MC34PF3001A4EP [NXP]

Power management integrated circuit (PMIC) for i.MX 7 and i.MX 6 SoloLite/SoloX/UltraLite processors;
MC34PF3001A4EP
型号: MC34PF3001A4EP
厂家: NXP    NXP
描述:

Power management integrated circuit (PMIC) for i.MX 7 and i.MX 6 SoloLite/SoloX/UltraLite processors

集成电源管理电路
文件: 总90页 (文件大小:2022K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: PF3001  
Rev. 4.0, 8/2017  
NXP Semiconductors  
Data sheet: Advance Information  
Power management integrated  
circuit (PMIC) for i.MX 7 and i.MX 6  
SoloLite/SoloX/UltraLite processors  
PF3001  
The PF3001 is a SMARTMOS power management integrated circuit (PMIC)  
designed specifically for always ON applications with the NXP i.MX 7 and i.MX  
6 SoloLite/SoloX/UltraLite application processors. With up to three buck  
converters, six linear regulators, RTC supply, and coin-cell charger, the PF3001  
can provide power for a complete system, including applications processors,  
memory, and system peripherals.  
POWER MANAGEMENT  
Features:  
EP SUFFIX  
98ASA00719D  
48 QFN 7.0 X 7.0  
ES SUFFIX  
98ASA00933D  
48 QFN 7.0 X 7.0  
• Three adjustable high efficiency buck regulators: 2.75 A, 1.5 A, 1.25 A  
• Selectable modes: PWM, PFM, APS  
• Programmable output voltage, PWM switching frequency, current limit  
• Six adjustable general purpose linear regulators  
• Input voltage range: 2.8 V to 4.5 V or 3.7 V to 5.5 V  
• I2C control  
Applications:  
• IPTV  
• Set top boxes  
• POS terminals  
• Industrial control  
• Medical monitoring  
• Coin cell charger and always ON RTC supply  
• -40 °C to +125 °C Operating Junction Temperature  
• Home automation/security/energy management  
i.MX  
PF3001  
DDR MEMORY  
DDR MEMORY  
INTERFACE  
Switching regulators  
SW3 0.90 – 1.65 V, 1.5A  
SW1 0.70 – 3.30 V, 2.75A  
Processor  
ARM Core  
Processor SOC  
External AMP  
SW2 1.50 – 1.85 V  
or 2.5 -3.3 V, 1.25A  
Microphones  
Speakers  
SATA - FLASH  
NAND - NOR  
SD-MMC/  
NAND Mem.  
SATA  
HDD  
Interfaces  
Audio  
Codec  
RESETBMCU  
PWRON  
Parallel control /  
GPIOs  
SD_VSEL  
INTB  
Li CELL  
Charger  
I2C  
I2C  
Sensors  
Linear regulators  
Camera  
Camera  
VLDO1 1.8 – 3.3 V, 100mA  
GPS  
MIPI  
Micro PCIe  
VLDO2 0.8 – 1.55 V, 250mA  
WAM  
GPS/MIPI  
VCC_SD 1.8 – 1.85 V  
or 2.85 – 3.3 V, 100mA  
HDMI  
LVDS  
Display  
V33  
2.85 -3.3 V, 350mA  
USB  
Ethernet  
CAN  
VLDO3 1.8 – 3.3 V, 100mA  
VLDO4 1.8 -3.3 V,  
350mA  
Cluster/  
HUD  
Front USB  
POD  
Rear Seat  
Infotainment  
Rear USB  
POD  
Main Supply  
2.8 - 5.5 V  
COINCELL  
Figure 1. PF3001 simplified application diagram  
* This document contains certain information on a new product.  
Specifications and information herein are subject to change without notice.  
© NXP B.V. 2017.  
Table of Contents  
1
2
3
4
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5.1 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
5.3 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Functional description and application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.2 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.3.1 Control logic and interface signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.3.2 Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.3.4 16 MHz and 32 kHz clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.3.5 Optional front-end input LDO regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.3.6 Internal core voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.3.7 Buck regulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.3.8 LDO regulators description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.3.9 VSNVS LDO/switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
6.4 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
6.5 Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
6.5.1 State diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
6.5.2 State machine flow summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
6.5.3 Performance characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
6.6 Control interface I2C block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
6.6.1 I2C device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
6.6.2 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
6.6.3 Interrupt handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
6.6.4 Interrupt bit summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
6.6.5 Specific registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
6.6.6 Register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
7.1 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
9.1 Rating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
9.2 Estimation of junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
5
6
7
8
9
10 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
10.1Packaging dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
PF3001  
2
NXP Semiconductors  
ORDERABLE PARTS  
1
Orderable parts  
The PF3001 is available with pre-programmed OTP memory configurations. The devices are identified using the program codes from  
Table 1. Details of the start-up programming for each device can be found in Table 32.  
Table 1. Orderable part variations  
Temperature (T )  
Part number  
MC32PF3001A1EP  
MC32PF3001A2EP  
MC32PF3001A3EP  
MC32PF3001A4EP  
MC32PF3001A5EP  
MC32PF3001A6EP  
MC32PF3001A7EP  
MC33PF3001A6ES  
Package  
Programming options  
1 (i.MX 7 with DDR3L)  
Notes  
A
2 (i.MX 7 with LPDDR3)  
3 (i.MX 6SX with DDR3L)  
4 (i.MX 6SX with DDR3)  
5 (i.MX 6SL with LPDDR2)  
6 (i.MX 6UL with LPDDR2)  
7 (i.MX 6UL with DDR3L)  
6 (i.MX 6UL with LPDDR2)  
-40 °C to 85 °C  
(For use in consumer  
applications)  
98ASA00719D, 48 QFN 7.0 mm x  
7.0 mm with exposed pad  
(1)  
-40 °C to 105 °C  
(For use in automotive  
applications)  
98ASA00933D, 48 QFN 7.0 mm x  
7.0 mm WF-type (wettable flank)  
(1)  
MC33PF3001A7ES  
7 (i.MX 6UL with DDR3L)  
MC34PF3001A1EP  
MC34PF3001A2EP  
MC34PF3001A3EP  
MC34PF3001A4EP  
MC34PF3001A5EP  
MC34PF3001A6EP  
MC34PF3001A7EP  
1 (i.MX 7 with DDR3L)  
2 (i.MX 7 with LPDDR3)  
3 (i.MX 6SX with DDR3L)  
4 (i.MX 6SX with DDR3)  
5 (i.MX 6SL with LPDDR2)  
6 (i.MX 6UL with LPDDR2)  
7 (i.MX 6UL with DDR3L)  
-40 °C to 105 °C  
(For use in industrial  
applications)  
98ASA00719D, 48 QFN 7.0 mm x  
7.0 mm with exposed pad  
(1)  
Notes  
1. For Tape and Reel add an R2 suffix to the part number.  
PF3001  
NXP Semiconductors  
3
GENERAL DESCRIPTION  
2
General description  
The PF3001 is the power management integrated circuit (PMIC) designed primarily for use with NXP’s i.MX series of multi-media  
application processors. It is also capable of providing full power solutions to i.MX 6SL, 6SX, 6UL, and i.MX7processors.  
2.1  
Features  
This section summarizes the PF3001 features.  
• Input voltage range to PMIC: 2.8 V to 4.5 V, or 3.7 V to 5.5 V (2)  
• Buck regulators  
• SW1, 2.75 A; 0.7 V to 1.425 V, 1.8 V, 3.3 V  
• SW2, 1.25 A; 1.50 V to 1.85 V, or 2.50 V to 3.30 V  
• SW3, 1.5 A; 0.90 V to 1.65 V  
• Dynamic voltage scaling  
• Modes: PWM, PFM, APS  
• Programmable output voltage  
• Programmable current limit  
• Programmable PWM switching frequency  
• LDOs  
• VCC_SD, 1.8 V to 1.85 V, or 2.85 V to 3.30 V, 100 mA based on SD_VSEL  
• V33, 2.85 V to 3.30 V, 350 mA  
• VLDO1, 1.8 V to 3.3 V, 100 mA  
• VLDO2, 0.80 V to 1.55 V, 250 mA  
• VLDO3, 1.8 V to 3.3 V, 100 mA  
• VLDO4, 1.8 V to 3.3 V, 350 mA  
• Always ON RTC regulator/switch VSNVS 3.0 V, 1.0 mA  
• Battery backed memory including coin cell charger  
• I2C interface  
Notes  
2. 2.8 V to 4.5 V when VIN is used at input. 3.7 V to 5.5 V when VPWR is used as input.  
PF3001  
4
NXP Semiconductors  
GENERAL DESCRIPTION  
2.2  
Functional block diagram  
PF3001 functional internal block diagram  
Fixed OTP configuration  
Power generation  
Voltage and PWRON  
DVS speed fixed  
configuration fixed  
Switching regulators  
Linear regulators  
VCC_SD  
(1.80 V to 1.85 V, 100 mA)  
or (2.85 V to 3.3 V, 100 mA)  
SW1  
Sequence and  
timing fixed  
Phasing and  
frequency fixed  
(0.7 V to 1.425 V,1.8 V,  
3.3 V, 2.75 A)  
V33  
( 2.85 V to 3.30 V, 350 mA)  
Bias & references  
SW2  
(1.50 V to 1.85 V, 1.25 A)  
or (2.50 V to 3.30 V, 1.25 A)  
Internal core voltage reference  
VLDO1  
(1.8 V to 3.3 V, 100 mA)  
VLDO2  
(0.80 V to 1.55 V, 250 mA)  
SW3  
(0.90 V to 1.65 V, 1.5 A)  
Logic and control  
VLDO3  
(1.8 V to 3.3 V, 100 mA)  
Parallel MCU interface  
Regulator control  
I2C communication & registers  
VLDO4  
(1.8 V to 3.3 V, 350 mA)  
Fault detection and protection  
VSNVS  
(1.0 V to 3.0 V, 1.0 mA)  
RTC supply with coin cell  
charger  
Thermal  
Current limit  
VPWR front end LDO overvoltage indicator  
Figure 2. PF3001 functional block diagram  
PF3001  
NXP Semiconductors  
5
INTERNAL BLOCK DIAGRAM  
3
Internal Block Diagram  
VLDO1IN  
VLDO1  
VLDO1  
PF3001  
100 mA  
VLDO2IN  
VLDO2  
VLDO2  
250 mA  
VLDO34IN  
VLDO3  
VLDO3  
100 mA  
SW1FB  
SW1LX  
O/P  
Drive  
SW1  
VLDO4  
SW1IN  
2.75 A  
Buck  
VLDO4  
350 mA  
GNDREF1  
Core Control logic  
VCC_SD  
SW2LX  
1.8 V/3.15 V  
100 mA  
O/P  
Drive  
VCC_SD  
V33  
Initialization State Machine  
SW2IN  
SW2  
SW2FB  
1.25 A  
Buck  
V33  
GNDREF2  
2.85 V - 3.30 V  
350 mA  
Supplies  
Control  
OTP  
VIN2  
SW3FB  
ICTEST2  
CONTROL  
SW3  
SW3IN  
SW3LX  
O/P  
Drive  
I2C  
Interface  
1.5 A  
Buck  
VDDIO  
SCL  
SDA  
GNDREF2  
DVS  
I2C Register  
map  
Trim-In-Package  
VCOREDIG  
VCOREREF  
Reference  
Generation  
Clocks and  
resets  
VCORE  
GNDREF  
VPWR  
VREF  
LDO  
LDOG  
Clocks  
32 kHz and 16 MHz  
VIN  
Best  
of  
Supply  
Li Cell  
Charger  
LICELL  
VSNVS  
Figure 3. PF3001 simplified internal block diagram  
PF3001  
6
NXP Semiconductors  
PIN CONNECTIONS  
4
Pin connections  
4.1  
Pinout diagram  
Transparent top view  
1
2
3
4
5
6
7
8
9
LICELL  
36  
35  
34  
33  
32  
31  
INTB  
SD_VSEL  
RESETBMCU  
GND  
NC  
VSNVS  
VCC_SD  
V33  
ICTEST1  
SW1FB  
VPWR  
EP  
SW1IN  
30 LDOG  
SW1LX  
SW3LX  
SW3IN  
29  
28  
SW1LX  
SW1IN 10  
NC 11  
27 SW3FB  
26 GNDREF2  
GNDREF1  
12  
NC  
25  
Figure 4. PF3001 pinout diagram  
PF3001  
NXP Semiconductors  
7
PIN CONNECTIONS  
4.2  
Pin definitions  
Table 2. Pin definitions  
Pin  
function  
Pin number  
Pin name  
Type  
Definition  
Open drain interrupt signal to processor  
1
INTB  
O
Digital  
Input from i.MX processor to select VCC_SD regulator voltage  
• SD_VSEL=0, VCC_SD = 2.85 V to 3.3 V  
2
SD_VSEL  
I/O  
Digital  
• SD_VSEL= 1, VCC_SD = 1.8 V to 1.85 V  
3
4
RESETBMCU  
GND  
O
I
Digital  
GND  
Open drain reset output to processor  
Ground reference. Connect to ground.  
Digital and  
Analog  
5
ICTEST1  
I
Reserved pin. Connect to GND in application  
SW1 output voltage feedback pin. Route this trace separately from the high current path  
and terminate at the output capacitance or near the load, if possible for best regulation  
6
7
SW1FB (3)  
SW1IN (3)  
I
I
Analog  
Analog  
Input to SW1 regulator. Bypass with at least a 4.7 μF ceramic capacitor and a 0.1 μF  
decoupling capacitor as close to the pin as possible  
8
9
SW1LX (3)  
SW1LX (3)  
O
O
Analog  
Analog  
Switcher 1 switch node connection. Connect to SW1LX and connect to SW1 inductor  
Switcher 1 switch node connection. Connect to SW1LX and connect to SW1 inductor  
Input to SW1 regulator. Bypass with at least a 4.7 μF ceramic capacitor and a 0.1 μF  
10  
11  
12  
SW1IN (3)  
NC  
I
Analog  
Reserved  
GND  
decoupling capacitor as close to the pin as possible  
Leave floating  
Ground reference for SW1. Connect to GND. Keep away from high current ground  
return paths  
GNDREF1  
GND  
VLDO1 input supply. Bypass with a 1.0 μF decoupling capacitor as close to the pin as  
possible  
13  
VLDO1IN  
I
Analog  
14  
15  
16  
17  
18  
VLDO1  
VLDO2  
O
O
I
Analog  
Analog  
Analog  
Analog  
Analog  
VLDO1 regulator output. Bypass with a 2.2 μF ceramic output capacitor  
VLDO2 regulator output. Bypass with a 4.7 μF ceramic output capacitor  
VLDO2 input supply. Bypass with a 1.0 μF decoupling capacitor as close to the pin as  
possible  
VLDO2IN  
SW2LX (3)  
SW2IN (3)  
O
I
Switcher 2 switch node connection. Connect to SW2 inductor  
Input to SW2 regulator. Bypass with at least a 4.7 μF ceramic capacitor and a 0.1 μF  
decoupling capacitor as close to the pin as possible  
SW2 output voltage feedback pin. Route this trace separately from the high current path  
and terminate at the output capacitor or near the load, if possible for best regulation  
19  
20  
21  
SW2FB (3)  
VLDO3  
I
O
I
Analog  
Analog  
Analog  
VLDO3 regulator output. Bypass with a 2.2 μF ceramic output capacitor  
VLDO3 and VLDO4 input supply. Bypass with a 1.0 μF decoupling capacitor as close to  
the pin as possible  
VLDO34IN  
22  
23  
VLDO4  
NC  
O
Analog  
VLDO4 regulator output. Bypass with a 2.2 μF ceramic output capacitor  
Reserved  
Leave floating  
24  
25  
GND  
NC  
GND  
GND  
Ground reference. Connect to ground. Keep away from high current ground return paths  
Leave floating  
Reserved  
Reference ground for SW2 and SW3 regulators. Connect to GND. Keep away from high  
current ground return paths  
26  
27  
28  
GNDREF2  
SW3FB (3)  
SW3IN (3)  
GND  
GND  
SW3 output voltage feedback pin. Route this trace separately from the high current path  
and terminate at the output capacitor or near the load, if possible for best regulation  
I
I
Analog  
Analog  
Input to SW3 regulator. Bypass with at least a 4.7 μF ceramic capacitor and a 0.1 μF  
decoupling capacitor as close to the pin as possible  
PF3001  
8
NXP Semiconductors  
PIN CONNECTIONS  
Table 2. Pin definitions (continued)  
Pin  
Pin number  
Pin name  
Type  
Definition  
function  
29  
30  
SW3LX (3)  
LDOG  
O
Analog  
Analog  
Switcher 3 switch node connection. Connect the SW3 inductor  
Connect to gate of front-end LDO external pass P-MOSFET. Leave floating if VPWR  
LDO is not used  
O
31  
32  
VPWR  
V33  
I
Analog  
Analog  
Input to optional front-end VPWR LDO for systems with input voltage > 4.5 V  
O
V33 regulator output. Bypass with a 4.7 μF ceramic output capacitor  
33  
34  
35  
VCC_SD  
VSNVS  
NC  
O
O
Analog  
Analog  
Output of VCC_SD regulator. Bypass with a 2.2 μF ceramic output capacitor.  
VSNVS regulator/switch output. Bypass with 0.47 μF capacitor to ground.  
Leave floating  
Reserved  
Coin cell supply input/output. Bypass with 0.1 μF capacitor. Connect to optional coin  
cell.  
36  
LICELL  
I/O  
Analog  
37  
38  
NC  
I
Reserved  
Analog  
Leave floating  
VIN2  
Input to VCC_SD, V33 regulators. Connect to VIN rail and bypass with 10 μF capacitor  
Digital &  
Analog  
39  
ICTEST2  
I
Reserved pin. Connect to GND in application  
Ground reference for IC core circuitry. Connect to ground. Keep away from high current  
ground return paths  
40  
41  
GNDREF  
VCORE  
GND  
O
GND  
Analog  
Internal analog core supply. Bypass with 1.0 μF capacitor to ground  
Main IC supply. Bypass with 1.0 μF capacitor to ground. Connect to system input supply  
if voltage 4.5 V. Connect to drain of external PFET when VPWR LDO is used for  
systems with input voltage > 4.5 V  
42  
VIN  
I
Analog  
43  
44  
45  
VCOREDIG  
VCOREREF  
SDA  
O
O
Analog  
Analog  
Digital  
Internal digital core supply. Bypass with 1.0 μF capacitor to ground  
Main band gap reference. Bypass with 220 nF capacitor to ground  
I2C data line (open drain). Pull up to VDDIO with a 4.7 kresistor  
I2C clock. Pull up to VDDIO with a 4.7 kresistor  
I/O  
46  
SCL  
I
Digital  
Supply for I2C bus. Bypass with 0.1 μF ceramic capacitor. Connect to 1.7 V to 3.6 V  
47  
48  
-
VDDIO  
PWRON  
EP  
I
I
Analog  
Digital  
GND  
supply. Ensure VDDIO is always lesser than or equal to VIN  
Power ON/OFF input from processor  
Expose pad. Functions as ground return for buck and boost regulators. Tie this pad to  
the inner and external ground planes through vias to allow effective thermal dissipation  
GND  
Notes  
3. Unused switching regulators should be connected as follows: Pins SWxLX and SWxFB should be unconnected and Pin SWxIN should be  
connected to VIN with a 0.1 μF bypass capacitor.  
PF3001  
NXP Semiconductors  
9
GENERAL PRODUCT CHARACTERISTICS  
5
General product characteristics  
5.1  
Maximum ratings  
Table 3. Maximum voltage ratings  
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause malfunction or permanent damage  
to the device. The detailed maximum voltage rating per pin can be found in the pin list section.  
Symbol  
Description  
Value  
Unit  
Notes  
Electrical ratings  
(4)  
VPWR, ICTEST1, ICTEST2, LDOG  
-0.3 to 7.5  
-0.3 to 4.8  
V
V
VIN, VIN2, VLDO1IN, SW1IN, SW2IN, SW3IN,  
SW1LX, SW2LX, SW3LX  
INTB, SD_VSEL, RESETBMCU, SW1FB,  
SW2FB, SW3FB, VLDO1, VLDO2IN, VLDO3,  
VLDO34IN, VLDO4, V33, VCC_SD, VSNVS,  
LICELL, VCORE, SDA, SCL, VDDIO, PWRON  
-0.3 to 3.6  
V
VLDO2  
VLDO2 linear regulator output  
Digital core supply voltage output  
Bandgap reference voltage output  
-0.3 to 2.5  
-0.3 to 1.65  
-0.3 to 1.5  
V
V
V
VCOREDIG  
VCOREREF  
ESD ratings  
• Human body model  
• Charge device model  
(5)  
V
V
2000  
500  
ESD  
Notes  
4. 7.5 V Maximum DC voltage rated.  
5. ESD testing is performed in accordance with the Human body model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), and the Charge device model  
(CDM), Robotic (CZAP = 4.0 pF).  
PF3001  
10  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
5.2  
Thermal characteristics  
Table 4. Thermal ratings  
Symbol  
Description (rating)  
Min.  
Max.  
Unit  
Notes  
Thermal ratings  
Ambient operating temperature range  
TA  
• Industrial version  
• Consumer version  
-40  
-40  
105  
85  
°C  
(6)  
TJ  
Operating junction temperature range  
Storage temperature range  
-40  
-65  
125  
°C  
°C  
°C  
TST  
150  
(8)  
(7) (8)  
TPPRT  
Peak package reflow temperature  
QFN48 thermal resistance and package dissipation ratingS  
Junction to ambient, natural convection  
• Four layer board (2s2p)  
• Eight layer board (2s6p)  
(9) (10)  
(11)  
RθJA  
24  
15  
°C/W  
(12)  
(13)  
RθJB  
Junction to Board  
11  
°C/W  
°C/W  
RΘJCBOTTOM  
Junction to case bottom  
1.4  
Junction to package top  
• Natural convection  
(14)  
ΨJT  
1.3  
°C/W  
Notes  
6. Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See thermal  
protection thresholds for thermal protection features.  
7. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a  
malfunction or permanent damage to the device.  
8. NXP's package reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For peak package reflow temperature and  
moisture sensitivity levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all orderable  
parts, and review parametrics.  
9. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
10. The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5.  
11. Per JEDEC JESD51-6 with the board horizontal.  
12. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the  
board near the package.  
13. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
14. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC  
JESD51-2. When Greek letters (Ψ) are not available, the thermal characterization parameter is written as Psi-JT.  
PF3001  
NXP Semiconductors  
11  
GENERAL PRODUCT CHARACTERISTICS  
5.3  
Current consumption  
The current consumption of the individual blocks is described in detail in the following table.  
Table 5. Current consumption summary  
T = -40 °C to 105 °C, V  
= 0 V (External pass FET is not populated), V = 3.6 V, V  
= 1.7 V to 3.6 V, L  
= 1.8 V to 3.3 V,  
A
PWR  
IN  
DDIO  
ICELL  
V
V
= 3.0 V, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, V  
= 0 V,  
PWR  
SNVS  
DDIO  
= 3.3 V, L  
= 3.0 V, V  
= 3.0 V and 25 °C, unless otherwise noted.  
ICELL  
SNVS  
Mode  
PF3001 conditions  
System conditions  
No load on VSNVS  
Typ.  
Max.  
Unit  
Notes  
VSNVS from LICELL, All other blocks  
off, VIN = 0.0 V  
(15) (16)  
Coin Cell  
Off  
4.0  
7.0  
μA  
VSNVS from VIN or LICELL  
Wake-up from PWRON active  
32 kHz RC on  
No load on VSNVS, PMIC able to  
wake-up  
(15) (16)  
16  
25  
μA  
All other blocks off  
VIN UVDET  
VSNVS from VIN  
SW1 in APS  
SW2 in APS  
SW3 in APS  
ON  
No load on any of the regulators.  
1.2  
mA  
Trimmed 16 MHz RC enabled  
Trimmed reference active, VLDO1-4  
enabled  
V33 enabled  
VCC_SD enabled  
Notes  
15. At 25 °C only.  
16. When VIN is below the UVDET threshold, in the range of 1.8 V VIN < 2.65 V, the quiescent current increases by 50 μA, typically.  
PF3001  
12  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
5.4  
Electrical characteristics  
Table 6. Electrical characteristics – front-end input LDO  
All parameters are specified at T = -40 °C to 105 °C, V  
otherwise noted. Typical values are characterized at V  
= 5.0 V, V = 4.4 V, I = 300 mA, typical external component values, unless  
VIN  
A
PWR  
PWR  
IN  
= 5.0 V, V = 4.4 V, I  
= 300 mA, and 25 °C, unless otherwise noted.  
IN  
VIN  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Front end input LDO (VPWR LDO)  
Operating input voltage  
• In regulation  
• In dropout operation  
(17)  
VPWR  
4.6  
3.7  
5.5  
4.6  
V
V
On mode output voltage, 4.6 V < VPWR < 5.5 V,  
0.0 mA < IVIN < 3000 mA  
VIN  
4.3  
4.4  
4.55  
Operating load current at VIN, 3.7 V < VPWR < 5.5 V  
ON mode quiescent current, No load,  
IVIN  
0.0  
3.0  
10  
A
ILDOGQ  
5.0  
mA  
Low power mode output voltage, 4.6 V < VPWR < 5.5 V  
0.0 mA < IVIN < 1.0 mA  
VIN  
3.7  
4.5  
V
Off mode output voltage, (CL = 100 μF) 4.6 V < VPWR < 5.5 V,  
0.0 mA < IVIN < 35 μA  
VPWROFFMODE  
3.2  
3.1  
4.8  
3.7  
V
V
VPWR undervoltage threshold (upon undervoltage condition the  
external pass FET is turned off)  
VPWRUV  
VPWR overvoltage threshold (upon overvoltage condition interrupt is  
asserted at INTB)  
VPWROV  
IVINUVILIMIT  
IVINLEAKAGE  
IVPWROFF  
5.5  
6.5  
300  
1.0  
75  
V
VPWR LDO current limit under VIN short-circuit (VIN < UVDET)  
mA  
µA  
μA  
Reverse leakage current from VIN to VPWR, No external pass FET,  
VPWR is grounded, device is in OFF state  
(18)  
VPWR LDO Off mode quiescent current  
Notes  
17. While the front end LDO can handle spikes up to 7.5 V at VPWR for as long as 200 µs, the circuit is not expected to be continuously operated  
when VPWR is above 5.5 V.  
18. This specification gives the leakage current in the VPWR LDO block. Total OFF mode current includes the quiescent current from the other blocks  
as specified in Table 5.  
PF3001  
NXP Semiconductors  
13  
GENERAL PRODUCT CHARACTERISTICS  
Table 7. Static electrical characteristics – SW1  
All parameters are specified at T = -40 °C to 105 °C, V = V  
= 3.6 V, V  
= 1.2 V, I  
= 100 mA, typical external component  
SW1  
A
IN  
SW1IN  
SW1  
values, f  
= 2.0 MHz, unless otherwise noted. Typical values are characterized at V = V  
= 3.6 V, V  
= 1.2 V, I = 100 mA,  
SW1  
IN  
SW1IN  
SW1  
SW1  
and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Switch mode supply SW1  
(19)  
VSW1IN  
VSW1  
Operating input voltage  
Nominal output voltage  
2.8  
4.5  
V
V
Table 40  
Output voltage accuracy  
• PWM, APS, 2.8 V < VSW1IN < 4.5 V, 0 < ISW1 < 2.75 A  
0.7 V VSW1 1.2 V  
• PFM, APS, 2.8 V < VSW1IN < 4.5 V, 0 < ISW1 < 2.75A  
1.225 V < VSW1 < 1.425 V  
• PFM, steady state, 2.8 V < VSW1IN < 4.5 V, 0 < ISW1 < 150 mA  
1.8 V VSW1 1.425 V  
• PWM, APS, 2.8 V < VSW1IN < 4.5 V, 0 < ISW1 < 2.75A  
1.8 V < VSW1 < 3.3 V  
• PFM, steady state, 2.8 V < VSW1IN < 4.5 V, 0 < ISW1 < 150 mA  
-25  
-25  
-45  
-6.0  
-6.0  
25  
25  
mV  
mV  
mV  
%
VSW1ACC  
45  
6.0  
6.0  
%
1.8 V VSW1 3.3 V  
Rated output load current,  
2.8 V VSW1IN 4.5 V, 0.7 V < VSW1 < 1.425 V, 1.8 V, 3.3 V  
ISW1  
2750  
mA  
µA  
Quiescent current  
• PFM mode  
• APS mode  
ISW1Q  
22  
300  
Current limiter peak current detection , current through inductor  
• SW1ILM = 0 (default)  
• SW1ILM = 1  
ISW1LIM  
3.5  
2.6  
5.5  
4.0  
7.5  
5.4  
A
ΔVSW1  
Output ripple  
5.0  
mV  
RSW1DIS  
Discharge resistance  
600  
Ω
Notes  
19. The maximum operating input voltage is 4.55 V when VPWR LDO is used  
Table 8. Dynamic electrical characteristics - SW1  
All parameters are specified at T = -40 °C to 105 °C, V = V  
= 3.6 V, V  
= 1.2 V, I  
= 100 mA, typical external component  
A
IN  
SW1IN  
SW1  
SW1  
values, f  
= 2.0 MHz, unless otherwise noted. Typical values are characterized at V = V  
= 3.6 V, V  
= 1.2 V, I = 100 mA,  
SW1  
SW1  
IN  
SW1IN  
SW1  
and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW1 (single phase)  
Start-up Overshoot, ISW1 = 0 mA, slew rate = 25 mV/4 μs,  
VIN = VSW1IN = 4.5 V, VSW1 = 1.425 V  
VSW1OSH  
66  
mV  
µs  
Turn-on time, enable to 90% of end value, ISW1 = 0 mA,  
slew rate = 25 mV/4 μs, VIN = VSW1IN = 4.5 V, VSW1 = 1.425 V  
tONSW1  
500  
PF3001  
14  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
= 100 mA, typical external component  
Table 9. Static electrical characteristics – SW2  
All parameters are specified at T = -40 °C to 105 °C, V = V  
= 3.6 V, V  
= 3.15 V, I  
SW2  
A
IN  
SW2IN  
SW2  
values, f  
= 2.0 MHz, unless otherwise noted. Typical values are characterized at V = V  
= 3.6 V, V  
= 3.15 V, I  
= 100 mA,  
SW2  
IN  
SW2IN  
SW2  
SW2  
and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit Notes  
Switch mode supply SW2  
(20), (21)  
VSW2IN  
VSW2  
Operating Input Voltage  
2.8  
4.5  
V
V
Nominal output voltage  
Table 42  
Output voltage accuracy  
• PWM, APS, 2.8 V VSW2IN 4.5 V, 0 ISW2 1.25 A  
• 1.50 V VSW2 1.85 V  
-3.0  
-6.0  
3.0  
6.0  
VSW2ACC  
• 2.5 V VSW2 3.3 V  
%
• PFM, 2.8 V VSW2IN 4.5 V, 0 ISW2 50 mA  
• 1.50 V VSW2 1.85 V  
-6.0  
-6.0  
6.0  
6.0  
• 2.5 V VSW2 3.3 V  
Rated output load current,  
2.8 V < VSW2IN < 4.5 V, 1.50 V < VSW2 < 1.85 V, 2.5 V < VSW2 < 3.3 V  
(22)  
ISW2  
1250  
mA  
µA  
Quiescent current  
• PFM mode  
• APS mode (low output voltage settings, CTL_SW2_HL = 0)  
• APS mode (high output voltage settings, CTL_SW2_HL = 1)  
23  
145  
305  
ISW2Q  
Current limiter peak current detection, current through inductor  
• SW2ILM = 0 (default)  
• SW2ILM = 1  
ISW2LIM  
1.625  
1.235  
2.5  
1.9  
3.375  
2.565  
A
ΔVSW2  
RONSW2P  
RONSW2N  
ISW2PQ  
Output ripple  
5.0  
215  
258  
mV  
mΩ  
mΩ  
µA  
µA  
Ω
SW2 P-MOSFET RDS(on) at VIN = VSW2IN = 3.3 V  
245  
326  
10.5  
3.0  
SW2 N-MOSFET RDS(on) at VSW2IN = VSW2IN = 3.3 V  
SW2 P-MOSFET leakage current, VIN = VSW2IN = 4.5 V  
SW2 N-MOSFET leakage current, VIN = VSW2IN = 4.5 V  
Discharge resistance during OFF mode  
ISW2NQ  
RSW2DIS  
600  
Notes  
20. The maximum operating input voltage is 4.55 V when VPWR LDO is used.  
21. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at  
the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V  
and 3.3 V. This voltage can be an output from any PF3001 regulator, or external system supply.  
22. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation: (VSW2IN - VSW2) = ISW2  
(DCR of Inductor +RONSW2P + PCB trace resistance).  
*
Table 10. Dynamic electrical characteristics - SW2  
All parameters are specified at T = -40 °C to 105 °C, V = V  
= 3.6 V, V  
= 3.15 V, ISW2 = 100 mA, typical external component  
SW2  
A
IN  
SW2IN  
values, f  
= 2.0 MHz, unless otherwise noted. Typical values are characterized at V = V  
= 3.6 V, V  
= 3.15 V, I = 100 mA,  
SW2  
IN  
SW2IN  
SW2  
SW2  
and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch Mode Supply SW2  
Start-up overshoot, ISW2 = 0.0 mA, slew rate = 25 mV/4 μs,  
VIN = VSW2IN = 4.5 V  
VSW2OSH  
66  
mV  
µs  
Turn-on time, enable to 90% of end value, ISW2 = 0.0 mA,  
slew rate = 25 mV/4 μs, VIN = VSW2IN = 4.5 V  
tONSW2  
500  
PF3001  
NXP Semiconductors  
15  
GENERAL PRODUCT CHARACTERISTICS  
Table 11. Static electrical characteristics – SW3  
All parameters are specified at T = -40 °C to 105 °C, V = V  
= 3.6 V, V  
= 1.5 V, I  
= 100 mA, typical external component  
A
IN  
SW3IN  
SW3  
SW3  
values, f  
= 2.0 MHz. Typical values are characterized at V = V  
= 3.6 V, V  
= 1.5 V, I  
= 100 mA, and 25 °C, unless  
SW3  
IN  
SW3IN  
SW3  
SW3  
otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW3  
(23)  
VSW3IN  
VSW3  
Operating input voltage  
2.8  
4.5  
V
V
Nominal output voltage  
Table 44  
Output voltage accuracy  
-3.0  
-6.0  
3.0  
6.0  
• PWM, APS, 2.8 V < VSW3IN < 4.5 V, 0 < ISW3 < 1.5 A,  
0.9 V < VSW3 < 1.65 V  
• PFM, steady state (2.8 V < VSW3IN < 4.5 V, 0 < ISW3 < 50 mA),  
0.9 V < VSW3 < 1.65 V  
VSW3ACC  
%
Rated output load current, 2.8 V < VSW3IN < 4.5 V,  
0.9 V < VSW3 < 1.65 V, PWM, APS mode  
(24)  
ISW3  
1500  
mA  
µA  
Quiescent current  
• PFM mode  
• APS mode  
ISW3Q  
50  
150  
Current limiter peak current detection, current through inductor  
• SW3ILIM = 0 (default)  
• SW3ILIM = 1  
ISW3LIM  
1.95  
1.45  
3.0  
2.25  
4.05  
3.05  
A
ΔVSW3  
RONSW3P  
RONSW3N  
ISW3PQ  
Output ripple  
5.0  
205  
250  
mV  
mΩ  
mΩ  
µA  
µA  
Ω
SW3 P-MOSFET RDS(on) at VIN = VSW3IN = 3.3 V  
235  
315  
12  
SW3 N-MOSFET RDS(on) at VIN = VSW3IN = 3.3 V  
SW3 P-MOSFET leakage current, VIN = VSW3IN = 4.5 V  
SW3 N-MOSFET leakage current, VIN = VSW3IN = 4.5 V  
Discharge resistance during off mode  
ISW3NQ  
4.0  
RSW3DIS  
600  
Notes  
23. The maximum operating input voltage is 4.55 V when VPWR LDO is used.  
24. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation: (VSW3IN - VSW3) =  
ISW3* (DCR of Inductor +RONSW3P + PCB trace resistance).  
Table 12. Dynamic Electrical Characteristics - SW3  
All parameters are specified at T = -40 °C to 105 °C, V = V  
= 3.6 V, V  
= 1.5 V, I  
= 100 mA, typical external component  
A
IN  
SW 3IN  
SW3  
SW3  
values, f  
= 2.0 MHz. Typical values are characterized at V = V  
= 3.6 V, V  
= 1.5 V, I  
= 100 mA, and 25 °C, unless  
SW3  
IN  
SW3IN  
SW3  
SW3  
otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Start-up overshoot, ISW3 = 0.0 mA, slew rate = 25 mV/4 μs, VIN  
VSW3IN = 4.5 V  
=
VSW3OSH  
66  
mV  
Turn-on time, enable to 90% of end value, ISW3 = 0 mA,  
slew rate = 25 mV/4 μs, VIN = VSW3IN = 4.5 V  
tONSW3  
500  
µs  
PF3001  
16  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
Table 13. Static electrical characteristics - VSNVS  
All parameters are specified at T = -40 °C to 105 °C, V = 3.6 V, V  
= 3.0 V, I  
SNVS  
= 5.0 μA, typical external component values,  
= 5.0 μA, and 25 °C, unless otherwise noted.  
A
IN  
SNVS  
unless otherwise noted. Typical values are characterized at V = 3.6 V, V  
= 3.0 V, I  
IN  
SNVS  
SNVS  
Min.  
Symbol  
VSNVS  
Parameter  
Typ.  
Max.  
Unit  
Notes  
Operating input voltage  
• Valid coin cell range  
• Valid VIN  
(25)  
VIN  
1.8  
2.25  
3.3  
4.5  
V
Operating load current, VINMIN < VIN < VINMAX  
ISNVS  
1.0  
1000  
μA  
Output voltage  
• 5.0 μA < ISNVS < 1000 μA (OFF), 3.20 V < VIN < 4.5 V  
• 5.0 μA < ISNVS < 1000 μA (ON), 3.20 V < VIN < 4.5 V  
• 5.0 μA < ISNVS < 1000 μA (coin cell mode), 2.84 V < VCOIN < 3.3 V VCOIN-0.10  
-5.0  
-5.0  
3.0  
3.0  
7.0  
5.0  
VCOIN  
%
%
V
VSNVS  
Dropout voltage, 2.85 V < VIN < 2.9 V, 1.0 μA < ISNVS < 1000 μA  
VSNVSDROP  
110  
mV  
Current limit, VIN > VTH1  
ISNVSLIM  
VSNVS DC, switch  
VLICELL  
1100  
6750  
μA  
Operating input voltage, valid coin cell range  
Operating load current  
1.8  
1.0  
3.3  
1000  
100  
V
μA  
Ω
ISNVS  
Internal switch RDS(on), VCOIN = 2.6 V  
RDSONSNVS  
Notes  
25. The maximum operating input voltage is 4.55 V when VPWR LDO is used  
Table 14. Dynamic electrical characteristics - VSNVS  
All parameters are specified at T = -40 °C to 105 °C, V = 3.6 V, V  
= 3.0 V, I  
= 5.0 μA, typical external component values, unless  
A
IN  
SNVS  
SNVS  
otherwise noted. Typical values are characterized at V = 3.6 V, V  
= 3.0 V, I  
= 5.0 μA, and 25 °C, unless otherwise noted.  
IN  
SNVS  
SNVS  
Symbol  
VSNVS  
Parameter  
Min.  
Typ.  
Max.  
Notes  
Unit  
Turn-on time (load capacitor, 0.47 μF), from VIN = VTH1 to 90% of  
VSNVS, VCOIN = 0.0 V, ISNVS = 5.0 μA  
(26),(27)  
VSNVSTON  
24  
ms  
Start-up overshoot, ISNVS = 5.0 μA  
VSNVSOSH  
VSNVSLOTR  
VTL1  
40  
70  
mV  
V
Transient load response, 3.2 < VIN 4.5 V, ISNVS = 100 to 1000 μA  
VIN falling threshold (VIN powered to coin cell powered)  
VIN rising threshold (coin cell powered to VIN powered)  
VIN threshold hysteresis for VTH1-VTL1  
2.8  
2.45  
2.50  
5.0  
2.70  
2.75  
3.05  
3.10  
V
VTH1  
V
VHYST1  
mV  
Output voltage during crossover, VCOIN > 2.9 V, switch to LDO:  
VIN > VTH1, ISNVS = 100 μA, LDO to switch: VIN < VTL1  
ISNVS = 100 μA  
,
VSNVSCROSS  
2.45  
V
Notes  
26. The start-up of VSNVS is not monotonic. It first rises to 1.0 V and then settles to 3.0 V.  
27. From coin cell insertion to VSNVS = 1.0 V, the delay time is typically 400 ms.  
PF3001  
NXP Semiconductors  
17  
GENERAL PRODUCT CHARACTERISTICS  
Table 15. Static electrical characteristics - VLDO1  
All parameters are specified at T = -40 °C to 105 °C, V = 3.6 V, V  
= 3.6 V, V  
= 3.3 V, I  
= 10 mA, typical external  
A
IN  
LDO1IN  
LDO1  
LDO1  
component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V  
= 3.6 V, V  
= 3.3 V, I = 10 mA,  
LDO1  
IN  
LDO1IN  
LDO1  
and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLDO1 linear regulator  
Operating input voltage  
• 1.8 V VLDO1NOM 2.5 V  
• 2.6 V VLDO1NOM 3.3 V  
2.8  
VLDO1NOM  
+0.250  
(28), (29)  
VLDO1IN  
4.5  
4.5  
V
VLDO1NOM  
ILDO1  
Nominal output voltage  
Operating load current  
Table 47  
V
0.0  
100  
mA  
Output voltage tolerance, VLDO1INMIN < VLDO1IN < 4.5 V, 0.0 mA <  
ILDO1 < 100 mA, VLDO1 = 1.8 V to 3.3 V  
VLDO1TOL  
-3.0  
3.0  
%
Quiescent current, no load, change in IVIN, when VLDO1 enabled  
Current limit, ILDO1 when VLDO1 is forced to VLDO1NOM/2  
ILDO1Q  
13  
μA  
ILDO1LIM  
122  
167  
280  
mA  
Notes  
28. The maximum operating input voltage is 4.55 V when VPWR LDO is used.  
29. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied  
at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between  
1.8 V and 3.3 V. This voltage can be an output from any PF3001 regulator, or external system supply.  
Table 16. Dynamic electrical characteristics - VLDO1  
All parameters are specified at T = -40 °C to 105 °C, V = 3.6 V, V  
= 3.6 V, V  
= 3.3 V, I  
= 10 mA, typical external  
A
IN  
LDO1IN  
LDO1  
LDO1  
component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V  
= 3.6 V, V  
= 3.3 V, I = 10 mA,  
LDO1  
IN  
LDO1IN  
LDO1  
and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLDO1 linear regulator  
PSRR, ILDO1 = 75 mA, 20 Hz to 20 kHz  
PSRRVLDO1  
35  
52  
40  
60  
dB  
• VLDO1 = 1.8 V to 3.3 V, VLDO1IN = VLDO1INMIN + 100 mV  
• VLDO1 = 1.8 V to 3.3 V, VLDO1IN = VLDO1NOM + 1.0 V  
Output noise density, VLDO1IN = VLDO1INMIN, ILDO1 = 75 mA  
-114  
-129  
-135  
-102  
-123  
-130  
• 100 Hz to <1.0 kHz  
• 1.0 kHz to <10 kHz  
• 10 kHz to 1.0 MHz  
NOISEVLDO1  
dBV/ Hz  
μs  
Turn-on time, enable to 90% of end value, VLDO1IN = VLDO1INMIN to  
4.5 V, ILDO1 = 0.0 mA, all output voltage settings  
tONLDO1  
60  
500  
Turn-off time, disable to 10% of initial value, VLDO1IN = VLDO1INMIN  
ILDO1 = 0.0 mA  
,
tOFFLDO1  
10  
ms  
%
Start-up overshoot, VLDO1IN = VLDO1INMIN to 4.5 V, ILDO1 = 0.0 mA  
LDO1OSHT  
1.0  
2.0  
PF3001  
18  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
Table 17. Static electrical characteristics - VLDO2  
All parameters are specified at T = -40 °C to 105 °C, V = 3.6 V, V  
= 3.0 V, V  
= 1.55 V, I  
= 10 mA, typical external  
LDO2  
A
IN  
LDO2IN  
LDO2  
component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V  
= 3.0 V, V = 1.55 V,  
IN  
LDO2IN  
LDO2  
I
= 10 mA and 25 °C, unless otherwise noted.  
LDO2  
Symbol  
VLDO2 linear regulator  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLDO2IN  
VLDO2NOM  
ILDO2  
Operating input voltage  
1.75  
Table 47  
3.40  
V
V
Nominal output voltage  
Operating load current  
0.0  
250  
mA  
Output voltage tolerance, 1.75 V < VLDOIN1 < 3.40 V, 0.0 mA < ILDO2  
< 250 mA, VLDO2 = 0.8 V to 1.55 V  
VLDO2TOL  
-3.0  
3.0  
%
Quiescent current, no load, change in IVIN and IVLDO2IN, When VLDO2  
enabled  
ILDO2Q  
16  
μA  
Current limit, ILDO2 when VLDO2 is forced to VLDO2NOM/2  
ILDO2LIM  
333  
417  
612  
mA  
Table 18. Dynamic electrical characteristics - VLDO2  
All parameters are specified at T = -40 °C to 105 °C, V = 3.6 V, V  
= 3.0 V, V  
= 1.55 V, I  
= 10 mA, typical external  
LDO2  
A
IN  
LDO2IN  
LDO2  
component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V  
= 3.0 V, V  
= 1.55 V, I  
=
IN  
LDO2IN  
LDO2  
LDO2  
10 mA and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLDO2 linear regulator  
PSRR, ILDO2 = 187.5 mA, 20 Hz to 20 kHz  
PSRRVLDO2  
50  
37  
60  
45  
dB  
• VLDO2 = 0.8 V to 1.55 V  
• VLDO2 = 1.1 V to 1.55 V  
Output noise density, VLDO2IN = 1.75 V, ILDO2 = 187.5 mA  
-108  
-118  
-124  
-100  
-108  
-112  
• 100 Hz to <1.0 kHz  
• 1.0 kHz to <10 kHz  
• 10 kHz to 1.0 MHz  
NOISEVLDO2  
dBV/Hz  
μs  
Turn-on time, enable to 90% of end value, VLDO2IN = 1.75 V to 3.4 V,  
ILDO2 = 0.0 mA  
tONLDO2  
60  
500  
Turn-off time, disable to 10% of initial value, VLDO2IN = 1.75 V,  
ILDO2 = 0.0 mA  
tOFFLDO2  
10  
ms  
%
Start-up overshoot, VLDO2IN = 1.75 V to 3.4 V, ILDO2 = 0.0 mA  
LDO2OSHT  
1.0  
2.0  
PF3001  
NXP Semiconductors  
19  
GENERAL PRODUCT CHARACTERISTICS  
Table 19. Static electrical characteristics – VCC_SD  
All parameters are specified at T = -40 °C to 105 °C, V = 3.6 V, V  
= 1.85 V, I  
= 10 mA, typical external component values,  
A
IN  
CC_SD  
VCC_SD  
unless otherwise noted. Typical values are characterized at V = 3.6 V, V  
= 1.85 V, I  
= 10 mA, and 25 °C, unless otherwise  
IN  
CC_SD  
VCC_SD  
noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VCC_SD linear regulator  
(30), (31),  
(32)  
VIN  
Operating input voltage  
2.8  
4.5  
V
VCC_SDNOM  
IVCC_SD  
Nominal output voltage  
Operating load current  
Table 50  
V
0.0  
100  
mA  
Output voltage accuracy, 2.8 V < VIN < 4.5 V, 0.0 mA < IVCC_SD  
100 mA, VCC_SD[1:0] = 00 to 11  
<
VCC_SDTOL  
-3.0  
3.0  
%
Quiescent current, no load, change in IVIN and IVIN2, when VCC_SD  
enabled  
IVCC_SDQ  
13  
μA  
Current limit, IVCC_SD when VCC_SD is forced to VCC_SDNOM/2  
IVCC_SDLIM  
122  
167  
280  
mA  
Notes  
30. When the LDO output voltage is set above 2.6 V, the minimum allowed input voltage needs to be at least the output voltage plus 0.25 V.  
31. The maximum operating input voltage is 4.55 V when VPWR LDO is used.  
32. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied  
at the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between  
1.8 V and 3.3 V. This voltage can be an output from any PF3001 regulator, or external system supply.  
Table 20. Dynamic electrical characteristics - VCC_SD  
All parameters are specified at T = -40 °C to 105 °C, V = 3.6 V, V  
= 1.85 V, I  
= 10 mA, typical external component values,  
A
IN  
CC_SD  
VCC_SD  
unless otherwise noted. Typical values are characterized at V = 3.6 V, V  
= 1.85 V, I  
= 10 mA, and 25 °C, unless otherwise  
IN  
CC_SD  
VCC_SD  
noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VCC_SD linear regulator  
PSRR, IVCC_SD = 75 mA, 20 Hz to 20 kHz  
PSRRVCC_SD  
35  
52  
40  
60  
dB  
• VCC_SD[1:0] = 00 - 10, VIN = 2.8 V + 100 mV  
• VCC_SD[1:0] = 10 - 11, VIN = VCC_SDNOM + 1.0 V  
Output noise density, VIN = 2.8V, IVCC_SD = 75 mA  
-114  
-129  
-135  
-102  
-123  
-130  
• 100 Hz to <1.0 kHz  
• 1.0 kHz to <10 kHz  
• 10 kHz to 1.0 MHz  
NOISEVCC_SD  
dBV/Hz  
μs  
Turn-on time, enable to 90% of end value, VIN = 2.8 V to 4.5 V,  
IVCC_SD = 0.0 mA  
tONVCC_SD  
60  
500  
Turn-off time, disable to 10% of initial value, VIN = 2.8 V,  
IVCC_SD = 0.0 mA  
tOFFVCC_SD  
10  
ms  
%
Start-up overshoot, VIN = 2.8 V to 4.5 V, IVCC_SD = 0.0 mA  
VCC_SDOSHT  
1.0  
2.0  
PF3001  
20  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
Table 21. Static electrical characteristics – V33  
All parameters are specified at T = -40 °C to 105 °C, V = 3.6 V, V = 3.3 V, I = 10 mA, typical external component values, unless  
V33  
A
IN  
33  
otherwise noted. Typical values are characterized at V = 3.6 V, V = 3.3 V, I = 10 mA, and 25 °C, unless otherwise noted.  
IN  
33  
V33  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
V33 linear regulator  
(33), (34),  
(35)  
Operating input voltage, 2.9 V V33NOM 3.6 V  
VIN  
2.8  
4.5  
V
V33NOM  
IV33  
Nominal output voltage  
Operating load current  
Table 49  
V
0.0  
350  
mA  
Output voltage tolerance, 2.8 V < VIN < 4.5 V, 0.0 mA < IV33 < 350 mA,  
V33[1:0] = 00 to 11  
V33TOL  
-3.0  
3.0  
%
Quiescent current, no load, change in IVIN, when V33 enabled  
Current limit, IV33 when V33 is forced to V33NOM/2  
IV33Q  
IV33LIM  
13  
μA  
435  
584.5  
950  
mA  
Notes  
33. When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper  
regulation due to the dropout voltage generated through the internal LDO transistor.  
34. The maximum operating input voltage is 4.55 V when VPWR LDO is used.  
35. Minimum operating voltage is 2.8 V with a valid LICELL voltage (1.8 V to 3.3 V). Minimum operating voltage is 3.1 V when no voltage is applied at  
the LICELL pin. If operation down to 2.8 V is required for systems without a coin cell, connect the LICELL pin to any system voltage between 1.8 V  
and 3.3 V. This voltage can be an output from any PF3001 regulator, or external system supply.  
Table 22. Dynamic electrical characteristics – V33  
All parameters are specified at T = -40 °C to 105 °C, V = 3.6 V, V = 3.3 V, I = 10 mA, typical external component values, unless  
V33  
A
IN  
33  
otherwise noted. Typical values are characterized at V = 3.6 V, V = 3.3 V, I = 10 mA, and 25 °C, unless otherwise noted.  
IN  
33  
V33  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
dB  
Notes  
V33 linear regulator  
PSRR, IV33 = 262.5 mA, 20 Hz to 20 kHz, V33[1:0] = 00 - 11,  
VIN = V33NOM + 1.0 V  
(36)  
PSRRV33  
52  
60  
Output noise density, VIN = 2.8 V, IV33 = 262.5 mA  
-114  
-129  
-135  
-102  
-123  
-130  
• 100 Hz to <1.0 kHz  
• 1.0 kHz to <10 kHz  
• 10 kHz to 1.0 MHz  
NOISEV33  
dBV/Hz  
μs  
Turn-on time, enable to 90% of end value, VIN = 2.8 V, to 4.5 V,  
IV33 = 0.0 mA  
tONV33  
60  
500  
Turn-off time, disable to 10% of initial value, VIN = 2.8 V,  
IV33 = 0.0 mA  
tOFFV33  
10  
ms  
%
Start-up overshoot, VIN = 2.8 V to 4.5 V, IV33 = 0.0 mA  
V33OSHT  
Notes  
1.0  
2.0  
36. When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper  
regulation due to the dropout voltage generated through the internal LDO transistor.  
PF3001  
NXP Semiconductors  
21  
GENERAL PRODUCT CHARACTERISTICS  
Table 23. Static electrical characteristics – VLDO3  
All parameters are specified at T = -40 °C to 105 °C, V = 3.6 V, V  
= 3.6 V, V  
= 3.3 V, I  
= 10 mA, typical external  
LDO3  
A
IN  
LDO34IN  
LDO3  
component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V  
= 3.6 V, V = 3.3 V,  
IN  
LDO34IN  
LDO3  
I
= 10 mA, and 25 °C, unless otherwise noted.  
LDO3  
Notes  
Symbol  
VLDO3 linear regulator  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Operating input voltage  
• 1.8 V VLDO3NOM 2.5 V  
• 2.6 V VLDO3NOM 3.3 V  
2.8  
VLDO3NOM  
+0.250  
(37)  
VLDO34IN  
3.6  
3.6  
V
VLDO3NOM  
ILDO3  
Nominal output voltage  
Operating load current  
Table 48  
V
0.0  
100  
mA  
Output voltage tolerance, VLDO34INMIN < VLDO34IN < 4.5 V,  
0.0 mA < ILDO3 < 100 mA, VLDO3 = 1.8 V to 3.3 V  
VLDO3TOL  
-3.0  
3.0  
%
Quiescent current, no load, change in IVIN and IVLDO34IN, When VLDO3  
enabled  
ILDO3Q  
13  
μA  
Current limit, ILDO3 when VLDO3 is forced to VLDO3NOM/2  
ILDO3LIM  
122  
167  
280  
mA  
Notes  
37. Beyond VLDO34IN rating, the ESD protection can be sensitive to voltage transients.  
Table 24. Dynamic electrical characteristics – VLDO3  
All parameters are specified at T = -40 °C to 105 °C, V = 3.6 V, V  
= 3.6 V, V  
= 3.3 V, I  
= 10 mA, typical external  
LDO3  
A
IN  
LDO34IN  
LDO3  
component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V  
= 3.6 V, V = 3.3 V,  
IN  
LDO34IN  
LDO3  
I
= 10 mA, and 25 °C, unless otherwise noted.  
LDO3  
Notes  
Symbol  
VLDO3 linear regulator  
PSRR, ILDO3 = 75 mA, 20 Hz to 20 kHz  
Parameter  
Min.  
Typ.  
Max.  
Unit  
PSRRVLDO3  
35  
52  
40  
60  
dB  
• VLDO3 = 1.8 V to 3.3 V, VLDO34IN = VLDO34INMIN + 100 mV  
• VLDO3 = 1.8 V to 3.3 V, VLDO34IN = VLDO3NOM + 1.0 V  
Output noise density, VLDO34IN = VLDO34INMIN, ILDO3 = 75 mA  
-114  
-129  
-135  
-102  
-123  
-130  
• 100 Hz to <1.0 kHz  
• 1.0 kHz to <10 kHz  
• 10 kHz to 1.0 MHz  
NOISEVLDO3  
dBV/Hz  
μs  
Turn-on time, enable to 90% of end value, VLDO34IN = VLDO34INMIN to  
4.5 V, ILDO3 = 0.0 mA  
tONLDO3  
60  
500  
Turn-off time, disable to 10% of initial value, VLDO34IN = VLDO34INMIN  
ILDO3 = 0.0 mA  
,
tOFFLDO3  
10  
ms  
%
Start-up overshoot, VLDO34IN = VLDO34IN2MIN to 4.5 V, ILDO3 = 0.0 mA  
LDO3OSHT  
1.0  
2.0  
PF3001  
22  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
Table 25. Static electrical characteristics - VLDO4  
All parameters are specified at T = -40 °C to 105 °C, V = 3.6 V, V  
= 3.6 V, V  
= 3.3 V, I  
= 10 mA, typical external  
LDO4  
A
IN  
LDO34IN  
LDO4  
component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V  
= 3.6 V, V = 3.3 V,  
IN  
LDO34IN  
LDO4  
I
= 10 mA, and 25 °C, unless otherwise noted.  
LDO4  
Symbol  
VLDO4 linear regulator  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating input voltage  
• 1.8 V VLDO4NOM 2.5 V  
• 2.6 V VLDO4NOM 3.3 V  
2.8  
VLDO4NOM  
+0.250  
(38)  
VLDO34IN  
3.6  
3.6  
V
VLDO4NOM  
ILDO4  
Nominal output voltage  
Operating load current  
Table 48  
V
0.0  
350  
mA  
Output voltage tolerance, VLDO34INMIN < VLDO34IN < 4.5 V,  
0.0 mA < ILDO3 < 100 mA, VLDO4 = 1.9 V to 3.3 V  
VLDO4TOL  
-3.0  
3.0  
%
Quiescent current, no load, change in IVIN and IVLDO34IN, When VLDO4  
enabled  
ILDO4Q  
13  
μA  
Current limit, ILDO4 when VLDO4 is forced to VLDO4NOM/2  
ILDO4LIM  
435  
584.5  
950  
mA  
PSRR, ILDO4 = 262.5 mA, 20 Hz to 20 kHz  
PSRRVLDO4  
35  
52  
40  
60  
dB  
• VLDO4 = 1.9 V to 3.3 V, VLDO34IN = VLDO34INMIN + 100 mV  
• VLDO4 = 1.9 V to 3.3 V, VLDO34IN = VLDO4NOM + 1.0 V  
Notes  
38. Beyond VLDO34IN rating, the ESD protection can be sensitive to voltage transients.  
Table 26. Dynamic electrical characteristics - VLDO4  
All parameters are specified at T = -40 °C to 105 °C, V = 3.6 V, V  
= 3.6 V, V  
= 3.3 V, I  
= 10 mA, typical external  
LDO4  
A
IN  
LDO34IN  
LDO4  
component values, unless otherwise noted. Typical values are characterized at V = 3.6 V, V  
= 3.6 V, V = 3.3 V,  
IN  
LDO34IN  
LDO4  
I
= 10 mA, and 25 °C, unless otherwise noted.  
LDO4  
Symbol  
VLDO4 linear regulator  
Output noise density, VLDO34IN2 = VLDO34INMIN, ILDO4 = 262.5 mA  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
-114  
-129  
-135  
-102  
-123  
-130  
• 100 Hz to <1.0 kHz  
• 1.0 kHz to <10 kHz  
• 10 kHz to 1.0 MHz  
NOISEVLDO4  
dBV/Hz  
μs  
Turn-on time, enable to 90% of end value, VLDO34IN = VLDO34INMIN  
4.5 V, ILDO4 = 0.0 mA  
,
tONLDO4  
60  
500  
Turn-off time, disable to 10% of initial value, VLDO34IN = VLDO34INMIN  
ILDO4 = 0.0 mA  
,
tOFFLDO4  
10  
ms  
%
Start-up overshoot, VLDO34IN = VLDO34INMIN, 4.5 V, ILDO4 = 0.0 mA  
LDO4OSHT  
1.0  
2.0  
Table 27. Static electrical characteristics - Coin Cell  
All parameters are specified at T = -40 °C to 105 °C, V = 3.6 V, typical external component values, unless otherwise noted.  
A
IN  
Symbol  
Coin cell  
VCOINACC  
ICOINACC  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Charge voltage accuracy  
Charge current accuracy  
-100  
-30  
-100  
30  
mV  
%
Coin cell charge current  
• ICOINHI (in On mode)  
• ICOINLO (in On mode)  
ICOIN  
60  
10  
μA  
PF3001  
NXP Semiconductors  
23  
GENERAL PRODUCT CHARACTERISTICS  
Table 28. Static electrical characteristics - Digital I/O  
All parameters are specified at T = -40 °C to 105 °C, VDDIO = 1.7 V to 3.6 V, VPWR = 0 V (external FET not populated), and typical external  
A
component values and full load current range, unless otherwise noted.  
Pin Name  
Parameter  
Load condition  
Min.  
Max.  
Unit  
Notes  
• VL  
• VH  
0.0  
0.8 * VSNVS  
0.2 * VSNVS  
3.6  
PWRON  
V
• VOL  
• VOH  
-2.0 mA  
Open Drain  
0.0  
0.7 * VDDIO  
0.4 * VDDIO  
VDDIO  
RESETBMCU  
SCL  
V
V
• VL  
• VH  
0.0  
0.8 * VDDIO  
0.2 * VDDIO  
3.6  
• VL  
• VH  
• VOL  
• VOH  
0.0  
0.8 * VDDIO  
0.0  
0.2 * VDDIO  
3.6  
0.4 * VDDIO  
VDDIO  
SDA  
V
-2.0 mA  
Open Drain  
0.7 * VDDIO  
• VOL  
• VOH  
-2.0 mA  
Open Drain  
0.0  
0.7 * VDDIO  
0.4 * VDDIO  
VDDIO  
INTB  
V
V
• VL  
• VH  
0.0  
0.8 * VDDIO  
0.2 * VDDIO  
3.6  
SD_VSEL  
Table 29. Static electrical characteristics - Internal Supplies  
All parameters are specified at T = -40 °C to 105 °C, V = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V, and typical external component values.  
A
IN  
Typical values are characterized at V = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted.  
IN  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VCOREDIG (digital core supply)  
Output voltage  
• ON mode  
• Coin cell mode and OFF mode  
(39)  
VCOREDIG  
1.5  
1.3  
V
VCORE (analog core supply)  
Output voltage  
• ON mode and charging  
• Coin cell mode and OFF mode  
(39)  
(39)  
VCORE  
2.775  
0.0  
V
VCOREREF (bandgap regulator reference)  
VCOREREF  
VCOREREFACC  
VCOREREFTACC  
Output voltage at 25 °C  
Absolute trim accuracy  
Temperature drift  
1.2  
0.5  
V
%
%
0.25  
Notes  
39. 3.1 V < VIN < 4.5 V, no external loading on VCOREDIG, VCORE, or VCOREREF.  
Table 30. Static electrical characteristics - UVDET threshold  
All parameters are specified at T = -40 °C to 105 °C, V = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V, and typical external component values.  
A
IN  
Typical values are characterized at V = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted.  
IN  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
V
IN UVDET threshold  
• Rising  
• Falling  
2.5  
3.1  
VUVDET  
V
PF3001  
24  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6
Functional description and application information  
6.1  
Introduction  
The PF3001 is a highly integrated, low quiescent current power management IC featuring three buck regulators and seven LDO  
regulators. The PF3001 provides all the necessary rails to power a complete system including the application processor, memory, and  
peripherals. The PF3001 operates from an input voltage of up to 5.5 V. Output voltage, start-up sequence, and other functions are set in  
integrated one-time-programmable (OTP) memory.  
6.2  
Power generation  
The buck regulators in the PF3001 provide supply to the processor cores and to other voltage domains, such as I/O and memory. Dynamic  
voltage scaling is provided to allow controlled supply rail adjustments for the processor cores and other circuitry.  
The linear regulators in the PF3001 can be used as general purpose regulators to power peripherals and lower power processor rails. The  
VCC_SD LDO regulator supports the dual voltage requirement by high speed SD card readers. Depending on the system power path  
configuration, the LDO regulators can be directly supplied from the main input supply or from the switching regulators to power peripherals,  
such as audio, camera, Bluetooth, and Wireless LAN, etc.  
The VSNVS block behaves as an LDO, or as a bypass switch to supply the SNVS/SRTC circuitry on the i.MX processors; V  
may be  
SNVS  
powered from V , or from a coin cell.  
IN  
To accommodate applications powered by main supplies of voltages higher than 4.5 V and up to 5.5 V, the PF3001 incorporates a front-  
end LDO regulator using an external pass FET to keep the maximum regulator input voltage of the regulators at 4.5 V. Applications with  
an input voltage lower than 4.5 V can directly power the regulators without using the front-end LDO.  
Table 31 shows a summary of the voltage regulators in the PF3001.  
Table 31. PF3001 power tree  
Supply  
Output voltage (V)  
Programming step size (mV)  
Maximum load current (mA)  
0.7 to 1.425  
1.8 and 3.3  
25  
(N/A)  
SW1  
2750  
1.5 to 1.85  
2.5 to 3.3  
50  
variable  
SW2  
1250  
SW3  
0.9 to 1.65  
1.8 to 3.3  
0.8 to 1.55  
50  
50  
50  
1500  
100  
VLDO1  
VLDO2  
250  
2.85 to 3.3  
1.8 to 1.85  
150  
50  
VCC_SD  
100  
V33  
2.85 to 3.3  
1.8 to 3.3  
1.8 to 3.3  
3.0  
150  
100  
100  
NA  
350  
100  
350  
1.0  
VLDO3  
VLDO4  
VSNVS  
PF3001  
NXP Semiconductors  
25  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
PF3001  
i.MX Series  
MCU  
SW1  
0.700 V to 3.3 V  
2.75 A  
1.1 V  
VDD_ARM  
(A7 Core)  
(SOC Logic)  
SW2  
1.8 V  
1.50 V to 1.85 V  
or 2.25 V to 3.30 V  
1.25 A  
VDDA_1P8  
(I/O)  
VIN  
4.5 V (typ.)  
1.35 V  
SW3  
0.90 V to 1.65 V  
1.5 A  
NVCC_DRAM_CKE  
(DDR IO)  
VCC_SD  
1.80 V to 1.85 V  
or 2.85 V to 3.3 V  
100 mA  
3.3 V  
3.3 V  
VCC_SD_IO  
V33  
NVCC_3P3  
(3.3 V GPIO PAD)  
2.85 V to 3.30 V  
350 mA  
VDDA_USBx_3P3  
(USB OTG PHY)  
VDD_LPSR  
NVCC_GPIOx  
VIN  
VSNVS  
1.0 V to 3.0 V  
1.0 mA  
MUX /  
COIN  
CHRG  
VSNVS_IN  
Coincell  
VLDO1  
1.8 V to 3.3 V  
100 mA  
USB_OTG  
1.8 V  
1.5 V  
VIN  
VLDO2  
0.80 V to 1.55 V  
250 mA  
VLDO2INMAX = 3.4 V  
DDR3L  
SW2  
VLDO3  
1.8 V to 3.3 V  
100 mA  
Peripherals  
VIN  
VLDO4  
1.8 V to 3.3 V  
350 mA  
3.3 V  
3.3 V  
Figure 5. PF3001 typical power map  
Figure 5 shows a simplified power map with various recommended options to supply the different block within the PF3001, as well as the  
typical application voltage domain on the i.MX Series processors. Note that each application power tree is dependent upon the system’s  
voltage and current requirements, therefore a proper input voltage should be selected for the regulators.  
PF3001  
26  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3  
Functional description  
6.3.1 Control logic and interface signals  
2
The PF3001 is fully programmable via the I C interface. Additional communication is provided by direct logic interfacing including INTB,  
RESETBMCU, PWRON, and SD_VSEL. Refer to Table 28 for logic levels for these pins.  
6.3.1.1  
PWRON  
PWRON is an input signal to the IC which generates a turn-on event. A turn-on event brings the PF3001 out of OFF mode and into the  
ON mode. Refer to Modes of operation for the various modes (states) of operation of the IC. If the PWRON signal is high and V > U  
,
IN  
VDET  
the PMIC turns on; the interrupt and sense bits, PWRONI and PWRONS respectively, are set.  
6.3.1.2  
RESETBMCU  
RESETBMCU is an open-drain, active low output. It is de-asserted 2.0 ms after the last regulator in the start-up sequence is enabled. This  
signal can be used to bring the processor out of reset (POR), or as an indicator which all supplies have been enabled; it is only asserted  
during a turn-off event. The RESETBMCU signal is internal timer based and does not monitor the regulators.  
6.3.1.3  
INTB  
INTB is an open drain, active low output. It is asserted when any fault occurs, provided the fault interrupt is unmasked. INTB is de-asserted  
after the fault interrupt is cleared by software, which requires writing a “1” to the fault interrupt bit.  
6.3.1.4  
SD_VSEL  
SD_VSEL is an input pin which sets the output voltage range of the VCC_SD regulator. When SD_VSEL = HIGH, the VCC_SD regulator  
operates in the lower output voltage range. When SD_VSEL = LOW, the VCC_SD regulator operates in the higher output voltage range.  
The SD_VSEL input buffer is powered by the VDDIO supply. When a valid VDDIO voltage is not present, the output of the SD_VSEL buffer  
defaults to a logic high thus keeping the VCC_SD regulator output in the lower voltage range.  
PF3001  
NXP Semiconductors  
27  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.2 Start-up  
The PF3001 is available in a number of pre-programmed fixed start-up sequences to suit a wide variety of system configurations. Refer  
to Table 32 for programming details of the different values.  
Table 32. Start-up configuration (40)  
Pre-programmed OTP configuration  
Registers  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
Default I2C Address  
VSNVS_VOLT  
SW1_VOLT  
0x08  
0x08  
0x08  
3.0 V  
1.375 V  
2
0x08  
0x08  
0x08  
0x08  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
1.10 V  
1.10 V  
1.375 V  
1.375 V  
1.4 V  
1.4 V  
SW1_SEQ  
1
1
1
1
3
3
SW2_VOLT  
1.8 V  
1.8 V  
3.3 V  
4
3.3 V  
3.15 V  
3.3 V  
3.3 V  
SW2_SEQ  
2
2
2
2
3
3
SW3_VOLT  
1.35 V  
1.2 V  
1.35 V  
3
1.5 V  
1.2 V  
1.2 V  
1.35 V  
SW3_SEQ  
5
5
3
1.8 V  
OFF  
1.2 V  
3
4
3
3
3.3 V  
3
VLDO1_VOLT  
VLDO1_SEQ  
VLDO2_VOLT  
VLDO2_SEQ  
VLDO3_VOLT  
VLDO3_SEQ  
VLDO4_VOLT  
VLDO4_SEQ  
V33_VOLT  
1.8 V  
1.8 V  
3.3 V  
OFF  
1.5 V  
OFF  
2.5 V  
OFF  
1.8 V  
4
1.8 V  
3.3 V  
4
4
3
3
1.5 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
OFF  
1.8 V  
OFF  
1.8 V  
3
4
4
OFF  
OFF  
3.3 V  
3.3 V  
1.8 V  
OFF  
1.8 V  
3
3.1 V  
1.8 V  
3
3
2
3
3.3 V  
3.3 V  
1.8 V  
1.8 V  
3
3
3
2.85 V  
OFF  
3
3.3 V  
3.3 V  
3.0 V  
1
3.3 V  
2
3.3 V  
3.3 V  
2
V33_SEQ  
3
3
2
VCC_SD_VOLT  
VCC_SD_SEQ  
3.3 V/1.85 V  
4
3.3 V/1.85 V  
4
3.3 V/1.85 V  
5
3.0 V/1.80 V  
3
3.15 V/1.80 V  
2
3.3 V/1.85 V  
3
3.3 V/1.85 V  
3
PU CONFIG,  
SEQ_CLK_SPEED  
2000 µs  
2000 µs  
500 µs  
2000 µs  
2000 µs  
2000 µs  
2000 µs  
PU CONFIG, SWDVS_CLK  
PU CONFIG, PWRON  
SW1_FREQ  
12.5 mV/µs  
12.5 mV/µs  
6.25 mV/μs  
12.5 mV/µs  
12.5 mV/µs  
6.25 mV/μs  
6.25 mV/μs  
Level sensitive Level sensitive Level sensitive Level sensitive Level sensitive Level sensitive Level sensitive  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
SW2_FREQ  
SW3_FREQ  
Notes  
40. This table specifies the default output voltage of the LDOs and SWx after start-up and/or when the LDOs and SWx are enabled. The VCC_SD  
voltage depends on the state of the SD_VSEL pin.  
PF3001  
28  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.3 Start-up timing diagram  
Figure 6 shows the start-up timing of the regulators as determined by their OTP sequence. The trimmed 32 kHz clock controls all the start-  
up timing.  
UVDET  
td1 is time from VIN > UVDET to VSNVS  
VIN  
starting to rise. td1 is typically 5 ms  
tr1 is time VSNVS takes to go from 1  
tr1  
V to 3 V. Typically it is 650 μs.  
3 V  
td1  
1 V  
VSNVS  
td2 is user determined delay. Can be  
zero if PWRON pulled up to VSNVS  
td2  
PWRON  
td3 is delay of regulator(s) whose OTP sequence is set to 1.  
With SEQ_CLK_SPEED = 0.5 ms, td3 is typically 2 ms with a  
minimum of 1 ms and maximum of 3 ms  
With SEQ_CLK_SPEED = 2 ms, td3 is typically 4.5 ms with a  
minimum of 2.5 ms and maximum of 6.5 ms  
td3  
Regulator  
Outputs  
td4 is controlled by the OTP  
sequence setting of the  
regulator(s). Refer to Table 32.  
td4  
Regulator  
Outputs  
td5 is the time for RESETBMCU to go high from the  
regulator(s) with the last OTP sequence. It is typically  
2 ms with a minimum of 1.8 ms and maximum of 2.2 ms.  
td5  
RESETBMCU  
Figure 6. Start-up timing diagram  
6.3.4 16 MHz and 32 kHz clocks  
The PF3001 incorporates two clocks: a trimmed 16 MHz RC oscillator and an untrimmed 32 kHz RC oscillator. The 32 kHz untrimmed  
clock is only used in the following conditions:  
• V < UVDET  
IN  
• All regulators are in PFM switching mode  
A 32 kHz clock, derived from the 16 MHz trimmed clock, is used when accurate timing is needed under the following conditions:  
• During start-up, V > UVDET  
IN  
When the 16 MHz is active in the ON mode, the debounce times are referenced to the 32 kHz derived from the 16 MHz clock. The  
exceptions are the LOWVINI and PWRONI interrupts, which are referenced to the 32 kHz untrimmed clock. Switching frequency of the  
switching regulators is derived from the trimmed 16 MHz clock.  
The 16 MHz clock and hence the switching frequency of the regulators, can be adjusted to improve the noise integrity of the system. By  
changing the factory trim values of the 16 MHz clock, the user may add an offset as small as 3.0% of the nominal frequency. Contact  
your NXP representative for detailed information on this feature.  
PF3001  
NXP Semiconductors  
29  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.5 Optional front-end input LDO regulator  
6.3.5.1  
LDO regulator description  
This section describes the optional front-end LDO regulator provided by the PF3001 in order to facilitate the operation with supply voltages  
higher than 4.5 V and up to 5.5 V.  
For non-battery operated applications, when the input supply voltage exceeds 4.5 V, the front-end LDO can be activated by populating the  
external PMOS pass FET MP1 in Figure 7 and connecting the VPWR pin to the main supply. Under this condition, the LDO control block  
self-starts with a local bandgap reference. When the VIN pin reaches UVDET rising threshold, the reference is switched to the main  
trimmed bandgap reference to maintain the required VIN accuracy. In applications using an input supply voltage of 4.5 V or lower, the  
PMOS pass FET should not be populated, the VPWR pin should be grounded externally, and the VIN pin should be used instead as the  
main supply input pin. The input pins of the switching regulators should always be connected to the VIN net.  
The main components of the LDO regulator are an external power P-channel MOSFET and an internal differential error amplifier. One  
input of the amplifier monitors a fraction of the output voltage at VIN determined by the resistor ratio of R1 and R2 as shown in Figure 7.  
The second input to the differential amplifier is from a stable bandgap voltage reference. If the output voltage rises too high relative to the  
reference voltage, the gate voltage of the power FET is changed to maintain a constant output voltage.  
VP WR  
VPWR  
LDOG  
VREF  
_
+
MP1  
VIN  
R1  
CVI N  
R2  
VP  
WR  
Figure 7. Front-end LDO block diagram  
6.3.5.2  
Undervoltage/short-circuit and overvoltage detection  
Short-circuit to GND at VIN is detected using an under voltage monitor at VIN which senses excessive droop on the VIN line and  
consequently turns off (disable) the external PMOS pass FET. Overvoltage at VPWR is detected if VPWR exceeds the V threshold  
PWROV  
(typically 6.0 V). Upon the detection of an overvoltage event an interrupt is generated and bit 2 is set in INTSTAT3 register. The INTB pin  
is pulled low if the VPWROVM mask bit is cleared. The interrupt is filtered using a 122 μs debouncing circuit. The VPWROV interrupt is  
2
not asserted if the overvoltage event occurs during start up. The VPWROVS bit can be read using I C to detect an overvoltage condition.  
PF3001  
30  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.5.3  
External components  
Table 33 lists the typical component values for the general purpose LDO regulators.  
Table 33. Input LDO external components  
Component  
Value  
Minimum output capacitor on VIN rail  
100 μF (41)  
MP1  
Fairchild FDMA908PZ, Vishay SiA447DJ, or comparable  
Notes  
41. Use X5R/X7R ceramic capacitors with a voltage rating at least two times the nominal voltage. The 100 μF capacitance is the total capacitance  
on the VIN rail including the capacitance at the various regulator inputs. For example, 2 x 22 μF capacitors can be used along with 10 μF  
capacitors at all the SWx and LDOx inputs to achieve a total of 100 μF capacitance.  
6.3.6 Internal core voltages  
All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at VCOREREF. VCOREDIG is a  
1.5 V regulator powering all the digital logic in the PF3001. VCOREDIG is regulated at 1.28 V in off and coin cell modes. The VCORE  
supply is used to bias internal analog rails. No external DC loading is allowed on VCORE, VCOREDIG, or VCOREREF. VCOREDIG is  
kept powered as long as there is a valid supply and/or valid coin cell.  
6.3.7 Buck regulators  
The PF3001 integrates three independent buck regulators: SW1, SW2, and SW3. Each regulator has associated registers controlling its  
2
output voltage during on mode. After boot up, contents of the SWxVOLT[4:0] register can be set through I C to set the output voltage  
during on mode.  
VIN  
SWxIN  
CINSWxHF  
SWxMODE  
ISENSE  
CINSWx  
Controller  
SWx  
SWxLX  
EP  
Driver  
LSWx  
COSWx  
SWxFAULT  
I2C  
Interface  
Internal  
Compensation  
Z2  
SWxFB  
Z1  
VREF  
EA  
DAC  
Discharge  
Figure 8. Generic SWx block diagram  
PF3001  
NXP Semiconductors  
31  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 34. SWx regulators external components  
Components  
Description  
SWx input capacitor  
Values  
CINSWx  
10 μF  
CINSWxHF  
SWx decoupling input capacitor  
SWx output capacitor  
SWx inductor  
0.1 μF  
2 x 22 μF (10 V or higher voltage rated  
capacitors) or 3 x 22 μF (6.3 V rated capacitors)  
COSWx  
LSWx  
1.5 μH  
Use X5R or X7R capacitors with voltage rating at least two times the nominal voltage.  
6.3.7.1  
Switching modes  
2
The buck regulators can operate in different switching modes. Changing between switching modes can occur by I C programming.  
Available switching modes for buck regulators are presented in Table 35.  
Table 35. Switching mode description  
Mode  
Description  
OFF  
The regulator is switched off and the output voltage is discharged using an internal resistor  
In this mode, the regulator operates in forced PFM mode. The main error amplifier is turned off and a hysteretic comparator is  
used to regulate output voltage. Use this mode for load currents less than 50 mA.  
PFM  
PWM  
APS  
In this mode, the regulator operates in forced PWM mode.  
In this mode, the regulator operates in pulse skipping mode at light loads and switches over to PWM modes for heavier load  
conditions. This is the default mode in which the regulators power up during a turn-on event.  
During soft-start of the buck regulators, the controller transitions through the PFM, APS, and PWM switching modes. 3.0 ms after the  
output voltage reaches regulation, the controller transitions to the selected switching mode. Depending on the particular switching mode  
selected, additional ripple may be observed on the output voltage rail as the controller transitions between switching modes. The operating  
mode of the regulator in on mode is controlled using the SWxMODE[3:0] bits associated with each regulator. Table 36 summarizes the  
Buck regulator programmability for normal mode.  
Table 36. Regulator mode control  
SWxMODE[3:0]  
Normal mode  
0000  
0001  
Off  
PWM  
PFM  
APS  
0011  
1000 (default)  
PF3001  
32  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.7.2  
Dynamic voltage scaling  
To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the processor.  
2
Normal operation: The output voltage is selected by I C bits SW1[4:0] for SW1 and SW2[2:0] for SW2, and SW3[3:0] for SW3. A voltage  
2
transition initiated by I C is governed by the DVS stepping rate which is 25 mV per step each 4.0 μs.  
The regulators have a strong sourcing and sinking capability in PWM mode, therefore the fastest rising and falling slopes are determined  
by the regulator in PWM mode. However, if the regulators are programmed in PFM or APS mode during a DVS transition, the falling slope  
can be influenced by the load. Additionally, as the current capability in PFM mode is reduced, controlled DVS transitions in PFM mode  
could be affected. Critically timed DVS transitions are best assured with PWM mode operation.  
2
Figure 9 shows the general behavior for the regulators when initiated with I C programming. During the DVS period the overcurrent  
condition on the regulator should be masked.  
Figure 9. Voltage stepping with fixed DVS  
6.3.7.3  
Regulator phase clock  
The SWxPHASE[1:0] bits select the phase of the regulator clock as shown in Table 37. By default, each regulator is initialized at 90 ° out  
of phase with respect to each other. For example, SW1 is set to 0 °, SW2 is set to 90 °, and SW3 is set to 180 ° by default at power up.  
Table 37. Regulator phase clock selection  
Phase of clock sent to  
SWxPHASE[1:0]  
regulator (degrees)  
00  
01  
10  
11  
0
90  
180  
270  
The SWxFREQ[1:0] register is used to set the desired switching frequency for each one of the buck regulators. Table 39 shows the  
selectable options for SWxFREQ[1:0]. For each frequency, all phases are available, this allows regulators operating at different  
frequencies to have different relative switching phases. However, not all combinations are practical. For example, 2.0 MHz, 90 ° and  
4.0 MHz, 180 ° are the same in terms of phasing. Table 38 shows the optimum phasing when using more than one switching frequency.  
PF3001  
NXP Semiconductors  
33  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 38. Optimum phasing  
Frequencies  
Optimum phasing  
1.0 MHz  
2.0 MHz  
0 °  
180 °  
1.0 MHz  
4.0 MHz  
0 °  
180 °  
2.0 MHz  
4.0 MHz  
0 °  
180 °  
1.0 MHz  
2.0 MHz  
4.0 MHz  
0 °  
90 °  
90 °  
Table 39. Regulator frequency configuration  
SWxFREQ[1:0]  
Frequency  
00  
01  
10  
11  
1.0 MHz  
2.0 MHz (default)  
4.0 MHz  
Reserved  
6.3.7.4  
SW1  
SW1 is a 2.75 A buck regulator. The SW1 output voltage is programmable from 1.5 V to 3.3 V. In this configuration, the SW1LX pins are  
connected together to a single inductor, providing up to 2.75 A current capability for high current applications. The feedback and all other  
controls are accomplished using the SW1FB pin.  
6.3.7.5  
SW1 setup and control registers  
SW1 output voltages are programmable from 0.7 V to 1.425 V in steps of 25 mV. They can additionally be programmed at 1.8 V or 3.3 V.  
The output voltage set point is independently programmed for Normal mode by setting the SW1[4:0] bits respectively. Table 40 shows the  
output voltage coding.  
Table 40. SW1 output voltage configuration  
Set Point  
SW1[4:0]  
SW1x output (V)  
Set Point  
SW1[4:0]  
SW1x output (V)  
0
1
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
0.700  
0.725  
0.750  
0.775  
0.800  
0.825  
0.850  
0.875  
0.900  
0.925  
0.950  
0.975  
1.000  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
2
3
4
5
6
7
8
9
10  
11  
12  
PF3001  
34  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 40. SW1 output voltage configuration (continued)  
Set Point  
SW1[4:0]  
SW1x output (V)  
Set Point  
SW1[4:0]  
SW1x output (V)  
13  
14  
15  
01101  
01110  
01111  
1.025  
1.050  
1.075  
29  
30  
31  
11101  
11110  
11111  
1.425  
1.800  
3.300  
Table 41 provides a list of registers used to configure and operate the SW1 regulator.  
Table 41. SW1 register summary  
Register  
SW1VOLT  
Address  
Output  
0x20  
0x23  
0x24  
SW1 output voltage set point in normal operation  
SW1 switching mode selector register  
SW1MODE  
SW1CONF  
SW1 phase and frequency configuration  
6.3.7.6  
SW2 setup and control registers  
SW2 is a single phase, 1.25 A rated buck regulator. The SW2 output voltage is programmable from 1.5 V to 1.85 V in 50 mV steps if the  
CTL_SW2_HL bit is low or from 2.5 V to 3.3 V in 150 mV steps, if the bit CTL_SW2_HL is set high. This internal bit CTL_SW2_HL is  
decided by the SW2 start-up voltage in the start-up sequence. During normal operation, output voltage of the SW2 regulator can be  
2
changed through I C only within the range set by the CTL_SW2_HL bit. The output voltage set point is independently programmed for  
Normal mode by setting the SW2[2:0] bits, respectively. Table 42 shows the output voltage coding valid for SW2.  
Table 42. SW2 output voltage configuration  
Low output voltage range  
(CTL_SW2_HL= 0)  
High output voltage range  
(CTL_SW2_HL=1)  
SW2[2:0]  
SW2 output  
SW2[2:0]  
SW2 output  
000  
001  
010  
011  
100  
101  
110  
111  
1.500  
1.550  
1.600  
1.650  
1.700  
1.750  
1.800  
1.850  
000  
001  
010  
011  
100  
101  
110  
111  
2.500  
2.800  
2.850  
3.000  
3.100  
3.150  
3.200  
3.300  
2
Setup and control of SW2 is done through the I C registers listed in Table 43.  
Table 43. SW2 register summary  
Register  
SW2VOLT  
Address  
Description  
0x35  
0x38  
0x39  
SW2 output voltage set point on normal operation  
SW2 switching mode selector register  
SW2MODE  
SW2CONF  
SW2 phase, frequency, and ILIM configuration  
PF3001  
NXP Semiconductors  
35  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.7.7  
SW3 setup and control registers  
SW3 output voltage is programmable from 0.90 V to 1.65 V in 50 mV steps to support different types of DDR memory as listed in Table 44.  
Table 44. SW3 output voltage configuration  
SW3[3:0]  
SW3 output (V)  
SW3[3:0]  
SW3 output (V)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
Table 45 provides a list of registers used to configure and operate SW3.  
Table 45. SW3 register summary  
Register  
SW3VOLT  
Address  
Output  
0x3C  
0x3F  
0x40  
SW3 output voltage set point on normal operation  
SW3 switching mode selector register  
SW3MODE  
SW3CONF  
SW3 phase, frequency, and ILIM configuration  
6.3.8 LDO regulators description  
This section describes the LDO regulators provided by the PF3001. All regulators use the main bandgap as reference. When a regulator  
is disabled, the output discharges through an internal pull-down resistor.  
VINx  
VI Nx  
VREF  
_
+
VL D OxEN  
VLDOxLPWR  
VLDOx  
VLDOx  
I2C  
Interface  
CLDOx  
VLDOx  
Discharge  
Figure 10. General LDO block diagram  
PF3001  
36  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.8.1  
External components  
Table 46 lists the typical component values for the general purpose LDO regulators.  
Table 46. LDO external components  
Regulator  
Output capacitor (μF)(42)  
VLDO1  
VLDO2  
VLDO3  
VLDO4  
V33  
2.2  
4.7  
2.2  
4.7  
4.7  
2.2  
VCC_SD  
Notes  
42. Use X5R/X7R ceramic capacitors.  
6.3.8.2  
Current limit protection  
All the LDO regulators in the PF3001 have current limit protection. In the event of an overload condition, the regulators transitions from a  
voltage regulator to a current regulator which regulates output current per the current limit threshold.  
Additionally, if the REGSCPEN bit in Table 107 is set, the LDO is turned off if the current limit event lasts for more than 8.0 ms. The LDO  
is disabled by resetting its VLDOxEN bit, while at the same time, an interrupt VLDOxFAULTI is generated to flag the fault to the system  
processor. The VLDOxFAULTI interrupt is maskable through the VLDOxFAULTM mask bit. By default, the REGSCPEN is not set;  
therefore, at start-up none of the regulators is disabled if an overloaded condition occurs. A fault interrupt, VLDOxFAULTI, is generated in  
an overload condition regardless of the state of the REGSCPEN bit.  
6.3.8.3  
LDO voltage control  
Each LDO is fully controlled through its respective VLDOxCTL register. This register enables the user to set the LDO output voltage  
according toTable 47 for VLDO1 and VLDO2; and uses the voltage set point on Table 48 for VLDO3 and VLDO4. Table 49 lists the voltage  
set points for the V33 LDO and Table 50 provides the output voltage set points for the VCC_SD LDO, based on SD_VSEL control signal.  
Table 47. VLDO1, VLDO2 output voltage configuration  
VLDO1[3:0]  
VLDO1 output (V)  
VLDO2 output (V)  
VLDO2[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1.80  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
PF3001  
NXP Semiconductors  
37  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 47. VLDO1, VLDO2 output voltage configuration (continued)  
VLDO1[3:0]  
VLDO1 output (V)  
VLDO2 output (V)  
VLDO2[3:0]  
1101  
1110  
1111  
3.10  
3.20  
3.30  
1.45  
1.50  
1.55  
Table 48. VLDO3, VLDO4 output voltage configuration  
VLDO3[3:0]  
VLDO3 or VLDO4 output (V)  
VLDO4[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1.80  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
Table 49. V33 output voltage configuration  
V33[1:0]  
V33 output (V)  
00  
01  
10  
11  
2.85  
3.00  
3.15  
3.30  
Table 50. VCC_SD output voltage configuration  
VCC_SD output (V)  
VCC_SD output (V)  
VSD_VSEL= 0  
VCC_SD[1:0]  
VSD_VSEL= 1  
1.80  
00  
01  
2.85  
3.00  
1.80  
1.80  
1.85  
10  
11  
3.15  
3.30  
Along with the output voltage configuration, the LDOs can be enabled or disabled at anytime during normal mode operation. Each regulator  
2
has associated I C bits for this. Table 51 presents a summary of all valid combinations of the control bits on VLDOxCTL register and the  
expected behavior of the LDO output.  
PF3001  
38  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 51. LDO control  
VLDOxEN/  
V33EN/  
VLDOxOUT/  
V33OUT/  
VCC_SDEN  
VCC_SDOUT  
0
1
Off  
On  
6.3.9 VSNVS LDO/switch  
VSNVS powers the low power, SNVS/RTC domain on the processor. It derives its power from either VIN, or coin cell, and cannot be  
disabled. When powered by both, V takes precedence when above the appropriate comparator threshold. When powered by V ,  
IN  
IN  
VSNVS is an LDO capable of supplying 3.0 V. When powered by coin cell, the VSNVS output tracks the coin cell voltage by means of a  
switch, whose maximum resistance is 100 Ω. In this case, the V voltage is simply the coin cell voltage minus the voltage drop across  
SNVS  
the switch, which is 100 mV at a rated maximum load current of 1000 μA.  
When the coin cell is applied for the first time, VSNVS outputs 1.0 V. Only when V is applied thereafter does V  
transition to its default  
SNVS  
IN  
value, or programmed value if different. Upon subsequent removal of V , with the coin cell attached, V  
changes configuration from  
IN  
SNVS  
an LDO to a switch, provided certain conditions are met as described in Table 52.  
PF3000  
VIN  
VTLI  
4.5 V  
LDO /SWITCH  
Input  
Se nse /  
Selector  
LICELL  
Charger  
VREF  
_
+
VSNVS  
Z
Coin Cell  
1.8 - 3.3 V  
I2C Interface  
Figure 11. VSNVS supply switch architecture  
Table 52 provides a summary of the V  
operation at different input voltage V and with or without coin cell connected to the system.  
SNVS  
IN  
Table 52. SNVS Modes of Operation  
VSNVSVOLT[2:0]  
VIN  
MODE  
110  
110  
> VTH1  
< VTL1  
VIN LDO 3.0 V  
Coin cell switch  
PF3001  
NXP Semiconductors  
39  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.3.9.1  
VSNVS control  
The V  
output level is configured through the VSNVSVOLT[2:0] bits on VSNVSCTL register as shown in table Table 53.  
SNVS  
Table 53. Register VSNVSCTL - ADDR 0x6B  
Name  
Bit #  
R/W Default  
Description  
Configures VSNVS output voltage.(43)  
000 = RSVD  
001 = RSVD  
010 = RSVD  
VSNVSVOLT  
Unused  
2:0  
7:3  
R/W  
0b000  
011 = RSVD  
100 = RSVD  
101 = RSVD  
110 = 3.0 V (default)  
111 = RSVD  
0b00000 Unused  
Notes  
43. Only valid when a valid input voltage is present.  
6.3.9.2  
VSNVS external components  
Table 54. VSNVS external components  
Capacitor  
Value (μF)  
0.47  
VSNVS  
6.3.9.3  
Coin cell battery backup  
The LICELL pin provides for a connection of a coin cell backup battery or a “super” capacitor. If the voltage at VIN goes below the V  
IN  
threshold (VTL1), contact-bounced, or removed, the coin cell maintained logic is powered by the voltage applied to LICELL. The supply  
for internal logic and the VSNVS rail switches over to the LICELL pin when V goes below VTL1, even in the absence of a voltage at the  
IN  
LICELL pin, resulting in clearing of memory and turning off VSNVS. Applications concerned about this behavior can tie the LICELL pin to  
any system voltage between 1.8 V and 3.0 V. A 0.47 μF capacitor should be placed from LICELL to ground under all circumstances.  
6.3.9.4  
Coin cell charger control  
The coin cell charger circuit functions as a current-limited voltage source, resulting in the CC/CV taper characteristic typically used for  
rechargeable Lithium-Ion batteries. The coin cell charger is enabled via the COINCHEN bit while the coin cell voltage is programmable  
through the VCOIN[2:0] bits on register COINCTL on Table 55. The coin cell charger voltage is programmable. In the ON state, the charger  
current is fixed at ICOINHI. In the OFF state, coin cell charging is not available as the main battery could be depleted unnecessarily. The  
coin cell charging stops when V is below UVDET.  
IN  
Table 55. Coin cell charger voltage  
VCOIN[2:0]  
VCOIN (V) (44)  
000  
001  
010  
011  
100  
101  
2.50  
2.70  
2.80  
2.90  
3.00  
3.10  
PF3001  
40  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 55. Coin cell charger voltage (continued)  
VCOIN[2:0]  
VCOIN (V) (44)  
110  
111  
3.20  
3.30  
Notes  
44. Coin cell voltages selected based on the type of LICELL used on the system.  
Table 56. Register COINCTL - ADDR 0x1A  
Name  
Bit #  
R/W Default  
Description  
Coin cell charger output voltage selection.  
See Table 55 for all options selectable through these bits.  
VCOIN  
2:0  
R/W  
0x00  
COINCHEN  
Unused  
3
R/W  
0x00  
0x00  
Enable or disable the coin cell charger  
Unused  
7:4  
6.3.9.5  
External components  
Table 57. Coin cell charger external components  
Component  
Value  
Units  
LICELL bypass capacitor  
100  
nF  
6.4  
Power dissipation  
During operation, the temperature of the die should not exceed the operating junction temperature noted in Table 4. To optimize the  
thermal management and to avoid overheating, the PF3001 provides thermal protection. An internal comparator monitors the die  
temperature. Interrupts THERM110, THERM120, THERM125, and THERM130 is generated when the respective thresholds specified in  
Table 58 are crossed in either direction. The temperature range can be determined by reading the THERMxxxS bits in register  
INTSENSE0.  
In the event of excessive power dissipation, thermal protection circuitry shuts down the PF3001. This thermal protection acts above the  
thermal protection threshold listed in Table 58. To avoid any unwanted power downs resulting from internal noise, the protection is  
debounced for 8.0 ms. This protection should be considered as a fail-safe mechanism and therefore the system should be configured  
such that this protection is not tripped under normal conditions.  
Table 58. Thermal protection thresholds  
Parameter  
Min.  
Typ.  
Max.  
Units  
Thermal 110 °C threshold (THERM110)  
Thermal 120 °C threshold (THERM120)  
Thermal 125 °C threshold (THERM125)  
Thermal 130 °C threshold (THERM130)  
Thermal warning hysteresis  
100  
110  
115  
120  
2.0  
110  
120  
125  
130  
120  
130  
135  
140  
4.0  
°C  
°C  
°C  
°C  
°C  
°C  
Thermal protection threshold  
130  
140  
150  
PF3001  
NXP Semiconductors  
41  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.5  
Modes of operation  
6.5.1 State diagram  
The operation of the PF3001 can be reduced to three states, or modes: ON, OFF, and Coin cell. Figure 12 shows the state diagram of the  
PF3001, along with the conditions to enter and exit from each state.  
Coin Cell  
VIN < UVDET  
VIN > UVDET  
VIN < UVDET  
OFF  
PWRON=1  
& VIN > UVDET  
ON  
PWRON = 0  
Thermal shudown  
Figure 12. State diagram  
To complement the state diagram in Figure 12, a description of the states is provided in following sections. Note that V must exceed the  
IN  
2
rising UVDET threshold to allow a power up. Refer to Table 30 for the UVDET thresholds. Additionally, I C control is not possible in the  
coin cell mode and the interrupt signal, INTB, is only active in the on state.  
6.5.1.1  
ON mode  
The PF3001 enters the on mode after a turn-on event. RESETBMCU is de-asserted, and pulled high via an external pull-up resistor, in  
this mode of operation. To enter the on mode, VIN voltage must surpass the rising UVDET threshold and PWRON must be asserted. From  
the on mode, when the voltage at VIN drops below the undervoltage falling threshold, UVDET, the state machine transitions to the coin  
cell mode.  
6.5.1.2  
OFF mode  
The PF3001 enters the Off mode after a turn-off event. Only VCOREDIG and VSNVS are powered in the mode of operation. To exit the  
off mode, a valid turn-on event is required. RESETBMCU is asserted, LOW, in this mode. Turn off events can be achieved using the  
PWRON pin, thermal protection, as described by the following.  
6.5.1.3  
PWRON pin  
The PWRON pin is used to power off the PF3001. The PWRON pin powers off the PMIC under conditions where the PWRON pin is low.  
6.5.1.4  
Thermal protection  
If the die temperature surpasses a given threshold, the thermal protection circuit powers off the PMIC to avoid damage. A turn-on event  
does not power on the PMIC while it is in thermal protection. The part remains in off mode until the die temperature decreases below a  
given threshold. See Power dissipation section for more detailed information.  
PF3001  
42  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.5.1.5  
Coin cell mode  
In the coin cell state, the coin cell is the only valid power source to the PMIC. No turn-on event is accepted in the coin cell state. Transition  
to the off state requires V surpasses the UVDET threshold. RESETBMCU is held low in this mode. If the coin cell is depleted, a complete  
IN  
2
system reset occurs. At the next application of power and the detection of a turn-on event, the system re-initializes with all I C bits  
including, those that reset on COINPORB are restored to their default states.  
6.5.2 State machine flow summary  
Table 59 provides a summary matrix of the PF3001 flow diagram to show the conditions needed to transition from one state to another.  
Table 59. State machine flow summary  
Next state  
Coin cell  
VIN < UVDET PWRON = 1 and VIN > UVDET  
STATE  
OFF  
X
ON  
OFF  
Coin cell  
VIN > UVDET  
X
X
X
Thermal Shutdown  
PWRON = 0  
ON  
VIN < UVDET  
6.5.3 Performance characteristics curves  
V
= 3.6 V, SW1  
= 1.0 V, SW2  
= 1.8 V, SW3  
= 1.0 V, Switching frequency = 2.0 MHz, Mode = APS; LDO1  
= 1.8 V,  
OUT  
IN  
OUT  
OUT  
OUT  
LDO2  
= 1.0 V, LDO3  
= 1.8 V, LDO4  
= 1.8 V, V33  
= 3.3 V, VCC_SD  
= 3.3 V, unless otherwise noted  
OUT  
OUT  
OUT  
OUT  
OUT  
Figure 14. Load transient response - LDO2  
Figure 13. Start-up sequence  
PF3001  
NXP Semiconductors  
43  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Figure 15. Load transient response - LDO1, LDO3 and  
VCC_SD  
Figure 17. Load transient response - buck regulators  
Figure 18. Quiescent current - LDOs  
Figure 16. Load transient response - LDO4 and V33  
PF3001  
44  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Figure 21. Dropout voltage - VLDO1, VLDO3,  
VCC_SD - VOUT = 1.8 V  
Figure 19. Load regulation - LDOs  
Figure 20. Dropout voltage - VLDO1, VLDO3, VCC_SD -  
VOUT = 3.3 V  
Figure 22. Dropout voltage - VLDO4, V33 - VOUT = 3.3 V  
Figure 23. Dropout voltage - VLDO4 - VOUT = 1.8 V  
PF3001  
NXP Semiconductors  
45  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
2
6.6  
Control interface I C block description  
2
2
The PF3001 contains an I C interface port which allows access by a processor, or any I C master, to the register set. Via these registers  
the resources of the IC can be controlled. The registers also provide status information about how the IC is operating.  
6.6.1 I2C device ID  
2
2
I C interface protocol requires a device ID for addressing the target IC on a multi-device bus. The I C address of the PF3001 is set to 0x08.  
6.6.2 I2C operation  
2
The I C mode of the interface is implemented generally following the fast mode definition which supports up to 400 kbits/s operation  
(exceptions to the standard are noted to be 7-bit only addressing and no support for General Call addressing.) Timing diagrams, electrical  
2
specifications, and further details can be found in the I C specification, which is available for download.  
2
I C read operations are also performed in byte increments separated by an ACK. Read operations also begin with the MSB and each byte  
is sent out unless a STOP command or NACK is received prior to completion.  
The following examples show how to write and read data to and from the IC. The host initiates and terminates all communication. The host  
sends a master command packet after driving the start condition. The device responds to the host if the master command packet contains  
the corresponding slave address. In the following examples, the device is always shown responding with an ACK to transmissions from  
the host. If at any time a NACK is received, the host should terminate the current transaction and retry the transaction.  
.
Host can  
also drive  
another  
Start instead  
Packet  
Type  
Device  
Master Driven Data  
Register Address  
Address  
(
byte 0 )  
of Stop  
7
0
7
0
0
7
0
START  
STOP  
Host SDA  
R / W  
A
C
K
A
C
K
A
C
K
Slave SDA  
Figure 24. I2C write example  
Host can also  
Packet  
Type  
Device  
Address  
Register Address  
Device Address  
PMIC Driven Data  
drive another  
Start instead of  
Stop  
23  
16  
0
15  
8
7
0
NA  
CK  
START  
START  
1
STOP  
Host SDA  
R/W  
R/W  
7
0
A
C
K
A
C
K
A
C
K
Slave SDA  
Figure 25. I2C read example  
PF3001  
46  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.3 Interrupt handling  
The system is informed about important events based on interrupts. Unmasked interrupt events are signaled to the processor by driving  
the INTB pin low. Each interrupt is latched so even if the interrupt source becomes inactive, the interrupt remains set until cleared. Each  
interrupt can be cleared by writing a “1” to the appropriate bit in the Interrupt Status register; this causes the INTB pin to go high. If there  
are multiple interrupt bits set the INTB pin remains low until all are either masked or cleared. If a new interrupt occurs while the processor  
clears an existing interrupt bit, the INTB pin remains low.  
Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result, when a masked interrupt bit goes high, the INTB  
pin does not go low. A masked interrupt can still be read from the Interrupt Status register. This gives the processor the option of polling  
for status from the IC. The IC powers up with all interrupts masked, so the processor must initially poll the device to determine if any  
interrupts are active. Alternatively, the processor can unmask the interrupt bits of interest. If a masked interrupt bit was already high, the  
INTB pin goes low after unmasking.  
The sense registers contain status and input sense bits so the system processor can poll the current state of interrupt sources. They are  
read only, and not latched or clearable. Interrupts generated by external events are debounced; therefore, the event needs to be stable  
throughout the debounce period before an interrupt is generated. Nominal debounce periods for each event are documented in the INT  
summary Table 60. Due to the asynchronous nature of the debounce timer, the effective debounce time can vary slightly.  
6.6.4 Interrupt bit summary  
Table 60 summarizes all interrupt, mask, and sense bits associated with INTB control. For more detailed behavioral descriptions, refer to  
the related chapters.  
Table 60. Interrupt, Mask, and Sense Bits  
Interrupt  
LOWVINI  
Mask  
LOWVINM  
Sense  
LOWVINS  
Purpose  
Trigger  
Debounce time (ms)  
Low input voltage detect  
Sense is 1 if below 2.70 V threshold  
H to L  
3.9 (45)  
Power on button event  
H to L  
L to H  
31.25 (45)  
31.25  
PWRONI  
PWRONM  
PWRONS  
Sense is 1 if PWRON is high.  
Thermal 110 °C threshold  
Sense is 1 if above threshold  
THERM110  
THERM110M  
THERM120M  
THERM125M  
THERM130M  
SW1FAULTM  
SW2FAULTM  
SW3FAULTM  
VLDO1FAULTM  
VLDO2FAULTM  
VCC_SDFAULTM  
V33FAULTM  
THERM110S  
THERM120S  
THERM125S  
THERM130S  
SW1FAULTS  
SW2FAULTS  
SW3FAULTS  
VLDO1FAULTS  
VLDO2FAULTS  
VCC_SDFAULTS  
V33FAULTS  
Dual  
Dual  
3.9  
3.9  
3.9  
3.9  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Thermal 120 °C threshold  
Sense is 1 if above threshold  
THERM120  
Thermal 125 °C threshold  
Sense is 1 if above threshold  
THERM125  
Dual  
Thermal 130 °C threshold  
Sense is 1 if above threshold  
THERM130  
Dual  
Regulator 1 overcurrent limit  
Sense is 1 if above current limit  
SW1FAULTI  
SW2FAULTI  
SW3FAULTI  
VLDO1FAULTI  
VLDO2FAULTI  
VCC_SDFAULTI  
V33FAULTI  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
Regulator 2 overcurrent limit  
Sense is 1 if above current limit  
Regulator 3 overcurrent limit  
Sense is 1 if above current limit  
VLDO1 overcurrent limit  
Sense is 1 if above current limit  
VLDO2 overcurrent limit  
Sense is 1 if above current limit  
VCC_SD overcurrent limit  
Sense is 1 if above current limit  
V33 overcurrent limit  
Sense is 1 if above current limit  
VLDO3 overcurrent limit  
Sense is 1 if above current limit  
VLDO3FAULTI  
VLDO3FAULTM  
VLDO1FAULTS  
PF3001  
NXP Semiconductors  
47  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 60. Interrupt, Mask, and Sense Bits (continued)  
Interrupt  
Mask  
Sense  
Purpose  
Trigger  
Debounce time (ms)  
VLDO4 overcurrent limit  
Sense is 1 if above current limit  
VLDO4FAULTI  
VLDO4FAULTM  
VPWROVM  
VLDO4FAULTS  
VPWROVS  
L to H  
L to H  
8.0  
VPWROVI  
Notes  
VPWR pin overvoltage interrupt  
0.122  
45. Typical debounce timing for the falling edge can be extended with PWRONDBNC[1:0].  
A full description of all interrupt, mask, and sense registers is provided in Table 61 to Table 72.  
Table 61. Register INTSTAT0 - ADDR 0x05  
Name  
PWRONI  
Bit #  
R/W  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
Default  
Description  
Power on interrupt bit  
0
1
0
LOWVINI  
0
Low-voltage interrupt bit  
110 °C thermal interrupt bit  
120 °C thermal interrupt bit  
125 °C thermal interrupt bit  
130 °C thermal interrupt bit  
Unused  
THERM110I  
THERM120I  
THERM125I  
THERM130I  
Unused  
2
0
0
3
4
0
5
0
7:6  
0b00  
Table 62. Register INTMASK0 - ADDR 0x06  
Name  
PWRONM  
Bit #  
R/W  
Default  
Description  
0
1
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
1
Power on interrupt mask bit  
Low-voltage interrupt mask bit  
110 °C thermal interrupt mask bit  
120 °C thermal interrupt mask bit  
125 °C thermal interrupt mask bit  
130 °C thermal interrupt mask bit  
Unused  
LOWVINM  
1
THERM110M  
THERM120M  
THERM125M  
THERM130M  
Unused  
2
1
1
3
4
1
5
1
7:6  
0b00  
Table 63. Register INTSENSE0 - ADDR 0x07  
Name  
Bit #  
R/W  
Default  
Description  
Power on sense bit  
0 = PWRON low  
1 = PWRON high  
PWRONS  
0
R
0
Low-voltage sense bit  
0 = VIN > 2.7 V  
1 = VIN 2.7 V  
LOWVINS  
1
2
3
4
R
R
R
R
0
0
0
0
110 °C thermal sense bit  
0 = Below threshold  
1 = Above threshold  
THERM110S  
THERM120S  
THERM125S  
120 °C thermal sense bit  
0 = Below threshold  
1 = Above threshold  
125 °C thermal sense bit  
0 = Below threshold  
1 = Above threshold  
PF3001  
48  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 63. Register INTSENSE0 - ADDR 0x07 (continued)  
Name  
Bit #  
R/W  
Default  
Description  
130 °C thermal sense bit  
THERM130S  
5
R
0
0 = Below threshold  
1 = Above threshold  
0 = ICTEST1 pin is grounded  
1 = ICTEST1 to VCOREDIG or greater  
ICTEST1S  
ICTEST2S  
6
7
R
R
0
0
Additional ICTEST2 voltage sense pin  
0 = ICTEST2 pin is grounded  
1 = ICTEST2 to VCOREDIG or greater  
Table 64. Register INTSTAT1 - ADDR 0x08  
Name  
SW1FAULTI  
Unused  
Bit #  
R/W  
Default  
Description  
SW1 overcurrent interrupt bit  
Unused  
0
1
2
3
4
5
6
7
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
0
0
0
0
Unused  
Unused  
SW2FAULTI  
SW3FAULTI  
Unused  
SW2 overcurrent interrupt bit  
SW3 overcurrent interrupt bit  
Unused  
Unused  
Unused  
Unused  
Unused  
Table 65. Register INTMASK1 - ADDR 0x09  
Name  
SW1FAULTM  
Unused  
Bit #  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Default  
Description  
0
1
2
3
4
5
6
7
1
1
1
1
1
1
1
0
SW1 overcurrent interrupt mask bit  
Unused  
Unused  
Unused  
SW2FAULTM  
SW3FAULTM  
Unused  
SW2 overcurrent interrupt mask bit  
SW3 overcurrent interrupt mask bit  
Unused  
Unused  
Unused  
Unused  
Unused  
Table 66. Register INTSENSE1 - ADDR 0x0A  
Name  
Bit #  
R/W  
Default  
Description  
SW1 overcurrent sense bit  
0 = Normal operation  
SW1FAULTS  
0
R
0
1 = Above current limit  
Unused  
Unused  
1
2
R
R
0
0
Unused  
Unused  
SW2 overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
SW2FAULTS  
SW3FAULTS  
3
4
R
R
0
0
SW3 overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
PF3001  
NXP Semiconductors  
49  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 66. Register INTSENSE1 - ADDR 0x0A (continued)  
Name  
Bit #  
R/W  
Default  
Description  
Unused  
Unused  
Unused  
5
6
7
R
R
0
0
0
Unused  
Unused  
Unused  
Table 67. Register INTSTAT3 - ADDR 0x0E  
Name  
Bit #  
R/W  
Default  
Description  
Unused  
Unused  
0
1
R/W1C  
0
Unused  
Unused  
0b0  
High when overvoltage event is detected in the  
front-end LDO circuit. This bit defaults to 0b1  
when VPWR is grounded and the VIN path is  
VPWROVI  
2
R/W1C  
0b0  
used to power the PF3001.  
Unused  
Unused  
Unused  
5:3  
6
0b0  
0b0  
0
Unused  
Unused  
Unused  
R/W1C  
R/W1C  
7
Table 68. Register INTMASK3 - ADDR 0x0F  
Name  
Bit #  
R/W  
Default  
Description  
Unused  
Unused  
0
1
R/W  
1
Unused  
0
Unused  
VPWROVM  
Unused  
2
R/W  
1
VPWR overvoltage interrupt mask bit  
5:3  
6
0b000  
Unused  
Unused  
Unused  
Unused  
R/W  
R/W  
1
1
Unused  
7
Table 69. Register INTSENSE3 - ADDR 0x10  
Name  
Bit #  
R/W  
Default  
Description  
Unused  
Unused  
0
1
R
0
0b0  
0
Unused  
Unused  
VPWROVS  
Unused  
2
R
VPWR overvoltage interrupt sense bit  
5:3  
6
0b000  
0
Unused  
Unused  
Unused  
Unused  
R
R
Unused  
7
0
PF3001  
50  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 70. Register INTSTAT4 - ADDR 0x11  
Name  
Bit #  
R/W  
Default  
Description  
VLDO1FAULTI  
VLDO2FAULTI  
VCC_SDFAULTI  
V33FAULTI  
0
1
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
VLDO1 overcurrent interrupt bit  
VLDO2 overcurrent interrupt bit  
VCC_SD overcurrent interrupt bit  
V33 overcurrent interrupt bit  
VLDO3 overcurrent interrupt bit  
VLDO4 overcurrent interrupt bit  
Unused  
0
2
0
0
3
VLDO3FAULTI  
VLDO4FAULTI  
Unused  
4
0
5
0
7:6  
0b00  
Table 71. Register INTMASK4 - ADDR 0x12  
Name  
VLDO1FAULTM  
VLDO2FAULTM  
VCC_SDFAULTM  
V33FAULTM  
Bit #  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Default  
Description  
0
1
1
VLDO1 overcurrent interrupt mask bit  
VLDO2 overcurrent interrupt mask bit  
VCC_SD overcurrent interrupt mask bit  
V33 overcurrent interrupt mask bit  
VLDO3 Overcurrent interrupt mask bit  
VLDO4 Overcurrent interrupt mask bit  
Unused  
1
2
1
1
3
VLDO3FAULTM  
VLDO4FAULTM  
Unused  
4
1
5
1
7:6  
0b00  
Table 72. Register INTSENSE4 - ADDR 0x13  
Name  
Bit #  
R/W  
Default  
Description  
VLDO1 overcurrent sense bit  
0 = Normal operation  
VLDO1FAULTS  
0
R
0
1 = Above current limit  
VLDO2 overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
VLDO2FAULTS  
VCC_SDFAULTS  
V33FAULTS  
1
2
3
4
R
R
R
R
0
0
0
0
VCC_SD overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
V33 overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
VLDO3 overcurrent sense bit  
0 = Normal operation  
VLDO3FAULTS  
1 = Above current limit  
VLDO4 overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
VLDO4FAULTS  
Unused  
5
R
0
7:6  
0b00  
Unused  
PF3001  
NXP Semiconductors  
51  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5 Specific registers  
6.6.5.1  
IC and version identification  
The IC and other version details can be read via identification bits. These are hard-wired on the chip and described in Table 73 to Table 75.  
Table 73. Register DEVICEID - ADDR 0x00  
Name  
DEVICEID  
Unused  
Bit #  
R/W  
Default  
Description  
3:0  
7:4  
R
0x1  
0x3  
0001 = PF3001  
Unused  
Table 74. Register SILICON REV- ADDR 0x03  
Name  
Bit #  
R/W  
Default  
Description  
Represents the metal mask revision  
Pass 0.0 = 0000  
METAL_LAYER_REV  
3:0  
R
0x0  
Pass 0.15 = 1111  
Represents the full mask revision  
Pass 1.0 = 0001  
FULL_LAYER_REV  
7:4  
R
0x1  
Pass 15.0 = 1111  
Table 75. Register FABID - ADDR 0x04  
Name  
Bit #  
R/W  
Default  
Description  
Allows for characterizing different options within  
the same reticule  
FIN  
1:0  
R
0b00  
0b00  
FAB  
3:2  
7:4  
R
R
Represents the wafer manufacturing facility  
Unused  
0b0000 Unused  
6.6.5.2  
Embedded memory  
There are four register banks of general purpose embedded memory to store critical data. The data written to MEMA[7:0], MEMB[7:0],  
MEMC[7:0], and MEMD[7:0] is maintained by the coin cell when the main battery is deeply discharged, removed, or contact-bounced. The  
contents of the embedded memory are reset by COINPORB. The banks can be used for any system need for bit retention with coin cell  
backup.  
Table 76. Register MEMA ADDR 0x1C  
Name  
Bit #  
R/W  
Default  
Description  
Description  
Description  
MEMA  
7:0  
R/W  
0x00  
Memory bank A  
Memory bank B  
Memory bank C  
Table 77. Register MEMB ADDR 0x1D  
Name  
Bit #  
R/W  
Default  
MEMB  
7:0  
R/W  
0x00  
Table 78. Register MEMC ADDR 0x1E  
Name  
Bit #  
R/W  
Default  
MEMC  
7:0  
R/W  
0x00  
PF3001  
52  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 79. Register MEMD ADDR 0x1F  
Name  
Bit #  
R/W  
Default  
Description  
MEMD  
7:0  
R/W  
0x00  
Memory bank D  
6.6.5.3  
Register descriptions  
This section describes all the PF3001 registers and their individual bits. Address order is as listed in Register map.  
6.6.5.3.1  
Interrupt status register 0 (INTSTAT0)  
INSTAT0 is one of the four status interrupt registers. This register contains six status flags. Write a logic 1 to clear a flag.  
Table 80. Status interrupt register 0 (INTSTAT0)  
Address: 0x05 functional page  
5
Access: User read/write (46)  
1
7
6
4
3
2
0
R
W
THERM130I  
0
THERM125I  
0
THERM120I  
0
THERM110I  
0
LOWVINI  
0
PWRONI  
0
Default  
0
0
= Unimplemented or Reserved  
Notes  
46. Read: Anytime  
Write: Anytime  
Table 81. INTSTAT0 field descriptions  
Field  
Description  
130 °C thermal interrupt bit — THERM130I is set to 1 when the THERM130 threshold specified in is crossed in either direction (bi-  
directional). This flag can only be cleared by writing a 1. Writing a 0 has no effect.  
5
0
1
Die temperature has not crossed THERM130 threshold.  
Die temperature has crossed THERM130 threshold.  
THERM130I  
125 °C thermal interrupt bit — THERM125I is set to 1 when the THERM125 threshold specified in is crossed in either direction (bi-  
directional). This flag can only be cleared by writing a 1. Writing a 0 has no effect.  
4
0
1
Die temperature has not crossed THERM125 threshold.  
Die temperature has crossed THERM125 threshold.  
THERM125I  
120 °C thermal interrupt bit — THERM120I is set to 1 when the THERM120 threshold specified in is crossed in either direction (bi-  
directional). This flag can only be cleared by writing a 1. Writing a 0 has no effect.  
3
0
1
Die temperature has not crossed THERM120 threshold.  
Die temperature has crossed THERM120 threshold.  
THERM120I  
110 °C thermal interrupt bit — THERM110I is set to 1 when the THERM110 threshold specified in  
2
is crossed in either direction (bi-directional). This flag can only be cleared by writing a 1. Writing a 0 has no effect.  
THERM110I  
0
1
Die temperature has not crossed THERM110 threshold.  
Die temperature has crossed THERM110 threshold.  
Low-voltage interrupt bit — LOWVINI is set to 1 when a low-voltage event occurs on VIN. This flag can only be cleared by writing a  
1. Writing a 0 has no effect.  
1
0
1
VIN > 2.7 V (typical)  
VIN < 2.7 V (typical)  
LOWVINI  
Power on interrupt bit —PWRONI is set to 1 when the turn on event occurs. This flag can only be cleared by writing a 1. Writing a 0  
has no effect.  
0
0
1
Power on has not occurred.  
Power on has occurred.  
PWRONI  
PF3001  
NXP Semiconductors  
53  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.2  
Interrupt status mask register 0 (INTMASK0)  
INTMASK0 is the mask register for the status interrupt register INTSTAT0. Write a logic 0 to a bit to unmask the corresponding interrupt.  
When unmasked, the corresponding interrupt state is reflected on the INTB pin.  
Table 82. Interrupt status mask register 0 (INTMASK0)  
Address: 0x06 functional page  
Access: User read/write (47)  
1
7
6
5
4
3
2
0
R
W
THERM130M  
1
THERM125M  
1
THERM120M  
1
THERM110M  
1
LOWVINM  
1
PWRONM  
1
Default  
0
0
= Unimplemented or Reserved  
Notes  
47. Read: Anytime  
Write: Anytime  
Table 83. INTMASK0 field descriptions  
Field  
Description  
130 °C thermal interrupt mask bit  
5
0
1
THERM130I Unmasked  
THERM130I Masked  
THERM130M  
125 °C thermal interrupt mask bit  
4
0
1
THERM125I Unmasked  
THERM125I Masked  
THERM125M  
120 °C thermal interrupt mask bit  
3
0
1
THERM120I Unmasked  
THERM120I Masked  
THERM120M  
110 °C thermal interrupt mask bit  
2
0
1
THERM110I Unmasked  
THERM110I Masked  
THERM110M  
Low-voltage interrupt mask bit  
1
0
1
LOWVINI Unmasked  
LOWVINI Masked  
LOWVINM  
Power on interrupt mask bit  
0
0
1
PWRONI Unmasked  
PWRONI Masked  
PWRONM  
PF3001  
54  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.3  
Interrupt sense register 0 (INTSENSE0)  
This register has seven read-only sense bits. These sense bits reflects the actual state of the corresponding function.  
Table 84. Interrupt sense register 0 (INTSENSE0)  
Address: 0x07 functional page  
Access: User read-only (48)  
7
6
5
4
3
2
1
0
R
W
ICTEST2S  
THERM130S  
THERM125S  
THERM120S  
THERM110S  
LOWVINS  
PWRONS  
Default  
X (52)  
0
X (51)  
X (51)  
X (51)  
X (51)  
X (50)  
X (49)  
= Unimplemented or Reserved  
Notes  
48. Read: Anytime  
49. Default value depends on the initial PWRON pin state.  
50. Default value depends on the initial VIN voltage.  
51. Default value depends on the initial temperature of the die.  
52. Default value depends on the initial ICTEST2 pin state.  
Table 85. INTSENSE0 field descriptions  
Field  
Description  
VDDOTP voltage sense bit  
7
0
1
ICTEST2 grounded.  
ICTEST2 to VCOREDIG or greater.  
ICTEST2S  
130 °C thermal interrupt sense bit  
5
0
1
Die temperature below THERM130 threshold.  
Die temperature above THERM130 threshold.  
THERM130S  
125 °C thermal interrupt sense bit  
4
0
1
Die temperature below THERM125 threshold.  
Die temperature has crossed THERM125 threshold.  
THERM125S  
120 °C thermal interrupt sense bit  
3
0
1
Die temperature below THERM120 threshold.  
Die temperature has crossed THERM120 threshold.  
THERM120S  
110 °C thermal interrupt sense bit  
2
0
1
Die temperature below THERM110 threshold.  
Die temperature has crossed THERM110 threshold.  
THERM110S  
Low-voltage interrupt sense bit  
1
0
1
VIN > 2.7 V (typical)  
VIN < 2.7 V (typical)  
LOWVINS  
Power on interrupt sense bit  
0
0
1
PWRON low.  
PWRON high.  
PWRONS  
PF3001  
NXP Semiconductors  
55  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.4  
Interrupt status register 1 (INTSTAT1)  
INSTAT1 is one of the three status interrupt registers. This register contains three status flags. Write a logic 1 to clear a flag.  
Table 86. Status interrupt register 1 (INTSTAT1)  
Address: 0x08 functional page  
Access: User read/write (53)  
1 0  
7
6
5
4
3
2
R
W
SW3FAULTI  
0
SW2FAULTI  
0
SW1FAULTI  
0
Default  
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
53. Read: Anytime  
Write: Anytime  
Table 87. INTSTAT1 field descriptions  
Field  
Description  
SW3 overcurrent interrupt bit — SW3FAULTI is set to 1 when the SW3 regulator is in current limit protection. This flag can only be  
cleared by writing a 1. Writing a 0 has no effect.  
4
0
1
SW3 in normal operation  
SW3 above current limit  
SW3FAULTI  
SW2 overcurrent interrupt bit — SW2FAULTI is set to 1 when the SW2 regulator is in current limit protection. This flag can only be  
cleared by writing a 1. Writing a 0 has no effect.  
3
0
1
SW2 in normal operation  
SW2 above current limit  
SW2FAULTI  
SW1 overcurrent interrupt bit — SW1FAULTI is set to 1 when the SW1 regulator is in current limit protection. This flag can only be  
cleared by writing a 1. Writing a 0 has no effect.  
0
0
1
SW1 in normal operation  
SW1 above current limit  
SW1FAULTI  
6.6.5.3.5  
Interrupt status mask register 1 (INTMASK1)  
INTMASK1 is the mask register for the status interrupt register INTSTAT1. Write a logic 0 to a bit to unmask the corresponding interrupt.  
When unmasked, the corresponding interrupt state is reflected on the INTB pin.  
Table 88. Interrupt status mask register 1 (INTMASK1)  
Address: 0x09 functional page  
Access: User read/write (54)  
1 0  
7
6
5
4
3
2
R
W
SW3FAULTM  
1
SW2FAULTM  
1
SW1FAULTM  
0
Default  
0
0
0
0
1
= Unimplemented or Reserved  
Notes  
54. Read: Anytime  
Write: Anytime  
PF3001  
56  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 89. INTMASK1 field descriptions  
Field  
Description  
SW3 overcurrent interrupt mask bit  
4
0
1
SW3FAULTI Unmasked  
SW3FAULTI Masked  
SW3FAULTM  
SW2 overcurrent interrupt mask bit  
3
0
1
SW2FAULTI Unmasked  
SW2FAULTI Masked  
SW2FAULTM  
SW1 overcurrent interrupt mask bit  
0
0
1
SW1FAULTI Unmasked  
SW1FAULTI Masked  
SW1FAULTM  
6.6.5.3.6  
Interrupt sense register 1 (INTSENSE1)  
This register has three read-only sense bits. These sense bits reflect the actual state of the corresponding function.  
Table 90. Interrupt sense register 1 (INTSENSE1)  
Address: 0x0A functional page  
Access: User read-only (55)  
7
6
5
4
3
2
1
0
R
W
SW3FAULTS  
SW2FAULTS  
SW1FAULTS  
Default  
0
0
0
X(56)  
X(56)  
0
X(56)  
X(56)  
= Unimplemented or Reserved  
Notes  
55. Read: Anytime  
56. Default value depends on the regulator initial state  
Table 91. INTSENSE1 field descriptions  
Field  
Description  
SW3 overcurrent sense bit  
4
0
1
SW3 in normal operation  
SW3 above current limit  
SW3FAULTS  
SW2 overcurrent sense bit  
3
0
1
SW2 in normal operation  
SW2 above current limit  
SW2FAULTS  
SW1 overcurrent sense bit  
0
0
1
SW1 in normal operation  
SW1 above current limit  
SW1FAULTS  
PF3001  
NXP Semiconductors  
57  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.7  
Interrupt status register 3 (INTSTAT3)  
INSTAT3 is one of the status interrupt registers. This register contains a status flag. Write a logic 1 to clear a flag.  
Table 92. Status interrupt register 3 (INTSTAT3)  
Address: 0x0E Functional Page  
Access: User read/write (57)  
7
6
5
4
3
2
1
0
R
W
VPWROVI  
0
Default  
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
57. Read: Anytime  
Write: Anytime  
Table 93. INTSTAT3 field descriptions  
Field  
Description  
VPWR overvoltage interrupt bit — High when overvoltage event is detected in the front-end LDO circuit. This flag can only be  
cleared by writing a 1. Writing a 0 has no effect.  
2
0
1
VPWR in normal operation range.  
VPWR in overvoltage range.  
VPWROVI  
6.6.5.3.8  
Interrupt status mask register 3 (INTMASK3)  
INTMASK3 is the mask register for the status interrupt register INTSTAT3. Write a logic 0 to a bit to unmask the corresponding interrupt.  
When unmasked, the corresponding interrupt state is reflected on the INTB pin.  
Table 94. Interrupt status mask register 3 (INTMASK3)  
Address: 0x0F functional page  
Access: User read/write (58)  
1
7
6
5
4
3
2
0
R
W
VPWROVM  
1
Default  
1
1
0
0
0
0
1
= Unimplemented or Reserved  
Notes  
58. Read: Anytime  
Write: Anytime  
Table 95. INTMASK3 field descriptions  
Field  
Description  
VPWR overvoltage interrupt mask bit  
2
0
1
VPWROVI Unmasked  
VPWROVI Masked  
VPWROVM  
PF3001  
58  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.9  
Interrupt sense register 3 (INTSENSE3)  
This register has a read-only sense bit. This sense bit reflects the actual state of the corresponding function.  
Table 96. Interrupt sense register 3 (INTSENSE3)  
Address: 0x10 functional page  
Access: User read-only (59)  
7
6
5
4
3
2
1
0
R
W
VPWROVS  
Default  
0
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
59. Read: Anytime  
Table 97. INTSENSE3 field descriptions  
Field  
Description  
VPWR overvoltage interrupt sense bit  
2
0
1
VPWR in normal operation range.  
VPWR in overvoltage range.  
VPWROVS  
6.6.5.3.10 Interrupt status register 4 (INTSTAT4)  
INSTAT4 is one of the status interrupt registers. This register contains six status flags. Write a logic 1 to clear a flag.  
Table 98. Status interrupt register 4 (INTSTAT4)  
Address: 0x11 functional page  
Access: User read/write (60)  
7
6
5
4
3
2
1
0
R
W
VLDO4FAULTI VLDO3FAULTI  
V33FAULTI  
0
VCC_SDFAULTI VLDO2FAULTI VLDO1FAULTI  
Default  
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
60. Read: Anytime  
Write: Anytime  
PF3001  
NXP Semiconductors  
59  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 99. INTSTAT4 field descriptions  
Field  
Description  
VLDO4 overcurrent interrupt bit — VLDO4FAULTI is set to 1 when the VLDO4 regulator is in current limit protection. This flag can  
only be cleared by writing a 1. Writing a 0 has no effect.  
5
0
1
VLDO4 in normal operation  
VLDO4 above current limit  
VLDO4FAULTI  
VLDO3 overcurrent interrupt bit — VLDO3FAULTI is set to 1 when the VLDO3 regulator is in current limit protection. This flag can  
only be cleared by writing a 1. Writing a 0 has no effect.  
4
0
1
VLDO3 in normal operation  
VLDO3 above current limit  
VLDO3FAULTI  
V33 overcurrent interrupt bit — V33FAULTI is set to 1 when the V33 regulator is in current limit protection. This flag can only be  
cleared by writing a 1. Writing a 0 has no effect.  
3
0
1
V33 in normal operation  
V33 above current limit  
V33FAULTI  
VCC_SD overcurrent interrupt bit — VCC_SDFAULTI is set to 1 when the VCC_SD regulator is in current limit protection. This  
flag can only be cleared by writing a 1. Writing a 0 has no effect.  
2
0
1
VCC_SD in normal operation  
VCC_SD above current limit  
VCC_SDFAULTI  
VLDO2 overcurrent interrupt bit — VLDO2FAULTI is set to 1 when the VLDO2 regulator is in current limit protection. This flag can  
only be cleared by writing a 1. Writing a 0 has no effect.  
1
0
1
VLDO2 in normal operation range.  
VLDO2 above current limit  
VLDO2FAULTI  
VLDO1 overcurrent interrupt bit — VLDO1FAULTI is set to 1 when the VLDO1 regulator is in current limit protection. This flag can  
only be cleared by writing a 1. Writing a 0 has no effect.  
0
0
1
VLDO1 in normal operation range.  
VLDO1 above current limit  
VLDO1FAULTI  
6.6.5.3.11 Interrupt status mask register 4 (INTMASK4)  
INTMASK4 is the mask register for the status interrupt register INTSTAT4. Write a logic 0 to a bit to unmask the corresponding interrupt.  
When unmasked, the corresponding interrupt state is reflected on the INTB pin.  
Table 100. Interrupt status mask register 4 (INTMASK4)  
Address: 0x12 functional page  
Access: User read/write (61)  
1
7
6
5
4
3
2
0
R
W
VLDO4FAULTM VLDO3FAULTM V33FAULTM VCC_SDFAULTM VLDO2FAULTM VLDO1FAULTM  
Default  
0
0
1
1
1
1
1
1
= Unimplemented or Reserved  
Notes  
61. Read: Anytime  
Write: Anytime  
PF3001  
60  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 101. INTMASK4 field descriptions  
Field  
Description  
VLDO4 overcurrent interrupt mask bit  
5
0
1
VLDO4FAULTI Unmasked  
VLDO4FAULTI Masked  
VLDO4FAULTM  
VLDO3 overcurrent interrupt mask bit  
4
0
1
VLDO3FAULTI Unmasked  
VLDO3FAULTI Masked  
VLDO3FAULTM  
V33 overcurrent interrupt mask bit  
3
0
1
V33FAULTI Unmasked  
V33FAULTI Masked  
V33FAULTM  
VCC_SD overcurrent interrupt mask bit  
2
0
1
VCC_SDFAULTI Unmasked  
VCC_SDFAULTI Masked  
VCC_SDFAULTM  
VLDO2 overcurrent interrupt mask bit  
1
0
1
VLDO2FAULTI Unmasked  
VLDO2FAULTI Masked  
VLDO2FAULTM  
VLDO1 overcurrent interrupt mask bit  
0
0
1
VLDO1FAULTI Unmasked  
VLDO1FAULTI Masked  
VLDO1FAULTM  
6.6.5.3.12 Interrupt sense register 4 (INTSENSE4)  
This register has read-only sense bits. These sense bits reflect the actual state of the corresponding function.  
Table 102. Interrupt sense register 4 (INTSENSE4)  
Address: 0x13 functional page  
Access: User read-only (62)  
7
6
5
4
3
2
1
0
R
W
VLDO4FAULTS VLDO3FAULTS V33FAULTS VCC_SDFAULTS VLDO2FAULTS VLDO1FAULTS  
Default  
0
0
X (63)  
X (63)  
X (63)  
X (63)  
X (63)  
X (63)  
= Unimplemented or Reserved  
Notes  
62. Read: Anytime  
63. Default value depends on the regulator initial state  
PF3001  
NXP Semiconductors  
61  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 103. INTSENSE4 field descriptions  
Field  
Description  
VLDO4 overcurrent sense bit  
5
0
1
VLDO4 in normal operation  
VLDO4 above current limit  
VLDO4FAULTS  
VLDO3 overcurrent sense bit  
4
0
1
VLDO3 in normal operation  
VLDO3 above current limit  
VLDO3FAULTS  
V33 overcurrent sense bit  
3
0
1
V33 in normal operation  
V33 above current limit  
V33FAULTS  
VCC_SD overcurrent sense bit  
2
0
1
VCC_SD in normal operation  
VCC_SD above current limit  
VCC_SDFAULT  
S
VLDO2 overcurrent sense bit  
1
0
1
VLDO2 in normal operation  
VLDO2 above current limit  
VLDO2FAULTS  
VLDO1 overcurrent sense bit  
0
0
1
VLDO1 in normal operation  
VLDO1 above current limit  
VLDO1FAULTS  
6.6.5.3.13 Coin cell control register (COINCTL)  
This register is used to control the coin cell charger.  
Table 104. Coin cell control register (COINCTL)  
Address: 0x1A functional page  
Access: User read/write (64)  
1
7
6
5
4
3
COINCHEN  
2
0
R
W
VCOIN  
0
Default  
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
64. Read: Anytime  
Write: Anytime  
Table 105. COINCTL field descriptions  
Field  
Description  
Coin cell charger enable bit  
3
0
1
Coin Cell charger disabled.  
Coin Cell charger enabled.  
COINCHEN  
2:0  
Coin cell charger output voltage selection — This field is used to set the coin cell charging voltage from 2.50 V to 3.30 V. See  
Table 55 for all options selectable through these bits.  
VCOIN  
PF3001  
62  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.14 Power control register (PWRCTL)  
Table 106. Power control register (PWRCTL)  
Address: 0x1B functional page  
Access: User read/write (65)  
7
6
5
4
3
2
1
0
R
W
REGSCPEN  
0
PWRONRSTEN RESTARTEN  
Default  
0
0
1
0
0
0
0
= Unimplemented or Reserved  
Notes  
65. Read: Anytime  
Write: Anytime  
Table 107. PWRCTL field descriptions  
Field  
Description  
Short-circuit protection enable bit — When REGSCPEN is set to 1, whenever a current limit event occurs on a LDO regulator, this  
regulator is shutdown.  
7
0
1
Short-circuit protection disabled  
Short-circuit protection enabled  
REGSCPEN  
PWRON reset enable bit — When set to 1, the PF3001 can enter OFF mode when the PWRON pin is held low for 4 seconds or  
longer. See PWRON Pin section for details.  
1
0
1
Disallow OFF mode after PWRON held low  
Allow OFF mode after PWRON held low  
PWRONRSTEN  
Restart enable bit — When set to 1, the PF3001 restarts automatically after a power off event generated by the PWRON (held low  
for 4 seconds or longer) when PWR_CFG bit = 1.  
0
0
1
Automatic restart disabled.  
Automatic restart enabled.  
RESTARTEN  
6.6.5.3.15 Embedded memory register A (MEMA)  
Table 108. Embedded memory register A (MEMA)  
Address: 0x1C functional page  
Access: User read/write (66)  
7
6
5
4
3
2
1
0
R
W
MEMA  
Default  
0
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
66. Read: Anytime  
Write: Anytime  
Table 109. MEMA field descriptions  
Field  
Description  
7:0  
Memory bank A — This register is maintained in case of a main battery loss as long as the coin cell is present. The contents of the  
embedded memory are reset by COINPORB.  
MEMA  
PF3001  
NXP Semiconductors  
63  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.16 Embedded memory register B (MEMB)  
Table 110. Embedded memory register B (MEMB)  
Address: 0x1D functional page  
Access: User read/write (67)  
7
6
5
4
3
2
1
0
R
W
MEMB  
Default  
0
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
67. Read: Anytime  
Write: Anytime  
Table 111. MEMB field descriptions  
Field  
Description  
7:0  
Memory bank B — This register is maintained in case of a main battery loss as long as the coin cell is present. The contents of the  
embedded memory are reset by COINPORB.  
MEMB  
6.6.5.3.17 Embedded memory register C (MEMC)  
Table 112. Embedded memory register C (MEMC)  
Address: 0x1E Functional Page  
Access: User read/write (68)  
7
6
5
4
3
2
1
0
R
W
MEMC  
Default  
0
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
68. Read: Anytime  
Write: Anytime  
Table 113. MEMC field descriptions  
Field  
Description  
7:0  
Memory bank C — This register is maintained in case of a main battery loss as long as the coin cell is present. The contents of the  
embedded memory are reset by COINPORB.  
MEMC  
PF3001  
64  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.18 Embedded memory register D (MEMD)  
Table 114. Embedded memory register D (MEMD)  
Address: 0x1F functional page  
Access: User read/write (69)  
7
6
5
4
3
2
1
0
R
W
MEMD  
Default  
0
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
69. Read: Anytime  
Write: Anytime  
Table 115. MEMD field descriptions  
Field  
Description  
7:0  
Memory bank D — This register is maintained in case of a main battery loss as long as the coin cell is present. The contents of the  
embedded memory are reset by COINPORB.  
MEMD  
6.6.5.3.19 SW1 voltage control register (SW1VOLT)  
This register is used to set the output voltage of the SW1 regulator in normal operation.  
Table 116. SW1 voltage control register (SW1VOLT)  
Address: 0x20 functional page  
Access: User read/write (70)  
1
7
6
5
4
3
2
0
R
W
SW1  
X (71)  
Default  
0
0
0
X (71)  
X (71)  
X (71)  
X (71)  
= Unimplemented or Reserved  
Notes  
70. Read: Anytime  
Write: Anytime  
71. Default value depends on OTP content.  
Table 117. SW1VOLT field descriptions  
Field  
Description  
4:0  
SW1  
SW1 output voltage — Refer to Table 40  
PF3001  
NXP Semiconductors  
65  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.20 SW1 switching mode selector register (SW1MODE)  
This register is used to set the switching mode of the SW1 regulator.  
Table 118. SW1 switching mode selector register (SW1MODE)  
Address: 0x23 functional page  
Access: User read/write (72)  
7
6
5
4
3
2
1
0
R
W
SW1MODE  
Default  
0
0
0
0
X (73)  
X (73)  
X (73)  
X (73)  
= Unimplemented or Reserved  
Notes  
72. Read: Anytime  
Write: Anytime  
73. Default value depends on start-up sequence.  
Table 119. SW1MODE field descriptions  
Field  
Description  
3:0  
SW1MODE  
SW1 switching mode selector — Refer to Table 36  
6.6.5.3.21 SW1 configuration register (SW1CONF)  
This register is used to configure DVS, switching frequency, phase and current limit settings of the SW1 regulator.  
Table 120. SW1 configuration register (SW1CONF)  
Address: 0x24 functional page  
Access: User read/write (74)  
7
6
5
4
3
2
1
0
R
W
SW1PHASE  
SW1ILIM  
0
SW1FREQ  
Default  
0
0
0
0
X (75)  
X (75)  
0
= Unimplemented or Reserved  
Notes  
74. Read: Anytime  
Write: Anytime  
75. Default value depends on OTP content.  
Table 121. SW1CONF field descriptions  
Field  
Description  
5:4  
SW1 phase clock bit— SW1PHASE is used to set the phase clock for SW1. Refer to Table 37.  
SW1PHASE  
3:2  
SW1FREQ  
SW1 switching frequency— SW1PHASE is used to set the desired switching frequency for SW1. Refer to Table 39.  
SW1 current limiter bit— This bit configures the current limit for SW1.  
0
0
1
2.75 A (typ).  
2.0 A (typ).  
SW1ILIM  
PF3001  
66  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.22 SW2 voltage control register (SW2VOLT)  
This register is used to set the output voltage of the SW2 regulator in normal operation.  
Table 122. SW2 voltage control register (SW2VOLT)  
Address: 0x35 functional page  
Access: User read/write (76)  
1
7
6
5
4
3
2
0
R
W
SW2  
X (77)  
Default  
0
0
0
X (77)  
X (77)  
X (77)  
X (77)  
= Unimplemented or Reserved  
Notes  
76. Read: Anytime  
Write: Anytime  
77. Default value depends on start-up sequence.  
Table 123. SW2VOLT field descriptions  
Field  
Description  
4:0  
SW2  
SW2 output voltage — Refer to Table 42.  
6.6.5.3.23 SW2 switching mode selector register (SW2MODE)  
This register is used to set the switching mode of the SW2 regulator.  
Table 124. SW2 switching mode selector register (SW2MODE)  
Address: 0x38 functional page  
Access: User read/write (78)  
7
6
5
4
3
2
1
0
R
W
SW2MODE  
Default  
0
0
0
0
X (79)  
X (79)  
X (79)  
X (79)  
= Unimplemented or Reserved  
Notes  
78. Read: Anytime  
Write: Anytime  
79. Default value depends on start-up sequence.  
Table 125. SW2MODE field descriptions  
Field  
Description  
3:0  
SW2MODE  
SW2 switching mode selector — Refer to Table 36.  
PF3001  
NXP Semiconductors  
67  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.24 SW2 configuration register (SW2CONF)  
This register is used to configure DVS, switching frequency, phase and current limit settings of the SW2 regulator.  
Table 126. SW2 configuration register (SW2CONF)  
Address: 0x39 functional page  
Access: User read/write (80)  
7
6
5
4
3
2
1
0
R
W
SW2PHASE  
SW2FREQ  
SW2ILIM  
0
Default  
0
0
0
0
X (81)  
X (81)  
0
= Unimplemented or Reserved  
Notes  
80. Read: Anytime  
Write: Anytime  
81. Default value depends on OTP content.  
Table 127. SW2CONF field descriptions  
Field  
Description  
5:4  
SW2 phase clock bit— SW2PHASE is used to set the phase clock for SW2. Refer to Table 37.  
SW2PHASE  
3:2  
SW2FREQ  
SW2 switching frequency— SW2PHASE is used to set the desired switching frequency for SW2. Refer to Table 39.  
SW2 current limiter bit— This bit configures the current limit for SW2.  
0
0
1
2.75 A (typ).  
2.0 A (typ).  
SW2ILIM  
6.6.5.3.25 SW3 voltage control register (SW3VOLT)  
This register is used to set the output voltage of the SW3 regulator in normal operation.  
Table 128. SW3 voltage control register (SW3VOLT)  
Address: 0x3C functional page  
Access: User read/write (82)  
1
7
6
5
4
3
2
0
R
W
SW3  
X (83)  
Default  
0
0
0
X (83)  
X (83)  
X (83)  
X (83)  
= Unimplemented or Reserved  
Notes  
82. Read: Anytime  
Write: Anytime  
83. Default value depends on start-up sequence.  
Table 129. SW3VOLT field descriptions  
Field  
Description  
4:0  
SW3  
SW3 output voltage — Refer to Table 44.  
PF3001  
68  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.26 SW3 switching mode selector register (SW3MODE)  
This register is used to set the switching mode of the SW3 regulator.  
Table 130. SW3 switching mode selector register (SW3MODE)  
Address: 0x3F functional page  
Access: User read/write (84)  
7
6
5
4
3
2
1
0
R
W
SW3MODE  
Default  
0
0
0
0
X (85)  
X (85)  
X (85)  
X (85)  
= Unimplemented or Reserved  
Notes  
84. Read: Anytime  
Write: Anytime  
85. Default value depends on start-up sequence.  
Table 131. SW3MODE field descriptions  
Field  
Description  
3:0  
SW3MODE  
SW3 switching mode selector — Refer to Table 36.  
6.6.5.3.27 SW3 configuration register (SW3CONF)  
This register is used to configure DVS, switching frequency, phase and current limit settings of the SW3 regulator.  
Table 132. SW3 configuration register (SW3CONF)  
Address: 0x40 functional page  
Access: User read/write (86)  
7
6
5
4
3
2
1
0
R
W
SW3PHASE  
SW3FREQ  
SW3ILIM  
0
Default  
0
0
1
0
X (87)  
X (87)  
0
= Unimplemented or Reserved  
Notes  
86. Read: Anytime  
Write: Anytime  
87. Default value depends on OTP content.  
Table 133. SW3CONF field descriptions  
Field  
Description  
5:4  
SW3PHASE  
SW3 phase clock bit— SW3PHASE is used to set the phase clock for SW3. Refer to Table 37.  
3:2  
SW3FREQ  
SW3 switching frequency— SW3PHASE is used to set the desired switching frequency for SW3. Refer to Table 39.  
SW3 current limiter bit— This bit configures the current limit for SW3.  
0
0
1
3.0 A (typ).  
2.25 A (typ).  
SW3ILIM  
PF3001  
NXP Semiconductors  
69  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.28 VSNVS control register (VSNVSCTL)  
This register is used to control the VSNVS supply operation.  
Table 134. VSNVS control register (VSNVSCTL)  
Address: 0x6B functional page  
Access: User read/write (88)  
7
6
5
4
3
2
1
0
R
W
VSNVSVOLT  
X (89)  
Default  
0
0
0
0
0
X (89)  
X (89)  
= Unimplemented or Reserved  
Notes  
88. Read: Anytime  
Write: Anytime  
89. Default value depends on start-up sequence.  
Table 135. VSNVSCTL field descriptions  
Field  
Description  
VSNVS output voltage configuration— VSNVSVOLT is used to configure the VSNVS output voltage. Values below are  
typical voltages.  
000 = RSVD  
001 = RSVD  
010 = RSVD  
011 = RSVD  
100 = RSVD  
101 = RSVD  
110 = 3.0 V (default)  
111 = RSVD  
2:0  
VSNVSVOLT  
6.6.5.3.29 VLDO1 control register (VLDO1CTL)  
This register is used to configure output voltage, normal mode operation of the VLDO1 regulator.  
Table 136. VLDO1 control register (VLDO1CTL)  
Address: 0x6C functional page  
Access: User read/write (90)  
1
7
6
5
4
3
2
0
R
W
VLDO1EN  
X (91)  
VLDO1  
Default  
0
0
0
X (91)  
X (91)  
X (91)  
X (91)  
= Unimplemented or Reserved  
Notes  
90. Read: Anytime  
Write: Anytime  
91. Default value depends on start-up sequence.  
PF3001  
70  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 137. VLDO1CTL field descriptions  
Field  
Description  
VLDO1 enable bit — VLDO1EN is used to enable or disable the VLDO1 regulator.  
4
0
1
VLDO1 disabled  
VLDO1 enabled  
VLDO1EN  
3:0  
VLDO1  
VLDO1 output voltage configuration— Refer to Table 47.  
6.6.5.3.30 VLDO2 control register (VLDO2CTL)  
This register is used to configure output voltage, normal mode operation of the VLDO2 regulator.  
Table 138. VLDO2 control register (VLDO2CTL)  
Address: 0x6D functional page  
Access: User read/write (92)  
1
7
6
5
4
3
2
0
R
W
VLDO2EN  
X (93)  
VLDO2  
Default  
0
0
0
X (93)  
X (93)  
X (93)  
X (93)  
= Unimplemented or Reserved  
Notes  
92. Read: Anytime  
Write: Anytime  
93. Default value depends on start-up sequence.  
Table 139. VLDO2CTL field descriptions  
Field  
Description  
VLDO2 enable bit — VLDO2EN is used to enable or disable the VLDO2 regulator.  
4
0
1
VLDO2 Disabled  
VLDO2 Enabled  
VLDO2EN  
3:0  
VLDO2  
VLDO2 output voltage configuration— Refer to Table 47.  
PF3001  
NXP Semiconductors  
71  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.31 VCC_SD control register (VCC_SDCTL)  
This register is used to configure output voltage, Normal mode operation of the VCC_SD regulator.  
Table 140. CC_SD control register (VCC_SDCTL)  
Address: 0x6E functional page  
Access: User read/write (94)  
7
6
5
4
3
2
1
0
R
W
VCC_SDEN  
X (95)  
VCC_SD  
Default  
0
0
0
0
0
X (95)  
X (95)  
= Unimplemented or Reserved  
Notes  
94. Read: Anytime  
Write: Anytime  
95. Default value depends on start-up sequence.  
Table 141. VCC_SDCTL field descriptions  
Field  
Description  
VCC_SD enable bit — VCC_SDEN is used to enable or disable the VCC_SD regulator.  
4
0
1
VCC_SD Disabled  
VCC_SD Enabled  
VCC_SDEN  
1:0  
VCC_SD  
VCC_SD output voltage configuration— Refer to Table 50.  
6.6.5.3.32 V33 control register (V33CTL)  
This register is used to configure output voltage, normal mode operation of the V33 regulator.  
Table 142. V33 control register (V33CTL)  
Address: 0x6F functional page  
Access: User read/write (96)  
7
6
5
4
3
2
1
0
R
W
V33EN  
X (97)  
V33  
Default  
0
0
0
0
0
X (97)  
X (97)  
= Unimplemented or Reserved  
Notes  
96. Read: Anytime  
Write: Anytime  
97. Default value depends on start-up sequence.  
Table 143. V33CTL field descriptions  
Field  
Description  
V33 enable bit — V33EN is used to enable or disable the VLDO2 regulator.  
4
0
1
V33 Disabled  
V33 Enabled  
V33EN  
1:0  
V33  
V33 output voltage configuration— Refer to Table 49.  
PF3001  
72  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.33 VLDO3 control register (VLDO3CTL)  
This register is used to configure output voltage, normal mode operation of the VLDO3 regulator.  
Table 144. VLDO3 control register (VLDO3CTL)  
Address: 0x70 functional page  
Access: User read/write (98)  
1
7
6
5
4
3
2
0
R
W
VLDO3EN  
X (99)  
VLDO3  
Default  
0
0
0
X (99)  
X (99)  
X (99)  
X (99)  
= Unimplemented or Reserved  
Notes  
98. Read: Anytime  
Write: Anytime  
99. Default value depends on start-up sequence.  
Table 145. VLDO3CTL field descriptions  
Field  
Description  
VLDO3 enable bit — VLDO3EN is used to enable or disable the VLDO3 regulator.  
4
0
1
VLDO3 Disabled  
VLDO3 Enabled  
VLDO3EN  
3:0  
VLDO3  
VLDO3 output voltage configuration— Refer to Table 48.  
6.6.5.3.34 VLDO4 control register (VLDO4CTL)  
This register is used to configure output voltage, normal mode operation of the VLDO4 regulator.  
Table 146. VLDO4 control register (VLDO4CTL)  
Address: 0x71 functional page  
Access: User read/write (100)  
1
7
6
5
4
3
2
0
R
W
VLDO4EN  
X (101)  
VLDO4  
Default  
0
0
0
X (101)  
X (101)  
X (101)  
X (101)  
= Unimplemented or Reserved  
Notes  
100. Read: Anytime  
Write: Anytime  
101. Default value depends on start-up sequence.  
Table 147. VLDO4CTL field descriptions  
Field  
Description  
VLDO4 enable bit — VLDO4EN is used to enable or disable the VLDO4 regulator.  
4
0
1
VLDO4 Disabled  
VLDO4 Enabled  
VLDO4EN  
3:0  
VLDO4  
VLDO4 output voltage configuration— Refer to Table 48.  
PF3001  
NXP Semiconductors  
73  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.5.3.35 Page selection register  
This register is used to access the extended register pages.  
Table 148. Page selection register  
Address: 0x7F functional page  
Access: User read/write (102)  
7
6
5
4
3
2
1
0
R
W
PAGE  
Default  
0
0
0
0
0
0
0
0
= Unimplemented or Reserved  
Notes  
102. Read: Anytime  
Write: Anytime  
Table 149. Page register field descriptions  
Field  
Description  
3:0  
Register page selection — The PAGE field is used to select the register pages.  
PAGE  
0000 Functional page selected  
PF3001  
74  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
6.6.6 Register map  
The register map is only one page and its addresses and data fields are each eight bits wide. This page registers 0x00 to 0x7F are referred  
to as “functional”.  
Registers missing in the sequence are reserved; reading from them returns a value 0x00, and writing to them has no effect. The contents  
of all registers are given in the tables defined in this chapter; each table is structure as follows:  
Name: Name of the bit  
Bit #: The bit location in the register (7-0)  
R/W: Read/Write access and control  
• R is read-only access  
• R/W is read and write access  
• RW1C is read and write access with write 1 to clear  
Reset: Reset signals are color coded based on the following legend.  
Bits reset by SC and VCOREDIG_PORB  
Bits reset by PWRON or loaded default  
Bits reset by DIGRESETB  
Bits reset by PORB or RESETBMCU  
Bits reset by VCOREDIG_PORB  
Bits reset by POR or OFFB  
Default: The value after reset, as noted in the default column of the memory map.  
• Fixed defaults are explicitly declared as 0 or 1.  
2
• “X” corresponds to Read/Write bits initialized at start-up. Bits are subsequently I C modifiable, when their reset has been released. “X”,  
may also refer to bits which may have other dependencies. For example, some bits may depend on the version of the IC, or a value  
from an analog block, for instance the sense bits for the interrupts.  
6.6.6.1  
Register map  
Table 150. Functional page  
BITS[7:0]  
Register  
Name  
Add  
R/W  
Default  
7
6
5
4
3
2
1
0
0
0
1
1
DEVICE ID [3:0]  
00  
DeviceID  
R
8'b0011_0000  
0
0
0
0
0
1
0
FULL_LAYER_REV[3:0]  
METAL_LAYER_REV[3:0]  
SILICONREVI  
D
03  
04  
05  
06  
07  
08  
R
R
8'b0001_0000  
8'b0000_0000  
8'b0000_0000  
8'b0011_1111  
8'b00xx_xxxx  
8'b0000_0000  
0
0
0
1
0
0
0
FAB[1:0]  
FIN[1:0]  
FABID  
0
0
0
0
0
0
PWRONI  
0
THERM130I  
0
THERM125I  
0
THERM120I  
0
THERM110I  
0
LOWVINI  
INTSTAT0  
INTMASK0  
INTSENSE0  
INTSTAT1  
RW1C  
R/W  
R
0
0
0
THERM130M THERM125M THERM120M THERM110M  
LOWVINM  
PWRONM  
0
0
1
1
1
1
1
1
ICTEST2S  
ICTESTS  
THERM130S  
THERM125S  
THERM120S  
THERM110S  
LOWVINS  
PWRONS  
0
0
0
0
x
0
x
x
x
x
x
0
x
SW3FAULTI  
0
SW2FAULTI  
0
SW1FAULTI  
0
RW1C  
PF3001  
NXP Semiconductors  
75  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 150. Functional page (continued)  
BITS[7:0]  
Register  
Name  
Add  
R/W  
Default  
7
6
5
4
3
2
1
0
0
0
0
1
0
1
x
1
x
SW3FAULTM SW2FAULTM  
1
x
SW1FAULTM  
09  
INTMASK1  
R/W  
8'b0111_1111  
1
1
1
1
SW3FAULTS  
SW2FAULTS  
SW1FAULTS  
0A  
0E  
0F  
10  
INTSENSE1  
INTSTAT3  
R
RW1C  
R/W  
R
8'b0xxx_xxxx  
8'b0000_0000  
8'b1100_0101  
8'b0000_000x  
x
0
0
0
x
0
0
0
x
x
0
1
x
0
1
0
0
0
0
VPWROVI  
0
0
0
0
VPWROVI  
INTMASK3  
INTSENSE3  
1
VPWROVS  
0
VCC_SDFAUL  
TI  
0
0
0
0
VLDO4FAULTI VLDO3FAULTI  
V33FAULTI  
0
VLDO2FAULTI VLDO1FAULTI  
11  
12  
INTSTAT4  
INTMASK4  
RW1C  
R/W  
8'b0000_0000  
8'b0011_1111  
0
0
0
0
0
VLDO4  
VLDO3  
V33  
FAULTM  
VCC_SDFAUL VLDO2FAULT VLDO1FAULT  
FAULTM  
FAULTM  
TM  
M
M
1
1
1
1
1
1
VLDO4  
VLDO3  
V33  
FAULTS  
VCC_SD  
FAULTS  
VLDO2  
VLDO1  
FAULTS  
FAULTS  
FAULTS  
FAULTS  
13  
1A  
1B  
INTSENSE4  
COINCTL  
PWRCTL  
R
8'b00xx_xxxx  
8'b0000_0000  
8'b0001_0000  
0
0
0
0
x
0
x
0
x
x
x
x
COINCHEN  
0
VCOIN[2:0]  
0
R/W  
R/W  
0
0
PWRONRSTE  
N
REGSCPEN  
0
0
PWRONBDBNC[1:0]  
RESTARTEN  
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MEMA[7:0]  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
MEMA  
MEMB  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b000x_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
8'b0000_xxxx  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MEMB[7:0]  
MEMC[7:0]  
MEMD[7:0]  
MEMC  
MEMD  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SW1[4:0]  
SW1VOLT  
SW1STBY  
SW1OFF  
SW1MODE  
x
SW1MODE[3:0]  
PF3001  
76  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 150. Functional page (continued)  
BITS[7:0]  
Register  
Name  
Add  
R/W  
Default  
7
6
5
4
3
2
1
0
x
x
x
x
x
x
0
0
0
0
x
0
0
0
0
x
0
0
x
x
x
x
x
x
x
x
x
0
x
x
x
x
0
SW1PHASE[1:0]  
SW1FREQ[1:0]  
x
SW1ILIM  
0
24  
SW1CONF  
R/W  
8'bxx00_xxx0  
0
x
x
x
0
0
x
x
x
x
x
x
x
x
x
x
2E  
2F  
30  
31  
32  
35  
36  
37  
38  
39  
3C  
3D  
3E  
3F  
40  
66  
69  
6A  
RSVD  
RSVD  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0001_0000  
8'bx100_0000  
8'b0xxx_0110  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0010_1000  
8'bxx01_xxx0  
8'b0xxx_1100  
8'b0xxx_1100  
8'b0xxx_1100  
8'b0011_1000  
8'bxx10_xxx0  
8'b0xx0_0000  
8'b0xxx_xxx0  
8'b000x_0000  
x
x
x
x
x
x
RSVD  
x
RSVD  
x
RSVD  
x
x
x
x
0
x
x
x
x
0
x
SW2_HL  
SW2[2:0]  
SW2VOLT  
SW2STBY  
SW2OFF  
SW2MODE  
SW2CONF  
SW3VOLT  
RSVD  
x
x
x
x
x
x
–-  
x
x
SW2MODE[3:0]  
1
0
0
0
SW2ILIM  
0
SW2PHASE[1:0]  
SW2FREQ[1:0]  
x
0
1
x
x
x
1
x
x
x
x
0
1
SW3[3:0]  
RSVD  
SW3MODE[3:0]  
SW3MODE  
SW3CONF  
RSVD  
1
0
0
0
SW3ILIM  
0
SW3PHASE[1:0]  
SW3FREQ[1:0]  
0
1
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
RSVD  
RSVD  
PF3001  
NXP Semiconductors  
77  
FUNCTIONAL DESCRIPTION AND APPLICATION INFORMATION  
Table 150. Functional page (continued)  
BITS[7:0]  
Register  
Name  
Add  
R/W  
Default  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
VSNVSVOLT[2:0]  
1
6B  
VSNVSCTL  
R/W  
8'b0000_0110  
1
0
–-  
–-  
VLDO1EN  
VLDO1[3:0]  
6C  
6D  
6E  
6F  
70  
71  
7F  
VLDO1CTL  
VLDO2CTL  
VCC_SDCTL  
V33CTL  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b010x_1110  
8'b000x_1000  
8'b000x_xx10  
8'b000x_xx10  
8'b010x_0000  
8'b000x_xxxx  
8'b0000_0000  
0
VLDO2EN  
VLDO2[3:0]  
x
x
x
x
VCC_SDEN  
VCC_SD[1:0]  
V33[1:0]  
V33EN  
VLDO3EN  
VLDO3[3:0]  
VLDO4[3:0]  
VLDO3CTL  
VLDO4CTL  
RSVD  
VLDO4EN  
0
0
0
0
PF3001  
78  
NXP Semiconductors  
TYPICAL APPLICATIONS  
7
Typical applications  
7.1  
Application diagram  
VIN  
1.0uF  
VLDO1IN  
VLDO1  
PF3001  
2.2uF  
1.0uF  
4.7uF  
VLDO1  
VLDO2IN  
VLDO2  
100 mA  
V33  
VIN  
VLDO2  
250 mA  
1.0uF  
2.2uF  
VLDO34IN  
VLDO3  
SW1OUT  
1.5uH  
VLDO3  
100 mA  
SW1LX  
SW1IN  
O/P  
Drive  
VIN  
SW1  
2.75 A  
Buck  
VLDO4  
350 mA  
2 x 22uF  
100nF  
100nF  
100nF  
4.7uF  
4.7uF  
2.2uF  
VLDO4  
SW1FB  
Core Control logic  
GNDREF1  
VCC_SD  
100 mA  
VCC_SD  
SW2OUT  
Initialization State Machine  
1.5uH  
SW2LX  
SW2IN  
V33  
350 mA  
O/P  
Drive  
4.7uF  
10uF  
V33  
VIN  
SW2  
1.25 A  
Buck  
2 x 22uF  
4.7uF  
VIN  
VIN2  
OTP  
Supplies  
Control  
SW2FB  
ICTEST2  
VDDIO  
VDDIO  
CONTROL  
SW3OUT  
100nF  
I2C Interface  
1.5uH  
SW3LX  
SW3IN  
O/P  
Drive  
VIN  
SCL  
SDA  
SW3  
1.5 A  
Buck  
To  
MCU  
2 x 22uF  
4.7uF  
SW3FB  
GNDREF2  
Clocks  
32kHz and 16MHz  
I2C Map  
220nF  
1.0uF  
VCOREREF  
Reference  
Generation  
Clocks and  
resets  
VCORE  
Package Pin Legend  
GNDREF  
Output Pin  
Input Pin  
+5V  
Bi-directional Pin  
VPWR  
LDOG  
V
REF  
2 x 47uF  
4.7uF  
100nF  
LDO  
VIN*  
2 x 47uF  
VIN  
Best  
of  
Supply  
Li Cell  
Charger  
LICELL  
Coin Cell  
Battery  
220nF  
VSNVS  
VDDIO  
VDDIO  
0.47uF  
Notes:  
*: The PF3001 can also be powered through VIN directly (ie. 3.7 V Li-ion battery  
application). In this case, the Front-end LDO regulator is not used; the external  
MOSFET has to be unpopulated and VPWR pin must be connected to GND .  
To/From Processor  
Figure 26. Typical application schematic  
PF3001  
NXP Semiconductors  
79  
BILL OF MATERIALS  
8
Bill of materials  
The following table provides a complete list of the recommended components on a full featured system using the PF3001 Critical  
components are provided with a recommended part number; but equivalent components may be used.  
Table 151. Bill of materials for -40 °C to 85 °C applications (103)  
Value  
PMIC  
N/A  
Qty  
Description  
Part#  
Manufacturer  
Component/pin  
1
Power management IC  
PF3001  
NXP  
IC  
Buck regulators  
IND PWR 1.5 μH at 1.0 MHz 2.9A 20%  
DFE252012P-1R5M  
BRL3225T1R5M  
Toko Inc.  
Taiyo Yuden  
Murata  
SW1, SW2, SW3 inductors  
2016  
1.5 µH  
3
IND PWR 1.5 μH at 1.0 MHz 2.2A 20%  
1210  
Alternate for low power  
applications  
SW1, SW2, SW3 input  
capacitors  
4.7 µF  
0.1 µF  
22 µF  
3
3
6
CAP CER 4.7 μF 10 V 20% X5R 0402 GRM155R61A475MEAA  
CAP CER 0.1 μF 10 V 20% X5R 0603 GRM033R61A104ME84  
SW1, SW2, SW3 input  
capacitors (optional)  
Murata  
SW1, SW2, SW3 output  
capacitors  
CAP CER 22 μF 10 V 20% X5R 0201  
GRM188R61A226ME15  
Murata  
Linear regulators  
VLDO1, VLDO2, VLDO3, and  
VLDO4 input capacitors  
1.0 µF  
2.2 µF  
10 µF  
3
3
1
3
CAP CER 1.0 μF 10 V 20% X5R 0201 GRM033R61A105ME44  
Murata  
Murata  
Murata  
Murata  
VLDO1, VLDO3, VCC_SD  
output capacitors  
CAP CER 2.2 μF 10V 20% X5R 0201  
CAP CER 10 μF 10 V 20% X7R 0402  
CAP CER 4.7 μF 10V 20% X5R 0402  
GRM033R61A225ME47  
GRM155R61A106ME11  
GRM155R61A475MEAA  
V33 and VCC_SD input  
capacitor  
VLDO2, VLDO4, V33 output  
capacitors  
4.7 µF  
Miscellaneous  
1.0 µF  
VCORE, VCOREDIG,  
capacitors  
4
2
4
1
4
CAP CER 1.0 μF 10V 20% X5R 0201  
GRM033R61A105ME44  
Murata  
Murata  
Murata  
Murata  
VCOREREF and coin cell output  
capacitors  
0.22 µF  
47 µF  
CAP CER 0.22 μF 10V 20% X5R 0201 GRM033R61A224ME90  
Front-end LDO capacitors for  
VIN and VPWR  
CAP CER 47 μF 10V 20% X5R 0805  
CAP CER 2.2 μF 10V 20% X5R 0201  
CAP CER 0.1 μF 10V 10% X5R 0201  
GRM21BR61A476ME15  
GRM033R61A225ME47  
GRM033R61A104KE84  
VIN Input Capacitor when not  
using front-end LDO  
2.2 µF  
0.1 µF  
VPWR, VIN Input  
capacitors (optional)  
Murata  
NXP  
N/A  
100 k  
4.7 k  
1
2
2
TRAN PMOS 11. A 12 V 12 SOT-1220 PMPB15XP  
External MOSFET  
RES MF 100K 1/16W 1% 0402  
RES MF 4.70K 1/20W 1% 0201  
RC0402FR-07100KL  
RC0201FR-074K7L  
Yageo America Pull-up resistor  
Yageo America Pull-up resistor  
Notes  
103. NXP does not assume liability, endorse, or warrant components from external manufacturers are referenced in circuit drawings or tables. While  
NXP offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.  
PF3001  
80  
NXP Semiconductors  
BILL OF MATERIALS  
Table 152. Bill of materials for -40 °C to 105 °C applications (104)  
Value  
PMIC  
N/A  
Qty  
Description  
Part#  
Manufacturer  
Component/pin  
1
Power management IC  
PF3000  
NXP  
IC  
Buck regulators  
IND PWR 1.5µH@1MHz 2.9A  
20% 2016  
DFE201610E-1R5M  
BRL3225T1R5M  
TOKO INC.  
Taiyo Yuden  
Murata  
SW1, SW2, SW3 inductors  
1.5 µH  
3
IND PWR 1.5µH@1MHz 2.2A  
20% 1210  
Alternate for low power  
applications  
CAP CER 4.7µF 10V 10% X7S  
0603  
SW1, SW2, SW3 input  
capacitors  
4.7 µF  
0.1 µF  
22 µF  
3
3
6
GRM188C71A475KE11  
GRM033C71A104KE14  
GRM21BD71A226ME44  
CAP CER 0.1µF 10V 10% X7S  
0201  
SW1, SW2, SW3 input  
capacitors (optional)  
Murata  
CAP CER 22µF 10V 20% X7T  
0805  
SW1, SW2, SW3 output  
capacitors  
Murata  
Linear regulators  
CAP CER 1.0µF 10V 10% X7S  
0402  
VLDO1, VLDO2, VLDO3 and  
VLDO4 input capacitors  
1.0 µF  
2.2 µF  
10 µF  
4.7 µF  
1.0 µF  
0.22 µF  
47 µF  
2.2 µF  
0.1 µF  
N/A  
3
3
1
3
4
2
4
1
4
1
2
2
GRM155C71A105KE11  
GRM155C71A225KE11  
GRM188D71A106MA73  
GRM188C71A475KE11  
GRM155C71A105KE11  
GRM155R71A224KE01  
GRM32ER71A476ME15  
GRM155C71A225KE11  
GRM033C71A104KE14  
PMPB15XP  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
Murata  
NXP  
CAP CER 2.2µF 10V 10% X7S  
0402  
VLDO1, VLDO3, VCC_SD  
output capacitors  
CAP CER 10µF 10V 20% X7T  
0603  
V33 and VCC_SD input capacitor  
CAP CER 4.7µF 10V 10% X7S  
0603  
VLDO2, VLDO4, V33 output  
capacitors  
CAP CER 1.0µF 10V 10% X7R  
0402  
VCORE, VCOREDIG capacitors  
CAP CER 0.22µF 10V 10% X7R  
0402  
VCOREREF and coin cell output  
capacitors  
CAP CER 47µF 10V 20% X7R  
1210  
Front-end LDO capacitors for  
VIN and VPWR.  
CAP CER 2.2µF 10V 10% X7S  
0402  
VIN Input Capacitor when not  
using front-end LDO  
CAP CER 0.1µF 10V 10% X7S  
0201  
VPWR, VIN input capacitors  
(optional)  
TRAN PMOS 11. A 12 V 12 SOT-  
1220  
External MOSFET  
Pull-up resistors  
YAGEO  
AMERICA  
100 k  
4.7 k  
RES MF 100K 1/16W 1% 0402  
RES MF 4.70K 1/20W 1% 0201  
RC0402FR-07100KL  
RC0201FR-074K7L  
YAGEO  
AMERICA  
I²C pull-up resistors  
Notes  
104. NXP does not assume liability, endorse, or warrant components from external manufacturers are referenced in circuit drawings or tables. While  
NXP offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.  
PF3001  
NXP Semiconductors  
81  
THERMAL INFORMATION  
9
Thermal information  
9.1  
Rating data  
The thermal rating data of the packages has been simulated with the results listed in Thermal ratings. Junction to ambient thermal  
resistance nomenclature: the JEDEC specification reserves the symbol RθJA or θJA (Theta-JA) strictly for junction-to-ambient thermal  
resistance on a 1s test board in natural convection environment. RθJMA or θJMA (Theta-JMA) is used for both junction-to-ambient on a  
2s2p test board in natural convection and for junction-to-ambient with forced convection on both 1s and 2s2p test boards. It is anticipated  
the generic name, Theta-JA, continues to be commonly used. The JEDEC standards can be consulted at http://www.jedec.org.  
9.2  
Estimation of junction temperature  
An estimation of the chip junction temperature T can be obtained from the equation:  
J
T = T + (RθJA x P )  
J
A
D
with:  
T = Ambient temperature for the package in °C  
A
RθJA = Junction to ambient thermal resistance in °C/W  
P = Power dissipation in the package in W  
D
The junction to ambient thermal resistance is an industry standard value providing a quick and easy estimation of thermal performance.  
Unfortunately, there are two values in common usage: the value determined on a single layer board RθJA and the value obtained on a four  
layer board RθJMA. Actual application PCBs show a performance close to the simulated four layer board value although this may be  
somewhat degraded in case of significant power dissipated by other components placed close to the device.  
At a known board temperature, the junction temperature T is estimated using the following equation  
J
T = T + (RθJB x P ) with  
J
B
D
T = Board temperature at the package perimeter in °C  
B
RθJB = Junction to board thermal resistance in °C/W  
P = Power dissipation in the package in W  
D
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made.  
PF3001  
82  
NXP Semiconductors  
PACKAGING  
10 Packaging  
10.1 Packaging dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and  
perform a keyword search for the drawing's document number. See the Thermal characteristics section for specific thermal characteristics  
for each package.  
Table 153. Package drawing information  
Package  
Suffix  
EP  
Package outline drawing number  
98ASA00719D  
48-pin QFN 7X7 mm - 0.5mm pitch  
48 QFN 7.0 mm x 7.0 mm WF-type (wettable flank)  
EP  
98ASA00933D  
PF3001  
NXP Semiconductors  
83  
PACKAGING  
PF3001  
84  
NXP Semiconductors  
PACKAGING  
PF3001  
NXP Semiconductors  
85  
PACKAGING  
PF3001  
86  
NXP Semiconductors  
PACKAGING  
PF3001  
NXP Semiconductors  
87  
PACKAGING  
PF3001  
88  
NXP Semiconductors  
REVISION HISTORY  
11 Revision history  
Revision  
1.0  
Date  
Description of Changes  
8/2015  
9/2015  
Initial release  
Corrected package image on page 1  
Added 98ASA00933D and the page 1 package image for wettable flank  
Changed Table 2, pins 7, 10, 18, and 28, from Bypass with at least a 10 μF to Bypass with at least a  
4.7 μF  
3/2016  
2.0  
Added PC33PF3001A6ES and PC33PF3001A7ES to Table 1  
8/2016  
4/2017  
8/2017  
Changed PC33PF3001A6ES and PC33PF3001A7ES to MC parts in Table 1  
Corrected typo in Figure 1  
Updated Table 62 (changed default value to 1)  
3.0  
4.0  
Updated notes (37) and (38) as per CIN 201707041I  
PF3001  
NXP Semiconductors  
89  
Information in this document is provided solely to enable system and software implementers to use NXP products.  
There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits  
based on the information in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
How to Reach Us:  
Home Page:  
NXP.com  
Web Support:  
http://www.nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular  
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical"  
parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications,  
and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each  
customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor  
the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the  
following address:  
http://www.nxp.com/terms-of-use.html.  
NXP, the NXP logo, Freescale, the Freescale logo and SMARTMOS are trademarks of of NXP B.V. All other product  
or service names are the property of their respective owners. All rights reserved.  
© NXP B.V. 2017.  
Document Number: PF3001  
Rev. 4.0  
8/2017  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY