MC68HC908QL2MDW [NXP]

8-BIT, FLASH, 2MHz, MICROCONTROLLER, PDSO16, SOIC-16;
MC68HC908QL2MDW
型号: MC68HC908QL2MDW
厂家: NXP    NXP
描述:

8-BIT, FLASH, 2MHz, MICROCONTROLLER, PDSO16, SOIC-16

微控制器 光电二极管
文件: 总246页 (文件大小:3002K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908QL4  
MC68HC908QL3  
MC68HC908QL2  
Data Sheet  
M68HC08  
Microcontrollers  
MC68HC908QL4/D  
Rev. 2  
3/2004  
MOTOROLA.COM/SEMICONDUCTORS  
MC68HC908QL4  
MC68HC908QL3  
MC68HC908QL2  
Data Sheet  
To provide the most up-to-date information, the revision of our documents on the  
World Wide Web will be the most current. Your printed copy may be an earlier  
revision. To verify you have the latest information available, refer to:  
http://motorola.com/semiconductors/  
The following revision history table summarizes changes contained in this  
document. For your convenience, the page number designators have been linked  
to the appropriate location.  
Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc.  
DigitalDNA is a trademark of Motorola, Inc.  
This product incorporates SuperFlash® technology licensed from SST.  
© Motorola, Inc., 2004  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
3
Revision History  
Revision History  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
September,  
2003  
N/A  
Initial release  
N/A  
226  
228  
17.3 Functional Operating Range — Corrected operating voltage  
range  
17.6 Control Timing — Corrected values for internal operating  
frequency and internal clock period  
November,  
2003  
1.0  
17.14 5.0-Volt ADC Characteristics — Replaced ADC characteristic  
table found in initial release  
236  
237  
17.15 3.3-Volt ADC Characteristics — Added  
Figure 2-2 . Control, Status, and Data Registers  
Corrected reset state for the FLASH Block Protect Register.  
Corrected reset value for the Internal Oscillator Time Value  
33  
34  
Table 7-1. Instruction Set Summary — Added WAIT instruction  
83  
11.8.1 Oscillator Status Register — Revised description of ECGON  
bit for clarity  
111  
Table 13-3. Interrupt Sources — Corrected address locations for  
SLIC, KBI, and ADC  
132  
14.3.5 SLIC Wait (Core Specific) — Revised description for clarity  
14.3.7 SLIC Stop (Core Specific) — Revised description for clarity  
144  
144  
14.6.6.2 Byte Transfer Mode Operation — Revised definition of  
Receiver Buffer Overrun Error  
156  
161  
174  
196  
196  
206  
March,  
2004  
2.0  
14.7.1 LIN Message Frame Header — Revised third paragraph of  
description  
14.14 Sleep and Wakeup Operation — Revised second paragraph of  
description  
15.8 Input/Output Signals — Corrected reference from PTA0/TCH) to  
PTB0/TCH0  
15.8.2 TIM Channel I/O Pins (PTB0/TCH0 and PTA1/TCH1) —  
Corrected reference to from PTA0/TCH) to PTB0/TCH0  
Figure 16-1 . Block Diagram Highlighting BRK and MON Blocks —  
Added  
17.5 5-V DC Electrical Characteristics — Updated table notes  
17.8 5-V Oscillator Characteristics — Updated table notes  
17.9 3.3-V DC Electrical Characteristics — Updated table notes  
227  
230  
231  
Data Sheet  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
4
Revision History  
Data Sheet — MC68HC908QL4 Family  
List of Sections  
Section 1. General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Section 2. Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Section 3. Analog-to-Digital Converter (ADC) . . . . . . . . . . . . . . . . . . .45  
Section 4. Auto Wakeup Module (AWU) . . . . . . . . . . . . . . . . . . . . . . . .57  
Section 5. Configuration Registers (CONFIG1 and CONFIG2) . . . . . .63  
Section 6. Computer Operating Properly (COP) . . . . . . . . . . . . . . . . .67  
Section 7. Central Processor Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . .71  
Section 8. External Interrupt (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Section 9. Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . .91  
Section 10. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Section 11. Oscillator Module (OSC). . . . . . . . . . . . . . . . . . . . . . . . . .103  
Section 12. Input/Output Ports (PORTS) . . . . . . . . . . . . . . . . . . . . . .113  
Section 13. System Integration Module (SIM) . . . . . . . . . . . . . . . . . .121  
Section 14. Slave LIN Interface Controller (SLIC) . . . . . . . . . . . . . . .139  
Section 15. Timer Interface Module (TIM). . . . . . . . . . . . . . . . . . . . . .187  
Section 16. Development Support. . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
Section 17. Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . .225  
Section 18. Ordering Information and Mechanical  
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
5
List of Sections  
List of Sections  
Data Sheet  
6
MC68HC908QL Family — Rev. 2  
MOTOROLA  
List of Sections  
Data Sheet — MC68HC908QL4 Family  
Table of Contents  
Section 1. General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
MCU Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Pin Function Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Section 2. Memory  
2.1  
2.2  
2.3  
2.4  
2.5  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2.6  
FLASH Memory (FLASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
FLASH Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
2.6.5  
2.6.6  
2.6.7  
2.6.8  
Section 3. Analog-to-Digital Converter (ADC)  
3.1  
3.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
3.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
ADC Port I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Conversion Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
3.3.5  
3.3.6  
3.4  
3.5  
Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
Table of Contents  
7
Table of Contents  
3.6  
3.6.1  
3.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3.7  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
ADC Analog Power Pin (VDDAD). . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
ADC Analog Ground Pin (VSSAD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
ADC Voltage Reference High Pin (VREFH) . . . . . . . . . . . . . . . . . . . . 51  
ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . . . . . . . . 51  
ADC Voltage In (VADIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
3.7.5  
3.8  
3.8.1  
3.8.2  
3.8.2.1  
3.8.2.2  
3.8.2.3  
3.8.2.4  
3.8.3  
I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
ADC Data Register High and Data Register Low . . . . . . . . . . . . . . . 53  
Left Justified Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Right Justified Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Left Justified Signed Data Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Eight Bit Truncation Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Section 4. Auto Wakeup Module (AWU)  
4.1  
4.2  
4.3  
4.4  
4.5  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
4.6  
Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Port A I/O Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Keyboard Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . 60  
Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . 61  
4.6.1  
4.6.2  
4.6.3  
Section 5. Configuration Registers (CONFIG1 and CONFIG2)  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
5.1  
5.2  
Section 6. Computer Operating Properly (COP)  
6.1  
6.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
6.3  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
BUSCLKX4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
COPD (COP Disable) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
Data Sheet  
8
MC68HC908QL Family — Rev. 2  
Table of Contents  
MOTOROLA  
Table of Contents  
6.4  
6.5  
6.6  
COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
6.7  
6.7.1  
6.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
6.8  
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Section 7. Central Processor Unit (CPU)  
7.1  
7.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
7.3  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Index Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Condition Code Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.4  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
7.5  
7.5.1  
7.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
7.6  
7.7  
7.8  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Opcode Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Section 8. External Interrupt (IRQ)  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Section 9. Keyboard Interrupt Module (KBI)  
9.1  
9.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
9.3  
9.3.1  
9.3.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Keyboard Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
9.4  
9.5  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
Table of Contents  
9
Table of Contents  
9.6  
Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 95  
9.7  
9.7.1  
9.7.2  
Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Keyboard Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . 96  
Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Section 10. Low-Voltage Inhibit (LVI)  
10.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
10.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
10.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
10.3.1  
10.3.2  
10.3.3  
10.3.4  
Polled LVI Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Voltage Hysteresis Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
10.4 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
10.5 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
10.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
10.6.1  
10.6.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Section 11. Oscillator Module (OSC)  
11.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
11.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
11.3.1  
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Internal Oscillator Trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Internal to External Clock Switching . . . . . . . . . . . . . . . . . . . . . . 105  
External Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
XTAL Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
RC Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
11.3.1.1  
11.3.1.2  
11.3.2  
11.3.3  
11.3.4  
11.4 Oscillator Module Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
11.4.1  
11.4.2  
11.4.3  
11.4.4  
11.4.5  
11.4.6  
11.4.7  
11.4.8  
Crystal Amplifier Input Pin (OSC1) . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Crystal Amplifier Output Pin (OSC2/PTA4/BUSCLKX4). . . . . . . . . 108  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . . . . . . . 109  
XTAL Oscillator Clock (XTALCLK) . . . . . . . . . . . . . . . . . . . . . . . . . 109  
RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Internal Oscillator Clock (INTCLK) . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Oscillator Out 2 (BUSCLKX4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Oscillator Out (BUSCLKX2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
11.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
11.5.1  
11.5.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
11.6 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
11.7 CONFIG2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Data Sheet  
10  
MC68HC908QL Family — Rev. 2  
Table of Contents  
MOTOROLA  
Table of Contents  
11.8 Input/Output (I/O) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
11.8.1  
11.8.2  
Oscillator Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . . . . . . . . 112  
Section 12. Input/Output Ports (PORTS)  
12.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
12.2 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
12.2.1  
12.2.2  
12.2.3  
Port A Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Port A Input Pullup Enable Register . . . . . . . . . . . . . . . . . . . . . . . . 116  
12.3 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
12.3.1  
12.3.2  
12.3.3  
Port B Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Port B Input Pullup Enable Register . . . . . . . . . . . . . . . . . . . . . . . . 119  
Section 13. System Integration Module (SIM)  
13.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
13.2 RST and IRQ Pins Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
13.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . . . . . . . 121  
13.3.1  
13.3.2  
13.3.3  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Clock Start-Up from POR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . . . . . . 124  
13.4 Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
13.4.1  
13.4.2  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . . . . . . 125  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Computer Operating Properly (COP) Reset . . . . . . . . . . . . . . . . 127  
Illegal Opcode Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . 127  
13.4.2.1  
13.4.2.2  
13.4.2.3  
13.4.2.4  
13.4.2.5  
13.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
13.5.1  
13.5.2  
13.5.3  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . . . . . . 128  
SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . . . . . . 128  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
13.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
13.6.1  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
SWI Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . . . . . . 134  
13.6.1.1  
13.6.1.2  
13.6.2  
13.6.2.1  
13.6.2.2  
13.6.2.3  
13.6.3  
13.6.4  
13.6.5  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
Table of Contents  
11  
Table of Contents  
13.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
13.7.1  
13.7.2  
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
13.8 SIM Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
13.8.1  
13.8.2  
13.8.3  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Section 14. Slave LIN Interface Controller (SLIC)  
14.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
14.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
14.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
14.3.1  
14.3.2  
14.3.3  
14.3.4  
14.3.5  
14.3.6  
14.3.7  
14.3.8  
14.3.9  
14.3.10  
Power Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
SLIC Disabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
SLIC Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
SLIC Wait (Core Specific). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Wakeup from SLIC Wait with CPU in WAIT . . . . . . . . . . . . . . . . . . 144  
SLIC Stop (Core Specific). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Normal and Emulation Mode Operation (Core Specific). . . . . . . . . 145  
Special Mode Operation (Core Specific) . . . . . . . . . . . . . . . . . . . . 145  
Low-Power Options (Core Specific) . . . . . . . . . . . . . . . . . . . . . . . . 145  
14.4 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
14.4.1  
14.4.2  
SLCTX — SLIC Transmit Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
SLCRX — SLIC Receive Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
14.5 Memory Map/Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
14.6 SLIC Registers and Control Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
14.6.1  
14.6.2  
14.6.3  
14.6.4  
14.6.5  
14.6.6  
14.6.6.1  
14.6.6.2  
14.6.7  
14.6.8  
SLIC Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
SLIC Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
SLIC Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
SLIC Prescaler Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
SLIC Bit Time Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
SLIC State Vector Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
LIN Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Byte Transfer Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
SLIC Data Length Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
SLIC Identifier and Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . 158  
14.7 Initialization/Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
14.7.1  
14.7.2  
14.7.3  
14.7.4  
LIN Message Frame Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
LIN Data Field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
LIN Checksum Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
SLIC Module Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
14.8 SLCSV Interrupt Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Data Sheet  
12  
MC68HC908QL Family — Rev. 2  
Table of Contents  
MOTOROLA  
Table of Contents  
14.9 SLIC Module Initialization Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
14.9.1  
14.9.2  
LIN Mode Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Byte Transfer Mode Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
14.10 Handling LIN Message Headers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
14.10.1  
14.10.2  
LIN Message Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Possible Errors on Message Headers . . . . . . . . . . . . . . . . . . . . . . 167  
14.11 Handling Command Message Frames. . . . . . . . . . . . . . . . . . . . . . . . . 167  
14.11.1  
14.11.2  
14.11.3  
Standard Command Message Frames. . . . . . . . . . . . . . . . . . . . . . 167  
Extended Command Message Frames . . . . . . . . . . . . . . . . . . . . . 169  
Possible Errors on Command Message Data. . . . . . . . . . . . . . . . . 170  
14.12 Handling Request LIN Message Frames . . . . . . . . . . . . . . . . . . . . . . . 170  
14.12.1  
14.12.2  
14.12.3  
14.12.4  
Standard Request Message Frames . . . . . . . . . . . . . . . . . . . . . . . 172  
Extended Request Message Frames . . . . . . . . . . . . . . . . . . . . . . . 173  
Transmit Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Possible Errors on Request Message Data . . . . . . . . . . . . . . . . . . 174  
14.13 Handling IMSG to Minimize Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 174  
14.14 Sleep and Wakeup Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
14.15 Polling Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
14.16 LIN Data Integrity Checking Methods. . . . . . . . . . . . . . . . . . . . . . . . . . 175  
14.17 High-Speed LIN Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
14.18 Byte Transfer Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
14.19 Oscillator Trimming with SLIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
14.20 Digital Receive Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
14.20.1  
14.20.2  
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Section 15. Timer Interface Module (TIM)  
15.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
15.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
15.3 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
15.4.1  
15.4.2  
15.4.3  
15.4.3.1  
15.4.3.2  
15.4.4  
15.4.4.1  
15.4.4.2  
15.4.4.3  
TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Unbuffered Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Buffered Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Unbuffered PWM Signal Generation. . . . . . . . . . . . . . . . . . . . . . 193  
Buffered PWM Signal Generation. . . . . . . . . . . . . . . . . . . . . . . . 194  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
15.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
15.6 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
13  
Table of Contents  
Table of Contents  
15.7 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
15.8 Input/Output Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
15.8.1  
15.8.2  
TIM Clock Pin (PTA2/TCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
TIM Channel I/O Pins (PTB0/TCH0 and PTA1/TCH1) . . . . . . . . . . 196  
15.9 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
15.9.1  
15.9.2  
15.9.3  
15.9.4  
15.9.5  
TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
TIM Counter Modulo Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
TIM Channel Status and Control Registers . . . . . . . . . . . . . . . . . . 200  
TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203  
Section 16. Development Support  
16.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
16.2 Break Module (BRK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
16.2.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Flag Protection During Break Interrupts . . . . . . . . . . . . . . . . . . . 208  
TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Break Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . 209  
Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Break Auxiliary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
16.2.1.1  
16.2.1.2  
16.2.1.3  
16.2.2  
16.2.2.1  
16.2.2.2  
16.2.2.3  
16.2.2.4  
16.2.2.5  
16.2.3  
16.3 Monitor Module (MON). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
16.3.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
Normal Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
Monitor Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
16.3.1.1  
16.3.1.2  
16.3.1.3  
16.3.1.4  
16.3.1.5  
16.3.1.6  
16.3.1.7  
16.3.2  
Section 17. Electrical Specifications  
17.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
17.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
17.3 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
17.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
17.5 5-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
17.6 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
17.7 Typical 5-V Output Drive Characteristics . . . . . . . . . . . . . . . . . . . . . . . 229  
Data Sheet  
14  
MC68HC908QL Family — Rev. 2  
Table of Contents  
MOTOROLA  
Table of Contents  
17.8 5-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
17.9 3.3-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
17.10 Typical 3.3-V Output Drive Characteristics. . . . . . . . . . . . . . . . . . . . . . 232  
17.11 3.3-V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
17.12 3.3-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
17.13 Supply Current Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
17.14 5.0-Volt ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
17.15 3.3-Volt ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
17.16 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 238  
17.17 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
Section 18. Ordering Information  
and Mechanical Specifications  
18.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
18.2 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
18.3 16-Pin Plastic Dual In-Line Package (Case #648D). . . . . . . . . . . . . . . 242  
18.4 16-Pin Small Outline Integrated Circuit Package  
(Case #751G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
18.5 16-Pin Thin Shrink Small Outline Package (Case #948F) . . . . . . . . . . 243  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
15  
Table of Contents  
Table of Contents  
Data Sheet  
16  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Table of Contents  
Data Sheet — MC68HC908QL4 Family  
Section 1. General Description  
1.1 Introduction  
The MC68HC908QL4 is a member of the low-cost, high-performance M68HC08  
Family of 8-bit microcontroller units (MCUs). All MCUs in the family use the  
enhanced M68HC08 central processor unit (CPU08) and are available with a  
variety of modules, memory sizes and types, and package types.  
0.4  
Table 1-1. Summary of Device Variations  
Analog-to-Digital  
Converter  
Pin  
Count  
Device  
Memory Size  
MC68HC908QL4  
MC68HC908QL3  
MC68HC908QL2  
4096 bytes FLASH  
4096 bytes FLASH  
2048 bytes FLASH  
6 ch, 10 bit  
16 pins  
16 pins  
16 pins  
6 ch, 10 bit  
1.2 Features  
Features include:  
High-performance M68HC08 CPU core  
Fully upward-compatible object code with M68HC05 Family  
5-V and 3.3-V operating voltages (VDD  
)
8-MHz internal bus operation at 5 V, 4-MHz at 3.3 V  
Trimmable internal oscillator  
Selectable 3.2 or 6.4 MHz internal bus operation  
8-bit trim capability allows 0.4% accuracy(1)  
± 25% untrimmed  
1. ±5% guaranteed accuracy over entire temperature and voltage range after trimming. LIN  
communication easily maintained under all conditions using SLIC module.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
17  
General Description  
General Description  
Slave LIN interface Controller (SLIC) module  
Full LIN messaging buffering of Identifier and 8 data bytes  
Automatic baud rate and LIN message frame synchronization:  
No prior programming of bit rate required, 1–20 kbps LIN bus speed  
operation  
All LIN messages will be received (no message loss due to  
synchronization process)  
Input clock tolerance as high as ±50%, allowing internal oscillator to  
remain untrimmed  
Incoming break symbols allowed to be 10 to 20 bit times without  
message loss  
Supports automatic software trimming of internal oscillator using LIN  
synchronization data  
Automatic processing and verification of LIN SYNCH BREAK and  
SYNCH BYTE  
Automatic checksum calculation and verification with error reporting  
Maximum of 2 interrupts per LIN message frame  
Full LIN error checking and reporting  
High-speed LIN capability up to 83.33 kbps to 120.00 kbps  
Configurable digital receive filter  
Auto wakeup from STOP capability  
In-system FLASH programming  
FLASH security(1)  
On-chip in-application programmable FLASH memory (with internal  
program/erase voltage generation)  
MC68HC908QL4, MC68HC908QL3 — 4096 bytes  
MC68HC908QL2 — 2048 bytes  
Read-only memory (ROM)  
MC68HC908QL4, MC68HC908QL3 — 4096 bytes  
MC68HC908QL2 — 2048 bytes  
128 bytes of on-chip random-access memory (RAM)  
2-channel, 16-bit timer interface module (TIM) with external clock source  
input  
6-channel, 10-bit analog-to-digital converter (ADC) on MC68HC908QL4  
and MC68HC908QL2  
13 bidirectional input/output (I/O) lines and one input only:  
Six shared with keyboard interrupt function  
Six shared with ADC  
Two shared with TIM  
Two shared with SLC  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Data Sheet  
18  
MC68HC908QL Family — Rev. 2  
General Description  
MOTOROLA  
General Description  
MCU Block Diagram  
One shared with reset  
One input only shared with external interrupt (IRQ)  
High current sink/source capability  
Selectable pullups on all ports, selectable on an individual bit basis  
Three-state ability on all port pins  
6-bit keyboard interrupt with wakeup feature (KBI)  
Low-voltage inhibit (LVI) module features:  
Software selectable trip point in CONFIG register  
System protection features:  
Computer operating properly (COP) watchdog  
Low-voltage detection with reset  
Illegal opcode detection with reset  
Illegal address detection with reset  
External asynchronous interrupt pin with internal pullup (IRQ) shared with  
general-purpose input pin  
Master asynchronous reset pin (RST) shared with general-purpose  
input/output (I/O) pin  
Power-on reset  
Internal pullups on IRQ and RST to reduce external components  
Memory mapped I/O registers  
Power saving stop and wait modes  
Available packages:  
16-pin plastic dual in-line package (PDIP)  
16-pin small outline integrated circuit (SOIC) package  
16-pin thin shrink small outline package (TSSOP)  
Features of the CPU08 include the following:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16/8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
Efficient C language support  
1.3 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908QL4.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
19  
General Description  
General Description  
PTA0/AD0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
(OSCILLATOR)  
SYSTEM INTEGRATION  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
SINGLE INTERRUPT  
MODULE  
M68HC08 CPU  
PTB0/TCH0  
PTB1  
BREAK  
MODULE  
PTB2/AD4  
PTB3/AD5  
PTB4/SLCRX  
PTB5/SLCTX  
PTB6  
POWER-ON RESET  
MODULE  
KEYBOARD INTERRUPT  
MODULE  
PTB7  
2-CH 16-BIT TIMER  
MODULE  
MC68HC908QL4 AND MC68HC908QL3: 4096 BYTES  
MC68HC908QL2: 2048 BYTES  
USER FLASH  
SLAVE LIN INTERFACE  
CONTROLLER  
COP  
MODULE  
6-CHANNEL 10-BIT  
ADC  
MONITOR ROM  
128 BYTES RAM  
VDD  
POWER SUPPLY  
VSS  
RST, IRQ: Pins have internal (about 30 k) pull up  
PTA0, PTA1, PTA3–PTA5: High current sink and source capability  
PTA0–PTA5: Pins have programmable keyboard interrupt and pull up  
ADC pins only available on MC68HC908QL4 and MC68HC908QL2  
Figure 1-1. Block Diagram  
Data Sheet  
20  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
General Description  
General Description  
Pin Functions  
VDD  
VDD  
VSS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VSS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
PTA1/TCH1/KBI1  
PTA0/AD0/KBI0  
PTA5/OSC1/AD3/KBI5  
PTA4/OSC2/AD2/KBI4  
PTB4/SLCRx  
PTA0/KBI0  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
PTB0/TCH0  
PTA5/OSC1/KBI5  
PTA4/OSC2/KBI4  
PTB4/SLCRx  
PTB0/TCH0  
PTB3/AD5  
PTB2/AD4  
PTB5/SLCTx  
PTB6  
PTB3  
PTB2  
PTB5/SLCTx  
PTB6  
PTB1  
PTB7  
PTB7  
PTB1  
16-PIN ASSIGNMENT  
MC68HC908QL3 PDIP/SOIC  
16-PIN ASSIGNMENT  
MC68HC908QL4 AND MC68HC908QL2 PDIP/SOIC  
16  
15  
14  
13  
12  
11  
10  
9
PTB4/SLCRx  
16  
15  
14  
13  
12  
11  
10  
9
PTB4/SLCRx  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
PTA4/OSC2/KBI4  
PTA5/OSC1/KBI5  
PTB5/SLCTx  
PTB6  
PTB5/SLCTx  
PTB6  
PTA0/AD0/KBI0  
VSS  
PTA0/KBI0  
VSS  
PTB7  
PTB7  
VDD  
PTB1  
VDD  
PTB1  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
PTB2/AD4  
PTA1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
PTB2  
PTB3/AD5  
PTB3  
PTB0/TCH0  
PTB0/TCH0  
16-PIN ASSIGNMENT  
MC68HC908QL3 TSSOP  
16-PIN ASSIGNMENT  
MC68HC908QL4 AND MC68HC908QL2 TSSOP  
Figure 1-2. MCU Pin Assignments  
1.4 Pin Functions  
Table 1-2 provides a description of the pin functions.  
Table 1-2. Pin Functions  
Pin  
Name  
Description  
Input/Output  
VDD  
VSS  
Power supply  
Power  
Power supply ground  
Power  
Input/Output  
Input  
PTA0 — General purpose I/O port  
AD0 — A/D channel 0 input  
KBI0 — Keyboard interrupt input 0  
PTA0  
Input  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
21  
General Description  
General Description  
Table 1-2. Pin Functions (Continued)  
Pin  
Name  
Description  
Input/Output  
PTA1 — General purpose I/O port  
Input/Output  
Input  
AD1 — A/D channel 1 input  
PTA1  
TCH1 — Timer Channel 1 I/O  
Input/Output  
Input  
KBI1— Keyboard interrupt input 1  
PTA2 — General purpose input-only port  
IRQ — External interrupt with programmable pullup and Schmitt trigger input  
KBI2 — Keyboard interrupt input 2  
Input  
Input  
PTA2  
PTA3  
Input  
TCLK — External clock source input for the TIM module  
PTA3 — General purpose I/O port  
Input  
Input/Output  
Input  
RST — Reset input, active low with internal pullup and Schmitt trigger input  
KBI3 — Keyboard interrupt input 3  
Input  
PTA4 — General purpose I/O port  
Input/Output  
OSC2 — XTAL oscillator output (XTAL option only)  
RC or internal oscillator output (OSC2EN = 1 in PTAPUE register)  
Output  
Output  
PTA4  
PTA5  
AD2 — A/D channel 2 input  
Input  
Input  
KBI4 — Keyboard interrupt input 4  
PTA5 — General purpose I/O port  
OSC1 — XTAL, RC, or external oscillator input  
AD3 — A/D channel 3 input  
Input/Output  
Input  
Input  
KBI5 — Keyboard interrupt input 5  
PTB0 — General purpose I/O port  
TCH0 — Timer Channel 0 I/O  
PTB1 — General purpose I/O port  
PTB2 — General purpose I/O port  
AD4 — A/D channel 4 input  
Input  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input  
PTB0  
PTB1  
PTB2  
PTB3 — General purpose I/O port  
AD5 — A/D channel 5 input  
Input/Output  
Input  
PTB3  
PTB4  
PTB5  
PTB4 — General purpose I/O port  
SLCRx — SLC receive input  
Input/Output  
Input  
PTB5 — General purpose I/O port  
SLCTx — SLC transmit output  
Input/Output  
Output  
PTB6, PTB7 General-purpose I/O port  
Input/Output  
Data Sheet  
22  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
General Description  
General Description  
Pin Function Priority  
1.5 Pin Function Priority  
Table 1-3 is meant to resolve the priority if multiple functions are enabled on a  
single pin.  
NOTE:  
Upon reset all pins come up as input ports regardless of the priority table.  
Table 1-3. Function Priority in Shared Pins  
Pin Name  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
PTA5  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
Highest-to-Lowest Priority Sequence  
AD0 TCH1 KBI0 PTA0  
AD1 KBI1 PTA1  
IRQ KBI2 TCLK PTA2  
RST KBI3 PTA3  
OSC2 AD2 KBI4 PTA4  
OSC1 AD3 KBI5 PTA5  
TCH0 PTB0  
PTB1  
AD4 PTB2  
AD5 PTB3  
SLCRx PTB4  
SLCTx PTB5  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
23  
General Description  
General Description  
Data Sheet  
24  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
General Description  
Data Sheet — MC68HC908QL4 Family  
Section 2. Memory  
2.1 Introduction  
The central processor unit (CPU08) can address 64 Kbytes of memory space. The  
memory map, shown in Figure 2-1, includes:  
4096 bytes of user FLASH for MC68HC908QL4 and MC68HC908QL3  
2048 bytes of user FLASH for MC68HC908QL2  
128 bytes of random access memory (RAM)  
48 bytes of user-defined vectors, located in FLASH  
350 bytes of monitor read-only memory (ROM)  
674 bytes of FLASH program and erase routines, located in auxiliary ROM  
2.2 Unimplemented Memory Locations  
Accessing a reserved location can have unpredictable effects on MCU operation.  
In Figure 2-1 and in register figures in this document, unimplemented locations are  
shaded.  
2.3 Reserved Memory Locations  
Accessing a reserved location can have unpredictable effects on MCU operation.  
In Figure 2-1 and in register figures in this document, reserved locations are  
marked with the word Reserved or with the letter R.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
25  
Memory  
Memory  
$0000  
$0051  
I/O REGISTERS  
81 BYTES  
$0052  
$007F  
UNIMPLEMENTED  
47 BYTES  
$0080  
$00FF  
RAM  
128 BYTES  
$0100  
$2B7D  
$0100  
$2B7D  
UNIMPLEMENTED  
10,878 BYTES  
UNIMPLEMENTED  
10,878 BYTES  
$2B7E  
$2E1F  
$2B7E  
$2E1F  
AUXILIARY ROM  
674 BYTES  
AUXILIARY ROM  
674 BYTES  
$2E20  
$EDFF  
$2E20  
UNIMPLEMENTED  
49120 BYTES  
UNIMPLEMENTED  
51168 BYTES  
$F5FF  
$EE00  
FLASH MEMORY  
MC68HC908QL4 AND MC68HC908QL3  
4096 BYTES  
$F600  
$FDFF  
FLASH MEMORY  
2048 BYTES  
$FDFF  
$FE00  
$FE0F  
MISC REGISTERS  
16 BYTES  
MC68HC908QL2  
MEMORY MAP  
$FE00  
$FE0F  
UNIMPLEMENTED  
16 BYTES  
$FE10  
$FF7D  
MONITOR ROM  
350 BYTES  
$FF7E  
$FFBD  
UNIMPLEMENTED  
64 BYTES  
$FFBE  
$FFC1  
MISC REGISTERS  
4 BYTES  
$FFC2  
$FFCF  
UNIMPLEMENTED  
14 BYTES  
$FFD0  
$FFFF  
USER VECTORS  
48 BYTES  
Figure 2-1. Memory Map  
Data Sheet  
26  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Memory  
Memory  
Input/Output (I/O) Section  
2.4 Input/Output (I/O) Section  
Addresses $0000–$0051, shown in Figure 2-2, contain most of the control, status,  
and data registers. Additional miscellaneous registers have these addresses:  
$FE00 — Break status register, BSR  
$FE01 — Reset status register, SRSR  
$FE02 — Break auxiliary register, BRKAR  
$FE03 — Break flag control register, BFCR  
$FE04 — Interrupt status register 1, INT1  
$FE05 — Interrupt status register 2, INT2  
$FE06 — Interrupt status register 3, INT3  
$FE07 — Reserved  
$FE08 — FLASH control register, FLCR  
$FE09 — Break address register high, BRKH  
$FE0A — Break address register low, BRKL  
$FE0B — Break status and control register, BRKSCR  
$FE0C — LVI status register, LVISR  
$FE0D–$FE0F — Reserved  
$FFBE — FLASH block protect register, FLBPR  
$FFBF — Reserved  
$FFC0 — Internal OSC trim value — Optional  
$FFC1 — Reserved  
$FFFF — COP control register, COPCTL  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
27  
Memory  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
PTA0  
U
Read:  
0
AWUL  
PTA2  
Port A Data Register  
PTA5  
U
PTA4  
U
PTA3  
U
PTA1  
U
$0000  
(PTA) Write:  
See page 114.  
Reset:  
Read:  
U
0
U
Port B Data Register  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
$0001  
$0002  
$0003  
(PTB) Write:  
See page 117.  
Reset:  
Unaffected by reset  
Unimplemented  
Unimplemented  
Read:  
0
0
0
Data Direction Register A  
(DDRA) Write:  
DDRA5  
DDRA4  
DDRA3  
DDRA1  
DDRA0  
$0004  
$0005  
See page 115.  
Reset:  
Read:  
0
DDRB7  
0
0
DDRB6  
0
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
(DDRB) Write:  
See page 117.  
Reset:  
$0006  
$000A  
Unimplemented  
Read:  
0
0
Port A Input Pullup Enable  
OSC2EN  
0
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
$000B  
$000C  
Register (PTAPUE) Write:  
See page 116.  
Reset:  
0
0
0
0
0
0
Read:  
Port B Input Pullup Enable  
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE1 PTBPUE0  
Register (PTBPUE) Write:  
See page 119.  
Reset:  
0
0
0
0
0
0
0
0
$000D  
$0019  
Unimplemented  
Read:  
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status and  
Control Register (KBSCR) Write:  
IMASKK  
MODEK  
$001A  
See page 96.  
Reset:  
0
0
0
AWUIE  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
0
KBIE1  
0
0
KBIE0  
0
Read:  
Keyboard Interrupt  
Enable Register (KBIER) Write:  
KBIE2  
0
$001B  
$001C  
See page 97.  
Reset:  
0
Unimplemented  
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 7)  
Data Sheet  
28  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Memory  
Memory  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
0
0
0
0
IRQF  
IRQ Status and Control  
Register (INTSCR) Write:  
$001D  
ACK  
0
See page 89.  
Reset:  
0
R
0
0
R
0
0
R
0
0
0
Read:  
Configuration Register 2  
OSCOPT1 OSCOPT0 IRQPUD  
IRQEN  
0
RSTEN  
0(2)  
$001E  
(CONFIG2)(1) Write:  
See page 64.  
Reset:  
0
0
0
1. One-time writable register after each reset.  
2. RSTEN reset to 0 by a power-on reset (POR) only.  
Read:  
Configuration Register 1  
COPRS  
0
LVISTOP LVIRSTD LVIPWRD LVI5OR3  
0(2)  
SSREC  
0
STOP  
0
COPD  
0
$001F  
(CONFIG1)(1) Write:  
See page 64.  
Reset:  
0
0
0
1. One-time writable register after each reset.  
2. LVI5OR3 reset to 0 by a power-on reset (POR) only.  
Read:  
TOF  
0
0
0
TIM Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
Register (TSC) Write:  
See page 197.  
Reset:  
TRST  
0
0
0
1
0
0
0
0
Read:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
TIM Counter Register High  
(TCNTH) Write:  
See page 199.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TIM Counter Register  
Low (TCNTL) Write:  
See page 199.  
Reset:  
0
Bit 15  
1
0
Bit 14  
1
0
Bit 13  
1
0
Bit 12  
1
0
Bit 11  
1
0
Bit 10  
1
0
Bit 9  
1
0
Bit 8  
1
Read:  
TIM Counter Modulo  
Register High (TMODH) Write:  
See page 199.  
Reset:  
Read:  
TIM Counter Modulo  
Register Low (TMODL) Write:  
Bit 7  
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
1
Bit 2  
1
Bit 1  
1
Bit 0  
1
See page 199.  
Reset:  
1
CH0F  
0
Read:  
TIM Channel 0 Status and  
Control Register (TSC0) Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
CH0MAX  
0
See page 200.  
Reset:  
0
Read:  
TIM Channel 0  
Register High (TCH0H) Write:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See page 203.  
Reset:  
Indeterminate after reset  
= Reserved  
= Unimplemented  
R
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 7)  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
29  
Memory  
Memory  
Addr.  
Register Name  
TIM Channel 0  
Register Low (TCH0L) Write:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
$0027  
See page 203.  
Reset:  
Indeterminate after reset  
Read:  
CH1F  
0
TIM Channel 1 Status and  
Control Register (TSC1) Write:  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
$0028  
$0029  
$002A  
0
0
See page 200.  
Reset:  
0
0
Read:  
TIM Channel 1  
Register High (TCH1H) Write:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See page 203.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
Read:  
TIM Channel 1  
Register Low (TCH1L) Write:  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
See page 203.  
Reset:  
$002B  
$0035  
Unimplemented  
Read:  
ECGST  
0
Oscillator Status and Control  
R
0
R
0
R
0
R
0
R
0
BFS  
0
ECGON  
0
$0036  
$0037  
Register (OSCSTAT) Write:  
See page 111.  
Reset:  
Unimplemented  
Oscillator Trim Register Read:  
(OSCTRIM)  
TRIM7  
1
TRIM6  
0
TRIM5  
0
TRIM4  
0
TRIM3  
0
TRIM2  
0
TRIM1  
0
TRIM0  
0
Write:  
$0038  
See page 112.  
Reset:  
$0039  
$003B  
Unimplemented  
Read:  
ADC Status and Control  
Register (ADSCR) Write:  
COCO  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
$003D  
$003E  
See page 52.  
Reset:  
0
0
0
1
1
1
1
1
Read:  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
ADC Data High Register  
(ADRH) Write:  
See page 53.  
Reset:  
Unaffected by reset  
Read:  
AD1  
AD0  
0
0
0
0
0
0
ADC Data Low Register  
(ADRL) Write:  
See page 53.  
Reset:  
Unaffected by reset  
= Reserved  
= Unimplemented  
R
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 7)  
Data Sheet  
30  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Memory  
Memory  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
ADIV0  
0
4
3
MODE1  
0
2
MODE0  
1
1
R
Bit 0  
Read:  
0
ADC Clock Register  
ADIV2  
ADIV1  
ADICLK  
$003F  
(ADCLK) Write:  
See page 55.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
SLCIE  
0
SLIC Control Register 1  
INITREQ  
WAKETX TXABRT  
IMSG  
$0040  
$0041  
$0042  
$0043  
$0044  
$0045  
$0046  
$0047  
$0048  
$0049  
$004A  
(SLCC1) Write:  
See page 147.  
Reset:  
Read:  
0
0
0
0
1
0
0
0
0
0
0
0
SLIC Control Register 2  
SLCWCM  
BTM  
SLCE  
0
(SLCC2) Write:  
See page 148.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read: SLCACT  
INITACK  
SLIC Status Register  
(SLCS) Write:  
SLCF  
See page 149.  
Reset:  
Read:  
0
0
1
0
0
0
0
0
0
0
0
0
0
0
SLIC Prescale Register  
RXFP1  
RXFP0  
(SLCP) Write:  
See page 150.  
Reset:  
Read:  
1
0
0
0
0
0
0
BT12  
0
0
BT11  
0
0
BT10  
0
0
0
SLIC Bit Time Register High  
BT9  
0
BT8  
(SLCBTH) Write:  
See page 152.  
Reset:  
Read:  
0
0
0
0
0
SLIC Bit Time Register Low  
BT7  
BT6  
BT5  
BT4  
BT3  
BT2  
BT1  
(SLCBTL) Write:  
See page 152.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
I3  
I2  
I1  
I0  
SLIC State Vector Register  
(SLCSV) Write:  
See page 152.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
SLIC Data Length Code  
TXGO  
CHKMOD  
DLC5  
DLC4  
DLC3  
DLC2  
DLC1  
DLC0  
Register (SLCDLC) Write:  
See page 157.  
Reset:  
0
R7  
T7  
0
0
R6  
T6  
0
0
R5  
T5  
0
0
R4  
T4  
0
0
0
R2  
T2  
0
0
R1  
T1  
0
0
R0  
T0  
0
Read:  
R3  
SLIC Identifier Register  
(SLCID) Write:  
See page 158.  
Reset:  
T3  
0
Read:  
R7  
T7  
0
R6  
T6  
0
R5  
T5  
0
R4  
T4  
0
R3  
R2  
T2  
0
R1  
T1  
0
R0  
T0  
0
SLIC Data Register 7  
(SLCD7) Write:  
See page 159.  
Reset:  
T3  
0
Read:  
R7  
T7  
0
R6  
T6  
0
R5  
T5  
0
R4  
T4  
0
R3  
R2  
T2  
0
R1  
T1  
0
R0  
T0  
0
SLIC Data Register 6  
(SLCD6) Write:  
See page 159.  
Reset:  
T3  
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 7)  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
31  
Memory  
Memory  
Addr.  
Register Name  
Bit 7  
R7  
T7  
0
6
R6  
T6  
0
5
R5  
T5  
0
4
R4  
T4  
0
3
R3  
T3  
0
2
R2  
T2  
0
1
R1  
T1  
0
Bit 0  
R0  
T0  
0
Read:  
SLIC Data Register 5  
$004B  
(SLCD5) Write:  
See page 159.  
Reset:  
Read:  
R7  
T7  
0
R6  
T6  
0
R5  
T5  
0
R4  
T4  
0
R3  
T3  
0
R2  
T2  
0
R1  
T1  
0
R0  
T0  
0
SLIC Data Register 4  
$004C  
$004D  
$004E  
$004F  
$0050  
(SLCD4) Write:  
See page 159.  
Reset:  
Read:  
R7  
T7  
0
R6  
T6  
0
R5  
T5  
0
R4  
T4  
0
R3  
T3  
0
R2  
T2  
0
R1  
T1  
0
R0  
T0  
0
SLIC Data Register 3  
(SLCD3) Write:  
See page 159.  
Reset:  
Read:  
R7  
T7  
0
R6  
T6  
0
R5  
T5  
0
R4  
T4  
0
R3  
T3  
0
R2  
T2  
0
R1  
T1  
0
R0  
T0  
0
SLIC Data Register 2  
(SLCD2) Write:  
See page 159.  
Reset:  
Read:  
R7  
T7  
0
R6  
T6  
0
R5  
T5  
0
R4  
T4  
0
R3  
T3  
0
R2  
T2  
0
R1  
T1  
0
R0  
T0  
0
SLIC Data Register 1  
(SLCD1) Write:  
See page 160.  
Reset:  
Read:  
R7  
T7  
0
R6  
T6  
0
R5  
T5  
0
R4  
T4  
0
R3  
T3  
0
R2  
T2  
0
R1  
T1  
0
R0  
T0  
0
SLIC Data Register 0  
(SLCD0) Write:  
See page 160.  
Reset:  
$0051  
$005F  
Unimplemented  
Read:  
SBSW  
See note 1  
0
Break Status Register  
R
R
R
R
R
R
R
0
$FE00  
(BSR) Write:  
See page 211.  
Reset:  
1. Writing a 0 clears SBSW.  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
SIM Reset Status Register  
$FE01  
$FE02  
$FE03  
(SRSR) Write:  
See page 137.  
POR:  
Read:  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Break Auxiliary  
BDCOP  
Register (BRKAR) Write:  
See page 210.  
Reset:  
0
BCFE  
0
0
0
0
0
0
0
0
Read:  
Break Flag Control  
Register (BFCR) Write:  
R
R
R
R
R
R
R
See page 211.  
Reset:  
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 7)  
Data Sheet  
32  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Memory  
Memory  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
0
6
IF5  
R
0
5
IF4  
R
0
4
IF3  
R
3
0
2
IF1  
R
1
0
Bit 0  
0
Read:  
Interrupt Status Register 1  
$FE04  
(INT1) Write:  
R
R
R
0
R
See page 89.  
Reset:  
Read:  
0
0
0
0
0
IF14  
R
0
0
IF11  
R
IF10  
R
IF9  
R
0
0
Interrupt Status Register 2  
$FE05  
(INT2) Write:  
R
0
R
0
R
0
R
See page 89.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
IF15  
R
Interrupt Status Register 3  
$FE06  
$FE07  
(INT3) Write:  
R
R
0
R
0
R
R
R
R
0
See page 89.  
Reset:  
0
0
0
0
0
Reserved  
R
R
R
R
R
R
R
R
Read:  
0
0
0
0
FLASH Control Register  
HVEN  
0
MASS  
0
ERASE  
0
PGM  
0
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
(FLCR) Write:  
See page 37.  
Reset:  
Read:  
0
Bit 15  
0
0
Bit 14  
0
0
Bit 13  
0
0
Bit 12  
0
Break Address High  
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
Register (BRKH) Write:  
See page 210.  
Reset:  
Read:  
Break Address low  
Register (BRKL) Write:  
Bit 7  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
See page 210.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
Register (BRKSCR) Write:  
BRKE  
BRKA  
See page 209.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Read: LVIOUT  
R
LVI Status Register  
(LVISR) Write:  
See page 101.  
Reset:  
0
0
0
0
0
0
0
0
$FE0D  
$FE0F  
Reserved for FLASH Test  
R
R
R
R
R
R
R
R
$FFB0  
$FFBD  
Unimplemented  
Read:  
0
FLASH Block Protect  
Register (FLBPR) Write:  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
$FFBE  
See page 43.  
Reset:  
Unaffected by reset  
= Reserved  
= Unimplemented  
R
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 7)  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
33  
Memory  
 
Memory  
Addr.  
Register Name  
Unimplemented  
Bit 7  
6
5
4
3
2
1
Bit 0  
$FFBF  
Read:  
Write:  
Reset:  
TRIM7  
R
TRIM6  
R
TRIM5  
R
TRIM4  
TRIM3  
TRIM2  
R
TRIM1  
R
TRIM0  
R
Internal Oscillator Trim  
Value (Optional)  
$FFC0  
$FFC1  
Unaffected by reset  
Reserved  
R
R
$FFC2  
$FFCF  
Unimplemented  
Read:  
LOW BYTE OF RESET VECTOR  
WRITING CLEARS COP COUNTER (ANY VALUE)  
Unaffected by reset  
COP Control Register  
$FFFF  
(COPCTL) Write:  
See page 69.  
Reset:  
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 7)  
Data Sheet  
34  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Memory  
Memory  
Input/Output (I/O) Section  
.
Table 2-1. Vector Addresses  
Vector Priority  
Vector  
Address  
Vector  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
ADC conversion complete vector (high)  
ADC conversion complete vector (low)  
Lowest  
IF15  
Keyboard vector (high)  
Keyboard vector (low)  
IF14  
IF13  
Not used  
IF10  
$FFEA  
$FFEB  
SLIC vector (high)  
SLIC vector (low)  
IF9  
IF8  
Not used  
IF6  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
TIM overflow vector (high)  
TIM overflow vector (low)  
TIM channel 1 vector (high)  
TIM channel 1 vector (low)  
TIM channel 0 vector (high)  
TIM channel 0 vector (low)  
Not used  
IF5  
IF4  
IF3  
IF2  
IF1  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
IRQ vector (high)  
IRQ vector (low)  
SWI vector (high)  
SWI vector (low)  
Reset vector (high)  
Highest  
Reset vector (low)  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
35  
Memory  
Memory  
2.5 Random-Access Memory (RAM)  
Addresses $0080–$00FF are RAM locations. The location of the stack RAM is  
programmable. The 16-bit stack pointer allows the stack to be anywhere in the  
64-Kbyte memory space.  
NOTE:  
NOTE:  
NOTE:  
For correct operation, the stack pointer must point only to RAM locations.  
Before processing an interrupt, the central processor unit (CPU) uses five bytes of  
the stack to save the contents of the CPU registers.  
For M6805, M146805, and M68HC05 compatibility, the H register is not stacked.  
During a subroutine call, the CPU uses two bytes of the stack to store the return  
address. The stack pointer decrements during pushes and increments during pulls.  
Be careful when using nested subroutines. The CPU may overwrite data in the  
RAM during a subroutine or during the interrupt stacking operation.  
2.6 FLASH Memory (FLASH)  
The FLASH memory consists of an array of 4096 or 2048 bytes with an additional  
48 bytes for user vectors. The minimum size of FLASH memory that can be erased  
is 64 bytes; and the maximum size of FLASH memory that can be programmed in  
a program cycle is 32 bytes (a row). Program and erase operations are facilitated  
through control bits in the FLASH control register (FLCR). Details for these  
operations appear later in this section. The address ranges for the user memory  
and vectors are:  
$EE00 – $FDFF; user memory, 4096 bytes: MC68HC908QL4 and  
MC68HC908QL3  
$F600 – $FDFF; user memory, 2048 bytes: MC68HC908QL2  
$FFD0 – $FFFF; user interrupt vectors, 48 bytes.  
NOTE:  
An erased bit reads as 1 and a programmed bit reads as 0. A security feature  
prevents viewing of the FLASH contents.(1)  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Data Sheet  
36  
MC68HC908QL Family — Rev. 2  
Memory  
MOTOROLA  
Memory  
FLASH Memory (FLASH)  
2.6.1 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program and erase  
operations.  
Address:  
$FE08  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 2-3. FLASH Control Register (FLCR)  
HVEN — High Voltage Enable Bit  
This read/write bit enables high voltage from the charge pump to the memory  
for either program or erase operation. It can only be set if either PGM =1 or  
ERASE =1 and the proper sequence for program or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS — Mass Erase Control Bit  
This read/write bit configures the memory for mass erase operation.  
1 = Mass Erase operation selected  
0 = Mass Erase operation unselected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation. ERASE is  
interlocked with the PGM bit such that both bits cannot be equal to 1 or set to 1  
at the same time.  
1 = Erase operation selected  
0 = Erase operation unselected  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation. PGM is  
interlocked with the ERASE bit such that both bits cannot be equal to 1 or set  
to 1 at the same time.  
1 = Program operation selected  
0 = Program operation unselected  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
37  
Memory  
Memory  
2.6.2 FLASH Page Erase Operation  
Use the following procedure to erase a page of FLASH memory. A page consists  
of 64 consecutive bytes starting from addresses $XX00, $XX40, $XX80, or $XXC0.  
The 48-byte user interrupt vectors area also forms a page. Any FLASH memory  
page can be erased alone.  
1. Set the ERASE bit and clear the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH location within the address range of the block  
to be erased.  
4. Wait for a time, tNVS (minimum 10 µs).  
5. Set the HVEN bit.  
6. Wait for a time, tErase (minimum 1 ms or 4 ms).  
7. Clear the ERASE bit.  
8. Wait for a time, tNVH (minimum 5 µs).  
9. Clear the HVEN bit.  
10. After time, tRCV (typical 1 µs), the memory can be accessed in read mode  
again.  
NOTE:  
Programming and erasing of FLASH locations cannot be performed by code being  
executed from the FLASH memory. While these operations must be performed in  
the order as shown, but other unrelated operations may occur between the steps.  
CAUTION:  
A page erase of the vector page will erase the internal oscillator trim value at  
$FFC0.  
In applications that require more than 1000 program/erase cycles, use the 4 ms  
page erase specification to get improved long-term reliability. Any application can  
use this 4 ms page erase specification. However, in applications where a FLASH  
location will be erased and reprogrammed less than 1000 times, and speed is  
important, use the 1 ms page erase specification to get a shorter cycle time.  
Data Sheet  
38  
MC68HC908QL Family — Rev. 2  
Memory  
MOTOROLA  
Memory  
FLASH Memory (FLASH)  
2.6.3 FLASH Mass Erase Operation  
Use the following procedure to erase the entire FLASH memory to read as 1:  
1. Set both the ERASE bit and the MASS bit in the FLASH control register.  
2. Read from the FLASH block protect register.  
3. Write any data to any FLASH address(1) within the FLASH memory address  
range.  
4. Wait for a time, tNVS (minimum 10 µs).  
5. Set the HVEN bit.  
6. Wait for a time, tErase (minimum 4 ms).  
7. Clear the ERASE and MASS bits.  
NOTE:  
Mass erase is disabled whenever any block is protected (FLBPR does not equal  
$FF).  
8. Wait for a time, tNVH (minimum 100 µs).  
9. Clear the HVEN bit.  
10. After time, tRCV (typical 1 µs), the memory can be accessed in read mode  
again.  
NOTE:  
Programming and erasing of FLASH locations cannot be performed by code being  
executed from the FLASH memory. While these operations must be performed in  
the order as shown, but other unrelated operations may occur between the steps.  
CAUTION:  
A mass erase will erase the internal oscillator trim value at $FFC0.  
1. When in monitor mode, with security sequence failed (see 16.3.2 Security), write to the FLASH  
block protect register instead of any FLASH address.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
39  
Memory  
Memory  
2.6.4 FLASH Program Operation  
Programming of the FLASH memory is done on a row basis. A row consists of 32  
consecutive bytes starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80,  
$XXA0, $XXC0, or $XXE0. Use the following step-by-step procedure to program a  
row of FLASH memory  
Figure 2-4 shows a flowchart of the programming algorithm.  
NOTE:  
Only bytes which are currently $FF may be programmed.  
1. Set the PGM bit. This configures the memory for program operation and  
enables the latching of address and data for programming.  
2. Read from the FLASH block protect register.  
3. Write any data to any FLASH location within the address range desired.  
4. Wait for a time, tNVS (minimum 10 µs).  
5. Set the HVEN bit.  
6. Wait for a time, tPGS (minimum 5 µs).  
7. Write data to the FLASH address being programmed(1).  
8. Wait for time, tPROG (minimum 30 µs).  
9. Repeat step 7 and 8 until all desired bytes within the row are programmed.  
10. Clear the PGM bit(1).  
11. Wait for time, tNVH (minimum 5 µs).  
12. Clear the HVEN bit.  
13. After time, tRCV (typical 1 µs), the memory can be accessed in read mode  
again.  
NOTE:  
NOTE:  
The COP register at location $FFFF should not be written between steps 5–12,  
when the HVEN bit is set. Since this register is located at a valid FLASH address,  
unpredictable behavior may occur if this location is written while HVEN is set.  
This program sequence is repeated throughout the memory until all data is  
programmed.  
Programming and erasing of FLASH locations cannot be performed by code being  
executed from the FLASH memory. While these operations must be performed in  
the order shown, other unrelated operations may occur between the steps. Do not  
exceed tPROG maximum, see 17.17 Memory Characteristics.  
1. The time between each FLASH address change, or the time between the last FLASH address  
programmed to clearing PGM bit, must not exceed the maximum programming time, tPROG  
maximum.  
Data Sheet  
40  
MC68HC908QL Family — Rev. 2  
Memory  
MOTOROLA  
Memory  
FLASH Memory (FLASH)  
2.6.5 FLASH Protection  
Due to the ability of the on-board charge pump to erase and program the FLASH  
memory in the target application, provision is made to protect blocks of memory  
from unintentional erase or program operations due to system malfunction. This  
protection is done by use of a FLASH block protect register (FLBPR). The FLBPR  
determines the range of the FLASH memory which is to be protected. The range  
of the protected area starts from a location defined by FLBPR and ends to the  
bottom of the FLASH memory ($FFFF). When the memory is protected, the HVEN  
bit cannot be set in either ERASE or PROGRAM operations.  
NOTE:  
In performing a program or erase operation, the FLASH block protect register must  
be read after setting the PGM or ERASE bit and before asserting the HVEN bit.  
When the FLBPR is programmed with all 0s, the entire memory is protected from  
being programmed and erased. When all the bits are erased (all 1s), the entire  
memory is accessible for program and erase.  
When bits within the FLBPR are programmed, they lock a block of memory. The  
address ranges are shown in 2.6.6 FLASH Block Protect Register. Once the  
FLBPR is programmed with a value other than $FF, any erase or program of the  
FLBPR or the protected block of FLASH memory is prohibited. Mass erase is  
disabled whenever any block is protected (FLBPR does not equal $FF). The  
FLBPR itself can be erased or programmed only with an external voltage, VTST  
,
present on the IRQ pin. This voltage also allows entry from reset into the monitor  
mode.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
41  
Memory  
Memory  
Algorithm for Programming  
a Row (32 Bytes) of FLASH Memory  
1
2
3
SET PGM BIT  
READ THE FLASH BLOCK PROTECT REGISTER  
WRITE ANY DATA TO ANY FLASH ADDRESS  
WITHIN THE ROW ADDRESS RANGE DESIRED  
4
5
6
WAIT FOR A TIME, tNVS  
SET HVEN BIT  
WAIT FOR A TIME, tPGS  
7
8
WRITE DATA TO THE FLASH ADDRESS  
TO BE PROGRAMMED  
WAIT FOR A TIME, tPROG  
COMPLETED  
Y
PROGRAMMING  
THIS ROW?  
9
N
10  
CLEAR PGM BIT  
WAIT FOR A TIME, tNVH  
CLEAR HVEN BIT  
11  
12  
13  
NOTES:  
The time between each FLASH address change (step 7to step 7),  
or the time between the last FLASH address programmed  
to clearing PGM bit (step 6 to step 10)  
must not exceed the maximum programming  
time, tPROG max.  
WAIT FOR A TIME, tRCV  
END OF PROGRAMMING  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Figure 2-4. FLASH Programming Flowchart  
Data Sheet  
42  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Memory  
Memory  
FLASH Memory (FLASH)  
2.6.6 FLASH Block Protect Register  
The FLASH block protect register is implemented as a byte within the FLASH  
memory, and therefore can only be written during a programming sequence of the  
FLASH memory. The value in this register determines the starting address of the  
protected range within the FLASH memory.  
Address: $FFBE  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
Unaffected by reset. Initial value from factory is 1.  
Write to this register is by a programming sequence to the FLASH memory.  
Figure 2-5. FLASH Block Protect Register (FLBPR)  
BPR[7:0] — FLASH Protection Register Bits [7:0]  
These eight bits in FLBPR represent bits [13:6] of a 16-bit memory address. Bits  
[15:14] are 1s and bits [5:0] are 0s.  
The resultant 16-bit address is used for specifying the start address of the  
FLASH memory for block protection. The FLASH is protected from this start  
address to the end of FLASH memory, at $FFFF. With this mechanism, the  
protect start address can be XX00, XX40, XX80, or XXC0 within the FLASH  
memory. See Figure 2-6 and Table 2-2.  
16-BIT MEMORY ADDRESS  
FLBPR VALUE  
START ADDRESS OF  
FLASH BLOCK PROTECT  
1
1
0
0
0
0
0
0
Figure 2-6. FLASH Block Protect Start Address  
Table 2-2. Examples of Protect Start Address  
BPR[7:0]  
Start of Address of Protect Range  
The entire FLASH memory is protected.  
$EE40 (1110 1110 0100 0000)  
$EE80 (1110 1110 1000 0000)  
$EEC0 (1110 1110 1100 0000)  
$EF00 (1110 1111 0000 0000)  
and so on...  
$00–$B8  
$B9 (1011 1001)  
$BA (1011 1010)  
$BB (1011 1011)  
$BC (1011 1100)  
$DE (1101 1110)  
$DF (1101 1111)  
$F780 (1111 0111 1000 0000)  
$F7C0 (1111 0111 1100 0000)  
$FF80 (1111 1111 1000 0000)  
$FE (1111 1110)  
FLBPR, OSCTRIM, and vectors are protected  
$FF  
The entire FLASH memory is not protected.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
43  
Memory  
Memory  
2.6.7 Wait Mode  
Putting the MCU into wait mode while the FLASH is in read mode does not affect  
the operation of the FLASH memory directly, but there will not be any memory  
activity since the CPU is inactive.  
The WAIT instruction should not be executed while performing a program or erase  
operation on the FLASH, or the operation will discontinue and the FLASH will be  
on standby mode.  
2.6.8 Stop Mode  
Putting the MCU into stop mode while the FLASH is in read mode does not affect  
the operation of the FLASH memory directly, but there will not be any memory  
activity since the CPU is inactive.  
The STOP instruction should not be executed while performing a program or erase  
operation on the FLASH, or the operation will discontinue and the FLASH will be  
on standby mode  
NOTE:  
Standby mode is the power-saving mode of the FLASH module in which all internal  
control signals to the FLASH are inactive and the current consumption of the  
FLASH is at a minimum.  
Data Sheet  
44  
MC68HC908QL Family — Rev. 2  
Memory  
MOTOROLA  
Data Sheet — MC68HC908QL4 Family  
Section 3. Analog-to-Digital Converter (ADC)  
3.1 Introduction  
3.2 Features  
This section describes the 10-bit analog-to-digital converter (ADC).  
Features of the ADC module include:  
Six channels with multiplexed input  
Linear successive approximation with monotonicity  
10-bit resolution  
Single or continuous conversion  
Conversion complete flag or conversion complete interrupt  
Selectable ADC clock  
Left or right justified result  
Left justified sign data mode  
3.3 Functional Description  
The ADC provides six pins for sampling external sources. An analog multiplexer  
allows the single ADC converter to select one of the ADC channels as ADC  
voltage in (VADIN). VADIN is converted by the successive approximation  
register-based analog-to-digital converter. When the conversion is completed,  
ADC places the result in the ADC data register and sets a flag or generates an  
interrupt. See Figure 3-2.  
3.3.1 ADC Port I/O Pins  
PTA0, PTA1, PTA4, PTA5, PTB2, and PTB3 are general-purpose I/O  
(input/output) pins that share with the ADC channels. The channel select bits  
define which ADC channel/port pin will be used as the input signal. The ADC  
overrides the port I/O logic by forcing that pin as input to the ADC. The remaining  
ADC channels/port pins are controlled by the port I/O logic and can be used as  
general-purpose I/O. Writes to the port register or data direction register (DDR) will  
not have any affect on the port pin that is selected by the ADC. A read of a port pin  
in use by the ADC will return a 0.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
45  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
PTA0/AD0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
(OSCILLATOR)  
SYSTEM INTEGRATION  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
SINGLE INTERRUPT  
MODULE  
M68HC08 CPU  
PTB0/TCH0  
PTB1  
BREAK  
MODULE  
PTB2/AD4  
PTB3/AD5  
PTB4/SLCRX  
POWER-ON RESET  
MODULE  
PTB5/SLCTX  
PTB6  
KEYBOARD INTERRUPT  
MODULE  
PTB7  
2-CH 16-BIT TIMER  
MODULE  
MC68HC908QL4 AND MC68HC908QL3: 4096 BYTES  
MC68HC908QL2: 2048 BYTES  
USER FLASH  
SLAVE LIN INTERFACE  
CONTROLLER  
COP  
MODULE  
6-CHANNEL 10-BIT  
ADC  
MONITOR ROM  
128 BYTES RAM  
VDD  
VSS  
POWER SUPPLY  
RST, IRQ: Pins have internal (about 30 k) pull up  
PTA0, PTA1, PTA3–PTA5: High current sink and source capability  
PTA0–PTA5: Pins have programmable keyboard interrupt and pull up  
ADC pins only available on MC68HC908QL4 and MC68HC908QL2  
Figure 3-1. Block Diagram Highlighting ADC Block and Pins  
Data Sheet  
46  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
Functional Description  
INTERNAL  
DATA BUS  
READ DDRx  
WRITE DDRx  
DISABLE  
DDRx  
PTx  
RESET  
WRITE PTx  
READ PTx  
PTx  
ADC CHANNEL x  
DISABLE  
ADC DATA REGISTER  
ADC  
VOLTAGE IN  
(VADIN  
CONVERSION  
COMPLETE  
ADCH4–ADCH0  
)
CHANNEL  
SELECT  
INTERRUPT  
ADC  
LOGIC  
ADC CLOCK  
AIEN COCO  
CGMXCLK  
CLOCK  
GENERATOR  
BUS CLOCK  
ADIV2–ADIV0 ADICLK  
Figure 3-2. ADC Block Diagram  
3.3.2 Voltage Conversion  
When the input voltage to the ADC equals VREFH, the ADC converts the signal to  
$3FF (full scale). If the input voltage equals VREFL, the ADC converts it to $000.  
Input voltages between VREFH and VREFL are a straight-line linear conversion.  
NOTE:  
The ADC input voltage must always be greater than VSSA and less than VDDA  
REFH must always be greater than or equal to VREFL  
.
V
.
Connect the VDDA pin to the same voltage potential as the VDD pin, and connect  
the VSSA pin to the same voltage potential as the VSS pin.  
The VDDA pin should be routed carefully for maximum noise immunity.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
47  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
3.3.3 Conversion Time  
Conversion starts after a write to the ADC status and control register (ADSCR).  
One conversion will take between 16 and 17 ADC clock cycles. The ADIVx and  
ADICLK bits should be set to provide a 1-MHz ADC clock frequency.  
16 to 17 ADC cycles  
Conversion time =  
ADC frequency  
Number of bus cycles = conversion time × bus frequency  
3.3.4 Conversion  
In continuous conversion mode, the ADC data register will be filled with new data  
after each conversion. Data from the previous conversion will be overwritten  
whether that data has been read or not. Conversions will continue until the ADCO  
bit is cleared. The COCO bit is set after each conversion and will stay set until the  
next write of the ADC status and control register or the next read of the ADC data  
register.  
In single conversion mode, conversion begins with a write to the ADSCR. Only one  
conversion occurs between writes to the ADSCR.  
3.3.5 Accuracy and Precision  
The conversion process is monotonic and has no missing codes.  
3.3.6 Result Justification  
The conversion result may be formatted in four different ways:  
1. Left justified  
2. Right justified  
3. Left Justified sign data mode  
4. 8-bit truncation mode  
All four of these modes are controlled using MODE0 and MODE1 bits located in  
the ADC clock register (ADCLK).  
Left justification will place the eight most significant bits (MSB) in the corresponding  
ADC data register high, ADRH. This may be useful if the result is to be treated as  
an 8-bit result where the two least significant bits (LSB), located in the ADC data  
register low, ADRL, can be ignored. However, ADRL must be read after ADRH or  
else the interlocking will prevent all new conversions from being stored.  
Right justification will place only the two MSBs in the corresponding ADC data  
register high, ADRH, and the eight LSBs in ADC data register low, ADRL. This  
mode of operation typically is used when a 10-bit unsigned result is desired.  
Data Sheet  
48  
MC68HC908QL Family — Rev. 2  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Functional Description  
Left justified sign data mode is similar to left justified mode with one exception. The  
MSB of the 10-bit result, AD9 located in ADRH, is complemented. This mode of  
operation is useful when a result, represented as a signed magnitude from  
mid-scale, is needed. Finally, 8-bit truncation mode will place the eight MSBs in the  
ADC data register low, ADRL. The two LSBs are dropped. This mode of operation  
is used when compatibility with 8-bit ADC designs are required. No interlocking  
between ADRH and ADRL is present.  
NOTE:  
Quantization error is affected when only the most significant eight bits are used as  
a result. See Figure 3-3.  
8-BIT 10-BIT  
RESULT RESULT  
IDEAL 8-BIT CHARACTERISTIC  
WITH QUANTIZATION = 1/2  
10-BIT TRUNCATED  
TO 8-BIT RESULT  
003  
00B  
00A  
009  
IDEAL 10-BIT CHARACTERISTIC  
WITH QUANTIZATION = 1/2  
002  
001  
000  
008  
007  
006  
005  
004  
003  
002  
001  
000  
WHEN TRUNCATION IS USED,  
ERROR FROM IDEAL 8-BIT = 3/8 LSB  
DUE TO NON-IDEAL QUANTIZATION.  
INPUT VOLTAGE  
REPRESENTED AS 10-BIT  
1/2  
2 1/2  
4 1/2  
6 1/2  
8 1/2  
1 1/2  
3 1/2  
5 1/2  
7 1/2  
9 1/2  
2 1/2  
INPUT VOLTAGE  
REPRESENTED AS 8-BIT  
1/2  
1 1/2  
Figure 3-3. Bit Truncation Mode Error  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
49  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
3.4 Monotonicity  
The conversion process is monotonic and has no missing codes.  
3.5 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating CPU interrupts  
after each ADC conversion. A CPU interrupt is generated if the COCO bit is at 0.  
The COCO bit is not used as a conversion complete flag when interrupts are  
enabled.  
3.6 Low-Power Modes  
The WAIT and STOP instruction can put the MCU in low power-consumption  
standby modes.  
3.6.1 Wait Mode  
The ADC continues normal operation during wait mode. Any enabled CPU interrupt  
request from the ADC can bring the MCU out of wait mode. If the ADC is not  
required to bring the MCU out of wait mode, power down the ADC by setting  
ADCH4–ADCH0 bits in the ADC status and control register before executing the  
WAIT instruction.  
3.6.2 Stop Mode  
3.7 I/O Signals  
The ADC module is inactive after the execution of a STOP instruction. Any pending  
conversion is aborted. ADC conversions resume when the MCU exits stop mode  
after an external interrupt. Allow one conversion cycle to stabilize the analog  
circuitry.  
The ADC module has six pins shared with I/O pins on port A and port B.  
3.7.1 ADC Analog Power Pin (VDDAD  
)
The ADC analog portion uses VDDAD as its power pin and is internally connected  
to the VDD pad. External filtering may be necessary to ensure clean VDD for good  
results.  
NOTE:  
For maximum noise immunity, route VDD carefully and place bypass capacitors as  
close as possible to the package.  
VDD and VDDA use the same pad on the MC68HC908QL4.  
Data Sheet  
50  
MC68HC908QL Family — Rev. 2  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
I/O Registers  
3.7.2 ADC Analog Ground Pin (VSSAD  
)
The ADC analog portion uses VSSAD as its ground pin and is internally connected  
to the VSSAD pad.  
NOTE:  
Route VSS cleanly to avoid any offset errors.  
VDD and VDDA use the same pad on the MC68HC908QL4.  
3.7.3 ADC Voltage Reference High Pin (VREFH  
)
The ADC analog portion uses VREFH as its upper voltage reference pin. By default,  
connect the VREFH pin to the same voltage potential as VDD. External filtering is  
often necessary to ensure a clean VREFH for good results. Any noise present on  
this pin will be reflected and possibly magnified in A/D conversion values.  
NOTE:  
For maximum noise immunity, route VREFH carefully and place bypass capacitors  
as close as possible to the package. Routing VREFH close and parallel to VREFL  
may improve common mode noise rejection.  
VDD and VREFH are connected on the MC68HC908QL4.  
3.7.4 ADC Voltage Reference Low Pin (VREFL  
)
The ADC analog portion uses VREFL as its lower voltage reference pin. By default,  
connect the VREFL pin to the same voltage potential as VSS. External filtering is  
often necessary to ensure a clean VREFL for good results. Any noise present on this  
pin will be reflected and possibly magnified in A/D conversion values.  
NOTE:  
For maximum noise immunity, route VREFL carefully and, if not connected to VSS,  
place bypass capacitors as close as possible to the package. Routing VREFH close  
and parallel to VREFL may improve common mode noise rejection.  
VSS and VREFL are connected on the MC68HC908QL4.  
3.7.5 ADC Voltage In (VADIN  
)
VADIN is the input voltage signal from one of the ADC channels to the ADC module.  
3.8 I/O Registers  
These I/O registers control and monitor ADC operation:  
ADC status and control register (ADSCR)  
ADC data register (ADRH and ADRL)  
ADC clock register (ADCLK)  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
51  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
3.8.1 ADC Status and Control Register  
Function of the ADC status and control register (ADSCR) is described here.  
Address:  
$003C  
Bit 7  
6
AIEN  
0
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
Write:  
Reset:  
COCO  
0
Figure 3-4. ADC Status and Control Register (ADSCR)  
COCO — Conversions Complete Bit  
When the AIEN bit is 0, the COCO is a read-only bit which is set each time a  
conversion is completed except in the continuous conversion mode where it is  
set after the first conversion. This bit is cleared whenever the ADSCR is written  
or whenever the ADR is read.  
If the AIEN bit is 1, the COCO becomes a read/write bit, which should be cleared  
to 0 for CPU to service the ADC interrupt request. Reset clears this bit.  
1 = Conversion completed (AIEN = 0)  
0 = Conversion not completed (AIEN = 0)/CPU interrupt (AIEN = 1)  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC conversion.  
The interrupt signal is cleared when the data register is read or the status/control  
register is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
ADCO — ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the ADR  
register at the end of each conversion. Only one conversion is completed  
between writes to the ADSCR when this bit is cleared. Reset clears the  
ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
ADCH4–ADCH0 — ADC Channel Select Bits  
ADCH4–ADCH0 form a 5-bit field which is used to select one of 16 ADC  
channels. Only eight channels, AD7–AD0, are available on this MCU. The  
channels are detailed in Table 3-1. Care should be taken when using a port pin  
as both an analog and digital input simultaneously to prevent switching noise  
from corrupting the analog signal.  
The ADC subsystem is turned off when the channel select bits are all set to 1.  
This feature allows for reduced power consumption for the MCU when the ADC  
is not being used.  
NOTE:  
Recovery from the disabled state requires one conversion cycle to stabilize.  
Data Sheet  
52  
MC68HC908QL Family — Rev. 2  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
I/O Registers  
The voltage levels supplied from internal reference nodes, as specified in  
Table 3-1, are used to verify the operation of the ADC converter both in production  
test and for user applications.  
Table 3-1. Mux Channel Select(1)  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
Input Select  
PTA0/AD0/KBI0  
PTA1/AD1/KBI1  
PTA4/OSC2/AD2/KBI2  
PTA5/OSC1/AD3/KBI5  
PTB2/AD4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
PTB3/AD5  
0
1
0
1
1
1
1
0
0
0
Unused  
VDDA  
VSSA  
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
ADC power off  
1. If any unused channels are selected, the resulting ADC conversion will be unknown or  
reserved.  
3.8.2 ADC Data Register High and Data Register Low  
3.8.2.1 Left Justified Mode  
In left justified mode, the ADRH register holds the eight MSBs of the 10-bit result.  
The only difference from left justified mode is that the AD9 is complemented. The  
ADRL register holds the two LSBs of the 10-bit result. All other bits read as 0.  
ADRH and ADRL are updated each time an ADC single channel conversion  
completes. Reading ADRH latches the contents of ADRL until ADRL is read. All  
subsequent results will be lost until the ADRH and ADRL reads are completed.  
Address:  
$003D  
Bit 7  
ADRH  
Bit 0  
6
5
4
3
2
1
Read:  
Write:  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
Reset:  
Address:  
Read:  
Unaffected by reset  
$003E  
AD1  
ADRL  
0
AD0  
0
0
0
0
0
Write:  
Reset:  
Unaffected by reset  
= Unimplemented  
Figure 3-5. ADC Data Register High (ADRH) and Low (ADRL)  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
53  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
3.8.2.2 Right Justified Mode  
In right justified mode, the ADRH register holds the two MSBs of the 10-bit result.  
All other bits read as 0. The ADRL register holds the eight LSBs of the 10-bit result.  
ADRH and ADRL are updated each time an ADC single channel conversion  
completes. Reading ADRH latches the contents of ADRL until ADRL is read. All  
subsequent results will be lost until the ADRH and ADRL reads are completed.  
Address:  
$003D  
Bit 7  
0
ADRH  
Bit 0  
6
0
5
0
4
0
3
0
2
0
1
Read:  
Write:  
AD9  
AD8  
Reset:  
Address:  
Read:  
Unaffected by reset  
$003E  
AD7  
ADRL  
AD0  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
Write:  
Reset:  
Unaffected by reset  
= Unimplemented  
Figure 3-6. ADC Data Register High (ADRH) and Low (ADRL)  
3.8.2.3 Left Justified Signed Data Mode  
In left justified signed data mode, the ADRH register holds the eight MSBs of the  
10-bit result. The only difference from left justified mode is that the AD9 is  
complemented. The ADRL register holds the two LSBs of the 10-bit result. All other  
bits read as 0. ADRH and ADRL are updated each time an ADC single channel  
conversion completes. Reading ADRH latches the contents of ADRL until ADRL is  
read. All subsequent results will be lost until the ADRH and ADRL reads are  
completed.  
Address:  
$003D  
Bit 7  
ADRH  
Bit 0  
6
5
4
3
2
1
Read:  
Write:  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
Reset:  
Address:  
Read:  
Unaffected by reset  
$003E  
AD1  
ADRL  
0
AD0  
0
0
0
0
0
Write:  
Reset:  
Unaffected by reset  
= Unimplemented  
Figure 3-7. ADC Data Register High (ADRH) and Low (ADRL)  
Data Sheet  
54  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
I/O Registers  
3.8.2.4 Eight Bit Truncation Mode  
In 8-bit truncation mode, the ADRL register holds the eight MSBs of the 10-bit  
result. The ADRH register is unused and reads as 0. The ADRL register is updated  
each time an ADC single channel conversion completes. In 8-bit mode, the ADRL  
register contains no interlocking with ADRH.  
Address:  
$003D  
Bit 7  
0
ADRH  
Bit 0  
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Write:  
Reset:  
Address:  
Read:  
Unaffected by reset  
$003E  
AD9  
ADRL  
AD2  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
Write:  
Reset:  
Unaffected by reset  
= Unimplemented  
Figure 3-8. ADC Data Register High (ADRH) and Low (ADRL)  
3.8.3 ADC Clock Register  
The ADC clock register (ADCLK) selects the clock frequency for the ADC.  
Address:  
$003F  
Bit 7  
6
ADIV1  
0
5
ADIV0  
0
4
3
2
MODE0  
1
1
R
0
Bit 0  
0
Read:  
Write:  
Reset:  
ADIV2  
0
ADICLK  
MODE1  
0
0
0
= Unimplemented  
R
= Reserved  
Figure 3-9. ADC Clock Register (ADCLK)  
ADIV2–ADIV0 — ADC Clock Prescaler Bits  
ADIV2–ADIV0 form a 3-bit field which selects the divide ratio used by the ADC  
to generate the internal ADC clock. Table 3-2 shows the available clock  
configurations. The ADC clock should be set to approximately 1 MHz.  
Table 3-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC input clock ÷ 1  
ADC input clock ÷ 2  
ADC input clock ÷ 4  
ADC input clock ÷ 8  
ADC input clock ÷ 16  
0
0
0
0
1
0
0
1
1
0
1
0
1
X(1)  
X(1)  
1. X = Don’t care  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
55  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
ADICLK — ADC Input Clock Select Bit  
ADICLK selects either the bus clock or the oscillator output clock (CGMXCLK)  
as the input clock source to generate the internal ADC clock. Reset selects  
CGMXCLK as the ADC clock source.  
1 = Internal bus clock  
0 = Oscillator output clock (CGMXCLK)  
The ADC requires a clock rate of approximately 1 MHz for correct operation.  
If the selected clock source is not fast enough, the ADC will generate incorrect  
conversions. See 17.14 5.0-Volt ADC Characteristics.  
f
CGMXCLK or bus frequency  
ADIV[2:0]  
fADIC  
=
1 MHz  
MODE1 and MODE0 — Modes of Result Justification Bits  
MODE1 and MODE0 select among four modes of operation. The manner in  
which the ADC conversion results will be placed in the ADC data registers is  
controlled by these modes of operation. Reset returns right-justified mode.  
00 = 8-bit truncation mode  
01 = Right justified mode  
10 = Left justified mode  
11 = Left justified signed data mode  
Data Sheet  
56  
MC68HC908QL Family — Rev. 2  
Analog-to-Digital Converter (ADC)  
MOTOROLA  
Data Sheet — MC68HC908QL4 Family  
Section 4. Auto Wakeup Module (AWU)  
4.1 Introduction  
This section describes the auto wakeup module (AWU). The AWU generates a  
periodic interrupt during stop mode to wake the part up without requiring an  
external signal. Figure 4-2 is a block diagram of the AWU.  
4.2 Features  
Features of the auto wakeup module include:  
One internal interrupt with separate interrupt enable bit, sharing the same  
keyboard interrupt vector and keyboard interrupt  
mask bit.  
Exit from low-power stop mode without external signals.  
Selectable timeout periods of 16 milliseconds or 512 milliseconds.  
Dedicated low power internal oscillator separate from the main system clock  
sources.  
Figure 4-1 provides a summary of the input/output (I/O) registers used in  
conjuction with the AWU.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
AWUL  
PTA2  
Port A Data Register  
(PTA) Write:  
See page 60.  
PTA5  
PTA4  
PTA3  
PTA1  
PTA0  
$0000  
Reset:  
Unaffected by reset  
Keyboard Status Read:  
and Control Register  
0
0
0
0
0
0
KEYF  
0
IMASKK  
0
MODEK  
0
Write:  
ACKK  
$001A  
$001B  
(KBSCR)  
See page 60.  
Reset:  
Read:  
0
0
0
0
0
Keyboard Interrupt Enable  
AWUIE  
0
KBIE5  
0
KBIE4  
0
KBIE3  
0
KBIE2  
0
KBIE1  
0
KBIE0  
0
Register (KBIER) Write:  
See page 61.  
Reset:  
0
= Unimplemented  
Figure 4-1. AWU Register Summary  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
57  
Auto Wakeup Module (AWU)  
Auto Wakeup Module (AWU)  
4.3 Functional Description  
The function of the auto wakeup logic is to generate periodic wakeup requests to  
bring the microcontroller unit (MCU) out of stop mode. The wakeup requests are  
treated as regular keyboard interrupt requests, with the difference that instead of a  
pin, the interrupt signal is generated by an internal logic.  
Writing the AWUIE bit in the keyboard interrupt enable register enables or disables  
the auto wakeup interrupt input (see Figure 4-2). A logic 1 applied to the  
AWUIREQ input with auto wakeup interrupt request enabled, latches an auto  
wakeup interrupt request.  
Auto wakeup latch, AWUL, can be read directly from the bit 6 position of port A data  
register (PTA). This is a read-only bit which is occupying an empty bit position on  
PTA. No PTA associated registers, such as PTA6 data direction or PTA6 pullup  
exist for this bit.  
Entering stop mode will enable the auto wakeup generation logic. An internal RC  
oscillator (exclusive for the auto wakeup feature) drives the wakeup request  
generator. Once the overflow count is reached in the generator counter, a wakeup  
request, AWUIREQ, is latched and sent to the KBI logic. See Figure 4-1.  
COPRS (FROM CONFIG1)  
VDD  
AUTOWUGEN  
TO PTA READ, BIT 6  
1 = DIV 29  
D
E
AWUL  
Q
SHORT  
0 = DIV 214  
INT RC OSC  
EN 32 kHz  
OVERFLOW  
AWUIREQ  
R
CLK  
RST  
TO KBI INTERRUPT LOGIC  
(SEE Figure 9-3. Keyboard  
Interrupt Block Diagram)  
CLRLOGIC  
CLEAR  
RESET  
ACKK  
(CGMXCLK)  
BUSCLKX4  
CLK  
RST  
RESET  
ISTOP  
RESET  
AWUIE  
Figure 4-2. Auto Wakeup Interrupt Request Generation Logic  
Data Sheet  
58  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Auto Wakeup Module (AWU)  
Auto Wakeup Module (AWU)  
Wait Mode  
Entering stop mode will enable the auto wakeup generation logic. An internal RC  
oscillator (exclusive for the auto wakeup feature) drives the wakeup request  
generator. Once the overflow count is reached in the generator counter, a wakeup  
request, AWUIREQ, is latched and sent to the KBI logic. See Figure 4-1.  
Wakeup interrupt requests will only be serviced if the associated interrupt enable  
bit, AWUIE, in KBIER is set. The AWU shares the keyboard interrupt vector.  
The overflow count can be selected from two options defined by the COPRS bit in  
CONFIG1. This bit was “borrowed” from the computer operating properly (COP)  
using the fact that the COP feature is idle (no MCU clock available) in stop mode.  
The typical values of the periodic wakeup request are (at room temperature):  
COPRS = 0: 650 ms @ 5 V, 950 ms @ 3 V  
COPRS = 1: 16 ms @ 5 V, 23 ms @ 3 V  
The auto wakeup RC oscillator is highly dependent on operating voltage and  
temperature. This feature is not recommended for use as a time-keeping function.  
The wakeup request is latched to allow the interrupt source identification. The  
latched value, AWUL, can be read directly from the bit 6 position of PTA data  
register. This is a read-only bit which is occupying an empty bit position on PTA.  
No PTA associated registers, such as PTA6 data, PTA6 direction, and PTA6 pullup  
exist for this bit. The latch can be cleared by writing to the ACKK bit in the KBSCR  
register. Reset also clears the latch. AWUIE bit in KBI interrupt enable register (see  
Figure 4-2) has no effect on AWUL reading.  
The AWU oscillator and counters are inactive in normal operating mode and  
become active only upon entering stop mode.  
4.4 Wait Mode  
4.5 Stop Mode  
The AWU module remains inactive in wait mode.  
When the AWU module is enabled (AWUIE = 1 in the keyboard interrupt enable  
register) it is activated automatically upon entering stop mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard interrupt  
requests to bring the MCU out of stop mode. The AWU counters start from ‘0’ each  
time stop mode is entered.  
4.6 Input/Output Registers  
The AWU shares registers with the keyboard interrupt (KBI) module and the port A  
I/O module. The following I/O registers control and monitor operation of the AWU:  
Port A data register (PTA)  
Keyboard interrupt status and control register (KBSCR)  
Keyboard interrupt enable register (KBIER)  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
59  
Auto Wakeup Module (AWU)  
Auto Wakeup Module (AWU)  
4.6.1 Port A I/O Register  
The port A data register (PTA) contains a data latch for the state of the AWU  
interrupt request, in addition to the data latches for port A.  
Address: $0000  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
AWUL  
PTA2  
PTA5  
PTA4  
PTA3  
PTA1  
PTA0  
0
0
Unaffected by reset  
= Unimplemented  
Figure 4-3. Port A Data Register (PTA)  
AWUL — Auto Wakeup Latch  
This is a read-only bit which has the value of the auto wakeup interrupt request  
latch. The wakeup request signal is generated internally. There is no PTA6 port  
or any of the associated bits such as PTA6 data direction or pullup bits.  
1 = Auto wakeup interrupt request is pending  
0 = Auto wakeup interrupt request is not pending  
NOTE:  
PTA5–PTA0 bits are not used in conjuction with the auto wakeup feature. To see  
a description of these bits, see 12.2.1 Port A Data Register.  
4.6.2 Keyboard Status and Control Register  
The keyboard status and control register (KBSCR):  
Flags keyboard/auto wakeup interrupt requests  
Acknowledges keyboard/auto wakeup interrupt requests  
Masks keyboard/auto wakeup interrupt requests  
Address: $001A  
Bit 7  
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
0
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 4-4. Keyboard Status and Control Register (KBSCR)  
Bits 7–4 — Not used  
These read-only bits always read as 0s.  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending on port A or auto  
wakeup. Reset clears the KEYF bit.  
1 = Keyboard/auto wakeup interrupt pending  
0 = No keyboard/auto wakeup interrupt pending  
Data Sheet  
60  
MC68HC908QL Family — Rev. 2  
Auto Wakeup Module (AWU)  
MOTOROLA  
Auto Wakeup Module (AWU)  
Input/Output Registers  
ACKK — Keyboard Acknowledge Bit  
Writing a 1 to this write-only bit clears the keyboard/auto wakeup interrupt  
request on port A and auto wakeup logic. ACKK always reads as 0. Reset clears  
ACKK.  
IMASKK— Keyboard Interrupt Mask Bit  
Writing a 1 to this read/write bit prevents the output of the keyboard interrupt  
mask from generating interrupt requests on port A or auto wakeup. Reset clears  
the IMASKK bit.  
1 = Keyboard/auto wakeup interrupt requests masked  
0 = Keyboard/auto wakeup interrupt requests not masked  
NOTE:  
MODEK is not used in conjuction with the auto wakeup feature. To see a  
description of this bit, see 9.7.1 Keyboard Status and Control Register.  
4.6.3 Keyboard Interrupt Enable Register  
The keyboard interrupt enable register (KBIER) enables or disables the auto  
wakeup to operate as a keyboard/auto wakeup interrupt input.  
Address: $001B  
Bit 7  
0
6
AWUIE  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 4-5. Keyboard Interrupt Enable Register (KBIER)  
AWUIE — Auto Wakeup Interrupt Enable Bit  
This read/write bit enables the auto wakeup interrupt input to latch interrupt  
requests. Reset clears AWUIE.  
1 = Auto wakeup enabled as interrupt input  
0 = Auto wakeup not enabled as interrupt input  
NOTE:  
KBIE5–KBIE0 bits are not used in conjuction with the auto wakeup feature. To see  
a description of these bits, see 9.7.2 Keyboard Interrupt Enable Register.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
61  
Auto Wakeup Module (AWU)  
Auto Wakeup Module (AWU)  
Data Sheet  
62  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Auto Wakeup Module (AWU)  
Data Sheet — MC68HC908QL4 Family  
Section 5. Configuration Registers (CONFIG1 and CONFIG2)  
5.1 Introduction  
This section describes the configuration registers (CONFIG1 and CONFIG2). The  
configuration registers enable or disable the following options:  
Stop mode recovery time (32 × BUSCLKX4 cycles or  
4096 × BUSCLKX4 cycles)  
STOP instruction  
Computer operating properly module (COP)  
COP reset period (COPRS): (213–24) × BUSCLKX4 or  
(218–24) × BUSCLKX4  
Low-voltage inhibit (LVI) enable and trip voltage selection  
OSC option selection  
IRQ pin  
RST pin  
Auto wakeup timeout period  
5.2 Functional Description  
The configuration registers are used in the initialization of various options. The  
configuration registers can be written once after each reset. Most of the  
configuration register bits are cleared during reset. Since the various options affect  
the operation of the microcontroller unit (MCU) it is recommended that this register  
be written immediately after reset. The configuration register is located at $001E  
and $001F, and may be read at anytime.  
NOTE:  
The CONFIG registers are one-time writable by the user after each reset. Upon a  
reset, the CONFIG registers default to predetermined settings as shown in  
Figure 5-1 and Figure 5-2.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
63  
Configuration Registers (CONFIG1 and CONFIG2)  
Configuration Registers (CONFIG1 and CONFIG2)  
$001E  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
R
R
R
OSCOPT1 OSCOPT0 IRQPUD  
IRQEN  
RSTEN  
Reset:  
POR:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
U
0
= Reserved  
U = Unaffected  
R
Figure 5-1 Configuration Register 2 (CONFIG2)  
OSCOPT1 and OSCOPT0 — Selection Bits for Oscillator Option  
(0, 0) Internal oscillator  
(0, 1) External oscillator  
(1, 0) External RC oscillator  
(1, 1) External XTAL oscillator  
IRQPUD — IRQ Pin Pullup Control Bit  
1 = Internal pullup is disconnected  
0 = Internal pullup is connected between IRQ pin and VDD  
IRQEN — IRQ Pin Function Selection Bit  
1 = Interrupt request function active in pin  
0 = Interrupt request function inactive in pin  
RSTEN — RST Pin Function Selection  
1 = Reset function active in pin  
0 = Reset function inactive in pin  
NOTE:  
The RSTEN bit is cleared by a power-on reset (POR) only. Other resets will leave  
this bit unaffected.  
$001F  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
COPRS  
LVISTOP LVIRSTD LVIPWRD LVI5OR3  
SSREC  
STOP  
COPD  
Reset:  
POR:  
0
0
0
0
0
0
0
0
U
0
0
0
0
0
0
0
U = Unaffected  
Figure 5-2 Configuration Register 1 (CONFIG1)  
COPRS (Out of STOP Mode) — COP Reset Period Selection Bit  
1 = COP reset short cycle = (213 – 24) × BUSCLKX4  
0 = COP reset long cycle = (218 – 24) × BUSCLKX4  
COPRS (In STOP Mode) — Auto Wakeup Period Selection Bit  
1 = Auto wakeup short cycle = (29) × INTRCOSC  
0 = Auto wakeup long cycle = (214) × INTRCOSC  
Data Sheet  
64  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Configuration Registers (CONFIG1 and CONFIG2)  
Configuration Registers (CONFIG1 and CONFIG2)  
Functional Description  
LVISTOP — LVI Enable in Stop Mode Bit  
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to  
operate during stop mode. Reset clears LVISTOP.  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
LVIRSTD — LVI Reset Disable Bit  
LVIRSTD disables the reset signal from the LVI module.  
1 = LVI module resets disabled  
0 = LVI module resets enabled  
LVIPWRD — LVI Power Disable Bit  
LVIPWRD disables the LVI module.  
1 = LVI module power disabled  
0 = LVI module power enabled  
LVI5OR3 — LVI 5-V or 3.3-V Operating Mode Bit  
LVI5OR3 selects the voltage operating mode of the LVI module. The voltage  
mode selected for the LVI should match the operating VDD for the LVI’s voltage  
trip points for each of the modes.  
1 = LVI operates in 5-V mode  
0 = LVI operates in 3.3-V mode  
NOTE:  
NOTE:  
The LVI5OR3 bit is cleared by a power-on reset (POR) only. Other resets will leave  
this bit unaffected.  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32 BUSCLKX4  
cycles instead of a 4096 BUSCLKX4 cycle delay.  
1 = Stop mode recovery after 32 BUSCLKX4 cycles  
0 = Stop mode recovery after 4096 BUSCLKX4 cycles  
Exiting stop mode by an LVI reset will result in the long stop recovery.  
When using the LVI during normal operation but disabling during stop mode, the  
LVI will have an enable time of tEN. The system stabilization time for power-on  
reset and long stop recovery (both 4096 BUSCLKX4 cycles) gives a delay  
longer than the LVI enable time for these startup scenarios. There is no period  
where the MCU is not protected from a low-power condition. However, when  
using the short stop recovery configuration option, the 32 BUSCLKX4 delay  
must be greater than the LVI’s turn on time to avoid a period in startup where  
the LVI is not protecting the MCU.  
STOP — STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module.  
1 = COP module disabled  
0 = COP module enabled  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
65  
Configuration Registers (CONFIG1 and CONFIG2)  
Configuration Registers (CONFIG1 and CONFIG2)  
Data Sheet  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
66  
Configuration Registers (CONFIG1 and CONFIG2)  
Data Sheet — MC68HC908QL4 Family  
Section 6. Computer Operating Properly (COP)  
6.1 Introduction  
The computer operating properly (COP) module contains a free-running counter  
that generates a reset if allowed to overflow. The COP module helps software  
recover from runaway code. Prevent a COP reset by clearing the COP counter  
periodically. The COP module can be disabled through the COPD bit in the  
configuration 1 (CONFIG1) register.  
6.2 Functional Description  
SIM MODULE  
SIM RESET CIRCUIT  
12-BIT SIM COUNTER  
BUSCLKX4  
RESET STATUS REGISTER  
INTERNAL RESET SOURCES(1)  
RESET VECTOR FETCH  
COPCTL WRITE  
COP CLOCK  
COP MODULE  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COPD (FROM CONFIG1)  
CLEAR  
COP COUNTER  
RESET  
COPCTL WRITE  
COP RATE SELECT  
(COPRS FROM CONFIG1)  
1. See Section 13. System Integration Module (SIM) for more details.  
Figure 6-1. COP Block Diagram  
MC68HC908QL Family — Rev. 2  
Data Sheet  
67  
MOTOROLA  
Computer Operating Properly (COP)  
Computer Operating Properly (COP)  
The COP counter is a free-running 6-bit counter preceded by the 12-bit system  
integration module (SIM) counter. If not cleared by software, the COP counter  
overflows and generates an asynchronous reset after 218 – 24 or 213 – 24  
BUSCLKX4 cycles; depending on the state of the COP rate select bit, COPRS, in  
configuration register 1. With a 218 – 24 BUSCLKX4 cycle overflow option, a 8-MHz  
crystal gives a COP timeout period of 32.766 ms. Writing any value to location  
$FFFF before an overflow occurs prevents a COP reset by clearing the COP  
counter and stages 12–5 of the SIM counter.  
NOTE:  
NOTE:  
Service the COP immediately after reset and before entering or after exiting stop  
mode to guarantee the maximum time before the first COP counter overflow.  
A COP reset pulls the RST pin low (if the RSTEN bit is set in the CONFIG1 register)  
for 32 × BUSCLKX4 cycles and sets the COP bit in the reset status register (RSR).  
See 13.8.1 SIM Reset Status Register.  
Place COP clearing instructions in the main program and not in an interrupt  
subroutine. Such an interrupt subroutine could keep the COP from generating a  
reset even while the main program is not working properly.  
6.3 I/O Signals  
6.3.1 BUSCLKX4  
The following paragraphs describe the signals shown in Figure 6-1.  
BUSCLKX4 is the oscillator output signal. BUSCLKX4 frequency is equal to the  
crystal frequency or the RC-oscillator frequency.  
6.3.2 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 6.4 COP Control  
Register) clears the COP counter and clears bits 12–5 of the SIM counter.  
Reading the COP control register returns the low byte of the reset vector.  
6.3.3 Power-On Reset  
The power-on reset (POR) circuit in the SIM clears the SIM counter  
4096 × BUSCLKX4 cycles after power up.  
6.3.4 Internal Reset  
An internal reset clears the SIM counter and the COP counter.  
6.3.5 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data bus.  
A reset vector fetch clears the SIM counter.  
Data Sheet  
68  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Computer Operating Properly (COP)  
Computer Operating Properly (COP)  
COP Control Register  
6.3.6 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the  
configuration register (CONFIG). See Section 5. Configuration Registers  
(CONFIG1 and CONFIG2).  
6.3.7 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS) in the  
configuration register 1 (CONFIG1). See Section 5. Configuration Registers  
(CONFIG1 and CONFIG2).  
6.4 COP Control Register  
The COP control register (COPCTL) is located at address $FFFF and overlaps the  
reset vector. Writing any value to $FFFF clears the COP counter and starts a new  
timeout period. Reading location $FFFF returns the low byte of the reset vector.  
Address: $FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
LOW BYTE OF RESET VECTOR  
CLEAR COP COUNTER  
Unaffected by reset  
Figure 6-2. COP Control Register (COPCTL)  
6.5 Interrupts  
The COP does not generate CPU interrupt requests.  
6.6 Monitor Mode  
The COP is disabled in monitor mode when VTST is present on the IRQ pin.  
6.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby  
modes.  
6.7.1 Wait Mode  
The COP remains active during wait mode. If COP is enabled, a reset will occur at  
COP timeout.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
69  
Computer Operating Properly (COP)  
Computer Operating Properly (COP)  
6.7.2 Stop Mode  
Stop mode turns off the BUSCLKX4 input to the COP and clears the SIM counter.  
Service the COP immediately before entering or after exiting stop mode to ensure  
a full COP timeout period after entering or exiting stop mode.  
6.8 COP Module During Break Mode  
The COP is disabled during a break interrupt with monitor mode when BDCOP bit  
is set in break auxiliary register (BRKAR).  
Data Sheet  
70  
MC68HC908QL Family — Rev. 2  
Computer Operating Properly (COP)  
MOTOROLA  
Data Sheet — MC68HC908QL4 Family  
Section 7. Central Processor Unit (CPU)  
7.1 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully  
object-code-compatible version of the M68HC05 CPU. The CPU08 Reference  
Manual (Motorola document order number CPU08RM/AD) contains a description  
of the CPU instruction set, addressing modes, and architecture.  
7.2 Features  
Features of the CPU include:  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with x-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for extension of  
addressing range beyond 64 Kbytes  
Low-power stop and wait modes  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
Central Processor Unit (CPU)  
71  
Central Processor Unit (CPU)  
7.3 CPU Registers  
Figure 7-1 shows the five CPU registers. CPU registers are not part of the memory  
map.  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
0
V
1
1
H
I
N
Z
C
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 7-1. CPU Registers  
7.3.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the  
accumulator to hold operands and the results of arithmetic/logic operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 7-2. Accumulator (A)  
Data Sheet  
72  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
CPU Registers  
7.3.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte memory space.  
H is the upper byte of the index register, and X is the lower byte. H:X is the  
concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the index register  
to determine the conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
0
8
0
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 7-3. Index Register (H:X)  
7.3.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next location  
on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack  
pointer (RSP) instruction sets the least significant byte to $FF and does not affect  
the most significant byte. The stack pointer decrements as data is pushed onto the  
stack and increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack  
pointer can function as an index register to access data on the stack. The CPU  
uses the contents of the stack pointer to determine the conditional address of the  
operand.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
0
8
0
7
1
6
1
5
1
4
1
3
1
2
1
1
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
1
Figure 7-4. Stack Pointer (SP)  
The location of the stack is arbitrary and may be relocated anywhere in  
NOTE:  
random-access memory (RAM). Moving the SP out of page 0 ($0000 to $00FF)  
frees direct address (page 0) space. For correct operation, the stack pointer must  
point only to RAM locations.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
73  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
7.3.4 Program Counter  
The program counter is a 16-bit register that contains the address of the next  
instruction or operand to be fetched.  
Normally, the program counter automatically increments to the next sequential  
memory location every time an instruction or operand is fetched. Jump, branch,  
and interrupt operations load the program counter with an address other than that  
of the next sequential location.  
During reset, the program counter is loaded with the reset vector address located  
at $FFFE and $FFFF. The vector address is the address of the first instruction to  
be executed after exiting the reset state.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with vector from $FFFE and $FFFF  
Figure 7-5. Program Counter (PC)  
7.3.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five flags that  
indicate the results of the instruction just executed. Bits 6 and 5 are set  
permanently to 1. The following paragraphs describe the functions of the condition  
code register.  
Bit 7  
V
6
1
1
5
1
1
4
H
X
3
I
2
N
X
1
Z
X
Bit 0  
C
Read:  
Write:  
Reset:  
X
1
X
X = Indeterminate  
Figure 7-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow occurs. The  
signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag.  
1 = Overflow  
0 = No overflow  
Data Sheet  
74  
MC68HC908QL Family — Rev. 2  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between accumulator bits  
3 and 4 during an add-without-carry (ADD) or add-with-carry (ADC) operation.  
The half-carry flag is required for binary-coded decimal (BCD) arithmetic  
operations. The DAA instruction uses the states of the H and C flags to  
determine the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU  
interrupts are enabled when the interrupt mask is cleared. When a CPU  
interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but before the  
interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE:  
To maintain M6805 Family compatibility, the upper byte of the index register (H) is  
not stacked automatically. If the interrupt service routine modifies H, then the user  
must stack and unstack H using the PSHH and PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack  
and restores the interrupt mask from the stack. After any reset, the interrupt  
mask is set and can be cleared only by the clear interrupt mask software  
instruction (CLI).  
N — Negative flag  
The CPU sets the negative flag when an arithmetic operation, logic operation,  
or data manipulation produces a negative result, setting bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z — Zero flag  
The CPU sets the zero flag when an arithmetic operation, logic operation, or  
data manipulation produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation produces a  
carry out of bit 7 of the accumulator or when a subtraction operation requires a  
borrow. Some instructions — such as bit test and branch, shift, and rotate —  
also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
75  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
7.4 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the instruction  
set.  
Refer to the CPU08 Reference Manual (Motorola document order number  
CPU08RM/AD) for a description of the instructions and addressing modes and  
more detail about the architecture of the CPU.  
7.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby  
modes.  
7.5.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling  
interrupts. After exit from wait mode by interrupt, the I bit remains clear. After  
exit by reset, the I bit is set.  
Disables the CPU clock  
7.5.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling  
external interrupts. After exit from stop mode by external interrupt, the I bit  
remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator  
stabilization delay.  
7.6 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in  
monitor mode  
The break interrupt begins after completion of the CPU instruction in progress. If  
the break address register match occurs on the last cycle of a CPU instruction, the  
break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the break  
interrupt and returns the MCU to normal operation if the break interrupt has been  
deasserted.  
Data Sheet  
76  
MC68HC908QL Family — Rev. 2  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
Instruction Set Summary  
7.7 Instruction Set Summary  
Table 7-1 provides a summary of the M68HC08 instruction set.  
Table 7-1. Instruction Set Summary (Sheet 1 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
FB  
9EEB ff  
9EDB ee ff  
2
3
4
4
3
2
4
5
Add without Carry  
A (A) + (M)  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
– IMM  
– IMM  
A7 ii  
AF ii  
2
2
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
AND #opr  
AND opr  
IMM  
DIR  
EXT  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IX2  
Logical AND  
A (A) & (M)  
0
IX1  
IX  
SP1  
SP2  
F4  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
ASLX  
ASL opr,X  
ASL ,X  
ASL opr,SP  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
Arithmetic Shift Left  
(Same as LSL)  
INH  
58  
C
0
IX1  
68 ff  
78  
b7  
b7  
b0  
b0  
IX  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
37 dd  
47  
4
1
1
4
3
5
INH  
57  
C
Arithmetic Shift Right  
IX1  
67 ff  
77  
IX  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25 rr  
27 rr  
3
3
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
77  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 7-1. Instruction Set Summary (Sheet 2 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
– REL  
– REL  
90 rr  
92 rr  
3
PC (PC) + 2 + rel ? (N V) = 0  
Branch if Greater Than (Signed  
Operands)  
BGT opr  
3
3
PC (PC) + 2 + rel ? (Z) | (N V) = 0  
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28 rr  
29 rr  
22 rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F rr  
2E rr  
3
3
BIT #opr  
BIT opr  
IMM  
DIR  
EXT  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IX2  
Bit Test  
(A) & (M)  
0
IX1  
IX  
SP1  
SP2  
F5  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
– REL  
93 rr  
3
PC (PC) + 2 + rel ? (Z) | (N V) = 1  
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (C) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25 rr  
23 rr  
91 rr  
2C rr  
2B rr  
2D rr  
26 rr  
2A rr  
20 rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
PC (PC) + 2 + rel ? (N V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
PC (PC) + 2  
BRN rel  
Branch Never  
– REL  
21 rr  
3
Data Sheet  
78  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Instruction Set Summary  
Table 7-1. Instruction Set Summary (Sheet 3 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
BSR rel  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
Branch to Subroutine  
– REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IMM  
Compare and Branch if Equal  
IX1+  
IX+  
CBEQ opr,SP,rel  
SP1  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
CLR opr  
CLRA  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
3F dd  
4F  
3
1
1
1
3
2
4
CLRX  
INH  
5F  
CLRH  
Clear  
0
0
1
– INH  
IX1  
IX  
SP1  
8C  
CLR opr,X  
CLR ,X  
6F ff  
7F  
CLR opr,SP  
9E6F ff  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
IX2  
Compare A with M  
(A) – (M)  
IX1  
IX  
F1  
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
33 dd  
43  
4
1
1
4
3
5
COMX  
INH  
53  
Complement (One’s Complement)  
Compare H:X with M  
0
1
COM opr,X  
COM ,X  
COM opr,SP  
IX1  
63 ff  
73  
9E63 ff  
IX  
SP1  
CPHX #opr  
CPHX opr  
IMM  
65 ii ii+1  
75 dd  
3
4
(H:X) – (M:M + 1)  
DIR  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
79  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 7-1. Instruction Set Summary (Sheet 4 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
CPX #opr  
IMM  
DIR  
EXT  
IX2  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
CPX opr  
CPX ,X  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
Compare X with M  
(X) – (M)  
(A)10  
IX1  
IX  
SP1  
SP2  
F3  
9EE3 ff  
9ED3 ee ff  
DAA  
Decimal Adjust A  
U –  
INH  
72  
2
A (A) – 1 or M (M) – 1 or X (X) – 1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DBNZX rel  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
DIR  
INH  
3B dd rr  
4B rr  
Decrement and Branch if Not Zero  
– INH  
IX1  
5B rr  
6B ff rr  
7B rr  
IX  
SP1  
9E6B ff rr  
DEC opr  
DECA  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
3A dd  
4A  
4
1
1
4
3
5
DECX  
INH  
5A  
Decrement  
Divide  
DEC opr,X  
DEC ,X  
DEC opr,SP  
IX1  
6A ff  
7A  
9E6A ff  
IX  
SP1  
A (H:A)/(X)  
H Remainder  
DIV  
INH  
52  
7
EOR #opr  
EOR opr  
IMM  
DIR  
EXT  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IX2  
Exclusive OR M with A  
0
A (A M)  
IX1  
IX  
SP1  
SP2  
F8  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
INCX  
INC opr,X  
INC ,X  
INC opr,SP  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
3C dd  
4C  
4
1
1
4
3
5
INH  
5C  
Increment  
IX1  
6C ff  
7C  
IX  
SP1  
9E6C ff  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
– IX2  
IX1  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
2
3
4
3
2
Jump  
PC Jump Address  
IX  
FC  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
Jump to Subroutine  
IX  
FD  
LDA #opr  
LDA opr  
IMM  
DIR  
EXT  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IX2  
Load A from M  
A (M)  
0
IX1  
IX  
SP1  
SP2  
F6  
9EE6 ff  
9ED6 ee ff  
Data Sheet  
80  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Instruction Set Summary  
Table 7-1. Instruction Set Summary (Sheet 5 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
LDHX #opr  
LDHX opr  
IMM  
DIR  
45 ii jj  
55 dd  
3
4
Load H:X from M  
H:X ← (M:M + 1)  
0
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
FE  
9EEE ff  
9EDE ee ff  
2
3
4
4
3
2
4
5
Load X from M  
X (M)  
0
LSL opr  
LSLA  
DIR  
INH  
INH  
IX1  
IX  
38 dd  
48  
4
1
1
4
3
5
LSLX  
Logical Shift Left  
(Same as ASL)  
58  
C
0
LSL opr,X  
LSL ,X  
LSL opr,SP  
68 ff  
78  
9E68 ff  
b7  
b7  
b0  
b0  
SP1  
LSR opr  
LSRA  
LSRX  
LSR opr,X  
LSR ,X  
LSR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
34 dd  
44  
4
1
1
4
3
5
54  
0
C
Logical Shift Right  
0
64 ff  
74  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
IMD  
IX+D  
Move  
0
0
6E ii dd  
7E dd  
H:X (H:X) + 1 (IX+D, DIX+)  
MUL  
Unsigned multiply  
X:A (X) × (A)  
0 INH  
42  
5
NEG opr  
NEGA  
DIR  
INH  
30 dd  
40  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
NEGX  
INH  
50  
Negate (Two’s Complement)  
NEG opr,X  
NEG ,X  
NEG opr,SP  
IX1  
60 ff  
70  
9E60 ff  
IX  
SP1  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
62  
1
3
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
EXT  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IX2  
Inclusive OR A and M  
A (A) | (M)  
0
IX1  
IX  
SP1  
SP2  
FA  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
PULH  
PULX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
– INH  
– INH  
– INH  
87  
8B  
89  
86  
8A  
88  
2
2
2
2
2
2
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
81  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 7-1. Instruction Set Summary (Sheet 6 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
ROL opr  
DIR  
INH  
INH  
IX1  
IX  
39 dd  
49  
4
1
1
4
3
5
ROLA  
ROLX  
59  
C
Rotate Left through Carry  
ROL opr,X  
ROL ,X  
69 ff  
79  
9E69 ff  
b7  
b0  
ROL opr,SP  
SP1  
ROR opr  
RORA  
RORX  
ROR opr,X  
ROR ,X  
ROR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
36 dd  
46  
4
1
1
4
3
5
56  
C
Rotate Right through Carry  
66 ff  
76  
b7  
b0  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
INH  
80  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
81  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
IX2  
A (A) – (M) – (C)  
IX1  
IX  
F2  
SP1  
SP2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
DIR  
EXT  
IX2  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
– IX1  
IX  
F7  
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
– DIR  
– INH  
35 dd  
8E  
4
1
STOP  
Enable IRQ Pin; Stop Oscillator  
I 0; Stop Oscillator  
STX opr  
DIR  
EXT  
IX2  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
– IX1  
IX  
FF  
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
IX2  
Subtract  
A (A) – (M)  
IX1  
IX  
F0  
SP1  
SP2  
9EE0 ff  
9ED0 ee ff  
Data Sheet  
82  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Opcode Map  
Table 7-1. Instruction Set Summary (Sheet 7 of 7)  
Effect  
Source  
Form  
on CCR  
Operation  
Description  
V H I N Z C  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SWI  
Software Interrupt  
1
– INH  
83  
9
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
INH  
– INH  
– INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
A (CCR)  
TST opr  
TSTA  
DIR  
INH  
3D dd  
4D  
3
1
1
3
2
4
TSTX  
INH  
5D  
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
TST opr,X  
TST ,X  
TST opr,SP  
IX1  
6D ff  
7D  
9E6D ff  
IX  
SP1  
TSX  
TXA  
TXS  
WAIT  
Transfer SP to H:X  
H:X (SP) + 1  
A (X)  
0
– INH  
– INH  
– INH  
– INH  
95  
9F  
94  
8F  
2
1
2
1
Transfer X to A  
Transfer H:X to SP  
(SP) (H:X) – 1  
I bit 0; Halt CPU  
Enable Interrupts; Wait for Interrupt  
A
C
CCR  
dd  
dd rr  
DD  
DIR  
DIX+  
ee ff  
EXT  
ff  
H
H
hh ll  
I
ii  
Accumulator  
Carry/borrow bit  
Condition code register  
Direct address of operand  
Direct address of operand and relative offset of branch instruction  
Direct to direct addressing mode  
n
Any bit  
opr Operand (one or two bytes)  
PC Program counter  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
Direct addressing mode  
rel  
rr  
Relative program counter offset byte  
Relative program counter offset byte  
Direct to indexed with post increment addressing mode  
High and low bytes of offset in indexed, 16-bit offset addressing  
Extended addressing mode  
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
High and low bytes of operand address in extended addressing  
Interrupt mask  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
&
|
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
Logical AND  
Logical OR  
Immediate operand byte  
Immediate source to direct destination addressing mode  
IMD  
IMM  
INH  
IX  
Immediate addressing mode  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
Logical EXCLUSIVE OR  
Contents of  
( )  
–( ) Negation (two’s complement)  
#
IX+  
Immediate value  
IX+D  
IX1  
IX1+  
IX2  
M
Indexed with post increment to direct addressing mode  
Indexed, 8-bit offset addressing mode  
Indexed, 8-bit offset, post increment addressing mode  
Indexed, 16-bit offset addressing mode  
Memory location  
«
?
:
Sign extend  
Loaded with  
If  
Concatenated with  
Set or cleared  
Not affected  
N
Negative bit  
7.8 Opcode Map  
See Table 7-2.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
83  
Central Processor Unit (CPU)  
Table 7-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
IX  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
IX  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
3
BRN  
REL 3 DIR  
3
BHI  
REL  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
3
BEQ  
1
1
2
IX1 3 SP1  
5
1
2
1
1
1
2
1
1
1
1
1
2
1
1
2
1
1
1
INH  
4
RTS  
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
CMP  
EXT 3 IX2  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
4
4
4
4
4
4
4
4
4
4
4
4
SP2  
5
CMP  
SP2  
5
SBC  
SP2  
5
CPX  
SP2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IX1  
3
CMP  
IX1  
3
SBC  
IX1  
3
CPX  
IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1  
4
CMP  
SP1  
4
SBC  
SP1  
4
CPX  
SP1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5
4
4
6
4
CBEQ  
IX+  
2
DAA  
INH  
3
COM  
IX  
3
LSR  
IX  
4
CPHX  
DIR  
3
ROR  
IX  
3
ASR  
IX  
3
LSL  
IX  
3
ROL  
IX  
3
DEC  
IX  
4
DBNZ  
IX  
3
INC  
IX  
2
3
4
2
CMP  
IX  
2
SBC  
IX  
2
CPX  
IX  
2
AND  
IX  
2
BIT  
IX  
2
LDA  
IX  
2
STA  
IX  
2
EOR  
IX  
2
ADC  
IX  
2
ORA  
IX  
2
ADD  
IX  
2
JMP  
IX  
4
JSR  
IX  
2
LDX  
IX  
2
STX  
IX  
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
BLT  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
IMM 3 IMM 3 IX1+  
4
SP1  
REL 2 IMM 2 DIR  
5
7
3
3
BGT  
2
SBC  
3
SBC  
4
SBC  
BRSET1 BSET1  
MUL  
INH  
DIV  
INH  
NSA  
3
DIR  
5
2
DIR  
4
1
1
1
2
2
3
2
2
2
2
2
INH  
REL 2 IMM 2 DIR  
3
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
2
CPX  
3
CPX  
4
CPX  
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
SWI  
BLE  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
2
2
2
AND  
IMM 2 DIR  
2
BIT  
IMM 2 DIR  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
3
AND  
4
AND  
5
3
4
4
BRSET2 BSET2  
LSR  
TAP  
TXS  
AND  
AND  
AND  
3
DIR  
5
2
DIR  
4
1
3
1
SP1  
INH  
INH  
2
2
2
2
2
2
2
2
SP2  
IX1  
SP1  
4
3
4
1
2
3
BIT  
4
BIT  
5
BIT  
SP2  
5
LDA  
SP2  
5
STA  
SP2  
5
EOR  
3
BIT  
IX1  
3
LDA  
IX1  
4
BIT  
SP1  
4
LDA  
SP1  
4
STA  
SP1  
4
EOR  
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
TPA  
TSX  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
INH  
INH  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
3
LDA  
4
LDA  
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
SP1  
5
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
1
3
STA  
4
STA  
3
7
BRCLR3 BCLR3  
ASR  
TAX  
STA  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
1
1
1
1
1
1
1
1
SP1  
5
1
1
1
1
1
1
1
INH  
IX1  
4
LSL  
1
CLC  
INH  
1
3
EOR  
4
EOR  
3
EOR  
8
BRSET4 BSET4 BHCC  
LSL  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
SP1  
5
SP2  
5
ADC  
SP2  
IX1  
3
SP1  
4
ADC  
SP1  
4
ROL  
3
ADC  
4
ADC  
9
BRCLR4 BCLR4 BHCS  
ROL  
SEC  
INH  
2
CLI  
INH  
2
SEI  
INH  
1
RSP  
INH  
ADC  
IX1  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
3
BMC  
REL 2 DIR  
3
BMS  
REL 2 DIR  
3
BIL  
SP1  
5
4
DEC  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
ORA  
4
ORA  
5
3
4
A
B
C
D
E
F
BRSET5 BSET5  
DEC  
ORA  
ORA  
ORA  
3
DIR  
5
2
DIR  
4
SP1  
6
SP2  
IX1  
SP1  
5
3
3
5
3
ADD  
4
ADD  
5
3
ADD  
IX1  
3
JMP  
IX1  
5
JSR  
IX1  
3
LDX  
IX1  
4
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
ADD  
ADD  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
INC  
IX1  
3
TST  
IX1  
4
MOV  
IMD  
3
CLR  
IX1  
SP1  
5
SP2  
SP1  
4
INC  
2
JMP  
DIR  
4
JSR  
4
JMP  
BRSET6 BSET6  
INCA  
INCX  
INC  
3
DIR  
5
2
DIR  
4
INH  
1
TSTA  
INH  
5
MOV  
DD  
1
CLRA  
INH  
INH  
1
TSTX  
INH  
4
MOV  
DIX+  
1
CLRX  
INH  
SP1  
4
2
3
TST  
2
TST  
IX  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
BRCLR6 BCLR6  
TST  
SP1  
NOP  
3
DIR  
5
2
DIR  
4
INH  
2
2
2
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
4
BRSET7 BSET7  
MOV  
IX+D  
LDX  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
BIH  
1
1
4
4
SP2  
3
3
SP1  
3
CLR  
4
2
CLR  
IX  
3
STX  
4
STX  
5
STX  
SP2  
3
4
STX  
SP1  
BRCLR7 BCLR7  
DIR DIR  
CLR  
SP1  
STX  
3
2
REL 2 DIR  
3
1
IX1  
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Data Sheet — MC68HC908QL4 Family  
Section 8. External Interrupt (IRQ)  
8.1 Introduction  
The IRQ pin (external interrupt), shared with PTA2 (general purpose input) and  
keyboard interrupt (KBI), provides a maskable interrupt input.  
8.2 Features  
Features of the IRQ module include the following:  
External interrupt pin, IRQ  
IRQ interrupt control bits  
Hysteresis buffer  
Programmable edge-only or edge and level interrupt sensitivity  
Automatic interrupt acknowledge  
Selectable internal pullup resistor  
8.3 Functional Description  
IRQ pin functionality is enabled by setting configuration register 2 (CONFIG2)  
IRQEN bit accordingly. A zero disables the IRQ function and IRQ will assume the  
other shared functionalities. A one enables the IRQ function.  
A logic 0 applied to the external interrupt pin can latch a central processor unit  
(CPU) interrupt request. Figure 8-2 shows the structure of the IRQ module.  
Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch  
remains set until one of the following actions occurs:  
Vector fetch — A vector fetch automatically generates an interrupt  
acknowledge signal that clears the IRQ latch.  
Software clear — Software can clear the interrupt latch by writing to the  
acknowledge bit in the interrupt status and control register (ISCR). Writing  
a 1 to the ACK bit clears the IRQ latch.  
Reset — A reset automatically clears the interrupt latch.  
The external interrupt pin is falling-edge-triggered and is software- configurable to  
be either falling-edge or falling-edge and low-level triggered. The MODE bit in the  
ISCR controls the triggering sensitivity of the IRQ pin.  
When the interrupt pin is edge-triggered only, the CPU interrupt request remains  
set until a vector fetch, software clear, or reset occurs.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
85  
External Interrupt (IRQ)  
External Interrupt (IRQ)  
PTA0/AD0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
(OSCILLATOR)  
SYSTEM INTEGRATION  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
SINGLE INTERRUPT  
MODULE  
M68HC08 CPU  
PTB0/TCH0  
PTB1  
BREAK  
MODULE  
PTB2/AD4  
PTB3/AD5  
PTB4/SLCRX  
PTB5/SLCTX  
PTB6  
POWER-ON RESET  
MODULE  
KEYBOARD INTERRUPT  
MODULE  
PTB7  
2-CH 16-BIT TIMER  
MODULE  
MC68HC908QL4 AND MC68HC908QL3: 4096 BYTES  
MC68HC908QL2: 2048 BYTES  
USER FLASH  
SLAVE LIN INTERFACE  
CONTROLLER  
COP  
MODULE  
6-CHANNEL 10-BIT  
ADC  
MONITOR ROM  
128 BYTES RAM  
VDD  
VSS  
POWER SUPPLY  
RST, IRQ: Pins have internal (about 30 k) pull up  
PTA0, PTA1, PTA3–PTA5: High current sink and source capability  
PTA0–PTA5: Pins have programmable keyboard interrupt and pull up  
ADC pins only available on MC68HC908QL4 and MC68HC908QL2  
Figure 8-1. Block Diagram Highlighting IRQ Block and Pins  
Data Sheet  
86  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
External Interrupt (IRQ)  
External Interrupt (IRQ)  
Functional Description  
ACK  
RESET  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
VECTOR  
FETCH  
DECODER  
VDD  
IRQPUD  
INTERNAL  
PULLUP  
DEVICE  
VDD  
IRQF  
CLR  
D
Q
SYNCHRO-  
NIZER  
IRQ  
INTERRUPT  
REQUEST  
CK  
IRQ  
IRQ  
FF  
IMASK  
MODE  
HIGH  
VOLTAGE  
DETECT  
TO MODE  
SELECT  
LOGIC  
Figure 8-2. IRQ Module Block Diagram  
When the interrupt pin is both falling-edge and low-level triggered, the CPU  
interrupt request remains set until both of the following occur:  
Vector fetch or software clear  
Return of the interrupt pin to logic 1  
The vector fetch or software clear may occur before or after the interrupt pin returns  
to logic 1. As long as the pin is low, the interrupt request remains pending. A reset  
will clear the latch and the MODE control bit, thereby clearing the interrupt even if  
the pin stays low.  
When set, the IMASK bit in the ISCR mask all external interrupt requests. A latched  
interrupt request is not presented to the interrupt priority logic unless the IMASK bit  
is clear.  
NOTE:  
The interrupt mask (I) in the condition code register (CCR) masks all interrupt  
requests, including external interrupt requests. See 13.6 Exception Control.  
Figure 8-3 provides a summary of the IRQ I/O register.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
0
0
0
0
IRQF  
IRQ Status and Control  
Register (INTSCR) Write:  
$001D  
ACK  
0
See page 89.  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 8-3. IRQ I/O Register Summary  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
87  
External Interrupt (IRQ)  
External Interrupt (IRQ)  
8.4 IRQ Pin  
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch. A vector  
fetch, software clear, or reset clears the IRQ latch.  
If the MODE bit is set, the IRQ pin is both falling-edge sensitive and low-level  
sensitive. With MODE set, both of the following actions must occur to clear IRQ:  
Vector fetch or software clear — A vector fetch generates an interrupt  
acknowledge signal to clear the latch. Software may generate the interrupt  
acknowledge signal by writing a 1 to the ACK bit in the interrupt status and  
control register (ISCR). The ACK bit is useful in applications that poll the IRQ  
pin and require software to clear the IRQ latch. Writing to the ACK bit prior  
to leaving an interrupt service routine can also prevent spurious interrupts  
due to noise. Setting ACK does not affect subsequent transitions on the IRQ  
pin. A falling edge that occurs after writing to the ACK bit latches another  
interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the  
program counter with the vector address at locations $FFFA and $FFFB.  
Return of the IRQ pin to logic 1 — As long as the IRQ pin is at logic 0, IRQ  
remains active.  
The vector fetch or software clear and the return of the IRQ pin to logic 1 may occur  
in any order. The interrupt request remains pending as long as the IRQ pin is at  
logic 0. A reset will clear the latch and the MODE control bit, thereby clearing the  
interrupt even if the pin stays low.  
If the MODE bit is clear, the IRQ pin is falling-edge sensitive only. With MODE  
clear, a vector fetch or software clear immediately clears the IRQ latch.  
The IRQF bit in the ISCR register can be used to check for pending interrupts. The  
IRQF bit is not affected by the IMASK bit, which makes it useful in applications  
where polling is preferred.  
NOTE:  
NOTE:  
When the IRQ function is enabled in the CONFIG2 register, the BIH and BIL  
instructions can be used to read the logic level on the IRQ pin. If the IRQ function  
is disabled, these instructions will behave as if the IRQ pin is a logic 1, regardless  
of the actual level on the pin. Conversely, when the IRQ function is enabled, bit 2  
of the port A data register will always read a 0.  
When using the level-sensitive interrupt trigger, avoid false interrupts by masking  
interrupt requests in the interrupt routine. An internal pullup resistor to VDD is  
connected to the IRQ pin; this can be disabled by setting the IRQPUD bit in the  
CONFIG2 register ($001E).  
8.5 IRQ Module During Break Interrupts  
The system integration module (SIM) controls whether the IRQ latch can be  
cleared during the break state. The BCFE bit in the break flag control register  
(BFCR) enables software to clear the latches during the break state. See  
Section 13. System Integration Module (SIM).  
Data Sheet  
88  
MC68HC908QL Family — Rev. 2  
External Interrupt (IRQ)  
MOTOROLA  
External Interrupt (IRQ)  
IRQ Status and Control Register  
To allow software to clear the IRQ latch during a break interrupt, write a 1 to the  
BCFE bit. If a latch is cleared during the break state, it remains cleared when the  
MCU exits the break state.  
To protect the latches during the break state, write a 0 to the BCFE bit. With BCFE  
at 0 (its default state), writing to the ACK bit in the IRQ status and control register  
during the break state has no effect on the IRQ latch.  
8.6 IRQ Status and Control Register  
The IRQ status and control register (ISCR) controls and monitors operation of the  
IRQ module, see Section 5. Configuration Registers (CONFIG1 and CONFIG2).  
The ISCR has the following functions:  
Shows the state of the IRQ flag  
Clears the IRQ latch  
Masks IRQ and interrupt request  
Controls triggering sensitivity of the IRQ interrupt pin  
Address: $001D  
Bit 7  
6
0
5
0
4
0
3
2
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
Write:  
Reset:  
0
IRQF  
ACK  
0
0
0
0
0
0
= Unimplemented  
Figure 8-4. IRQ Status and Control Register (INTSCR)  
IRQF — IRQ Flag  
This read-only status bit is high when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK — IRQ Interrupt Request Acknowledge Bit  
Writing a 1 to this write-only bit clears the IRQ latch. ACK always reads as 0.  
Reset clears ACK.  
IMASK — IRQ Interrupt Mask Bit  
Writing a 1 to this read/write bit disables IRQ interrupt requests. Reset clears  
IMASK.  
1 = IRQ interrupt requests disabled  
0 = IRQ interrupt requests enabled  
MODE — IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears  
MODE.  
1 = IRQ interrupt requests on falling edges and low levels  
0 = IRQ interrupt requests on falling edges only  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
89  
External Interrupt (IRQ)  
External Interrupt (IRQ)  
Data Sheet  
90  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
External Interrupt (IRQ)  
Data Sheet — MC68HC908QL4 Family  
Section 9. Keyboard Interrupt Module (KBI)  
9.1 Introduction  
The keyboard interrupt module (KBI) provides six independently maskable external  
interrupts, which are accessible via the PTA0–PTA5 pins.  
9.2 Features  
Features of the keyboard interrupt module include:  
Six keyboard interrupt pins with separate keyboard interrupt enable bits and  
one keyboard interrupt mask  
Software configurable pullup device if input pin is configured as input port bit  
Programmable edge-only or edge and level interrupt sensitivity  
Exit from low-power modes  
Figure 9-1 provides a summary of the input/output (I/O) registers  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status  
and Control Register  
(KBSCR)  
$001A  
See page 96.  
0
0
0
AWUIE  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
Keyboard Interrupt Enable  
KBIE2  
0
KBIE1  
0
KBIE0  
0
$001B  
Register (KBIER) Write:  
See page 97.  
Reset:  
0
= Unimplemented  
Figure 9-1. KBI I/O Register Summary  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
91  
Keyboard Interrupt Module (KBI)  
Keyboard Interrupt Module (KBI)  
PTA0/AD0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
(OSCILLATOR)  
SYSTEM INTEGRATION  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
SINGLE INTERRUPT  
MODULE  
M68HC08 CPU  
PTB0/TCH0  
PTB1  
BREAK  
MODULE  
PTB2/AD4  
PTB3/AD5  
PTB4/SLCRX  
PTB5/SLCTX  
PTB6  
POWER-ON RESET  
MODULE  
KEYBOARD INTERRUPT  
MODULE  
PTB7  
2-CH 16-BIT TIMER  
MODULE  
MC68HC908QL4 AND MC68HC908QL3: 4096 BYTES  
MC68HC908QL2: 2048 BYTES  
USER FLASH  
SLAVE LIN INTERFACE  
CONTROLLER  
COP  
MODULE  
6-CHANNEL 10-BIT  
ADC  
MONITOR ROM  
128 BYTES RAM  
VDD  
VSS  
POWER SUPPLY  
RST, IRQ: Pins have internal (about 30 k) pull up  
PTA0, PTA1, PTA3–PTA5: High current sink and source capability  
PTA0–PTA5: Pins have programmable keyboard interrupt and pull up  
ADC pins only available on MC68HC908QL4 and MC68HC908QL2  
Figure 9-2. Block Diagram Highlighting KBI Block and Pins  
Data Sheet  
92  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
Keyboard Interrupt Module (KBI)  
Functional Description  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
ACKK  
KBI0  
VDD  
RESET  
KEYF  
CLR  
.
.
.
D
Q
SYNCHRONIZER  
KBIE0  
CK  
TO PULLUP ENABLE  
KEYBOARD  
INTERRUPT  
REQUEST  
IMASKK  
KBI5  
KEYBOARD  
INTERRUPT FF  
MODEK  
KBIE5  
TO PULLUP ENABLE  
1. For AWUGEN logic refer to Figure 4-2. Auto Wakeup Interrupt  
Request Generation Logic.  
AWUIREQ(1)  
Figure 9-3. Keyboard Interrupt Block Diagram  
9.3 Functional Description  
The keyboard interrupt module controls the enabling/disabling of interrupt  
functions on the six port A pins. These six pins can be enabled/disabled  
independently of each other.  
9.3.1 Keyboard Operation  
Writing to the KBIE0–KBIE5 bits in the keyboard interrupt enable register (KBIER)  
independently enables or disables each port A pin as a keyboard interrupt pin.  
Enabling a keyboard interrupt pin in port A also enables its internal pullup device  
irrespective of PTAPUEx bits in the port A input pullup enable register (see 12.2.3  
Port A Input Pullup Enable Register). A logic 0 applied to an enabled keyboard  
interrupt pin latches a keyboard interrupt request.  
A keyboard interrupt is latched when one or more keyboard interrupt inputs goes  
low after all were high. The MODEK bit in the keyboard status and control register  
controls the triggering mode of the keyboard interrupt.  
If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard  
interrupt input does not latch an interrupt request if another keyboard pin is  
already low. To prevent losing an interrupt request on one input because  
another input is still low, software can disable the latter input while it is low.  
If the keyboard interrupt is falling edge and low-level sensitive, an interrupt  
request is present as long as any keyboard interrupt input is low.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
Keyboard Interrupt Module (KBI)  
93  
Keyboard Interrupt Module (KBI)  
If the MODEK bit is set, the keyboard interrupt inputs are both falling edge and  
low-level sensitive, and both of the following actions must occur to clear a keyboard  
interrupt request:  
Vector fetch or software clear — A vector fetch generates an interrupt  
acknowledge signal to clear the interrupt request. Software may generate  
the interrupt acknowledge signal by writing a 1 to the ACKK bit in the  
keyboard status and control register (KBSCR). The ACKK bit is useful in  
applications that poll the keyboard interrupt inputs and require software to  
clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving  
an interrupt service routine can also prevent spurious interrupts due to  
noise. Setting ACKK does not affect subsequent transitions on the keyboard  
interrupt inputs. A falling edge that occurs after writing to the ACKK bit  
latches another interrupt request. If the keyboard interrupt mask bit,  
IMASKK, is clear, the central processor unit (CPU) loads the program  
counter with the vector address at locations $FFE0 and $FFE1.  
Return of all enabled keyboard interrupt inputs to logic 1 — As long as any  
enabled keyboard interrupt pin is at logic 0, the keyboard interrupt remains  
set. The auto wakeup interrupt input, AWUIREQ, will be cleared only by  
writing to ACKK bit in KBSCR or reset.  
The vector fetch or software clear and the return of all enabled keyboard interrupt  
pins to logic 1 may occur in any order.  
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge sensitive only.  
With MODEK clear, a vector fetch or software clear immediately clears the  
keyboard interrupt request.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing the  
interrupt request even if a keyboard interrupt input stays at logic 0.  
The keyboard flag bit (KEYF) in the keyboard status and control register can be  
used to see if a pending interrupt exists. The KEYF bit is not affected by the  
keyboard interrupt mask bit (IMASKK) which makes it useful in applications where  
polling is preferred.  
To determine the logic level on a keyboard interrupt pin, use the data direction  
register to configure the pin as an input and then read the data register.  
NOTE:  
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard  
interrupt pin to be an input, overriding the data direction register. However, the data  
direction register bit must be a 0 for software to read the pin.  
Data Sheet  
94  
MC68HC908QL Family — Rev. 2  
Keyboard Interrupt Module (KBI)  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
Wait Mode  
9.3.2 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal pullup to  
reach a logic 1. Therefore a false interrupt can occur as soon as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status  
and control register.  
2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard  
interrupt enable register.  
3. Write to the ACKK bit in the keyboard status and control register to clear any  
false interrupts.  
4. Clear the IMASKK bit.  
An interrupt signal on an edge-triggered pin can be acknowledged immediately  
after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt  
pin must be acknowledged after a delay that depends on the external load.  
Another way to avoid a false interrupt:  
1. Configure the keyboard pins as outputs by setting the appropriate DDRA  
bits in the data direction register A.  
2. Write 1s to the appropriate port A data register bits.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard  
interrupt enable register.  
9.4 Wait Mode  
9.5 Stop Mode  
The keyboard module remains active in wait mode. Clearing the IMASKK bit in the  
keyboard status and control register enables keyboard interrupt requests to bring  
the MCU out of wait mode.  
The keyboard module remains active in stop mode. Clearing the IMASKK bit in the  
keyboard status and control register enables keyboard interrupt requests to bring  
the MCU out of stop mode.  
9.6 Keyboard Module During Break Interrupts  
The system integration module (SIM) controls whether the keyboard interrupt latch  
can be cleared during the break state. The BCFE bit in the break flag control  
register (BFCR) enables software to clear status bits during the break state.  
To allow software to clear the keyboard interrupt latch during a break interrupt,  
write a 1 to the BCFE bit. If a latch is cleared during the break state, it remains  
cleared when the MCU exits the break state.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
95  
Keyboard Interrupt Module (KBI)  
Keyboard Interrupt Module (KBI)  
To protect the latch during the break state, write a 0 to the BCFE bit. With BCFE  
at 0 (its default state), writing to the keyboard acknowledge bit (ACKK) in the  
keyboard status and control register during the break state has no effect.  
9.7 Input/Output Registers  
The following I/O registers control and monitor operation of the keyboard interrupt  
module:  
Keyboard interrupt status and control register (KBSCR)  
Keyboard interrupt enable register (KBIER)  
9.7.1 Keyboard Status and Control Register  
The keyboard status and control register (KBSCR):  
Flags keyboard interrupt requests  
Acknowledges keyboard interrupt requests  
Masks keyboard interrupt requests  
Controls keyboard interrupt triggering sensitivity  
Address: $001A  
Bit 7  
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
0
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 9-4. Keyboard Status and Control Register (KBSCR)  
Bits 7–4 — Not used  
These read-only bits always read as 0s.  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending on port A or auto  
wakeup. Reset clears the KEYF bit.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
ACKK — Keyboard Acknowledge Bit  
Writing a 1 to this write-only bit clears the keyboard interrupt request on port A  
and auto wakeup logic. ACKK always reads as 0. Reset clears ACKK.  
IMASKK— Keyboard Interrupt Mask Bit  
Writing a 1 to this read/write bit prevents the output of the keyboard interrupt  
mask from generating interrupt requests on port A or auto wakeup. Reset clears  
the IMASKK bit.  
1 = Keyboard interrupt requests masked  
0 = Keyboard interrupt requests not masked  
Data Sheet  
96  
MC68HC908QL Family — Rev. 2  
Keyboard Interrupt Module (KBI)  
MOTOROLA  
Keyboard Interrupt Module (KBI)  
Input/Output Registers  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard interrupt  
pins on port A and auto wakeup. Reset clears MODEK.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
9.7.2 Keyboard Interrupt Enable Register  
The port A keyboard interrupt enable register (KBIER) enables or disables each  
port A pin or auto wakeup to operate as a keyboard interrupt input.  
Address: $001B  
Bit 7  
0
6
AWUIE  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 9-5. Keyboard Interrupt Enable Register (KBIER)  
KBIE5–KBIE0 — Port A Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard interrupt pin  
on port A to latch interrupt requests. Reset clears the keyboard interrupt enable  
register.  
1 = KBIx pin enabled as keyboard interrupt pin  
0 = KBIx pin not enabled as keyboard interrupt pin  
NOTE:  
AWUIE bit is not used in conjunction with the keyboard interrupt feature. To see a  
description of this bit, see Section 4. Auto Wakeup Module (AWU).  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
97  
Keyboard Interrupt Module (KBI)  
Keyboard Interrupt Module (KBI)  
Data Sheet  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
98  
Keyboard Interrupt Module (KBI)  
Data Sheet — MC68HC908QL4 Family  
Section 10. Low-Voltage Inhibit (LVI)  
10.1 Introduction  
This section describes the low-voltage inhibit (LVI) module, which monitors the  
voltage on the VDD pin and can force a reset when the VDD voltage falls below the  
LVI trip falling voltage, VTRIPF  
.
10.2 Features  
Features of the LVI module include:  
Programmable LVI reset  
Programmable power consumption  
Selectable LVI trip voltage  
Programmable stop mode operation  
10.3 Functional Description  
Figure 10-1 shows the structure of the LVI module. LVISTOP, LVIPWRD,  
LVI5OR3, and LVIRSTD are user selectable options found in the configuration  
register (CONFIG1). See Section 5. Configuration Registers (CONFIG1 and  
CONFIG2).  
VDD  
STOP INSTRUCTION  
LVISTOP  
FROM CONFIG1  
FROM CONFIG1  
LVIRSTD  
LVIPWRD  
FROM CONFIG1  
VDD > LVITRIP = 0  
LVI RESET  
LOW VDD  
DETECTOR  
VDD LVITRIP = 1  
LVIOUT  
LVI5OR3  
FROM CONFIG1  
Figure 10-1. LVI Module Block Diagram  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
99  
Low-Voltage Inhibit (LVI)  
Low-Voltage Inhibit (LVI)  
The LVI is enabled out of reset. The LVI module contains a bandgap reference  
circuit and comparator. Clearing the LVI power disable bit, LVIPWRD, enables the  
LVI to monitor VDD voltage. Clearing the LVI reset disable bit, LVIRSTD, enables  
the LVI module to generate a reset when VDD falls below a voltage, VTRIPF. Setting  
the LVI enable in stop mode bit, LVISTOP, enables the LVI to operate in stop  
mode. Setting the LVI 5-V or 3-V trip point bit, LVI5OR3, enables the trip point  
voltage, VTRIPF, to be configured for 5-V operation. Clearing the LVI5OR3 bit  
enables the trip point voltage, VTRIPF, to be configured for 3-V operation. The  
actual trip thresholds are specified in 17.5 5-V DC Electrical Characteristics and  
17.9 3.3-V DC Electrical Characteristics.  
NOTE:  
After a power-on reset, the LVI’s default mode of operation is 3 volts. If a 5-V  
system is used, the user must set the LVI5OR3 bit to raise the trip point to 5-V  
operation.  
If the user requires 5-V mode and sets the LVI5OR3 bit after power-on reset while  
the VDD supply is not above the VTRIPR for 5-V mode, the microcontroller unit  
(MCU) will immediately go into reset. The next time the LVI releases the reset, the  
supply will be above the VTRIPR for 5-V mode.  
Once an LVI reset occurs, the MCU remains in reset until VDD rises above a  
voltage, VTRIPR, which causes the MCU to exit reset. See Section 13. System  
Integration Module (SIM) for the reset recovery sequence.  
The output of the comparator controls the state of the LVIOUT flag in the LVI status  
register (LVISR) and can be used for polling LVI operation when the LVI reset is  
disabled.  
10.3.1 Polled LVI Operation  
In applications that can operate at VDD levels below the VTRIPF level, software can  
monitor VDD by polling the LVIOUT bit. In the configuration register, the LVIPWRD  
bit must be at 0 to enable the LVI module, and the LVIRSTD bit must be at 1 to  
disable LVI resets.  
10.3.2 Forced Reset Operation  
In applications that require VDD to remain above the VTRIPF level, enabling LVI  
resets allows the LVI module to reset the MCU when VDD falls below the VTRIPF  
level. In the configuration register, the LVIPWRD and LVIRSTD bits must be at 0  
to enable the LVI module and to enable LVI resets.  
10.3.3 Voltage Hysteresis Protection  
Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI will maintain  
a reset condition until VDD rises above the rising trip point voltage, VTRIPR. This  
prevents a condition in which the MCU is continually entering and exiting reset if  
VDD is approximately equal to VTRIPF. VTRIPR is greater than VTRIPF by the  
hysteresis voltage, VHYS  
.
Data Sheet  
100  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Low-Voltage Inhibit (LVI)  
Low-Voltage Inhibit (LVI)  
LVI Status Register  
10.3.4 LVI Trip Selection  
The LVI5OR3 bit in the configuration register selects whether the LVI is configured  
for 5-V or 3-V protection.  
NOTE:  
The microcontroller is guaranteed to operate at a minimum supply voltage. The trip  
point (VTRIPF [5 V] or VTRIPF [3 V]) may be lower than this. See 17.5 5-V DC  
Electrical Characteristics and 17.9 3.3-V DC Electrical Characteristics for the  
actual trip point voltages.  
10.4 LVI Status Register  
The LVI status register (LVISR) indicates if the VDD voltage was detected below  
the VTRIPF level while LVI resets have been disabled.  
Address: $FE0C  
Bit 7  
Read: LVIOUT  
Write:  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
R
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 10-2. LVI Status Register (LVISR)  
LVIOUT — LVI Output Bit  
This read-only flag becomes set when the VDD voltage falls below the VTRIPF  
trip voltage and is cleared when VDD voltage rises above VTRIPR. The difference  
in these threshold levels results in a hysteresis that prevents oscillation into and  
out of reset (see Table 10-1). Reset clears the LVIOUT bit.  
Table 10-1. LVIOUT Bit Indication  
VDD  
LVIOUT  
VDD > VTRIPR  
0
VDD < VTRIPF  
1
VTRIPF < VDD < VTRIPR  
Previous value  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
101  
Low-Voltage Inhibit (LVI)  
Low-Voltage Inhibit (LVI)  
10.5 LVI Interrupts  
The LVI module does not generate interrupt requests.  
10.6 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-consumption standby  
modes.  
10.6.1 Wait Mode  
10.6.2 Stop Mode  
If enabled, the LVI module remains active in wait mode. If enabled to generate  
resets, the LVI module can generate a reset and bring the MCU out of wait mode.  
When the LVIPWRD bit in the configuration register is cleared and the LVISTOP  
bit in the configuration register is set, the LVI module remains active in stop mode.  
If enabled to generate resets, the LVI module can generate a reset and bring the  
MCU out of stop mode.  
Data Sheet  
102  
MC68HC908QL Family — Rev. 2  
Low-Voltage Inhibit (LVI)  
MOTOROLA  
Data Sheet — MC68HC908QL4 Family  
Section 11. Oscillator Module (OSC)  
11.1 Introduction  
The oscillator module is used to provide a stable clock source for the  
microcontroller system and bus. The oscillator module generates two output  
clocks, BUSCLKX2 and BUSCLKX4. The BUSCLKX4 clock is used by the system  
integration module (SIM) and the computer operating properly module (COP). The  
BUSCLKX2 clock is divided by two in the SIM to be used as the bus clock for the  
microcontroller. Therefore the bus frequency will be one forth of the BUSCLKX4  
frequency.  
11.2 Features  
The oscillator has these four clock source options available:  
1. Internal oscillator: An internally generated, fixed frequency clock, trimmable  
to ± 5%. This is the default option out of reset.  
2. External oscillator: An external clock that can be driven directly into OSC1.  
3. External RC: A built-in oscillator module (RC oscillator) that requires an  
external R connection only. The capacitor is internal to the chip.  
4. External crystal: A built-in oscillator module (XTAL oscillator) that requires  
an external crystal or ceramic-resonator.  
11.3 Functional Description  
The oscillator contains these major subsystems:  
Internal oscillator circuit  
Internal or external clock switch control  
External clock circuit  
External crystal circuit  
External RC clock circuit  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
103  
Oscillator Module (OSC)  
Oscillator Module (OSC)  
PTA0/AD0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
(OSCILLATOR)  
SYSTEM INTEGRATION  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
SINGLE INTERRUPT  
MODULE  
M68HC08 CPU  
PTB0/TCH0  
PTB1  
BREAK  
MODULE  
PTB2/AD4  
PTB3/AD5  
PTB4/SLCRX  
PTB5/SLCTX  
PTB6  
POWER-ON RESET  
MODULE  
KEYBOARD INTERRUPT  
MODULE  
PTB7  
2-CH 16-BIT TIMER  
MODULE  
MC68HC908QL4 AND MC68HC908QL3: 4096 BYTES  
MC68HC908QL2: 2048 BYTES  
USER FLASH  
SLAVE LIN INTERFACE  
CONTROLLER  
COP  
MODULE  
6-CHANNEL 10-BIT  
ADC  
MONITOR ROM  
128 BYTES RAM  
VDD  
VSS  
POWER SUPPLY  
RST, IRQ: Pins have internal (about 30 k) pull up  
PTA0, PTA1, PTA3–PTA5: High current sink and source capability  
PTA0–PTA5: Pins have programmable keyboard interrupt and pull up  
ADC pins only available on MC68HC908QL4 and MC68HC908QL2  
Figure 11-1. Block Diagram Highlighting OSC Block and Pins  
Data Sheet  
104  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Oscillator Module (OSC)  
Oscillator Module (OSC)  
Functional Description  
11.3.1 Internal Oscillator  
The internal oscillator circuit is designed for use with no external components to  
provide a clock source with tolerance less than ±25% untrimmed. An 8-bit trimming  
register allows the adjust to a tolerance of less than ±5%.  
The internal oscillator will generate a clock of 25.6 MHz typical (INTCLK) resulting  
in a maximum bus speed (internal clock ÷ 4) of 6.4 MHz. The bus clock is software  
selectable to be 3.2 MHz, which is the default frequency after reset. The 3.2 MHz  
selection is required for applications running at 3.3 V. The maximum frequency at  
5 V is 8 MHz, since the internal oscillator will have a ±25% tolerance (pre-trim),  
then the +25% case should not allow a frequency higher than 8 MHz:  
6.4 MHz + 25% = 8 MHz for 5 V operation  
3.2 MHz + 25% = 4 MHz for 3.3 V operation  
Figure 11-3 shows how BUSCLKX4 is derived from INTCLK and, like the RC  
oscillator, OSC2 can output BUSCLKX4 by setting OSC2EN in PTAPUE register.  
See Section 12. Input/Output Ports (PORTS).  
11.3.1.1 Internal Oscillator Trimming  
The 8-bit trimming register, OSCTRIM, allows a clock period adjust of +127 and  
–128 steps. Increasing OSCTRIM value increases the clock period. Trimming  
allows the internal clock frequency to be set to 25.6 MHz ± 5%.  
There’s an option to order a trimmed version of MC68HC908QL4. The trimming  
value will be provided in a known FLASH location, $FFC0. So that the user would  
be able to copy this byte from the FLASH to the OSCTRIM register right at the  
beginning of assembly code.  
Reset loads OSCTRIM with a default value of $80.  
11.3.1.2 Internal to External Clock Switching  
When external clock source (external OSC, RC, or XTAL) is desired, the user must  
perform the following steps:  
1. For external crystal circuits only, OSCOPT[1:0] = 1:1: To help precharge an  
external crystal oscillator, set PTA4 (OSC2) as an output and drive high for  
several cycles. This may help the crystal circuit start more robustly.  
2. Set CONFIG2 bits OSCOPT[1:0] according to Table 11-2. The oscillator  
module control logic will then set OSC1 as an external clock input and, if the  
external crystal option is selected, OSC2 will also be set as the clock output.  
3. Create a software delay to wait the stabilization time needed for the selected  
clock source (crystal, resonator, RC) as recommended by the component  
manufacturer. A good rule of thumb for crystal oscillators is to wait  
4096 cycles of the crystal frequency, i.e., for a 4-MHz crystal, wait  
approximately 1 ms.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
105  
Oscillator Module (OSC)  
Oscillator Module (OSC)  
4. After the manufacturer’s recommended delay has elapsed, the ECGON bit  
in the OSC status register (OSCSTAT) needs to be set by the user software.  
5. After ECGON set is detected, the OSC module checks for oscillator activity  
by waiting two external clock rising edges.  
6. The OSC module then switches to the external clock. Logic provides a glitch  
free transition.  
7. The OSC module first sets the ECGST bit in the OSCSTAT register and then  
stops the internal oscillator.  
NOTE:  
Once transition to the external clock is done, the internal oscillator will only be  
reactivated with reset. No post-switch clock monitor feature is implemented (clock  
does not switch back to internal if external clock dies).  
11.3.2 External Oscillator  
The external clock option is designed for use when a clock signal is available in the  
application to provide a clock source to the microcontroller. The OSC1 pin is  
enabled as an input by the oscillator module. The clock signal is used directly to  
create BUSCLKX4 and also divided by two to create BUSCLKX2.  
In this configuration, the OSC2 pin cannot output BUSCLKX4. So the OSC2EN bit  
in the port A pullup enable register will be clear to enable PTA4 I/O functions on  
the pin.  
11.3.3 XTAL Oscillator  
The XTAL oscillator circuit is designed for use with an external crystal or ceramic  
resonator to provide an accurate clock source. In this configuration, the OSC2 pin  
is dedicated to the external crystal circuit. The OSC2EN bit in the port A pullup  
enable register has no effect when this clock mode is selected.  
In its typical configuration, the XTAL oscillator is connected in a Pierce oscillator  
configuration, as shown in Figure 11-2. This figure shows only the logical  
representation of the internal components and may not represent actual circuitry.  
The oscillator configuration uses five components:  
Crystal, X1  
Fixed capacitor, C1  
Tuning capacitor, C2 (can also be a fixed capacitor)  
Feedback resistor, RB  
Series resistor, RS (optional)  
NOTE:  
The series resistor (RS) is included in the diagram to follow strict Pierce oscillator  
guidelines and may not be required for all ranges of operation, especially with high  
frequency crystals. Refer to the crystal manufacturer’s data for more information.  
Data Sheet  
106  
MC68HC908QL Family — Rev. 2  
Oscillator Module (OSC)  
MOTOROLA  
Oscillator Module (OSC)  
Oscillator Module Signals  
FROM SIM  
TO SIM  
TO SIM  
BUSCLKX2  
÷ 2  
BUSCLKX4  
XTALCLK  
SIMOSCEN  
MCU  
OSC1  
OSC2  
(1)  
RS  
RB  
X1  
Note 1.  
RS can be zero (shorted) when used with  
higher-frequency crystals. Refer  
to manufacturer’s data. See Section 17.  
Electrical Specifications for  
C1  
C2  
component value requirements.  
Figure 11-2. XTAL Oscillator External Connections  
11.3.4 RC Oscillator  
The RC oscillator circuit is designed for use with external R to provide a clock  
source with tolerance less than 25%.  
In its typical configuration, the RC oscillator requires two external components, one  
R and one C. In the MC68HC908QL4, the capacitor is internal to the chip. The R  
value should have a tolerance of 1% or less, to obtain a clock source with less than  
25% tolerance. The oscillator configuration uses one component, REXT  
.
In this configuration, the OSC2 pin can be left in the reset state as PTA4. Or, the  
OSC2EN bit in the port A pullup enable register can be set to enable the OSC2  
output function on the pin. Enabling the OSC2 output slightly increases the external  
RC oscillator frequency, fRCCLK. See Figure 11-3.  
11.4 Oscillator Module Signals  
The following paragraphs describe the signals that are inputs to and outputs from  
the oscillator module.  
11.4.1 Crystal Amplifier Input Pin (OSC1)  
The OSC1 pin is either an input to the crystal oscillator amplifier, an input to the RC  
oscillator circuit, or an external clock source.  
For the internal oscillator configuration, the OSC1 pin can assume other functions  
according to Table 1-3. Function Priority in Shared Pins.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
107  
Oscillator Module (OSC)  
Oscillator Module (OSC)  
OSCRCOPT  
TO SIM  
FROM SIM  
TO SIM  
BUSCLKX2  
INTCLK  
RCCLK  
0
1
BUSCLKX4  
SIMOSCEN  
EXTERNAL RC  
OSCILLATOR  
EN  
÷ 2  
1
0
PTA4  
I/O  
PTA4  
OSC2EN  
MCU  
OSC1  
PTA4/BUSCLKX4 (OSC2)  
VDD  
See Section 17. Electrical Specifications  
REXT  
for component value requirements.  
Figure 11-3. RC Oscillator External Connections  
11.4.2 Crystal Amplifier Output Pin (OSC2/PTA4/BUSCLKX4)  
For the XTAL oscillator device, the OSC2 pin is the crystal oscillator inverting  
amplifier output.  
For the external clock option, the OSC2 pin is dedicated to the PTA4 I/O function.  
The OSC2EN bit has no effect.  
For the internal oscillator or RC oscillator options, the OSC2 pin can assume other  
functions according to Table 1-3. Function Priority in Shared Pins, or the output  
of the oscillator clock (BUSCLKX4).  
Table 11-1. OSC2 Pin Function  
Option  
OSC2 Pin Function  
Inverting OSC1  
PTA4 I/O  
XTAL oscillator  
External clock  
Internal oscillator  
or  
Controlled by OSC2EN bit in PTAPUE register  
OSC2EN = 0: PTA4 I/O  
RC oscillator  
OSC2EN = 1: BUSCLKX4 output  
Data Sheet  
108  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Oscillator Module (OSC)  
Oscillator Module (OSC)  
Oscillator Module Signals  
11.4.3 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM) and  
enables/disables either the XTAL oscillator circuit, the RC oscillator, or the internal  
oscillator.  
11.4.4 XTAL Oscillator Clock (XTALCLK)  
XTALCLK is the XTAL oscillator output signal. It runs at the full speed of the crystal  
(fXCLK) and comes directly from the crystal oscillator circuit. Figure 11-2 shows  
only the logical relation of XTALCLK to OSC1 and OSC2 and may not represent  
the actual circuitry. The duty cycle of XTALCLK is unknown and may depend on  
the crystal and other external factors. Also, the frequency and amplitude of  
XTALCLK can be unstable at start up.  
11.4.5 RC Oscillator Clock (RCCLK)  
RCCLK is the RC oscillator output signal. Its frequency is directly proportional to  
the time constant of external R and internal C. Figure 11-3 shows only the logical  
relation of RCCLK to OSC1 and may not represent the actual circuitry.  
11.4.6 Internal Oscillator Clock (INTCLK)  
INTCLK is the internal oscillator output signal. INTCLK is software selectable to be  
12.8 MHz or 25.6 MHz, but it can also trimmed using the oscillator trimming feature  
of the OSCTRIM register (see 11.3.1.1 Internal Oscillator Trimming).  
11.4.7 Oscillator Out 2 (BUSCLKX4)  
BUSCLKX4 is the same as the input clock (XTALCLK, RCCLK, or INTCLK). This  
signal is driven to the SIM module and is used to determine the COP cycles.  
11.4.8 Oscillator Out (BUSCLKX2)  
The frequency of this signal is equal to half of the BUSCLKX4, this signal is driven  
to the SIM for generation of the bus clocks used by the CPU and other modules on  
the MCU. BUSCLKX2 will be divided again in the SIM and results in the internal  
bus frequency being one fourth of either the XTALCLK, RCCLK, or INTCLK  
frequency.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
109  
Oscillator Module (OSC)  
Oscillator Module (OSC)  
11.5 Low Power Modes  
The WAIT and STOP instructions put the MCU in low-power consumption standby  
modes.  
11.5.1 Wait Mode  
11.5.2 Stop Mode  
The WAIT instruction has no effect on the oscillator logic. BUSCLKX2 and  
BUSCLKX4 continue to drive to the SIM module.  
The STOP instruction disables either the XTALCLK, the RCCLK, or INTCLK  
output, hence BUSCLKX2 and BUSCLKX4.  
11.6 Oscillator During Break Mode  
The oscillator continues to drive BUSCLKX2 and BUSCLKX4 when the device  
enters the break state.  
11.7 CONFIG2 Options  
Two CONFIG2 register options affect the operation of the oscillator module:  
OSCOPT1 and OSCOPT0. All CONFIG2 register bits will have a default  
configuration. Refer to Section 5. Configuration Registers (CONFIG1 and  
CONFIG2) for more information on how the CONFIG2 register is used.  
Table 11-2 shows how the OSCOPT bits are used to select the oscillator clock  
source.  
Table 11-2. Oscillator Modes  
OSCOPT1  
OSCOPT0  
Oscillator Modes  
Internal oscillator  
0
0
1
1
0
1
0
1
External oscillator  
External RC  
External crystal  
Data Sheet  
110  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Oscillator Module (OSC)  
Oscillator Module (OSC)  
Input/Output (I/O) Registers  
11.8 Input/Output (I/O) Registers  
The oscillator module contains these two registers:  
1. Oscillator status register (OSCSTAT)  
2. Oscillator trim register (OSCTRIM)  
11.8.1 Oscillator Status Register  
The oscillator status register (OSCSTAT) contains the bits for switching from  
internal to external clock sources.  
$0036  
Address:  
Bit 7  
6
5
R
0
4
R
0
3
R
0
2
BFS  
0
1
ECGON  
0
Bit 0  
Read:  
Write:  
Reset:  
ECGST  
R
R
0
0
0
= Reserved  
= Unimplemented  
R
Figure 11-4. Oscillator Status Register (OSCSTAT)  
BFS — Bus Frequency Select Bit  
This read/write bit enables the bus frequency to be increased for 5-V  
applications from 3.2 MHz to 6.4 MHz when running off the internal oscillator.  
1 = 6.4 MHz Bus Frequency  
0 = 3.2 MHz Bus Frequency  
ECGON — External Clock Generator On Bit  
This read/write bit enables external clock generator, so that the switching  
process can be initiated. This bit is forced low during reset. This bit is ignored in  
monitor mode with the internal oscillator bypassed.  
1 = External clock generator enabled  
0 = External clock generator disabled  
ECGST — External Clock Status Bit  
This read-only bit indicates whether or not an external clock source is engaged  
to drive the system clock.  
1 = An external clock source engaged  
0 = An external clock source disengaged  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
111  
Oscillator Module (OSC)  
Oscillator Module (OSC)  
11.8.2 Oscillator Trim Register (OSCTRIM)  
$0038  
Address:  
Bit 7  
6
TRIM6  
0
5
TRIM5  
0
4
TRIM4  
0
3
TRIM3  
0
2
TRIM2  
0
1
TRIM1  
0
Bit 0  
TRIM0  
0
Read:  
Write:  
Reset:  
TRIM7  
1
Figure 11-5. Oscillator Trim Register (OSCTRIM)  
TRIM7–TRIM0 — Internal Oscillator Trim Factor Bits  
These read/write bits change the size of the internal capacitor used by the  
internal oscillator. By measuring the period of the internal clock and adjusting  
this factor accordingly, the frequency of the internal clock can be fine tuned.  
Increasing (decreasing) this factor by one increases (decreases) the period by  
approximately 0.2% of the untrimmed period (the period for TRIM = $80). The  
trimmed frequency is guaranteed not to vary by more than ±5% over the full  
specified range of temperature and voltage. The reset value is $80, which sets  
the frequency to 12.8 MHz (3.2 MHz bus speed, provided BFS = 0) ±25%.  
Data Sheet  
112  
MC68HC908QL Family — Rev. 2  
Oscillator Module (OSC)  
MOTOROLA  
Data Sheet — MC68HC908QL4 Family  
Section 12. Input/Output Ports (PORTS)  
12.1 Introduction  
MC68HC908QL4, MC68HC908QL3, MC68HC908QL2, and MC68HC908QL4  
have thirteen bidirectional pins and one input only pin. All input/output (I/O) pins are  
programmable as inputs or outputs.  
NOTE:  
Connect any unused I/O pins to an appropriate logic level, either VDD or VSS.  
Although the I/O ports do not require termination for proper operation, termination  
reduces excess current consumption and the possibility of electrostatic damage.  
Figure 12-1 provides a summary of the I/O registers.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
AWUL  
PTA2  
Port A Data Register  
PTA5  
PTA4  
PTA3  
PTA1  
PTA0  
$0000  
(PTA) Write:  
See page 114.  
Port B Data Register  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTB7  
0
PTB6  
0
PTB5  
PTB2  
0
PTB1  
PTB0  
$0001  
$0004  
$0005  
$000B  
$000C  
(PTB) Write:  
See page 117.  
Data Direction Register A  
Reset:  
Read:  
DDRA5  
DDRA4  
DDRA3  
DDRA1  
DDRA0  
(DDRA) Write:  
See page 115.  
Data Direction Register B  
Reset:  
Read:  
0
0
DDRB6  
0
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
DDRB7  
(DDRB) Write:  
See page 117.  
Port A Input Pullup Enable  
Reset:  
Read:  
0
OSC2EN  
0
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
Register (PTAPUE) Write:  
See page 116.  
Reset:  
0
0
0
0
0
0
0
Read:  
Port B Input Pullup Enable  
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE1 PTBPUE0  
Register (PTBPUE) Write:  
See page 119.  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 12-1. I/O Port Register Summary  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
113  
Input/Output Ports (PORTS)  
Input/Output Ports (PORTS)  
12.2 Port A  
Port A is an 6-bit special function port that shares all six of its pins with the keyboard  
interrupt (KBI) module (see Section 9. Keyboard Interrupt Module (KBI)). Each  
port A pin also has a software configurable pullup device if the corresponding port  
pin is configured as an input port.  
NOTE:  
PTA2 is input only. PTA0, PTA1, PTA4, and PTA5 can also serve as ESCI pins  
When the IRQ function is enabled in the configuration register 2 (CONFIG2), bit 2  
of the port A data register (PTA) will always read a 0. In this case, the BIH and BIL  
instructions can be used to read the logic level on the PTA2 pin. When the IRQ  
function is disabled, these instructions will behave as if the PTA2 pin is a logic 1.  
However, reading bit 2 of PTA will read the actual logic level on the pin.  
12.2.1 Port A Data Register  
The port A data register (PTA) contains a data latch for each of the six port A pins.  
$0000  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
0
AWUL  
PTA2  
PTA5  
PTA4  
PTA3  
PTA1  
PTA0  
Reset:  
Unaffected by reset  
KBI4 KBI3  
Additional Functions:  
KBI5  
KBI2  
KBI1  
KBI0  
= Unimplemented  
Figure 12-2. Port A Data Register (PTA)  
PTA[5:0] — Port A Data Bits  
These read/write bits are software programmable. Data direction of each port A  
pin is under the control of the corresponding bit in data direction register A.  
Reset has no effect on port A data.  
AWUL — Auto Wakeup Latch Data Bit  
This is a read-only bit which has the value of the auto wakeup interrupt request  
latch. The wakeup request signal is generated internally. There is no PTA6 port  
nor any of the associated bits such as PTA6 data register, pullup enable or  
direction. See Section 4. Auto Wakeup Module (AWU)  
KBI[5:0] — Port A Keyboard Interrupts  
The keyboard interrupt enable bits, KBIE5–KBIE0, in the keyboard interrupt  
control enable register (KBIER) enable the port A pins as external interrupt pins.  
See Section 9. Keyboard Interrupt Module (KBI).  
Data Sheet  
114  
MC68HC908QL Family — Rev. 2  
Input/Output Ports (PORTS)  
MOTOROLA  
Input/Output Ports (PORTS)  
Port A  
12.2.2 Data Direction Register A  
Data direction register A (DDRA) determines whether each port A pin is an input or  
an output. Writing a 1 to a DDRA bit enables the output buffer for the corresponding  
port A pin; a 0 disables the output buffer.  
$0004  
Address:  
Bit 7  
6
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 12-3. Data Direction Register A (DDRA)  
DDRA[5:0] — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears DDRA[5:0],  
configuring all port A pins as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE:  
Avoid glitches on port A pins by writing to the port A data register before changing  
data direction register A bits from 0 to 1.  
Figure 12-4 shows the port A I/O logic.  
READ DDRA ($0004)  
PTAPUEx  
WRITE DDRA ($0004)  
DDRAx  
RESET  
30 k  
WRITE PTA ($0000)  
PTAx  
PTAx  
READ PTA ($0000)  
TO KEYBOARD INTERRUPT CIRCUIT  
Figure 12-4. Port A I/O Circuit  
NOTE:  
Figure 12-4 does not apply to PTA2  
When DDRAx is a 1, reading address $0000 reads the PTAx data latch. When  
DDRAx is a 0, reading address $0000 reads the voltage level on the pin. The data  
latch can always be written, regardless of the state of its data direction bit.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
115  
Input/Output Ports (PORTS)  
Input/Output Ports (PORTS)  
12.2.3 Port A Input Pullup Enable Register  
The port A input pullup enable register (PTAPUE) contains a software configurable  
pullup device for each if the six port A pins. Each bit is individually configurable and  
requires the corresponding data direction register, DDRAx, to be configured as  
input. Each pullup device is automatically and dynamically disabled when its  
corresponding DDRAx bit is configured as output.  
$000B  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
OSC2EN  
0
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE2 PTAPUE0  
0
0
0
0
0
0
0
= Unimplemented  
Figure 12-5. Port A Input Pullup Enable Register (PTAPUE)  
OSC2EN — Enable PTA4 on OSC2 Pin  
This read/write bit configures the OSC2 pin function when internal oscillator or  
RC oscillator option is selected. This bit has no effect for the XTAL or external  
oscillator options.  
1 = OSC2 pin outputs the internal or RC oscillator clock (BUSCLKX4)  
0 = OSC2 pin configured for PTA4 I/O, having all the interrupt and pullup  
functions  
PTAPUE[5:0] — Port A Input Pullup Enable Bits  
These read/write bits are software programmable to enable pullup devices on  
port A pins.  
1 = Corresponding port A pin configured to have internal pull if its DDRA bit  
is set to 0  
0 = Pullup device is disconnected on the corresponding port A pin regardless  
of the state of its DDRA bit  
Table 12-1 summarizes the operation of the port A pins.  
Table 12-1. Port A Pin Functions  
Accesses to DDRA  
Read/Write  
Accesses to PTA  
PTAPUE  
Bit  
DDRA  
Bit  
PTA  
Bit  
I/O Pin  
Mode  
Read  
Write  
(2)  
X(1)  
X
PTA5–PTA0(3)  
PTA5–PTA0(3)  
PTA5–PTA0(5)  
1
0
X
0
0
1
DDRA5–DDRA0  
DDRA5–DDRA0  
DDRA5–DDRA0  
Pin  
Pin  
Input, VDD  
Input, Hi-Z(4)  
Output  
X
PTA5–PTA0  
1. X = don’t care  
2. I/O pin pulled to VDD by internal pullup.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = high impedance  
5. Output does not apply to PTA2  
Data Sheet  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
116  
Input/Output Ports (PORTS)  
Input/Output Ports (PORTS)  
Port B  
12.3 Port B  
Port B is an 8-bit general purpose I/O port. Port B is only available on the  
MC68HC908QL4, MC68HC908QL3, and MC68HC908QL2.  
12.3.1 Port B Data Register  
The port B data register (PTB) contains a data latch for each of the eight port B  
pins.  
$0001  
Address:  
Bit 7  
PTB7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Unaffected by reset  
Figure 12-6. Port B Data Register (PTB)  
PTB[7:0] — Port B Data Bits  
These read/write bits are software programmable. Data direction of each port B  
pin is under the control of the corresponding bit in data direction register B.  
Reset has no effect on port B data.  
12.3.2 Data Direction Register B  
Data direction register B (DDRB) determines whether each port B pin is an input or  
an output. Writing a 1 to a DDRB bit enables the output buffer for the corresponding  
port B pin; a 0 disables the output buffer.  
$0005  
Address:  
Bit 7  
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
DDRB7  
0
Figure 12-7. Data Direction Register B (DDRB)  
DDRB[7:0] — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears DDRB[7:0],  
configuring all port B pins as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE:  
Avoid glitches on port B pins by writing to the port B data register before changing  
data direction register B bits from 0 to 1. Figure 12-8 shows the port B I/O logic.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
117  
Input/Output Ports (PORTS)  
Input/Output Ports (PORTS)  
READ DDRB ($0005)  
PTBPUEx  
WRITE DDRB ($0005)  
WRITE PTB ($0001)  
DDRBx  
PTBx  
RESET  
30 k  
PTBx  
READ PTB ($0001)  
Figure 12-8. Port B I/O Circuit  
When DDRBx is a 1, reading address $0001 reads the PTBx data latch. When  
DDRBx is a 0, reading address $0001 reads the voltage level on the pin. The  
data latch can always be written, regardless of the state of its data direction bit.  
Table 12-2 summarizes the operation of the port B pins.  
Table 12-2. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
DDRB  
Bit  
PTB  
Bit  
I/O Pin  
Mode  
Read  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTB7–PTB0(3)  
PTB7–PTB0  
0
1
DDRB7–DDRB0  
DDRB7–DDRB0  
Pin  
Pin  
1. X = don’t care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect the input.  
Data Sheet  
118  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Input/Output Ports (PORTS)  
Input/Output Ports (PORTS)  
Port B  
12.3.3 Port B Input Pullup Enable Register  
The port B input pullup enable register (PTBPUE) contains a software configurable  
pullup device for each of the eight port B pins. Each bit is individually configurable  
and requires the corresponding data direction register, DDRBx, be configured as  
input. Each pullup device is automatically and dynamically disabled when its  
corresponding DDRBx bit is configured as output.  
$000C  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE2 PTBPUE0  
0
0
0
0
0
0
0
0
Figure 12-9. Port B Input Pullup Enable Register (PTBPUE)  
PTBPUE[7:0] — Port B Input Pullup Enable Bits  
These read/write bits are software programmable to enable pullup devices on  
port B pins  
1 = Corresponding port B pin configured to have internal pull if its DDRB bit  
is set to 0  
0 = Pullup device is disconnected on the corresponding port B pin regardless  
of the state of its DDRB bit.  
Table 12-3 summarizes the operation of the port B pins.  
Table 12-3. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
PTBPUE  
Bit  
DDRB  
Bit  
PTB  
Bit  
I/O Pin  
Mode  
Read  
Write  
(2)  
X(1)  
X
PTB7–PTB0(3)  
1
0
DDRB7–DDRB0  
Pin  
Input, VDD  
Input, Hi-Z(4)  
Output  
PTB7–PTB0(3)  
PTB7–PTB0  
0
0
1
DDRB7–DDRB0  
DDRB7–DDRB0  
Pin  
X
X
PTB7–PTB0  
1. X = don’t care  
2. I/O pin pulled to VDD by internal pullup.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = high impedance  
MC68HC908QL Family — Rev. 2  
Data Sheet  
119  
MOTOROLA  
Input/Output Ports (PORTS)  
Input/Output Ports (PORTS)  
Data Sheet  
120  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Input/Output Ports (PORTS)  
Data Sheet — MC68HC908QL4 Family  
Section 13. System Integration Module (SIM)  
13.1 Introduction  
This section describes the system integration module (SIM), which supports up to  
24 external and/or internal interrupts. Together with the central processor unit  
(CPU), the SIM controls all microcontroller unit (MCU) activities. A block diagram  
of the SIM is shown in Figure 13-1. Figure 13-2 is a summary of the SIM I/O  
registers. The SIM is a system state controller that coordinates CPU and exception  
timing.  
The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals  
Stop/wait/reset/break entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and computer  
operating properly (COP) timeout  
Interrupt control:  
Acknowledge timing  
Arbitration control timing  
Vector address generation  
CPU enable/disable timing  
13.2 RST and IRQ Pins Initialization  
RST and IRQ pins come out of reset as PTA3 and PTA2 respectively. RST and IRQ  
functions can be activated by programing CONFIG2 accordingly. Refer to  
Section 5. Configuration Registers (CONFIG1 and CONFIG2).  
13.3 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and peripherals  
on the MCU. The system clocks are generated from an incoming clock,  
BUSCLKX2, as shown in Figure 13-3.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
121  
System Integration Module (SIM)  
System Integration Module (SIM)  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO OSCILLATOR)  
SIM  
COUNTER  
COP CLOCK  
BUSCLKX4 (FROM OSCILLATOR)  
BUSCLKX2 (FROM OSCILLATOR)  
÷2  
VDD  
CLOCK  
CONTROL  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULL-UP  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
RESET  
PIN LOGIC  
POR CONTROL  
RESET PIN CONTROL  
MASTER  
RESET  
CONTROL  
COP TIMEOUT (FROM COP MODULE)  
LVI RESET (FROM LVI MODULE)  
SIM RESET STATUS REGISTER  
FORCED MON MODE ENTRY (FROM MENRST MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 13-1. SIM Block Diagram  
Table 13-1. Signal Name Conventions  
Signal Name  
Description  
BUSCLKX4  
Buffered clock from the internal, RC or XTAL oscillator circuit.  
The BUSCLKX4 frequency divided by two. This signal is again divided by two in the SIM to  
generate the internal bus clocks (bus clock = BUSCLKX4 ÷ 4).  
BUSCLKX2  
Address bus  
Data bus  
PORRST  
IRST  
Internal address bus  
Internal data bus  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
Data Sheet  
122  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
SIM Bus Clock Control and Generation  
Addr.  
Register Name  
Bit 7  
R
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
R
Read:  
SBSW  
Note 1  
0
Break Status Register  
$FE00  
(BSR) Write:  
See page 138.  
Reset:  
0
0
1. Writing a 0 clears SBSW.  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
SIM Reset Status Register  
$FE01  
$FE02  
(SRSR) Write:  
See page 137.  
POR:  
1
0
0
0
0
0
0
0
Reserved  
R
R
R
R
R
R
R
R
Read:  
Break Flag Control  
Register (BFCR) Write:  
BCFE  
R
R
R
R
R
R
R
$FE03  
$FE04  
$FE05  
$FE06  
See page 138.  
Reset:  
0
0
Read:  
IF5  
R
0
IF4  
R
0
IF3  
R
0
0
R
0
IF1  
0
R
0
0
R
Interrupt Status Register 1  
(INT1) Write:  
R
R
See page 132.  
Reset:  
Read:  
0
0
0
IF14  
R
0
0
0
0
0
0
0
Interrupt Status Register 2  
(INT2) Write:  
R
0
R
0
R
0
R
0
R
R
0
R
See page 133.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
IF15  
R
Interrupt Status Register 3  
(INT3) Write:  
See page 133.  
R
R
0
R
0
R
0
R
0
R
R
0
Reset:  
0
0
0
= Unimplemented  
R
= Reserved  
Figure 13-2. SIM I/O Register Summary  
FROM  
OSCILLATOR  
BUSCLKX4  
BUSCLKX2  
SIM COUNTER  
FROM  
OSCILLATOR  
BUS CLOCK  
GENERATORS  
÷ 2  
SIM  
Figure 13-3. SIM Clock Signals  
13.3.1 Bus Timing  
In user mode, the internal bus frequency is the oscillator frequency (BUSCLKX4)  
divided by four.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
123  
System Integration Module (SIM)  
System Integration Module (SIM)  
13.3.2 Clock Start-Up from POR  
When the power-on reset module generates a reset, the clocks to the CPU and  
peripherals are inactive and held in an inactive phase until after the 4096  
BUSCLKX4 cycle POR time out has completed. The IBUS clocks start upon  
completion of the time out.  
13.3.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt or reset, the SIM allows BUSCLKX4 to  
clock the SIM counter. The CPU and peripheral clocks do not become active until  
after the stop delay time out. This time out is selectable as 4096 or 32 BUSCLKX4  
cycles. See 13.7.2 Stop Mode.  
In wait mode, the CPU clocks are inactive. The SIM also produces two sets of  
clocks for other modules. Refer to the wait mode subsection of each module to see  
if the module is active or inactive in wait mode. Some modules can be programmed  
to be active in wait mode.  
13.4 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly module (COP)  
Low-voltage inhibit module (LVI)  
Illegal opcode  
Illegal address  
All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in monitor  
mode) and assert the internal reset signal (IRST). IRST causes all registers to be  
returned to their default values and all modules to be returned to their reset states.  
An internal reset clears the SIM counter (see 13.5 SIM Counter), but an external  
reset does not. Each of the resets sets a corresponding bit in the SIM reset status  
register (SRSR). See 13.8 SIM Registers.  
13.4.1 External Pin Reset  
The RST pin circuits include an internal pullup device. Pulling the asynchronous  
RST pin low halts all processing. The PIN bit of the SIM reset status register  
(SRSR) is set as long as RST is held low for a minimum of 67 BUSCLKX4 cycles,  
assuming that the POR was not the source of the reset. See Table 13-2 for details.  
Figure 13-4 shows the relative timing. The RST pin function is only available if the  
RSTEN bit is set in the CONFIG1 register.  
Data Sheet  
124  
MC68HC908QL Family — Rev. 2  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Reset and System Initialization  
Table 13-2. PIN Bit Set Timing  
Reset Type  
POR  
Number of Cycles Required to Set PIN  
4163 (4096 + 64 + 3)  
All others  
67 (64 + 3)  
BUSCLKX2  
RST  
ADDRESS BUS  
VECT H VECT L  
PC  
Figure 13-4. External Reset Timing  
13.4.2 Active Resets from Internal Sources  
The RST pin is initially setup as a general-purpose input after a POR. Setting the  
RSTEN bit in the CONFIG1 register enables the pin for the reset function. This  
section assumes the RSTEN bit is set when describing activity on the RST pin.  
All internal reset sources actively pull the RST pin low for 32 BUSCLKX4 cycles to  
allow resetting of external peripherals. The internal reset signal IRST continues to  
be asserted for an additional 32 cycles (see Figure 13-5). An internal reset can be  
caused by an illegal address, illegal opcode, COP time out, LVI, or POR (see  
Figure 13-6).  
IRST  
RSTPULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
BUSCLKX4  
ADDRESS  
BUS  
VECTOR HIGH  
Figure 13-5. Internal Reset Timing  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
POR  
INTERNAL RESET  
LVI  
Figure 13-6. Sources of Internal Reset  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
125  
System Integration Module (SIM)  
System Integration Module (SIM)  
NOTE:  
For POR resets, the SIM cycles through 4096 BUSCLKX4 cycles. The internal  
reset signal then follows the sequence from the falling edge of RST shown in  
Figure 13-5.  
The COP reset is asynchronous to the bus clock.  
The active reset feature allows the part to issue a reset to peripherals and other  
chips within a system built around the MCU.  
13.4.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module (POR)  
generates a pulse to indicate that power on has occurred. SIM counter counts out  
4096 BUSCLKX4 cycles. Sixty-four BUSCLKX4 cycles later, the CPU and  
memories are released from reset to allow the reset vector sequence to occur.  
At power on, the following events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables the oscillator to drive BUSCLKX4.  
Internal clocks to the CPU and modules are held inactive for  
4096 BUSCLKX4 cycles to allow stabilization of the oscillator.  
The POR bit of the SIM reset status register (SRSR) is set and all other bits  
in the register are cleared.  
See Figure 13-7.  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
BUSCLKX4  
BUSCLKX2  
RST  
(RST PIN IS A GENERAL-PURPOSE INPUT AFTER A POR)  
ADDRESS BUS  
$FFFE  
$FFFF  
Figure 13-7. POR Recovery  
Data Sheet  
126  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
SIM Counter  
13.4.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of the COP  
counter causes an internal reset and sets the COP bit in the SIM reset status  
register (SRSR). The SIM actively pulls down the RST pin for all internal reset  
sources.  
To prevent a COP module time out, write any value to location $FFFF. Writing to  
location $FFFF clears the COP counter and stages 12–5 of the SIM counter. The  
SIM counter output, which occurs at least every (212 – 24) BUSCLKX4 cycles,  
drives the COP counter. The COP should be serviced as soon as possible out of  
reset to guarantee the maximum amount of time before the first time out.  
The COP module is disabled during a break interrupt with monitor mode when  
BDCOP bit is set in break auxiliary register (BRKAR).  
13.4.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An illegal  
instruction sets the ILOP bit in the SIM reset status register (SRSR) and causes a  
reset.  
If the stop enable bit, STOP, in the mask option register is 0, the SIM treats the  
STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM  
actively pulls down the RST pin for all internal reset sources.  
13.4.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal address reset.  
The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit  
in the SIM reset status register (SRSR) and resetting the MCU. A data fetch from  
an unmapped address does not generate a reset. The SIM actively pulls down the  
RST pin for all internal reset sources.  
13.4.2.5 Low-Voltage Inhibit (LVI) Reset  
The LVI asserts its output to the SIM when the VDD voltage falls to the LVI trip  
voltage VTrip. The LVI bit in the SIM reset status register (SRSR) is set, and the  
external reset pin (RST) is held low while the SIM counter counts out 4096  
BUSCLKX4 cycles. Sixty-four BUSCLKX4 cycles later, the CPU and memories are  
released from reset to allow the reset vector sequence to occur. The SIM actively  
pulls down the (RST) pin for all internal reset sources.  
13.5 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in stop mode  
recovery to allow the oscillator time to stabilize before enabling the internal bus  
(IBUS) clocks. The SIM counter also serves as a prescaler for the computer  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
127  
System Integration Module (SIM)  
System Integration Module (SIM)  
operating properly module (COP). The SIM counter uses 12 stages for counting,  
followed by a 13th stage that triggers a reset of SIM counters and supplies the clock  
for the COP module. The SIM counter is clocked by the falling edge of BUSCLKX4.  
13.5.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU. At  
power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized,  
it enables the oscillator to drive the bus clock state machine.  
13.5.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP instruction clears  
the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the  
short stop recovery bit, SSREC, in the configuration register 1 (CONFIG1). If the  
SSREC bit is a 1, then the stop recovery is reduced from the normal delay of 4096  
BUSCLKX4 cycles down to 32 BUSCLKX4 cycles. This is ideal for applications  
using canned oscillators that do not require long start-up times from stop mode.  
External crystal applications should use the full stop recovery time, that is, with  
SSREC cleared in the configuration register 1 (CONFIG1).  
13.5.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter (see 13.7.2 Stop Mode for details.)  
The SIM counter is free-running after all reset states. See 13.4.2 Active Resets  
from Internal Sources for counter control and internal reset recovery sequences.  
13.6 Exception Control  
Normal sequential program execution can be changed in three different ways:  
1. Interrupts  
a. Maskable hardware CPU interrupts  
b. Non-maskable software interrupt instruction (SWI)  
2. Reset  
3. Break interrupts  
13.6.1 Interrupts  
An interrupt temporarily changes the sequence of program execution to respond to  
a particular event. Figure 13-8 flow charts the handling of system interrupts.  
Interrupts are latched, and arbitration is performed in the SIM at the start of  
interrupt processing. The arbitration result is a constant that the CPU uses to  
determine which vector to fetch. Once an interrupt is latched by the SIM, no other  
interrupt can take precedence, regardless of priority, until the latched interrupt is  
serviced (or the I bit is cleared).  
Data Sheet  
128  
MC68HC908QL Family — Rev. 2  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Exception Control  
FROM RESET  
YES  
BREAK INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ  
INTERRUPT?  
NO  
TIMER  
INTERRUPT?  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
(AS MANY INTERRUPTS AS EXIST ON CHIP)  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
YES  
NO  
RTI  
INSTRUCTION?  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
NO  
Figure 13-8. Interrupt Processing  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
129  
System Integration Module (SIM)  
System Integration Module (SIM)  
At the beginning of an interrupt, the CPU saves the CPU register contents on the  
stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end  
of an interrupt, the RTI instruction recovers the CPU register contents from the  
stack so that normal processing can resume. Figure 13-9 shows interrupt entry  
timing. Figure 13-10 shows interrupt recovery timing.  
MODULE  
INTERRUPT  
I BIT  
ADDRESS BUS  
DATA BUS  
R/W  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L START ADDR  
DUMMY PC – 1[7:0] PC – 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
Figure 13-9. Interrupt Entry  
MODULE  
INTERRUPT  
I BIT  
ADDRESS BUS  
DATA BUS  
R/W  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
CCR  
A
X
PC – 1[7:0] PC – 1[15:8] OPCODE OPERAND  
Figure 13-10. Interrupt Recovery  
13.6.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of a  
hardware interrupt begins after completion of the current instruction. When the  
current instruction is complete, the SIM checks all pending hardware interrupts. If  
interrupts are not masked (I bit clear in the condition code register), and if the  
corresponding interrupt enable bit is set, the SIM proceeds with interrupt  
processing; otherwise, the next instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction execution, the  
highest priority interrupt is serviced first. Figure 13-11 demonstrates what happens  
when two interrupts are pending. If an interrupt is pending upon exit from the  
original interrupt service routine, the pending interrupt is serviced before the LDA  
instruction is executed.  
Data Sheet  
130  
MC68HC908QL Family — Rev. 2  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Exception Control  
CLI  
LDA #$FF  
BACKGROUND ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 13-11. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 return-from-interrupt  
(RTI) instructions. However, in the case of the INT1 RTI prefetch, this is a  
redundant operation.  
NOTE:  
To maintain compatibility with the M6805 Family, the H register is not pushed on  
the stack during interrupt entry. If the interrupt service routine modifies the H  
register or uses the indexed addressing mode, software should save the H register  
and then restore it prior to exiting the routine.  
13.6.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an interrupt  
regardless of the state of the interrupt mask (I bit) in the condition code register.  
NOTE:  
A software interrupt pushes PC onto the stack. A software interrupt does not push  
PC – 1, as a hardware interrupt does.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
131  
System Integration Module (SIM)  
System Integration Module (SIM)  
13.6.2 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt sources.  
Table 13-3 summarizes the interrupt sources and the interrupt status register flags  
that they set. The interrupt status registers can be useful for debugging.  
Table 13-3. Interrupt Sources  
INT  
Register  
Flag  
Vector  
Address  
Mask(1)  
Priority  
Source  
Flag  
Reset  
$FFFE–$FFFF  
$FFFC–$FFFD  
$FFFA–$FFFB  
$FFF6–$FFF7  
$FFF4–$FFF5  
$FFF2–$FFF3  
$FFEA–$FFEB  
$FFE0–$FFE1  
$FFDE–$FFDF  
Highest  
SWI instruction  
IRQ pin  
IRQF1 IMASK1  
IF1  
IF3  
IF4  
IF5  
IF9  
IF14  
IF15  
Timer channel 0 interrupt  
Timer channel 1 interrupt  
Timer overflow interrupt  
SLIC interrupt  
CH0F  
CH1F  
TOF  
CH0IE  
CH1IE  
TOIE  
SLCF  
SLCIE  
Keyboard interrupt  
KEYF IMASKK  
COCO AIEN  
Lowest  
ADC conversion complete interrupt  
1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI  
instruction.  
13.6.2.1 Interrupt Status Register 1  
Address: $FE04  
Bit 7  
6
5
IF4  
R
4
IF3  
R
3
0
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
IF5  
R
0
R
R
0
R
0
R
0
0
0
0
0
R
= Reserved  
Figure 13-12. Interrupt Status Register 1 (INT1)  
IF1 and IF3–IF5 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the sources shown  
in Table 13-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0, 1, 3, and 7 — Always read 0  
Data Sheet  
132  
MC68HC908QL Family — Rev. 2  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Exception Control  
13.6.2.2 Interrupt Status Register 2  
Address: $FE05  
Bit 7  
6
5
0
4
0
3
0
2
IF9  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF14  
R
0
R
R
0
R
0
R
0
R
0
R
0
0
0
0
R
= Reserved  
Figure 13-13. Interrupt Status Register 2 (INT2)  
IF14 and IF11–IF9 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the sources shown  
in Table 13-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0, 1, 3–6 — Always read 0  
13.6.2.3 Interrupt Status Register 3  
Address: $FE06  
Bit 7  
6
5
0
4
0
3
0
2
0
1
0
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
0
0
R
0
R
R
0
R
0
R
0
R
0
R
0
0
0
R
= Reserved  
Figure 13-14. Interrupt Status Register 3 (INT3)  
IF15 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the sources shown  
in Table 13-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 1–7 — Always read 0  
13.6.3 Reset  
All reset sources always have equal and highest priority and cannot be arbitrated.  
13.6.4 Break Interrupts  
The break module can stop normal program flow at a software programmable  
break point by asserting its break interrupt output. (See Section 16. Development  
Support.) The SIM puts the CPU into the break state by forcing it to the SWI vector  
location. Refer to the break interrupt subsection of each module to see how each  
module is affected by the break state.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
133  
System Integration Module (SIM)  
System Integration Module (SIM)  
13.6.5 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can be cleared  
during break mode. The user can select whether flags are protected from being  
cleared by properly initializing the break clear flag enable bit (BCFE) in the break  
flag control register (BFCR).  
Protecting flags in break mode ensures that set flags will not be cleared while in  
break mode. This protection allows registers to be freely read and written during  
break mode without losing status flag information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break  
mode, a flag remains cleared even when break mode is exited. Status flags with a  
two-step clearing mechanism — for example, a read of one register followed by the  
read or write of another — are protected, even when the first step is accomplished  
prior to entering break mode. Upon leaving break mode, execution of the second  
step will clear the flag as normal.  
13.7 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low  
power-consumption mode for standby situations. The SIM holds the CPU in a  
non-clocked state. The operation of each of these modes is described below. Both  
STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing  
interrupts to occur.  
13.7.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks continue to  
run. Figure 13-15 shows the timing for wait mode entry.  
ADDRESS BUS  
DATA BUS  
R/W  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 13-15. Wait Mode Entry Timing  
A module that is active during wait mode can wake up the CPU with an interrupt if  
the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT  
instruction during which the interrupt occurred. In wait mode, the CPU clocks are  
inactive. Refer to the wait mode subsection of each module to see if the module is  
active or inactive in wait mode. Some modules can be programmed to be active in  
wait mode.  
Data Sheet  
134  
MC68HC908QL Family — Rev. 2  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Low-Power Modes  
Wait mode can also be exited by a reset (or break in emulation mode). A break  
interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the break  
status register (BSR). If the COP disable bit, COPD, in the configuration register  
is 0, then the computer operating properly module (COP) is enabled and remains  
active in wait mode.  
Figure 13-16 and Figure 13-17 show the timing for wait recovery.  
ADDRESS BUS  
DATA BUS  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt  
Figure 13-16. Wait Recovery from Interrupt  
32  
CYCLES  
32  
CYCLES  
ADDRESS BUS  
$6E0B  
$A6  
RSTVCTH RSTVCTL  
DATA BUS $A6  
$A6  
RST(1)  
BUSCLKX4  
1. RST is only available if the RSTEN bit in the CONFIG1 register is set.  
Figure 13-17. Wait Recovery from Internal Reset  
13.7.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are disabled. An  
interrupt request from a module can cause an exit from stop mode. Stacking for  
interrupts begins after the selected stop recovery time has elapsed. Reset or break  
also causes an exit from stop mode.  
The SIM disables the oscillator signals (BUSCLKX2 and BUSCLKX4) in stop  
mode, stopping the CPU and peripherals. Stop recovery time is selectable using  
the SSREC bit in the configuration register 1 (CONFIG1). If SSREC is set, stop  
recovery is reduced from the normal delay of 4096 BUSCLKX4 cycles down to 32.  
This is ideal for the internal oscillator, RC oscillator, and external oscillator options  
which do not require long start-up times from stop mode.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
135  
System Integration Module (SIM)  
System Integration Module (SIM)  
NOTE:  
External crystal applications should use the full stop recovery time by clearing the  
SSREC bit.  
The SIM counter is held in reset from the execution of the STOP instruction until  
the beginning of stop recovery. It is then used to time the recovery period.  
Figure 13-18 shows stop mode entry timing and Figure 13-19 shows the stop  
mode recovery time from interrupt or break  
NOTE:  
To minimize stop current, all pins configured as inputs should be driven to a logic 1  
or logic 0.  
CPUSTOP  
ADDRESS BUS  
DATA BUS  
R/W  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the STOP opcode, depending on the last  
instruction.  
Figure 13-18. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
BUSCLKX4  
INTERRUPT  
ADDRESS BUS  
STOP + 2  
STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 13-19. Stop Mode Recovery from Interrupt  
13.8 SIM Registers  
The SIM has three memory mapped registers. Table 13-4 shows the mapping of  
these registers.  
Table 13-4. SIM Registers  
Address  
$FE00  
$FE01  
$FE03  
Register  
BSR  
Access Mode  
User  
SRSR  
BFCR  
User  
User  
Data Sheet  
136  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
SIM Registers  
13.8.1 SIM Reset Status Register  
This register contains seven flags that show the source of the last reset. Clear the  
SIM reset status register by reading it. A power-on reset sets the POR bit and  
clears all other bits in the register.  
$FE01  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
POR:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-20. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MODRST — Monitor Mode Entry Module Reset bit  
1 = Last reset caused by monitor mode entry when vector locations $FFFE  
and $FFFF are $FF after POR while IRQ = VDD  
0 = POR or read of SRSR  
LVI — Low Voltage Inhibit Reset bit  
1 = Last reset caused by LVI circuit  
0 = POR or read of SRSR  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
137  
System Integration Module (SIM)  
System Integration Module (SIM)  
13.8.2 Break Flag Control Register  
The break control register (BFCR) contains a bit that enables software to clear  
status bits while the MCU is in a break state.  
$FE03  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
= Reserved  
R
Figure 13-21. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status  
registers while the MCU is in a break state. To clear status bits during the break  
state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
13.8.3 Break Status Register  
The break status register (BSR) contains a flag to indicate that a break caused an  
exit from wait mode. This register is only used in emulation mode.  
Address: $FE00  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note 1  
0
R
R
R
R
R
R
R
= Reserved  
1. Writing a 0 clears SBSW.  
Figure 13-22. Break Status Register (BSR)  
SBSW — SIM Break Stop/Wait  
SBSW can be read within the break state SWI routine. The user can modify the  
return address on the stack by subtracting one from it.  
1 = Wait mode was exited by break interrupt  
0 = Wait mode was not exited by break interrupt  
Data Sheet  
138  
MC68HC908QL Family — Rev. 2  
System Integration Module (SIM)  
MOTOROLA  
Data Sheet — MC68HC908QL4 Family  
Section 14. Slave LIN Interface Controller (SLIC)  
14.1 Introduction  
The slave LIN interface controller (SLIC) is designed to provide slave node  
connectivity on a local interconnect network (LIN) sub-bus. LIN is an  
open-standard serial protocol developed for the automotive industry to connect  
sensors, motors, and actuators.  
The SLIC provides full standard LIN message buffering for a slave node,  
minimizing the need for CPU intervention. Routine protocol functions (such as  
synchronization to the communication channel, reception, and verification of  
header data) and generation of the checksum are handled automatically by the  
SLIC. This allows application software to be greatly simplified relative to standard  
UART implementations, as well as reducing the impact of interrupts needed in  
those applications to handle each byte of a message independently.  
Additionally, the SLIC has the ability to automatically synchronize to any LIN  
message, regardless of the LIN bus bit rate (1–20 kbps), properly receiving that  
message without prior programming of the target LIN bit rate. Furthermore, this can  
even be accomplished using an untrimmed internal oscillator, provided it’s  
accuracy is at least ±50% of nominal.  
The SLIC also has a simple UART-like byte transfer mode, which allows the user  
to send and receive single bytes of data in half-duplex 8-N-1 format (8-bit data, no  
parity, 1 stop bit) without the need for LIN message framing.  
Figure 14-2 is a block diagram of the SLIC module, showing the basic functional  
blocks contained in the module.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
139  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
PTA0/AD0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
(OSCILLATOR)  
SYSTEM INTEGRATION  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
SINGLE INTERRUPT  
MODULE  
M68HC08 CPU  
PTB0/TCH0  
PTB1  
BREAK  
MODULE  
PTB2/AD4  
PTB3/AD5  
PTB4/SLCRX  
PTB5/SLCTX  
PTB6  
POWER-ON RESET  
MODULE  
KEYBOARD INTERRUPT  
MODULE  
PTB7  
2-CH 16-BIT TIMER  
MODULE  
MC68HC908QL4 AND MC68HC908QL3: 4096 BYTES  
MC68HC908QL2: 2048 BYTES  
USER FLASH  
SLAVE LIN INTERFACE  
CONTROLLER  
COP  
MODULE  
6-CHANNEL 10-BIT  
ADC  
MONITOR ROM  
128 BYTES RAM  
VDD  
VSS  
POWER SUPPLY  
RST, IRQ: Pins have internal (about 30 k) pull up  
PTA0, PTA1, PTA3–PTA5: High current sink and source capability  
PTA0–PTA5: Pins have programmable keyboard interrupt and pull up  
ADC pins only available on MC68HC908QL4 and MC68HC908QL2  
Figure 14-1. Block Diagram Highlighting SLIC Block and Pins  
Data Sheet  
140  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
Features  
LSVR AND LINIF  
LSVR CONTROL  
STATUS REGISTERS  
CONTROL REGISTERS  
LIN PROTOCOL STATE MACHINE  
(PSM)  
MESSAGE BUFFER — 9 BYTES  
SLCID  
SLCD7, SLCD6, SLCD5, SLCD4  
SLCD3, SLCD2, SLCD1, SLCD0  
SHADOW REGISTER  
1 BYTE  
SLIC CLOCK  
BUS CLOCK  
DIGITAL RX FILTER  
DIGITAL RX FILTER  
PRESCALER (RXFP[1:0])  
SLCTX  
SLCRX  
Figure 14-2. SLIC Module Block Diagram  
14.2 Features  
The SLIC includes these distinctive features:  
Full LIN message buffering of identifier and 8 data bytes  
Automatic bit rate and LIN message frame synchronization:  
No prior programming of bit rate required, 1–20 kbps LIN bus speed  
operation  
All LIN messages will be received (no message loss due to  
synchronization process)  
Input clock tolerance as high as ±50%, allowing internal oscillator to  
remain untrimmed  
Incoming break symbols always allowed to be 10 or more bit times  
without message loss  
Supports automatic software trimming of internal oscillator using LIN  
synchronization data  
Automatic processing and verification of LIN SYNCH BREAK and SYNCH  
BYTE  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
Slave LIN Interface Controller (SLIC)  
141  
Slave LIN Interface Controller (SLIC)  
Automatic checksum calculation and verification with error reporting  
Maximum of two interrupts per standard LIN message frame with no errors  
Full LIN error checking and reporting  
High-speed LIN capability up to 83.33 kbps to 120.00 kbps(1)  
Configurable digital receive filter  
Streamlined interrupt servicing through use of a state vector register  
Switchable UART-like byte transfer mode for processing bytes one at a time  
without LIN message framing constraints  
Enhanced checksum (includes ID) generation and verification  
14.3 Modes of Operation  
Figure 14-3 shows the modes in which the SLIC will operate.  
POWER OFF  
V
DD <= VDD (MIN)  
VDD > VDD (MIN) AND ANY  
MCU RESET SOURCE ASSERTED  
(FROM ANY MODE)  
ANY MCU RESET SOURCE  
ASSERTED  
SLIC RESET  
NO MCU RESET SOURCE ASSERTED  
INITREQ = 0; (INITACK = 0)  
SLIC INIT  
REQUESTED  
(INITACK = 1)  
SLIC DISABLED  
(FROM ANY MODE)  
INITREQ SET TO 1 IN  
SLCC1 REGISTER  
SLCE SET IN SLCC2 REGISTER  
SLCE CLEARED IN  
SLCC2 REGISTER  
NETWORK ACTIVITY  
OR OTHER MCU  
WAKEUP  
NETWORK ACTIVITY OR OTHER  
MCU WAKEUP  
SLIC RUN  
SLIC WAIT  
SLIC STOP  
(WAIT INSTRUCTION  
AND SLCWCM = 0)  
STOP INSTRUCTION  
(WAIT INSTRUCTION  
AND SLCWCM = 1)  
Figure 14-3. SLIC Operating Modes  
1. Maximum bit rate of SLIC module dependent upon frequency of SLIC input clock.  
Data Sheet  
142  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
Modes of Operation  
14.3.1 Power Off  
This mode is entered from the reset mode whenever the SLIC module supply  
voltage VDD drops below its minimum specified value for the SLIC module to  
guarantee operation. The SLIC module will be placed in the reset mode by a  
system low-voltage reset (LVR) before being powered down. In this mode, the pin  
input and output specifications are not guaranteed.  
14.3.2 Reset  
This mode is entered from the power off mode whenever the SLIC module supply  
voltage VDD rises above its minimum specified value (VDD(MIN)) and some MCU  
reset source is asserted. To prevent the SLIC from entering an unknown state, the  
internal MCU reset is asserted while powering up the SLIC module. SLIC reset  
mode is also entered from any other mode as soon as one of the MCU's possible  
reset sources (e.g., LVR, POR, COP watchdog, RST pin, etc.) is asserted. SLIC  
reset mode may also be entered by the user software by asserting the INITREQ  
bit. INITACK indicates whether the SLIC module is in the reset mode as a result of  
writing INITREQ in SLCC1. While in the reset state the SLIC module clocks are  
stopped. Clearing the INITREQ allows the SLIC to proceed and enter SLIC run  
mode (if SLCE is set). The module will clear INITACK once the module has left  
reset mode and the SLIC will seek the next LIN header. It is the responsibility of the  
user to verify that this operation is compatible with the application before  
implementing this feature.  
In this mode, the internal SLIC module voltage references are operative, VDD is  
supplied to the internal circuits, which are held in their reset state and the internal  
SLIC module system clock is running. Registers will assume their reset condition.  
Outputs are held in their programmed reset state, inputs and network activity are  
ignored.  
14.3.3 SLIC Disabled  
This mode is entered from the reset mode after all MCU reset sources are no  
longer asserted or INITREQ bit is cleared by the user and the SLIC module clears  
the INITACK bit. It is entered from the run mode whenever the SLCE bit in the  
SLCC2 register is cleared. In this mode the SLIC clock is stopped to conserve  
power and allow the SLIC module to be configured for proper operation on the LIN  
bus. The IP bus interface clocks are left running in this mode to allow access to all  
SLIC module registers for initialization.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
143  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
14.3.4 SLIC Run  
This mode is entered from the SLIC disabled mode when the SLCE bit in the  
SLCC2 register is set. It is entered from the SLIC wait mode whenever activity is  
sensed on the LIN bus or some other MCU source wakes the CPU out of wait  
mode.  
It is entered from the SLIC stop mode whenever network activity is sensed or some  
other MCU source wakes the CPU out of stop mode. Messages will not be received  
properly until the clocks have stabilized and the CPU is also in the run mode.  
14.3.5 SLIC Wait (Core Specific)  
This power conserving mode is automatically entered from the run mode whenever  
the CPU executes a WAIT instruction and the SLCWCM bit in the SLCC1 register  
is previously cleared. In this mode, the SLIC module internal clocks continue to run.  
Any activity on the LIN network will cause the SLIC module to exit SLIC wait mode  
and return to SLIC run.  
14.3.6 Wakeup from SLIC Wait with CPU in WAIT  
If the CPU executes the WAIT instruction and the SLIC module enters the wait  
mode (SLCWCM = 0), the clocks to the SLIC module as well as the clocks in the  
MCU continue to run. Therefore, the message which wakes up the SLIC module  
from WAIT and the CPU from wait mode will also be received correctly by the SLIC  
module. This is because all of the required clocks continue to run in the SLIC  
module in wait mode.  
14.3.7 SLIC Stop (Core Specific)  
This power conserving mode is automatically entered from the run mode whenever  
the CPU executes a STOP instruction, or if the CPU executes a WAIT instruction  
and the SLCWCM bit in the SLCC1 register is previously set. In this mode, the SLIC  
internal clocks are stopped. Any activity on the network will cause the SLIC module  
to exit SLIC stop mode and generate an unmaskable interrupt of the CPU. This  
wakeup interrupt state is reflected in the SLCSV, encoded as the highest priority  
interrupt. This interrupt can be cleared by the CPU with a read of the SLCSV and  
clearing of the SLCF interrupt flag. Depending upon which low-power mode  
instruction the CPU executes to cause the SLIC module to enter SLIC stop, the  
message which wakes up the SLIC module (and the CPU) may or may not be  
received.  
Data Sheet  
144  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Modes of Operation  
There are two different possibilities:  
1. Wakeup from SLIC Stop with CPU in STOP  
When the CPU executes the STOP instruction, all clocks in the MCU,  
including clocks to the SLIC module, are turned off. Therefore, the message  
which wakes up the SLIC module and the CPU from stop mode will not be  
received. This is due primarily to the amount of time required for the MCU's  
oscillator to stabilize before the clocks can be applied internally to the other  
MCU modules, including the SLIC module.  
2. Wakeup from SLIC Stop with CPU in WAIT  
If the CPU executes the WAIT instruction and the SLIC module enters the  
stop mode (SLCWCM = 1), the clocks to the SLIC module are turned off, but  
the clocks in the MCU continue to run. Therefore, the message which wakes  
up the SLIC module from stop and the CPU from wait mode will be received  
correctly by the SLIC module. This is because very little time is required for  
the CPU to turn the clocks to the SLIC module back on once the wakeup  
interrupt occurs.  
NOTE:  
While the SLIC module will correctly receive a message which arrives when the  
SLIC module is in stop or wait mode and the MCU is in wait mode, if the user enters  
this mode while a message is being received, the data in the message will become  
corrupted. This is due to the steps required for the SLIC module to resume  
operation upon exiting stop or wait mode, and its subsequent resynchronization  
with the LIN bus.  
14.3.8 Normal and Emulation Mode Operation (Core Specific)  
The SLIC module operates in the same manner in all normal and emulation modes.  
All SLIC module registers can be read and written except those that are reserved,  
unimplemented, or write once. The user must be careful not to unintentionally write  
a register when using 16-bit writes in order to avoid unexpected SLIC module  
behavior.  
14.3.9 Special Mode Operation (Core Specific)  
Some aspects of SLIC module operation can be modified in special test mode. This  
mode is reserved for internal use only.  
14.3.10 Low-Power Options (Core Specific)  
The SLIC module can save power in disabled, wait, and stop modes. A complete  
description of what the SLIC module does while in a low-power mode can be found  
in 14.3 Modes of Operation.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
145  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
14.4 External Signal Description  
The SLIC module has only two external signals which may be brought out to MCU  
pins. These might share functionality with other modules or general-purpose  
input/output functions of the pins. When used in a LIN system, these pins will be  
connected to the TX and RX pins of the LIN physical layer.  
14.4.1 SLCTX — SLIC Transmit Pin  
The SLCTX pin serves as the serial output of the SLIC module.  
14.4.2 SLCRX — SLIC Receive Pin  
The SLCRX pin serves as the serial input of the SLIC module. This input feeds  
directly into the digital receive filter block which filters out noise glitches from the  
incoming data stream.  
14.5 Memory Map/Register Definition  
Table 14-1 shows the registers for the SLIC module.  
Table 14-1. SLIC Module Memory Map  
Address  
$0040  
$0041  
$0042  
$0043  
$0044  
$0045  
$0046  
$0047  
$0048  
$0049  
$004A  
$004B  
$004C  
$004D  
$004E  
$004F  
$0050  
Use  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
SLIC control register 1 (SLCC1)  
SLIC control register 2 (SLCC2)  
SLIC status register (SLCS)  
SLIC prescaler register (SLCP)  
SLIC bit time register high (SLCBTH)  
SLIC bit time register low (SLCBTL)  
SLIC state vector register (SLCSV)  
SLIC data length code register (SLCDLC)  
SLIC identifier register (SLCID)  
SLIC data register 7 (SLCD7)  
SLIC data register 6 (SLCD6)  
SLIC data register 5 (SLCD5)  
SLIC data register 4 (SLCD4)  
SLIC data register 3 (SLCD3)  
SLIC data register 2 (SLCD2)  
SLIC data register 1 (SLCD1)  
SLIC data register 0 (SLCD0)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
14.6 SLIC Registers and Control Bits  
This subsection provides information about all registers and control bits associated  
with the SLIC module.  
Data Sheet  
146  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
SLIC Registers and Control Bits  
14.6.1 SLIC Control Register 1  
SLIC control register 1 (SLCC1) contains bits used to control various basic features  
of the SLIC module, including features used for initialization and at runtime.  
Address: $0040  
Bit 7  
0
6
0
5
INITREQ  
1
4
0
3
2
1
IMSG  
0
Bit 0  
SLCIE  
0
Read:  
Write:  
Reset:  
WAKETX TXABRT  
0
0
0
0
0
= Unimplemented  
Figure 14-4. SLIC Control Register 1 (SLCC1)  
INITREQ —Initialization Request  
Requesting initialization mode by setting this bit will place the SLIC module into  
its initialized state immediately. If transmission or reception of data is in  
progress, the transaction will be terminated immediately upon entry into  
initialization mode (signified by INITACK being set to 1). To return to normal  
SLIC operation after the SLIC has been initialized (the INITACK is high), the  
INITREQ has to be cleared by software.  
1 = Request for SLIC to be put into reset state immediately  
0 = Normal operation  
WAKETX — Transmit Wakeup Symbol  
This bit allows the user to transmit a wakeup symbol on the LIN bus. When set,  
this sends a wakeup symbol, as defined in the LIN specification a single time,  
then resets to 0. This bit will read 1 while the wakeup symbol is being  
transmitted on the bus. This bit will be automatically cleared when the wakeup  
symbol is complete.  
1 = Send wakeup symbol on LIN bus  
0 = Normal operation  
TXABRT — Transmit Abort Message  
1 = Transmitter aborts current transmission at next byte boundary; TXABRT  
resets to 0 after the transmission is successfully aborted  
0 = Normal operation  
IMSG — SLIC Ignore Message Bit  
The IMSG bit cannot be cleared by a write of 0, but is cleared automatically by  
the SLIC module after the next BREAK/SYNC symbol pair is validated.  
1 = SLIC to ignore data field of message, SLIC interrupts are suppressed  
until the next message header arrives  
0 = Normal operation  
SLCIE — SLIC Interrupt Enable  
1 = SLIC interrupt sources are enabled  
0 = SLIC interrupt sources are disabled  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
147  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
14.6.2 SLIC Control Register 2  
SLIC control register 2 (SLCC2) contains bits used to control various features of  
the SLIC module.  
Address: $0041  
Bit 7  
6
0
5
0
4
0
3
SLCWCM  
0
2
BTM  
0
1
0
Bit 0  
SLCE  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 14-5. SLIC Control Register 2 (SLCC2)  
SLCWCM — SLIC Wait Clock Mode  
This bit can only be written once out of reset state.  
1 = SLIC clocks stop when the CPU is placed into wait mode  
0 = SLIC clocks continue to run when the CPU is placed into wait mode so  
that the SLIC can receive messages and wakeup the CPU.  
BTM — UART Byte Transfer Mode  
Byte transmit mode bypasses the normal LIN message framing and checksum  
monitoring and allows the user to send and receive single bytes in a method  
similar to a half-duplex UART. When enabled, this mode reads the bit time  
register (SLCBT) value and assumes this is the value corresponding to the  
number of SLIC clock counts for one bit time to establish the desired UART bit  
rate. The user software must initialize this register prior to sending or receiving  
data, based on the input clock selection, prescaler stage choice, and desired bit  
rate.  
BTM forces the data length in SLCDLC register to one byte (DLC = 0x00) and  
disables the checksum circuitry so that CHKMOD has no effect. Refer to 14.18  
Byte Transfer Mode Operation for more detailed information about how to use  
this mode.  
BTM sets up the SLIC module to send and receive one byte at a time, with 8-bit  
data, no parity, and 1 STOP bit (8-N-1). This is the most commonly used setup  
for UART communications and should work for most applications. This is fixed  
in the SLIC and is not configurable.  
1 = UART byte transfer mode enabled  
0 = UART byte transfer mode disabled  
SLCE — SLIC Module Enable  
1 = SLIC module enabled  
0 = SLIC module disabled  
NOTE:  
In order to guarantee timing, the user must ensure that clock source used allows  
the proper communications timing tolerances and therefore internal oscillator  
circuits might not be appropriate for use with BTM mode.  
Data Sheet  
148  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
SLIC Registers and Control Bits  
14.6.3 SLIC Status Register  
SLIC status register (SLCS) contains bits used to monitor the status of the SLIC  
module.  
Address: $0042  
Bit 7  
Read: SLCACT  
Write:  
6
0
5
4
0
3
0
2
0
1
0
Bit 0  
SLCF  
0
INITACK  
Reset:  
0
0
1
0
0
0
0
= Unimplemented  
Figure 14-6. SLIC Status Register (SLCS)  
SLCACT — SLIC Active (Oscillator Trim Blocking Semaphore)  
SLCACT is used to indicate if it is safe to trim the oscillator based upon current  
SLIC activity. This bit indicates that the SLIC module might be currently  
receiving a message header, synchronization byte, ID byte, or sending or  
receiving data bytes. This bit is read-only.  
1 = SLIC module activity (not safe to trim oscillator)  
SLCACT is automatically set to 1 if a falling edge is seen on the SLCRX  
pin and has successfully been passed through the digital RX filter. This  
edge is the potential beginning of a LIN message frame.  
0 = SLIC module not active (safe to trim oscillator)  
The SLCACT bit is cleared by the SLIC module only upon assertion of  
the RX Message Buffer Full Checksum OK (SLCSV = $10) or the TX  
Message Buffer Empty Checksum Transmitted (SLCSV = $08) interrupt  
sources.  
INITACK — Initialization Mode Acknowledge  
INITACK indicates whether the SLIC module is in the reset mode as a result of  
writing INITREQ in SLCC1. While in the reset state the SLIC module clocks are  
stopped. Clearing the INITREQ allows the SLIC to proceed and enter SLIC run  
mode (if SLCE is set). The module will clear INITACK once the module has left  
reset mode and the SLIC will seek the next LIN header. This bit is read-only.  
1 = SLIC module is in reset state  
0 = Normal operation  
SLCF — SLIC Interrupt Flag  
The SLCF interrupt flag indicates if a SLIC module interrupt is pending. If set,  
the SLCSV is then used to determine what interrupt is pending. This flag is  
cleared by writing a 1 to the bit. If additional interrupt sources are pending, the  
bit will be automatically set to 1 again by the SLIC.  
1 = SLIC interrupt pending  
0 = No SLIC interrupt pending  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
149  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
14.6.4 SLIC Prescaler Register  
SLIC prescaler register (SLCP) is used to divide the CPU bus clock for the digital  
receive filter circuit. The SLIC clock is divided through a prescaler (controlled by  
RXFP[1:0]) to drive the digital receive circuit. Variations on the input clock will  
propagate through these prescale stages, so if internal oscillators are used, worst  
case oscillator frequencies must be accounted for when determining prescaler  
settings to ensure that the frequency of the SLIC clock always remains between  
2 MHz and 8 MHz.  
Address: $0043  
Bit 7  
RXFP1  
1
6
RXFP0  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 14-7. SLIC Prescale Register (SLCP)  
Table 14-2. Digital Receive Filter Clock Prescaler  
Maximum Filter Delay (in µs)  
Digital RX Filter  
Clock Prescaler  
(Divide by)  
RXFP[1:0]  
SLIC Clock (in MHz)  
2
3.2  
5
4
4
6
6.4  
2.5  
5
8
2
4
6
8
$00  
$01  
$10  
$11  
1
8
2.67  
5.33  
8
2
3 (default)  
4
16  
24  
32  
10  
15  
20  
8
12  
16  
7.5  
10  
10.67  
RXFP[1:0] — Receive Filter Prescaler  
These bits set the prescale value for the clock for the digital receive filter circuit.  
This is a further prescaling of the SLIC input clock, which must be kept between  
2 MHz and 8 MHz for proper SLIC operation in LIN. The RXFP bits control the  
speed of the clock feeding the digital receive filter circuit, which determines the  
total maximum filter delay. Any pulse which is smaller than the maximum filter  
delay value will be rejected by the filter and ignored as noise. For this reason,  
the user must choose the prescaler value appropriately to ensure that all valid  
message traffic is able to pass the filter for the desired bit rate. For more details  
about setting up the digital receive filter, please refer to 14.20 Digital Receive  
Filter.  
Data Sheet  
150  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
SLIC Registers and Control Bits  
The frequency of the SLIC clock must be between 2 MHz and 8 MHz, factoring in  
worst case possible numbers due to untrimmed process variations, as well as  
temperature and voltage variations in oscillator frequency. This will guarantee  
greater than 1.5% accuracy for all LIN messages from 1–20 kbps. The faster this  
input clock is, the greater the resulting accuracy and the higher the possible bit  
rates at which the SLIC can send and receive. In LIN systems, the bit rates will not  
exceed 20 kbps; however, the SLIC module is capable of much higher speeds  
without any configuration changes, for cases such as high-speed downloads for  
reprogramming of FLASH memory or diagnostics in a test environment where  
radiated emissions requirements are not as stringent. In these situations, the user  
may choose to run faster than the 20 kbps limit which is imposed by the LIN  
specification for EMC reasons. Details of how to calculate maximum bit rates and  
operate the SLIC above 20 kbps are detailed in 14.17 High-Speed LIN Operation.  
Refer to 14.9 SLIC Module Initialization Procedure for more information on when  
to set up this register.  
14.6.5 SLIC Bit Time Registers  
NOTE:  
In this subsection, the SLIC bit time registers are collectively referred to as SLCBT.  
In LIN operating mode (BTM = 0), the SLCBT is updated by the SLIC upon  
reception of a LIN break-synch combination and provides the number of SLIC  
clock counts that equal one LIN bit time to the user software. This value can be  
used by the software to calculate the clock drift in the oscillator as an offset to a  
known count value (based on nominal oscillator frequency and LIN bus speed).  
The user software can then trim the oscillator to compensate for clock drift. Refer  
to 14.19 Oscillator Trimming with SLIC for more information on this procedure.  
The user cannot read the bit time value from SLCBTH and SLCBTL any time after  
the identifier byte is received until the beginning of the next LIN message frame on  
the bus. The beginning of this message frame activity will be indicated by the  
SLCACT bit.  
When in byte transfer mode (BTM = 1), the SLCBT must be written by the user to  
set the length of one bit at the desired bit rate in SLIC clock counts. The user  
software must initialize this number prior to sending or receiving data, based on the  
input clock selection, prescaler stage choice, and desired bit rate. This setting is  
similar to choosing an input capture or output compare value for a timer. The  
closest even value should be chosen for this value, as BT0 will be forced to 0 by  
the SLIC module and any odd value will always be reduced to the next lowest even  
integer value. For example, a write of value 51 (0x33) will be forced to value of 50  
and read back as 0x32. A write to both registers is required to update the bit time  
value.  
NOTE:  
The SLIC bit time will not be updated until a write of the SLCBTL has occurred.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
151  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
Address: $0044  
Bit 7  
0
6
0
5
0
4
BT12  
0
3
BT11  
0
2
BT10  
0
1
BT9  
0
Bit 0  
BT8  
0
Read:  
Write:  
Reset:  
0
0
0
= Unimplemented  
Figure 14-8. SLIC Bit Time Register High (SLCBTH)  
Address: $0045  
Bit 7  
6
BT6  
0
5
BT5  
0
4
BT4  
0
3
BT3  
0
2
BT2  
0
1
BT1  
0
Bit 0  
0
Read:  
Write:  
Reset:  
BT7  
0
0
= Unimplemented  
Figure 14-9. SLIC Bit Time Register Low (SLCBTL)  
BT — Bit Time Value  
BT displays the number of SLIC clocks that equals one bit time in LIN mode  
(BTM = 0). For details of the use of the SLCBT registers in LIN mode for  
trimming of the internal oscillator, refer to 14.19 Oscillator Trimming with  
SLIC.  
BT sets the number of SLIC clocks that equals one bit time in byte transfer mode  
(BTM = 1). For details of the use of the SLCBT registers in BTM mode, refer to  
14.18 Byte Transfer Mode Operation.  
14.6.6 SLIC State Vector Register  
SLIC state vector register (SLCSV) is provided to substantially decrease the CPU  
overhead associated with servicing interrupts while under operation of a LIN  
protocol. It provides an index offset that is directly related to the LIN module’s  
current state, which can be used with a user supplied jump table to rapidly enter an  
interrupt service routine. This eliminates the need for the user to maintain a  
duplicate state machine in software.  
Address:  
$0046  
Bit 7  
0
6
0
5
4
3
2
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
I3  
I2  
I1  
I0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-10. SLIC State Vector Register (SLCSV)  
READ: any time  
WRITE: ignored  
I[3:0] — Interrupt State Vector (Bits 5–2)  
These bits indicate the source of the interrupt request that is currently pending.  
Data Sheet  
152  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
SLIC Registers and Control Bits  
14.6.6.1 LIN Mode Operation  
Table 14-3 shows the possible values for the possible sources for a SLIC interrupt  
while in LIN mode operation (BTM = 0).  
Table 14-3. Interrupt Sources Summary (BTM = 0)  
SLCSV  
$00  
I3  
0
I2  
0
I1  
0
I0  
0
Interrupt Source  
No Interrupts Pending  
No-Bus-Activity  
Priority  
0 (Lowest)  
1
$04  
0
0
0
1
TX Message Buffer Empty  
Checksum Transmitted  
$08  
$0C  
$10  
0
0
0
0
0
1
1
1
0
0
1
0
2
3
4
TX Message Buffer Empty  
RX Message Buffer Full  
Checksum OK  
RX Data Buffer Full  
No Errors  
$14  
0
1
0
1
5
$18  
$1C  
$20  
$24  
$28  
$2C  
$30  
$34  
$38  
$3C  
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
Bit-Error  
Receiver Buffer Overrun  
(RESERVED)  
6
7
8
Checksum Error  
9
Byte Framing Error  
Identifier Received Successfully  
Identifier Parity Error  
Inconsistent-Synch-Field-Error  
Reserved  
10  
11  
12  
13  
14  
Wakeup  
15 (Highest)  
No Interrupts Pending  
This value indicates that all pending interrupt sources have been serviced.  
In polling mode, the SLCSV is read and interrupts serviced until this value  
reads back 0. This source will not generate an interrupt of the CPU,  
regardless of state of the SLCIE bit.  
No Bus Activity (LIN specified error)  
The No-Bus-Activity condition occurs if no valid SYNCH BREAK FIELD or  
BYTE FIELD was received for more than tTIMEOUT (as defined in LIN  
Protocol Specification) since the reception of the last valid message.  
TX Message Buffer Empty — Checksum Transmitted  
When the entire LIN message frame has been transmitted successfully,  
complete with the appropriately selected checksum byte, this interrupt  
source is asserted. This source is used for all standard LIN message frames  
and the final set of bytes with extended LIN message frames.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
Slave LIN Interface Controller (SLIC)  
153  
Slave LIN Interface Controller (SLIC)  
TX Message Buffer Empty  
This interrupt source indicates that all 8 bytes in the LIN message buffer  
have been transmitted with no checksum appended. This source is used for  
intermediate sets of 8 bytes in extended LIN message frames.  
RX Message Buffer Full — Checksum OK  
When the entire LIN message frame has been received successfully,  
complete with the appropriately selected checksum byte, and the checksum  
calculates correctly, this interrupt source is asserted. This source is used for  
all standard LIN message frames and the final set of bytes with extended  
LIN message frames. In order to clear this source, the SLCD0 register must  
be read.  
RX Data Buffer Full — No Errors  
This interrupt source indicates that 8 bytes have been received with no  
checksum byte and are waiting in the LIN message buffer. This source is  
used for intermediate sets of 8 bytes in extended LIN message frames. In  
order to clear this source, the SLCD0 register must be read.  
Bit Error  
A unit that is sending a bit on the bus also monitors the bus. A BIT_ERROR  
has to be detected at that bit time, when the bit value that is monitored is  
different from the bit value that is sent. The SLIC will terminate the data  
transmission at the next byte boundary, according to the LIN specification.  
Bit errors are not checked when the LIN bus is running at high speed due to  
the effects of physical layer round trip delay. Bit errors are fully checked at  
all LIN 2.0 compliant speeds of 20 kbps and below.  
Receiver Buffer Overrun Error  
This error is an indication that the receive buffer has not been emptied and  
additional bytes have been received, resulting in lost data.  
Reserved  
This source is reserved for future use.  
Checksum Error (LIN specified error)  
The checksum error occurs when the calculated checksum value does not  
match the expected value. If this error is encountered, it is important to verify  
that the correct checksum calculation method was employed for this  
message frame. Refer to the LIN specification for more details on the  
calculations.  
Byte Framing Error  
This error comes from the standard UART definition for byte encoding and  
occurs when the STOP bit is sampled and reads back as a 0. The STOP bit  
should always read as 1.  
Identifier Received Successfully  
This interrupt source indicates that a LIN identifier byte has been received  
with correct parity and is waiting in the LIN identifier buffer (SLCID). Upon  
Data Sheet  
154  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
SLIC Registers and Control Bits  
reading this interrupt source from the SLCSV register, the user can then  
decode the identifier in software to determine the nature of the LIN message  
frame. In order to clear this source, the SLCID register must be read.  
Identifier-Parity-Error  
A parity error in the identifier (i.e., corrupted identifier) will be flagged.  
Typical LIN slave applications do not distinguish between an unknown but  
valid identifier, and a corrupted identifier. However, it is mandatory for all  
slave nodes to evaluate in case of a known identifier all 8 bits of the ID-Field  
and distinguish between a known and a corrupted identifier. The received  
identifier value is reported in the SLCID register so that the user software  
can choose to acknowledge or ignore the parity error message.  
Inconsistent-Synch-Field-Error  
An Inconsistent-Synch-Field-Error has to be detected if a slave detects the  
edges of the SYNCH FIELD outside the given tolerance.  
Reserved  
This source is reserved for future use.  
Wakeup  
The wakeup interrupt source indicates that the SLIC module has entered  
SLIC run mode from SLIC wait or SLIC stop mode.  
14.6.6.2 Byte Transfer Mode Operation  
When byte transfer mode is enabled (BTM = 1), many of the interrupt sources for  
the SLCSV no longer apply, as they are specific to LIN operations. Table 14-4  
shows those interrupt sources which are applicable to BTM operations. The value  
of the SLCSV for each interrupt source remains the same, as well as the priority of  
the interrupt source.  
I
Table 14-4. Interrupt Sources Summary (BTM = 1)  
SLCSV  
$00  
I3  
0
I2  
0
I1  
0
I0  
0
Interrupt Source  
No Interrupts Pending  
TX Message Buffer Empty  
Priority  
0 (Lowest)  
3
$0C  
0
0
1
1
RX Data Buffer Full  
No Errors  
$14  
0
1
0
1
5
$18  
$1C  
$28  
$38  
$3C  
0
0
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
0
0
1
Bit-Error  
Receiver Buffer Overrun  
Byte Framing Error  
Reserved  
6
7
10  
14  
Wakeup  
15 (Highest)  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
155  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
No Interrupts Pending  
This value indicates that all pending interrupt sources have been serviced.  
In polling mode, the SLCSV is read and interrupts serviced until this value  
reads back 0. This source will not generate an interrupt of the CPU,  
regardless of state of the SLCIE bit.  
TX Message Buffer Empty  
In byte transfer mode, this interrupt source indicates that the byte in the  
SLCID has been transmitted.  
RX Data Buffer Full — No Errors  
This interrupt source indicates that a byte has been received and is waiting  
in the SLCID register. In order to clear this source, the SLCID register must  
be read.  
Bit-Error  
A unit that is sending a bit on the bus also monitors the bus. A BIT_ERROR  
has to be detected at that bit time, when the bit value that is monitored is  
different from the bit value that is sent.  
Receiver Buffer Overrun Error  
This error is an indication that the receive buffer has not been emptied and  
additional byte(s) have been received, resulting in lost data.  
Byte Framing Error  
This error comes from the standard UART definition for byte encoding and  
occurs when the STOP bit is sampled and reads back as a 0. The STOP bit  
should always read as 1.  
Reserved  
This source is reserved for future use.  
Wakeup  
The wakeup interrupt source indicates that the SLIC module has entered  
SLIC run mode from SLIC wait or SLIC stop mode.  
14.6.7 SLIC Data Length Code Register  
The SLIC data length code register (SLCDLC) is the primary functional control  
register for the SLIC module during normal LIN operations. It contains the data  
length code of the message buffer, indicating how many bytes of data are to be  
sent or received, as well as the checksum mode control and transmit enabling bit.  
Data Sheet  
156  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
SLIC Registers and Control Bits  
Address:  
$0047  
Bit 7  
6
CHKMOD  
0
5
DLC5  
0
4
DLC4  
0
3
DLC3  
0
2
DLC2  
0
1
DLC1  
0
Bit 0  
DLC0  
0
Read:  
Write:  
Reset:  
TXGO  
0
Figure 14-11. SLIC Data Length Code Register (SLCDLC)  
TXGO — SLIC Transmit Go  
This bit controls whether the SLIC module is sending or receiving data bytes.  
This bit is automatically reset to 0 once a transmit operation is complete or an  
error is encountered and transmission has been aborted.  
1 = Initiate SLIC transmit  
The SLIC assumes the user has loaded the proper data into the message  
buffer and will begin transmitting the number of bytes indicated in the  
SLCDLC bits. If the number of bytes is greater than 8, the first 8 bytes will  
be transmitted and an interrupt will be triggered (if unmasked) for the user  
to enter the next bytes of the message. If the number of bytes is 8 or  
fewer, the SLIC will transmit the appropriate number of bytes and  
automatically append the checksum to the transmission.  
0 = SLIC receive data  
CHKMOD — LIN Checksum Mode  
CHKMOD is used to decide what checksum method to use for this message  
frame. Resets after error code or message frame complete.  
1 = Checksum calculated without the identifier byte (LIN spec <= 1.3)  
0 = Checksum calculated with the identifier byte included  
(SAE J2602/LIN 2.0)  
DLC — Data Length Control Bits  
The value of the bits indicate the number of data bytes in message. Values  
$00–$07 are for ’normal’ LIN messaging. Values $08–$3F are for "extended"  
LIN messaging.  
Table 14-5. Data Length Control  
Message Data Length  
DLC[5:0]  
(Number of Bytes)  
$00  
$01  
$02  
...  
1
2
3
...  
62  
63  
64  
$3D  
$3E  
$3F  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
157  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
14.6.8 SLIC Identifier and Data Registers  
The SLIC identifier (SLCID) and data registers (SLCD[7:0]) comprise the transmit  
and receive buffer and are used to read/write the identifier and message buffer  
8 data bytes. In BTM mode (BTM = 0), only the SLCID register is used to send and  
receive bytes, as only one byte is handled at any one time. The number of bytes to  
be read from or written to these registers is determined by the user software and  
written to the SLCDLC register. In order to obtain proper data, reads and writes to  
these registers must be made based on the proper length corresponding to a  
particular message. It is the responsibility of the user software to keep track of this  
value in order to prevent data corruption. For example, it is possible to read data  
from locations in the message buffer which contain erroneous or old data if the user  
software reads more data registers than were updated by the incoming message,  
as indicated in the SLCDLC.  
NOTE:  
An incorrect length value written to the SLCDLC register can result in the user  
software misreading or miswriting data in the message buffer. An incorrect length  
value might also result in SLIC error messages. For example, if a 4-byte message  
is to be received, but the user software incorrectly reports a 3-byte length to the  
DLC, the SLIC will assume the 4th data byte is actually a checksum value and  
attempt to validate it as such. If this value doesn’t match the calculated value, an  
incorrect checksum error will occur. If it does happen to match the expected value,  
then the message would be received as a 3-byte message with valid checksum.  
Either case is incorrect behavior for the application and can be avoided by ensuring  
that the correct length code is used for each identifier.  
The first data byte received after the LIN identifier in a LIN message frame will be  
loaded into SLCD0. The next byte (if applicable) will be loaded into SLCD1, and so  
forth.  
.
Address:  
$0048  
Bit 7  
R7  
6
R6  
T6  
0
5
R5  
T5  
0
4
R4  
T4  
0
3
R3  
T3  
0
2
R2  
T2  
0
1
R1  
T1  
0
Bit 0  
R0  
T0  
0
Read:  
Write:  
Reset:  
T7  
0
Figure 14-12. SLIC Identifier Register (SLCID)  
The SLIC identifier register is used to capture the incoming LIN identifier and when  
the SLCSV value indicates that the identifier has been received successfully, this  
register contains the received identifier value. If the incoming identifier contained a  
parity error, this register value will not contain valid data.  
In byte transfer mode (BTM = 1), this register is used for sending and receiving  
each byte of data.  
Data Sheet  
158  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
SLIC Registers and Control Bits  
Address:  
$0049  
Bit 7  
R7  
6
R6  
T6  
0
5
R5  
T5  
0
4
R4  
T4  
0
3
R3  
T3  
0
2
R2  
T2  
0
1
R1  
T1  
0
Bit 0  
R0  
T0  
0
Read:  
Write:  
Reset:  
T7  
0
Figure 14-13. SLIC Data Register 7 (SLCD7)  
Address:  
$004A  
Bit 7  
R7  
6
R6  
T6  
0
5
R5  
T5  
0
4
R4  
T4  
0
3
R3  
T3  
0
2
R2  
T2  
0
1
R1  
T1  
0
Bit 0  
R0  
T0  
0
Read:  
Write:  
Reset:  
T7  
0
Figure 14-14. SLIC Data Register 6 (SLCD6)  
Address:  
$004B  
Bit 7  
R7  
6
R6  
T6  
0
5
R5  
T5  
0
4
R4  
T4  
0
3
R3  
T3  
0
2
R2  
T2  
0
1
R1  
T1  
0
Bit 0  
R0  
T0  
0
Read:  
Write:  
Reset:  
T7  
0
Figure 14-15. SLIC Data Register 5 (SLCD5)  
Address:  
$004C  
Bit 7  
R7  
6
R6  
T6  
0
5
R5  
T5  
0
4
R4  
T4  
0
3
R3  
T3  
0
2
R2  
T2  
0
1
R1  
T1  
0
Bit 0  
R0  
T0  
0
Read:  
Write:  
Reset:  
T7  
0
Figure 14-16. SLIC Data Register 4 (SLCD4)  
Address:  
$004D  
Bit 7  
R7  
6
R6  
T6  
0
5
R5  
T5  
0
4
R4  
T4  
0
3
R3  
T3  
0
2
R2  
T2  
0
1
R1  
T1  
0
Bit 0  
R0  
T0  
0
Read:  
Write:  
Reset:  
T7  
0
Figure 14-17. SLIC Data Register 3 (SLCD3)  
Address:  
$004E  
Bit 7  
R7  
6
R6  
T6  
0
5
R5  
T5  
0
4
R4  
T4  
0
3
R3  
T3  
0
2
R2  
T2  
0
1
R1  
T1  
0
Bit 0  
R0  
T0  
0
Read:  
Write:  
Reset:  
T7  
0
Figure 14-18. SLIC Data Register 2 (SLCD2)  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
159  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
Address:  
$004F  
Bit 7  
R7  
6
R6  
T6  
0
5
R5  
T5  
0
4
R4  
T4  
0
3
R3  
T3  
0
2
R2  
T2  
0
1
R1  
T1  
0
Bit 0  
R0  
T0  
0
Read:  
Write:  
Reset:  
T7  
0
Figure 14-19. SLIC Data Register 1 (SLCD1)  
Address:  
$0050  
Bit 7  
R7  
6
R6  
T6  
0
5
R5  
T5  
0
4
R4  
T4  
0
3
R3  
T3  
0
2
R2  
T2  
0
1
R1  
T1  
0
Bit 0  
R0  
T0  
0
Read:  
Write:  
Reset:  
T7  
0
Figure 14-20. SLIC Data Register 0 (SLCD0)  
R — Read SLC Receive Data  
T — Write SLC Transmit Data  
14.7 Initialization/Application Information  
The LIN specification defines a standard LIN "MESSAGE FRAME" as the basic  
format for transferring data across a LIN network. A standard MESSAGE FRAME  
is composed as shown in Figure 14-21 (shown with 8 data bytes).  
LIN transmits all data, identifier, and checksum characters as standard UART  
characters with 8 data bits, no parity, and 1 stop bit. Therefore, each byte has a  
length of 10 bits, including the start and stop bits. The data bits are transmitted least  
significant bit (LSB) first.  
HEADER  
0x55  
DATA  
SYNCH  
BREAK  
SYNCH  
BYTE  
IDENT  
FIELD  
DATA  
FIELD  
DATA  
FIELD  
DATA  
FIELD  
DATA  
FIELD  
DATA  
FIELD  
DATA  
FIELD  
DATA  
FIELD  
DATA  
FIELD  
CHECKSUM  
FIELD  
0
1
2
3
4
5
6
7
13 OR MORE BITS (LIN 1.3)  
Figure 14-21. Typical LIN MESSAGE FRAME  
Data Sheet  
160  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
Initialization/Application Information  
14.7.1 LIN Message Frame Header  
The HEADER section of all LIN messages is transmitted by the master node in the  
network and contains synchronization data, as well as the identifier to define what  
information is to be contained in the message frame. Formally, the header is  
comprised of three parts:  
1. SYNCH BREAK  
2. SYNCH BYTE (0x55)  
3. IDENTIFIER FIELD  
The first two components are present to allow the LIN slave nodes to recognize the  
beginning of the message frame and derive the bit rate of the master module.  
The SYNCH BREAK allows the slave to see the beginning of a message frame on  
the bus. The SLIC module can receive a standard 10-bit break character for the  
SYNCH BREAK, or any break symbol 10 or more bit times in length. This  
encompasses the LIN requirement of 13 or more bits of length for the SYNCH  
BREAK character.  
The SYNCH BYTE is always a 0x55 data byte, providing five falling edges for the  
slave to derive the bit rate of the master node.  
The identifier byte indicates to the slave what is the nature of the data in the  
message frame. This data might be supplied from either the master node or the  
slave node, as determined at system design time. The slave node must read this  
identifier, check for parity errors, and determine whether it is to send or receive data  
in the data field.  
More information on the HEADER is contained in 14.10.1 LIN Message Headers.  
14.7.2 LIN Data Field  
The data field is comprised of standard bytes (8 data bits, no parity, 1 stop bit) of  
data, from 0–8 bytes for normal LIN frames and greater than 8 bytes for extended  
LIN frames. The SLIC module will either transmit or receive these bytes, depending  
upon the user code interpretation of the identifier byte. Data is always transmitted  
into the data field least significant byte (LSB) first.  
The SLIC module can automatically handle up to 64 bytes in extended LIN  
message frames without significantly changing program execution.  
14.7.3 LIN Checksum Field  
The checksum field is a data integrity measure for LIN message frames, used to  
signal errors in data consistency. The LIN 1.3 checksum calculation only covers the  
data field, but the SLIC module also supports an enhanced checksum calculation  
which also includes the identifier field. For more information on the checksum  
calculation, refer to 14.16 LIN Data Integrity Checking Methods.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
161  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
14.7.4 SLIC Module Constraints  
In designing a practical module, certain reasonable constraints must be placed on  
the LIN message traffic which are not necessarily explicitly specified in the LIN  
specification. The SLIC module presumes that:  
Timeout for no-bus-activity = 1 second.  
14.8 SLCSV Interrupt Handling  
Each change of state of the SLIC module is encoded in the SLIC state vector  
register (SLCSV). This is an efficient method of handling state changes, indicating  
to the user not only the current status of the SLIC module, but each state change  
will also generate an interrupt (if SLIC interrupts are enabled). For more detailed  
information on the SLCSV, please refer to 14.6.6 SLIC State Vector Register.  
In the software diagrams in the following subsections, when an interrupt is shown,  
the first step must always be reading the SLCSV register to determine what is the  
current status of the SLIC module. Likewise, when the diagrams indicate to "EXIT  
ISR", the final step to exiting the interrupt service routine is to clear the SLCF  
interrupt flag. This can only be done if the SLCSV has first been read, and in the  
case that data has been received (such as an ID byte or command message data)  
the SLCD has been read at least one time.  
Once the SLCSV register is read, it will switch to the next pending state, so the user  
must be sure it is copied only once into a software variable at the beginning of the  
interrupt service routine in order to avoid inadvertently clearing a pending interrupt  
source. Additional decisions based on this value should be made from the software  
variable, rather than from the SLCSV itself.  
After exiting the ISR, normal application code may resume. If the diagram indicates  
to "RETURN TO IDLE," it indicates that all processing for the current message  
frame has been completed. If an error was detected and the corresponding error  
code loaded into the SLCSV, any pending data in the data buffer will be flushed out  
and the SLIC returned to its idle state, seeking out the next message frame header.  
14.9 SLIC Module Initialization Procedure  
14.9.1 LIN Mode Initialization  
The SLIC module does not require very much initialization, due to it’s  
self-synchronizing design. Since no prior knowledge of the bit rate is required in  
order to synchronize to the LIN bus, no programming of bit rate is required.  
At initialization time, the user must configure:  
SLIC prescale register (SLIC digital receive filter adjustment).  
Wait clock mode operation.  
Data Sheet  
162  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
SLIC Module Initialization Procedure  
The SLIC clock is the same as the CPU bus clock. The module is designed to  
provide better than 1% bit rate accuracy at the lowest value of the SLIC clock  
frequency and the accuracy improves as the SLIC clock frequency is increased.  
For this reason, it is advantageous to choose the fastest SLIC clock which is still  
within the acceptable operating range of the SLIC. Since the SLIC may be used  
with MCUs with internal oscillators, the tolerance of the oscillator must be taken  
into account to ensure that the SLIC clock frequency does not exceed the bounds  
of the SLIC clock operating range. This is especially important if the user wishes to  
use the oscillator untrimmed, where process variations might result in MCU  
frequency offsets of ±25%.  
The acceptable range of SLIC clock frequencies is 2–8 MHz to guarantee LIN  
operations with greater than 1.5% accuracy across the 1–20 kbps range of LIN bit  
rates. The user must ensure that the fastest possible SLIC clock frequency never  
exceeds 8 MHz or that the slowest possible SLIC clock never falls below 2 MHz  
under worst case conditions. This would include, for example, oscillator frequency  
variations due to untrimmed oscillator tolerance, temperature variation, or supply  
voltage variation.  
In order to initialize the SLIC module into LIN operating mode, the user should  
perform the following steps prior to needing to receive any LIN message traffic.  
These steps assume the MCU has been reset either by a power-on reset (POR) or  
any other MCU reset mechanism.  
The steps for SLIC Initialization for LIN operation are:  
1. Write SLCC1 to clear INITREQ.  
2. When INITACK = 0, write SLCC1 & SLCC2 with desired values for:  
a. SLCWCM — Wait clock mode (default = leaving SLIC clock running  
when in CPU wait).  
3. Write SLCP to set up prescalers for:  
a. RXFP — Digital receive filter clock prescaler  
(default = SLIC divided by 3).  
4. Enable the SLIC module by writing SLCC2:  
a. SLCE = 1 to place SLIC module into run mode.  
b. BTM = 0 to disable byte transfer mode (default).  
5. Write SLCC1 to enable SLIC interrupts (if desired).  
14.9.2 Byte Transfer Mode Initialization  
Bit rate synchronization is handled automatically in LIN mode, using the  
synchronization data contained in each LIN message to derive the desired bit rate.  
In byte transfer mode (BTM = 1); however, the user must set up the bit rate for  
communications using the clock selection, prescaler, and SLCBT register.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
163  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
More information on byte transfer mode is described in 14.18 Byte Transfer Mode  
Operation, including the performance parameters on recommended maximum  
speeds, bit time resolution, and oscillator tolerance requirements.  
Once the desired settings of prescalers and bit time are determined, the SLIC  
Initialization for BTM operation is virtually identical to that of LIN operation.  
The steps are:  
1. Write SLCC1 to clear INITREQ.  
2. When INITACK = 0, write SLCC2 with desired values for:  
a. SLCWCM — Wait clock mode (default = leaving SLIC clock running  
when in CPU wait).  
3. Write SLCICP to set up prescalers for:  
a. RXFP — Digital receive filter clock prescaler  
(default = SLIC divided by 3).  
4. Enable the SLIC module by writing SLCC2:  
a. SLCE = 1 to place SLIC module into run mode.  
b. BTM = 1 to enable byte transfer mode (default = disabled).  
5. Write SLCC1 to enable SLIC interrupts (if desired).  
14.10 Handling LIN Message Headers  
Figure 14-22 shows how the SLIC module deals with incoming LIN message  
headers.  
14.10.1 LIN Message Headers  
All LIN message frame headers are comprised of three components:  
The first is the SYNCHRONIZATION BREAK (SYNCH BREAK) symbol,  
which is a dominant (low) pulse at least 13 or more bit times long, followed  
by a recessive (high) synchronization delimiter of at least one bit time. In  
LIN 2.0, this is allowed to be 10 or more bit times in length.  
The second part is called the SYNCHRONIZATION FIELD (SYNCH FIELD)  
and is a single byte with value 0x55. This value was chosen as it is the only  
one which provides a series of five falling (recessive to dominant) transitions  
on the bus.  
The third section of the message frame header is the IDENTIFIER FIELD  
(ID). The identifier is covered more in 14.11 Handling Command Message  
Frames and 14.12 Handling Request LIN Message Frames.  
Data Sheet  
164  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Handling LIN Message Headers  
LIN MESSAGE  
HEADER RECEIVED  
N
VALID BREAK  
AND SYNCH  
DATA?  
INTERRUPT  
READ SLCSV  
Y
SLIC UPDATES SLCBT  
ID ARRIVING IN RX BUFFER  
PROCESS ERROR CODE:  
INCONSISTENT-SYNCH-FIELD-ERROR  
INTERRUPT  
READ SLCSV  
EXIT ISR  
RETURN TO  
LIN BUS IDLE  
PROCESS ERROR CODE:  
IDENTIFIER-PARITY ERROR  
FRAMING ERROR  
Y
ERROR CODE  
?
N
READ ID FROM SLCID  
N
ID FOR THIS  
NODE  
SET IMSG BIT  
?
Y
PROCESS VALID ID  
Figure 14-22. Handling LIN Message Headers  
The SLIC automatically reads the incoming pattern of the SYNCHRONIZATION  
BREAK and FIELD and determines the bit rate of the LIN data frame, as well as  
checking for errors in form and discerning between a genuine BREAK/FIELD  
combination and a similar byte pattern somewhere in the data stream. Once the  
header has been verified to be valid and has been processed, the SLIC module  
updates the SLIC bit time register (SLICBT) with the value obtained from the  
SYNCH FIELD and begins to receive the ID.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
165  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
If there are errors in the SYNCH BREAK/FIELD pattern, then an interrupt is  
generated. If unmasked, it will trigger an MCU interrupt request and the resulting  
code in the SLIC state vector register (SLCSV) will be an  
"Inconsistent-Synch-Field-Error," based on the LIN protocol specification.  
Once the ID for the message frame has been received, an interrupt is generated  
by the SLIC and will trigger an MCU interrupt request if unmasked. At this point, it  
might be possible that the ID was received with errors such as a parity error (based  
on the LIN specification) or a byte framing error. If the ID did not have any errors,  
it will be copied into the SLCD for the software to read. The SLCSV will indicate the  
type error or that the ID was received correctly.  
In a LIN system, the meaning and function of all messages, and therefore all  
message identifiers, is pre-defined by the system designer. This information can be  
collected and stored in a standardized format file, called a Configuration Language  
Description (CLD) file. In using the SLIC module, it is the responsibility of the user  
software to determine the nature of the incoming message, and therefore how to  
further handle that message.  
The simplest case is when the SLIC receives a message which the user software  
determines is of no interest to the application. In other words, the slave node does  
not need to receive or transmit any data for this message frame. This might also  
apply to messages with zero data bytes (which is allowed by the LIN specification).  
At this point, the user can set the IMSG control bit, and exit the interrupt service  
routine by clearing the SLCIF flag. Because there is no data to be sent or received,  
the SLIC will not generate another interrupt until the next message frame header  
or bus goes idle long enough to trigger a "No-Bus-Activity" error according to the  
LIN specification.  
NOTE:  
IMSG will prevent another interrupt from occurring for the current message frame;  
however, if data bytes are appearing on the bus they may be received and copied  
into the message buffer. This will delete any previous data which might have been  
present in the buffer, even though no interrupt is triggered to indicate the arrival of  
this data.  
At the time the ID is read, the user might also choose to read the SLCBT register  
and copy this value out to an application variable. This data can then be used at a  
time appropriate to both the application software and the LIN communications to  
adjust the trim of the internal oscillator. This operation must be handled very  
carefully to avoid adjusting the base timing of the MCU at the wrong time, adversely  
affecting the operation of the SLIC module or of the application itself. More  
information about this is contained in 14.19 Oscillator Trimming with SLIC.  
If the user software determines that the ID read out of the SLCD corresponds to a  
command or request message for which this node needs to receive or transmit  
data (respectively), it will then move on to procedures described in 14.11 Handling  
Command Message Frames and 14.12 Handling Request LIN Message  
Frames.  
Data Sheet  
166  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Handling Command Message Frames  
For clarification, in this document, "command" messages will refer to any message  
frame where the SLIC module is receiving data bytes and "request" messages  
refer to message frames where the SLIC module will be expected to transmit data  
bytes. This is a generic description and should not be confused with the  
terminology in the LIN specification. The LIN use of the terms "command" and  
"request" have the same basic meaning, but are limited in scope to specific  
identifier values of 0x3C and 0x3D. In the SLIC module documentation, these  
terms have been used to describe these functional types of messages, regardless  
of the specific identifier value used.  
14.10.2 Possible Errors on Message Headers  
Possible errors on message headers are:  
Inconsistent-Synch-Field-Error  
Identifier-Parity-Error  
Framing Error  
14.11 Handling Command Message Frames  
Figure 14-23 shows how to handle command message frames, where the SLIC  
module is receiving data from the master node.  
Command message frames refer to LIN messages frames where the master node  
is ’commanding’ the slave node to do something. The implication is that the slave  
will then be receiving data from the master for this message frame. This can be a  
standard LIN message frame of 1–8 data bytes, a reserved LIN system message  
(using 0x3C identifier), or an extended command message frame utilizing the  
reserved 0x3E user defined identifier or perhaps the 0x3F LIN reserved extended  
identifier. The SLIC module is capable of handling message frames containing up  
to 64 bytes of data, while still automatically calculating and/or verifying the  
checksum.  
14.11.1 Standard Command Message Frames  
Once the application software has read the incoming identifier and determined that  
it is a valid identifier which cannot be ignored using the IMSG bit, it must determine  
if this message frame is a command message frame or a request message frame.  
(i.e., should the application receive data from the master or send data back to the  
master?)  
The first case, shown in Figure 14-23 deals with command messages, where the  
SLIC will be receiving data from the master node. If the received identifier  
corresponds to a standard LIN command frame (i.e., 1–8 data bytes), the user  
must then write the number of bytes (determined by the system designer and  
directly linked with this particular identifier) corresponding to the length of the  
message frame into the SLCDLC register. The two most significant bits of this  
register are used for special control bits describing the nature of this message  
frame.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
167  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
PROCESS  
VALID ID  
N
PROCESS  
REQUEST MESSAGE  
COMMAND MESSAGE  
?
Y
INITIALIZE SW BYTE COUNT  
WRITE SLCDLC FOR THIS ID  
0nxx xxxx  
Y
EXTENDED FRAME  
(TXGO = 0)  
?
(CHKMOD = n)  
N
WRITE SLCDLC FOR THIS ID  
0n00 0xxx  
EXIT ISR  
(TXGO = 0)  
(CHKMOD = n)  
INTERRUPT  
READ SLCSV  
EXIT ISR  
PROCESS ERROR CODE:  
FRAMING ERROR  
NO-BUS-ACTIVITY  
Y
ERROR CODE  
?
RECEIVE BUFFER OVERRUN  
INTERRUPT  
READ SLCSV  
N
PROCESS ERROR CODE:  
FRAMING ERROR  
CHECKSUM-ERROR  
EXIT ISR  
RETURN TO IDLE  
1. EMPTY RX BUFFER  
NO-BUS-ACTIVITY  
Y
2. DECREMENT SW BYTE COUNT BY 8  
ERROR CODE  
?
RECEIVE BUFFER OVERRUN  
N
LAST FRAME  
N
EXIT ISR  
RETURN TO IDLE  
(SW BYTE COUNT 8)  
EMPTY RX BUFFER  
?
Y
Figure 14-23. Handling Command Messages (Data Receive)  
Data Sheet  
168  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
Handling Command Message Frames  
The SLIC transmit go (TXGO) bit should be 0 for command frames, indicating to  
the SLIC that data is coming from the master. The checksum mode control  
(CHKMOD) bit allows the user to select which method of checksum calculation is  
desired for this message frame. The LIN 1.3 checksum does not include the  
identifier byte in the calculation, while the SAE version does include this byte. Since  
the identifier is already received by the SLIC by this time, the default is to include  
it in the calculation. If a LIN 1.3 checksum is desired, a 1 in the CHKMOD bit will  
reset the checksum circuitry to begin calculating the checksum on the first data  
byte. Using the CHKMOD bit in this way allows the SLIC to receive messages with  
either method of data consistency check and change on a frame-by-frame basis. If  
a system uses both types of data consistency checking methods, the software  
must simply change the setting of this bit based on the identifier of each message.  
If the network only uses one type of check, the CHKMOD bit can be set as a  
constant value in the user’s code. If CHKMOD is not written on each frame, care  
must be taken not to accidentally modify the bit when writing the data length and  
TXGO bits. This is especially true if using C code without carefully inspecting the  
output of the compiler and assembler.  
The control bits and data length code are contained in one register, allowing the  
user to maximize the efficiency of the identifier processing by writing a single byte  
value to indicate the nature of the message frame. This allows very efficient  
identifier processing code, which is important in a command frame, as the master  
node can be sending data immediately following the identifier byte which might be  
as little as one byte in length. The SLIC module uses a separate internal storage  
area for the incoming data bytes, so there is no danger of losing incoming data, but  
the user should spend as little time as possible within the ISR to ensure that the  
application or other ISRs are able to use the majority of the CPU bandwidth.  
The identifier must be processed in a maximum of 2 byte times on the LIN bus to  
ensure that the ISR completes before the checksum would be received for the  
shortest possible message. This should be easily achievable, as the only  
operations required are to read the SLCID register and look up the checksum  
method, data length, and command/request state of that identifier, then write that  
value to the SLCDLC. This can be easily streamlined in code with a lookup table of  
identifiers and corresponding SLCDLC bytes.  
14.11.2 Extended Command Message Frames  
Handling of extended frames is very similar to handling of standard frames,  
providing that the length is less than or equal to 64 bytes. Since the SLIC module  
can only receive 8 bytes at a time, the receive buffer must be emptied periodically  
for long message frames. This is not standard LIN operation, and is likely only to  
be used for downloading calibration data or reprogramming FLASH devices in a  
factory or service facility, so the added steps required for processing are not as  
critical to performance. During these types of operations, the application code is  
likely very limited in scope and special adjustments can be made to compensate  
for added message processing time.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
169  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
For extended command frames, the data length is still written one time at the time  
the identifier is decoded, along with the TXGO and CHKMOD bits. When this is  
done, a software counter must also be initialized to keep track of how many bytes  
are expected to be received in the message frame. The ISR completes, clearing  
the SLCF flag, and resumes application execution. The SLIC will generate an  
interrupt, if unmasked, after 8 bytes are received or an error is detected. At this  
interrupt, the SLCSV will indicate an error condition (in case of framing error, idle  
bus) or that the receive buffer is full. If the data is successfully received, the user  
must then empty the buffer by reading SLCD7-SLCD0 and then subtract 8 from the  
software byte count. When this software counter reaches 8 or fewer, the remaining  
data bytes will fit in the buffer and only one interrupt should occur. At this time, the  
final interrupt may be handled normally, continuing to use the software counter to  
read the proper number of bytes from the appropriate SLCD registers.  
NOTE:  
Do not write the SLCDLC register more than one time per LIN message frame. The  
SLIC tracks the number of sent or received bytes based on the value written to this  
register at the beginning of the data field and rewriting this register will corrupt the  
checksum calculation and cause unpredictable behavior in the SLIC module. The  
application software must track the number of sent or received bytes to know what  
the current byte count in the SLIC is. If programming in C, make sure to use the  
VOLATILE modifier on this variable (or make it a global variable) in order to ensure  
that it keeps it’s value between interrupts.  
14.11.3 Possible Errors on Command Message Data  
Possible errors on command message data are:  
Framing Error  
Checksum-Error (LIN specified error)  
No-Bus-Activity (LIN specified error)  
Receiver Buffer Overrun Error  
14.12 Handling Request LIN Message Frames  
Figure 14-24 shows how to handle request message frames, where the SLIC  
module is sending data to the master node.  
Request message frames refer to LIN messages frames where the master node is  
’requesting’ the slave node to supply information. The implication is that the slave  
will then be transmitting data to the master for this message frame. This can be a  
standard LIN message frame of 1–8 data bytes, a reserved LIN system message  
(using 0x3D identifier), or an extended request message frame utilizing the  
reserved 0x3E identifier or perhaps the 0x3F LIN reserved extended identifier. The  
SLIC module is capable of handling request message frames containing up to 64  
bytes of data, while still automatically calculating and/or verifying the checksum.  
Data Sheet  
170  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Handling Request LIN Message Frames  
PROCESS  
REQUEST MESSAGE  
Y
EXTENDED FRAME  
?
1. INITIALIZE SW BYTE COUNT  
2. LOAD FIRST 8 DATA BYTES  
3. WRITE SLCDLC FOR THIS ID  
1nxx xxxx  
N
(TXGO = 1)  
(CHKMOD = n)  
1. LOAD DATA INTO MESSAGE BUFFER  
2. WRITE SLCDLC FOR THIS ID  
1n00 0xxx  
(TXGO = 1)  
(CHKMOD = n)  
EXIT ISR  
EXIT ISR  
INTERRUPT  
READ SLCSV  
INTERRUPT  
READ SLCSV  
PROCESS ERROR CODE:  
FRAMING ERROR  
BIT-ERROR  
Y
ERROR CODE  
PROCESS ERROR CODE:  
FRAMING ERROR  
BIT-ERROR  
?
Y
ERROR CODE  
N
CHECKSUM-ERROR  
?
EXIT ISR  
RETURN TO IDLE  
DECREMENT SW BYTE COUNT BY 8  
N
EXIT ISR  
RETURN TO IDLE  
TRANSMIT COMPLETE  
N
LAST FRAME  
(SW BYTE COUNT 8)  
?
Y
1. LOAD NEXT 8 BYTES TO TRANSMIT  
2. WRITE TXGO BIT TO START TRANSMIT(1)  
1. LOAD LAST (8) BYTES TO TRANSMIT  
2. WRITE TXGO BIT TO START TRANSMIT(1)  
Note 1. When writing TXGO bit only, ensure that CHKMOD and data length values are not accidentally modified.  
Figure 14-24. Handling Request LIN Message Frames  
MC68HC908QL Family — Rev. 2  
Data Sheet  
171  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
14.12.1 Standard Request Message Frames  
Dealing with request messages with the SLIC is very similar to dealing with  
command messages, with one important difference. Since the SLIC is now to be  
transmitting data in the LIN message frame, the user software must load the data  
to be transmitted into the message buffer prior to initiating the transmission. This  
means an extra step is taken inside the interrupt service routine once the identifier  
has been decoded and is determined to be an ID for a request message frame.  
Figure 14-24 deals with request messages, where the SLIC will be transmitting  
data to the master node. If the received identifier corresponds to a standard LIN  
command frame (i.e., 1-8 data bytes), the message processing is very simple. The  
user must load the data to be transmitted into the transmit buffer by writing it to the  
SLCD registers. The first byte to be transmitted on the LIN bus should be loaded  
into SLCD0, then SLCD1 for the second byte, etc. Once all of the bytes to be  
transmitted are loaded in this way, a single write to the SLCDLC register will allow  
the user to encode the number of data bytes to be transmitted (1–8 bytes for  
standard request frames), set the proper checksum calculation method for the data  
(CHKMOD), as well as signal the SLIC that the buffer is ready by writing a 1 to the  
TXGO bit. The TXGO bit will remain set to 1 until the buffer is sent successfully or  
an error is encountered, signaling to the application code that the buffer is in  
process of transmitting. In cases of 1–8 data bytes only being sent (standard LIN  
request frames), the SLIC automatically calculates and transmits the checksum  
byte at the end of the message frame. The user can exit the ISR once the SLCDLC  
register has been written and the SLCF flag has been cleared.  
The next SLIC interrupt which occurs, if unmasked, will indicate the end of the  
request message frame and will either indicate that the frame was properly  
transmitted or that an error was encountered during transmission. Refer to 14.12.4  
Possible Errors on Request Message Data for more detailed explanation of  
these possible errors. This interrupt also signals to the application that the  
message frame is complete and all data bytes and the checksum value have been  
properly transmitted onto the bus.  
The SLIC module cannot begin to transmit the data until the user writes a 1 to the  
TXGO bit, indicating that data is ready. If the user writes the TXGO bit without  
loading data into the transmit buffer, whatever data is in storage will be transmitted,  
where the number of bytes transmitted is based on the data length value in the data  
length register. Similarly, if the user writes the wrong value for the number of data  
bytes to transmit, the SLIC will transmit that number of bytes, potentially  
transmitting garbage data onto the bus. The checksum calculation is performed  
based on the data transmitted, and will therefore still be calculated.  
The identifier must be processed, data must be loaded into the transmit buffer, and  
the SLCDLC value written to initiate data transmission in a certain amount of time,  
based on the LIN specification. If the user waits too long to start transmission, the  
master node will observe an idle bus and trigger a Slave Not Responding error  
condition. The same error can be triggered if the transmission begins too late and  
Data Sheet  
172  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Handling Request LIN Message Frames  
does not complete before the message frame times out. Refer to the LIN  
specification for more details on timing constraints and requirements for LIN slave  
devices. This is especially important when dealing with extended request frames,  
when the data must be loaded in 8 byte sections (maximum) to be transmitted at  
each interrupt.  
14.12.2 Extended Request Message Frames  
Handling of extended frames is very similar to handling of standard frames,  
providing that the length is less than or equal to 64 bytes. Since the SLIC module  
can only transmit 8 bytes at a time, the transmit buffer must be loaded periodically  
for extended message frames. This is not standard LIN operation, and is likely only  
to be used for special cases, so the added steps required for processing should not  
be as critical to performance. During these types of operations, the application  
code is likely very limited in scope and special adjustments can be made to  
compensate for added message processing time.  
For extended request frames, the data length is still written only one time, at the  
time the identifier is decoded, along with the TXGO and CHKMOD bits, after the  
first 8 data bytes are loaded into the transmit buffer. When this is done, a software  
counter must also be initialized to keep track of how many bytes are to be  
transmitted in the message frame. The ISR completes, clearing the SLCF flag, and  
resumes application execution. The SLIC will generate an interrupt, if unmasked,  
after 8 bytes are transmitted or an error is detected. At this interrupt, the SLCSV  
will indicate an error condition (in case of framing error or bit error) or that the  
transmit buffer is empty. If the data is transmitted successfully, the user must then  
subtract 8 from the software byte count, load the next 8 bytes into the SLCD  
registers, and write a 1 to the TXGO bit to tell the SLIC that the buffers are loaded  
and transmission can commence. When this software counter reaches 8 or fewer,  
the remaining data bytes will fit in the transmit buffer and the SLIC will automatically  
append the checksum value to the frame after the last byte is sent.  
NOTE:  
Do not write the CHKMOD or data length values in the SLCDLC register more than  
one time per message frame. The SLIC tracks the number of sent or received bytes  
based on the value written to this register at the beginning of the data field and  
rewriting this register will corrupt the checksum calculation and cause  
unpredictable behavior in the SLIC module. The application software must track  
the number of sent or received bytes to know what the current byte count in the  
SLIC is. If programming in C, make sure to use the VOLATILE modifier on this  
variable (or make it a global variable) in order to ensure that it keeps it’s value  
between interrupts.  
14.12.3 Transmit Abort  
The transmit abort bit (TXABRT) in SLCC1 allows the user to cease transmission  
of data on the next byte boundary. When this bit is set to 1, it will finish transmitting  
the byte currently being transmitted, then cease transmission. Once the  
transmission is successfully aborted, the TXABRT bit will automatically be reset by  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
173  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
the SLIC to 0. If the SLIC is not in process of transmitting at the time TXABRT is  
written to 1, there is no effect and TXABRT will read back as 0.  
14.12.4 Possible Errors on Request Message Data  
Possible errors on request message data are:  
Framing Error.  
Checksum-Error (LIN specified error).  
Bit-Error.  
14.13 Handling IMSG to Minimize Interrupts  
The IMSG feature is designed to minimize the number of interrupts required to  
maintain LIN communications. On a network with many slave nodes, it is very likely  
that a particular slave will observe messages which are not intended for that node.  
When the SLIC module detects any message header, it synchronizes to that  
message frame and bit rate, then interrupts the CPU once the identifier byte has  
been successfully received and parity checked. At this time, if the software  
determines that the message may be ignored, the IMSG bit may be set to indicate  
to the module that the data field of the message frame is to be ignored and no  
additional interrupts should be generated until the next valid message header is  
received. The bit is automatically reset to 0 once the current message frame is  
complete and the LIN bus returns to idle state. This reduces the load on the CPU  
and allows the application software to immediately begin performing any  
operations which might otherwise not be allowed while receiving messaging.  
NOTE:  
IMSG will prevent another interrupt from occurring for the current message frame,  
however if data bytes are appearing on the bus they may be received and copied  
into the message buffer. This will delete any previous data which might have been  
present in the buffer, even though no interrupt is triggered to indicate the arrival of  
this data.  
14.14 Sleep and Wakeup Operation  
The SLIC module itself has no special sleep mode, but does support low-power  
modes and wake-up on network activity. For low-power operations, the user must  
select whether or not to allow the SLIC clock to continue operating when the MCU  
issues a wait instruction through the SLC wait clock mode (SLCWCM) bit in SLCC1  
register. If SLCWCM = 1, the SLIC will enter SLIC STOP mode when the MCU  
executes a WAIT instruction. If SLCWCM = 0, the SLIC will enter SLIC WAIT mode  
when the MCU executes a WAIT instruction. For more information on these modes,  
as well as wakeup options from these modes, please refer to 14.3 Modes of  
Operation.  
When network activity occurs, the SLIC module will wake the MCU out of stop or  
wait mode, and return the SLIC module to SLIC run mode. If the SLIC was in SLIC  
wait mode, normal SLIC interrupt processing will resume. If the SLIC was in SLIC  
Data Sheet  
174  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Polling Operation  
stop mode, the SLCSV register will indicate wakeup as the interrupt source so that  
the user knows that the SLIC module brought the MCU out of stop or wait.  
In a LIN system, a system message is generally sent to all nodes to indicate that  
they are to enter low-power network sleep mode. Once a node enters sleep mode,  
it waits for outside events, such as switch or sensor inputs or network traffic to bring  
it out of network sleep mode. If the node using the SLIC module is awakened by a  
source other than network traffic, such as a switch input, the LIN specification  
requires this node to issue a wake-up signal to the rest of the network. The SLIC  
module supports this feature using the WAKETX bit in the SLCC2 register. The  
user software may set this bit and one LIN wake-up signal is immediately  
transmitted on the bus, then the bit is automatically cleared by the SLIC module. If  
another wake-up signal is required to be sent, the user must set the WAKETX bit  
again.  
In a LIN system, the LIN physical interface can often also provide an output to the  
IRQ pin to provide a wake-up mechanism on network activity. The physical layer  
might also control voltage regulation supply to the MCU, cutting power to the MCU  
when the physical layer is placed in its low-power mode. The user must take care  
to ensure that the interaction between the physical layer, IRQ pin, SLIC transmit  
and receive pins, and power supply regulator is fully understood and designed to  
ensure proper operation.  
14.15 Polling Operation  
It is possible to operate the SLIC module in polling mode, if desired. The primary  
difference is that the SLIC interrupt request should not be enabled (SLCIE = 0).  
The SLCSV will update and operate properly and interrupt requests will be  
indicated with the SLCF flag, which can be polled to determine status changes in  
the SLIC module. It is required that the polling rate be fast enough to ensure that  
SLIC status changes be recognized and processed in time to ensure that all  
application timings can be met.  
14.16 LIN Data Integrity Checking Methods  
The SLIC module supports two different LIN-based data integrity options:  
The first option supports LIN 1.3 and older methods of checksum  
calculations.  
The second option supports an optional additional enhanced checksum  
calculation which has greater data integrity coverage.  
The LIN 1.3 and earlier specifications transmit a checksum byte in the  
"CHECKSUM FIELD" of the LIN message frame. This CHECKSUM FIELD  
contains the inverted modulo-256 sum over all data bytes. The sum is calculated  
by an "ADD with Carry" where the carry bit of each addition is added to the least  
significant bit (LSB) of it’s resulting sum. This guarantees security also for the  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
175  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
MSBs of the data bytes. The sum of modulo-256 sum over all data bytes and the  
checksum byte must be’0xFF’.  
An optional checksum calculation can also be performed on a LIN data frame  
which is very similar to the LIN 1.3 calculation, but with one important distinction.  
This enhanced calculation simply includes the identifier field as the first value in the  
calculation, whereas the LIN 1.3 calculation begins with the least significant byte of  
the data field (which is the first byte to be transmitted on the bus). This enhanced  
calculation further ensures that the identifier field is correct and ties the identifier  
and data together under a common calculation, ensuring greater reliability.  
In the SLIC module, either checksum calculation can be performed on any given  
message frame by simply writing or clearing the CHKMOD bit in the SLCDLC  
register, as desired, when the identifier for the message frame is decoded. The  
appropriate calculation for each message frame should be decided at system  
design time and documented in the LIN description file, indicating to the user which  
calculation to use for a particular identifier.  
14.17 High-Speed LIN Operation  
High-speed LIN operation does not necessarily require any reconfiguration of the  
SLIC module, depending upon what maximum LIN bit rate is desired. Several  
factors affect the performance of the SLIC module at LIN speeds higher than  
20 kbps, all of which are functions of the speed of the SLIC clock and the prescaler  
of the digital filter. The tightest constraint comes from the need to maintain ±1.5%  
accuracy with the master node timing. This requires that the SLIC module be able  
to sample the incoming data stream accurately enough to guarantee that accuracy.  
Table 14-6 shows the maximum LIN bit rates allowable in order to maintain this  
accuracy.  
Table 14-6. Maximum LIN Bit Rates for High-Speed Operation  
Maximum LIN Bit Rate  
for ±1% SLIC Accuracy  
(Bits / Second)  
Maximum LIN Bit Rate  
for ±1.5% SLIC Accuracy  
(Bits / Second)  
SLIC Clock (MHz)  
8
80,000  
64,000  
48,000  
40,000  
32,000  
24,000  
20,000  
120,000  
96,000  
72,000  
60,000  
48,000  
36,000  
30,000  
6.4  
4.8  
4
3.2  
2.4  
2
Data Sheet  
176  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
High-Speed LIN Operation  
The above numbers assume a perfect input waveforms into the SLCRX pin,  
where 1 and 0 bits are of equal length and are exactly the correct length for the  
appropriate speed. Factors such as physical layer wave shaping and ground shift  
can affect the symmetry of these waveforms, causing bits to appear shortened or  
lengthened as seen by the SLIC module. The user must take these factors into  
account and base the maximum speed upon the shortest possible bit time that the  
SLIC module may observe, factoring in all physical layer effects. On some LIN  
physical layer devices it is possible to turn off wave shaping circuitry for high-speed  
operation, removing this portion of the physical layer error.  
The digital receive filter can also affect high speed operation if it is set too low and  
begins to filter out valid message traffic. Under ideal conditions, this will not  
happen, as the digital filter maximum speeds allowable are higher than the speeds  
allowed for ±1.5% accuracy. If the digital receive filter prescaler is set to divide-  
by-4; however, the filter delay is very close to the ±1.5% accuracy maximum bit  
time.  
For example, with a SLIC clock of 4 MHz, the SLIC module is capable of  
maintaining ±1.5% accuracy up to 60,000 bps. If the digital receive filter prescaler  
is set to divide-by-4, this means that the filter will only pass message traffic which  
is 62,500 bps or slower under ideal circumstances. This is only a difference of  
2,500 bps (4.17% of the nominal valid message traffic speed). In this case, the user  
must ensure that with all errors accounted for, no bit will appear shorter than 16 µs  
(1 bit at 62,500 bps) or the filter will block that bit. This is far too narrow a margin  
for safe design practices. The better solution would be to reduce the filter prescaler,  
increasing the gap between the filter cut-off point and the nominal speed of valid  
message traffic. Changing the prescaler to divide by 2 in this example gives a filter  
cut-off of 125,000 bps, which is 60,000 bps faster than the nominal speed of the  
LIN bus and much less likely to interfere with valid message traffic.  
To ensure that all valid messages pass the filter stage in high-speed operation, it  
is best to ensure that the filter cut-off point is at least 2 times the nominal speed of  
the fastest message traffic to appear on the bus. Refer to Table 14-6 for a more  
complete list of the digital receive filter delays as they relate to the maximum LIN  
bus frequency. Table 14-7 repeats much of the data found in Table 14-6; however,  
the filter delay values have been converted to the frequency domain.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
177  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
Table 14-7. Maximum LIN Bit Rates for High-Speed Operation Due to Digital Receive Filter  
Maximum LIN  
Bit Rate for ±1.5%  
SLIC Accuracy  
(for Master-Slave  
Communication  
(Bits / Second)  
Maximum LIN  
Bit Rate with  
Digital RX Filter  
Set to ÷4  
Maximum LIN  
Bit Rate with  
Digital RX Filter  
Set to ÷3  
Maximum LIN  
Bit Rate with  
Digital RX Filter  
Set to ÷2  
Maximum LIN  
Bit Rate with  
Digital RX Filter  
Set to ÷1  
SLIC  
Clock  
(MHz)  
(Bits / Second)  
(Bits / Second)  
THESE PRESCALERS  
NOT RECOMMENDED FOR  
HIGH-SPEED LIN OPERATION  
(Bits / Second)  
(Bits / Second)  
DIGITAL RX FILTER  
NOT CONSIDERED  
8
120,000  
96,000  
72,000  
60,000  
48,000  
36,000  
30,000  
125,000  
100,000  
75,000  
62,500  
50,000  
37,500  
31,250  
166,667  
133,333  
100,000  
83,333  
66,667  
50,000  
41,667  
250,000  
200,000  
150,000  
125,000  
100,000  
75,000  
500,000  
400,000  
300,000  
250,000  
200,000  
150,000  
125,000  
6.4  
4.8  
4
3.2  
2.4  
2
62,500  
14.18 Byte Transfer Mode Operation  
This subsection describes the operation and limitations of the optional UART-like  
byte transfer mode (BTM). This mode allows sending and receiving individual  
bytes, but changes the behavior of the SLCBT registers (now read/write registers)  
and locks the SLCDLC to 1 byte data length. The SLCBT value now becomes the  
bit time reference for the SLIC, where the software sets the length of one bit time  
rather than the SLIC module itself. This is similar to an input capture/output  
compare (IC/OC) count in a timer module, where the count value represents the  
number of SLIC clock counts in one bit time.  
Byte transfer mode assumes that the user has a very stable, precise oscillator,  
resonator, or clock reference input into the MCU and is therefore not appropriate  
for use with internal oscillators. There is no synchronization method available to the  
user in this mode and the user must tell the SLIC how many clock counts comprise  
a bit time. Figure 14-25, Figure 14-26, Figure 14-27, and Figure 14-28 show  
calculations to determine the SLCBT value for different settings.  
In the example in Figure 14-25, the user should write 0x16, as a write of 0x15  
(decimal value of 21) would automatically revert to 0x14, resulting in transmitted bit  
times that are 1.33 SLIC clock periods too short rather than 0.667 SLIC clock  
periods too long. The optimal choice, which gives the smallest resolution error, is  
the closest even number of SLIC clocks to the exact calculated SLCBT value.  
There is a trade-off between maximum bit rate and resolution with the SLIC in BTM  
mode. Faster SLIC clock speeds improve resolution, but require higher numbers to  
be written to the SLCBT registers for a given desired bit rate. It is up to the user to  
determine what level of resolution is acceptable for the given application.  
Data Sheet  
178  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Byte Transfer Mode Operation  
Desired Bit Rate:  
57,600 bps  
External Crystal Frequency: 4.9152 MHz  
1 Second  
57,600 Bits  
17.36111 ms  
1 Bit  
=
=
1 Second  
4 CGMXCLK Period  
1 SLIC Clock Period  
813.802 ns  
X
X
4,915,200 CGMXCLK Periods  
1 SLIC Clock Period  
17.36111 ms  
1 Bit  
1 SLIC Clock Period  
813.802 ns  
21.33 SLIC Clock Periods  
1 Bit  
=
Therefore, the closest SLCBT value would be 21 SLIC clocks (SLCBT = 0x0015).  
Since you can only use even values in SLCBT, the closest acceptable value is 22 (0x0016).  
Figure 14-25. SLCBT Value Calculation Example 1  
Desired Bit Rate:  
57,600 bps  
External Crystal Frequency: 9.8304 MHz  
1 Second  
17.36111 ms  
1 Bit  
=
=
57,600 Bits  
1 Second  
4 CGMXCLK Period  
1 SLIC Clock Period  
406.90 ns  
X
X
9,830,400 CGMXCLK Periods  
1 SLIC Clock Period  
17.36111 ms  
1 Bit  
1 SLIC Clock Period  
406.90 ns  
42.67 SLIC Clock Periods  
1 Bit  
=
Therefore, the closest SLCBT value would be 42 SLIC clocks (SLCBT = 0x002A).  
Figure 14-26. SLCBT Value Calculation Example 2  
Desired Bit Rate:  
15,625 bps  
External Crystal Frequency: 8.000 MHz  
1 Second  
64 ms  
1 Bit  
=
=
15,625 Bits  
1 Second  
4 CGMXCLK Period  
1 SLIC Clock Period  
500 ns  
X
X
8,000,000 CGMXCLK Periods  
1 SLIC Clock Period  
64 ms  
1 Bit  
1 SLIC Clock Period  
500 ns  
128 SLIC Clock Periods  
1 Bit  
=
Therefore, the closest SLCBT value would be 128 SLIC clocks (SLCBT = 0x0080).  
Figure 14-27. SLCBT Value Calculation Example 3  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
179  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
Desired Bit Rate:  
9.615 bps  
External Crystal Frequency: 8.000 MHz  
1 Second  
9,615 Bits  
104.004 ms  
1 Bit  
=
=
1 Second  
4 CGMXCLK Period  
1 SLIC Clock Period  
500 ns  
X
X
8,000,000 CGMXCLK Periods  
1 SLIC Clock Period  
104.004 ms  
1 Bit  
1 SLIC Clock Period  
500 ns  
208.008 SLIC Clock Periods  
1 Bit  
=
Therefore, the closest SLCBT value would be 42 SLIC clocks (SLCBT = 0x00D0).  
Figure 14-28. SLCBT Value Calculation Example 4  
This resolution affects the sampling accuracy of the SLIC module on receiving  
bytes, but only as far as locating the sample point of each bit within a given byte.  
The best sample point of the bit may be off by as much as one SLIC clock period  
from the exact center of the bit, if the proper SLCBT value for the desired bit rate  
is an odd number of SLIC clock periods.  
Figure 14-29 shows an example of this error. In this example, the user has  
additionally chosen an incorrect value of 30 SLIC clocks for the length of one bit  
time, and a filter prescaler of 1. This makes little difference in the receive sampling  
of this particular bit, as the sample point is still within the bit and the digital filter will  
catch any noise pulses shorter than 16 filter clocks long.The ideal value of SLCBT  
would be 35 SLIC clocks, but the closest available value is 34, placing the sample  
point at 17 SLIC clocks into the bit.  
The error in the bit time value chosen by the user in the above example will grow  
throughout the byte, as the sample point for the next bit will be only 30 SLIC clock  
cycles later (1 full bit time at this bit rate setting). The SLIC resynchronizes upon  
every falling edge received. In a 0x00 data byte, however, there are no falling  
edges after the beginning of the start bit. This means that the accumulated error of  
the sampling point over the data byte with these settings could be as high as 30  
SLIC clock cycles (10 bits x {2 SLIC clocks due to user error + 1 SLIC clock  
resolution error}) placing it at the boundary between the last bit and the stop bit.  
This could result in missampling and missing a framing error on the last bit on high  
speed communications when the SLCBT count is relatively low. A properly chosen  
SLCBT value would result in a maximum error of 10 SLIC clock counts over a given  
byte. This is less than one filter delay time, and will not cause missampling of any  
of the bits in that byte. At the falling edge of the next start bit, the SLIC will  
resynchronize and any accumulated sampling error returns to 0. The sampling  
error becomes even less significant at lower speeds, when higher values of SLCBT  
are used to define a bit time, as the worst case bit time resolution error is still only  
one SLIC clock per bit (or maximum of 10 SLIC clocks per byte).  
Data Sheet  
180  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Byte Transfer Mode Operation  
UNFILTERED  
RX DATA  
FILTERED  
RX DATA  
(÷1 PRESCALE)  
FILTER CLOCK  
(÷1 PRESCALE)  
16 FILTER CLOCKS  
(÷1 PRESCALE)  
16 FILTER CLOCKS  
(÷1 PRESCALE)  
FILTER REACHES 0XF  
AND TOGGLES FILTER OUTPUT  
FILTER REACHES 0X0  
AND TOGGLES FILTER OUTPUT  
FILTER BEGINS  
COUNTING DOWN  
FILTER BEGINS  
COUNTING UP  
SLIC CLOCK  
15 SLIC CLOCKS  
(1/2 OF SLCBT VALUE)  
35 SLIC CLOCKS  
(ACTUAL FILTERED BIT LENGTH)  
IDEAL SLIC SAMPLE POINT (17 SLIC CLOCKS)  
SLIC SAMPLE POINT  
(BASED ON SLCBT VALUE)  
This example assumes a SLCBT value of 30 (0x1E).  
Transmitted bits will be sent out as 30 SLIC clock cycles long.  
The proper closest SLCBT setting would be 34 (0x22),  
which gives the ideal sample point of 17 SLIC clocks and  
transmitted bits are 34 SLIC clocks long.  
Figure 14-29. BTM Mode Receive Byte Sampling Example  
The error also comes into effect with transmitted bit times. Using the previous  
example with a SLCBT value of 34, transmitted bits will appear as 34 SLIC clock  
periods long. This is one SLIC clock short of the proper length. Depending on the  
frequency of the SLIC clock, one period of the SLIC clock might be a large or a  
small fraction of one ideal bit time. Raising the frequency of the SLIC clock will  
reduce this error relative to the ideal bit time, improving the resolution of the SLIC  
clock relative to the bit rate of the bus. In any case, the error is still one SLIC clock  
cycle. Raising the SLIC clock frequency, however, requires programming a higher  
value for SLCBT to maintain the same target bit rate.  
Smaller values of SLCBT combined with higher values of the SLIC clock frequency  
(smaller clock period) will give faster bit rates, but the SLIC clock period becomes  
an increasingly significant portion of one bit time.  
Since BTM mode does not perform any synchronization and relies on the accuracy  
of the data provided by the user software to set its sample point and generate  
transmitted bits, the constraint on maximum speeds is only limited to the limits  
imposed by the digital filter delay and the SLIC input clock. Since the digital filter  
delay cannot be less than 16 SLIC clock cycles, the fastest possible pulse which  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
181  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
would pass the filter is 16 clock periods at 8 MHz, or 500,000 bits/second. The  
values shown in Table 14-8 are the same values shown in Table 14-9 and indicate  
the absolute fastest bit rates which could just pass the minimum digital filter  
settings (prescaler = divide by 1) under perfect conditions.  
Table 14-8. Digital Receive Filter Absolute Cutoff Frequencies  
Maximum BTM  
Bit Rate with  
Digital RX Filter  
Set to ÷4  
Maximum BTM  
Bit Rate with  
Digital RX Filter  
Set to ÷3  
Maximum BTM  
Bit Rate with  
Digital RX Filter  
Set to ÷2  
Maximum BTM  
Bit Rate with  
Digital RX Filter  
Set to ÷1  
SLIC  
Clock  
(MHz)  
(Bits / Second)  
(Bits / Second)  
(Bits / Second)  
(Bits / Second)  
8
125,000  
100,000  
75,000  
62,500  
50,000  
37,500  
31,250  
166,667  
133,333  
100,000  
83,333  
66,667  
50,000  
41,667  
250,000  
200,000  
150,000  
125,000  
100,000  
75,000  
500,000  
400,000  
300,000  
250,000  
200,000  
150,000  
125,000  
6.4  
4.8  
4
3.2  
2.4  
2
62,500  
Since perfect conditions are almost impossible to attain, more robust values must  
be chosen for bit rates. For reliable communication, it is best to ensure that a bit  
time is no smaller 2x–3x longer than the filter delay on the digital receive filter. This  
is true in LIN or BTM mode and ensures that valid data bits which have been  
shortened due to ground shift, asymmetrical rise and fall times, etc., are accepted  
by the filter without exception. This would translate to 2x to 3x reduction in the  
maximum speeds shown in Table 14-8. Recommended maximum bit rates are  
shown in Table 14-9, and ensure that a single bit time is at least twice the length  
of one filter delay value. If system noise is not adequately filtered out it might be  
necessary to change the prescaler of the filter and lower the bit rate of the  
communication. If valid communications are being absorbed by the filter, corrective  
action must be taken to ensure that either the bit rate is reduced or whatever  
physical fault is causing bit times to shorten is corrected (ground offset,  
asymmetrical rise/fall times, insufficient physical layer supply voltage, etc.).  
Data Sheet  
182  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Oscillator Trimming with SLIC  
Table 14-9. Recommended Maximum Bit Rates  
for BTM Operation Due to Digital Filter  
Maximum BTM  
Bit Rate with  
Maximum BTM  
Bit Rate with  
Maximum BTM  
Bit Rate with  
Maximum BTM  
Bit Rate with  
SLIC  
Clock DigitalRXFilterSet DigitalRXFilterSet DigitalRXFilterSet DigitalRXFilterSet  
(MHz)  
to ÷4  
to ÷3  
to ÷2  
to ÷1  
(Bits / Second)  
(Bits / Second)  
(Bits / Second)  
(Bits / Second)  
8
62,500  
50,000  
37,500  
31,250  
25,000  
18,750  
15,625  
83,333  
66,667  
50,000  
41,667  
33,333  
25,000  
20,833  
125,000  
100,000  
75,000  
62,500  
50,000  
37,500  
31,250  
250,000  
200,000  
150,000  
125,000  
100,000  
125,000  
62,500  
6.4  
4.8  
4
3.2  
2.4  
2
14.19 Oscillator Trimming with SLIC  
The SLCACT bit can be used as an indicator of LIN bus activity. SLCACT tells the  
user that the SLIC is currently processing a message header (therefore  
synchronizing to the bus) or processing a message frame (including checksum).  
Therefore, at idle times between message frames or during a message frame  
which has been marked as a "don’t care" by writing the IMSG bit, it is possible to  
trim the oscillator circuit of the MCU with no impact to the LIN communications.  
It is important to note the exact mechanisms with which the SLIC sets and clears  
the SLCACT bit. Any falling edge which successfully passes through the digital  
receive filter will cause the SLCACT bit to become set. This might even include  
noise pulses, if they are of sufficient length to pass through the digital RX filter.  
Although in these cases the SLCACT bit is becoming set on a noise spike, it is very  
probable that noise of this nature will cause other system issues as well such as  
corruption of the message frame. The software can then further qualify if it is  
appropriate to trim the oscillator.  
The SLCACT bit will only be cleared by the SLIC upon successful completion of a  
normal LIN message frame (see 14.6.3 SLIC Status Register description for more  
detail). This means that in some cases, if a message frame terminates with an error  
condition or some source other than those cited in the SLCACT bit description, the  
SLCACT might remain set during an otherwise idle bus time. The SLCACT will then  
clear upon the successful completion of the next LIN message frame.  
These mechanisms might result in SLCACT being set when it is safe (from the  
SLIC module perspective) to trim the oscillator. However, the SLCACT bit will only  
be clear when the SLIC considers it safe to trim the oscillator.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
183  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
In a particular system, it might also be possible to improve the opportunities for  
trimming by utilizing system knowledge and use of the IMSG bit. If a message ID  
is known to be considered a "don’t care" by this particular node, it should be safe  
to trim the oscillator during that message frame (provided that it is safe for the  
application software as well). After the software has done an identifier lookup and  
determined that the ID corresponds to a "don’t care" message, the software might  
choose to set the IMSG bit. From that time, the application software should have  
at least one byte time of message traffic in which to trim the oscillator before that  
ignored message frame expires, regardless of the state of the SLCACT bit. If the  
length of that ignored message frame is known, that knowledge might also be  
utilized to extend the time of this oscillator trimming opportunity.  
Now that the mechanisms for recognizing when the SLIC module indicates safe  
oscillator trimming opportunities are understood, it is important to understand how  
to derive the information needed to perform the trimming.  
The value in the SLCBT register will indicate how many SLIC clock cycles comprise  
one bit time and for any given LIN bus speed, this will be a fixed value if the  
oscillator is running at its ideal frequency. It is possible to use this ideal value  
combined with the measured value in the SLCBT register to determine how to  
adjust the oscillator of the microcontroller.  
The actual oscillator trimming algorithm is very specific to each particular  
implementation, and applications might or might not require the oscillator even to  
be trimmed. The SLIC can maintain communications even with input oscillator  
variation of ±50% (with 4 MHz nominal, that means that any input clock into the  
SLIC from 2 MHz to 6 MHz will still guarantee communications). Since most  
Motorola internal oscillators are at least within ±25% of their nominal value, even  
when untrimmed, this means that trimming of the oscillator is not even required for  
LIN communications. If the application can tolerate the range of frequencies which  
might appear within this manufacturing range, then it is not necessary ever to trim  
the oscillator. This can be a tremendous advantage to the customer, enabling  
migration to very low-cost ROM devices which have no non-volatile memory in  
which to store the trim value.  
NOTE:  
Even though most internal oscillators are within ±25% before trimming, they are  
stable at some frequency in that range, within at least ±5% over the entire  
operating voltage and temperature range. The trimming operation simply  
eliminates the offset due to factory manufacturing variations to re-center the base  
oscillator frequency to the nominal value. Please refer to the electrical  
specifications for the oscillator for more specific information, as exact specifications  
might differ from module to module.  
14.20 Digital Receive Filter  
The receiver section of the SLIC module includes a digital low-pass filter to remove  
narrow noise pulses from the incoming message. An outline of the digital filter is  
shown in Figure 14-30.  
Data Sheet  
184  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Slave LIN Interface Controller (SLIC)  
Digital Receive Filter  
INPUT  
SYNC  
4-BIT UP/DOWN COUNTER  
RX DATA  
FROM  
SLCRX PAD  
4
EDGE &  
COUNT  
COMPARATOR  
FILTERED  
RX DATA OUT  
OUT  
D
Q
D
Q
UP/DOWN  
DIGITAL RX FILTER  
SLIC CLOCK  
PRESCALER (RXFP[1:0])  
Figure 14-30. SLIC Module Rx Digital Filter Block Diagram  
14.20.1 Operation  
The clock for the digital filter is provided by the SLIC Interface clock. At each  
positive edge of the clock signal, the current state of the receiver input signal from  
the SLCRX pad is sampled. The SLCRX signal state is used to determine whether  
the counter should increment or decrement at the next positive edge of the clock  
signal.  
The counter will increment if the input data sample is high but decrement if the input  
sample is low. The counter will thus progress up towards ‘15’ if, on average, the  
SLCRX signal remains high or progress down towards ‘0’ if, on average, the  
SLCRX signal remains low.  
When the counter eventually reaches the value ‘15’, the digital filter decides that  
the condition of the SLCRX signal is at a stable logic level 1 and the data latch is  
set, causing the filtered Rx data signal to become a logic level 1. Furthermore, the  
counter is prevented from overflowing and can only be decremented from this  
state.  
Alternatively, should the counter eventually reach the value ‘0’, the digital filter  
decides that the condition of the SLCRX signal is at a stable logic level 0 and the  
data latch is reset, causing the filtered Rx data signal to become a logic level 0.  
Furthermore, the counter is prevented from underflowing and can only be  
incremented from this state.  
The data latch will retain its value until the counter next reaches the opposite end  
point, signifying a definite transition of the SLCRX signal.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
185  
Slave LIN Interface Controller (SLIC)  
Slave LIN Interface Controller (SLIC)  
14.20.2 Performance  
The performance of the digital filter is best described in the time domain rather than  
the frequency domain.  
If the signal on the SLCRX signal transitions, then there will be a delay before that  
transition appears at the filtered Rx data output signal. This delay will be between  
15 and 16 clock periods, depending on where the transition occurs with respect to  
the sampling points. This ‘filter delay’ is not an issue for SLIC operation, as there  
is no need for message arbitration.  
The effect of random noise on the SLCRX signal depends on the characteristics of  
the noise itself. Narrow noise pulses on the SLCRX signal will be completely  
ignored if they are shorter than the filter delay. This provides a degree of low-pass  
filtering. Figure 14-30 shows the configuration of the digital receive filter and the  
consequential effect on the filter delay. This filter delay value indicates that for a  
particular setup, only pulses of which are greater than the filter delay will pass the  
filter.  
For example, if the frequency of the SLIC clock (fSLIC) is 3.2 MHz, then the period  
(tSLIC) is of the SLIC clock is 313 ns. With the default receive filter prescaler setting  
of division by 3, the resulting maximum filter delay in the absence of noise will be  
15.00 µs. By simply changing the prescaler of the receive filter, the user can then  
select alternatively 5 µs, 10 µs, or 20 µs as a minimum filter delay according to the  
systems requirements.  
If noise occurs during a symbol transition, the detection of that transition may be  
delayed by an amount equal to the length of the noise burst. This is just a reflection  
of the uncertainty of where the transition is truly occurring within the noise.  
NOTE:  
The user must always account for the worst case bit timing of their LIN bus when  
configuring the digital receive filter, especially if running at faster speeds. Ground  
offset and other physical layer conditions can cause shortening of bits as seen at  
the digital receive pin, for example. If these shortened bit lengths are less than the  
filter delay, the bits will be interpreted by the filter as noise and will be blocked, even  
though the nominal bit timing might be greater than the filter delay.  
Data Sheet  
186  
MC68HC908QL Family — Rev. 2  
Slave LIN Interface Controller (SLIC)  
MOTOROLA  
Data Sheet — MC68HC908QL4 Family  
Section 15. Timer Interface Module (TIM)  
15.1 Introduction  
This section describes the timer interface module (TIM). The TIM is a two-channel  
timer that provides a timing reference with input capture, output compare, and  
pulse-width-modulation functions. Figure 15-2 is a block diagram of the TIM.  
15.2 Features  
Features of the TIM include the following:  
Two input capture/output compare channels  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered pulse width modulation (PWM) signal generation  
Programmable TIM clock input  
7-frequency internal bus clock prescaler selection  
External TIM clock input  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIM counter stop and reset bits  
15.3 Pin Name Conventions  
The TIM shares two input/output (I/O) pins with two port A I/O pins. The full names  
of the TIM I/O pins are listed in Table 15-1. The generic pin name appear in the  
text that follows.  
Table 15-1. Pin Name Conventions  
TIM Generic Pin Names:  
Full TIM Pin Names:  
TCH0  
TCH1  
TCLK  
PTB0/TCH0  
PTA1/TCH1  
PTA2/TCLK  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
187  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
PTA0/AD0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
(OSCILLATOR)  
SYSTEM INTEGRATION  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
SINGLE INTERRUPT  
MODULE  
M68HC08 CPU  
PTB0/TCH0  
PTB1  
BREAK  
MODULE  
PTB2/AD4  
PTB3/AD5  
PTB4/SLCRX  
PTB5/SLCTX  
PTB6  
POWER-ON RESET  
MODULE  
KEYBOARD INTERRUPT  
MODULE  
PTB7  
2-CH 16-BIT TIMER  
MODULE  
MC68HC908QL4 AND MC68HC908QL3: 4096 BYTES  
MC68HC908QL2: 2048 BYTES  
USER FLASH  
SLAVE LIN INTERFACE  
CONTROLLER  
COP  
MODULE  
6-CHANNEL 10-BIT  
ADC  
MONITOR ROM  
128 BYTES RAM  
VDD  
VSS  
POWER SUPPLY  
RST, IRQ: Pins have internal (about 30 k) pull up  
PTA0, PTA1, PTA3–PTA5: High current sink and source capability  
PTA0–PTA5: Pins have programmable keyboard interrupt and pull up  
ADC pins only available on MC68HC908QL4 and MC68HC908QL2  
Figure 15-1. Block Diagram Highlighting TIM Block and Pins  
Data Sheet  
188  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
Functional Description  
15.4 Functional Description  
Figure 15-2 shows the structure of the TIM. The central component of the TIM is  
the 16-bit TIM counter that can operate as a free-running counter or a modulo  
up-counter. The TIM counter provides the timing reference for the input capture  
and output compare functions. The TIM counter modulo registers,  
TMODH:TMODL, control the modulo value of the TIM counter. Software can read  
the TIM counter value at any time without affecting the counting sequence.  
The two TIM channels are programmable independently as input capture or output  
compare channels.  
PTA2/IRQ/KBI2/TCLK  
PRESCALER SELECT  
PRESCALER  
INTERNAL  
BUS CLOCK  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
ELS0B  
ELS0A  
PORT  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
CH0MAX  
TCH0  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH0IE  
MS0A  
MS0B  
CH1F  
TOV1  
ELS1B  
ELS1A  
PORT  
LOGIC  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
TCH1  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH1IE  
MS1A  
Figure 15-2. TIM Block Diagram  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
189  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
Addr.  
Register Name  
Bit 7  
TOF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
0
TIM Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
Register (TSC) Write:  
See page 197.  
Reset:  
TRST  
0
0
0
1
0
0
0
0
Read:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
TIM Counter Register High  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
(TCNTH) Write:  
See page 199.  
TIM Counter Register Low  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(TCNTL) Write:  
See page 199.  
TIM Counter Modulo  
Reset:  
Read:  
0
Bit 15  
1
0
Bit 14  
1
0
Bit 13  
1
0
Bit 12  
1
0
Bit 11  
1
0
Bit 10  
1
0
Bit 9  
1
0
Bit 8  
Register High (TMODH) Write:  
See page 199.  
Reset:  
1
Bit 0  
1
Read:  
TIM Counter Modulo  
Register Low (TMODL) Write:  
Bit 7  
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
1
Bit 2  
1
Bit 1  
1
See page 199.  
Reset:  
1
CH0F  
0
Read:  
TIM Channel 0 Status and  
Control Register (TSC0) Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
CH0MAX  
0
See page 200.  
Reset:  
0
Read:  
TIM Channel 0  
Register High (TCH0H) Write:  
Bit 15  
Bit 7  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See page 203.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
Read:  
TIM Channel 0  
Register Low (TCH0L) Write:  
Bit 6  
Bit 5  
0
Bit 2  
Bit 1  
Bit 0  
See page 203.  
Reset:  
Read:  
CH1F  
TIM Channel 1 Status and  
Control Register (TSC1) Write:  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
0
0
See page 200.  
Reset:  
0
0
Read:  
TIM Channel 1  
Register High (TCH1H) Write:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See page 203.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
Read:  
TIM Channel 1  
Register Low (TCH1L) Write:  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
See page 203.  
Reset:  
= Unimplemented  
Figure 15-3. TIM I/O Register Summary  
Data Sheet  
190  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
Functional Description  
15.4.1 TIM Counter Prescaler  
The TIM clock source is one of the seven prescaler outputs or the TIM clock pin,  
TCLK. The prescaler generates seven clock rates from the internal bus clock. The  
prescaler select bits, PS[2:0], in the TIM status and control register (TSC) select  
the TIM clock source.  
15.4.2 Input Capture  
With the input capture function, the TIM can capture the time at which an external  
event occurs. When an active edge occurs on the pin of an input capture channel,  
the TIM latches the contents of the TIM counter into the TIM channel registers,  
TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures  
can generate TIM central processor unit (CPU) interrupt requests.  
15.4.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse with a  
programmable polarity, duration, and frequency. When the counter reaches the  
value in the registers of an output compare channel, the TIM can set, clear, or  
toggle the channel pin. Output compares can generate TIM CPU interrupt  
requests.  
15.4.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as  
described in 15.4.3 Output Compare. The pulses are unbuffered because  
changing the output compare value requires writing the new value over the old  
value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an output compare  
value could cause incorrect operation for up to two counter overflow periods. For  
example, writing a new value before the counter reaches the old value but after the  
counter reaches the new value prevents any compare during that counter overflow  
period. Also, using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass the new  
value before it is written.  
Use the following methods to synchronize unbuffered changes in the output  
compare value on channel x:  
When changing to a smaller value, enable channel x output compare  
interrupts and write the new value in the output compare interrupt routine.  
The output compare interrupt occurs at the end of the current output  
compare pulse. The interrupt routine has until the end of the counter  
overflow period to write the new value.  
When changing to a larger output compare value, enable TIM overflow  
interrupts and write the new value in the TIM overflow interrupt routine. The  
TIM overflow interrupt occurs at the end of the current counter overflow  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
Timer Interface Module (TIM)  
191  
Timer Interface Module (TIM)  
period. Writing a larger value in an output compare interrupt routine (at the  
end of the current pulse) could cause two output compares to occur in the  
same counter overflow period.  
15.4.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose  
output appears on the TCH0 pin. The TIM channel registers of the linked pair  
alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links  
channel 0 and channel 1. The output compare value in the TIM channel 0 registers  
initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers  
enables the TIM channel 1 registers to synchronously control the output after the  
TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that  
control the output are the ones written to last. TSC0 controls and monitors the  
buffered output compare function, and TIM channel 1 status and control register  
(TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available  
as a general-purpose I/O pin.  
NOTE:  
In buffered output compare operation, do not write new output compare values to  
the currently active channel registers. User software should track the currently  
active channel to prevent writing a new value to the active channel. Writing to the  
active channel registers is the same as generating unbuffered output compares.  
15.4.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIM  
can generate a PWM signal. The value in the TIM counter modulo registers  
determines the period of the PWM signal. The channel pin toggles when the  
counter reaches the value in the TIM counter modulo registers. The time between  
overflows is the period of the PWM signal.  
As Figure 15-4 shows, the output compare value in the TIM channel registers  
determines the pulse width of the PWM signal. The time between overflow and  
output compare is the pulse width. Program the TIM to clear the channel pin on  
output compare if the state of the PWM pulse is logic 1. Program the TIM to set the  
pin if the state of the PWM pulse is logic 0.  
The value in the TIM counter modulo registers and the selected prescaler output  
determines the frequency of the PWM output. The frequency of an 8-bit PWM  
signal is variable in 256 increments. Writing $00FF (255) to the TIM counter  
modulo registers produces a PWM period of 256 times the internal bus clock period  
if the prescaler select value is 000. See 15.9.1 TIM Status and Control Register.  
The value in the TIM channel registers determines the pulse width of the PWM  
output. The pulse width of an 8-bit PWM signal is variable in 256 increments.  
Writing $0080 (128) to the TIM channel registers produces a duty cycle of 128/256  
or 50%.  
Data Sheet  
192  
MC68HC908QL Family — Rev. 2  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Functional Description  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 15-4. PWM Period and Pulse Width  
15.4.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described  
in 15.4.4 Pulse Width Modulation (PWM). The pulses are unbuffered because  
changing the pulse width requires writing the new pulse width value over the old  
value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change a pulse width  
value could cause incorrect operation for up to two PWM periods. For example,  
writing a new value before the counter reaches the old value but after the counter  
reaches the new value prevents any compare during that PWM period. Also, using  
a TIM overflow interrupt routine to write a new, smaller pulse width value may  
cause the compare to be missed. The TIM may pass the new value before it is  
written.  
Use the following methods to synchronize unbuffered changes in the PWM pulse  
width on channel x:  
When changing to a shorter pulse width, enable channel x output compare  
interrupts and write the new value in the output compare interrupt routine.  
The output compare interrupt occurs at the end of the current pulse. The  
interrupt routine has until the end of the PWM period to write the new value.  
When changing to a longer pulse width, enable TIM overflow interrupts and  
write the new value in the TIM overflow interrupt routine. The TIM overflow  
interrupt occurs at the end of the current PWM period. Writing a larger value  
in an output compare interrupt routine (at the end of the current pulse) could  
cause two output compares to occur in the same PWM period.  
NOTE:  
In PWM signal generation, do not program the PWM channel to toggle on output  
compare. Toggling on output compare prevents reliable 0% duty cycle generation  
and removes the ability of the channel to self-correct in the event of software error  
or noise. Toggling on output compare also can cause incorrect PWM signal  
generation when changing the PWM pulse width to a new, much larger value.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
193  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
15.4.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output  
appears on the TCH0 pin. The TIM channel registers of the linked pair alternately  
control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links  
channel 0 and channel 1. The TIM channel 0 registers initially control the pulse  
width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM  
channel 1 registers to synchronously control the pulse width at the beginning of the  
next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1)  
that control the pulse width are the ones written to last. TSC0 controls and monitors  
the buffered PWM function, and TIM channel 1 status and control register (TSC1)  
is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a  
general-purpose I/O pin.  
NOTE:  
In buffered PWM signal generation, do not write new pulse width values to the  
currently active channel registers. User software should track the currently active  
channel to prevent writing a new value to the active channel. Writing to the active  
channel registers is the same as generating unbuffered PWM signals.  
15.4.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals,  
use the following initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter and prescaler by setting the TIM reset bit,  
TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the value for  
the required PWM period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the  
required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for  
buffered output compare or PWM signals) to the mode select bits,  
MSxB:MSxA. See Table 15-3.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare)  
to the edge/level select bits, ELSxB:ELSxA. The output action on  
compare must force the output to the complement of the pulse width  
level. See Table 15-3.  
NOTE:  
In PWM signal generation, do not program the PWM channel to toggle on output  
compare. Toggling on output compare prevents reliable 0% duty cycle generation  
and removes the ability of the channel to self-correct in the event of software error  
Data Sheet  
194  
MC68HC908QL Family — Rev. 2  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Interrupts  
or noise. Toggling on output compare can also cause incorrect PWM signal  
generation when changing the PWM pulse width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM  
operation. The TIM channel 0 registers (TCH0H:TCH0L) initially control the  
buffered PWM output. TIM status control register 0 (TSCR0) controls and monitors  
the PWM signal from the linked channels. MS0B takes priority over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows.  
Subsequent output compares try to force the output to a state it is already in and  
have no effect. The result is a 0% duty cycle output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit  
generates a 100% duty cycle output. See 15.9.4 TIM Channel Status and Control  
Registers.  
15.5 Interrupts  
The following TIM sources can generate interrupt requests:  
TIM overflow flag (TOF) — The TOF bit is set when the TIM counter reaches  
the modulo value programmed in the TIM counter modulo registers. The TIM  
overflow interrupt enable bit, TOIE, enables TIM overflow CPU interrupt  
requests. TOF and TOIE are in the TIM status and control register.  
TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an input  
capture or output compare occurs on channel x. Channel x TIM CPU  
interrupt requests are controlled by the channel x interrupt enable bit,  
CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE =1.  
CHxF and CHxIE are in the TIM channel x status and control register.  
15.6 Wait Mode  
The WAIT instruction puts the MCU in low power-consumption standby mode.  
The TIM remains active after the execution of a WAIT instruction. In wait mode the  
TIM registers are not accessible by the CPU. Any enabled CPU interrupt request  
from the TIM can bring the MCU out of wait mode.  
If TIM functions are not required during wait mode, reduce power consumption by  
stopping the TIM before executing the WAIT instruction.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
195  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
15.7 TIM During Break Interrupts  
A break interrupt stops the TIM counter.  
The system integration module (SIM) controls whether status bits in other modules  
can be cleared during the break state. The BCFE bit in the break flag control  
register (BFCR) enables software to clear status bits during the break state. See  
13.8.2 Break Flag Control Register.  
To allow software to clear status bits during a break interrupt, write a 1 to the BCFE  
bit. If a status bit is cleared during the break state, it remains cleared when the MCU  
exits the break state.  
To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE  
at 0 (its default state), software can read and write I/O registers during the break  
state without affecting status bits. Some status bits have a two-step read/write  
clearing procedure. If software does the first step on such a bit before the break,  
the bit cannot change during the break state as long as BCFE is at 0. After the  
break, doing the second step clears the status bit.  
15.8 Input/Output Signals  
Port A shares two of its pins and port B shares one of its pins with the TIM. Two  
TIM channel I/O pins are PTB0/TCH0 and PTA1/TCH1 and an alternate clock  
source is PTA2/TCLK.  
15.8.1 TIM Clock Pin (PTA2/TCLK)  
PTA2/TCLK is an external clock input that can be the clock source for the TIM  
counter instead of the prescaled internal bus clock. Select the PTA2/TCLK input  
by writing logic 1s to the three prescaler select bits, PS[2–0]. (See 15.9.1 TIM  
Status and Control Register.) When the PTA2/TCLK pin is the TIM clock input, it  
is an input regardless of port pin initialization.  
15.8.2 TIM Channel I/O Pins (PTB0/TCH0 and PTA1/TCH1)  
Each channel I/O pin is programmable independently as an input capture pin or an  
output compare pin. PTB0/TCH0 can be configured as a buffered output compare  
or buffered PWM pin.  
Data Sheet  
196  
MC68HC908QL Family — Rev. 2  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Input/Output Registers  
15.9 Input/Output Registers  
The following I/O registers control and monitor operation of the TIM:  
TIM status and control register (TSC)  
TIM control registers (TCNTH:TCNTL)  
TIM counter modulo registers (TMODH:TMODL)  
TIM channel status and control registers (TSC0 and TSC1)  
TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L)  
15.9.1 TIM Status and Control Register  
The TIM status and control register (TSC) does the following:  
Enables TIM overflow interrupts  
Flags TIM overflows  
Stops the TIM counter  
Resets the TIM counter  
Prescales the TIM counter clock  
Address: $0020  
Bit 7  
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TOF  
0
0
TRST  
0
0
= Unimplemented  
Figure 15-5. TIM Status and Control Register (TSC)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter reaches the modulo value  
programmed in the TIM counter modulo registers. Clear TOF by reading the TIM  
status and control register when TOF is set and then writing a 0 to TOF. If  
another TIM overflow occurs before the clearing sequence is complete, then  
writing 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost  
due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a 1 to TOF  
has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit becomes  
set. Reset clears the TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
197  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
TSTOP — TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when TSTOP is  
cleared. Reset sets the TSTOP bit, stopping the TIM counter until software  
clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE:  
Do not set the TSTOP bit before entering wait mode if the TIM is required to exit  
wait mode.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting  
TRST has no effect on any other registers. Counting resumes from $0000.  
TRST is cleared automatically after the TIM counter is reset and always reads  
as 0. Reset clears the TRST bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE:  
Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value  
of $0000.  
PS[2:0] — Prescaler Select Bits  
These read/write bits select either the PTA2/TCLK pin or one of the seven  
prescaler outputs as the input to the TIM counter as Table 15-2 shows. Reset  
clears the PS[2:0] bits.  
Table 15-2. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
PTA2/TCLK  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Data Sheet  
198  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
Input/Output Registers  
15.9.2 TIM Counter Registers  
The two read-only TIM counter registers contain the high and low bytes of the value  
in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low  
byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched  
TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting  
the TIM reset bit (TRST) also clears the TIM counter registers.  
NOTE:  
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading  
TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value  
latched during the break.  
Address: $0021  
Bit 7  
TCNTH  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
0
0
TCNTL  
6
0
0
0
0
0
0
$0022  
Address:  
Bit 7  
Bit 7  
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 15-6. TIM Counter Registers (TCNTH:TCNTL)  
15.9.3 TIM Counter Modulo Registers  
The read/write TIM modulo registers contain the modulo value for the TIM counter.  
When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes  
set, and the TIM counter resumes counting from $0000 at the next timer clock.  
Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until  
the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.  
Address: $0023  
Bit 7  
TMODH  
6
5
Bit 13  
1
4
Bit 12  
1
3
Bit 11  
1
2
Bit 10  
1
1
Bit 9  
1
Bit 0  
Bit 8  
1
Read:  
Write:  
Reset:  
Bit 15  
1
Bit 14  
1
TMODL  
6
Address: $0024  
Bit 7  
5
Bit 5  
1
4
Bit 4  
1
3
Bit 3  
1
2
Bit 2  
1
1
Bit 1  
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Bit 7  
1
Bit 6  
1
Figure 15-7. TIM Counter Modulo Registers (TMODH:TMODL)  
NOTE:  
Reset the TIM counter before writing to the TIM counter modulo registers.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
199  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
15.9.4 TIM Channel Status and Control Registers  
Each of the TIM channel status and control registers does the following:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input capture  
trigger  
Selects output toggling on TIM overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Address: $0025  
Bit 7  
TSC0  
6
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
CH0F  
CH0IE  
0
0
0
$0028  
TSC1  
Address:  
Bit 7  
CH1F  
0
6
CH1IE  
0
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
0
0
= Unimplemented  
Figure 15-8. TIM Channel Status and Control  
Registers (TSC0:TSC1)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set when an  
active edge occurs on the channel x pin. When channel x is an output compare  
channel, CHxF is set when the value in the TIM counter registers matches the  
value in the TIM channel x registers.  
Clear CHxF by reading the TIM channel x status and control register with CHxF  
set and then writing a 0 to CHxF. If another interrupt request occurs before the  
clearing sequence is complete, then writing 0 to CHxF has no effect. Therefore,  
an interrupt request cannot be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
Data Sheet  
200  
MC68HC908QL Family — Rev. 2  
Timer Interface Module (TIM)  
MOTOROLA  
Timer Interface Module (TIM)  
Input/Output Registers  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupt service requests on channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB  
exists only in the TIM channel 0 status and control register.  
Setting MS0B disables the channel 1 status and control register and reverts  
TCH1 to general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture operation or  
unbuffered output compare/PWM operation.  
See Table 15-3.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level of the  
TCHx pin (see Table 15-3). Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE:  
Before changing a channel function by writing to the MSxB or MSxA bit, set the  
TSTOP and TRST bits in the TIM status and control register (TSC).  
Table 15-3. Mode, Edge, and Level Selection  
MSxB MSxA  
ELSxB  
ELSxA  
Mode  
Configuration  
Pin under port control;  
initial output level high  
X
X
0
1
0
0
Output preset  
Pin under port control;  
initial output level low  
0
0
0
0
0
0
0
0
0
1
1
0
0
0
1
1
1
1
X
X
0
1
1
0
0
1
1
0
1
1
0
1
0
1
0
1
1
0
Capture on rising edge only  
Capture on falling edge only  
Capture on rising or falling edge  
Software compare only  
Input capture  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Output compare  
or PWM  
Buffered  
output  
compare or  
buffered PWM  
Toggle output on compare  
Clear output on compare  
1
X
1
1
Set output on compare  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
201  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the  
active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the  
channel x output behavior when an output compare occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected to an I/O  
port, and pin TCHx is available as a general-purpose I/O pin. Table 15-3 shows  
how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits.  
NOTE:  
After initially enabling a TIM channel register for input capture operation and  
selecting the edge sensitivity, clear CHxF to ignore any erroneous edge detection  
flags.  
TOVx — Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the  
behavior of the channel x output when the TIM counter overflows. When  
channel x is an input capture channel, TOVx has no effect. Reset clears the  
TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow.  
0 = Channel x pin does not toggle on TIM counter overflow.  
NOTE:  
When TOVx is set, a TIM counter overflow takes precedence over a channel x  
output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at 1, setting the CHxMAX bit forces the duty cycle of  
buffered and unbuffered PWM signals to 100%. As Figure 15-9 shows, the  
CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays  
at the 100% duty cycle level until the cycle after CHxMAX is cleared.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
Figure 15-9. CHxMAX Latency  
Data Sheet  
202  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
Input/Output Registers  
15.9.5 TIM Channel Registers  
These read/write registers contain the captured TIM counter value of the input  
capture function or the output compare value of the output compare function. The  
state of the TIM channel registers after reset is unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM  
channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is  
read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of the TIM  
channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is  
written.  
Address: $0026  
Bit 7  
TCH0H  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Indeterminate after reset  
$0027  
TCH0L  
6
Address:  
Bit 7  
Bit 7  
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Reset:  
Indeterminate after reset  
$0029  
TCH1H  
6
Address:  
Bit 7  
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Reset:  
Indeterminate after reset  
$02A  
TCH1L  
6
Address:  
Bit 7  
Bit 7  
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
Figure 15-10. TIM Channel Registers (TCH0H/L:TCH1H/L)  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
203  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
Data Sheet  
204  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Timer Interface Module (TIM)  
Data Sheet — MC68HC908QL4 Family  
Section 16. Development Support  
16.1 Introduction  
This section describes the break module, the monitor module, and the monitor  
mode entry methods.  
16.2 Break Module (BRK)  
The break module can generate a break interrupt that stops normal program flow  
at a defined address to enter a background program.  
Features include:  
Accessible input/output (I/O) registers during the break Interrupt  
Central processor unit (CPU) generated break interrupts  
Software-generated break interrupts  
Computer operating properly (COP) disabling during break interrupts  
16.2.1 Functional Description  
When the internal address bus matches the value written in the break address  
registers, the break module issues a breakpoint signal (BKPT) to the system  
integration module (SIM). The SIM then causes the CPU to load the instruction  
register with a software interrupt instruction (SWI). The program counter vectors to  
$FFFC and $FFFD ($FEFC and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
A CPU generated address (the address in the program counter) matches  
the contents of the break address registers.  
Software writes a 1 to the BRKA bit in the break status and control register.  
When a CPU generated address matches the contents of the break address  
registers, the break interrupt is generated. A return-from-interrupt instruction (RTI)  
in the break routine ends the break interrupt and returns the microcontroller unit  
(MCU) to normal operation.  
Figure 16-2 shows the structure of the break module.  
Figure 16-3 provides a summary of the I/O registers.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
205  
Development Support  
Development Support  
PTA0/AD0/KBI0  
PTA1/AD1/TCH1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
(OSCILLATOR)  
SYSTEM INTEGRATION  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
SINGLE INTERRUPT  
MODULE  
M68HC08 CPU  
PTB0/TCH0  
PTB1  
BREAK  
MODULE  
PTB2/AD4  
PTB3/AD5  
PTB4/SLCRX  
PTB5/SLCTX  
PTB6  
POWER-ON RESET  
MODULE  
KEYBOARD INTERRUPT  
MODULE  
PTB7  
2-CH 16-BIT TIMER  
MODULE  
MC68HC908QL4 AND MC68HC908QL3: 4096 BYTES  
MC68HC908QL2: 2048 BYTES  
USER FLASH  
SLAVE LIN INTERFACE  
CONTROLLER  
COP  
MODULE  
6-CHANNEL 10-BIT  
ADC  
MONITOR ROM  
128 BYTES RAM  
VDD  
POWER SUPPLY  
VSS  
RST, IRQ: Pins have internal (about 30 k) pull up  
PTA0, PTA1, PTA3–PTA5: High current sink and source capability  
PTA0–PTA5: Pins have programmable keyboard interrupt and pull up  
ADC pins only available on MC68HC908QL4 and MC68HC908QL2  
Figure 16-1. Block Diagram Highlighting BRK and MON Blocks  
Data Sheet  
206  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Development Support  
Development Support  
Break Module (BRK)  
ADDRESS BUS[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
ADDRESS BUS[15:0]  
CONTROL  
BKPT  
(TO SIM)  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
ADDRESS BUS[7:0]  
Figure 16-2. Break Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
SBSW  
Note(1)  
0
Bit 0  
Read:  
Break Status Register  
(BSR) Write:  
R
R
R
R
R
R
R
$FE00  
See page 211.  
Reset:  
Read:  
0
0
0
0
0
0
0
Break Auxiliary Register  
BDCOP  
$FE02  
$FE03  
$FE09  
$FE0A  
$FE0B  
(BRKAR) Write:  
See page 210.  
Reset:  
Read:  
0
BCFE  
0
0
0
0
0
0
0
0
Break Flag Control  
R
R
R
R
R
R
R
Register (BFCR) Write:  
See page 211.  
Reset:  
Read:  
Break Address High  
Register (BRKH) Write:  
Bit 15  
0
Bit 14  
0
Bit 13  
0
Bit 12  
0
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
See page 210.  
Reset:  
Read:  
Break Address Low  
Register (BRKL) Write:  
Bit 7  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
See page 210.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
Register (BRKSCR) Write:  
BRKE  
0
BRKA  
0
See page 209.  
Reset:  
0
0
0
0
0
0
1. Writing a 0 clears SBSW.  
= Unimplemented  
R
= Reserved  
Figure 16-3. Break I/O Register Summary  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
207  
Development Support  
Development Support  
When the internal address bus matches the value written in the break address  
registers or when software writes a 1 to the BRKA bit in the break status and control  
register, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD  
in monitor mode)  
The break interrupt timing is:  
When a break address is placed at the address of the instruction opcode,  
the instruction is not executed until after completion of the break interrupt  
routine.  
When a break address is placed at an address of an instruction operand, the  
instruction is executed before the break interrupt.  
When software writes a 1 to the BRKA bit, the break interrupt occurs just  
before the next instruction is executed.  
By updating a break address and clearing the BRKA bit in a break interrupt routine,  
a break interrupt can be generated continuously.  
CAUTION:  
A break address should be placed at the address of the instruction opcode. When  
software does not change the break address and clears the BRKA bit in the first  
break interrupt routine, the next break interrupt will not be generated after exiting  
the interrupt routine even when the internal address bus matches the value written  
in the break address registers.  
16.2.1.1 Flag Protection During Break Interrupts  
The system integration module (SIM) controls whether or not module status bits  
can be cleared during the break state. The BCFE bit in the break flag control  
register (BFCR) enables software to clear status bits during the break state. See  
13.8.2 Break Flag Control Register and the Break Interrupts subsection for  
each module.  
16.2.1.2 TIM During Break Interrupts  
A break interrupt stops the timer counter.  
16.2.1.3 COP During Break Interrupts  
The COP is disabled during a break interrupt with monitor mode when BDCOP bit  
is set in break auxiliary register (BRKAR).  
Data Sheet  
208  
MC68HC908QL Family — Rev. 2  
Development Support  
MOTOROLA  
Development Support  
Break Module (BRK)  
16.2.2 Break Module Registers  
These registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
Break status register (BSR)  
Break flag control register (BFCR)  
16.2.2.1 Break Status and Control Register  
The break status and control register (BRKSCR) contains break module enable  
and status bits.  
$FE0B  
Bit 7  
Address:  
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
BRKE  
0
0
0
0
0
0
0
= Unimplemented  
Figure 16-4. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches. Clear  
BRKE by writing a 0 to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address match occurs.  
Writing a 1 to BRKA generates a break interrupt. Clear BRKA by writing a 0 to  
it before exiting the break routine. Reset clears the BRKA bit.  
1 = Break address match  
0 = No break address match  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
209  
Development Support  
Development Support  
16.2.2.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low bytes of  
the desired breakpoint address. Reset clears the break address registers.  
$FE09  
Address:  
Bit 7  
6
Bit 14  
0
5
Bit 13  
0
4
Bit 12  
0
3
Bit 11  
0
2
Bit 10  
0
1
Bit 9  
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Bit 15  
0
Figure 16-5. Break Address Register High (BRKH)  
$FE0A  
Address:  
Bit 7  
Bit 7  
0
6
Bit 6  
0
5
Bit 5  
0
4
Bit 4  
0
3
Bit 3  
0
2
Bit 2  
0
1
Bit 1  
0
Bit 0  
Bit 0  
0
Read:  
Write:  
Reset:  
Figure 16-6. Break Address Register Low (BRKL)  
16.2.2.3 Break Auxiliary Register  
The break auxiliary register (BRKAR) contains a bit that enables software to  
disable the COP while the MCU is in a state of break interrupt with monitor mode.  
$FE02  
Address:  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
BDCOP  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 16-7. Break Auxiliary Register (BRKAR)  
BDCOP — Break Disable COP Bit  
This read/write bit disables the COP during a break interrupt. Reset clears the  
BDCOP bit.  
1 = COP disabled during break interrupt  
0 = COP enabled during break interrupt  
Data Sheet  
210  
MC68HC908QL Family — Rev. 2  
Development Support  
MOTOROLA  
Development Support  
Break Module (BRK)  
16.2.2.4 Break Status Register  
The break status register (BSR) contains a flag to indicate that a break caused an  
exit from wait mode. This register is only used in emulation mode.  
Address: $FE00  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
R
R
R
R
R
= Reserved  
1. Writing a 0 clears SBSW.  
Figure 16-8. Break Status Register (BSR)  
SBSW — SIM Break Stop/Wait  
SBSW can be read within the break state SWI routine. The user can modify the  
return address on the stack by subtracting one from it.  
1 = Wait mode was exited by break interrupt  
0 = Wait mode was not exited by break interrupt  
16.2.2.5 Break Flag Control Register  
The break control register (BFCR) contains a bit that enables software to clear  
status bits while the MCU is in a break state.  
$FE03  
Address:  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
= Reserved  
R
Figure 16-9. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status  
registers while the MCU is in a break state. To clear status bits during the break  
state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
211  
Development Support  
Development Support  
16.2.3 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby  
modes. If enabled, the break module will remain enabled in wait and stop modes.  
However, since the internal address bus does not increment in these modes, a  
break interrupt will never be triggered.  
16.3 Monitor Module (MON)  
The monitor module (MON) allows debugging and programming of the  
microcontroller unit (MCU) through a single-wire interface with a host computer.  
Monitor mode entry can be achieved without use of the higher test voltage, VTST  
as long as vector addresses $FFFE and $FFFF are blank, thus reducing the  
hardware requirements for in-circuit programming.  
,
Features include:  
Normal user-mode pin functionality  
One pin dedicated to serial communication between MCU and host  
computer  
Standard non-return-to-zero (NRZ) communication with host computer  
Execution of code in random-access memory (RAM) or FLASH  
FLASH memory security feature(1)  
FLASH memory programming interface  
Use of external 9.8304 MHz crystal or clock to generate internal frequency  
of 2.4576 MHz  
Simple internal oscillator mode of operation (no external clock or high  
voltage)  
Monitor mode entry without high voltage, VTST, if reset vector is blank  
($FFFE and $FFFF contain $FF)  
Normal monitor mode entry if VTST is applied to IRQ  
16.3.1 Functional Description  
Figure 16-10 shows a simplified diagram of monitor mode entry.  
The monitor module receives and executes commands from a host computer.  
Figure 16-11, Figure 16-12, and Figure 16-13 show example circuits used to  
enter monitor mode and communicate with a host computer via a standard RS-232  
interface.  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Data Sheet  
212  
MC68HC908QL Family — Rev. 2  
Development Support  
MOTOROLA  
Development Support  
Monitor Module (MON)  
POR RESET  
YES  
NO  
IRQ = VTST  
?
CONDITIONS  
FROM Table 16-1  
PTA0 = 1,  
PTA1 = 1, AND  
PTA4 = 0?  
PTA0 = 1,  
RESET VECTOR  
BLANK?  
NO  
NO  
YES  
YES  
FORCED  
MONITOR MODE  
NORMAL  
USER MODE  
NORMAL  
MONITOR MODE  
INVALID  
USER MODE  
HOST SENDS  
8 SECURITY BYTES  
YES  
IS RESET  
POR?  
NO  
ARE ALL  
SECURITY BYTES  
CORRECT?  
YES  
NO  
ENABLE FLASH  
DISABLE FLASH  
MONITOR MODE ENTRY  
DEBUGGING  
AND FLASH  
PROGRAMMING  
(IF FLASH  
IS ENABLED)  
EXECUTE  
MONITOR CODE  
NO  
YES  
DOES RESET  
OCCUR?  
Figure 16-10. Simplified Monitor Mode Entry Flowchart  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
213  
Development Support  
Development Support  
VDD  
VDD  
10 k*  
VDD  
RST (PTA3)  
0.1 µF  
9.8304 MHz CLOCK  
VTST  
MAX232  
VDD  
OSC1 (PTA5)  
1
16  
15  
2
C1+  
+
+
+
VDD  
1 µF  
1 µF  
3
4
C1–  
C2+  
1 µF  
+
1 kΩ  
10 k*  
10 k*  
PTA1  
V+  
V–  
IRQ (PTA2)  
VDD  
1 µF  
6
5
9.1 V  
C2–  
1 µF  
10 kΩ  
+
PTA4  
74HC125  
6
DB9  
5
10  
9
2
7
8
PTA0  
74HC125  
3
2
4
3
5
VSS  
1
* Value not critical  
Figure 16-11. Monitor Mode Circuit (External Clock, with High Voltage)  
VDD  
N.C.  
RST (PTA3)  
VDD  
0.1 µF  
MAX232  
VDD  
1
16  
15  
2
9.8304 MHz CLOCK  
C1+  
OSC1 (PTA5)  
+
+
+
1 µF  
1 µF  
3
4
1 µF  
C1–  
C2+  
+
PTA1  
PTA4  
N.C.  
N.C.  
10 k*  
V+  
V–  
VDD  
IRQ (PTA2)  
1 µF  
6
5
C2–  
1 µF  
10 kΩ  
+
74HC125  
DB9  
5
10  
9
2
7
8
6
PTA0  
74HC125  
3
4
3
5
2
VSS  
1
* Value not critical  
Figure 16-12. Forced Monitor Mode Circuit (External Clock, No High Voltage)  
Data Sheet  
214  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Development Support  
Development Support  
Monitor Module (MON)  
VDD  
N.C.  
N.C.  
RST (PTA3)  
VDD  
0.1 µF  
MAX232  
VDD  
OSC1 (PTA5)  
IRQ (PTA2)  
1
16  
15  
2
C1+  
+
+
+
1 µF  
1 µF  
PTA1  
PTA4  
N.C.  
N.C.  
3
4
1 µF  
C1–  
C2+  
+
10 k*  
V+  
V–  
VDD  
1 µF  
6
5
C2–  
1 µF  
10 kΩ  
+
74HC125  
DB9  
5
10  
9
2
7
8
6
PTA0  
VSS  
74HC125  
3
2
4
3
5
1
* Value not critical  
Figure 16-13. Forced Monitor Mode Circuit (Internal Clock, No High Voltage)  
Simple monitor commands can access any memory address. In monitor mode, the  
MCU can execute code downloaded into RAM by a host computer while most MCU  
pins retain normal operating mode functions. All communication between the host  
computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing  
interface is required between PTA0 and the host computer. PTA0 is used in a  
wired-OR configuration and requires a pullup resistor.  
The monitor code has been updated from previous versions of the monitor code to  
allow enabling the internal oscillator to generate the internal clock. This addition,  
which is enabled when IRQ is held low out of reset, is intended to support serial  
communication/programming at 9600 baud in monitor mode by using the internal  
oscillator, and the internal oscillator user trim value OSCTRIM (FLASH location  
$FFC0, if programmed) to generate the desired internal frequency (3.2 MHz).  
Since this feature is enabled only when IRQ is held low out of reset, it cannot be  
used when the reset vector is programmed (i.e., the value is not $FFFF) because  
entry into monitor mode in this case requires VTST on IRQ. The IRQ pin must  
remain low during this monitor session in order to maintain communication.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
215  
Development Support  
Development Support  
Table 16-1 shows the pin conditions for entering monitor mode. As specified in the  
table, monitor mode may be entered after a power-on reset (POR) and will allow  
communication at 9600 baud provided one of the following sets of conditions is  
met:  
If $FFFE and $FFFF do not contain $FF (programmed state):  
The external clock is 9.8304 MHz  
IRQ = VTST  
If $FFFE and $FFFF contain $FF (erased state):  
The external clock is 9.8304 MHz  
IRQ = VDD (this can be implemented through the internal IRQ pullup)  
If $FFFE and $FFFF contain $FF (erased state):  
IRQ = VSS (internal oscillator is selected, no external clock required)  
Table 16-1. Monitor Mode Signal Requirements and Options  
Serial  
Communi-  
cation  
Mode  
Selection  
Communication  
Speed  
IRQ  
RST  
Reset  
Mode  
COP  
Comments  
(PTA2) (PTA3) Vector  
External  
Clock  
Bus  
Baud  
PTA0  
PTA1 PTA4  
Frequency Rate  
Normal  
Monitor  
9.8304  
MHz  
2.4576  
9600  
Provide external  
clock at OSC1.  
VTST  
VDD  
X
1
1
0
Disabled  
MHz  
$FFFF  
(blank)  
9.8304  
MHz  
2.4576  
9600  
Provide external  
clock at OSC1.  
VDD  
VSS  
X
X
X
X
1
1
X
X
X
X
X
X
X
Disabled  
Disabled  
Enabled  
MHz  
Forced  
Monitor  
$FFFF  
(blank)  
3.2 MHz  
9600  
Internal clock is  
active.  
X
X
(Trimmed)  
Not  
$FFFF  
User  
X
X
MON08  
Function  
[Pin No.]  
VTST  
[6]  
RST  
[4]  
COM  
[8]  
MOD0 MOD1  
[12] [10]  
OSC1  
[13]  
1. PTA0 must have a pullup resistor to VDD in monitor mode.  
2. Communication speed in the table is an example to obtain a baud rate of 9600. Baud rate using external oscillator is bus  
frequency / 256 and baud rate using internal oscillator is bus frequency / 333.  
3. External clock is a 9.8304 MHz oscillator on OSC1.  
4. X = don’t care  
5. MON08 pin refers to P&E Microcomputer Systems’ MON08-Cyclone 2 by 8-pin connector.  
NC  
NC  
NC  
NC  
NC  
1
3
5
7
9
2
4
6
8
GND  
RST  
IRQ  
PTA0  
10 PTA4  
12 PTA1  
14 NC  
NC 11  
OSC1 13  
VDD  
15  
16 NC  
Data Sheet  
216  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Development Support  
Development Support  
Monitor Module (MON)  
The rising edge of the internal RST signal latches the monitor mode. Once monitor  
mode is latched, the values on PTA1 and PTA4 pins can be changed.  
Once out of reset, the MCU waits for the host to send eight security bytes  
(see 16.3.2 Security). After the security bytes, the MCU sends a break signal  
(10 consecutive 0s) to the host, indicating that it is ready to receive a command.  
16.3.1.1 Normal Monitor Mode  
RST and OSC1 functions will be active on the PTA3 and PTA5 pins respectively  
as long as VTST is applied to the IRQ pin. If the IRQ pin is lowered (no longer VTST  
then the chip will still be operating in monitor mode, but the pin functions will be  
determined by the settings in the configuration registers (see Section 5.  
Configuration Registers (CONFIG1 and CONFIG2)) when VTST was lowered.  
)
With VTST lowered, the BIH and BIL instructions will read the IRQ pin state only if  
IRQEN is set in the CONFIG2 register.  
If monitor mode was entered with VTST on IRQ, then the COP is disabled as long  
as VTST is applied to IRQ.  
16.3.1.2 Forced Monitor Mode  
If entering monitor mode without high voltage on IRQ, then startup port pin  
requirements and conditions, (PTA1/PTA4) are not in effect. This is to reduce  
circuit requirements when performing in-circuit programming.  
NOTE:  
If the reset vector is blank and monitor mode is entered, the chip will see an  
additional reset cycle after the initial power-on reset (POR). Once the reset vector  
has been programmed, the traditional method of applying a voltage, VTST, to IRQ  
must be used to enter monitor mode.  
If monitor mode was entered as a result of the reset vector being blank, the COP  
is always disabled regardless of the state of IRQ.  
If the voltage applied to the IRQ is less than VTST, the MCU will come out of reset  
in user mode. Internal circuitry monitors the reset vector fetches and will assert an  
internal reset if it detects that the reset vectors are erased ($FF). When the MCU  
comes out of reset, it is forced into monitor mode without requiring high voltage on  
the IRQ pin. Once out of reset, the monitor code is initially executing with the  
internal clock at its default frequency.  
If IRQ is held high, all pins will default to regular input port functions except for  
PTA0 and PTA5 which will operate as a serial communication port and OSC1 input  
respectively (refer to Figure 16-12). That will allow the clock to be driven from an  
external source through OSC1 pin.  
If IRQ is held low, all pins will default to regular input port function except for PTA0  
which will operate as serial communication port. Refer to Figure 16-13.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
217  
Development Support  
Development Support  
Regardless of the state of the IRQ pin, it will not function as a port input pin in  
monitor mode. Bit 2 of the Port A data register will always read 0. The BIH and BIL  
instructions will behave as if the IRQ pin is enabled, regardless of the settings in  
the configuration register. See Section 5. Configuration Registers (CONFIG1  
and CONFIG2).  
The COP module is disabled in forced monitor mode. Any reset other than a  
power-on reset (POR) will automatically force the MCU to come back to the forced  
monitor mode.  
16.3.1.3 Monitor Vectors  
In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt),  
and break interrupt than those for user mode. The alternate vectors are in the $FE  
page instead of the $FF page and allow code execution from the internal monitor  
firmware instead of user code.  
NOTE:  
Exiting monitor mode after it has been initiated by having a blank reset vector  
requires a power-on reset (POR). Pulling RST (when RST pin available) low will  
not exit monitor mode in this situation.  
Table 16-2 summarizes the differences between user mode and monitor mode  
regarding vectors.  
Table 16-2. Mode Differences  
Functions  
Break Break  
Modes  
Reset  
Reset  
SWI  
SWI  
Vector High Vector Low Vector High Vector Low Vector High Vector Low  
User  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Monitor  
16.3.1.4 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero (NRZ)  
mark/space data format. Transmit and receive baud rates must be identical.  
NEXT  
START  
BIT  
START  
BIT  
BIT 6  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 7  
Figure 16-14. Monitor Data Format  
Data Sheet  
218  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Development Support  
Development Support  
Monitor Module (MON)  
16.3.1.5 Break Signal  
A start bit (0) followed by nine 0 bits is a break signal. When the monitor receives  
a break signal, it drives the PTA0 pin high for the duration of approximately two bits  
and then echoes back the break signal.  
MISSING STOP BIT  
APPROXIMATELY 2 BITS DELAY  
BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 16-15. Break Transaction  
16.3.1.6 Baud Rate  
The monitor communication baud rate is controlled by the frequency of the external  
or internal oscillator and the state of the appropriate pins as shown in Table 16-1.  
Table 16-1 also lists the bus frequencies to achieve standard baud rates. The  
effective baud rate is the bus frequency divided by 256 when using an external  
oscillator. When using the internal oscillator in forced monitor mode, the effective  
baud rate is the bus frequency divided by 335.  
16.3.1.7 Commands  
The monitor ROM firmware uses these commands:  
READ (read memory)  
WRITE (write memory)  
IREAD (indexed read)  
IWRITE (indexed write)  
READSP (read stack pointer)  
RUN (run user program)  
The monitor ROM firmware echoes each received byte back to the PTA0 pin for  
error checking. An 11-bit delay at the end of each command allows the host to send  
a break character to cancel the command. A delay of two bit times occurs before  
each echo and before READ, IREAD, or READSP data is returned. The data  
returned by a read command appears after the echo of the last byte of the  
command.  
NOTE:  
Wait one bit time after each echo before sending the next byte.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
219  
Development Support  
Development Support  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
4
4
1
1
4
1
3, 2  
4
ECHO  
Notes:  
1 = Echo delay, approximately 2 bit times  
RETURN  
2 = Data return delay, approximately 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 16-16. Read Transaction  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
3
3
1
1
3
1
3
1
2, 3  
ECHO  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Cancel command delay, 11 bit times  
3 = Wait 1 bit time before sending next byte.  
Figure 16-17. Write Transaction  
A brief description of each monitor mode command is given in Table 16-3 through  
Table 16-8.  
Table 16-3. READ (Read Memory) Command  
Description Read byte from memory  
Operand 2-byte address in high-byte:low-byte order  
Data Returned Returns contents of specified address  
Opcode $4A  
Command Sequence  
SENT TO MONITOR  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
Data Sheet  
220  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Development Support  
Development Support  
Monitor Module (MON)  
Table 16-4. WRITE (Write Memory) Command  
Description Write byte to memory  
Operand 2-byte address in high-byte:low-byte order; low byte followed by data byte  
Data Returned None  
Opcode $49  
Command Sequence  
FROM HOST  
ADDRESS  
HIGH  
ADDRESS ADDRESS  
HIGH LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
ECHO  
Table 16-5. IREAD (Indexed Read) Command  
Description Read next 2 bytes in memory from last address accessed  
Operand 2-byte address in high byte:low byte order  
Data Returned Returns contents of next two addresses  
Opcode $1A  
Command Sequence  
FROM HOST  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
Table 16-6. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand Single data byte  
Data Returned None  
Opcode $19  
Command Sequence  
FROM HOST  
DATA  
DATA  
IWRITE  
ECHO  
IWRITE  
A sequence of IREAD or IWRITE commands can access a block of memory  
sequentially over the full 64-Kbyte memory map.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
221  
Development Support  
Development Support  
Table 16-7. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand None  
Returns incremented stack pointer value (SP + 1) in high-byte:low-byte  
Data Returned  
order  
Opcode $0C  
Command Sequence  
FROM HOST  
SP  
HIGH  
SP  
LOW  
READSP  
READSP  
ECHO  
RETURN  
Table 16-8. RUN (Run User Program) Command  
Description Executes PULH and RTI instructions  
Operand None  
Data Returned None  
Opcode $28  
Command Sequence  
FROM HOST  
RUN  
ECHO  
RUN  
The MCU executes the SWI and PSHH instructions when it enters monitor mode.  
The RUN command tells the MCU to execute the PULH and RTI instructions.  
Before sending the RUN command, the host can modify the stacked CPU registers  
to prepare to run the host program. The READSP command returns the  
incremented stack pointer value, SP + 1. The high and low bytes of the program  
counter are at addresses SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
SP + 5  
SP + 6  
SP + 7  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER  
LOW BYTE OF PROGRAM COUNTER  
Figure 16-18. Stack Pointer at Monitor Mode Entry  
Data Sheet  
222  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Development Support  
Development Support  
Monitor Module (MON)  
16.3.2 Security  
A security feature discourages unauthorized reading of FLASH locations while in  
monitor mode. The host can bypass the security feature at monitor mode entry by  
sending eight security bytes that match the bytes at locations $FFF6–$FFFD.  
Locations $FFF6–$FFFD contain user-defined data.  
NOTE:  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for the host to  
send the eight security bytes on pin PTA0. If the received bytes match those at  
locations $FFF6–$FFFD, the host bypasses the security feature and can read all  
FLASH locations and execute code from FLASH. Security remains bypassed until  
a power-on reset occurs. If the reset was not a power-on reset, security remains  
bypassed and security code entry is not required. See Figure 16-19.  
Upon power-on reset, if the received bytes of the security code do not match the  
data at locations $FFF6–$FFFD, the host fails to bypass the security feature. The  
MCU remains in monitor mode, but reading a FLASH location returns an invalid  
value and trying to execute code from FLASH causes an illegal address reset. After  
receiving the eight security bytes from the host, the MCU transmits a break  
character, signifying that it is ready to receive a command.  
NOTE:  
The MCU does not transmit a break character until after the host sends the eight  
security bytes.  
VDD  
4096 + 32 BUSCLKX4 CYCLES  
RST  
FROM HOST  
PA0  
5
1
1
4
1
4
2
1
FROM MCU  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
4 = Wait 1 bit time before sending next byte  
5 = Wait until the monitor ROM runs  
Figure 16-19. Monitor Mode Entry Timing  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
223  
Development Support  
Development Support  
To determine whether the security code entered is correct, check to see if bit 6 of  
RAM address $80 is set. If it is, then the correct security code has been entered  
and FLASH can be accessed.  
If the security sequence fails, the device should be reset by a power-on reset and  
brought up in monitor mode to attempt another entry. After failing the security  
sequence, the FLASH module can also be mass erased by executing an erase  
routine that was downloaded into internal RAM. The mass erase operation clears  
the security code locations so that all eight security bytes become $FF (blank).  
Data Sheet  
224  
MC68HC908QL Family — Rev. 2  
Development Support  
MOTOROLA  
Data Sheet — MC68HC908QL4 Family  
Section 17. Electrical Specifications  
17.1 Introduction  
This section contains electrical and timing specifications.  
17.2 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the microcontroller unit (MCU)  
can be exposed without permanently damaging it.  
NOTE:  
This device is not guaranteed to operate properly at the maximum ratings. Refer to  
17.5 5-V DC Electrical Characteristics and 17.9 3.3-V DC Electrical  
Characteristics for guaranteed operating conditions.  
Characteristic(1)  
Supply voltage  
Symbol  
VDD  
Value  
Unit  
V
–0.3 to +6.0  
VIN  
VSS –0.3 to VDD +0.3  
VSS –0.3 to +9.1  
Input voltage  
V
VTST  
Mode entry voltage, IRQ pin  
V
Maximum current per pin excluding  
PTA0–PTA5, VDD, and VSS  
I
±15  
mA  
IPTA0— PTA5  
I
Maximum current for pins PTA0–PTA5  
Storage temperature  
±25  
–55 to +150  
100  
mA  
°C  
TSTG  
IMVSS  
IMVDD  
Maximum current out of VSS  
Maximum current into VDD  
mA  
mA  
100  
1. Voltages references to VSS  
.
NOTE:  
This device contains circuitry to protect the inputs against damage due to high  
static voltages or electric fields; however, it is advised that normal precautions be  
taken to avoid application of any voltage higher than maximum-rated voltages to  
this high-impedance circuit. For proper operation, it is recommended that VIN and  
VOUT be constrained to the range VSS (VIN or VOUT) VDD. Reliability of  
operation is enhanced if unused inputs are connected to an appropriate logic  
voltage level (for example, either VSS or VDD.)  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
225  
Electrical Specifications  
Electrical Specifications  
17.3 Functional Operating Range  
Temp.  
Code  
Characteristic  
Symbol  
Value  
Unit  
– 40 to +125  
– 40 to +105  
40 to +85  
M
V
C
Operating temperature range (TL to TH)  
TA  
°C  
V
Operating voltage range(1) (VDDMIN to VDDMAX  
1. VDD must be above VTRIPR upon power on.  
)
VDD  
3.0 to 5.5  
17.4 Thermal Characteristics  
Characteristic  
Thermal resistance  
Symbol  
Value  
Unit  
16-pin PDIP  
16-pin SOIC  
16-pin TSSOP  
76  
90  
133  
θJA  
°C/W  
PI/O  
PD  
I/O pin power dissipation  
Power dissipation(1)  
User determined  
W
W
PD = (IDD x VDD  
)
+ PI/O = K/(TJ + 273°C)  
PD x (TA + 273°C)  
Constant(2)  
K
W/°C  
+ PD2 x θJA  
TJ  
TA + (PD x θJA)  
Average junction temperature  
Maximum junction temperature  
°C  
°C  
TJM  
150  
1. Power dissipation is a function of temperature.  
2. K constant unique to the device. K can be determined for a known TA and measured PD. With  
this value of K, PD and TJ can be determined for any value of TA.  
Data Sheet  
226  
MC68HC908QL Family — Rev. 2  
Electrical Specifications  
MOTOROLA  
Electrical Specifications  
5-V DC Electrical Characteristics  
17.5 5-V DC Electrical Characteristics  
Characteristic(1)  
Typ(2)  
Symbol  
VOH  
Min  
Max  
Unit  
V
Output high voltage  
ILoad = –2.0 mA, all I/O pins  
VDD–0.4  
VDD–1.5  
VDD–0.8  
ILoad = –10.0 mA, all I/O pins  
ILoad = –15.0 mA, PTA0, PTA1, PTA3–PTA5 only  
Maximum combined IOH (all I/O pins)  
IOHT  
50  
mA  
V
Output low voltage  
ILoad = 1.6 mA, all I/O pins  
0.4  
1.5  
0.8  
VOL  
ILoad = 10.0 mA, all I/O pins  
ILoad = 15.0 mA, PTA0, PTA1, PTA3–PTA5 only  
Maximum combined IOL (all I/O pins)  
IOHL  
VIH  
50  
mA  
V
Input high voltage  
PTA0–PTA5, PTB0–PTB7  
0.7 x VDD  
VDD  
Input low voltage  
PTA0–PTA5, PTB0–PTB7  
VIL  
VSS  
0.3 x VDD  
V
VHYS  
IINJ  
0.06 x VDD  
–2  
Input hysteresis  
+2  
V
DC injection current, all ports  
Total dc current injection (sum of all I/O)  
mA  
mA  
IINJTOT  
–25  
+25  
Digital I/O ports Hi-Z leakage current  
Typical at 25 W°C  
–10  
±0.1  
+10  
IIL  
µA  
µA  
IIN  
Digital input only ports leakage current (PA2/IRQ/KBI2)  
–1  
+1  
Capacitance  
Ports (as input)  
Ports (as input)  
CIN  
12  
8
pF  
COUT  
POR rearm voltage(3)  
VPOR  
RPOR  
VTST  
0
100  
mV  
V/ms  
V
POR rise time ramp rate(4)  
Monitor mode entry voltage  
0.035  
VDD + 2.5  
9.1  
Pullup resistors(5)  
PTA0–PTA5, PTB0–PTB7  
RPU  
16  
26  
36  
kΩ  
VTRIPF  
VTRIPR  
VHYS  
Low-voltage inhibit reset, trip falling voltage  
Low-voltage inhibit reset, trip rising voltage  
Low-voltage inhibit reset/recover hysteresis  
3.90  
4.00  
4.20  
4.30  
100  
4.50  
4.60  
V
V
mV  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.  
3. Maximum is highest voltage that POR is guaranteed.  
4. If minimum VDD is not reached before the internal POR reset is released, LVI will hold the part in reset until minimum VDD  
is reached.  
5. RPU is measured at VDD = 5.0 V.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
227  
Electrical Specifications  
Electrical Specifications  
17.6 Control Timing  
Characteristic(1)  
Internal operating frequency  
Symbol  
Min  
Max  
Unit  
fOP (fBus  
)
8
MHz  
ns  
Internal clock period (1/fOP  
)
tcyc  
125  
175  
125  
tRL  
RST input pulse width low  
ns  
tILIH  
IRQ interrupt pulse width low (edge-triggered)  
IRQ interrupt pulse period  
ns  
Note(2)  
tILIL  
tcyc  
1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD unless otherwise noted.  
2. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tcyc  
.
tRL  
RST  
tILIL  
tILIH  
IRQ  
Figure 17-1. RST and IRQ Timing  
Data Sheet  
228  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
Typical 5-V Output Drive Characteristics  
17.7 Typical 5-V Output Drive Characteristics  
2.0  
1.5  
1.0  
0.5  
0.0  
5V PTA  
5V PTB  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
IOH (mA)  
Figure 17-2. Typical 5-Volt Output High Voltage  
versus Output High Current (25°C)  
2.0  
1.5  
1.0  
0.5  
0.0  
5V PTA  
5V PTB  
0
5
10  
15  
20  
25  
30  
35  
IOL (mA)  
Figure 17-3. Typical 5-Volt Output Low Voltage  
versus Output Low Current (25°C)  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
229  
Electrical Specifications  
Electrical Specifications  
17.8 5-V Oscillator Characteristics  
Characteristic  
Internal oscillator frequency(1)  
Symbol  
Min  
8
Typ  
25.6  
Max  
Unit  
MHz  
MHz  
MHz  
MHz  
pF  
fINTCLK  
Crystal frequency, XTALCLK(1)  
External RC oscillator frequency, RCCLK(1)  
External clock reference frequency(1) (3)  
Crystal load capacitance(4)  
32(2)  
12  
32  
fOSCXCLK  
fRCCLK  
fOSCXCLK  
CL  
2
dc  
20  
Crystal fixed capacitance(2)  
C1  
2 x CL  
2 x CL  
Crystal tuning capacitance(2)  
Feedback bias resistor  
C2  
RB  
10  
MΩ  
REXT  
RC oscillator external resistor  
See Figure 17-4  
1. Bus frequency, fOP, is oscillator frequency divided by 4.  
2. Due to variations in electrical properties of external components such as, ESR, and load capacitance, operation above  
16 MHz is not guaranteed for all crystals or ceramic resonators. Operation above 16 MHz requires that a negative  
resistance margin (NRM) characterization and component optimization be performed by the crystal or ceramic resonator  
vendor for every different type of crystal or ceramic resonator which will be used. This characterization and optimization  
must be performed at the extremes of voltage and temperature which will be applied to the microcontroller in the  
application. The NRM must meet or exceed 10x the maximum ESR of the crystal or ceramic resonator for acceptable  
performance.  
3. No more than 10% duty cycle deviation from 50%.  
4. Consult crystal vendor data sheet.  
14  
5 V @ 25°C  
12  
MCU  
10  
OSC1  
8
6
VDD  
4
2
0
REXT  
0
10  
20  
30  
40  
50  
Resistor, REXT (k)  
Figure 17-4. RC versus Frequency (5 Volts @ 25°C)  
Data Sheet  
230  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
3.3-V DC Electrical Characteristics  
17.9 3.3-V DC Electrical Characteristics  
Characteristic(1)  
Typ(2)  
Symbol  
VOH  
Min  
Max  
Unit  
V
Output high voltage  
ILoad = –0.6 mA, all I/O pins  
VDD–0.3  
VDD–1.0  
VDD–0.8  
ILoad = –4.0 mA, all I/O pins  
ILoad = –10.0 mA, PTA0, PTA1, PTA3–PTA5 only  
Maximum combined IOH (all I/O pins)  
IOHT  
50  
mA  
V
Output low voltage  
ILoad = 0.5 mA, all I/O pins  
0.3  
1.0  
0.8  
VOL  
ILoad = 6.0 mA, all I/O pins  
ILoad = 10.0 mA, PTA0, PTA1, PTA3–PTA5 only  
Maximum combined IOL (all I/O pins)  
IOHL  
VIH  
50  
mA  
V
Input high voltage  
PTA0–PTA5, PTB0–PTB7  
0.7 x VDD  
VDD  
Input low voltage  
PTA0–PTA5, PTB0–PTB7  
VIL  
VSS  
0.3 x VDD  
V
VHYS  
IINJ  
0.06 x VDD  
–2  
Input hysteresis  
+2  
V
DC injection current, all ports  
Total dc current injection (sum of all I/O)  
mA  
mA  
IINJTOT  
–25  
+25  
Digital I/O ports Hi-Z leakage current  
Typical at 25°C  
–10  
±0.5  
+10  
IIL  
µA  
µA  
IIN  
Digital input only ports leakage current (PA2/IRQ/KBI2)  
–1  
+1  
Capacitance  
Ports (as input)  
Ports (as input)  
CIN  
12  
8
pF  
COUT  
POR rearm voltage(3)  
VPOR  
RPOR  
VTST  
0
100  
mV  
V/ms  
V
POR rise time ramp rate(4)  
Monitor mode entry voltage  
0.035  
VDD + 2.5  
VDD + 4.0  
Pullup resistors(5)  
PTA0–PTA5, PTB0–PTB7  
RPU  
16  
26  
36  
kΩ  
VTRIPF  
VTRIPR  
VHYS  
Low-voltage inhibit reset, trip falling voltage  
Low-voltage inhibit reset, trip rising voltage  
Low-voltage inhibit reset/recover hysteresis  
2.65  
2.75  
2.8  
2.9  
60  
3.0  
3.10  
V
V
mV  
1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.  
3. Maximum is highest voltage that POR is guaranteed.  
4. If minimum VDD is not reached before the internal POR reset is released, LVI will hold the part in reset until minimum VDD  
is reached.  
5. RPU is measured at VDD = 3.3 V  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
231  
Electrical Specifications  
Electrical Specifications  
17.10 Typical 3.3-V Output Drive Characteristics  
1.5  
1.0  
0.5  
0.0  
3V PTA  
3V PTB  
0
-5  
-10  
-15  
-20  
IOH (mA)  
Figure 17-5. Typical 3.3-Volt Output High Voltage  
versus Output High Current (25°C)  
1.5  
1.0  
0.5  
0.0  
3V PTA  
3V PTB  
0
5
10  
15  
20  
IOL (mA)  
Figure 17-6. Typical 3.3-Volt Output Low Voltage  
versus Output Low Current (25°C)  
Data Sheet  
232  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
3.3-V Control Timing  
17.11 3.3-V Control Timing  
Characteristic(1)  
Symbol  
fOP  
Min  
Max  
4
Unit  
MHz  
µs  
Internal operating frequency(2)  
RST input pulse width low(3)  
tIRL  
1.5  
1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VDD, unless otherwise  
noted.  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this  
information.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
17.12 3.3-V Oscillator Characteristics  
Characteristic  
Internal oscillator frequency(1)  
Symbol  
Min  
8
Typ  
12.8  
Max  
Unit  
MHz  
MHz  
MHz  
MHz  
pF  
fINTCLK  
Crystal frequency, XTALCLK(1)  
External RC oscillator frequency, RCCLK(1)  
External clock reference frequency(1) (2)  
Crystal load capacitance(3)  
fOSCXCLK  
fRCCLK  
fOSCXCLK  
CL  
16  
12  
16  
2
dc  
20  
Crystal fixed capacitance(2)  
C1  
2 x CL  
2 x CL  
Crystal tuning capacitance(2)  
Feedback bias resistor  
C2  
RB  
10  
MΩ  
REXT  
RC oscillator external resistor  
See Figure 17-7  
1. Bus frequency, fOP, is oscillator frequency divided by 4.  
2. No more than 10% duty cycle deviation from 50%  
3. Consult crystal vendor data sheet  
14  
12  
10  
8
3 V @ 25°C  
MCU  
OSC1  
6
VDD  
4
REXT  
2
0
0
10  
20  
30  
40  
50  
RESISTOR, REXT (K)  
Figure 17-7. RC versus Frequency (3 Volts @ 25°C)  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
233  
Electrical Specifications  
Electrical Specifications  
17.13 Supply Current Characteristics  
Bus  
Freq.  
(MHz)  
Characteristic(1)  
Voltage  
Symbol  
Typ  
Max  
Unit  
5.0  
3.3  
4
4
4.5  
2.7  
Run mode VDD supply current(2)  
RIDD  
mA  
mA  
5.0  
3.3  
4
4
1.7  
1.0  
WAIT mode VDD supply current(3)  
Stop mode VDD supply current(4)  
WIDD  
5.0  
3.3  
0.10  
0.22  
0.34  
6.50  
5.70  
125  
µA  
µA  
µA  
nA  
µA  
µA  
–40 to 85°C  
–40 to 105°C  
–40 to 125°C  
25°C  
25°C with auto wake-up enabled  
Incremental current with LVI enabled at 25°C  
SIDD  
–40 to 85°C  
–40 to 105°C  
–40 to 125°C  
25°C  
25°C with auto wake-up enabled  
Incremental current with LVI enabled at 25°C  
0.10  
0.14  
0.18  
4.60  
1.30  
102  
µA  
µA  
µA  
nA  
µA  
µA  
1. VDD = 3.3 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than  
100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled.  
3. Wait (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than  
100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled.  
4. Stop IDD measured with all ports driven 0.2 V or less from rail. No dc loads. On the 8-pin versions, port B is configured as  
inputs with pullups enabled.  
Data Sheet  
234  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
Supply Current Characteristics  
14  
12  
10  
8
Crystal w/o ADC  
Crystal w/ ADC  
6
Internal Osc w/o  
ADC  
4
Internal Osc w/  
ADC  
2
0
0
1
2
3
4
5
6
7
Bus Frequency (MHz)  
Figure 17-8. Typical 5-Volt Run Current  
versus Bus Frequency (25°C)  
4
3
2
1
0
Crystal w/o ADC  
Crystal w/ ADC  
Internal Osc w/o  
ADC  
Internal Osc w/  
ADC  
0
1
2
3
4
5
Bus Frequency (MHz)  
Figure 17-9. Typical 3.3-Volt Run Current  
versus Bus Frequency (25°C)  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
235  
Electrical Specifications  
Electrical Specifications  
17.14 5.0-Volt ADC Characteristics  
Characteristic(1)  
Symbol  
Min  
Max  
5.5  
Unit  
Comments  
V
DDAD should be tied to  
VDDAD  
Supply voltage  
4.5  
V
the same potential as VDD  
via separate traces.  
VADIN  
BAD  
VDDAD  
VADIN <= VDDAD  
Input voltages  
0
10  
V
Bits  
Resolution  
10  
+4  
AAD  
Absolute accuracy  
ADC internal clock  
Conversion range  
Power-up time  
–4  
LSB  
Includes quantization  
fADIC  
RAD  
tAIC = 1/fADIC  
500 k  
VSSAD  
1.048 M  
VDDAD  
Hz  
V
tADPU  
tADC  
tADS  
MAD  
ZADI  
FADI  
CADI  
IVREF  
tAIC cycles  
tAIC cycles  
tAIC cycles  
16  
16  
5
17  
Conversion time  
Sample time  
Monotonicity  
Guaranteed  
VADIN = VSSA  
ADIN = VDDA  
Zero input reading  
Full-scale reading  
Input capacitance  
VDDAD/VREFH current  
000  
3FC  
003  
3FF  
30  
Hex  
Hex  
pF  
V
Not tested  
1.6  
mA  
Absolute accuracy  
(8-bit truncation mode)  
AAD  
–1  
+1  
LSB  
LSB  
Includes quantization  
Quantization error  
(8-bit truncation mode)  
–1/8  
+7/8  
1. VDD = 5.0 Vdc ± 10%, VSS = 0 Vdc, VDDAD/VREFH = 5.0 Vdc ± 10%, VSSAD/VREFL = 0 Vdc  
Data Sheet  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
236  
Electrical Specifications  
Electrical Specifications  
3.3-Volt ADC Characteristics  
17.15 3.3-Volt ADC Characteristics  
Characteristic(1)  
Symbol  
Min  
Max  
3.6  
Unit  
Comments  
V
DDAD should be tied to  
VDDAD  
Supply voltage  
3.0  
V
the same potential as VDD  
via separate traces.  
VADIN  
BAD  
VDDAD  
VADIN <= VDDAD  
Input voltages  
0
10  
V
Bits  
Resolution  
10  
+6  
AAD  
Absolute accuracy  
ADC internal clock  
Conversion range  
Power-up time  
–6  
LSB  
Includes quantization  
fADIC  
RAD  
tAIC = 1/fADIC  
500 k  
VSSAD  
1.048 M  
VDDAD  
Hz  
V
tADPU  
tADC  
tADS  
MAD  
ZADI  
FADI  
CADI  
IVREF  
tAIC cycles  
tAIC cycles  
tAIC cycles  
16  
16  
5
17  
Conversion time  
Sample time  
Monotonicity  
Guaranteed  
VADIN = VSSA  
ADIN = VDDA  
Zero input reading  
Full-scale reading  
Input capacitance  
VDDAD/VREFH current  
000  
3FA  
005  
3FF  
30  
Hex  
Hex  
pF  
V
Not tested  
1.2  
mA  
Absolute accuracy  
(8-bit truncation mode)  
AAD  
–1  
+1  
LSB  
LSB  
Includes quantization  
Quantization error  
(8-bit truncation mode)  
–1/8  
+7/8  
1. VDD = 3.3 Vdc ± 10%, VSS = 0 Vdc, VDDAD/VREFH = 3.3 Vdc ± 10%, VSSAD/VREFL = 0 Vdc  
MC68HC908QL Family — Rev. 2  
Data Sheet  
237  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
17.16 Timer Interface Module Characteristics  
Characteristic  
Timer input capture pulse width  
Timer Input capture period  
Symbol  
tTH, TL  
Min  
Max  
Unit  
t
tcyc  
2
Note(1)  
tcyc + 5  
tTLTL  
tcyc  
ns  
tTCL, tTCH  
Timer input clock pulse width  
1. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tcyc  
.
tTLTL  
tTH  
INPUT CAPTURE  
RISING EDGE  
tTLTL  
tTL  
INPUT CAPTURE  
FALLING EDGE  
tTLTL  
tTH  
tTL  
INPUT CAPTURE  
BOTH EDGES  
tTCH  
TCLK  
tTCL  
Figure 17-10. Input Capture Timing  
Data Sheet  
238  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Electrical Specifications  
Electrical Specifications  
Memory Characteristics  
17.17 Memory Characteristics  
Characteristic  
RAM data retention voltage  
Symbol  
Min  
1.3  
1
Typ  
Max  
Unit  
V
VRDR  
FLASH program bus clock frequency  
FLASH read bus clock frequency  
MHz  
Hz  
(1)  
0
8 M  
fRead  
FLASH page erase time  
<1 K cycles  
>1 K cycles  
tErase  
0.9  
3.6  
1
4
1.1  
5.5  
ms  
tMErase  
tNVS  
FLASH mass erase time  
4
10  
5
40  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
FLASH PGM/ERASE to HVEN setup time  
FLASH high-voltage hold time  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
tNVH  
tNVHL  
tPGS  
100  
5
tPROG  
FLASH program time  
30  
1
(2)  
FLASH return to read time  
tRCV  
(3)  
FLASH cumulative program HV period  
10 k  
15  
4
ms  
tHV  
FLASH endurance(4)  
100 k  
100  
Cycles  
Years  
FLASH data retention time(5)  
1. fRead is defined as the frequency range for which the FLASH memory can be read.  
2. tRCV is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by  
clearing HVEN to 0.  
3. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
tHV must satisfy this condition: tNVS + tNVH + tPGS + (tPROG x 32) tHV maximum.  
4. Typical endurance was evaluated for this product family. For additional information on how Motorola defines. Typical  
Endurance, please refer to Engineering Bulletin EB619.  
5. Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated  
to 25°C using the Arrhenius equation. For additional information on how Motorola defines Typical Data Retention, please  
refer to Engineering Bulletin EB618.  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
239  
Electrical Specifications  
Electrical Specifications  
Data Sheet  
240  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Electrical Specifications  
Data Sheet — MC68HC908QL4 Family  
Section 18. Ordering Information and Mechanical Specifications  
18.1 Introduction  
This section provides ordering information for the MC68HC908QL4,  
MC68HC908QL3, and MC68HC908QL2 along with the dimensions for:  
16-pin plastic dual in-line package (PDIP  
16-pin small outline integrated circuit (SOIC) package  
16-pin thin shrink small outline package (TSSOP)  
The following figures show the latest package drawings at the time of this  
publication. To make sure that you have the latest package specifications, contact  
your local Motorola Sales Office.  
18.2 MC Order Numbers  
Table 18-1. MC Order Numbers  
MC Order Number  
ADC  
Yes  
No  
FLASH Memory  
4096 bytes  
Package  
MC68HC908QL4  
MC68HC908QL3  
MC68HC908QL2  
16-pins  
PDIP, SOIC,  
and TSSOP  
4096 bytes  
Yes  
2048 bytes  
Temperature and package designators:  
C = –40°C to +85°C  
V = –40°C to +105°C (available for VDD = 5 V only)  
M = –40°C to +125°C (available for VDD = 5 V only)  
P = Plastic dual in-line package (PDIP)  
DW = Small outline integrated circuit package (SOIC)  
DT = Thin shrink small outline package (TSSOP)  
M C 6 8 H C 9 0 8 Q L X X X X  
FAMILY  
PACKAGE DESIGNATOR  
TEMPERATURE RANGE  
Figure 18-1. Device Numbering System  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
241  
Ordering Information and Mechanical Specifications  
Ordering Information and Mechanical Specifications  
18.3 16-Pin Plastic Dual In-Line Package (Case #648D)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
5. MOLDFLASHORPROTRUSIONSSHALLNOT  
EXCEED 0.25 (0.010).  
-A-  
16  
9
8
-B-  
S
1
6. ROUNDED CORNERS OPTIONAL.  
F
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN MAX  
L
C
K
A
B
C
D
F
G
H
J
K
L
M
S
0.740 0.760 18.80 19.30  
0.245 0.260  
0.145 0.175  
0.015 0.021  
0.050 0.070  
0.100 BSC  
6.23  
3.69  
0.39  
1.27  
2.54 BSC  
1.27 BSC  
6.60  
4.44  
0.53  
1.77  
SEATING  
PLANE  
-T-  
M
J
0.050 BSC  
H
0.008 0.015  
0.120 0.140  
0.295 0.305  
0.21  
0.38  
3.55  
7.74  
G
3.05  
7.50  
0
D 16 PL  
0
10  
10  
M
S
S
°
°
°
°
0.25 (0.010)  
T B  
A
0.015 0.035  
0.39  
0.88  
18.4 16-Pin Small Outline Integrated Circuit Package (Case #751G)  
A
NOTES:  
D
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND  
TOLERANCES PER ASME Y14.5M, 1994.  
3. DIMENSIONS D AND E DO NOT INLCUDE  
MOLD PROTRUSION.  
q
16  
9
4. MAXIMUM MOLD PROTRUSION 0.15 PER  
SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 TOTAL IN  
EXCESSOFTHEBDIMENSIONATMAXIMUM  
MATERIAL CONDITION.  
1
8
MILLIMETERS  
B
16X B  
DIM MIN  
2.35  
A1 0.10  
MAX  
2.65  
0.25  
0.49  
0.32  
A
M
S
S
0.25  
T A  
B
B
C
D
E
e
H
h
L
q
0.35  
0.23  
10.15 10.45  
7.40 7.60  
1.27 BSC  
10.05 10.55  
0.25  
0.40  
0
0.75  
1.00  
7
SEATING  
PLANE  
14X  
e
°
°
C
T
Data Sheet  
242  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Ordering Information and Mechanical Specifications  
Ordering Information and Mechanical Specifications  
16-Pin Thin Shrink Small Outline Package (Case #948F)  
18.5 16-Pin Thin Shrink Small Outline Package (Case #948F)  
16X KREF  
M
S
S
0.10 (0.004) T U  
V
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
S
0.15 (0.006) T U  
K
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH. PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEADFLASHORPROTRUSIONSHALL  
NOT EXCEED  
K1  
16  
9
2X L/2  
J1  
B
-U-  
SECTION N-N  
L
0.25 (0.010) PER SIDE.  
J
5. DIMENSION K DOES NOTINCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL  
IN EXCESS OF THE K DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
PIN 1  
IDENT.  
8
1
N
0.25 (0.010)  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE -W-.  
S
0.15 (0.006) T U  
A
M
-V-  
N
F
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
B
C
D
F
G
H
J
4.90  
4.30  
---  
0.05  
0.50  
0.65 BSC  
0.18  
0.09  
5.10 0.193 0.200  
4.50 0.169 0.177  
DETAIL E  
1.20  
--- 0.047  
0.15 0.002 0.006  
0.75 0.020 0.030  
-W-  
C
0.026 BSC  
0.28 0.007 0.011  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
0.10 (0.004)  
J1 0.09  
0.19  
DETAIL E  
H
SEATING  
PLANE  
K
-T-  
D
G
K1 0.19  
L
6.40 BSC  
0.252 BSC  
M
0
8
0
8
°
°
°
°
MC68HC908QL Family — Rev. 2  
MOTOROLA  
Data Sheet  
243  
Ordering Information and Mechanical Specifications  
Ordering Information and Mechanical Specifications  
Data Sheet  
MC68HC908QL Family — Rev. 2  
MOTOROLA  
244  
Ordering Information and Mechanical Specifications  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-521-6274 or 480-768-2130  
JAPAN:  
Motorola Japan Ltd.  
SPS, Technical Information Center  
3-20-1, Minami-Azabu, Minato-ku  
Tokyo 106-8573, Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Motorola Semiconductors H.K. Ltd.  
Silicon Harbour Centre  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
852-26668334  
HOME PAGE:  
http://motorola.com/semiconductors  
Information in this document is provided solely to enable system and software implementers to use Motorola products.  
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,  
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume  
any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Motorola  
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts.  
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed,  
intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising  
out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even  
if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service  
names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
© Motorola Inc. 2004  
MC68HC908QL4/D  
Rev. 2  
3/2004  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY