP_SW1_PWRUP_SEQ[2:0]  
A1 (Default)  
0x11  
0x2D  
0x1B  
0x1C  
0x1B  
0x1B  
0x1B  
0x1B  
0x1B  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
1
1
1
1
1
1
1
1
0
1
0
1
0
0
0
0
0
0
1
1
1
0
1
1
1
1
1
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0
0
0
0
1
1
0
1
0
0
1
1
0
1
1
0
1
1
0
0
1
1
1
1
0x26  
OTP_SW3_  
LDO1_SEQ  
UNUSED  
UNUSED  
OTP_LDO1_PWRUP_SEQ[2:0]  
OTP_SW3_PWRUP_SEQ[2:0]  
A1 (Default)  
A2  
0x23  
0x09  
0
0
0
0
1
0
0
0
0
1
0
0
1
0
1
1
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
129 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Address  
Register name  
Value  
BIT[7:0]  
7
0
0
0
0
0
0
0
6
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
4
3
1
1
1
1
1
1
1
2
0
0
0
0
0
0
0
1
0
1
0
1
1
1
1
1
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0x1B  
0x0A  
0x1B  
0x1B  
0x1B  
0x1B  
0x1B  
1
1
0
1
1
1
1
1
1
1
1
1
1
1
0x27  
OTP_LDO2_  
LDO3_SEQ  
UNUSED  
UNUSED  
OTP_LDO3_PWRUP_SEQ[2:0]  
OTP_LDO2_PWRUP_SEQ[2:0]  
A1 (Default)  
0x2C  
0x09  
0x1A  
0x0A  
0x1A  
0x1A  
0x1A  
0x1A  
0x1B  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0
1
1
1
1
1
1
1
0x28  
OTP_PMIC_  
CFG2  
OTP_SHIP_  
OTP_I2C_SLV_ADDR[2:0]  
OTP_I2C_  
OTP_VREFDDR_PWRUP_SEQ[2:0]  
COREOFF_CYA  
DEGLITCH_EN[0]  
A1 (Default)  
0x05  
0x05  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A2  
0
0
0
A3  
0
0
0
A4  
0
0
0
A5  
0
0
0
A6  
0
0
0
A7  
0
0
0
A8  
0
0
0
0
0
0
A9  
0x29  
RSVD  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
Reserved (OTP_VSNVS_VOLT[2:0])  
Reserved  
(OTP_FORCE_  
LICELL)  
A1 (Default)  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2  
0
A3  
0
A4  
0
A5  
0
A6  
0
A7  
0
A8  
0
A9  
0
0x2A  
RSVD  
OTP_PMIC_SPARE0[7:0]  
A1 (Default)  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0x2B  
OTP_CHG_CFG0  
Reserved (OTP_  
CHGR_  
Reserved (OTP_  
CHGR_  
OTP_CHGR_EOCTIME[2:0]  
OTP_CHGR_  
TPRECHG  
OTP_CHGR_OPER[1:0]  
THM_WARM)  
THM_COOL)  
A1 (Default)  
0x02  
0x01  
0x02  
0x02  
0x02  
0x01  
0x02  
0x02  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
1
0
1
1
0
1
0
0
0
1
0
0
A2  
A3  
A4  
A5  
A6  
A7  
A8  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
130 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Address  
Register name  
Value  
BIT[7:0]  
7
6
5
4
3
2
1
0
A9  
0x01  
0
0
0
0
0
0
0
1
0x2C  
OTP_CHG_CFG1  
OTP_CHGR_CHG_RESTART[1:0]  
Reserved (OTP_  
CHGR_  
Reserved (OTP_  
CHGR_  
Reserved (OTP_  
CHGR_  
OTP_CHGR_FCHGTIME[2:0]  
FORCE_BATT_  
ISO)  
EOC_EXIT)  
EOC_MODE)  
A1 (Default)  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0x2D  
OTP_CHG_CFG2  
OTP_CHGR_VSYSMIN[1:0]  
OTP_CHGR_CHG_CC[4:0]  
OTP_CHGR_  
TEMPFB_EN  
A1 (Default)  
0x80  
0x80  
0x80  
0x90  
0x80  
0x40  
0x80  
0x80  
0x40  
1
1
1
1
1
0
1
1
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0x2E  
OTP_CHG_CFG3  
OTP_CHGR_BATFET_OC[1:0]  
OTP_CHGR_CHGCV[5:0]  
A1 (Default)  
0x2B  
0x2B  
0x2B  
0x2B  
0x2B  
0x2B  
0x2B  
0x2B  
0x2B  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
A2  
1
A3  
1
A4  
1
A5  
1
A6  
1
A7  
1
A8  
1
1
A9  
0x2F  
OTP_CHG_CFG4  
UNUSED  
OTP_CHGR_THM_CNFG[1:0]  
OTP_CHGR_REGTEMP[1:0]  
OTP_CHGR_  
THM_COLD  
OTP_CHGR_  
THM_HOT  
OTP_CHGR_  
BOVRC_  
DISBATFET  
A1 (Default)  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0x30  
OTP_CHG_CFG5  
UNUSED  
UNUSED  
OTP_CHGR_  
OTP_CHGR_VBUS_LIN_ILIM[4:0]  
VIN_DPM_STOP  
A1 (Default)  
0x0E  
0x14  
0x14  
0x14  
0x14  
0x14  
0x14  
0x14  
0x14  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0x31  
OTP_CHG_CFG6  
OTP_CHGR_SYS_WKUP_DLY[1:0]  
OTP_CHGR_  
ACTDISPHY  
OTP_CHGR_  
USBPHY  
OTP_CHGR_  
USBPHYLDO  
OTP_CHGR_VBUS_DPM_REG[2:0]  
A1 (Default)  
A2  
0x00  
0x28  
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
131 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Address  
Register name  
Value  
BIT[7:0]  
7
0
0
0
0
0
0
0
6
0
0
0
0
0
0
0
5
1
1
1
1
1
1
1
4
0
0
0
0
0
0
0
3
1
1
1
1
1
1
1
2
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
A3  
0x28  
0x2E  
0x28  
0x28  
0x28  
0x28  
0x28  
0
A4  
1
A5  
0
A6  
0
A7  
0
A8  
0
0
A9  
0x32  
OTP_CHG_CFG7  
OTP_CHGR_CC_ADJ[1:0]  
OTP_CHGR_  
CHG_INT_EN  
OTP_CHGR_  
EOC_INT  
OTP_CHGR_VBUS_OV_TDB[1:0]  
Reserved  
(OTP_CHGR_USB_PHY_  
TDB[1:0])  
A1 (Default)  
0x04  
0x04  
0x04  
0x14  
0x04  
0x04  
0x04  
0x04  
0x04  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0x33  
0x34  
0x35  
OTP_CHG_CFG8  
UNUSED  
OTP_CHGR_LED_CURRENT[1:0]  
OTP_CHGR_VBUS2SYS_TDB[1:0]  
OTP_CHGR_  
VBUS2SYS_  
THRSH  
OTP_CHGR_CV_ADJ[1:0]  
A1 (Default)  
0x28  
0x28  
0x28  
0x28  
0x28  
0x28  
0x28  
0x28  
0x28  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2  
0
1
0
A3  
0
1
0
A4  
0
1
0
A5  
0
1
0
A6  
0
1
0
A7  
0
1
0
A8  
0
0
1
1
0
0
A9  
OTP_CHG_CFG9  
OTP_CHGR_LED_  
CNFG  
OTP_CHGR_OVFLT_ OTP_CHGR_  
OTP_CHGR_  
OTP_CHGR_  
OTP_CHGR_  
TMRFLT_  
Reserved  
BFET_EN  
WDFLT_BFET_  
EN  
THMSUS_BFET_ TSHDN_BFET_  
EN EN  
(OTP_CHGR_BETA_SEL[1:0])  
BFET_EN  
A1 (Default)  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
OTP_CHG_  
CFG10  
UNUSED  
UNUSED  
UNUSED  
Reserved (OTP_  
CHGR_  
Reserved  
OTP_CHGR_PRECHG_  
LOWBATT_THRSH[1:0]  
(OTP_CHGR_PRECHG_  
LOWBATT_THRSH[1:0])  
FET_SCALE)  
A1 (Default)  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
0x36  
RSVD  
OTP_CHGR_SPARE0[7:0]  
A1 (Default)  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2  
A3  
A4  
A5  
A6  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
132 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Address  
Register name  
Value  
BIT[7:0]  
7
6
0
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0
1
1
1
1
1
1
1
1
1
4
0
0
0
1
1
1
1
1
1
1
1
1
3
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
A7  
0x00  
0x00  
0x00  
0
A8  
0
A9  
0
0x37  
OTP_CRC_LSB  
CRC[1]LSB  
A1 (Default)  
0xB5  
0xB5  
0xB5  
0xB5  
0xB5  
0xB5  
0xB5  
0xB5  
0xB5  
1
1
1
1
1
1
1
1
1
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
13 Application details  
13.1 Example schematic  
Figure 28 shows a typical schematic of the PF1550 with key external components.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
133 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
VBATT  
37  
35  
36  
5.0 V  
VBUS  
D-  
10  
6.3 V  
F
1
2
3
4
5
VBUSIN  
VSYS1  
VSYS2  
2.2  
25 V  
F
4.2 V  
22  
VSYS  
DM  
DP  
PHY PWR  
i.MX 7ULP  
(USB)  
F
10 V  
22 F  
D+  
3.3 V  
1.0  
39  
10 V  
27  
25  
USBPHY  
ID  
SW1FB  
SW1LX  
F
UID  
6.3 V  
0.6 V to 1.3785 V @ 1.0 A (DVS)  
10 10  
GND  
VDD_DIG1  
VDD_HSIC  
1.0  
H
H
F
F
26  
F
6.3 V  
6.3 V 6.3 V  
VSYS  
SW1IN  
SW2IN  
SW3IN  
LICELL  
4.7  
4.7  
4.7  
0.1  
16  
18  
SW2FB  
SW2LX  
1.2 V @ 1.0 A (DVS)  
10 10  
6.3 V 6.3 V  
17  
F
6.3 V  
1.0  
F
F
i.MX 7ULP  
(Core)  
15  
13  
SW3FB  
SW3LX  
14  
F
6.3 V  
1.8 V @ 1.0 A  
10 10  
VDD_PTC  
1.0  
H
F
F
6.3 V 6.3 V  
VDD_PTD  
VDD_RTC  
31  
F
6.3 V  
30  
VSNVS  
VREFDDR  
VLDO1  
0.47  
6.3 V  
F
PF1550  
22  
F
VINREFDDR  
VLDO1IN  
0.5 V to 0.9 V @ 10 mA  
1.0  
21  
29  
19  
12  
1.0  
0.9 V  
F
6.3 V  
LPDDR2  
1.8 V  
1.2 V  
6.3 V  
28  
F
0.75 V to 3.3 V @ 300 mA  
1.0  
3.3 V  
1.8 V  
4.7  
6.3 V  
F
6.3 V  
20  
F
6.3 V  
Peripherals  
VLDO2IN  
1.8 V to 3.3 V @ 400 mA  
1.0  
VLDO2  
10  
6.3 V  
F
11  
F
6.3 V  
VLDO3IN  
VDDIO  
0.75 V to 3.3 V @ 300 mA  
1.0  
VLDO3  
CHGB  
4.7  
6.3 V  
F
1.8 V  
4
47 Ω  
1.0  
40  
24  
23  
VSYS  
0.1  
6.3 V  
F
4.7 K  
4.7 K  
VCORE  
VDIG  
F
3
2
6.3 V  
SCL  
SDA  
I2C SCL  
I2C SDA  
1.0  
6.3 V  
F
5
VDDOTP  
VBATT  
33  
34  
i.MX 7ULP  
(Interface)  
100 K 100 K 100 K 100 K 100 K  
VBATT1  
VBATT2  
Battery pack  
CV charge 3.5 V to 4.44 V  
+
9
4.7  
10 V  
F
INTB  
INTB (GPIO)  
POR_B  
10  
6
RESETBMCU  
10 K  
38  
32  
3.7 V  
Li-Ion  
INT2P7  
THM  
PWRON  
WDI  
PMIC_ON_REQ  
CC charge  
100 mA to  
1.0 A  
2.2  
6.3 V  
F
1
7
WDOG_B  
STANDBY  
PMIC_STBY_REQ  
T
-
VBATT  
t
100 K  
ON/OFF  
GND  
EP  
8
10 K thermistor  
ONKEY  
aaa-023890  
Figure 28.ꢀTypical schematic  
13.2 Bill of materials  
The following table shows an example bill of materials to be used with the PF1550.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
134 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Table 177.ꢀBill of materials  
Block  
VCORE  
VDIG  
Function  
Description  
Qty  
1
Analog IC supply  
CAP CER 1.0 µF 6.3 V 20 % X5R 0201  
CAP CER 1.0 µF 6.3 V 20 % X5R 0201  
CAP CER 2.2 µF 6.3 V 20% X5R 0201  
CAP CER 1.0 µF 6.3 V 20 % X5R 0201  
CAP CER 2.2 µF 25 V 20 % X5R 0402  
22 µF, 10 V, MLCC, X5R  
Digital IC supply  
1
INT2P7  
USBPHY  
VBUSIN  
VSYS  
Charger analog supply  
USB PHY output capacitor  
VBUSIN bypass capacitor  
VSYS capacitor  
1
1
1
2
VBATT  
Bypass capacitor between VBATT and  
VSYS [1]  
10 µF, 6.3 V, MLCC, X5R  
1
VDDIO  
THM  
VDDIO bypass capacitor  
Thermistor bias resistor  
BUCK1 inductor  
CAP CER 0.1 uF 6.3 V 20 % X5R 0201  
10 kOhm, 0201  
1
1
1
1
2
1
1
2
1
1
2
1
1
1
1
1
1
1
1
1
1
Buck 1  
1.0 µH, +/−20 %, 120 mOhm typ, 1700 mA  
4.7 µF, 6.3 V, MLCC, X5R  
BUCK1 input capacitor  
BUCK1 output capacitor  
BUCK2 inductor  
10 µF, 6.3 V, MLCC, X5R  
Buck 2  
Buck 3  
1.0 µH, +/−20 %, 120 mOhm typ, 1700 mA  
4.7 µF, 6.3 V, MLCC, X5R  
BUCK2 input capacitor  
BUCK2 output capacitor  
BUCK3 inductor  
10 µF, 6.3V, MLCC, X5R  
1.0 µH, +/-20 %, 120 mOhm typ, 1700 mA  
4.7 µF, 6.3 V, MLCC, X5R  
BUCK3 input capacitor  
BUCK3 output capacitor  
LDO1 input capacitor  
LDO1 output capacitor  
LDO2 input capacitor  
LDO2 output capacitor  
LDO3 input capacitor  
LDO3 output capacitor  
VREFDDR input capacitor  
VREFDDR output capacitor  
VSNVS output capacitor  
LICELL bypass capacitor  
10 µF, 6.3 V, MLCC, X5R  
LDO1  
LDO2  
CAP CER 1.0 µF 6.3 V 20 % X5R 0201  
4.7 µF, 6.3 V, MLCC, X5R  
CAP CER 1.0 µF 6.3 V 20 % X5R 0201  
10 µF, 6.3 V, MLCC, X5R  
LDO3  
CAP CER 1.0 µF 6.3 V 20 % X5R 0201  
4.7 µF, 6.3 V, MLCC, X5R  
VREFDDR  
CAP CER 1.0 µF 6.3 V 20 % X5R 0201  
CAP CER 1.0 µF 6.3 V 20 % X5R 0201  
CAP CER 0.47 µF 6.3 V 20 % X5R 0201  
CAP CER 0.1 µF 6.3 V 20 % X5R 0201  
VSNVS  
LICELL  
[1] ONLY for < 20mA EOC current threshold settings and to allow a smooth transition from CV to EOC state  
13.3 PF1550 layout guidelines  
13.3.1 General board recommendations  
It is recommended to use an eight layer board stack-up arranged as follows:  
High current signal  
GND  
Signal  
Power  
Power  
Signal  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
135 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
GND  
Allocate TOP and BOTTOM PCB layers for POWER ROUTING (high current signals),  
copper-pour the unused area.  
Use internal layers sandwiched between two GND planes for the SIGNAL routing.  
13.3.2 Component placement  
It is desirable to keep all component related to the power stage as close to the PMIC as  
possible, specially decoupling input and output capacitors.  
13.3.3 General routing requirements  
Some recommended things to keep in mind for manufacturability:  
Via in pads require a 4.5 mil minimum annular ring. Pad must be 9.0 mils larger than  
the hole  
Maximum copper thickness for lines less than 5.0 mils wide is 0.6 oz copper  
Minimum allowed spacing between line and hole pad is 3.5 mils  
Minimum allowed spacing between line and line is 3.0 mils  
Care must be taken with SWxFB pins traces. These signals are susceptible to noise  
and must be routed far away from power, clock, or high-power signals, like the ones on  
the SWxIN, SWxLX. They could be also shielded.  
Shield feedback traces of the regulators and keep them as short as possible (trace  
them on the bottom so the ground and power planes shield these traces).  
Avoid coupling traces between important signal/low noise supplies (like VCORE, VDIG)  
from any switching node (for example, SW1LX, SW2LX, SW3LX).  
Make sure that all components related to a specific block are referenced to the  
corresponding ground.  
13.3.4 Parallel routing requirements  
I2C signal routing  
CLK is the fastest signal of the system, so it must be given special care.  
To avoid contamination of these delicate signals by nearby high power or high  
frequency signals, it is a good practice to shield them with ground planes placed on  
adjacent layers. Make sure that the ground plane is uniform throughout the whole  
signal trace length.  
These signals can be placed on an outer layer of the board to reduce their  
capacitance with respect to the ground plane.  
Care must be taken with these signals not to contaminate analog signals, as they are  
high frequency signals. Another good practice is to trace them perpendicularly on  
different layers, so there is a minimum area of proximity between signals.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
136 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
DO  
Signal  
DONT  
Signal  
Ground plane  
Ground planes  
aaa-023891  
Figure 29.ꢀRecommended shielding for critical signals  
13.3.5 Switching regulator layout recommendations  
Per design, the switching regulators in PF1550 are designed to operate with only one  
input bulk capacitor. However, it is recommended to add a high frequency filter input  
capacitor (CIN_hf), to filter out any noise at the regulator input. This capacitor should  
be in the range of 100 nF and should be placed right next to or under the IC, closest to  
the IC pins.  
Make high-current ripple traces low-inductance (short, high W/L ratio).  
Make high-current traces wide or copper islands.  
VIN  
SWxIN  
C
C
IN  
IN_HF  
SWxLX  
SWxFB  
Driver  
controller  
L
C
OUT  
Compensation  
aaa-023892  
Figure 30.ꢀGeneric buck regulator architecture  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
137 / 150  
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Route FB trace on any layer away from noisy nodes  
VIN  
GND  
C
OUT  
C
IN  
VOUT  
SWxFB  
SWxIN  
SWxLX  
C
IN_HF  
Inductor  
aaa-023893  
Figure 31.ꢀLayout example for buck regulators  
13.4 Thermal information  
13.4.1 Rating data  
The thermal rating data of the packages has been simulated with the results listed in  
Table 3 .  
Junction to Ambient Thermal Resistance Nomenclature: the JEDEC specification  
reserves the symbol RθJA or θJA (Theta-JA) strictly for junction-to-ambient thermal  
resistance on a 1s test board in natural convection environment. RθJMA or θJMA (Theta-  
JMA) is used for both junction-to-ambient on a 2s2p test board in natural convection  
and for junction-to-ambient with forced convection on both 1s and 2s2p test boards. It is  
anticipated that the generic name, Theta-JA, continues to be commonly used.  
The JEDEC standards can be consulted at http://www.jedec.org/.  
13.4.2 Estimation of junction temperature  
An estimation of the chip junction temperature TJ can be obtained from the equation: TJ=  
TA+ (RθJA x PD) with:  
TA = Ambient temperature for the package in °C  
RθJA = Junction to ambient thermal resistance in °C/W  
PD= Power dissipation in the package in W  
The junction to ambient thermal resistance is an industry standard value that provides a  
quick and easy estimation of thermal performance. Unfortunately, there are two values  
in common usage: the value determined on a single layer board RθJA and the value  
obtained on a four layer board RθJMA. Actual application PCBs show a performance close  
to the simulated four layer board value although this may be somewhat degraded in case  
of significant power dissipated by other components placed close to the device.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
138 / 150  
 
 
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
At a known board temperature, the junction temperature TJ is estimated using the  
following equation TJ= TB+ (RθJBx PD) with  
TB = Board temperature at the package perimeter in °C  
RθJB = Junction to board thermal resistance in °C/W  
PD = Power dissipation in the package in W  
14 Package outline  
The PF1550 uses a 40-pin QFN 5.0 mm x 5.0 mm with exposed pad, case number  
98ASA00913D.  
This drawing is available for download at http://www.nxp.com.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
139 / 150  
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Figure 32.ꢀPackage outline for HVQFN40 (SOT1369-4)  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
140 / 150  
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Figure 33.ꢀPackage outline detail for HVQFN40 (SOT1369-4)  
Figure 34.ꢀPackage outline notes for HVQFN40 (SOT1369-4)  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
141 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
15 Revision history  
Table 178.ꢀRevision history  
Document ID  
Release date  
Data sheet status  
Change notice  
Supersedes  
PF1550 v.5.0  
Modifications  
20190610  
Product data sheet  
PF1550 v.4.0  
Updated as per CIN 201904033I  
Table 1: added MC32PF1550A9EP and MC34PF1550A9EP parts  
Table 77: replaced "0.2 * VSNVS" by "0.4" and "0.8 * VSNVS" by "1.4"  
Section 9.3: added Table 78  
Section 9.4: added Table 79  
Table 81: replaced "0.2 * VBATT" by "0.4", "0.8 * VBATT" by "1.4" and 3.6 by 4.8  
Section 11.1: updated Figure 27  
Table 85: added OTP configuration for A9  
Section 8.8.4: updated Figure 23  
Table 165: updated description for USBPHYLDO (replaced 0 by 1)  
Figure 12, Figure 28: replaced "INT_2P7" by "INT2P7" and 1.0 µF by 2.2 µF  
Section 12.5: added A9 OTP  
Global: changed document status from Advance information to Product  
PF1550 v.4.0  
Modifications  
20180928  
Advance information  
PF1550 v.3.0  
Added MC32PF1550A0EP, MC32PF1550A8EP, MC34PF1550A0EP, and MC34PF1550A8EP parts  
to Table 1  
Added OTP configuration for A8 to Table 85  
PF1550 v.3.0  
Modifications  
20180502  
Advance information  
PF1550 v.2.0  
Changed PC parts to MC in Table 1  
Updated programming option for MC32PF1550A7EP and MC34PF1550A7EP (replaced LPDDR3 by  
LPDDR2) in Table 1  
Updated SDA and SCL pin description in Table 2  
Updated A7 OTP configuration for OTP_SW3_VOLT[5:0] and OTP_LDO1_VOLT[4:0] registers  
(replaced 3.3 V by 1.8 V and 1.8 V by 3.3 V) in Table 85 and modified Table 176 to reflect A7 OTP  
option updates  
Updated min. and max. input current values in Table 6  
PF1550 v.2.0  
20180202  
Advance information  
PF1550 v.1.0  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
142 / 150  
 
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Document ID  
Release date  
Data sheet status  
Change notice  
Supersedes  
Modifications  
Updated Figure 10  
Updated Figure 28  
Updated description in Section 7.3.6 "LDO2 current limit protection"  
Changed capacitor value from 4.7 µF to 10 µF in Section 7.3.3 "LDO2 external components"  
Updated Figure 15, Figure 17, Figure 28  
Changed the value of LDO2 output capacitor from 4.7 µF to 10 µF in Table 177  
Updated Figure 3 (changed VUSB to VBUSIN  
Updated Figure 4 (changed VDO3IN to VLDO3IN)  
Corrected typos in Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 13,  
Table 14, Table 17, and Table 18  
Updated quiescent current ILDO1Q from 4.0 to 4.5 in Table 21 and added new parameter  
Updated and added new parameters to Table 19 and Table 20  
Updated values for ILDO2LIM in Table 22  
Updated quiescent current ILDO3Q from 4.0 to 4.5 in Table 23  
Updated typical and maximum value for REGS_DISABLE and SHIP MODE in Table 26  
Updated Section 6.3.3 "Output voltage setting in SW3"  
Updated Figure 12, Figure 13, and Figure 14  
Changed OTP_SW2_DVS_SEL to DVS mode for A4 configuration in Table 85  
Changed OTP configuration for SW1 to 1.3875 V in Table 85  
Updated Table 176 and Table 177  
Updated IQ_CHARGER_LQM max. value from 2.5 to 3.0 in Table 6  
Updated values for VSWx in Table 19  
Updated ILDO1Q and ILDO3Q values from 22 to 25 in Table 21 and Table 23  
Added part numbers to Table 1  
Updated typical value for tFC in Table 13  
Updated ISWxLIMH values in Table 19 and Table 20  
Updated Figure 16 and Figure 17  
Added Section 9.7  
Added OTP configuration for A5 to Table 85  
Updated Table 1  
Added A6 and A7 OTP configurations to Table 85  
Updated Figure 3, Figure 16, and Figure 28  
Added Figure 27  
Updated values for ISWxLIMH and ISW3LIMH in Table 19 and Table 20  
Added ripple parameter to Table 20  
Updated values for frequency in Table 72  
Updated Table 116, Table 121, Table 126, Table 167, and Table 174  
Updated Section 12.5  
Replaced MINVSYS by VSYSMIN  
Changed document status from Product preview to Advance information  
PF1550 v.1.0  
20161012  
Product preview  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
143 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
16 Legal information  
16.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Definition  
Objective [short] data sheet  
Development  
This document contains data from the objective specification for product  
development.  
Preliminary [short] data sheet  
Product [short] data sheet  
Qualification  
Production  
This document contains data from the preliminary specification.  
This document contains the product specification.  
[1] Please consult the most recently issued document before initiating or completing a design.  
[2] The term 'short data sheet' is explained in section "Definitions".  
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple  
devices. The latest product status information is available on the Internet at URL http://www.nxp.com.  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
16.2 Definitions  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences  
of use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is  
intended for quick reference only and should not be relied upon to contain  
detailed and full information. For detailed and full information see the  
relevant full data sheet, which is available on request via the local NXP  
Semiconductors sales office. In case of any inconsistency or conflict with the  
short data sheet, the full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes  
no representation or warranty that such applications will be suitable  
for the specified use without further testing or modification. Customers  
are responsible for the design and operation of their applications and  
products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications  
and products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with  
their applications and products. NXP Semiconductors does not accept any  
liability related to any default, damage, costs or problem which is based  
on any weakness or default in the customer’s applications or products, or  
the application or use by customer’s third party customer(s). Customer is  
responsible for doing all necessary testing for the customer’s applications  
and products using NXP Semiconductors products in order to avoid a  
default of the applications and the products or of the application or use by  
customer’s third party customer(s). NXP does not accept any liability in this  
respect.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product  
is deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
16.3 Disclaimers  
Limited warranty and liability — Information in this document is believed  
to be accurate and reliable. However, NXP Semiconductors does not  
give any representations or warranties, expressed or implied, as to the  
accuracy or completeness of such information and shall have no liability  
for the consequences of use of such information. NXP Semiconductors  
takes no responsibility for the content in this document if provided by an  
information source outside of NXP Semiconductors. In no event shall NXP  
Semiconductors be liable for any indirect, incidental, punitive, special or  
consequential damages (including - without limitation - lost profits, lost  
savings, business interruption, costs related to the removal or replacement  
of any products or rework charges) whether or not such damages are based  
on tort (including negligence), warranty, breach of contract or any other  
legal theory. Notwithstanding any damages that customer might incur for  
any reason whatsoever, NXP Semiconductors’ aggregate and cumulative  
liability towards customer for the products described herein shall be limited  
in accordance with the Terms and conditions of commercial sale of NXP  
Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those  
given in the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Right to make changes — NXP Semiconductors reserves the right to  
make changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
144 / 150  
 
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
No offer to sell or license — Nothing in this document may be interpreted  
customer uses the product for automotive applications beyond NXP  
Semiconductors’ specifications such use shall be solely at customer’s own  
risk, and (c) customer fully indemnifies NXP Semiconductors for any liability,  
damages or failed product claims resulting from customer design and use  
of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
or construed as an offer to sell products that is open for acceptance or  
the grant, conveyance or implication of any license under any copyrights,  
patents or other industrial or intellectual property rights.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor  
tested in accordance with automotive testing or application requirements.  
NXP Semiconductors accepts no liability for inclusion and/or use of non-  
automotive qualified products in automotive equipment or applications. In  
the event that customer uses the product for design-in and use in automotive  
applications to automotive specifications and standards, customer (a) shall  
use the product without NXP Semiconductors’ warranty of the product for  
such automotive applications, use and specifications, and (b) whenever  
16.4 Trademarks  
Notice: All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
NXP — is a trademark of NXP B.V.  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
145 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Tables  
Tab. 1.  
Tab. 2.  
Tab. 3.  
Tab. 4.  
Tab. 5.  
Tab. 6.  
Tab. 7.  
Tab. 8.  
Tab. 9.  
Orderable part variations ...................................6  
Tab. 55. Charger timers register ................................... 54  
Tab. 56. EOC state timer settings .................................54  
Tab. 57. VBUS input current limit register .....................56  
Tab. 58. Input current limit settings ............................... 56  
Tab. 59. Thermal regulation .......................................... 57  
Tab. 60. Temperature regulation control register .......... 59  
Tab. 61. Thermal regulation settings .............................59  
Tab. 62. VBUS linear dynamic input voltage register .... 61  
Tab. 63. Input voltage regulation thresholds ................. 61  
Tab. 64. JEITA thermal control ......................................62  
Tab. 65. Temperature regulation control register .......... 62  
Tab. 66. JEITA temperature control register ................. 63  
Tab. 67. CV voltage adjustment settings .......................64  
Tab. 68. CC current adjustment settings .......................64  
Tab. 69. Battery overcurrent thresholds ........................ 66  
Tab. 70. LED modes ..................................................... 67  
Tab. 71. LED enable conditions .................................... 67  
Tab. 72. LED frequency setting .....................................68  
Tab. 73. PWRON pin OTP configuration options .......... 68  
Tab. 74. PWRON pin logic level ....................................68  
Tab. 75. PWRONDBNC settings ...................................69  
Tab. 76. Standby pin polarity control .............................69  
Tab. 77. STANDBY pin logic level ................................ 69  
Tab. 78. RESETBMCU pin logic level ...........................70  
Tab. 79. INTB pin logic level .........................................70  
Tab. 80. WDI pin logic level .......................................... 70  
Tab. 81. ONKEY pin logic level .....................................71  
Tab. 82. ONKEYDBNC settings .................................... 71  
Tab. 83. State transition table ....................................... 76  
Tab. 84. A4 startup and power down sequence timing ...79  
Tab. 85. PF1550 start up configuration .........................79  
Tab. 86. Register DEVICE_ID - ADDR 0x00 .................81  
Tab. 87. Register OTP_FLAVOR - ADDR 0x01 ............ 81  
Tab. 88. Register SILICON_REV - ADDR 0x02 ............ 81  
Tab. 89. Register INT_CATEGORY - ADDR 0x06 ........ 81  
Tab. 90. Register SW_INT_STAT0 - ADDR 0x08 ......... 82  
Tab. 91. Register SW_INT_MASK0 - ADDR 0x09 ........ 82  
Tab. 92. Register SW_INT_SENSE0 - ADDR 0x0A ......83  
Tab. 93. Register SW_INT_STAT1 - ADDR 0x0B .........83  
Tab. 94. Register SW_INT_MASK1 - ADDR 0x0C ........83  
Tab. 95. Register SW_INT_SENSE1 - ADDR 0x0D ......84  
Tab. 96. Register SW_INT_STAT2 - ADDR 0x0E .........84  
Tab. 97. Register SW_INT_MASK2 - ADDR 0x0F ........ 85  
Tab. 98. Register SW_INT_SENSE2 - ADDR 0x10 ...... 85  
Tab. 99. Register LDO_INT_STAT0 - ADDR 0x18 ........85  
Tab. 100. Register LDO_INT_MASK0 - ADDR 0x19 .......85  
Tab. 101. Register LDO_INT_SENSE0 - ADDR 0x1A .... 86  
Tab. 102. Register TEMP_INT_STAT0 - ADDR 0x20 ..... 86  
Tab. 103. Register TEMP_INT_MASK0 - ADDR 0x21 .... 86  
Tab. 104. Register TEMP_INT_SENSE0 - ADDR 0x22 ...87  
Tab. 105. Register ONKEY_INT_STAT0 - ADDR 0x24 ... 87  
Pin description ...................................................8  
Thermal ratings ................................................. 9  
Maximum ratings .............................................10  
Global conditions .............................................12  
Input currents .................................................. 12  
Internal 2.7 V Regulator (INT2P7) ...................13  
Switch impedances and leakage currents ....... 13  
Linear transients ..............................................14  
Tab. 10. Charger characteristics ................................... 14  
Tab. 11. Power-path management ................................15  
Tab. 12. Watchdog timer ............................................... 15  
Tab. 13. Charger timer .................................................. 15  
Tab. 14. Battery overcurrent protection .........................15  
Tab. 15. Thermal regulation .......................................... 16  
Tab. 16. Battery thermistor monitor ...............................16  
Tab. 17. USBPHY LDO .................................................16  
Tab. 18. LED characteristics ......................................... 17  
Tab. 19. SW1 and SW2 electrical characteristics ..........17  
Tab. 20. SW3 electrical characteristics ......................... 18  
Tab. 21. LDO1 electrical characteristics ........................19  
Tab. 22. LDO2 electrical characteristics ........................20  
Tab. 23. LDO3 electrical characteristics ........................21  
Tab. 24. VREFDDR electrical characteristics ................22  
Tab. 25. VSNVS electrical characteristics ..................... 22  
Tab. 26. IC level electrical characteristics ..................... 23  
Tab. 27. Voltage regulators ........................................... 24  
Tab. 28. SWx DVS setting selection ............................. 26  
Tab. 29. Buck regulator operating modes ..................... 27  
Tab. 30. Buck mode control .......................................... 27  
Tab. 31. SW1 and SW2 output voltage setting ..............29  
Tab. 32. Acceptable inductance and capacitance  
values .............................................................. 31  
Tab. 33. Example inductor part numbers ...................... 31  
Tab. 34. Example capacitor part numbers .....................31  
Tab. 35. SW3 buck regulator operating modes ............. 32  
Tab. 36. SW3 buck mode control ..................................32  
Tab. 37. SW3 output voltage setting ............................. 33  
Tab. 38. Acceptable inductance and capacitance  
values .............................................................. 34  
Tab. 39. Example inductor part numbers ...................... 34  
Tab. 40. Example capacitor part numbers .....................34  
Tab. 41. LDOy output voltage setting ............................36  
Tab. 42. LDOy control bits ............................................ 37  
Tab. 43. LDO2 output voltage setting ............................39  
Tab. 44. LDO2 control bits ............................................ 40  
Tab. 45. Battery regulation voltage register ...................44  
Tab. 46. VSYSMIN setting ............................................ 45  
Tab. 47. Charger current control register ...................... 48  
Tab. 48. Constant current charge settings .................... 48  
Tab. 49. Battery regulation voltage register ...................50  
Tab. 50. CV settings ......................................................50  
Tab. 51. Charger timers register ................................... 52  
Tab. 52. Fast charge timer settings ...............................52  
Tab. 53. Charger EOC configuration register ................ 53  
Tab. 54. EOC current thresholds ...................................53  
Tab. 106. Register ONKEY_INT_MASK0  
- ADDR  
0x25 .................................................................88  
Tab. 107. Register ONKEY_INT_SENSE0 - ADDR  
0x26 .................................................................88  
Tab. 108. Register MISC_INT_STAT0 - ADDR 0x28 ...... 89  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
146 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Tab. 109. Register MISC_INT_MASK0- ADDR 0x29 ...... 90  
Tab. 145. Register VREFDDR_PWRDN_SEQ - ADDR  
0x65 ...............................................................103  
Tab. 110. Register MISC_INT_SENSE0 - ADDR 0x2A ... 90  
Tab. 111. Register COINCELL_CONTROL - ADDR  
0x30 .................................................................91  
Tab. 146. Register STATE_INFO - ADDR 0x67 ............104  
Tab. 147. Register I2C_ADDR - ADDR 0x68 ................104  
Tab. 148. Register RC_16MHZ - ADDR 0x6B .............. 104  
Tab. 149. Register KEY1 - ADDR 0x6B ........................104  
Tab. 150. Register CHG_INT - ADDR 0x00 ..................105  
Tab. 151. Register CHG_INT_MASK - ADDR 0x02 ...... 105  
Tab. 152. Register CHG_INT_OK - ADDR 0x04 ...........106  
Tab. 153. Register VBUS_SNS - ADDR 0x06 ...............107  
Tab. 154. Register CHG_SNS - ADDR 0x07 ................ 108  
Tab. 155. Register BATT_SNS - ADDR 0x08 ............... 109  
Tab. 156. Register CHG_OPER- ADDR 0x09 ...............109  
Tab. 157. Register CHG_TMR - ADDR 0x0A ................110  
Tab. 158. Register CHG_EOC_CNFG - ADDR 0x0D ....110  
Tab. 159. Register CHG_CURR_CNFG - ADDR 0x0E ..111  
Tab. 160. Register BATT_REG - ADDR 0x0F ...............113  
Tab. 161. Register BATFET_CNFG - ADDR 0x11 ........ 114  
Tab. 162. Register THM_REG_CNFG - ADDR 0x12 .... 115  
Tab. 163. Register VBUS_INLIM_CNFG - ADDR 0x14 ..116  
Tab. 164. Register VBUS_LIN_DPM - ADDR 0x15 .......116  
Tab. 165. Register USB_PHY_LDO_CNFG - ADDR  
0x16 ...............................................................117  
Tab. 112. Register SW1_VOLT - ADDR 0x32 .................91  
Tab. 113. Register SW1_STBY_VOLT - ADDR 0x33 ......91  
Tab. 114. Register SW1_SLP_VOLT - ADDR 0x34 ........ 91  
Tab. 115. Register SW1_CTRL - ADDR 0x35 .................91  
Tab. 116. Register SW1_SLP_VOLT - ADDR 0x36 ........ 92  
Tab. 117. Register SW2_VOLT - ADDR 0x38 .................93  
Tab. 118. Register SW2_STBY_VOLT - ADDR 0x39 ......93  
Tab. 119. Register SW2_SLP_VOLT - ADDR 0x3A ........93  
Tab. 120. Register SW2_CTRL - ADDR 0x3B ................ 93  
Tab. 121. Register SW2_CTRL1 - ADDR 0x3C .............. 94  
Tab. 122. Register SW3_VOLT - ADDR 0x3E ................ 94  
Tab. 123. Register SW3_STBY_VOLT - ADDR 0x3F ..... 95  
Tab. 124. Register SW3_SLP_VOLT - ADDR 0x40 ........ 95  
Tab. 125. Register SW3_CTRL - ADDR 0x41 .................95  
Tab. 126. Register SW3_CTRL1 - ADDR 0x42 ...............96  
Tab. 127. Register VSNVS_CTRL - ADDR 0x48 ............ 96  
Tab. 128. Register VREFDDR_CTRL - ADDR 0x4A .......96  
Tab. 129. Register LDO1_VOLT - ADDR 0x4C .............. 96  
Tab. 130. Register LDO1_CTRL - ADDR 0x4D .............. 97  
Tab. 131. Register LDO2_VOLT - ADDR 0x4F ...............97  
Tab. 132. Register LDO2_CTRL - ADDR 0x50 ...............97  
Tab. 133. Register LDO3_VOLT - ADDR 0x52 ...............98  
Tab. 134. Register LDO3_CTRL - ADDR 0x53 ...............98  
Tab. 135. Register PWRCTRL0 - ADDR 0x58 ................98  
Tab. 136. Register PWRCTRL1 - ADDR 0x59 ................99  
Tab. 137. Register PWRCTRL2 - ADDR 0x5A ..............100  
Tab. 138. Register PWRCTRL3 - ADDR 0x5B ..............100  
Tab. 139. Register SW1_PWRDN_SEQ - ADDR 0x5F ..100  
Tab. 140. Register SW2_PWRDN_SEQ - ADDR 0x60 ..101  
Tab. 141. Register SW2_PWRDN_SEQ - ADDR 0x61 ..101  
Tab. 166. Register DBNC_DELAY_TIME  
- ADDR  
0x18 ...............................................................117  
Tab. 167. Register CHG_INT_CNFG - ADDR 0x19 ...... 118  
Tab. 168. Register THM_ADJ_SETTING  
- ADDR  
0x1A .............................................................. 118  
Tab. 169. Register VBUS2SYS_CNFG - ADDR 0x1B ... 119  
Tab. 170. Register LED_PWM - ADDR 0x1C ............... 119  
Tab. 171. Register FAULT_BATFET_CNFG - ADDR  
0x1D .............................................................. 120  
Tab. 172. Register LED_CNFG - ADDR 0x1E .............. 120  
Tab. 173. Register LED_CNFG - ADDR 0x1F .............. 121  
Tab. 174. Register PMIC bitmap ...................................121  
Tab. 175. Register charger bitmap ................................126  
Tab. 176. Register OTP bitmap .....................................128  
Tab. 177. Bill of materials ..............................................135  
Tab. 178. Revision history .............................................142  
Tab. 142. Register LDO1_PWRDN_SEQ  
0x62 ...............................................................102  
Tab. 143. Register LDO2_PWRDN_SEQ ADDR  
0x63 ...............................................................102  
Tab. 144. Register LDO3_PWRDN_SEQ ADDR  
0x64 ...............................................................103  
- ADDR  
-
-
Figures  
Fig. 1.  
Fig. 2.  
Fig. 3.  
Fig. 4.  
Fig. 5.  
Fig. 6.  
Fig. 7.  
Fig. 8.  
Fig. 9.  
Application diagram ...........................................3  
Functional block diagram .................................. 4  
Internal block diagram .......................................5  
Pinout diagram ..................................................7  
SWx DVS transitions .......................................26  
SWx DVS and non-DVS selection ...................27  
SW3 block diagram .........................................31  
LDOy Block Diagram .......................................36  
LDO2 block diagram ....................................... 39  
Fig. 14. Charger healthy battery (Startup sequence,  
USB insert, VBATT = 3.8 V) ........................... 44  
Fig. 15. Input source detection delay ........................... 45  
Fig. 16. Charger state diagram .................................... 46  
Fig. 17. Charging profile ...............................................47  
Fig. 18. Thermal regulation .......................................... 57  
Fig. 19. Thermal regulation (Current versus Temp,  
example with REGTEMP[1:0] = 00 and  
hysteresis ........................................................ 58  
Fig. 20. Thermal regulation (Current, Temp versus  
Time, example with REGTEMP[1:0] = 00  
and hysteresis .................................................58  
Fig. 21. Response to input voltage droop during  
charging ...........................................................60  
Fig. 22. DPM function ...................................................61  
Fig. 10. VREFDDR block diagram ............................... 41  
Fig. 11. VSNVS block diagram .....................................41  
Fig. 12. Battery charger internal block diagram ............42  
Fig. 13. Charger low battery (Startup sequence,  
USB insert, VBATT = 0 V) .............................. 43  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
147 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Fig. 23. CC charge current and CV charge voltage  
Fig. 30. Generic buck regulator architecture .............. 137  
Fig. 31. Layout example for buck regulators .............. 138  
Fig. 32. Package outline for HVQFN40 (SOT1369-4) . 140  
Fig. 33. Package outline detail for HVQFN40  
(SOT1369-4) ..................................................141  
adjustment .......................................................63  
Fig. 24. Response to battery overcurrent .....................66  
Fig. 25. I2C sequence ..................................................72  
Fig. 26. PMIC state machine ........................................73  
Fig. 27. A4 startup and power down sequence ............79  
Fig. 28. Typical schematic ..........................................134  
Fig. 29. Recommended shielding for critical signals ...137  
Fig. 34. Package outline notes for HVQFN40  
(SOT1369-4) ..................................................141  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
148 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
Contents  
1
1.1  
1.2  
2
2.1  
2.2  
3
4
4.1  
4.2  
5
5.1  
5.2  
5.3  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
General description ............................................ 1  
7.4  
7.5  
8
8.1  
8.2  
8.3  
VREFDDR reference ....................................... 40  
VSNVS LDO/switch ......................................... 41  
Battery charger description ............................. 42  
Operating modes and behavioral description ...43  
Charger input source detection ....................... 45  
Input self-discharge for reliable charger input  
Features and benefits ........................................1  
Applications ........................................................2  
Application diagram ............................................3  
Functional block diagram ...................................4  
Internal block diagram ....................................... 5  
Orderable parts ................................................... 5  
Pinning information ............................................ 7  
Pinning ...............................................................7  
Pin definitions .................................................... 8  
General product characteristics ........................ 9  
Thermal characteristics ......................................9  
Absolute maximum ratings .............................. 10  
Electrical characteristics .................................. 12  
Electrical characteristics – Battery charger ......12  
Electrical characteristics – SW1 and SW2 .......17  
Electrical characteristics – SW3 ...................... 18  
Electrical characteristics – LDO1 .....................19  
Electrical characteristics – LDO2 .....................20  
Electrical characteristics – LDO3 .....................21  
Electrical characteristics – VREFDDR .............22  
Electrical characteristics – VSNVS ..................22  
Electrical characteristics – IC level bias  
currents ............................................................23  
Detailed description ..........................................23  
Buck regulators ................................................24  
SW1 and SW2 detailed description ................. 25  
SWx dynamic voltage scaling description ........25  
SWx DVS and non-DVS operation .................. 26  
Regulator control ............................................. 27  
Current limit protection .................................... 28  
Output voltage setting in SWx ......................... 28  
SWx external components ...............................31  
SW3 detailed description .................................31  
Regulator control ............................................. 32  
Current limit protection .................................... 33  
Output voltage setting in SW3 .........................33  
SW3 external components .............................. 34  
Low dropout linear regulators, VREFDDR  
and VSNVS ........................................................ 34  
General description ..........................................34  
LDO1 and LDO3 detailed description .............. 35  
Features summary ...........................................35  
LDOy block diagram ........................................36  
LDOy external components ............................. 36  
LDOy output voltage setting ............................ 36  
LDOy low-power mode operation .................... 37  
LDOy current limit protection ...........................37  
LDOy load switch mode .................................. 38  
LDO2 detailed description ............................... 38  
LDO2 features summary ................................. 38  
LDO2 block diagram ........................................39  
LDO2 external components .............................39  
LDO2 output voltage setting ............................39  
LDO2 Low-power mode operation ...................40  
LDO2 current limit protection ...........................40  
interrupt ............................................................45  
Charger state diagram .....................................46  
Charging profile ............................................... 46  
Precharge state ............................................... 47  
Fast charge constant current state .................. 48  
Fast charge constant voltage state ..................50  
End-of-charge state ......................................... 53  
Done state ....................................................... 54  
Battery supplement mode ................................54  
Power path features ........................................ 55  
VSYS regulation .............................................. 55  
Input current limit .............................................55  
Battery thermistor ............................................ 56  
BATFET soft start ............................................57  
Thermal ............................................................57  
Thermal regulation ...........................................57  
Thermal foldback ............................................. 58  
Input voltage regulation mode ......................... 59  
JEITA thermal control ......................................62  
Fault states ......................................................64  
Timer fault state ...............................................64  
Watchdog timer state .......................................65  
Thermal shutdown state .................................. 65  
Battery overvoltage state .................................65  
Charger fault priority ........................................65  
Battery overcurrent limit ...................................66  
LED indicator ...................................................67  
Control and interface signals .......................... 68  
PWRON ........................................................... 68  
STANDBY ........................................................69  
RESETBMCU .................................................. 69  
INTB .................................................................70  
WDI ..................................................................70  
ONKEY ............................................................ 71  
Control interface I2C block description ............ 71  
I2C device ID ...................................................71  
I2C operation ...................................................72  
PF1550 state machine ...................................... 72  
System ON states ........................................... 73  
Run state ......................................................... 73  
STANDBY state ...............................................74  
SLEEP state .................................................... 74  
System OFF states ..........................................74  
REGS_DISABLE ..............................................74  
CORE_OFF ..................................................... 74  
SHIP .................................................................75  
Turn on events ................................................ 75  
Turn off events ................................................ 75  
State diagram and transition conditions ...........76  
Regulator power-up sequencer ....................... 77  
8.4  
8.5  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.6  
8.7  
8.7.1  
8.7.2  
8.7.3  
8.7.4  
8.8  
8.8.1  
8.8.2  
8.8.3  
8.8.4  
8.9  
8.9.1  
8.9.2  
8.9.3  
8.9.4  
8.9.5  
8.9.6  
8.10  
9
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.7.1  
9.7.2  
10  
10.1  
10.1.1  
10.1.2  
10.1.3  
10.2  
10.2.1  
10.2.2  
10.2.3  
10.3  
10.4  
10.5  
10.6  
6
6.1  
6.2  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
6.2.6  
6.3  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
7
7.1  
7.2  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
7.2.7  
7.3  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.3.6  
PF1550  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 5 — 10 June 2019  
149 / 150  
NXP Semiconductors  
PF1550  
Power management integrated circuit (PMIC) for low power application processors  
10.7  
11  
11.1  
11.2  
12  
Regulator power-down sequencer ...................78  
Device start up ..................................................78  
Startup timing diagram .................................... 78  
Device start up configuration ...........................79  
Register map ..................................................... 80  
Specific PMIC Registers (Offset is 0x00) .........80  
Specific Charger Registers (Offset is 0x80) ... 105  
Register PMIC bitmap ................................... 121  
Register charger bitmap ................................ 126  
Register OTP bitmap .....................................128  
Application details .......................................... 133  
Example schematic ........................................133  
Bill of materials ..............................................134  
PF1550 layout guidelines .............................. 135  
General board recommendations .................. 135  
Component placement ...................................136  
General routing requirements ........................136  
Parallel routing requirements .........................136  
Switching regulator layout recommendations . 137  
Thermal information .......................................138  
Rating data .................................................... 138  
Estimation of junction temperature ................ 138  
Package outline ...............................................139  
Revision history .............................................. 142  
Legal information ............................................144  
12.1  
12.2  
12.3  
12.4  
12.5  
13  
13.1  
13.2  
13.3  
13.3.1  
13.3.2  
13.3.3  
13.3.4  
13.3.5  
13.4  
13.4.1  
13.4.2  
14  
15  
16  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section 'Legal information'.  
© NXP B.V. 2019.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 10 June 2019  
Document identifier: PF1550  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY