MC34VR500VAES [NXP]

Multi-output DC/DC regulator for QorIQ LS1/T1 family of communications processors;
MC34VR500VAES
型号: MC34VR500VAES
厂家: NXP    NXP
描述:

Multi-output DC/DC regulator for QorIQ LS1/T1 family of communications processors

文件: 总92页 (文件大小:2550K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC34VR500  
Rev. 11, 4/2020  
NXP Semiconductors  
Technical Data  
Multi-output DC/DC regulator for  
QorIQ LS1/T1 family of  
34VR500  
communications processors  
The 34VR500 is a high performance, highly integrated, multi-output,  
SMARTMOS, DC/DC regulator solution, with integrated power MOSFETs  
ideally suited for the LS1/T1 family of communication processors. Integrating  
four switching and five linear regulators, the 34VR500 provides power to the  
complete system, including the processor, DDR memory, and system  
peripherals.  
Power Management  
Features:  
ES SUFFIX (WF-TYPE)  
98ASA00589D  
56 QFN-EP WF8X8  
• Four buck converters:  
• SW1: 4.5 A  
• SW2: 2.0 A  
• SW3: 2.5 A  
Applications:  
• Internet of things (IoT) gateway  
• Mobile wireless router  
• MFP printer  
• Network attached storage  
• Automatic teller machine  
• SW4: 1.0 A, (VTT tracking regulator)  
• Five general purpose linear regulators  
• DDR termination reference voltage (DDR3L and DDR4)  
• Programmable low-power modes  
• I2C control of all the regulators  
• Power Control Logic with processor interface and event detection  
LS102X  
VDD  
TA_BB_VDD  
VDDC  
VR500  
SW1  
SW2  
OVDD1/2  
LDO2  
LDO4  
L1VDD  
OVDD  
GVDD  
3.3 VIN BUS  
LDO5  
SW3  
DDR3  
VTT  
SW4  
REFOUT  
HDMI  
LDO1  
LDO3  
Ethernet  
Figure 1. 34VR500 simplified application diagram  
© NXP B.V. 2020.  
Table of Contents  
1
2
3
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Functional block requirements and behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6.1 Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6.2 16 MHz and 32 kHz clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.3 Bias and references block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.4 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.5 Control interface I2C block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
7.2 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
7.3 34VR500 layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
7.4 Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
8.1 Packaging dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
4
5
6
7
8
9
34VR500  
2
NXP Semiconductors  
ORDERABLE PARTS  
1
Orderable parts  
This section describes the part numbers available to be purchased along with their differences. Valid orderable part numbers are provided  
on the web. To determine the orderable part numbers for this device, go to http://www.nxp.com and perform a part number search for the  
following device numbers.  
Table 1. Orderable part variations  
Temperature  
Part number  
Package  
SW4 VTT mode  
Processor  
Reference design  
DDR memory  
Notes  
(T )  
A
LS1021A IOT  
Gateway  
TWR-LS1021A  
MC34VR500V1ES  
Enabled  
DDR3L (VTT = 0.675 V)  
N/A  
LS1020/21/22A  
MC34VR500V2ES  
MC34VR500V3ES  
Disabled  
Enabled  
DDR4 (VTT = 0.6 V)  
LS1043ARDB  
T1023RDB  
MC34VR500V4ES  
Enabled  
LS1043/23A  
T1023/13  
-40 °C to +105 °C 56 QFN 8x8 mm  
MC34VR500V5ES  
MC34VR500V6ES  
MC34VR500V7ES  
MC34VR500V8ES  
MC34VR500V9ES  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
DDR3L (VTT = 0.675 V)  
(1)(2)  
LS1024A  
LS1020/21/22A  
LS1046A  
DDR4 (VTT = 0.6 V)  
LS1046ARDB-PA  
LS1028A-RDB  
LS1028  
LS1043/23A  
T1023/13  
LS1043ARDB  
T1023RDB  
MC34VR500VAES  
Enabled  
Disabled  
DDR4 (VTT = 0.6 V)  
N/A  
MC34VR500VBES  
Notes  
LX2160  
1.  
2.  
For tape and reel, add an R2 suffix to the part number.  
See Table 8 for the start-up configuration.  
34VR500  
NXP Semiconductors  
3
INTERNAL BLOCK DIAGRAM  
2
Internal block diagram  
VR500  
FB1  
SW1 Buck  
Regulator  
4500 mA  
VLDOIN1  
LDO1  
PVIN1  
LX1  
LDO1  
250 mA  
LDO2  
100 mA  
LDO2  
VLDOIN23  
LDO3  
FB2  
SW2 Buck  
Regulator  
2000 mA  
PVIN2  
LX2  
LDO3  
350 mA  
LDO4  
100 mA  
LDO4  
VLDOIN45  
LDO5  
FB3  
SW3 Buck  
Regulator  
2500 mA  
PVIN3  
LX3  
LDO5  
200 mA  
Buck  
FB4  
Regulator  
Reference  
Generation  
SW4 Buck  
Regulator  
1000 mA  
LDO  
Reference  
Generation  
PVIN4  
LX4  
EPAD  
VBG  
VBIAS  
Main and Standby  
Bandgap  
REFOUT  
REFIN  
VCCI2C  
Clocks and  
Resets  
I2C Interface  
Main State Machine  
SCL  
SDA  
VHALF  
VDIG Regulator  
(Internal Use  
Only)  
VDIG  
VCC  
VCC Regulator  
(Internal Use  
Only)  
SGND4  
Figure 2. 34VR500 simplified internal block diagram  
34VR500  
4
NXP Semiconductors  
PIN CONNECTIONS  
3
Pin connections  
3.1  
Pinout diagram  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
1
2
DNC  
INTB  
DNC  
42  
41  
40  
39  
38  
LDO5  
VLDOIN45  
LDO4  
FB3  
3
PORB  
STBY  
ICTEST1  
DNC  
4
5
6
37 PVIN3  
36 LX3  
7
PVIN1  
LX1  
EP  
8
35  
34  
33  
32  
31  
30  
29  
LX3  
9
PVIN3  
DNC  
LX1  
10  
11  
12  
13  
14  
PVIN1  
LX1  
SGND3  
REFOUT  
REFIN  
VHALF  
PVIN1  
FB1  
SGND1  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Figure 3. 34VR500 pinout diagram  
3.2  
Pin definitions  
Table 2. 34VR500 Pin Definitions  
Pin  
function  
Pin number  
Pin name  
Max. rating  
Type  
Definition  
1
INTB  
DNC  
O
3.6 V  
Digital  
Open drain interrupt signal to processor  
2, 6, 16, 33,  
42, 44, 45, 46  
Reserved Leave floating  
3
4
PORB  
STBY  
O
I
3.6 V  
3.6 V  
Digital  
Digital  
Open drain reset output to processor.  
Standby input signal from processor  
Digital/  
Analog  
5
ICTEST1  
I
7.5 V  
Reserved pin. Connect to GND in application.  
34VR500  
NXP Semiconductors  
5
PIN CONNECTIONS  
Table 2. 34VR500 Pin Definitions (continued)  
Pin  
Pin number  
Pin name  
Max. rating  
Type  
Definition  
function  
Input to SW1 regulator. Bypass with at least a 4.7 μF ceramic capacitor and  
a 0.1 μF decoupling capacitor as close to the pin as possible.  
7, 10, 12  
8, 9, 11  
13  
PVIN1 (3)  
LX1 (3)  
I
O
4.8 V  
4.8 V  
3.6 V  
-
Analog  
Analog  
Analog  
GND  
SW1 switching node connection  
Output voltage feedback for SW1. Route this trace separately from the high  
current path and terminate at the output capacitance.  
FB1 (3)  
I
14  
SGND1  
SGND2  
GND  
GND  
Signal ground for SW1 regulator. Connect to ground plane directly.  
Signal ground for SW2 and SW4 regulators. Connect to ground plane  
directly.  
15  
-
GND  
Input supply for LDO1. Bypass with a 1.0 μF decoupling capacitor as close  
17  
18  
19  
VLDOIN1  
LDO1  
I
O
I
3.6 V  
2.5 V  
3.6 V  
Analog  
Analog  
Analog  
to the pin as possible.  
LDO1 regulator output, Bypass with a 4.7 μF ceramic output capacitor.  
Output voltage feedback for SW4. Route this trace separately from the high  
current path and terminate at the output capacitance.  
FB4 (3)  
Input to SW4 regulator. Bypass with at least a 4.7μF ceramic capacitor and  
a 0.1 μF decoupling capacitor as close to the pin as possible.  
20  
PVIN4 (3)  
I
4.8 V  
Analog  
21  
22  
LX4 (3)  
LX2 (3)  
O
O
4.8 V  
4.8 V  
Analog  
Analog  
Regulator 4 switching node connection  
Regulator 2 switching node connection  
Input to SW2 regulator. Connect pins 23 and 24 together and bypass with at  
least a 4.7 μF ceramic capacitor and a 0.1 μF decoupling capacitor as close  
to these pins as possible.  
23, 24  
PVIN2 (3)  
I
4.8 V  
Analog  
Output voltage feedback for SW2. Route this trace separately from the high  
current path and terminate at the output capacitance.  
25  
26  
27  
FB2 (3)  
LDO2  
I
O
I
3.6 V  
3.6 V  
3.6 V  
Analog  
Analog  
Analog  
LDO2 regulator output. Bypass with a 2.2 μF ceramic output capacitor.  
Input supply for LDO2 and LDO3. Bypass with a 1.0 μF decoupling capacitor  
as close to the pin as possible.  
VLDOIN23  
28  
29  
LDO3  
O
I
3.6 V  
3.6 V  
Analog  
Analog  
LDO3 regulator output, Bypass with a 4.7 μF ceramic output capacitor.  
VHALF  
Half supply reference for DDR reference.  
REFOUT regulator input. Bypass with at least 1.0 μF decoupling capacitor  
as close to the pin as possible.  
30  
REFIN  
I
3.6 V  
Analog  
31  
32  
REFOUT  
SGND3  
O
3.6 V  
-
Analog  
GND  
REFOUT regulator output  
GND  
Ground reference for the SW3 regulator. Connect directly to ground plane.  
Input to SW3 regulator. Bypass with at least a 4.7 μF ceramic capacitor and  
a 0.1 μF decoupling capacitor as close to the pin as possible.  
34, 37  
35, 36  
38  
PVIN3 (3)  
LX3 (3)  
I
O
I
4.8 V  
4.8 V  
3.6 V  
3.6 V  
4.8 V  
Analog  
Analog  
Analog  
Analog  
Analog  
Regulator SW3 switching node connection  
Output voltage feedback for SW3. Route this trace separately from the high  
current path and terminate at the output capacitance.  
FB3 (3)  
39  
LDO4  
O
I
LDO4 regulator output. Bypass with a 2.2 μF ceramic output capacitor.  
Input supply for LDO4 and LDO5. Bypass with a 1.0 μF decoupling capacitor  
as close to the pin as possible.  
40  
VLDOIN45  
43  
41  
VBIAS  
LDO5  
I
1.8 V  
3.6 V  
Analog  
Analog  
Bypass the pin with a 0.47 μF capacitor.  
O
LDO5 regulator output. By pass with a 2.2 μF ceramic output capacitor.  
Digital/  
Analog  
47  
ICTEST2  
I
7.5 V  
Reserved pin. Connect to GND in application.  
48  
49  
SGND4  
VCC  
GND  
O
-
GND  
Ground for the main band gap regulator. Connect directly to ground plane.  
Analog Core supply  
3.6 V  
Analog  
34VR500  
6
NXP Semiconductors  
PIN CONNECTIONS  
Table 2. 34VR500 Pin Definitions (continued)  
Pin  
Pin number  
Pin name  
Max. rating  
Type  
Definition  
function  
50  
51  
52  
53  
54  
55  
VIN  
VDIG  
VBG  
I
O
O
I/O  
I
4.8 V  
1.5 V  
1.5 V  
3.6 V  
3.6 V  
3.6 V  
Analog  
Analog  
Analog  
Digital  
Digital  
Analog  
Main chip supply  
Digital Core supply  
Main band gap reference. Bypass with 0.22uF capacitor.  
I2C data line (Open drain)  
SDA  
SCL  
I2C clock  
VCCI2C  
I
Supply for I2C bus. Bypass with 0.1 μF ceramic capacitor  
Enable input. Connect to the processor. Pull-up via an 8.0 kΩ to 100 kΩ to  
56  
EN  
EP  
I
3.6 V  
-
Digital  
GND  
VBIAS if required  
Expose pad. Functions as ground return for buck regulators. Tie this pad to  
the inner and external ground planes through vias to allow effective thermal  
dissipation.  
-
GND  
Notes  
3.  
Unused switching regulators should be connected as follow: Pins SWxLX and SWxFB should be unconnected and Pin SWxIN should be  
connected to the VIN pin with a 0.1 μF bypass capacitor.  
34VR500  
NXP Semiconductors  
7
GENERAL PRODUCT CHARACTERISTICS  
4
General product characteristics  
4.1  
Absolute maximum ratings  
Table 3. Absolute maximum ratings  
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause malfunction or permanent damage  
to the device. The detailed maximum voltage rating per pin can be found in the pin list section.  
Symbol  
Description  
Value  
Unit  
Notes  
Electrical ratings  
V
Main input supply voltage  
-0.3 to 4.8  
V
V
IN  
ESD Ratings  
Human Body Model  
Charge Device Model  
(4)  
V
±2000  
±500  
ESD  
Notes  
4.  
ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), and the Charge Device Model  
(CDM), Robotic (CZAP = 4.0 pF).  
4.2  
Thermal characteristics  
Table 4. Thermal ratings  
Symbol  
Description (rating)  
Min.  
Max.  
Unit  
Notes  
Thermal ratings  
TA  
TJ  
Ambient Operating Temperature Range  
Operating Junction Temperature Range  
-40  
-40  
-65  
105  
125  
°C  
°C  
°C  
°C  
(5)  
TST  
Storage Temperature Range  
150  
(6) (7)  
TPPRT  
Peak Package Reflow Temperature  
Note 7  
QFN56 Thermal resistance and package dissipation ratings  
Junction to Ambient  
Natural Convection  
Four layer board (2s2p)  
Eight layer board (2s6p)  
(8) (9) (10)  
(8) (10)  
RθJA  
°C/W  
°C/W  
28  
15  
Junction to Ambient (at 200 ft/min)  
RθJMA  
Four layer board (2s2p)  
22  
10  
(11)  
(12)  
RθJB  
Junction to Board  
°C/W  
°C/W  
RΘJCBOTTOM  
Junction to Case Bottom  
1.2  
34VR500  
8
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
Table 4. Thermal ratings (continued)  
Symbol  
Description (rating)  
Min.  
Max.  
Unit  
Notes  
Junction to Package Top  
(12)  
ΨJT  
2.0  
°C/W  
Natural Convection  
Notes  
5.  
6.  
7.  
Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See Table 5 for  
thermal protection features.  
Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a  
malfunction or permanent damage to the device.  
NXP’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and  
Moisture Sensitivity Levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all orderable  
parts, and review parametrics.  
8.  
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5.  
Per JEDEC JESD51-6 with the board horizontal.  
9.  
10.  
11.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the  
board near the package.  
12.  
13.  
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-  
2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
4.2.1 Power dissipation  
During operation, the temperature of the die should not exceed the operating junction temperature noted in Table 4. To optimize the  
thermal management and to avoid overheating, the 34VR500 provides thermal protection. An internal comparator monitors the die  
temperature. Interrupts THERM110I, THERM120I, THERM125I, and THERM130I will be generated when the respective thresholds  
specified in Table 5 are crossed in either direction. The temperature range can be determined by reading the THERMxxxS bits in register  
INTSENSE0.  
In the event of excessive power dissipation, thermal protection circuitry will shut down the 34VR500. This thermal protection will act above  
the thermal protection threshold listed in Table 5. To avoid any unwanted power downs resulting from internal noise, the protection is  
debounced for 8.0 ms. This protection should be considered as a fail-safe mechanism and therefore the system should be configured  
such that this protection is not tripped under normal conditions.  
Table 5. Thermal protection thresholds  
Parameter  
Thermal 110 °C Threshold (THERM110)  
Min.  
Typ.  
Max.  
Units  
Notes  
100  
110  
115  
120  
2.0  
110  
120  
125  
130  
120  
130  
135  
140  
4.0  
°C  
°C  
°C  
°C  
°C  
°C  
Thermal 120 °C Threshold (THERM120)  
Thermal 125 °C Threshold (THERM125)  
Thermal 130 °C Threshold (THERM130)  
Thermal Warning Hysteresis  
Thermal Protection Threshold  
130  
140  
150  
34VR500  
NXP Semiconductors  
9
GENERAL PRODUCT CHARACTERISTICS  
4.3  
Electrical characteristics  
4.3.1 I/O specifications  
Table 6. General PMIC static characteristics.  
TA = -40 to 105 °C, VVIN = 2.8 to 4.5 V, VVCCI2C = 1.7 to 3.6 V, VVBIAS = 1.0 V 4.0%, typical external component values and full load  
current range, unless otherwise noted.  
Pin Name  
Parameter  
Load Condition  
Min.  
Max.  
Unit  
Notes  
VIL  
VIH  
VOL  
VOH  
VIL  
0.0  
0.8 *VVBIAS  
0.0  
0.2 *VVBIAS  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
EN  
3.6  
0.4  
-2.0 mA  
PORB  
SCL  
Open Drain  
0.7* VVIN  
0.0  
VVIN  
0.2 * VVCCI2C  
3.6  
VIH  
VIL  
0.8 * VVCCI2C  
0.0  
0.2 * VVCCI2C  
3.6  
VIH  
VOL  
VOH  
VOL  
VOH  
VIL  
-2.0 mA  
Open Drain  
-2.0 mA  
Open Drain  
0.8 * VVCCI2C  
0.0  
SDA  
0.4  
0.7 * VVCCI2C  
0.0  
VVCCI2C  
0.4  
INTB  
0.7* VVIN  
0.0  
VVIN  
0.2 *VVBIAS  
3.6  
STBY  
VIH  
0.8 *VVBIAS  
4.3.2 Current consumption  
Table 7. Current consumption summary  
TA = -40 to 105 °C, (See Table 3), VVIN = 3.6 V, VVCCI2C = 1.7 to 3.6 V, VVBIAS = 1.0 V 4.0%, typical external component values, unless  
otherwise noted. Typical values are characterized at VVIN = 3.6 V, VVCCI2C = 3.3 V, and 25 °C, unless otherwise noted.  
Mode  
34VR500 conditions  
System conditions  
Typ.  
Max.  
Unit  
Notes  
Wake-up from EN active  
32 k RC on  
All other blocks off  
(14) (15)  
Off  
PMIC able to wake-up  
17  
25  
μA  
VIN UVDET  
Wake-up from EN active  
Trimmed reference active  
SW3 PFM  
Trimmed 16 MHz RC off  
32 k RC on  
(15)  
Sleep  
DDR memories in self refresh  
122  
250  
μA  
REFOUT disabled  
34VR500  
10  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
Table 7. Current consumption summary (continued)  
TA = -40 to 105 °C, (See Table 3), VVIN = 3.6 V, VVCCI2C = 1.7 to 3.6 V, VVBIAS = 1.0 V 4.0%, typical external component values, unless  
otherwise noted. Typical values are characterized at VVIN = 3.6 V, VVCCI2C = 3.3 V, and 25 °C, unless otherwise noted.  
Mode  
34VR500 conditions  
System conditions  
Typ.  
Max.  
Unit  
Notes  
SW1 in PFM  
SW2 in PFM  
SW3 in PFM  
SW4 in PFM  
Trimmed 16 MHz RC enabled  
Trimmed reference active  
LDO1 - 5 enabled  
REFOUT enabled  
Processor enabled in low power mode. All  
rails powered on except boost  
(load = 0 mA)  
(15)  
Standby  
297  
550  
μA  
Notes  
14.  
When VIN is below the UVDET threshold, in the range of 1.8 V VIN < 2.65 V, the quiescent current increases by 50 μA, typically.  
15.  
For PFM operation (as defined in Table 23).  
34VR500  
NXP Semiconductors  
11  
GENERAL DESCRIPTION  
5
General description  
The 34VR500 is a high performance, highly integrated, multi-output, DC/DC regulator solution, with integrated power MOSFETs ideally  
suited for the LS1/T1 family of communication processors.  
5.1  
Features  
This section summarizes the 34VR500 features.  
• Input voltage range: 2.8 V to 4.5 V  
• Buck regulators  
• Four independent outputs  
• SW1, 4.5 A; 0.625 V to 1.875 V  
• SW2, 2.0 A; 0.625 V to 3.3 V  
• SW3, 2.5 A; 0.625 V to 3.3 V  
• SW4, 1.0 A; operates in VTT mode for DDR termination at 50 % of SW3 for 34VR500V1, 34VR500V3, 34VR500V4,  
34VR500V5, 34VR500V6, 34VR500V7, 34VR500VA and 0.625 V to 1.975 V for 34VR500V2, 34VR500V8, 34VR500V9  
• Dynamic voltage scaling  
• Modes: PWM, PFM, APS  
• Programmable output voltage  
• Programmable current limit  
• Programmable soft start  
• Programmable PWM switching frequency  
• Programmable OCP with fault interrupt  
• LDOs  
• Five general purpose LDOs  
• LDO1, 0.80 V to 1.55 V, 250 mA  
• LDO2, 1.8 V to 3.3 V, 100 mA  
• LDO3, 1.8 V to 3.3 V, 350 mA  
• LDO4, 1.8 V to 3.3 V, 100 mA  
• LDO5, 1.8 V to 3.3 V, 200 mA  
• Soft start  
• DDR memory reference voltage  
• REFOUT, 10 mA  
• 16 MHz internal master clock  
• I2C interface  
• User programmable Standby, Sleep, and OFF modes  
34VR500  
12  
NXP Semiconductors  
GENERAL DESCRIPTION  
5.2  
Functional block diagram  
MC34VR500 Functional Block Diagram  
Start-up Configuration  
Power Generation  
(Factory programmable)  
Vo1  
Vo4  
SW1  
(0.625 - 1.875 V)  
4.5A  
SW2  
(0.625 – 3.3 V)  
2.0A  
Vo2  
Voltage  
Phasing and Frequency Selection  
Sequence and Timing  
SW4  
(0.625 - 1.975 V)  
1.0A  
SW3  
(0.625 – 3.3 V)  
2.5A  
Vo3  
VTToption  
Logic and Control  
LDO1  
(0.8 - 1.55 V)  
250 mA  
LDO2  
(1.8 - 3.3 V)  
100 mA  
Parallel MCU I nterf ace  
Regulator Control  
I2C Communication & Registers  
LDO3  
(1.8 – 3.3 V)  
350 mA  
LDO4  
(1.8 - 3.3 V)  
100 mA  
Fault Detection & Protection  
Thermal  
LDO5  
(1.8 - 3.3 V)  
200 mA  
Current Limit  
Short-circuit  
Figure 4. 34VR500 functional block diagram  
5.3  
Functional description  
5.3.1 Power generation  
The 34VR500 PMIC features four buck regulators, five general purpose LDOs, and a DDR voltage reference to supply voltages for the  
processor, memory, and peripheral devices.  
Depending on the system power path configuration, the five general purpose LDO regulators can be directly supplied from the main input  
supply or from the switching regulators to power peripherals, such as audio, camera, Bluetooth, Wireless LAN, etc. A specific REFOUT  
voltage reference is included to provide accurate reference voltage for DDR memories operating with or without VTT termination  
5.3.2 Control logic  
The 34VR500 PMIC is fully programmable via the I2C interface. Additional communication is provided by direct logic interfacing including  
interrupt and reset. Startup voltage and sequence are internally programed. After power up, the regulator voltages can be changed via  
I2C. The 34VR500 PMIC has the interfaces for the power buttons and dedicated signaling interfacing with the processor.  
34VR500  
NXP Semiconductors  
13  
GENERAL DESCRIPTION  
5.3.2.1  
Interface signals  
EN  
EN is an input signal to the IC that generates a turn-on event. Refer to section Turn on events for more details.  
STBY  
STBY is an input signal to the IC. When it is asserted the part enters standby mode and when de-asserted, the part exits standby mode.  
STBY can be configured as active high or active low using the STBYINV bit. Refer to the section Standby mode for more details.  
PORB  
PORB is an open-drain, active low output. In its default mode, it is de-asserted 2.0 to 4.0 ms after the last regulator in the start-up  
sequence is enabled; refer to Figure 8 as an example. In this mode, the signal can be used to bring the processor out of reset, or as an  
indicator that all supplies have been enabled; it is only asserted for a turn-off event.  
INTB  
INTB is an open-drain, active low output. It is asserted when any fault occurs, provided that the fault interrupt is unmasked. INTB is de-  
asserted after the fault interrupt is cleared by software, which requires writing a “1” to the fault interrupt bit.  
34VR500  
14  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6
Functional block requirements and behaviors  
6.1  
Start-up  
The 34VR500 starts up from the internal configuration, which is hard-coded into the device. However, the 34VR500 can be controlled  
through the I2C port after the Start-up sequence. It is also possible to modify the contents of the Internal Registers via the bus I2C to modify  
the start up parameters (see section Start sequence creation).  
6.1.1 Device start-up configuration  
Table 8 shows the internal configuration for the 34VR500V1, 34VR500V2, 34VR500V3, 34VR500V4, 34VR500V5, 34VR500V6,  
34VR500V7, 34VR500V8, 34VR500V9, 34VR500VA, 34VR500VB.  
Table 8. Start-up configuration  
Registers  
34VR500V1 34VR500V2 34VR500V3 34VR500V4 34VR500V5 34VR500V6 34VR500V7 34VR500V8 34VR500V9 34VR500VA 34VR500VB  
2
0x08  
Default I C Address  
1.8 V  
1
2.5 V  
2
2.5 V  
4
2.5 V  
5
2.5 V  
2
LDO2_VOLT  
LDO2_SEQ  
LDO3_VOLT  
LDO3_SEQ  
LDO4_VOLT  
LDO4_SEQ  
LDO5_VOLT  
LDO5_SEQ  
SW1_VOLT  
SW1_SEQ  
1.8 V  
1
1.8 V  
1
2.5 V  
2
1.8 V  
2
1.8 V  
1
3.3 V  
2
2.5 V  
2.5 V  
2
2.5 V  
2
1
2
1.8 V  
3
1
2.5 V  
1
3
2.5 V  
1
2
4
3.0 V  
5
3
4
1.8 V  
5
2.5 V  
1
1.8 V  
3
1.8 V  
3
2.5 V  
1
2.5 V  
8
1.8 V  
1.8 V  
1
3.3 V  
3
3.3 V  
3
1.8 V  
1
1.8 V  
1
3.3 V  
3
3.3 V  
5
1.8 V  
1
3.3 V  
7
3.3 V  
1.0 V  
1.5 V  
2
1.2 V  
1.0 V  
0.85 V  
1
1.0 V  
5
1.8 V  
1
1.0 V  
1.0 V  
1.5 V  
1.2 V  
3
1.0 V  
1.0 V  
2
1.8 V  
1
1.1 V  
1
1.0 V  
1.35 V  
1
SW2_VOLT  
SW2_SEQ  
1.0 V  
1.8 V  
1
2.5 V  
2
1.35 V  
1
0.9 V  
1
2
1.35 V  
3
2
1.35 V  
3
2
1.2 V  
3
1.2 V  
3
1.5 V  
3
1.8 V  
1
1.8 V  
3
SW3_VOLT  
SW3_SEQ  
1.2 V  
12  
1.35 V  
12  
1.2 V  
12  
1.8 V  
1
VTT  
3
1.0 V  
5
SW4_VOLT  
SW4_SEQ  
VTT  
3
1.8 V  
3
VTT  
12  
VTT  
12  
VTT  
3
VTT  
3
1.35 V  
4
VTT  
12  
VTT  
3
12  
REFOUT_SEQ  
LDO1_VOLT  
LDO1_SEQ  
3
3
12  
3
3
4
12  
3
1.2 V  
4
1.2 V  
4
1.2 V  
4
1.35 V  
1
1.35 V  
12  
1.1 V  
1
1.35 V  
4
1.35 V  
1
1.35 V  
PU CONFIG,  
SEQ_CLK_SPEED  
1.0 ms  
PU CONFIG,  
SWDVS_CLK  
6.25 mV/μs  
2.0 MHz  
2.0 MHz  
2.0 MHz  
2.0 MHz  
SW1 CONFIG  
SW2 CONFIG  
SW3 CONFIG  
SW4 CONFIG  
34VR500  
NXP Semiconductors  
15  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
UVDET  
VIN  
tR1  
tD1  
EN  
tR2  
tD2  
LDO2,3,4,5  
tR2  
tD3  
SW1,2  
tR2  
tD3  
SW3,4  
REFOUT  
tR2  
TD3  
LDO1  
PORB  
tD4  
tR3  
Figure 5. Starting sequence: example for V1 and V2  
Table 9. 34VR500V1 and V2 start-up sequence timing  
Parameter  
Description  
Typ.  
Unit  
tD1  
tR1  
tD2  
tR2  
tD3  
tD4  
tR3  
Turn-on delay  
6.0  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
(16)  
Rise time of EN  
Turn-on delay of first regulator  
Rise time of regulators (17)  
Delay between regulators  
Turn-on delay of PORB  
Rise time of PORB  
2.5  
0.2  
1.0  
2.0  
0.2  
Notes  
16.  
Depends on the external signal driving EN.  
17.  
Rise time is a function of slew rate of regulators and nominal voltage selected.  
34VR500  
16  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.1.2 Start sequence creation  
The 34VR500 powers up based on the contents of the internal registers. Depending on certain bit settings, the internal registers are loaded  
from different sources, as shown in Figure 6.  
Figure 6. Starting sequence  
The contents of the internal registers are initialized to zero when a valid VIN is first applied. The values that are then loaded into the internal  
registers depend on the value of the TBB_POR (the initial value of TBB_POR is always “0”):  
• If TBB_POR = 0 the values are loaded from the Default Sequence (this is the case always for first starting)  
• If TBB_POR = 1 the values are loaded from the internal RAM. VIN must be valid to maintain the contents of the internal RAM.  
To power on with the contents of the internal RAM, the following conditions must exist:  
• VIN is valid  
• TBB_POR = 1 and there is a valid turn-on event via the EN pin  
To keep a regulator off during a start-up sequence is to set its sequence to 0. This corresponds to the XX_SEQ setting of 0x00.  
For example, 0x01 corresponds to a sequence of 1, and so on.  
34VR500  
NXP Semiconductors  
17  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Figure 7 explains how to start from a new configuration.  
First VIN Applied  
34VR500  
Keep EN pin in  
regulators will not  
turn on  
low state  
I2C  
programming  
+
Program the new  
start sequence and  
set TBB_POR to 1  
TBB_POR = 1  
Turn On event  
EN pin to high  
state  
Create a Turn On  
event via the EN pin  
Start from the  
Internal RAM  
TBB_POR  
TBB_POR = 1  
TBB_POR = 0  
Start from the  
Default  
Sequence  
Figure 7. Modifying a starting sequence  
Table 95 shows the portion of the register map concerning the programming of a new starting sequence.  
6.2  
16 MHz and 32 kHz clocks  
There are two clocks: a trimmed 16 MHz, RC oscillator and an untrimmed 32 kHz, RC oscillator. The 16 MHz oscillator is specified within  
-8.0/+8.0%. The 32 kHz untrimmed clock is only used in the following conditions:  
• VIN < UVDET  
• All regulators are in SLEEP mode  
• All regulators are in PFM switching mode  
A 32 kHz clock, derived from the 16 MHz trimmed clock, is used when accurate timing is needed under the following conditions:  
• During start-up, VIN > UVDET  
In addition, when the 16 MHz is active in the ON mode, the debounce times in Table 20 are referenced to the 32 kHz derived from the  
16 MHz clock. The exceptions are the LOWVINI and ENI interrupts, which are referenced to the 32 kHz untrimmed clock.  
Table 10. 16 MHz clock specifications  
TA = -40 to 105 °C (See Table 3), VVIN = 2.8 to 4.5 V, VVBIAS = 1.0 V 4.0%, and typical external component values. Typical values are  
characterized at VVIN = 3.6 V, and 25 °C, unless otherwise noted.  
Symbol  
Parameters  
Operating Voltage from the VIN pin  
Min.  
Typ.  
Max.  
Units  
Notes  
VIN  
2.8  
4.5  
V
34VR500  
18  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 10. 16 MHz clock specifications  
TA = -40 to 105 °C (See Table 3), VVIN = 2.8 to 4.5 V, VVBIAS = 1.0 V 4.0%, and typical external component values. Typical values are  
characterized at VVIN = 3.6 V, and 25 °C, unless otherwise noted.  
f16MHZ  
f2MHZ  
16 MHz Clock Frequency  
2.0 MHz Clock Frequency  
14.7  
1.84  
16  
17.3  
2.16  
MHz  
MHz  
(18)  
Notes  
18.  
2.0 MHz clock is derived from the 16 MHz clock.  
6.2.1 Clock adjustment  
The 16 MHz clock and hence the switching frequency of the regulators, can be adjusted to improve the noise integrity of the system. By  
changing the factory trim values of the 16 MHz clock, the user may add an offset as small as 3.0% of the nominal frequency. Contact a  
NXP representative for detailed information on this feature.  
6.3  
Bias and references block description  
6.3.1 Internal core voltage references  
All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at VBG. The bandgap and the rest  
of the core circuitry are supplied from VCC. Table 11 shows the main characteristics of the core circuitry.  
Table 11. Core voltages electrical specifications(20)  
TA = -40 to 105 °C (See Table 3), VVIN = 2.8 to 4.5 V, VVBIAS = 1.0 V 4.0%, and typical external component values. Typical values are  
characterized at VVIN = 3.6 V, and 25 °C, unless otherwise noted.  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
Notes  
VDIG (digital core supply)  
Output Voltage  
(19)  
VDIG  
ON mode  
OFF mode  
1.5  
1.3  
V
VCC (Analog core supply)  
Output Voltage  
(19)  
(19)  
VCC  
ON mode  
OFF mode  
2.775  
0.0  
V
VBG (bandgap / regulator reference)  
VBG  
Output Voltage  
1.2  
0.5  
V
%
%
VBGACC  
VBGTACC  
Absolute Accuracy  
Temperature Drift  
0.25  
Notes  
19.  
3.0 V < VIN < 4.5 V, no external loading on VDIG, VCC, or VBG. Extended operation down to UVDET, but no system malfunction.  
For information only.  
20.  
6.3.1.1  
External components  
Table 12. External components for core voltages  
Regulator  
Capacitor value (μF)  
VDIG  
VCC  
VBG  
1.0  
1.0  
0.22  
34VR500  
NXP Semiconductors  
19  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.3.2 REFOUT voltage reference  
REFOUT is an internal PMOS half supply voltage follower capable of supplying up to 10 mA. The output voltage is at one half the input  
voltage. Its typically used as the reference voltage for DDR memories. A filtered resistor divider is utilized to create a low frequency pole.  
This divider then utilizes a voltage follower to drive the load.  
REFIN  
REFIN  
CHALF1  
100 nF  
VHALF  
_
+
CHALF2  
100 nF  
Discharge  
REFOUT  
REFOUT  
CREFDDR  
1.0 uf  
Figure 8. REFOUT block diagram  
6.3.2.1  
REFOUT control register  
The REFOUT voltage reference is controlled by a single bit in REFOUTCTRL register in Table 13.  
Table 13. Register REFOUTCTRL - ADDR 0x6A  
Name  
UNUSED  
Bit #  
R/W Default  
Description  
3:0  
R/W  
0x00  
0x00  
0x00  
UNUSED  
Enable or disables REFOUT output voltage  
0 = REFOUT Disabled  
REFOUTEN  
4
1 = REFOUT Enabled  
UNUSED  
7:5  
UNUSED  
External components  
Table 14. REFOUT external components(21)  
Capacitor  
Capacitance (μF)  
REFIN(22) to VHALF  
VHALF to GND  
REFOUT  
0.1  
0.1  
1.0  
Notes  
21.  
22.  
Use X5R or X7R capacitors.  
REFIN to GND, 1.0 μF minimum capacitance is provided by buck regulator output.  
34VR500  
20  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
REFOUT specifications  
Table 15. REFOUT electrical characteristics  
TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, IREFDDR = 0.0 mA, VREFIN = 1.5 V, VVBIAS = 1.0 V 4.0%, and typical external component  
values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IREFDDR = 0.0 mA, VREFIN = 1.5 V, and 25 °C, unless  
otherwise noted.  
Symbol  
REFOUT  
VREFIN  
IREFDDR  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating Input Voltage Range  
1.2  
0.0  
10.5  
1.8  
10  
25  
V
Operating Load Current Range  
mA  
mA  
μA  
IREFDDRLIM  
Current Limit, IREFDDR when VREFOUT is forced to VREFIN/4  
Quiescent Current  
15  
8.0  
(23)  
IREFDDRQ  
Active mode – DC  
Output Voltage  
VREFOUT  
–1.0  
VREFIN/2  
1.0  
V
%
1.2 V < VREFIN < 1.8 V, 0.0 mA < IREFDDR < 10 mA  
Output Voltage Tolerance  
VREFOUTTOL  
1.2 V < VREFIN < 1.8 V, 0.6 mA IREFDDR 10 mA  
Load Regulation  
VREFOUTLOR  
0.40  
mV/mA  
1.0 mA < IREFDDR < 10 mA, 1.2 V < VREFIN < 1.8 V  
Active mode – AC  
Turn-on Time, Enable to 90% of end value  
VREFIN = 1.2 V, 1.8 V, IREFDDR = 0.0 mA  
tONREFDDR  
tOFFREFDDR  
VREFOUTOSH  
100  
10  
6.0  
μs  
ms  
%
Turn-Off Time, Disable to 10% of initial value  
VREFIN = 1.2 V, 1.8 V, IREFDDR = 0.0 mA  
Start-up Overshoot  
1.0  
5.0  
VREFIN = 1.2 V, 1.8 V, IREFDDR = 0.0 mA  
Transient Load Response  
VREFIN = 1.2 V, 1.8 V  
VREFOUTTLR  
mV  
Notes  
23.  
When REFOUT is off there is a quiescent current of 1.5 μA typical.  
34VR500  
NXP Semiconductors  
21  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4  
Power generation  
6.4.1 Modes of operation  
The operation of the 34VR500 can be reduced to four states, or modes: ON, OFF, Sleep, and Standby. Figure 9 shows the state diagram  
of the 34VR500, along with the conditions to enter and exit from each state.  
Thermal shutdown  
OFF  
Sleep  
EN = 1  
& VIN > UVDET  
EN = 0  
Any SWxOMODE bits=1  
EN = 0  
All SWxOMODE bits= 0  
EN = 0  
Any SWxOMODE bits=1  
EN = 1  
ON  
& VIN > UVDET  
Thermal shudown  
STANDBY asserted  
STANDBY de-asserted  
EN = 0  
All SWxOMODE bits= 0  
Thermal shutdown  
Standby  
Figure 9. State diagram  
To complement the state diagram in Figure 9, a description of the states is provided in following sections. Note that VIN must exceed the  
rising UVDET threshold to allow a power up. Refer to Table 22 for the UVDET thresholds. Additionally, the interrupt signal and INTB are  
only active in Sleep, Standby, and ON states.  
6.4.1.1  
On mode  
The 34VR500 enters the ON mode after a turn-on event. PORB is de-asserted, high, in this mode of operation.  
6.4.1.2  
Off mode  
The 34VR500 enters the OFF mode after a turn-off event. A thermal shutdown event also forces the 34VR500 into the OFF mode. Only  
VDIG is powered in this mode of operation. To exit the OFF mode, a valid turn-on event is required. PORB is asserted, LOW, in this mode.  
34VR500  
22  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.1.3  
Standby mode  
• Depending on STBY pin configuration, Standby is entered when the STBY pin is asserted. This is typically used for low-power mode  
of operation.  
• When STBY is de-asserted, Standby mode is exited.  
A product may be designed to go into a Low-power mode after periods of inactivity. The STBY pin is provided for board level control of  
going in and out of such deep sleep modes (DSM).  
When a product is in DSM, it may be able to reduce the overall platform current by lowering the regulator output voltage, changing the  
operating mode of the regulators or disabling some regulators. The configuration of the regulators in Standby are pre-programmed through  
the I2C interface.  
Note that the STBY pin is programmable for Active High or Active Low polarity, and that decoding of a Standby event will take into account  
the programmed input polarity as shown in Table 16. When the 34VR500 is powered up first, regulator settings for the Standby mode are  
mirrored from the regulator settings for the ON mode. To change the STBY pin polarity to Active Low, set the STBYINV bit via software  
first, and then change the regulator settings for Standby mode as required. For simplicity, STBY will generally be referred to as active high  
throughout this document.  
Table 16. STBY pin and polarity control  
STBY (Pin)(25)  
STBYINV (I2C bit)(26)  
STBY Control (24)  
0
0
1
1
0
1
0
1
0
1
1
0
Notes  
24.  
STBY = 0: System is not in Standby, STBY = 1: System is in Standby  
The state of the STBY pin only has influence in On mode.  
Bit 6 in Power Control Register (ADDR - 0x1B)  
25.  
26.  
Since STBY pin activity is driven asynchronously to the system, a finite time is required for the internal logic to qualify and respond to the  
pin level changes. A programmable delay is provided to hold off the system response to a Standby event. This allows the processor and  
peripherals some time after a standby instruction has been received to terminate processes to facilitate seamless entering into Standby  
mode.  
When enabled (STBYDLY = 01, 10, or 11) per Table 17, STBYDLY will delay the Standby initiated response for the entire IC, until the  
STBYDLY counter expires.  
An allowance should be made for three additional 32 k cycles required to synchronize the Standby event.  
Table 17. STBY delay - initiated response  
STBYDLY[1:0](27)  
Function  
00  
01  
10  
11  
No Delay  
One 32 k period (default)  
Two 32 k periods  
Three 32 k periods  
Notes  
27.  
Bits [5:4] in Power Control Register (ADDR - 0x1B)  
34VR500  
NXP Semiconductors  
23  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.1.4  
Sleep mode  
• Depending on EN pin configuration, Sleep mode is entered when EN is de-asserted and SWxOMODE bit is set.  
• To exit Sleep mode, assert the EN pin.  
In the Sleep mode, the regulator will use the set point as programmed by SW1OFF[5:0] for SW1, SW2, SW3, and SW4. The activated  
regulators will maintain settings for this mode and voltage until the next turn-on event. Table 18 shows the control bits in Sleep mode.  
During Sleep mode, interrupts are active and the INTB pin will report any unmasked fault event.  
Table 18. Regulator mode control  
SWxOMODE  
Off operational mode (sleep) (28)  
0
1
Off  
PFM  
Notes  
28.  
For sleep mode, an activated switching regulator, should use the off mode set  
point as programmed by SW1OFF[5:0] for SW1, SW2, SW3, and SW4.  
6.4.2 State machine flow summary  
Table 19 provides a summary matrix of the 34VR500 flow diagram to show the conditions needed to transition from one state to another.  
Table 19. State machine flow summary  
Next state  
STATE  
OFF  
Sleep  
Standby  
ON  
OFF  
X
X
X
X
X
EN = 1 & VIN > UVDET  
EN = 1 & VIN > UVDET  
Sleep  
Thermal Shutdown  
Thermal Shutdown  
Standby  
ON  
EN = 0, Any SWxOMODE = 1  
EN = 0, Any SWxOMODE = 1  
X
Standby de-asserted  
X
EN = 0, All SWxOMODE = 0  
Thermal Shutdown  
Standby asserted  
EN = 0, All SWxOMODE = 0  
6.4.2.1  
Turn on events  
From OFF and Sleep modes, the PMIC is powered on by a turn ON event. VIN must be greater than UVDET for the PMIC to turn-on. When  
VIN is greater than UVDET, a logic high on the EN pin is a turn ON event, when EN is high before VIN is valid, a VIN transition, from 0.0 V  
to a voltage greater than UVDET, also a Turn ON event. See the State diagram, Figure 9, and the Table 19 for more details. Any regulator  
enabled in the Sleep mode will remain enabled when transitioning from Sleep to ON, i.e., the regulator will not be turned OFF and then  
ON again to match the start-up sequence. The following is a more detailed description of the EN configuration:  
• The EN signal is high and VIN > UVDET, the PMIC will turn ON; the interrupt and sense bits, ENI and ENS respectively, will be set.  
The sense bit will show the real time status of the EN pin. In this configuration, the EN input can be a mechanical switch debounced  
through a programmable debouncer, ENDBNC[1:0], to avoid a response to a very short (i.e., unintentional) key press. The interrupt is  
generated for both the falling and the rising edge of the EN pin. By default, a 30 ms interrupt debounce is applied to both falling and rising  
edges. The falling edge debounce timing can be extended with ENDBNC[1:0] as defined in the table below. The interrupt is cleared by  
software, or when cycling through the OFF mode.  
34VR500  
24  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 20. EN hardware debounce bit settings  
Turn on  
Falling edge INT  
debounce (ms)  
Rising edge INT  
debounce (ms)  
Bits  
State  
debounce (ms)  
00  
01  
10  
11  
0.0  
31.25  
125  
31.25  
31.25  
125  
31.25  
31.25  
31.25  
31.25  
ENDBNC[1:0]  
Notes  
750  
750  
29.  
The sense bit, ENS, is not debounced and follows the state of the EN pin.  
6.4.2.2  
EN pin  
Turn off events  
The EN pin is used to power off the 34VR500. The Off mode is entered when the EN pin is low and SWxOMODE = 0.  
Thermal protection  
If the die temperature surpasses a given threshold, the thermal protection circuit will power off the 34VR500 to avoid damage. A turn-on  
event will not power on the PMIC while it is in thermal protection. The part will remain in Off mode until the die temperature decreases  
below a given threshold. There are no specific interrupts related to this other than the warning interrupt. See Power dissipation section for  
more detailed information.  
Undervoltage detection  
The state machine will transition to the OFF mode when the voltage at the VIN pin drops below the UVDET undervoltage falling threshold.  
6.4.3 Power tree  
The 34VR500 features four buck regulators, five general purpose LDOs, and a DDR voltage reference, to supply voltages for the  
application and peripheral devices. The buck regulators are supplied directly from the main input supply (VIN). The inputs to all of the buck  
regulators must be tied to VIN, whether they are powered ON or OFF. The five general use LDO regulators are directly supplied from the  
main input supply or from the switching regulators depending on the application requirements. Since REFOUT is intended to provide DDR  
memory reference voltage, it should be supplied by any rail supplying voltage to DDR memories; the typical application recommends the  
use of SW3 as the input supply for REFOUT. Refer to Table 21 for a summary of all power supplies provided by the 34VR500.  
Table 21. Power tree summary  
Supply  
Output voltage (V)  
Step size (mV)  
Maximum load current (mA)  
SW1  
SW2  
SW3  
0.625 - 1.875  
25  
4500  
2000  
2500  
0.625 - 1.975 / 0.8 - 3.3  
0.625 - 1.975 / 0.8 - 3.3  
25 / 50  
25 / 50  
0.5*SW3_OUT (VTT for V1, V3,  
V4, V5), 0.625 - 1.975 (for V2)  
SW4  
1000  
LDO1  
LDO2  
0.80 – 1.55  
1.8 – 3.3  
50  
250  
100  
350  
100  
200  
10  
100  
100  
100  
100  
NA  
LDO3  
1.8 – 3.3  
LDO4  
1.8 – 3.3  
LDO5  
1.8 – 3.3  
REFOUT  
0.5*SW3_OUT  
34VR500  
NXP Semiconductors  
25  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
The minimum operating voltage for the main VIN supply is 2.8 V, for lower voltages proper operation is not guaranteed. However at initial  
power up, the input voltage must surpass the rising UVDET threshold before proper operation is guaranteed. Refer to the representative  
tables and text specifying each supply for information on performance metrics and operating ranges. Table 22 summarizes the UVDET  
thresholds.  
Table 22. UVDET threshold  
UVDET threshold  
VIN  
Rising  
Falling  
3.1 V  
2.65 V  
VR500  
LS102x  
VDDCORE  
SW1  
VDDCORE  
(0.625 to 1.875 V), 4.5 A  
SW2  
VDDC  
VDDC  
VIN  
3.3 V  
(0.625 to 3.3 V),  
2.0 A  
LDO2  
(1.8 to 3.3 V),  
100 mA  
OVDD1/2  
LDO4  
(1.8 to 3.3 V),  
100 mA  
L1VDD  
OVDD  
LDO5  
(1.8 to 3.3 V),  
200 mA  
SW3  
DDR CORE  
(0.625 to 3.3 V),  
2.5 A  
SW4  
System/VTT  
(0.625 to 1.975 V)  
(0.5*VDDR)  
1.0 A  
REFOUT  
0.5*VDDR, 10 mA  
SW3  
DDR3  
VTT  
LDO1  
(0.80 to 1.55 V),  
250 mA  
Peripherals  
VIN  
3.3 V  
LDO3  
(1.8 to 3.3 V),  
350 mA  
Figure 10. 34VR500 typical power map  
34VR500  
26  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.4 Buck regulators  
Each buck regulator is capable of operating in PFM, APS, and PWM switching modes.  
6.4.4.1  
Current limit  
Each buck regulator has a programmable current limit. In an overcurrent condition, the current is limited cycle-by-cycle. If the current limit  
condition persists for more than 8.0 ms, a fault interrupt is generated.  
6.4.4.2  
General control  
To improve system efficiency the buck regulators can operate in different switching modes. Changing between switching modes can occur  
by any of the following means: I2C programming, exiting/entering the Standby mode, exiting/entering Sleep mode, and load current  
variation. Available switching modes for buck regulators are presented in Table 23.  
Table 23. Switching mode description  
Mode  
Description  
OFF  
The regulator is switched off and the output voltage is discharged.  
In this mode, the regulator is always in PFM mode, which is useful at light loads for  
optimized efficiency.  
PFM  
PWM  
APS  
In this mode, the regulator is always in PWM mode operation regardless of load conditions.  
In this mode, the regulator moves automatically between pulse skipping mode and PWM  
mode depending on load conditions.  
During soft-start of the buck regulators, the controller transitions through the PFM, APS, and PWM switching modes. 3.0 ms (typical) after  
the output voltage reaches regulation, the controller transitions to the selected switching mode. Depending on the particular switching  
mode selected, additional ripple may be observed on the output voltage rail as the controller transitions between switching modes.  
Table 24 summarizes the Buck regulator programmability for Normal and Standby modes.  
Table 24. Regulator mode control  
SWxMODE[3:0]  
Normal Mode  
Standby Mode  
SWxMODE[3:0]  
Normal Mode  
Standby Mode  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Off  
PWM  
Off  
Off  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
APS  
APS  
Reserved  
Reserved  
Reserved  
APS  
Reserved  
Reserved  
Reserved  
PFM  
Reserved  
PFM  
Reserved  
Off  
APS  
Off  
PWM  
PWM  
APS  
PWM  
PFM  
PWM  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Transitioning between Normal and Standby modes can affect a change in switching modes as well as output voltage. The rate of the  
output voltage change is controlled by the Dynamic Voltage Scaling (DVS), explained in Dynamic voltage scaling. For each regulator, the  
output voltage options are the same for Normal and Standby modes.  
When in Standby mode, the regulator outputs the voltage programmed in its standby voltage register and will operate in the mode selected  
by the SWxMODE[3:0] bits. Upon exiting Standby mode, the regulator will return to its normal switching mode and its output voltage  
programmed in its voltage register.  
34VR500  
NXP Semiconductors  
27  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Any regulators whose SWxOMODE bit is set to “1” will enter Sleep mode if a EN turn-off event occurs, and any regulator whose  
SWxOMODE bit is set to “0” will be turned off. In Sleep mode, the regulator outputs the voltage programmed in its off (Sleep) voltage  
register and operates in the PFM mode. The regulator will exit the Sleep mode when a turn-on event occurs. Any regulator whose  
SWxOMODE bit is set to “1” will remain on and change to its normal configuration settings when exiting the Sleep state to the ON state.  
Any regulator whose SWxOMODE bit is set to “0” will be powered up with the same delay in the start-up sequence as when powering On  
from Off. At this point, the regulator returns to its default ON state output voltage and switch mode settings.  
Table 18 shows the control bits in Sleep mode. When Sleep mode is activated by the SWxOMODE bit, the regulator will use the set point  
as programmed by SWxOFF[5:0] for SW1, SW2, SW3, and SW4.  
6.4.4.3  
Dynamic voltage scaling  
To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the processor.  
1. Normal operation: The output voltage is selected by I2C bits SWx[5:0] for SW1, SW2, SW3, and SW4. A voltage transition initiated  
by I2C is governed by the DVS stepping rates shown in Table 26.  
2. Standby Mode: The output voltage can be higher, or lower than in normal operation, but is typically selected to be the lowest state  
retention voltage of a given processor; it is selected by I2C bits SWxSTBY[5:0] for SW1, SW2, SW3, and SW4. Voltage transitions  
initiated by a Standby event are governed by the SWxDVSSPEED[1:0] and I2C bits shown in Table 26.  
3. Sleep Mode: The output voltage can be higher or lower than in normal operation, but is typically selected to be the lowest state  
retention voltage of a given processor; it is selected by I2C bits SWxOFF[5:0] for SW1, SW2, SW3, and SW4. Voltage transitions  
initiated by a turn-off event are governed by the SWxDVSSPEED[1:0] I2C bits shown in Table 26.  
Table 25, Table 26, summarize the set point control and DVS time stepping applied to all regulators.  
Table 25. DVS control logic for SW1, SW2, SW3, and SW4  
STBY  
Set Point Selected by  
0
1
SWx[5:0]  
SWxSTBY[5:0]  
Table 26. DVS speed selection for SW1, SW2, SW3, and SW4  
SWxDVSSPEED[1:0]  
Function  
00  
01 (default)  
10  
25 mV step each 2.0 μs  
25 mV step each 4.0 μs  
25 mV step each 8.0 μs  
25 mV step each 16 μs  
11  
The regulators have a strong sourcing capability and sinking capability in PWM mode, therefore the fastest rising and falling slopes are  
determined by the regulator in PWM mode. However, if the regulators are programmed in PFM or APS mode during a DVS transition, the  
falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced, controlled DVS transitions in  
PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode operation.  
The following diagram shows the general behavior for the regulators when initiated with I2C programming, or standby control.  
During the DVS period the overcurrent condition on the regulator should be masked.  
34VR500  
28  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Requested  
Set Point  
Output Voltage  
with light Load  
Internally  
Controlled Steps  
Example  
Actual Output  
Voltage  
Output  
Voltage  
Initial  
Set Point  
Actual  
Output Voltage  
Internally  
Controlled Steps  
Possible  
Output Voltage  
Window  
Request for  
Higher Voltage  
Request for  
Lower Voltage  
Voltage  
Change  
Request  
Initiated by I2C Programming, Standby Control  
Figure 11. Voltage stepping with DVS  
6.4.4.4  
Regulator phase clock  
The SWxPHASE[1:0] bits select the phase of the regulator clock as shown in Table 27. By default, each regulator is initialized at 90 ° out  
of phase with respect to each other. For example, SW1 is set to 0 °, SW2 is set to 90 °, SW3 is set to 180 °, and SW4 is set to 270 ° by  
default at power up.  
Table 27. Regulator phase clock selection  
SWxPHASE[1:0] Phase of Clock Sent to Regulator (degrees)  
00  
01  
10  
11  
0
90  
180  
270  
The SWxFREQ[1:0] register is used to set the desired switching frequency for each one of the buck regulators. Table 29 shows the  
selectable options for SWxFREQ[1:0]. For each frequency, all phases will be available, this allows regulators operating at different  
frequencies to have different relative switching phases. However, not all combinations are practical. For example, 2.0 MHz, 90 ° and  
4.0 MHz, 180 ° are the same in terms of phasing. Table 28 shows the optimum phasing when using more than one switching frequency.  
Table 28. Optimum phasing  
Frequencies  
Optimum phasing  
1.0 MHz  
2.0 MHz  
0 °  
180 °  
1.0 MHz  
4.0 MHz  
0 °  
180 °  
2.0 MHz  
4.0 MHz  
0 °  
180 °  
1.0 MHz  
2.0 MHz  
4.0 MHz  
0 °  
90 °  
90 °  
34VR500  
NXP Semiconductors  
29  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 29. Regulator frequency configuration  
SWxFREQ[1:0]  
Frequency  
00  
01  
10  
11  
1.0 MHz  
2.0 MHz  
4.0 MHz  
Reserved  
6.4.4.5  
SW1 regulator  
The SW1 is a 4.5 A regulator capable of providing an output from 0.625 to 1.875 V. Figure 12 shows a high level block diagram of the  
SW1 regulator.  
PVIN1  
PVIN1  
SW1MODE  
ISENSE  
CINSW1  
Controller  
SW1  
LX1  
EP  
Driver  
LSW1  
COSW1  
SW1FAULT  
I2C  
Interface  
I2C  
Internal  
Compensation  
Z2  
FB1  
Z1  
VREF  
EA  
DAC  
Figure 12. SW1 regulator block diagram  
6.4.4.6  
SW1 setup and control registers  
SW1 output voltage is programmable from 0.625 to 1.875 V in steps of 25 mV. After power up in the default voltage, the output voltage  
can be changed in the Normal, Standby and Sleep mode by writing to the SW1[5:0], SW1STBY[5:0], and SW1OFF[5:0] respectively.  
Figure 30 shows the output voltage coding for these registers.  
Table 30. SW1 output voltage configuration  
SW1[5:0]  
SW1[5:0]  
Set point  
SW1STBY[5:0]  
SW1OFF[5:0]  
SW1 output (V)  
Set point  
SW1STBY[5:0]  
SW1OFF[5:0]  
SW1 output (V)  
13  
14  
15  
16  
17  
18  
19  
20  
21  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
0.6250  
0.6500  
0.6750  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
39  
40  
41  
42  
43  
44  
45  
46  
47  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
34VR500  
30  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 30. SW1 output voltage configuration (continued)  
SW1[5:0]  
SW1[5:0]  
Set point  
SW1STBY[5:0]  
SW1OFF[5:0]  
SW1 output (V)  
Set point  
SW1STBY[5:0]  
SW1OFF[5:0]  
SW1 output (V)  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
1.0500  
1.0750  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
1.5000  
1.5250  
1.5500  
1.5750  
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
1.8750  
Table 31 provides a list of registers used to configure and operate SW1 and a detailed description on each one of these register is provided  
in Table 31 through Table 36.  
Table 31. SW1 register summary  
Register  
SW1VOLT  
Address  
Output  
0x2E  
0x2F  
0x30  
0x31  
0x32  
SW1 Output voltage set point in normal operation  
SW1 Output voltage set point in Standby  
SW1 Output voltage set point in Sleep  
SW1STBY  
SW1OFF  
SW1MODE  
SW1CONF  
SW1 Switching Mode selector register  
SW1 DVS, Phase, Frequency and ILIM configuration  
Table 32. Register SW1VOLT - ADDR 0x2E  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1 output voltage during normal operation mode. See Table 30  
for all possible configurations.  
SW1  
UNUSED  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
Table 33. Register SW1STBY - ADDR 0x2F  
Name  
SW1STBY  
Bit #  
R/W Default  
Description  
Sets the SW1 output voltage during Standby mode. See Table 30 for all  
possible configurations.  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
UNUSED  
34VR500  
NXP Semiconductors  
31  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 34. Register SW1OFF - ADDR 0x30  
Name  
SW1OFF  
UNUSED  
Bit #  
R/W Default  
Description  
Sets the SW1 output voltage during Sleep mode. See Table 30 for all  
possible configurations.  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
Table 35. Register SW1MODE - ADDR 0x31  
Name  
SW1MODE  
Bit #  
R/W Default  
Description  
Sets the SW1 switching operation mode. See Table 23 for all possible  
configurations.  
3:0  
4
R/W  
0x08  
0x00  
UNUSED  
UNUSED  
Set status of SW1 when in Sleep mode  
SW1OMODE  
UNUSED  
5
R/W  
0x00  
0x00  
0 = OFF  
1 = PFM  
7:6  
UNUSED  
Table 36. Register SW1CONF - ADDR 0x32  
Name  
Bit #  
R/W  
Default  
Description  
SW1 current limit level selection  
SW1ILIM  
0
R/W  
0x00  
0 = High level current limit  
1 = Low level current limit  
UNUSED  
1
R/W  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
0x00  
Unused  
SW1FREQ  
3:2  
5:4  
7:6  
SW1 switching frequency selector. See Table 29.  
SW1 Phase clock selection. See Table 27.  
SW1 DVS speed selection. See Table 26.  
SW1PHASE  
SW1DVSSPEED  
6.4.4.7  
SW1 external components  
Table 37. SW1 external component recommendations  
Components  
Description  
SW1input capacitor  
Component  
(30)  
CINSW1  
3 x 4.7 μF  
3 x 0.1 μF  
(30)  
CIN1HF  
SW1decoupling input capacitor  
SW1 output capacitor  
SW1 inductor  
(30)  
COSW1  
7 x 22 μF  
LSW1  
0.68 μH, DCR = 10 mΩ, ISAT = 9.0 A  
Notes  
30.  
Use X5R or X7R capacitors.  
34VR500  
32  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.4.8  
SW1 specifications  
Table 38. SW1 electrical characteristics  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = V  
= 3.6 V, V  
= 1.2 V, I  
= 100 mA,  
SW1  
A
IN  
PVIN1  
SW1  
V
V
= 1.0 V 4.0%, typical external component values, f  
= 2.0 MHz, unless otherwise noted. Typical values are characterized at  
VBIAS  
SW1  
= V  
= 3.6 V, V  
= 1.2 V, I  
= 100 mA, and 25 °C, unless otherwise noted.  
IN  
PVIN1  
SW1  
SW1  
Symbol  
Switch mode supply SW1  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPVIN1  
VSW1  
Operating Input Voltage  
Nominal Output Voltage  
Output Voltage Accuracy  
2.8  
4.5  
V
V
Table 30  
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1 < 4.5 A  
0.625 V VSW1 1.450 V  
1.475 V VSW1 1.875 V  
-25  
-3.0  
25  
3.0  
mV  
%
VSW1ACC  
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW1 < 150 mA  
-65  
-45  
-3.0  
65  
45  
3.0  
mV  
mV  
%
0.625 V < VSW1 < 0.675 V  
0.7 V < VSW1 < 0.85 V  
0.875 V < VSW1 < 1.875 V  
Rated Output Load Current,  
ISW1  
4500  
mA  
2.8 V < VIN < 4.5 V, 0.625 V < VSW1 < 1.875 V  
Current Limiter Peak Current Detection  
Current through Inductor  
SW1ILIM = 0  
ISW1LIM  
7.1  
5.3  
10.5  
7.9  
13.7  
10.3  
A
SW1ILIM = 1  
Start-up Overshoot  
VSW1  
ISW1 = 0 mA  
66  
mV  
µs  
DVS clk = 25 mV/4 μs, VIN = VPVIN1 = 4.5 V, VSW1 = 1.875 V  
Turn-on Time, Enable to 90% of end value  
tONSW1  
500  
ISW1 = 0 mA, DVS clk = 25 mV/4.0 μs, VIN = VPVIN1 = 4.5 V,  
V
SW1 = 1.875 V  
Switching Frequency  
SW1FREQ[1:0] = 00  
SW1FREQ[1:0] = 01  
SW1FREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW1  
MHz  
Efficiency  
VIN = 3.6 V, fSW1 = 2.0 MHz, LSW1 = 1.0 μH  
77  
82  
86  
84  
80  
68  
PFM, 0.9 V, 1.0 mA  
PFM, 1.2 V, 50 mA  
APS, PWM, 1.2 V, 850 mA  
APS, PWM, 1.2 V, 1275 mA  
APS, PWM, 1.2 V, 2125 mA  
APS, PWM, 1.2 V, 4500 mA  
ηSW1  
%
ΔVSW1  
VSW1LIR  
VSW1LOR  
Output Ripple  
5.0  
mV  
mV  
mV  
Line Regulation (APS, PWM)  
DC Load Regulation (APS, PWM)  
Transient Load Regulation  
20  
20  
Transient load = 0 to 2.25 A, di/dt = 100 mA/μs  
Overshoot  
Undershoot  
VSW1LOTR  
mV  
50  
50  
34VR500  
NXP Semiconductors  
33  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 38. SW1 electrical characteristics (continued)  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = V  
= 3.6 V, V  
= 1.2 V, I  
= 100 mA,  
SW1  
A
IN  
PVIN1  
SW1  
V
V
= 1.0 V 4.0%, typical external component values, f  
= 2.0 MHz, unless otherwise noted. Typical values are characterized at  
VBIAS  
SW1  
= V  
= 3.6 V, V  
= 1.2 V, I  
= 100 mA, and 25 °C, unless otherwise noted.  
IN  
PVIN1  
SW1  
SW1  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW1 (continued)  
Quiescent Current  
ISW1Q  
PFM Mode  
APS Mode  
18  
145  
µA  
RSW1DIS  
Discharge Resistance  
600  
60  
Ω
SW1 P-MOSFET RDS(on)  
VPVIN1 = 3.3 V  
RONSW1P  
77  
mΩ  
SW1 N-MOSFET RDS(on)  
VPVIN1 = 3.3 V  
RONSW1N  
80  
101  
mΩ  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2MHz, 1.8V, PWM  
1MHz, 1.8V, PWM  
100  
1000  
Load Current (mA)  
SW1 Efficiency Waveform: VIN = 3.3 V; VOUT = 1.8 V  
10000  
SW1 Efficiency Waveform: VIN = 3.6 V; VOUT = 1.2 V  
SW1 Efficiency Waveform: VIN = 3.6 V; VOUT = 1.2 V  
Figure 13. SW1 efficiency waveforms  
34VR500  
34  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Figure 14. Load transient response – SW1 (APS)  
6.4.4.9  
SW2  
SW2 is a 2.0 A rated buck regulator. Table 23 describes the modes, and Table 24 show the options for the SWxMODE[3:0] bits.  
Figure 15 shows the block diagram and the external component connections for SW2 regulator.  
PVIN2  
PVIN2  
SW2MODE  
ISENSE  
CINSW2  
Controller  
SW2  
LX2  
EP  
Driver  
LSW2  
COSW2  
SW2FAULT  
I2C  
Interface  
Internal  
I2C  
Compensation  
Z2  
FB2  
Z1  
VREF  
EA  
DAC  
Figure 15. SW2 block diagram  
34VR500  
NXP Semiconductors  
35  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.4.10 SW2 setup and control registers  
SW2 output voltage is programmable from 0.625 V to 3.300 V; however, bit SW2[6] in register SW2VOLT is read-only during normal  
operation. Its value is determined by the default configuration. Therefore, once SW2[6] is set to "0", the output is limited to the lower output  
voltages from 0.625 V to 1.975 V with 25 mV increments, as determined by bits SW2[5:0]. Likewise, once bit SW2[6] is set to "1", the  
output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V with 50 mV increments, as determined by bits  
SW2[5:0].  
In order to optimize the performance of the regulator, it is recommended only voltages from 2.000 V to 3.300 V be used in the high range,  
and the lower range be used for voltages from 0.625 V to 1.975 V.  
The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW2[5:0], SW2STBY[5:0]  
and SW2OFF[5:0] bits, respectively. However, the initial state of bit SW2[6] are copied into bits SW2STBY[6], and SW2OFF[6] bits.  
Therefore, the output voltage range remains the same in all three operating modes. Table 39 shows the output voltage coding valid for  
SW2.  
Table 39. SW2 output voltage configuration  
Low output voltage range(31)  
High output voltage range  
Set Point  
SW2[6:0]  
SW2 Output  
Set Point  
SW2[6:0]  
SW2 Output  
0
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0.6250  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
0.8000  
0.8500  
0.9000  
0.9500  
1.0000  
1.0500  
1.1000  
1.1500  
1.2000  
1.2500  
1.3000  
1.3500  
1.4000  
1.4500  
1.5000  
1.5500  
1.6000  
1.6500  
1.7000  
1.7500  
1.8000  
1.8500  
1.9000  
1.9500  
2.0000  
2.0500  
2.1000  
2.1500  
2.2000  
2.2500  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
0.6500  
0.6750  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
1.0500  
1.0750  
1.1000  
1.1250  
34VR500  
36  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 39. SW2 output voltage configuration(continued)  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
1.8750  
1.9000  
1.9250  
1.9500  
1.9750  
94  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
2.3000  
2.3500  
95  
96  
2.4000  
97  
2.4500  
98  
2.5000  
99  
2.5500  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
2.6000  
2.6500  
2.7000  
2.7500  
2.8000  
2.8500  
2.9000  
2.9500  
3.0000  
3.0500  
3.1000  
3.1500  
3.2000  
3.2500  
3.3000  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Notes  
31.  
For voltages less than 2.0 V, only use set points 9 to 63.  
2
Setup and control of SW2 is done through I C registers listed i n Table 40, and a detailed description of each one of the registers is  
provided in Tables 41 to Table 45.  
34VR500  
NXP Semiconductors  
37  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 40. SW2 register summary  
Register  
SW2VOLT  
Address  
Description  
0x35  
0x36  
0x37  
0x38  
0x39  
Output voltage set point on normal operation  
Output voltage set point on Standby  
Output voltage set point on Sleep  
SW2STBY  
SW2OFF  
SW2MODE  
SW2CONF  
Switching Mode selector register  
DVS, Phase, Frequency, and ILIM configuration  
Table 41. Register SW2VOLT - ADDR 0x35  
Name  
Bit #  
R/W Default  
Description  
Sets the SW2 output voltage during normal operation  
mode. See Table 39 for all possible configurations.  
SW2  
SW2  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW2. Set  
by OTP. See Table 39 for all possible configurations.  
6
7
R
0x00  
0X00  
UNUSED  
UNUSED  
Table 42. Register SW2STBY - ADDR 0x36  
Name  
SW2STBY  
Bit #  
R/W Default  
Description  
Sets the SW2 output voltage during Standby mode.  
See Table 39 for all possible configurations.  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW2 on  
Standby mode. This bit inherits the value configured  
on bit SW2[6] by OTP. See Table 39 for all possible  
configurations.  
SW2STBY  
UNUSED  
6
7
R
0x00  
0X00  
UNUSED  
Table 43. Register SW2OFF - ADDR 0x37  
Name  
SW2OFF  
Bit #  
R/W Default  
Description  
Sets the SW2 output voltage during Sleep mode. See  
Table 39 for all possible configurations.  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW2 on  
Sleep mode. This bit inherits the value configured on  
bit SW2[6] by OTP. See Table 39 for all possible  
configurations.  
SW2OFF  
UNUSED  
6
7
R
0x00  
0X00  
UNUSED  
Table 44. Register SW2MODE - ADDR 0x38  
Name  
SW2MODE  
Bit #  
R/W Default  
Description  
Sets the SW2 switching operation mode.  
See Table 23 for all possible configurations.  
3:0  
4
R/W  
0x08  
0x00  
UNUSED  
UNUSED  
Set status of SW2 when in Sleep mode  
SW2OMODE  
UNUSED  
5
R/W  
0x00  
0x00  
0 = OFF  
1 = PFM  
7:6  
UNUSED  
34VR500  
38  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 45. Register SW2CONF - ADDR 0x39  
Name  
Bit #  
R/W Default  
Description  
SW2 current limit level selection  
SW2ILIM  
0
R/W  
0x00  
0 = High level current limit  
1 = Low level current limit  
UNUSED  
1
R/W  
R/W  
0x00  
0x00  
Unused  
SW2 switching frequency selector.  
See Table 29.  
SW2FREQ  
3:2  
SW2 Phase clock selection.  
See Table 27.  
SW2PHASE  
5:4  
7:6  
R/W  
R/W  
0x00  
0x00  
SW2 DVS speed selection.  
See Table 28.  
SW2DVSSPEED  
6.4.4.11 SW2 external components  
Table 46. SW2 external component recommendations  
Components  
Description  
SW2 Input capacitor  
Values  
(32)  
CINSW2  
4.7 μF  
0.1 μF  
(32)  
CIN2HF  
SW2 Decoupling input capacitor  
SW2 Output capacitor  
(32)  
COSW2  
3 x 22 μF  
1.5 μH  
LSW2  
SW2 Inductor  
DCR = 50 mΩ  
ISAT = 2.6 A  
Notes  
32.  
Use X5R or X7R capacitors.  
6.4.4.12 SW2 specifications  
Table 47. SW2 electrical characteristics  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = V  
= 3.6 V, I  
= 100 mA, V  
= 1.0 V 4.0%, typical  
VBIAS  
A
IN  
PVIN2  
SW2  
external component values, f  
= 2.0 MHz, unless otherwise noted. Typical values are characterized at V = V = 3.6 V,  
SW2  
IN  
PVIN2  
I
= 100 mA, and 25 °C, unless otherwise noted.  
SW2  
Symbol  
Switch mode supply SW2  
VPVIN2 Operating Input Voltage  
VSW2  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
2.8  
4.5  
V
V
Nominal Output Voltage  
Output Voltage Accuracy  
Table 39  
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW2 < 2.0 A  
-25  
-3.0  
-6.0  
25  
3.0  
6.0  
mV  
%
%
0.625 V < VSW2 < 0.85 V  
0.875 V < VSW2 < 1.975 V  
2.0 V < VSW2 < 3.3 V  
VSW2ACC  
PFM, 2.8 V < VIN < 4.5 V, 0 < ISW2 50 mA  
-65  
-45  
-3.0  
-3.0  
65  
45  
3.0  
3.0  
mV  
mV  
%
0.625 V < VSW2 < 0.675 V  
0.7 V < VSW2 < 0.85 V  
0.875 V < VSW2 < 1.975 V  
2.0 V < VSW2 < 3.3 V  
%
34VR500  
NXP Semiconductors  
39  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 47. SW2 electrical characteristics (continued)  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = V  
= 3.6 V, I  
= 100 mA, V  
= 1.0 V 4.0%, typical  
VBIAS  
A
IN  
PVIN2  
SW2  
external component values, f  
= 2.0 MHz, unless otherwise noted. Typical values are characterized at V = V = 3.6 V,  
SW2  
IN  
PVIN2  
I
= 100 mA, and 25 °C, unless otherwise noted.  
SW2  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Rated Output Load Current  
ISW2  
mA  
(33)  
2.8 V < VIN < 4.5 V, 0.625 V < VSW2 < 3.3 V  
2000  
Current Limiter Peak Current Detection  
Current through Inductor  
SW2ILIM = 0  
SW2ILIM = 1  
ISW2LIM  
A
2.8  
2.1  
4.0  
3.0  
5.2  
3.9  
Start-up Overshoot  
VSW2OSH  
66  
mV  
µs  
ISW2 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN2 = 4.5 V  
Turn-ON Time, Enable to 90% of end value  
tONSW2  
500  
ISW2 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN2 = 4.5 V  
Switching Frequency  
SW2FREQ[1:0] = 00  
SW2FREQ[1:0] = 01  
SW2FREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW2  
MHz  
Notes  
33.  
The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:  
(VINSW2 - VSW2) = ISW2* (DCR of Inductor +RONSW2P + PCB trace resistance).  
34VR500  
40  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 47. SW2 electrical characteristics (continued)  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = V  
= 3.6 V, I  
= 100 mA, V  
= 1.0 V 4.0%, typical  
VBIAS  
A
IN  
PVIN2  
SW2  
external component values, f  
= 2.0 MHz, unless otherwise noted. Typical values are characterized at V = V = 3.6 V,  
SW2  
IN  
PVIN2  
I
= 100 mA, and 25 °C, unless otherwise noted.  
SW2  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW2 (continued)  
Efficiency  
VIN = 2.8 V, fSW2 = 2.0 MHz, LSW2 = 1.0 μH  
77  
APS, PWM, 1.0 V, 1000 mA  
V
IN = 4.5V, fSW2 = 2.0 MHz, LSW2 = 1.0 μH  
68  
68  
76  
PFM, 1.0 V, 50 mA  
APS, 1.0 V, 1.0 mA  
APS, 1.0 V, 1000 mA  
VIN = 3.6V, fSW2 = 2.0 MHz, LSW2 = 1.0 μH  
ηSW2  
%
94  
95  
96  
94  
92  
86  
PFM, 3.15 V, 1.0 mA  
PFM, 3.15 V, 50 mA  
APS, PWM, 3.15 V, 400 mA  
APS, PWM, 3.15 V, 600 mA  
APS, PWM, 3.15 V, 1000 mA  
APS, PWM, 3.15 V, 2000 mA  
ΔVSW2  
VSW2LIR  
VSW2LOR  
Output Ripple  
5.0  
mV  
mV  
mV  
Line Regulation (APS, PWM)  
DC Load Regulation (APS, PWM)  
Transient Load Regulation  
20  
20  
Transient load = 0.0 mA to 0.5 A, di/dt = 100 mA/μs  
Overshoot  
Undershoot  
VSW2LOTR  
mV  
50  
50  
Quiescent Current  
PFM Mode  
APS Mode (Low output voltage settings)  
APS Mode (High output voltage settings)  
23  
145  
305  
ISW2Q  
µA  
SW2 P-MOSFET RDS(on)  
at VIN = VPVIN2 = 3.3 V  
RONSW2P  
190  
209  
mΩ  
SW2 N-MOSFET RDS(on)  
at VIN = VPVIN2 = 3.3 V  
RONSW2N  
RSW2DIS  
212  
600  
255  
mΩ  
Discharge Resistance  
Ω
34VR500  
NXP Semiconductors  
41  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
SW2 Efficiency Waveform: VIN = 3.6V; VOUT = 1.8V  
Figure 16. SW2 efficiency waveforms  
Figure 17. Load transient response – SW2 (PWM)  
6.4.4.13 SW3  
SW3 is a 2.5 A regulator capable of providing an output from 0.625 V to 3.3 V. Figure 18 shows a high level block diagram of the SW3  
regulator.  
34VR500  
42  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
PVIN3  
PVIN3  
SW3MODE  
ISENSE  
CINSW3  
Controller  
SW3  
LX3  
EP  
Driver  
LSW3  
COSW3  
SW3FAULT  
I2C  
Interface  
I2C  
Internal  
Compensation  
Z2  
FB3  
Z1  
VREF  
EA  
DAC  
Figure 18. SW3 regulator block diagram  
6.4.4.14 SW3 setup and control registers  
SW3 output voltage is programmable from 0.625 V to 3.300 V; however, bit SW3 [6] in register SW3VOLT is read-only during normal  
operation. Its value is determined by the default configuration. Therefore, once SW3 [6] is set to “0”, the output is limited to the lower output  
voltages from 0.625 V to 1.975 V with 25 mV increments, as determined by bits SW3[5:0]. Likewise, once bit SW3[6] is set to "1", the  
output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V with 50 mV increments, as determined by bits  
SW3[5:0].  
In order to optimize the performance of the regulator, it is recommended only voltages from 2.00 V to 3.300 V be used in the high range  
and the lower range be used for voltages from 0.625 V to 1.975 V.  
The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW3[5:0], SW3STBY[5:0],  
and SW3OFF[5:0] bits respectively; however, the initial state of the SW3[6] bit is copied into the SW3STBY[6] and SW3OFF[6] bits.  
Therefore, the output voltage range remains the same on all three operating modes. Table 48 shows the output voltage coding valid for  
SW3. Table 48 shows the output voltage coding valid for SW3.  
Table 48. SW3 output voltage configuration  
Low output voltage range(34)  
High output voltage range  
SW3[6:0]  
Set point  
SW3[6:0]  
SW3 output  
Set point  
SW3 output  
0
1
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0.6250  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
0.8000  
0.8500  
0.9000  
0.9500  
1.0000  
1.0500  
1.1000  
1.1500  
1.2000  
1.2500  
1.3000  
1.3500  
1.4000  
1.4500  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
0.6500  
0.6750  
0.7000  
0.7250  
34VR500  
NXP Semiconductors  
43  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 48. SW3 output voltage configuration (continued)  
Low output voltage range(34)  
High output voltage range  
SW3[6:0]  
Set point  
SW3[6:0]  
SW3 output  
Set point  
SW3 output  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
1.0500  
1.0750  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
1.6000  
1.6250  
1.6500  
1.6750  
78  
79  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1.5000  
1.5500  
1.6000  
1.6500  
1.7000  
1.7500  
1.8000  
1.8500  
1.9000  
1.9500  
2.0000  
2.0500  
2.1000  
2.1500  
2.2000  
2.2500  
2.3000  
2.3500  
2.4000  
2.4500  
2.5000  
2.5500  
2.6000  
2.6500  
2.7000  
2.7500  
2.8000  
2.8500  
2.9000  
2.9500  
3.0000  
3.0500  
3.1000  
3.1500  
3.2000  
3.2500  
3.3000  
Reserved  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
34VR500  
44  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 48. SW3 output voltage configuration (continued)  
Low output voltage range(34)  
High output voltage range  
Set point  
SW3[6:0]  
SW3 output  
Set point  
SW3[6:0]  
SW3 output  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
1.8750  
1.9000  
1.9250  
1.9500  
1.9750  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Notes  
34.  
For voltages less than 2.0 V, only use set points 9 to 63.  
Table 49 provides a list of registers used to configure and operate SW3. A detailed description on each of these register is provided on  
Tables 49 through Table 54.  
Table 49. SW3 register summary  
Register  
SW3VOLT  
Address  
Output  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
SW3 Output voltage set point on normal operation  
SW3 Output voltage set point on Standby  
SW3 Output voltage set point on Sleep  
SW3STBY  
SW3OFF  
SW3MODE  
SW3CONF  
SW3 Switching mode selector register  
SW3 DVS, phase, frequency and ILIM configuration  
Table 50. Register SW3VOLT - ADDR 0x3C  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3 output voltage, during normal operation mode. See  
Table 48 for all possible configurations.  
SW3  
SW3  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3. Set by OTP. See  
Table 48 for all possible configurations.  
6
7
R
0x00  
0x00  
UNUSED  
UNUSED  
Table 51. Register SW3STBY - ADDR 0x3D  
Name  
SW3STBY  
Bit #  
R/W Default  
Description  
Sets the SW3 output voltage, during Standby mode. See Table 48 for all  
possible configurations.  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3 on Standby mode. This  
bit inherits the value configured on bit SW3[6] by OTP. See Table 48 for  
all possible configurations.  
SW3  
6
7
R
0x00  
0x00  
UNUSED  
UNUSED  
34VR500  
NXP Semiconductors  
45  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 52. Register SW3OFF - ADDR 0x3E  
Name  
SW3OFF  
Bit #  
R/W Default  
Description  
Sets the SW3 output voltage during Sleep mode. See Table 48 for all  
possible configurations.  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3 on Sleep mode. This bit  
inherits the value configured on bit SW3[6] by OTP. See Table 48 for all  
possible configurations.  
SW3  
6
7
R
0x00  
0x00  
UNUSED  
UNUSED  
Table 53. Register SW3MODE - ADDR 0x3F  
Name  
SW3MODE  
Bit #  
R/W Default  
Description  
Sets the SW3 switching operation mode.  
See Table 23 for all possible configurations.  
3:0  
4
R/W  
0x08  
0x00  
UNUSED  
UNUSED  
Set status of SW3 when in Sleep mode.  
SW3OMODE  
UNUSED  
5
R/W  
0x00  
0x00  
0 = OFF  
1 = PFM  
7:6  
UNUSED  
Table 54. Register SW3CONF - ADDR 0x40  
Name  
Bit #  
R/W Default  
Description  
SW3 current limit level selection  
0 = High level current limit  
1 = Low level current limit  
SW3ILIM  
0
R/W  
0x00  
UNUSED  
1
R/W  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
0x00  
Unused  
SW3FREQ  
3:2  
5:4  
7:6  
SW3 switching frequency selector. See Table 29.  
SW3 Phase clock selection. See Table 27.  
SW3 DVS speed selection. See Table 28.  
SW3PHASE  
SW3DVSSPEED  
6.4.4.15 SW3 external components  
Table 55. SW3 external component requirements  
Components  
Description  
SW3 input capacitor  
SW3  
(35)  
CINSW3  
2 x 4.7 μF  
3 x 22 μF  
2 x 0.1 μF  
(35)  
COSW3  
CIN3HF  
SW3 output capacitor  
(35)  
SW3 decoupling input capacitor  
1.5 μH  
LSW3  
SW3 inductor  
DCR = 25 mΩ  
ISAT = 5.0 A  
Notes  
35.  
Use X5R or X7R capacitors.  
34VR500  
46  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.4.16 SW3 specifications  
Table 56. SW3 electrical characteristics  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = V  
= 3.6 V, V  
= 1.5 V, I  
= 100 mA,  
A
IN  
PVIN3  
SW3  
SW3  
V
V
= 1.0 V 4.0%, typical external component values, f  
= 2.0 MHz. Typical values are characterized at V = V  
= 3.6 V,  
VBIAS  
SW3  
IN  
PVIN3  
= 1.5 V, I  
= 100 mA, and 25 °C, unless otherwise noted.  
SW3  
SW3  
Symbol  
Switch mode supply SW3  
VPVIN3 Operating Input Voltage  
VSW3  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
2.8  
-
4.5  
-
V
V
Nominal Output Voltage  
Output Voltage Accuracy  
Table 48  
PWM, APS 2.8 V < VIN < 4.5 V, 0 < ISW3 < 2.5 A  
-25  
-3.0  
-6.0  
25  
3.0  
6.0  
mV  
%
%
0.625 V < VSW3 < 0.85 V  
0.875 V < VSW3 < 1.975 V  
2.0 V < VSW3 < 3.3 V  
PFM, steady state (2.8 V < VIN < 4.5 V, 0 < ISW3 < 50 mA)  
VSW3ACC  
-65  
-45  
-45  
-3.0  
65  
45  
45  
3.0  
mV  
mV  
mV  
%
0.625 V < VSW3 < 0.675 V  
0.7 V < VSW3 < 0.85 V  
0.875 V < VSW3 < 1.975 V  
2.0 V < VSW3 < 3.3 V  
Rated Output Load Current  
(36)  
2.8 V < VIN < 4.5 V, 0.625 V < VSW3 < 3.3 V  
PWM, APS mode  
ISW3  
mA  
A
2500  
Current Limiter Peak Current Detection  
Current through inductor  
SW3ILIM = 0  
ISW3LIM  
3.5  
2.7  
5.0  
3.8  
6.5  
4.9  
SW3ILIM = 1  
Start-up Overshoot  
VSW3OSH  
66  
mV  
µs  
ISW3 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN3 = 4.5 V  
Turn-on Time  
tONSW3  
Enable to 90% of end value  
500  
ISW3 = 0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN3 = 4.5 V  
Switching Frequency  
SW3FREQ[1:0] = 00  
SW3FREQ[1:0] = 01  
SW3FREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW3  
MHz  
Notes  
36.  
The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:  
(VINSW3 - VSW3) = ISW3* (DCR of inductor +RONSW3xP + PCB trace resistance).  
34VR500  
NXP Semiconductors  
47  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 56. SW3 electrical characteristics (continued)  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = V  
= 3.6 V, V  
= 1.5 V, I  
= 100 mA,  
A
IN  
PVIN3  
SW3  
SW3  
V
V
= 1.0 V 4.0%, typical external component values, f  
= 2.0 MHz. Typical values are characterized at V = V  
= 3.6 V,  
VBIAS  
SW3  
IN  
PVIN3  
= 1.5 V, I  
= 100 mA, and 25 °C, unless otherwise noted.  
SW3  
SW3  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW3 (continued)  
Efficiency  
fSW3 = 2.0 MHz, LSW3 1.0 μH  
84  
85  
85  
84  
80  
74  
PFM, 1.5 V, 1.0 mA  
PFM, 1.5 V, 50 mA  
APS, PWM 1.5 V, 500 mA  
APS, PWM 1.5 V, 750 mA  
APS, PWM 1.5 V, 1250 mA  
APS, PWM 1.5 V, 2500 mA  
ηSW3  
%
ΔVSW3  
VSW3LIR  
VSW3LOR  
Output Ripple  
5.0  
mV  
mV  
mV  
Line Regulation (APS, PWM)  
DC Load Regulation (APS, PWM)  
Transient Load Regulation  
20  
20  
Transient Load = 0.0 mA to 1.25 A, di/dt = 100 mA/μs  
Overshoot  
Undershoot  
VSW3LOTR  
mV  
50  
50  
Quiescent Current  
PFM Mode  
ISW3Q  
22  
300  
µA  
APS Mode  
SW3 P-MOSFET RDSON  
at VIN = VPVIN3 = 3.3 V  
RONSW3P  
mΩ  
108  
123  
SW3 N-MOSFET RDSON  
at VIN = VPVIN3 = 3.3 V  
RONSW3N  
RSW3DIS  
mΩ  
129  
600  
163  
Discharge Resistance  
Ω
Figure 19. SW3 efficiency waveforms  
34VR500  
48  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Figure 20. Load transient response – SW3 (PWM)  
6.4.4.17 SW4  
SW4 operates by default in VTT mode (for the 34VR500V1, V3, V4, V5, V6, V7) and it's not possible to change this configuration and  
modify the output voltage after the Start-up sequence. SW4 operates in non VTT mode for the 34VR500V2 and it is possible to change  
2
the output voltage by the I C bus.  
SW4 is a 1.0 A rated buck regulator capable of operating in two modes. In Regulator mode, it operates as a normal buck regulator with a  
programmable output between 0.625 and 1.975 V. It is capable of operating in the three available switching modes: PFM, APS, and PWM,  
described on Table 23 and configured by the SW4MODE[3:0] bits, as shown in Table 24.  
If the system requires DDR memory termination, SW4 can be used in its VTT mode. In the VTT mode, its reference voltage will track the  
output voltage of SW3, scaled by 0.5. Furthermore, when in VTT mode, only the PWM switching mode is allowed. The minimum output  
voltage for SW4 in VTT mode is 0.6 V  
Figure 21 shows the block diagram and the external component connections for the SW4 regulator.  
PVIN4  
PVIN4  
SW4MODE  
ISENSE  
CINSW4  
Controller  
SW4  
LX4  
EP  
Driver  
LSW4  
COSW4  
SW4FAULT  
I2C  
Interface  
Internal  
I2C  
Compensation  
Z2  
FB4  
Z1  
VREF  
EA  
DAC  
Figure 21. SW4 block diagram  
34VR500  
NXP Semiconductors  
49  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.4.18 SW4 setup and control registers  
In Regulator mode, the SW4 output voltage is programmable from 0.625 to 1.975 V.  
The output voltage set point is independently programmed for Normal, Standby, and Sleep mode by setting the SW4[5:0], SW4STBY[5:0],  
and SW4OFF[5:0] bits, respectively. Table 57 shows the output voltage coding valid for SW4.  
Table 57. SW4 output voltage configuration  
Set Point  
SW4[5:0]  
SW4 Output  
Set Point  
SW4[5:0]  
SW4 Output  
9
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
100000  
100001  
100010  
100011  
100100  
0.6250  
0.6500  
0.6750  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
1.0500  
1.0750  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
1.8750  
1.9000  
1.9250  
1.9500  
1.9750  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
2
Full setup and control of SW4 is done through the I C registers listed on Table 58, and a detailed description of each one of the registers  
is provided in Tables 59 to Table 63.  
34VR500  
50  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 58. SW4 register summary  
Register  
SW4VOLT  
Address  
Description  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
Output voltage set point on normal operation  
SW4STBY  
SW4OFF  
Output voltage set point on Standby  
Output voltage set point on Sleep  
SW4MODE  
SW4CONF  
Switching mode selector register  
DVS, phase, frequency and ILIM configuration  
Table 59. Register SW4VOLT - ADDR 0x4A  
Name  
Bit #  
R/W Default  
Description  
Sets the SW4 output voltage during normal operation mode. See Table 57  
for all possible configurations.  
SW4  
UNUSED  
5:0  
7
R/W  
0x00  
0x00  
UNUSED  
Table 60. Register SW4STBY - ADDR 0x4B  
Name  
SW4STBY  
UNUSED  
Bit #  
R/W Default  
Description  
Sets the SW4 output voltage during Standby mode. See Table 57 for all  
possible configurations.  
5:0  
7
R/W  
0x00  
0x00  
UNUSED  
Table 61. Register SW4OFF - ADDR 0x4C  
Name  
SW4OFF  
UNUSED  
Bit #  
R/W Default  
Description  
Sets the SW4 output voltage during Sleep mode. See Table 57 for all  
possible configurations.  
5:0  
7
R/W  
0x00  
0x00  
UNUSED  
Table 62. Register SW4MODE - ADDR 0x4D  
Name  
SW4MODE  
Bit #  
R/W Default  
Description  
Sets the SW4 switching operation mode. See Table 23 for all possible  
configurations.  
3:0  
4
R/W  
0x08  
0x00  
UNUSED  
UNUSED  
Set status of SW4 when in Sleep mode  
SW4OMODE  
UNUSED  
5
R/W  
0x00  
0x00  
0 = OFF  
1 = PFM  
7:6  
UNUSED  
34VR500  
NXP Semiconductors  
51  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 63. Register SW4CONF - ADDR 0x4E  
Name  
Bit #  
R/W Default  
Description  
SW4 current limit level selection  
SW4ILIM  
0
R/W  
0x00  
0 = High level Current limit  
1 = Low level Current limit  
UNUSED  
1
R/W  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
0x00  
Unused  
SW4FREQ  
3:2  
5:4  
7:6  
SW4 switching frequency selector. See Table 29.  
SW4 Phase clock selection. See Table 27.  
SW4 DVS speed selection. See Table 28.  
SW4PHASE  
SW4DVSSPEED  
6.4.4.19 SW4 external components  
Table 64. SW4 external component recommendations  
Components  
Description  
SW4 Input capacitor  
Values  
(37)  
CINSW4  
4.7 μF  
0.1 μF  
(37)  
CIN4HF  
SW4 Decoupling input capacitor  
SW4 Output capacitor  
(37)  
COSW4  
3 x 22 μF  
1.5 μH  
LSW4  
SW4 Inductor  
DCR = 50 mΩ  
ISAT = 2.6 A  
Notes  
37.  
Use X5R or X7R capacitors.  
6.4.4.20 SW4 specifications  
Table 65. SW4 electrical characteristics  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = V  
= 3.6 V, V  
= 1.8 V, I  
= 100 mA,  
A
IN  
PVIN4  
SW4  
SW4  
V
V
= 1.0 V 4.0%, typical external component values, f  
= 2.0 MHz, unless otherwise noted. Typical values are characterized at  
VBIAS  
SW4  
= V  
= 3.6 V, V  
= 1.8 V, I  
= 100 mA, and 25 °C, unless otherwise noted.  
IN  
PVIN4  
SW4  
SW4  
Symbol  
Switch mode supply SW4  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPVIN4  
Operating Input Voltage  
2.8  
4.5  
V
V
Nominal Output Voltage  
Normal operation  
VTT Mode  
VSW4  
Table 57  
VSW3/2  
Output Voltage Accuracy  
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A  
0.625 V < VSW4 < 0.85 V  
0.875 V < VSW4 < 1.975 V  
-25  
-3.0  
25  
3.0  
mV  
%
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 50 mA  
VSW4ACC  
-65  
-45  
-45  
65  
45  
45  
mV  
mV  
mV  
0.625 V < VSW4 < 0.675 V  
0.7 V < VSW4 < 0.85 V  
0.875 V < VSW4 < 1.975 V  
-40  
40  
mV  
mA  
VTT Mode, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A  
Rated Output Load Current  
ISW4  
1000  
2.8 V < VIN < 4.5 V, 0.625 V < VSW4 < 1.975 V  
34VR500  
52  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 65. SW4 electrical characteristics (continued)  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = V  
= 3.6 V, V  
= 1.8 V, I  
= 100 mA,  
A
IN  
PVIN4  
SW4  
SW4  
V
V
= 1.0 V 4.0%, typical external component values, f  
= 2.0 MHz, unless otherwise noted. Typical values are characterized at  
VBIAS  
SW4  
= V  
= 3.6 V, V  
= 1.8 V, I  
= 100 mA, and 25 °C, unless otherwise noted.  
IN  
PVIN4  
SW4  
SW4  
Symbol  
Switch mode supply SW4 (continued)  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Current Limiter Peak Current Detection  
Current through inductor  
SW4ILIM = 0  
ISW4LIM  
A
1.4  
1.0  
2.0  
1.5  
3.0  
2.4  
SW4ILIM = 1  
Start-up Overshoot  
VSW4OSH  
66  
mV  
µs  
ISW4 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN4 = 4.5 V  
Turn-on Time  
tONSW4  
Enable to 90% of end value  
500  
ISW4 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN4 = 4.5 V  
Switching Frequency  
SW4FREQ[1:0] = 00  
SW4FREQ[1:0] = 01  
SW4FREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW4  
MHz  
Efficiency  
fSW4 = 2.0 MHz, LSW4 = 1.0 μH  
81  
78  
87  
88  
83  
PFM, 1.8 V, 1.0 mA  
PFM, 1.8 V, 50 mA  
APS, PWM 1.8 V, 200 mA  
APS, PWM 1.8 V, 500 mA  
APS, PWM 1.8 V, 1000 mA  
ηSW4  
%
78  
76  
66  
PWM 0.75 V, 200 mA  
PWM 0.75 V, 500 mA  
PWM 0.75 V, 1000 mA  
ΔVSW4  
VSW4LIR  
VSW4LOR  
Output Ripple  
5.0  
mV  
mV  
mV  
Line Regulation (APS, PWM)  
DC Load Regulation (APS, PWM)  
Transient Load Regulation  
20  
20  
Transient Load = 0.0 mA to 500 mA, di/dt = 100 mA/μs  
Overshoot  
Undershoot  
VSW4LOTR  
mV  
50  
50  
Quiescent Current  
PFM Mode  
ISW4Q  
22  
145  
µA  
APS Mode  
SW4 P-MOSFET RDSON  
at VIN = VPVIN4 = 3.3 V  
RONSW4P  
236  
274  
mΩ  
SW4 N-MOSFET RDSON  
at VIN = VPVIN4 = 3.3 V  
RONSW4N  
RSW4DIS  
293  
600  
378  
mΩ  
Discharge Resistance  
Ω
34VR500  
NXP Semiconductors  
53  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Figure 22. SW4 efficiency waveforms  
Figure 23. Load transient response – SW4 (PWM)  
6.4.5 LDO regulators description  
This section describes the LDO regulators provided by the 34VR500. All regulators use the main bandgap as reference. Refer to Bias and  
references block description section for further information on the internal reference voltages.  
A Low Power mode is automatically activated by reducing bias currents when the load current is less than I_Lmax/5. However, the lowest  
bias currents may be attained by forcing the part into its Low Power mode by setting the LDOxLPWR bit. The use of this bit is only  
recommended when the load is expected to be less than I_Lmax/50, otherwise performance may be degraded.  
When a regulator is disabled, the output will be discharged by an internal pull-down. The pull-down is also activated when PORB is low.  
34VR500  
54  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
VLDOINx  
VLDOINx  
VREF  
_
+
LDOx  
LDOxLPWR  
LDOx  
LDOx  
I2C  
Interface  
CLDOx  
LDOx  
Discharge  
Figure 24. General LDO block diagram  
6.4.5.1  
Transient response waveforms  
Idealized stimulus and response waveforms for transient line and transient load tests are depicted in Figure 25. Note that the transient  
line and load response refers to the overshoot, or undershoot only, excluding the DC shift.  
34VR500  
NXP Semiconductors  
55  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
IMAX  
ILOAD  
IMAX/10  
1.0 us  
1.0 us  
Transient Load Stimulus  
IL = IMAX/10  
IL = IMAX  
Overshoot  
VOUT  
Undershoot  
VOUT Transient Load Response  
VINx_INITIAL  
VINx  
VINx_FINAL  
10 us  
10 us  
Transient Line Stimulus  
VINx_FINAL  
VINx_INITIAL  
Overshoot  
VOUT  
Undershoot  
VOUT Transient Line Response  
Figure 25. Transient waveforms  
34VR500  
56  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.5.2  
Short-circuit protection  
All general purpose LDOs have short-circuit protection capability. The Short-circuit Protection (SCP) system includes debounced fault  
condition detection, regulator shutdown, and processor interrupt generation, to contain failures and minimize the chance of product  
damage. If a short-circuit condition is detected, the LDO will be disabled by resetting its LDOxEN bit, while at the same time, an interrupt  
LDOxFAULTI will be generated to flag the fault to the system processor. The LDOxFAULTI interrupt is maskable through the  
LDOxFAULTM mask bit.  
The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, the regulators will not automatically be disabled upon a  
short-circuit detection. However, the current limiter will continue to limit the output current of the regulator. By default, the REGSCPEN is  
not set; therefore, at start-up none of the regulators will be disabled if an overloaded condition occurs. A fault interrupt, LDOxFAULTI, will  
be generated in an overload condition regardless of the state of the REGSCPEN bit. See Table 66 for SCP behavior configuration.  
Table 66. Short-circuit behavior  
REGSCPEN[0]  
Short-circuit Behavior  
0
1
Current limit  
Shutdown  
6.4.5.3  
LDO regulator control  
Each LDO is fully controlled through its respective LDOxCTL register. This register enables the user to set the LDO output voltage  
according to Table 67 for LDO1 and uses the voltage set point on Table 68 for LDO2 through LDO5.  
Table 67. LDO1 output voltage configuration  
Set point  
LDO1[3:0]  
LDO1 output (V)  
0
1
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0.800  
0.850  
0.900  
0.950  
1.000  
1.050  
1.100  
1.150  
1.200  
1.250  
1.300  
1.350  
1.400  
1.450  
1.500  
1.550  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
34VR500  
NXP Semiconductors  
57  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 68. LDO2/3/4/5 output voltage configuration  
Set point  
LDOx[3:0]  
LDOx output (V)  
0
1
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1.80  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Besides the output voltage configuration, the LDOs can be enabled or disabled at anytime during normal mode operation, as well as  
2
programmed to stay “ON” or be disabled when the PMIC enters Standby mode. Each regulator has associated I C bits for this. Table 69  
presents a summary of all valid combinations of the control bits on LDOxCTL register and the expected behavior of the LDO output.  
Table 69. LDO control  
LDOxEN  
LDOxLPWR  
LDOxSTBY  
STANDBY(38)  
LDOxOUT  
0
1
1
1
1
1
X
0
1
X
0
1
X
0
0
1
1
1
X
X
X
0
Off  
On  
Low Power  
On  
1
Off  
1
Low Power  
Notes  
38.  
STANDBY refers to a Standby event as described earlier.  
For more detail information, Table 70 through Table 74 provide a description of all registers necessary to operate all five general purpose  
LDO regulators.  
34VR500  
58  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 70. Register LDO1CTL - ADDR 0x6D  
Name  
Bit #  
R/W Default  
Description  
LDO1  
3:0  
R/W  
0x80  
0x00  
Sets LDO1 output voltage. See Table 67 for all possible configurations.  
Enables or Disables LDO1 output  
LDO1EN  
4
0 = OFF  
1 = ON  
LDO1STBY  
LDO1LPWR  
UNUSED  
5
6
7
R/W  
R/W  
0x00  
0x00  
0x00  
Set LDO1 output state when in Standby. Refer to Table 69.  
Enable Low Power Mode for LDO1. Refer to Table 69.  
UNUSED  
Table 71. Register LDO2CTL - ADDR 0x6E  
Name  
Bit #  
R/W Default  
Description  
LDO2  
3:0  
R/W  
0x80  
0x00  
Sets LDO2 output voltage. See Table 68 for all possible configurations.  
Enables or Disables LDO2 output  
LDO2EN  
4
0 = OFF  
1 = ON  
LDO2STBY  
LDO2LPWR  
UNUSED  
5
6
7
R/W  
R/W  
0x00  
0x00  
0x00  
Set LDO2 output state when in Standby. Refer to Table 69.  
Enable Low Power Mode for LDO2. Refer to Table 69.  
UNUSED  
Table 72. Register LDO3CTL - ADDR 0x6F  
Name  
Bit #  
R/W Default  
Description  
LDO3  
3:0  
R/W  
0x80  
Sets LDO3 output voltage. See Table 68 for all possible configurations.  
Enables or Disables LDO3 output  
LDO3EN  
4
0x00  
0 = OFF  
1 = ON  
LDO3STBY  
LDO3LPWR  
UNUSED  
5
6
7
R/W  
R/W  
0x00  
0x00  
0x00  
Set LDO3 output state when in Standby. Refer to Table 69.  
Enable Low Power Mode for LDO3. Refer to Table 69.  
UNUSED  
Table 73. Register LDO4CTL - ADDR 0x70  
Name  
Bit #  
R/W Default  
Description  
LDO4  
3:0  
R/W  
0x80  
Sets LDO4 output voltage. See Table 68 for all possible configurations.  
Enables or Disables LDO4 output  
LDO4EN  
4
0x00  
0 = OFF  
1 = ON  
LDO4STBY  
LDO4LPWR  
UNUSED  
5
6
7
R/W  
R/W  
0x00  
0x00  
0x00  
Set LDO4 output state when in Standby. Refer to Table 69.  
Enable Low Power Mode for LDO4. Refer to Table 69.  
UNUSED  
34VR500  
NXP Semiconductors  
59  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 74. Register LDO5CTL - ADDR 0x71  
Name  
Bit #  
R/W Default  
Description  
LDO5  
3:0  
R/W  
0x80  
0x00  
Sets LDO5 output voltage. See Table 68 for all possible configurations.  
Enables or Disables LDO5 output  
LDO5EN  
4
0 = OFF  
1 = ON  
LDO5STBY  
LDO5LPWR  
UNUSED  
5
6
7
R/W  
R/W  
0x00  
0x00  
0x00  
Set LDO5 output state when in Standby. Refer to Table 69.  
Enable Low Power Mode for LDO5. Refer to Table 69.  
UNUSED  
6.4.5.4  
External components  
Table 75 lists the typical component values for the general purpose LDO regulators.  
Table 75. LDO external components  
Regulator  
Output capacitor (μF)(39)  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
4.7  
2.2  
4.7  
2.2  
2.2  
Notes  
39.  
Use X5R/X7R ceramic capacitors.  
6.4.5.5  
LDO specifications  
LDO1  
6.4.5.5.1  
Table 76. LDO1 electrical characteristics  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = 3.6 V, V  
= 3.0 V, VLDO1[3:0] = 1111, I = 10 mA,  
LDO1  
A
IN  
LDOIN1  
V
V
= 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at V = 3.6 V,  
VBIAS  
IN  
= 3.0 V, LDO1[3:0] = 1111, I  
= 10 mA and 25 °C, unless otherwise noted.  
LDOIN1  
LDO1  
Symbol  
LDO1  
VLDOIN1  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating Input Voltage  
Nominal Output Voltage  
Operating Load Current  
1.75  
Table 67  
3.40  
V
V
LDO1NOM  
ILDO1  
0.0  
250  
mA  
LDO1 active mode - DC  
Output Voltage Tolerance  
VLDO1TOL  
1.75 V <VLDOIN1 < 3.4 V, 0.0 mA < ILDO1 < 250 mA  
LDO1[3:0] = 0000 to 1111  
-3.0  
3.0  
%
Load Regulation  
VLDO1LOR  
(VLDO1 at ILDO1 = 250 mA) - (VLDO1 at ILDO2 = 0.0 mA)  
For any 1.75 V <VLDOIN1 < 3.4 V  
0.05  
0.50  
mV/mA  
mV/V  
Line Regulation  
VLDO1LIR  
(VLDO1 at VLDOIN1 = 3.4 V) - (VLDO1 at VLDOIN1 = 1.75 V)  
For any 0.0 mA < ILDO1 < 250 mA  
34VR500  
60  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 76. LDO1 electrical characteristics  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = 3.6 V, V  
= 3.0 V, VLDO1[3:0] = 1111, I = 10 mA,  
LDO1  
A
IN  
LDOIN1  
V
V
= 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at V = 3.6 V,  
VBIAS  
IN  
= 3.0 V, LDO1[3:0] = 1111, I  
= 10 mA and 25 °C, unless otherwise noted.  
LDOIN1  
LDO1  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
LDO1 active mode - DC (continued)  
Current Limit  
ILDO1LIM  
mA  
mA  
ILDO1 when LDO1 is forced to LDO1NOM/2  
305  
290  
417  
510  
500  
Overcurrent Protection Threshold  
ILDO1OCP  
ILDO1 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
Quiescent Current  
ILDO1Q  
No load, Change in IVIN and IVLDOIN1  
When LDO1 enabled  
16  
μA  
LDO1 AC and transient  
PSRR  
ILDO1 = 187.5 mA, 20 Hz to 20 kHz  
(40)  
PSRRLDO1  
dB  
50  
37  
60  
45  
LDO1[3:0] = 0000 - 1101  
LDO1[3:0] = 1110, 1111  
Output Noise Density  
VLDOIN1 = 1.75 V, ILDO1 = 187.5 mA  
NOISELDO1  
-108  
-118  
-124  
-100  
-108  
-112  
dBV/Hz  
100 Hz – <1.0 kHz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
Turn-On Slew Rate  
10% to 90% of end value  
1.75 V VLDOIN1 3.4 V, ILDO1 = 0.0 mA  
LDO1[3:0] = 0000 to 0111  
LDO1[3:0] = 1000 to 1111  
SLWRLDO1  
mVs  
μs  
12.5  
16.5  
Turn-On Time  
Enable to 90% of end value, VLDOIN1 = 1.75 V, 3.4 V  
ILDO1 = 0.0 mA  
tONLDO1  
60  
500  
Turn-Off Time  
tOFFLDO1  
Disable to 10% of initial value, VLDOIN1 = 1.75 V  
ILDO1 = 0.0 mA  
10  
ms  
%
Start-up Overshoot  
LDO1OSHT  
1.0  
2.0  
VLDOIN1 = 1.75 V, 3.4 V, ILDO1 = 0.0 mA  
Transient Load Response  
VLDOIN1 = 1.75 V, 3.4 V  
VLDO1LOTR  
ILDO1 = 25 to 250 mA in 1.0 μs  
Peak of overshoot or undershoot of LDO1 with respect to final value  
Refer to Figure 25  
3.0  
8.0  
%
Transient Line Response  
ILDO1 = 187.5 mA  
VLDOIN1INITIAL = 1.75 V to VLDOIN1 = 2.25 V for  
LDO1[3:0] = 0000 to 1101  
VLDO1LITR  
5.0  
mV  
VLDOIN1INITIAL = VLDO1+0.3 V to VLDOIN1FINAL = VLDO1+0.8 V for  
LDO1[3:0] = 1110, 1111  
Refer to Figure 25  
Notes  
40.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test.  
34VR500  
NXP Semiconductors  
61  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.5.5.2  
LDO2  
Table 77. LDO2 electrical characteristics  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = 3.6 V, V  
= 3.6 V, VLDO2[3:0] = 1111, I = 10 mA,  
LDO2  
A
IN  
LDOIN23  
V
V
= 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at V = 3.6 V,  
VBIAS  
IN  
= 3.6 V, LDO2[3:0] = 1111, I  
= 10 mA, and 25 °C, unless otherwise noted.  
LDOIN23  
LDO2  
Symbol  
LDO2  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating Input Voltage  
1.8 V LDO2NOM 2.5 V  
2.6 V LDO2NOM 3.3 V  
2.8  
LDO2NOM  
0.250  
(41)  
VLDOIN23  
3.6  
3.6  
V
+
LDO2NOM  
ILDO2  
Nominal Output Voltage  
Operating Load Current  
Table 68  
V
0.0  
100  
mA  
LDO2 DC  
Output Voltage Tolerance  
VLDOIN23MIN < VLDOIN23 < 3.6 V  
0.0 mA < ILDO2 < 100 mA  
LDO2[3:0] = 0000 to 1111  
VLDO2TOL  
-3.0  
3.0  
%
Load Regulation  
VLDO2LOR  
(VLDO2 at ILDO2 = 100 mA) - (VLDO2 at ILDO2 = 0.0 mA)  
For any VLDOIN23MIN < VLDOIN23 < 3.6 V  
0.07  
mV/mA  
Line Regulation  
VLDO2LIR  
ILDO2LIM  
ILDO2OCP  
(VLDO2 at VLDOIN23 = 3.6 V) - (VLDO2 at VLDOIN23MIN  
For any 0.0 mA < ILDO2 < 100 mA  
)
0.8  
167  
mV/V  
mA  
Current Limit  
127  
120  
200  
200  
ILDO2 when LDO2 is forced to LDO2NOM/2  
Overcurrent Protection Threshold  
mA  
ILDO2 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
Quiescent Current  
ILDO2Q  
No load, Change in IVIN and IVLDOIN23  
When LDO2 enabled  
13  
μA  
LDO2 AC and transient  
PSRR  
ILDO2 = 75 mA, 20 Hz to 20 kHz  
(42)  
PSRRLDO2  
dB  
35  
55  
40  
60  
LDO2[3:0] = 0000 - 1110, VLDOIN23 = VLDOIN23MIN + 100 mV  
LDO2[3:0] = 0000 - 1000, VLDOIN23 = LDO2NOM + 1.0 V  
Output Noise Density  
VLDOIN23 = VLDOIN23MIN, ILDO2 = 75 mA  
NOISELDO2  
-114  
-129  
-135  
-102  
-123  
-130  
dBV/Hz  
100 Hz – <1.0 kHz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
Turn-On Slew Rate  
10% to 90% of end value  
VLDOIN23MIN VLDOIN23 3.6 V, ILDO2 = 0.0 mA  
SLWRLDO2  
22.0  
26.5  
30.5  
34.5  
mVs  
LDO2[3:0] = 0000 to 0011  
LDO2[3:0] = 0100 to 0111  
LDO2[3:0] = 1000 to 1011  
LDO2[3:0] = 1100 to 1111  
34VR500  
62  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 77. LDO2 electrical characteristics  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = 3.6 V, V  
= 3.6 V, VLDO2[3:0] = 1111, I = 10 mA,  
LDO2  
A
IN  
LDOIN23  
V
V
= 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at V = 3.6 V,  
VBIAS  
IN  
= 3.6 V, LDO2[3:0] = 1111, I  
= 10 mA, and 25 °C, unless otherwise noted.  
LDOIN23  
LDO2  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
LDO2 AC and transient (continued)  
Turn-On Time  
tONLDO2  
Enable to 90% of end value, VLDOIN23 = VLDOIN23MIN, 3.6 V  
ILDO2 = 0.0 mA  
60  
500  
μs  
Turn-Off Time  
tOFFLDO2  
Disable to 10% of initial value, VLDOIN23 = VLDOIN23MIN  
ILDO2 = 0.0 mA  
10  
ms  
%
Start-up Overshoot  
LDO2OSHT  
1.0  
2.0  
VLDOIN23 = VLDOIN23MIN, 3.6 V, ILDO2 = 0.0 mA  
Transient Load Response  
VLDOIN23 = VLDOIN23MIN, 3.6 V  
ILDO2 = 10 to 100 mA in 1.0μs  
Peak of overshoot or undershoot of LDO2 with respect to final  
value. Refer to Figure 25  
VLDO2LOTR  
3.0  
8.0  
%
Transient Line Response  
ILDO2 = 75 mA  
VLDOIN23INITIAL = 2.8 V to VLDOIN23FINAL = 3.3 V for  
LDO2[3:0] = 0000 to 0111  
VLDO2LITR  
5.0  
mV  
V
LDOIN23INITIAL = VLDO2+0.3 V to VLDOIN23FINAL = VLDO2+0.8 V for  
LDO2[3:0] = 1000 to 1010  
LDOIN23INITIAL = VLDO2+0.25 V to VLDOIN23FINAL = 3.6 V for  
V
LDO2[3:0] = 1011 to 1111  
Refer to Figure 25  
Notes  
41.  
When the LDO Output voltage is set above 2.6 V, the minimum allowed input voltage needs to be at least the output voltage plus 0.25 V, for proper  
regulation due to the dropout voltage generated through the internal LDO transistor.  
42.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test. VLDOIN23MIN refers to the minimum allowed input voltage for a particular output voltage.  
34VR500  
NXP Semiconductors  
63  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.5.5.3  
LDO3  
Table 78. LDO3 electrical characteristics  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = 3.6 V, V  
= 3.6 V, LDO3[3:0] = 1111, I = 10 mA,  
LDO3  
A
IN  
LDOIN23  
V
V
= 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at V = 3.6 V,  
VBIAS  
IN  
= 3.6 V, LDO3[3:0] = 1111, I  
= 10 mA, and 25 °C, unless otherwise noted.  
LDOIN23  
LDO3  
Symbol  
LDO3  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating Input Voltage  
2.8  
LDO3NOM  
0.250  
(43)  
VLDOIN23  
1.8 V LDO3NOM 2.5 V  
2.6 V LDO3NOM 3.3 V  
3.6  
3.6  
V
+
LDO3NOM  
ILDO3  
Nominal Output Voltage  
Operating Load Current  
Table 68  
V
0.0  
350  
mA  
LDO3 DC  
Output Voltage Tolerance  
VLDOIN23MIN < VLDOIN23 < 3.6 V  
0.0 mA < ILDO3 < 350 mA  
LDO3[3:0] = 0000 to 1111  
VLDO3TOL  
-3.0  
3.0  
%
Load Regulation  
VLDO3LOR  
(VLDO3 at ILDO3 = 350 mA) - (VLDO3 at ILDO3 = 0.0 mA)  
For any VLDOIN23MIN < VLDOIN23 < 3.6 V  
0.07  
mV/mA  
Line Regulation  
VLDO3LIR  
ILDO3LIM  
ILDO3OCP  
(VLDO3 at 3.6 V) - (VLDO3 at VLDOIN23MIN  
For any 0.0 mA < ILDO3 < 350 mA  
)
0.80  
584.5  
mV/V  
mA  
Current Limit  
435  
420  
700  
700  
ILDO3 when LDO3 is forced to LDO3NOM/2  
Overcurrent Protection Threshold  
mA  
ILDO3 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
Quiescent Current  
ILDO3Q  
No load, Change in IVIN and IVLDOIN23  
When LDO3 enabled  
13  
μA  
LDO3 AC and transient  
PSRR  
ILDO3 = 262.5 mA, 20 Hz to 20 kHz  
(44)  
PSRRLDO3  
dB  
35  
55  
40  
60  
LDO3[3:0] = 0000 - 1110, VLDOIN23 = VLDOIN23MIN + 100 mV  
LDO3[3:0] = 0000 - 1000, VLDOIN23 = LDO3NOM + 1.0 V  
Output Noise Density  
VLDOIN23 = VLDOIN23MIN, ILDO3 = 262.5 mA  
NOISELDO3  
-114  
-129  
-135  
-102  
-123  
-130  
dBV/Hz  
100 Hz – <1.0 kHz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
Turn-On Slew Rate  
10% to 90% of end value  
VLDOIN23MIN VLDOIN23 3.6 V, ILDO3 = 0.0 mA  
SLWRLDO3  
22.0  
26.5  
30.5  
34.5  
mVs  
LDO3[3:0] = 0000 to 0011  
LDO3[3:0] = 0100 to 0111  
LDO3[3:0] = 1000 to 1011  
LDO3[3:0] = 1100 to 1111  
34VR500  
64  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 78. LDO3 electrical characteristics  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = 3.6 V, V  
= 3.6 V, LDO3[3:0] = 1111, I = 10 mA,  
LDO3  
A
IN  
LDOIN23  
V
V
= 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at V = 3.6 V,  
VBIAS  
IN  
= 3.6 V, LDO3[3:0] = 1111, I  
= 10 mA, and 25 °C, unless otherwise noted.  
LDOIN23  
LDO3  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
LDO3 AC and transient (continued)  
Turn-On Time  
tONLDO3  
Enable to 90% of end value, VLDOIN23 = VLDOIN23MIN, 3.6 V  
ILDO3 = 0.0 mA  
60  
500  
μs  
Turn-Off Time  
tOFFLDO3  
Disable to 10% of initial value, VLDOIN23 = VLDOIN23MIN  
ILDO3 = 0.0 mA  
10  
ms  
%
Start-up Overshoot  
LDO3OSHT  
1.0  
2.0  
VLDOIN23 = VLDOIN23MIN, 3.6 V, ILDO3 = 0.0 mA  
Transient Load Response  
VLDOIN23 = VLDOIN23MIN, 3.6 V  
ILDO3 = 35 to 350 mA in 1.0 μs  
Peak of overshoot or undershoot of LDO3 with respect to final  
value. Refer to Figure 25  
VLDO3LOTR  
3.0  
8.0  
%
Transient Line Response  
ILDO3 = 262.5 mA  
VLDOIN23INITIAL = 2.8 V to VLDOIN23FINAL = 3.3 V for  
LDO3[3:0] = 0000 to 0111  
VLDO3LITR  
5.0  
mV  
V
LDOIN23INITIAL = VLDO3+0.3 V to VLDOIN23FINAL = VLDO3+0.8 V  
for LDO3[3:0] = 1000 to 1010  
LDOIN23INITIAL = VLDO3+0.25 V to VLDOIN23FINAL = 3.6 V for  
V
LDO3[3:0] = 1011 to 1111  
Refer to Figure 25  
Notes  
43.  
When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper  
regulation due to the dropout voltage generated through the internal LDO transistor.  
44.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test. VLDOIN23MIN refers to the minimum allowed input voltage for a particular output voltage.  
34VR500  
NXP Semiconductors  
65  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.5.5.4  
LDO4  
Table 79. LDO4 electrical characteristics  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = 3.6 V, V  
= 3.6 V, LDO4[3:0] = 1111, I = 10 mA,  
LDO4  
A
IN  
LDOIN45  
V
V
= 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at V = 3.6 V,  
VBIAS  
IN  
= 3.6 V, LDO4[3:0] = 1111, I  
= 10 mA, and 25 °C, unless otherwise noted.  
LDOIN45  
LDO4  
Symbol  
LDO4  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating Input Voltage  
4.5  
4.5  
2.8  
LDO4NOM  
0.250  
(45)  
VLDOIN45  
1.8 V LDO4NOM 2.5 V  
2.6 V LDO4NOM 3.3 V  
V
+
LDO4NOM  
ILDO4  
Nominal Output Voltage  
Operating Load Current  
Table 68  
V
0.0  
100  
mA  
LDO4 active mode – DC  
Output Voltage Tolerance  
VLDO4TOL  
VLDOIN45MIN < VLDOIN45 < 4.5 V  
0.0 mA < ILDO4 < 100 mA, LDO4[3:0] = 0000 to 1111  
-3.0  
3.0  
%
Load Regulation  
VLDO4LOR  
(VLDO4 at ILDO4 = 100 mA) - (VLDO4 at ILDO4 = 0.0 mA)  
For any VLDOIN45MIN < VLDOIN45 < 4.5 mV  
0.10  
mV/mA  
Line Regulation  
VLDO4LIR  
ILDO4LIM  
ILDO4OCP  
(VLDO4 at VLDOIN45 = 4.5 V) - (VLDO4 at VLDOIN45MIN  
For any 0.0 mA < ILDO4 < 100 mA  
)
0.50  
167  
mV/V  
mA  
Current Limit  
122  
120  
200  
200  
ILDO4 when LDO4 is forced to LDO4NOM/2  
Overcurrent Protection threshold  
mA  
ILDO4 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
Quiescent Current  
ILDO4Q  
No load, Change in IVIN and IVLDOIN45  
When LDO4 enabled  
13  
μA  
LDO4 AC and transient  
PSRR  
ILDO4 = 75 mA, 20 Hz to 20 kHz  
(46)  
PSRRLDO4  
dB  
35  
52  
40  
60  
LDO4[3:0] = 0000 - 1111, VLDOIN45 = VLDOIN45MIN + 100 mV  
LDO4[3:0] = 0000 - 1111, VLDOIN45 = LDO4NOM + 1.0 V  
Output Noise Density  
VLDOIN45 = VLDOIN45MIN, ILDO4 = 75 mA  
NOISELDO4  
-114  
-129  
-135  
-102  
-123  
-130  
dBV/Hz  
100 Hz – <1.0 kHz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
Turn-On Slew Rate  
10% to 90% of end value  
VLDOIN45MIN VLDOIN45 4.5 mV, ILDO4 = 0.0 mA  
SLWRLDO4  
22.0  
26.5  
30.5  
34.5  
mVs  
LDO4[3:0] = 0000 to 0011  
LDO4[3:0] = 0100 to 0111  
LDO4[3:0] = 1000 to 1011  
LDO4[3:0] = 1100 to 1111  
34VR500  
66  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 79. LDO4 electrical characteristics  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = 3.6 V, V  
= 3.6 V, LDO4[3:0] = 1111, I = 10 mA,  
LDO4  
A
IN  
LDOIN45  
V
V
= 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at V = 3.6 V,  
VBIAS  
IN  
= 3.6 V, LDO4[3:0] = 1111, I  
= 10 mA, and 25 °C, unless otherwise noted.  
LDOIN45  
LDO4  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
LDO4 active mode – DC (continued)  
Turn-On Time  
tONLDO4  
Enable to 90% of end value, VLDOIN45 = VLDOIN45MIN, 4.5 V  
ILDO4 = 0.0 mA  
60  
500  
μs  
Turn-Off Time  
tOFFLDO4  
Disable to 10% of initial value, VLDOIN45 = VLDOIN45MIN  
ILDO4 = 0.0 mA  
10  
ms  
%
Start-Up Overshoot  
LDO4OSHT  
1.0  
2.0  
VLDOIN45 = VLDOIN45MIN, 4.5 V, ILDO4 = 0.0 mA  
Transient Load Response  
VLDOIN45 = VLDOIN45MIN, 4.5 V  
ILDO4 = 10 to 100 mA in 1.0 μs  
Peak of overshoot or undershoot of LDO4 with respect to final  
value.  
VLDO4LOTR  
3.0  
8.0  
%
Refer to Figure 25  
Transient Line Response  
ILDO4 = 75 mA  
VLDOIN45INITIAL = 2.8 V to VLDOIN45FINAL = 3.3 V for  
LDO4[3:0] = 0000 to 0111  
VLDO4LITR  
-
5.0  
mV  
VLDOIN45INITIAL = VLDO4+0.3 V to VLDOIN45FINAL = VLDO4+0.8 V  
for LDO4[3:0] = 1000 to 1111  
Refer to Figure 25  
Notes  
45.  
When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper  
regulation due to the dropout voltage generated through the internal LDO transistor.  
46.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test. VLDOIN45MIN refers to the minimum allowed input voltage for a particular output voltage.  
34VR500  
NXP Semiconductors  
67  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.5.5.5  
LDO5  
Table 80. LDO5 electrical characteristics  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = 3.6 V, V  
= 3.6 V, LDO5[3:0] = 1111, I = 10 mA,  
LDO5  
A
IN  
LDOIN45  
V
V
= 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at V = 3.6 V,  
VBIAS  
IN  
= 3.6 V, LDO5[3:0] = 1111, I  
= 10 mA, and 25 °C, unless otherwise noted.  
LDOIN45  
LDO5  
Symbol  
LDO5  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating Input Voltage  
1.8 V LDO5NOM 2.5 V  
2.6 V LDO5NOM 3.3 V  
2.8  
LDO5NOM  
0.250  
4.5  
4.5  
(47)  
VLDOIN45  
V
+
LDO5NOM  
ILDO5  
Nominal Output Voltage  
Operating Load Current  
Table 68  
V
0.0  
200  
mA  
LDO5 DC  
Output Voltage Tolerance  
VLDO5TOL  
VLDOIN45MIN < VLDOIN45 < 4.5 V, 0.0 mA < ILDO5 < 200 mA  
LDO5[3:0] = 0000 to 1111  
-3.0  
3.0  
%
Load Regulation  
VLDO5LOR  
(VLDO5 at ILDO5 = 200 mA) - (VLDO5 at ILDO5 = 0.0 mA)  
For any VLDOIN45MIN < VLDOIN45 < 4.5 V  
0.10  
0.50  
333  
mV/mA  
Line Regulation  
VLDO5LIR  
ILDO5LIM  
ILDO5OCP  
ILDO5Q  
(VLDO5 at VLDOIN45 = 4.5 V) - (VLDO5 at VLDOIN45MIN  
For any 0.0 mA < ILDO5 < 200 mA  
)
mV/V  
mA  
Current Limit  
ILDO5 when LDO5 is forced to LDO5NOM/2  
232  
475  
Over Current Protection Threshold  
mA  
ILDO5 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
220  
475  
Quiescent Current  
13  
μA  
No load, Change in IVIN and IVLDOIN45, When LDO5 enabled  
LDO5 AC and transient  
PSRR  
ILDO5 = 150 mA, 20 Hz to 20 kHz  
(48)  
PSRRLDO5  
dB  
35  
52  
40  
60  
LDO5[3:0] = 0000 - 1111, VLDOIN45 = VLDOIN45MIN + 100 mV  
LDO5[3:0] = 0000 - 1111, VLDOIN45 = LDO5NOM + 1.0 V  
Output Noise Density  
VLDOIN45 = VLDOIN45MIN, ILDO5 = 150 mA  
NOISELDO5  
-114  
-129  
-135  
-102  
-123  
-130  
dBV/Hz  
100 Hz – <1.0 kHz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
Turn-On Slew Rate  
10% to 90% of end value  
VLDOIN45MIN VLDOIN45 4.5 V. ILDO5 = 0.0 mA  
SLWRLDO5  
22.0  
26.5  
30.5  
34.5  
mVs  
LDO5[3:0] = 0000 to 0011  
LDO5[3:0] = 0100 to 0111  
LDO5[3:0] = 1000 to 1011  
LDO5[3:0] = 1100 to 1111  
34VR500  
68  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 80. LDO5 electrical characteristics  
All parameters are specified at T = -40 to 105 °C (See Table 3), V = 3.6 V, V  
= 3.6 V, LDO5[3:0] = 1111, I = 10 mA,  
LDO5  
A
IN  
LDOIN45  
V
V
= 1.0 V 4.0%, typical external component values, unless otherwise noted. Typical values are characterized at V = 3.6 V,  
VBIAS  
IN  
= 3.6 V, LDO5[3:0] = 1111, I  
= 10 mA, and 25 °C, unless otherwise noted.  
LDOIN45  
LDO5  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
LDO5 AC and transient (continued)  
Turn-On Time  
tONLDO5  
Enable to 90% of end value, VLDOIN45 = VLDOIN45MIN, 4.5 V  
ILDO5 = 0.0 mA  
60  
500  
μs  
Turn-Off Time  
tOFFLDO5  
Disable to 10% of initial value, VLDOIN45 = VLDOIN45MIN  
ILDO5 = 0.0 mA  
10  
ms  
%
Start-Up Overshoot  
LDO5OSHT  
1.0  
2.0  
VLDOIN45 = VLDOIN45MIN, 4.5 V, ILDO5 = 0 mA  
Transient Load Response  
VLDOIN45 = VLDOIN45MIN, 4.5 V  
ILDO5 = 20 to 200 mA in 1.0 μs  
Peak of overshoot or undershoot of LDO5 with respect to final  
value. Refer to Figure 25  
VLDO5LOTR  
3.0  
8.0  
%
Transient Line Response  
ILDO5 = 150 mA  
VLDOIN45INITIAL = 2.8 V to VLDOIN45FINAL = 3.3 V for  
LDO5[3:0] = 0000 to 0111  
VLDO5LITR  
5.0  
mV  
V
LDOIN45INITIAL = VLDO5+0.3 V to VLDOIN45FINAL = VLDO5+0.8 V for  
LDO5[3:0] = 1000 to 1111  
Refer to Figure 25  
Notes  
47.  
When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper  
regulation due to the dropout voltage generated through the internal LDO transistor.  
48.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test. VLDOIN45 refers to the minimum allowed input voltage for a particular output voltage.  
2
6.5  
Control interface I C block description  
2
2
The 34VR500 contains an I C interface port which allows access by a processor, or any I C master, to the register set. Via these registers,  
the resources of the IC can be controlled. The registers also provide status information about how the IC is operating.  
The SCL and SDA lines should be routed away from noisy signals and planes to minimize noise pick up. To prevent reflections in the SCL  
and SDA traces from creating false pulses, the rise and fall times of the SCL and SDA signals must be greater than 20 ns. This can be  
2
accomplished by reducing the drive strength of the I C master via software. It is recommended to use a drive strength of 80 Ω or higher  
to increase the edge times. Alternatively, this can be accomplished by using small capacitors from SCL and SDA to ground. For example,  
use 5.1 pF capacitors from SCL and SDA to ground for bus pull-up resistors of 4.8 kΩ.  
2
6.5.1 I C device ID  
I C interface protocol requires a device ID for addressing the target IC on a multi-device bus. The I C address is set to 0x08.  
2
2
34VR500  
NXP Semiconductors  
69  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.5.2 I2C operation  
2
The I C mode of the interface is implemented generally following the Fast mode definition which supports up to 400 kbits/s operation  
(exceptions to the standard are noted to be 7-bit only addressing and no support for General Call addressing.)  
2
The I C interface is configured as "Slave".  
2
Timing diagrams, electrical specifications, and further details can be found in the I C specification, which is available for download at:  
http://www.nxp.com/documents/user_manual/UM10204.pdf  
2
I C read operations are performed in byte increments separated by an ACK. Read operations begin with the MSB and each byte is sent  
out unless a STOP command or NACK is received prior to completion.  
2
The 34VR500 only supports single-byte I C transactions for read and write. The host initiates and terminates all communication. The host  
sends a master command packet after driving the start condition. The device responds to the host if the master command packet contains  
the corresponding slave address. In the following examples, the device is shown always responding with an ACK to transmissions from  
the host. If at any time a NACK is received, the host should terminate the current transaction and retry the transaction.  
The 34VR500 uses the "repeated start" operation for reads, as shown in Figure 27.  
Figure 26. Data transfer on the I2C bus  
Figure 27. Read operation  
6.5.3 Interrupt handling  
The system is informed about important events based on interrupts. Unmasked interrupt events are signaled to the processor by driving  
the INTB pin low.  
Each interrupt is latched so that even if the interrupt source becomes inactive, the interrupt will remain set until cleared. Each interrupt  
can be cleared by writing a “1” to the appropriate bit in the Interrupt Status register; this will also cause the INTB pin to go high. If there  
are multiple interrupt bits set the INTB pin will remain low until all are either masked or cleared. If a new interrupt occurs while the processor  
clears an existing interrupt bit, the INTB pin will remain low.  
Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result, when a masked interrupt bit goes high, the INTB  
pin will not go low. A masked interrupt can still be read from the Interrupt Status register. This gives the processor the option of polling for  
status from the IC. The IC powers up with all interrupts masked, so the processor must initially poll the device to determine if any interrupts  
are active. Alternatively, the processor can unmask the interrupt bits of interest. If a masked interrupt bit was already high, the INTB pin  
will go low after unmasking.  
34VR500  
70  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
The sense registers contain status and input sense bits so the system processor can poll the current state of interrupt sources. They are  
read only, and not latched or clearable. Interrupts generated by external events are debounced; therefore, the event needs to be stable  
throughout the debounce period before an interrupt is generated. Nominal debounce periods for each event are documented in the INT  
summary Table 81. Due to the asynchronous nature of the debounce timer, the effective debounce time can vary slightly.  
6.5.4 Interrupt bit summary  
Table 81 summarizes all interrupt, mask, and sense bits associated with INTB control. For more detailed behavioral descriptions, refer to  
the related chapters.  
Table 81. Interrupt, mask and sense bits  
Interrupt  
Mask  
LOWVINM  
Sense  
LOWVINS  
Purpose  
Trigger  
Debounce time (ms)  
Low Input Voltage Detect  
Sense is 1 if below 2.80 V threshold  
LOWVINI  
H to L  
3.9(49)  
Enable on button event  
Sense is 1 if EN is high  
H to L  
L to H  
31.25(49)  
31.25  
ENI  
ENM  
ENS  
Thermal 110 °C threshold  
Sense is 1 if above threshold  
THERM110  
THERM120  
THERM125  
THERM130  
SW1FAULTI  
SW2FAULTI  
SW3FAULTI  
SW4FAULTI  
LDO1FAULTI  
LDO2FAULTI  
LDO3FAULTI  
LDO4FAULTI  
THERM110M  
THERM120M  
THERM125M  
THERM130M  
SW1FAULTM  
SW2FAULTM  
SW3FAULTM  
SW4FAULTM  
LDO1FAULTM  
LDO2FAULTM  
LDO3FAULTM  
LDO4FAULTM  
LDO5FAULTM  
THERM110S  
THERM120S  
THERM125S  
THERM130S  
SW1FAULTS  
SW2FAULTS  
SW3FAULTS  
SW4FAULTS  
LDO1FAULTS  
LDO2FAULTS  
LDO3FAULTS  
LDO4FAULTS  
LDO5FAULTS  
Dual  
Dual  
3.9  
3.9  
3.9  
3.9  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Thermal 120 °C threshold  
Sense is 1 if above threshold  
Thermal 125 °C threshold  
Sense is 1 if above threshold  
Dual  
Thermal 130 °C threshold  
Sense is 1 if above threshold  
Dual  
Regulator 1 overcurrent limit  
Sense is 1 if above current limit  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
Regulator 2 overcurrent limit  
Sense is 1 if above current limit  
Regulator 3 overcurrent limit  
Sense is 1 if above current limit  
Regulator 4 overcurrent limit  
Sense is 1 if above current limit  
LDO1 overcurrent limit  
Sense is 1 if above current limit  
LDO2 overcurrent limit  
Sense is 1 if above current limit  
LDO3 overcurrent limit  
Sense is 1 if above current limit  
LDO4 overcurrent limit  
Sense is 1 if above current limit  
LDO5 overcurrent limit  
Sense is 1 if above current limit  
LDO5FAULTI  
Notes  
49.  
Debounce timing for the falling edge can be extended with ENDBNC[1:0].  
A full description of all interrupt, mask, and sense registers is provided in Tables 82 to 90.  
34VR500  
NXP Semiconductors  
71  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 82. Register INTSTAT0 - ADDR 0x05  
Name  
Bit #  
R/W  
Default  
Description  
Power on interrupt bit  
ENI  
0
1
2
3
4
5
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
0
0
LOWVINI  
Low-voltage interrupt bit  
THERM110I  
THERM120I  
THERM125I  
THERM130I  
110 °C Thermal interrupt bit  
120 °C Thermal interrupt bit  
125 °C Thermal interrupt bit  
130 °C Thermal interrupt bit  
Table 83. Register INTMASK0 - ADDR 0x06  
Name  
Bit #  
R/W  
Default  
Description  
ENM  
0
1
2
3
4
5
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
1
1
1
1
1
1
Power on interrupt mask bit  
LOWVINM  
Low-voltage interrupt mask bit  
110 °C Thermal interrupt mask bit  
120 °C Thermal interrupt mask bit  
125 °C Thermal interrupt mask bit  
130 °C Thermal interrupt mask bit  
THERM110M  
THERM120M  
THERM125M  
THERM130M  
Table 84. Register INTSENSE0 - ADDR 0x07  
Name  
Bit #  
R/W  
Default  
Description  
Enable on sense bit  
0 = EN low  
ENS  
0
R
0
1 = EN high  
Low voltage sense bit  
0 = VIN > 2.8 V  
LOWVINS  
1
2
3
4
5
R
R
R
R
R
0
0
0
0
0
1 = VIN 2.8 V  
110 °C Thermal sense bit  
0 = Below threshold  
1 = Above threshold  
THERM110S  
THERM120S  
THERM125S  
THERM130S  
120 °C Thermal sense bit  
0 = Below threshold  
1 = Above threshold  
125 °C Thermal sense bit  
0 = Below threshold  
1 = Above threshold  
130 °C Thermal sense bit  
0 = Below threshold  
1 = Above threshold  
Table 85. Register INTSTAT1 - ADDR 0x08  
Name  
SW1FAULTI  
Bit #  
R/W  
Default  
Description  
2:0  
3
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
SW1 Overcurrent interrupt bit  
SW2 Overcurrent interrupt bit  
SW3 Overcurrent interrupt bit  
SW4 Overcurrent interrupt bit  
SW2FAULTI  
SW3FAULTI  
SW4FAULTI  
5:4  
6
34VR500  
72  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 86. Register INTMASK1 - ADDR 0x09  
Name  
Bit #  
R/W  
Default  
Description  
SW1FAULTM  
SW2FAULTM  
SW3FAULTM  
SW4FAULTM  
2:0  
3
R/W  
R/W  
R/W  
R/W  
1
1
1
1
SW1 Overcurrent interrupt mask bit  
SW2 Overcurrent interrupt mask bit  
SW3 Overcurrent interrupt mask bit  
SW4 Overcurrent interrupt mask bit  
5:4  
6
Table 87. Register INTSENSE1 - ADDR 0x0A  
Name  
Bit #  
R/W  
Default  
Description  
SW1 Overcurrent sense bit  
0 = Normal operation  
SW1FAULTS  
2:0  
R
0
1 = Above current limit  
SW2 Overcurrent sense bit  
0 = Normal operation  
SW2FAULTS  
SW3FAULTS  
SW4FAULTS  
3
5:4  
6
R
R
R
0
0
0
1 = Above current limit  
SW3 Overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
SW4 Overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
Table 88. Register INTSTAT4 - ADDR 0x11  
Name  
Bit #  
R/W  
Default  
Description  
LDO1FAULTI  
LDO2FAULTI  
LDO3FAULTI  
LDO4FAULTI  
LDO5FAULTI  
1
2
3
4
5
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
0
LDO1 Overcurrent interrupt bit  
LDO2 Overcurrent interrupt bit  
LDO3 Overcurrent interrupt bit  
LDO4 Overcurrent interrupt bit  
LDO5 Overcurrent interrupt bit  
Table 89. Register INTMASK4 - ADDR 0x12  
Name  
Bit #  
R/W  
Default  
Description  
LDO1FAULTM  
LDO2FAULTM  
LDO3FAULTM  
LDO4FAULTM  
LDO5FAULTM  
1
2
3
4
5
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
1
LDO1 Overcurrent interrupt mask bit  
LDO2 Overcurrent interrupt mask bit  
LDO3 Overcurrent interrupt mask bit  
LDO4 Overcurrent interrupt mask bit  
LDO5 Overcurrent interrupt mask bit  
34VR500  
NXP Semiconductors  
73  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 90. Register INTSENSE4 - ADDR 0x13  
Name  
Bit #  
R/W  
Default  
Description  
LDO1 Overcurrent sense bit  
0 = Normal operation  
LDO1FAULTS  
1
R
0
1 = Above current limit  
LDO2 Overcurrent sense bit  
0 = Normal operation  
LDO2FAULTS  
LDO3FAULTS  
LDO4FAULTS  
LDO5FAULTS  
2
3
4
5
R
R
R
R
0
0
0
0
1 = Above current limit  
LDO3 Overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
LDO4 Overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
LDO5 Overcurrent sense bit  
0 = Normal operation  
1 = Above current limit  
6.5.5 Specific registers  
6.5.5.1  
IC and version identification  
The IC and other version details can be read via identification bits. These are hard-wired on chip and described in Tables 91 to 93.  
Table 91. Register DEVICEID - ADDR 0x00  
Name  
DEVICEID  
Bit #  
R/W  
Default  
Description  
Die version.  
0100 = 34VR500  
3:0  
R
0x00  
Table 92. Register SILICON REV- ADDR 0x03  
Name  
Bit #  
R/W  
Default  
Description  
Represents the metal mask revision  
Pass 0.0 = 0000  
METAL_LAYER_REV  
3:0  
R
0x00  
.
.
Pass 0.15 = 1111  
Represents the full mask revision  
Pass 1.0 = 0001  
FULL_LAYER_REV  
7:4  
R
0x01  
.
.
Pass 15.0 = 1111  
Table 93. Register FABID - ADDR 0x04  
Name  
Bit #  
R/W  
Default  
Description  
Allows for characterizing different options within  
the same reticule  
FIN  
1:0  
3:2  
R
R
0x00  
0x00  
FAB  
Represents the wafer manufacturing facility  
34VR500  
74  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.5.6 Register bitmap  
The register map is comprised of thirty-two pages, and its address and data fields are each eight bits wide. Only the first two pages can  
be accessed. On each page, registers 0 to 0x7F are referred to as 'functional', and registers 0x80 to 0xFF as 'extended'. On each page,  
the functional registers are the same, but the extended registers are different. To access the Functional page from one of the extended  
pages, no write to the page register is necessary.  
Registers that are missing in the sequence are reserved; reading from them will return a value 0x00, and writing to them will have no effect.  
The contents of all registers are given in the tables defined in this chapter; each table is structure as follows:  
Name: Name of the bit.  
Bit #: The bit location in the register (7-0)  
R/W: Read / Write access and control  
• R is read-only access  
• R/W is read and write access  
• RW1C is read and write access with write 1 to clear  
Reset: Reset signals are color coded based on the following legend.  
Bits reset by VCOREDIG_PORB  
Bits reset by EN or loaded default  
Bits reset by DIGRESETB  
Bits reset by PORB  
Bits reset by VCOREDIG_PORB  
Bits reset by POR or OFFB  
Default: The value after reset, as noted in the Default column of the memory map.  
• Fixed defaults are explicitly declared as 0 or 1.  
2
• “X” corresponds to Read / Write bits that are initialized at start-up. Bits are subsequently I C modifiable, when their reset has been  
released. “X” may also refer to bits that may have other dependencies. For example, some bits may depend on the version of the  
IC, or a value from an analog block, for instance the sense bits for the interrupts.  
6.5.6.1  
Register map  
Table 94. Functional page  
BITS[7:0]  
Add Register name R/W  
Default  
7
0
6
0
5
0
4
1
3
2
1
0
DEVICE ID [3:0]  
00  
DeviceID  
R
8'b0001_0000  
0
1
0
0
FULL_LAYER_REV[3:0]  
METAL_LAYER_REV[3:0]  
03  
04  
05  
06  
07  
SILICONREVID  
FABID  
R
R
8'b0001_0000  
8'b0000_0000  
0
0
0
1
0
0
0
0
0
0
FAB[1:0]  
FIN[1:0]  
0
0
0
0
0
0
ENI  
0
THERM130I  
THERM125I  
THERM120I  
THERM110I  
LOWVINI  
INTSTAT0  
INTMASK0  
INTSENSE0  
RW1C 8'b0000_0000  
0
0
0
0
0
0
0
THERM130M  
THERM125M  
THERM120M  
THERM110M  
LOWVINM  
ENM  
1
R/W  
R
8'b0011_1111  
8'b00xx_xxxx  
0
RSVD  
0
0
RSVD  
0
1
1
1
1
1
THERM130S  
x
THERM125S  
x
THERM120S  
x
THERM110S  
x
LOWVINS  
x
ENS  
x
34VR500  
NXP Semiconductors  
75  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 94. Functional page (continued)  
BITS[7:0]  
Add Register name R/W  
Default  
7
0
0
0
6
5
0
1
x
4
0
1
x
3
2
0
1
x
1
0
0
1
x
SW4FAULTI  
SW3FAULTI  
SW3FAULTM  
SW3FAULTS  
SW2FAULTI  
SW1FAULTI  
08  
09  
0A  
INTSTAT1  
INTMASK1  
INTSENSE1  
RW1C 8'b0000_0000  
0
0
0
SW4FAULTM  
SW2FAULTM  
SW1FAULTM  
R/W  
R
8'b0111_1111  
8'b0xxx_xxxx  
1
1
1
SW4FAULTS  
x
SW2FAULTS  
x
SW1FAULTS  
x
0
0
LDO5FAULTI  
0
LDO4FAULTI  
0
LDO3FAULTI  
0
LDO2FAULTI  
0
LDO1FAULTI  
0
0
11  
12  
INTSTAT4  
INTMASK4  
RW1C 8'b0000_0000  
LDO5  
FAULTM  
LDO4  
FAULTM  
LDO3  
FAULTM  
LDO2  
FAULTM  
LDO1  
FAULTM  
0
0
0
0
1
x
R/W  
R
8'b0011_1111  
8'b00xx_xxxx  
1
1
1
1
1
LDO5  
FAULTS  
LDO4  
FAULTS  
LDO3  
FAULTS  
LDO2  
FAULTS  
LDO1  
FAULTS  
13  
1B  
INTSENSE4  
PWRCTL  
x
x
x
x
x
REGSCPEN  
0
STANDBYINV  
0
STBYDLY[1:0]  
ENDBNC[1:0]  
ENRSTEN  
0
RESTARTEN  
0
R/W  
8'b0001_0000  
0
1
0
0
0
0
0
0
0
0
0
0
SW1[5:0]  
2E  
2F  
30  
31  
32  
SW1VOLT  
SW1STBY  
SW1OFF  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b00xx_xxxx  
8'b00xx_xxxx  
8'b00xx_xxxx  
8'b0000_1000  
8'bxx00_xx00  
x
x
x
x
x
x
x
1
x
x
x
x
0
x
x
x
x
x
x
x
SW1STBY[5:0]  
SW1OFF[5:0]  
x
x
0
SW1OMODE  
0
SW1MODE[3:0]  
SW1MODE  
SW1CONF  
0
0
SW1ILIM  
0
SW1DVSSPEED[1:0]  
SW1PHASE[1:0]  
SW1FREQ[1:0]  
x
x
0
0
0
0
0
0
0
SW2[6:0]  
35  
36  
37  
38  
39  
SW2VOLT  
SW2STBY  
SW2OFF  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0000_1000  
8'bxx01_xx00  
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
SW2STBY[6:0]  
x
SW2OFF[6:0]  
x
x
0
x
x
0
SW2OMODE  
0
SW2MODE[3:0]  
SW2MODE  
SW2CONF  
1
0
0
SW2ILIM  
0
SW2DVSSPEED[1:0]  
SW2PHASE[1:0]  
SW2FREQ[1:0]  
x
x
0
1
x
0
34VR500  
76  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 94. Functional page (continued)  
BITS[7:0]  
Add Register name R/W  
Default  
7
6
5
4
3
2
1
0
0
0
0
SW3[6:0]  
3C  
3D  
3E  
3F  
40  
SW3AVOLT  
SW3ASTBY  
SW3AOFF  
SW3MODE  
SW3CONF  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0000_1000  
8'bxx10_xx00  
x
x
x
0
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
SW3STBY[6:0]  
x
SW3OFF[6:0]  
x
x
x
0
SW3OMODE  
0
SW3MODE[3:0]  
0
1
0
0
SW3ILIM  
0
SW3DVSSPEED[1:0]  
SW3PHASE[1:0]  
SW3FREQ[1:0]  
x
x
1
0
x
0
0
0
0
0
0
0
0
0
SW4[5:0]  
4A  
4B  
4C  
4D  
4E  
SW4VOLT  
SW4STBY  
SW4OFF  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0000_1000  
8'bxx11_xx00  
x
x
x
x
x
x
x
1
x
x
x
x
x
x
x
x
SW4STBY[5:0]  
SW4OFF[5:0]  
x
x
0
x
x
x
0
SW4OMODE  
0
SW4MODE[3:0]  
SW4MODE  
SW4CONF  
0
0
SW4ILIM  
0
SW4DVSSPEED[1:0]  
SW4PHASE[1:0]  
SW4FREQ[1:0]  
x
x
1
1
0
0
0
0
0
0
0
0
REFOUTEN  
0
0
0
0
6A  
6D  
6E  
6F  
70  
71  
7F  
REFOUTCRTRL  
LDO1CTL  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b000x_0000  
8'b000x_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
8'b0000_0000  
0
0
x
LDO1LPWR  
LDO1STBY  
LDO1EN  
LDO1[3:0]  
LDO2[3:0]  
LDO3[3:0]  
LDO4[3:0]  
LDO5[3:0]  
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
LDO2LPWR  
LDO2STBY  
LDO2EN  
LDO2CTL  
0
0
x
LDO3LPWR  
LDO3STBY  
LDO3EN  
LDO3CTL  
0
0
x
LDO4LPWR  
LDO4STBY  
LDO4EN  
LDO4CTL  
0
0
x
LDO5EN  
x
LDO5LPWR  
LDO5STBY  
LDO5CTL  
0
0
0
0
PAGE[4:0]  
x
Page Register  
x
34VR500  
NXP Semiconductors  
77  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 95. Extended page 1: internal RAM  
BITS[7:0]  
Address Register name TYPE  
Default  
7
0
0
0
6
0
5
4
3
2
1
x
x
0
x
x
x
SW1_VOLT[5:0]  
x
A8  
A9  
AA  
SW1 VOLT  
SW1 SEQ  
R/W  
R/W  
R/W  
8'b00xx_xxxx  
8'b000x_xxxx  
8'b0000_00xx  
x
x
x
SW1_SEQ[4:0]  
0
0
0
0
x
0
x
0
x
0
SW1_FREQ[1:0]  
SW1 CONFIG  
x
0
0
0
SW2_VOLT[6:0]  
x
AC  
AD  
AE  
SW2 VOLT  
SW2 SEQ  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b000x_xxxx  
8'b0000_00xx  
x
0
0
x
x
x
x
x
x
x
x
SW2_SEQ[4:0]  
0
0
x
0
x
0
x
0
SW2_FREQ[1:0]  
SW2 CONFIG  
x
0
0
0
SW3A_VOLT[6:0]  
x
B0  
B1  
B2  
SW3 VOLT  
SW3 SEQ  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b000x_xxxx  
8'b0000_xxxx  
x
0
0
x
x
x
x
x
x
x
x
SW3_SEQ[4:0]  
x
0
0
x
0
x
x
SW3_CONFIG[1:0]  
SW3_FREQ[1:0]  
SW3 CONFIG  
x
x
0
0
0
0
0
0
SW4_VOLT[5:0]  
B8  
B9  
BA  
SW4 VOLT  
SW4 SEQ  
R/W  
R/W  
R/W  
8'b00xx_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
x
0
0
x
x
x
x
x
x
x
x
SW4_SEQ[4:0]  
x
VTT  
x
x
x
x
x
SW4_FREQ[1:0]  
SW4 CONFIG  
x
0
0
0
REFOUT_SEQ[4:0]  
0
C4  
REFOUT SEQ  
R/W  
8'b000x_x0xx  
x
x
x
x
0
0
0
0
0
0
0
LDO1_VOLT[3:0]  
CC  
CD  
LDO1 VOLT  
LDO1 SEQ  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
LDO1_SEQ[4:0]  
x
x
x
0
0
0
0
LDO2_VOLT[3:0]  
D0  
LDO2 VOLT  
R/W  
8'b0000_xxxx  
x
x
x
x
34VR500  
78  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 95. Extended page 1: internal RAM (continued)  
BITS[7:0]  
Address Register name TYPE  
Default  
7
0
6
0
5
0
4
3
2
1
0
LDO2_SEQ[4:0]  
x
D1  
LDO2 SEQ  
R/W  
8'b000x_xxxx  
x
x
x
x
0
0
0
0
0
0
0
LDO3_VOLT[3:0]  
D4  
D5  
LDO3 VOLT  
LDO3 SEQ  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
LDO3_SEQ[4:0]  
x
x
x
0
0
0
0
0
0
0
LDO4_VOLT[3:0]  
D8  
D9  
LDO4 VOLT  
LDO4 SEQ  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
LDO4_SEQ[4:0]  
x
x
x
0
0
0
0
0
0
0
LDO5_VOLT[3:0]  
DC  
DD  
LDO5 VOLT  
LDO5 SEQ  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
LDO5_SEQ[4:0]  
x
x
x
PWRON_  
CFG1  
SWDVS_CLK1[1:0]  
SEQ_CLK_SPEED1[1:0]  
E0  
PU CONFIG1  
R/W  
R/W  
8'b000x_xxxx  
8'b0000_00x0  
0
0
RSVD  
RSVD  
0
x
x
x
x
RSVD  
RSVD  
x
TBB_POR  
E4  
E8  
TBB_POR  
0
0
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
PG_EN  
0
0
0
0
0
PWRGD EN  
R/W/M 8'b0000_000x  
0
x
34VR500  
NXP Semiconductors  
79  
TYPICAL APPLICATIONS  
7
Typical applications  
7.1  
Introduction  
Figure 28 provides a typical application diagram of the 34VR500 PMIC together with its functional components. For details on component  
references and additional components such as filters, refer to the individual sections.  
7.1.1 Application diagram  
VLDOIN1  
1.0uF  
FB1  
SW1 Output  
VR500  
3 x 4.7 uF  
+3 x 0.1 uF  
Vin  
PVIN1  
LX1  
SW1  
4500 mA  
Buck  
O/P  
Drive  
0.68uH  
4.7uF  
LDO1  
250mA  
LDO1  
7 x22 uF  
VLDOIN23  
1.0uF  
2.2uF  
LDO2  
100mA  
LDO2  
LDO3  
SW2 Output  
1.5uH  
LX2  
LDO3  
350mA  
SW2  
2000 mA  
Buck  
O/P  
Drive  
PVIN2  
4.7uF  
3 x 22 uF  
4.7 uF  
+0.1 uF  
Vin  
VLDOIN45  
FB2  
Core Control logic  
1.0uF  
2.2uF  
LDO4  
100mA  
LDO4  
LDO5  
Initialization State Machine  
FB3  
SW3 Output  
3 x 22 uF  
LDO5  
200mA  
2 x 4.7 uF  
Vin  
+2 x 0.1 uF  
2.2uF  
SW3  
2500 mA  
Buck  
PVIN3  
LX3  
O/P  
Drive  
1.5uH  
Supplies  
Control  
VCCI2C  
VCCI2C  
CONTROL  
FB4  
I2C  
Interface  
SW4 Output  
3 x 22 uF  
4.7 uF  
+0.1 uF  
Vin  
SW4  
1000 mA  
Buck  
PVIN4  
LX4  
SCL  
SDA  
O/P  
Drive  
1.5uH  
To  
MCU  
DVS CONTROL  
DVS Control  
I2C  
Register  
map  
1uF  
Trim-In-Package  
VDIG  
VBG  
VCC  
220nF  
1uF  
Reference  
Generation  
Clocks and  
resets  
SGND4  
VBIAS  
0.47uF  
1uF  
Clocks  
32kHz and 16MHz  
REFOUT  
REFIN  
VSW3  
Package Pin Legend  
Output Pin  
Input Pin  
100nF  
VHALF  
Bi-directional Pin  
100nF  
VSW2  
VSW2  
VSW2  
To/From  
AP  
Figure 28. Typical application schematic  
34VR500  
80  
NXP Semiconductors  
TYPICAL APPLICATIONS  
7.1.2 Application instructions  
Table 96 provides a complete list of the recommended components on a full featured system using the 34VR500 device. Critical  
components such as inductors, transistors, and diodes are provided with a recommended part number, but equivalent components may  
be used.  
7.2  
Bill of materials  
Table 96. Bill of materials (50)  
Schematic  
Assy  
opt  
Item Qty  
Value  
Description  
Part number  
Manufacturer  
Component/pin  
label  
Freescale components  
1
1
Power management IC  
4 x 4 x 2.1  
34VR500  
Freescale  
BUCK, SW1 - (0.625-1.875 V), 4.5 A  
2
1
0.60 μH  
XAL4020-601ME  
Coilcraft  
Output Inductor  
ISAT = 10.4 A for 30% drop,  
DCRMAX = 10.45 mΩ  
3
4
5
6
3
3
22 μF  
4.7 μF  
0.1 μF  
10 V X5R 0805  
10 V X5R 0603  
10 V X5R 0402  
LMK212BJ226MG-T  
LMK107BJ475KA-T  
C0402C104K8PAC  
Taiyo Yuden  
Taiyo Yuden  
Kemet  
Output capacitance  
Input capacitance  
Input capacitance  
BUCK, SW2 - (0.625-3.3 V), 2.0 A  
3.9 x 3.9 x 1.1  
6
1
1.5 μH  
LPS4012-152MR  
Coilcraft  
Output Inductor  
ISAT = 2.6 A for 10% drop,  
DCRMAX = 70 mΩ  
7
8
9
2
1
1
22 μF  
4.7 μF  
0.1 μF  
10 V X5R 0805  
10 V X5R 0603  
10 V X5R 0402  
LMK212BJ226MG-T  
LMK107BJ475KA-T  
C0402C104K8PAC  
Taiyo Yuden  
Taiyo Yuden  
Kemet  
Output capacitance  
Input capacitance  
Input capacitance  
BUCK, SW3 - (0.625-3.3 V), 2.5 A  
4 x 4 x 2.1  
10  
1
1.5 μH  
XFL4020-152ME  
Coilcraft  
Output Inductor  
ISAT = 7.0 A for 10% drop,  
DCRMAX = 21.45 mΩ  
4.3 x 4.3 x 1.4  
ISAT = 2.9 A for 10% drop,  
DCRMAX = 78 mΩ  
Output Inductor  
(Alternate)  
11  
12  
1.5 μH  
1.0 μH  
LPS4014_152ML  
Coilcraft  
Toko  
4 x 4 x 1.2  
ISAT = 6.2 A, DCR = 37 mΩ  
Output inductor  
(Alternate)  
FDSD0412-H-1R0M  
13  
14  
15  
4
2
1
22 μF  
4.7 μF  
0.1 μF  
10 V X5R 0805  
10 V X5R 0603  
10 V X5R 0402  
LMK212BJ226MG-T  
LMK107BJ475KA-T  
C0402C104K8PAC  
Taiyo Yuden  
Taiyo Yuden  
Kemet  
Output capacitance  
Input capacitance  
Input capacitance  
34VR500  
NXP Semiconductors  
81  
TYPICAL APPLICATIONS  
Table 96. Bill of materials (50) (continued)  
Schematic  
Assy  
opt  
Item Qty  
Value  
Description  
Part number  
Manufacturer  
Component/pin  
label  
BUCK, SW4 - (0.625-1.975 V), 1.0 A  
3.9 x 3.9 x 1.1  
16  
1
1.5 μH  
LPS4012-152MR  
Coilcraft  
Output Inductor  
ISAT = 2.6 A for 10% drop,  
DCRMAX = 70 mΩ  
17  
18  
19  
2
1
1
22 μF  
4.7 μF  
0.1 μF  
10 V X5R 0805  
10 V X5R 0603  
10 V X5R 0402  
LMK212BJ226MG-T  
LMK107BJ475KA-T  
C0402C104K8PAC  
Taiyo Yuden  
Taiyo Yuden  
Kemet  
Output capacitance  
Input capacitance  
Input capacitance  
LDO, LDO1 - (0.80-1.55), 250 mA  
20  
1
4.7 μF  
6.3 V X5R 0402  
6.3 V X5R 0402  
6.3 V X5R 0402  
6.3 V X5R 0402  
6.3 V X5R 0402  
C0402X5R6R3-  
Venkel  
Output capacitance  
Output capacitance  
Output capacitance  
Output capacitance  
Output capacitance  
LDO, LDO2 - (1.80-3.30), 100 mA  
21  
1
2.2 μF  
C0402C225M9PACTU Kemet  
LDO, LDO3 - (1.80-3.30), 350 mA  
22  
1
4.7 μF  
C0402X5R6R3-  
Venkel  
LDO, LDO4 - (1.80-3.30), 100 mA  
23  
1
2.2 μF  
C0402C225M9PACTU Kemet  
C0402C225M9PACTU Kemet  
CC0402KRX5R6BB105 Yageo America  
LDO, LDO5 - (1.80-3.30), 200 mA  
24  
1
2.2 μF  
Reference, REFOUT - (0.60-0.90V), 10 mA  
25  
26  
1
2
1.0 μF  
0.1 μF  
10 V X5R 0402  
10 V X5R 0402  
Output capacitance  
VHALF, REFIN  
C0402C104K8PAC  
Kemet  
Internal references, VDIG, VBG, VCC  
27  
28  
29  
1
1
1
1.0 μF  
1.0 μF  
0.22 μF  
10 V X5R 0402  
10 V X5R 0402  
10 V X5R 0402  
CC0402KRX5R6BB105 Yageo America  
CC0402KRX5R6BB105 Yageo America  
GRM155R61A224KE1 Murata  
VDIG  
VCC  
VBG  
Miscellaneous  
30  
31  
32  
33  
34  
35  
1
1
1
1
1
1
0.1 μF  
1.0 μF  
100 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
10 V X5R 0402  
10 V X5R 0402  
1/16 W 0402  
1/16 W 0402  
1/16 W 0402  
1/16 W 0402  
CD402C104K8PAC  
Kemet  
VCCI2C  
VIN  
CC0402KRX5R6BB105 Yageo America  
RK73H1ETTP1003F  
RK73H1ETTP1003F  
RK73H1ETTP1003F  
RK73H1ETTP1003F  
KOA SPEER  
KOA SPEER  
KOA SPEER  
KOA SPEER  
EN  
PORB  
STBY  
INTB  
Notes  
50.  
Freescale does not assume liability, endorse, or warrant components from external manufacturers are referenced in circuit drawings or tables.  
While Freescale offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.  
Do not populate  
51.  
52.  
Critical components. For critical components, it is vital to use the manufacturer listed.  
34VR500  
82  
NXP Semiconductors  
TYPICAL APPLICATIONS  
7.3  
34VR500 layout guidelines  
7.3.1 General board recommendations  
1. It is recommended to use an eight layer board stack-up arranged as follows:  
• High current signal  
• GND  
• Signal  
• Power  
• Power  
• Signal  
• GND  
• High current signal  
2. Allocate TOP and BOTTOM PCB Layers for POWER ROUTING (high current signals), copper-pour the unused area.  
3. Use internal layers sandwiched between two GND planes for the SIGNAL routing.  
7.3.2 Component placement  
It is desirable to keep all component related to the power stage as close to the PMIC as possible, specially decoupling input and output  
capacitors.  
7.3.3 General routing requirements  
1. Some recommended things to keep in mind for manufacturability:  
• Via in pads require a 4.5 mil minimum annular ring. Pad must be 9.0 mils larger than the hole  
• Maximum copper thickness for lines less than 5.0 mils wide is 0.6 oz copper  
• Minimum allowed spacing between line and hole pad is 3.5 mils  
• Minimum allowed spacing between line and line is 3.0 mils  
2. Care must be taken with FBx pins traces. These signals are susceptible to noise and must be routed far away from power, clock, or  
high power signals, like the ones on the PVINx, SWx, and LXx pins. They could be also shielded.  
3. Shield feedback traces of the regulators and keep them as short as possible (trace them on the bottom so the ground and power  
planes shield these traces).  
4. Avoid coupling traces between important signal/low noise supplies (like VBG, VCC, VDIG) from any switching node (i.e. LX1, LX2,  
LX3, and LX4).  
5. Make sure that all components related to a specific block are referenced to the corresponding ground.  
34VR500  
NXP Semiconductors  
83  
TYPICAL APPLICATIONS  
7.3.4 Parallel routing requirements  
2
1. I C signal routing  
• CLK is the fastest signal of the system, so it must be given special care.  
To avoid contamination of these delicate signals by nearby high power or high frequency signals, it is a good practice to shield them  
with ground planes placed on adjacent layers. Make sure the ground plane is uniform throughout the whole signal trace length.  
Figure 29. Recommended shielding for critical signals  
• These signals can be placed on an outer layer of the board to reduce their capacitance with respect to the ground plane.  
• Care must be taken with these signals not to contaminate analog signals, as they are high frequency signals. Another good practice  
is to trace them perpendicularly on different layers, so there is a minimum area of proximity between signals.  
7.3.5 Switching regulator layout recommendations  
1. Per design, the switching regulators in 34VR500 are designed to operate with only one input bulk capacitor. However, it is  
recommended to add a high frequency filter input capacitor (CIN_hf), to filter out any noise at the regulator input. This capacitor  
should be in the range of 100 nF and should be placed right next to or under the IC, closest to the IC pins.  
2. Make high-current ripple traces low-inductance (short, high W/L ratio).  
3. Make high-current traces wide or copper islands.  
34VR500  
84  
NXP Semiconductors  
TYPICAL APPLICATIONS  
VIN  
PVINx  
CIN_HF  
CIN  
SWx  
LXx  
Driver Controller  
L
COUT  
FBx  
Compensation  
Figure 30. Generic buck regulator architecture  
Figure 31. Layout example for buck regulators  
7.4  
Thermal information  
7.4.1 Rating data  
The thermal rating data of the packages has been simulated with the results listed in Table 4.  
Junction to Ambient Thermal Resistance Nomenclature: the JEDEC specification reserves the symbol R  
or θJA (Theta-JA) strictly for  
θJA  
junction-to-ambient thermal resistance on a 1s test board in natural convection environment. R  
or θJMA (Theta-JMA) will be used for  
θJMA  
both junction-to-ambient on a 2s2p test board in natural convection and for junction-to-ambient with forced convection on both 1s and  
2s2p test boards. It is anticipated that the generic name, Theta-JA, will continue to be commonly used.  
The JEDEC standards can be consulted at http://www.jedec.org.  
34VR500  
NXP Semiconductors  
85  
TYPICAL APPLICATIONS  
7.4.2 Estimation of junction temperature  
An estimation of the chip junction temperature T can be obtained from the equation:  
J
T = T + (R  
x P )  
D
J
A
θJA  
with:  
T = Ambient temperature for the package in °C  
A
RθJA = Junction to ambient thermal resistance in °C/W  
P = Power dissipation in the package in W  
D
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance.  
Unfortunately, there are two values in common usage: the value determined on a single layer board R  
and the value obtained on a four  
θJA  
layer board R  
. Actual application PCBs show a performance close to the simulated four layer board value although this may be  
θJMA  
somewhat degraded in case of significant power dissipated by other components placed close to the device.  
At a known board temperature, the junction temperature T is estimated using the following equation  
J
T = T + (R  
x P ) with  
D
J
B
θJB  
T = Board temperature at the package perimeter in °C  
B
R
= Junction to board thermal resistance in °C/W  
θJB  
P = Power dissipation in the package in W  
D
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made.  
See Functional block requirements and behaviors for more details on thermal management.  
34VR500  
86  
NXP Semiconductors  
PACKAGING  
8
Packaging  
8.1  
Packaging dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and  
perform a keyword search for the drawing’s document number. See the Thermal characteristics section for specific thermal characteristics  
for each package.  
Table 97. Package drawing information  
Package  
Suffix  
Package outline drawing number  
56 QFN 8x8 mm - 0.5 mm pitch.  
WF-Type (wettable flank)  
ES  
98ASA00589D  
34VR500  
NXP Semiconductors  
87  
PACKAGING  
34VR500  
88  
NXP Semiconductors  
PACKAGING  
34VR500  
NXP Semiconductors  
89  
REVISION HISTORY  
9
Revision history  
Revision  
Date  
Description of changes  
Initial release  
1.0  
5/2014  
SW2, SW3, and SW4 voltage range modification  
Table 6.1.2 added to explain how to change the start sequence.  
Table 95 added  
Added PC34VR500V2ES to the Orderable part Table 1  
Update the 98A number  
2.0  
3.0  
8/2014  
1/2015  
Added Bill of Materials  
Updated Table 1 (corrected a typo)  
Updated values for VSW2ACC in Table 47  
Updated values for VSW3ACC in Table 56  
Updated values for VSW4ACC in Table 65  
Updated package outline (changed 98ASA00379D to 98ASA00589D)  
Added optimized value for the buck regulator external components  
Added MC34VR500V3ES, MC34VR500V4ES, MC34VR500V5ES to the Orderable Part Variations Table  
Added SW1, SW2, SW3, SW4 transient load plots  
Added SW1, SW2 efficiency plots  
Updated Control interface I2C block description, I2C device ID, and I2C operation sections  
Updated SW2 rated current to 2.0 A  
4.0  
5.0  
7/2015  
1/2017  
Updated document to NXP form and style  
Added MC34VR500V6ES, MC34VR500V7ES, and MC34VR500V8ES to Table 1  
Updated Table 8 and added the new part numbers to 5.1 Features, page 12, and 6.4.4.17 SW4, page 49  
Updated Figure 16  
Updated voltage values under “Four independent outputs” for SW2 and SW3 from “0.625 V to 1.975 V” to  
“0.625V to 3.3V” in Section 5.1  
Updated Figure 4 in Section 5.2, to reflect revised voltage values for SW2 and SW3  
Updated voltage values for SW2 and SW3 in Table 21 from “0.625 - 1.975” to “0.625 - 1.975 / 0.8 - 3.3”  
Updated Step size values for SW2 and SW3 from “25” to “25 / 50” in Table 21  
Updated SW2 and SW3 voltage from “1.975 V” to “3.3” V in Figure 10  
Updated Section 6.4.4.10 and Table 39  
Updated Table 41, Table 42 and Table 43, adding two rows to the bottom of each table  
Updated Table 47, as follows:  
Added high voltage range values “2.0 V < VSW2 < 3.3 V”, “-6.0” and “6.0” in the first bullet of Parameter,  
Min and Max columns for VSW2ACC  
Added high voltage range values “2.0 V < VSW2 < 3.3 V”, “-3.0” and “3.0” in the second bullet of Parameter,  
Min and Max columns for VSW2ACC  
Updated the parameter value for VSW2 from “2.8 V < VIN < 4.5 V, 0.625 V < VSW2 < 1.975 V” to “2.8 V < VIN  
< 4.5 V, 0.625 V < VSW2 < 3.3 V”  
Added third bullet under Parameter along with associated Typ values for ηSW2  
Updated Section 6.4.4.13, revising “1.975 V” to “3.3 V”  
6.0  
1/2018  
Updated the first paragraph of Section 6.4.4.14 and the content of Table 48  
Updated Table 50, Table 51 and Table 52, adding two rows to the bottom of each table  
Updated Table 56 as follows:  
Added high voltage range values “2.0 V < VSW3 < 3.3 V”, “-6.0” and “6.0” in the first bullet of Parameter,  
Min and Max columns for VSW3ACC  
Added high voltage range values “2.0 V < VSW2 < 3.3 V”, “-3.0” and “3.0” in the second bullet of Parameter,  
Min and Max columns for VSW3ACC  
Updated the parameter value for VSW3 from “2.8 V < VIN < 4.5 V, 0.625 V < VSW3 < 1.975 V” to “2.8 V < VIN  
< 4.5 V, 0.625 V < VSW3 < 3.3 V”  
Removed “single/dual phase” from “PWM, APS mode single/dual phase”  
Removed “PWN, APS mode independent (per phase)” from the parameter value for ISW3 and removed the  
associated Max value  
Removed “x” after “SW3” in the note at the bottom of the table.  
Updated Table 94 as follows:  
Remove the values for Bit 6 for addresses 35, 36, 37, 3C, 3D, 3E, AC and B0  
Updated bold text before item 6 for SW2 and bold text before item 7 for SW3 from “(0.625-1.975 V)” to “(0.625-  
3.3 V)” in Table 96.  
34VR500  
90  
NXP Semiconductors  
REVISION HISTORY  
Revision  
Date  
Description of changes  
Added MC34VR500V9ES to Table 1  
Added 34VR500V9 to “Four independent outputs” for SW4 in Section 5.1 Features, page 12  
Updated Table 8  
7.0  
5/2018  
Added MC34VR500VAES to Table 1  
Added configuration for 34VR500VA to Table 8  
8.0  
9.0  
10  
8/2018  
1/2019  
3/2020  
Added MC34VR500VBES to Table 1  
Added configuration for 34VR500VB to Table 8  
Changed document status from Advance Information to Technical Data  
Updated Features list on page 1 as per CIN 202003004I (deleted “Auto qualified AEC Q100 grade 2”)  
Updated start-up configuration for 34VR500VB in Table 8  
LDO3_SEQ - replaced 3 by 2  
SW2_VOLT - replaced 1.8 V by 0.9 V  
SW3_VOLT - replaced 0.9 V by 1.8 V  
11  
4/2020  
34VR500  
NXP Semiconductors  
91  
Information in this document is provided solely to enable system and software implementers to use NXP products.  
There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits  
based on the information in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
How to Reach Us:  
Home Page:  
NXP.com  
Web Support:  
http://www.nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular  
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical"  
parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications,  
and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each  
customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor  
the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the  
following address:  
http://www.nxp.com/terms-of-use.html.  
NXP, the NXP logo, Freescale, the Freescale logo and SMARTMOS are trademarks of NXP B.V. All other product or  
service names are the property of their respective owners. All rights reserved.  
© NXP B.V. 2020.  
Document Number: MC34VR500  
Rev. 11  
4/2020  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY