MC56F8013MFAE [NXP]

16-bit DSC, 56800E core, 16KB Flash, 32MHz, QFP 32;
MC56F8013MFAE
型号: MC56F8013MFAE
厂家: NXP    NXP
描述:

16-bit DSC, 56800E core, 16KB Flash, 32MHz, QFP 32

时钟 PC 微控制器 外围集成电路
文件: 总126页 (文件大小:1057K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
56F8013/56F8011  
Data Sheet  
Technical Data  
56F8000  
16-bit Digital Signal Controllers  
MC56F8013  
Rev. 12  
05/2008  
freescale.com  
Document Revision History  
Version History  
Rev. 0  
Description of Change  
Initial release.  
Rev. 1  
Updates to Part 10, Specifications,  
Table 10-1, added maximum clamp current, per pin  
Table 10-12, clarified variation over temperature table and graph  
Table 10-16, added LIN slave timing  
Rev. 2  
Rev. 3  
Added alternate pins to Figure 11-1 and Table 11-1.  
Corrected ADC offering on page 3, clarified Section 1.4.1, corrected bit selects in Timer  
Channel 3 Input (TC3_INP) bit 9, Section 6.3.1.7, and simplified notes in Table 10-9.  
Rev. 4  
Added clarification on sync inputs in Section 1.4.1, added voltage difference specification to  
Table 10-1 and Table 10-4, deleted formula for Ambient Operating Temperature in  
Table 10-4, also a note for pin group 3 to Table 10-1, corrected Table 8-1, error in Port C  
peripheral function configuration, removed text from notes in Table 10-9 that referred to  
multiple flash blocks - this family has one flash block. Added RoHs and “pb-free” language to  
back cover.  
Rev. 5  
Updates to Section 10  
Table 10-5, corrected max values for ADC Input Current High and Low; corrected typ value  
for pull-up disabled Digital Input Current Low (a)  
Table 10-6, corrected typ and added max values for Standby > Stop and Powerdown modes  
Table 10-7, corrected min value for Low-Voltage Interrupt for 3.3V  
Table 10-11, corrected typ and max values and units for PLL lock time  
Table 10-12, corrected typ values for Relaxation Oscillator output frequency and variation  
over temperature (also increased temp range to 150 degreesC) and added variation over  
temperature from 0—105 degreesC  
Updated Figure 10-5  
Table 10-19, updated max values for Integral Non-Linearity full input signal range, Negative  
Differential Non-Linearity, ADC internal clock, Offset Voltage Internal Ref, Gain Error and  
Offset Voltage External Ref; updated typ values for Negative Differential Non-Linearity, Offset  
Voltage Internal Ref, Gain Error and Offset Voltage External Ref; added new min values and  
corrected typ values for Signal-to-noise ratio, Total Harmonic Distortion, Spurious Free  
Dynamic Range, Signal-to-noise plus distortion, Effective Number of Bits  
Rev. 6  
Rev. 7  
Added details to Section 1. Clarified language in State During Reset column in Table 2-3;  
corrected flash data retention temperature in Table 10-4; moved input current high/low  
toTable 10-19 and location of footnotes in Table 10-5; reorganized Table 10-19; clarified title  
of Figure 10-1.  
Added information on automotive device for 56F8013.  
Added information on 56F8011device; edited to indicate differences in 56F8013 and 56F8011  
devices.  
Updated values for VEI3.3 and VEI2.5 in Table 10-7.  
Deleted values for input and output voltage in Table 10-8.  
Added row for MC56F8013MFAE in Table 10-12.  
56F8013/56F8011 Data Sheet, Rev. 12  
2
Freescale Semiconductor  
Document Revision History (Continued)  
Version History  
Rev. 8  
Description of Change  
• In Table 10-4, added an entry for flash data retention with less than 100 program/erase  
cycles (minimum 20 years).  
• In Table 10-6, changed the device clock speed in STOP mode from 8MHz to 4MHz.  
• In Table 10-12, changed the typical relaxation oscillator output frequency in Standby mode  
from 400kHz to 200kHz.  
Rev. 9  
In Table 10-19, changed the maximum ADC internal clock frequency from 8MHz to 5.33MHz.  
Rev. 10  
Added the following note to the description of the TMS signal in Table 2-3:  
Note: Always tie the TMS pin to VDD through a 2.2K resistor.  
Rev. 11  
Removed “Preliminary” and made changes throughout the book, including changes in the  
following sections:  
• Feature additions to Section 1.1.4  
• Deleted Section 1.4.1  
Table 2-3  
• Added diagram in Section 3.5.1  
• Added paragraph to Section 5.3  
• Deleted Section 5.5, “Operating Modes”  
• Added features to Section 6.2  
Section 6.3.8.1 and Section 6.3.8.2  
• Deleted note from Section 6.3.8.3  
• Clarifications to Section 6.3 register descriptions  
• Removed paragraph from Section 6.4  
Rev. 12  
• Revised Section 7, Security Features.  
• Updated temperature information in Table 10-1 and Table 10-4.  
• Fixed miscellaneous errors.  
Please see http://www.freescale.com for the most current data sheet revision.  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
3
56F8013/56F8011 General Description  
Note: Features in italics describe the 56F8011 device.  
• Up to 32 MIPS at 32MHz core frequency  
• One Serial Peripheral Interface (SPI)  
• One 16-bit Quad Timer  
• DSP and MCU functionality in a unified,  
C-efficient architecture  
2
• One Inter-Integrated Circuit (I C) Port  
• Computer Operating Properly (COP)/Watchdog  
• On-Chip Relaxation Oscillator  
• 56F8013 device offers 16KB Program Flash  
56F8011 device offers 12KB Program Flash  
• 56F8013 device offers 4KB Unified Data/Program  
• Integrated Power-On Reset and Low-Voltage Interrupt  
Module  
RAM  
56F8011 device offers 2KB Unified Data/Program  
RAM  
• JTAG/Enhanced On-Chip Emulation (OnCE™) for  
unobtrusive, real-time debugging  
• One 6-channel PWM module  
• Two 3-channel 12-bit ADCs  
• Up to 26 GPIO lines  
• 32-pin LQFP Package  
• One Serial Communication Interface (SCI) with LIN  
slave functionality  
V
V
V
V
V
SSA  
CAP  
DD  
SS  
DDA  
RESET  
4
2
JTAG/EOnCE  
Port or  
GPIOD  
Digital Reg  
Low-Voltage  
Supervisor  
Analog Reg  
PWM  
or Timer Port  
or GPIOA  
7
PWM Outputs  
16-Bit  
56800E Core  
Data ALU  
Program Controller  
and Hardware  
Looping Unit  
Address  
Generation Unit  
Bit  
Manipulation  
Unit  
16 x 16 + 36 -> 36-Bit MAC  
Three 16-bit Input Registers  
Four 36-bit Accumulators  
PAB  
PDB  
CDBR  
CDBW  
3
3
AD0  
AD1  
ADC  
or  
GPIOC  
Memory  
R/W Control  
XDB2  
XAB1  
XAB2  
Program Memory  
8K x 16 Flash  
6K x 16 Flash  
System Bus  
Control  
PAB  
Unified Data /  
Program RAM  
4KB  
PDB  
CDBR  
CDBW  
2KB  
IPBus Bridge (IPBB)  
Timer or  
GPIOB  
2
2
SCI  
P
O
R
System  
Integration  
Module  
SPI or I C  
Interrupt  
Controller  
COP/  
Watchdog  
2
O
S
C
Clock  
Generator*  
or I C  
or GPIOB  
or Timer  
or GPIOB  
*Includes On-Chip  
Relaxation Oscillator  
4
2
56F8013/56F8011 Block Diagram  
56F8013/56F8011 Data Sheet, Rev. 12  
4
Freescale Semiconductor  
56F8013/56F8011 Data Sheet Table of Contents  
Part 1: Overview . . . . . . . . . . . . . . . . . . . . . . 6  
Part 8: General Purpose Input/Output  
1.1. 56F8013/56F8011 Features . . . . . . . . . . . . . 6  
1.2. 56F8013/56F8011 Description . . . . . . . . . . . 8  
1.3. Award-Winning Development Environment . 9  
1.4. Architecture Block Diagram . . . . . . . . . . . . . 9  
1.5. Synchronize ADC with PWM . . . . . . . . . . . . 9  
1.6. Multiple Frequency PWM . . . . . . . . . . . . . . . 9  
1.7. Product Documentation . . . . . . . . . . . . . . . 13  
1.8. Data Sheet Conventions. . . . . . . . . . . . . . . 13  
(GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
8.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . 86  
8.2. Configuration . . . . . . . . . . . . . . . . . . . . . . . . 86  
8.3. Reset Values . . . . . . . . . . . . . . . . . . . . . . . . 88  
Part 9: Joint Test Action Group (JTAG). . . 93  
9.1. 56F8013/56F8011 Information. . . . . . . . . . . 93  
Part 10: Specifications. . . . . . . . . . . . . . . . . 93  
10.1. General Characteristics . . . . . . . . . . . . . . . 93  
10.2. DC Electrical Characteristics . . . . . . . . . . . 97  
10.3. AC Electrical Characteristics . . . . . . . . . . . 99  
10.4. Flash Memory Characteristics . . . . . . . . . 100  
10.5. External Clock Operation Timing . . . . . . . 101  
10.6. Phase Locked Loop Timing . . . . . . . . . . . 101  
10.7. Relaxation Oscillator Timing. . . . . . . . . . . 102  
10.8. Reset, Stop, Wait, Mode Select, and  
Part 2: Signal/Connection Descriptions . . 14  
2.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.2. 56F8013/56F8011 Signal Pins . . . . . . . . . . 18  
Part 3: OCCS . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.1. Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.3. Operating Modes . . . . . . . . . . . . . . . . . . . . 26  
3.4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . 28  
3.5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . 29  
Interrupt Timing . . . . . . . . . . . . . . . . . . . . 103  
10.9. Serial Peripheral Interface (SPI) Timing. . 105  
10.10. Quad Timer Timing. . . . . . . . . . . . . . . . . 108  
10.11. Serial Communication Interface (SCI)  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
10.12. Inter-Integrated Circuit Interface (I2C)  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
10.13. JTAG Timing. . . . . . . . . . . . . . . . . . . . . . 112  
10.14. Analog-to-Digital Converter (ADC)  
Parameters . . . . . . . . . . . . . . . . . . . . . . . 114  
10.15. Equivalent Circuit for ADC Inputs. . . . . . 115  
10.16. Power Consumption . . . . . . . . . . . . . . . . 116  
Part 4: Memory Map . . . . . . . . . . . . . . . . . . 29  
4.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 29  
4.2. Interrupt Vector Table. . . . . . . . . . . . . . . . . 29  
4.3. Program Map . . . . . . . . . . . . . . . . . . . . . . . 31  
4.4. Data Map . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
4.5. EOnCE Memory Map . . . . . . . . . . . . . . . . . 34  
4.6. Peripheral Memory Mapped Registers . . . . 35  
Part 5: Interrupt Controller (ITCN) . . . . . . . 44  
5.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 44  
5.2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
5.3. Functional Description . . . . . . . . . . . . . . . . 44  
5.4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . 47  
5.5. Register Descriptions . . . . . . . . . . . . . . . . . 48  
5.6. Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Part 11: Packaging. . . . . . . . . . . . . . . . . . . 118  
11.1. 56F8013/56F8011 Package and Pin-Out  
Information. . . . . . . . . . . . . . . . . . . . . . . . 118  
Part 12: Design Considerations . . . . . . . . 121  
12.1. Thermal Design Considerations . . . . . . . . 121  
12.2. Electrical Design Considerations . . . . . . . 122  
Part 6: System Integration Module (SIM). . 64  
6.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . 64  
6.2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
6.3. Register Descriptions . . . . . . . . . . . . . . . . . 66  
6.4. Clock Generation Overview . . . . . . . . . . . . 79  
6.5. Power-Down Modes . . . . . . . . . . . . . . . . . . 79  
6.6. Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
6.7. Clocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
6.8. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Part 13: Ordering Information. . . . . . . . . . 124  
Part 14: Appendix. . . . . . . . . . . . . . . . . . . . 124  
Part 7: Security Features . . . . . . . . . . . . . . 84  
7.1. Operation with Security Enabled . . . . . . . . 84  
7.2. Flash Access Lock and Unlock Mechanisms 85  
7.3. Product Analysis. . . . . . . . . . . . . . . . . . . . . 86  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
5
Part 1 Overview  
1.1 56F8013/56F8011 Features  
1.1.1  
Digital Signal Controller Core  
Efficient 16-bit 56800E family Digital Signal Controller (DSC) engine with dual Harvard architecture  
As many as 32 Million Instructions Per Second (MIPS) at 32MHz core frequency  
Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC)  
Four 36-bit accumulators, including extension bits  
32-bit arithmetic and logic multi-bit shifter  
Parallel instruction set with unique DSP addressing modes  
Hardware DO and REP loops  
Three internal address buses  
Four internal data buses  
Instruction set supports both DSP and controller functions  
Controller-style addressing modes and instructions for compact code  
Efficient C compiler and local variable support  
Software subroutine and interrupt stack with depth limited only by memory  
JTAG/Enhanced On-Chip Emulation (OnCE) for unobtrusive, processor speed-independent, real-time  
debugging  
1.1.2  
Differences Between Devices  
Table 1-1 outlines the key differences between the 56F8013 and 56F8011 devices.  
Table 1-1 Device Differences  
Feature  
56F8013  
56F8011  
Program Flash  
16KB  
4KB  
12KB  
2KB  
Unified Data/Program RAM  
1.1.3  
Memory  
Dual Harvard architecture permits as many as three simultaneous accesses to program and data  
memory  
Flash security and protection that prevent unauthorized users from gaining access to the internal  
Flash  
On-chip memory:  
— 16KB of Program Flash (56F8013 device)  
12KB of Program Flash (56F8011 device)  
— 4KB of Unified Data/Program RAM (56F8013 device)  
2KB of Unified Data/Program RAM (56F8011 device)  
EEPROM emulation capability using Flash  
56F8013/56F8011 Data Sheet, Rev. 12  
6
Freescale Semiconductor  
 
56F8013/56F8011 Features  
1.1.4  
Peripheral Circuits for 56F8013/56F8011  
One multi-function six-output Pulse Width Modulator (PWM) module  
— Up to 96MHz PWM operating clock  
— 15 bits of resolution  
— Center-aligned and Edge-aligned PWM signal mode  
— Four programmable fault inputs with programmable digital filter  
— Double-buffered PWM registers  
— Each complementary PWM signal pair can output different switching frequency by selecting  
PWM generation sources from:  
– PWM generator  
– External GPIO  
– Internal timers  
– ADC conversion result of over/under limits:  
– When the conversion result is greater than high limit, deactivate PWM signal  
– When the conversion result is less than low limit, activate the PWM signal  
Two independent 12-bit Analog-to-Digital Converters (ADCs)  
— 2 x 3 channel inputs  
— Supports both simultaneous and sequential conversions  
— ADC conversions can be synchronized by both PWM and timer modules  
— Sampling rate up to 2.67MSPS  
— 8-word result buffer registers  
— ADC Smart Power Management (Auto-standby, auto-powerdown)  
One 16-bit multi-purpose Quad Timer module (TMR)  
— Up to 96MHz operating clock  
— Four independent 16-bit counter/timers with cascading capability  
— Each timer has capture and compare capability  
— Up to 12 operating modes  
One Serial Communication Interface (SCI) with LIN Slave functionality  
— Full-duplex or single-wire operation  
— Two receiver wake-up methods:  
– Idle line  
– Address mark  
One Serial Peripheral Interface (SPI)  
— Full-duplex operation  
— Master and slave modes  
— Programmable Length Transactions (2 to 16 bits)  
2
One Inter-Integrated Circuit (I C) port  
— Operates up to 400kbps  
— Supports both master and slave operation  
Computer Operating Properly (COP)/Watchdog timer capable of selecting different clock sources  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
7
Up to 26 General-Purpose I/O (GPIO) pins with 5V tolerance  
Integrated Power-On Reset and Low-Voltage Interrupt Module  
Phase Lock Loop (PLL) provides a high-speed clock to the core and peripherals  
Clock Sources:  
— On-chip relaxation oscillator  
— External clock source  
On-chip regulators for digital and analog circuitry to lower cost and reduce noise  
JTAG/EOnCE debug programming interface for real-time debugging  
1.1.5  
Energy Information  
Fabricated in high-density CMOS with 5V tolerance  
On-chip regulators for digital and analog circuitry to lower cost and reduce noise  
Wait and Stop modes available  
ADC smart power management  
Each peripheral can be individually disabled to save power  
1.2 56F8013/56F8011 Description  
The 56F8013/56F8011 is a member of the 56800E core-based family of Digital Signal Controllers (DSCs).  
It combines, on a single chip, the processing power of a DSP and the functionality of a microcontroller  
with a flexible set of peripherals to create an extremely cost-effective solution. Because of its low cost,  
configuration flexibility, and compact program code, the 56F8013/56F8011 is well-suited for many  
applications. The 56F8013/56F8011 includes many peripherals that are especially useful for industrial  
control, motion control, home appliances, general purpose inverters, smart sensors, fire and security  
systems, switched mode power supply, power management, and medical monitoring applications.  
The 56800E core is based on a dual Harvard-style architecture consisting of three execution units  
operating in parallel, allowing as many as six operations per instruction cycle. The MCU-style  
programming model and optimized instruction set allow straightforward generation of efficient, compact  
DSP and control code. The instruction set is also highly efficient for C compilers to enable rapid  
development of optimized control applications.  
The 56F8013/56F8011 supports program execution from internal memories. Two data operands can be  
accessed from the on-chip data RAM per instruction cycle. The 56F8013/56F8011 also offers up to 26  
General Purpose Input/Output (GPIO) lines, depending on peripheral configuration.  
The 56F8013 Digital Signal Controller includes 16KB of Program Flash and 4KB of Unified  
Data/Program RAM. The 56F8011 Digital Signal Controller includes 12KB of Program Flash and 2KB  
of Unified Data/Program RAM. Program Flash memory can be independently bulk erased or erased in  
pages. Program Flash page erase size is 512 Bytes (256 Words).  
2
A full set of programmable peripherals—PWM, ADCs, SCI, SPI, I C, Quad Timer—supports various  
applications. Each peripheral can be independently shut down to save power. Any pin in these peripherals  
can also be used as General Purpose Input/Outputs (GPIOs).  
56F8013/56F8011 Data Sheet, Rev. 12  
8
Freescale Semiconductor  
Award-Winning Development Environment  
1.3 Award-Winning Development Environment  
TM  
Processor Expert  
(PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use  
component-based software application creation with an expert knowledge system.  
The CodeWarrior Integrated Development Environment is a sophisticated tool for code navigation,  
compiling, and debugging. A complete set of evaluation modules (EVMs), demonstration board kit and  
development system cards will support concurrent engineering. Together, PE, CodeWarrior and EVMs  
create a complete, scalable tools solution for easy, fast, and efficient development.  
1.4 Architecture Block Diagram  
The 56F8013/56F8011’s architecture is shown in Figure 1-1, Figure 1-2, and Figure 1-3. Figure 1-1  
illustrates how the 56800E system buses communicate with internal memories and the IPBus Bridge and  
the internal connections between each unit of the 56800E core. Figure 1-2 shows the peripherals and  
control blocks connected to the IPBus Bridge. Figure 1-3 details how the device’s I/O pins are muxed.  
The figures do not show the on-board regulator and power and ground signals. Please see Part 2,  
Signal/Connection Descriptions, to see which signals are multiplexed with those of other peripherals.  
1.5 Synchronize ADC with PWM  
ADC conversion can be synchronized with PWM module via Quad Timer channel 2 and 3 if needed.  
Internally, the PWM synch signal, which is generated at every PWM reload, can be connected to the timer  
channel 3 input and the timer channel 2 and 3 outputs are connected to ADC sync inputs. Timer channel  
3 output is connected to SYNC0 and Timer channel 2 is connected to SYNC1. The setting is controlled by  
TC3_INP bit in the SIM Control Register; see Section 6.3.1.  
SYNC0 is the master ADC sync input is used to trigger both ADCA and ADCB in sequence and parallel  
mode. SYNC1 is used to trigger ADCB in parallel independent mode, while SYNC0 is used to trigger  
ADCA. See 56F801X Peripheral Reference Manual for additional information.  
1.6 Multiple Frequency PWM  
When both PWM channels of a complementary pair in software control mode and software control bits  
are set to 1, each complementary PWM signal pair—PWM 0 and 1; PWM 2 and 3; PWM 4 and 5—can  
select a PWM source of one of following sources that enables each PWM pair to output different frequency  
PWM signal.  
External GPIO input:  
— GPIOB2 input can be used to drive PWM 0 and 1  
— GPIOB3 input can be used to drive PWM 2 and 3  
— GPIOB4 input can be used to drive PWM 4 and 5  
Quad Timer output:  
— Timer0 output can be used to drive PWM 0 and 1  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
9
— Timer2 output can be used to drive PWM 2 and 3  
— Timer3 output can be used to drive PWM 4 and 5  
ADC conversion result:  
— Signal of Over/Under limit of ADC sample 0 can be used to drive PWM 0 and 1  
— Signal of Over/Under limit of ADC sample 1 can be used to drive PWM 2 and 3  
— Signal of Over/Under limit of ADC sample 2 can be used to drive PWM 4 and 5  
DSP56800E Core  
Program Control Unit  
ALU1  
ALU2  
Address  
Generation  
Unit  
PC  
LA  
LA2  
Instruction  
Decoder  
R0  
R1  
(AGU)  
HWS0  
HWS1  
FIRA  
R2  
R3  
Interrupt  
Unit  
Program  
Memory  
M01  
N3  
OMR  
R4  
R5  
N
SR  
LC  
LC2  
Looping  
Unit  
SP  
FISR  
XAB1  
XAB2  
PAB  
Data /  
Program  
RAM  
PDB  
CDBW  
CDBR  
XDB2  
A2  
B2  
C2  
D2  
A1  
B1  
C1  
D1  
Y1  
Y0  
X0  
A0  
B0  
C0  
D0  
Bit-  
Manipulation  
Unit  
IPBUS  
Interface  
Y
Data  
Enhanced  
OnCE™  
Arithmetic  
Logic Unit  
(ALU)  
JTAG TAP  
MAC and ALU  
Multi-Bit Shifter  
Figure 1-1 56800E Core Block Diagram  
56F8013/56F8011 Data Sheet, Rev. 12  
10  
Freescale Semiconductor  
Multiple Frequency PWM  
To/From IPBus Bridge  
CLKGEN  
(ROSC / PLL /  
CLKIN)  
Interrupt  
Controller  
Low-Voltage Interrupt  
POR & LVI  
System POR  
RESET / GPIOA7  
8
8
GPIO A  
GPIO B  
GPIO C  
GPIO D  
GPIOAn  
GPIOBn  
GPIOCn  
6
4
SIM  
GPIODn  
COP Reset  
COP  
IPBus  
(Continues on Figure 1-3)  
Figure 1-2 Peripheral Subsystem  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
11  
 
(Continued from Figure 1-2)  
To/From IPBus Bridge  
PWM0 - 3  
4
PWM0 - 3  
2
PWM4, 5  
Fault1, 2  
Fault0  
GPIOA0 - 3  
PWM  
2
PWM4, 5  
Fault1, 2  
T2, 3  
Output Controls  
Fault3  
GPIOA4 - 5  
GPIOA6  
Reload  
Pulse  
2
3
2
Fault0  
Fault3  
from ADC  
2
T3i  
T2/3  
T1  
T1  
GPIOB5  
GPIOB4  
Timer  
T0  
T2o, T3o  
T0  
I2C is muxed with both SPI and SCI.  
T2 and T3 are muxed with SPI and PWM.  
CLKO  
2
2
TXD, RXD  
SDA, SCL  
2
2
SCI  
I2C  
GPIOB6 - 7  
GPIOB0 - 1  
GPIOB2 - 3  
SCLK, SS  
2
2
SPI  
MISO, MOSI  
T2, 3  
3
to PWM  
3
ANA0, 1, 3  
ANA2  
Sync0, Over/Under  
Sync1 Limits  
ANA0, 1, 3  
ANA2  
ANB2  
GPIOC0, 1, 3  
VREFH, VREFL  
ADC  
ANB2  
V
REFH, VREFL  
2
3
ANB0, 1, 3  
GPIOC2, 6  
ANB0, 1, 3  
GPIOC4, 5, 7  
IPBus  
Figure 1-3 56F8013/56F8011 Peripheral I/O Pin-Out  
56F8013/56F8011 Data Sheet, Rev. 12  
12  
Freescale Semiconductor  
Product Documentation  
1.7 Product Documentation  
The documents listed in Table 1-2 are required for a complete description and proper design with the 56F8013  
or 56F8011. Documentation is available from local Freescale distributors, Freescale Semiconductor sales  
offices, Freescale Literature Distribution Centers, or online at:  
http://www.freescale.com  
Table 1-2 56F8013/56F8011 Chip Documentation  
Topic  
DSP56800E  
Description  
Order Number  
DSP56800ERM  
Detailed description of the 56800E family architecture,  
16-bit Digital Signal Controller core processor, and the  
instruction set  
Reference Manual  
56F801X Peripheral  
Reference Manual  
Detailed description of peripherals of the 56F801X  
family of devices  
MC56F8000RM  
56F801XBLUG  
MC56F8013  
56F801X Serial  
Bootloader User Guide  
Detailed description of the Serial Bootloader in the  
56F801x family of devices  
56F8013/56F8011  
Technical Data Sheet  
Electrical and timing specifications, pin descriptions,  
and package descriptions (this document)  
Errata  
Details any chip issues that might be present  
MC56F8013E  
MC56F8011E  
1.8 Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
This is used to indicate a signal that is active when pulled low. For example, the RESET pin is  
active when low.  
“asserted”  
“deasserted”  
Examples:  
A high true (active high) signal is high or a low true (active low) signal is low.  
A high true (active high) signal is low or a low true (active low) signal is high.  
Voltage1  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
PIN  
PIN  
PIN  
PIN  
VIL/VOL  
False  
Deasserted  
Asserted  
VIH/VOH  
VIH/VOH  
VIL/VOL  
True  
False  
Deasserted  
1. Values for V , V , V , and V are defined by individual product specifications.  
IL  
OL  
IH  
OH  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
13  
 
Part 2 Signal/Connection Descriptions  
2.1 Introduction  
The input and output signals of the 56F8013/56F8011 are organized into functional groups, as detailed in  
Table 2-1. Table 2-2 summarizes all device pins. In Table 2-2, each table row describes the signal or  
signals present on a pin, sorted by pin number.  
Table 2-1 Functional Group Pin Allocations  
Functional Group  
Number of Pins  
Power (VDD or VDDA  
)
2
3
Ground (VSS or VSSA  
)
Supply Capacitors  
Reset  
1
1
7
Pulse Width Modulator (PWM) Ports1  
Serial Peripheral Interface (SPI) Ports2  
Analog-to-Digital Converter (ADC) Ports  
4
6
2
Timer Module Ports3  
Serial Communications Interface (SCI) Ports4  
2
4
JTAG/Enhanced On-Chip Emulation (EOnCE)  
1. Pins in this section can function as Timer and GPIO.  
2
2. Pins in this section can function as Timer, I C, and GPIO.  
3. Pins can function as PWM and GPIO.  
2
4. Pins in this section can function as I C and GPIO.  
56F8013/56F8011 Data Sheet, Rev. 12  
14  
Freescale Semiconductor  
 
Introduction  
Table 2-2 56F8013/56F8011 Pins  
Peripherals:  
LQFP  
Pin #  
Pin  
Name  
Quad Power &  
Timer Ground  
Signal Name  
GPIO I2C SCI  
SPI  
ADC  
PWM  
JTAG  
Misc.  
1
2
3
4
GPIOB6 GPIOB6, RXD,  
B6 SDA RXD  
CLKIN  
SDA, CLKIN  
GPIOB1 GPIOB1, SS,  
B1 SDA  
B7 SCL TXD  
B5  
SS  
SDA  
GPIOB7 GPIOB7, TXD,  
SCL  
GPIOB5 GPIOB5, T1,  
FAULT3  
T1  
FAULT3  
5
6
7
ANB0  
ANB1  
ANB2  
ANB0, GPIOC4  
ANB1, GPIOC5  
C4  
C5  
C6  
ANB0  
ANB1  
ANB2, VREFL  
GPIOC6  
,
ANB2,  
VREFL  
8
9
VDDA  
VSSA  
ANA2  
VDDA  
VSSA  
VDDA  
VSSA  
10  
ANA2, VREFH  
GPIOC2  
,
C2  
ANA2,  
VREFH  
11  
12  
13  
ANA1  
ANA0  
ANA1, GPIOC1  
ANA0, GPIOC0  
C1  
C0  
ANA1  
ANA0  
VSS_IO VSS  
VSS  
14  
15  
16  
TCK  
TCK, GPIOD2  
D2  
A7  
B3  
TCK  
RESET RESET, GPIOA7  
RESET  
GPIOB3 GPIOB3, MOSI,  
MOSI  
MISO  
T3  
T2  
T3  
17  
GPIOB2 GPIOB2, MISO,  
B2  
T2  
18  
19  
GPIOA6 GPIOA6, FAULT0 A6  
FAULT0  
GPIOB4 GPIOB4, T0,  
B4  
T0  
T3  
CLKO  
CLKO  
20  
21  
22  
GPIOA5 GPIOA5, PWM5,  
A5  
PWM5,  
FAULT2  
FAULT2, T3  
GPIOB0 GPIOB0, SCLK,  
B0 SCL  
SCLK  
SCL  
GPIOA4 GPIOA4, PWM4,  
A4  
PWM4,  
T2  
FAULT1, T2  
FAULT1  
23  
24  
GPIOA2 GPIOA2, PWM2  
GPIOA3 GPIOA3, PWM3  
A2  
A3  
PWM2  
PWM3  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
15  
 
Table 2-2 56F8013/56F8011 Pins (Continued)  
Peripherals:  
LQFP  
Pin #  
Pin  
Name  
Quad Power &  
Timer Ground  
Signal Name  
GPIO I2C SCI  
SPI  
ADC  
PWM  
JTAG  
Misc.  
25  
26  
27  
VCAP  
VDD  
VCAP  
VDD  
VCAP  
VDD  
VSS  
VSS_IO VSS  
28  
29  
30  
31  
32  
GPIOA1 GPIOA1, PWM1  
GPIOA0 GPIOA0, PWM0  
A1  
A0  
D0  
D3  
D1  
PWM1  
PWM0  
TDI  
TDI, GPIOD0  
TMS, GPIOD3  
TDO, GPIOD1  
TDI  
TMS  
TDO  
TMS  
TDO  
56F8013/56F8011 Data Sheet, Rev. 12  
16  
Freescale Semiconductor  
Introduction  
VDD  
VSS  
Power  
Ground  
Power  
1
2
VDDA  
1
1
VSSA  
Ground  
56F8013 /  
56F8011  
GPIOB0 (SCLK, SCL)  
GPIOB1 (SS, SDA)  
Other  
Supply  
Ports  
1
1
SPI Port or  
VCAP  
I2C Port or  
Timer Port  
or GPIO  
1
GPIOB2 (MISO, T2)  
GPIOB3 (MOSI, T3)  
1
1
GPIOB6 (RXD, SDA, CLKIN)  
GPIOB7 (TXD, SCL)  
SCI Port or  
I2C Port or  
GPIO  
GPIOA0 - 2 (PWM0 - 2)  
GPIOA3 (PWM3)  
1
1
3
1
PWM Port or  
Timer Port or  
GPIO  
GPIOA4 (PWM4, FAULT1, T2)  
GPIOA5 (PWM5, FAULT2, T3)  
GPIOA6 (FAULT0)  
1
1
1
RESET  
RESET (GPIOA7)  
1
ANA0 - 1 (GPIOC0 - 1)  
ANA2 (VREFH, GPIOC2)  
2
1
GPIOB4 (T0, CLKO)  
GPIOB5 (T1, FAULT3)  
Timer Port  
or GPIO  
ADC Port or  
GPIO  
1
1
ANB0 - 1 (GPIOC4 - 5)  
ANB2 (VREFL, GPIOC6)  
2
1
TCK (GPIOD2)  
1
TMS (GPIOD3)  
TDI (GPIOD0)  
TDO (GPIOD1)  
JTAG/  
EOnCE Port  
or GPIO  
1
1
1
Figure 2-1 56F8013/56F8011 Signals Identified by Functional Group  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
17  
2.2 56F8013/56F8011 Signal Pins  
After reset, each pin is configured for its primary function (listed first). Any alternate functionality must  
be programmed.  
Table 2-3 56F8013/56F8011 Signal and Package Information for the 32-Pin LQFP  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
VDD  
VSS  
26  
13  
27  
8
Supply  
Supply  
Supply  
Supply  
I/O Power — This pin supplies 3.3V power to the chip I/O interface.  
VSS — These pins provide ground for chip logic and I/O drivers.  
VSS  
VDDA  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
ADC Power — This pin supplies 3.3V power to the ADC modules. It  
must be connected to a clean analog power supply.  
VSSA  
9
ADC Analog Ground — This pin supplies an analog ground to the  
ADC modules.  
VCAP  
25  
VCAP — Connect a 2.2 μF or greater bypass capacitor between this  
pin and VSS_IO, which is required by the internal voltage regulator  
for proper chip operation. See Section 10.2.1.  
GPIOB6  
1
Input/  
Input with Port B GPIO — This GPIO pin can be individually programmed as  
Output  
internal  
pull-up  
an input or output pin.  
enabled  
(RXD)  
Input  
Receive Data — SCI receive data input.  
(SDA1)  
Serial Data — This pin serves as the I2C serial data line.  
Input/  
Output  
Input  
(CLKIN)  
Clock Input — This pin serves as an optional external clock input.  
After reset, the default state is GPIOB6. The alternative peripheral  
functionality is controlled via the SIM (See Section 6.3.8) and the  
CLKMODE bit of the OCCS Oscillator Control Register.  
1. This signal is also brought out on the GPIOB1 pin.  
Return to Table 2-2  
56F8013/56F8011 Data Sheet, Rev. 12  
18  
Freescale Semiconductor  
56F8013/56F8011 Signal Pins  
Table 2-3 56F8013/56F8011 Signal and Package Information for the 32-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOB7  
3
Input/  
Input with Port B GPIO — This GPIO pin can be individually programmed as  
Output  
internal  
pull-up  
an input or output pin.  
enabled  
(TXD)  
Output  
Transmit Data — SCI transmit data output or transmit / receive in  
single wire operation.  
(SCL2)  
Serial Clock — This pin serves as the I2C serial clock.  
Input/  
Output  
After reset, the default state is GPIOB7. The alternative peripheral  
functionality is controlled via the SIM. See Section 6.3.8.  
2. This signal is also brought out on the GPIOB0 pin.  
RESET  
15  
Input  
Input with Reset — This input is a direct hardware reset on the processor.  
internal  
pull-up  
enabled  
When RESET is asserted low, the chip is initialized and placed in the  
reset state. A Schmitt trigger input is used for noise immunity. The  
internal reset signal will be deasserted synchronous with the internal  
clocks after a fixed number of internal clocks.  
(GPIOA7)  
Input/Open  
Drain  
Output  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or open drain output pin. Note that RESET functionality is  
disabled in this mode and the chip can only be reset via POR, COP  
reset, or software reset.  
After reset, the default state is RESET.  
GPIOB4  
19  
Input/  
Input with Port B GPIO — This GPIO pin can be individually programmed as  
Output  
internal  
pull-up  
an input or output pin.  
enabled  
(T0)  
Input/  
T0 — Timer, Channel 0  
Output  
(CLKO)  
Output  
Clock Output — This is a buffered clock signal. Using the  
SIM_CLKO Select Register (SIM_CLKOSR), this pin can be  
programmed as any of the following: disabled (logic 0), CLK_MSTR  
(system clock), IPBus clock, or oscillator output. See Section 6.3.7.  
After reset, the default state is GPIOB4. The alternative peripheral  
functionality is controlled via the SIM. See Section 6.3.8.  
Return to Table 2-2  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
19  
Table 2-3 56F8013/56F8011 Signal and Package Information for the 32-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOB5  
4
Input/  
Input with Port B GPIO — This GPIO pin can be individually programmed as  
Output  
internal  
pull-up  
an input or output pin.  
enabled  
(T1)  
Input/  
T1 — Timer, Channel 1  
Output  
(FAULT3)  
Input  
Input  
FAULT3 — This fault input pin is used for disabling selected PWM  
outputs in cases where fault conditions originate off-chip.  
After reset, the default state is GPIOB5. The alternative peripheral  
functionality is controlled via the SIM. See Section 6.3.8.  
TCK  
14  
Input with Test Clock Input — This input pin provides a gated clock to  
internal  
pull-up  
enabled  
synchronize the test logic and shift serial data to the JTAG/EOnCE  
port. The pin is connected internally to a pull-up resistor. A Schmitt  
trigger input is used for noise immunity.  
(GPIOD2)  
Input/  
Port D GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is TCK.  
TMS  
31  
Input  
Input with Test Mode Select Input — This input pin is used to sequence the  
internal  
pull-up  
JTAG TAP controller’s state machine. It is sampled on the rising  
edge of TCK and has an on-chip pull-up resistor.  
enabled  
(GPIOD3)  
Input/  
Port D GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is TMS.  
Note: Always tie the TMS pin to VDD through a 2.2K resistor if this pin  
is configured as TMS.  
TDI  
30  
Input  
Input with Test Data Input — This input pin provides a serial input data stream  
internal  
pull-up  
to the JTAG/EOnCE port. It is sampled on the rising edge of TCK  
and has an on-chip pull-up resistor.  
enabled  
(GPIOD0)  
Input/  
Port D GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is TDI.  
Return to Table 2-2  
56F8013/56F8011 Data Sheet, Rev. 12  
20  
Freescale Semiconductor  
56F8013/56F8011 Signal Pins  
Table 2-3 56F8013/56F8011 Signal and Package Information for the 32-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
TDO  
32  
Output  
Output  
Test Data Output — This tri-stateable output pin provides a serial  
output data stream from the JTAG/EOnCE port. It is driven in the  
shift-IR and shift-DR controller states, and changes on the falling  
edge of TCK.  
(GPIOD1)  
Input/  
Port D GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is TDO.  
GPIOB0  
(SCLK)  
21  
Input/  
Output  
Input with Port B GPIO — This GPIO pin can be individually programmed as  
internal  
pull-up  
an input or output pin.  
enabled  
Input/  
Output  
SPI Serial Clock — In the master mode, this pin serves as an  
output, clocking slaved listeners. In slave mode, this pin serves as  
the data clock input. A Schmitt trigger input is used for noise  
immunity.  
(SCL3)  
Serial Data — This pin serves as the I2C serial clock.  
Input/  
Output  
After reset, the default state is GPIOB0. The alternative peripheral  
functionality is controlled via the SIM. See Section 6.3.8.  
3. This signal is also brought out on the GPIOB7 pin.  
GPIOB1  
2
Input/  
Input with Port B GPIO — This GPIO pin can be individually programmed as  
Output  
internal  
pull-up  
an input or output pin.  
enabled  
(SS)  
Input  
SPI Slave Select — SS is used in slave mode to indicate to the SPI  
module that the current transfer is to be received.  
(SDA4)  
Serial Clock — This pin serves as the I2C serial data line.  
Input/  
Output  
After reset, the default state is GPIOB1. The alternative peripheral  
functionality is controlled via the SIM. See Section 6.3.8.  
4. This signal is also brought out on the GPIOB6 pin.  
Return to Table 2-2  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
21  
Table 2-3 56F8013/56F8011 Signal and Package Information for the 32-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOB2  
17  
Input/  
Input with Port B GPIO — This GPIO pin can be individually programmed as  
Output  
internal  
pull-up  
an input or output pin.  
enabled  
(MISO)  
Input/  
Output  
SPI Master In/Slave Out — This serial data pin is an input to a  
master device and an output from a slave device. The MISO line of a  
slave device is placed in the high-impedance state if the slave device  
is not selected. The slave device places data on the MISO line a  
half-cycle before the clock edge the master device uses to latch the  
data.  
(T25)  
Input/  
Output  
T2 — Timer, Channel 2  
After reset, the default state is GPIOB2. The alternative peripheral  
functionality is controlled via the SIM. See Section 6.3.8.  
5. This signal is also brought out on the GPIOA4 pin.  
GPIOB3  
16  
Input/  
Input with Port B GPIO — This GPIO pin can be individually programmed as  
Output  
internal  
pull-up  
an input or output pin.  
enabled  
(MOSI)  
Input/  
Output  
SPI Master Out/Slave In— This serial data pin is an output from a  
master device and an input to a slave device. The master device  
places data on the MOSI line a half-cycle before the clock edge the  
slave device uses to latch the data.  
(T36)  
Input/  
Output  
T3 — Timer, Channel 3  
After reset, the default state is GPIOB3. The alternative peripheral  
functionality is controlled via the SIM. See Section 6.3.8.  
6. This signal is also brought out on the GPIOA5 pin.  
GPIOA0  
29  
Input/  
Input with Port A GPIO — This GPIO pin can be individually programmed as  
Output  
internal  
pull-up  
an input or output pin.  
enabled  
(PWM0)  
Output  
PWM0 — This is one of the six PWM output pins.  
After reset, the default state is GPIOA0.  
Return to Table 2-2  
56F8013/56F8011 Data Sheet, Rev. 12  
22  
Freescale Semiconductor  
56F8013/56F8011 Signal Pins  
Table 2-3 56F8013/56F8011 Signal and Package Information for the 32-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOA1  
(PWM1)  
GPIOA2  
(PWM2)  
GPIOA3  
(PWM3)  
GPIOA4  
28  
23  
24  
22  
Input/  
Output  
Input with Port A GPIO — This GPIO pin can be individually programmed as  
internal  
pull-up  
an input or output pin.  
enabled  
Output  
PWM1 — This is one of the six PWM output pins.  
After reset, the default state is GPIOA1.  
Input/  
Output  
Input with Port A GPIO — This GPIO pin can be individually programmed as  
internal  
pull-up  
an input or output pin.  
enabled  
Output  
PWM2 — This is one of the six PWM output pins.  
After reset, the default state is GPIOA2.  
Input/  
Output  
Input with Port A GPIO — This GPIO pin can be individually programmed as  
internal  
pull-up  
an input or output pin.  
enabled  
Output  
PWM3 — This is one of the six PWM output pins.  
After reset, the default state is GPIOA3.  
Input/  
Input with Port A GPIO — This GPIO pin can be individually programmed as  
Output  
internal  
pull-up  
an input or output pin.  
enabled  
(PWM4)  
Output  
Input  
PWM4 — This is one of the six PWM output pins.  
(FAULT1)  
Fault1 — This fault input pin is used for disabling selected PWM  
outputs in cases where fault conditions originate off-chip.  
(T27)  
Input/  
Output  
T2 — Timer, Channel 2  
After reset, the default state is GPIOA4. The alternative peripheral  
functionality is controlled via the SIM. See Section 6.3.8.  
7. This signal is also brought out on the GPIOB2 pin.  
Return to Table 2-2  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
23  
Table 2-3 56F8013/56F8011 Signal and Package Information for the 32-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOA5  
20  
Input/  
Input with Port A GPIO — This GPIO pin can be individually programmed as  
Output  
internal  
pull-up  
an input or output pin.  
enabled  
(PWM5)  
Output  
Input  
PWM5 — This is one of the six PWM output pins.  
(FAULT2)  
Fault2 — This fault input pin is used for disabling selected PWM  
outputs in cases where fault conditions originate off-chip.  
(T38)  
Input/  
Output  
T3 — Timer, Channel 3  
After reset, the default state is GPIOA5. The alternative peripheral  
functionality is controlled via the SIM. See Section 6.3.8.  
8. This signal is also brought out on the GPIOB3 pin.  
GPIOA6  
18  
Input/  
Input with Port A GPIO — This GPIO pin can be individually programmed as  
Output  
internal  
pull-up  
an input or output pin.  
enabled  
(FAULT0)  
Input  
Input  
Fault0 — This fault input pin is used for disabling selected PWM  
outputs in cases where fault conditions originate off-chip.  
After reset, the default state is GPIOA6.  
ANA0  
12  
11  
Analog  
Input  
ANA0 — Analog input to ADC A, channel 0  
(GPIOC0)  
Input/  
Output  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
After reset, the default state is ANA0.  
ANA1  
Input  
Analog  
Input  
ANA1 — Analog input to ADC A, channel 1  
(GPIOC1)  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is ANA1.  
Return to Table 2-2  
56F8013/56F8011 Data Sheet, Rev. 12  
24  
Freescale Semiconductor  
56F8013/56F8011 Signal Pins  
Table 2-3 56F8013/56F8011 Signal and Package Information for the 32-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
ANA2  
10  
Input  
Analog  
Input  
ANA2 — Analog input to ADC A, channel 2  
(VREFH  
)
Input  
VREFH — Analog reference voltage high  
Input/  
Output  
(GPIOC2)  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
After reset, the default state is ANA2.  
ANB0  
5
6
7
Input  
Analog  
Input  
ANB0 — Analog input to ADC B, channel 0  
(GPIOC4)  
Input/  
Output  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
After reset, the default state is ANB0.  
ANB1  
Input  
Analog  
Input  
ANB1 — Analog input to ADC B, channel 1  
(GPIOC5)  
Input/  
Output  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
After reset, the default state is ANB1.  
ANB2  
Input  
Input  
Analog  
Input  
ANB2 — Analog input to ADC B, channel 2  
(VREFL  
)
VREFL — Analog reference voltage low. This should normally be  
connected to a low-noise VSS  
.
Input/  
Output  
(GPIOC6)  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
After reset, the default state is ANB2.  
Return to Table 2-2  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
25  
Part 3 OCCS  
3.1 Overview  
This module provides the system clock, which is used to generate the various chip clocks. This module  
also produces the oscillator clock plus the ADC clock and high-speed peripheral clock.  
The on-chip clock synthesis module allows product design using an internal relaxation oscillator to run  
56F801X family parts at user-selectable frequencies up to 32MHz.  
3.2 Features  
The On-Chip Clock Synthesis (OCCS) module interfaces to the oscillator and PLL. The OCCS module  
features:  
Internal relaxation oscillator  
Ability to power down the internal relaxation oscillator  
Ability to put the internal relaxation oscillator into a standby mode  
3-bit postscaler provides control for the PLL output  
Ability to power down the internal PLL  
Provides 2X system clock, which operates at twice the system clock, to the System Integration Model (SIM)  
that is used to generate the various device clocks  
Provides 3X system clock, which operates at three times the system clock, to PWM and Timer  
Safety shutdown feature is available in the event that the PLL reference clock is lost  
Can be driven from an external clock source  
The clock generation module provides the programming interface for both the PLL and internal relaxation  
oscillator.  
3.3 Operating Modes  
In 56F801X family parts, either an internal oscillator or an external frequency source can be used to  
provide a reference clock to the SIM.  
The 2X system clock source output from the OCCS can be described by one of the following equations:  
2X system frequency = oscillator frequency  
2X system frequency = (oscillator frequency X 8) / (postscaler)  
where:  
postscaler = 1, 2, 4, 8, 16, or 32 PLL output divider  
The SIM is responsible for further dividing these frequencies by two, which will insure a 50% duty cycle  
in the system clock output.  
56F8013/56F8011 Data Sheet, Rev. 12  
26  
Freescale Semiconductor  
Operating Modes  
The 56F801X family parts’ on-chip clock synthesis module has the following registers:  
Control Register (OCCS_CR)  
Divide-by Register (OCCS_DB)  
Status Register (OCCS_SR)  
Shutdown Register (OCCS_SHUTDN)  
Oscillator Control Register (OCCS_OCTRL)  
For more information on these registers, please refer to the 56F801X Peripheral Reference Manual.  
3.3.1  
External Clock Source  
The recommended method of connecting an external clock is illustrated in Figure 3-1. The external clock  
source is connected to GPIOB6 / RXD / SDA / CLKIN.  
56F8013/56F8011  
GPIOB6 / RXD / SDA / CLKIN  
External Clock  
Figure 3-1 Connecting an External Clock Signal using GPIOB6 / RXD / SDA / CLKIN  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
27  
 
3.4 Block Diagram  
Figure 3-2 provides a block diagram which shows how the 56F8013/56F8011 creates its internal clock,  
using the relaxation oscillator as an 8MHz clock reference for the PLL.  
TRIM[9:0]  
Relaxation  
OSC  
ROSB  
ROPD  
Bus Interface and  
Control  
Bus  
Interface  
GPIOB6 / RXD  
MUX  
PRECS  
MSTR_OSC  
SYS_CLK_x2  
source to the SIM  
(64MHz max)  
FOUT  
Postscaler  
÷ 3  
÷ 2  
PLL  
X 24  
(÷ 1, 2, 4, 8, 16, 32)  
ZSRC  
PLLCOD  
HS PERF CLK  
(96MHz max)  
Postscaler  
(÷ 1, 2, 4, 8, 16, 32)  
LCK  
Lock  
Detector  
Loss of  
Reference  
Clock  
Loss of Reference Clock Interrupt  
Detector  
Figure 3-2 OCCS Block Diagram with Relaxation Oscillator  
56F8013/56F8011 Data Sheet, Rev. 12  
28  
Freescale Semiconductor  
 
Pin Descriptions  
3.5 Pin Descriptions  
3.5.1  
External Reference (GPIOB6 / RXD / SDA / CLKIN)  
After reset, the internal relaxation oscillator is selected as the clock source for the chip. The user then has  
the option of switching to an external clock reference if desired by enabling the PRECS bit in the OCCS  
Oscillator Control register.  
Part 4 Memory Map  
4.1 Introduction  
The 56F8013/56F8011 device is a 16-bit motor-control chip based on the 56800E core. It uses a  
Harvard-style architecture with two independent memory spaces for Data and Program. On-chip RAM is  
used in both spaces and Flash memory is used only in Program space.  
This section provides memory maps for:  
Program Address Space, including the Interrupt Vector Table  
Data Address Space, including the EOnCE Memory and Peripheral Memory Maps  
On-chip memory sizes for the device are summarized in Table 4-1. Flash memories’ restrictions are  
identified in the “Use Restrictions” column of Table 4-1.  
Table 4-1 Chip Memory Configurations  
On-Chip Memory  
56F8013  
56F8011  
Use Restrictions  
Program Flash  
(PFLASH)  
8k x 16  
6k x 16  
Erase / Program via Flash interface unit and word writes to CDBW  
Unified RAM (ram)  
2k x 16  
1k x 16  
Usable by both the Program and Data memory spaces  
4.2 Interrupt Vector Table  
Table 4-2 provides the 56F8013/56F8011’s reset and interrupt priority structure, including on-chip  
peripherals. The table is organized with higher-priority vectors at the top and lower-priority interrupts  
lower in the table. As indicated, the priority of an interrupt can be assigned to different levels, allowing  
some control over interrupt priorities. All level 3 interrupts will be serviced before level 2, and so on. For  
a selected priority level, the lowest vector number has the highest priority.  
The location of the vector table is determined by the Vector Base Address (VBA). Please see Section 5.5.6  
for the reset value of the VBA.  
By default, VBA = 0, and the reset address and COP reset address will correspond to vector 0 and 1 of the  
interrupt vector table. In these instances, the first two locations in the vector table must contain branch or  
JMP instructions. All other entries must contain JSR instructions.  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
29  
 
1
Table 4-2 Interrupt Vector Table Contents  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
Reserved for Reset Overlay2  
core  
P:$00  
core  
core  
core  
core  
core  
core  
core  
core  
core  
core  
core  
core  
core  
P:$02  
P:$04  
P:$06  
P:$08  
P:$0A  
P:$0C  
P:$0E  
P:$10  
P:$12  
P:$14  
P:$16  
P:$18  
P:$1A  
Reserved for COP Reset Overlay  
Illegal Instruction  
2
3
4
5
6
7
8
9
3
3
3
3
SW Interrupt 3  
HW Stack Overflow  
Misaligned Long Word Access  
EOnCE Step Counter  
EOnCE Breakpoint Unit 0  
EOnCE Trace Buffer  
EOnCE Transmit Register Empty  
EOnCE Receive Register Full  
SW Interrupt 2  
1-3  
1-3  
1-3  
1-3  
1-3  
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33, 34  
35  
1
SW Interrupt 1  
0
SW Interrupt 0  
Reserved  
Reserved  
PS  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$20  
P:$22  
P:$24  
P:$26  
P:$28  
Power Sense  
OCCS  
FM  
PLL Lock, Loss of Clock Reference Interrupt  
FM Access Error Interrupt  
FM Command Complete  
FM Command, data and address Buffers Empty  
Reserved  
FM  
FM  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
SPI  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$2C  
P:$2E  
P:$30  
P:$32  
P:$34  
P:$36  
P:$38  
P:$3A  
P:$3C  
P:$3E  
P:$40  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
SPI Receiver Full / Error  
SPI Transmitter Empty  
SCI Transmitter Empty  
SCI Transmitter Idle  
SCI Reserved  
SPI  
SCI  
SCI  
SCI  
SCI  
SCI Receiver Error  
SCI Receiver Full  
SCI  
Reserved  
I2C  
I2C  
0-2  
P:$46  
Timer  
Timer  
36  
37  
0-2  
0-2  
P:$48  
P:$4A  
Timer Channel 0  
Timer Channel 1  
(Continues next page)  
56F8013/56F8011 Data Sheet, Rev. 12  
30  
Freescale Semiconductor  
 
Program Map  
1
Table 4-2 Interrupt Vector Table Contents (Continued)  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
Timer  
Timer  
ADC  
38  
0-2  
P:$4C  
P:$4E  
P:$50  
P:$52  
P:$54  
P:$56  
P:$58  
P:$5A  
Timer Channel 2  
Timer Channel 3  
39  
40  
41  
42  
43  
44  
45  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
-1  
ADCA Conversion Complete  
ADCB Conversion Complete  
ADC Zero Crossing or Limit Error  
Reload PWM  
ADC  
ADC  
PWM  
PWM  
SWILP  
PWM Fault  
SW Interrupt Low Priority  
1. Two words are allocated for each entry in the vector table. This does not allow the full address range to be referenced  
from the vector table, providing only 19 bits of address.  
2. If the VBA is set to the reset value, the first two locations of the vector table will overlay the chip reset addresses.  
4.3 Program Map  
The Program Memory map is shown in Table 4-3.  
1
Table 4-3 Program Memory Map for 56F8013  
Begin/End Address  
Memory Allocation  
P: $FF FFFF  
P: $00 8800  
RESERVED  
On-Chip RAM2  
4KB  
P: $00 87FF  
P: $00 8000  
P: $00 7FFF  
P: $00 2000  
RESERVED  
P: $00 1FFF  
P: $00 0000  
Internal Program Flash  
16KB  
Cop Reset Address = $00 0002  
Boot Location = $00 0000  
1. All addresses are 16-bit Word addresses.  
2. This RAM is shared with Data space starting at address X: $00 0000;  
see Figure 4-1.  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
31  
 
1
Table 4-4 Program Memory Map for 56F8011  
Begin/End Address  
Memory Allocation  
P: $1F FFFF  
P: $00 8400  
RESERVED  
On-Chip RAM2  
2KB  
P: $00 83FF  
P: $00 8000  
P: $00 7FFF  
P: $00 2000  
RESERVED  
P: $00 1FFF  
P: $00 0800  
Internal Program Flash  
12KB  
Cop Reset Address = $00 0802  
Boot Location = $00 0800  
P: $00 07FF  
P: $00 0000  
RESERVED  
1. All addresses are 16-bit Word addresses.  
2. This RAM is shared with Data space starting at address X: $00 0000;  
see Figure 4-1.  
4.4 Data Map  
1
Table 4-5 Data Memory Map for 56F8013  
Begin/End Address  
Memory Allocation  
X:$FF FFFF  
X:$FF FF00  
EOnCE  
256 locations allocated  
X:$FF FEFF  
X:$01 0000  
RESERVED  
X:$00 FFFF  
X:$00 F000  
On-Chip Peripherals  
4096 locations allocated  
X:$00 EFFF  
X:$00 8800  
RESERVED  
RESERVED  
RESERVED  
X:$00 EFFF  
X:$00 0800  
X:$00 7FFF  
X:$00 0040  
On-Chip Data RAM2  
4KB  
X:$00 07FF  
X:$00 0000  
1. All addresses are 16-bit Word addresses.  
2. This RAM is shared with Program space starting at P: $00 8000; see  
Figure 4-1.  
56F8013/56F8011 Data Sheet, Rev. 12  
32  
Freescale Semiconductor  
Data Map  
1
Table 4-6 Data Memory Map for 56F8011  
Begin/End Address  
Memory Allocation  
X:$FF FFFF  
X:$FF FF00  
EOnCE  
256 locations allocated  
X:$FF FEFF  
X:$01 0000  
RESERVED  
X:$00 FFFF  
X:$00 F000  
On-Chip Peripherals  
4096 locations allocated  
X:$00 EFFF  
X:$00 0400  
RESERVED  
On-Chip Data RAM2  
2KB  
X:$00 03FF  
X:$00 0000  
1. All addresses are 16-bit Word addresses.  
2. This RAM is shared with Program space starting at P: $00 8000; see  
Figure 4-1.  
Program  
Data  
EOnCE  
Reserved  
Reserved  
RAM  
Peripherals  
Reserved  
RAM  
Reserved  
Dual Port RAM  
Flash  
Figure 4-1 Dual Port RAM  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
33  
 
4.5 EOnCE Memory Map  
Figure 4-7 lists all EOnCE registers necessary to access or control the EOnCE.  
Table 4-7 EOnCE Memory Map  
Address  
X:$FF FFFF  
Register Acronym  
Register Name  
OTX1 / ORX1  
Transmit Register Upper Word  
Receive Register Upper Word  
X:$FF FFFE  
OTX / ORX (32 bits)  
Transmit Register  
Receive Register  
X:$FF FFFD  
X:$FF FFFC  
X:$FF FFFB - X:$FF FFA1  
X:$FF FFA0  
X:$FF FF9F  
X:$FF FF9E  
X:$FF FF9D  
X:$FF FF9C  
X:$FF FF9B  
X:$FF FF9A  
X:$FF FF99  
OTXRXSR  
OCLSR  
Transmit and Receive Status and Control Register  
Core Lock / Unlock Status Register  
Reserved  
OCR  
Control Register  
Instruction Step Counter  
OSCNTR (24 bits)  
OSR  
Instruction Step Counter  
Status Register  
OBASE  
Peripheral Base Address Register  
Trace Buffer Control Register  
Trace Buffer Pointer Register  
Trace Buffer Register Stages  
OTBCR  
OTBPR  
X:$FF FF98  
OTB (21 - 24 bits/stage) Trace Buffer Register Stages  
Breakpoint Unit Control Register  
X:$FF FF97  
X:$FF FF96  
OBCR (24 bits)  
OBAR1 (24 bits)  
OBAR2 (32 bits)  
OBMSK (32 bits)  
OBCNTR  
Breakpoint Unit Control Register  
Breakpoint Unit Address Register 1  
Breakpoint Unit Address Register 1  
Breakpoint Unit Address Register 2  
Breakpoint Unit Address Register 2  
Breakpoint Unit Mask Register 2  
Breakpoint Unit Mask Register 2  
Reserved  
X:$FF FF95  
X:$FF FF94  
X:$FF FF93  
X:$FF FF92  
X:$FF FF91  
X:$FF FF90  
X:$FF FF8F  
X:$FF FF8E  
X:$FF FF8D  
X:$FF FF8C  
X:$FF FF8B  
X:$FF FF8A  
X:$FF FF89 - X:$FF FF00  
EOnCE Breakpoint Unit Counter  
Reserved  
Reserved  
Reserved  
OESCR  
External Signal Control Register  
Reserved  
56F8013/56F8011 Data Sheet, Rev. 12  
34  
Freescale Semiconductor  
 
Peripheral Memory Mapped Registers  
4.6 Peripheral Memory Mapped Registers  
On-chip peripheral registers are part of the data memory map on the 56800E series. These locations may  
be accessed with the same addressing modes used for ordinary Data memory, except all peripheral  
registers should be read/written using word accesses only.  
Table 4-8 summarizes base addresses for the set of peripherals on the 56F8013/56F8011 device.  
Peripherals are listed in order of the base address.  
The following tables list all of the peripheral registers required to control or access the peripherals.  
Table 4-8 Data Memory Peripheral Base Address Map Summary  
Peripheral  
Prefix  
Base Address  
Table Number  
Timer  
PWM  
ITCN  
ADC  
SCI  
TMRn  
PWM  
ITCN  
ADC  
SCI  
X:$00 F000  
X:$00 F040  
X:$00 F060  
X:$00 F080  
X:$00 F0B0  
X:$00 F0C0  
X:$00 F0D0  
4-9  
4-10  
4-11  
4-12  
4-13  
4-14  
4-15  
SPI  
SPI  
I2C  
I2C  
COP  
COP  
X:$00 F0E0  
X:$00 F0F0  
X:$00 F100  
X:$00 F110  
X:$00 F120  
X:$00 F130  
X:$00 F140  
X:$00 F160  
X:$00 F400  
4-16  
4-17  
4-18  
4-19  
4-20  
4-21  
4-22  
4-23  
4-24  
CLK, PLL, OSC, TEST  
GPIO Port A  
GPIO Port B  
GPIO Port C  
GPIO Port D  
SIM  
OCCS  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
SIM  
Power Supervisor  
FM  
PS  
FM  
Table 4-9 Quad Timer Registers Address Map  
(TMR_BASE = $00 F000)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMR0_COMP1  
TMR0_COMP2  
TMR0_CAPT  
TMR0_LOAD  
TMR0_HOLD  
TMR0_CNTR  
TMR0_CTRL  
TMR0_SCTRL  
TMR0_CMPLD1  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
35  
 
 
Table 4-9 Quad Timer Registers Address Map (Continued)  
(TMR_BASE = $00 F000)  
Register Acronym  
Address Offset  
Register Description  
Comparator Load Register 2  
TMR0_CMPLD2  
TMR0_CSCTRL  
$9  
$A  
Comparator Status and Control Register  
Reserved  
TMR1_COMP1  
TMR1_COMP2  
TMR1_CAPT  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMR1_LOAD  
TMR1_HOLD  
TMR1_CNTR  
TMR1_CTRL  
Load Register  
Hold Register  
Counter Register  
Control Register  
TMR1_SCTRL  
TMR1_CMPLD1  
TMR1_CMPLD2  
TMR1_CSCTRL  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMR2_COMP1  
TMR2_COMP2  
TMR2_CAPT  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMR2_LOAD  
TMR2_HOLD  
TMR2_CNTR  
TMR2_CTRL  
Load Register  
Hold Register  
Counter Register  
Control Register  
TMR2_SCTRL  
TMR2_CMPLD1  
TMR2_CMPLD2  
TMR2_CSCTRL  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMR3_COMP1  
TMR3_COMP2  
TMR3_CAPT  
$30  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMR3_LOAD  
TMR3_HOLD  
TMR3_CNTR  
TMR3_CTRL  
Load Register  
Hold Register  
Counter Register  
Control Register  
TMR3_SCTRL  
TMR3_CMPLD1  
TMR3_CMPLD2  
TMR3_CSCTRL  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
56F8013/56F8011 Data Sheet, Rev. 12  
36  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-10 Pulse Width Modulator Registers Address Map  
(PWM_BASE = $00 F040)  
Register Acronym  
Address Offset  
$0  
Register Description  
PWM_CTRL  
PWM_FCTRL  
PWM_FLTACK  
PWM_OUT  
Control Register  
$1  
$2  
Fault Control Register  
Fault Status Acknowledge Register  
Output Control Register  
Counter Register  
$3  
PWM_CNTR  
PWM_CMOD  
PWM_VAL0  
PWM_VAL1  
PWM_VAL2  
PWM_VAL3  
PWM_VAL4  
PWM_VAL5  
PWM_DTIM0  
PWM_DTIM1  
PWM_DMAP1  
PWM_DMAP2  
PWM_CNFG  
PWM_CCTRL  
PWM_PORT  
PWM_ICCTRL  
PWM_SCTRL  
$4  
$5  
Counter Modulo Register  
Value Register 0  
$6  
$7  
Value Register 1  
$8  
Value Register 2  
$9  
Value Register 3  
$A  
$B  
$C  
$D  
$E  
$F  
Value Register 4  
Value Register 5  
Dead Time Register 0  
Dead Time Register 1  
Disable Mapping Register 1  
Disable Mapping Register 2  
Configure Register  
$10  
$11  
$12  
$13  
$14  
Channel Control Register  
Port Register  
Internal Correction Control Register  
Source Control Register  
Table 4-11 Interrupt Control Registers Address Map  
(ITCN_BASE = $00 F060)  
Register Acronym  
Address Offset  
Register Description  
Interrupt Priority Register 0  
ITCN_IPR0  
ITCN_IPR1  
ITCN_IPR2  
ITCN_IPR3  
ITCN_IPR4  
ITCN_VBA  
ITCN_FIM0  
ITCN_FIVAL0  
ITCN_FIVAH0  
ITCN_FIM1  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
Interrupt Priority Register 1  
Interrupt Priority Register 2  
Interrupt Priority Register 3  
Interrupt Priority Register 4  
Vector Base Address Register  
Fast Interrupt Match 0 Register  
Fast Interrupt Vector Address Low 0 Register  
Fast Interrupt Vector Address High 0 Register  
Fast Interrupt Match 1 Register  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
37  
Table 4-11 Interrupt Control Registers Address Map (Continued)  
(ITCN_BASE = $00 F060)  
Register Acronym  
Address Offset  
Register Description  
ITCN_FIVAL1  
ITCN_FIVAH1  
ITCN_IRQP0  
ITCN_IRQP1  
ITCN_IRQP2  
$A  
$B  
$C  
$D  
$E  
Fast Interrupt Vector Address Low 1 Register  
Fast Interrupt Vector Address High 1 Register  
IRQ Pending Register 0  
IRQ Pending Register 1  
IRQ Pending Register 2  
Reserved  
ITCN_ICTRL  
$12  
Interrupt Control Register  
Reserved  
Table 4-12 Analog-to-Digital Converter Registers Address Map  
(ADC_BASE = $00 F080)  
Register Acronym  
Address Offset  
Register Description  
Control Register 1  
ADC_CTRL1  
ADC_CTRL2  
ADC_ZXCTRL  
ADC_CLIST 1  
ADC_CLIST 2  
ADC_SDIS  
$0  
$1  
Control Register 2  
$2  
Zero Crossing Control Register  
Channel List Register 1  
Channel List Register 2  
Sample Disable Register  
Status Register  
$3  
$4  
$5  
ADC_STAT  
$6  
ADC_LIMSTAT  
ADC_ZXSTAT  
ADC_RSLT0  
ADC_RSLT1  
ADC_RSLT2  
ADC_RSLT3  
ADC_RSLT4  
ADC_RSLT5  
ADC_RSLT6  
ADC_RSLT7  
ADC_LOLIM0  
ADC_LOLIM1  
ADC_LOLIM2  
ADC_LOLIM3  
ADC_LOLIM4  
ADC_LOLIM5  
ADC_LOLIM6  
ADC_LOLIM7  
$7  
Limit Status Register  
Zero Crossing Status Register  
Result Register 0  
$8  
$9  
$A  
Result Register 1  
$B  
Result Register 2  
$C  
$D  
$E  
Result Register 3  
Result Register 4  
Result Register 5  
$F  
Result Register 6  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
Result Register 7  
Low Limit Register 0  
Low Limit Register 1  
Low Limit Register 2  
Low Limit Register 3  
Low Limit Register 4  
Low Limit Register 5  
Low Limit Register 6  
Low Limit Register 7  
56F8013/56F8011 Data Sheet, Rev. 12  
38  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-12 Analog-to-Digital Converter Registers Address Map (Continued)  
(ADC_BASE = $00 F080)  
Register Acronym  
Address Offset  
$19  
Register Description  
High Limit Register 0  
ADC_HILIM0  
ADC_HILIM1  
ADC_HILIM2  
ADC_HILIM3  
ADC_HILIM4  
ADC_HILIM5  
ADC_HILIM6  
ADC_HILIM7  
ADC_OFFST0  
ADC_OFFST1  
ADC_OFFST2  
ADC_OFFST3  
ADC_OFFST4  
ADC_OFFST5  
ADC_OFFST6  
ADC_OFFST7  
ADC_PWR  
$1A  
$1B  
$1C  
$1D  
$1E  
$1F  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
High Limit Register 1  
High Limit Register 2  
High Limit Register 3  
High Limit Register 4  
High Limit Register 5  
High Limit Register 6  
High Limit Register 7  
Offset Register 0  
Offset Register 1  
Offset Register 2  
Offset Register 3  
Offset Register 4  
Offset Register 5  
Offset Register 6  
Offset Register 7  
Power Control Register  
Voltage Reference Register  
Reserved  
ADC_VREF  
Table 4-13 Serial Communication Interface Registers Address Map  
(SCI_BASE = $00 F0B0)  
Register Acronym  
Address Offset  
Register Description  
Baud Rate Register  
SCI_RATE  
SCI_CTRL1  
SCI_CTRL2  
SCI_STAT  
SCI_DATA  
$0  
$1  
$2  
$3  
$4  
Control Register 1  
Control Register 2  
Status Register  
Data Register  
Table 4-14 Serial Peripheral Interface Registers Address Map  
(SPI_BASE = $00 F0C0)  
Register Acronym  
Address Offset  
Register Description  
Status and Control Register  
SPI_SCTRL  
SPI_DSCTRL  
SPI_DRCV  
SPI_DXMIT  
$0  
$1  
$2  
$3  
Data Size and ControlRegister  
Data Receive Register  
Data Transmit Register  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
39  
2
Table 4-15 I C Registers Address Map  
(I2C_BASE = $00 F0D0)  
Register Acronym  
Address Offset  
Register Description  
I2C_ADDR  
I2C_FDIV  
I2C_CTRL  
I2C_STAT  
I2C_DATA  
I2C_NFILT  
$0  
$1  
$2  
$3  
$4  
$5  
Address Register  
Frequency Divider Register  
Control Register  
Status Register  
Data I/O Register  
Noise Filter Register  
Table 4-16 Computer Operating Properly Registers Address Map  
(COP_BASE = $00 F0E0)  
Register Acronym  
Address Offset  
Register Description  
COP_CTRL  
COP_TOUT  
COP_CNTR  
$0  
$1  
$2  
Control Register  
Time-Out Register  
Counter Register  
Table 4-17 Clock Generation Module Registers Address Map  
(OCCS_BASE = $00 F0F0)  
Register Acronym  
Address Offset  
Register Description  
OCCS_CTRL  
OCCS_DIVBY  
OCCS_STAT  
$0  
$1  
$2  
Control Register  
Divide-By Register  
Status Register  
Reserved  
OCCS_SHUTDN  
OCCS_OCTRL  
$4  
$5  
Shutdown Register  
Oscillator Control Register  
56F8013/56F8011 Data Sheet, Rev. 12  
40  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-18 GPIOA Registers Address Map  
(GPIOA_BASE = $00 F100)  
Address Offset  
Register Description  
Register Acronym  
GPIOA_PUPEN  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
Pull-up Enable Register  
GPIOA_DATA  
GPIOA_DDIR  
Data Register  
Data Direction Register  
GPIOA_PEREN  
GPIOA_IASSRT  
GPIOA_IEN  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
GPIOA_IEPOL  
GPIOA_IPEND  
GPIOA_IEDGE  
GPIOA_PPOUTM  
GPIOA_RDATA  
GPIOA_DRIVE  
Interrupt Edge Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Output Mode Control Register  
Raw Data Register  
Drive Strength Control Register  
Table 4-19 GPIOB Registers Address Map  
(GPIOB_BASE = $00 F110)  
Register Acronym  
Address Offset  
Register Description  
GPIOB_PUPEN  
GPIOB_DATA  
GPIOB_DDIR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
Pull-up Enable Register  
Data Register  
Data Direction Register  
GPIOB_PEREN  
GPIOB_IASSRT  
GPIOB_IEN  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Edge Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Output Mode Control Register  
Raw Data Register  
GPIOB_IEPOL  
GPIOB_IPEND  
GPIOB_IEDGE  
GPIOB_PPOUTM  
GPIOB_RDATA  
GPIOB_DRIVE  
Drive Strength Control Register  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
41  
 
Table 4-20 GPIOC Registers Address Map  
(GPIOC_BASE = $00 F120)  
Register Acronym  
Address Offset  
Register Description  
GPIOC_PUPEN  
GPIOC_DATA  
GPIOC_DDIR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
Pull-up Enable Register  
Data Register  
Data Direction Register  
GPIOC_PEREN  
GPIOC_IASSRT  
GPIOC_IEN  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Edge Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Output Mode Control Register  
Raw Data Register  
GPIOC_IEPOL  
GPIOC_IPEND  
GPIOC_IEDGE  
GPIOC_PPOUTM  
GPIOC_RDATA  
GPIOC_DRIVE  
Drive Strength Control Register  
Table 4-21 GPIOD Registers Address Map  
(GPIOD_BASE = $00 F130)  
Register Acronym  
Address Offset  
Register Description  
GPIOD_PUPEN  
GPIOD_DATA  
GPIOD_DDIR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
Pull-up Enable Register  
Data Register  
Data Direction Register  
GPIOD_PEREN  
GPIOD_IASSRT  
GPIOD_IEN  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Edge Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Output Mode Control Register  
Raw Data Register  
GPIOD_IEPOL  
GPIOD_IPEND  
GPIOD_IEDGE  
GPIOD_PPOUTM  
GPIOD_RDATA  
GPIOD_DRIVE  
Drive Strength Control Register  
56F8013/56F8011 Data Sheet, Rev. 12  
42  
Freescale Semiconductor  
 
Peripheral Memory Mapped Registers  
Table 4-22 System Integration Module Registers Address Map  
(SIM_BASE = $00 F140)  
Register Acronym  
Address Offset  
Register Description  
SIM_CTRL  
SIM_RSTAT  
SIM_SWC0  
SIM_SWC1  
SIM_SWC2  
SIM_SWC3  
SIM_MSHID  
SIM_LSHID  
SIM_PWR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
Control Register  
Reset Status Register  
Software Control Register 0  
Software Control Register 1  
Software Control Register 2  
Software Control Register 3  
Most Significant Half JTAG ID  
Least Significant Half JTAG ID  
Power Control Register  
Reserved  
SIM_CLKOUT  
SIM_GPS  
$A  
$B  
$C  
$D  
$E  
Clock Out Select Register  
GPIO Peripheral Select Register  
Peripheral Clock Enable Register  
I/O Short Address Location High Register  
I/O Short Address Location Low Register  
SIM_PCE  
SIM_IOSAHI  
SIM_IOSALO  
Table 4-23 Power Supervisor Registers Address Map  
(PS_BASE = $00 F160)  
Register Acronym  
Address Offset  
Register Description  
PS_CTRL  
PS_STAT  
$0  
$1  
Control Register  
Status Register  
Table 4-24 Flash Module Registers Address Map  
(FM_BASE = $00 F400)  
Register Acronym  
Address Offset  
Register Description  
Clock Divider Register  
FM_CLKDIV  
FM_CNFG  
$0  
$1  
Configuration Register  
Reserved  
$2  
FM_SECHI  
FM_SECLO  
$3  
Security High Half Register  
Security Low Half Register  
Reserved  
$4  
$5 - $9  
$10  
FM_PROT  
Protection Register  
Reserved  
$11 - $12  
$13  
FM_USTAT  
User Status Register  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
43  
Table 4-24 Flash Module Registers Address Map (Continued)  
(FM_BASE = $00 F400)  
Register Acronym  
Address Offset  
Register Description  
Command Register  
FM_CMD  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
$1B  
Reserved  
Reserved  
Reserved  
FM_DATA  
Data Buffer Register  
Reserved  
Reserved  
FM_OPT1  
Optional Data 1 Register  
Reserved  
FM_TSTSIG  
$1D  
Test Array Signature Register  
Part 5 Interrupt Controller (ITCN)  
5.1 Introduction  
The Interrupt Controller (ITCN) module is used to arbitrate between various interrupt requests (IRQs), to  
signal to the 56800E core when an interrupt of sufficient priority exists, and to what address to jump in  
order to service this interrupt.  
5.2 Features  
The ITCN module design includes these distinctive features:  
Programmable priority levels for each IRQ  
Two programmable Fast Interrupts  
Notification to SIM module to restart clocks out of Wait and Stop modes  
Ability to drive initial address on the address bus after reset  
For further information, see Table 4-2, Interrupt Vector Table Contents.  
5.3 Functional Description  
The Interrupt Controller contains registers that allow each of the 46 interrupt sources to be set to one of  
four priority levels (excluding certain interrupts that are of fixed priority). All of the interrupt requests of  
a given level are priority encoded to determine the lowest numerical value of the active interrupt requests  
for that level. Within a given priority level, number 0 is the highest priority and number 45 is the lowest.  
During Wait and Stop modes, the system clocks and the 56800E core are turned off. The ITCN can wake  
up the core and restart system clocks by signaling a pending IRQ to the System Integration Module (SIM)  
to restart the clocks and service the IRQ. An IRQ can only wake up the core if the IRQ is enabled prior to  
56F8013/56F8011 Data Sheet, Rev. 12  
44  
Freescale Semiconductor  
Functional Description  
entering the Wait or Stop mode.  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
45  
5.3.1  
Normal Interrupt Handling  
Once the INTC has determined that an interrupt is to be serviced and which interrupt has the highest  
priority, an interrupt vector address is generated. Normal interrupt handling concatenates the Vector Base  
Address (VBA) and the vector number to determine the vector address, generating an offset into the vector  
table for each interrupt.  
5.3.2  
Interrupt Nesting  
Interrupt exceptions may be nested to allow an IRQ of higher priority than the current exception to be  
serviced. The following table defines the nesting requirements for each priority level.  
Table 5-1 Interrupt Mask Bit Definition  
Exceptions Permitted  
Exceptions Masked  
SR[9]  
SR[8]  
0
0
1
1
0
1
0
1
Priorities 0, 1, 2, 3  
Priorities 1, 2, 3  
Priorities 2, 3  
Priority 3  
None  
Priority 0  
Priorities 0, 1  
Priorities 0, 1, 2  
5.3.3  
Fast Interrupt Handling  
Fast interrupts are described in the DSP56800E Reference Manual. The interrupt controller recognizes  
Fast Interrupts before the core does.  
A Fast Interrupt is defined (to the ITCN) by:  
1. Setting the priority of the interrupt as level 2, with the appropriate field in the IPR registers  
2. Setting the FIMn register to the appropriate vector number  
3. Setting the FIVALn and FIVAHn registers with the address of the code for the Fast Interrupt  
When an interrupt occurs, its vector number is compared with the FIM0 and FIM1 register values. If a  
match occurs, and it is a level 2 interrupt, the ITCN handles it as a Fast Interrupt. The ITCN takes the vector  
address from the appropriate FIVALn and FIVAHn registers, instead of generating an address that is an  
offset from the VBA.  
The core then fetches the instruction from the indicated vector adddress and if it is not a JSR, the core starts  
its Fast Interrupt handling.  
56F8013/56F8011 Data Sheet, Rev. 12  
46  
Freescale Semiconductor  
Block Diagram  
5.4 Block Diagram  
any0  
Priority  
Level  
Level 0  
46 -> 6  
Priority  
Encoder  
6
2 -> 4  
INT0  
Decode  
INT  
VAB  
IPIC  
CONTROL  
any3  
IACK  
SR[9:8]  
Level 3  
Priority  
Level  
46 -> 6  
Priority  
PIC_EN  
6
Encoder  
2 -> 4  
Decode  
INT45  
Figure 5-1 Interrupt Controller Block Diagram  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
47  
5.5 Register Descriptions  
A register address is the sum of a base address and an address offset. The base address is defined at the  
system level and the address offset is defined at the module level. The ITCN module has 16 registers.  
Table 5-2 ITCN Register Summary  
(ITCN_BASE = $00 F060)  
Register  
Acronym  
Base Address +  
Register Name  
Section Location  
IPR0  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
$E  
Interrupt Priority Register 0  
5.5.1  
5.5.2  
IPR1  
Interrupt Priority Register 1  
Interrupt Priority Register 2  
Interrupt Priority Register 3  
Interrupt Priority Register 4  
Vector Base Address Register  
Fast Interrupt Match 0 Register  
Fast Interrupt 0 Vector Address Low Register  
Fast Interrupt 0 Vector Address High 0 Register  
Fast Interrupt Match 1 Register  
Fast Interrupt 1 Vector Address Low Register  
Fast Interrupt 1 Vector Address High Register  
IRQ Pending Register 0  
IPR2  
5.5.3  
IPR3  
5.5.4  
IPR4  
5.5.5  
VBA  
5.5.6  
FIM0  
5.5.7  
FIVAL0  
FIVAH0  
FIM1  
5.5.8  
5.5.9  
5.5.10  
5.5.11  
5.5.12  
5.5.13  
5.5.14  
5.5.15  
FIVAL1  
FIVAH1  
IRQP0  
IRQP1  
IRQP2  
IRQ Pending Register 1  
IRQ Pending Register 2  
Reserved  
ICTRL  
$12  
Interrupt Control Register  
5.5.16  
Reserved  
56F8013/56F8011 Data Sheet, Rev. 12  
48  
Freescale Semiconductor  
Register Descriptions  
Add.  
Offset  
Register  
Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
R
0
0
0
0
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
$E  
IPR0  
IPR1  
LVI IPL  
RX_REG IPL TX_REG IPL TRBUF IPL  
BKPT_U IPL  
FM_ERR IPL  
SPI_RCV IPL  
STPCNT IPL  
PLL IPL  
0
0
GPIOB IPL  
GPIOC IPL  
GPIOD IPL  
FM_CBE IPL FM_CC IPL  
W
R
0
0
SCI_RCV  
IPL  
SCI_RERR  
IPL  
SCI_XMIT  
IPL  
SPI_XMIT  
IPL  
IPR2  
SCI_TIDLIPL  
TMR_1 IPL  
GPIOA IPL  
W
R
0
0
0
0
ADCA_CC  
IPL  
I2C_ADDR  
IPL  
IPR3  
TMR_3 IPL  
TMR_2 IPL  
TMR_0 IPL  
W
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ADC_ZC_LE  
IPL  
IPR4  
PWM_F IPL PWM_RL IPL  
ADCB_CC IPL  
W
R
VBA  
VECTOR_BASE_ADDRESS  
W
R
0
0
0
0
0
0
FIM0  
FAST INTERRUPT 0  
W
R
FIVAL0  
FIVAH0  
FIM1  
FAST INTERRUPT 0 VECTOR ADDRESS LOW  
W
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 0 VECTOR  
ADDRESS HIGH  
W
R
FAST INTERRUPT 1  
W
R
FIVAL1  
FIVAH1  
IRQP0  
IRQP1  
IRQP2  
FAST INTERRUPT 1 VECTOR ADDRESS LOW  
W
R
0
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 1 VECTOR  
ADDRESS HIGH  
W
R
PENDING[16:2]  
1
W
R
PENDING[32:17]  
W
R
1
1
1
PENDING[45:33]  
W
Reserved  
ICTRL  
R
INT  
IPIC  
VAB  
1
1
1
0
0
INT_  
DIS  
$12  
W
Reserved  
= Reserved  
Figure 5-2 ITCN Register Map Summary  
5.5.1  
Interrupt Priority Register 0 (IPR0)  
Base + $0  
15  
14  
0
13  
0
12  
0
11  
0
10  
0
9
8
7
6
5
4
3
2
1
0
Read  
Write  
LVI IPL  
RX_REG IPL TX_REG IPL  
TRBUF IPL  
BKPT_U IPL STPCNT IPL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-3 Interrupt Priority Register 0 (IPR0)  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
49  
5.5.1.1  
LVI IPL—Bits 15–14  
This field is used to set the interrupt priority levels for a peripheral IRQ. This IRQ is limited to priorities  
0 through 2 and is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.1.2  
Reserved—Bits 13–10  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.5.1.3  
EOnCE Receive Register Full Interrupt Priority Level  
(RX_REG IPL)— Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.5.1.4  
EOnCE Transmit Register Empty Interrupt Priority Level  
(TX_REG IPL)— Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.5.1.5  
EOnCE Trace Buffer Interrupt Priority Level  
(TRBUF IPL)— Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.5.1.6  
EOnCE Breakpoint Unit Interrupt Priority Level  
(BKPT_U IPL)— Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
56F8013/56F8011 Data Sheet, Rev. 12  
50  
Freescale Semiconductor  
Register Descriptions  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.5.1.7  
EOnCE Step Counter Interrupt Priority Level  
(STPCNT IPL)— Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.5.2  
Interrupt Priority Register 1 (IPR1)  
Base + $1  
Read  
15  
14  
13  
12  
11  
10  
9
0
8
0
7
6
5
4
3
2
1
0
0
GPIOB IPL  
GPIOC IPL  
GPIOD IPL  
FM_CBE IPL  
FM_CC IPL  
FM_ERR IPL  
PLL IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-4 Interrupt Priority Register 1 (IPR1)  
GPIOB Interrupt Priority Level (GPIOB IPL)—Bits 15–14  
5.5.2.1  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.2.2  
GPIOC Interrupt Priority Level (GPIOC IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
51  
5.5.2.3  
GPIOD Interrupt Priority Level (GPIOD IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.2.4  
Reserved—Bits 9–8  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.5.2.5  
FM Command, Data, Address Buffers Empty Interrupt Priority Level  
(FM_CBE IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.2.6  
FM Command Complete Priority Level (FM_CC IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.2.7  
FM Error Interrupt Priority Level (FM_ERR IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8013/56F8011 Data Sheet, Rev. 12  
52  
Freescale Semiconductor  
Register Descriptions  
5.5.2.8  
PLL Loss of Reference or Change in Lock Status Interrupt Priority Level  
(PLL IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.3  
Interrupt Priority Register 2 (IPR2)  
Base + $2  
Read  
15  
14  
13  
12  
11  
0
10  
0
9
8
7
6
5
4
3
2
1
0
SCI_RERR  
IPL  
SCI_RCV IPL  
SCI_TIDL IPL SCI_XMIT IPL SPI_XMIT IPL SPI_RCV IPL  
GPIOA IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-5 Interrupt Priority Register 2 (IPR2)  
5.5.3.1  
SCI Receiver Full Interrupt Priority Level (SCI_RCV IPL)—  
Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.3.2  
SCI Receiver Error Interrupt Priority Level (SCI_RERR IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.3.3  
Reserved—Bits 11–10  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
53  
5.5.3.4  
SCI Transmitter Idle Interrupt Priority Level (SCI_TIDL IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.3.5  
SCI Transmitter Empty Interrupt Priority Level (SCI_XMIT IPL)—  
Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.3.6  
SPI Transmitter Empty Interrupt Priority Level (SPI_XMIT IPL)—  
Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.3.7  
SPI Receiver Full Interrupt Priority Level (SPI_RCV IPL)—  
Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8013/56F8011 Data Sheet, Rev. 12  
54  
Freescale Semiconductor  
Register Descriptions  
5.5.3.8  
GPIOA Interrupt Priority Level (GPIOA IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.4  
Interrupt Priority Register 3 (IPR3)  
Base + $3  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
0
2
0
1
0
0
0
I2C_ADDR  
IPL  
ADCA_CC IPL TMR_3 IPL  
TMR_2 IPL  
TMR_1 IPL  
TMR_0 IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-6 Interrupt Priority Register 3 (IPR3)  
5.5.4.1  
ADCA Conversion Complete Interrupt Priority Level  
(ADCA_CC IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.4.2  
Timer Channel 3 Interrupt Priority Level (TMR_3 IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.4.3  
Timer Channel 2 Interrupt Priority Level (TMR_2 IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
55  
5.5.4.4  
Timer Channel 1 Interrupt Priority Level (TMR_1 IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.4.5  
Timer Channel 0 Interrupt Priority Level (TMR_0 IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
2
5.5.4.6  
I C Address Detect Interrupt Priority Level (I2C_ADDR IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.4.7  
Reserved—Bits 3–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.5.5  
Interrupt Priority Register 4 (IPR4)  
Base + $4  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
6
5
4
3
2
1
0
ADC_ZC_LE  
IPL  
ADCB_CC  
IPL  
PWM_F IPL PWM_RL IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-7 Interrupt Priority Register 4 (IPR4)  
Reserved—Bits 15–8  
5.5.5.1  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
56F8013/56F8011 Data Sheet, Rev. 12  
56  
Freescale Semiconductor  
Register Descriptions  
5.5.5.2  
PWM Fault Interrupt Priority Level (PWM_F IPL)—  
Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.5.3  
Reload PWM Interrupt Priority Level (PWM_RL IPL)—  
Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.5.4  
ADC Zero Crossing or Limit Error Interrupt Priority Level  
(ADC_ZC_LE IPL)— Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.5.5.5  
ADCB Conversion Complete Interrupt Priority Level  
(ADCB_CC IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
57  
5.5.6  
Vector Base Address Register (VBA)  
Base + $5  
Read  
15  
0
14  
0
13  
12  
11  
10  
9
8
7
6
5
4
0
3
0
2
0
1
0
0
0
VECTOR_BASE_ADDRESS  
Write  
RESET1  
0
0
0
0
0
0
0
0
0
0
0
1. The 56F8013 resets to a value of 0x0000. This corresponds to reset addresses of 0x000000.  
The 56F8011 resets to a value of 0x0010. This corresponds to reset addresses of 0x000800.  
Figure 5-8 Vector Base Address Register (VBA)  
5.5.6.1  
Reserved—Bits 15–14  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.5.6.2  
Vector Address Bus (VAB) Bits 13—0  
The value in this register is used as the upper 14 bits of the interrupt vector VAB[20:0]. The lower 7 bits  
are determined based on the highest priority interrupt and are then appended onto VBA before presenting  
the full VAB to the Core.  
5.5.7  
Fast Interrupt Match 0 Register (FIM0)  
Base + $6  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
2
1
0
0
0
FAST INTERRUPT 0  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-9 Fast Interrupt Match 0 Register (FIM0)  
5.5.7.1  
Reserved—Bits 15–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.5.7.2  
Fast Interrupt 0 Vector Number (FAST INTERRUPT 0)—Bits 5–0  
These values determine which IRQ will be Fast Interrupt 0. Fast Interrupts vector directly to a service  
routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table  
first. IRQs used as Fast Interrupts must be set to priority level 2. Unexpected results will occur if a Fast  
Interrupt vector is set to any other priority. A Fast Interrupt automatically becomes the highest-priority  
level 2 interrupt regardless of its location in the interrupt table prior to being declared as Fast Interrupt.  
Fast Interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each IRQ, refer to  
the vector table.  
56F8013/56F8011 Data Sheet, Rev. 12  
58  
Freescale Semiconductor  
Register Descriptions  
5.5.8  
Fast Interrupt 0 Vector Address Low Register (FIVAL0)  
Base + $7  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
0
1
0
0
0
FAST INTERRUPT 0 VECTOR ADDRESS LOW  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-10 Fast Interrupt 0 Vector Address Low Register (FIVAL0)  
Fast Interrupt 0 Vector Address Low (FIVAL0)—Bits 15—0  
5.5.8.1  
The lower 16 bits of the vector address used for Fast Interrupt 0. This register is combined with FIVAH0  
to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.  
5.5.9  
Fast Interrupt 0 Vector Address High Register (FIVAH0)  
Base + $8  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
FAST INTERRUPT 0 VECTOR  
ADDRESS HIGH  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-11 Fast Interrupt 0 Vector Address High Register (FIVAH0)  
Reserved—Bits 15–5  
5.5.9.1  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.5.9.2 Fast Interrupt 0 Vector Address High (FIVAH0)—Bits 4–0  
The upper five bits of the vector address used for Fast Interrupt 0. This register is combined with FIVAL0  
to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.  
5.5.10 Fast Interrupt 1 Match Register (FIM1)  
Base + $9  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
2
1
0
0
0
FAST INTERRUPT 1  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-12 Fast Interrupt 1 Match Register (FIM1)  
5.5.10.1 Reserved—Bits 15–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.5.10.2 Fast Interrupt 1 Vector Number (FAST INTERRUPT 1)—Bits 5–0  
These values determine which IRQ will be Fast Interrupt 1. Fast Interrupts vector directly to a service  
routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table  
first. IRQs used as Fast Interrupts must be set to priority level 2. Unexpected results will occur if a Fast  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
59  
Interrupt vector is set to any other priority. A Fast Interrupt automatically becomes the highest priority  
level 2 interrupt, regardless of its location in the interrupt table prior to being declared as Fast Interrupt.  
Fast Interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each IRQ, refer to  
the vector table.  
5.5.11 Fast Interrupt 1 Vector Address Low Register (FIVAL1)  
Base + $A  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
0
1
0
0
0
FAST INTERRUPT 1 VECTOR ADDRESS LOW  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-13 Fast Interrupt 1 Vector Address Low Register (FIVAL1)  
5.5.11.1 Fast Interrupt 1 Vector Address Low (FIVAL1)—Bits 15–0  
The lower 16 bits of the vector address used for Fast Interrupt 1. This register is combined with FIVAH1  
to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.  
5.5.12 Fast Interrupt 1 Vector Address High (FIVAH1)  
Base + $B  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
2
1
0
0
FAST INTERRUPT 1 VECTOR  
ADDRESS HIGH  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-14 Fast Interrupt 1 Vector Address High Register (FIVAH1)  
5.5.12.1 Reserved—Bits 15–5  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.5.12.2 Fast Interrupt 1 Vector Address High (FIVAH1)—Bits 4–0  
The upper five bits of the vector address used for Fast Interrupt 1. This register is combined with FIVAL1  
to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.  
5.5.13 IRQ Pending Register 0 (IRQP0)  
Base + $C  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING[16:2]  
Write  
RESET  
1
1
1
1
1
1
1
1
1
1
Figure 5-15 IRQ Pending Register 0 (IRQP0)  
56F8013/56F8011 Data Sheet, Rev. 12  
60  
Freescale Semiconductor  
Register Descriptions  
5.5.13.1 IRQ Pending (PENDING)—Bits 15–1  
This register combines with IRQP1 and IRQP2 to represent the pending IRQs for interrupt vector numbers  
2 through 45.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.5.13.2 Reserved—Bit 0  
This bit is reserved or not implemented. It is read as 1 and cannot be modified by writing.  
5.5.14 IRQ Pending Register 1 (IRQP1)  
Base + $D  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING[32:17]  
Write  
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-16 IRQ Pending Register 1 (IRQP1)  
5.5.14.1 IRQ Pending (PENDING)—Bits 32–17  
This register combines with IRQP0 and IRQP2 to represent the pending IRQs for interrupt vector numbers  
2 through 45.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.5.15 IRQ Pending Register 2 (IRQP2)  
Base + $E  
Read  
15  
1
14  
1
13  
1
12  
11  
10  
9
8
1
7
6
5
4
1
3
1
2
1
1
1
0
1
PENDING[45:33]  
Write  
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-17 IRQ Pending Register 2 (IRQP2)  
5.5.15.1 IRQ Pending (PENDING)—Bits 45–33  
This register combines with IRQP0 and IRQP1 to represent the pending IRQs for interrupt vector numbers  
2 through 45.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
61  
5.5.16 Interrupt Control Register (ICTRL)  
$Base + $12  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
0
6
0
5
4
1
3
1
2
1
1
0
0
0
INT  
IPIC  
VAB  
INT_  
DIS  
Write  
RESET  
0
0
0
0
0
0
0
0
0
1
1
1
0
0
Figure 5-18 Interrupt Control Register (ICTRL)  
5.5.16.1 Interrupt (INT)—Bit 15  
This read-only bit reflects the state of the interrupt to the 56800E core.  
0 = No interrupt is being sent to the 56800E core  
1 = An interrupt is being sent to the 56800E core  
5.5.16.2 Interrupt Priority Level (IPIC)—Bits 14–13  
These read-only bits reflect the state of the new interrupt priority level bits being presented to the 56800E  
core. These bits indicate the priority level needed for a new IRQ to interrupt the current interrupt being  
sent to the 56800E core. This field is only updated when the 56800E core jumps to a new interrupt service  
routine.  
Note:  
Nested interrupts may cause this field to be updated before the original interrupt service routine can  
read it.  
00 = Required nested exception priority levels are 0, 1, 2, or 3  
01 = Required nested exception priority levels are 1, 2, or 3  
10 = Required nested exception priority levels are 2 or 3  
11 = Required nested exception priority level is 3  
Table 5-3 Interrupt Priority Encoding  
Current Interrupt  
Priority Level  
Required Nested  
Exception Priority  
IPIC_VALUE[1:0]  
00  
01  
10  
11  
No interrupt or SWILP  
Priority 0  
Priorities 0, 1, 2, 3  
Priorities 1, 2, 3  
Priorities 2, 3  
Priority 3  
Priority 1  
Priority 2 or 3  
5.5.16.3 Vector Number - Vector Address Bus (VAB)—Bits 12–6  
This read-only field shows the vector number (VAB[6:0]) used at the time the last IRQ was taken. In the  
case of a Fast Interrupt, it shows the lower address bits of the jump address. This field is only updated when  
the 56800E core jumps to a new interrupt service routine.  
56F8013/56F8011 Data Sheet, Rev. 12  
62  
Freescale Semiconductor  
Resets  
Note:  
Nested interrupts may cause this field to be updated before the original interrupt service routine can  
read it.  
5.5.16.4 Interrupt Disable (INT_DIS)—Bit 5  
This bit allows all interrupts to be disabled.  
0 = Normal operation (default)  
1 = All interrupts disabled  
5.5.16.5 Reserved—Bits 4–2  
This bit field is reserved or not implemented. It is read as 1 and cannot be modified by writing.  
5.5.16.6 Reserved—Bits 1–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6 Resets  
5.6.1  
General  
Table 5-4 Reset Summary  
Source  
Characteristics  
Reset  
Priority  
Core Reset  
RST  
Core reset from the SIM  
5.6.2  
Description of Reset Operation  
Reset Handshake Timing  
5.6.2.1  
The ITCN provides the 56800E core with a reset vector address on the VAB pins whenever RESET is  
asserted from the SIM. The reset vector will be presented until the second rising clock edge after RESET  
is released. The general timing is shown in Figure 5-19.  
RES  
CLK  
RESET_VECTOR_ADR  
VAB  
PAB  
READ_ADR  
Figure 5-19 Reset Interface  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
63  
 
5.6.3  
ITCN After Reset  
After reset, all of the ITCN registers are in their default states. This means all interrupts are disabled,  
except the core IRQs with fixed priorities:  
Illegal Instruction  
SW Interrupt 3  
HW Stack Overflow  
Misaligned Long Word Access  
SW Interrupt 2  
SW Interrupt 1  
SW Interrupt 0  
SW Interrupt LP  
These interrupts are enabled at their fixed priority levels.  
Part 6 System Integration Module (SIM)  
6.1 Introduction  
The SIM module is a system catchall for the glue logic that ties together the system-on-chip. It controls  
distribution of resets and clocks and provides a number of control features. The System Integration Module  
is responsible for the following functions:  
Reset sequencing  
Clock control & distribution  
Stop/Wait control  
System status registers  
Registers for software access to the JTAG ID of the chip  
Test registers  
Power control  
I/O pad multiplexing  
These are discussed in more detail in the sections that follow.  
56F8013/56F8011 Data Sheet, Rev. 12  
64  
Freescale Semiconductor  
Features  
6.2 Features  
The SIM has the following features:  
Reset sequencing  
Core and peripheral clock control and distribution  
Stop/Wait mode control  
System status  
Power control  
Control I/O multiplexing  
System bus clocks with pipeline hold-off support  
System clocks for non-pipelined interfaces  
Peripheral clocks for Quad Timer and PWM with high-speed (3X) option  
Power-saving clock gating for peripherals  
Three power modes (Run, Wait, Stop) to control power utilization  
— Stop mode shuts down the 56800E core, system clock, and peripheral clock  
— Wait mode shuts down the 56800E core and unnecessary system clock operation  
— Run mode supports full part operation  
Controls, with write protection, the enable/disable of 56800E core WAIT and STOP instructions  
Controls, with write protection, the enable/disable of Large Regulator Standby mode  
Controls to route functional signals to selected peripherals and I/O pads  
Controls deassertion sequence of internal resets  
Software-initiated reset  
Four 16-bit registers reset only by a Power-On Reset usable for general-purpose software control  
Timer channel Stop mode clocking controls  
SCI Stop mode clocking control to support LIN Sleep mode stop recovery  
Short addressing location control  
Registers for containing the JTAG ID of the chip  
Controls output to CLKO pin  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
65  
6.3 Register Descriptions  
Table 6-1 SIM Registers (SIM_BASE = $00 F140)  
Address Offset  
Address Acronym  
Register Name  
Control Register  
Section Location  
Base + $0  
Base + $1  
Base + $2  
Base + $3  
Base + $4  
Base + $5  
Base + $6  
Base + $7  
Base + $8  
SIM_CTRL  
SIM_RSTAT  
SIM_SWC0  
SIM_SWC1  
SIM_SWC2  
SIM_SWC3  
SIM_MSHID  
SIM_LSHID  
SIM_PWR  
6.3.1  
6.3.2  
6.3.3  
6.3.3  
6.3.3  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
Reset Status Register  
Software Control Register 0  
Software Control Register 1  
Software Control Register 2  
Software Control Register 3  
Most Significant Half of JTAG ID  
Least Significant Half of JTAG ID  
Power Control Register  
Reserved  
Base + $A  
Base + $B  
Base + $C  
Base + $D  
Base + $E  
SIM_CLKOUT  
SIM_GPS  
CLKO Select Register  
6.3.7  
6.3.8  
GPIO Peripheral Select Register  
Peripheral Clock Enable Register  
I/O Short Address Location High Register  
I/O Short Address Location Low Register  
SIM_PCE  
6.3.9  
SIM_IOSAHI  
SIM_IOSALO  
6.3.10  
6.3.10  
56F8013/56F8011 Data Sheet, Rev. 12  
66  
Freescale Semiconductor  
Register Descriptions  
Add.  
Address  
Offset Acronym  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
R
0
0
0
0
SIM_  
CTRL  
TC3_ TC2_ TC1_ TC0_  
SCI_  
SD  
TC3_  
INP  
ONCE SW  
EBL0 RST  
STOP_  
DISABLE  
WAIT_  
DISABLE  
$0  
SD  
0
SD  
0
SD  
0
SD  
0
0
0
0
0
0
0
0
0
SIM_  
$1  
SWR COPR EXTR POR  
RSTAT  
W
R
$2  
$3  
$4  
$5  
$6  
$7  
$8  
SIM_SWC0  
SIM_SWC1  
SIM_SWC2  
SIM_SWC3  
SIM_MSHID  
SIM_LSHID  
Software Control Data 0  
Software Control Data 1  
Software Control Data 2  
Software Control Data 3  
W
R
W
R
W
R
W
R
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
0
0
1
0
0
1
0
1
0
0
1
W
R
W
R
SIM_PWR  
Reserved  
LRSTDBY  
W
R
W
R
0
0
0
0
0
0
0
0
0
0
SIM_  
CLKOUT  
CLK  
DIS  
$A  
$B  
$C  
PWM3 PWM2 PWM1 PWM0  
CLKOSEL  
CFG_ CFG_ CFG_ CFG_ CFG_ CFG_ CFG_ CFG_  
B7  
SIM_GPS  
SIM_PCE  
TCR  
PCR  
0
CFG_A5  
CFG_A4  
0
B6  
B5  
B4  
B3  
B2  
B1  
B0  
W
R
0
0
0
0
0
0
0
0
I2C  
0
ADC  
0
TMR  
0
SCI  
0
SPI  
0
PWM  
W
R
0
0
1
0
0
0
0
0
$D SIM_IOSAHI  
$E SIM_IOSALO  
ISAL[23:22]  
W
R
ISAL[21:6]  
W
0
= Read as 0  
= Reserved  
= Read as 1  
= Reserved  
Figure 6-1 SIM Register Map Summary  
6.3.1  
SIM Control Register (SIM_CTRL)  
Base + $0  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
TC3_ TC2_ TC1_ TC0_ SCI_  
SD  
TC3_  
INP  
ONCE SW  
EBL  
STOP_  
DISABLE  
WAIT_  
DISABLE  
SD  
SD  
SD  
SD  
RST  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-2 SIM Control Register (SIM_CTRL)  
6.3.1.1  
Timer Channel 3 Stop Disable (TC3_SD)—Bit 15  
This bit enables the operation of the Timer Channel 3 peripheral clock in Stop mode.  
0 = Timer Channel 3 disabled in Stop mode  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
67  
 
1 = Timer Channel 3 enabled in Stop mode  
6.3.1.2  
Timer Channel 2 Stop Disable (TC2_SD)—Bit 14  
This bit enables the operation of the Timer Channel 2 peripheral clock in Stop mode.  
0 = Timer Channel 2 disabled in Stop mode  
1 = Timer Channel 2 enabled in Stop mode  
6.3.1.3  
Timer Channel 1 Stop Disable (TC1_SD)—Bit 13  
This bit enables the operation of the Timer Channel 1 peripheral clock in Stop mode.  
0 = Timer Channel 1 disabled in Stop mode  
1 = Timer Channel 1 enabled in Stop mode  
6.3.1.4  
Timer Channel 0 Stop Disable (TC0_SD)—Bit 12  
This bit enables the operation of the Timer Channel 0 peripheral clock in Stop mode.  
0 = Timer Channel 0 disabled in Stop mode  
1 = Timer Channel 0 enabled in Stop mode  
6.3.1.5  
SCI Stop Disable (SCI_SD)—Bit 11  
This bit enables the operation of the SCI peripheral clock in Stop mode. This is recommended for use in  
LIN mode so that the SCI can generate interrupts and recover from Stop mode while the LIN interface is  
in Sleep mode and using Stop mode to reduce power consumption.  
0 = SCI disabled in Stop mode  
1 = SCI enabled in Stop mode  
6.3.1.6  
Reserved—Bit 10  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.3.1.7  
Timer Channel 3 Input (TC3_INP)—Bit 9  
This bit selects the input of Timer Channel 3 to be from the PWM Sync signal or GPIO pin.  
1 = Timer Channel 3 Input from PWM sync signal  
0 = Timer Channel 3 Input controlled by SIM_GPS register CFG_B3 and CFG_A5 fields  
6.3.1.8  
Reserved—Bits 8–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.3.1.9  
OnCE Enable (ONCEEBL)—Bit 5  
0 = OnCE clock to 56800E core enabled when core TAP is enabled  
1 = OnCE clock to 56800E core is always enabled  
6.3.1.10 Software Reset (SWRST)—Bit 4  
Writing 1 to this field will cause the part to reset.  
56F8013/56F8011 Data Sheet, Rev. 12  
68  
Freescale Semiconductor  
 
Register Descriptions  
6.3.1.11 Stop Disable (STOP_DISABLE[1:0])—Bits 3–2  
00 = Stop mode will be entered when the 56800E core executes a STOP instruction  
01 = The 56800E STOP instruction will not cause entry into Stop mode  
10 = Stop mode will be entered when the 56800E core executes a STOP instruction and the  
STOP_DISABLE field is write-protected until the next reset  
11 = The 56800E STOP instruction will not cause entry into Stop mode and the STOP_DISABLE field is  
write-protected until the next reset  
6.3.1.12 Wait Disable (WAIT_DISABLE[1:0])—Bits 1–0  
00 = Wait mode will be entered when the 56800E core executes a WAIT instruction  
01 = The 56800E WAIT instruction will not cause entry into Wait mode  
10 = Wait mode will be entered when the 56800E core executes a WAIT instruction and the  
WAIT_DISABLE field is write-protected until the next reset  
11 = The 56800E WAIT instruction will not cause entry into Wait mode and the WAIT_DISABLE field is  
write-protected until the next reset  
6.3.2  
SIM Reset Status Register (SIM_RSTAT)  
This register is updated upon any system reset and indicates the cause of the most recent reset. It also  
controls whether the COP reset vector or regular reset vector in the vector table is used. This register is  
asynchronously reset during Power-On Reset (see power supervisor module) and subsequently is  
synchronously updated based on the level of the external reset, software reset, or cop reset inputs. Only  
one source will ever be indicated. In the event that multiple reset sources assert simultaneously, the  
highest-precedence source will be indicated. The precedence from highest to lowest is POR, EXTR,  
COPR, and SWR. While POR is always set during a Power-On Reset, EXTR will become set if the  
external reset pin is asserted or remains asserted after the Power-On Reset (POR) has deasserted.  
Base + $1  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
SWR COPR  
EXTR POR  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-3 SIM Reset Status Register (SIM_RSTAT)  
6.3.2.1  
Reserved—Bits 15–6  
This bit field is reserved or not implemented. It is read as zero and cannot be modified by writing.  
6.3.2.2  
Software Reset (SWR)—Bit 5  
When set, this bit indicates that the previous system reset occurred as a result of a software reset (written  
1 to SWRST bit in the SIM_CTRL register). It will not be set if a COP, external, or POR reset also  
occurred.  
6.3.2.3  
COP Reset (COPR)—Bit 4  
When set, this bit indicates that the previous system reset was caused by the Computer Operating Properly  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
69  
(COP) timer. It will not be set if an external or POR reset also occurred. If COPR is set as code starts  
executing, the COP reset vector in the vector table will be used. Otherwise, the normal reset vector is used.  
6.3.2.4  
External Reset (EXTR)—Bit 3  
When set, this bit indicates that the previous system reset was caused by an external reset. It will only be  
set if the external reset pin was asserted or remained asserted after the Power-On Reset deasserted.  
6.3.2.5  
Power-On Reset (POR)—Bit 2  
This bit is set during a Power-On Reset.  
6.3.2.6  
Reserved—Bits 1–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.3.3  
SIM Software Control Registers (SIM_SWC0, SIM_SWC1,  
SIM_SWC2, and SIM_SWC3)  
Only SIM_SWC0 is shown in this section. SIM_SWC1, SIM_SWC2, and SIM_SWC3 are identical in  
functionality.  
Base + $2  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Software Control Data 0  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-4 SIM Software Control Register 0 (SIM_SWC0)  
Software Control Data 0 (FIELD)—Bits 15–0  
6.3.3.1  
This register is reset only by the Power-On Reset (POR). It has no part-specific functionality and is  
intended for use by a software developer to contain data that will be unaffected by the other reset sources  
(RESET pin, software reset, and COP reset).  
6.3.4  
Most Significant Half of JTAG ID (SIM_MSHID)  
This read-only register displays the most significant half of the JTAG ID for the chip. This register reads  
$01F2.  
Base + $6  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
0
Write  
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
0
RESET  
Figure 6-5 Most Significant Half of JTAG ID (SIM_MSHID)  
56F8013/56F8011 Data Sheet, Rev. 12  
70  
Freescale Semiconductor  
Register Descriptions  
6.3.5  
Least Significant Half of JTAG ID (SIM_LSHID)  
This read-only register displays the least significant half of the JTAG ID for the chip. This register reads  
$401D.  
Base + $7  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
1
0
0
0
0
0
0
0
0
0
1
1
1
0
1
Write  
RESET  
0
1
0
0
0
0
0
0
0
0
0
1
1
1
0
1
Figure 6-6 Least Significant Half of JTAG ID (SIM_LSHID)  
6.3.6  
SIM Power Control Register (SIM_PWR)  
This register controls the Standby mode of the large regulator. The large regulator derives the core digital  
logic power supply from the IO power supply. In some circumstances, the large regulator may be put in a  
reduced-power Standby mode without interfering with part operation. Refer to the overview of  
power-down modes and the overview of clock generation for more information on the use of large  
regulator standby.  
Base + $8  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LRSTDBY  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-7 SIM Power Control Register (SIM_PWR)  
6.3.6.1  
Reserved—Bits 15–2  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.3.6.2  
Large Regulator Standby Mode[1:0] (LRSTDBY)—Bits 1–0  
This bit controls the pull-up resistors on the IRQA pin.  
00 = Large regulator is in Normal mode  
01 = Large regulator is in Standby (reduced-power) mode  
10 = Large regulator is in Normal mode and the LRSTDBY field is write-protected until the next reset  
11 = Large regulator is in Standby mode and the LRSTDBY field is write-protected until the next reset  
NOTE:  
Standby mode can be used when device operates below 200KHz with PLL shut  
down.  
6.3.7  
CLKO Select Register (SIM_CLKOUT)  
The CLKO select register can be used to multiplex out selected clocks generated inside the clock  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
71  
generation and SIM modules. All functionality is for test purposes only and is subject to  
unspecified latencies. Glitches may be produced when the clock is enabled or switched.  
The lower four bits of the GPIO A register can function as GPIO, PWM, or as additional clock output  
signals. GPIO has priority and is enabled/disabled via the GPIOA_PEREN. If GPIOA[3:0] are  
programmed to operate as peripheral outputs, then the choice between PWM and additional clock outputs  
is done here in the CLKOUT. The default state is for the peripheral function of GPIOA[3:0] to be  
programmed as PWM. This can be changed by altering PWM3 through PWM0.  
Base + $A  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
CLKOSEL  
0
1
0
0
0
0
0
0
0
CLK  
DIS  
PWM3 PWM2 PWM1 PWM0  
Write  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
RESET  
Figure 6-8 CLKO Select Register (SIM_CLKOUT)  
6.3.7.1  
Reserved—Bits 15–10  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.3.7.2  
PWM3—Bit 9  
0 = Peripheral output function of GPIOA[3] is defined to be PWM3  
1 = Peripheral output function of GPIOA[3] is defined to be the Relaxation Oscillator Clock  
6.3.7.3  
PWM2—Bit 8  
0 = Peripheral output function of GPIOA[2] is defined to be PWM2  
1 = Peripheral output function of GPIOA[2] is defined to be the system clock  
6.3.7.4  
PWM1—Bit 7  
0 = Peripheral output function of GPIOA[1] is defined to be PWM1  
1 = Peripheral output function of GPIOA[1] is defined to be two times the rate of the system clock  
6.3.7.5  
PWM0—Bit 6  
0 = Peripheral output function of GPIOA[0] is defined to be PWM0  
1 = Peripheral output function of GPIOA[0] is defined to be three times the rate of the system clock  
6.3.7.6  
Clockout Disable (CLKDIS)—Bit 5  
0 = CLKOUT output is enabled and will output the signal indicated by CLKOSEL  
1 = CLKOUT is 0  
6.3.7.7  
Clockout Select (CLKOSEL)—Bits 4–0  
Selects clock to be muxed out on the CLKO pin.  
00000 = Reserved for factory test—Continuous system clock  
56F8013/56F8011 Data Sheet, Rev. 12  
72  
Freescale Semiconductor  
Register Descriptions  
01001 = Reserved for factory test—OCCS MSTR OSC clock  
01011 = Reserved for factory test—ADC clock  
01100 = Reserved for factory test—JTAG TCLK  
01101 = Reserved for factory test—Continuous peripheral clock  
01110 = Reserved for factory test—Continuous inverted peripheral clock  
01111 = Reserved for factory test—Continuous high-speed peripheral clock  
6.3.8  
SIM GPIO Peripheral Select Register (SIM_GPS)  
All of the peripheral pins on the 56F8013/56F8011 share their Input/Output (I/O) with GPIO ports. To  
select peripheral or GPIO control, program corresponding bit in the GPIOx_PEREN register in GPIO  
module. See the 56F801x Peripheral Reference Manual for detail. In some cases, there are two possible  
peripherals as well as the GPIO functionality available for control of the I/O. In these cases, the SIM_GPS  
register is used to determine which peripheral has control when the corresponding I/O pin is configured in  
peripheral mode.  
As shown in Figure 6-9, the GPIO Peripheral Enable Register (PEREN) has the final control over which  
pin controls the I/O. SIM_GPS simply decides which peripheral will be routed to the I/O when  
PEREN = 1.  
GPIOB_PEREN Register  
GPIO Controlled  
0
1
I/O Pad Control  
SIM_GPS Register  
0
1
Quad Timer Controlled  
SCI Controlled  
Figure 6-9 Overall Control of Pads Using SIM_GPS Control  
Base + $B  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
CFG_ CFG_ CFG_ CFG_ CFG_ CFG_ CFG_ CFG_  
B7  
TCR PCR  
CFG_A5  
CFG_A4  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-10 GPIO Peripheral Select Register (SIM_GPS)  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
73  
 
6.3.8.1  
Quad Timer Clock Rate (TCR)—Bit 15  
This bit selects the clock speed for the Quad Timermodule.  
0 = Quad Timer module clock rate equals system clock rate, to a maximum 32MHz (default)  
1 = Quad Timer module clock rate equals three times system clock rate, to a maximum 96MHz  
Note: This bit should only be changed while the TMR module’s clock is disabled. See Section 6.3.9.  
Note: High-speed clocking is only available when the PLL is being used.  
Note: If the PWM sync signal pulse is used as input to Timer 3 (See SIM_CTRL: TC3_INP, Section  
6.3.1.7), then the clocks of the Quad Timer and PWM must be related, as shown in Table 6-2.  
6.3.8.2  
PWM Clock Rate (PCR)—Bit 14  
This bit selects the clock speed for the PWM module.  
0 = PWM module clock rate equals system clock rate, to a maximum 32MHz (default)  
1 = PWM module clock rate equals three times system clock rate, to a maximum 96MHz  
Note: This bit should only be changed while the PWM module’s clock is disabled. See Section 6.3.9.  
Note: High-speed clocking is only available when the PLL is being used.  
Note: If the PWM sync signal is used as input to Timer 3 (See SIM_CTRL: TC3_INP, Section 6.3.1.7),  
then the clocks of the Quad Timer and PWM must be related, as shown in Table 6-2.  
Table 6-2 Allowable Quad Timer and PWM Clock Rates  
when Using PWM Reload Pulse  
Quad Timer  
1X  
3X  
Clock Speed  
1X  
3X  
OK  
NO  
OK  
OK  
PWM  
6.3.8.3  
Reserved—Bits 13–12  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.3.8.4  
Configure GPIOB7 (CFG_B7)—Bit 11  
This bit selects the alternate function for GPIOB7.  
0 = TXD — SCI Transmit Data (default)  
1 = SCL — I2C Serial Clock  
6.3.8.5  
Configure GPIOB6 (CFG_B6)—Bit 10  
This bit selects the alternate function for GPIOB6.  
56F8013/56F8011 Data Sheet, Rev. 12  
74  
Freescale Semiconductor  
 
Register Descriptions  
0 = RXD — SCI Receive Data(default)  
1 = SDA — I2C Serial Data  
Note: The PRECS bit in the OCCS Oscillator Control register can enable this pin as the  
source clock to the chip. In this mode, make sure that no on-chip peripheral (including the  
GPIO) is driving this pin.  
6.3.8.6  
Configure GPIOB5 (CFG_B5)—Bit 9  
This bit selects the alternate function for GPIOB5.  
0 = T1 — Timer Channel 1 input/output(default)  
1 = FAULT3 — PWM FAULT3 Input  
6.3.8.7  
Configure GPIOB4 (CFG_B4)—Bit 8  
This bit selects the alternate function for GPIOB4.  
0 = T0 — Timer Channel 0 input/output (default)  
1 = CLKO — Clock Output  
6.3.8.8  
Configure GPIOB3 (CFG_B3)—Bit 7  
This bit selects the alternate function for GPIOB3.  
0 = MOSI — SPI Master Out/Slave In (default)  
1 = T3 — Time Channel 3 input/output  
6.3.8.9  
Configure GPIOB2 (CFG_B2)—Bit 6  
This bit selects the alternate function for GPIOB2.  
0 = MISO — SPI Master In/Slave Out (default)  
1 = T2 — Timer Channel 2 input/output  
6.3.8.10 Configure GPIOB1 (CFG_B1)—Bit 5  
This bit selects the alternate function for GPIOB1.  
0 = SS — SPI Slave Select(default)  
1 = SDA— I2C Serial Data  
6.3.8.11 Configure GPIOB0 (CFG_B0)—Bit 4  
This bit selects the alternate function for GPIOB0.  
0 = SCLK — SPI Serial Clock (default)  
1 = SCL — I2C Serial Clock  
6.3.8.12 Configure GPIOA5[1:0] (CFG_A5)—Bits 3–2  
These bits select the alternate function for GPIOA5.  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
75  
00 = PWM5 — PWM5 Output (default)  
01 = PWM5 — PWM5 Output  
10 = FAULT2 — PWM FAULT2 Input  
11 = T3 — Timer Channel 3 input/output  
6.3.8.13 Configure GPIOA4[1:0] (CFG_A4)—Bits 1–0  
These bits select the alternate function for GPIOA4.  
00 = PWM4 — PWM4 Output (default)  
01 = PWM4 — PWM4 Output  
10 = FAULT1— PWM FAULT1 Input  
11 = T2 — Timer Channel 2 input/output  
NOTE:  
Take care when programming the following CFG_* signals so as not to connect  
two different I/O pins to the same peripheral input. For example, do not set  
CFG_B7 to select SCL and also set CFG_B0 to select SCL. If this occurs for an  
output signal, then the signal will be routed to two I/O pins. For input signals, the  
values on the two I/O pins will be ORed together before reaching the peripheral.  
6.3.9  
Peripheral Clock Enable Register (SIM_PCE)  
The Peripheral Clock Enable register is used to enable or disable clocks to the peripherals as a power  
savings feature. The clocks can be individually controlled for each peripheral on the chip. The  
corresponding peripheral should itself be disabled while its clock is shut off.  
Base + $C  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
I2C  
ADC  
TMR  
SCI  
SPI  
PWM  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-11 Peripheral Clock Enable Register (SIM_PCE)  
I C Clock Enable (I2C)—Bit 15  
2
6.3.9.1  
0 = The clock is not provided to the I2C module(the 12C module is disabled)  
1 = Clocks to the I2C module are enabled  
6.3.9.2  
Reserved—Bit 14  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.3.9.3  
Analog-to-Digital Converter IPBus Clock Enable (ADC)—Bit 13  
0 = The clock is not provided to the ADC module (the ADC module is disabled)  
1 = Clocks to the ADC module are enabled  
56F8013/56F8011 Data Sheet, Rev. 12  
76  
Freescale Semiconductor  
Register Descriptions  
6.3.9.4  
Reserved—Bits 12–7  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.3.9.5  
Timer Clock Enable (TMR)—Bit 6  
0 = The clock is not provided to the Quad Timer module(the Quad Timer module is disabled)  
1 = Clocks to the Quad Timer module are enabled  
6.3.9.6  
Reserved—Bit 5  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.3.9.7  
SCI Clock Enable (SCI)—Bit 4  
0 = The clock is not provided to the SCI module (the SCI module is disabled)  
1 = Clocks to the SCI module are enabled  
6.3.9.8  
Reserved—Bit 3  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.3.9.9  
SPI Clock Enable (SPI)—Bit 2  
0 = The clock is not provided to the SPI module (the SPI module is disabled)  
1 = Clocks to the SPI module are enabled  
6.3.9.10 Reserved—Bit 1  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.3.9.11 PWM Clock Enable (PWM)—Bit 0  
0 = The clock is not provided to the PWM module (the PWM module is disabled)  
1 = Clocks to the PWM module are enabled  
6.3.10 I/O Short Address Location Register (SIM_IOSAHI and  
SIM_IOSALO)  
The I/O Short Address Location registers are used to specify the memory referenced via the I/O short  
address mode. The I/O short address mode allows the instruction to specify the lower six bits of address;  
the upper address bits are not directly controllable. This register set allows limited control of the full  
address, as shown in Figure 6-12.  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
77  
Instruction Portion  
Hard Coded” Address Portion  
6 Bits from I/O Short Address Mode Instruction  
16 Bits from SIM_IOSALO Register  
2 bits from SIM_IOSAHI Register  
Full 24-Bit for Short I/O Address  
Figure 6-12 I/O Short Address Determination  
With this register set, an interrupt driver can set the SIM_IOSALO register pair to point to its peripheral  
registers and then use the I/O Short addressing mode to reference them. The ISR should restore this register  
to its previous contents prior to returning from interrupt.  
Note:  
Note:  
The default value of this register set points to the EOnCE registers.  
The pipeline delay between setting this register set and using short I/O addressing with the new value  
is five instruction cycles.  
Base + $D  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ISAL[23:22]  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
RESET  
Figure 6-13 I/O Short Address Location High Register (SIM_IOSAHI)  
6.3.10.1 Reserved—Bits 15—2  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.3.10.2 Input/Output Short Address Location (ISAL[23:22])—Bits 1–0  
This field represents the upper two address bits of the “hard coded” I/O short address.  
56F8013/56F8011 Data Sheet, Rev. 12  
78  
Freescale Semiconductor  
Clock Generation Overview  
Base + $E  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ISAL[21:6]  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 6-14 I/O Short Address Location Low Register (SIM_IOSALO)  
6.3.10.3 Input/Output Short Address Location (ISAL[21:6])—Bits 15–0  
This field represents the lower 16 address bits of the “hard coded” I/O short address.  
6.4 Clock Generation Overview  
The SIM uses master clocks, 2X system clock at a maximum of 64MHz, from the OCCS module to  
produce the peripheral and system (core and memory) clocks at a maximum of 32MHz. It divides the  
master clock by two and gates it with appropriate power mode and clock gating controls. The high speed  
peripheral clock from OCCS operates at three times the system clock for PWM and Quad Timer module  
at a maximum of 96MHz.  
The OCCS configuration controls the operating frequency of the SIM’s master clocks. In the OCCS, either  
an external clock or the relaxation oscillator can be selected as the master clock source (MSTR_OSC). The  
relaxation oscillator can be operated at full speed (8MHz), standby speed (200kHz), or powered down. An  
8MHz clock can be multiplied to 192 MHz using the PLL and postscaled to provide a variety of high speed  
clock rates. Either the postscaled PLL output or input clock of PLL signal can be selected to produce the  
master clocks to the SIM. When the PLL is not selected, the high speed peripheral clock is disabled and  
the 2X system clock is input clock from either internal relaxation oscillator or external clock source.  
In combination with the OCCS module, the SIM provides power modes (see Section 6.5), clock enables  
(SIM_PCE register, CLK_DIS, ONCE_EBL), and clock rate controls (TCR, PCR) to provide flexible  
control of clocking and power utilization. The SIM’s clock enable controls can be used to disable  
individual clocks when not needed. The clock rate controls enable the high speed clocking option for the  
Timer channels and PWM but require the PLL to be on and selected. Refer to the 56F801X Peripheral  
User Manual for further details.  
6.5 Power-Down Modes  
The 56F8013/56F8011 operates in one of five Power-Down modes, as shown in Table 6-3.  
Table 6-3 Clock Operation in Power-Down Modes  
Mode  
Core Clocks  
Peripheral Clocks  
Description  
Device is fully functional  
Run  
Core and memory  
clocks disabled  
Peripheral clocks  
enabled  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
79  
 
 
Table 6-3 Clock Operation in Power-Down Modes (Continued)  
Mode  
Core Clocks  
Peripheral Clocks  
Description  
Wait  
Core and memory  
clocks disabled  
Peripheral clocks  
enabled  
Core executes WAIT instruction to enter this  
mode.  
Typically used for power-conscious applications.  
Possible recoveries from Wait mode to Run  
mode are:  
1. Any interrupt  
2. Executing a Debug mode entry command  
during the 56800E core JTAG interface  
2. Any reset (POR, external, software, COP)  
Stop  
Master clock generation in the OCCS  
remains operational, but the SIM disables  
the generation of system and peripheral  
clocks.  
Core executes STOP instruction to enter this  
mode. Possible recoveries from Stop mode to  
Run mode are:  
1. Interrupt from Timer channels that have been  
configured to operate in Stop mode (TCx_SD)  
2. Interrupt for SCI configured to operate in Stop  
mode (SCI_SD)  
3. Low-voltage interrupt  
4. Executing a Debug mode entry command  
using the 56800E core JTAG interface  
5. Any reset (POR, external, software, COP)  
Standby  
The OCCS generates the 2X system clock The user configures the OCCS and SIM to select  
at a reduced frequency (200kHz). The PLL the relaxation oscillator clock source (PRECS),  
and high speed peripheral clocks are  
disabled and the high-speed peripheral  
option is not available. System and  
peripheral clocks operate at 100kHz.  
shut down the PLL (PLLPD), put the relaxation  
oscillator in Standby mode (ROSB), and put the  
large regulator in Standby (LRSTDBY). The part  
is fully operational, but operating at a minimum  
frequency and power configuration. Recovery  
requires reversing the sequence used to enter  
this mode (allowing for PLL lock time).  
Power-Down  
Master clock generation in the OCCS is  
completely shut down. All system and  
peripheral clocks are disabled.  
The user configures the OCCS and SIM to enter  
Standby mode as shown in the previous  
description, followed by powering down the  
oscillator (ROPD). The only possible recoveries  
from this mode are:  
1. External Reset  
2. Power-On Reset  
The power modes provide additional means to disable clock domains, configure the voltage regulator, and  
configure clock generation to manage power utilization, as shown in Table 6-3. Run, Wait, and Stop  
modes provide means of enabling/disabling the peripheral and/or core clocking as a group. Stop disable  
controls are provided for selected peripherals in the control register so that these peripheral clocks can  
optionally continue to operate in Stop mode and generate interrupts which will return the part from Stop  
to Run mode. Standby mode provides normal operation but at very low speed and power utilization. It is  
possible to invoke Stop or Wait mode while in Standby mode for even greater levels of power reduction.  
A 200kHz clock external clock can optionally be used in Standby mode to produce the required Standby  
100kHz system bus rate. Power-down mode, which selects the ROSC clock source but shuts it off, fully  
disables the part and minimizes its power utilization but is only recoverable via reset.  
When the PLL is not selected and the system bus is operating at around 100kHz, the large regulator can  
be put into its Standby mode (LRSTDBY) to reduce the power utilization of that regulator.  
56F8013/56F8011 Data Sheet, Rev. 12  
80  
Freescale Semiconductor  
Resets  
1
All peripherals, except the COP/watchdog timer, run at the system clock (peripheral bus) frequency ,  
which is the same as the main processor frequency in this architecture. The COP timer runs at  
MSTR_OSC / 1024. The maximum frequency of operation is SYS_CLK = 32MHz. The only exception is  
the Quad Timer and PWM, which can be configured to operate at three times the system bus rate using  
TCR and PCR controls, provided the PLL is active and selected.  
6.6 Resets  
The SIM supports four sources of reset, as shown in Figure 6-15. The two asynchronous sources are the  
external reset pin and the Power-On Reset (POR). The two synchronous sources are the software reset,  
which is generated within the SIM itself by writing the SIM_CTRL register in Section 6.3.1, and the COP  
reset. The SIM uses these to generate resets for the internal logic. These are outlined in Table 6-4. The  
first column lists the four primary resets which are calculated. The JTAG circuitry is reset by the Power-On  
Reset. Columns two through five indicate which reset sources trigger these reset signals. The last column  
provides additional detail.  
Table 6-4 Primary System Resets  
Reset Sources  
Reset Signal  
POR  
External  
Software  
COP  
Comments  
EXTENDED_POR  
X
Stretched version of POR. Relevant 64  
Relaxation Oscillator Clock cycles after  
POR deasserts.  
CLKGEN_RST  
PERIP_RST  
CORE_RST  
X
X
X
X
X
X
X
X
X
X
X
X
Released 32 Relaxation Oscillator Clock  
cycles after all reset sources have  
released.  
Releases 32 Relaxation Oscillator Clock  
cycles after the CLKGEN_RST is  
released.  
Releases 32 SYS_CLK periods after  
PERIP_RST is released.  
Figure 6-15 provides a graphic illustration of the details in Table 6-4. Note that the POR_Delay blocks  
use the Relaxation Oscillator Clock as their time base since other system clocks are inactive during this  
phase of reset.  
1. The Quad Timer and PWM modules can be operated at three times the IPBus clock frequency.  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
81  
 
EXTENDED_POR  
JTAG  
POR  
pulse shaper  
Power-On  
Reset  
Memory  
(active  
low)  
Subsystem  
Delay 64  
MSTR_OSC  
Clocks  
CLKGEN_RST  
OCCS  
COMBINED_RST  
External  
RESET IN  
(active  
PERIP_RST  
Delay 32  
MSTR_OSC  
Clocks  
RESET  
Peripherals  
low)  
pulse shaper  
Delay 32  
COP  
(active  
low)  
sys clocks  
SW Reset  
56800E  
pulse shaper  
Delay 32  
sys clocks  
pulse shaper  
Delay blocks assert immediately and  
deassert only after the programmed  
number of clock cycles.  
CORE_RST  
Figure 6-15 Sources of RESET Functional Diagram (Test modes not included)  
POR resets are extended 64 MSTR_OSC clocks to stabilize the power supply. All resets are subsequently  
extended for an additional 32 MSTR_OSC clocks and 64 system clocks as the various internal reset  
controls are released. Given the normal relaxation oscillator rate of 8MHz, the duration of a POR reset  
from when power comes on to when code is running is 28μS. An external reset generation chip may also  
be used. Resets may be asserted asynchronously, but they are always released internally on a rising edge  
of the system clock.  
56F8013/56F8011 Data Sheet, Rev. 12  
82  
Freescale Semiconductor  
Clocks  
6.7 Clocks  
The memory, peripheral and core clocks all operate at the same frequency (32MHz max) with the  
exception of the Quad Timer and PWM peripheral clocks, which have the option (using TCR and PCR) to  
operate three times faster. The SIM is responsible for stalling individual clocks as a response to various  
hold-off requests, low power modes, and other configuration parameters. The SIM has access to the  
following signals from the OCCS module:  
MSTR_OSC  
This comes from the input clock source mux of the OCCS. It is the output of the  
relaxation oscillator or the external clock source, depending on PRECS. It is not  
guaranteed to be at 50% duty cycle (+ or - 10% can probably be assumed for design  
purposes). This clock runs continuously, even during resetm and is used for reset  
generation.  
HS_PERF  
The PLL multiplies the MSTR_OSC by 24, to a maximum of 192MHz. The ZSRC  
field in OCCS selects the active source to be the PLL. This is divided by 2 and  
postscaled to produce this maximum 96MHz clock. It is used without further division  
to produce the high-speed (3x system bus rate) variants of the Quad Timer and PWM  
peripheral clocks. This clock is disabled when ZSRC is selecting MSTR_OSC.  
SYS_CLK_x2  
The PLL can multiply the MSTR_OSC by 24, to a maximum of 192MHz. When the  
PLL is selected by the OCCS ZSRC field, the PLL is divided by three and postscaled  
to produce this maximum 64MHz clock. When MSTR_OSC is selected by the OCCS  
ZSRC field, MSTR_OSC feeds SYS_CLK_x2 directly. The SIM takes this clock and  
divides it by two to generate all the normal (1x system bus rate) peripheral and system  
clocks.  
While the SIM generates the ADC peripheral clock in the same way it generates all other peripheral clocks,  
the ADC standby and conversion clocks are generated by a direct interface between the ADC and the  
OCCS module.  
Figure 6-16 illustrates clock relationships to one another and to the various resets as the device comes out  
of reset. RST is assumed to be the logical AND of all active-low system resets (for example, POR, external  
reset, COP and Software reset). In the 56F8013/56F8011 architecture, this signal will be stretched by the  
SIM for a period of time (up to 96 MSTR_OSC clock cycles, depending upon the status of the POR) to  
create the clock generation reset signal (CLKGEN_RST). The SIM should deassert CLKGEN_RST  
synchronously with the negative edge of OSC_CLK in order to avoid skew problems. CLKGEN_RST is  
delayed 32 SYS_CLK cycles to create the peripheral reset signal (PERIP_RST). PERIP_RST is then  
delayed by 32 SYS_CLK cycles to create CORE_RST. Both PERIP_RST and CORE_RST should be  
released on the negative edge of SYS_CLK_D as shown. This phased releasing of system resets is  
necessary to give some peripherals (for example, the Flash interface unit) set-up time prior to the 56800E  
core becoming active.  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
83  
Maximum Delay = 64 MSTR_OSC cycles for POR reset extension and 32 MSTR_OSC cycles  
for combined reset extension  
RST  
MSTR_OSC  
Switch on falling OSC_CLK  
96 MSTR_OSC cycles  
CKGEN_RST  
SYS_CLK_x2  
SYS_CLK  
SYS_CLK_D  
SYS_CLK_DIV2  
32 SYS_CLK cycles delay  
Switch on falling SYS_CLK  
PERIP_RST  
CORE_RST  
Switch on falling SYS_CLK  
32 SYS_CLK cycles delay  
Figure 6-16 Timing Relationships of Reset Signal to Clocks  
6.8 Interrupts  
The SIM generates no interrupts.  
Part 7 Security Features  
The 56F8013/56F8011 offers security features intended to prevent unauthorized users from reading the  
contents of the flash memory (FM) array. The 56F8013/56F8011’s flash security consists of several  
hardware interlocks that prevent unauthorized users from gaining access to the flash array.  
After flash security is set, an authorized user is still able to access on-chip memory if the user purposely  
includes a subroutine to read and transfer the contents of internal memory via serial communication  
peripherals, as this code would defeat the purpose of security.  
7.1 Operation with Security Enabled  
After the user has programmed the flash with his application code, the 56F8013/56F8011 can be secured  
by programming a security word ($E70A) into program memory location $00 1FF7. This nonvolatile word  
will keep the device secured through reset and through power-down of the device. Refer to the flash  
56F8013/56F8011 Data Sheet, Rev. 12  
84  
Freescale Semiconductor  
Flash Access Lock and Unlock Mechanisms  
memory chapter in MC56F8000RM, the 56F8000 Peripheral Reference Manual for details. When flash  
security mode is enabled, the 56F8013/56F8011 will disable the core EOnCE debug capabilities. Normal  
program execution is otherwise unaffected.  
7.2 Flash Access Lock and Unlock Mechanisms  
There are several methods that effectively lock or unlock the on-chip flash.  
7.2.1  
Disabling EOnCE Access  
On-chip flash can be read by issuing commands across the EOnCE port, which is the debug interface for  
the 56800E CPU. The TCK, TMS, TDO, and TDI pins comprise a JTAG interface onto which the EOnCE  
port functionality is mapped. When the device boots, the chip-level JTAG TAP (Test Access Port) is active  
and provides the chip’s boundary scan capability and access to the ID register, but proper implementation  
of flash security will block any attempt to access the internal flash memory via the EOnCE port when  
security is enabled.  
7.2.2  
Flash Lockout Recovery Using JTAG  
If the device is secured, one lockout recovery mechanism is the complete erasure of the internal flash  
contents, including the configuration field, thus disabling security (the protection register is cleared). This  
does not compromise security, as the entire contents of the user’s secured code stored in flash are erased  
before security is disabled on the device on the next reset or power-up sequence.  
To start the lockout recovery sequence via JTAG, the JTAG public instruction  
(LOCKOUT_RECOVERY) must first be shifted into the chip-level TAP controller’s instruction register.  
Once the LOCKOUT_RECOVERY instruction has been shifted into the instruction register, the clock  
divider value must be shifted into the corresponding 7-bit data register. After the data register has been  
updated, the user must transition the TAP controller into the RUN-TEST/IDLE state for the lockout  
sequence to commence. The controller must remain in this state until the erase sequence has completed.  
Refer to MC56F8000RM, the 56F8000 Peripheral Reference Manual, for more details, or contact  
Freescale.  
Note:  
Once the lockout recovery sequence has completed, the user must reset both the JTAG TAP controller  
and the device to return to normal unsecured operation. Power-on reset will also reset both.  
7.2.3  
Flash Lockout Recovery Using CodeWarrior  
CodeWarrior can unlock a device by selecting the Debug menu, then selecting DSP56800E, followed by  
Unlock Flash. Another mechanism is also built into CodeWarrior using the device’s memory configuration  
file. The command Unlock_Flash_on_Connect1 in the .cfg file accomplishes the same task as using the  
Debug menu.  
This lockout recovery mechanism also includes the complete erasure of the internal flash contents,  
including the configuration field, thus disabling security (the protection register is cleared).  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
85  
7.2.4  
Flash Lockout Recovery Without Mass Erase  
The user can un-secure a secured device by programming the word $0000 into program memory location  
$00 1FF7. After completing the programming, both the JTAG TAP controller and the device must be  
reset in order to return to normal unsecured operation. Power-on reset will also reset both.  
The user is responsible for directing the device to invoke the flash programming subroutine to reprogram  
the word $0000 into program memory location $00 1FF7. This is done by, for example, toggling a specific  
pin, or by downloading a user-defined key through serial interfaces.  
Note:  
Flash contents can only be programmed for 1s to 0s.  
7.3 Product Analysis  
The recommended method of unsecuring a secured device for product analysis of field failures is via the  
method suggested in Section 7.2.4. The customer would need to supply Technical Support with the details  
of the protocol to access the subroutines in flash. An alternative method for performing analysis on a  
secured device would be to mass-erase and reprogram the flash with the original code, but also either  
modify the security word or else not program the security word.  
Part 8 General Purpose Input/Output (GPIO)  
8.1 Introduction  
This section is intended to supplement the GPIO information found in the 56F801X Peripheral User  
Manual and contains only chip-specific information. This information supercedes the generic information  
in the 56F801X Peripheral User Manual.  
8.2 Configuration  
There are four GPIO ports defined on the 56F8013/56F8011. The width of each port, the associated  
peripheral and reset functions are shown in Table 8-1. The specific mapping of GPIO port pins is shown  
in Table 8-2.  
56F8013/56F8011 Data Sheet, Rev. 12  
86  
Freescale Semiconductor  
 
Configuration  
Table 8-1 GPIO Ports Configuration  
Available Pins in  
56F8013/56F8011  
GPIO Port  
Peripheral Function  
PWM, Reset  
Reset Function  
GPIO, except GPIOA7  
A
B
C
8
8
6
SPI, SCI, Timer  
GPIO  
ADC (GPIOC3 and GPIOC7 are not  
bonded out on the 56F8013/56F8011)  
Analog  
JTAG  
JTAG  
D
4
Table 8-2 GPIO External Signals Map  
Pins in shaded rows are not available in 56F8013/56F8011  
LQFP  
Package Pin  
Notes  
GPIO Function Peripheral Function  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
GPIOA4  
PWM0  
29  
28  
23  
24  
22  
Defaults to A0  
Defaults toA1  
Defaults to A2  
Defaults to A3  
PWM1  
PWM2  
PWM3  
PWM4 / FAULT1 / T2  
SIM register SIM_GPS is used to select  
between PWM4, FAULT1, and T2  
Defaults to A4  
GPIOA5  
PWM5 / FAULT2 / T3  
20  
SIM register SIM_GPS is used to select  
between PWM5, FAULT2, and T3  
Defaults to A5  
GPIOA6  
GPIOA7  
GPIOB0  
FAULT0  
18  
15  
21  
Defaults to A6  
RESET  
Defaults to RESET  
SCLK / SCL  
SIM register SIM_GPS is used to select  
between SCLK and SCL  
Defaults to B0  
GPIOB1  
GPIOB2  
SS / SDA  
MISO / T2  
2
SIM register SIM_GPS is used to select  
between SS and SDA  
Defaults to B1  
17  
SIM register SIM_GPS is used to select  
between MISO and T2  
Defaults to B2  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
87  
Table 8-2 GPIO External Signals Map (Continued)  
Pins in shaded rows are not available in 56F8013/56F8011  
LQFP  
Package Pin  
Notes  
GPIO Function Peripheral Function  
GPIOB3  
GPIOB4  
GPIOB5  
GPIOB6  
MOSI / T3  
16  
SIM register SIM_GPS is used to select  
between MOSI and T3  
Defaults to B3  
T0 / CLKO  
19  
4
SIM register SIM_GPS is used to select  
between T0 and CLKO  
Defaults to B4  
T1 / FAULT3  
RXD / SDA / CLKIN  
SIM register SIM_GPS is used to select  
between T1 and FAULT3  
Defaults to B5  
1
SIM register SIM_GPS is used to select  
between RXD and SDA. CLKIN  
functionality is enabled using the PLL  
Control Register within the OCCS block.  
Defaults to B6  
GPIOB7  
TXD / SCL  
3
SIM register SIM_GPS is used to select  
between TXD and SCL  
Defaults to B7  
GPIOC0  
GPIOC1  
GPIOC2  
ANA0  
12  
11  
10  
Defaults to ANA0  
Defaults to ANA1  
Defaults to ANA2  
ANA1  
ANA2 / VREFH  
GPIOC3  
ANA3  
Not bonded out in 56F8013/56F8011  
Defaults to ANA3  
GPIOC4  
GPIOC5  
GPIOC6  
ANB0  
5
6
7
Defaults to ANB0  
Defaults to ANB1  
Defaults to ANB2  
ANB1  
ANB2 / VREFL  
GPIOC7  
ANB3  
Not bonded out in 56F8013/56F8011  
Defaults to ANB3  
GPIOD0  
GPIOD1  
GPIOD2  
GPIOD3  
TDI  
30  
32  
14  
31  
Defaults to TDI  
Defaults to TDO  
Defaults to TCK  
Defaults to TMS  
TDO  
TCK  
TMS  
8.3 Reset Values  
Tables 4-18 through 4-21 detail registers for the 56F8013/56F8011; Figures 8-1 through 8-4 summarize  
register maps and reset values.  
56F8013/56F8011 Data Sheet, Rev. 12  
88  
Freescale Semiconductor  
Reset Values  
Add.  
Offset  
Register Acronym  
GPIOA_PUPEN  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
6
5
4
3
2
1
0
R
W
PU  
D
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
1
X
0
1
1
0
0
0
0
0
0
0
1
X
0
1
1
0
0
0
0
0
0
0
1
X
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
1
X
0
1
1
0
0
0
0
0
0
0
1
X
0
1
1
0
0
0
0
0
0
0
1
X
0
R
W
GPIOA_DATA  
GPIOA_DDIR  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
DD  
PE  
IA  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
GPIOA_PEREN  
GPIOA_IASSRT  
GPIOA_IEN  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
IEN  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
IEPOL  
GPIOA_IEPOL  
GPIOA_IPEND  
GPIOA_IEDGE  
GPIOA_PPOUTM  
GPIOA_RDATA  
GPIOA_DRIVE  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
IPR  
IES  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
R
W
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
OEN  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
RAW DATA  
RS  
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
X
R
W
DRIVE  
RS  
0
0
0
0
0
0
0
0
0
0
0
R
W
Read as 0  
Reserved  
Reset  
RS  
Figure 8-1 GPIOA Register Map Summary  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
89  
Add.  
Offset  
Register Acronym  
GPIOB_PUPEN  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
6
5
4
3
2
1
0
R
W
PU  
D
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
X
0
1
1
0
0
0
0
0
0
0
1
X
0
1
1
0
0
0
0
0
0
0
1
X
0
1
1
0
0
0
0
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
1
X
0
1
1
0
0
0
0
0
0
0
1
X
0
1
R
W
GPIOB_DATA  
GPIOB_DDIR  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
X
0
R
W
DD  
PE  
IA  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
GPIOB_PEREN  
GPIOB_IASSRT  
GPIOB_IEN  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
IEN  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
IEPOL  
GPIOB_IEPOL  
GPIOB_IPEND  
GPIOB_IEDGE  
GPIOB_PPOUTM  
GPIOB_RDATA  
GPIOB_DRIVE  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
IPR  
IES  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
R
W
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
OEN  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
RAW DATA  
RS  
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
X
R
W
DRIVE  
RS  
0
0
0
0
0
0
0
0
0
0
0
R
W
Read as 0  
Reserved  
Reset  
RS  
Figure 8-2 GPIOB Register Map Summary  
56F8013/56F8011 Data Sheet, Rev. 12  
90  
Freescale Semiconductor  
Reset Values  
Add.  
Offset  
Register Acronym  
GPIOC_PUPEN  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
6
5
4
3
2
1
0
R
W
PU  
D
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
1
X
0
1
0
0
1
0
0
0
0
0
1
X
0
1
0
0
1
0
0
0
0
0
1
X
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
1
X
0
1
0
0
1
0
0
0
0
0
1
X
0
1
0
0
1
0
0
0
0
0
1
X
0
R
W
GPIOC_DATA  
GPIOC_DDIR  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
DD  
PE  
IA  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
GPIOC_PEREN  
GPIOC_IASSRT  
GPIOC_IEN  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
IEN  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
IEPOL  
GPIOC_IEPOL  
GPIOC_IPEND  
GPIOC_IEDGE  
GPIOC_PPOUTM  
GPIOC_RDATA  
GPIOC_DRIVE  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
IPR  
IES  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
R
W
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
OEN  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
RAW DATA  
RS  
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
X
R
W
DRIVE  
RS  
0
0
0
0
0
0
0
0
0
0
0
R
W
Read as 0  
Reserved  
Reset  
RS  
Figure 8-3 GPIOC Register Map Summary  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
91  
Add.  
Offset  
Register Acronym  
GPIOD_PUPEN  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
1
2
1
1
1
0
R
W
PU  
D
$0  
$1  
$2  
$3  
$4  
$5  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
R
W
GPIOD_DATA  
GPIOD_DDIR  
GPIOD_PEREN  
GPIOD_IASSRT  
GPIOD_IEN  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
R
W
DD  
PE  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
IA  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
IEN  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
IEPOL  
$6  
GPIOD_IEPOL  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
X
0
0
0
0
0
0
1
X
0
R
W
IPR  
IES  
$7  
$8  
$9  
$A  
$B  
GPIOD_IPEND  
GPIOD_IEDGE  
GPIOD_PPOUTM  
GPIOD_RDATA  
GPIOD_DRIVE  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
R
W
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
OEN  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
RAW DATA  
RS  
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
0
X
X
R
W
DRIVE  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
W
Read as 0  
Reserved  
Reset  
RS  
56F8013/56F8011 Data Sheet, Rev. 12  
92  
Freescale Semiconductor  
56F8013/56F8011 Information  
Figure 8-4 GPIOD Register Map Summary  
Part 9 Joint Test Action Group (JTAG)  
9.1 56F8013/56F8011 Information  
Please contact your Freescale sales representative or authorized distributor for device/package-specific  
BSDL information.  
The TRST pin is not available in this package. The pin is tied to V in the package.  
DD  
The JTAG state machine is reset during POR and can also be reset via a soft reset by holding TMS high  
for five rising edges of TCK, as described in the 56F801X Peripheral User Manual.  
Part 10 Specifications  
10.1 General Characteristics  
The 56F8013/56F8011 are fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital  
inputs. The term “5V-tolerant” refers to the capability of an I/O pin, built on a 3.3V-compatible process  
technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture  
of devices designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V- and  
5V-compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of 3.3V  
± 10% during normal operation without causing damage). This 5V-tolerant capability therefore offers the  
power savings of 3.3V I/O levels, combined with the ability to receive 5V levels without damage.  
Absolute maximum ratings in Table 10-1 are stress ratings only, and functional operation at the maximum  
is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent damage to  
the device.  
Unless otherwise stated, all specifications within this chapter apply over the temperature range of -40ºC to  
125ºC ambient temperature over the following supply ranges:  
V
= V  
= 0V, V = V  
= 3.0–3.6V, CL < 50pF, f = 32MHz  
SS  
SSA  
DD  
DDA OP  
Note: The 56F8011 device is specified to meet Industrial requirements only.  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
93  
 
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or electrical  
fields. However, normal precautions are advised to  
avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused inputs are  
tied to an appropriate voltage level.  
Table 10-1 Absolute Maximum Ratings  
(VSS = 0V, VSSA = 0V)  
Characteristic  
Supply Voltage Range  
Symbol  
VDD  
Notes  
Min  
-0.3  
- 0.3  
- 0.3  
- 0.3  
- 0.3  
- 0.3  
- 0.3  
-
Max  
4.0  
4.0  
4.0  
0.3  
0.3  
6.0  
4.0  
-20  
Unit  
V
Analog Supply Voltage Range  
ADC High Voltage Reference  
Voltage difference VDD to VDDA  
Voltage difference VSS to VSSA  
Input Voltage Range (Digital inputs)  
VDDA  
VREFH  
ΔVDD  
ΔVSS  
VIN  
V
V
V
V
Pin Groups 1, 2  
Pin Group 3  
V
Input Voltage Range (ADC inputs)1  
Input clamp current, per pin (VIN < 0)2  
VINA  
V
VIC  
mA  
Output clamp current, per pin (VO < 0)2  
VOC  
-
-20  
4.0  
mA  
V
Output Voltage Range  
Pin Group 1  
VOUT  
-0.3  
(Normal Push-Pull mode)  
Output Voltage Range  
(Open Drain mode)  
Pin Groups 1, 2  
VOUTOD  
-0.3  
6.0  
V
Ambient Temperature (Automotive)  
Ambient Temperature (Industrial)  
Junction Temperature (Automotive)  
Junction Temperature (Industrial)  
Storage Temperature (Automotive)  
Storage Temperature (Industrial)  
TA  
TA  
-40  
-40  
-40  
-40  
-55  
-55  
125  
105  
150  
125  
150  
150  
°C  
°C  
°C  
°C  
°C  
°C  
TJ  
TJ  
TSTG  
TSTG  
1. Pin Group 3 can tolerate 6V for less than 5 seconds when they are configured as ADC inputs or during reset. Pin Group 3 can  
tolerate 6V if they are configured as GPIO.  
2. Continuous input current per pin is -2 mA  
56F8013/56F8011 Data Sheet, Rev. 12  
94  
Freescale Semiconductor  
 
General Characteristics  
Default Mode  
Pin Group 1: GPIO, TDI, TDO, TMS, TCK  
Pin Group 2: RESET, GPIOA7  
Pin Group 3: ADC Analog Inputs  
10.1.1 ElectroStatic Discharge (ESD) Model  
Table 10-2 56F8013/56F8011 ESD Protection  
Characteristic  
Min  
Typ  
Max  
Unit  
ESD for Human Body Model (HBM)  
ESD for Machine Model (MM)  
2000  
200  
V
V
V
ESD for Charge Device Model (CDM)  
750  
6
Table 10-3 LQFP Package Thermal Characteristics  
Value  
(LQFP)  
Characteristic  
Comments  
Symbol  
Unit  
Notes  
Junction to ambient  
Natural convection  
Single layer board  
(1s)  
RθJA  
74  
50  
°C/W  
°C/W  
1,2  
1,3  
Junction to ambient  
Natural convection  
Four layer board  
(2s2p)  
RθJMA  
Junction to ambient  
(@200 ft/min)  
Single layer board  
(1s)  
RθJMA  
67  
46  
°C/W  
°C/W  
1,3  
1,3  
Junction to ambient  
(@200 ft/min)  
Four layer board  
(2s2p)  
RθJMA  
Junction to board  
RθJB  
RθJC  
ΨJT  
23  
20  
4
°C/W  
°C/W  
°C/W  
4
5
6
Junction to case  
Junction to package top  
Natural Convection  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESC51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the  
top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per  
JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
7. See Section 12.1 for more details on thermal design considerations.  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
95  
Table 10-4 Recommended Operating Conditions  
(V  
= 0V, V  
= 0V, V = 0V )  
REFL  
SSA  
SS  
Characteristic  
Supply voltage  
Symbol  
VDD  
Notes  
Min  
3
Typ  
3.3  
3.3  
0
Max  
3.6  
Unit  
V
ADC Supply voltage  
VDDA  
3
3.6  
V
ADC High Voltage Reference  
Voltage difference VDD to VDDA  
Voltage difference VSS to VSSA  
VREFH  
ΔVDD  
3
VDDA  
0.1  
V
-0.1  
-0.1  
V
ΔVSS  
0
0.1  
V
Device Clock Frequency  
Using relaxation oscillator  
Using external clock source  
FSYSCLK  
MHz  
8
0
32  
32  
Input Voltage High (digital inputs)  
Input Voltage Low (digital inputs)  
Output Source Current High (at VOH min.)  
VIH  
VIL  
IOH  
Pin Groups 1, 2  
Pin Groups 1, 2  
2
5.5  
0.8  
V
V
-0.3  
mA  
Pin Group 1  
Pin Group 1  
-4  
-8  
When programmed for low drive strength  
When programmed for high drive strength  
Output Source Current Low (at VOL max.)  
IOL  
mA  
°C  
Pin Groups 1, 2  
Pin Groups 1, 2  
4
8
When programmed for low drive strength  
When programmed for high drive strength  
Ambient Operating Temperature  
(Automotive)  
125  
T
-40  
A
Ambient Operating Temperature (Industrial)  
105  
°C  
T
-40  
A
Flash Endurance  
(Program Erase Cycles)  
NF  
TA = -40°C to  
105°C  
10,000  
Cycles  
Flash Data Retention  
TR  
TJ <= 85°C avg  
TJ <= 85°C avg  
15  
20  
Years  
Years  
Flash Data Retention with <100  
Program/Erase Cycles  
tFLRET  
Note: Total chip source or sink current cannot exceed 50mA  
Default Mode  
Pin Group 1: GPIO, TDI, TDO, TMS, TCK  
Pin Group 2: RESET, GPIOA7  
Pin Group 3: ADC analog inputs  
56F8013/56F8011 Data Sheet, Rev. 12  
96  
Freescale Semiconductor  
DC Electrical Characteristics  
10.2 DC Electrical Characteristics  
Table 10-5 DC Electrical Characteristics  
At Recommended Operating Conditions  
Test  
Unit  
Characteristic  
Output Voltage High  
Symbol  
Notes  
Min  
Typ  
Max  
Conditions  
VOH  
VOL  
IIH  
Pin Group 1  
Pin Groups 1, 2  
Pin Groups 1, 2  
2.4  
0
0.4  
V
V
IOH = IOHmax  
IOL = IOLmax  
Output Voltage Low  
Digital Input Current High  
pull-up enabled or disabled1  
+/- 2.5  
μA  
VIN = 2.4V to  
5.5V  
Digital Input Current Low  
pull-up enabled  
pull-up disabled1  
IIL  
Pin Groups 1, 2  
μA  
μA  
VIN = 0V  
-15  
-30  
0
-60  
+/- 2.5  
Output Current  
High Impedance State1  
IOZ  
Pin Groups 1, 2  
Pin Groups 1, 2  
0
+/- 2.5  
VOUT = 2.4V to  
5.5V or 0V  
Schmitt Trigger Input Hysteresis  
Input Capacitance  
VHYS  
CIN  
0.35  
10  
V
pF  
pF  
Output Capacitance  
COUT  
10  
1. See Figure 10-1  
Default Mode  
Pin Group 1: GPIO, TDI, TDO, TMS, TCK  
Pin Group 2: RESET, GPIOA7  
Pin Group 3: ADC Analog Inputs  
2.0  
0.0  
- 2.0  
- 4.0  
- 6.0  
- 8.0  
- 10.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Volt  
Figure 10-1 I /I vs. V (Typical; Pull-Up Disabled)  
IN OZ  
IN  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
97  
 
 
Table 10-6 Current Consumption per Power Supply Pin (Typical)  
Typical @ 3.3V, 25°C  
Maximum@ 3.6V, 25°C  
Mode  
Conditions  
1
1
IDDA  
IDDA  
IDD  
IDD  
RUN  
32MHz Device Clock  
42mA  
13.5mA  
Relaxation Oscillator on  
PLL powered on  
Continuous MAC instructions with fetches from  
Program Flash  
All peripheral modules enabled. Quad Timer and  
PWM using 1x Clock  
ADC powered on and clocked  
WAIT  
STOP  
32MHz Device Clock  
Relaxation Oscillator on  
PLL powered on  
Processor Core in WAIT state  
All Peripheral modules enabled. Quad Timer and  
PWM using 1x Clock  
17mA  
0μA  
ADC powered off  
4MHz Device Clock  
Relaxation Oscillator on  
PLL powered off  
Processor Core in STOP state  
All peripheral module and core clocks are off  
ADC powered off  
5mA  
A  
0μA  
STANDBY > 100KHz Device Clock  
STOP  
430μA  
550μA  
400μA  
1μA  
Relaxation Oscillator in Standby mode  
PLL powered off  
Processor Core in STOP state  
All peripheral module and core clocks are off  
ADC powered off  
Voltage regulator in Standby mode  
POWER-  
DOWN  
Device Clock is off  
Relaxation Oscillator powered off  
PLL powered off  
300μA  
0μA  
1μA  
Processor Core in STOP state  
All peripheral module and core clocks are off  
ADC powered off  
Voltage Regulator in Standby mode  
1. No Output Switching  
All ports configured as inputs  
All inputs Low  
No DC Loads  
56F8013/56F8011 Data Sheet, Rev. 12  
98  
Freescale Semiconductor  
AC Electrical Characteristics  
Table 10-7 Power-On Reset Low-Voltage Parameters  
Typ  
2.7  
Max  
Unit  
V
Min  
2.58  
Characteristic  
Symbol  
VEI3.3  
VE12.5  
VEIH  
Low-Voltage Interrupt for 3.3V supply1  
Low-Voltage Interrupt for 2.5V supply2  
2.15  
50  
V
Low-Voltage Interrupt Recovery Hysteresis  
mV  
V
Power-On Reset3  
POR  
1.8  
1.9  
1. When V drops below V  
, an interrupt is generated.  
DD  
EI3.3  
2. When V drops below V  
, an interrupt is generated.  
DD  
EI32.5  
3. Power-On Reset occurs whenever the internally regulated 2.5V digital supply drops below 1.8V. While  
power is ramping up, this signal remains active for as long as the internal 2.5V is below 2.15V or the 3.3V  
1/O voltage is below 2.7V, no matter how long the ramp-up rate is. The internally regulated voltage is  
typically 100mV less than V during ramp-up until 2.5V is reached, at which time it self-regulates.  
DD  
10.2.1 Voltage Regulator Specifications  
The 56F8013/56F8011 have two on-chip regulators. One supplies the PLL and relaxation oscillator. It has  
no external pins and therefore has no external characteristics which must be guaranteed (other than proper  
operation of the device). The second regulator supplies approximately 2.5V to the 56F8013/56F8011’s  
core logic. This regulator requires an external 2.2μF, or greater, capacitor for proper operation. Ceramic  
and tantalum capacitors tend to provide better performance tolerances. The output voltage can be  
measured directly on the V  
pin. The specifications for this regulator are shown in Table 10-8.  
CAP  
Table 10-8. Regulator Parameters  
Characteristic  
Short Circuit Current  
Symbol  
ISS  
Min  
Typical  
450  
Max  
650  
30  
Unit  
mA  
Short Circuit Tolerance  
TRSC  
Minutes  
(output shorted to ground)  
10.3 AC Electrical Characteristics  
Tests are conducted using the input levels specified in Table 10-5. Unless otherwise specified,  
propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured  
between the 10% and 90% points, as shown in Figure 10-2.  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
99  
 
Low  
VIL  
High  
VIH  
90%  
50%  
10%  
Input Signal  
Midpoint1  
Fall Time  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Rise Time  
Figure 10-2 Input Signal Measurement References  
Figure 10-3 shows the definitions of the following signal states:  
Active state, when a bus or signal is driven, and enters a low impedance state  
Tri-stated, when a bus or signal is placed in a high impedance state  
Data Valid state, when a signal level has reached VOL or VOH  
Data Invalid state, when a signal level is in transition between VOL and VOH  
Data2 Valid  
Data2  
Data1 Valid  
Data1  
Data3 Valid  
Data3  
Data  
Tri-stated  
Data Invalid State  
Data Active  
Data Active  
Figure 10-3 Signal States  
10.4 Flash Memory Characteristics  
Table 10-9 Flash Timing Parameters  
Characteristic  
Symbol  
Tprog  
Terase  
Tme  
Min  
20  
Typ  
Max  
40  
Unit  
μs  
Program time1  
Erase time 2  
20  
ms  
ms  
Mass erase time  
100  
1. There is additional overhead which is part of the programming sequence. See the 56F801X Peripheral User Manual  
for details.  
2. Specifies page erase time. There are 512 bytes per page in the Program Flash memory.  
56F8013/56F8011 Data Sheet, Rev. 12  
100  
Freescale Semiconductor  
 
External Clock Operation Timing  
10.5 External Clock Operation Timing  
1
Table 10-10 External Clock Operation Timing Requirements  
Characteristic  
Symbol  
fosc  
Min  
4
Typ  
8
Max  
8
Unit  
MHz  
ns  
Frequency of operation (external clock driver)2  
Clock Pulse Width3  
tPW  
6.25  
3
External Clock Input Rise Time4  
trise  
ns  
External Clock Input Fall Time5  
tfall  
3
ns  
1. Parameters listed are guaranteed by design.  
2. See Figure 10-4 for details on using the recommended connection of an external clock driver.  
3. The high or low pulse width must be no smaller than 6.25ns or the chip may not function.  
4. External clock input rise time is measured from 10% to 90%.  
5. External clock input fall time is measured from 90% to 10%.  
VIH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
VIL  
tfall  
trise  
tPW  
tPW  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Figure 10-4 External Clock Timing  
10.6 Phase Locked Loop Timing  
Table 10-11 PLL Timing  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Internal reference relaxation oscillator frequency for  
the PLL  
frosc  
8
MHz  
PLL output frequency1 (24 x reference frequency)  
fop  
tlock  
192  
40  
MHz  
µs  
PLL lock time2  
100  
Cycle-to-cycle jitter  
tjitterpll  
350  
ps  
1. The core system clock will operate at 1/6 of the PLL output frequency.  
2. This is the time required after the PLL is enabled to ensure reliable operation.  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
101  
 
10.7 Relaxation Oscillator Timing  
Table 10-12 Relaxation Oscillator Timing  
Characteristic  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Relaxation Oscillator output frequency  
fop  
Normal Mode1  
Standby Mode  
8.05  
200  
MHz  
kHz  
Relaxation Oscillator stabilization time2  
troscs  
1
3
µs  
ps  
Cycle-to-cycle jitter. This is measured on the  
CLKO signal (programmed prescaler_clock)  
tjitterrosc  
400  
over 264 clocks3  
Minimum tuning step size  
Maximum tuning step size  
.08  
40  
%
%
%
Variation over temperature –40°C to 150°C4  
Variation over temperature 0°C to 105°C4  
+1.0 to –1.5 +3.0 to –3.0  
0 to +1 +2.0 to –2.0  
+1.0 to -1.5 +3.0 to –4.5  
%
%
Variation over temperature –40°C to 150°C4  
(MC56F8013MFAE)  
1. Output frequency after factory trim.  
2. This is the time required from standby to normal mode transition.  
3. J is required to meet SCI requirements.  
A
4. See Figure 10-5.  
56F8013/56F8011 Data Sheet, Rev. 12  
102  
Freescale Semiconductor  
 
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
8.16  
8.08  
8
7.92  
7.84  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Degrees C (Junction)  
Figure 10-5 Relaxation Oscillator Temperature Variation (Typical) After Factory Trim  
10.8 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Note: All the address and data buses described here are internal.  
1,2  
Table 10-13 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Characteristic  
Symbol  
tRA  
Typical Min  
Typical Max  
Unit  
ns  
See Figure  
10-6  
Minimum RESET Assertion Duration  
Minimum GPIO pin Assertion for Interrupt  
4T  
tIW  
2T  
96TOSC + 64T  
97TOSC + 65T  
6T  
ns  
RESET deassertion to First Address Fetch3  
tRDA  
tIF  
ns  
Delay from Interrupt Assertion to Fetch of first  
instruction (exiting Stop)  
ns  
1. In the formulas, T = clock cycle and T  
= oscillator clock cycle. For an operating frequency of 32MHz, T = 31.25ns. At 8MHz  
osc  
(used during Reset and Stop modes), T = 125ns.  
2. Parameters listed are guaranteed by design.  
3. During Power-On Reset, it is possible to use the 56F8013/56F8011 internal reset stretching circuitry to extend this period to  
2^21T.  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
103  
GPIO pin  
(Input)  
TIW  
Figure 10-6 GPIO Interrupt Timing (Negative Edge-Sensitive)  
56F8013/56F8011 Data Sheet, Rev. 12  
104  
Freescale Semiconductor  
Serial Peripheral Interface (SPI) Timing  
10.9 Serial Peripheral Interface (SPI) Timing  
1
Table 10-14 SPI Timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Cycle time  
Master  
Slave  
tC  
10-7, 10-8,  
10-9, 10-10  
125  
62.5  
ns  
ns  
Enable lead time  
Master  
Slave  
tELD  
tELG  
tCH  
tCL  
10-10  
10-10  
31  
ns  
ns  
Enable lag time  
Master  
Slave  
125  
ns  
ns  
Clock (SCK) high time  
Master  
Slave  
10-7, 10-8,  
10-9, 10-10  
50  
31  
ns  
ns  
Clock (SCK) low time  
Master  
Slave  
10-10  
50  
31  
ns  
ns  
Data set-up time required for inputs  
Master  
Slave  
tDS  
tDH  
tA  
10-7, 10-8,  
10-9, 10-10  
20  
0
ns  
ns  
Data hold time required for inputs  
Master  
Slave  
10-7, 10-8,  
10-9, 10-10  
0
2
ns  
ns  
Access time (time to data active from  
high-impedance state)  
Slave  
10-10  
10-10  
4.8  
3.7  
15  
ns  
ns  
Disable time (hold time to high-impedance state)  
Slave  
tD  
15.2  
Data Valid for outputs  
Master  
Slave (after enable edge)  
tDV  
10-7, 10-8,  
10-9, 10-10  
4.5  
20.4  
ns  
ns  
Data invalid  
Master  
Slave  
tDI  
tR  
tF  
10-7, 10-8,  
10-9, 10-10  
0
0
ns  
ns  
Rise time  
Master  
Slave  
10-7, 10-8,  
10-9, 10-10  
11.5  
10.0  
ns  
ns  
Fall time  
Master  
Slave  
10-7, 10-8,  
10-9, 10-10  
9.7  
9.0  
ns  
ns  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
105  
1. Parameters listed are guaranteed by design.  
1
SS  
(Input)  
SS is held High on master  
tC  
tR  
tF  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tR  
tCL  
SCLK (CPOL = 1)  
(Output)  
tDH  
tCH  
tDS  
MISO  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDI(ref)  
(Input)  
tDV  
Bits 14–1  
MOSI  
(Output)  
Master MSB out  
tF  
Master LSB out  
tR  
Figure 10-7 SPI Master Timing (CPHA = 0)  
56F8013/56F8011 Data Sheet, Rev. 12  
106  
Freescale Semiconductor  
Serial Peripheral Interface (SPI) Timing  
SS  
(Input)  
SS is held High on master  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tCL  
SCLK (CPOL = 1)  
(Output)  
tCH  
tDS  
tR  
tDH  
MISO  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDI(ref)  
(Input)  
tDV(ref)  
tDV  
Bits 14– 1  
MOSI  
(Output)  
Master MSB out  
tF  
Master LSB out  
tR  
Figure 10-8 SPI Master Timing (CPHA = 1)  
SS  
(Input)  
tC  
tF  
tELG  
tCL  
tR  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tCH  
tF  
tA  
tR  
tD  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
tDV  
Slave LSB out  
tDS  
tDI  
tDI  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 10-9 SPI Slave Timing (CPHA = 0)  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
107  
SS  
(Input)  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELG  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tDV  
tCH  
tR  
tD  
tA  
tF  
MISO  
Slave MSB out  
MSB in  
Bits 14–1  
tDV  
Slave LSB out  
(Output)  
tDS  
tDI  
tDH  
MOSI  
(Input)  
Bits 14–1  
LSB in  
Figure 10-10 SPI Slave Timing (CPHA = 1)  
10.10 Quad Timer Timing  
1, 2  
Table 10-15 Timer Timing  
Characteristic  
Timer input period  
Symbol  
PIN  
Min  
2T + 6  
1T + 3  
125  
Max  
Unit  
ns  
See Figure  
10-11  
Timer input high / low period  
Timer output period  
PINHL  
POUT  
ns  
10-11  
ns  
10-11  
Timer output high / low period  
POUTHL  
50  
ns  
10-11  
1. In the formulas listed, T = the clock cycle. For 32MHz operation, T = 31.25ns.  
2. Parameters listed are guaranteed by design.  
56F8013/56F8011 Data Sheet, Rev. 12  
108  
Freescale Semiconductor  
Quad Timer Timing  
Timer Inputs  
PINHL  
PINHL  
PIN  
Timer Outputs  
POUTHL  
POUTHL  
POUT  
Figure 10-11 Timer Timing  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
109  
10.11 Serial Communication Interface (SCI) Timing  
1
Table 10-16 SCI Timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Baud Rate2  
BR  
(fMAX/16)  
Mbps  
RXD3 Pulse Width  
TXD4 Pulse Width  
RXDPW  
TXDPW  
0.965/BR  
1.04/BR  
1.04/BR  
ns  
ns  
10-12  
0.965/BR  
10-13  
LIN Slave Mode  
Deviation of slave node clock from  
nominal clock rate before  
synchronization  
FTOL_UNSYNCH  
FTOL_SYNCH  
TBREAK  
-14  
-2  
14  
2
%
%
Deviation of slave node clock relative  
to the master node clock after  
synchronization  
Minimum break character length  
13  
11  
Master  
node bit  
periods  
Slavenode  
bit periods  
1. Parameters listed are guaranteed by design.  
2. f is the frequency of operation of the system clock in MHz, which is 32MHz for the 56F8013/56F8011 devices.  
MAX  
3. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.  
4. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.  
RXD  
Receive  
data pin  
RXDPW  
(Input)  
Figure 10-12 RXD Pulse Width  
TXD  
Receive  
data pin  
TXDPW  
(Input)  
Figure 10-13 TXD Pulse Width  
56F8013/56F8011 Data Sheet, Rev. 12  
110  
Freescale Semiconductor  
 
 
Inter-Integrated Circuit Interface (I2C) Timing  
2
10.12 Inter-Integrated Circuit Interface (I C) Timing  
2
Table 10-17 I C Timing  
Standard Mode  
Minimum Maximum  
Fast Mode  
Characteristic  
Symbol  
Unit  
Minimum  
Maximum  
SCL Clock Frequency  
fSCL  
0
100  
0
400  
kHz  
Hold time (repeated )  
START condition. After  
this period, the first clock  
pulse is generated.  
tHD; STA  
4.0  
0.6  
μs  
LOW period of the SCL  
clock  
tLOW  
4.7  
4.0  
4.7  
1.25  
0.6  
μs  
μs  
μs  
μs  
HIGH period of the SCL  
clock  
tHIGH  
Set-up time for a repeated  
START condition  
tSU; STA  
0.6  
Data hold time for I2C bus  
devices  
01  
3.452  
01  
0.92  
tHD; DAT  
1003  
Data set-up time  
tSU; DAT  
tr  
250  
ns  
ns  
4
4
Rise time of both SDA and  
SCL signals  
1000  
300  
300  
300  
2 +0.1Cb  
Fall time of both SDA and  
SCL signals  
tf  
ns  
μs  
μs  
2 +0.1Cb  
0.6  
Set-up time for STOP  
condition  
tSU; STO  
4.0  
4.7  
Bus free time between  
STOP and START  
condition  
tBUF  
1.3  
0.0  
Pulse width of spikes that  
must be suppressed by  
the input filter  
tSP  
N/A  
N/A  
50  
ns  
1. A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the V min of the SCL  
IH  
signal) to bridge the undefined region of the falling edge of SCL.  
2. The maximum t  
has only to be met if the device does not stretch the LOW period (t  
) of the SCL signal.  
HD; DAT  
LOW  
2
2
3. A Fast mode I C bus device can be used in a Standard mode I C bus system, but the requirement t  
> = 250ns  
SU; DAT  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal.  
If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
2
t
+ t  
= 1000 + 250 = 1250ns (according to the Standard mode I C bus specification) before the SCL line is  
rmax  
SU; DAT  
released.  
4. C = total capacitance of the one bus line in pF.  
b
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
111  
SDA  
SCL  
t
SU; DAT  
t
t
t
SP  
t
BUF  
HD; STA  
LOW  
t
t
t
SU; STA  
HD; STA  
SU; STO  
S
BR  
P
S
t
t
HIGH  
HD; DAT  
2
Figure 10-14 Timing Definition for Fast and Standard Mode Devices on the I C Bus  
10.13 JTAG Timing  
Table 10-18 JTAG Timing  
Characteristic  
Symbol  
Min  
DC  
50  
5
Max  
Unit  
MHz  
ns  
See Figure  
10-15  
TCK frequency of operation1  
TCK clock pulse width  
fOP  
SYS_CLK/8  
tPW  
tDS  
tDH  
tDV  
tTS  
30  
30  
10-15  
TMS, TDI data set-up time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
ns  
10-16  
5
ns  
10-16  
ns  
10-16  
ns  
10-16  
1. TCK frequency of operation must be less than 1/8 the processor rate.  
1/fOP  
tPW  
tPW  
VIH  
VM  
VM  
TCK  
(Input)  
VIL  
VM = VIL + (VIH – VIL)/2  
Figure 10-15 Test Clock Input Timing Diagram  
56F8013/56F8011 Data Sheet, Rev. 12  
112  
Freescale Semiconductor  
 
JTAG Timing  
TCK  
(Input)  
tDS  
tDH  
TDI  
TMS  
Input Data Valid  
(Input)  
tDV  
TDO  
(Output)  
Output Data Valid  
tTS  
TDO  
(Output)  
Figure 10-16 Test Access Port Timing Diagram  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
113  
10.14 Analog-to-Digital Converter (ADC) Parameters  
1
Table 10-19 ADC Parameters  
Parameter  
DC Specifications  
Symbol  
Min  
Typ  
Max  
Unit  
Resolution  
RES  
fADIC  
RAD  
12  
0.1  
6
12  
5.33  
VREFH  
13  
Bits  
MHz  
V
ADC internal clock  
Conversion range  
VREFL  
ADC power-up time2  
tAIC cycles3  
tAIC cycles3  
tAIC cycles3  
tAIC cycles3  
tADPU  
Recovery from auto standby  
tREC  
tADC  
tADS  
0
6
1
1
Conversion time  
Sample time  
Accuracy  
Integral non-linearity4  
(Full input signal range)  
LSB5  
LSB5  
INL  
+/- 3  
+/- 5  
+/- 1  
Differential non-linearity  
DNL  
+/- .6  
Monotonicity  
GUARANTEED  
+/- 4  
Offset Voltage Internal Ref  
VOFFSET  
VOFFSET  
EGAIN  
+/- 9  
+/- 12  
mV  
mV  
Offset Voltage External Ref  
Gain Error (transfer gain)  
+/- 6  
.998 to 1.002  
1.01 to .99  
ADC Inputs6 (Pin Group 3)  
Input voltage (external reference)  
VADIN  
VADIN  
IIA  
VREFL  
VSSA  
VREFH  
VDDA  
+/- 2  
V
V
Input voltage (internal reference)  
Input leakage7  
VREFH current  
0
μA  
IVREFH  
IADI  
0
μA  
Input injection current8, per pin  
Input capacitance  
3
mA  
pF  
CADI  
XIN  
See Figure 10-17  
See Figure 10-17  
Input impedance  
Ohms  
AC Specifications  
Signal-to-noise ratio  
SNR  
THD  
60  
60  
61  
58  
65  
64  
66  
62  
dB  
dB  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
Signal-to-noise plus distortion  
Effective Number Of Bits  
SFDR  
SINAD  
ENOB  
dB  
dB  
10.0  
Bits  
1. All measurements were made at V = 3.3V, V  
= 3.3V, and V = ground  
REFL  
DD  
REFH  
2. Includes power-up of ADC and V  
3. ADC clock cycles  
REF  
4. INL measured from V = V  
to V = V  
IN REFH  
IN  
REFL  
56F8013/56F8011 Data Sheet, Rev. 12  
114  
Freescale Semiconductor  
Equivalent Circuit for ADC Inputs  
5. LSB = Least Significant Bit = 0.806mV  
6. Pin groups are detailed following Table 10-1.  
7. For device S56F8013MFA00E, input leakage current is ± 1μA.  
8. The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the  
ADC.  
10.15 Equivalent Circuit for ADC Inputs  
Figure 10-17 illustrates the ADC input circuit during sample and hold. S1 and S2 are always open/closed  
at the same time that S3 is closed/open. When S1/S2 are closed & S3 is open, one input of the sample and  
hold circuit moves to (V  
-V  
)/2, while the other charges to the analog input voltage. When the  
REFH REFL  
switches are flipped, the charge on C1 and C2 are averaged via S3, with the result that a single-ended  
analog input is switched to a differential voltage centered about (V -V )/2. The switches switch  
REFH REFL  
on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). Note that there  
are additional capacitances associated with the analog input pad, routing, etc., but these do not filter into  
the S/H output voltage, as S1 provides isolation during the charge-sharing phase.  
One aspect of this circuit is that there is an on-going input current, which is a function of the analog input  
voltage, V  
and the ADC clock frequency.  
REF  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
115  
C1  
: Singled Ended Mode  
2 X C1 : Differential Mode  
Equivalent Circuit for A/D Loading  
S1  
channel mux  
equiv resistance  
100 Ohms  
ADC Input  
125 Ohm  
ESD Resistor  
S1  
S1  
C1  
C1  
S/H  
(VREFHx - VREFLx) / 2  
1
2
3
S1  
1.  
2.  
Parasitic capacitance due to package, pin-to-pin and pin-to-package  
base coupling; 1.8pF  
Parasitic capacitance due to the chip bond pad, ESD protection devices  
and signal routing; 2.04pF  
8 pF noise damping capacitor  
C1 = 1.4 pF  
S2  
S2  
C1  
: Singled Ended Mode  
2 X C1 : Differential Mode  
3.  
4.  
5.  
S1 and S2 switch phases are non-overlapping and operate at the ADC  
clock frequency  
S1  
S2  
1
6. Equivalent input impedance, when the input is selected =  
+100ohm+125ohm  
( ADC Clock Rate)×1.4×1012  
Figure 10-17 Equivalent Circuit for A/D Loading  
10.16 Power Consumption  
See Section 10.1 for a list of IDD requirements for the 56F8013/56F8011. This section provides additional  
detail which can be used to optimize power consumption for a given application.  
Power consumption is given by the following equation:  
Total power = A: internal [static component]  
+B: internal [state-dependent component]  
+C: internal [dynamic component]  
+D: external [dynamic component]  
+E: external [static]  
A, the internal [static component], is comprised of the DC bias currents for the oscillator, leakage currents,  
Please see http://www.freescale.com for the most current mechanical drawing.  
PLL, and voltage references. These sources operate independently of processor state or operating  
56F8013/56F8011 Data Sheet, Rev. 12  
116  
Freescale Semiconductor  
Power Consumption  
frequency.  
B, the internal [state-dependent component], reflects the supply current required by certain on-chip  
resources only when those resources are in use. These include RAM, Flash memory and the ADCs.  
2
C, the internal [dynamic component], is classic C*V *F CMOS power dissipation corresponding to the  
56800E core and standard cell logic.  
D, the external [dynamic component], reflects power dissipated on-chip as a result of capacitive loading  
2
on the external pins of the chip. This is also commonly described as C*V *F, although simulations on two  
of the I/O cell types used on the 56800E reveal that the power-versus-load curve does have a non-zero  
Y-intercept.  
Table 10-20 I/O Loading Coefficients at 10MHz  
Intercept  
Slope  
8mA drive  
4mA drive  
1.3  
0.11mW / pF  
0.11mW / pF  
1.15mW  
Power due to capacitive loading on output pins is (first order) a function of the capacitive load and  
frequency at which the outputs change. Table 10-20 provides coefficients for calculating power dissipated  
in the I/O cells as a function of capacitive load. In these cases:  
TotalPower = Σ((Intercept + Slope*Cload)*frequency/10MHz)  
where:  
Summation is performed over all output pins with capacitive loads  
TotalPower is expressed in mW  
Cload is expressed in pF  
Because of the low duty cycle on most device pins, power dissipation due to capacitive loads was found  
to be fairly low when averaged over a period of time.  
E, the external [static component], reflects the effects of placing resistive loads on the outputs of the  
2
device. Sum the total of all V /R or IV to arrive at the resistive load contribution to power. Assume V = 0.5  
for the purposes of these rough calculations. For instance, if there is a total of eight PWM outputs driving  
10mA into LEDs, then P = 8*.5*.01 = 40mW.  
In previous discussions, power consumption due to parasitics associated with pure input pins is ignored,  
as it is assumed to be negligible.  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
117  
 
Part 11 Packaging  
11.1 56F8013/56F8011 Package and Pin-Out Information  
This section contains package and pin-out information for the 56F8013/56F8011. These devices come in  
a 32-pin Low-profile Quad Flat Pack (LQFP). Figure 11-1 shows the package outline for the 32-pin  
LQFP, Figure 11-2 shows the mechanical parameters for this package, and Table 11-1 lists the pin-out  
for the 32-pin LQFP.  
ORIENTATION  
MARK  
GPIOA3/PWM3  
GPIOB6/RXD/SDA/CLKIN  
GPIOB1/SS/SDA  
PIN 25  
GPIOA2/PWM2  
PIN 1  
GPIOB7/TXD/SCL  
GPIOA4/PWM4/FAULT1/T2  
GPIOB0/SCLK/SCL  
GPIOB5/T1/FAULT3  
ANB0/GPIOC4  
ANB1/GPIOC5  
GPIOA5/PWM5/FAULT2/T3  
GPIOB4/T0/CLKO  
ANB2/VREFL/GPIOC6  
GPIOA6/FAULT0  
GPIOB2/MISO/T2  
PIN 17  
PIN 9  
VDDA  
Note: Alternate signals are in italic  
Figure 11-1 Top View, 56F8013/56F8011 32-Pin LQFP Package  
56F8013/56F8011 Data Sheet, Rev. 12  
118  
Freescale Semiconductor  
 
56F8013/56F8011 Package and Pin-Out Information  
1
Table 11-1 56F8013/56F8011 32-Pin LQFP Package Identification by Pin Number  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
VSSA  
Signal Name  
Signal Name  
VCAP  
1
2
GPIOB6  
RXD,SDA,CLKIN  
9
17  
18  
GPIOB2  
MISO,T2  
25  
26  
GPIOB1  
10  
ANA2  
GPIOA6  
VDD  
SS,SDA  
VREFH,GPIOC2  
FAULT0  
3
4
5
6
7
GPIOB7  
TXD,SCL  
11  
12  
13  
14  
15  
ANA1  
GPIOC1  
19  
20  
21  
22  
23  
GPIOB4  
T0,CLKO  
27  
28  
28  
30  
31  
VSS  
GPIOB5  
T1,FAULT3  
ANA0  
GPIOC0  
GPIOA5  
PWM5,FAULT2,T3  
GPIOA1  
PWM1  
ANB0  
GPIOC4  
VSS  
GPIOB0  
SCLK,SCL  
GPIOA0  
PWM0  
ANB1  
GPIOC5  
TCK  
GPIOD2  
GPIOA4  
PWM4,FAULT1,T2  
TDI  
GPIOD0  
ANB2  
RESET  
GPIOA2  
TMS  
VREFL,GPIOC6  
GPIOA7  
PWM2  
GPIOD3  
8
VDDA  
16  
GPIOB3  
24  
GPIOA3  
32  
TDO  
MOSI,T3  
PWM3  
GPIOD1  
1.Alternate signals are in iltalic  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
119  
4X  
A
A1  
0.20 (0.008) AB T–U  
Z
32  
25  
1
–U–  
V
–T–  
B
AE  
AE  
P
B1  
DETAIL Y  
–Z–  
V1  
17  
8
DETAIL Y  
9
4X  
0.20 (0.008) AC T–U  
Z
9
NOTES:  
S1  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
S
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE –AB– IS LOCATED AT BOTTOM  
OF LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS –T–, –U–, AND –Z– TO BE DETERMINED  
AT DATUM PLANE –AB–.  
DETAIL AD  
G
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE –AC–.  
–AB–  
–AC–  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 (0.010) PER SIDE. DIMENSIONS A AND B  
DO INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE –AB–.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.520 (0.020).  
SEATING  
PLANE  
0.10 (0.004) AC  
BASE  
METAL  
N
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076 (0.0003).  
9. EXACT SHAPE OF EACH CORNER MAY VARY  
FROM DEPICTION.  
F
D
8X M  
MILLIMETERS  
MIN MAX  
7.000 BSC  
3.500 BSC  
7.000 BSC  
3.500 BSC  
INCHES  
MIN MAX  
0.276 BSC  
0.138 BSC  
0.276 BSC  
0.138 BSC  
R
J
DIM  
A
A1  
B
B1  
C
D
E
F
G
H
J
SECTION AE–AE  
E
C
1.400  
1.600  
0.450  
1.450  
0.400  
0.055  
0.063  
0.018  
0.057  
0.016  
0.300  
1.350  
0.300  
0.012  
0.053  
0.012  
W
0.800 BSC  
0.031 BSC  
Q
H
K
X
0.050  
0.090  
0.500  
0.150  
0.200  
0.700  
0.002  
0.004  
0.020  
0.006  
0.008  
0.028  
K
M
N
P
12 REF  
12 REF  
DETAIL AD  
0.090  
0.160  
0.004  
0.006  
0.400 BSC  
0.016 BSC  
Q
R
1
5
1
5
0.150  
0.250  
0.006  
0.010  
S
9.000 BSC  
0.354 BSC  
S1  
V
V1  
W
X
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
0.177 BSC  
0.354 BSC  
0.177 BSC  
0.008 REF  
0.039 REF  
Figure 11-2 56F8013/56F8011 32-Pin LQFP Mechanical Information  
56F8013/56F8011 Data Sheet, Rev. 12  
120  
Freescale Semiconductor  
Thermal Design Considerations  
Part 12 Design Considerations  
12.1 Thermal Design Considerations  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
x P )  
D
J
A
θJΑ  
where:  
o
T
R
= Ambient temperature for the package ( C)  
A
o
= Junction-to-ambient thermal resistance ( C/W)  
θJΑ  
P
= Power dissipation in the package (W)  
D
The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy  
estimation of thermal performance. Unfortunately, there are two values in common usage: the value  
determined on a single-layer board and the value obtained on a board with two planes. For packages such  
as the PBGA, these values can be different by a factor of two. Which value is closer to the application  
depends on the power dissipated by other components on the board. The value obtained on a single layer  
board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the  
internal planes is usually appropriate if the board has low-power dissipation and the components are well  
separated.  
When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal  
resistance and a case-to-ambient thermal resistance:  
R
= R  
+ R  
θJA  
θJC θCA  
where:  
R
R
R
= Package junction-to-ambient thermal resistance (°C/W)  
= Package junction-to-case thermal resistance (°C/W)  
= Package case-to-ambient thermal resistance (°C/W)  
θJA  
θJC  
θCA  
R
is device related and cannot be influenced by the user. The user controls the thermal environment to  
θJC  
change the case to ambient thermal resistance, R  
. For instance, the user can change the size of the heat  
θCA  
sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit  
board, or change the thermal dissipation on the printed circuit board surrounding the device.  
To determine the junction temperature of the device in the application when heat sinks are not used, the  
Thermal Characterization Parameter (Ψ ) can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T + (Ψ x P )  
J
T
JT  
D
where:  
o
T
Ψ
= Thermocouple temperature on top of package ( C)  
= Thermal characterization parameter ( C/W)  
T
o
JT  
P
= Power dissipation in package (W)  
D
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
121  
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in  
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the  
experimental difficulties with this technique, many engineers measure the heat sink temperature and then  
back-calculate the case temperature using a separate measurement of the thermal resistance of the  
interface. From this case temperature, the junction temperature is determined from the junction-to-case  
thermal resistance.  
12.2 Electrical Design Considerations  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or electrical  
fields. However, normal precautions are advised to  
avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused inputs are  
tied to an appropriate voltage level.  
Use the following list of considerations to assure correct operation of the 56F8013/56F8011:  
Provide a low-impedance path from the board power supply to each VDD pin on the 56F8013/56F8011 and  
from the board ground to each VSS (GND) pin  
The minimum bypass requirement is to place 0.01–0.1μF capacitors positioned as close as possible to the  
package supply pins. The recommended bypass configuration is to place one bypass capacitor on each of  
the VDD/VSS pairs, including VDDA/VSSA. Ceramic and tantalum capacitors tend to provide better  
tolerances.  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip VDD and VSS (GND)  
pins are as short as possible  
56F8013/56F8011 Data Sheet, Rev. 12  
122  
Freescale Semiconductor  
Electrical Design Considerations  
Bypass the VDD and VSS with approximately 100μF, plus the number of 0.1μF ceramic capacitors  
PCB trace lengths should be minimal for high-frequency signals  
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance.  
This is especially critical in systems with higher capacitive loads that could create higher transient currents  
in the VDD and VSS circuits.  
Take special care to minimize noise levels on the VREF, VDDA and VSSA pins  
Using separate power planes for VDD and VDDA and separate ground planes for VSS and VSSA is  
recommended. Connect the separate analog and digital power and ground planes as close as possible to  
power supply outputs. If both analog circuit and digital circuit are powered by the same power supply, it is  
advisable to connect a small inductor or ferrite bead in serial with both VDDA and VSSA traces.  
It is highly desirable to physically separate analog components from noisy digital components by ground  
planes. Do not place an analog trace in parallel with digital traces. It is also desirable to place an analog  
ground trace around an analog signal trace to isolate it from digital traces.  
Because the Flash memory is programmed through the JTAG/EOnCE port, SPI, SCI or I2C, the designer  
should provide an interface to this port if in-circuit Flash programming is desired.  
56F8013/56F8011 Data Sheet, Rev. 12  
Freescale Semiconductor  
123  
Part 13 Ordering Information  
Table 13-1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor  
sales office or authorized distributor to determine availability and to order parts.  
Table 13-1 56F8013/56F8011 Ordering Information  
Ambient  
Temperature  
Range  
Supply  
Voltage  
Pin  
Count  
Frequency  
(MHz)  
Part  
Package Type  
Order Number  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
MC56F8013  
MC56F8013  
MC56F8013  
MC56F8011  
3.0–3.6 V  
3.0–3.6 V  
3.0–3.6 V  
3.0–3.6 V  
32  
32  
32  
32  
32  
32  
32  
32  
–40° to + 125°C  
–40° to + 125°C  
–40° to + 105°C  
–40° to + 105°C  
MC56F8013MFAE*  
S568013MFA00E*  
MC56F8013VFAE*  
MC56F8011VFAE*  
*This package is RoHS compliant.  
Part 14 Appendix  
Register acronyms are revised from previous device data sheets to provide a cleaner register description.  
A cross reference to legacy and revised acronyms are provided in the following table.  
Peripheral Reference Manual  
Data Sheet  
Memory Address  
Start End  
Processor  
Expert  
Acronym  
New  
Legacy  
Module  
Register Name  
New Acronym  
Legacy Acronym  
Acronym  
Acronym  
ADC Control Register 1  
CTRL1  
CTRL2  
ZXCTRL  
CLIST1  
CLIST2  
SDIS  
ADCR1  
ADCR2  
ADC_CTRL1  
ADC_CTRL2  
ADC_ZXCTRL  
ADC_CLIST1  
ADC_CLIST2  
ADC_SDIS  
ADC_ADCR1  
ADC_ADCR2  
ADC_ADCR1  
ADC_ADCR2  
0xF080  
Control Register 2  
0xF081  
0xF082  
Zero Crossing Control Register  
ADZCC  
ADC_ADZCC  
ADC_ADZCC  
Channel List Register 1  
Channel List Register 2  
Sample Disable Register  
Status Register  
ADLST1  
ADC_ADLST1  
ADC_ADLST2  
ADC_ADSDIS  
ADC_ADLST1  
ADC_ADLST2  
ADC_ADSDIS  
ADC_ADSTAT  
ADC_ADLSTAT  
ADC_ADZCSTAT  
ADC_ADRSLT0-7  
ADC_ADLLMT0-7  
0xF083  
ADLST2  
0xF084  
ADSDIS  
0xF085  
STAT  
ADSTAT  
ADC_STAT  
ADC_ADSTAT  
ADC_ADLSTAT  
ADC_ADZCSTAT  
ADC_ADRSLT0-7  
ADC_ADLLMT0-7  
ADC_ADHLMT0-7  
ADC_ADOFS0-7  
ADC_ADPOWER  
ADC_ADCAL  
0xF086  
Limit Status Register  
LIMSTAT  
ZXSTAT  
RSLT0-7  
LOLIM0-7  
HILIM0-7  
OFFST0-7  
PWR  
ADLSTAT  
ADZCSTAT  
ADRSLT0-7  
ADLLMT0-7  
ADHLMT0-7  
ADOFS0-7  
ADPOWER  
ADCAL  
ADC_LIMSTAT  
ADC_ZXSTAT  
ADC_RSLT0-7  
ADC_LOLIM0-7  
ADC_HILIM0-7  
ADC_OFFST0-7  
ADC_PWR  
0xF087  
Zero Crossing Status Register  
Result Registers 0-7  
0xF088  
0xF089 0XF090  
0XF091 0XF098  
Low Limit Registers 0-7  
High Limit Registers 0-7  
Offset Registers 0-7  
ADC_ADHLMT0-7 0XF099 0XF0A0  
ADC_ADOFS0-7  
ADC_ADPOWER  
ADC_CAL  
0XF0A1 0XF0A8  
0XF0A9  
Power Control Register  
Voltage Reference Register  
CAL  
ADC_VREF  
0XF0AA  
COP Control Register  
CTRL  
TOUT  
CNTR  
COPCTL  
COPTO  
COP_CTRL  
COP_TOUT  
COP_CNTR  
COPCTL  
COPTO  
COPCTL  
COPTO  
0XF0E0  
0XF0E1  
0XF0E2  
Time-Out Register  
Counter Register  
COPCTR  
COPCTR  
COPCTR  
2
Address Register  
ADDR  
FDIV  
IBAD  
IBFD  
IBCR  
I2C_ADDR  
I2C_FDIV  
I2C_CTRL  
I2C_IBAD  
I2C_IBFD  
I2C_IBCR  
IBAD  
IBFD  
IBCR  
0xF0D0  
0xF0D1  
0xF0D2  
I C  
Frequency Divider Register  
Control Register  
CTRL  
56F8013/56F8011 Data Sheet, Rev. 12  
124  
Freescale Semiconductor  
 
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
RoHS-compliant and/or Pb-free versions of Freescale products have the  
functionality and electrical characteristics of their non-RoHS-compliant  
and/or non-Pb-free counterparts. For further information, see  
http://www.freescale.com or contact your Freescale sales representative.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,  
Inc. All other product or service names are the property of their respective owners.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc. 2005, 2006, 2007, 2008. All rights reserved.  
MC56F8013  
Rev. 12  
05/2008  

相关型号:

MC56F8013PB

16-bit Digital Signal Controllers
FREESCALE

MC56F8013VFAE

16-bit Digital Signal Controllers
FREESCALE

MC56F8013VFAE

0-BIT, 8MHz, OTHER DSP, PQFP32, ROHS COMPLIANT, LQFP-32
NXP

MC56F8013VFAER2

0-BIT, 8MHz, OTHER DSP, PQFP32, ROHS COMPLIANT, LQFP-32
NXP

MC56F8014

16-bit Digital Signal Controllers
FREESCALE

MC56F8014E

16-bit Digital Signal Controllers
FREESCALE

MC56F8014MFAE

16-bit Digital Signal Controllers
FREESCALE

MC56F8014VFAE

16-bit Digital Signal Controllers
FREESCALE

MC56F8023

16-bit Digital Signal Controllers
FREESCALE

MC56F8023VLC

16-bit Digital Signal Controllers
FREESCALE

MC56F8025

Digital Signal Controller Product Brief
FREESCALE

MC56F8025E

Digital Signal Controller Product Brief
FREESCALE