MC68HRC908JL3EMDW [NXP]

MC68HRC908JL3EMDW;
MC68HRC908JL3EMDW
型号: MC68HRC908JL3EMDW
厂家: NXP    NXP
描述:

MC68HRC908JL3EMDW

文件: 总172页 (文件大小:1006K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908JL3E/JK3E/JK1E  
MC68HRC908JL3E/JK3E/JK1E  
MC68HLC908JL3E/JK3E/JK1E  
MC68HC908KL3E/KK3E  
MC68HC08JL3E/JK3E  
MC68HRC08JL3E/JK3E  
Data Sheet  
M68HC08  
Microcontrollers  
MC68HC908JL3E  
Rev. 3  
11/2004  
freescale.com  
MC68HC908JL8/JK3E/JK1E  
MC68HRC908JL8/JK3E/JK1E  
MC68HLC908JL8/JK3E/JK1E  
MC68HC908KL3E/KK3E  
MC68HC08JL3E/JK3E  
MC68HRC08JL3E/JK3E  
Data Sheet  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be  
the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://www.freescale.com  
The following revision history table summarizes changes contained in this document. For your  
convenience, the page number designators have been linked to the appropriate location.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc., 2004. All rights reserved.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
3
Revision History  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
Added appendix B for ROM parts.  
159–166  
167–170  
153–224  
Nov 2004  
3
Added appendix C for ADC-less parts.  
Added appendix A for low-volt devices.  
Dec 2002  
May 2002  
2
2
Updated Monitor Mode Circuit (Figure 7-1) and Monitor Mode Entry  
Requirements and Options (Table 7-1) in Monitor ROM section.  
76, 77  
First general release.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
4
Freescale Semiconductor  
List of Chapters  
Chapter 1 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Chapter 2 Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Chapter 3 Configuration Registers (CONFIG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Chapter 4 Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Chapter 5 System Integration Module (SIM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Chapter 6 Oscillator (OSC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Chapter 7 Monitor ROM (MON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
Chapter 8 Timer Interface Module (TIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Chapter 9 Analog-to-Digital Converter (ADC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
Chapter 10 Input/Output (I/O) Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Chapter 11 External Interrupt (IRQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Chapter 12 Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
Chapter 13 Computer Operating Properly (COP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
Chapter 14 Low Voltage Inhibit (LVI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129  
Chapter 15 Break Module (BREAK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
Chapter 16 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
Chapter 17 Mechanical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
Chapter 18 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
Appendix A MC68HLC908JL3E/JK3E/JK1E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
Appendix B MC68H(R)C08JL3E/JK3E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
Appendix C MC68HC908KL3E/KK3E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
5
List of Chapters  
MC68HC908JL3E Family Data Sheet, Rev. 3  
6
Freescale Semiconductor  
Table of Contents  
Chapter 1  
General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Chapter 2  
Memory  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
FLASH Page Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
FLASH Mass Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
2.10 FLASH Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2.11 FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2.12 FLASH Block Protect Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Chapter 3  
Configuration Registers (CONFIG)  
3.1  
3.2  
3.3  
3.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Configuration Register 1 (CONFIG1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Configuration Register 2 (CONFIG2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Chapter 4  
Central Processor Unit (CPU)  
4.1  
4.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
4.3  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
7
Table of Contents  
4.3.5  
4.4  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
4.5  
4.5.1  
4.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
4.6  
4.7  
4.8  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Chapter 5  
System Integration Module (SIM)  
5.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
5.2  
SIM Bus Clock Control and Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Clock Start-Up from POR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Clocks in Stop Mode and Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
5.2.1  
5.2.2  
5.2.3  
5.3  
5.3.1  
5.3.2  
5.3.2.1  
5.3.2.2  
5.3.2.3  
5.3.2.4  
5.3.2.5  
Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Computer Operating Properly (COP) Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
LVI Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
5.4  
SIM Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
5.4.1  
5.4.2  
5.4.3  
5.5  
5.5.1  
Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
SWI Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
5.5.1.1  
5.5.1.2  
5.5.2  
5.5.2.1  
5.5.2.2  
5.5.2.3  
5.5.3  
5.5.4  
5.5.5  
5.6  
5.6.1  
5.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
5.7  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Reset Status Register (RSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
5.7.1  
5.7.2  
5.7.3  
MC68HC908JL3E Family Data Sheet, Rev. 3  
8
Freescale Semiconductor  
Chapter 6  
Oscillator (OSC)  
6.1  
6.2  
6.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
X-tal Oscillator (MC68HC908JL3E/JK3E/JK1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
RC Oscillator (MC68HRC908JL3E/JK3E/JK1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
6.4  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Crystal Amplifier Output Pin (OSC2/PTA6/RCCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Oscillator Enable Signal (SIMOSCEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
X-tal Oscillator Clock (XTALCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
RC Oscillator Clock (RCCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Oscillator Out 2 (2OSCOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.4.6  
6.4.7  
6.5  
6.5.1  
6.5.2  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
6.6  
Oscillator During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Chapter 7  
Monitor ROM (MON)  
7.1  
7.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
7.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Entering Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.3.6  
7.4  
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Chapter 8  
Timer Interface Module (TIM)  
8.1  
8.2  
8.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
8.4  
8.4.1  
8.4.2  
8.4.3  
8.4.3.1  
8.4.3.2  
8.4.4  
8.4.4.1  
8.4.4.2  
8.4.4.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
TIM Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
9
Table of Contents  
8.5  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
8.6  
8.6.1  
8.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
8.7  
8.8  
TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
8.9  
I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
TIM Counter Registers (TCNTH:TCNTL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
TIM Counter Modulo Registers (TMODH:TMODL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
TIM Channel Status and Control Registers (TSC0:TSC1). . . . . . . . . . . . . . . . . . . . . . . . . . 95  
TIM Channel Registers (TCH0H/L:TCH1H/L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
8.9.1  
8.9.2  
8.9.3  
8.9.4  
8.9.5  
Chapter 9  
Analog-to-Digital Converter (ADC)  
9.1  
9.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
9.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
9.3.1  
9.3.2  
9.3.3  
9.3.4  
9.3.5  
9.4  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
9.5  
9.5.1  
9.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
9.6  
9.6.1  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
9.7  
I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
ADC Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
9.7.1  
9.7.2  
9.7.3  
Chapter 10  
Input/Output (I/O) Ports  
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
10.2 Port A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
10.2.1  
10.2.2  
10.2.3  
Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Data Direction Register A (DDRA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Port A Input Pull-up Enable Register (PTAPUE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
10.3 Port B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
10.3.1  
10.3.2  
Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Data Direction Register B (DDRB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
10.4 Port D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
10.4.1  
Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
MC68HC908JL3E Family Data Sheet, Rev. 3  
10  
Freescale Semiconductor  
10.4.2  
10.4.3  
Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Port D Control Register (PDCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Chapter 11  
External Interrupt (IRQ)  
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
11.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
11.3.1  
IRQ1 Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
11.4 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
11.5 IRQ Status and Control Register (INTSCR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Chapter 12  
Keyboard Interrupt Module (KBI)  
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
12.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
12.3 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
12.4.1  
Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
12.5 Keyboard Interrupt Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
12.5.1  
12.5.2  
Keyboard Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
12.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
12.6.1  
12.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
12.7 Keyboard Module During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Chapter 13  
Computer Operating Properly (COP)  
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
13.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
13.3 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
13.3.1  
13.3.2  
13.3.3  
13.3.4  
13.3.5  
13.3.6  
13.3.7  
2OSCOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Reset Vector Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
13.4 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
13.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
13.6 Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
13.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
13.7.1  
13.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
13.8 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
11  
Table of Contents  
Chapter 14  
Low Voltage Inhibit (LVI)  
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
14.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
14.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
14.4 LVI Control Register (CONFIG2/CONFIG1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
14.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
14.5.1  
14.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Chapter 15  
Break Module (BREAK)  
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
15.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
15.3.1  
15.3.2  
15.3.3  
15.3.4  
Flag Protection During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
15.4 Break Module Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
15.4.1  
15.4.2  
15.4.3  
15.4.4  
Break Status and Control Register (BRKSCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
15.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
15.5.1  
15.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Chapter 16  
Electrical Specifications  
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
16.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
16.3 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
16.4 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
16.5 5V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
16.6 5V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
16.7 5V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
16.8 3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
16.9 3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
16.10 3V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
16.11 Typical Supply Currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
16.12 ADC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
16.13 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
MC68HC908JL3E Family Data Sheet, Rev. 3  
12  
Freescale Semiconductor  
Chapter 17  
Mechanical Specifications  
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
17.2 20-Pin PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
17.3 20-Pin SOIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
17.4 28-Pin PDIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
17.5 28-Pin SOIC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
17.6 48-Pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Chapter 18  
Ordering Information  
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
18.2 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Appendix A  
MC68HLC908JL3E/JK3E/JK1E  
A.1  
A.2  
A.3  
A.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Low-Voltage Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Oscillator Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
A.5  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Memory Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
A.5.1  
A.5.2  
A.5.3  
A.5.4  
A.5.5  
A.5.6  
A.6  
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Appendix B  
MC68H(R)C08JL3E/JK3E  
B.1  
B.2  
B.3  
B.4  
B.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
B.6  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
5V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Memory Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
B.6.1  
B.6.2  
B.6.3  
B.7  
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
13  
Table of Contents  
Appendix C  
MC68HC908KL3E/KK3E  
C.1  
C.2  
C.3  
C.4  
C.5  
C.6  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Reserved Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
MC68HC908JL3E Family Data Sheet, Rev. 3  
14  
Freescale Semiconductor  
Chapter 1  
General Description  
1.1 Introduction  
The MC68H(R)C908JL3E is a member of the low-cost, high-performance M68HC08 Family of 8-bit  
microcontroller units (MCUs). The M68HC08 Family is based on the customer-specified integrated circuit  
(CSIC) design strategy. All MCUs in the family use the enhanced M68HC08 central processor unit  
(CPU08) and are available with a variety of modules, memory sizes and types, and package types.  
A list of MC68H(R)C908JL3E device variations is shown in Table 1-1.  
Table 1-1. Summary of Device Variations  
Device  
Type  
Operating  
Voltage  
Oscillator  
Option  
Pin  
Count  
LVI  
ADC  
Memory  
Device  
28  
20  
20  
28  
20  
20  
28  
20  
20  
28  
20  
28  
20  
28  
20  
MC68HC908JL3E  
MC68HC908JK3E  
MC68HC908JK1E  
MC68HRC908JL3E  
MC68HRC908JK3E  
MC68HRC908JK3E  
MC68HLC908JL3E  
MC68HLC908JK3E  
MC68HLC908JK1E  
MC68HC08JL3E  
4,096 bytes FLASH  
1,536 bytes FLASH  
4,096 bytes FLASH  
1,536 bytes FLASH  
4,096 bytes FLASH  
1,536 bytes FLASH  
XTAL  
RC  
FLASH  
3V, 5V  
Yes  
Yes  
LowVoltage  
FLASH(1)  
2.2 to 5.5V  
No  
Yes  
XTAL  
XTAL  
RC  
MC68HC08JK3E  
ROM(2)  
3V, 5V  
3V, 5V  
Yes  
Yes  
Yes  
No  
4,096 bytes ROM  
MC68HRC08JL3E  
MC68HRC08JK3E  
MC68HC908KL3E  
MC68HC908KK3E  
FLASH,  
ADC-less(3)  
XTAL  
4,096 bytes FLASH  
1. Low-voltage FLASH devices are documented in Appendix A MC68HLC908JL3E/JK3E/JK1E.  
2. ROM devices are documented in Appendix B MC68H(R)C08JL3E/JK3E.  
3. FLASH, ADC-less devices are documented in Appendix C MC68HC908KL3E/KK3E.  
All references to the MC68H(R)C908JL3E in this data book apply equally to the MC68H(R)C908JK3E  
and MC68H(R)C908JK1E, unless otherwise stated.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
15  
General Description  
1.2 Features  
Features of the MC68H(R)C908JL3E include the following:  
EMC enhanced version of MC68H(R)C908JL3/JK3/JK1  
High-performance M68HC08 architecture  
Fully upward-compatible object code with M6805, M146805, and M68HC05 Families  
Low-power design; fully static with stop and wait modes  
Maximum internal bus frequency:  
8-MHz at 5V operating voltage  
4-MHz at 3V operating voltage  
Oscillator options:  
Crystal oscillator for MC68HC908JL3E/JK3E/JK1E  
RC oscillator for MC68HRC908JL3E/JK3E/JK1E  
User program FLASH memory with security(1) feature  
4,096 bytes for MC68H(R)C908JL3E/JK3E  
1,536 bytes for MC68H(R)C908JK1E  
128 bytes of on-chip RAM  
2-channel, 16-bit timer interface module (TIM)  
12-channel, 8-bit analog-to-digital converter (ADC)  
23 general purpose I/O ports for MC68H(R)C908JL3E:  
7 keyboard interrupt with internal pull-up  
(6 keyboard interrupt for MC68HC908JL3E)  
10 LED drivers (sink)  
2 × 25mA open-drain I/O with pull-up  
15 general purpose I/O ports for MC68H(R)C908JK3E/JK1E:  
1 keyboard interrupt with internal pull-up  
(MC68HRC908JK3E/JK1E only)  
4 LED drivers (sink)  
2 × 25mA open-drain I/O with pull-up  
10-channel ADC  
System protection features:  
Optional computer operating properly (COP) reset  
Optional low-voltage detection with reset and selectable trip points for 3V and 5V operation  
Illegal opcode detection with reset  
Illegal address detection with reset  
Master reset pin with internal pull-up and power-on reset  
IRQ1 with schmitt-trigger input and programmable pull-up  
28-pin PDIP, 28-pin SOIC, and 48-pin LQFP packages for MC68H(R)C908JL3E  
20-pin PDIP and 20-pin SOIC packages for MC68H(R)C908JK3E/JK1E  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
16  
Freescale Semiconductor  
MCU Block Diagram  
1.3 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68H(R)C908JL3E.  
INTERNAL BUS  
M68HC08 CPU  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
KEYBOARD INTERRUPT  
MODULE  
PTA6/KBI6**¥  
PTA5/KBI5**‡  
PTA4/KBI4**‡  
PTA3/KBI3**‡  
PTA2/KBI2**‡  
PTA1/KBI1**‡  
PTA0/KBI0**‡  
CONTROL AND STATUS REGISTERS — 64 BYTES  
8-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
#
USER FLASH:  
MC68H(R)C908JK3E/JL3E — 4,096 BYTES  
MC68H(R)C908JK1E — 1,536 BYTES  
USER RAM — 128 BYTES  
MONITOR ROM — 960 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE  
PTB7/ADC7  
PTB6/ADC6  
PTB5/ADC5  
PTB4/ADC4  
PTB3/ADC3  
PTB2/ADC2  
PTB1/ADC1  
PTB0/ADC0  
BREAK  
MODULE  
USER FLASH VECTOR SPACE — 48 BYTES  
MC68HC908JL3E/JK3E/JK1E  
OSC1  
X-TAL OSCILLATOR  
¥ OSC2  
COMPUTER OPERATING  
PROPERLY MODULE  
PTD7**†‡  
MC68HRC908JL3E/JK3E/JK1E  
RC OSCILLATOR  
PTD6**†‡  
PTD5/TCH1  
PTD4/TCH0  
PTD3/ADC8‡  
PTD2/ADC9‡  
POWER-ON RESET  
MODULE  
SYSTEM INTEGRATION  
MODULE  
PTD1/ADC10  
#
* RST  
PTD0/ADC11  
LOW-VOLTAGE INHIBIT  
MODULE  
EXTERNAL INTERRUPT  
MODULE  
* IRQ1  
* Pin contains integrated pull-up device.  
** Pin contains programmable pull-up device.  
25mA open-drain if output pin.  
VDD  
POWER  
LED direct sink pin.  
VSS  
# Pins available on MC68H(R)C908JL3E only.  
¥ Shared pin: MC68HC908JL3E/JK3E/JK1E — OSC2  
ADC REFERENCE  
MC68HRC908JL3E/JK3E/JK1E — RCCLK/PTA6/KBI6  
Figure 1-1. MCU Block Diagram  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
17  
General Description  
1.4 Pin Assignments  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
IRQ1  
1
RST  
PTA0/KBI0  
VSS  
PTA5/KBI5  
PTD4/TCH0  
PTD5/TCH1  
PTD2/ADC9  
PTA4/KBI4  
PTD3/ADC8  
PTB0/ADC0  
PTB1/ADC1  
PTD1/ADC10  
PTB2/ADC2  
PTB3/ADC3  
PTD0/ADC11  
PTB4/ADC4  
2
3
OSC1  
4
OSC2/RCCLK/PTA6/KBI  
PTA1/KBI1  
VDD  
5
6
7
PTA2/KBI2  
PTA3/KBI3  
PTB7/ADC7  
PTB6/ADC6  
PTB5/ADC5  
PTD7  
8
9
10  
11  
12  
13  
14  
PTD6  
MC68H(R)C908JL3E  
Figure 1-2. 28-Pin PDIP/SOIC Pin Assignment  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
10  
IRQ1  
RST  
VSS  
OSC1  
PTD4/TCH0  
PTD5/TCH1  
PTD2/ADC9  
PTD3/ADC8  
PTB0/ADC0  
PTB1/ADC1  
PTB2/ADC2  
PTB3/ADC3  
PTB4/ADC4  
Pins not available on 20-pin packages  
OSC2/RCCLK/PTA6/KBI  
VDD  
PTA0/KBI0  
PTA1/KBI1  
PTA2/KBI2  
PTA3/KBI3  
PTA4/KBI4  
PTA5/KBI5  
PTD0/ADC11  
PTD1/ADC10  
PTB7/ADC7  
PTB6/ADC6  
PTB5/ADC5  
PTD7  
PTD6  
Internal pads are unconnected.  
MC68H(R)C908JK3E/JK1E  
Figure 1-3. 20-Pin PDIP/SOIC Pin Assignment  
MC68HC908JL3E Family Data Sheet, Rev. 3  
18  
Freescale Semiconductor  
Pin Assignments  
1
36  
NC  
NC  
NC  
NC  
2
3
NC  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
OSC1  
4
PTD2/ADC9  
PTA4/KBI4  
PTD3/ADC8  
NC  
OSC2/RCCLK/PTA6/KBI6  
5
PTA1/KBI1  
NC  
6
MC68H(R)C908JL3E  
7
VDD  
8
PTB0/ADC0  
PTB1/ADC1  
PTD1/ADC10  
NC  
PTA2/KBI2  
PTA3KBI3  
PTB7/ADC7  
NC  
9
10  
11  
25 NC  
NC 12  
NC: No connection  
Figure 1-4. 48-Pin LQFP Pin Assignment  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
19  
General Description  
1.5 Pin Functions  
Description of the pin functions are provided in Table 1-2.  
Table 1-2. Pin Functions  
PIN NAME  
VDD  
PIN DESCRIPTION  
IN/OUT  
In  
VOLTAGE LEVEL  
5V or 3V  
Power supply.  
VSS  
Power supply ground  
Out  
0V  
RESET input, active low.  
With Internal pull-up and schmitt trigger input.  
RST  
Input  
VDD  
External IRQ pin.  
With software programmable internal pull-up and schmitt  
trigger input.  
VDD to VDD+VHI  
IRQ1  
Input  
This pin is also used for mode entry selection.  
OSC1  
X-tal or RC oscillator input.  
In  
Analog  
Analog  
MC68HC908JL3E/JK3E/JK1E:  
X-tal oscillator output, this is the inverting OSC1 signal.  
Out  
OSC2  
MC68HRC908JL3E/JK3E/JK1E:  
Default is RC oscillator clock output, RCCLK.  
Shared with PTA6/KBI6, with programmable pull-up.  
In/Out  
VDD  
7-bit general purpose I/O port.  
In/Out  
In  
VDD  
VDD  
Shared with 7 keyboard interrupts KBI[0:6].  
Each pin has programmable internal pull-up device.  
PTA[0:5] have LED direct sink capability  
8-bit general purpose I/O port.  
PTA[0:6]  
PTB[0:7]  
In  
VDD  
In  
VSS  
In/Out  
In  
VDD  
Shared with 8 ADC inputs, ADC[0:7].  
Analog  
VDD  
8-bit general purpose I/O port.  
In/Out  
Input  
In/Out  
In  
PTD[3:0] shared with 4 ADC inputs, ADC[8:11].  
PTD[4:5] shared with TIM channels, TCH0 and TCH1.  
PTD[2:3], PTD[6:7] have LED direct sink capability  
Analog  
VDD  
PTD[0:7]  
VSS  
PTD[6:7] can be configured as 25mA open-drain output with  
pull-up.  
In/Out  
VDD  
NOTE  
On the MC68H(R)C908JK3E/JK1E, the following pins are not available:  
PTA0, PTA1, PTA2, PTA3, PTA4, PTA5, PTD0, and PTD1.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
20  
Freescale Semiconductor  
Chapter 2  
Memory  
2.1 Introduction  
The CPU08 can address 64 Kbytes of memory space. The memory map, shown in Figure 2-1, includes:  
4,096 bytes of user FLASH — MC68H(R)C908JL3E/JK3E  
1,536 bytes of user FLASH — MC68H(R)C908JK1E  
128 bytes of RAM  
48 bytes of user-defined vectors  
960 bytes of Monitor ROM  
2.2 I/O Section  
Addresses $0000–$003F, shown in Figure 2-2, contain most of the control, status, and data registers.  
Additional I/O registers have the following addresses:  
$FE00; Break Status Register, BSR  
$FE01; Reset Status Register, RSR  
$FE02; Reserved  
$FE03; Break Flag Control Register, BFCR  
$FE04; Interrupt Status Register 1, INT1  
$FE05; Interrupt Status Register 2, INT2  
$FE06; Interrupt Status Register 3, INT3  
$FE07; Reserved  
$FE08; FLASH Control Register, FLCR  
$FE09; FLASH Block Protect Register, FLBPR  
$FE0A; Reserved  
$FE0B; Reserved  
$FE0C; Break Address Register High, BRKH  
$FE0D; Break Address Register Low, BRKL  
$FE0E; Break Status and Control Register, BRKSCR  
$FE0F; Reserved  
$FFFF; COP Control Register, COPCTL  
2.3 Monitor ROM  
The 960 bytes at addresses $FC00–$FDFF and $FE10–$FFCF are reserved ROM addresses that  
contain the instructions for the monitor functions. (See Chapter 7 Monitor ROM (MON).)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
21  
Memory  
$0000  
$003F  
I/O REGISTERS  
64 BYTES  
$0040  
$007F  
RESERVED  
64 BYTES  
$0080  
$00FF  
RAM  
128 BYTES  
$0100  
$EBFF  
UNIMPLEMENTED  
60,160 BYTES  
$0100  
$F5FF  
UNIMPLEMENTED  
62,720 BYTES  
$EC00  
$FBFF  
FLASH MEMORY  
MC68H(R)C908JL3E/JK3E  
4,096 BYTES  
FLASH MEMORY  
MC68H(R)C908JK1E  
1,536 BYTES  
$F600  
$FBFF  
$FC00  
$FDFF  
MONITOR ROM  
512 BYTES  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
BREAK STATUS REGISTER (BSR)  
RESET STATUS REGISTER (RSR)  
RESERVED (UBAR)  
BREAK FLAG CONTROL REGISTER (BFCR)  
INTERRUPT STATUS REGISTER 1 (INT1)  
INTERRUPT STATUS REGISTER 2 (INT2)  
INTERRUPT STATUS REGISTER 3 (INT3)  
RESERVED  
FLASH CONTROL REGISTER (FLCR)  
FLASH BLOCK PROTECT REGISTER (FLBPR)  
RESERVED  
RESERVED  
BREAK ADDRESS HIGH REGISTER (BRKH)  
BREAK ADDRESS LOW REGISTER (BRKL)  
BREAK STATUS AND CONTROL REGISTER (BRKSCR)  
RESERVED  
$FE10  
$FFCF  
MONITOR ROM  
448 BYTES  
$FFD0  
$FFFF  
USER VECTORS  
48 BYTES  
Figure 2-1. Memory Map  
MC68HC908JL3E Family Data Sheet, Rev. 3  
22  
Freescale Semiconductor  
Monitor ROM  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000 Port A Data Register (PTA) Write:  
Reset:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
Read:  
PTB7  
PTB6  
PTD6  
PTB5  
PTD5  
PTB2  
PTD2  
PTB1  
PTB0  
$0001 Port B Data Register (PTB) Write:  
Reset:  
Read:  
$0002  
Unimplemented Write:  
Read:  
PTD7  
0
PTD4  
PTD3  
PTD1  
PTD0  
$0003 Port D Data Register (PTD) Write:  
Reset:  
Unaffected by reset  
Read:  
DDRA6  
DDRA5  
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
Data Direction Register A  
(DDRA)  
$0004  
$0005  
$0006  
$0007  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
DDRB7  
0
0
DDRB6  
0
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
(DDRB)  
Unimplemented Write:  
Read:  
DDRD7  
0
DDRD6  
0
DDRD5  
0
DDRD4  
0
DDRD3  
0
DDRD2  
0
DDRD1  
0
DDRD0  
0
Data Direction Register D  
(DDRD)  
Write:  
Reset:  
Read:  
$0008  
Unimplemented Write:  
$0009  
Read:  
0
0
0
0
0
0
0
0
SLOWD7 SLOWD6 PTDPU7 PTDPU6  
Port D Control Register  
(PDCR)  
$000A  
Write:  
Reset:  
Read:  
0
0
0
0
$000B  
$000C  
Unimplemented Write:  
Read:  
Port A Input Pull-up  
Enable Register Write:  
PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
$000D  
(PTAPUE)  
Reset:  
0
0
0
0
0
0
0
0
$000E  
$0019  
Read:  
Write:  
Unimplemented  
Read:  
Keyboard Status and  
Control Register Write:  
0
0
0
0
KEYF  
0
ACKK  
0
IMASKK MODEK  
$001A  
$001B  
(KBSCR)  
Reset:  
0
0
KBIE6  
0
0
KBIE5  
0
0
KBIE4  
0
0
0
KBIE1  
0
0
KBIE0  
0
Read:  
Keyboard Interrupt  
Enable Register Write:  
0
KBIE3  
KBIE2  
(KBIER)  
Reset:  
0
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 4)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
23  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Unimplemented Write:  
$001C  
Read:  
0
0
0
0
IRQF1  
0
ACK1  
0
IRQ Status and Control  
IMASK1  
MODE1  
$001D  
$001E  
$001F  
Register Write:  
(INTSCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
R
0
0
R
0
0
LVIT1  
0*  
0
LVIT0  
0*  
0
0
IRQPUD  
R
R
R
Configuration Register 2  
(CONFIG2)†  
0
COPRS  
0
0
SSREC  
0
0
STOP  
0
0
COPD  
0
R
0
R
0
LVID  
0
R
Configuration Register 1  
(CONFIG1)†  
0
† One-time writable register after each reset. * LVIT1 and LVIT0 reset to logic 0 by a power-on reset (POR) only.  
Read:  
TOF  
0
0
TIM Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
Register Write:  
(TSC)  
0
0
TRST  
0
Reset:  
0
1
0
0
0
0
Read: Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
TIM Counter Register  
High Write:  
(TCNTH)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
TIM Counter Register  
Low Write:  
(TCNTL)  
Reset:  
Read:  
0
Bit15  
1
0
Bit14  
1
0
Bit13  
1
0
Bit12  
1
0
Bit11  
1
0
Bit10  
1
0
Bit9  
1
0
TIM Counter Modulo  
Bit8  
Register High Write:  
(TMODH)  
Reset:  
Read:  
1
TIM Counter Modulo  
Bit7  
1
Bit6  
1
Bit5  
1
Bit4  
1
Bit3  
1
Bit2  
1
Bit1  
1
Bit0  
Register Low Write:  
(TMODL)  
Reset:  
1
CH0MAX  
0
Read: CH0F  
TIM Channel 0 Status and  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
Control Register Write:  
(TSC0)  
0
0
Reset:  
Read:  
TIM Channel 0  
Register High Write:  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
(TCH0H)  
Reset:  
Indeterminate after reset  
Bit4 Bit3  
Indeterminate after reset  
Read:  
TIM Channel 0  
Register Low Write:  
Bit7  
Bit6  
Bit5  
0
Bit2  
Bit1  
Bit0  
(TCH0L)  
Reset:  
Read: CH1F  
TIM Channel 1 Status and  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
Control Register Write:  
(TSC1)  
0
0
0
0
Reset:  
Read:  
TIM Channel 1  
Register High Write:  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
(TCH1H)  
Reset:  
Indeterminate after reset  
Bit4 Bit3  
Read:  
TIM Channel 1  
Register Low Write:  
Bit7  
Bit6  
Bit5  
Bit2  
Bit1  
Bit0  
(TCH1L)  
Reset:  
Indeterminate after reset  
R
= Unimplemented  
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 4)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
24  
Freescale Semiconductor  
Monitor ROM  
Addr.  
$002B  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Unimplemented  
$003B  
Read: COCO  
ADC Status and Control  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
$003D  
Register Write:  
(ADSCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
1
1
1
1
1
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
ADC Data Register  
(ADR)  
Indeterminate after reset  
0
0
0
0
0
0
0
0
ADIV2  
0
ADIV1  
0
ADIV0  
0
ADC Input Clock Register  
(ADICLK)  
$003E  
$003F  
0
0
Unimplemented Write:  
Read:  
SBSW  
See note  
0
R
R
R
R
R
R
R
0
$FE00 Break Status Register (BSR) Write:  
Reset:  
Note: Writing a logic 0 clears SBSW.  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
$FE01 Reset Status Register (RSR) Write:  
POR:  
Read:  
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
Reserved Write:  
Read:  
Break Flag Control  
BCFE  
R
R
R
R
R
R
R
Register Write:  
(BFCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
IF5  
R
0
IF4  
R
0
IF3  
R
0
0
R
0
IF1  
R
0
0
R
0
0
R
Interrupt Status Register 1  
(INT1)  
R
0
0
IF14  
R
0
0
0
0
0
0
0
Interrupt Status Register 2  
(INT2)  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
0
0
0
0
0
0
0
0
IF15  
R
Interrupt Status Register 3  
(INT3)  
R
R
0
R
0
R
0
R
0
R
0
R
0
0
0
R
0
R
R
R
R
R
R
R
Reserved Write:  
Read:  
0
0
0
HVEN  
0
MASS  
0
ERASE  
PGM  
0
FLASH Control Register  
(FLCR)  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
BPR7  
0
0
BPR6  
0
0
BPR5  
0
0
BPR4  
0
0
BPR1  
0
BPR3  
BPR2  
BPR0  
0
FLASH Block Protect  
Register (FLBPR)  
0
0
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 4)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
25  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Reserved Write:  
$FE0A  
$FE0B  
R
R
R
R
R
R
R
R
Read:  
Break Address High  
Bit15  
0
Bit14  
0
Bit13  
0
Bit12  
0
Bit11  
0
Bit10  
0
Bit9  
0
Bit8  
0
$FE0C  
$FE0D  
$FE0E  
Register Write:  
(BRKH)  
Reset:  
Read:  
Break Address low  
Bit7  
0
Bit6  
0
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Register Write:  
(BRKL)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
Break Status and Control  
BRKE  
0
BRKA  
0
Register Write:  
(BRKSCR)  
Reset:  
0
0
0
0
0
0
Read:  
Write:  
Reset:  
Low byte of reset vector  
COP Control Register  
(COPCTL)  
$FFFF  
Writing clears COP counter (any value)  
Unaffected by reset  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 4)  
Table 2-1. Vector Addresses  
Vector Priority  
INT Flag  
Address  
Vector  
Lowest  
$FFD0  
Not Used  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
ADC Conversion Complete Vector (High)  
ADC Conversion Complete Vector (Low)  
Keyboard Vector (High)  
IF15  
IF14  
Keyboard Vector (Low)  
IF13  
Not Used  
IF6  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
TIM Overflow Vector (High)  
TIM Overflow Vector (Low)  
TIM Channel 1 Vector (High)  
TIM Channel 1 Vector (Low)  
TIM Channel 0 Vector (High)  
TIM Channel 0 Vector (Low)  
Not Used  
IF5  
IF4  
IF3  
IF2  
IF1  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
IRQ1 Vector (High)  
IRQ1 Vector (Low)  
SWI Vector (High)  
SWI Vector (Low)  
Reset Vector (High)  
$FFFF  
Reset Vector (Low)  
Highest  
MC68HC908JL3E Family Data Sheet, Rev. 3  
26  
Freescale Semiconductor  
Random-Access Memory (RAM)  
2.4 Random-Access Memory (RAM)  
Addresses $0080 through $00FF are RAM locations. The location of the stack RAM is programmable.  
The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space.  
NOTE  
For correct operation, the stack pointer must point only to RAM locations.  
Within page zero are 128 bytes of RAM. Because the location of the stack RAM is programmable, all page  
zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved  
from its reset location at $00FF, direct addressing mode instructions can access efficiently all page zero  
RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global  
variables.  
Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU  
registers.  
NOTE  
For M6805 compatibility, the H register is not stacked.  
During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack  
pointer decrements during pushes and increments during pulls.  
NOTE  
Be careful when using nested subroutines. The CPU may overwrite data in  
the RAM during a subroutine or during the interrupt stacking operation.  
2.5 FLASH Memory  
This sub-section describes the operation of the embedded FLASH memory. The FLASH memory can be  
read, programmed, and erased from a single external supply. The program and erase operations are  
enabled through the use of an internal charge pump.  
FLASH Memory Size  
Device  
Memory Address Range  
(Bytes)  
4,096  
4,096  
1,536  
MC68H(R)C908JL3E  
MC68H(R)C908JK3E  
MC68H(R)C908JK1E  
$EC00—$FBFF  
$EC00—$FBFF  
$F600—$FBFF  
Addr.  
Register Name  
Bit 7  
6
5
4
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
FLASH Control Register  
(FLCR)  
$FE08  
0
BPR7  
0
0
BPR6  
0
0
BPR5  
0
0
BPR4  
0
FLASH Block Protect  
BPR3  
0
BPR2  
0
BPR1  
0
BPR0  
0
$FE09  
Register Write:  
(FLBPR)  
Reset:  
= Unimplemented  
Figure 2-3. FLASH I/O Register Summary  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
27  
Memory  
2.6 Functional Description  
The FLASH memory consists of an array of 4,096 or 1,536 bytes with an additional 48 bytes for user  
vectors. The minimum size of FLASH memory that can be erased is 64 bytes (a page); and the maximum  
size of FLASH memory that can be programmed in a program cycle is 32 bytes (a row). Program and  
erase operations are facilitated through control bits in the Flash Control Register (FLCR). Details for these  
operations appear later in this section. The address ranges for the user memory and vectors are:  
$EC00–$FBFF; user memory; 4,096 bytes; MC68H(R)C908JL3E/JK3E  
$F600–$FBFF; user memory; 1,536 bytes;  
MC68H(R)C908JK1E  
$FFD0–$FFFF; user interrupt vectors; 48 bytes  
NOTE  
An erased bit reads as logic 1 and a programmed bit reads as logic 0.  
A security feature prevents viewing of the FLASH contents.(1)  
2.7 FLASH Control Register  
The FLASH Control Register controls FLASH program and erase operations.  
Address:  
$FE08  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
Figure 2-4. FLASH Control Register (FLCR)  
HVEN — High Voltage Enable Bit  
This read/write bit enables high voltage from the charge pump to the memory for either program or  
erase operation. It can only be set if either PGM=1 or ERASE=1 and the proper sequence for program  
or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS — Mass Erase Control Bit  
This read/write bit configures the memory for mass erase operation or page erase operation when the  
ERASE bit is set.  
1 = Mass erase operation selected  
0 = Page erase operation selected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation. This bit and the PGM bit should not be  
set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation not selected  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
28  
Freescale Semiconductor  
FLASH Page Erase Operation  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation. This bit and the ERASE bit should  
not be set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation not selected  
2.8 FLASH Page Erase Operation  
Use the following procedure to erase a page of FLASH memory. A page consists of 64 consecutive bytes  
starting from addresses $XX00, $XX40, $XX80 or $XXC0. The 48-byte user interrupt vectors area also  
forms a page. Any page within the 4K bytes user memory area ($EC00–$FBFF) can be erased alone.  
The 48-byte user interrupt vectors cannot be erased by the page erase operation because of security  
reasons. Mass erase is required to erase this page.  
1. Set the ERASE bit and clear the MASS bit in the FLASH Control Register.  
2. Write any data to any FLASH address within the page address range desired.  
3. Wait for a time, tnvs (10µs).  
4. Set the HVEN bit.  
5. Wait for a time tErase (1ms).  
6. Clear the ERASE bit.  
7. Wait for a time, tnvh (5µs).  
8. Clear the HVEN bit.  
9. After time, trcv (1µs), the memory can be accessed in read mode again.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, but other unrelated operations  
may occur between the steps.  
2.9 FLASH Mass Erase Operation  
Use the following procedure to erase the entire FLASH memory:  
1. Set both the ERASE bit and the MASS bit in the FLASH Control Register.  
2. Write any data to any FLASH location within the FLASH memory address range.  
3. Wait for a time, tnvs (10µs).  
4. Set the HVEN bit.  
5. Wait for a time tMErase (4ms).  
6. Clear the ERASE bit.  
7. Wait for a time, tnvh1 (100µs).  
8. Clear the HVEN bit.  
9. After time, trcv (1µs), the memory can be accessed in read mode again.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, but other unrelated operations  
may occur between the steps.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
29  
Memory  
2.10 FLASH Program Operation  
Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes  
starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0 or $XXE0. Use this  
step-by-step procedure to program a row of FLASH memory:  
(Figure 2-5 shows a flowchart of the programming algorithm.)  
1. Set the PGM bit. This configures the memory for program operation and enables the latching of  
address and data for programming.  
2. Write any data to any FLASH location within the address range of the row to be programmed.  
3. Wait for a time, tnvs (10µs).  
4. Set the HVEN bit.  
5. Wait for a time, tpgs (5µs).  
6. Write data to the byte being programmed.  
7. Wait for time, tPROG (30µs).  
8. Repeat step 6 and 7 until all the bytes within the row are programmed.  
9. Clear the PGM bit.  
10. Wait for time, tnvh (5µs).  
11. Clear the HVEN bit.  
12. After time, trcv (1µs), the memory can be accessed in read mode again.  
This program sequence is repeated throughout the memory until all data is programmed.  
NOTE  
The time between each FLASH address change (step 6 to step 6), or the  
time between the last FLASH addressed programmed to clearing the PGM  
bit (step 6 to step 10), must not exceed the maximum programming time,  
tPROG max.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
30  
Freescale Semiconductor  
FLASH Program Operation  
1
2
Set PGM bit  
Algorithm for programming  
a row (32 bytes) of FLASH memory  
Write any data to any FLASH address  
within the row address range desired  
3
4
5
Wait for a time, tnvs  
Set HVEN bit  
Wait for a time, tpgs  
6
7
Write data to the FLASH address  
to be programmed  
Wait for a time, tPROG  
Completed  
Y
programming  
this row?  
N
9
Clear PGM bit  
Wait for a time, tnvh  
Clear HVEN bit  
NOTE:  
The time between each FLASH address change (step 6 to step 6), or  
the time between the last FLASH address programmed  
to clearing PGM bit (step 6 to step 9)  
10  
11  
12  
must not exceed the maximum programming  
time, tPROG max.  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Wait for a time, trcv  
End of Programming  
Figure 2-5. FLASH Programming Flowchart  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
31  
Memory  
2.11 FLASH Protection  
Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target  
application, provision is made to protect blocks of memory from unintentional erase or program operations  
due to system malfunction. This protection is done by use of a FLASH Block Protect Register (FLBPR).  
The FLBPR determines the range of the FLASH memory which is to be protected. The range of the  
protected area starts from a location defined by FLBPR and ends to the bottom of the FLASH memory  
($FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or PROGRAM  
operations.  
2.12 FLASH Block Protect Register  
The FLASH Block Protect Register is implemented as an 8-bit I/O register. The value in this register  
determines the starting address of the protected range within the FLASH memory.  
Address:  
$FE09  
Bit 7  
6
BPR6  
0
5
BPR5  
0
4
BPR4  
0
3
BPR3  
0
2
BPR2  
0
1
BPR1  
0
Bit 0  
BPR0  
0
Read:  
Write:  
Reset:  
BPR7  
0
Figure 2-6. FLASH Block Protect Register (FLBPR)  
BPR[7:0] — FLASH Block Protect Register Bit 7 to Bit 0  
BPR[7:1] represent bits [12:6] of a 16-bit memory address. Bits [15:13] are logic 1’s and bits [5:0] are  
logic 0’s.  
16-bit memory address  
Start address of FLASH block protect  
1 1 1  
0 0 0 0 0 0  
BPR[7:1]  
BPR0 is used only for BPR[7:0] = $FF, for no block protection.  
The resultant 16-bit address is used for specifying the start address of the FLASH memory for block  
protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF.  
With this mechanism, the protect start address can be XX00, XX40, XX80, or XXC0 (at page  
boundaries — 64 bytes) within the FLASH memory.  
Examples of protect start address:  
BPR[7:0]  
Start of Address of Protect Range  
$00–$60  
The entire FLASH memory is protected.  
$62 or $63  
(0110 001x)  
$EC40 (1110 1100 0100 0000)  
$EC80 (1110 1100 1000 0000)  
$ED00 (1110 1101 0000 0000)  
$64 or $65  
(0110 010x)  
$68 or $69  
(0110 100x)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
32  
Freescale Semiconductor  
FLASH Block Protect Register  
BPR[7:0]  
and so on...  
Start of Address of Protect Range  
$DE or $DF  
(1101 111x)  
$FBC0 (1111 1011 1100 0000)  
$FFC0 (1111 1111 1100 0000)  
$FE  
(1111 1110)  
$FF  
The entire FLASH memory is not protected.  
Note:  
The end address of the protected range is always $FFFF.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
33  
Memory  
MC68HC908JL3E Family Data Sheet, Rev. 3  
34  
Freescale Semiconductor  
Chapter 3  
Configuration Registers (CONFIG)  
3.1 Introduction  
This section describes the configuration registers (CONFIG1 and CONFIG2). The configuration registers  
enables or disables the following options:  
Stop mode recovery time (32 × 2OSCOUT cycles or  
4096 × 2OSCOUT cycles)  
STOP instruction  
Computer operating properly module (COP)  
COP reset period (COPRS), (213–24) × 2OSCOUT or  
(218–24) × 2OSCOUT  
Enable LVI circuit  
Select LVI trip voltage  
3.2 Functional Description  
The configuration register is used in the initialization of various options. The configuration register can be  
written once after each reset. All of the configuration register bits are cleared during reset. Since the  
various options affect the operation of the MCU it is recommended that this register be written immediately  
after reset. The configuration register is located at $001E and $001F, and may be read at anytime.  
NOTE  
The CONFIG registers are one-time writable by the user after each reset.  
Upon a reset, the CONFIG registers default to predetermined settings as  
shown in Figure 3-1 and Figure 3-2.  
3.3 Configuration Register 1 (CONFIG1)  
Address:  
$001F  
Bit 7  
6
5
R
0
4
LVID  
0
3
R
0
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
R
0
0
R
= Reserved  
Figure 3-1. Configuration Register 1 (CONFIG1)  
COPRS — COP reset period selection bit  
1 = COP reset cycle is (213 – 24) × 2OSCOUT  
0 = COP reset cycle is (218 – 24) × 2OSCOUT  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
35  
Configuration Registers (CONFIG)  
LVID — Low Voltage Inhibit Disable Bit  
1 = Low Voltage Inhibit disabled  
0 = Low Voltage Inhibit enabled  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of  
32 × 2OSCOUT cycles instead of a 4096 × 2OSCOUT cycle delay.  
1 = Stop mode recovery after 32 × 2OSCOUT cycles  
0 = Stop mode recovery after 4096 × 2OSCOUT cycles  
NOTE  
Exiting stop mode by pulling reset will result in the long stop recovery.  
If using an external crystal, do not set the SSREC bit.  
STOP — STOP Instruction Enable  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module. (See Chapter 13 Computer Operating Properly (COP).)  
1 = COP module disabled  
0 = COP module enabled  
3.4 Configuration Register 2 (CONFIG2)  
Address:  
$001E  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
IRQPUD  
0
R
R
LVIT1  
LVIT0  
R
R
Not  
affected  
Not  
affected  
Reset:  
POR:  
0
0
0
0
0
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 3-2. Configuration Register 2 (CONFIG2)  
IRQPUD — IRQ1 Pin Pull-up control bit  
1 = Internal pull-up is disconnected  
0 = Internal pull-up is connected between IRQ1 pin and VDD  
LVIT1, LVIT0 — Low Voltage Inhibit trip voltage selection bits  
Detail description of the LVI control signals is given in Chapter 14 Low Voltage Inhibit (LVI)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
36  
Freescale Semiconductor  
Chapter 4  
Central Processor Unit (CPU)  
4.1 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of  
the M68HC05 CPU. The CPU08 Reference Manual (Motorola document order number CPU08RM/AD)  
contains a description of the CPU instruction set, addressing modes, and architecture.  
4.2 Features  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with x-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for extension of addressing range  
beyond 64 Kbytes  
Low-power stop and wait modes  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
37  
Central Processor Unit (CPU)  
4.3 CPU Registers  
Figure 4-1 shows the five CPU registers. CPU registers are not part of the memory map.  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
0
V
1
1
H
I
N
Z
C
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 4-1. CPU Registers  
4.3.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and  
the results of arithmetic/logic operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 4-2. Accumulator (A)  
4.3.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of  
the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the index register to determine the  
conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
38  
Freescale Semiconductor  
CPU Registers  
Bit  
15  
14 13 12 11 10  
9
0
8
0
7
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 4-3. Index Register (H:X)  
4.3.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a  
reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data  
is pushed onto the stack and increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an  
index register to access data on the stack. The CPU uses the contents of the stack pointer to determine  
the conditional address of the operand.  
Bit  
15  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 4-4. Stack Pointer (SP)  
NOTE  
The location of the stack is arbitrary and may be relocated anywhere in  
RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct address  
(page 0) space. For correct operation, the stack pointer must point only to  
RAM locations.  
4.3.4 Program Counter  
The program counter is a 16-bit register that contains the address of the next instruction or operand to be  
fetched.  
Normally, the program counter automatically increments to the next sequential memory location every  
time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF.  
The vector address is the address of the first instruction to be executed after exiting the reset state.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
39  
Central Processor Unit (CPU)  
Bit  
15  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Loaded with Vector from $FFFE and $FFFF  
Figure 4-5. Program Counter (PC)  
4.3.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the  
instruction just executed. Bits 6 and 5 are set permanently to logic 1. The following paragraphs describe  
the functions of the condition code register.  
Bit 7  
V
6
1
1
5
1
1
4
H
X
3
I
2
N
X
1
Z
X
Bit 0  
C
Read:  
Write:  
Reset:  
X
1
X
X = Indeterminate  
Figure 4-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch  
instructions BGT, BGE, BLE, and BLT use the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an  
add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for  
binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and  
C flags to determine the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled  
when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE  
To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
40  
Freescale Semiconductor  
Arithmetic/Logic Unit (ALU)  
After the I bit is cleared, the highest-priority interrupt request is serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the  
interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the  
clear interrupt mask software instruction (CLI).  
N — Negative flag  
The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation  
produces a negative result, setting bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z — Zero flag  
The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation  
produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the  
accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test  
and branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
4.4 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the instruction set.  
Refer to the CPU08 Reference Manual (Motorola document order number CPU08RM/AD) for a  
description of the instructions and addressing modes and more detail about the architecture of the CPU.  
4.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
4.5.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from  
wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
4.5.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After  
exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
41  
Central Processor Unit (CPU)  
4.6 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in progress. If the break address  
register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU  
to normal operation if the break interrupt has been deasserted.  
4.7 Instruction Set Summary  
Table 4-1 provides a summary of the M68HC08 instruction set.  
4.8 Opcode Map  
The opcode map is provided in Table 4-2.  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ADC #opr  
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
ADC opr,SP  
ADC opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A9  
B9  
C9  
D9  
E9  
F9  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Add with Carry  
A (A) + (M) + (C)  
R R R R R  
SP1  
SP2  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AB  
BB  
CB  
DB  
EB  
FB  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Add without Carry  
A (A) + (M)  
R R R R R  
SP1  
SP2  
9EEB ff  
9EDB ee ff  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
– IMM  
– IMM  
A7  
AF  
ii  
ii  
2
2
MC68HC908JL3E Family Data Sheet, Rev. 3  
42  
Freescale Semiconductor  
Opcode Map  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
AND #opr  
AND opr  
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A4  
B4  
C4  
D4  
E4  
F4  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Logical AND  
A (A) & (M)  
0
R
R
R
R
SP1  
SP2  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
ASLX  
ASL opr,X  
ASL ,X  
ASL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38  
48  
58  
68  
78  
dd  
ff  
4
1
1
4
3
5
Arithmetic Shift Left  
(Same as LSL)  
R
R
R
C
0
b7  
b0  
b0  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
37  
47  
57  
67  
77  
dd  
4
1
1
4
3
5
C
Arithmetic Shift Right  
R
R
R
ff  
b7  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
DIR (b0)  
24  
rr  
3
11  
13  
15  
17  
19  
1B  
1D  
1F  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
4
4
4
4
4
4
4
4
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25  
27  
rr  
rr  
3
3
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
BGT opr  
PC (PC) + 2 + rel ? (N V) = 0  
– REL  
– REL  
90  
92  
rr  
rr  
3
Branch if Greater Than (Signed  
Operands)  
PC (PC) + 2 +rel ? (Z) | (N V)=0 –  
3
3
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28  
29  
22  
rr  
rr  
rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24  
rr  
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F  
2E  
rr  
rr  
3
3
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
43  
Central Processor Unit (CPU)  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
BIT #opr  
BIT opr  
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A5  
B5  
C5  
D5  
E5  
F5  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Bit Test  
(A) & (M)  
0
R
R
SP1  
SP2  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
PC (PC) + 2 + rel ? (Z) | (N V)=1 –  
– REL  
93  
rr  
3
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
PC (PC) + 2 + rel ? (C) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25  
23  
91  
2C  
2B  
2D  
26  
2A  
20  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
Branch if Less Than (Signed Operands) PC (PC) + 2 + rel ? (N V) = 1  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
DIR (b0)  
01  
03  
05  
07  
09  
0B  
0D  
0F  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
5
5
5
5
5
5
5
5
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
R
BRN rel  
Branch Never  
PC (PC) + 2  
– REL  
21  
rr  
3
DIR (b0)  
00  
02  
04  
06  
08  
0A  
0C  
0E  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
5
5
5
5
5
5
5
5
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
R
DIR (b0)  
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
10  
12  
14  
16  
18  
1A  
1C  
1E  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
4
4
4
4
4
4
4
4
BSET n,opr  
Set Bit n in M  
Mn 1  
MC68HC908JL3E Family Data Sheet, Rev. 3  
44  
Freescale Semiconductor  
Opcode Map  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
BSR rel  
Branch to Subroutine  
– REL  
AD  
rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
IMM  
31  
41  
51  
61  
71  
dd rr  
ii rr  
ii rr  
ff rr  
rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IX1+  
Compare and Branch if Equal  
IX+  
SP1  
CBEQ opr,SP,rel  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
CLR opr  
CLRA  
CLRX  
CLRH  
CLR opr,X  
CLR ,X  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
– INH  
IX1  
IX  
3F  
4F  
5F  
8C  
6F  
7F  
dd  
ff  
3
1
1
1
3
2
4
Clear  
0
0
1
CLR opr,SP  
SP1  
9E6F ff  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A1  
B1  
C1  
D1  
E1  
F1  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Compare A with M  
(A) – (M)  
R
R
R
R
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
COMX  
COM opr,X  
COM ,X  
COM opr,SP  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
INH  
IX1  
IX  
33  
43  
53  
63  
73  
dd  
ff  
4
1
1
4
3
5
Complement (One’s Complement)  
Compare H:X with M  
0
R
R
R
R
1
SP1  
9E63 ff  
CPHX #opr  
CPHX opr  
IMM  
R
65  
75  
ii ii+1  
dd  
3
4
(H:X) – (M:M + 1)  
R
DIR  
CPX #opr  
CPX opr  
CPX opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A3  
B3  
C3  
D3  
E3  
F3  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
CPX ,X  
Compare X with M  
Decimal Adjust A  
(X) – (M)  
R
R
R
R
R
R
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
9EE3 ff  
9ED3 ee ff  
DAA  
(A)10  
U –  
R INH  
72  
2
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
45  
Central Processor Unit (CPU)  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
A (A)–1 or M (M)–1 or X (X)–1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DBNZX rel  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
DIR  
INH  
– INH  
IX1  
IX  
SP1  
3B  
4B  
5B  
6B  
7B  
dd rr  
rr  
rr  
ff rr  
rr  
Decrement and Branch if Not Zero  
9E6B ff rr  
DEC opr  
DECA  
DECX  
DEC opr,X  
DEC ,X  
DEC opr,SP  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
INH  
IX1  
IX  
3A  
4A  
5A  
6A  
7A  
dd  
ff  
4
1
1
4
3
5
Decrement  
Divide  
R
R
R
R
SP1  
9E6A ff  
A (H:A)/(X)  
H Remainder  
DIV  
R INH  
52  
7
EOR #opr  
EOR opr  
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A8  
B8  
C8  
D8  
E8  
F8  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Exclusive OR M with A  
A (A M)  
0
R
R
R
R
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
INCX  
INC opr,X  
INC ,X  
INC opr,SP  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
INH  
IX1  
IX  
3C  
4C  
5C  
6C  
7C  
dd  
ff  
4
1
1
4
3
5
Increment  
R
SP1  
9E6C ff  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
– IX2  
IX1  
BC  
CC  
DC  
EC  
FC  
dd  
2
3
4
3
2
hh ll  
ee ff  
ff  
Jump  
PC Jump Address  
IX  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD  
CD  
DD  
ED  
FD  
dd  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
hh ll  
ee ff  
ff  
Jump to Subroutine  
IX  
LDA #opr  
LDA opr  
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A6  
B6  
C6  
D6  
E6  
F6  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Load A from M  
A (M)  
0
0
R
R
R
R
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
45  
55  
ii jj  
dd  
3
4
Load H:X from M  
H:X (M:M + 1)  
DIR  
MC68HC908JL3E Family Data Sheet, Rev. 3  
46  
Freescale Semiconductor  
Opcode Map  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AE  
BE  
CE  
DE  
EE  
FE  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Load X from M  
X (M)  
0
R
R
SP1  
SP2  
9EEE ff  
9EDE ee ff  
LSL opr  
LSLA  
LSLX  
LSL opr,X  
LSL ,X  
LSL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38  
48  
58  
68  
78  
dd  
ff  
4
1
1
4
3
5
Logical Shift Left  
(Same as ASL)  
C
0
R
R
R
R
R
R
b7  
b0  
SP1  
9E68 ff  
LSR opr  
LSRA  
LSRX  
LSR opr,X  
LSR ,X  
LSR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
34  
44  
54  
64  
74  
dd  
4
1
1
4
3
5
0
C
Logical Shift Right  
0
R
ff  
b7  
b0  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E  
5E  
6E  
7E  
dd dd  
dd  
ii dd  
dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
IMD  
IX+D  
Move  
0
0
R
R
H:X (H:X) + 1 (IX+D, DIX+)  
MUL  
Unsigned multiply  
X:A (X) × (A)  
0 INH  
42  
5
NEG opr  
NEGA  
NEGX  
NEG opr,X  
NEG ,X  
NEG opr,SP  
DIR  
INH  
INH  
IX1  
IX  
30  
40  
50  
60  
70  
dd  
ff  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
Negate (Two’s Complement)  
R
R
R
R
SP1  
9E60 ff  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
1
3
A (A[3:0]:A[7:4])  
62  
ORA #opr  
ORA opr  
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
AA  
BA  
CA  
DA  
EA  
FA  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Inclusive OR A and M  
A (A) | (M)  
0
R
R
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
SP (SP + 1); Pull (A)  
– INH  
– INH  
– INH  
– INH  
87  
8B  
89  
86  
2
2
2
2
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
47  
Central Processor Unit (CPU)  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PULH  
Pull H from Stack  
Pull X from Stack  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
8A  
88  
2
2
PULX  
ROL opr  
ROLA  
ROLX  
ROL opr,X  
ROL ,X  
ROL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
39  
49  
59  
69  
79  
dd  
ff  
4
1
1
4
3
5
C
Rotate Left through Carry  
Rotate Right through Carry  
R
R
R
R
R
R
R
b7  
b0  
SP1  
9E69 ff  
ROR opr  
RORA  
RORX  
ROR opr,X  
ROR ,X  
ROR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
36  
46  
56  
66  
76  
dd  
4
1
1
4
3
5
C
R
ff  
b7  
b0  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
R
R
R
R
R
R INH  
80  
81  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2  
B2  
C2  
D2  
E2  
F2  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
IX2  
IX1  
A (A) – (M) – (C)  
R
R
R
R
IX  
SP1  
SP2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
STA opr  
DIR  
EXT  
IX2  
– IX1  
IX  
B7  
C7  
D7  
E7  
F7  
dd  
3
4
4
3
2
4
5
hh ll  
ee ff  
ff  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
R
R
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
R
R
– DIR  
– INH  
35  
8E  
dd  
4
1
STOP  
Enable IRQ Pin; Stop Oscillator  
I 0; Stop Oscillator  
MC68HC908JL3E Family Data Sheet, Rev. 3  
48  
Freescale Semiconductor  
Opcode Map  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
STX opr  
STX opr  
DIR  
EXT  
IX2  
– IX1  
IX  
BF  
CF  
DF  
EF  
FF  
dd  
3
4
4
3
2
4
5
hh ll  
ee ff  
ff  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
R
R
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A0  
B0  
C0  
D0  
E0  
F0  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Subtract  
A (A) – (M)  
R
R R R  
9EE0 ff  
9ED0 ee ff  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
SWI  
Software Interrupt  
1
– INH  
83  
9
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
R
R
R
R
R
R INH  
– INH  
– INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
A (CCR)  
TST opr  
TSTA  
TSTX  
TST opr,X  
TST ,X  
TST opr,SP  
DIR  
INH  
INH  
IX1  
IX  
3D  
4D  
5D  
6D  
7D  
dd  
ff  
3
1
1
3
2
4
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
R
R
SP1  
9E6D ff  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
(SP) (H:X) – 1  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
49  
Central Processor Unit (CPU)  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
A
C
Accumulator  
Carry/borrow bit  
n
opr  
PC  
Any bit  
Operand (one or two bytes)  
Program counter  
CCR Condition code register  
dd Direct address of operand  
dd rr Direct address of operand and relative offset of branch instruction  
DD  
DIR  
DIX+ Direct to indexed with post increment addressing mode  
ee ff High and low bytes of offset in indexed, 16-bit offset addressing  
EXT Extended addressing mode  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
rel  
rr  
Direct to direct addressing mode  
Direct addressing mode  
Relative program counter offset byte  
Relative program counter offset byte  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
ff  
H
H
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
SP  
U
V
Stack pointer  
Undefined  
Overflow bit  
hh ll  
I
High and low bytes of operand address in extended addressing  
Interrupt mask  
X
Z
Index register low byte  
Zero bit  
ii  
Immediate operand byte  
&
Logical AND  
IMD  
Immediate source to direct destination addressing mode  
|
Logical OR  
IMM Immediate addressing mode  
Logical EXCLUSIVE OR  
Contents of  
INH  
IX  
IX+  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
( )  
–( ) Negation (two’s complement)  
#
«
?
Immediate value  
Sign extend  
Loaded with  
If  
IX+D Indexed with post increment to direct addressing mode  
IX1 Indexed, 8-bit offset addressing mode  
IX1+ Indexed, 8-bit offset, post increment addressing mode  
IX2  
M
N
Indexed, 16-bit offset addressing mode  
Memory location  
Negative bit  
:
R
Concatenated with  
Set or cleared  
Not affected  
MC68HC908JL3E Family Data Sheet, Rev. 3  
50  
Freescale Semiconductor  
Opcode Map  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
51  
Central Processor Unit (CPU)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
52  
Freescale Semiconductor  
Chapter 5  
System Integration Module (SIM)  
5.1 Introduction  
This section describes the system integration module (SIM), which supports up to 24 external and/or  
internal interrupts. Together with the CPU, the SIM controls all MCU activities. A block diagram of the SIM  
is shown in Figure 5-1. Figure 5-2 is a summary of the SIM I/O registers. The SIM is a system state  
controller that coordinates CPU and exception timing. The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals  
Stop/wait/reset/break entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and COP timeout  
Interrupt control:  
Acknowledge timing  
Arbitration control timing  
Vector address generation  
CPU enable/disable timing  
Modular architecture expandable to 128 interrupt sources  
Table 5-1 shows the internal signal names used in this section.  
Table 5-1. Signal Name Conventions  
Signal Name  
Description  
2OSCOUT  
Buffered clock from the X-tal oscillator circuit or the RC oscillator circuit.  
The 2OSCOUT frequency divided by two. This signal is again divided by two in the SIM to  
generate the internal bus clocks. (Bus clock = 2OSCOUT ÷ 4)  
OSCOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
53  
System Integration Module (SIM)  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO OSCILLATOR)  
SIM  
COUNTER  
COP CLOCK  
2OSCOUT (FROM OSCILLATOR)  
OSCOUT (FROM OSCILLATOR)  
÷2  
VDD  
CLOCK  
CONTROL  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULL-UP  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
RESET  
PIN LOGIC  
POR CONTROL  
RESET PIN CONTROL  
MASTER  
RESET  
CONTROL  
COP TIMEOUT (FROM COP MODULE)  
USB RESET (FROM USB MODULE)  
SIM RESET STATUS REGISTER  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 5-1. SIM Block Diagram  
Addr.  
Register Name  
Bit 7  
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
Read:  
SBSW  
NOTE  
0
R
0
R
0
$FE00 Break Status Register (BSR) Write:  
Reset:  
Note: Writing a logic 0 clears SBSW.  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
$FE01 Reset Status Register (RSR) Write:  
POR:  
Read:  
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
$FE02  
$FE03  
Reserved Write:  
Reset:  
Read:  
Break Flag Control  
Register Write:  
(BFCR)  
BCFE  
0
R
R
R
R
R
R
R
Reset:  
Figure 5-2. SIM I/O Register Summary  
MC68HC908JL3E Family Data Sheet, Rev. 3  
54  
Freescale Semiconductor  
SIM Bus Clock Control and Generation  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
R
IF5  
R
0
IF4  
R
0
IF3  
R
0
0
R
0
IF1  
R
0
0
R
0
0
R
Interrupt Status Register 1  
(INT1)  
$FE04  
$FE05  
$FE06  
0
0
IF14  
R
0
0
0
0
0
0
0
Interrupt Status Register 2  
(INT2)  
R
0
R
0
R
0
R
0
R
0
R
0
R
0
0
0
0
0
0
0
0
0
IF15  
R
Interrupt Status Register 3  
(INT3)  
R
R
0
R
0
R
0
R
0
R
0
R
0
0
0
= Unimplemented  
R
= Reserved  
Figure 5-2. SIM I/O Register Summary  
5.2 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The  
system clocks are generated from an incoming clock, OSCOUT, as shown in Figure 5-3.  
From  
OSCILLATOR  
2OSCOUT  
OSCOUT  
SIM COUNTER  
From  
OSCILLATOR  
BUS CLOCK  
GENERATORS  
÷ 2  
SIM  
Figure 5-3. SIM Clock Signals  
5.2.1 Bus Timing  
In user mode, the internal bus frequency is the oscillator frequency (2OSCOUT) divided by four.  
5.2.2 Clock Start-Up from POR  
When the power-on reset module generates a reset, the clocks to the CPU and peripherals are inactive  
and held in an inactive phase until after the 4096 2OSCOUT cycle POR time-out has completed. The RST  
pin is driven low by the SIM during this entire period. The IBUS clocks start upon completion of the  
time-out.  
5.2.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt, break, or reset, the SIM allows 2OSCOUT to clock the SIM  
counter. The CPU and peripheral clocks do not become active until after the stop delay time-out. This  
time-out is selectable as 4096 or 32 2OSCOUT cycles. (See 5.6.2 Stop Mode.)  
In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules.  
Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
55  
System Integration Module (SIM)  
5.3 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly module (COP)  
Low-voltage inhibit module (LVI)  
Illegal opcode  
Illegal address  
All of these resets produce the vector $FFFE–$FFFF ($FEFE–$FEFF in Monitor mode) and assert the  
internal reset signal (IRST). IRST causes all registers to be returned to their default values and all  
modules to be returned to their reset states.  
An internal reset clears the SIM counter (see 5.4 SIM Counter), but an external reset does not. Each of  
the resets sets a corresponding bit in the reset status register (RSR). (See 5.7 SIM Registers.)  
5.3.1 External Pin Reset  
The RST pin circuits include an internal pull-up device. Pulling the asynchronous RST pin low halts all  
processing. The PIN bit of the reset status register (RSR) is set as long as RST is held low for a minimum  
of 67 2OSCOUT cycles, assuming that the POR was not the source of the reset. See Table 5-2 for details.  
Figure 5-4 shows the relative timing.  
Table 5-2. PIN Bit Set Timing  
Reset Type  
POR  
Number of Cycles Required to Set PIN  
4163 (4096 + 64 + 3)  
All others  
67 (64 + 3)  
2OSCOUT  
RST  
IAB  
VECT H VECT L  
PC  
Figure 5-4. External Reset Timing  
5.3.2 Active Resets from Internal Sources  
All internal reset sources actively pull the RST pin low for 32 2OSCOUT cycles to allow resetting of  
external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles  
(Figure 5-5). An internal reset can be caused by an illegal address, illegal opcode, COP time-out, or POR.  
(See Figure 5-6 . Sources of Internal Reset.) Note that for POR resets, the SIM cycles through 4096  
2OSCOUT cycles during which the SIM forces the RST pin low. The internal reset signal then follows the  
sequence from the falling edge of RST shown in Figure 5-5.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
56  
Freescale Semiconductor  
Reset and System Initialization  
IRST  
RST  
RST PULLED LOW BY MCU  
32 CYCLES  
32 CYCLES  
2OSCOUT  
IAB  
VECTOR HIGH  
Figure 5-5. Internal Reset Timing  
The COP reset is asynchronous to the bus clock.  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
POR  
INTERNAL RESET  
LVI  
Figure 5-6. Sources of Internal Reset  
The active reset feature allows the part to issue a reset to peripherals and other chips within a system  
built around the MCU.  
5.3.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate  
that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out  
4096 2OSCOUT cycles. Sixty-four 2OSCOUT cycles later, the CPU and memories are released from  
reset to allow the reset vector sequence to occur.  
At power-on, the following events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables the oscillator to drive 2OSCOUT.  
Internal clocks to the CPU and modules are held inactive for 4096 2OSCOUT cycles to allow  
stabilization of the oscillator.  
The RST pin is driven low during the oscillator stabilization time.  
The POR bit of the reset status register (RSR) is set and all other bits in the register are cleared.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
57  
System Integration Module (SIM)  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
2OSCOUT  
OSCOUT  
RST  
IAB  
$FFFE  
$FFFF  
Figure 5-7. POR Recovery  
5.3.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an  
internal reset and sets the COP bit in the reset status register (RSR). The SIM actively pulls down the  
RST pin for all internal reset sources.  
To prevent a COP module time-out, write any value to location $FFFF. Writing to location $FFFF clears  
the COP counter and stages 12 through 5 of the SIM counter. The SIM counter output, which occurs at  
least every (212 – 24) 2OSCOUT cycles, drives the COP counter. The COP should be serviced as soon  
as possible out of reset to guarantee the maximum amount of time before the first time-out.  
The COP module is disabled if the RST pin or the IRQ1 pin is held at VDD + VHI while the MCU is in monitor  
mode. The COP module can be disabled only through combinational logic conditioned with the high  
voltage signal on the RST or the IRQ1 pin. This prevents the COP from becoming disabled as a result of  
external noise. During a break state, VDD + VHI on the RST pin disables the COP module.  
5.3.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP  
bit in the reset status register (RSR) and causes a reset.  
If the stop enable bit, STOP, in the mask option register is logic zero, the SIM treats the STOP instruction  
as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all  
internal reset sources.  
5.3.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the  
CPU is fetching an opcode prior to asserting the ILAD bit in the reset status register (RSR) and resetting  
the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down  
the RST pin for all internal reset sources.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
58  
Freescale Semiconductor  
SIM Counter  
5.3.2.5 LVI Reset  
The low-voltage inhibit module (LVI) asserts its output to the SIM when the VDD voltage falls to the LVI  
trip voltage VTRIP. The LVI bit in the SIM reset status register (SRSR) is set, and the external reset pin  
(RSTB) is held low while the SIM counter counts out 4096 2OSCOUT cycles. Sixty-four 2OSCOUT cycles  
later, the CPU and memories are released from reset to allow the reset vector sequence to occur. The  
SIM actively pulls down the (RSTB) pin for all internal reset sources.  
5.4 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the  
oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM counter uses 12 stages for  
counting, followed by a 13th stage that triggers a reset of SIM counters and supplies the clock for the COP  
module. The SIM counter is clocked by the falling edge of 2OSCOUT.  
5.4.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit  
asserts the signal PORRST. Once the SIM is initialized, it enables the oscillator to drive the bus clock  
state machine.  
5.4.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After  
an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the mask  
option register. If the SSREC bit is a logic one, then the stop recovery is reduced from the normal delay  
of 4096 2OSCOUT cycles down to 32 2OSCOUT cycles. This is ideal for applications using canned  
oscillators that do not require long start-up times from stop mode. External crystal applications should use  
the full stop recovery time, that is, with SSREC cleared in the configuration register (CONFIG).  
5.4.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter. (See 5.6.2 Stop Mode for details.) The SIM counter is  
free-running after all reset states. (See 5.3.2 Active Resets from Internal Sources for counter control  
and internal reset recovery sequences.)  
5.5 Exception Control  
Normal, sequential program execution can be changed in three different ways:  
Interrupts  
Maskable hardware CPU interrupts  
Non-maskable software interrupt instruction (SWI)  
Reset  
Break interrupts  
5.5.1 Interrupts  
An interrupt temporarily changes the sequence of program execution to respond to a particular event.  
Figure 5-8 flow charts the handling of system interrupts.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
59  
System Integration Module (SIM)  
Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The  
arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is  
latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched  
interrupt is serviced (or the I bit is cleared).  
FROM RESET  
YES  
BREAK INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ  
INTERRUPT?  
NO  
TIMER  
INTERRUPT?  
NO  
STACK CPU REGISTERS.  
SET I BIT.  
LOAD PC WITH INTERRUPT VECTOR.  
(As many interrupts as exist on chip)  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
YES  
NO  
RTI  
INSTRUCTION?  
UNSTACK CPU REGISTERS.  
EXECUTE INSTRUCTION.  
NO  
Figure 5-8. Interrupt Processing  
MC68HC908JL3E Family Data Sheet, Rev. 3  
60  
Freescale Semiconductor  
Exception Control  
At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the  
interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers  
the CPU register contents from the stack so that normal processing can resume. Figure 5-9 shows  
interrupt entry timing.  
Figure 5-10 shows interrupt recovery timing.  
MODULE  
INTERRUPT  
I BIT  
IAB  
IDB  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L START ADDR  
DUMMY PC – 1[7:0] PC – 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
R/W  
Figure 5-9. Interrupt Entry  
MODULE  
INTERRUPT  
I BIT  
IAB  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
IDB  
CCR  
A
X
PC – 1[15:8] PC – 1[7:0] OPCODE OPERAND  
R/W  
Figure 5-10. Interrupt Recovery  
5.5.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after  
completion of the current instruction. When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the  
corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is  
serviced first. Figure 5-11 demonstrates what happens when two interrupts are pending. If an interrupt is  
pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the  
LDA instruction is executed.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
61  
System Integration Module (SIM)  
CLI  
LDA #$FF  
BACKGROUND ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 5-11. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the  
INT1 RTI prefetch, this is a redundant operation.  
NOTE  
To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
5.5.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the  
interrupt mask (I bit) in the condition code register.  
NOTE  
A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
5.5.2 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt sources. Table 5-3 summarizes the  
interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be  
useful for debugging.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
62  
Freescale Semiconductor  
Exception Control  
Vector Address  
Table 5-3. Interrupt Sources  
INT  
Register  
Flag  
Mask1(1)  
Priority  
Source  
Flag  
Highest  
Reset  
$FFFE–$FFFF  
$FFFC–$FFFD  
$FFFA–$FFFB  
$FFF6–$FFF7  
$FFF4–$FFF5  
$FFF2–$FFF3  
$FFE0–$FFE1  
$FFDE–$FFDF  
SWI Instruction  
IRQ1 Pin  
IRQF1  
CH0F  
CH1F  
TOF  
IMASK1  
CH0IE  
CH1IE  
TOIE  
IF1  
IF3  
IF4  
IF5  
IF14  
IF15  
Timer Channel 0 Interrupt  
Timer Channel 1 Interrupt  
Timer Overflow Interrupt  
Keyboard Interrupt  
KEYF  
COCO  
IMASKK  
AIEN  
Lowest  
ADC Conversion Complete Interrupt  
1. The I bit in the condition code register is a global mask for all interrupts sources except the SWI instruction.  
5.5.2.1 Interrupt Status Register 1  
Address:  
$FE04  
Bit 7  
0
6
5
IF4  
R
4
IF3  
R
3
0
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF5  
R
R
R
0
R
0
R
0
0
0
0
0
0
R
= Reserved  
Figure 5-12. Interrupt Status Register 1 (INT1)  
IF1, IF3 to IF5 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the sources shown in Table 5-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0, 1, 3 and 7 — Always read 0  
5.5.2.2 Interrupt Status Register 2  
Address:  
$FE05  
Bit 7  
IF14  
R
6
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
R
R
0
R
0
R
0
R
0
R
0
R
0
0
0
R
= Reserved  
Figure 5-13. Interrupt Status Register 2 (INT2)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
63  
System Integration Module (SIM)  
IF14 — Interrupt Flags  
This flag indicates the presence of interrupt requests from the sources shown in Table 5-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0 to 6 — Always read 0  
5.5.2.3 Interrupt Status Register 3  
Address:  
$FE06  
Bit 7  
0
6
5
0
4
0
3
0
2
0
1
0
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
0
R
R
R
0
R
0
R
0
R
0
R
0
0
0
0
R
= Reserved  
Figure 5-14. Interrupt Status Register 3 (INT3)  
IF15 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the sources shown in Table 5-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 1 to 7 — Always read 0  
5.5.3 Reset  
All reset sources always have equal and highest priority and cannot be arbitrated.  
5.5.4 Break Interrupts  
The break module can stop normal program flow at a software-programmable break point by asserting its  
break interrupt output. (See Chapter 15 Break Module (BREAK).) The SIM puts the CPU into the break  
state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to  
see how each module is affected by the break state.  
5.5.5 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can be cleared during break mode. The  
user can select whether flags are protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the break flag control register (BFCR).  
Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This  
protection allows registers to be freely read and written during break mode without losing status flag  
information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains  
cleared even when break mode is exited. Status flags with a two-step clearing mechanism — for example,  
a read of one register followed by the read or write of another — are protected, even when the first step  
is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step  
will clear the flag as normal.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
64  
Freescale Semiconductor  
Low-Power Modes  
5.6 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low-power-consumption mode for standby  
situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is  
described below. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing  
interrupts to occur.  
5.6.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 5-15 shows  
the timing for wait mode entry.  
A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled.  
Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred.  
In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the  
module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.  
Wait mode can also be exited by a reset or break. A break interrupt during wait mode sets the SIM break  
stop/wait bit, SBSW, in the break status register (BSR). If the COP disable bit, COPD, in the mask option  
register is logic zero, then the computer operating properly module (COP) is enabled and remains active  
in wait mode.  
IAB  
IDB  
R/W  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 5-15. Wait Mode Entry Timing  
Figure 5-16 and Figure 5-17 show the timing for WAIT recovery.  
IAB  
$6E0B  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
IDB $A6  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt  
Figure 5-16. Wait Recovery from Interrupt or Break  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
65  
System Integration Module (SIM)  
32  
Cycles  
32  
Cycles  
IAB  
IDB $A6  
RST  
$6E0B  
$A6  
RSTVCTH RSTVCTL  
$A6  
2OSCOUT  
Figure 5-17. Wait Recovery from Internal Reset  
5.6.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a  
module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the oscillator signals (OSCOUT and 2OSCOUT) in stop mode, stopping the CPU and  
peripherals. Stop recovery time is selectable using the SSREC bit in the configuration register (CONFIG).  
If SSREC is set, stop recovery is reduced from the normal delay of 4096 2OSCOUT cycles down to 32.  
This is ideal for applications using canned oscillators that do not require long start-up times from stop  
mode.  
NOTE  
External crystal applications should use the full stop recovery time by  
clearing the SSREC bit.  
A break interrupt during stop mode sets the SIM break stop/wait bit (SBSW) in the break status register  
(BSR).  
The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop  
recovery. It is then used to time the recovery period. Figure 5-18 shows stop mode entry timing.  
NOTE  
To minimize stop current, all pins configured as inputs should be driven to  
a logic 1 or logic 0.  
CPUSTOP  
IAB  
IDB  
R/W  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the STOP opcode, depending on the last  
instruction.  
Figure 5-18. Stop Mode Entry Timing  
MC68HC908JL3E Family Data Sheet, Rev. 3  
66  
Freescale Semiconductor  
SIM Registers  
STOP RECOVERY PERIOD  
2OSCOUT  
INT/BREAK  
IAB  
STOP + 2  
STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 5-19. Stop Mode Recovery from Interrupt or Break  
5.7 SIM Registers  
The SIM has three memory mapped registers. Table 5-4 shows the mapping of these registers.  
Table 5-4. SIM Registers  
Address  
$FE00  
$FE01  
$FE03  
Register  
BSR  
Access Mode  
User  
RSR  
User  
BFCR  
User  
5.7.1 Break Status Register (BSR)  
The break status register contains a flag to indicate that a break caused an exit from stop or wait mode.  
Address:  
$FE00  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
R
R
R
R
R
= Reserved  
1. Writing a logic zero clears SBSW.  
Figure 5-20. Break Status Register (BSR)  
SBSW — SIM Break Stop/Wait  
This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break  
interrupt. Clear SBSW by writing a logic zero to it. Reset clears SBSW.  
1 = Stop mode or wait mode was exited by break interrupt  
0 = Stop mode or wait mode was not exited by break interrupt  
SBSW can be read within the break state SWI routine. The user can modify the return address on the  
stack by subtracting one from it. The following code is an example of this. Writing zero to the SBSW bit  
clears it.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
67  
System Integration Module (SIM)  
; This code works if the H register has been pushed onto the stack in the break  
; service routine software. This code should be executed at the end of the  
; break service routine software.  
HIBYTE EQU  
LOBYTE EQU  
5
6
;
If not SBSW, do RTI  
BRCLR SBSW,BSR, RETURN ; See if wait mode or stop mode was exited  
; by break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
; If RETURNLO is not zero,  
; then just decrement low byte.  
; Else deal with high byte, too.  
; Point to WAIT/STOP opcode.  
; Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN PULH  
RTI  
5.7.2 Reset Status Register (RSR)  
This register contains six flags that show the source of the last reset. Clear the SIM reset status register  
by reading it. A power-on reset sets the POR bit and clears all other bits in the register.  
Address:  
$FE01  
Bit 7  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
POR:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 5-21. Reset Status Register (RSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
MC68HC908JL3E Family Data Sheet, Rev. 3  
68  
Freescale Semiconductor  
SIM Registers  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MODRST — Monitor Mode Entry Module Reset bit  
1 = Last reset caused by monitor mode entry when vector locations $FFFE and $FFFF are $FF after  
POR while IRQ1 = VDD  
0 = POR or read of SRSR  
LVI — Low Voltage Inhibit Reset bit  
1 = Last reset caused by LVI circuit  
0 = POR or read of SRSR  
5.7.3 Break Flag Control Register (BFCR)  
The break control register contains a bit that enables software to clear status bits while the MCU is in a  
break state.  
Address:  
$FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 5-22. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
69  
System Integration Module (SIM)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
70  
Freescale Semiconductor  
Chapter 6  
Oscillator (OSC)  
6.1 Introduction  
The oscillator module provides the reference clock for the MCU system and bus. Two types of oscillator  
modules are available:  
MC68HC908JL3E/JK3E/JK1E — built-in oscillator module (X-tal) that requires an external crystal  
or ceramic-resonator. This option also allows an external clock that can be driven directly into  
OSC1.  
MC68HRC908JL3E/JK3E/JK1E — built-in oscillator module (RC) that requires an external RC  
connection only.  
6.2 X-tal Oscillator (MC68HC908JL3E/JK3E/JK1E)  
The X-tal oscillator circuit is designed for use with an external crystal or ceramic resonator to provide  
accurate clock source.  
In its typical configuration, the X-tal oscillator is connected in a Pierce oscillator configuration, as shown  
in Figure 6-1. This figure shows only the logical representation of the internal components and may not  
represent actual circuitry. The oscillator configuration uses five components:  
Crystal, X1  
Fixed capacitor, C1  
Tuning capacitor, C2 (can also be a fixed capacitor)  
Feedback resistor, RB  
Series resistor, RS (optional)  
The series resistor (RS) is included in the diagram to follow strict Pierce oscillator guidelines and may not  
be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal  
manufacturer’s data for more information.  
6.3 RC Oscillator (MC68HRC908JL3E/JK3E/JK1E)  
The RC oscillator circuit is designed for use with external R and C to provide a clock source with tolerance  
less than 10%.  
In its typical configuration, the RC oscillator requires two external components, one R and one C.  
Component values should have a tolerance of 1% or less, to obtain a clock source with less than 10%  
tolerance. The oscillator configuration uses two components:  
CEXT  
REXT  
The RC connection is shown in Figure 6-2.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
71  
Oscillator (OSC)  
From SIM  
To SIM  
2OSCOUT  
To SIM  
OSCOUT  
XTALCLK  
÷ 2  
SIMOSCEN  
MCU  
OSC1  
OSC2  
RB  
RS*  
*RS can be zero (shorted) when used with higher-frequency crystals.  
Refer to manufacturer’s data.  
X1  
See Chapter 16 for component value requirements.  
C1  
C2  
Figure 6-1. X-tal Oscillator External Connections  
From SIM  
To SIM  
2OSCOUT  
To SIM  
OSCOUT  
SIMOSCEN  
Ext-RC  
RCCLK  
EN  
÷ 2  
Oscillator  
0
1
PTA6  
I/O  
PTA6  
PTA6EN  
MCU  
OSC1  
PTA6/RCCLK (OSC2)  
VDD  
See Chapter 16 for component value requirements.  
REXT  
CEXT  
Figure 6-2. RC Oscillator External Connections  
MC68HC908JL3E Family Data Sheet, Rev. 3  
72  
Freescale Semiconductor  
I/O Signals  
6.4 I/O Signals  
The following paragraphs describe the oscillator I/O signals.  
6.4.1 Crystal Amplifier Input Pin (OSC1)  
OSC1 pin is an input to the crystal oscillator amplifier or the input to the RC oscillator circuit.  
6.4.2 Crystal Amplifier Output Pin (OSC2/PTA6/RCCLK)  
For the X-tal oscillator device, OSC2 pin is the output of the crystal oscillator inverting amplifier.  
For the RC oscillator device, OSC2 pin can be configured as a general purpose I/O pin PTA6, or the  
output of the internal RC oscillator clock, RCCLK.  
Device  
Oscillator  
OSC2 pin function  
MC68HC908JL3E/JK3E/JK1E  
X-tal  
Inverting OSC1  
Controlled by PTA6EN bit in PTAPUER ($0D)  
PTA6EN = 0: RCCLK output  
MC68HRC908JL3E/JK3E/JK1E  
RC  
PTA6EN = 1: PTA6 I/O  
6.4.3 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM) and enables/disables the X-tal  
oscillator circuit or the RC-oscillator.  
6.4.4 X-tal Oscillator Clock (XTALCLK)  
XTALCLK is the X-tal oscillator output signal. It runs at the full speed of the crystal (fXCLK) and comes  
directly from the crystal oscillator circuit. Figure 6-1 shows only the logical relation of XTALCLK to OSC1  
and OSC2 and may not represent the actual circuitry. The duty cycle of XTALCLK is unknown and may  
depend on the crystal and other external factors. Also, the frequency and amplitude of XTALCLK can be  
unstable at start-up.  
6.4.5 RC Oscillator Clock (RCCLK)  
RCCLK is the RC oscillator output signal. Its frequency is directly proportional to the time constant of the  
external R and C. Figure 6-2 shows only the logical relation of RCCLK to OSC1 and may not represent  
the actual circuitry.  
6.4.6 Oscillator Out 2 (2OSCOUT)  
2OSCOUT is same as the input clock (XTALCLK or RCCLK). This signal is driven to the SIM module and  
is used to determine the COP cycles.  
6.4.7 Oscillator Out (OSCOUT)  
The frequency of this signal is equal to half of the 2OSCOUT, this signal is driven to the SIM for generation  
of the bus clocks used by the CPU and other modules on the MCU. OSCOUT will be divided again in the  
SIM and results in the internal bus frequency being one fourth of the XTALCLK or RCCLK frequency.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
73  
Oscillator (OSC)  
6.5 Low Power Modes  
The WAIT and STOP instructions put the MCU in low-power consumption standby modes.  
6.5.1 Wait Mode  
The WAIT instruction has no effect on the oscillator logic. OSCOUT and 2OSCOUT continues to drive to  
the SIM module.  
6.5.2 Stop Mode  
The STOP instruction disables the XTALCLK or the RCCLK output, hence OSCOUT and 2OSCOUT.  
6.6 Oscillator During Break Mode  
The oscillator continues to drive OSCOUT and 2OSCOUT when the device enters the break state.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
74  
Freescale Semiconductor  
Chapter 7  
Monitor ROM (MON)  
7.1 Introduction  
This section describes the monitor ROM (MON) and the monitor mode entry methods. The monitor ROM  
allows complete testing of the MCU through a single-wire interface with a host computer. This mode is  
also used for programming and erasing of FLASH memory in the MCU. Monitor mode entry can be  
achieved without use of the higher test voltage, VDD + VHI, as long as vector addresses $FFFE and  
$FFFF are blank, thus reducing the hardware requirements for in-circuit programming.  
7.2 Features  
Features of the monitor ROM include the following:  
Normal user-mode pin functionality  
One pin dedicated to serial communication between monitor ROM and host computer  
Standard mark/space non-return-to-zero (NRZ) communication with host computer  
Execution of code in RAM or FLASH  
FLASH memory security feature(1)  
FLASH memory programming interface  
960 bytes monitor ROM code size  
Monitor mode entry without high voltage, VDD + VHI, if reset vector is blank ($FFFE and $FFFF  
contain $FF)  
Standard monitor mode entry if high voltage, VDD + VHI, is applied to IRQ1  
7.3 Functional Description  
The monitor ROM receives and executes commands from a host computer. Figure 7-1 shows a example  
circuit used to enter monitor mode and communicate with a host computer via a standard RS-232  
interface.  
Simple monitor commands can access any memory address. In monitor mode, the MCU can execute  
host-computer code in RAM while most MCU pins retain normal operating mode functions. All  
communication between the host computer and the MCU is through the PTB0 pin. A level-shifting and  
multiplexing interface is required between PTB0 and the host computer. PTB0 is used in a wired-OR  
configuration and requires a pull-up resistor.  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
75  
Monitor ROM (MON)  
RST  
RC CIRCUIT  
VDD  
0.1 µF  
FOR MC68HRC908JL3E/JK3E/JK1E  
SW1 MUST BE AT POSITION B  
See Figure 16-1 for component  
values vs. frequency.  
H(R)C908JL3E  
H(R)C908JK3E  
H(R)C908JK1E  
OSC1  
VDD  
OSC2  
VDD  
0.1 µF  
VSS  
EXT OSC  
VDD  
FOR MC68HC908JL3E/JK3E/JK1E  
SW1 AT POSITION A OR B  
(50% DUTY)  
OSC1  
OSC2  
FOR MC68HRC908JL3E/JK3E/JK1E  
SW1 MUST BE AT POSITION A  
XTAL CIRCUIT  
9.8304MHz  
OSC1  
OSC2  
FOR MC68HC908JL3E/JK3E/JK1E  
SW1 AT POSITION A OR B 20 pF  
MAX232  
VDD  
20 pF  
1
16  
15  
VCC  
C1+  
+
+
+
1 µF  
1 µF  
1 µF  
3
4
1 µF  
C1–  
C2+  
GND  
+
VDD + VHI  
A
B
2
6
SW1  
10 k  
V+  
V–  
(SEE NOTE 1)  
VDD  
VDD  
1 k  
IRQ  
8.5 V  
5
C2–  
1 µF  
10 k  
+
74HC125  
6
DB9  
5
10  
9
2
3
7
8
PTB0  
74HC125  
3
4
VDD  
2
VDD  
10 k  
1
5
10 k  
PTB1  
PTB3  
PTB2  
SW2  
C
D
(SEE NOTE 2)  
NOTES:  
1. Monitor mode entry method:  
SW1: Position A — High voltage entry (VTST  
)
10 k  
10 k  
Clock source must be EXT OSC or XTAL CIRCUIT.  
Bus clock depends on SW2.  
SW1: Position B — Reset vector must be blank ($FFFE = $FFFF = $FF)  
Bus clock = OSC1 ÷ 4.  
2. Affects high voltage entry to monitor mode only (SW1 at position A):  
SW2: Position C — Bus clock = OSC1 ÷ 4  
SW2: Position D — Bus clock = OSC1 ÷ 2  
5. See Table 16-4 for VDD + VHI voltage level requirements.  
Figure 7-1. Monitor Mode Circuit  
MC68HC908JL3E Family Data Sheet, Rev. 3  
76  
Freescale Semiconductor  
Functional Description  
7.3.1 Entering Monitor Mode  
Table 7-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode  
may be entered after a POR and will allow communication at 9600 baud provided one of the following sets  
of conditions is met:  
1. If IRQ1 = VDD + VHI:  
Clock on OSC1 is 4.9125MHz (EXT OSC or XTAL)  
PTB3 = low  
2. If IRQ1 = VDD + VHI:  
Clock on OSC1 is 9.8304MHz (EXT OSC or XTAL)  
PTB3 = high  
3. If $FFFE & $FFFF is blank (contains $FF):  
Clock on OSC1 is 9.8304MHz (EXT OSC or XTAL or RC)  
IRQ1 = VDD  
Table 7-1. Monitor Mode Entry Requirements and Options  
Bus  
OSC1 Frequency  
Comments  
Frequency  
2.4576MHz  
(OSC1 ÷ 2)  
(2)  
High-voltage entry to monitor  
mode.(3)  
9600 baud communication on  
PTB0. COP disabled.  
VDD + VHI  
X
X
0
1
0
0
1
1
1
1
4.9152MHz  
9.8304MHz  
2.4576MHz  
(OSC1 ÷ 4)  
VDD + VHI  
Low-voltage entry to monitor  
mode.(4)  
9600 baud communication on  
PTB0. COP disabled.  
BLANK  
(contain  
$FF)  
2.4576MHz  
(OSC1 ÷ 4)  
VDD  
X
X
X
1
9.8304MHz  
NOT  
BLANK  
At desired  
frequency  
VDD  
X
X
X
X
OSC1 ÷ 4  
Enters User mode.  
1. PTB3 = 0: Bypasses the divide-by-two prescaler to SIM when using VDD + VHI for monitor mode entry.  
The OSC1 clock must be 50% duty cycle for this condition.  
2. See Table 16-4 for VDD + VHI voltage level requirements.  
3. For IRQ1 = VDD + VHI:  
MC68HRC908JL3E/JK3E/JK1E — clock must be EXT OSC.  
MC68HC908JL3E/JK3E/JK1E — clock can be EXT OSC or XTAL.  
4. For IRQ1 = VDD  
:
MC68HRC908JL3E/JK3E/JK1E — clock must be RC OSC.  
MC68HC908JL3E/JK3E/JK1E — clock can be EXT OSC or XTAL.  
If VDD +VHI is applied to IRQ1 and PTB3 is low upon monitor mode entry (Table 7-1 condition set 1), the  
bus frequency is a divide-by-two of the clock input to OSC1. If PTB3 is high with VDD +VHI applied to IRQ1  
upon monitor mode entry (Table 7-1 condition set 2), the bus frequency is a divide-by-four of the clock  
input to OSC1. Holding the PTB3 pin low when entering monitor mode causes a bypass of a divide-by-two  
stage at the oscillator only if VDD +VHI is applied to IRQ1. In this event, the OSCOUT frequency is equal  
to the 2OSCOUT frequency, and OSC1 input directly generates internal bus clocks. In this case, the  
OSC1 signal must have a 50% duty cycle at maximum bus frequency.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
77  
Monitor ROM (MON)  
Entering monitor mode with VDD + VHI on IRQ1, the COP is disabled as long as VDD + VHI is applied to  
either the IRQ1 or the RST. (See Chapter 5 System Integration Module (SIM) for more information on  
modes of operation.)  
If entering monitor mode without high voltage on IRQ1 and reset vector being blank ($FFFE and $FFFF)  
(Table 7-1 condition set 3, where applied voltage is VDD), then all port B pin requirements and conditions,  
including the PTB3 frequency divisor selection, are not in effect. This is to reduce circuit requirements  
when performing in-circuit programming.  
Entering monitor mode with the reset vector being blank, the COP is always disabled regardless of the  
state of IRQ1 or the RST.  
Figure 7-2. shows a simplified diagram of the monitor mode entry when the reset vector is blank and IRQ1  
= VDD. An OSC1 frequency of 9.8304MHz is required for a baud rate of 9600.  
POR RESET  
NO  
IS VECTOR  
BLANK?  
NORMAL USER  
MODE  
YES  
MONITOR MODE  
EXECUTE  
MONITOR  
CODE  
NO  
POR  
TRIGGERED?  
YES  
Figure 7-2. Low-Voltage Monitor Mode Entry Flowchart  
Enter monitor mode with the pin configuration shown above by pulling RST low and then high. The rising  
edge of RST latches monitor mode. Once monitor mode is latched, the values on the specified pins can  
change.  
Once out of reset, the MCU waits for the host to send eight security bytes. (See 7.4 Security.) After the  
security bytes, the MCU sends a break signal (10 consecutive logic zeros) to the host, indicating that it is  
ready to receive a command. The break signal also provides a timing reference to allow the host to  
determine the necessary baud rate.  
In monitor mode, the MCU uses different vectors for reset, SWI, and break interrupt. The alternate vectors  
are in the $FE page instead of the $FF page and allow code execution from the internal monitor firmware  
instead of user code.  
Table 7-2 is a summary of the vector differences between user mode and monitor mode.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
78  
Freescale Semiconductor  
Functional Description  
Table 7-2. Monitor Mode Vector Differences  
Functions  
Reset  
Vector  
High  
Reset  
Vector  
Low  
Break  
Vector  
High  
Break  
Vector  
Low  
SWI  
Vector  
High  
SWI  
Vector  
Low  
Modes  
COP  
User  
Monitor  
Notes:  
Enabled  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Disabled(1)  
1. If the high voltage (VDD + VHI) is removed from the IRQ1 pin or the RST pin, the SIM  
asserts its COP enable output. The COP is a mask option enabled or disabled by the  
COPD bit in the configuration register.  
When the host computer has completed downloading code into the MCU RAM, the host then sends a  
RUN command, which executes an RTI, which sends control to the address on the stack pointer.  
7.3.2 Baud Rate  
The communication baud rate is dependant on oscillator frequency. The state of PTB3 also affects baud  
rate if entry to monitor mode is by IRQ1 = VDD + VHI. When PTB3 is high, the divide by ratio is 1024. If  
the PTB3 pin is at logic zero upon entry into monitor mode, the divide by ratio is 512.  
Table 7-3. Monitor Baud Rate Selection  
Monitor Mode  
Entry By:  
Input Clock  
Frequency  
PTB3  
Baud Rate  
4.9152 MHz  
9.8304 MHz  
4.9152 MHz  
9.8304 MHz  
4.9152 MHz  
0
1
9600 bps  
9600 bps  
4800 bps  
9600 bps  
4800 bps  
IRQ1 = VDD + VHI  
1
X
X
Blank reset vector,  
IRQ1 = VDD  
7.3.3 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format.  
(See Figure 7-3 and Figure 7-4.)  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
Figure 7-3. Monitor Data Format  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
79  
Monitor ROM (MON)  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
$A5  
BIT 0  
BIT 0  
BIT 1  
BIT 1  
BIT 2  
BIT 2  
BIT 3  
BIT 3  
BIT 4  
BIT 4  
BIT 5  
BIT 5  
BIT 6  
BIT 6  
BIT 7  
BIT 7  
STOP  
BIT  
START  
BIT  
NEXT  
START  
BIT  
BREAK  
Figure 7-4. Sample Monitor Waveforms  
The data transmit and receive rate can be anywhere from 4800 baud to 28.8k-baud. Transmit and receive  
baud rates must be identical.  
7.3.4 Echoing  
As shown in Figure 7-5, the monitor ROM immediately echoes each received byte back to the PTB0 pin  
for error checking.  
SENT TO  
MONITOR  
READ  
READ  
ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW  
DATA  
ECHO  
RESULT  
Figure 7-5. Read Transaction  
Any result of a command appears after the echo of the last byte of the command.  
7.3.5 Break Signal  
A start bit followed by nine low bits is a break signal. (See Figure 7-6.) When the monitor receives a break  
signal, it drives the PTB0 pin high for the duration of two bits before echoing the break signal.  
MISSING STOP BIT  
TWO-STOP-BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 7-6. Break Transaction  
7.3.6 Commands  
The monitor ROM uses the following commands:  
READ (read memory)  
WRITE (write memory)  
IREAD (indexed read)  
IWRITE (indexed write)  
READSP (read stack pointer)  
RUN (run user program)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
80  
Freescale Semiconductor  
Functional Description  
Table 7-4. READ (Read Memory) Command  
Description  
Read byte from memory  
Operand  
Specifies 2-byte address in high byte:low byte order  
Returns contents of specified address  
$4A  
Data Returned  
Opcode  
Command Sequence  
SENT TO  
MONITOR  
READ  
READ  
ADDR. HIGH  
ADDR. HIGH  
ADDR. LOW  
ADDR. LOW  
DATA  
ECHO  
RESULT  
Table 7-5. WRITE (Write Memory) Command  
Description  
Write byte to memory  
Operand  
Specifies 2-byte address in high byte:low byte order; low byte followed by data byte  
Data Returned  
Opcode  
None  
$49  
Command Sequence  
SENT TO  
MONITOR  
WRITE  
WRITE  
ADDR. HIGH  
ADDR. HIGH  
ADDR. LOW  
ADDR. LOW  
DATA  
DATA  
ECHO  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
81  
Monitor ROM (MON)  
Table 7-6. IREAD (Indexed Read) Command  
Description  
Read next 2 bytes in memory from last address accessed  
Specifies 2-byte address in high byte:low byte order  
Returns contents of next two addresses  
$1A  
Operand  
Data Returned  
Opcode  
Command Sequence  
SENT TO  
MONITOR  
IREAD  
IREAD  
DATA  
DATA  
RESULT  
ECHO  
Table 7-7. IWRITE (Indexed Write) Command  
Description  
Write to last address accessed + 1  
Operand  
Specifies single data byte  
Data Returned  
Opcode  
None  
$19  
Command Sequence  
SENT TO  
MONITOR  
IWRITE  
IWRITE  
DATA  
DATA  
ECHO  
NOTE  
A sequence of IREAD or IWRITE commands can sequentially access a  
block of memory over the full 64-Kbyte memory map.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
82  
Freescale Semiconductor  
Security  
Table 7-8. READSP (Read Stack Pointer) Command  
Description  
Reads stack pointer  
Operand  
None  
Data Returned  
Opcode  
Returns stack pointer in high byte:low byte order  
$0C  
Command Sequence  
SENT TO  
MONITOR  
READSP  
READSP  
SP HIGH  
SP LOW  
RESULT  
ECHO  
Table 7-9. RUN (Run User Program) Command  
Description  
Executes RTI instruction  
Operand  
None  
None  
$28  
Data Returned  
Opcode  
Command Sequence  
SENT TO  
MONITOR  
RUN  
RUN  
ECHO  
7.4 Security  
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host  
can bypass the security feature at monitor mode entry by sending eight security bytes that match the  
bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data.  
NOTE  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security  
bytes on pin PTB0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the  
security feature and can read all FLASH locations and execute code from FLASH. Security remains  
bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed  
and security code entry is not required. (See Figure 7-7.)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
83  
Monitor ROM (MON)  
VDD  
4096 + 32 OSCXCLK CYCLES  
24 BUS CYCLES  
RST  
FROM HOST  
FROM MCU  
PTB0  
1
4
1
1
2
4
1
NOTES:  
1 = Echo delay, 2 bit times  
2 = Data return delay, 2 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 7-7. Monitor Mode Entry Timing  
Upon power-on reset, if the received bytes of the security code do not match the data at locations  
$FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but  
reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an  
illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break  
character, signifying that it is ready to receive a command.  
NOTE  
The MCU does not transmit a break character until after the host sends the  
eight security bytes.  
To determine whether the security code entered is correct, check to see if bit 6 of RAM address $40 is  
set. If it is, then the correct security code has been entered and FLASH can be accessed.  
If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor  
mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass  
erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation  
clears the security code locations so that all eight security bytes become $FF (blank).  
MC68HC908JL3E Family Data Sheet, Rev. 3  
84  
Freescale Semiconductor  
Chapter 8  
Timer Interface Module (TIM)  
8.1 Introduction  
This section describes the timer interface module (TIM2, Version B). The TIM is a two-channel timer that  
provides a timing reference with input capture, output compare, and pulse-width-modulation functions.  
Figure 8-1 is a block diagram of the TIM.  
8.2 Features  
Features of the TIM include the following:  
Two input capture/output compare channels  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered pulse width modulation (PWM) signal generation  
Programmable TIM clock input with 7-frequency internal bus clock prescaler selection  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIM counter stop and reset bits  
8.3 Pin Name Conventions  
The TIM share two I/O pins with two port D I/O pins. The full name of the TIM I/O pins are listed in  
Table 8-1. The generic pin name appear in the text that follows.  
Table 8-1. Pin Name Conventions  
TIM Generic Pin Names:  
Full TIM Pin Names:  
TCH0  
TCH1  
PTD4/TCH0  
PTD5/TCH1  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
85  
Timer Interface Module (TIM)  
8.4 Functional Description  
Figure 8-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter  
that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing  
reference for the input capture and output compare functions. The TIM counter modulo registers,  
TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value  
at any time without affecting the counting sequence.  
The two TIM channels are programmable independently as input capture or output compare channels.  
PRESCALER SELECT  
INTERNAL  
PRESCALER  
BUS CLOCK  
TSTOP  
PS2  
PS1  
PS0  
TRST  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
ELS0B  
ELS0A  
PORT  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
CH0MAX  
TCH0  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
MS0A  
CH0IE  
MS0B  
CH1F  
TOV1  
ELS1B  
ELS1A  
PORT  
LOGIC  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
TCH1  
INTERRUPT  
LOGIC  
16-BIT LATCH  
MS1A  
CH1IE  
Figure 8-1. TIM Block Diagram  
MC68HC908JL3E Family Data Sheet, Rev. 3  
86  
Freescale Semiconductor  
Functional Description  
Addr.  
Register Name  
Bit 7  
TOF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
TIM Status and Control  
Register  
(TSC)  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
TRST  
0
0
0
1
0
0
0
0
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
TIM Counter Register High  
(TCNTH)  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
0
0
0
0
0
0
0
0
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
TIM Counter Register Low  
(TCNTL)  
0
Bit15  
1
0
Bit14  
1
0
Bit13  
1
0
Bit12  
1
0
Bit11  
1
0
Bit10  
1
0
Bit9  
1
0
TIM Counter Modulo Register  
High  
(TMODH)  
Bit8  
1
TIM Counter Modulo Register  
Low  
(TMODL)  
Bit7  
Bit6  
1
Bit5  
1
Bit4  
1
Bit3  
1
Bit2  
1
Bit1  
1
Bit0  
1
1
CH0MAX  
0
Read: CH0F  
TIM Channel 0 Status and  
Control Register  
(TSC0)  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
TIM Channel 0  
Register High  
(TCH0H)  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Indeterminate after reset  
Bit4 Bit3  
Indeterminate after reset  
TIM Channel 0  
Register Low  
(TCH0L)  
Bit7  
Bit6  
Bit5  
0
Bit2  
Bit1  
Bit0  
Read: CH1F  
TIM Channel 1 Status and  
Control Register  
(TSC1)  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
TIM Channel 1  
Register High  
(TCH1H)  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Indeterminate after reset  
Bit4 Bit3  
Indeterminate after reset  
TIM Channel 1  
Register Low  
(TCH1L)  
Bit7  
Bit6  
Bit5  
Bit2  
Bit1  
Bit0  
= Unimplemented  
Figure 8-2. TIM I/O Register Summary  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
87  
Timer Interface Module (TIM)  
8.4.1 TIM Counter Prescaler  
The TIM clock source is one of the seven prescaler outputs. The prescaler generates seven clock rates  
from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register (TSC)  
select the TIM clock source.  
8.4.2 Input Capture  
With the input capture function, the TIM can capture the time at which an external event occurs. When an  
active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter  
into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input  
captures can generate TIM CPU interrupt requests.  
8.4.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse with a programmable polarity,  
duration, and frequency. When the counter reaches the value in the registers of an output compare  
channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU  
interrupt requests.  
8.4.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as described in 8.4.3  
Output Compare. The pulses are unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an output compare value could cause  
incorrect operation for up to two counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new value prevents any compare during  
that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the output compare value on channel x:  
When changing to a smaller value, enable channel x output compare interrupts and write the new  
value in the output compare interrupt routine. The output compare interrupt occurs at the end of  
the current output compare pulse. The interrupt routine has until the end of the counter overflow  
period to write the new value.  
When changing to a larger output compare value, enable TIM overflow interrupts and write the new  
value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the  
current counter overflow period. Writing a larger value in an output compare interrupt routine (at  
the end of the current pulse) could cause two output compares to occur in the same counter  
overflow period.  
8.4.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the  
TCH0 pin. The TIM channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1.  
The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin.  
Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the  
output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that  
MC68HC908JL3E Family Data Sheet, Rev. 3  
88  
Freescale Semiconductor  
Functional Description  
control the output are the ones written to last. TSC0 controls and monitors the buffered output compare  
function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the  
channel 1 pin, TCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should track  
the currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered output compares.  
8.4.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM  
signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The  
channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time  
between overflows is the period of the PWM signal.  
As Figure 8-3 shows, the output compare value in the TIM channel registers determines the pulse width  
of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM  
to clear the channel pin on output compare if the state of the PWM pulse is logic one. Program the TIM  
to set the pin if the state of the PWM pulse is logic zero.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 8-3. PWM Period and Pulse Width  
The value in the TIM counter modulo registers and the selected prescaler output determines the  
frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus  
clock period if the prescaler select value is 000 (see 8.9.1 TIM Status and Control Register (TSC)).  
The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of  
an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers  
produces a duty cycle of 128/256 or 50%.  
8.4.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described in 8.4.4 Pulse Width  
Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM channel registers.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
89  
Timer Interface Module (TIM)  
An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect  
operation for up to two PWM periods. For example, writing a new value before the counter reaches the  
old value but after the counter reaches the new value prevents any compare during that PWM period.  
Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the  
compare to be missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output compare interrupts and write the  
new value in the output compare interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the PWM period to write the new  
value.  
When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in  
the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM  
period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same PWM period.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare also can  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
8.4.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin.  
The TIM channel registers of the linked pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1.  
The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel  
1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning  
of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the  
pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM  
channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
TCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered PWM signal generation, do not write new pulse width values to  
the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered PWM signals.  
8.4.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals, use the following  
initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
90  
Freescale Semiconductor  
Interrupts  
2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM  
period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare  
or PWM signals) to the mode select bits, MSxB:MSxA. (See Table 8-3.)  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level  
select bits, ELSxB:ELSxA. The output action on compare must force the output to the  
complement of the pulse width level. (See Table 8-3.)  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare can also  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel  
0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0 (TSC0)  
controls and monitors the PWM signal from the linked channels. MS0B takes priority over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output  
compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle  
output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty  
cycle output. (See 8.9.4 TIM Channel Status and Control Registers (TSC0:TSC1).)  
8.5 Interrupts  
The following TIM sources can generate interrupt requests:  
TIM overflow flag (TOF) — The TOF bit is set when the TIM counter reaches the modulo value  
programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE,  
enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control  
register.  
TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an input capture or output compare  
occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE=1.  
CHxF and CHxIE are in the TIM channel x status and control register.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
91  
Timer Interface Module (TIM)  
8.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby modes.  
8.6.1 Wait Mode  
The TIM remains active after the execution of a WAIT instruction. In wait mode, the TIM registers are not  
accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait  
mode.  
If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before  
executing the WAIT instruction.  
8.6.2 Stop Mode  
The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect  
register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode  
after an external interrupt.  
8.7 TIM During Break Interrupts  
A break interrupt stops the TIM counter.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. (See 5.7.3 Break Flag Control Register (BFCR).)  
To allow software to clear status bits during a break interrupt, write a logic one to the BCFE bit. If a status  
bit is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic zero to the BCFE bit. With BCFE at logic zero  
(its default state), software can read and write I/O registers during the break state without affecting status  
bits. Some status bits have a two-step read/write clearing procedure. If software does the first step on  
such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic zero.  
After the break, doing the second step clears the status bit.  
8.8 I/O Signals  
Port D shares two of its pins with the TIM. The two TIM channel I/O pins are PTD4/TCH0 and PTD5/TCH1.  
Each channel I/O pin is programmable independently as an input capture pin or an output compare pin.  
PTD4/TCH0 can be configured as a buffered output compare or buffered PWM pin.  
8.9 I/O Registers  
The following I/O registers control and monitor operation of the TIM:  
TIM status and control register (TSC)  
TIM counter registers (TCNTH:TCNTL)  
TIM counter modulo registers (TMODH:TMODL)  
TIM channel status and control registers (TSC0 and TSC1)  
TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
92  
Freescale Semiconductor  
I/O Registers  
8.9.1 TIM Status and Control Register (TSC)  
The TIM status and control register does the following:  
Enables TIM overflow interrupts  
Flags TIM overflows  
Stops the TIM counter  
Resets the TIM counter  
Prescales the TIM counter clock  
Address:  
$0020  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 8-4. TIM Status and Control Register (TSC)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM  
counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set  
and then writing a logic zero to TOF. If another TIM overflow occurs before the clearing sequence is  
complete, then writing logic zero to TOF has no effect. Therefore, a TOF interrupt request cannot be  
lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the  
TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
TSTOP — TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the  
TSTOP bit, stopping the TIM counter until software clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE  
Do not set the TSTOP bit before entering wait mode if the TIM is required  
to exit wait mode.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on  
any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM  
counter is reset and always reads as logic zero. Reset clears the TRST bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE  
Setting the TSTOP and TRST bits simultaneously stops the TIM counter at  
a value of $0000.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
93  
Timer Interface Module (TIM)  
PS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the input to the TIM counter as  
Table 8-2 shows. Reset clears the PS[2:0] bits.  
Table 8-2. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM Clock Source  
Internal Bus Clock ÷ 1  
Internal Bus Clock ÷ 2  
Internal Bus Clock ÷ 4  
Internal Bus Clock ÷ 8  
Internal Bus Clock ÷ 16  
Internal Bus Clock ÷ 32  
Internal Bus Clock ÷ 64  
Not available  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
8.9.2 TIM Counter Registers (TCNTH:TCNTL)  
The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter.  
Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent  
reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter  
registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers.  
NOTE  
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by  
reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
Address:  
$0021  
Bit 7  
TCNTH  
6
5
4
3
2
1
Bit 0  
Bit8  
Read:  
Write:  
Reset:  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
0
0
0
0
0
0
0
0
Address:  
$0022  
Bit 7  
Bit7  
TCNTL  
6
5
4
3
2
1
Bit 0  
Bit0  
Read:  
Write:  
Reset:  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 8-5. TIM Counter Registers (TCNTH:TCNTL)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
94  
Freescale Semiconductor  
I/O Registers  
8.9.3 TIM Counter Modulo Registers (TMODH:TMODL)  
The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter  
reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting  
from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow  
interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.  
Address:  
$0023  
Bit 7  
TMODH  
6
5
Bit13  
1
4
Bit12  
1
3
Bit11  
1
2
Bit10  
1
1
Bit9  
1
Bit 0  
Bit8  
1
Read:  
Write:  
Reset:  
Bit15  
1
Bit14  
1
Address:  
$0024  
Bit 7  
TMODL  
6
5
Bit5  
1
4
Bit4  
1
3
Bit3  
1
2
Bit2  
1
1
Bit1  
1
Bit 0  
Bit0  
1
Read:  
Write:  
Reset:  
Bit7  
1
Bit6  
1
Figure 8-6. TIM Counter Modulo Registers (TMODH:TMODL)  
NOTE  
Reset the TIM counter before writing to the TIM counter modulo registers.  
8.9.4 TIM Channel Status and Control Registers (TSC0:TSC1)  
Each of the TIM channel status and control registers does the following:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input capture trigger  
Selects output toggling on TIM overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Address:  
$0025  
Bit 7  
CH0F  
0
TSC0  
6
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
CH0IE  
0
0
Figure 8-7. TIM Channel Status and Control Registers (TSC0:TSC1)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
95  
Timer Interface Module (TIM)  
Address:  
$0028  
TSC1  
6
Bit 7  
CH1F  
0
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
CH1IE  
0
0
0
= Unimplemented  
Figure 8-7. TIM Channel Status and Control Registers (TSC0:TSC1)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set when an active edge occurs on  
the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the  
TIM counter registers matches the value in the TIM channel x registers.  
When TIM CPU interrupt requests are enabled (CHxIE=1), clear CHxF by reading the TIM channel x  
status and control register with CHxF set and then writing a logic zero to CHxF. If another interrupt  
request occurs before the clearing sequence is complete, then writing logic zero to CHxF has no effect.  
Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic one to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE  
bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM  
channel 0 status and control register.  
Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose  
I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:ELSxA 0:0, this read/write bit selects either input capture operation or unbuffered  
output compare/PWM operation.  
See Table 8-3.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output level of the TCHx pin. (See  
Table 8-3.) Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE  
Before changing a channel function by writing to the MSxB or MSxA bit, set  
the TSTOP and TRST bits in the TIM status and control register (TSC).  
MC68HC908JL3E Family Data Sheet, Rev. 3  
96  
Freescale Semiconductor  
I/O Registers  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic  
on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the channel x output  
behavior when an output compare occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port, and pin TCHx is  
available as a general-purpose I/O pin. Table 8-3 shows how ELSxB and ELSxA work. Reset clears  
the ELSxB and ELSxA bits.  
Table 8-3. Mode, Edge, and Level Selection  
MSxB  
MSxA  
ELSxB  
ELSxA  
Mode  
Configuration  
Pin under Port Control;  
Initial Output Level High  
X
0
0
0
Output  
Preset  
Pin under Port Control;  
Initial Output Level Low  
X
1
0
0
0
0
0
0
0
0
1
1
0
0
0
1
1
1
X
X
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
Capture on Rising Edge Only  
Capture on Falling Edge Only  
Capture on Rising or Falling Edge  
Toggle Output on Compare  
Input  
Capture  
Output  
Compare Clear Output on Compare  
or PWM  
Set Output on Compare  
Buffered  
Output  
Compareor  
Buffered  
PWM  
Toggle Output on Compare  
Clear Output on Compare  
1
X
1
1
Set Output on Compare  
NOTE  
Before enabling a TIM channel register for input capture operation, make  
sure that the TCHx pin is stable for at least two bus clocks.  
TOVx — Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the behavior of the channel  
x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow.  
0 = Channel x pin does not toggle on TIM counter overflow.  
NOTE  
When TOVx is set, a TIM counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic one, setting the CHxMAX bit forces the duty cycle of buffered and  
unbuffered PWM signals to 100%. As Figure 8-8 shows, the CHxMAX bit takes effect in the cycle after  
it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is  
cleared.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
97  
Timer Interface Module (TIM)  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
OUTPUT  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
COMPARE  
CHxMAX  
Figure 8-8. CHxMAX Latency  
8.9.5 TIM Channel Registers (TCH0H/L:TCH1H/L)  
These read/write registers contain the captured TIM counter value of the input capture function or the  
output compare value of the output compare function. The state of the TIM channel registers after reset  
is unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH)  
inhibits input captures until the low byte (TCHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of the TIM channel x registers  
(TCHxH) inhibits output compares until the low byte (TCHxL) is written.  
Address:  
$0026  
Bit 7  
TCH0H  
6
5
4
3
2
1
Bit 0  
Bit8  
Read:  
Write:  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Reset:  
Indeterminate after reset  
Address:  
$0027  
Bit 7  
TCH0L  
6
5
4
3
2
1
Bit 0  
Bit0  
Read:  
Write:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Reset:  
Indeterminate after reset  
Address:  
$0029  
Bit 7  
TCH1H  
6
5
4
3
2
1
Bit 0  
Bit8  
Read:  
Write:  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Reset:  
Indeterminate after reset  
Address:  
$02A  
Bit 7  
TCH1L  
6
5
4
3
2
1
Bit 0  
Bit0  
Read:  
Write:  
Reset:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Indeterminate after reset  
Figure 8-9. TIM Channel Registers (TCH0H/L:TCH1H/L)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
98  
Freescale Semiconductor  
Chapter 9  
Analog-to-Digital Converter (ADC)  
9.1 Introduction  
This section describes the 12-channel, 8-bit linear successive approximation analog-to-digital converter  
(ADC).  
9.2 Features  
Features of the ADC module include:  
12 channels with multiplexed input  
Linear successive approximation with monotonicity  
8-bit resolution  
Single or continuous conversion  
Conversion complete flag or conversion complete interrupt  
Selectable ADC clock  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: COCO  
ADC Status and Control  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
Register Write:  
(ADSCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
1
1
1
1
1
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
ADC Data Register  
(ADR)  
$003D  
$003E  
Indeterminate after reset  
0
0
0
0
0
0
0
0
ADIV2  
0
ADIV1  
0
ADIV0  
0
ADC Input Clock Register  
(ADICLK)  
0
0
Figure 9-1. ADC I/O Register Summary  
9.3 Functional Description  
Twelve ADC channels are available for sampling external sources at pins PTB0–PTB7 and PTD0–PTD3.  
An analog multiplexer allows the single ADC converter to select one of the 12 ADC channels as ADC  
voltage input (ADCVIN). ADCVIN is converted by the successive approximation register-based counters.  
The ADC resolution is 8 bits. When the conversion is completed, ADC puts the result in the ADC data  
register and sets a flag or generates an interrupt. Figure 9-2 shows a block diagram of the ADC.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
99  
Analog-to-Digital Converter (ADC)  
INTERNAL  
DATA BUS  
READ DDRB/DDRD  
WRITE DDRB/DDRD  
DISABLE  
DDRBx/DDRDx  
PTBx/PTDx  
RESET  
WRITE PTB/PTD  
READ PTB/PTD  
ADCx  
DISABLE  
ADC CHANNEL x  
ADC DATA REGISTER  
ADC VOLTAGE IN  
ADCVIN  
CONVERSION  
COMPLETE  
CHANNEL  
SELECT  
INTERRUPT  
LOGIC  
ADCH[4:0]  
ADC  
(1 OF 12 CHANNELS)  
ADC CLOCK  
AIEN  
COCO  
CLOCK  
GENERATOR  
BUS CLOCK  
ADIV[2:0]  
ADICLK  
Figure 9-2. ADC Block Diagram  
9.3.1 ADC Port I/O Pins  
PTB0–PTB7 and PTD0–PTD3 are general-purpose I/O pins that are shared with the ADC channels. The  
channel select bits (ADC status and control register, $003C), define which ADC channel/port pin will be  
used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The  
remaining ADC channels/port pins are controlled by the port I/O logic and can be used as  
general-purpose I/O. Writes to the port register or DDR will not have any affect on the port pin that is  
selected by the ADC. Read of a port pin which is in use by the ADC will return a logic 0 if the corresponding  
DDR bit is at logic 0. If the DDR bit is at logic 1, the value in the port data latch is read.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
100  
Freescale Semiconductor  
Interrupts  
9.3.2 Voltage Conversion  
When the input voltage to the ADC equals VDD, the ADC converts the signal to $FF (full scale). If the input  
voltage equals VSS, the ADC converts it to $00. Input voltages between VDD and VSS are a straight-line  
linear conversion. All other input voltages will result in $FF if greater than VDD and $00 if less than VSS.  
NOTE  
Input voltage should not exceed the analog supply voltages.  
9.3.3 Conversion Time  
Fourteen ADC internal clocks are required to perform one conversion. The ADC starts a conversion on  
the first rising edge of the ADC internal clock immediately following a write to the ADSCR. If the ADC  
internal clock is selected to run at 1MHz, then one conversion will take 14µs to complete. With a 1MHz  
ADC internal clock the maximum sample rate is 71.43kHz.  
14 ADC Clock Cycles  
Conversion Time =  
ADC Clock Frequency  
Number of Bus Cycles = Conversion Time × Bus Frequency  
9.3.4 Continuous Conversion  
In the continuous conversion mode, the ADC continuously converts the selected channel filling the ADC  
data register with new data after each conversion. Data from the previous conversion will be overwritten  
whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The  
COCO bit (ADC status and control register, $003C) is set after each conversion and can be cleared by  
writing the ADC status and control register or reading of the ADC data register.  
9.3.5 Accuracy and Precision  
The conversion process is monotonic and has no missing codes.  
9.4 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC  
conversion. A CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit is not used as a  
conversion complete flag when interrupts are enabled.  
9.5 Low-Power Modes  
The following subsections describe the ADC in low-power modes.  
9.5.1 Wait Mode  
The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC  
can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power  
down the ADC by setting the ADCH[4:0] bits in the ADC status and control register to logic 1’s before  
executing the WAIT instruction.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
101  
Analog-to-Digital Converter (ADC)  
9.5.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted.  
ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the  
analog circuitry before attempting a new ADC conversion after exiting stop mode.  
9.6 I/O Signals  
The ADC module has 12 channels that are shared with I/O port B and port D.  
9.6.1 ADC Voltage In (ADCVIN)  
ADCVIN is the input voltage signal from one of the 12 ADC channels to the ADC module.  
9.7 I/O Registers  
These I/O registers control and monitor ADC operation:  
ADC status and control register (ADSCR)  
ADC data register (ADR)  
ADC clock register (ADICLK)  
9.7.1 ADC Status and Control Register  
The following paragraphs describe the function of the ADC status and control register.  
Address:  
$003C  
Bit 7  
6
AIEN  
0
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
Write:  
Reset:  
COCO  
0
= Unimplemented  
Figure 9-3. ADC Status and Control Register (ADSCR)  
COCO — Conversions Complete Bit  
When the AIEN bit is a logic 0, the COCO is a read-only bit which is set each time a conversion is  
completed. This bit is cleared whenever the ADC status and control register is written or whenever the  
ADC data register is read. Reset clears this bit.  
1 = Conversion completed (AIEN = 0)  
0 = Conversion not completed (AIEN = 0)  
When the AIEN bit is a logic 1 (CPU interrupt enabled), the COCO is a read-only bit, and will always  
be logic 0 when read.  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is  
cleared when the data register is read or the status/control register is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
MC68HC908JL3E Family Data Sheet, Rev. 3  
102  
Freescale Semiconductor  
I/O Registers  
ADCO — ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the ADR register at the end of each  
conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
ADCH[4:0] — ADC Channel Select Bits  
ADCH[4:0] form a 5-bit field which is used to select one of the ADC channels. The five channel select  
bits are detailed in the following table. Care should be taken when using a port pin as both an analog  
and a digital input simultaneously to prevent switching noise from corrupting the analog signal.  
The ADC subsystem is turned off when the channel select bits are all set to one. This feature allows  
for reduced power consumption for the MCU when the ADC is not used. Reset sets all of these bits to  
a logic 1.  
NOTE  
Recovery from the disabled state requires one conversion cycle to stabilize.  
Table 9-1. MUX Channel Select  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
ADC Channel  
Input Select  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
PTD3  
PTD2  
PTD1  
PTD0  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
:
0
0
0
0
1
1
1
1
0
0
0
0
1
:
0
0
1
1
0
0
1
1
0
0
1
1
0
:
0
1
0
1
0
1
0
1
0
1
0
1
0
:
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC8  
ADC9  
ADC10  
ADC11  
0
0
0
0
0
0
0
0
0
0
0
0
Unused  
(see Note 1)  
:
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
1
Reserved  
Unused  
1
1
V
V
(see Note 2)  
(see Note 2)  
DDA  
SSA  
1
1
ADC power off  
NOTES:  
1. If any unused channels are selected, the resulting ADC conversion will be unknown.  
2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the  
operation of the ADC converter both in production test and for user applications.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
103  
Analog-to-Digital Converter (ADC)  
9.7.2 ADC Data Register  
One 8-bit result register is provided. This register is updated each time an ADC conversion completes.  
Address:  
$003D  
Bit 7  
6
5
4
3
2
1
Bit 0  
AD0  
Read:  
Write:  
Reset:  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
Indeterminate after reset  
= Unimplemented  
Figure 9-4. ADC Data Register (ADR)  
9.7.3 ADC Input Clock Register  
This register selects the clock frequency for the ADC  
Address:  
$003E  
Bit 7  
6
ADIV1  
0
5
ADIV0  
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
ADIV2  
0
0
0
0
0
0
= Unimplemented  
Figure 9-5. ADC Input Clock Register (ADICLK)  
ADIV[2:0] — ADC Clock Prescaler Bits  
ADIV[2:0] form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC  
clock. Table 9-2 shows the available clock configurations. The ADC clock should be set to  
approximately 1MHz.  
Table 9-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC Input Clock ÷ 1  
ADC Input Clock ÷ 2  
ADC Input Clock ÷ 4  
ADC Input Clock ÷ 8  
ADC Input Clock ÷ 16  
0
0
0
1
1
X
0
1
0
1
X
0
0
0
1
X = don’t care  
MC68HC908JL3E Family Data Sheet, Rev. 3  
104  
Freescale Semiconductor  
Chapter 10  
Input/Output (I/O) Ports  
10.1 Introduction  
Twenty three (23) bidirectional input-output (I/O) pins form three parallel ports. All I/O pins are  
programmable as inputs or outputs.  
NOTE  
Connect any unused I/O pins to an appropriate logic level, either VDD or VSS.  
Although the I/O ports do not require termination for proper operation,  
termination reduces excess current consumption and the possibility of  
electrostatic damage.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000 Port A Data Register (PTA) Write:  
Reset:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
Read:  
PTB7  
PTB6  
PTD6  
PTB5  
PTD5  
PTB2  
PTD2  
PTB1  
PTD1  
PTB0  
PTD0  
$0001 Port B Data Register (PTB) Write:  
Reset:  
Read:  
$0003 Port D Data Register (PTD) Write:  
Reset:  
PTD7  
0
Read:  
DDRA6  
0
DDRA5  
0
DDRA4  
0
DDRA3  
DDRA2  
DDRA1  
DDRA0  
Data Direction Register A  
(DDRA)  
$0004  
$0005  
$0007  
Write:  
Reset:  
Read:  
Write:  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
DDRB7  
0
DDRB6  
0
DDRB5  
0
DDRB4  
0
Data Direction Register B  
(DDRB)  
Reset:  
Read:  
Write:  
DDRD7  
DDRD6  
DDRD5  
DDRD4  
DDRD3  
0
DDRD2  
0
DDRD1  
0
DDRD0  
0
Data Direction Register D  
(DDRD)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
0
0
SLOWD7 SLOWD6 PTDPU7 PTDPU6  
Port D Control Register  
(PDCR)  
$000A  
$000D  
0
0
0
0
0
0
0
0
Port A Input Pull-up  
PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
Enable Register Write:  
(PTAPUE)  
Reset:  
0
0
0
0
0
0
0
0
Figure 10-1. I/O Port Register Summary  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
105  
Input/Output (I/O) Ports  
Table 10-1. Port Control Register Bits Summary  
Module Control  
Port  
Bit  
DDR  
Pin  
Module  
Register  
Control Bit  
KBIE0  
0
1
2
3
4
5
DDRA0  
DDRA1  
DDRA2  
DDRA3  
DDRA4  
DDRA5  
PTA0/KBI0  
PTA1/KBI1  
PTA2/KBI2  
PTA3/KBI3  
PTA4/KBI4  
PTA5/KBI5  
KBIE1  
KBIE2  
KBI  
KBIER ($001B)  
KBIE3  
A
KBIE4  
KBIE5  
OSC  
KBI  
PTAPUE ($000D)  
KBIER ($001B)  
PTA6EN  
KBIE6  
6
DDRA6  
RCCLK/PTA6/KBI6(1)  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
DDRB0  
DDRB1  
DDRB2  
DDRB3  
DDRB4  
DDRB5  
DDRB6  
DDRB7  
DDRD0  
DDRD1  
DDRD2  
DDRD3  
DDRD4  
DDRD5  
DDRD6  
DDRD7  
PTB0/ADC0  
PTB1/ADC1  
PTB2/ADC2  
PTB3/ADC3  
PTB4/ADC4  
PTB5/ADC5  
PTB6/ADC6  
PTB7/ADC7  
PTD0/ADC11  
PTD1/ADC10  
PTD2/ADC9  
PTD3/ADC8  
PTD4/TCH0  
PTD5/TCH1  
PTD6  
B
ADC  
ADSCR ($003C)  
ADCH[4:0]  
ADC  
TIM  
ADSCR ($003C)  
ADCH[4:0]  
D
TSC0 ($0025)  
ELS0B:ELS0A  
TSC1 ($0028)  
ELS1B:ELS1A  
PTD7  
1. RCCLK/PTA6/KBI6 pin is only available on MC68HRC908JL3E/JK3E/JK1E devices (RC option);  
PTAPUE register has priority control over the port pin.  
RCCLK/PTA6/KBI6 is the OSC2 pin on MC68HC908JL3E/JK3E/JK1E devices (X-TAL option).  
MC68HC908JL3E Family Data Sheet, Rev. 3  
106  
Freescale Semiconductor  
Port A  
10.2 Port A  
Port A is an 7-bit special function port that shares all seven of its pins with the keyboard interrupt (KBI)  
module (see Chapter 12 Keyboard Interrupt Module (KBI)). Each port A pin also has software configurable  
pull-up device if the corresponding port pin is configured as input port. PTA0 to PTA5 has direct LED drive  
capability.  
NOTE  
PTA0–PTA5 pins are available on MC68H(R)C908JL3E only.  
PTA6 pin is available on MC68HRC908JL3E/JK3E/JK1E only.  
10.2.1 Port A Data Register (PTA)  
The port A data register (PTA) contains a data latch for each of the seven port A pins.  
Address:  
$0000  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Unaffected by Reset  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
Additional Functions:  
30k pull-up 30k pull-up 30k pull-up 30k pull-up 30k pull-up 30k pull-up 30k pull-up  
Keyboard Keyboard Keyboard Keyboard Keyboard Keyboard Keyboard  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Interrupt  
Figure 10-2. Port A Data Register (PTA)  
PTA[6:0] — Port A Data Bits  
These read/write bits are software programmable. Data direction of each port A pin is under the control  
of the corresponding bit in data direction register A. Reset has no effect on port A data.  
KBI[6:0] — Port A Keyboard Interrupts  
The keyboard interrupt enable bits, KBIE[6:0], in the keyboard interrupt control register (KBIER) enable  
the port A pins as external interrupt pins, (see Chapter 12 Keyboard Interrupt Module (KBI)).  
10.2.2 Data Direction Register A (DDRA)  
Data direction register A determines whether each port A pin is an input or an output. Writing a logic one  
to a DDRA bit enables the output buffer for the corresponding port A pin; a logic zero disables the output  
buffer.  
Address:  
$0004  
Bit 7  
0
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
0
Figure 10-3. Data Direction Register A (DDRA)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
107  
Input/Output (I/O) Ports  
DDRA[6:0] — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears DDRA[6:0], configuring all port A pins  
as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE  
Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
Figure 10-4 shows the port A I/O logic.  
READ DDRA ($0004)  
PTAPUEx  
WRITE DDRA ($0004)  
DDRAx  
RESET  
30k  
WRITE PTA ($0000)  
PTAx  
PTAx  
READ PTA ($0000)  
To Keyboard Interrupt Circuit  
Figure 10-4. Port A I/O Circuit  
When DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When DDRAx is a logic 0,  
reading address $0000 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit.  
10.2.3 Port A Input Pull-up Enable Register (PTAPUE)  
The port A input pull-up enable register (PTAPUE) contains a software configurable pull-up device for  
each of the seven port A pins. Each bit is individually configurable and requires the corresponding data  
direction register, DDRAx be configured as input. Each pull-up device is automatically and dynamically  
disabled when its corresponding DDRAx bit is configured as output.  
Address:  
$000D  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
0
0
0
0
0
0
0
0
Figure 10-5. Port A Input Pull-up Enable Register (PTAPUE)  
PTA6EN — Enable PTA6 on OSC2  
This read/write bit configures the OSC2 pin function when RC oscillator option is selected. This bit has  
no effect for X-tal oscillator option.  
1 = OSC2 pin configured for PTA6 I/O, and has all the interrupt and pull-up functions  
0 = OSC2 pin outputs the RC oscillator clock (RCCLK)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
108  
Freescale Semiconductor  
Port B  
PTAPUE[6:0] — Port A Input Pull-up Enable Bits  
These read/write bits are software programmable to enable pull-up devices on port A pins  
1 = Corresponding port A pin configured to have internal pull-up if its DDRA bit is set to 0  
0 = Pull-up device is disconnected on the corresponding port A pin regardless of the state of its  
DDRA bit  
Table 10-2 summarizes the operation of the port A pins.  
Table 10-2. Port A Pin Functions  
Accesses to DDRA  
Read/Write  
DDRA[6:0]  
Accesses to PTA  
DDRA  
Bit  
PTAPUE Bit  
PTA Bit  
I/O Pin Mode  
Read  
Write  
X(1)  
X
Input, VDD  
Pin  
Pin  
PTA[6:0](3)  
PTA[6:0](3)  
PTA[6:0]  
(2)  
1
0
X
0
0
1
Input, Hi-Z(4)  
Output  
DDRA[6:0]  
X
DDRA[6:0]  
PTA[6:0]  
1. X = Don’t care.  
2. I/O pin pulled to VDD by internal pull-up.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = High Impedance.  
10.3 Port B  
Port B is an 8-bit special function port that shares all eight of its port pins with the analog-to-digital  
converter (ADC) module, see Chapter 9  
10.3.1 Port B Data Register (PTB)  
The port B data register contains a data latch for each of the eight port B pins.  
Address:  
$0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Reset:  
Unaffected by reset  
ADC4 ADC3  
Alternative Function:  
ADC7  
ADC6  
AD4C5  
ADC2  
ADC2  
ADC0  
Figure 10-6. Port B Data Register (PTB)  
PTB[7:0] — Port B Data Bits  
These read/write bits are software programmable. Data direction of each port B pin is under the control  
of the corresponding bit in data direction register B. Reset has no effect on port B data.  
ADC[7:0] — ADC channels 7 to 0  
ADC[7:0] are pins used for the input channels to the analog-to-digital converter module. The channel  
select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used as an  
ADC input and overrides any control from the port I/O logic. See Chapter 9 Analog-to-Digital Converter  
(ADC).  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
109  
Input/Output (I/O) Ports  
10.3.2 Data Direction Register B (DDRB)  
Data direction register B determines whether each port B pin is an input or an output. Writing a logic one  
to a DDRB bit enables the output buffer for the corresponding port B pin; a logic zero disables the output  
buffer.  
Address:  
$0005  
Bit 7  
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
DDRB7  
0
Figure 10-7. Data Direction Register B (DDRB)  
DDRB[7:0] — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins  
as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE  
Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1.  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
RESET  
WRITE PTB ($0001)  
PTBx  
PTBx  
READ PTB ($0001)  
To Analog-To-Digital Converter  
Figure 10-8. Port B I/O Circuit  
When DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When DDRBx is a logic 0,  
reading address $0001 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 10-3 summarizes the operation of the port B pins.  
Table 10-3. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
DDRB Bit  
PTB Bit  
I/O Pin Mode  
Read  
Pin  
Write  
0
1
X(1)  
X
Input, Hi-Z(2)  
Output  
DDRB[7:0]  
PTB[7:0](3)  
DDRB[7:0]  
Pin  
PTB[7:0]  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect the input.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
110  
Freescale Semiconductor  
Port D  
10.4 Port D  
Port D is an 8-bit special function port that shares two of its pins with timer interface module, (see Chapter  
8) and shares four of its pins with analog-to-digital converter module (see Chapter 9). PTD6 and PTD7  
each has high current drive (25mA sink) and programmable pull-up. PTD2, PTD3, PTD6 and PTD7 each  
has LED driving (sink) capability.  
NOTE  
PTD0–PTD1 are available on MC68H(R)C908JL3E only.  
10.4.1 Port D Data Register (PTD)  
The port D data register contains a data latch for each of the eight port D pins.  
Address:  
$0003  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTD7  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
Unaffected by reset  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
Additional Functions  
ADC8  
TCH0  
ADC9  
ADC10  
ADC11  
TCH1  
25mA sink  
25mA sink  
(Slow Edge) (Slow Edge)  
5k pull-up 5k pull-up  
Figure 10-9. Port D Data Register (PTD)  
PTD[7:0] — Port D Data Bits  
These read/write bits are software programmable. Data direction of each port D pin is under the control  
of the corresponding bit in data direction register D. Reset has no effect on port D data.  
ADC[11:8] — ADC channels 11 to 8  
ADC[11:8] are pins used for the input channels to the analog-to-digital converter module. The channel  
select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used as an  
ADC input and overrides any control from the port I/O logic. See Chapter 9 Analog-to-Digital Converter  
(ADC).  
TCH[1:0] — Timer Channel I/O  
The TCH1 and TCH0 pins are the TIM input capture/output compare pins. The edge/level select bits,  
ELSxB:ELSxA, determine whether the PTD4/TCH0 and PTD5/TCH1 pins are timer channel I/O pins  
or general-purpose I/O pins. See Chapter 8 Timer Interface Module (TIM).  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
111  
Input/Output (I/O) Ports  
10.4.2 Data Direction Register D (DDRD)  
Data direction register D determines whether each port D pin is an input or an output. Writing a logic one  
to a DDRD bit enables the output buffer for the corresponding port D pin; a logic zero disables the output  
buffer.  
Address:  
$0007  
Bit 7  
6
DDRD6  
0
5
DDRD5  
0
4
DDRD4  
0
3
DDRD3  
0
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
DDRD7  
0
Figure 10-10. Data Direction Register D (DDRD)  
DDRD[7:0] — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears DDRD[7:0], configuring all port D pins  
as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE  
Avoid glitches on port D pins by writing to the port D data register before  
changing data direction register D bits from 0 to 1. Figure 10-11 shows the  
port D I/O logic.  
READ DDRD ($0007)  
PTDPU[6:7]  
WRITE DDRD ($0007)  
DDRDx  
RESET  
5k  
WRITE PTD ($0003)  
PTDx  
PTDx  
READ PTD ($0003)  
PTD[0:3] To Analog-To-Digital Converter  
PTD[4:5] To Timer  
Figure 10-11. Port D I/O Circuit  
When DDRDx is a logic 1, reading address $0003 reads the PTDx data latch. When DDRDx is a logic 0,  
reading address $0003 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 10-4 summarizes the operation of the port D pins.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
112  
Freescale Semiconductor  
Port D  
Table 10-4. Port D Pin Functions  
Accessesto  
Accesses to PTD  
Read Write  
DDRD  
Bit  
DDRD  
PTD Bit  
I/O Pin Mode  
Read/Write  
DDRD[7:0]  
DDRD[7:0]  
0
1
X(1)  
X
Input, Hi-Z(2)  
Output  
Pin  
Pin  
PTD[7:0](3)  
PTD[7:0]  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect the input.  
10.4.3 Port D Control Register (PDCR)  
The port D control register enables/disables the pull-up resistor and slow-edge high current capability of  
pins PTD6 and PTD7.  
Address:  
$000A  
Bit 7  
0
6
0
5
0
4
0
3
2
1
Bit 0  
PTDPU6  
0
Read:  
Write:  
Reset:  
SLOWD7 SLOWD6 PTDPU7  
0
0
0
0
0
0
0
Figure 10-12. Port D Control Register (PDCR)  
SLOWDx — Slow Edge Enable  
The SLOWD6 and SLOWD7 bits enable the Slow-edge, open-drain, high current output (25mA sink)  
of port pins PTD6 and PTD7 respectively. DDRDx bit is not affected by SLOWDx.  
1 = Slow edge enabled; pin is open-drain output  
0 = Slow edge disabled; pin is push-pull  
PTDPUx — Pull-up Enable  
The PTDPU6 and PTDPU7 bits enable the 5kpull-up on PTD6 and PTD7 respectively, regardless  
the status of DDRDx bit.  
1 = Enable 5kpull-up  
0 = Disable 5kpull-up  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
113  
Input/Output (I/O) Ports  
MC68HC908JL3E Family Data Sheet, Rev. 3  
114  
Freescale Semiconductor  
Chapter 11  
External Interrupt (IRQ)  
11.1 Introduction  
The IRQ (external interrupt) module provides a maskable interrupt input.  
11.2 Features  
Features of the IRQ module include the following:  
A dedicated external interrupt pin, IRQ1  
IRQ1 interrupt control bits  
Hysteresis buffer  
Programmable edge-only or edge and level interrupt sensitivity  
Automatic interrupt acknowledge  
Selectable internal pullup resistor  
11.3 Functional Description  
A logic zero applied to the external interrupt pin can latch a CPU interrupt request. Figure 11-1 shows the  
structure of the IRQ module.  
Interrupt signals on the IRQ1 pin are latched into the IRQ1 latch. An interrupt latch remains set until one  
of the following actions occurs:  
Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears  
the IRQ latch.  
Software clear — Software can clear the interrupt latch by writing to the acknowledge bit in the  
interrupt status and control register (INTSCR). Writing a logic one to the ACK1 bit clears the IRQ1  
latch.  
Reset — A reset automatically clears the interrupt latch.  
The external interrupt pin is falling-edge-triggered and is software-configurable to be either falling-edge  
or falling-edge and low-level-triggered. The MODE1 bit in the INTSCR controls the triggering sensitivity  
of the IRQ1 pin.  
When the interrupt pin is edge-triggered only, the CPU interrupt request remains set until a vector fetch,  
software clear, or reset occurs.  
When the interrupt pin is both falling-edge and low-level-triggered, the CPU interrupt request remains set  
until both of the following occur:  
Vector fetch or software clear  
Return of the interrupt pin to logic one  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
115  
External Interrupt (IRQ)  
The vector fetch or software clear may occur before or after the interrupt pin returns to logic one. As long  
as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE1 control  
bit, thereby clearing the interrupt even if the pin stays low.  
When set, the IMASK1 bit in the INTSCR mask all external interrupt requests. A latched interrupt request  
is not presented to the interrupt priority logic unless the IMASK1 bit is clear.  
NOTE  
The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including external interrupt requests.  
(See 5.5 Exception Control.)  
ACK1  
RESET  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
VECTOR  
FETCH  
DECODER  
VDD  
IRQPUD  
VDD  
INTERNAL  
IRQF1  
PULLUP  
DEVICE  
CLR  
D
Q
SYNCHRO-  
NIZER  
IRQ1  
INTERRUPT  
REQUEST  
CK  
IRQ1  
IRQ1  
FF  
IMASK1  
MODE1  
HIGH  
VOLTAGE  
DETECT  
TO MODE  
SELECT  
LOGIC  
Figure 11-1. IRQ Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
0
1
IMASK1  
0
Bit 0  
MODE1  
0
Read:  
0
0
0
0
IRQF1  
IRQ Status and Control  
$001D  
Register Write:  
(INTSCR)  
Reset:  
ACK1  
0
0
0
0
0
0
= Unimplemented  
Figure 11-2. IRQ I/O Register Summary  
11.3.1 IRQ1 Pin  
A logic zero on the IRQ1 pin can latch an interrupt request into the IRQ1 latch. A vector fetch, software  
clear, or reset clears the IRQ1 latch.  
If the MODE1 bit is set, the IRQ1 pin is both falling-edge-sensitive and low-level-sensitive. With MODE1  
set, both of the following actions must occur to clear IRQ1:  
MC68HC908JL3E Family Data Sheet, Rev. 3  
116  
Freescale Semiconductor  
IRQ Module During Break Interrupts  
Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear  
the latch. Software may generate the interrupt acknowledge signal by writing a logic one to the  
ACK1 bit in the interrupt status and control register (INTSCR). The ACK1 bit is useful in  
applications that poll the IRQ1 pin and require software to clear the IRQ1 latch. Writing to the ACK1  
bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise.  
Setting ACK1 does not affect subsequent transitions on the IRQ1 pin. A falling edge that occurs  
after writing to the ACK1 bit latches another interrupt request. If the IRQ1 mask bit, IMASK1, is  
clear, the CPU loads the program counter with the vector address at locations $FFFA and $FFFB.  
Return of the IRQ1 pin to logic one — As long as the IRQ1 pin is at logic zero, IRQ1 remains active.  
The vector fetch or software clear and the return of the IRQ1 pin to logic one may occur in any order. The  
interrupt request remains pending as long as the IRQ1 pin is at logic zero. A reset will clear the latch and  
the MODE1 control bit, thereby clearing the interrupt even if the pin stays low.  
If the MODE1 bit is clear, the IRQ1 pin is falling-edge-sensitive only. With MODE1 clear, a vector fetch or  
software clear immediately clears the IRQ1 latch.  
The IRQF1 bit in the INTSCR register can be used to check for pending interrupts. The IRQF1 bit is not  
affected by the IMASK1 bit, which makes it useful in applications where polling is preferred.  
Use the BIH or BIL instruction to read the logic level on the IRQ1 pin.  
NOTE  
When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
NOTE  
An internal pull-up resistor to VDD is connected to the IRQ1 pin; this can be  
disabled by setting the IRQPUD bit in the CONFIG2 register ($001E).  
11.4 IRQ Module During Break Interrupts  
The system integration module (SIM) controls whether the IRQ1 latch can be cleared during the break  
state. The BCFE bit in the break flag control register (BFCR) enables software to clear the latches during  
the break state. (See Chapter 5 System Integration Module (SIM).)  
To allow software to clear the IRQ1 latch during a break interrupt, write a logic one to the BCFE bit. If a  
latch is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect the latches during the break state, write a logic zero to the BCFE bit. With BCFE at logic zero  
(its default state), writing to the ACK1 bit in the IRQ status and control register during the break state has  
no effect on the IRQ latch.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
117  
External Interrupt (IRQ)  
11.5 IRQ Status and Control Register (INTSCR)  
The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. The  
INTSCR has the following functions:  
Shows the state of the IRQ1 flag  
Clears the IRQ1 latch  
Masks IRQ1 and interrupt request  
Controls triggering sensitivity of the IRQ1 interrupt pin  
Address:  
$001D  
Bit 7  
0
6
0
5
0
4
0
3
2
1
IMASK1  
0
Bit 0  
MODE1  
0
Read:  
Write:  
Reset:  
IRQF1  
ACK1  
0
0
0
0
0
0
= Unimplemented  
Figure 11-3. IRQ Status and Control Register (INTSCR)  
IRQF1 — IRQ1 Flag  
This read-only status bit is high when the IRQ1 interrupt is pending.  
1 = IRQ1 interrupt pending  
0 = IRQ1 interrupt not pending  
ACK1 — IRQ1 Interrupt Request Acknowledge Bit  
Writing a logic one to this write-only bit clears the IRQ1 latch. ACK1 always reads as logic zero. Reset  
clears ACK1.  
IMASK1 — IRQ1 Interrupt Mask Bit  
Writing a logic one to this read/write bit disables IRQ1 interrupt requests. Reset clears IMASK1.  
1 = IRQ1 interrupt requests disabled  
0 = IRQ1 interrupt requests enabled  
MODE1 — IRQ1 Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ1 pin. Reset clears MODE1.  
1 = IRQ1 interrupt requests on falling edges and low levels  
0 = IRQ1 interrupt requests on falling edges only  
Address:  
$001E  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
POR:  
IRQPUD  
R
R
LVIT1  
LVIT0  
R
R
Not affected Not affected  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 11-4. Configuration Register 2 (CONFIG2)  
IRQPUD — IRQ1 Pin Pull-up control bit  
1 = Internal pull-up is disconnected  
0 = Internal pull-up is connected between IRQ1 pin and VDD  
MC68HC908JL3E Family Data Sheet, Rev. 3  
118  
Freescale Semiconductor  
Chapter 12  
Keyboard Interrupt Module (KBI)  
12.1 Introduction  
The keyboard interrupt module (KBI) provides seven independently maskable external interrupts which  
are accessible via PTA0–PTA6 pins.  
12.2 Features  
Features of the keyboard interrupt module include the following:  
Seven keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard  
interrupt mask  
Software configurable pull-up device if input pin is configured as input port bit  
Programmable edge-only or edge- and level- interrupt sensitivity  
Exit from low-power modes  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status  
and Control Register Write:  
$001A  
(KBSCR)  
Reset:  
0
0
0
KBIE6  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
Read:  
Keyboard Interrupt  
Enable Register Write:  
KBIE2  
0
KBIE1  
0
KBIE0  
0
$001B  
(KBIER)  
Reset:  
0
= Unimplemented  
Figure 12-1. KBI I/O Register Summary  
12.3 I/O Pins  
The seven keyboard interrupt pins are shared with standard port I/O pins. The full name of the KBI pins  
are listed in Table 12-1. The generic pin name appear in the text that follows.  
Table 12-1. Pin Name Conventions  
KBI  
Pin Selected for KBI Function by KBIEx  
Bit in KBIER  
Full MCU Pin Name  
Generic Pin Name  
KBI0–KBI5  
KBI6  
PTA0/KBI0–PTA5/KBI5  
RCCLK/PTA6/KBI6(1)  
KBIE0–KBIE5  
KBIE6  
1. RCCLK/PTA6/KBI6 pin is only available on MC68HRC908JL3E/JK3E/JK1E devices (RC option).  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
119  
Keyboard Interrupt Module (KBI)  
12.4 Functional Description  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
KBI0  
ACKK  
VDD  
KEYF  
RESET  
CLR  
.
D
Q
SYNCHRONIZER  
Keyboard  
Interrupt  
Request  
KBIE0  
.
CK  
TO PULLUP ENABLE  
.
KEYBOARD  
INTERRUPT FF  
IMASKK  
KBI6  
MODEK  
KBIE6  
TO PULLUP ENABLE  
Figure 12-2. Keyboard Interrupt Block Diagram  
Writing to the KBIE6–KBIE0 bits in the keyboard interrupt enable register independently enables or  
disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin in port A also  
enables its internal pull-up device irrespective of PTAPUEx bits in the port A input pull-up enable register  
(see 10.2.3 Port A Input Pull-up Enable Register (PTAPUE)). A logic 0 applied to an enabled keyboard  
interrupt pin latches a keyboard interrupt request.  
A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK  
bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt.  
If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an  
interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on  
one pin because another pin is still low, software can disable the latter pin while it is low.  
If the keyboard interrupt is falling edge- and low level-sensitive, an interrupt request is present as  
long as any keyboard pin is low.  
If the MODEK bit is set, the keyboard interrupt pins are both falling edge- and low level-sensitive, and both  
of the following actions must occur to clear a keyboard interrupt request:  
Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear  
the interrupt request. Software may generate the interrupt acknowledge signal by writing a logic 1  
to the ACKK bit in the keyboard status and control register KBSCR. The ACKK bit is useful in  
applications that poll the keyboard interrupt pins and require software to clear the keyboard  
interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also  
prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on  
the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another  
interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program  
counter with the vector address at locations $FFE0 and $FFE1.  
Return of all enabled keyboard interrupt pins to logic 1 — As long as any enabled keyboard  
interrupt pin is at logic 0, the keyboard interrupt remains set.  
The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur  
in any order.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
120  
Freescale Semiconductor  
Keyboard Interrupt Registers  
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge-sensitive only. With MODEK clear, a  
vector fetch or software clear immediately clears the keyboard interrupt request.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a  
keyboard interrupt pin stays at logic 0.  
The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending  
interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes  
it useful in applications where polling is preferred.  
To determine the logic level on a keyboard interrupt pin, disable the pull-up device, use the data direction  
register to configure the pin as an input and then read the data register.  
NOTE  
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction register.  
However, the data direction register bit must be a logic 0 for software to  
read the pin.  
12.4.1 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal pull-up to reach a logic 1. Therefore  
a false interrupt can occur as soon as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register.  
2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.  
3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts.  
4. Clear the IMASKK bit.  
An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An  
interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that  
depends on the external load.  
Another way to avoid a false interrupt:  
1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in the data direction  
register A.  
2. Write logic 1s to the appropriate port A data register bits.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.  
12.5 Keyboard Interrupt Registers  
Two registers control the operation of the keyboard interrupt module:  
Keyboard status and control register  
Keyboard interrupt enable register  
12.5.1 Keyboard Status and Control Register  
Flags keyboard interrupt requests  
Acknowledges keyboard interrupt requests  
Masks keyboard interrupt requests  
Controls keyboard interrupt triggering sensitivity  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
121  
Keyboard Interrupt Module (KBI)  
Address:  
$001A  
Bit 7  
0
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 12-3. Keyboard Status and Control Register (KBSCR)  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending on port-A. Reset clears the KEYF bit.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
ACKK — Keyboard Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the keyboard interrupt request on port-A. ACKK always  
reads as logic 0. Reset clears ACKK.  
IMASKK— Keyboard Interrupt Mask Bit  
Writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from  
generating interrupt requests on port-A. Reset clears the IMASKK bit.  
1 = Keyboard interrupt requests masked  
0 = Keyboard interrupt requests not masked  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard interrupt pins on port-A. Reset  
clears MODEK.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
12.5.2 Keyboard Interrupt Enable Register  
The port-A keyboard interrupt enable register enables or disables each port-A pin to operate as a  
keyboard interrupt pin.  
Address:  
$001B  
Bit 7  
0
6
KBIE6  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
0
Figure 12-4. Keyboard Interrupt Enable Register (KBIER)  
KBIE6–KBIE0 — Port-A Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard interrupt pin on port-A to latch  
interrupt requests. Reset clears the keyboard interrupt enable register.  
1 = KBIx pin enabled as keyboard interrupt pin  
0 = KBIx pin not enabled as keyboard interrupt pin  
MC68HC908JL3E Family Data Sheet, Rev. 3  
122  
Freescale Semiconductor  
Low-Power Modes  
12.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
12.6.1 Wait Mode  
The keyboard modules remain active in wait mode. Clearing the IMASKK bit in the keyboard status and  
control register enables keyboard interrupt requests to bring the MCU out of wait mode.  
12.6.2 Stop Mode  
The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and  
control register enables keyboard interrupt requests to bring the MCU out of stop mode.  
12.7 Keyboard Module During Break Interrupts  
The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state.  
To allow software to clear the keyboard interrupt latch during a break interrupt, write a logic 1 to the BCFE  
bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect the latch during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default  
state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during  
the break state has no effect.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
123  
Keyboard Interrupt Module (KBI)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
124  
Freescale Semiconductor  
Chapter 13  
Computer Operating Properly (COP)  
13.1 Introduction  
The computer operating properly (COP) module contains a free-running counter that generates a reset if  
allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset  
by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the  
CONFIG1 register.  
13.2 Functional Description  
Figure 13-1 shows the structure of the COP module.  
SIM  
2OSCOUT  
SIM RESET CIRCUIT  
12-BIT SIM COUNTER  
RESET STATUS REGISTER  
INTERNAL RESET SOURCES(1)  
RESET VECTOR FETCH  
COPCTL WRITE  
COP CLOCK  
COP MODULE  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COPD (FROM CONFIG1)  
RESET  
CLEAR  
COP COUNTER  
COPCTL WRITE  
COP RATE SEL  
(COPRS FROM CONFIG1)  
NOTE: See SIM section for more details.  
Figure 13-1. COP Block Diagram  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
125  
Computer Operating Properly (COP)  
The COP counter is a free-running 6-bit counter preceded by the 12-bit system integration module (SIM)  
counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after  
218 – 24 or 213 – 24 2OSCOUT cycles; depending on the state of the COP rate select bit, COPRS, in  
configuration register 1. With a 218 – 24 2OSCOUT cycle overflow option, a 8MHz crystal gives a COP  
timeout period of 32.766 ms. Writing any value to location $FFFF before an overflow occurs prevents a  
COP reset by clearing the COP counter and stages 12 through 5 of the SIM counter.  
NOTE  
Service the COP immediately after reset and before entering or after exiting  
stop mode to guarantee the maximum time before the first COP counter  
overflow.  
A COP reset pulls the RST pin low for 32 × 2OSCOUT cycles and sets the COP bit in the reset status  
register (RSR). (See 5.7.2 Reset Status Register (RSR).).  
NOTE  
Place COP clearing instructions in the main program and not in an interrupt  
subroutine. Such an interrupt subroutine could keep the COP from  
generating a reset even while the main program is not working properly.  
13.3 I/O Signals  
The following paragraphs describe the signals shown in Figure 13-1.  
13.3.1 2OSCOUT  
2OSCOUT is the oscillator output signal. 2OSCOUT frequency is equal to the crystal frequency or the  
RC-oscillator frequency.  
13.3.2 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 13.4 COP Control Register) clears the  
COP counter and clears bits 12 through 5 of the SIM counter. Reading the COP control register returns  
the low byte of the reset vector.  
13.3.3 Power-On Reset  
The power-on reset (POR) circuit in the SIM clears the SIM counter 4096 × 2OSCOUT cycles after  
power-up.  
13.3.4 Internal Reset  
An internal reset clears the SIM counter and the COP counter.  
13.3.5 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears  
the SIM counter.  
13.3.6 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register (CONFIG).  
(See Chapter 3 Configuration Registers (CONFIG).)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
126  
Freescale Semiconductor  
COP Control Register  
13.3.7 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register 1.  
Address:  
$001F  
Bit 7  
6
5
R
0
4
LVID  
0
3
R
0
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
R
0
0
R
= Reserved  
Figure 13-2. Configuration Register 1 (CONFIG1)  
COPRS — COP Rate Select Bit  
COPRS selects the COP timeout period. Reset clears COPRS.  
1 = COP timeout period is (213 – 24) × 2OSCOUT cycles  
0 = COP timeout period is (218 – 24) × 2OSCOUT cycles  
COPD — COP Disable Bit  
COPD disables the COP module.  
1 = COP module disabled  
0 = COP module enabled  
13.4 COP Control Register  
The COP control register is located at address $FFFF and overlaps the reset vector. Writing any value to  
$FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low  
byte of the reset vector.  
Address:  
$FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 13-3. COP Control Register (COPCTL)  
13.5 Interrupts  
The COP does not generate CPU interrupt requests.  
13.6 Monitor Mode  
The COP is disabled in monitor mode when VDD + VHI is present on the IRQ1 pin or on the RST pin.  
13.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low-power consumption standby modes.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
127  
Computer Operating Properly (COP)  
13.7.1 Wait Mode  
The COP continues to operate during wait mode. To prevent a COP reset during wait mode, periodically  
clear the COP counter in a CPU interrupt routine.  
13.7.2 Stop Mode  
Stop mode turns off the 2OSCOUT input to the COP and clears the SIM counter. Service the COP  
immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering  
or exiting stop mode.  
13.8 COP Module During Break Mode  
The COP is disabled during a break interrupt when VDD + VHI is present on the RST pin.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
128  
Freescale Semiconductor  
Chapter 14  
Low Voltage Inhibit (LVI)  
14.1 Introduction  
This section describes the low-voltage inhibit module (LVI), which monitors the voltage on the VDD pin  
and generates a reset when the VDD voltage falls to the LVI trip (LVITRIP) voltage.  
14.2 Features  
Features of the LVI module include the following:  
Selectable LVI trip voltage  
Selectable LVI circuit disable  
14.3 Functional Description  
Figure 14-1 shows the structure of the LVI module. The LVI is enabled after a reset. The LVI module  
contains a bandgap reference circuit and comparator. Setting LVI disable bit (LVID) disables the LVI to  
monitor VDD voltage. The LVI trip voltage selection bits (LVIT1, LVIT0) determine at which VDD level the  
LVI module should take actions.  
The LVI module generates one output signal:  
LVI Reset — an reset signal will be generated to reset the CPU when VDD drops to below the set trip  
point.  
VDD  
LVID  
VDD > LVITRIP = 0  
LVI RESET  
VDD < LVITRIP = 1  
LOW VDD  
DETECTOR  
LVIT1  
LVIT0  
Figure 14-1. LVI Module Block Diagram  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
129  
Low Voltage Inhibit (LVI)  
14.4 LVI Control Register (CONFIG2/CONFIG1)  
The LVI module is controlled by three bits in the configuration registers, CONFIG1 and CONFIG2.  
Address:  
$001E  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
POR:  
IRQPUD  
R
R
LVIT1  
LVIT0  
R
R
Not affected Not affected  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 14-2. Configuration Register 2 (CONFIG2)  
Address:  
$001F  
Bit 7  
6
5
R
0
4
LVID  
0
3
R
0
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
R
0
0
R
= Reserved  
Figure 14-3. Configuration Register 1 (CONFIG1)  
LVID — Low Voltage Inhibit Disable Bit  
1 = Low voltage inhibit disabled  
0 = Low voltage inhibit enabled  
LVIT1, LVIT0 — LVI Trip Voltage Selection  
These two bits determine at which level of VDD the LVI module will come into action. LVIT1 and LVIT0  
are cleared by a Power-On Reset only.  
Trip Voltage(1)  
VLVR3 (2.4V)  
VLVR3 (2.4V)  
LVIT1  
LVIT0  
Comments  
0
0
1
1
0
1
0
1
For VDD=3V operation  
For VDD=3V operation  
For VDD=5V operation  
VLVR5 (4.0V)  
Reserved  
1. See Chapter 16 Electrical Specifications for full parameters.  
14.5 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low-power-consumption standby modes.  
14.5.1 Wait Mode  
The LVI module, when enabled, will continue to operate in WAIT Mode.  
14.5.2 Stop Mode  
The LVI module, when enabled, will continue to operate in STOP Mode.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
130  
Freescale Semiconductor  
Chapter 15  
Break Module (BREAK)  
15.1 Introduction  
This section describes the break module. The break module can generate a break interrupt that stops  
normal program flow at a defined address to enter a background program.  
15.2 Features  
Features of the break module include the following:  
Accessible I/O registers during the break Interrupt  
CPU-generated break interrupts  
Software-generated break interrupts  
COP disabling during break interrupts  
15.3 Functional Description  
When the internal address bus matches the value written in the break address registers, the break module  
issues a breakpoint signal (BKPT) to the SIM. The SIM then causes the CPU to load the instruction  
register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The  
program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
A CPU-generated address (the address in the program counter) matches the contents of the break  
address registers.  
Software writes a logic one to the BRKA bit in the break status and control register.  
When a CPU generated address matches the contents of the break address registers, the break interrupt  
begins after the CPU completes its current instruction. A return from interrupt instruction (RTI) in the break  
routine ends the break interrupt and returns the MCU to normal operation. Figure 15-1 shows the  
structure of the break module.  
IAB[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
IAB[15:0]  
CONTROL  
BKPT  
(TO SIM)  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
IAB[7:0]  
Figure 15-1. Break Module Block Diagram  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
131  
Break Module (BREAK)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
SBSW  
See note  
0
Bit 0  
Read:  
Write:  
Reset:  
Read:  
R
R
R
R
R
R
R
Break Status Register  
(BSR)  
$FE00  
Break Flag Control  
BCFE  
0
R
R
R
R
R
R
R
$FE03  
$FE0C  
$FE0D  
$FE0E  
Register Write:  
(BFCR)  
Reset:  
Read:  
Break Address High  
Bit15  
0
Bit14  
0
Bit13  
0
Bit12  
0
Bit11  
0
Bit10  
0
Bit9  
0
Bit8  
0
Register Write:  
(BRKH)  
Reset:  
Read:  
Break Address low  
Bit7  
0
Bit6  
0
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Register Write:  
(BRKL)  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
BRKE  
0
BRKA  
Register Write:  
(BRKSCR)  
Reset:  
0
0
0
0
0
0
0
Note: Writing a logic 0 clears SBSW.  
= Unimplemented  
R
= Reserved  
Figure 15-2. Break I/O Register Summary  
15.3.1 Flag Protection During Break Interrupts  
The system integration module (SIM) controls whether or not module status bits can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. (See 5.7.3 Break Flag Control Register (BFCR) and see the Break Interrupts  
subsection for each module.)  
15.3.2 CPU During Break Interrupts  
The CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD  
($FEFC:$FEFD in monitor mode)  
The break interrupt begins after completion of the CPU instruction in progress. If the break address  
register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.  
15.3.3 TIM During Break Interrupts  
A break interrupt stops the timer counter.  
15.3.4 COP During Break Interrupts  
The COP is disabled during a break interrupt when VDD + VHI is present on the RST pin.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
132  
Freescale Semiconductor  
Break Module Registers  
15.4 Break Module Registers  
These registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
Break status register (BSR)  
Break flag control register (BFCR)  
15.4.1 Break Status and Control Register (BRKSCR)  
The break status and control register contains break module enable and status bits.  
Address: $FE0E  
Bit 7  
BRKE  
0
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 15-3. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic  
zero to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address match occurs. Writing a logic one to  
BRKA generates a break interrupt. Clear BRKA by writing a logic zero to it before exiting the break  
routine. Reset clears the BRKA bit.  
1 = Break address match  
0 = No break address match  
15.4.2 Break Address Registers  
The break address registers contain the high and low bytes of the desired breakpoint address. Reset  
clears the break address registers.  
Address: $FE0C  
Bit 7  
Bit 15  
0
6
14  
0
5
13  
0
4
12  
0
3
11  
0
2
10  
0
1
9
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Figure 15-4. Break Address Register High (BRKH)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
133  
Break Module (BREAK)  
Address: $FE0D  
Bit 7  
Bit 7  
0
6
6
0
5
5
0
4
4
0
3
3
0
2
2
0
1
1
0
Bit 0  
Bit 0  
0
Read:  
Write:  
Reset:  
Figure 15-5. Break Address Register Low (BRKL)  
15.4.3 Break Status Register  
The break status register contains a flag to indicate that a break caused an exit from stop or wait mode.  
Address:  
$FE00  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
R
R
R
R
R
= Reserved  
1. Writing a logic zero clears SBSW.  
Figure 15-6. Break Status Register (BSR)  
SBSW — SIM Break Stop/Wait  
This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break  
interrupt. Clear SBSW by writing a logic zero to it. Reset clears SBSW.  
1 = Stop mode or wait mode was exited by break interrupt  
0 = Stop mode or wait mode was not exited by break interrupt  
SBSW can be read within the break state SWI routine. The user can modify the return address on the  
stack by subtracting one from it. The following code is an example of this.  
; This code works if the H register has been pushed onto the stack in the break  
; service routine software. This code should be executed at the end of the  
; break service routine software.  
HIBYTE EQU  
LOBYTE EQU  
5
6
;
If not SBSW, do RTI  
BRCLR SBSW,BSR, RETURN ; See if wait mode or stop mode was exited  
; by break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
; If RETURNLO is not zero,  
; then just decrement low byte.  
; Else deal with high byte, too.  
; Point to WAIT/STOP opcode.  
; Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN PULH  
RTI  
MC68HC908JL3E Family Data Sheet, Rev. 3  
134  
Freescale Semiconductor  
Low-Power Modes  
15.4.4 Break Flag Control Register (BFCR)  
The break control register contains a bit that enables software to clear status bits while the MCU is in a  
break state.  
Address:  
$FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 15-7. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
15.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low-power-consumption standby modes.  
15.5.1 Wait Mode  
If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from  
the return address on the stack if SBSW is set (see 5.6 Low-Power Modes). Clear the SBSW bit by writing  
logic zero to it.  
15.5.2 Stop Mode  
A break interrupt causes exit from stop mode and sets the SBSW bit in the break status register. See 5.7  
SIM Registers.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
135  
Break Module (BREAK)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
136  
Freescale Semiconductor  
Chapter 16  
Electrical Specifications  
16.1 Introduction  
This section contains electrical and timing specifications.  
16.2 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it.  
NOTE  
This device is not guaranteed to operate properly at the maximum ratings.  
Refer to Sections 16.5 and 16.8 for guaranteed operating conditions.  
Table 16-1. Absolute Maximum Ratings  
Characteristic(1)  
Supply voltage  
Symbol  
VDD  
Value  
Unit  
V
–0.3 to +6.0  
VIN  
VSS–0.3 to VDD +0.3  
VSS–0.3 to +8.5  
Input voltage  
V
VDD+VHI  
Mode entry voltage, IRQ1 pin  
V
Maximum current per pin excluding VDD  
and VSS  
I
±25  
mA  
TSTG  
IMVSS  
IMVDD  
Storage temperature  
–55 to +150  
100  
°C  
mA  
mA  
Maximum current out of VSS  
Maximum current into VDD  
100  
1. Voltages referenced to VSS  
.
NOTE  
This device contains circuitry to protect the inputs against damage due to  
high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that VIN and VOUT be constrained to the  
range VSS (VIN or VOUT) VDD. Reliability of operation is enhanced if  
unused inputs are connected to an appropriate logic voltage level (for  
example, either VSS or VDD.)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
137  
Electrical Specifications  
16.3 Functional Operating Range  
Table 16-2. Operating Range  
Characteristic  
Operating temperature range  
Operating voltage range  
Symbol  
Value  
Unit  
°C  
TA  
40 to +125  
40 to +85  
VDD  
5 ±10%  
3 ±10%  
V
16.4 Thermal Characteristics  
Table 16-3. Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance  
20-pin PDIP  
20-pin SOIC  
28-pin PDIP  
28-pin SOIC  
48-pin LQFP  
70  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
70  
70  
70  
80  
θJA  
PI/O  
PD  
I/O pin power dissipation  
User determined  
W
PD = (IDD × VDD) + PI/O  
K/(TJ + 273 °C)  
=
Power dissipation(1)  
W
PD x (TA + 273 °C)  
+ PD2 × θJA  
Constant(2)  
K
W/°C  
°C  
TJ  
TA + (PD × θJA)  
Average junction temperature  
1. Power dissipation is a function of temperature.  
2. K constant unique to the device. K can be determined for a known TA and measured PD.  
With this value of K, PD and TJ can be determined for any value of TA.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
138  
Freescale Semiconductor  
5V DC Electrical Characteristics  
16.5 5V DC Electrical Characteristics  
Table 16-4. DC Electrical Characteristics (5V)  
Characteristic(1)  
Output high voltage (ILOAD = –2.0mA)  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7  
Output low voltage (ILOAD = 1.6mA)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
VOH  
VDD–0.8  
V
VOL  
VOL  
IOL  
10  
16  
0.4  
0.5  
22  
V
V
PTA6, PTB0–PTB7, PTD0, PTD1, PTD4, PTD5  
Output low voltage (ILOAD = 25mA)  
PTD6, PTD7  
LED drives (VOL = 3V)  
PTA0–PTA5, PTD2, PTD3, PTD6, PTD7  
mA  
Input high voltage  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7,  
RST, IRQ1, OSC1  
VIH  
VIL  
0.7 × VDD  
VDD  
V
V
Input low voltage  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7,  
RST, IRQ1, OSC1  
VSS  
0.3 × VDD  
V
DD supply current, fOP = 4MHz  
Run(3)  
MC68HC908JL3E/JK3E/JK1E  
MC68HRC908JL3E/JK3E/JK1E  
Wait(4)  
10  
4.5  
11  
5
mA  
mA  
MC68HC908JL3E/JK3E/JK1E  
MC68HRC908JL3E/JK3E/JK1E  
Stop(5)  
6
1
6.5  
1.5  
mA  
mA  
IDD  
(–40°C to 85°C)  
MC68HC908JL3E/JK3E/JK1E  
MC68HRC908JL3E/JK3E/JK1E  
(–40°C to 125°C)  
2
2
5
5
µA  
µA  
MC68HC908JL3E/JK3E/JK1E  
MC68HRC908JL3E/JK3E/JK1E  
2
2
10  
10  
µA  
µA  
IIL  
Digital I/O ports Hi-Z leakage current  
Input current  
± 10  
± 1  
µA  
µA  
IIN  
COUT  
CIN  
Capacitance  
Ports (as input or output)  
12  
8
pF  
POR rearm voltage(6)  
VPOR  
RPOR  
0
100  
mV  
V/ms  
V
POR rise time ramp rate(7)  
Monitor mode entry voltage  
0.035  
VDD+VHI  
1.5 × VDD  
8.5  
Pullup resistors(8)  
PTD6, PTD7  
RST, IRQ1, PTA0–PTA6  
RPU1  
RPU2  
1.8  
16  
3.3  
26  
4.8  
36  
kΩ  
kΩ  
VLVR5  
LVI reset voltage  
3.6  
4.0  
4.4  
V
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source (fOP = 4MHz). All inputs 0.2V from rail. No dc  
loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly  
affects run IDD. Measured with all modules enabled.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
139  
Electrical Specifications  
4. Wait IDD measured using external square wave clock source (fOP = 4MHz). All inputs 0.2V from rail. No dc loads. Less  
than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects  
wait IDD  
.
5. Stop IDD measured with OSC1 grounded; no port pins sourcing current. LVI is disabled.  
6. Maximum is highest voltage that POR is guaranteed.  
7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until  
minimum VDD is reached.  
8. RPU1 and RPU2 are measured at VDD = 5.0V.  
16.6 5V Control Timing  
Table 16-5. Control Timing (5V)  
Characteristic(1)  
Internal operating frequency(2)  
RST input pulse width low(3)  
Symbol  
fOP  
Min  
Max  
8
Unit  
MHz  
ns  
tIRL  
750  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VSS, unless otherwise  
noted.  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this  
information.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
16.7 5V Oscillator Characteristics  
Table 16-6. Oscillator Component Specifications (5V)  
Characteristic  
Crystal frequency, XTALCLK  
RC oscillator frequency, RCCLK  
Symbol  
Min  
2
Typ  
10  
Max  
32  
Unit  
MHz  
MHz  
fOSCXCLK  
fRCCLK  
10  
12  
External clock  
reference frequency(1)  
fOSCXCLK  
dc  
32  
MHz  
Crystal load capacitance(2)  
Crystal fixed capacitance(2)  
CL  
C1  
2 × CL  
2 × CL  
10 MΩ  
Crystal tuning capacitance(2)  
Feedback bias resistor  
C2  
RB  
Series resistor(2), (3)  
RS  
REXT  
CEXT  
RC oscillator external R  
RC oscillator external C  
See Figure 16-1  
10  
pF  
1. No more than 10% duty cycle deviation from 50%.  
2. Consult crystal vendor data sheet.  
3. Not required for high frequency crystals.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
140  
Freescale Semiconductor  
3V DC Electrical Characteristics  
14  
12  
10  
8
C
= 10 pF  
EXT  
MCU  
5V @ 25°C  
OSC1  
6
V
DD  
4
R
C
EXT  
EXT  
2
0
0
10  
20  
30  
(k  
40  
50  
Resistor, R  
)  
EXT  
Figure 16-1. RC vs. Frequency (5V @25°C)  
16.8 3V DC Electrical Characteristics  
Table 16-7. DC Electrical Characteristics (3V)  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
Output high voltage (ILOAD = –1.0mA)  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7  
Output low voltage (ILOAD = 0.8mA)  
PTA6, PTB0–PTB7, PTD0, PTD1, PTD4, PTD5  
Output low voltage (ILOAD = 20mA)  
PTD6, PTD7  
VOH  
VDD0.4  
V
VOL  
VOL  
IOL  
3
6
0.4  
0.5  
10  
V
V
LED drives (VOL = 1.8V)  
PTA0–PTA5, PTD2, PTD3, PTD6, PTD7  
mA  
Input high voltage  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7,  
RST, IRQ1, OSC1  
VIH  
VIL  
0.7 × VDD  
VDD  
V
V
Input low voltage  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7,  
RST, IRQ1, OSC1  
VSS  
0.3 × VDD  
VDD supply current, fOP = 2MHz  
Run(3)  
MC68HC908JL3E/JK3E/JK1E  
MC68HRC908JL3E/JK3E/JK1E  
Wait(4)  
MC68HC908JL3E/JK3E/JK1E  
MC68HRC908JL3E/JK3E/JK1E  
Stop(5)  
3
1.5  
3.5  
2
mA  
mA  
IDD  
1.5  
0.2  
2
0.3  
mA  
mA  
(–40°C to 85°C)  
MC68HC908JL3E/JK3E/JK1E  
MC68HRC908JL3E/JK3E/JK1E  
1
1
5
5
µA  
µA  
IIL  
Digital I/O ports Hi-Z leakage current  
± 10  
µA  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
141  
Electrical Specifications  
Table 16-7. DC Electrical Characteristics (3V)  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
IIN  
Input current  
± 1  
µA  
COUT  
CIN  
Capacitance  
Ports (as input or output)  
12  
8
pF  
POR rearm voltage(6)  
VPOR  
RPOR  
0
100  
mV  
V/ms  
V
POR rise time ramp rate(7)  
Monitor mode entry voltage  
0.035  
V
DD+VHI  
1.5 × VDD  
8.5  
Pullup resistors(8)  
PTD6, PTD7  
RST, IRQ1, PTA0–PTA6  
RPU1  
RPU2  
1.8  
16  
3.3  
26  
4.8  
36  
kΩ  
kΩ  
VLVR3  
LVI reset voltage  
2.0  
2.4  
2.69  
V
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source (fOP = 2MHz). All inputs 0.2V from rail. No dc  
loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly  
affects run IDD. Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source (fOP = 2MHz). All inputs 0.2V from rail. No dc loads. Less  
than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects  
wait IDD  
.
5. Stop IDD measured with OSC1 grounded; no port pins sourcing current. LVI is disabled.  
6. Maximum is highest voltage that POR is guaranteed.  
7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until  
minimum VDD is reached.  
8. RPU1 and RPU2 are measured at VDD = 5.0V.  
16.9 3V Control Timing  
Table 16-8. Control Timing (3V)  
Characteristic(1)  
Internal operating frequency(2)  
RST input pulse width low(3)  
Symbol  
fOP  
Min  
Max  
4
Unit  
MHz  
µs  
tIRL  
1.5  
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VDD, unless otherwise  
noted.  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this infor-  
mation.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
142  
Freescale Semiconductor  
3V Oscillator Characteristics  
16.10 3V Oscillator Characteristics  
Table 16-9. Oscillator Component Specifications (3V)  
Characteristic  
Crystal frequency, XTALCLK  
RC oscillator frequency, RCCLK  
Symbol  
Min  
2
Typ  
8
Max  
16  
Unit  
MHz  
MHz  
fOSCXCLK  
fRCCLK  
8
12  
External clock  
reference frequency(1)  
fOSCXCLK  
dc  
16  
MHz  
Crystal load capacitance(2)  
Crystal fixed capacitance(2)  
CL  
C1  
2 × CL  
2 × CL  
10 MΩ  
Crystal tuning capacitance(2)  
Feedback bias resistor  
C2  
RB  
Series resistor(2), (3)  
RS  
REXT  
CEXT  
RC oscillator external R  
RC oscillator external C  
See Figure 16-2  
10  
pF  
1. No more than 10% duty cycle deviation from 50%.  
2. Consult crystal vendor data sheet.  
3. Not required for high frequency crystals.  
14  
12  
10  
8
C
= 10 pF  
MCU  
EXT  
3V @ 25°C  
OSC1  
6
V
DD  
R
C
EXT  
4
EXT  
2
0
0
10  
20  
30  
(k)  
40  
50  
Resistor, R  
EXT  
Figure 16-2. RC vs. Frequency (3V @25°C)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
143  
Electrical Specifications  
16.11 Typical Supply Currents  
14  
12  
10  
8
6
MC68HC908JL3E/JK3E/JK1E  
4
5.5 V  
3.3 V  
2
0
0
1
2
3
4
5
6
7
8
9
fOP or fBUS (MHz)  
Figure 16-3. Typical Operating IDD (MC68HC908JL3E/JK3E/JK1E),  
with All Modules Turned On (25 °C)  
10  
MC68HRC908JL3E/JK3E/JK1E  
8
5.5 V  
3.3 V  
6
4
2
0
0
1
2
3
4
5
6
7
8
9
fOP or fBUS (MHz)  
Figure 16-4. Typical Operating IDD (MC68HRC908JL3E/JK3E/JK1E),  
with All Modules Turned On (25 °C)  
10  
MC68HC908JL3E/JK3E/JK1E  
8
5.5 V  
3.3 V  
6
4
2
0
0
1
2
3
4
5
6
7
8
9
fOP or fBUS (MHz)  
Figure 16-5. Typical Wait Mode IDD (MC68HC908JL3E/JK3E/JK1E),  
with All Modules Turned Off (25 °C)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
144  
Freescale Semiconductor  
ADC Characteristics  
2
1.75  
1.50  
1.25  
1
MC68HRC908JL3E/JK3E/JK1E  
5.5 V  
3.3 V  
0.75  
0.5  
0.25  
0
0
1
2
3
4
5
6
7
8
fOP or fBUS (MHz)  
Figure 16-6. Typical Wait Mode IDD (MC68HRC908JL3E/JK3E/JK1E),  
with All Modules Turned Off (25 °C)  
16.12 ADC Characteristics  
Table 16-10. ADC Characteristics  
Characteristic  
Supply voltage  
Symbol  
Min  
Max  
Unit  
Comments  
2.7  
(VDD min)  
5.5  
(VDD max)  
VDDAD  
V
VADIN  
BAD  
VSS  
8
VDD  
8
Input voltages  
Resolution  
V
Bits  
LSB  
AAD  
Absolute accuracy  
± 0.5  
± 1.5  
Includes quantization  
t
AIC = 1/fADIC, tested only  
fADIC  
ADC internal clock  
0.5  
1.048  
VDD  
MHz  
at 1 MHz  
RAD  
tADPU  
tADC  
tADS  
ZADI  
FADI  
CADI  
VSS  
16  
14  
5
Conversion range  
Power-up time  
V
tAIC cycles  
tAIC cycles  
tAIC cycles  
Conversion time  
Sample time(1)  
Zero input reading(2)  
Full-scale reading(3)  
Input capacitance  
15  
VIN = VSS  
00  
FE  
01  
Hex  
Hex  
pF  
VIN = VDD  
FF  
(20) 8  
Not tested  
Input leakage(3)  
Port B/port D  
± 1  
µA  
1. Source impedances greater than 10 kadversely affect internal RC charging time during input sampling.  
2. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.  
3. The external system error caused by input leakage current is approximately equal to the product of R source and input  
current.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
145  
Electrical Specifications  
16.13 Memory Characteristics  
Table 16-11. Memory Characteristics  
Characteristic  
RAM data retention voltage  
Symbol  
Min  
1.3  
1
Max  
Unit  
V
V
RDR  
FLASH program bus clock frequency  
FLASH read bus clock frequency  
MHz  
(1)  
32k  
1
8M  
Hz  
ms  
f
ead  
R
(2)  
FLASH page erase time  
t
rase  
E
(3)  
rase  
FLASH mass erase time  
t
4
10  
5
40  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
ME  
t
FLASH PGM/ERASE to HVEN set up time  
FLASH high-voltage hold time  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
nvs  
nvh  
t
t
100  
5
nvh1  
t
pgs  
t
FLASH program time  
30  
1
PROG  
(4)  
FLASH return to read time  
t
rcv  
(5)  
FLASH cumulative program hv period  
t
10k  
10k  
10  
4
ms  
HV  
FLASH row erase endurance(6)  
FLASH row program endurance(7)  
FLASH data retention time(8)  
cycles  
cycles  
years  
1. fRead is defined as the frequency range for which the FLASH memory can be read.  
2. If the page erase time is longer than tErase (Min), there is no erase-disturb, but it reduces the endurance of the  
FLASH memory.  
3. If the mass erase time is longer than tMErase (Min), there is no erase-disturb, but it reduces the endurance of  
the FLASH memory.  
4. trcv is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump,  
by clearing HVEN to logic 0.  
5. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
tHV must satisfy this condition: tnvs + tnvh + tpgs + (tPROG × 32) tHV max.  
6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least  
this many erase / program cycles.  
7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least  
this many erase / program cycles.  
8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum  
time specified.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
146  
Freescale Semiconductor  
Chapter 17  
Mechanical Specifications  
17.1 Introduction  
This section gives the dimensions for:  
20-pin plastic dual in-line package (case #738)  
20-pin small outline integrated circuit package (case #751D)  
28-pin plastic dual in-line package (case #710)  
28-pin small outline integrated circuit package (case #751F)  
48-pin low-profile quad flat pack (case #932)  
17.2 20-Pin PDIP  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
20  
1
11  
10  
B
4. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
L
C
INCHES  
DIM MIN MAX  
1.070 25.66  
MILLIMETERS  
MIN  
MAX  
27.17  
6.60  
4.57  
0.55  
A
B
C
D
E
F
1.010  
0.240  
0.150  
0.015  
0.260  
0.180  
0.022  
6.10  
3.81  
0.39  
–T–  
SEATING  
PLANE  
K
0.050 BSC  
1.27 BSC  
M
0.050  
0.070  
1.27  
1.77  
N
E
G
J
K
L
0.100 BSC  
2.54 BSC  
0.008  
0.110  
0.015  
0.140  
0.21  
2.80  
0.38  
3.55  
G
F
J 20 PL  
0.300 BSC  
7.62 BSC  
D 20 PL  
0.25 (0.010)  
M
M
T B  
0.25 (0.010)  
M
N
0
0.020  
15  
0.040  
0
0.51  
15  
1.01  
M
M
T A  
Figure 17-1. 20-Pin PDIP (Case #738)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
147  
Mechanical Specifications  
17.3 20-Pin SOIC  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
–A–  
20  
11  
4. MAXIMUM MOLD PROTRUSION 0.150  
(0.006) PER SIDE.  
10X P  
–B–  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
M
M
B
0.010 (0.25)  
1
10  
MILLIMETERS  
INCHES  
20X D  
DIM MIN  
MAX  
12.95  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.510  
0.299  
0.104  
0.019  
0.035  
J
A
B
C
D
F
12.65  
7.40  
2.35  
0.35  
0.50  
0.499  
0.292  
0.093  
0.014  
0.020  
M
S
S
B
0.010 (0.25)  
T A  
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
R X 45  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
C
SEATING  
PLANE  
–T–  
M
18X G  
K
Figure 17-2. 20-Pin SOIC (Case #751D)  
17.4 28-Pin PDIP  
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS (D), SHALL  
BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL  
CONDITION, IN RELATION TO SEATING PLANE  
AND EACH OTHER.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
28  
15  
14  
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
B
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
MIN  
36.45  
13.72  
3.94  
0.36  
1.02  
MAX  
37.21  
14.22  
5.08  
0.56  
1.52  
MIN  
MAX  
1.465  
0.560  
0.200  
0.022  
0.060  
1
1.435  
0.540  
0.155  
0.014  
0.040  
L
C
A
N
G
H
J
K
L
2.54 BSC  
0.100 BSC  
1.65  
0.20  
2.92  
2.16  
0.38  
3.43  
0.065  
0.008  
0.115  
0.085  
0.015  
0.135  
J
G
H
F
M
K
15.24 BSC  
0.600 BSC  
D
SEATING  
M
N
0°  
0.51  
15°  
1.02  
0°  
0.020  
15°  
0.040  
PLANE  
Figure 17-3. 28-Pin PDIP (Case #710)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
148  
Freescale Semiconductor  
28-Pin SOIC  
17.5 28-Pin SOIC  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
-A-  
ANSI Y14.5M, 1982.  
15  
28  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
14X P  
M
M
0.010 (0.25)  
B
-B-  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE  
1
14  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
28X D  
M
MILLIMETERS  
INCHES  
M
S
S
0.010 (0.25)  
T
A
B
DIM  
A
B
C
D
MIN  
17.80  
7.40  
2.35  
0.35  
0.41  
MAX  
18.05  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.711  
0.299  
0.104  
0.019  
0.035  
R
X 45  
0.701  
0.292  
0.093  
0.014  
0.016  
C
-T-  
SEATING  
PLANE  
F
26X G  
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.23  
0.13  
0°  
0.32  
0.29  
8°  
10.55  
0.75  
0.009  
0.005  
0°  
0.013  
0.011  
8°  
0.415  
0.029  
K
F
10.01  
0.25  
0.395  
0.010  
J
Figure 17-4. 28-Pin SOIC (Case #751F)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
149  
Mechanical Specifications  
17.6 48-Pin LQFP  
4X  
NOTES:  
0.200 AB T–U  
Z
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE AB IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS T, U, AND Z TO BE DETERMINED AT  
DATUM PLANE AB.  
DETAIL Y  
9
A
P
A1  
48  
37  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE AC.  
1
36  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE AB.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.350.  
T
U
B
V
AE  
AE  
B1  
V1  
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076.  
12  
25  
9. EXACT SHAPE OF EACH CORNER IS OPTIONAL.  
MILLIMETERS  
13  
24  
DIM  
A
MIN  
MAX  
Z
7.000 BSC  
A1  
B
B1  
C
D
E
3.500 BSC  
7.000 BSC  
3.500 BSC  
S1  
T, U, Z  
1.400  
1.600  
0.270  
1.450  
0.230  
S
0.170  
1.350  
0.170  
DETAIL Y  
4X  
F
G
0.200 AC T–U  
Z
0.500 BSC  
H
J
K
L
M
N
0.050  
0.090  
0.500  
1°  
0.150  
0.200  
0.700  
5°  
0.080 AC  
12° REF  
G
AB  
AC  
0.090  
0.160  
P
0.250 BSC  
R
0.150  
0.250  
S
9.000 BSC  
S1  
V
V1  
W
AA  
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
AD  
M°  
BASE METAL  
TOP & BOTTOM  
R
N
J
E
C
H
F
D
M
0.080  
AC T–U Z  
SECTION AE–AE  
W
L°  
K
DETAIL AD  
AA  
Figure 17-5. 48-Pin LQFP (Case #932)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
150  
Freescale Semiconductor  
Chapter 18  
Ordering Information  
18.1 Introduction  
This section contains ordering numbers for the MC68H(R)C908JL3E, MC68H(R)C908JK3E, and  
MC68H(R)C908JK1E.  
18.2 MC Order Numbers  
Table 18-1. MC Order Numbers  
MC order number  
Oscillator type  
FLASH memory  
Package  
MC68HC908JL3ECFA  
MC68HC908JL3EMFA  
Crystal oscillator  
4096 Bytes  
48-pin LQFP  
MC68HRC98JL3ECFA  
MC68HRC98JL3EMFA  
RC oscillator  
MC68HC908JL3ECP  
MC68HC908JL3EMP  
MC68HC908JL3ECDW  
MC68HC908JL3EMDW  
Crystal oscillator  
4096 Bytes  
4096 Bytes  
1536 Bytes  
28-pin package  
MC68HRC98JL3ECP  
MC68HRC98JL3EMP  
MC68HRC98JL3ECDW  
MC68HRC98JL3EMDW  
RC oscillator  
Crystal oscillator  
RC oscillator  
MC68HC908JK3ECP  
MC68HC908JK3EMP  
MC68HC908JK3ECDW  
MC68HC908JK3EMDW  
MC68HRC98JK3ECP  
MC68HRC98JK3EMP  
MC68HRC98JK3ECDW  
MC68HRC98JK3EMDW  
20-pin package  
MC68HC908JK1ECP  
MC68HC908JK1EMP  
MC68HC908JK1ECDW  
MC68HC908JK1EMDW  
Crystal oscillator  
RC oscillator  
MC68HRC98JK1ECP  
MC68HRC98JK1EMP  
MC68HRC98JK1ECDW  
MC68HRC98JK1EMDW  
Temperature: C = –40 °C to +85 °C M = –40 °C to +125 °C (available for VDD = 5V only)  
Package:  
P = PDIP  
DW = SOIC  
FA = LQFP  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
151  
Ordering Information  
MC68HC908JL3E Family Data Sheet, Rev. 3  
152  
Freescale Semiconductor  
Appendix A  
MC68HLC908JL3E/JK3E/JK1E  
A.1 Introduction  
This appendix introduces three devices, that are low-voltage versions of MC68HC908JL3E/JK3E/JK1E:  
MC68HLC908JL3E  
MC68HLC908JK3E  
MC68HLC908JK1E  
The entire data book apply to these low-voltage devices, with exceptions outlined in this appendix.  
A.2 FLASH Memory  
The FLASH memory can be read at minimum VDD of 2.2V.  
Program or erase operations require a minimum VDD of 2.7V.  
A.3 Low-Voltage Inhibit  
There is no low-voltage inhibit circuit. Therefore, no low-voltage reset. The associated register bits are  
reserved bits.  
A.4 Oscillator Options  
Only crystal oscillator or direct clock input is supported.  
A.5 Electrical Specifications  
Electrical specifications for low-voltage devices are given in the following tables.  
A.5.1 Functional Operating Range  
Table A-1. Operating Range  
Characteristic  
Operating temperature range  
Operating voltage range  
Symbol  
Value  
Unit  
°C  
TA  
0 to +85  
2.2 to 5.5  
VDD  
VDD  
V
Operating voltage for FLASH memory program  
and erase operations  
2.7 to 5.5  
V
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
153  
A.5.2 DC Electrical Characteristics  
Table A-2. DC Electrical Characteristics  
Characteristic(1)  
Output high voltage (ILOAD = –1.0mA)  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7  
Output low voltage (ILOAD = 0.8mA)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
VOH  
VDD0.4  
V
VOL  
VOL  
0.4  
0.5  
V
V
PTA6, PTB0–PTB7, PTD0, PTD1, PTD4, PTD5  
Output low voltage (ILOAD = 15mA)  
PTD6, PTD7  
Input high voltage  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7,  
RST, IRQ1, OSC1  
VIH  
VIL  
0.7 × VDD  
VDD  
V
V
Input low voltage  
PTA0–PTA6, PTB0–PTB7, PTD0–PTD7,  
RST, IRQ1, OSC1  
VSS  
0.2 × VDD  
V
DD supply current (VDD = 2.4V, fOP = 2MHz)  
Run(3)  
2
1
1
3.5  
1.5  
3
mA  
mA  
µA  
IDD  
Wait(4)  
Stop(5) 0°C to 85°C  
IIL  
Digital I/O ports Hi-Z leakage current  
Input current  
± 10  
± 1  
µA  
µA  
IIN  
COUT  
CIN  
Capacitance  
Ports (as input or output)  
12  
8
pF  
POR rearm voltage(6)  
VPOR  
RPOR  
0
100  
mV  
POR rise time ramp rate(7)  
0.02  
V/ms  
Pullup resistors(8)  
PTD6, PTD7  
RST, IRQ1, PTA0–PTA6  
RPU1  
RPU2  
1.8  
16  
3.3  
26  
4.8  
36  
kΩ  
kΩ  
1. VDD = 2.4 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less  
than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run  
IDD. Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source; all inputs 0.2 V from rail; no dc loads; less than 100 pF  
on all outputs. CL = 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly affects wait IDD  
5. STOP IDD measured with OSC1 grounded, no port pins sourcing current. LVI is disabled.  
6. Maximum is highest voltage that POR is guaranteed.  
.
7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until min-  
imum VDD is reached.  
8. RPU1 and RPU2 are measured at VDD = 5.0V  
MC68HC908JL3E Family Data Sheet, Rev. 3  
154  
Freescale Semiconductor  
A.5.3 Control Timing  
Table A-3. Control Timing  
Characteristic(1)  
Symbol  
fOP  
tIRL  
Min  
Max  
2
Unit  
MHz  
µs  
Internal operating frequency(2)  
RST input pulse width low(3)  
1.5  
1. VDD = 2.2 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted.  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this infor-  
mation.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
A.5.4 Oscillator Characteristics  
Table A-4. Oscillator Component Specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
fOSCXCLK  
Crystal frequency, XTALCLK  
8
MHz  
External clock  
reference frequency(1)  
fOSCXCLK  
dc  
8
MHz  
Crystal load capacitance(2)  
Crystal fixed capacitance(2)  
CL  
C1  
C2  
RB  
RS  
2 × CL  
2 × CL  
10 MΩ  
Crystal tuning capacitance(2)  
Feedback bias resistor  
Series resistor(2), (3)  
1. No more than 10% duty cycle deviation from 50%  
2. Consult crystal vendor data sheet  
3. Not Required for high frequency crystals  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
155  
A.5.5 ADC Characteristics  
Table A-5. ADC Characteristics  
Characteristic  
Symbol  
Min  
Max  
Unit  
Comments  
2.2  
(VDD min)  
5.5  
(VDD max)  
VDDAD  
Supply voltage  
V
VADIN  
BAD  
VSS  
8
VDD  
8
Input voltages  
Resolution  
V
Bits  
LSB  
AAD  
Absolute accuracy  
± 0.5  
± 2  
Includes quantization  
tAIC = 1/fADIC, tested only  
at 1 MHz  
fADIC  
ADC internal clock  
0.5  
1.048  
MHz  
RAD  
tADPU  
tADC  
tADS  
ZADI  
FADI  
CADI  
VSS  
14  
14  
5
VDD  
Conversion range  
Power-up time  
V
tAIC cycles  
t
AIC cycles  
AIC cycles  
Hex  
Conversion time  
Sample time(1)  
Zero input reading(2)  
Full-scale reading(3)  
Input capacitance  
15  
t
VIN = VSS  
VIN = VDD  
Not tested  
00  
FE  
01  
FF  
Hex  
(20) 8  
pF  
Input leakage(3)  
Port B/port D  
± 1  
µA  
1. Source impedances greater than 10 kadversely affect internal RC charging time during input sampling.  
2. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.  
3. The external system error caused by input leakage current is approximately equal to the product of R source and input  
current.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
156  
Freescale Semiconductor  
A.5.6 Memory Characteristics  
The FLASH memory can only be read at an operating voltage of 2.2 to 5.5V. Program and erase are  
achieved at an operating voltage of 2.7 to 5.5V. The program and erase parameters in Table A-6 are for  
VDD = 2.7 to 5.5V only.  
Table A-6. Memory Characteristics  
Characteristic  
RAM data retention voltage  
Symbol  
Min  
1.3  
1
Max  
Unit  
V
V
RDR  
FLASH program bus clock frequency  
FLASH read bus clock frequency  
MHz  
(1)  
32k  
1
8M  
Hz  
ms  
f
ead  
R
(2)  
FLASH page erase time  
t
rase  
E
(3)  
rase  
FLASH mass erase time  
t
ME  
4
10  
5
40  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
t
FLASH PGM/ERASE to HVEN set up time  
FLASH high-voltage hold time  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
nvs  
nvh  
t
t
100  
5
nvhl  
t
pgs  
t
FLASH program time  
30  
1
PROG  
(4)  
FLASH return to read time  
t
rcv  
(5)  
FLASH cumulative program hv period  
4
ms  
t
HV  
FLASH row erase endurance(6)  
FLASH row program endurance(7)  
FLASH data retention time(8)  
10k  
10k  
10  
cycles  
cycles  
years  
1. fRead is defined as the frequency range for which the FLASH memory can be read.  
2. If the page erase time is longer than tErase (Min), there is no erase-disturb, but it reduces the endurance of the  
FLASH memory.  
3. If the mass erase time is longer than tMErase (Min), there is no erase-disturb, but it reduces the endurance of  
the FLASH memory.  
4. trcv is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump,  
by clearing HVEN to logic 0.  
5. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
t
HV must satisfy this condition: tnvs + tnvh + tpgs + (tPROG × 32) tHV max.  
6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least  
this many erase / program cycles.  
7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least  
this many erase / program cycles.  
8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum  
time specified.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
157  
A.6 MC Order Numbers  
Table A-7 shows the ordering numbers for the low-voltage devices.  
Table A-7. MC68HLC908JL3E/JK3E/JK1E Order Numbers  
MC order number  
Oscillator type  
FLASH memory  
Package  
MC68HLC98JL3EIFA  
Crystal oscillator  
4096 Bytes  
48-pin LQFP  
MC68HLC98JL3EIP  
MC68HLC98JL3EIDW  
Crystal oscillator  
Crystal oscillator  
Crystal oscillator  
4096 Bytes  
4096 Bytes  
1536 Bytes  
28-pin package  
20-pin package  
MC68HLC98JK3EIP  
MC68HLC98JK3EIDW  
MC68HLC98JK1EIP  
MC68HLC98JK1EIDW  
Notes:  
I = 0 °C to +85 °C  
P = Plastic dual in-line package (PDIP)  
DW = Small outline integrated circuit package (SOIC)  
FA = Low-Profile Quad Flat Pack (LQFP)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
158  
Freescale Semiconductor  
Appendix B  
MC68H(R)C08JL3E/JK3E  
B.1 Introduction  
This appendix introduces four devices, that are ROM versions of MC68H(R)C908JL3E/JK3E:  
MC68HC08JL3E  
MC68HC08JK3E  
MC68HRC08JL3E  
MC68HRC08JK3E  
The entire data book apply to these ROM devices, with exceptions outlined in this appendix.  
Table B-1. Summary of Device Differences  
MC68H(R)C08JL3E/JK3E  
4,096 bytes ROM  
MC68H(R)C908JL3E/JK3E  
4,096 bytes FLASH  
Memory ($EC00–$FBFF)  
User vectors ($FFD0–$FFFF)  
48 bytes ROM  
48 bytes FLASH  
FLASH related registers.  
$FE08 — FLCR  
$FF09 — FLBPR  
Not used;  
locations are reserved.  
Registers at $FE08 and $FE09  
$FC00–$FDFF: Not used.  
$FE10–$FFCF: Used for testing  
purposes only.  
Monitor ROM  
($FC00–$FDFF and $FE10–$FFCF)  
Used for testing and FLASH  
programming/erasing.  
B.2 MCU Block Diagram  
Figure B-1 shows the block diagram of the MC68H(R)C08JL3E/JK3E.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
159  
INTERNAL BUS  
M68HC08 CPU  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
KEYBOARD INTERRUPT  
MODULE  
PTA6/KBI6**¥  
PTA5/KBI5**‡  
PTA4/KBI4**‡  
PTA3/KBI3**‡  
PTA2/KBI2**‡  
PTA1/KBI1**‡  
PTA0/KBI0**‡  
CONTROL AND STATUS REGISTERS — 64 BYTES  
8-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
#
USER ROM:  
MC68H(R)C08JK3E/JL3E — 4,096 BYTES  
USER RAM — 128 BYTES  
MONITOR ROM — 960 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE  
PTB7/ADC7  
PTB6/ADC6  
PTB5/ADC5  
PTB4/ADC4  
PTB3/ADC3  
PTB2/ADC2  
PTB1/ADC1  
PTB0/ADC0  
BREAK  
MODULE  
USER ROM VECTOR SPACE — 48 BYTES  
MC68HC908JL3E/JK3E  
OSC1  
X-TAL OSCILLATOR  
¥ OSC2  
COMPUTER OPERATING  
PROPERLY MODULE  
PTD7**†‡  
PTD6**†‡  
MC68HRC908JL3E/JK3E  
RC OSCILLATOR  
PTD5/TCH1  
PTD4/TCH0  
PTD3/ADC8‡  
PTD2/ADC9‡  
PTD1/ADC10  
PTD0/ADC11  
POWER-ON RESET  
MODULE  
SYSTEM INTEGRATION  
MODULE  
* RST  
#
LOW-VOLTAGE INHIBIT  
MODULE  
EXTERNAL INTERRUPT  
MODULE  
* IRQ1  
* Pin contains integrated pull-up device.  
** Pin contains programmable pull-up device.  
25mA open-drain if output pin.  
VDD  
POWER  
LED direct sink pin.  
VSS  
# Pins available on MC68H(R)C08JL3E only.  
¥ Shared pin: MC68HC08JL3E/JK3E — OSC2  
ADC REFERENCE  
MC68HRC08JL3E/JK3E — RCCLK/PTA6/KBI6  
Figure B-1. MC68H(R)C08JL3E/JK3E Block Diagram  
B.3 Memory Map  
The MC68H(R)C08JL3E/JK3E has 4,096 bytes of user ROM from $EC00 to $FBFF, and 48 bytes of user  
ROM vectors from $FFD0 to $FFFF. On the MC68H(R)C908JL3E/JK3E, these memory locations are  
FLASH memory.  
Figure B-2 shows the memory map of the MC68H(R)C08JL3E/JK3E.  
B.4 Reserved Registers  
The two registers at $FE08 and $FE09 are reserved locations on the MC68H(R)C08JL3E/JK3E.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
160  
Freescale Semiconductor  
$0000  
$003F  
I/O REGISTERS  
64 BYTES  
$0040  
$007F  
RESERVED  
64 BYTES  
$0080  
$00FF  
RAM  
128 BYTES  
$0100  
$EBFF  
UNIMPLEMENTED  
60,160 BYTES  
$EC00  
$FBFF  
ROM  
MC68H(R)C08JL3E/JK3E  
4,096 BYTES  
$FC00  
$FDFF  
MONITOR ROM  
512 BYTES  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
BREAK STATUS REGISTER (BSR)  
RESET STATUS REGISTER (RSR)  
RESERVED (UBAR)  
BREAK FLAG CONTROL REGISTER (BFCR)  
INTERRUPT STATUS REGISTER 1 (INT1)  
INTERRUPT STATUS REGISTER 2 (INT2)  
INTERRUPT STATUS REGISTER 3 (INT3)  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
BREAK ADDRESS HIGH REGISTER (BRKH)  
BREAK ADDRESS LOW REGISTER (BRKL)  
BREAK STATUS AND CONTROL REGISTER (BRKSCR)  
RESERVED  
$FE10  
$FFCF  
MONITOR ROM  
448 BYTES  
$FFD0  
$FFFF  
USER ROM VECTORS  
48 BYTES  
Figure B-2. MC68H(R)C08JL3E/JK3E Memory Map  
On the MC68H(R)C908JL3E/JK3E, these two locations are the FLASH control register and the FLASH  
block protect register respectively.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
161  
B.5 Monitor ROM  
The monitor program (monitor ROM: $FE10–$FFCF) on the MC68H(R)C08JL3E/JK3E is for device  
testing only. $FC00–$FDFF are unused.  
B.6 Electrical Specifications  
Electrical specifications for the MC68H(R)C908JL3E/JK3E apply to the MC68H(R)C08JL3E/JK3E,  
except for the parameters indicated below.  
B.6.1 DC Electrical Characteristics  
Table B-2. DC Electrical Characteristics (5V)  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
VDD supply current, fOP = 4MHz  
Run(3)  
MC68HC08JL3E/JK3E  
MC68HRC08JL3E/JK3E  
Wait(4)  
9
4.3  
11  
5
mA  
mA  
MC68HC08JL3E/JK3E  
MC68HRC08JL3E/JK3E  
Stop(5)  
5.5  
0.8  
6.5  
1.5  
mA  
mA  
IDD  
(–40°C to 85°C)  
MC68HC08JL3E/JK3E  
MC68HRC08JL3E/JK3E  
(–40°C to 125°C)  
MC68HC08JL3E/JK3E  
MC68HRC08JL3E/JK3E  
1.8  
1.8  
5
5
µA  
µA  
5
5
10  
10  
µA  
µA  
Pullup resistors(6)  
PTD6, PTD7  
RST, IRQ1, PTA0–PTA6  
RPU1  
RPU2  
1.8  
16  
4.3  
31  
4.8  
36  
kΩ  
kΩ  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source (fOP = 4MHz). All inputs 0.2V from rail. No dc  
loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly  
affects run IDD. Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source (fOP = 4MHz). All inputs 0.2V from rail. No dc loads. Less  
than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects  
wait IDD  
.
5. Stop IDD measured with OSC1 grounded; no port pins sourcing current. LVI is disabled.  
6. RPU1 and RPU2 are measured at VDD = 5.0V.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
162  
Freescale Semiconductor  
Table B-3. DC Electrical Characteristics (3V)  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
V
DD supply current, fOP = 2MHz  
Run(3)  
MC68HC08JL3E/JK3E  
MC68HRC08JL3E/JK3E  
Wait(4)  
MC68HC08JL3E/JK3E  
MC68HRC08JL3E/JK3E  
Stop(5)  
2.8  
1.4  
3.5  
2
mA  
mA  
IDD  
1.5  
0.19  
2
0.3  
mA  
mA  
(–40°C to 85°C)  
MC68HC08JL3E/JK3E  
MC68HRC08JL3E/JK3E  
1.4  
1.4  
5
5
µA  
µA  
Pullup resistors(6)  
PTD6, PTD7  
RST, IRQ1, PTA0–PTA6  
RPU1  
RPU2  
1.8  
16  
4.3  
31  
4.8  
36  
kΩ  
kΩ  
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source (fOP = 2MHz). All inputs 0.2V from rail. No dc  
loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly  
affects run IDD. Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source (fOP = 2MHz). All inputs 0.2V from rail. No dc loads. Less  
than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects  
wait IDD  
.
5. Stop IDD measured with OSC1 grounded; no port pins sourcing current. LVI is disabled.  
6. RPU1 and RPU2 are measured at VDD = 5.0V.  
B.6.2 5V Oscillator Characteristics  
Table B-4. Oscillator Component Specifications (5V)  
Characteristic  
RC oscillator external R  
RC oscillator external C  
Symbol  
Min  
See Figure B-3 and Figure B-4  
10  
Typ  
Max  
Unit  
REXT  
CEXT  
pF  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
163  
14  
12  
10  
8
C
= 10 pF  
EXT  
MCU  
5V @ 25°C  
OSC1  
6
V
DD  
4
R
C
EXT  
EXT  
2
0
0
10  
20  
30  
(k  
40  
50  
Resistor, R  
)  
EXT  
Figure B-3. RC vs. Frequency (5V @25°C)  
14  
12  
10  
8
C
= 10 pF  
EXT  
MCU  
3V @ 25°C  
OSC1  
6
V
DD  
4
R
C
EXT  
EXT  
2
0
0
10  
20  
30  
(k  
40  
50  
Resistor, R  
)  
EXT  
Figure B-4. RC vs. Frequency (3V @25°C)  
B.6.3 Memory Characteristics  
Table B-5. Memory Characteristics  
Characteristic  
RAM data retention voltage  
NOTES:  
Symbol  
Min  
Max  
Unit  
V
1.3  
V
RDR  
Since MC68H(R)C08JL3E/JK3E is a ROM device, FLASH memory electrical characteristics do not apply.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
164  
Freescale Semiconductor  
B.7 MC Order Numbers  
These part numbers are generic numbers only. To place an order, ROM code must be submitted to the  
ROM Processing Center (RPC).  
Table B-6. MC Order Numbers  
MC order number  
MC68HC08JL3ECP  
Oscillator Type  
Package  
MC68HC08JL3EMP  
MC68HC08JL3ECDW  
MC68HC08JL3EMDW  
Crystal  
28-pin package  
MC68HRC08JL3ECP  
MC68HRC08JL3EMP  
MC68HRC08JL3ECDW  
MC68HRC08JL3EMDW  
RC  
Crystal  
RC  
MC68HC08JK3ECP  
MC68HC08JK3EMP  
MC68HC08JK3ECDW  
MC68HC08JK3EMDW  
20-pin package  
MC68HRC08JK3ECP  
MC68HRC08JK3EMP  
MC68HRC08JK3ECDW  
MC68HRC08JK3EMDW  
NOTES:  
C = –40 °C to +85 °C  
M = –40 °C to +125 °C (available for VDD = 5V only)  
P = Plastic dual in-line package (PDIP)  
DW = Small outline integrated circuit package (SOIC)  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
165  
MC68HC908JL3E Family Data Sheet, Rev. 3  
166  
Freescale Semiconductor  
Appendix C  
MC68HC908KL3E/KK3E  
C.1 Introduction  
This appendix introduces two devices, that are ADC-less versions of MC68HC908JL3E/JK3E:  
MC68HC908KL3E  
MC68HC908KK3E  
The entire data book applies to these devices, with exceptions outlined in this appendix.  
Table C-1. Summary of MC68HC908KL3E/KK3E and MC68HC908JL3E Differences  
MC68HC908KL3E/KK3E  
MC68HC908JL3E  
12-channel, 8-bit.  
Analog-to-Digital Converter (ADC)  
Registers at:  
$003C, $003E, and $003E  
Not used;  
locations are reserved.  
ADC registers.  
Interrupt Vector at:  
$FFDE and $FFDF  
Not used.  
ADC interrupt vector.  
20-pin PDIP (MC68HC908KK3E)  
20-pin SOIC (MC68HC908KK3E)  
28-pin PDIP  
28-pin SOIC  
20-pin PDIP (MC68HC908JK3E)  
20-pin SOIC (MC68HC908JK3E)  
28-pin PDIP  
28-pin SOIC  
48-pin LQFP  
Available Packages  
C.2 MCU Block Diagram  
Figure C-1 shows the block diagram of the MC68HC908KL3E/KK3E.  
C.3 Pin Assignments  
Figure C-2 and Figure C-3 show the pin assignments for the MC68HC908KL3E/KK3E.  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
167  
INTERNAL BUS  
M68HC08 CPU  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
KEYBOARD INTERRUPT  
MODULE  
PTA5/KBI5**‡  
PTA4/KBI4**‡  
PTA3/KBI3**‡  
PTA2/KBI2**‡  
PTA1/KBI1**‡  
PTA0/KBI0**‡  
CONTROL AND STATUS REGISTERS — 64 BYTES  
USER FLASH — 4,096 BYTES  
#
USER RAM — 128 BYTES  
MONITOR ROM — 960 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
BREAK  
MODULE  
USER FLASH VECTOR SPACE — 48 BYTES  
OSC1  
X-TAL OSCILLATOR  
OSC2  
COMPUTER OPERATING  
PROPERLY MODULE  
PTD7**†‡  
PTD6**†‡  
PTD5/TCH1  
PTD4/TCH0  
PTD3‡  
POWER-ON RESET  
MODULE  
PTD2‡  
SYSTEM INTEGRATION  
MODULE  
PTD1  
* RST  
#
PTD0  
LOW-VOLTAGE INHIBIT  
MODULE  
EXTERNAL INTERRUPT  
MODULE  
* IRQ1  
* Pin contains integrated pull-up device.  
** Pin contains programmable pull-up device.  
25mA open-drain if output pin.  
VDD  
POWER  
LED direct sink pin.  
VSS  
# Pins available on MC68HC908KL3E only.  
Figure C-1. MC68HC908KL3E/KK3E Block Diagram  
MC68HC908JL3E Family Data Sheet, Rev. 3  
168  
Freescale Semiconductor  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
IRQ1  
PTA0/KBI0  
VSS  
1
RST  
2
PTA5/KBI5  
PTD4/TCH0  
PTD5/TCH1  
PTD2  
3
OSC1  
4
OSC2  
5
PTA1/KBI1  
VDD  
PTA4  
6
PTD3  
7
PTA2/KBI2  
PTA3/KBI3  
PTB7  
PTB0  
8
PTB1  
9
PTD1  
10  
11  
12  
13  
14  
PTB6  
PTB2  
PTB5  
PTB3  
PTD7  
PTD0  
PTD6  
PTB4  
MC68HC908KL3E  
Figure C-2. 28-Pin PDIP/SOIC Pin Assignment  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
9
10  
IRQ1  
VSS  
RST  
PTD4/TCH0  
PTD5/TCH1  
PTD2  
OSC1  
OSC2  
VDD  
Pins not available on 20-pin packages  
PTA0/KBI0  
PTA1/KBI1  
PTA2/KBI2  
PTA3/KBI3  
PTA4/KBI4  
PTA5/KBI5  
PTD0  
PTD1  
PTD3  
PTB7  
PTB6  
PTB5  
PTD7  
PTD6  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
Internal pads are unconnected.  
MC68HC908KK3E  
Figure C-3. 20-Pin PDIP/SOIC Pin Assignment  
MC68HC908JL3E Family Data Sheet, Rev. 3  
Freescale Semiconductor  
169  
C.4 Reserved Registers  
The following registers are reserved location on the MC68HC908KL3E/KK3E.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
R
R
R
R
R
R
R
R
$003C  
Reserved Write:  
Reset:  
Read:  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
$003D  
$003E  
Reserved Write:  
Reset:  
Read:  
Reserved Write:  
Reset:  
Figure C-4. Reserved Registers  
C.5 Reserved Vectors  
The following vectors are reserved interrupt vectors on the MC68HC908KL3E/KK3E.  
Table C-2. Reserved Vectors  
Vector Priority  
INT Flag  
Address  
$FFDE  
$FFDF  
Vector  
Reserved  
Reserved  
IF15  
C.6 Order Numbers  
Table C-3. MC68HC908KL3E/KK3E Order Numbers  
Operating  
VDD  
Operating  
Temperature  
MC order number  
Package  
OSC  
FLASH Memory  
MC68HC908KL3ECP  
MC68HC908KL3ECDW  
MC68HC908KK3ECP  
MC68HC908KK3ECDW  
28-pin PDIP  
28-pin SOIC  
20-pin PDIP  
20-pin SOIC  
–40 to +85 °C  
3V, 5V  
XTAL  
4096 Bytes  
MC68HC908JL3E Family Data Sheet, Rev. 3  
170  
Freescale Semiconductor  
How to Reach Us:  
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Home Page:  
www.freescale.com  
For information on Freescale.s Environmental Products program, go to  
http://www.freescale.com/epp.  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
Semiconductor was negligent regarding the design or manufacture of the part.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2004. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MC68HC908JL3E  
Rev. 3, 11/2004  

相关型号:

MC68HRC908JL3MDW

MC68HC908JK1
MOTOROLA

MC68HRC908JL3MDW

M68HC08 Microcontrollers
FREESCALE

MC68HRC908JL3MFA

8-BIT, FLASH, 4MHz, MICROCONTROLLER, PQFP48, LQFP-48
MOTOROLA

MC68HRC908JL3MP

MC68HC908JK1
MOTOROLA

MC68HRC908JL3MP

M68HC08 Microcontrollers
FREESCALE

MC68HRC98JK1ECDW

Microcontrollers
MOTOROLA

MC68HRC98JK1ECDW

Microcontrollers
FREESCALE

MC68HRC98JK1ECP

Microcontrollers
MOTOROLA

MC68HRC98JK1ECP

Microcontrollers
FREESCALE

MC68HRC98JK1ECP

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,CMOS,DIP,20PIN,PLASTIC
NXP

MC68HRC98JK1EMDW

Microcontrollers
MOTOROLA

MC68HRC98JK1EMDW

Microcontrollers
FREESCALE