MC908AP64ACFBER [NXP]

暂无描述;
MC908AP64ACFBER
型号: MC908AP64ACFBER
厂家: NXP    NXP
描述:

暂无描述

文件: 总316页 (文件大小:2181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908AP64A  
MC68HC908AP32A  
MC68HC908AP16A  
MC68HC908AP8A  
Data Sheet  
M68HC08  
Microcontrollers  
MC68HC908AP64A  
Rev. 3  
10/2007  
freescale.com  
MC68HC908AP64A  
MC68HC908AP32A  
MC68HC908AP16A  
MC68HC908AP8A  
Data Sheet  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be  
the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://www.freescale.com  
The following revision history table summarizes changes contained in this document. For your  
convenience, the page number designators have been linked to the appropriate location.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc., 2005, 2007. All rights reserved.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
3
Revision History  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
Clarified or updated information in Chapter 7 System Integration Module  
(SIM).  
In Chapter 8 Monitor Mode (MON), corrected and updated monitor mode  
entry details.  
In Chapter 9 Timer Interface Module (TIM), updated functional details.  
In 15.7 I/O Registers, corrected COCO bit description.  
In 16.1 Introduction, added unused pin information.  
In Chapter 21 Break Module (BRK), updated functional details.  
In 22.5 5V DC Electrical Characteristics, updated stop IDD values.  
October 2007  
3
15.7.2 ADC Clock Control Register — Changed “The ADC clock should  
be set to between 500 kHz and 2 MHz” to “The ADC clock should be set  
to between 500 kHz and 1 MHz”  
January 2007  
Mar 2005  
2
1
250  
First general release.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
4
Freescale Semiconductor  
List of Chapters  
Chapter 1 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Chapter 2 Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Chapter 3 Configuration & Mask Option Registers (CONFIG & MOR) . . . . . . . . . . . . . . . .49  
Chapter 4 Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Chapter 5 Oscillator (OSC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Chapter 6 Clock Generator Module (CGM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Chapter 7 System Integration Module (SIM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Chapter 8 Monitor Mode (MON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Chapter 9 Timer Interface Module (TIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
Chapter 10 Timebase Module (TBM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
Chapter 11 Serial Communications Interface Module (SCI) . . . . . . . . . . . . . . . . . . . . . . .151  
Chapter 12 Infrared Serial Communications Interface Module (IRSCI) . . . . . . . . . . . . . .177  
Chapter 13 Serial Peripheral Interface Module (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
Chapter 14 Multi-Master IIC Interface (MMIIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
Chapter 15 Analog-to-Digital Converter (ADC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245  
Chapter 16 Input/Output (I/O) Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
Chapter 17 External Interrupt (IRQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
Chapter 18 Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275  
Chapter 19 Computer Operating Properly (COP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281  
Chapter 20 Low-Voltage Inhibit (LVI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285  
Chapter 21 Break Module (BRK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289  
Chapter 22 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
Chapter 23 Mechanical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
Chapter 24 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
5
List of Chapters  
MC68HC908AP A-Family Data Sheet, Rev. 3  
6
Freescale Semiconductor  
Table of Contents  
Chapter 1  
General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Power Supply Bypassing (V , V  
, V , V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DD  
DDA  
SS  
SSA  
Regulator Power Supply Configuration (VREG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Chapter 2  
Memory  
2.1  
2.2  
2.3  
2.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Input/Output (I/O) Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
2.5  
FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
FLASH Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
FLASH Page Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
FLASH Mass Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
FLASH Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
FLASH Block Protect Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
2.5.1  
2.5.2  
2.5.3  
2.5.4  
2.5.5  
2.5.6  
2.5.7  
Chapter 3  
Configuration & Mask Option Registers (CONFIG & MOR)  
3.1  
3.2  
3.3  
3.4  
3.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Configuration Register 1 (CONFIG1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Configuration Register 2 (CONFIG2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Mask Option Register (MOR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Chapter 4  
Central Processor Unit (CPU)  
4.1  
4.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
4.3  
4.3.1  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
7
Table of Contents  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
4.4  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
4.5  
4.5.1  
4.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
4.6  
4.7  
4.8  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Chapter 5  
Oscillator (OSC)  
5.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
5.2  
5.2.1  
5.2.2  
Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
CGM Reference Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
TBM Reference Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
5.3  
5.4  
5.5  
Internal Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
X-tal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
5.6  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Oscillator Enable Signal (SIMOSCEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
CGM Oscillator Clock (CGMXCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Oscillator Clock to Time Base Module (OSCCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
5.6.1  
5.6.2  
5.6.3  
5.6.4  
5.6.5  
5.6.6  
5.7  
5.7.1  
5.7.2  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
5.8  
Oscillator During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Chapter 6  
Clock Generator Module (CGM)  
6.1  
6.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
6.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Oscillator Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Manual and Automatic PLL Bandwidth Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Special Programming Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
MC68HC908AP A-Family Data Sheet, Rev. 3  
8
Freescale Semiconductor  
6.3.9  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
6.4  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.4.6  
6.4.7  
6.4.8  
PLL Analog Power Pin (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
DDA  
PLL Analog Ground Pin (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
SSA  
Oscillator Output Frequency Signal (CGMXCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
CGM VCO Clock Output (CGMVCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
CGM Base Clock Output (CGMOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
6.5  
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
PLL Multiplier Select Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
PLL VCO Range Select Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
PLL Reference Divider Select Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
6.5.1  
6.5.2  
6.5.3  
6.5.4  
6.5.5  
6.6  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
6.7  
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
6.7.1  
6.7.2  
6.7.3  
6.8  
Acquisition/Lock Time Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Acquisition/Lock Time Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Parametric Influences on Reaction Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
6.8.1  
6.8.2  
6.8.3  
Chapter 7  
System Integration Module (SIM)  
7.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
7.2  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Clock Start-up from POR or LVI Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Clocks in Stop Mode and Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
7.2.1  
7.2.2  
7.2.3  
7.3  
7.3.1  
7.3.2  
7.3.2.1  
7.3.2.2  
7.3.2.3  
7.3.2.4  
7.3.2.5  
7.3.2.6  
Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Computer Operating Properly (COP) Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Monitor Mode Entry Module Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
7.4  
SIM Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
7.4.1  
7.4.2  
7.4.3  
7.5  
Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
9
Table of Contents  
7.5.1  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
7.5.1.1  
7.5.1.2  
7.5.2  
7.5.2.1  
7.5.2.2  
7.5.2.3  
7.5.3  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
SWI Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
7.5.4  
7.5.5  
7.6  
7.6.1  
7.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
7.7  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
7.7.1  
7.7.2  
7.7.3  
Chapter 8  
Monitor Mode (MON)  
8.1  
8.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
8.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Entering Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
8.4  
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
8.5  
ROM-Resident Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
PRGRNGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
MON_PRGRNGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
MON_ERARNGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
Chapter 9  
Timer Interface Module (TIM)  
9.1  
9.2  
9.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
9.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
TIM Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
9.4.1  
9.4.2  
9.4.3  
9.4.3.1  
9.4.3.2  
MC68HC908AP A-Family Data Sheet, Rev. 3  
10  
Freescale Semiconductor  
9.4.4  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
9.4.4.1  
9.4.4.2  
9.4.4.3  
9.5  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
9.6  
9.6.1  
9.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
9.7  
9.8  
TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
9.9  
I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
TIM Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
TIM Channel Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
TIM Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
9.9.1  
9.9.2  
9.9.3  
9.9.4  
9.9.5  
Chapter 10  
Timebase Module (TBM)  
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
10.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
10.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
10.4 Timebase Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
10.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
10.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
10.6.1  
10.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Chapter 11  
Serial Communications Interface Module (SCI)  
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
11.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
11.3 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
11.4.1  
11.4.2  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Idle Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Inversion of Transmitted Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Transmitter Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Character Reception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
11.4.2.1  
11.4.2.2  
11.4.2.3  
11.4.2.4  
11.4.2.5  
11.4.2.6  
11.4.3  
11.4.3.1  
11.4.3.2  
11.4.3.3  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
11  
Table of Contents  
11.4.3.4  
11.4.3.5  
11.4.3.6  
11.4.3.7  
11.4.3.8  
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Receiver Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Receiver Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
11.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
11.5.1  
11.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
11.6 SCI During Break Module Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
11.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
11.7.1  
11.7.2  
TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
11.8 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
11.8.1  
11.8.2  
11.8.3  
11.8.4  
11.8.5  
11.8.6  
11.8.7  
SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
SCI Baud Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Chapter 12  
Infrared Serial Communications Interface Module (IRSCI)  
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
12.2 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
12.3 IRSCI Module Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
12.4 Infrared Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
12.4.1  
12.4.2  
Infrared Transmit Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
Infrared Receive Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
12.5 SCI Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
12.5.1  
12.5.2  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Idle Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Transmitter Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
Character Reception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
Receiver Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Receiver Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
12.5.2.1  
12.5.2.2  
12.5.2.3  
12.5.2.4  
12.5.2.5  
12.5.3  
12.5.3.1  
12.5.3.2  
12.5.3.3  
12.5.3.4  
12.5.3.5  
12.5.3.6  
12.5.3.7  
12.5.3.8  
12.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
MC68HC908AP A-Family Data Sheet, Rev. 3  
12  
Freescale Semiconductor  
12.6.1  
12.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
12.7 SCI During Break Module Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
12.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
12.8.1  
12.8.2  
PTC6/SCTxD (Transmit Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
PTC7/SCRxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
12.9 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
12.9.1  
12.9.2  
12.9.3  
12.9.4  
12.9.5  
12.9.6  
12.9.7  
12.9.8  
IRSCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
IRSCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
IRSCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
IRSCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
IRSCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
IRSCI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
IRSCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
IRSCI Infrared Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Chapter 13  
Serial Peripheral Interface Module (SPI)  
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
13.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
13.3 Pin Name Conventions and I/O Register Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
13.4.1  
13.4.2  
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
13.5 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
13.5.1  
13.5.2  
13.5.3  
13.5.4  
Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Transmission Format When CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Transmission Format When CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
13.6 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
13.7 Error Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
13.7.1  
13.7.2  
Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
13.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
13.9 Resetting the SPI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
13.10 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
13.10.1  
13.10.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
13.11 SPI During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
13.12 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
13.12.1  
13.12.2  
13.12.3  
13.12.4  
13.12.5  
MISO (Master In/Slave Out). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
MOSI (Master Out/Slave In). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
SPSCK (Serial Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
SS (Slave Select). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
13.13 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
13  
Table of Contents  
13.13.1  
13.13.2  
13.13.3  
SPI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
SPI Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
SPI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Chapter 14  
Multi-Master IIC Interface (MMIIC)  
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
14.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
14.3 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
14.4 Multi-Master IIC System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
14.5 Multi-Master IIC Bus Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
14.5.1  
14.5.2  
14.5.3  
14.5.4  
14.5.5  
14.5.6  
14.5.7  
14.5.8  
14.5.9  
START Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Slave Address Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Repeated START Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
STOP Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Arbitration Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
Packet Error Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
14.6 MMIIC I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231  
14.6.1  
14.6.2  
14.6.3  
14.6.4  
14.6.5  
14.6.6  
14.6.7  
14.6.8  
MMIIC Address Register (MMADR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232  
MMIIC Control Register 1 (MMCR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233  
MMIIC Control Register 2 (MMCR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
MMIIC Status Register (MMSR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
MMIIC Data Transmit Register (MMDTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
MMIIC Data Receive Register (MMDRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
MMIIC CRC Data Register (MMCRCDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
MMIIC Frequency Divider Register (MMFDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238  
14.7  
14.7.1  
Program Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
Data Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
14.8 SMBus Protocols with PEC and without PEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
14.8.1  
14.8.2  
14.8.3  
14.8.4  
14.8.5  
14.8.6  
14.8.7  
Quick Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
Send Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
Receive Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  
Write Byte/Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
Read Byte/Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
Process Call. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
Block Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
14.9 SMBus Protocol Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244  
Chapter 15  
Analog-to-Digital Converter (ADC)  
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
15.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  
15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
15.3.1  
ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
MC68HC908AP A-Family Data Sheet, Rev. 3  
14  
Freescale Semiconductor  
15.3.2  
15.3.3  
15.3.4  
15.3.5  
15.3.6  
15.3.7  
15.3.8  
Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247  
Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  
Auto-Scan Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  
Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
Data Register Interlocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
Monotonicity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
15.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
15.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
15.5.1  
15.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
15.6 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
15.6.1  
15.6.2  
15.6.3  
15.6.4  
15.6.5  
ADC Voltage In (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
ADIN  
ADC Analog Power Pin (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
DDA  
ADC Analog Ground Pin (V  
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
SSA  
ADC Voltage Reference High Pin (V  
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
REFH  
ADC Voltage Reference Low Pin (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
REFL  
15.7 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
15.7.1  
15.7.2  
15.7.3  
15.7.4  
15.7.5  
ADC Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
ADC Clock Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252  
ADC Data Register 0 (ADRH0 and ADRL0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253  
ADC Auto-Scan Mode Data Registers (ADRL1–ADRL3) . . . . . . . . . . . . . . . . . . . . . . . . . 255  
ADC Auto-Scan Control Register (ADASCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
Chapter 16  
Input/Output (I/O) Ports  
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257  
16.2 Port A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260  
16.2.1  
16.2.2  
16.2.3  
Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260  
Data Direction Register (DDRA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260  
Port-A LED Control Register (LEDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262  
16.3 Port B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262  
16.3.1  
16.3.2  
Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262  
Data Direction Register B (DDRB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
16.4 Port C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264  
16.4.1  
16.4.2  
Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264  
Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265  
16.5 Port D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266  
16.5.1  
16.5.2  
Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266  
Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267  
Chapter 17  
External Interrupt (IRQ)  
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269  
17.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269  
17.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269  
17.4 IRQ1 and IRQ2 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
15  
Table of Contents  
17.5 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272  
17.6 IRQ Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272  
17.6.1  
17.6.2  
IRQ1 Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272  
IRQ2 Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273  
Chapter 18  
Keyboard Interrupt Module (KBI)  
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275  
18.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275  
18.3 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275  
18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
18.4.1  
Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277  
18.5 Keyboard Interrupt Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277  
18.5.1  
18.5.2  
Keyboard Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277  
Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278  
18.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279  
18.6.1  
18.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279  
18.7 Keyboard Module During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279  
Chapter 19  
Computer Operating Properly (COP)  
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281  
19.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281  
19.3 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282  
19.3.1  
19.3.2  
19.3.3  
19.3.4  
19.3.5  
19.3.6  
19.3.7  
19.3.8  
ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282  
STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282  
COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282  
Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282  
Reset Vector Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282  
COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282  
COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283  
19.4 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283  
19.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283  
19.6 Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283  
19.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283  
19.7.1  
19.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284  
19.8 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284  
Chapter 20  
Low-Voltage Inhibit (LVI)  
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285  
20.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285  
20.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285  
MC68HC908AP A-Family Data Sheet, Rev. 3  
16  
Freescale Semiconductor  
20.3.1  
20.3.2  
20.3.3  
20.3.4  
20.3.5  
Low V Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286  
DD  
Low V  
Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286  
REG  
Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286  
Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287  
Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287  
20.4 LVI Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287  
20.5 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287  
20.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
20.6.1  
20.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288  
Chapter 21  
Break Module (BRK)  
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
21.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
21.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289  
21.3.1  
21.3.2  
21.3.3  
21.3.4  
Flag Protection During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290  
TIMI and TIM2 During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291  
21.4 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291  
21.4.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291  
21.5 Break Module Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291  
21.5.1  
21.5.2  
21.5.3  
21.5.4  
Break Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291  
Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292  
SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293  
Chapter 22  
Electrical Specifications  
22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295  
22.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295  
22.3 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296  
22.4 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296  
22.5 5V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297  
22.6 5V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298  
22.7 5V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299  
22.8 5V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300  
22.9 MMIIC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301  
22.10 CGM Electrical Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303  
22.11 5V SPI Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304  
22.12 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
17  
Table of Contents  
Chapter 23  
Mechanical Specifications  
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309  
23.2 48-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310  
23.3 44-Pin Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311  
23.4 42-Pin Shrink Dual In-Line Package (SDIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312  
Chapter 24  
Ordering Information  
24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313  
24.2 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313  
MC68HC908AP A-Family Data Sheet, Rev. 3  
18  
Freescale Semiconductor  
Chapter 1  
General Description  
1.1 Introduction  
The MC68HC908AP64A is a member of the low-cost, high-performance M68HC08 Family of 8-bit  
microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit  
(CPU08) and are available with a variety of modules, memory sizes and types, and package types.  
Table 1-1. Summary of Device Variations  
RAM Size  
(bytes)  
FLASH Memory Size  
(bytes)  
Device  
MC68HC908AP64A  
MC68HC908AP32A  
MC68HC908AP16A  
MC68HC908AP8A  
2,048  
2,048  
1,024  
1,024  
62,368  
32,768  
16,384  
8,192  
1.2 Features  
Features of the MC68HC908AP64A include the following:  
High-performance M68HC08 architecture  
Fully upward-compatible object code with M6805, M146805, and M68HC05 Families  
Maximum internal bus frequency:  
8-MHz at 5V operating voltage  
Clock input options:  
RC-oscillator  
1- to 8-MHz crystal-oscillator with 32MHz internal PLL  
(1)  
User program FLASH memory with security feature  
62,368 bytes for MC68HC908AP64A  
32,768 bytes for MC68HC908AP32A  
16,384 bytes for MC68HC908AP16A  
8,192 bytes for MC68HC908AP8A  
On-chip RAM  
2,048 bytes for MC68HC908AP64A and MC68HC908AP32A  
1,024 bytes for MC68HC908AP16A and MC68HC908AP8A  
Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2) with selectable input capture,  
output compare, and PWM capability on each channel  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
19  
General Description  
Timebase module  
Serial communications interface module 1 (SCI)  
Serial communications interface module 2 (SCI) with  
infrared (IR) encoder/decoder  
Serial peripheral interface module (SPI)  
System management bus (SMBus), version 1.0/1.1  
(multi-master IIC bus)  
8-channel, 10-bit analog-to-digital converter (ADC)  
IRQ1 external interrupt pin with integrated pullup  
IRQ2 external interrupt pin with programmable pullup  
8-bit keyboard wakeup port with integrated pullup  
32 general-purpose input/output (I/O) pins:  
31 shared-function I/O pins  
8 LED drivers (sink)  
6 × 25mA open-drain I/O with pullup  
Low-power design (fully static with stop and wait modes)  
Master reset pin (with integrated pullup) and power-on reset  
System protection features  
Optional computer operating properly (COP) reset, driven by internal RC oscillator  
Low-voltage detection with optional reset or interrupt  
Illegal opcode detection with reset  
Illegal address detection with reset  
48-pin low quad flat pack (LQFP), 44-pin quad flat pack (QFP), and 42-pin shrink dual-in-line  
package (SDIP)  
Specific features of the MC68HC908AP64A in 42-pin SDIP are:  
30 general-purpose l/Os only  
External interrupt on IRQ1 only  
Features of the CPU08 include the following:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the HC05)  
16-bit Index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16/8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
Efficient C language support  
1.3 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908AP64A.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
20  
Freescale Semiconductor  
MCU Block Diagram  
INTERNAL BUS  
M68HC08 CPU  
PTA7/ADC7  
PTA6/ADC6  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
10-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
PTA5/ADC5  
PTA4/ADC4  
PTA3/ADC3  
CONTROL AND STATUS REGISTERS — 96 BYTES  
USER FLASH — (SEE TABLE)  
PTA2/ADC2  
TIMEBASE  
MODULE  
PTA1/ADC1  
PTA0/ADC0  
2-CHANNEL TIMER INTERFACE  
MODULE 1  
USER RAM — (SEE TABLE)  
PTB7/T2CH1  
PTB6/T2CH0  
PTB5/T1CH1  
PTB4/T1CH0  
MONITOR ROM — 959 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE 2  
PTB3/RxD  
USER FLASH VECTOR SPACE — 48 BYTES  
PTB2/TxD  
PTB1/SCL  
OSCILLATORS AND  
CLOCK GENERATOR MODULE  
SERIAL COMMUNICATIONS  
INTERFACE MODULE 1  
PTB0/SDA  
INTERNAL OSCILLATOR  
PTC7/SCRxD  
MULTI-MASTER IIC (SMBUS)  
INTERFACE MODULE  
RC OSCILLATOR  
OSC1  
PTC6/SCTxD  
PTC5/SPSCK  
PTC4/SS  
X-TAL OSCILLATOR  
OSC2  
PTC3/MOSI  
PTC2/MISO  
PHASE-LOCKED LOOP  
CGMXFC  
SERIAL COMMUNICATIONS  
INTERFACE MODULE 2  
(WITH INFRARED  
#
PTC1  
#
PTC0/IRQ2 **  
SYSTEM INTEGRATION  
MODULE  
MODULATOR/DEMODULATOR)  
* RST  
PTD7/KBI7 ***  
PTD6/KBI6 ***  
PTD5/KBI5 ***  
PTD4/KBI4 ***  
PTD3/KBI3 ***  
PTD2/KBI2 ***  
PTD1/KBI1 ***  
PTD0/KBI0 ***  
SERIAL PERIPHERAL  
INTERFACE MODULE  
* IRQ1  
EXTERNAL INTERRUPT  
MODULE  
** IRQ2  
KEYBOARD INTERRUPT  
MODULE  
COMPUTER OPERATING  
PROPERLY MODULE  
POWER-ON RESET  
MODULE  
LOW-VOLTAGE INHIBIT  
MODULE  
VDD  
VDDA  
VSS  
* Pin contains integrated pullup device.  
** Pin contains configurable pullup device.  
POWER  
*** Pin contains integrated pullup device when configured as KBI.  
VSSA  
Pin is open-drain when configured as output.  
VREG  
LED direct sink pin.  
Pin not bonded on 42-pin SDIP.  
#
VREFH  
VREFL  
ADC REFERENCE  
.
USER RAM  
(bytes)  
USER FLASH  
DEVICE  
(bytes)  
62,368  
32,768  
16,384  
8,192  
MC68HC908AP64A  
MC68HC908AP32A  
MC68HC908AP16A  
MC68HC908AP8A  
2,048  
2,048  
1,024  
1,024  
Figure 1-1. MC68HC908AP64A Block Diagram  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
21  
General Description  
1.4 Pin Assignment  
1
36  
VREFH  
PTB6/T2CH0  
2
VREG  
PTB5/T1CH1  
VDD  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
VREFL  
3
NC  
4
NC  
5
OSC1  
PTA0/ADC0  
NC  
6
OSC2  
7
PTA1/ADC1  
PTA2/ADC2  
PTA3/ADC3  
PTA4/ADC4  
PTA5/ADC5  
VSS  
8
PTB4/T1CH0  
IRQ1  
9
10  
11  
PTB3/RxD  
RST  
25 PTA6/ADC6  
PTB2/TxD 12  
NC: No connection  
Figure 1-2. 48-Pin LQFP Pin Assignments  
MC68HC908AP A-Family Data Sheet, Rev. 3  
22  
Freescale Semiconductor  
Pin Assignment  
PTB6/T2CH0  
VREG  
1
33  
PTD7/KBI7  
VREFH  
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
PTB5/T1CH1  
VDD  
3
VREFL  
4
PTA0/ADC0  
PTA1/ADC1  
PTA2/ADC2  
PTA3/ADC3  
PTA4/ADC4  
PTA5/ADC5  
PTA6/ADC6  
PTA7/ADC7  
OSC1  
5
OSC2  
6
VSS  
7
PTB4/T1CH0  
IRQ1  
8
9
PTB3/RxD  
RST  
10  
11  
23  
Figure 1-3. 44-Pin QFP Pin Assignments  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
23  
General Description  
VDDA  
PTD2/KBI2  
PTD1/KBI1  
PTD0/KBI0  
PTB7/T2CH1  
CGMXFC  
PTB6/T2CH0  
VREG  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
VSSA  
2
PTD3/KBI3  
PTD4/KBI4  
PTD5/KBI5  
PTD6/KBI6  
PTD7/KBI7  
VREFH  
3
4
5
6
7
8
PTB5/T1CH1  
VDD  
VREFL  
9
PTA0/ADC0  
PTA1/ADC1  
PTA2/ADC2  
PTA3/ADC3  
PTA4/ADC4  
PTA5/ADC5  
PTA6/ADC6  
PTA7/ADC7  
PTC2/MISO  
PTC3/MOSI  
PTC4/SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
OSC1  
OSC2  
VSS  
PTB4/T1CH0  
IRQ1  
PTB3/RxD  
RST  
PTB2/TxD  
PTB1/SCL  
PTB0/SDA  
PTC7/SCRxD  
PTC6/SCTxD  
PTC5/SPSCK  
Pins not available on 42-pin package  
Internal connection  
Unconnected  
PTC0/IRQ2  
PTC1  
Unconnected  
Figure 1-4. 42-Pin SDIP Pin Assignment  
MC68HC908AP A-Family Data Sheet, Rev. 3  
24  
Freescale Semiconductor  
Pin Functions  
1.5 Pin Functions  
Description of the pin functions are provided in Table 1-2.  
Table 1-2. Pin Functions  
VOLTAGE  
LEVEL  
PIN NAME  
PIN DESCRIPTION  
IN/OUT  
VDD  
VSS  
In  
Out  
In  
4.5 to 5.5  
0V  
Power supply.  
Power supply ground.  
VDDA  
VSSA  
VREFH  
VREFL  
VDD  
Power supply for analog circuits.  
Power supply ground for analog circuits.  
ADC input reference high.  
VSS  
Out  
In  
VDDA  
VSSA  
Out  
ADC input reference low.  
Internal (2.5V) regulator output.  
Require external capacitors for decoupling.  
2.5V(1)  
VDD  
VREG  
RST  
Out  
In  
Reset input, active low; with internal pullup and schmitt  
trigger input.  
External IRQ1 pin; with internal pullup and schmitt trigger  
input.  
VDD  
In  
IRQ1  
VDD to VTST  
VREG  
In  
In  
Used for mode entry selection.  
Crystal or RC oscillator input.  
OSC1  
Crystal OSC option: crystal oscillator output; inverted  
OSC1.  
VREG  
Out  
OSC2  
VREG  
VREG  
Out  
Out  
RC OSC option: bus clock output.  
Internal OSC option: bus clock output.  
CGM external filter capacitor connection.  
8-bit general purpose I/O port.  
CGMXFC  
In/Out  
In/Out  
In  
Analog  
VDD  
PTA0/ADC0  
VREFH  
VDD  
:
Pins as ADC inputs, ADC0–ADC7.  
Each pin has high current sink for LED.  
PTA7/ADC7  
Out  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
25  
General Description  
PIN NAME  
Table 1-2. Pin Functions  
VOLTAGE  
LEVEL  
PIN DESCRIPTION  
IN/OUT  
8-bit general purpose I/O port; PTB0–PTB3 are open drain when  
configured as output. PTB4–PTB7 have schmitt trigger inputs.  
VDD  
In/Out  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
PTB0 as SDA of MMIIC.  
PTB1 as SCL of MMIIC.  
PTB2 as TxD of SCI; open drain output.  
PTB3 as RxD of SCI.  
In/Out  
In/Out  
Out  
PTB0/SDA  
PTB1/SCL  
PTB2/TxD  
PTB3/RxD  
In  
PTB4/T1CH0  
PTB5/T1CH1  
PTB6/T2CH0  
PTB7/T2CH1  
PTB4 as T1CH0 of TIM1.  
PTB5 as T1CH1 of TIM1.  
PTB6 as T2CH0 of TIM2.  
PTB7 as T2CH1 of TIM2.  
In/Out  
In/Out  
In/Out  
In/Out  
8-bit general purpose I/O port; PTC6 and PTC7 are open drain  
when configured as output.  
VDD  
In/Out  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
PTC0 is shared with IRQ2 and has schmitt trigger input.  
PTC2 as MISO of SPI.  
In  
In  
PTC0/IRQ2  
PTC1  
PTC2/MISO  
PTC3/MOSI  
PTC4/SS  
PTC5/SPSCK  
PTC6/SCTxD  
PTC7/SCRxD  
PTC3 as MOSI of SPI.  
Out  
In  
PTC4 as SS of SPI.  
PTC5 as SPSCK of SPI.  
In/Out  
Out  
In  
PTC6 as SCTxD of IRSCI; open drain output.  
PTC7 as SCRxD of IRSCI.  
PTD0/KBI0  
:
PTD7/KBI7  
8-bit general purpose I/O port with schmitt trigger inputs.  
Pins as keyboard interrupts (with pullup), KBI0–KBI7.  
In/Out  
In  
1. See Chapter 22 Electrical Specifications for VREG tolerance.  
1.6 Power Supply Bypassing (VDD, VDDA, VSS, VSSA)  
V
and V are the power supply and ground pins, the MCU operates from a single power supply  
SS  
DD  
together with an on chip voltage regulator.  
Fast signal transitions on MCU pins place high. short-duration current demands on the power supply. To  
prevent noise problems, take special care to provide power supply bypassing at the MCU as Figure 1-5  
shows. Place the bypass capacitors as close to the MCU power pins as possible. Use  
high-frequency-response ceramic capacitor for C  
, C  
are optional bulk current bypass  
BYPASS  
BULK  
capacitors for use in applications that require the port pins to source high current level.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
26  
Freescale Semiconductor  
Regulator Power Supply Configuration (VREG)  
V
and V  
are the power supply and ground pins for the analog circuits of the MCU. These pins  
DDA  
SSA  
should be decoupled as per the digital power supply pins.  
MCU  
V
V
V
V
SSA  
DD  
SS  
DDA  
C1(a)  
0.1 µF  
C1(b)  
0.1 µF  
+
+
C2(a)  
C2(b)  
V
V
DD  
DD  
NOTE: Component values shown represent typical applications.  
Figure 1-5. Power Supply Bypassing  
1.7 Regulator Power Supply Configuration (VREG)  
V
V
is the output from the on-chip regulator. All internal logics, except for the I/O pads, are powered by  
REG  
REG  
output. V  
requires an external ceramic bypass capacitor of 100 nF as Figure 1-6 shows. Place  
REG  
the bypass capacitor as close to the V  
pin as possible.  
REG  
MCU  
V
V
SS  
REG  
C
VREGBYPASS  
100 nF  
Figure 1-6. Regulator Power Supply Bypassing  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
27  
General Description  
MC68HC908AP A-Family Data Sheet, Rev. 3  
28  
Freescale Semiconductor  
Chapter 2  
Memory  
2.1 Introduction  
The CPU08 can address 64k-bytes of memory space. The memory map, shown in Figure 2-1, includes:  
62,368 bytes of user FLASH — MC68HC908AP64A  
32,768 bytes of user FLASH — MC68HC908AP32A  
16,384 bytes of user FLASH — MC68HC908AP16A  
8,192 bytes of user FLASH — MC68HC908AP8A  
2,048 bytes of RAM — MC68HC908AP64A and MC68HC908AP32A  
1,024 bytes of RAM — MC68HC908AP16A and MC68HC908AP8A  
48 bytes of user-defined vectors  
959 bytes of monitor ROM  
2.2 Input/Output (I/O) Section  
Most of the control, status, and data registers are in the zero page area of $0000–$005F. Additional I/O  
registers have these addresses:  
$FE00; SIM break status register, SBSR  
$FE01; SIM reset status register, SRSR  
$FE02; Reserved  
$FE03; SIM break flag control register, SBFCR  
$FE04; interrupt status register 1, INT1  
$FE05; interrupt status register 2, INT2  
$FE06; interrupt status register 3, INT3  
$FE07; Reserved  
$FE08; FLASH control register, FLCR  
$FE09; FLASH block protect register, FLBPR  
$FE0A; Reserved  
$FE0B; Reserved  
$FE0C; Break address register high, BRKH  
$FE0D; Break address register low, BRKL  
$FE0E; Break status and control register, BRKSCR  
$FE0F; LVI Status register, LVISR  
$FFCF; Mask option register, MOR (FLASH register)  
$FFFF; COP control register, COPCTL  
2.3 Monitor ROM  
The 959 bytes at addresses $FC00–$FDFF and $FE10–$FFCE are reserved ROM addresses that  
contain the instructions for the monitor functions. (See Chapter 8 Monitor Mode (MON).)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
29  
Memory  
$0000  
$005F  
$0060  
I/O Registers  
96 Bytes  
MC68HC908AP32A  
MC68HC908AP16A  
MC68HC908AP8A  
$0060  
RAM  
1,024 Bytes  
$0060  
$045F  
RAM  
1,024 Bytes  
$0060  
$045F  
RAM  
2,048 Bytes  
(MC68HC908AP64A)  
RAM  
2,048 Bytes  
Unimplemented  
1,024 Bytes  
Unimplemented  
1,024 Bytes  
$085F  
$0860  
$085F  
$0860  
$0860  
$0860  
FLASH Memory  
8,192 Bytes  
FLASH Memory  
16,384 Bytes  
$285F  
$2860  
FLASH Memory  
32,768 Bytes  
$485F  
$4860  
FLASH Memory  
62,368 Bytes  
(MC68HC908AP64A)  
$885F  
$8860  
Unimplemented  
54,176 Bytes  
Unimplemented  
45,984 Bytes  
Unimplemented  
29,600 Bytes  
$FBFF  
$FBFF  
$FBFF  
$FBFF  
$FC00  
Monitor ROM 2  
512 Bytes  
$FDFF  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
SIM Break Status Register  
SIM Reset Status Register  
Reserved  
SIM Break Flag Control Register  
Interrupt Status Register 1  
Interrupt Status Register 2  
Interrupt Status Register 3  
Reserved  
FLASH Control Register  
FLASH Block Protect Register  
Reserved  
Reserved  
Break Address Register High  
Break Address Register Low  
Break Status and Control Register  
LVI Status Register  
$FE10  
Monitor ROM 1  
447 Bytes  
$FFCE  
$FFCF  
Mask Option Register  
$FFD0  
FLASH Vectors  
48 Bytes  
$FFFF  
Figure 2-1. Memory Map  
MC68HC908AP A-Family Data Sheet, Rev. 3  
30  
Freescale Semiconductor  
Monitor ROM  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTB1  
PTC1  
PTD1  
PTA0  
PTB0  
PTC0  
PTD0  
Port A Data Register  
(PTA)  
$0000  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
PTB7  
PTC7  
PTD7  
PTB6  
PTC6  
PTD6  
PTB5  
PTC5  
PTD5  
PTB2  
PTC2  
PTD2  
Port B Data Register  
(PTB)  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$0008  
$0009  
$000A  
$000B  
$000C  
Port C Data Register (PTC) Write:  
Reset:  
Read:  
Port D Data Register (PTD) Write:  
Reset:  
Read:  
DDRA7  
DDRA6  
DDRA5  
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
Data Direction Register A  
(DDRA)  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
0
0
DDRB7  
DDRB6  
DDRB5  
DDRB4  
DDRB3  
DDRB2  
DDRB1  
DDRB0  
Data Direction Register B  
(DDRB)  
Write:  
Reset:  
Read:  
0
DDRC7  
0
0
DDRC6  
0
0
DDRC5  
0
0
DDRC4  
0
0
DDRC3  
0
0
DDRC2  
0
0
DDRC1  
0
0
DDRC0  
0
Data Direction Register C  
(DDRC)  
Write:  
Reset:  
Read:  
DDRD7  
0
DDRD6  
0
DDRD5  
0
DDRD4  
0
DDRD3  
0
DDRD2  
0
DDRD1  
0
DDRD0  
0
Data Direction Register D  
(DDRD)  
Write:  
Reset:  
Read:  
Unimplemented  
Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Port-A LED Control  
LEDA7  
0
LEDA6  
0
LEDA5  
0
LEDA4  
0
LEDA3  
0
LEDA2  
LEDA1  
LEDA0  
0
Register Write:  
(LEDA)  
Reset:  
0
0
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 9)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
31  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
$0013  
$0014  
$0015  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
SPRIE  
R
0
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
SPE  
0
SPTIE  
0
SPI Control Register  
(SPCR)  
Write:  
Reset:  
0
1
0
1
Read:  
SPRF  
OVRF  
MODF  
SPTE  
SPI Status and Control  
ERRIE  
MODFEN  
SPR1  
SPR0  
Register Write:  
(SPSCR)  
Reset:  
0
0
0
0
1
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR)  
Write:  
Reset:  
Read:  
Unaffected by reset  
LOOPS  
0
ENSCI  
TXINV  
0
M
0
WAKE  
0
ILTY  
0
PEN  
0
PTY  
0
SCI Control Register 1  
(SCC1)  
Write:  
Reset:  
Read:  
0
TCIE  
0
SCTIE  
SCRIE  
0
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
SCI Control Register 2  
(SCC2)  
Write:  
Reset:  
Read:  
0
0
R8  
T8  
DMARE  
DMATE  
ORIE  
NEIE  
FEIE  
PEIE  
SCI Control Register 3  
(SCC3)  
Write:  
Reset:  
Read:  
U
U
0
0
0
0
0
0
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
$0016 SCI Status Register 1 (SCS1) Write:  
Reset:  
1
0
1
0
0
0
0
0
0
0
0
0
0
0
Read:  
$0017 SCI Status Register 2 (SCS2) Write:  
Reset:  
BKF  
RPF  
0
0
0
0
0
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR)  
$0018  
$0019  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Unaffected by reset  
0
0
0
SCP1  
0
SCP0  
R
0
SCR2  
SCR1  
SCR0  
0
SCI Baud Rate Register  
(SCBR)  
0
0
0
0
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 9)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
32  
Freescale Semiconductor  
Monitor ROM  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
0
1
Bit 0  
Read:  
0
0
0
0
KEYF  
Keyboard Status and Control  
IMASK  
0
MODE  
$001A  
Register Write:  
(KBSCR)  
Reset:  
ACK  
0
0
0
KBIE6  
0
0
0
0
0
Read:  
Keyboard Interrupt  
Enable Register Write:  
KBIE7  
KBIE5  
KBIE4  
KBIE3  
KBIE2  
KBIE1  
0
KBIE0  
$001B  
$001C  
$001D  
(KBIER)  
Reset:  
0
0
0
0
0
0
0
0
0
Read:  
IRQ2F  
0
ACK2  
0
IRQ2 Status and Control Reg-  
PUC0ENB  
IMASK2  
MODE2  
ister Write:  
(INTSCR2)  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
0
STOP_  
ICLKDIS  
STOP_ STOP_  
RCLKEN XCLKEN  
OSCCLK1 OSCCLK0  
SCIBDSRC  
0
Configuration Register 2  
(CONFIG2)†  
0
0
0
0
0
0
0
0
0
0
0
0
IRQ1F  
0
0
0
† One-time writable register after each reset.  
Read:  
0
ACK1  
0
IRQ1 Status and Control Reg-  
ister Write:  
IMASK1  
MODE1  
$001E  
(INTSCR1)  
Reset:  
Read:  
Write:  
Reset:  
0
COPRS  
0
0
STOP  
0
0
COPD  
0
LVISTOP LVIRSTD LVIPWRD LVIREGD  
SSREC  
0
Configuration Register 1  
(CONFIG1)†  
$001F  
0
0
0
0
0
† One-time writable register after each reset.  
Read:  
TOF  
0
0
TRST  
0
Timer 1 Status and  
Control Register Write:  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
$0021  
$0022  
$0023  
$0024  
$0025  
(T1SC)  
Reset:  
0
0
1
0
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 1 Counter  
Register High Write:  
(T1CNTH)  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 1 Counter  
Register Low Write:  
(T1CNTL)  
Reset:  
0
Bit 15  
1
0
0
0
0
0
0
0
Read:  
Timer 1 Counter Modulo Reg-  
14  
13  
12  
11  
10  
9
Bit 8  
ister High Write:  
(T1MODH)  
Reset:  
1
1
1
1
1
1
1
1
Read:  
Timer 1 Counter Modulo  
Bit 7  
6
5
4
3
2
1
Bit 0  
Register Low Write:  
(T1MODL)  
Reset:  
1
CH0F  
0
1
CH0IE  
0
1
MS0B  
0
1
MS0A  
0
1
ELS0B  
0
1
1
CH0MAX  
0
Read:  
ELS0A  
TOV0  
Timer 1 Channel 0 Status and  
Control Register (T1SC0)  
Write:  
Reset:  
0
0
0
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 9)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
33  
Memory  
Addr.  
Register Name  
Timer 1 Channel 0  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
$0026  
$0027  
Register High Write:  
(T1CH0H)  
Reset:  
Indeterminate after reset  
Read:  
Timer 1 Channel 0  
Bit 7  
6
5
0
4
3
2
1
Bit 0  
Register Low Write:  
(T1CH0L)  
Reset:  
Indeterminate after reset  
Read:  
Write:  
CH1F  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
Timer 1 Channel 1 Status and  
Control Register (T1SC1)  
$0028  
$0029  
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
$0030  
$0031  
$0032  
0
0
Reset:  
Read:  
0
0
0
0
0
9
0
Timer 1 Channel 1  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Register High Write:  
(T1CH1H)  
Reset:  
Indeterminate after reset  
Read:  
Timer 1 Channel 1  
Bit 7  
6
5
4
3
2
1
Bit 0  
PS0  
Register Low Write:  
(T1CH1L)  
Reset:  
Indeterminate after reset  
Read:  
TOF  
0
0
TRST  
0
0
Timer 2 Status and  
Control Register Write:  
TOIE  
TSTOP  
PS2  
PS1  
(T2SC)  
Reset:  
0
0
1
0
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 2 Counter  
Register High Write:  
(T2CNTH)  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 2 Counter  
Register Low Write:  
(T2CNTL)  
Reset:  
0
Bit 15  
1
0
0
0
0
0
0
0
Read:  
Timer 2 Counter Modulo Reg-  
14  
13  
12  
11  
10  
9
Bit 8  
ister High Write:  
(T2MODH)  
Reset:  
1
1
1
1
1
1
1
Bit 0  
1
Read:  
Timer 2 Counter Modulo  
Bit 7  
6
1
5
1
4
1
3
2
1
Register Low Write:  
(T2MODL)  
Reset:  
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read:  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
Timer 2 Channel 0 Status and  
Control Register (T2SC0)  
Write:  
Reset:  
Read:  
0
Timer 2 Channel 0  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T2CH0H)  
Reset:  
Indeterminate after reset  
Read:  
Timer 2 Channel 0  
6
5
4
3
2
1
Bit 0  
Register Low Write:  
(T2CH0L)  
Reset:  
Indeterminate after reset  
= Unimplemented  
U = Unaffected  
X = Indeterminate  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 9)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
34  
Freescale Semiconductor  
Monitor ROM  
Addr.  
Register Name  
Bit 7  
CH1F  
0
6
CH1IE  
0
5
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
0
TOV1  
CH1MAX  
Timer 2 Channel 1 Status and  
Control Register (T2SC1)  
$0033  
0
0
0
9
0
Timer 2 Channel 1  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
Bit 8  
$0034  
$0035  
Register High Write:  
(T2CH1H)  
Reset:  
Indeterminate after reset  
Read:  
Timer 2 Channel 1  
6
5
4
3
2
1
Bit 0  
Register Low Write:  
(T2CH1L)  
Reset:  
Indeterminate after reset  
Read:  
PLLF  
PLLIE  
0
PLLON  
1
BCS  
PRE1  
PRE0  
VPR1  
VPR0  
$0036 PLL Control Register (PCTL) Write:  
Reset:  
0
0
0
0
0
0
0
0
0
0
Read:  
LOCK  
PLL Bandwidth Control Reg-  
AUTO  
ACQ  
R
$0037  
$0038  
$0039  
$003A  
$003B  
$003C  
$003D  
$003E  
$003F  
ister Write:  
(PBWC)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
MUL11  
0
0
MUL10  
0
0
MUL9  
0
0
MUL8  
0
PLL Multiplier Select  
Register High Write:  
(PMSH)  
Reset:  
0
0
0
0
Read:  
PLL Multiplier Select  
MUL7  
0
MUL6  
1
MUL5  
0
MUL4  
0
MUL3  
0
MUL2  
0
MUL1  
0
MUL0  
0
Register Low Write:  
(PMSL)  
Reset:  
Read:  
PLL VCO Range Select  
VRS7  
VRS6  
VRS5  
VRS4  
VRS3  
0
VRS2  
0
VRS1  
0
VRS0  
0
Register Write:  
(PMRS)  
Reset:  
0
0
1
0
0
0
0
0
Read:  
PLL Reference Divider  
RDS3  
0
RDS2  
0
RDS1  
0
RDS0  
1
Select Register Write:  
(PMDS)  
Reset:  
0
0
0
0
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 9)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
35  
Memory  
Addr.  
Register Name  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
4
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
M
0
IRSCI Control Register 1  
(IRSCC1)  
$0040  
$0041  
$0042  
$0043  
$0044  
$0045  
$0046  
$0047  
$0048  
$0049  
$004A  
$004B  
$004C  
0
SCTIE  
TCIE  
0
SCRIE  
0
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
IRSCI Control Register 2  
(IRSCC2)  
0
0
R8  
T8  
DMARE  
DMATE  
ORIE  
NEIE  
FEIE  
PEIE  
IRSCI Control Register 3  
(IRSCC3)  
U
U
0
0
0
0
0
0
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
IRSCI Status Register 1  
(IRSCS1)  
1
1
0
0
0
0
0
0
BKF  
RPF  
IRSCI Status Register 2  
(IRSCS2)  
0
0
0
0
0
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
IRSCI Data Register  
(IRSCDR)  
Unaffected by reset  
0
CKS  
SCP1  
SCP0  
R
SCR2  
SCR1  
0
SCR0  
0
IRSCI Baud Rate Register  
(IRSCBR)  
0
0
0
0
0
0
0
0
0
TNP1  
0
IRSCI Infrared Control  
R
R
TNP0  
0
IREN  
0
Register Write:  
(IRSCIRCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
MMAD7  
1
0
MMAD6  
0
0
0
0
MMAD3  
0
MMIIC Address Register  
(MMADR)  
MMAD5  
MMAD4  
MMAD2  
0
MMAD1 MMEXTAD  
1
0
0
0
0
0
0
MMCLRBB  
0
MMCRCBY  
TE  
MMEN  
0
MMIEN  
0
MMTXAK REPSEN  
MMIIC Control Register 1  
(MMCR1)  
0
MMAST  
0
0
MMRW  
0
0
0
0
0
0
Read: MMALIF MMNAKIF  
MMBB  
MMIIC Control Register 2  
(MMCR2)  
MMCRCEF  
Write:  
0
0
0
0
Reset:  
0
0
0
Unaffected  
Read: MMRXIF  
MMTXIF MMATCH  
0
MMSRW MMRXAK MMCRCBF MMTXBE MMRXBF  
MMIIC Status Register  
(MMSR)  
Write:  
Reset:  
Read:  
0
0
0
MMTD6  
0
0
MMTD5  
0
0
MMTD4  
0
1
MMTD3  
0
0
1
0
MMTD0  
0
MMIIC Data Transmit  
MMTD7  
0
MMTD2  
MMTD1  
Register Write:  
(MMDTR)  
Reset:  
0
0
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 9)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
36  
Freescale Semiconductor  
Monitor ROM  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: MMRD7  
MMRD6  
MMRD5  
MMRD4  
MMRD3  
MMRD2  
MMRD1  
MMRD0  
MMIIC Data Receive  
$004D  
Register Write:  
(MMDRR)  
Reset:  
0
0
0
0
0
0
0
0
Read: MMCRCD7 MMCRCD6 MMCRCD5 MMCRCD4 MMCRCD3 MMCRCD2 MMCRCD1 MMCRCD0  
Write:  
MMIIC CRC Data Register  
(MMCRDR)  
$004E  
$004F  
$0050  
$0051  
$0052  
$0053  
$0054  
$0055  
$0056  
$0057  
$0058  
$0059  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
0
MMIIC Frequency Divider  
MMBR2  
MMBR1  
MMBR0  
Register Write:  
(MMFDR)  
Reset:  
0
0
0
0
0
1
0
0
Read:  
Reserved Write:  
Reset:  
R
R
R
R
R
R
R
R
Read:  
TBIF  
0
0
TACK  
0
Timebase Control Register  
TBR2  
0
TBR1  
0
TBR0  
0
TBIE  
0
TBON  
0
R
0
(TBCR) Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
COCO  
ADC Status and Control  
AIEN  
0
ADCO  
0
ADCH4  
1
ADCH3  
1
ADCH2  
1
ADCH1  
ADCH0  
Register Write:  
(ADSCR)  
Reset:  
0
1
0
1
0
Read:  
ADIV2  
ADIV1  
ADIV0  
ADICLK  
MODE1  
MODE0  
ADC Clock Control Register  
(ADICLK)  
Write:  
Reset:  
Read:  
Write:  
Reset:  
R
0
ADx  
R
0
ADx  
R
0
ADx  
R
0
ADx  
R
0
ADx  
R
0
ADx  
R
0
0
ADx  
ADx  
R
ADC Data Register High 0  
(ADRH0)  
R
0
0
0
0
0
0
0
0
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 9)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
37  
Memory  
Addr.  
Register Name  
Bit 7  
ADx  
R
6
ADx  
R
5
ADx  
R
4
ADx  
R
3
ADx  
R
2
ADx  
R
1
ADx  
R
Bit 0  
ADx  
R
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
ADC Data Register Low 0  
(ADRL0)  
$005A  
0
0
0
0
0
0
0
0
AD9  
R
AD8  
R
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
ADC Data Register Low 1  
(ADRL1)  
$005B  
$005C  
0
0
0
0
0
0
0
0
AD9  
R
AD8  
R
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
ADC Data Register Low 2  
(ADRL2)  
0
0
0
0
0
0
0
0
AD9  
R
AD8  
R
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
ADC Data Register Low 3  
(ADRL3)  
$005D  
0
0
0
0
0
0
0
0
ADC Auto-scan Control  
AUTO1  
0
AUTO0  
0
ASCAN  
0
$005E  
$005F  
Register Write:  
(ADASCR)  
Reset:  
0
0
0
0
0
Read:  
Unimplemented Write:  
Reset:  
Read:  
SBSW  
Note  
0
R
R
R
R
R
R
R
0
SIM Break Status Register  
(SBSR)  
$FE00  
Write:  
Reset:  
Note: Writing a logic 0 clears SBSW.  
Read:  
Write:  
Reset:  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
SIM Reset Status Register  
(SRSR)  
$FE01  
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
$FE02  
$FE03  
$FE04  
$FE05  
Reserved Write:  
Reset:  
Read:  
SIM Break Flag Control Reg-  
BCFE  
R
R
R
R
R
R
R
ister Write:  
(SBFCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
IF6  
R
IF5  
R
IF4  
R
IF3  
R
IF2  
R
IF1  
R
0
0
R
Interrupt Status Register 1  
(INT1)  
R
0
0
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
R
IF9  
R
IF8  
IF7  
R
Interrupt Status Register 2  
(INT2)  
R
0
0
0
0
0
0
0
0
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 9)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
38  
Freescale Semiconductor  
Monitor ROM  
Addr.  
Register Name  
Bit 7  
6
IF21  
R
5
IF20  
R
4
IF19  
R
3
IF18  
R
2
IF17  
R
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
0
R
0
IF16  
R
IF15  
R
Interrupt Status Register 3  
(INT3)  
$FE06  
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
Reserved Write:  
Reset:  
Read:  
0
0
0
0
HVEN  
MASS  
ERASE  
PGM  
FLASH Control Register  
(FLCR)  
Write:  
Reset:  
Read:  
0
BPR7  
0
0
BPR6  
0
0
BPR5  
0
0
BPR4  
0
0
BPR3  
0
0
BPR2  
0
0
BPR1  
0
0
BPR0  
0
FLASH Block Protect  
Register Write:  
(FLBPR)  
Reset:  
Read:  
Reserved Write:  
Reset:  
R
R
R
R
R
R
R
R
Read:  
R
R
R
R
R
R
R
R
Reserved Write:  
Reset:  
Read:  
Break Address  
Register High Write:  
Bit 15  
0
14  
13  
0
12  
0
11  
0
10  
0
9
0
1
Bit 8  
0
(BRKH)  
Reset:  
0
Read:  
Break Address  
Register Low Write:  
Bit 7  
0
6
0
5
4
3
2
Bit 0  
(BRKL)  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Reset:  
Break Status and Control  
BRKE  
0
BRKA  
Register Read:  
(BRKSCR)  
Write:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Reset: LVIOUT  
$FE0F LVI Status Register (LVISR) Read:  
Write:  
0
0
0
0
0
0
0
0
Read:  
OSCSEL1 OSCSEL0  
R
R
R
R
R
R
Mask Option Register  
(MOR)#  
$FFCF  
Write:  
Erased:  
Reset:  
1
1
1
1
1
1
1
1
U
U
U
U
U
U
U
U
Read:  
Write:  
Reset:  
Low byte of reset vector  
COP Control Register  
(COPCTL)  
$FFFF  
Writing clears COP counter (any value)  
Unaffected by reset  
# MOR is a non-volatile FLASH register; write by programming.  
U = Unaffected X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 9 of 9)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
39  
Memory  
Table 2-1. Vector Addresses  
Priority  
INT Flag  
Address  
Vector  
Lowest  
$FFD0  
$FFD1  
$FFD2  
$FFD3  
$FFD4  
$FFD5  
$FFD6  
$FFD7  
$FFD8  
$FFD9  
$FFDA  
$FFDB  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
Reserved  
Reserved  
TBM Vector (High)  
TBM Vector (Low)  
IF21  
IF20  
IF19  
IF18  
IF17  
IF16  
IF15  
IF14  
IF13  
IF12  
IF11  
IF10  
SCI2 (IRSCI) Transmit Vector (High)  
SCI2 (IRSCI) Transmit Vector (Low)  
SCI2 (IRSCI) Receive Vector (High)  
SCI2 (IRSCI) Receive Vector (Low)  
SCI2 (IRSCI) Error Vector (High)  
SCI2 (IRSCI) Error Vector (Low)  
SPI Transmit Vector (High)  
SPI Transmit Vector (Low)  
SPI Receive Vector (High)  
SPI Receive Vector (Low)  
ADC Conversion Complete Vector (High)  
ADC Conversion Complete Vector (Low)  
Keyboard Vector (High)  
Keyboard Vector (Low)  
SCI Transmit Vector (High)  
SCI Transmit Vector (Low)  
SCI Receive Vector (High)  
SCI Receive Vector (Low)  
SCI Error Vector (High)  
SCI Error Vector (Low)  
MMIIC Interrupt Vector (High)  
MMIIC Interrupt Vector (Low)  
TIM2 Overflow Vector (High)  
IF9  
$FFEB  
TIM2 Overflow Vector (Low)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
40  
Freescale Semiconductor  
 
Random-Access Memory (RAM)  
Table 2-1. Vector Addresses (Continued)  
Priority  
INT Flag  
Address  
$FFEC  
$FFED  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
Vector  
TIM2 Channel 1 Vector (High)  
TIM2 Channel 1 Vector (Low)  
TIM2 Channel 0 Vector (High)  
TIM2 Channel 0 Vector (Low)  
TIM1 Overflow Vector (High)  
TIM1 Overflow Vector (Low)  
TIM1 Channel 1 Vector (High)  
TIM1 Channel 1 Vector (Low)  
TIM1 Channel 0 Vector (High)  
TIM1 Channel 0 Vector (Low)  
PLL Vector (High)  
IF8  
IF7  
IF6  
IF5  
IF4  
IF3  
IF2  
IF1  
PLL Vector (Low)  
IRQ2 Vector (High)  
IRQ2 Vector (Low)  
IRQ1 Vector (High)  
IRQ1 Vector (Low)  
SWI Vector (High)  
SWI Vector (Low)  
$FFFE  
$FFFF  
Reset Vector (High)  
Reset Vector (Low)  
Highest  
2.4 Random-Access Memory (RAM)  
Addresses $0060 through $085F (or $045F) are RAM locations. The location of the stack RAM is  
programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64k-byte memory space.  
NOTE  
For correct operation, the stack pointer must point only to RAM locations.  
Within page zero are 160 bytes of RAM. Because the location of the stack RAM is programmable, all page  
zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved  
from its reset location at $00FF, direct addressing mode instructions can access efficiently all page zero  
RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global  
variables.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
41  
Memory  
Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU  
registers.  
NOTE  
For M6805 compatibility, the H register is not stacked.  
During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack  
pointer decrements during pushes and increments during pulls.  
NOTE  
Be careful when using nested subroutines. The CPU may overwrite data in  
the RAM during a subroutine or during the interrupt stacking operation.  
2.5 FLASH Memory  
This sub-section describes the operation of the embedded FLASH memory. This memory can be read,  
programmed, and erased from a single external supply. The program and erase operations are enabled  
through the use of an internal charge pump.  
FLASH Memory Size  
Device  
Memory Address Range  
(Bytes)  
62,368  
32,768  
16,384  
8,192  
MC68HC908AP64A  
MC68HC908AP32A  
MC68HC908AP16A  
MC68HC908AP8A  
$0860–$FBFF  
$0860–$885F  
$0860–$485F  
$0860–$285F  
2.5.1 Functional Description  
The FLASH memory consists of an array of 62,368 bytes for user memory plus a block of 48 bytes for  
user interrupt vectors and one byte for the mask option register. An erased bit reads as logic 1 and a  
programmed bit reads as a logic 0. The FLASH memory page size is defined as 512 bytes, and is the  
minimum size that can be erased in a page erase operation. Program and erase operations are facilitated  
through control bits in FLASH control register (FLCR). The address ranges for the FLASH memory are:  
$0860–$FBFF; user memory, 62,368 bytes  
$FFD0–$FFFF; user interrupt vectors, 48 bytes  
$FFCF; mask option register  
Programming tools are available from Freescale. Contact your local Freescale representative for more  
information.  
NOTE  
(1)  
A security feature prevents viewing of the FLASH contents.  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
42  
Freescale Semiconductor  
FLASH Memory  
2.5.2 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program and erase operation.  
Address:  
$FE08  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
Figure 2-3. FLASH Control Register (FLCR)  
HVEN — High Voltage Enable Bit  
This read/write bit enables the charge pump to drive high voltages for program and erase operations  
in the array. HVEN can only be set if either PGM = 1 or ERASE = 1 and the proper sequence for  
program or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS — Mass Erase Control Bit  
This read/write bit configures the memory for mass erase operation or page erase operation when the  
ERASE bit is set.  
1 = Mass erase operation selected  
0 = Page erase operation selected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit  
such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation not selected  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE  
bit such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation not selected  
2.5.3 FLASH Page Erase Operation  
Use the following procedure to erase a page of FLASH memory. A page consists of 512 consecutive  
bytes starting from addresses $X000, $X200, $X400, $X600, $X800, $XA00, $XC00, or $XE00. The  
48-byte user interrupt vectors cannot be erased by the page erase operation because of security reasons.  
Mass erase is required to erase this page.  
1. Set the ERASE bit and clear the MASS bit in the FLASH control register.  
2. Write any data to any FLASH location within the page address range desired.  
3. Wait for a time, t  
(5 µs).  
nvs  
4. Set the HVEN bit.  
5. Wait for a time t  
(20 ms).  
erase  
6. Clear the ERASE bit.  
7. Wait for a time, t  
(5 µs).  
nvh  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
43  
Memory  
8. Clear the HVEN bit.  
9. After time, t (1 µs), the memory can be accessed in read mode again.  
rcv  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, but other unrelated operations  
may occur between the steps.  
2.5.4 FLASH Mass Erase Operation  
Use the following procedure to erase the entire FLASH memory:  
1. Set both the ERASE bit and the MASS bit in the FLASH control register.  
2. Write any data to any FLASH location within the FLASH memory address range.  
3. Wait for a time, t  
(5 µs).  
nvs  
4. Set the HVEN bit.  
5. Wait for a time t (200 ms). (See NOTE below.)  
me  
6. Clear the ERASE bit.  
7. Wait for a time, t  
(100 µs).  
nvh1  
8. Clear the HVEN bit.  
9. After time, t (1 µs), the memory can be accessed in read mode again.  
rcv  
NOTE  
Due to the relatively long mass erase time, user should take care in the  
code to prevent a COP reset from happening while the HVEN bit is set.  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, but other unrelated operations  
may occur between the steps.  
2.5.5 FLASH Program Operation  
Programming of the FLASH memory is done on a row basis. A row consists of 64 consecutive bytes  
starting from addresses $XX00, $XX40, $XX80 or $XXC0. Use the following procedure to program a row  
of FLASH memory. (Figure 2-4 shows a flowchart of the programming algorithm.)  
1. Set the PGM bit. This configures the memory for program operation and enables the latching of  
address and data for programming.  
2. Write any data to any FLASH location within the address range of the row to be programmed.  
3. Wait for a time, t  
(5 µs).  
nvs  
4. Set the HVEN bit.  
5. Wait for a time, t  
(10 µs).  
pgs  
6. Write data to the FLASH location to be programmed.  
7. Wait for time, t (20 µs to 40 µs).  
prog  
8. Repeat steps 6 and 7 until all bytes within the row are programmed.  
9. Clear the PGM bit.  
10. Wait for time, t  
(5 µs).  
nvh  
11. Clear the HVEN bit.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
44  
Freescale Semiconductor  
FLASH Memory  
12. After time, t (1 µs), the memory can be accessed in read mode again.  
rcv  
This program sequence is repeated throughout the memory until all data is programmed.  
NOTE  
The time between each FLASH address change (step 6 to step 6), or the  
time between the last FLASH addressed programmed to clearing the PGM  
bit (step 6 to step 9), must not exceed the maximum programming time,  
t
max.  
prog  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps.  
2.5.6 FLASH Protection  
Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target  
application, provision is made to protect pages of memory from unintentional erase or program operations  
due to system malfunction. This protection is done by use of a FLASH block protect register (FLBPR).  
The FLBPR determines the range of the FLASH memory which is to be protected. The range of the  
protected area starts from a location defined by FLBPR and ends to the bottom of the FLASH memory  
($FFFF). When the memory is protected, the HVEN bit cannot be set in either erase or program  
operations.  
NOTE  
The mask option register ($FFCF) and the 48 bytes of user interrupt vectors  
($FFD0–$FFFF) are always protected, regardless of the value in the  
FLASH block protect register. A mass erase is required to erase these  
locations.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
45  
Memory  
1
2
Set PGM bit  
Algorithm for programming  
a row (64 bytes) of FLASH memory  
Write any data to any FLASH address  
within the row address range desired  
3
4
5
Wait for a time, tnvs  
Set HVEN bit  
Wait for a time, tpgs  
6
7
Write data to the FLASH address  
to be programmed  
Wait for a time, tprog  
Completed  
Y
programming  
this row?  
N
9
Clear PGM bit  
Wait for a time, tnvh  
Clear HVEN bit  
NOTE:  
The time between each FLASH address change (step 6 to step 6), or  
the time between the last FLASH address programmed  
to clearing PGM bit (step 6 to step 9)  
10  
11  
12  
must not exceed the maximum programming  
time, tPROG max.  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Wait for a time, trcv  
End of Programming  
Figure 2-4. FLASH Programming Flowchart  
MC68HC908AP A-Family Data Sheet, Rev. 3  
46  
Freescale Semiconductor  
FLASH Memory  
2.5.7 FLASH Block Protect Register  
The FLASH block protect register is implemented as an 8-bit I/O register. The value in this register  
determines the starting address of the protected range within the FLASH memory.  
Address:  
$FE09  
Bit 7  
6
BPR6  
0
5
BPR5  
0
4
BPR4  
0
3
BPR3  
0
2
BPR2  
0
1
BPR1  
0
Bit 0  
BPR0  
0
Read:  
Write:  
Reset:  
BPR7  
0
Figure 2-5. FLASH Block Protect Register (FLBPR)  
BPR[7:0] — FLASH Block Protect Bits  
BPR[7:1] represent bits [15:9] of a 16-bit memory address. Bits [8:0] are logic 0’s.  
16-bit memory address  
Start address of FLASH block protect  
0 0 0 0 0 0 0 0 0  
BPR[7:1]  
BPR0 is used only for BPR[7:0] = $FF, for no block protection.  
The resultant 16-bit address is used for specifying the start address of the FLASH memory for block  
protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF.  
With this mechanism, the protect start address can be X000, X200, X400, X0600, X800, XA00, XC00,  
or XE00 (at page boundaries — 512 bytes) within the FLASH memory.  
Examples of protect start address:  
Table 2-2 FLASH Block Protect Range  
BPR[7:0]  
Protected Range  
$00 to $09  
The entire FLASH memory is protected.  
$0A or $0B  
(0000 101x)  
$0A00 to $FFFF  
$0C00 to $FFFF  
$0C or $0D  
(0000 110x)  
and so on...  
$FA or $FB  
(1111 1101x)  
$FA00 to $FFFF  
$FC or $FD or $FE  
$FF  
$FFCF to $FFFF  
The entire FLASH memory is NOT protected.(1)  
1. Except for the mask option register ($FFCF) and the 48-byte user vectors  
($FFD0–$FFFF). These FLASH locations are always protected.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
47  
Memory  
MC68HC908AP A-Family Data Sheet, Rev. 3  
48  
Freescale Semiconductor  
Chapter 3  
Configuration & Mask Option Registers (CONFIG & MOR)  
3.1 Introduction  
This section describes the configuration registers, CONFIG1 and CONFIG2; and the mask option  
register, MOR.  
The configuration registers enable or disable these options:  
Computer operating properly module (COP)  
COP timeout period (262,128 or 8176 ICLK cycles)  
Low-voltage inhibit (LVI) on V  
DD  
LVI on V  
REG  
LVI module reset  
LVI module in stop mode  
STOP instruction  
Stop mode recovery time (32 ICLK or 4096 ICLK cycles)  
Oscillator (internal, RC, and crystal) during stop mode  
Serial communications interface clock source (CGMXCLK or f  
)
BUS  
The mask option register selects one of the following oscillator options:  
Internal oscillator  
RC oscillator  
Crystal oscillator  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Configuration Register 2 Read:  
(CONFIG2)†  
Write:  
0
0
STOP_  
ICLKDIS  
STOP_ STOP_  
RCLKEN XCLKEN  
OSCCLK1 OSCCLK0  
SCIBDSRC  
$001D  
Reset:  
0
COPRS  
0
0
0
0
0
0
0
0
Read:  
Configuration Register 1  
LVISTOP LVIRSTD LVIPWRD LVIREGD  
SSREC  
STOP  
COPD  
$001F  
$FFCF  
Write:  
(CONFIG1)†  
Reset:  
0
0
R
1
0
R
1
0
R
1
0
R
1
0
R
1
0
R
1
Mask-Option-Register Read:  
(MOR)#  
Write:  
OSCSEL1 OSCSEL0  
Erased:  
1
1
† One-time writable register after each reset.  
# MOR is a non-volatile FLASH register; write by programming.  
= Unimplemented  
R
= Reserved  
Figure 3-1. CONFIG and MOR Registers Summary  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
49  
 
Configuration & Mask Option Registers (CONFIG & MOR)  
3.2 Functional Description  
The configuration registers and the mask option register are used in the initialization of various options.  
These two types of registers are configured differently:  
Configuration registers — Write-once registers after reset  
Mask option register — FLASH register (write by programming)  
The configuration registers can be written once after each reset. All of the configuration register bits are  
cleared during reset. Since the various options affect the operation of the MCU, it is recommended that  
these registers be written immediately after reset. The configuration registers are located at $001D and  
$001F. The configuration registers may be read at anytime.  
NOTE  
The CONFIG registers are not in the FLASH memory but are special  
registers containing one-time writable latches after each reset. Upon a  
reset, the CONFIG registers default to predetermined settings as shown in  
Figure 3-2 and Figure 3-3.  
The mask option register (MOR) is used for selecting one of the three clock options for the MCU. The  
MOR is a byte located in FLASH memory, and is written to by a FLASH programming routine.  
3.3 Configuration Register 1 (CONFIG1)  
Address:  
$001F  
Bit 7  
6
5
4
3
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
0
LVISTOP LVIRSTD LVIPWRD LVIREGD  
0
0
0
0
Figure 3-2. Configuration Register 1 (CONFIG1)  
COPRS — COP Rate Select Bit  
COPRS selects the COP time out period. Reset clears COPRS. (See Chapter 19 Computer Operating  
Properly (COP).)  
1 = COP time out period = 8176 ICLK cycles  
0 = COP time out period = 262,128 ICLK cycles  
LVISTOP — LVI Enable in Stop Mode Bit  
When the LVIPWRD or LVIREGD bit is clear, setting the LVISTOP bit enables the LVI to operate  
during stop mode. Reset clears LVISTOP. (See Chapter 20 Low-Voltage Inhibit (LVI).)  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
NOTE  
If LVISTOP=0, set LVIRSTD=1 before entering stop mode.  
LVIRSTD — LVI Reset Disable Bit  
LVIRSTD disables the reset signal from the LVI module. (See Chapter 20 Low-Voltage Inhibit (LVI).)  
1 = LVI module resets disabled  
0 = LVI module resets enabled  
MC68HC908AP A-Family Data Sheet, Rev. 3  
50  
Freescale Semiconductor  
Configuration Register 1 (CONFIG1)  
LVIPWRD — V LVI Circuit Disable Bit  
DD  
LVIPWRD disables the V LVI circuit. (See Chapter 20 Low-Voltage Inhibit (LVI).)  
DD  
1 = V LVI circuit disabled  
DD  
0 = V LVI circuit enabled  
DD  
LVIREGD — V  
LVI Circuit Disable Bit  
REG  
LVIREGD disables the V  
LVI circuit. (See Chapter 20 Low-Voltage Inhibit (LVI).)  
REG  
1 = V  
0 = V  
LVI circuit disabled  
LVI circuit enabled  
REG  
REG  
NOTE  
If LVIPWRD=1 and LVIREGD=1, set LVIRSTD=1 before entering stop  
mode.  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32 ICLK cycles instead of a 4096 ICLK  
cycle delay.  
1 = Stop mode recovery after 32 ICLK cycles  
0 = Stop mode recovery after 4096 ICLK cycles  
NOTE  
Exiting stop mode by pulling reset will result in the long stop recovery.  
If using an external crystal oscillator, do not set the SSREC bit.  
When the LVI is disabled in stop mode (LVISTOP=0), the system  
stabilization time for long stop recovery (4096 ICLK cycles) gives a delay  
longer than the LVI’s turn-on time. There is no period where the MCU is not  
protected from a low power condition. However, when using the short stop  
recovery configuration option, the 32 ICLK delay is less than the LVI’s  
turn-on time and there exists a period in start-up where the LVI is not  
protecting the MCU.  
STOP — STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module. (See Chapter 19 Computer Operating Properly (COP).)  
1 = COP module disabled  
0 = COP module enabled  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
51  
Configuration & Mask Option Registers (CONFIG & MOR)  
3.4 Configuration Register 2 (CONFIG2)  
Address:  
$001D  
Bit 7  
6
5
4
3
2
0
1
0
Bit 0  
Read:  
Write:  
Reset:  
STOP_  
ICLKDIS  
STOP_ STOP_  
RCLKEN XCLKEN  
SCIBD-  
SRC  
OSCCLK1 OSCCLK0  
0
0
0
0
0
0
0
0
Figure 3-3. Configuration Register 2 (CONFIG2)  
STOP_ICLKDIS — Internal Oscillator Stop Mode Disable  
STOP_ICLKDIS disables the internal oscillator during stop mode. Setting the STOP_ICLKDIS bit  
disables the oscillator during stop mode. (See Chapter 5 Oscillator (OSC).)  
Reset clears this bit.  
1 = Internal oscillator disabled during stop mode  
0 = Internal oscillator enabled to operate during stop mode  
STOP_RCLKEN — RC Oscillator Stop Mode Enable Bit  
STOP_RCLKEN enables the RC oscillator to continue operating during stop mode. Setting the  
STOP_RCLKEN bit allows the oscillator to operate continuously even during stop mode. This is useful  
for driving the timebase module to allow it to generate periodic wake up while in stop mode. (See  
Chapter 5 Oscillator (OSC).)  
Reset clears this bit.  
1 = RC oscillator enabled to operate during stop mode  
0 = RC oscillator disabled during stop mode  
STOP_XCLKEN — X-tal Oscillator Stop Mode Enable Bit  
STOP_XCLKEN enables the crystal (x-tal) oscillator to continue operating during stop mode. Setting  
the STOP_XCLKEN bit allows the x-tal oscillator to operate continuously even during stop mode. This  
is useful for driving the timebase module to allow it to generate periodic wake up while in stop mode.  
(See Chapter 5 Oscillator (OSC).) Reset clears this bit.  
1 = X-tal oscillator enabled to operate during stop mode  
0 = X-tal oscillator disabled during stop mode  
OSCCLK1, OSCCLK0 — Oscillator Output Control Bits  
OSCCLK1 and OSCCLK0 select which oscillator output to be driven out as OSCCLK to the timebase  
module (TBM). Reset clears these two bits.  
OSCCLK1  
OSCCLK0  
Timebase Clock Source  
Internal oscillator (ICLK)  
RC oscillator (RCCLK)  
X-tal oscillator (XTAL)  
Not used  
0
0
1
1
0
1
0
1
MC68HC908AP A-Family Data Sheet, Rev. 3  
52  
Freescale Semiconductor  
Mask Option Register (MOR)  
SCIBDSRC — SCI Baud Rate Clock Source  
SCIBDSRC selects the clock source used for the standard SCI module (non-infrared SCI). The setting  
of this bit affects the frequency at which the SCI operates.  
1 = Internal data bus clock, f  
, is used as clock source for SCI  
BUS  
0 = Oscillator clock, CGMXCLK, is used as clock source for SCI  
3.5 Mask Option Register (MOR)  
The mask option register (MOR) is used for selecting one of the three clock options for the MCU. The  
MOR is a byte located in FLASH memory, and is written to by a FLASH programming routine.  
Address: $FFCF  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
OSCSEL1 OSCSEL0  
R
R
R
R
R
Reset:  
Erased:  
Unaffected by reset  
1
1
1
1
1
1
1
1
R
= Reserved  
Figure 3-4. Mask Option Register (MOR)  
OSCSEL1, OSCSEL0 — Oscillator Selection Bits  
OSCSEL1 and OSCSEL0 select which oscillator is used for the MCU CGMXCLK clock. The erase  
state of these two bits is logic 1. These bits are unaffected by reset. (See Table 3-1).  
Bits 5–0 — Should be left as 1’s  
Table 3-1. CGMXCLK Clock Selection  
OSCSEL1  
OSCSEL0  
CGMXCLK  
OSC2 pin  
Comments  
0
0
0
1
Not used  
fBUS  
ICLK  
Internal oscillator generates the CGMXCLK.  
RC oscillator generates the CGMXCLK.  
Internal oscillator is available after each POR  
or reset.  
fBUS  
1
1
0
1
RCCLK  
X-TAL  
X-tal oscillator generates the CGMXCLK.  
Internal oscillator is available after each POR  
or reset.  
Inverting  
output of XTAL  
NOTE  
The internal oscillator is a free running oscillator and is available after each  
POR or reset. It is turned-off in stop mode by setting the STOP_ICLKDIS  
bit in CONFIG2.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
53  
 
Configuration & Mask Option Registers (CONFIG & MOR)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
54  
Freescale Semiconductor  
Chapter 4  
Central Processor Unit (CPU)  
4.1 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of  
the M68HC05 CPU. The CPU08 Reference Manual (Freescale document order number CPU08RM/AD)  
contains a description of the CPU instruction set, addressing modes, and architecture.  
4.2 Features  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-Bit index register with x-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for extension of addressing range  
beyond 64 Kbytes  
Low-power stop and wait modes  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
55  
Central Processor Unit (CPU)  
4.3 CPU Registers  
Figure 4-1 shows the five CPU registers. CPU registers are not part of the memory map.  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
0
V
1
1
H
I
N
Z
C
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 4-1. CPU Registers  
4.3.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands  
and the results of arithmetic/logic operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 4-2. Accumulator (A)  
4.3.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of  
the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the index register to determine the  
conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
56  
Freescale Semiconductor  
 
CPU Registers  
Bit  
15  
14 13 12 11 10  
9
0
8
0
7
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 4-3. Index Register (H:X)  
4.3.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a  
reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data  
is pushed onto the stack and increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an  
index register to access data on the stack. The CPU uses the contents of the stack pointer to determine  
the conditional address of the operand.  
Bit  
15  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 4-4. Stack Pointer (SP)  
NOTE  
The location of the stack is arbitrary and may be relocated anywhere in  
RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct address  
(page 0) space. For correct operation, the stack pointer must point only to  
RAM locations.  
4.3.4 Program Counter  
The program counter is a 16-bit register that contains the address of the next instruction or operand to be  
fetched.  
Normally, the program counter automatically increments to the next sequential memory location every  
time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF.  
The vector address is the address of the first instruction to be executed after exiting the reset state.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
57  
Central Processor Unit (CPU)  
Bit  
15  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Loaded with Vector from $FFFE and $FFFF  
Figure 4-5. Program Counter (PC)  
4.3.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the  
instruction just executed. Bits 6 and 5 are set permanently to logic 1. The following paragraphs describe  
the functions of the condition code register.  
Bit 7  
V
6
1
1
5
1
1
4
H
X
3
I
2
N
X
1
Z
X
Bit 0  
C
Read:  
Write:  
Reset:  
X
1
X
X = Indeterminate  
Figure 4-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch  
instructions BGT, BGE, BLE, and BLT use the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an  
add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for  
binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and  
C flags to determine the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled  
when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE  
To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
58  
Freescale Semiconductor  
Arithmetic/Logic Unit (ALU)  
After the I bit is cleared, the highest-priority interrupt request is serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the  
interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the  
clear interrupt mask software instruction (CLI).  
N — Negative flag  
The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation  
produces a negative result, setting bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z — Zero flag  
The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation  
produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the  
accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test  
and branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
4.4 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the instruction set.  
Refer to the CPU08 Reference Manual (Freescale document order number CPU08RM/AD) for a  
description of the instructions and addressing modes and more detail about the architecture of the CPU.  
4.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
4.5.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from  
wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
4.5.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After  
exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
59  
Central Processor Unit (CPU)  
4.6 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in progress. If the break address  
register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU  
to normal operation if the break interrupt has been deasserted.  
4.7 Instruction Set Summary  
Table 4-1 provides a summary of the M68HC08 instruction set.  
4.8 Opcode Map  
The opcode map is provided in Table 4-2.  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ADC #opr  
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
ADC opr,SP  
ADC opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A9  
B9  
C9  
D9  
E9  
F9  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Add with Carry  
A (A) + (M) + (C)  
↕ ↕ ↕ ↕ ↕  
SP1  
SP2  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AB  
BB  
CB  
DB  
EB  
FB  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Add without Carry  
A (A) + (M)  
↕ ↕ ↕ ↕ ↕  
SP1  
SP2  
9EEB ff  
9EDB ee ff  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
– IMM  
– IMM  
A7  
AF  
ii  
ii  
2
2
MC68HC908AP A-Family Data Sheet, Rev. 3  
60  
Freescale Semiconductor  
 
Opcode Map  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
AND #opr  
AND opr  
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A4  
B4  
C4  
D4  
E4  
F4  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Logical AND  
A (A) & (M)  
0
SP1  
SP2  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
ASLX  
ASL opr,X  
ASL ,X  
ASL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38  
48  
58  
68  
78  
dd  
ff  
4
1
1
4
3
5
Arithmetic Shift Left  
(Same as LSL)  
C
0
b7  
b0  
b0  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
37  
47  
57  
67  
77  
dd  
4
1
1
4
3
5
C
Arithmetic Shift Right  
ff  
b7  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24  
rr  
3
DIR (b0)  
11  
13  
15  
17  
19  
1B  
1D  
1F  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
4
4
4
4
4
4
4
4
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25  
27  
rr  
rr  
3
3
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
BGT opr  
PC (PC) + 2 + rel ? (N V) = 0  
– REL  
– REL  
90  
92  
rr  
rr  
3
Branch if Greater Than (Signed  
Operands)  
PC (PC) + 2 +rel ? (Z) | (N V)=0 –  
3
3
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28  
29  
22  
rr  
rr  
rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24  
rr  
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F  
2E  
rr  
rr  
3
3
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
61  
Central Processor Unit (CPU)  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
BIT #opr  
BIT opr  
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A5  
B5  
C5  
D5  
E5  
F5  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Bit Test  
(A) & (M)  
0
SP1  
SP2  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
PC (PC) + 2 + rel ? (Z) | (N V)=1 –  
– REL  
93  
rr  
3
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
PC (PC) + 2 + rel ? (C) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25  
23  
91  
2C  
2B  
2D  
26  
2A  
20  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
Branch if Less Than (Signed Operands) PC (PC) + 2 + rel ? (N V) = 1  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
DIR (b0)  
01  
03  
05  
07  
09  
0B  
0D  
0F  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
5
5
5
5
5
5
5
5
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
BRN rel  
Branch Never  
PC (PC) + 2  
– REL  
DIR (b0)  
21  
rr  
3
00  
02  
04  
06  
08  
0A  
0C  
0E  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
5
5
5
5
5
5
5
5
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0)  
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
10  
12  
14  
16  
18  
1A  
1C  
1E  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
4
4
4
4
4
4
4
4
BSET n,opr  
Set Bit n in M  
Mn 1  
MC68HC908AP A-Family Data Sheet, Rev. 3  
62  
Freescale Semiconductor  
Opcode Map  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
BSR rel  
Branch to Subroutine  
– REL  
AD  
rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
IMM  
31  
41  
51  
61  
71  
dd rr  
ii rr  
ii rr  
ff rr  
rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IX1+  
Compare and Branch if Equal  
IX+  
SP1  
CBEQ opr,SP,rel  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
CLR opr  
CLRA  
CLRX  
CLRH  
CLR opr,X  
CLR ,X  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
– INH  
IX1  
IX  
3F  
4F  
5F  
8C  
6F  
7F  
dd  
ff  
3
1
1
1
3
2
4
Clear  
0
0
1
CLR opr,SP  
SP1  
9E6F ff  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A1  
B1  
C1  
D1  
E1  
F1  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Compare A with M  
(A) – (M)  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
COMX  
COM opr,X  
COM ,X  
COM opr,SP  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
INH  
IX1  
IX  
33  
43  
53  
63  
73  
dd  
ff  
4
1
1
4
3
5
Complement (One’s Complement)  
Compare H:X with M  
0
1
SP1  
9E63 ff  
CPHX #opr  
CPHX opr  
IMM  
65  
75  
ii ii+1  
dd  
3
4
(H:X) – (M:M + 1)  
DIR  
CPX #opr  
CPX opr  
CPX opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A3  
B3  
C3  
D3  
E3  
F3  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
CPX ,X  
Compare X with M  
Decimal Adjust A  
(X) – (M)  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
9EE3 ff  
9ED3 ee ff  
DAA  
(A)  
U –  
INH  
72  
2
10  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
63  
Central Processor Unit (CPU)  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
A (A)–1 or M (M)–1 or X (X)–1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DBNZX rel  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
DIR  
INH  
– INH  
IX1  
IX  
SP1  
3B  
4B  
5B  
6B  
7B  
dd rr  
rr  
rr  
ff rr  
rr  
Decrement and Branch if Not Zero  
9E6B ff rr  
DEC opr  
DECA  
DECX  
DEC opr,X  
DEC ,X  
DEC opr,SP  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
INH  
IX1  
IX  
3A  
4A  
5A  
6A  
7A  
dd  
ff  
4
1
1
4
3
5
Decrement  
Divide  
SP1  
9E6A ff  
A (H:A)/(X)  
H Remainder  
DIV  
INH  
52  
7
EOR #opr  
EOR opr  
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A8  
B8  
C8  
D8  
E8  
F8  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Exclusive OR M with A  
A (A M)  
0
↕ ↕ –  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
INCX  
INC opr,X  
INC ,X  
INC opr,SP  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
INH  
IX1  
IX  
3C  
4C  
5C  
6C  
7C  
dd  
ff  
4
1
1
4
3
5
Increment  
↕ ↕ –  
SP1  
9E6C ff  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
– IX2  
IX1  
BC  
CC  
DC  
EC  
FC  
dd  
2
3
4
3
2
hh ll  
ee ff  
ff  
Jump  
PC Jump Address  
IX  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD  
CD  
DD  
ED  
FD  
dd  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
hh ll  
ee ff  
ff  
Jump to Subroutine  
IX  
LDA #opr  
LDA opr  
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A6  
B6  
C6  
D6  
E6  
F6  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Load A from M  
A (M)  
0
0
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
45  
55  
ii jj  
dd  
3
4
Load H:X from M  
H:X (M:M + 1)  
DIR  
MC68HC908AP A-Family Data Sheet, Rev. 3  
64  
Freescale Semiconductor  
Opcode Map  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AE  
BE  
CE  
DE  
EE  
FE  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Load X from M  
X (M)  
0
SP1  
SP2  
9EEE ff  
9EDE ee ff  
LSL opr  
LSLA  
LSLX  
LSL opr,X  
LSL ,X  
LSL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38  
48  
58  
68  
78  
dd  
ff  
4
1
1
4
3
5
Logical Shift Left  
(Same as ASL)  
C
0
b7  
b0  
SP1  
9E68 ff  
LSR opr  
LSRA  
LSRX  
LSR opr,X  
LSR ,X  
LSR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
34  
44  
54  
64  
74  
dd  
4
1
1
4
3
5
0
C
Logical Shift Right  
0
ff  
b7  
b0  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E  
5E  
6E  
7E  
dd dd  
dd  
ii dd  
dd  
5
4
4
4
(M)  
(M)  
Source  
Destination  
DIX+  
IMD  
IX+D  
Move  
0
0
H:X (H:X) + 1 (IX+D, DIX+)  
X:A (X) × (A)  
MUL  
Unsigned multiply  
0 INH  
42  
5
NEG opr  
NEGA  
NEGX  
NEG opr,X  
NEG ,X  
NEG opr,SP  
DIR  
INH  
INH  
IX1  
IX  
30  
40  
50  
60  
70  
dd  
ff  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
Negate (Two’s Complement)  
SP1  
9E60 ff  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
1
3
A (A[3:0]:A[7:4])  
62  
ORA #opr  
ORA opr  
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
AA  
BA  
CA  
DA  
EA  
FA  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Inclusive OR A and M  
A (A) | (M)  
0
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
SP (SP + 1); Pull (A)  
– INH  
– INH  
– INH  
– INH  
87  
8B  
89  
86  
2
2
2
2
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
65  
Central Processor Unit (CPU)  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PULH  
Pull H from Stack  
Pull X from Stack  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
8A  
88  
2
2
PULX  
ROL opr  
ROLA  
ROLX  
ROL opr,X  
ROL ,X  
ROL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
39  
49  
59  
69  
79  
dd  
ff  
4
1
1
4
3
5
C
Rotate Left through Carry  
Rotate Right through Carry  
b7  
b0  
SP1  
9E69 ff  
ROR opr  
RORA  
RORX  
ROR opr,X  
ROR ,X  
ROR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
36  
46  
56  
66  
76  
dd  
4
1
1
4
3
5
C
ff  
b7  
b0  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
INH  
80  
81  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2  
B2  
C2  
D2  
E2  
F2  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
IX2  
IX1  
A (A) – (M) – (C)  
IX  
SP1  
SP2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
STA opr  
DIR  
EXT  
IX2  
– IX1  
IX  
B7  
C7  
D7  
E7  
F7  
dd  
3
4
4
3
2
4
5
hh ll  
ee ff  
ff  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
– DIR  
– INH  
35  
8E  
dd  
4
1
Enable Interrupts, Stop Processing,  
Refer to MCU Documentation  
STOP  
I 0; Stop Processing  
MC68HC908AP A-Family Data Sheet, Rev. 3  
66  
Freescale Semiconductor  
Opcode Map  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
STX opr  
STX opr  
DIR  
EXT  
IX2  
– IX1  
IX  
BF  
CF  
DF  
EF  
FF  
dd  
3
4
4
3
2
4
5
hh ll  
ee ff  
ff  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A0  
B0  
C0  
D0  
E0  
F0  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Subtract  
A (A) – (M)  
↕ ↕ ↕  
9EE0 ff  
9ED0 ee ff  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
SWI  
Software Interrupt  
1
– INH  
83  
9
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
INH  
– INH  
– INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
A (CCR)  
TST opr  
TSTA  
TSTX  
TST opr,X  
TST ,X  
TST opr,SP  
DIR  
INH  
INH  
IX1  
IX  
3D  
4D  
5D  
6D  
7D  
dd  
ff  
3
1
1
3
2
4
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
SP1  
9E6D ff  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
(SP) (H:X) – 1  
I 0; Inhibit CPU clocking until  
WAIT  
Enable Interrupts; Wait for Interrupt  
0
– INH  
8F  
1
interrupted  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
67  
Central Processor Unit (CPU)  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
A
C
Accumulator  
Carry/borrow bit  
n
opr  
PC  
Any bit  
Operand (one or two bytes)  
Program counter  
CCR Condition code register  
dd Direct address of operand  
dd rr Direct address of operand and relative offset of branch instruction  
DD  
DIR  
DIX+ Direct to indexed with post increment addressing mode  
ee ff High and low bytes of offset in indexed, 16-bit offset addressing  
EXT Extended addressing mode  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
rel  
rr  
Direct to direct addressing mode  
Direct addressing mode  
Relative program counter offset byte  
Relative program counter offset byte  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
ff  
H
H
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
SP  
U
V
Stack pointer  
Undefined  
Overflow bit  
hh ll  
I
High and low bytes of operand address in extended addressing  
Interrupt mask  
X
Z
Index register low byte  
Zero bit  
ii  
Immediate operand byte  
&
Logical AND  
IMD  
Immediate source to direct destination addressing mode  
|
Logical OR  
IMM Immediate addressing mode  
Logical EXCLUSIVE OR  
Contents of  
INH  
IX  
IX+  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
( )  
–( ) Negation (two’s complement)  
#
«
?
Immediate value  
Sign extend  
Loaded with  
If  
IX+D Indexed with post increment to direct addressing mode  
IX1 Indexed, 8-bit offset addressing mode  
IX1+ Indexed, 8-bit offset, post increment addressing mode  
IX2  
M
N
Indexed, 16-bit offset addressing mode  
Memory location  
Negative bit  
:
Concatenated with  
Set or cleared  
Not affected  
MC68HC908AP A-Family Data Sheet, Rev. 3  
68  
Freescale Semiconductor  
Table 4-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
1
1
2
IX1 3 SP1 1 IX  
5
1
1
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
4
4
4
4
4
4
4
4
4
4
4
SP2 2 IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1 1 IX  
3
BRN  
REL 3 DIR  
5
4
4
6
4
4
3
BLT  
2
CMP  
3
CMP  
4
CMP  
EXT 3 IX2  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
CMP  
5
CMP  
SP2 2 IX1  
5
SBC  
SP2 2 IX1  
5
CPX  
SP2 2 IX1  
5
AND  
SP2 2 IX1  
5
BIT  
SP2 2 IX1  
5
LDA  
SP2 2 IX1  
5
STA  
SP2 2 IX1  
5
EOR  
SP2 2 IX1  
3
CMP  
4
CMP  
SP1 1 IX  
4
SBC  
SP1 1 IX  
4
CPX  
SP1 1 IX  
4
AND  
SP1 1 IX  
4
BIT  
SP1 1 IX  
4
LDA  
SP1 1 IX  
4
STA  
SP1 1 IX  
4
EOR  
SP1 1 IX  
2
CMP  
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
CBEQ  
RTS  
3
DIR  
5
2
DIR  
4
3
IMM 3 IMM 3 IX1+  
4
SP1 2 IX+  
INH  
REL 2 IMM 2 DIR  
3
5
7
3
2
DAA  
3
BGT  
2
SBC  
3
SBC  
4
SBC  
3
SBC  
2
SBC  
BRSET1 BSET1  
BHI  
MUL  
INH  
DIV  
INH  
NSA  
3
DIR  
5
2
DIR  
4
REL  
1
1
1
2
2
3
2
2
2
2
2
INH  
1
INH  
3
REL 2 IMM 2 DIR  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
3
BLE  
2
CPX  
3
CPX  
4
CPX  
3
CPX  
2
CPX  
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
COM  
SWI  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1 1 IX  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
LSR  
SP1 1 IX  
3
LSR  
2
2
2
AND  
IMM 2 DIR  
3
AND  
4
AND  
3
AND  
2
AND  
4
BRSET2 BSET2  
TAP  
TXS  
3
DIR  
5
2
DIR  
4
1
3
1
INH  
INH  
2
2
2
2
2
2
2
2
4
3
4
4
1
2
2
BIT  
3
BIT  
4
BIT  
3
BIT  
2
BIT  
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
CPHX  
TPA  
TSX  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
2
DIR  
3
INH  
INH  
IMM 2 DIR  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
LDA  
4
LDA  
3
LDA  
2
LDA  
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
SP1 1 IX  
5
ASR  
SP1 1 IX  
5
LSL  
SP1 1 IX  
5
ROL  
SP1 1 IX  
ROR  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
3
BEQ  
REL 2 DIR  
3
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
3
ASR  
1
3
STA  
4
STA  
3
STA  
2
STA  
7
BRCLR3 BCLR3  
TAX  
3
DIR  
5
2
DIR  
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
INH  
4
LSL  
3
LSL  
1
3
EOR  
4
EOR  
3
EOR  
2
EOR  
8
BRSET4 BSET4 BHCC  
CLC  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
INH  
4
ROL  
3
ROL  
1
3
ADC  
4
ADC  
5
ADC  
SP2 2 IX1  
5
ORA  
SP2 2 IX1  
5
ADD  
SP2 2 IX1  
3
ADC  
4
ADC  
SP1 1 IX  
4
ORA  
SP1 1 IX  
4
ADD  
SP1 1 IX  
2
ADC  
9
BRCLR4 BCLR4 BHCS  
SEC  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
INH  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
3
BMC  
REL 2 DIR  
4
DEC  
5
DEC  
SP1 1 IX  
3
DEC  
2
3
ORA  
4
ORA  
3
ORA  
2
ORA  
A
B
C
D
E
F
BRSET5 BSET5  
CLI  
3
DIR  
5
2
DIR  
4
INH  
5
3
3
5
6
4
2
3
ADD  
4
ADD  
3
ADD  
2
ADD  
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
DBNZ  
SEI  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
SP1 2 IX  
INH  
4
INC  
5
INC  
SP1 1 IX  
4
TST  
SP1 1 IX  
3
INC  
1
2
JMP  
4
JMP  
3
JMP  
2
BRSET6 BSET6  
INCA  
INCX  
INC  
RSP  
JMP  
3
DIR  
5
2
DIR  
4
INH  
1
INH  
1
IX1  
3
INH  
2
DIR  
4
2
2
IX1  
5
1
1
IX  
3
BMS  
3
TST  
2
TST  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
4
JSR  
IX  
2
LDX  
BRCLR6 BCLR6  
TSTA  
TSTX  
TST  
NOP  
JSR  
JSR  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
INH  
5
INH  
4
IX1  
4
INH  
2
2
2
IX1  
3
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
LDX  
SP2 2 IX1  
5
STX  
SP2 2 IX1  
4
LDX  
SP1 1 IX  
4
STX  
SP1 1 IX  
BRSET7 BSET7  
BIL  
MOV  
MOV  
MOV  
MOV  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
DD  
DIX+  
IMD  
3
2
IX+D  
1
1
4
4
3
3
3
CLR  
1
CLRA  
INH  
1
CLRX  
INH  
4
CLR  
SP1 1 IX  
2
CLR  
3
STX  
4
STX  
3
STX  
2
STX  
BRCLR7 BCLR7  
BIH  
CLR  
3
DIR  
2
DIR  
REL 2 DIR  
IX1  
3
1
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Central Processor Unit (CPU)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
70  
Freescale Semiconductor  
Chapter 5  
Oscillator (OSC)  
5.1 Introduction  
The oscillator module consist of three types of oscillator circuits:  
Internal oscillator  
RC oscillator  
1MHz to 8MHz crystal (x-tal) oscillator  
The reference clock for the CGM and other MCU sub-systems is selected by programming the mask  
option register located at $FFCF.  
The reference clock for the timebase module (TBM) is selected by the two bits, OSCCLK1 and OSCCLK0,  
in the CONFIG2 register.  
The internal oscillator runs continuously after a POR or reset, and is always available. The RC and crystal  
oscillator cannot run concurrently; one is disabled while the other is selected; because the RC and x-tal  
circuits share the same OSC1 pin.  
NOTE  
The oscillator circuits are powered by the on-chip V  
regulator,  
REG  
therefore, the output swing on OSC1 and OSC2 is from V to V  
.
SS  
REG  
Figure 5-1. shows the block diagram of the oscillator module.  
5.2 Clock Selection  
Reference clocks are selectable for the following sub-systems:  
CGMXCLK and CGMRCLK — Reference clock for clock generator module (CGM) and other MCU  
sub-systems other than TBM and COP. This is the main reference clock for the MCU.  
OSCCLK — Reference clock for timebase module (TBM).  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
71  
 
Oscillator (OSC)  
To CGM and others To CGM PLL  
CGMXCLK CGMRCLK  
To TBM  
OSCCLK  
MOR  
CONFIG2  
OSCCLK1  
OSCCLK0  
OSCSEL1  
OSCSEL0  
MUX  
MUX  
X
RC  
I
X
RC  
I
To SIM  
(and COP)  
XCLK  
ICLK  
RCCLK  
X-TAL OSCILLATOR  
RC OSCILLATOR  
INTERNAL OSCILLATOR  
BUS CLOCK  
From SIM  
OSC1  
OSC2  
Figure 5-1. Oscillator Module Block Diagram  
5.2.1 CGM Reference Clock Selection  
The clock generator module (CGM) reference clock (CGMXCLK) is the reference clock input to the MCU.  
It is selected by programming two bits in a FLASH memory location; the mask option register (MOR), at  
$FFCF. See 3.5 Mask Option Register (MOR).  
Address: $FFCF  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
OSCSEL1 OSCSEL0  
R
R
R
R
R
Reset:  
Erased:  
Unaffected by reset  
1
1
1
1
1
1
1
1
R
= Reserved  
Figure 5-2. Mask Option Register (MOR)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
72  
Freescale Semiconductor  
Clock Selection  
Table 5-1. CGMXCLK Clock Selection  
OSCSEL1  
OSCSEL0  
CGMXCLK  
OSC2 Pin  
Comments  
0
0
0
1
Not used  
fBUS  
ICLK  
Internal oscillator generates the CGMXCLK.  
RC oscillator generates the CGMXCLK.  
Internal oscillator is available after each POR or  
reset.  
fBUS  
1
1
0
1
RCCLK  
XCLK  
Inverting  
output of  
X-TAL  
X-tal oscillator generates the CGMXCLK.  
Internal oscillator is available after each POR or  
reset.  
NOTE  
The internal oscillator is a free running oscillator and is available after each  
POR or reset. It is turned-off in stop mode by setting the STOP_ICLKDIS  
bit in CONFIG2.  
5.2.2 TBM Reference Clock Selection  
The timebase module reference clock (OSCCLK) is selected by configuring two bits in the CONFIG2  
register, at $001D. See Chapter 3 Configuration & Mask Option Registers (CONFIG & MOR).  
Address:  
$001D  
Bit 7  
6
5
4
3
2
0
1
0
Bit 0  
Read:  
Write:  
Reset:  
STOP_  
ICLKDIS  
STOP_ STOP_  
RCLKEN XCLKEN  
SCIBD-  
SRC  
OSCCLK1 OSCCLK0  
0
0
0
0
0
0
0
0
Figure 5-3. Configuration Register 2 (CONFIG2)  
Table 5-2. Timebase Module Reference Clock Selection  
OSCCLK1  
OSCCLK0  
Timebase Clock Source  
Internal oscillator (ICLK)  
RC oscillator (RCCLK)  
X-tal oscillator (XCLK)  
Not used  
0
0
1
1
0
1
0
1
NOTE  
The RCCLK or XCLK is only available if that clock is selected as the CGM  
reference clock, whereas the ICLK is always available.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
73  
 
Oscillator (OSC)  
5.3 Internal Oscillator  
The internal oscillator clock (ICLK), with a frequency of f  
, is a free running clock that requires no  
ICLK  
external components. It can be selected as the CGMXCLK for the CGM and MCU sub-systems; and the  
OSCCLK clock for the TBM. The ICLK is also the reference clock input to the computer operating properly  
(COP) module.  
Due to the simplicity of the internal oscillator, it does not have the accuracy and stability of the RC  
oscillator or the x-tal oscillator. Therefore, the ICLK is not suitable where an accurate bus clock is required  
and it should not be used as the CGMRCLK to the CGM PLL.  
The internal oscillator by default is always available and is free running after POR or reset. It can be  
turned-off in stop mode by setting the STOP_ICLKDIS bit before executing the STOP instruction.  
Figure 5-4 shows the logical representation of components of the internal oscillator circuitry.  
From SIM  
SIMOSCEN  
From SIM  
BUS CLOCK  
To Clock Selection MUX  
and COP  
ICLK  
CONFIG2  
EN  
INTERNAL OSCILLATOR  
STOP_ICLKDIS  
MCU  
OSC2  
Figure 5-4. Internal Oscillator  
MC68HC908AP A-Family Data Sheet, Rev. 3  
74  
Freescale Semiconductor  
RC Oscillator  
5.4 RC Oscillator  
The RC oscillator circuit is designed for use with an external resistor and a capacitor.  
In its typical configuration, the RC oscillator requires two external components, one R and one C.  
Component values should have a tolerance of 1% or less, to obtain a clock source with less than 10%  
tolerance. The oscillator configuration uses two components:  
C
R
EXT  
EXT  
To Clock Selection MUX  
RCCLK  
From SIM  
SIMOSCEN  
From SIM  
BUS CLOCK  
CONFIG2  
EN  
STOP_RCLKEN  
RC OSCILLATOR  
MCU  
OSC1  
OSC2  
See Chapter 22 for component value requirements.  
V
REG  
R
C
EXT  
EXT  
Figure 5-5. RC Oscillator  
5.5 X-tal Oscillator  
The crystal (x-tal) oscillator circuit is designed for use with an external 1–8MHz crystal to provide an  
accurate clock source.  
In its typical configuration, the x-tal oscillator is connected in a Pierce oscillator configuration, as shown  
in Figure 5-6. This figure shows only the logical representation of the internal components and may not  
represent actual circuitry. The oscillator configuration uses five components:  
Crystal, X  
Fixed capacitor, C  
Tuning capacitor, C (can also be a fixed capacitor)  
Feedback resistor, RB  
1
1
2
Series resistor, RS (optional)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
75  
Oscillator (OSC)  
From SIM  
SIMOSCEN  
To Clock Selection MUX  
XCLK  
CONFIG2  
STOP_XCLKEN  
MCU  
OSC1  
OSC2  
R
X
B
RS  
1
See Chapter 22 for component value requirements.  
1–8MHz  
C
C
2
1
Figure 5-6. Crystal Oscillator  
The series resistor (RS) is included in the diagram to follow strict Pierce oscillator guidelines and may not  
be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal  
manufacturer’s data for more information.  
5.6 I/O Signals  
The following paragraphs describe the oscillator I/O signals.  
5.6.1 Crystal Amplifier Input Pin (OSC1)  
OSC1 pin is an input to the crystal oscillator amplifier or the input to the RC oscillator circuit.  
5.6.2 Crystal Amplifier Output Pin (OSC2)  
When the x-tal oscillator is selected, OSC2 pin is the output of the crystal oscillator inverting amplifier.  
When the RC oscillator or internal oscillator is selected, OSC2 pin is the output of the internal bus clock.  
5.6.3 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal from the system integration module (SIM) enables/disables the x-tal oscillator, the  
RC-oscillator, or the internal oscillator circuit.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
76  
Freescale Semiconductor  
Low Power Modes  
5.6.4 CGM Oscillator Clock (CGMXCLK)  
The CGMXCLK clock is output from the x-tal oscillator, RC oscillator or the internal oscillator. This clock  
drives to CGM and other MCU sub-systems.  
5.6.5 CGM Reference Clock (CGMRCLK)  
This is buffered signal of CGMXCLK, it is used by the CGM as the phase-locked-loop (PLL) reference  
clock.  
5.6.6 Oscillator Clock to Time Base Module (OSCCLK)  
The OSCCLK is the reference clock that drives the timebase module. See Chapter 10 Timebase Module  
(TBM).  
5.7 Low Power Modes  
The WAIT and STOP instructions put the MCU in low-power consumption standby modes.  
5.7.1 Wait Mode  
The WAIT instruction has no effect on the oscillator module. CGMXCLK continues to drive to the clock  
generator module, and OSCCLK continues to drive the timebase module.  
5.7.2 Stop Mode  
The STOP instruction disables the x-tal or the RC oscillator circuit, and hence the CGMXCLK clock stops  
running. For continuous x-tal or RC oscillator operation in stop mode, set the STOP_XCLKEN (for x-tal)  
or STOP_RCLKEN (for RC) bit to logic 1 before entering stop mode.  
The internal oscillator clock continues operation in stop mode. It can be disabled by setting the  
STOP_ICLKDIS bit to logic 1 before entering stop mode.  
5.8 Oscillator During Break Mode  
The oscillator continues to drive CGMXCLK when the device enters the break state.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
77  
Oscillator (OSC)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
78  
Freescale Semiconductor  
Chapter 6  
Clock Generator Module (CGM)  
6.1 Introduction  
This section describes the clock generator module (CGM). The CGM generates the base clock signal,  
CGMOUT, which is based on either the oscillator clock divided by two or the divided phase-locked loop  
(PLL) clock, CGMPCLK, divided by two. CGMOUT is the clock from which the SIM derives the system  
clocks, including the bus clock, which is at a frequency of CGMOUT 2.  
The PLL is a frequency generator designed for use with a crystal (1 to 8 MHz) to generate a base  
frequency and dividing to a maximum bus frequency of 8MHz.  
6.2 Features  
Features of the CGM include:  
Phase-locked loop with output frequency in integer multiples of an integer dividend of the crystal  
reference  
Low-frequency crystal operation with low-power operation and high-output frequency resolution  
Programmable prescaler for power-of-two increases in frequency  
Programmable hardware voltage-controlled oscillator (VCO) for low-jitter operation  
Automatic bandwidth control mode for low-jitter operation  
Automatic frequency lock detector  
CPU interrupt on entry or exit from locked condition  
Configuration register bit to allow oscillator operation during stop mode  
6.3 Functional Description  
The CGM consists of three major sub-modules:  
Oscillator module — The oscillator module generates the constant reference frequency clock,  
CGMRCLK (buffered CGMXCLK).  
Phase-locked loop (PLL) — The PLL generates the programmable VCO frequency clock,  
CGMVCLK, and the divided VCO clock, CGMPCLK.  
Base clock selector circuit — This software-controlled circuit selects either CGMXCLK divided by  
two or the divided VCO clock, CGMPCLK, divided by two as the base clock, CGMOUT. The SIM  
derives the system clocks from either CGMOUT or CGMXCLK.  
Figure 6-1 shows the structure of the CGM.  
Figure 6-2 is a summary of the CGM registers.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
79  
 
Clock Generator Module (CGM)  
OSCILLATOR (OSC) MODULE  
See Chapter 5 Oscillator (OSC).  
OSC2  
OSC1  
ICLK  
To SIM (and COP)  
To Timebase Module (TBM)  
To ADC  
OSCCLK  
CGMXCLK  
CGMRCLK  
INTERNAL OSCILLATOR  
RC OSCILLATOR  
MUX  
OSCSEL[1:0]  
OSCCLK[1:0]  
CRYSTAL OSCILLATOR  
SIMOSCEN  
From SIM  
PHASE-LOCKED LOOP (PLL)  
CGMRDV  
CGMRCLK  
CGMXFC  
REFERENCE  
DIVIDER  
CGMOUT  
To SIM  
A
B
CLOCK  
SELECT  
CIRCUIT  
1
÷ 2  
BCS  
S*  
R
SIMDIV2  
From SIM  
*WHEN S = 1,  
CGMOUT = B  
RDS[3:0]  
V
V
SSA  
DDA  
VPR[1:0]  
VRS[7:0]  
L
E
2
CGMPCLK  
VOLTAGE  
CONTROLLED  
OSCILLATOR  
PHASE  
DETECTOR  
LOOP  
FILTER  
PLL ANALOG  
AUTOMATIC  
MODE  
CONTROL  
CGMINT  
To SIM  
LOCK  
DETECTOR  
INTERRUPT  
CONTROL  
LOCK  
AUTO  
ACQ  
PLLIE  
PLLF  
MUL[11:0]  
PRE[1:0]  
P
N
2
CGMVCLK  
CGMVDV  
FREQUENCY  
DIVIDER  
FREQUENCY  
DIVIDER  
Figure 6-1. CGM Block Diagram  
MC68HC908AP A-Family Data Sheet, Rev. 3  
80  
Freescale Semiconductor  
Functional Description  
Addr.  
Register Name  
Bit 7  
PLLIE  
0
6
5
PLLON  
1
4
3
2
1
Bit 0  
VPR0  
0
Read:  
Write:  
Reset:  
Read:  
PLLF  
BCS  
PRE1  
PRE0  
VPR1  
PLL Control Register  
(PTCL)  
$0036  
0
0
0
0
0
0
0
0
0
LOCK  
PLL Bandwidth Control  
AUTO  
ACQ  
R
$0037  
Register Write:  
(PBWC)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
MUL11  
0
0
MUL10  
0
0
MUL9  
0
PLL Multiplier Select  
MUL8  
$0038  
Register High Write:  
(PMSH)  
Reset:  
Read:  
0
0
0
0
0
MUL0  
0
PLL Multiplier Select  
MUL7  
0
MUL6  
1
MUL5  
0
MUL4  
0
MUL3  
0
MUL2  
0
MUL1  
0
$0039  
Register Low Write:  
(PMSL)  
Reset:  
Read:  
PLL VCO Range Select  
VRS7  
VRS6  
VRS5  
VRS4  
VRS3  
0
VRS2  
0
VRS1  
0
VRS0  
0
$003A  
$003B  
NOTES:  
Register Write:  
(PMRS)  
Reset:  
Read:  
0
0
1
0
0
0
0
0
PLL Reference Divider  
RDS3  
RDS2  
RDS1  
0
RDS0  
1
Select Register Write:  
(PMDS)  
Reset:  
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
1. When AUTO = 0, PLLIE is forced clear and is read-only.  
2. When AUTO = 0, PLLF and LOCK read as clear.  
3. When AUTO = 1, ACQ is read-only.  
4. When PLLON = 0 or VRS7:VRS0 = $0, BCS is forced clear and is read-only.  
5. When PLLON = 1, the PLL programming register is read-only.  
6. When BCS = 1, PLLON is forced set and is read-only.  
Figure 6-2. CGM I/O Register Summary  
6.3.1 Oscillator Module  
The oscillator module provides two clock outputs CGMXCLK and CGMRCLK to the CGM module.  
CGMXCLK when selected, is driven to SIM module to generate the system bus clock. CGMRCLK is used  
by the phase-lock-loop to provide a higher frequency system bus clock. The oscillator module also  
provides the reference clock for the timebase module (TBM). See Chapter 5 Oscillator (OSC) for detailed  
oscillator circuit description. See Chapter 10 Timebase Module (TBM) for detailed description on TBM.  
6.3.2 Phase-Locked Loop Circuit (PLL)  
The PLL is a frequency generator that can operate in either acquisition mode or tracking mode, depending  
on the accuracy of the output frequency. The PLL can change between acquisition and tracking modes  
either automatically or manually.  
6.3.3 PLL Circuits  
The PLL consists of these circuits:  
Voltage-controlled oscillator (VCO)  
Reference divider  
Frequency pre-scaler  
Modulo VCO frequency divider  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
81  
 
Clock Generator Module (CGM)  
Phase detector  
Loop filter  
Lock detector  
The operating range of the VCO is programmable for a wide range of frequencies and for maximum  
immunity to external noise, including supply and CGMXFC noise. The VCO frequency is bound to a range  
from roughly one-half to twice the center-of-range frequency, f  
. Modulating the voltage on the  
VRS  
CGMXFC pin changes the frequency within this range. By design, f  
is equal to the nominal  
VRS  
center-of-range frequency, f  
, (125 kHz) times a linear factor, L, and a power-of-two factor, E, or  
NOM  
E
(L × 2 )f  
.
NOM  
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK. CGMRCLK runs at a frequency,  
, and is fed to the PLL through a programmable modulo reference divider, which divides f by a  
f
RCLK  
RCLK  
factor, R. The divider’s output is the final reference clock, CGMRDV, running at a frequency,  
f
= f /R. With an external crystal  
RDV  
RCLK  
(1MHz–8MHz), always set R = 1 for specified performance. With an external high-frequency clock  
source, use R to divide the external frequency to between 1MHz and 8MHz.  
The VCO’s output clock, CGMVCLK, running at a frequency, f  
, is fed back through a programmable  
VCLK  
pre-scaler divider and a programmable modulo divider. The pre-scaler divides the VCO clock by a  
power-of-two factor P (the CGMPCLK) and the modulo divider reduces the VCO clock by a factor, N. The  
P
dividers’ output is the VCO feedback clock, CGMVDV, running at a frequency, f  
6.3.6 Programming the PLL for more information.)  
= f  
/(N × 2 ). (See  
VDV  
VCLK  
The phase detector then compares the VCO feedback clock, CGMVDV, with the final reference clock,  
CGMRDV. A correction pulse is generated based on the phase difference between the two signals. The  
loop filter then slightly alters the DC voltage on the external capacitor connected to CGMXFC based on  
the width and direction of the correction pulse. The filter can make fast or slow corrections depending on  
its mode, described in 6.3.4 Acquisition and Tracking Modes. The value of the external capacitor and the  
reference frequency determines the speed of the corrections and the stability of the PLL.  
The lock detector compares the frequencies of the VCO feedback clock, CGMVDV, and the final  
reference clock, CGMRDV. Therefore, the speed of the lock detector is directly proportional to the final  
reference frequency, f  
this comparison.  
. The circuit determines the mode of the PLL and the lock condition based on  
RDV  
6.3.4 Acquisition and Tracking Modes  
The PLL filter is manually or automatically configurable into one of two operating modes:  
Acquisition mode — In acquisition mode, the filter can make large frequency corrections to the  
VCO. This mode is used at PLL start up or when the PLL has suffered a severe noise hit and the  
VCO frequency is far off the desired frequency. When in acquisition mode, the ACQ bit is clear in  
the PLL bandwidth control register. (See 6.5.2 PLL Bandwidth Control Register.)  
Tracking mode — In tracking mode, the filter makes only small corrections to the frequency of the  
VCO. PLL jitter is much lower in tracking mode, but the response to noise is also slower. The PLL  
enters tracking mode when the VCO frequency is nearly correct, such as when the PLL is selected  
as the base clock source. (See 6.3.8 Base Clock Selector Circuit.) The PLL is automatically in  
tracking mode when not in acquisition mode or when the ACQ bit is set.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
82  
Freescale Semiconductor  
 
Functional Description  
6.3.5 Manual and Automatic PLL Bandwidth Modes  
The PLL can change the bandwidth or operational mode of the loop filter manually or automatically.  
Automatic mode is recommended for most users.  
In automatic bandwidth control mode (AUTO = 1), the lock detector automatically switches between  
acquisition and tracking modes. Automatic bandwidth control mode also is used to determine when the  
VCO clock, CGMVCLK, is safe to use as the source for the base clock, CGMOUT. (See 6.5.2 PLL  
Bandwidth Control Register.) If PLL interrupts are enabled, the software can wait for a PLL interrupt  
request and then check the LOCK bit. If interrupts are disabled, software can poll the LOCK bit  
continuously (during PLL start-up, usually) or at periodic intervals. In either case, when the LOCK bit is  
set, the VCO clock is safe to use as the source for the base clock. (See 6.3.8 Base Clock Selector Circuit.)  
If the VCO is selected as the source for the base clock and the LOCK bit is clear, the PLL has suffered a  
severe noise hit and the software must take appropriate action, depending on the application. (See 6.6  
Interrupts for information and precautions on using interrupts.)  
The following conditions apply when the PLL is in automatic bandwidth control mode:  
The ACQ bit (See 6.5.2 PLL Bandwidth Control Register.) is a read-only indicator of the mode of  
the filter. (See 6.3.4 Acquisition and Tracking Modes.)  
The ACQ bit is set when the VCO frequency is within a certain tolerance and is cleared when the  
VCO frequency is out of a certain tolerance. (See 6.8 Acquisition/Lock Time Specifications for  
more information.)  
The LOCK bit is a read-only indicator of the locked state of the PLL.  
The LOCK bit is set when the VCO frequency is within a certain tolerance and is cleared when the  
VCO frequency is out of a certain tolerance. (See 6.8 Acquisition/Lock Time Specifications for  
more information.)  
CPU interrupts can occur if enabled (PLLIE = 1) when the PLL’s lock condition changes, toggling  
the LOCK bit. (See 6.5.1 PLL Control Register.)  
The PLL also may operate in manual mode (AUTO = 0). Manual mode is used by systems that do not  
require an indicator of the lock condition for proper operation. Such systems typically operate well below  
f
.
BUSMAX  
The following conditions apply when in manual mode:  
ACQ is a writable control bit that controls the mode of the filter. Before turning on the PLL in manual  
mode, the ACQ bit must be clear.  
Before entering tracking mode (ACQ = 1), software must wait a given time, tACQ (See 6.8  
Acquisition/Lock Time Specifications.), after turning on the PLL by setting PLLON in the PLL  
control register (PCTL).  
Software must wait a given time, tAL, after entering tracking mode before selecting the PLL as the  
clock source to CGMOUT (BCS = 1).  
The LOCK bit is disabled.  
CPU interrupts from the CGM are disabled.  
6.3.6 Programming the PLL  
The following procedure shows how to program the PLL.  
NOTE  
The round function in the following equations means that the real number  
should be rounded to the nearest integer number.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
83  
 
Clock Generator Module (CGM)  
1. Choose the desired bus frequency, f  
solve for the other.  
, or the desired VCO frequency, f  
; and then  
VCLKDES  
BUSDES  
The relationship between f  
and f  
is governed by the equation:  
BUS  
VCLK  
P
P
f
= 2 × f  
= 2 × 4 × f  
VCLK  
CGMPCLK  
BUS  
where P is the power of two multiplier, and can be 0, 1, 2, or 3  
2. Choose a practical PLL reference frequency, f  
, and the reference clock divider, R. Typically,  
RCLK  
the reference is 4MHz and  
R = 1.  
Frequency errors to the PLL are corrected at a rate of f  
/R. For stability and lock time reduction,  
RCLK  
this rate must be as fast as possible. The VCO frequency must be an integer multiple of this rate.  
The relationship between the VCO frequency, f  
, and the reference frequency, f  
, is  
VCLK  
RCLK  
P
2 N  
= ----------- (f  
R
f
)
VCLK  
RCLK  
where N is the integer range multiplier, between 1 and 4095.  
In cases where desired bus frequency has some tolerance, choose f  
to a value determined  
RCLK  
either by other module requirements (such as modules which are clocked by CGMXCLK), cost  
requirements, or ideally, as high as the specified range allows. See Chapter 22 Electrical  
Specifications.  
Choose the reference divider, R = 1.  
When the tolerance on the bus frequency is tight, choose f  
to an integer divisor of f  
,
RCLK  
BUSDES  
and R = 1. If f  
cannot meet this requirement, use the following equation to solve for R with  
RCLK  
practical choices of f  
, and choose the f  
that gives the lowest R.  
RCLK  
RCLK  
f
f
VCLKDES  
VCLKDES  
R = round R  
×
integer  
-------------------------  
-------------------------  
MAX  
f
f
RCLK  
RCLK  
3. Calculate N:  
R × f  
VCLKDES  
N = round  
------------------------------------  
P
f
× 2  
RCLK  
4. Calculate and verify the adequacy of the VCO and bus frequencies f  
and f  
.
VCLK  
BUS  
P
2 N  
R
f
= ----------- (f  
)
RCLK  
VCLK  
f
VCLK  
P
f
=
-----------  
BUS  
2 × 4  
MC68HC908AP A-Family Data Sheet, Rev. 3  
84  
Freescale Semiconductor  
Functional Description  
5. Select the VCO’s power-of-two range multiplier E, according to this table:  
Frequency Range  
E
0
1
2
0 < fVCLK < 9,830,400  
9,830,400 fVCLK < 19,660,800  
19,660,800 fVCLK < 39,321,600  
NOTE: Do not program E to a value of 3.  
6. Select a VCO linear range multiplier, L, where f  
= 125kHz  
NOM  
f
VCLK  
--------------------------  
E
L = round  
2 × f  
NOM  
7. Calculate and verify the adequacy of the VCO programmed center-of-range frequency, f  
. The  
VRS  
center-of-range frequency is the midpoint between the minimum and maximum frequencies  
attainable by the PLL.  
E
f
= (L × 2 )f  
VRS  
NOM  
For proper operation,  
E
f
× 2  
NOM  
--------------------------  
f
f  
VCLK  
VRS  
2
8. Verify the choice of P, R, N, E, and L by comparing f  
to f  
and f  
. For proper  
VCLK  
VRS  
VCLKDES  
operation, f  
must be within the application’s tolerance of f  
, and f  
must be as close  
VRS  
VCLK  
VCLKDES  
as possible to f  
VCLK.  
NOTE  
Exceeding the recommended maximum bus frequency or VCO frequency  
can crash the MCU.  
9. Program the PLL registers accordingly:  
a. In the PRE bits of the PLL control register (PCTL), program the binary equivalent of P.  
b. In the VPR bits of the PLL control register (PCTL), program the binary equivalent of E.  
c. In the PLL multiplier select register low (PMSL) and the PLL multiplier select register high  
(PMSH), program the binary equivalent of N.  
d. In the PLL VCO range select register (PMRS), program the binary coded equivalent of L.  
e. In the PLL reference divider select register (PMDS), program the binary coded equivalent  
of R.  
NOTE  
The values for P, E, N, L, and R can only be programmed when the PLL is  
off (PLLON = 0).  
Table 6-1 provides numeric examples (numbers are in hexadecimal notation):  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
85  
Clock Generator Module (CGM)  
Table 6-1. Numeric Examples  
fBUS  
fRCLK  
CGMVCLK  
32 MHz  
CGMPCLK  
32 MHz  
R
1
1
1
1
1
1
1
1
N
10  
8
P
0
0
0
0
0
0
0
0
E
2
1
2
1
2
1
2
2
L
8.0 MHz  
4.0 MHz  
2 MHz  
2 MHz  
40  
40  
40  
40  
40  
40  
3C  
27  
16 MHz  
16 MHz  
32 MHz  
32 MHz  
8.0 MHz  
4 MHz  
8
16 MHz  
16 MHz  
4.0 MHz  
4 MHz  
4
32 MHz  
32 MHz  
8.0 MHz  
8 MHz  
4
16 MHz  
16 MHz  
4.0 MHz  
8 MHz  
2
29.4912 MHz  
19.6608 MHz  
29.4912 MHz  
19.6608 MHz  
7.3728 MHz  
4.9152 MHz  
4.9152 MHz  
4.9152 MHz  
6
4
6.3.7 Special Programming Exceptions  
The programming method described in 6.3.6 Programming the PLL does not account for three possible  
exceptions. A value of 0 for R, N, or L is meaningless when used in the equations given. To account for  
these exceptions:  
A 0 value for R or N is interpreted exactly the same as a value of 1.  
A 0 value for L disables the PLL and prevents its selection as the source for the base clock.  
(See 6.3.8 Base Clock Selector Circuit.)  
6.3.8 Base Clock Selector Circuit  
This circuit is used to select either the oscillator clock, CGMXCLK, or the divided VCO clock, CGMPCLK,  
as the source of the base clock, CGMOUT. The two input clocks go through a transition control circuit that  
waits up to three CGMXCLK cycles and three CGMPCLK cycles to change from one clock source to the  
other. During this time, CGMOUT is held in stasis. The output of the transition control circuit is then  
divided by two to correct the duty cycle. Therefore, the bus clock frequency, which is one-half of the base  
clock frequency, is one-fourth the frequency of the selected clock (CGMXCLK or CGMPCLK).  
The BCS bit in the PLL control register (PCTL) selects which clock drives CGMOUT. The divided VCO  
clock cannot be selected as the base clock source if the PLL is not turned on. The PLL cannot be turned  
off if the divided VCO clock is selected. The PLL cannot be turned on or off simultaneously with the  
selection or deselection of the divided VCO clock. The divided VCO clock also cannot be selected as the  
base clock source if the factor L is programmed to a 0. This value would set up a condition inconsistent  
with the operation of the PLL, so that the PLL would be disabled and the oscillator clock would be forced  
as the source of the base clock.  
6.3.9 CGM External Connections  
In its typical configuration, the CGM requires up to four external components.  
Figure 6-3 shows the external components for the PLL:  
Bypass capacitor, C  
Filter network  
BYP  
MC68HC908AP A-Family Data Sheet, Rev. 3  
86  
Freescale Semiconductor  
 
 
I/O Signals  
Care should be taken with PCB routing in order to minimize signal cross talk and noise. (See 6.8  
Acquisition/Lock Time Specifications for routing information, filter network and its effects on PLL  
performance.)  
MCU  
CGMXFC  
V
V
DDA  
SSA  
V
DD  
1 kΩ  
C
0.1 µF  
BYP  
10 nF  
0.22 µF  
Note: Filter network in box can be replaced with a 0.47µF capacitor, but will degrade stability.  
Figure 6-3. CGM External Connections  
6.4 I/O Signals  
The following paragraphs describe the CGM I/O signals.  
6.4.1 External Filter Capacitor Pin (CGMXFC)  
The CGMXFC pin is required by the loop filter to filter out phase corrections. An external filter network is  
connected to this pin. (See Figure 6-3.)  
NOTE  
To prevent noise problems, the filter network should be placed as close to  
the CGMXFC pin as possible, with minimum routing distances and no  
routing of other signals across the network.  
6.4.2 PLL Analog Power Pin (V  
)
DDA  
V
is a power pin used by the analog portions of the PLL. Connect the V  
pin to the same voltage  
DDA  
DDA  
potential as the V pin.  
DD  
NOTE  
carefully for maximum noise immunity and place bypass  
Route V  
DDA  
capacitors as close as possible to the package.  
6.4.3 PLL Analog Ground Pin (V  
)
SSA  
V
is a ground pin used by the analog portions of the PLL. Connect the V  
pin to the same voltage  
SSA  
SSA  
potential as the V pin.  
SS  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
87  
Clock Generator Module (CGM)  
NOTE  
Route V  
carefully for maximum noise immunity and place bypass  
SSA  
capacitors as close as possible to the package.  
6.4.4 Oscillator Output Frequency Signal (CGMXCLK)  
CGMXCLK is the oscillator output signal. It runs at the full speed of the oscillator, and is generated directly  
from the crystal oscillator circuit, the RC oscillator circuit, or the internal oscillator circuit.  
6.4.5 CGM Reference Clock (CGMRCLK)  
CGMRCLK is a buffered version of CGMXCLK, this clock is the reference clock for the phase-locked-loop  
circuit.  
6.4.6 CGM VCO Clock Output (CGMVCLK)  
CGMVCLK is the clock output from the VCO.  
6.4.7 CGM Base Clock Output (CGMOUT)  
CGMOUT is the clock output of the CGM. This signal goes to the SIM, which generates the MCU clocks.  
CGMOUT is a 50 percent duty cycle clock running at twice the bus frequency. CGMOUT is software  
programmable to be either the oscillator output, CGMXCLK, divided by two or the divided VCO clock,  
CGMPCLK, divided by two.  
6.4.8 CGM CPU Interrupt (CGMINT)  
CGMINT is the interrupt signal generated by the PLL lock detector.  
6.5 CGM Registers  
The following registers control and monitor operation of the CGM:  
PLL control register (PCTL)  
(See 6.5.1 PLL Control Register.)  
PLL bandwidth control register (PBWC)  
(See 6.5.2 PLL Bandwidth Control Register.)  
PLL multiplier select registers (PMSH and PMSL)  
(See 6.5.3 PLL Multiplier Select Registers.)  
PLL VCO range select register (PMRS)  
(See 6.5.4 PLL VCO Range Select Register.)  
PLL reference divider select register (PMDS)  
(See 6.5.5 PLL Reference Divider Select Register.)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
88  
Freescale Semiconductor  
CGM Registers  
6.5.1 PLL Control Register  
The PLL control register (PCTL) contains the interrupt enable and flag bits, the on/off switch, the base  
clock selector bit, the prescaler bits, and the VCO power-of-two range selector bits.  
Address:  
$0036  
Bit 7  
6
5
PLLON  
1
4
BCS  
0
3
PRE1  
0
2
PRE0  
0
1
VPR1  
0
Bit 0  
VPR0  
0
Read:  
Write:  
Reset:  
PLLF  
PLLIE  
0
0
= Unimplemented  
Figure 6-4. PLL Control Register (PCTL)  
PLLIE — PLL Interrupt Enable Bit  
This read/write bit enables the PLL to generate an interrupt request when the LOCK bit toggles, setting  
the PLL flag, PLLF. When the AUTO bit in the PLL bandwidth control register (PBWC) is clear, PLLIE  
cannot be written and reads as logic 0. Reset clears the PLLIE bit.  
1 = PLL interrupts enabled  
0 = PLL interrupts disabled  
PLLF — PLL Interrupt Flag Bit  
This read-only bit is set whenever the LOCK bit toggles. PLLF generates an interrupt request if the  
PLLIE bit also is set. PLLF always reads as logic 0 when the AUTO bit in the PLL bandwidth control  
register (PBWC) is clear. Clear the PLLF bit by reading the PLL control register. Reset clears the PLLF  
bit.  
1 = Change in lock condition  
0 = No change in lock condition  
NOTE  
Do not inadvertently clear the PLLF bit. Any read or read-modify-write  
operation on the PLL control register clears the PLLF bit.  
PLLON — PLL On Bit  
This read/write bit activates the PLL and enables the VCO clock, CGMVCLK. PLLON cannot be  
cleared if the VCO clock is driving the base clock, CGMOUT (BCS = 1). (See 6.3.8 Base Clock  
Selector Circuit.) Reset sets this bit so that the loop can stabilize as the MCU is powering up.  
1 = PLL on  
0 = PLL off  
BCS — Base Clock Select Bit  
This read/write bit selects either the oscillator output, CGMXCLK, or the divided VCO clock,  
CGMPCLK, as the source of the CGM output, CGMOUT. CGMOUT frequency is one-half the  
frequency of the selected clock. BCS cannot be set while the PLLON bit is clear. After toggling BCS,  
it may take up to three CGMXCLK and three CGMPCLK cycles to complete the transition from one  
source clock to the other. During the transition, CGMOUT is held in stasis. (See 6.3.8 Base Clock  
Selector Circuit.) Reset clears the BCS bit.  
1 = CGMPCLK divided by two drives CGMOUT  
0 = CGMXCLK divided by two drives CGMOUT  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
89  
 
Clock Generator Module (CGM)  
NOTE  
PLLON and BCS have built-in protection that prevents the base clock  
selector circuit from selecting the VCO clock as the source of the base clock  
if the PLL is off. Therefore, PLLON cannot be cleared when BCS is set, and  
BCS cannot be set when PLLON is clear. If the PLL is off (PLLON = 0),  
selecting CGMPCLK requires two writes to the PLL control register. (See  
6.3.8 Base Clock Selector Circuit.)  
PRE1 and PRE0 — Prescaler Program Bits  
These read/write bits control a prescaler that selects the prescaler power-of-two multiplier, P. (See  
6.3.3 PLL Circuits and 6.3.6 Programming the PLL.) PRE1 and PRE0 cannot be written when the  
PLLON bit is set. Reset clears these bits.  
These prescaler bits affects the relationship between the VCO clock and the final system bus clock.  
Table 6-2. PRE1 and PRE0 Programming  
PRE1 and PRE0  
P
0
1
2
3
Prescaler Multiplier  
00  
01  
10  
11  
1
2
4
8
VPR1 and VPR0 — VCO Power-of-Two Range Select Bits  
These read/write bits control the VCO’s hardware power-of-two range multiplier E that, in conjunction  
with L (See 6.3.3 PLL Circuits, 6.3.6 Programming the PLL, and 6.5.4 PLL VCO Range Select  
Register.) controls the hardware center-of-range frequency, fVRS. VPR1:VPR0 cannot be written when  
the PLLON bit is set. Reset clears these bits.  
Table 6-3. VPR1 and VPR0 Programming  
VCO Power-of-Two  
VPR1 and VPR0  
E
Range Multiplier  
00  
0
1
2
1
2
4
01  
10  
NOTE: Do not program E to a value of 3.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
90  
Freescale Semiconductor  
CGM Registers  
6.5.2 PLL Bandwidth Control Register  
The PLL bandwidth control register (PBWC):  
Selects automatic or manual (software-controlled) bandwidth control mode  
Indicates when the PLL is locked  
In automatic bandwidth control mode, indicates when the PLL is in acquisition or tracking mode  
In manual operation, forces the PLL into acquisition or tracking mode  
Address:  
$0037  
Bit 7  
6
5
ACQ  
0
4
0
3
0
2
0
1
0
Bit 0  
R
Read:  
Write:  
Reset:  
LOCK  
AUTO  
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 6-5. PLL Bandwidth Control Register (PBWCR)  
AUTO — Automatic Bandwidth Control Bit  
This read/write bit selects automatic or manual bandwidth control. When initializing the PLL for manual  
operation (AUTO = 0), clear the ACQ bit before turning on the PLL. Reset clears the AUTO bit.  
1 = Automatic bandwidth control  
0 = Manual bandwidth control  
LOCK — Lock Indicator Bit  
When the AUTO bit is set, LOCK is a read-only bit that becomes set when the VCO clock, CGMVCLK,  
is locked (running at the programmed frequency). When the AUTO bit is clear, LOCK reads as logic 0  
and has no meaning. The write one function of this bit is reserved for test, so this bit must always be  
written a 0. Reset clears the LOCK bit.  
1 = VCO frequency correct or locked  
0 = VCO frequency incorrect or unlocked  
ACQ — Acquisition Mode Bit  
When the AUTO bit is set, ACQ is a read-only bit that indicates whether the PLL is in acquisition mode  
or tracking mode. When the AUTO bit is clear, ACQ is a read/write bit that controls whether the PLL is  
in acquisition or tracking mode.  
In automatic bandwidth control mode (AUTO = 1), the last-written value from manual operation is  
stored in a temporary location and is recovered when manual operation resumes. Reset clears this bit,  
enabling acquisition mode.  
1 = Tracking mode  
0 = Acquisition mode  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
91  
Clock Generator Module (CGM)  
6.5.3 PLL Multiplier Select Registers  
The PLL multiplier select registers (PMSH and PMSL) contain the programming information for the  
modulo feedback divider.  
Address:  
$0038  
Bit 7  
0
6
0
5
0
4
0
3
MUL11  
0
2
MUL10  
0
1
MUL9  
0
Bit 0  
MUL8  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 6-6. PLL Multiplier Select Register High (PMSH)  
Address:  
$0039  
Bit 7  
MUL7  
0
6
MUL6  
1
5
MUL5  
0
4
MUL4  
0
3
MUL3  
0
2
MUL2  
0
1
MUL1  
0
Bit 0  
MUL0  
0
Read:  
Write:  
Reset:  
Figure 6-7. PLL Multiplier Select Register Low (PMSL)  
MUL[11:0] — Multiplier Select Bits  
These read/write bits control the modulo feedback divider that selects the VCO frequency multiplier N.  
(See 6.3.3 PLL Circuits and 6.3.6 Programming the PLL.) A value of $0000 in the multiplier select  
registers configure the modulo feedback divider the same as a value of $0001. Reset initializes the  
registers to $0040 for a default multiply value of 64.  
NOTE  
The multiplier select bits have built-in protection such that they cannot be  
written when the PLL is on (PLLON = 1).  
6.5.4 PLL VCO Range Select Register  
The PLL VCO range select register (PMRS) contains the programming information required for the  
hardware configuration of the VCO.  
Address:  
$003A  
Bit 7  
6
VRS6  
1
5
VRS5  
0
4
VRS4  
0
3
VRS3  
0
2
VRS2  
0
1
VRS1  
0
Bit 0  
VRS0  
0
Read:  
Write:  
Reset:  
VRS7  
0
Figure 6-8. PLL VCO Range Select Register (PMRS)  
VRS[7:0] — VCO Range Select Bits  
These read/write bits control the hardware center-of-range linear multiplier L which, in conjunction with  
E (See 6.3.3 PLL Circuits, 6.3.6 Programming the PLL, and 6.5.1 PLL Control Register.), controls the  
hardware center-of-range frequency, f  
. VRS[7:0] cannot be written when the PLLON bit in the  
VRS  
PCTL is set. (See 6.3.7 Special Programming Exceptions.) A value of $00 in the VCO range select  
MC68HC908AP A-Family Data Sheet, Rev. 3  
92  
Freescale Semiconductor  
Interrupts  
register disables the PLL and clears the BCS bit in the PLL control register (PCTL). (See 6.3.8 Base  
Clock Selector Circuit and 6.3.7 Special Programming Exceptions.). Reset initializes the register to  
$40 for a default range multiply value of 64.  
NOTE  
The VCO range select bits have built-in protection such that they cannot be  
written when the PLL is on (PLLON = 1) and such that the VCO clock  
cannot be selected as the source of the base clock (BCS = 1) if the VCO  
range select bits are all clear.  
The PLL VCO range select register must be programmed correctly.  
Incorrect programming can result in failure of the PLL to achieve lock.  
6.5.5 PLL Reference Divider Select Register  
The PLL reference divider select register (PMDS) contains the programming information for the modulo  
reference divider.  
Address:  
$003B  
Bit 7  
0
6
0
5
0
4
0
3
RDS3  
0
2
RDS2  
0
1
RDS1  
0
Bit 0  
RDS0  
1
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 6-9. PLL Reference Divider Select Register (PMDS)  
RDS[3:0] — Reference Divider Select Bits  
These read/write bits control the modulo reference divider that selects the reference division factor, R.  
(See 6.3.3 PLL Circuits and 6.3.6 Programming the PLL.) RDS[3:0] cannot be written when the PLLON  
bit in the PCTL is set. A value of $00 in the reference divider select register configures the reference  
divider the same as a value of $01. (See 6.3.7 Special Programming Exceptions.) Reset initializes the  
register to $01 for a default divide value of 1.  
NOTE  
The reference divider select bits have built-in protection such that they  
cannot be written when the PLL is on (PLLON = 1).  
NOTE  
The default divide value of 1 is recommended for all applications.  
6.6 Interrupts  
When the AUTO bit is set in the PLL bandwidth control register (PBWC), the PLL can generate a CPU  
interrupt request every time the LOCK bit changes state. The PLLIE bit in the PLL control register (PCTL)  
enables CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL, becomes set whether  
interrupts are enabled or not. When the AUTO bit is clear, CPU interrupts from the PLL are disabled and  
PLLF reads as logic 0.  
Software should read the LOCK bit after a PLL interrupt request to see if the request was due to an entry  
into lock or an exit from lock. When the PLL enters lock, the divided VCO clock, CGMPCLK, divided by  
two can be selected as the CGMOUT source by setting BCS in the PCTL. When the PLL exits lock, the  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
93  
 
Clock Generator Module (CGM)  
VCO clock frequency is corrupt, and appropriate precautions should be taken. If the application is not  
frequency sensitive, interrupts should be disabled to prevent PLL interrupt service routines from impeding  
software performance or from exceeding stack limitations.  
NOTE  
Software can select the CGMPCLK divided by two as the CGMOUT source  
even if the PLL is not locked (LOCK = 0). Therefore, software should make  
sure the PLL is locked before setting the BCS bit.  
6.7 Special Modes  
The WAIT instruction puts the MCU in low power-consumption standby modes.  
6.7.1 Wait Mode  
The WAIT instruction does not affect the CGM. Before entering wait mode, software can disengage and  
turn off the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL) to save power.  
Less power-sensitive applications can disengage the PLL without turning it off, so that the PLL clock is  
immediately available at WAIT exit. This would be the case also when the PLL is to wake the MCU from  
wait mode, such as when the PLL is first enabled and waiting for LOCK or LOCK is lost.  
6.7.2 Stop Mode  
The STOP instruction disables the PLL analog circuits and no clock will be driven out of the VCO.  
When entering stop mode with the VCO clock (CGMPCLK) selected, before executing the STOP  
instruction:  
1. Set the oscillator stop mode enable bit (STOP_XCLKEN in CONFIG2) if continuos clock is required  
in stop mode.  
2. Clear the BCS bit to select CGMXCLK as CGMOUT.  
On exit from stop mode:  
1. Set the PLLON bit if cleared before entering stop mode.  
2. Wait for PLL to lock by checking the LOCK bit.  
3. Set BCS bit to select CGMPCLK as CGMOUT.  
6.7.3 CGM During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. (See 7.7.3 SIM Break Flag Control Register.)  
To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status  
bit is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect the PLLF bit during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its  
default state), software can read and write the PLL control register during the break state without affecting  
the PLLF bit.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
94  
Freescale Semiconductor  
Acquisition/Lock Time Specifications  
6.8 Acquisition/Lock Time Specifications  
The acquisition and lock times of the PLL are, in many applications, the most critical PLL design  
parameters. Proper design and use of the PLL ensures the highest stability and lowest acquisition/lock  
times.  
6.8.1 Acquisition/Lock Time Definitions  
Typical control systems refer to the acquisition time or lock time as the reaction time, within specified  
tolerances, of the system to a step input. In a PLL, the step input occurs when the PLL is turned on or  
when it suffers a noise hit. The tolerance is usually specified as a percent of the step input or when the  
output settles to the desired value plus or minus a percent of the frequency change. Therefore, the  
reaction time is constant in this definition, regardless of the size of the step input. For example, consider  
a system with a 5 percent acquisition time tolerance. If a command instructs the system to change from  
0Hz to 1MHz, the acquisition time is the time taken for the frequency to reach 1MHz 50kHz. 50kHz =  
5% of the 1MHz step input. If the system is operating at 1MHz and suffers a –100kHz noise hit, the  
acquisition time is the time taken to return from 900kHz to 1MHz 5kHz. 5kHz = 5% of the 100kHz step  
input.  
Other systems refer to acquisition and lock times as the time the system takes to reduce the error  
between the actual output and the desired output to within specified tolerances. Therefore, the acquisition  
or lock time varies according to the original error in the output. Minor errors may not even be registered.  
Typical PLL applications prefer to use this definition because the system requires the output frequency to  
be within a certain tolerance of the desired frequency regardless of the size of the initial error.  
6.8.2 Parametric Influences on Reaction Time  
Acquisition and lock times are designed to be as short as possible while still providing the highest possible  
stability. These reaction times are not constant, however. Many factors directly and indirectly affect the  
acquisition time.  
The most critical parameter which affects the reaction times of the PLL is the reference frequency, f  
.
RDV  
This frequency is the input to the phase detector and controls how often the PLL makes corrections. For  
stability, the corrections must be small compared to the desired frequency, so several corrections are  
required to reduce the frequency error. Therefore, the slower the reference the longer it takes to make  
these corrections. This parameter is under user control via the choice of crystal frequency f  
and the  
XCLK  
R value programmed in the reference divider. (See 6.3.3 PLL Circuits, 6.3.6 Programming the PLL, and  
6.5.5 PLL Reference Divider Select Register.)  
Another critical parameter is the external filter network. The PLL modifies the voltage on the VCO by  
adding or subtracting charge from capacitors in this network. Therefore, the rate at which the voltage  
changes for a given frequency error (thus change in charge) is proportional to the capacitance. The size  
of the capacitor also is related to the stability of the PLL. If the capacitor is too small, the PLL cannot make  
small enough adjustments to the voltage and the system cannot lock. If the capacitor is too large, the PLL  
may not be able to adjust the voltage in a reasonable time. (See 6.8.3 Choosing a Filter.)  
Also important is the operating voltage potential applied to V  
. The power supply potential alters the  
DDA  
characteristics of the PLL. A fixed value is best. Variable supplies, such as batteries, are acceptable if  
they vary within a known range at very slow speeds. Noise on the power supply is not acceptable,  
because it causes small frequency errors which continually change the acquisition time of the PLL.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
95  
 
Clock Generator Module (CGM)  
Temperature and processing also can affect acquisition time because the electrical characteristics of the  
PLL change. The part operates as specified as long as these influences stay within the specified limits.  
External factors, however, can cause drastic changes in the operation of the PLL. These factors include  
noise injected into the PLL through the filter capacitor, filter capacitor leakage, stray impedances on the  
circuit board, and even humidity or circuit board contamination.  
6.8.3 Choosing a Filter  
As described in 6.8.2 Parametric Influences on Reaction Time, the external filter network is critical to the  
stability and reaction time of the PLL. The PLL is also dependent on reference frequency and supply  
voltage.  
Either of the filter networks in Figure 6-10 is recommended when using a 4MHz reference clock  
(CGMRCLK). Figure 6-10 (a) is used for applications requiring better stability. Figure 6-10 (b) is used in  
low-cost applications where stability is not critical.  
CGMXFC  
CGMXFC  
1 kΩ  
10 nF  
0.22 µF  
0.22 µF  
V
SSA  
V
SSA  
(a)  
(b)  
Figure 6-10. PLL Filter  
MC68HC908AP A-Family Data Sheet, Rev. 3  
96  
Freescale Semiconductor  
Chapter 7  
System Integration Module (SIM)  
7.1 Introduction  
This section describes the system integration module (SIM). Together with the CPU, the SIM controls all  
MCU activities. A block diagram of the SIM is shown in Figure 7-1. Figure 7-2 is a summary of the SIM  
input/output (I/O) registers. The SIM is a system state controller that coordinates CPU and exception  
timing. The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals:  
Stop/wait/reset/break entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and COP timeout  
Interrupt control:  
Acknowledge timing  
Arbitration control timing  
Vector address generation  
CPU enable/disable timing  
Table 7-1 shows the internal signal names used in this section.  
Table 7-1. Signal Name Conventions  
Signal Name  
ICLK  
Description  
Internal oscillator clock  
CGMXCLK  
Selected oscillator clock from oscillator module  
PLL output and the divided PLL output  
CGMVCLK, CGMPCLK  
CGMPCLK-based or oscillator-based clock output from CGM module  
(Bus clock = CGMOUT ÷ 2)  
CGMOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
97  
 
System Integration Module (SIM)  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO CGM, OSC)  
SIM  
COUNTER  
COP CLOCK  
ICLK (FROM OSC)  
CGMOUT (FROM CGM)  
÷ 2  
CLOCK  
CONTROL  
VDD  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULLUP  
DEVICE  
LVI (FROM LVI MODULE)  
RESET  
PIN LOGIC  
POR CONTROL  
MASTER  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
RESET  
RESET PIN CONTROL  
CONTROL  
SIM RESET STATUS REGISTER  
COP (FROM COP MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 7-1. SIM Block Diagram  
Addr.  
Register Name  
Bit 7  
R
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
NOTE  
0
SIM Break Status Register  
(SBSR)  
$FE00  
0
0
Note: Writing a logic 0 clears SBSW.  
Read: POR  
Write:  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
SIM Reset Status Register  
(SRSR)  
$FE01  
$FE03  
$FE04  
POR:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
1
0
0
0
0
0
0
0
BCFE  
R
R
R
R
R
R
R
SIM Break Flag Control  
Register (SBFCR)  
0
IF6  
R
IF5  
R
IF4  
R
IF3  
R
IF2  
R
IF1  
R
0
R
0
0
R
0
Interrupt Status Register 1  
(INT1)  
0
0
0
0
0
0
Figure 7-2. SIM I/O Register Summary  
MC68HC908AP A-Family Data Sheet, Rev. 3  
98  
Freescale Semiconductor  
SIM Bus Clock Control and Generation  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
R
IF9  
R
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2)  
$FE05  
$FE06  
0
0
0
0
0
0
0
0
0
IF21  
R
IF20  
R
IF19  
R
IF18  
R
IF17  
R
IF16  
R
IF15  
R
Interrupt Status Register 3  
(INT3)  
R
0
0
= Unimplemented  
0
0
0
0
0
0
Figure 7-2. SIM I/O Register Summary  
7.2 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The  
system clocks are generated from an incoming clock, CGMOUT, as shown in Figure 7-3. This clock can  
come from either an external oscillator or from the on-chip PLL. (See Chapter 6 Clock Generator Module  
(CGM).)  
OSC2  
OSCCLK  
TO TBM  
OSCILLATOR (OSC) MODULE  
CGMXCLK  
TO TIM, ADC  
OSC1  
ICLK  
CGMOUT  
SIMDIV2  
SIM COUNTER  
SIMOSCEN  
STOP MODE CLOCK  
ENABLE SIGNALS  
FROM CONFIG2  
SYSTEM INTEGRATION MODULE  
IT12  
TO REST  
OF MCU  
CGMRCLK  
BUS CLOCK  
÷ 2  
IT23  
TO REST  
OF MCU  
GENERATORS  
PHASE-LOCKED LOOP (PLL)  
PTB0  
MONITOR MODE  
USER MODE  
CGMVCLK  
TO PWM  
Figure 7-3. CGM Clock Signals  
7.2.1 Bus Timing  
In user mode, the internal bus frequency is either the oscillator output (CGMXCLK) divided by four or the  
divided PLL output (CGMPCLK) divided by four.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
99  
System Integration Module (SIM)  
7.2.2 Clock Start-up from POR or LVI Reset  
When the power-on reset module or the low-voltage inhibit module generates a reset, the clocks to the  
CPU and peripherals are inactive and held in an inactive phase until after the 4096 ICLK cycle POR  
timeout has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks  
start upon completion of the timeout.  
7.2.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt, break, or reset, the SIM allows ICLK to clock the SIM counter.  
The CPU and peripheral clocks do not become active until after the stop delay timeout. This timeout is  
selectable as 4096 or 32 ICLK cycles. (See 7.6.2 Stop Mode.)  
In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules.  
Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
7.3 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly module (COP)  
Low-voltage inhibit module (LVI)  
Illegal opcode  
Illegal address  
All of these resets produce the vector $FFFE:$FFFF ($FEFE:$FEFF in monitor mode) and assert the  
internal reset signal (IRST). IRST causes all registers to be returned to their default values and all  
modules to be returned to their reset states.  
An internal reset clears the SIM counter (see 7.4 SIM Counter), but an external reset does not. Each of  
the resets sets a corresponding bit in the SIM reset status register (SRSR). (See 7.7 SIM Registers.)  
7.3.1 External Pin Reset  
The RST pin circuit includes an internal pull-up device. Pulling the asynchronous RST pin low halts all  
processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for at  
least the minimum t time and no other reset sources are present. See Table 7-2 for details. Figure 7-4  
RL  
shows the relative timing.  
Table 7-2. Reset Recovery  
Reset Recovery Type  
POR/LVI  
Actual Number of Cycles  
4163 (4096 + 64 + 3)  
67 (64 + 3)  
All others  
MC68HC908AP A-Family Data Sheet, Rev. 3  
100  
Freescale Semiconductor  
Reset and System Initialization  
ICLK  
RST  
IAB  
VECT H VECT L  
PC  
Figure 7-4. External Reset Timing  
7.3.2 Active Resets from Internal Sources  
All internal reset sources actively pull the RST pin low for 32 ICLK cycles to allow resetting of external  
peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles (see  
Figure 7-5). An internal reset can be caused by an illegal address, illegal opcode, COP timeout, LVI, or  
POR (see Figure 7-6).  
NOTE  
For LVI or POR resets, the SIM cycles through 4096 + 32 ICLK cycles  
during which the SIM forces the RST pin low. The internal reset signal then  
follows the sequence from the falling edge of RST shown in  
Figure 7-5.  
IRST  
RST PULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
ICLK  
IAB  
VECTOR HIGH  
Figure 7-5. Internal Reset Timing  
The COP reset is asynchronous to the bus clock.  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
LVI  
INTERNAL RESET  
POR  
Figure 7-6. Sources of Internal Reset  
The active reset feature allows the part to issue a reset to peripherals and other chips within a system  
built around the MCU.  
7.3.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate  
that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out  
4096 + 32 ICLK cycles. Thirty-two ICLK cycles later, the CPU and memories are released from reset to  
allow the reset vector sequence to occur.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
101  
 
System Integration Module (SIM)  
At power-on, these events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables CGMOUT.  
Internal clocks to the CPU and modules are held inactive for 4096 ICLK cycles to allow stabilization  
of the oscillator.  
The pin is driven low during the oscillator stabilization time.  
The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are  
cleared.  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
ICLK  
CGMOUT  
RST  
IRST  
IAB  
$FFFE  
$FFFF  
Figure 7-7. POR Recovery  
7.3.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an  
internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down  
the RST pin for all internal reset sources.  
To prevent a COP module timeout, write any value to location $FFFF. Writing to location $FFFF clears  
the COP counter and bits 12 through 5 of the SIM counter. The SIM counter output, which occurs at least  
13  
4
every 2 – 2 ICLK cycles, drives the COP counter. The COP should be serviced as soon as possible  
out of reset to guarantee the maximum amount of time before the first timeout.  
The COP module is disabled if the RST pin or the IRQ1 pin is held at V  
while the MCU is in monitor  
TST  
mode. The COP module can be disabled only through combinational logic conditioned with the high  
voltage signal on the RST or the IRQ1 pin. This prevents the COP from becoming disabled as a result of  
external noise. During a break state, V  
on the RST pin disables the COP module.  
TST  
7.3.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP  
bit in the SIM reset status register (SRSR) and causes a reset.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
102  
Freescale Semiconductor  
SIM Counter  
If the stop enable bit, STOP, in the mask option register is logic 0, the SIM treats the STOP instruction as  
an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all  
internal reset sources.  
7.3.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the  
CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively  
pulls down the RST pin for all internal reset sources.  
7.3.2.5 Low-Voltage Inhibit (LVI) Reset  
The low-voltage inhibit module (LVI) asserts its output to the SIM when the V voltage falls to the  
DD  
LVI  
voltage. The LVI bit in the SIM reset status register (SRSR) is set, and the external reset pin  
TRIPF  
(RST) is held low while the SIM counter counts out 4096 + 32 ICLK cycles. Thirty-two ICLK cycles later,  
the CPU is released from reset to allow the reset vector sequence to occur. The SIM actively pulls down  
the RST pin for all internal reset sources.  
7.3.2.6 Monitor Mode Entry Module Reset  
The monitor mode entry module reset asserts its output to the SIM when monitor mode is entered in the  
condition where the reset vectors are blank ($FF). (See Chapter 8 Monitor Mode (MON).) When  
MODRST gets asserted, an internal reset occurs. The SIM actively pulls down the RST pin for all internal  
reset sources.  
7.4 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the  
oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM counter overflow supplies the  
clock for the COP module. The SIM counter is 12 bits long.  
7.4.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit  
asserts the signal PORRST. Once the SIM is initialized, it enables the clock generation module (CGM) to  
drive the bus clock state machine.  
7.4.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After  
an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the mask  
option register. If the SSREC bit is a logic 1, then the stop recovery is reduced from the normal delay of  
4096 CGMXCLK cycles down to 32 CGMXCLK cycles. This is ideal for applications using canned  
oscillators that do not require long start-up times from stop mode. External crystal applications should use  
the full stop recovery time, that is, with SSREC cleared.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
103  
System Integration Module (SIM)  
7.4.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter. (See 7.6.2 Stop Mode for details.) The SIM counter is  
free-running after all reset states. (See 7.3.2 Active Resets from Internal Sources for counter control and  
internal reset recovery sequences.)  
7.5 Exception Control  
Normal, sequential program execution can be changed in three different ways:  
Interrupts:  
Maskable hardware CPU interrupts  
Non-maskable software interrupt instruction (SWI)  
Reset  
Break interrupts  
7.5.1 Interrupts  
At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the  
interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers  
the CPU register contents from the stack so that normal processing can resume. Figure 7-8 shows  
interrupt entry timing, and Figure 7-9 shows interrupt recovery timing.  
MODULE  
INTERRUPT  
I-BIT  
IAB  
IDB  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L START ADDR  
DUMMY PC – 1[7:0] PC – 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
R/W  
Figure 7-8. Interrupt Entry Timing  
MODULE  
INTERRUPT  
I-BIT  
IAB  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
IDB  
CCR  
A
X
PC – 1[15:8] PC – 1[7:0] OPCODE OPERAND  
R/W  
Figure 7-9. Interrupt Recovery Timing  
Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The  
arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is  
latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched  
interrupt is serviced (or the I bit is cleared).  
(See Figure 7-10.)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
104  
Freescale Semiconductor  
Exception Control  
FROM RESET  
BREAK  
YES  
INTERRUPT?  
NO  
YES  
I-BIT SET?  
NO  
IRQ1  
INTERRUPT?  
YES  
NO  
STACK CPU REGISTERS  
SET I-BIT  
LOAD PC WITH INTERRUPT VECTOR  
AS MANY INTERRUPTS  
AS EXIST ON CHIP  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
NO  
RTI  
YES  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
INSTRUCTION?  
NO  
Figure 7-10. Interrupt Processing  
7.5.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after  
completion of the current instruction. When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the condition code register) and if the  
corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt  
is serviced first. Figure 7-11 demonstrates what happens when two interrupts are pending. If an interrupt  
is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the  
LDA instruction is executed.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
105  
System Integration Module (SIM)  
CLI  
BACKGROUND  
ROUTINE  
LDA #$FF  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 7-11. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the  
INT1 RTI prefetch, this is a redundant operation.  
NOTE  
To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
7.5.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the  
interrupt mask (I bit) in the condition code register.  
NOTE  
A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
7.5.2 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt sources. Table 7-3 summarizes the  
interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be  
useful for debugging.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
106  
Freescale Semiconductor  
Exception Control  
7.5.2.1 Interrupt Status Register 1  
Address:  
$FE04  
Bit 7  
IF6  
R
6
5
IF4  
R
4
IF3  
R
3
IF2  
R
2
IF1  
R
1
0
Bit 0  
Read:  
Write:  
Reset:  
IF5  
0
R
0
R
R
0
0
0
0
0
0
0
R
= Reserved  
Figure 7-12. Interrupt Status Register 1 (INT1)  
IF6–IF1 — Interrupt Flags 6–1  
These flags indicate the presence of interrupt requests from the sources shown in Table 7-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0 and Bit 1 — Always read 0  
7.5.2.2 Interrupt Status Register 2  
Address:  
$FE05  
Bit 7  
IF14  
R
6
5
IF12  
R
4
IF11  
R
3
IF10  
R
2
IF9  
R
1
IF8  
R
Bit 0  
IF7  
R
Read:  
Write:  
Reset:  
IF13  
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 7-13. Interrupt Status Register 2 (INT2)  
IF14–IF7 — Interrupt Flags 14–7  
These flags indicate the presence of interrupt requests from the sources shown in Table 7-3.  
1 = Interrupt request present  
0 = No interrupt request present  
7.5.2.3 Interrupt Status Register 3  
Address:  
$FE06  
Bit 7  
0
6
5
IF20  
R
4
IF19  
R
3
IF18  
R
2
IF17  
R
1
IF16  
R
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
IF21  
R
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 7-14. Interrupt Status Register 3 (INT3)  
IF21–IF15 — Interrupt Flags 21–15  
These flags indicate the presence of an interrupt request from the source shown in Table 7-3.  
1 = Interrupt request present  
0 = No interrupt request present  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
107  
System Integration Module (SIM)  
Table 7-3. Interrupt Sources  
INT  
Flag  
Vector  
Priority  
Interrupt Source  
Address  
$FFD0  
$FFD1  
$FFD2  
$FFD3  
$FFD4  
$FFD5  
$FFD6  
$FFD7  
$FFD8  
$FFD9  
$FFDA  
$FFDB  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
$FFED  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
Lowest  
Reserved  
IF21  
IF20  
IF19  
IF18  
IF17  
IF16  
IF15  
IF14  
IF13  
IF12  
IF11  
IF10  
IF9  
Timebase  
Infrared SCI Transmit  
Infrared SCI Receive  
Infrared SCI Error  
SPI Transmit  
SPI Receive  
ADC Conversion Complete  
Keyboard  
SCI Transmit  
SCI Receive  
SCI Error  
MMIIC  
TIM2 Overflow  
TIM2 Channel 1  
TIM2 Channel 0  
TIM1 Overflow  
TIM1 Channel 1  
TIM1 Channel 0  
PLL  
IF8  
IF7  
IF6  
IF5  
IF4  
IF3  
IF2  
IRQ2  
IF1  
IRQ1  
SWI  
Reset  
Highest  
MC68HC908AP A-Family Data Sheet, Rev. 3  
108  
Freescale Semiconductor  
Low-Power Modes  
7.5.3 Reset  
All reset sources always have equal and highest priority and cannot be arbitrated.  
7.5.4 Break Interrupts  
The break module can stop normal program flow at a software-programmable break point by asserting  
its break interrupt output. (See Chapter 21 Break Module (BRK).) The SIM puts the CPU into the break  
state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to  
see how each module is affected by the break state.  
7.5.5 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can be cleared during break mode. The  
user can select whether flags are protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the SIM break flag control register (SBFCR).  
Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This  
protection allows registers to be freely read and written during break mode without losing status flag  
information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains  
cleared even when break mode is exited. Status flags with a 2-step clearing mechanism — for example,  
a read of one register followed by the read or write of another — are protected, even when the first step  
is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step  
will clear the flag as normal.  
7.6 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low power-consumption mode for standby  
situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is  
described in the following subsections. Both STOP and WAIT clear the interrupt mask (I) in the condition  
code register, allowing interrupts to occur.  
7.6.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 7-15 shows  
the timing for wait mode entry.  
A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled.  
Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred.  
In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if  
the module is active or inactive in wait mode. Some modules can be programmed to be active in wait  
mode.  
Wait mode also can be exited by a reset or break. A break interrupt during wait mode sets the SIM break  
stop/wait bit, SBSW, in the SIM break status register (SBSR). If the COP disable bit, COPD, in the mask  
option register is logic 0, then the computer operating properly module (COP) is enabled and remains  
active in wait mode.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
109  
 
System Integration Module (SIM)  
IAB  
IDB  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
NOTE: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 7-15. Wait Mode Entry Timing  
Figure 7-16 and Figure 7-17 show the timing for WAIT recovery.  
IAB  
$6E0B  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
IDB  
$A6  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt  
Figure 7-16. Wait Recovery from Interrupt or Break  
32  
CYCLES  
32  
CYCLES  
IAB  
$6E0B  
$A6  
RST VCT H RST VCT L  
IDB $A6  
RST  
$A6  
ICLK  
Figure 7-17. Wait Recovery from Internal Reset  
7.6.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a  
module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the clock generator module output (CGMOUT) in stop mode, stopping the CPU and  
peripherals. Stop recovery time is selectable using the SSREC bit in the configuration register 1  
(CONFIG1). If SSREC is set, stop recovery is reduced from the normal delay of 4096 ICLK cycles down  
to 32. This is ideal for applications using canned oscillators that do not require long start-up times from  
stop mode.  
NOTE  
External crystal applications should use the full stop recovery time by  
clearing the SSREC bit.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
110  
Freescale Semiconductor  
SIM Registers  
The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop  
recovery. It is then used to time the recovery period. Figure 7-18 shows stop mode entry timing.  
NOTE  
To minimize stop current, all pins configured as inputs should be driven to  
a logic 1 or logic 0.  
CPUSTOP  
IAB  
IDB  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
NOTE: Previous data can be operand data or the STOP opcode, depending on the last  
instruction.  
Figure 7-18. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
ICLK  
INT/BREAK  
IAB  
STOP + 2 STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 7-19. Stop Mode Recovery from Interrupt  
7.7 SIM Registers  
The SIM has three memory-mapped registers:  
SIM Break Status Register (SBSR) — $FE00  
SIM Reset Status Register (SRSR) — $FE01  
SIM Break Flag Control Register (SBFCR) — $FE03  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
111  
System Integration Module (SIM)  
7.7.1 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from stop  
mode or wait mode.  
Address:  
$FE00  
Bit 7  
6
5
4
3
2
1
SBSW  
Note  
0
Bit 0  
R
Read:  
Write:  
Reset:  
R
R
R
R
R
R
Note: Writing a logic 0 clears SBSW.  
R
= Reserved  
Figure 7-20. SIM Break Status Register (SBSR)  
SBSW — SIM Break Stop/Wait  
SBSW can be read within the break state SWI routine. The user can modify the return address on the  
stack by subtracting one from it.  
1 = Wait mode was exited by break interrupt.  
0 = Wait mode was not exited by break interrupt.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
112  
Freescale Semiconductor  
SIM Registers  
7.7.2 SIM Reset Status Register  
This register contains six flags that show the source of the last reset provided all previous reset status  
bits have been cleared. Clear the SIM reset status register by reading it. A power-on reset sets the POR  
bit and clears all other bits in the register.  
The register is initialized on power up with the POR bit set and all other bits cleared. During a POR or any  
other internal reset, the RST pin is pulled low. After the pin is released, it will be sampled 32 CGMXCLK  
cycles later. If the pin is not above V at this time, then the PIN bit may be set, in addition to whatever  
IH  
other bits are set.  
Address:  
$FE01  
Bit 7  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
Reset:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 7-21. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MODRST — Monitor Mode Entry Module Reset Bit  
1 = Last reset caused by monitor mode entry when vector locations $FFFE and $FFFF are $FF after  
POR while IRQ1 = V  
DD  
0 = POR or read of SRSR  
LVI — Low-Voltage Inhibit Reset Bit  
1 = Last reset caused by the LVI circuit  
0 = POR or read of SRSR  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
113  
System Integration Module (SIM)  
7.7.3 SIM Break Flag Control Register  
The SIM break control register contains a bit that enables software to clear status bits while the MCU is  
in a break state.  
Address:  
$FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 7-22. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908AP A-Family Data Sheet, Rev. 3  
114  
Freescale Semiconductor  
Chapter 8  
Monitor Mode (MON)  
8.1 Introduction  
The monitor module allows debugging and programming of the microcontroller unit (MCU) through a  
single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher  
test voltage, V  
, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware  
TST  
requirements for in-circuit programming.  
8.2 Features  
Features of the monitor ROM include:  
Normal user-mode pin functionality  
One pin dedicated to serial communication between monitor ROM and host computer  
Standard mark/space non-return-to-zero (NRZ) communication with host computer  
Execution of code in RAM or FLASH  
(1)  
FLASH memory security feature  
959 bytes monitor ROM code size  
($FC00–$FDFF and $FE10–$FFCE)  
Monitor mode entry without high voltage, V  
$FF)  
, if reset vector is blank ($FFFE and $FFFF contain  
TST  
Standard monitor mode entry if high voltage, V  
Resident routines for in-circuit programming  
, is applied to IRQ1  
TST  
8.3 Functional Description  
The monitor module receives and executes commands from a host computer. Figure 8-1 shows an  
example circuit used to enter monitor mode and communicate with a host computer via a standard  
RS-232 interface.  
Simple monitor commands can access any memory address. In monitor mode, the MCU can execute  
code downloaded into RAM by a host computer while most MCU pins retain normal operating mode  
functions. All communication between the host computer and the MCU is through the PTA0 pin. A  
level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used  
in a wired-OR configuration and requires a pullup resistor.  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
115  
Monitor Mode (MON)  
RST  
0.1 µF  
HC908AP  
V
DD  
V
DD  
V
DDA  
0.1 µF  
V
REFH  
V
REG  
V
REFL  
V
V
SS  
REG  
4.9152MHz/9.8304MHz  
(50% DUTY)  
V
SSA  
OSC1  
CGMXFC  
0.01 µF  
1 k  
0.22 µF  
MUST BE USED IF SW2 IS AT POSITION C.  
CONNECT TO OSC1, WITH OSC2 UNCONNECTED.  
EXT OSC  
4.9152MHz  
OSC1  
OSC2  
6–30 pF  
1M  
MAX232  
V
DD  
1
16  
15  
V
C1+  
6–30 pF  
CC  
+
+
+
1 µF  
1 µF  
1 µF  
3
4
1 µF  
C1–  
C2+  
GND  
+
XTAL CIRCUIT  
V
V
C
2
6
TST  
SW2  
V+  
V–  
(SEE NOTE 1)  
1 k  
DD  
IRQ1  
PTA0  
8.5 V  
D
5
V
DD  
C2–  
1 µF  
10 k  
+
10k  
74HC125  
6
DB9  
5
10  
9
2
3
7
8
74HC125  
3
4
V
V
DD  
2
DD  
1
5
10k  
10k  
PTA1  
PTB0  
PTA2  
SW1  
A
B
(SEE NOTE 2)  
NOTES:  
1. Monitor mode entry method:  
SW2: Position C — High voltage entry (V  
10 k  
); must use external OSC  
10 k  
TST  
Bus clock depends on SW1 (note 2).  
SW2: Position D — Reset vector must be blank ($FFFE:$FFFF = $FF)  
Bus clock = 1.2288MHz.  
2. Affects high voltage entry to monitor mode only (SW2 at position C):  
SW1: Position A — Bus clock = OSC1÷4  
SW1: Position B — Bus clock = OSC1÷2  
3. See Table 22-4 for V  
voltage level requirements.  
TST  
Figure 8-1. Monitor Mode Circuit  
MC68HC908AP A-Family Data Sheet, Rev. 3  
116  
Freescale Semiconductor  
Functional Description  
8.3.1 Entering Monitor Mode  
Table 8-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode  
may be entered after a POR and will allow communication at 9600 baud provided one of the following  
sets of conditions is met:  
1. If $FFFE and $FFFF do not contain $FF (programmed state):  
The external clock is 4.9152 MHz with PTB0 low or 9.8304 MHz with PTB0 high  
IRQ1 = V  
TST  
2. If $FFFE and $FFFF both contain $FF (erased state):  
The external clock is 9.8304 MHz  
IRQ1 = V (this can be implemented through the internal IRQ1 pullup)  
DD  
If V  
is applied to IRQ1 and PTB0 is low upon monitor mode entry (above condition set 1), the bus  
TST  
frequency is a divide-by-two of the input clock. If PTB0 is high with V  
applied to IRQ1 upon monitor  
TST  
mode entry, the bus frequency will be a divide-by-four of the input clock. Holding the PTB0 pin low when  
entering monitor mode causes a bypass of a divide-by-two stage at the oscillator only if V is applied  
TST  
to IRQ1. In this event, the CGMOUT frequency is equal to the CGMXCLK frequency, and the OSC1 input  
directly generates internal bus clocks. In this case, the OSC1 signal must have a 50% duty cycle at  
maximum bus frequency.  
If entering monitor mode without high voltage on IRQ1 (above condition set 2), then all port A pin  
requirements and conditions, including the PTB0 frequency divisor selection, are not in effect. This is to  
reduce circuit requirements when performing in-circuit programming.  
NOTE  
If the reset vector is blank and monitor mode is entered, the chip will see an  
additional reset cycle after the initial POR reset. Once the part has been  
programmed, the traditional method of applying a voltage, V  
must be used to enter monitor mode.  
, to IRQ1  
TST  
The COP module is disabled in monitor mode based on these conditions:  
If monitor mode was entered as a result of the reset vector being blank (above condition set 2), the  
COP is always disabled regardless of the state of IRQ1 or RST.  
If monitor mode was entered with V on IRQ1 (condition set 1), then the COP is disabled as long  
TST  
as V  
is applied to either IRQ1 or RST.  
TST  
The second condition states that as long as V  
is maintained on the IRQ1 pin after entering monitor  
TST  
mode, or if V  
is applied to RST after the initial reset to get into monitor mode (when V  
was applied  
TST  
TST  
to IRQ1), then the COP will be disabled. In the latter situation, after V  
is applied to the RST pin, V  
TST  
TST  
can be removed from the IRQ1 pin in the interest of freeing the IRQ1 for normal functionality in monitor  
mode.  
Figure 8-2 shows a simplified diagram of the monitor mode entry when the reset vector is blank and just  
V
voltage is applied to the IRQ1 pin. An external oscillator of 9.8304 MHz is required for a baud rate of  
DD  
9600, as the internal bus frequency is automatically set to the external frequency divided by four.  
Enter monitor mode with pin configuration shown in Figure 8-1 by pulling RST low and then high. The  
rising edge of RST latches monitor mode. Once monitor mode is latched, the values on the specified pins  
can change.  
Once out of reset, the MCU waits for the host to send eight security bytes. (See 8.4 Security.) After the  
security bytes, the MCU sends a break signal (10 consecutive logic 0’s) to the host, indicating that it is  
ready to receive a command.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
117  
Table 8-1. Monitor Mode Signal Requirements and Options  
Address  
$FFFE/  
$FFFF  
External  
Clock(1)  
Bus  
Frequency  
Baud  
Rate  
IRQ1  
RST  
PTA2 PTA1 PTA0 PTB0  
PLL  
COP  
Comment  
No operation until  
reset goes high  
X
GND  
X
X
0
X
1
X
1
X
0
X
0
X
Disabled  
0
PTA1 and PTA2  
voltages only  
required if  
VDD  
or  
VTST  
4.9152  
MHz  
2.4576  
MHz  
(2)  
X
OFF Disabled  
9600  
VTST  
IRQ1 = VTST  
;
PTB0 determines  
frequency divider  
PTA1 and PTA2  
voltages only  
required if  
VDD  
or  
VTST  
9.8304  
MHz  
2.4576  
MHz  
(2)  
X
0
1
1
1
OFF Disabled  
9600  
VTST  
IRQ1 = VTST  
;
PTB0 determines  
frequency divider  
Blank  
"$FFFF"  
4.9152  
MHz  
1.2288  
MHz  
External frequency  
always divided by 4  
VDD  
VDD  
X
X
X
X
1
1
X
X
OFF Disabled  
OFF Disabled  
4800  
9600  
Blank  
"$FFFF"  
9.8304  
MHz  
2.4576  
MHz  
External frequency  
always divided by 4  
VDD  
VDD  
Enters user  
mode — will  
encounter an illegal  
address reset  
VDD  
or  
Blank  
"$FFFF"  
VTST  
X
X
X
X
X
X
X
X
X
X
OFF  
OFF  
Enabled  
Enabled  
GND  
VDD  
or  
VDD  
or  
Not Blank  
Enters user mode  
VTST  
GND  
1. External clock is derived by a 4.9152MHz crystal/off-chip oscillator or a 9.8304MHz off-chip oscillator.  
2. Monitor mode entry by IRQ1= VTST, a 4.9152/9.8304 MHz off-chip oscillator must be used. The MCU internal crystal oscillator circuit is by-  
passed.  
Functional Description  
POR RESET  
NO  
NORMAL USER  
MODE  
IS VECTOR  
BLANK?  
YES  
MONITOR MODE  
EXECUTE  
MONITOR  
CODE  
POR  
TRIGGERED?  
NO  
YES  
Figure 8-2. Low-Voltage Monitor Mode Entry Flowchart  
In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt  
than those for user mode. The alternate vectors are in the $FE page instead of the $FF page and allow  
code execution from the internal monitor firmware instead of user code.  
NOTE  
Exiting monitor mode after it has been initiated by having a blank reset  
vector requires a power-on reset (POR). Pulling RST low will not exit  
monitor mode in this situation.  
Table 8-2 summarizes the differences between user mode and monitor mode vectors.  
Table 8-2. Mode Differences (Vectors)  
Functions  
Reset  
Vector  
High  
Reset  
Vector  
Low  
Break  
Vector  
High  
Break  
Vector  
Low  
SWI  
Vector  
High  
SWI  
Vector  
Low  
Modes  
User  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Monitor  
8.3.2 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format.  
Transmit and receive baud rates must be identical.  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7  
Figure 8-3. Monitor Data Format  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
119  
Monitor Mode (MON)  
8.3.3 Break Signal  
A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor receives a break signal,  
it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal.  
MISSING STOP BIT  
2-STOP BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 8-4. Break Transaction  
8.3.4 Baud Rate  
The communication baud rate is controlled by the crystal frequency and the state of the PTB0 pin (when  
IRQ1 is set to V ) upon entry into monitor mode. When PTB0 is high, the divide by ratio is 1024. If the  
TST  
PTB0 pin is at logic 0 upon entry into monitor mode, the divide by ratio is 512.  
If monitor mode was entered with V on IRQ1, then the divide by ratio is set at 1024, regardless of PTB0.  
DD  
This condition for monitor mode entry requires that the reset vector is blank.  
Table 8-3 lists external frequencies required to achieve a standard baud rate of 9600 BPS. Other  
standard baud rates can be accomplished using proportionally higher or lower frequency generators. If  
using a crystal as the clock source, be aware of the upper frequency limit that the internal clock module  
can handle.  
Table 8-3. Monitor Baud Rate Selection  
External  
Frequency  
Internal  
Frequency  
Baud Rate  
(BPS)  
IRQ1  
PTB0  
VTST  
VTST  
VDD  
4.9152 MHz  
9.8304 MHz  
9.8304 MHz  
0
1
X
2.4576 MHz  
2.4576 MHz  
2.4576 MHz  
9600  
9600  
9600  
8.3.5 Commands  
The monitor ROM firmware uses these commands:  
READ (read memory)  
WRITE (write memory)  
IREAD (indexed read)  
IWRITE (indexed write)  
READSP (read stack pointer)  
RUN (run user program)  
The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit  
delay at the end of each command allows the host to send a break character to cancel the command. A  
delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned.  
The data returned by a read command appears after the echo of the last byte of the command.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
120  
Freescale Semiconductor  
Functional Description  
NOTE  
Wait one bit time after each echo before sending the next byte.  
FROM HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
1
READ  
DATA  
4
4
1
4
1
3, 2  
4
ECHO  
RETURN  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 8-5. Read Transaction  
FROM HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
1
WRITE  
3
3
1
3
1
3
1
2, 3  
ECHO  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Cancel command delay, 11 bit times  
3 = Wait 1 bit time before sending next byte.  
Figure 8-6. Write Transaction  
A brief description of each monitor mode command is given in Table 8-4 through Table 8-9.  
Table 8-4. READ (Read Memory) Command  
Description Read byte from memory  
Operand 2-byte address in high-byte:low-byte order  
Data  
Returned  
Returns contents of specified address  
Opcode $4A  
Command Sequence  
SENT TO  
MONITOR  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
121  
Monitor Mode (MON)  
Table 8-5. WRITE (Write Memory) Command  
Description Write byte to memory  
2-byte address in high-byte:low-byte order;  
low byte followed by data byte  
Operand  
Data  
Returned  
None  
Opcode $49  
Command Sequence  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
ECHO  
Table 8-6. IREAD (Indexed Read) Command  
Description Read next 2 bytes in memory from last address accessed  
Operand None  
Data  
Returned  
Returns contents of next two addresses  
Opcode $1A  
Command Sequence  
FROM  
HOST  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
MC68HC908AP A-Family Data Sheet, Rev. 3  
122  
Freescale Semiconductor  
Functional Description  
Table 8-7. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand Single data byte  
Data  
None  
Returned  
Opcode $19  
Command Sequence  
FROM  
HOST  
DATA  
DATA  
IWRITE  
IWRITE  
ECHO  
A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full  
64-Kbyte memory map.  
Table 8-8. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand None  
Data Returns incremented stack pointer value (SP + 1) in  
Returned high-byte:low-byte order  
Opcode $0C  
Command Sequence  
FROM  
HOST  
SP  
HIGH  
SP  
LOW  
READSP  
READSP  
ECHO  
RETURN  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
123  
Monitor Mode (MON)  
Table 8-9. RUN (Run User Program) Command  
Description Executes PULH and RTI instructions  
Operand None  
Data  
None  
Returned  
Opcode $28  
Command Sequence  
FROM  
HOST  
RUN  
RUN  
ECHO  
The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command  
tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can  
modify the stacked CPU registers to prepare to run the host program. The READSP command returns  
the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at  
addresses SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER SP + 5  
LOW BYTE OF PROGRAM COUNTER SP + 6  
SP + 7  
Figure 8-7. Stack Pointer at Monitor Mode Entry  
8.4 Security  
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host  
can bypass the security feature at monitor mode entry by sending eight security bytes that match the  
bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data.  
NOTE  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
124  
Freescale Semiconductor  
Security  
During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security  
bytes on pin PTA0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the  
security feature and can read all FLASH locations and execute code from FLASH. Security remains  
bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed  
and security code entry is not required. (See Figure 8-8.)  
V
DD  
4096 + 32 ICLK CYCLES  
RST  
256 BUS CYCLES (MINIMUM)  
FROM HOST  
FROM MCU  
PTA0  
1
1
4
1
4
2
1
NOTES:  
1 = Echo delay, approximately 2 bit times.  
2 = Data return delay, approximately 2 bit times.  
4 = Wait 1 bit time before sending next byte.  
Figure 8-8. Monitor Mode Entry Timing  
Upon power-on reset, if the received bytes of the security code do not match the data at locations  
$FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but  
reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an  
illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break  
character, signifying that it is ready to receive a command.  
NOTE  
The MCU does not transmit a break character until after the host sends the  
eight security bits.  
To determine whether the security code entered is correct, check to see if bit 6 of RAM address $60 is  
set. If it is, then the correct security code has been entered and FLASH can be accessed.  
If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor  
mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass  
erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation  
clears the security code locations so that all eight security bytes become $FF (blank).  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
125  
Monitor Mode (MON)  
8.5 ROM-Resident Routines  
Seven routines stored in the monitor ROM area (thus ROM-resident) are provided for FLASH memory  
manipulation. Five of the seven routines are intended to simplify FLASH program, erase, and load  
operations. The other two routines are intended to simplify the use of the FLASH memory as EEPROM.  
Table 8-10 shows a summary of the ROM-resident routines.  
Table 8-10. Summary of ROM-Resident Routines  
Stack Used  
(bytes)  
Routine Name  
Routine Description  
Call Address  
PRGRNGE  
ERARNGE  
LDRNGE  
Program a range of locations  
$FC34  
$FCE4  
$FC00  
15  
9
Erase a page or the entire array  
Loads data from a range of locations  
7
Program a range of locations in monitor  
mode  
MON_PRGRNGE  
MON_ERARNGE  
$FF24  
$FF28  
17  
11  
Erase a page or the entire array in  
monitor mode  
The routines are designed to be called as stand-alone subroutines in the user program or monitor mode.  
The parameters that are passed to a routine are in the form of a contiguous data block, stored in RAM.  
The index register (H:X) is loaded with the address of the first byte of the data block (acting as a pointer),  
and the subroutine is called (JSR). Using the start address as a pointer, multiple data blocks can be used,  
any area of RAM be used. A data block has the control and data bytes in a defined order, as shown in  
Figure 8-9.  
During the software execution, it does not consume any dedicated RAM location, the run-time heap will  
extend the system stack, all other RAM location will not be affected.  
FILE_PTR  
R
A
M
$XXXX  
ADDRESS AS POINTER  
BUS SPEED (BUS_SPD)  
DATA SIZE (DATASIZE)  
START ADDRESS HIGH (ADDRH)  
START ADDRESS LOW (ADDRL)  
DATA 0  
DATA  
BLOCK  
DATA 1  
DATA  
ARRAY  
DATA N  
Figure 8-9. Data Block Format for ROM-Resident Routines  
The control and data bytes are described below.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
126  
Freescale Semiconductor  
ROM-Resident Routines  
Bus speed — This one byte indicates the operating bus speed of the MCU. The value of this byte  
should be equal to 4 times the bus speed. E.g., for a 4MHz bus, the value is 16 ($10). This control  
byte is useful where the MCU clock source is switched between the PLL clock and the crystal clock.  
Data size — This one byte indicates the number of bytes in the data array that are to be  
manipulated. The maximum data array size is 255. ERARNGE and MON_ERARNGE routines do  
not manipulate a data array, thus, this data size byte has no meaning.  
Start address — These two bytes, high byte followed by low byte, indicate the start address of the  
FLASH memory to be manipulated.  
Data array — This data array contains data that are to be manipulated. Data in this array are  
programmed to FLASH memory by the programming routines, PRGRNGE and MON_PRGRNGE.  
For the read routine, LDRNGE, data is read from FLASH and stored in this array.  
8.5.1 PRGRNGE  
PRGRNGE is used to program a range of FLASH locations with data loaded into the data array.  
Table 8-11. PRGRNGE Routine  
Routine Name PRGRNGE  
Routine Description Program a range of locations  
Calling Address $FC34  
Stack Used 15 bytes  
Bus speed (BUS_SPD)  
Data size (DATASIZE)  
Start address high (ADDRH)  
Data Block Format Start address (ADDRL)  
Data 1 (DATA1)  
:
Data N (DATAN)  
The start location of the FLASH to be programmed is specified by the address ADDRH:ADDRL and the  
number of bytes from this location is specified by DATASIZE. The maximum number of bytes that can be  
programmed in one routine call is 255 bytes (max. DATASIZE is 255).  
ADDRH:ADDRL do not need to be at a page boundary, the routine handles any boundary misalignment  
during programming. A check to see that all bytes in the specified range are erased is not performed by  
this routine prior programming. Nor does this routine do a verification after programming, so there is no  
return confirmation that programming was successful. User must assure that the range specified is first  
erased.  
The coding example below is to program 64 bytes of data starting at FLASH location $EE00, with a bus  
speed of 4.9152 MHz. The coding assumes the data block is already loaded in RAM, with the address  
pointer, FILE_PTR, pointing to the first byte of the data block.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
127  
 
Monitor Mode (MON)  
ORG  
RAM  
:
FILE_PTR:  
BUS_SPD  
DATASIZE  
START_ADDR  
DATAARRAY  
DS.B  
DS.B  
DS.W  
DS.B  
1
1
1
64  
; Indicates 4x bus frequency  
; Data size to be programmed  
; FLASH start address  
; Reserved data array  
PRGRNGE  
FLASH_START  
EQU  
EQU  
$FC34  
$EE00  
ORG  
FLASH  
INITIALISATION:  
MOV  
MOV  
#20,  
#64,  
BUS_SPD  
DATASIZE  
LDHX  
STHX  
RTS  
#FLASH_START  
START_ADDR  
MAIN:  
BSR  
:
INITIALISATION  
:
LDHX  
JSR  
#FILE_PTR  
PRGRNGE  
8.5.2 ERARNGE  
ERARNGE is used to erase a range of locations in FLASH.  
Table 8-12. ERARNGE Routine  
Routine Name ERARNGE  
Routine Description Erase a page or the entire array  
Calling Address $FCE4  
Stack Used 9 bytes  
Bus speed (BUS_SPD)  
Data size (DATASIZE)  
Starting address (ADDRH)  
Data Block Format  
Starting address (ADDRL)  
There are two sizes of erase ranges: a page or the entire array. The ERARNGE will erase the page (512  
consecutive bytes) in FLASH specified by the address ADDRH:ADDRL. This address can be any address  
within the page. Calling ERARNGE with ADDRH:ADDRL equal to $FFFF will erase the entire FLASH  
array (mass erase). Therefore, care must be taken when calling this routine to prevent an accidental mass  
erase.  
The ERARNGE routine do not use a data array. The DATASIZE byte is a dummy byte that is also not  
used.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
128  
Freescale Semiconductor  
 
ROM-Resident Routines  
The coding example below is to perform a page erase, from $EE00–$EFFF. The Initialization subroutine  
is the same as the coding example for PRGRNGE (see 8.5.1 PRGRNGE).  
ERARNGE  
EQU  
$FCE4  
MAIN:  
BSR  
:
INITIALISATION  
:
LDHX  
JSR  
:
#FILE_PTR  
ERARNGE  
8.5.3 LDRNGE  
LDRNGE is used to load the data array in RAM with data from a range of FLASH locations.  
Table 8-13. LDRNGE Routine  
Routine Name LDRNGE  
Routine Description Loads data from a range of locations  
Calling Address $FC00  
Stack Used 7 bytes  
Bus speed (BUS_SPD)  
Data size (DATASIZE)  
Starting address (ADDRH)  
Data Block Format Starting address (ADDRL)  
Data 1  
:
Data N  
The start location of FLASH from where data is retrieved is specified by the address ADDRH:ADDRL and  
the number of bytes from this location is specified by DATASIZE. The maximum number of bytes that can  
be retrieved in one routine call is 255 bytes. The data retrieved from FLASH is loaded into the data array  
in RAM. Previous data in the data array will be overwritten. User can use this routine to retrieve data from  
FLASH that was previously programmed.  
The coding example below is to retrieve 64 bytes of data starting from $EE00 in FLASH. The Initialization  
subroutine is the same as the coding example for PRGRNGE (see 8.5.1 PRGRNGE).  
LDRNGE  
EQU  
$FC00  
MAIN:  
BSR  
:
INITIALIZATION  
:
LDHX  
JSR  
:
#FILE_PTR  
LDRNGE  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
129  
Monitor Mode (MON)  
8.5.4 MON_PRGRNGE  
In monitor mode, MON_PRGRNGE is used to program a range of FLASH locations with data loaded into  
the data array.  
Table 8-14. MON_PRGRNGE Routine  
Routine Name MON_PRGRNGE  
Routine Description Program a range of locations, in monitor mode  
Calling Address $FF24  
Stack Used 17 bytes  
Bus speed  
Data size  
Starting address (high byte)  
Data Block Format Starting address (low byte)  
Data 1  
:
Data N  
The MON_PRGRNGE routine is designed to be used in monitor mode. It performs the same function as  
the PRGRNGE routine (see 8.5.1 PRGRNGE), except that MON_PRGRNGE returns to the main  
program via an SWI instruction. After a MON_PRGRNGE call, the SWI instruction will return the control  
back to the monitor code.  
8.5.5 MON_ERARNGE  
In monitor mode, ERARNGE is used to erase a range of locations in FLASH.  
Table 8-15. MON_ERARNGE Routine  
Routine Name MON_ERARNGE  
Routine Description Erase a page or the entire array, in monitor mode  
Calling Address $FF28  
Stack Used 11 bytes  
Bus speed  
Data size  
Starting address (high byte)  
Data Block Format  
Starting address (low byte)  
The MON_ERARNGE routine is designed to be used in monitor mode. It performs the same function as  
the ERARNGE routine (see 8.5.2 ERARNGE), except that MON_ERARNGE returns to the main program  
via an SWI instruction. After a MON_ERARNGE call, the SWI instruction will return the control back to  
the monitor code.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
130  
Freescale Semiconductor  
Chapter 9  
Timer Interface Module (TIM)  
9.1 Introduction  
This section describes the timer interface (TIM) module. The TIM is a two-channel timer that provides a  
timing reference with Input capture, output compare, and pulse-width-modulation functions. Figure 9-1 is  
a block diagram of the TIM.  
This particular MCU has two timer interface modules which are denoted as TIM1 and TIM2.  
9.2 Features  
Features of the TIM include:  
Two input capture/output compare channels:  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered pulse-width-modulation (PWM) signal generation  
Programmable TIM clock input with 7-frequency internal bus clock prescaler selection  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIM counter stop and reset bits  
9.3 Pin Name Conventions  
The text that follows describes both timers, TIM1 and TIM2. The TIM input/output (I/O) pin names are  
T[1,2]CH0 (timer channel 0) and T[1,2]CH1 (timer channel 1), where “1” is used to indicate TIM1 and “2”  
is used to indicate TIM2. The two TIMs share four I/O pins with four I/O port pins. The external clock input  
for TIM2 is shared with the an ADC channel pin. The full names of the TIM I/O pins are listed in Table 9-1.  
The generic pin names appear in the text that follows.  
Table 9-1. Pin Name Conventions  
TIM Generic Pin Names:  
T[1,2]CH0  
PTB4/T1CH0  
PTB6/T2CH0  
T[1,2]CH1  
PTB5/T1CH1  
PTB7/T2CH1  
TIM1  
Full TIM  
Pin Names:  
TIM2  
NOTE  
References to either timer 1 or timer 2 may be made in the following text by  
omitting the timer number. For example, TCH0 may refer generically to  
T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
131  
 
Timer Interface Module (TIM)  
9.4 Functional Description  
Figure 9-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter  
that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing  
reference for the input capture and output compare functions. The TIM counter modulo registers,  
TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value  
at any time without affecting the counting sequence.  
The two TIM channels (per timer) are programmable independently as input capture or output compare  
channels.  
PRESCALER SELECT  
INTERNAL  
PRESCALER  
BUS CLOCK  
TSTOP  
PS2  
PS1  
PS0  
TRST  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
ELS0B  
ELS0A  
PORT  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
CH0MAX  
T[1,2]CH0  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
MS0A  
CH0IE  
MS0B  
CH1F  
TOV1  
ELS0B  
ELS0A  
PORT  
LOGIC  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
T[1,2]CH1  
INTERRUPT  
LOGIC  
CH01IE  
CH1IE  
16-BIT LATCH  
MS0A  
Figure 9-1. TIM Block Diagram  
Figure 9-2 summarizes the timer registers.  
NOTE  
References to either timer 1 or timer 2 may be made in the following text by  
omitting the timer number. For example, TSC may generically refer to both  
T1SC and T2SC.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
132  
Freescale Semiconductor  
Functional Description  
Addr.  
Register Name  
TIM1 Status and Control  
Register  
Bit 7  
TOF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
TOIE  
TSTOP  
PS2  
PS1  
PS0  
TRST  
0
$0020  
0
0
1
0
0
0
9
0
(T1SC)  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
TIM1 Counter Register  
High  
(T1CNTH)  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
$002B  
$002C  
$002D  
$002E  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 7  
Bit 0  
TIM1 Counter Register  
Low  
(T1CNTL)  
0
Bit 15  
1
0
0
0
0
0
0
0
TIM Counter Modulo  
Register High  
(TMODH)  
14  
13  
12  
11  
10  
9
Bit 8  
1
1
1
1
1
1
1
Bit 0  
1
TIM1 Counter Modulo  
Register Low  
(T1MODL)  
Bit 7  
6
1
5
1
4
1
3
2
1
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
TIM1 Channel 0 Status  
and Control Register  
(T1SC0)  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
0
TIM1 Channel 0  
Register High  
(T1CH0H)  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
Indeterminate after reset  
TIM1 Channel 0  
Register Low  
(T1CH0L)  
6
5
0
4
3
2
1
Bit 0  
Indeterminate after reset  
CH1F  
TIM1 Channel 1 Status  
and Control Register  
(T1SC1)  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
0
0
0
0
0
9
0
TIM1 Channel 1  
Register High  
(T1CH1H)  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Indeterminate after reset  
TIM1 Channel 1  
Register Low  
(T1CH1L)  
Bit 7  
6
5
4
3
2
1
Bit 0  
PS0  
Indeterminate after reset  
TOF  
0
0
TRST  
0
0
TIM2 Status and Control  
Register  
(T2SC)  
TOIE  
TSTOP  
PS2  
PS1  
0
0
1
0
0
0
9
0
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
TIM2 Counter Register  
High  
(T2CNTH)  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 7  
Bit 0  
TIM2 Counter Register  
Low  
(T2CNTL)  
0
Bit 15  
1
0
14  
1
0
13  
1
0
12  
1
0
11  
1
0
10  
1
0
9
1
0
Bit 8  
1
TIM2 Counter Modulo  
Register High  
(T2MODH)  
= Unimplemented  
Figure 9-2. TIM I/O Register Summary (Sheet 1 of 2)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
133  
Timer Interface Module (TIM)  
Addr.  
Register Name  
TIM2 Counter Modulo  
Register Low  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Bit 7  
6
1
5
1
4
1
3
2
1
$002F  
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
(T2MODL)  
TIM2 Channel 0 Status  
and Control Register  
(T2SC0)  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
$0030  
$0031  
$0032  
$0033  
$0034  
$0035  
0
TIM2 Channel 0  
Register High  
(T2CH0H)  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
Indeterminate after reset  
TIM2 Channel 0  
Register Low  
(T2CH0L)  
6
5
0
4
3
2
1
Bit 0  
Indeterminate after reset  
CH1F  
TIM2 Channel 1 Status  
and Control Register  
(T2SC1)  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
0
0
0
0
0
9
0
TIM2 Channel 1  
Register High  
(T2CH1H)  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Indeterminate after reset  
TIM2 Channel 1  
Register Low  
(T2CH1L)  
Bit 7  
6
5
4
3
2
1
Bit 0  
Indeterminate after reset  
= Unimplemented  
Figure 9-2. TIM I/O Register Summary (Sheet 2 of 2)  
9.4.1 TIM Counter Prescaler  
The TIM clock source can be one of the seven prescaler outputs. The prescaler generates seven clock  
rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register  
select the TIM clock source.  
9.4.2 Input Capture  
With the input capture function, the TIM can capture the time at which an external event occurs. When an  
active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter  
into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input  
captures can generate TIM CPU interrupt requests.  
9.4.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse with a programmable polarity,  
duration, and frequency. When the counter reaches the value in the registers of an output compare  
channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU  
interrupt requests.  
9.4.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as described in 9.4.3  
Output Compare. The pulses are unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM channel registers.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
134  
Freescale Semiconductor  
 
Functional Description  
An unsynchronized write to the TIM channel registers to change an output compare value could cause  
incorrect operation for up to two counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new value prevents any compare during  
that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the output compare value on channel x:  
When changing to a smaller value, enable channel x output compare interrupts and write the new  
value in the output compare interrupt routine. The output compare interrupt occurs at the end of  
the current output compare pulse. The interrupt routine has until the end of the counter overflow  
period to write the new value.  
When changing to a larger output compare value, enable TIM overflow interrupts and write the new  
value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the  
current counter overflow period. Writing a larger value in an output compare interrupt routine (at  
the end of the current pulse) could cause two output compares to occur in the same counter  
overflow period.  
9.4.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the  
TCH0 pin. The TIM channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1.  
The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin.  
Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the  
output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that  
control the output are the ones written to last. TSC0 controls and monitors the buffered output compare  
function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the  
channel 1 pin, TCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should track  
the currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered output compares.  
9.4.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM  
signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The  
channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time  
between overflows is the period of the PWM signal.  
As Figure 9-3 shows, the output compare value in the TIM channel registers determines the pulse width  
of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM  
to clear the channel pin on output compare if the polarity of the PWM pulse is 1. Program the TIM to set  
the pin if the polarity of the PWM pulse is 0.  
The value in the TIM counter modulo registers and the selected prescaler output determines the  
frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
135  
 
Timer Interface Module (TIM)  
$00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus  
clock period if the prescaler select value is $000. See 9.9.1 TIM Status and Control Register.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 9-3. PWM Period and Pulse Width  
The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width  
of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers  
produces a duty cycle of 128/256 or 50%.  
9.4.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described in 9.4.4 Pulse Width  
Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect  
operation for up to two PWM periods. For example, writing a new value before the counter reaches the  
old value but after the counter reaches the new value prevents any compare during that PWM period.  
Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the  
compare to be missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output compare interrupts and write the  
new value in the output compare interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the PWM period to write the new  
value.  
When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in  
the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM  
period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same PWM period.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare also can  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
136  
Freescale Semiconductor  
Functional Description  
9.4.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin.  
The TIM channel registers of the linked pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1.  
The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel  
1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning  
of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the  
pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM  
channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
TCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered PWM signal generation, do not write new pulse width values to  
the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered PWM signals.  
9.4.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals, use the following  
initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM  
period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare  
or PWM signals) to the mode select bits, MSxB:MSxA. (See Table 9-3.)  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level  
select bits, ELSxB:ELSxA. The output action on compare must force the output to the  
complement of the pulse width level. (See Table 9-3.)  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare can also  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
137  
Timer Interface Module (TIM)  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel  
0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0  
(TSCR0) controls and monitors the PWM signal from the linked channels.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output  
compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle  
output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty  
cycle output. (See 9.9.4 TIM Channel Status and Control Registers.)  
9.5 Interrupts  
The following TIM sources can generate interrupt requests:  
TIM overflow flag (TOF) — The TOF bit is set when the TIM counter reaches the modulo value  
programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE,  
enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control  
register.  
TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an input capture or output compare  
occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE = 1.  
CHxF and CHxIE are in the TIM channel x status and control register.  
9.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby modes.  
9.6.1 Wait Mode  
The TIM remains active after the execution of a WAIT instruction. In wait mode, the TIM registers are not  
accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait  
mode.  
If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before  
executing the WAIT instruction.  
9.6.2 Stop Mode  
The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect  
register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode  
after an external interrupt.  
9.7 TIM During Break Interrupts  
A break interrupt stops the TIM counter and inhibits input captures.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. (See 21.5.4 SIM Break Flag Control Register.)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
138  
Freescale Semiconductor  
I/O Signals  
To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status  
bit is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its  
default state), software can read and write I/O registers during the break state without affecting status bits.  
Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit  
before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the  
break, doing the second step clears the status bit.  
9.8 I/O Signals  
Port B shares four of its pins with the TIM. The four TIM channel I/O pins are T1CH0, T1CH1, T2CH0,  
and T2CH1 as described in 9.3 Pin Name Conventions.  
Each channel I/O pin is programmable independently as an input capture pin or an output compare pin.  
T1CH0 and T2CH0 can be configured as buffered output compare or buffered PWM pins.  
9.9 I/O Registers  
NOTE  
References to either timer 1 or timer 2 may be made in the following text by  
omitting the timer number. For example, TSC may generically refer to both  
T1SC AND T2SC.  
These I/O registers control and monitor operation of the TIM:  
TIM status and control register (TSC)  
TIM counter registers (TCNTH:TCNTL)  
TIM counter modulo registers (TMODH:TMODL)  
TIM channel status and control registers (TSC0, TSC1)  
TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L)  
9.9.1 TIM Status and Control Register  
The TIM status and control register (TSC):  
Enables TIM overflow interrupts  
Flags TIM overflows  
Stops the TIM counter  
Resets the TIM counter  
Prescales the TIM counter clock  
Address: T1SC, $0020 and T2SC, $002B  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 9-4. TIM Status and Control Register (TSC)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
139  
Timer Interface Module (TIM)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM  
counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set  
and then writing a logic 0 to TOF. If another TIM overflow occurs before the clearing sequence is  
complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost  
due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the  
TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
TSTOP — TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the  
TSTOP bit, stopping the TIM counter until software clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE  
Do not set the TSTOP bit before entering wait mode if the TIM is required  
to exit wait mode. Also, when the TSTOP bit is set and the timer is  
configured for input capture operation, input captures are inhibited until the  
TSTOP bit is cleared.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on  
any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM  
counter is reset and always reads as logic 0. Reset clears the TRST bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE  
Setting the TSTOP and TRST bits simultaneously stops the TIM counter at  
a value of $0000.  
PS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the input to the TIM counter as  
Table 9-2 shows. Reset clears the PS[2:0] bits.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
140  
Freescale Semiconductor  
I/O Registers  
Table 9-2. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
Not available  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
9.9.2 TIM Counter Registers  
The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter.  
Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent  
reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter  
registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers.  
NOTE  
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by  
reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
Address: T1CNTH, $0021 and T2CNTH, $002C  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
0
0
0
0
0
0
0
0
Figure 9-5. TIM Counter Registers High (TCNTH)  
Address: T1CNTL, $0022 and T2CNTL, $002D  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
Figure 9-6. TIM Counter Registers Low (TCNTL)  
9.9.3 TIM Counter Modulo Registers  
The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter  
reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting  
from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow  
interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
141  
Timer Interface Module (TIM)  
Address: T1MODH, $0023 and T2MODH, $002E  
Bit 7  
6
14  
1
5
13  
1
4
12  
1
3
11  
1
2
10  
1
1
9
1
Bit 0  
Bit 8  
1
Read:  
Write:  
Reset:  
Bit 15  
1
Figure 9-7. TIM Counter Modulo Register High (TMODH)  
Address: T1MODL, $0024 and T2MODL, $002F  
Bit 7  
Bit 7  
1
6
6
1
5
5
1
4
4
1
3
3
1
2
2
1
1
1
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Figure 9-8. TIM Counter Modulo Register Low (TMODL)  
NOTE  
Reset the TIM counter before writing to the TIM counter modulo registers.  
9.9.4 TIM Channel Status and Control Registers  
Each of the TIM channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input capture trigger  
Selects output toggling on TIM overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Address: T1SC0, $0025 and T2SC0, $0030  
Bit 7  
CH0F  
0
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
0
Figure 9-9. TIM Channel 0 Status and Control Register (TSC0)  
Address: T1SC1, $0028 and T2SC1, $0033  
Bit 7  
CH1F  
0
6
CH1IE  
0
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
0
0
Figure 9-10. TIM Channel 1 Status and Control Register (TSC1)  
CHxF — Channel x Flag Bit  
MC68HC908AP A-Family Data Sheet, Rev. 3  
142  
Freescale Semiconductor  
I/O Registers  
When channel x is an input capture channel, this read/write bit is set when an active edge occurs on  
the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the  
TIM counter registers matches the value in the TIM channel x registers.  
When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading TIM channel x  
status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request  
occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore,  
an interrupt request cannot be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupt service requests on channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM1  
channel 0 and TIM2 channel 0 status and control registers.  
Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose  
I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:ELSxA 0:0, this read/write bit selects either input capture operation or unbuffered  
output compare/PWM operation.  
See Table 9-3.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output level of the TCHx pin. See  
Table 9-3. Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE  
Before changing a channel function by writing to the MSxB or MSxA bit, set  
the TSTOP and TRST bits in the TIM status and control register (TSC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic  
on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the channel x output  
behavior when an output compare occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port, and pin TCHx is  
available as a general-purpose I/O pin. Table 9-3 shows how ELSxB and ELSxA work. Reset clears  
the ELSxB and ELSxA bits.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
143  
Timer Interface Module (TIM)  
Table 9-3. Mode, Edge, and Level Selection  
MSxB:MSxA  
ELSxB:ELSxA  
Mode  
Configuration  
Pin under port control;  
initial output level high  
X0  
00  
Output preset  
Pin under port control;  
initial output level low  
X1  
00  
00  
00  
01  
10  
Capture on rising edge only  
Capture on falling edge only  
Input capture  
Capture on rising or  
falling edge  
00  
11  
01  
01  
01  
01  
1X  
1X  
1X  
00  
01  
10  
11  
01  
10  
11  
Software compare only  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Outputcompare  
or PWM  
Buffered output  
compare or  
buffered PWM  
NOTE  
After initially enabling a TIM channel register for input capture operation,  
and selecting the edge sensitivity, clear CHxF to ignore any erroneous  
detection flags.  
TOVx — Toggle On Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the behavior of the channel  
x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no  
effect.  
Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow  
0 = Channel x pin does not toggle on TIM counter overflow  
NOTE  
When TOVx is set, a TIM counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of buffered and  
unbuffered PWM signals to 100%. As Figure 9-11 shows, the CHxMAX bit takes effect in the cycle  
after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is  
cleared.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
144  
Freescale Semiconductor  
I/O Registers  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
TCHx  
OUTPUT  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
COMPARE  
CHxMAX  
Figure 9-11. CHxMAX Latency  
9.9.5 TIM Channel Registers  
These read/write registers contain the captured TIM counter value of the input capture function or the  
output compare value of the output compare function. The state of the TIM channel registers after reset  
is unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH)  
inhibits input captures until the low byte (TCHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of the TIM channel x registers  
(TCHxH) inhibits output compares until the low byte (TCHxL) is written.  
Address: T1CH0H, $0026 and T2CH0H, $0031  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 9-12. TIM Channel 0 Register High (TCH0H)  
Address: T1CH0L, $0027 and T2CH0L $0032  
Bit 7  
6
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
Indeterminate after reset  
Figure 9-13. TIM Channel 0 Register Low (TCH0L)  
Address: T1CH1H, $0029 and T2CH1H, $0034  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 9-14. TIM Channel 1 Register High (TCH1H)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
145  
Timer Interface Module (TIM)  
Address: T1CH1L, $002A and T2CH1L, $0035  
Bit 7  
6
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
Indeterminate after reset  
Figure 9-15. TIM Channel 1 Register Low (TCH1L)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
146  
Freescale Semiconductor  
Chapter 10  
Timebase Module (TBM)  
10.1 Introduction  
This section describes the timebase module (TBM). The TBM will generate periodic interrupts at user  
selectable rates using a counter clocked by the selected OSCCLK clock from the oscillator module. This  
TBM version uses 18 divider stages, eight of which are user selectable.  
10.2 Features  
Features of the TBM module include:  
Eight user selectable periodic interrupts  
User selectable oscillator clock source enable during stop mode to allow periodic wake-up from  
stop  
10.3 Functional Description  
This module can generate a periodic interrupt by dividing the oscillator clock frequency, OSCCLK. The  
counter is initialized to all 0s when TBON bit is cleared. The counter, shown in Figure 10-1, starts counting  
when the TBON bit is set. When the counter overflows at the tap selected by TBR[2:0], the TBIF bit gets  
set. If the TBIE bit is set, an interrupt request is sent to the CPU. The TBIF flag is cleared by writing a 1  
to the TACK bit. The first time the TBIF flag is set after enabling the timebase module, the interrupt is  
generated at approximately half of the overflow period. Subsequent events occur at the exact period.  
The reference clock OSCCLK is derived from the oscillator module, see 5.2.2 TBM Reference Clock  
Selection.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
147  
Timebase Module (TBM)  
TBON  
÷ 2 ÷ 2 ÷ 2  
÷ 2  
÷ 2  
÷ 16  
÷ 2  
÷ 32  
÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2  
÷ 64  
OSCCLK  
From OSC module  
(See Chapter 5 Oscillator (OSC).)  
÷ 8  
÷ 2048  
TBMINT  
÷ 2 ÷ 2 ÷ 2 ÷ 2  
÷ 2  
÷ 2  
÷ 2  
÷ 32768 ÷ 65536 ÷ 131072  
÷ 262144  
TBIF  
TBIE  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
R
SEL  
Figure 10-1. Timebase Block Diagram  
10.4 Timebase Register Description  
The timebase has one register, the TBCR, which is used to enable the timebase interrupts and set the  
rate.  
Address:  
$0051  
Bit 7  
6
TBR2  
0
5
TBR1  
0
4
TBR0  
0
3
2
1
TBON  
0
Bit 0  
R
Read:  
Write:  
Reset:  
TBIF  
0
TACK  
0
TBIE  
0
0
0
= Unimplemented  
R
= Reserved  
Figure 10-2. Timebase Control Register (TBCR)  
TBIF — Timebase Interrupt Flag  
This read-only flag bit is set when the timebase counter has rolled over.  
1 = Timebase interrupt pending  
0 = Timebase interrupt not pending  
MC68HC908AP A-Family Data Sheet, Rev. 3  
148  
Freescale Semiconductor  
Timebase Register Description  
TBR[2:0] — Timebase Rate Selection  
These read/write bits are used to select the rate of timebase interrupts as shown in Table 10-1.  
NOTE  
Do not change TBR[2:0] bits while the timebase is enabled (TBON = 1).  
Table 10-1. Timebase Rate Selection for OSCCLK = 4 MHz  
Timebase Interrupt Rate(1)  
TBR2  
TBR1  
TBR0  
Divider  
Hz  
ms  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
262144  
131072  
65536  
32768  
64  
15.259  
30.518  
61.035  
122.07  
62,500  
125,000  
250,000  
500,000  
65.536  
32.768  
16.384  
8.192  
0.016  
0.008  
0.004  
0.002  
32  
16  
8
1. If user selects one of the shaded timebase settings, ensure that the operating bus  
frequency is fast enough to service the periodic interrupts.  
TACK — Timebase ACKnowledge  
The TACK bit is a write-only bit and always reads as 0. Writing a logic 1 to this bit clears TBIF, the  
timebase interrupt flag bit. Writing a logic 0 to this bit has no effect.  
1 = Clear timebase interrupt flag  
0 = No effect  
TBIE — Timebase Interrupt Enabled  
This read/write bit enables the timebase interrupt when the TBIF bit becomes set. Reset clears the  
TBIE bit.  
1 = Timebase interrupt enabled  
0 = Timebase interrupt disabled  
TBON — Timebase Enabled  
This read/write bit enables the timebase. Timebase may be turned off to reduce power consumption  
when its function is not necessary. The counter can be initialized by clearing and then setting this bit.  
Reset clears the TBON bit.  
1 = Timebase enabled  
0 = Timebase disabled and the counter initialized to 0’s  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
149  
Timebase Module (TBM)  
10.5 Interrupts  
The timebase module can interrupt the CPU on a regular basis with a rate defined by TBR[2:0]. When the  
timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase  
interrupt, the counter chain overflow will generate a CPU interrupt request. The interrupt vector is defined  
in Table 2-1 . Vector Addresses.  
Interrupts must be acknowledged by writing a logic 1 to the TACK bit.  
10.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby modes.  
10.6.1 Wait Mode  
The timebase module remains active after execution of the WAIT instruction. In wait mode, the timebase  
register is not accessible by the CPU.  
If the timebase functions are not required during wait mode, reduce the power consumption by stopping  
the timebase before enabling the WAIT instruction.  
10.6.2 Stop Mode  
The timebase module may remain active after execution of the STOP instruction if the oscillator has been  
enabled to operate during stop mode through the stop mode oscillator enable bit (STOP_ICLKDIS,  
STOP_RCLKEN, or STOP_XCLKEN) for the selected oscillator in the CONFIG2 register. The timebase  
module can be used in this mode to generate a periodic walk-up from stop mode.  
If the oscillator has not been enabled to operate in stop mode, the timebase module will not be active  
during stop mode. In stop mode the timebase register is not accessible by the CPU.  
If the timebase functions are not required during stop mode, reduce the power consumption by stopping  
the timebase before enabling the STOP instruction.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
150  
Freescale Semiconductor  
Chapter 11  
Serial Communications Interface Module (SCI)  
11.1 Introduction  
The MC68HC908AP64A has two SCI modules:  
SCI1 is a standard SCI module, and  
SCI2 is an infrared SCI module.  
This section describes SCI1, the serial communications interface (SCI) module, which allows high-speed  
asynchronous communications with peripheral devices and other MCUs.  
NOTE  
When the SCI is enabled, the TxD pin is an open-drain output and requires  
a pullup resistor to be connected for proper SCI operation.  
11.2 Features  
Features of the SCI module include the following:  
Full-duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
32 programmable baud rates  
Programmable 8-bit or 9-bit character length  
Separately enabled transmitter and receiver  
Separate receiver and transmitter CPU interrupt requests  
Programmable transmitter output polarity  
Two receiver wakeup methods:  
Idle line wakeup  
Address mark wakeup  
Interrupt-driven operation with eight interrupt flags:  
Transmitter empty  
Transmission complete  
Receiver full  
Idle receiver input  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
Configuration register bit, SCIBDSRC, to allow selection of baud rate clock source  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
151  
Serial Communications Interface Module (SCI)  
11.3 Pin Name Conventions  
The generic names of the SCI I/O pins are:  
RxD (receive data)  
TxD (transmit data)  
SCI I/O (input/output) lines are implemented by sharing parallel I/O port pins. The full name of an SCI  
input or output reflects the name of the shared port pin. Table 11-1 shows the full names and the generic  
names of the SCI I/O pins. The generic pin names appear in the text of this section.  
Table 11-1. Pin Name Conventions  
Generic Pin Names:  
Full Pin Names:  
RxD  
TxD  
PTB3/RxD  
PTB2/TxD  
NOTE  
When the SCI is enabled, the TxD pin is an open-drain output and requires  
a pullup resistor to be connected for proper SCI operation.  
Addr.  
Register Name  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
TXINV  
0
4
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
M
0
SCI Control Register 1  
(SCC1)  
$0013  
SCTIE  
TCIE  
0
SCRIE  
0
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
SCI Control Register 2  
(SCC2)  
$0014  
$0015  
0
0
R8  
T8  
DMARE  
DMATE  
ORIE  
NEIE  
FEIE  
PEIE  
SCI Control Register 3  
(SCC3)  
U
U
0
0
0
0
0
0
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
$0016 SCI Status Register 1 (SCS1) Write:  
Reset:  
1
1
0
0
0
0
0
0
Read:  
$0017 SCI Status Register 2 (SCS2) Write:  
Reset:  
BKF  
RPF  
0
0
0
0
0
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR)  
$0018  
$0019  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Unaffected by reset  
0
0
0
0
SCP1  
0
SCP0  
R
0
SCR2  
0
SCR1  
0
SCR0  
0
SCI Baud Rate Register  
(SCBR)  
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 11-1. SCI I/O Register Summary  
MC68HC908AP A-Family Data Sheet, Rev. 3  
152  
Freescale Semiconductor  
Functional Description  
11.4 Functional Description  
Figure 11-2 shows the structure of the SCI module. The SCI allows full-duplex, asynchronous, NRZ serial  
communication among the MCU and remote devices, including other MCUs. The transmitter and receiver  
of the SCI operate independently, although they use the same baud rate generator. During normal  
operation, the CPU monitors the status of the SCI, writes the data to be transmitted, and processes  
received data.  
The baud rate clock source for the SCI can be selected via the configuration bit, SCIBDSRC, of the  
CONFIG2 register ($001D).  
INTERNAL BUS  
SCI DATA  
REGISTER  
SCI DATA  
REGISTER  
RECEIVE  
SHIFT REGISTER  
TRANSMIT  
SHIFT REGISTER  
RxD  
TxD  
TXINV  
SCTIE  
TCIE  
SCRIE  
ILIE  
R8  
T8  
DMARE  
DMATE  
TE  
SCTE  
TC  
RE  
RWU  
SBK  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
SCIBDSRC  
FROM  
CONFIG  
M
BKF  
RPF  
ENSCI  
WAKE  
ILTY  
PEN  
PTY  
SL  
A
PRE-  
SCALER  
BAUD  
DIVIDER  
CGMXCLK  
IT12  
÷ 4  
X
B
SL = 0 => X = A  
SL = 1 => X = B  
DATA SELECTION  
CONTROL  
÷ 16  
CGMXCLK is from CGM module  
IT12 = f  
BUS  
Figure 11-2. SCI Module Block Diagram  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
153  
Serial Communications Interface Module (SCI)  
11.4.1 Data Format  
The SCI uses the standard non-return-to-zero mark/space data format illustrated in Figure 11-3.  
8-BIT DATA FORMAT  
BIT M IN SCC1 CLEAR  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
9-BIT DATA FORMAT  
BIT M IN SCC1 SET  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
STOP  
BIT  
Figure 11-3. SCI Data Formats  
11.4.2 Transmitter  
Figure 11-4 shows the structure of the SCI transmitter.  
The baud rate clock source for the SCI can be selected via the configuration bit, SCIBDSRC. Source  
selection values are shown in Figure 11-4.  
INTERNAL BUS  
PRE- BAUD  
SCALER DIVIDER  
÷ 16  
÷ 4  
SCI DATA REGISTER  
SCIBDSRC  
FROM  
CONFIG2  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
H
8
7
6
5
4
3
2
1
0
L
TxD  
SL  
A
CGMXCLK  
IT12  
X
B
SL = 0 => X = A  
SL = 1 => X = B  
TXINV  
M
PEN  
PTY  
PARITY  
GENERATION  
T8  
DMATE  
TRANSMITTER  
CONTROL LOGIC  
DMATE  
SCTIE  
SCTE  
SCTE  
SBK  
DMATE  
SCTE  
LOOPS  
ENSCI  
TE  
SCTIE  
SCTIE  
TC  
TC  
TCIE  
TCIE  
Figure 11-4. SCI Transmitter  
MC68HC908AP A-Family Data Sheet, Rev. 3  
154  
Freescale Semiconductor  
Functional Description  
11.4.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register  
1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in SCI control register 3  
(SCC3) is the ninth bit (bit 8).  
11.4.2.2 Character Transmission  
During an SCI transmission, the transmit shift register shifts a character out to the TxD pin. The SCI data  
register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register. To  
initiate an SCI transmission:  
1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI) in SCI control register 1 (SCC1).  
2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE) in SCI control register  
2 (SCC2).  
3. Clear the SCI transmitter empty bit by first reading SCI status register 1 (SCS1) and then writing  
to the SCDR.  
4. Repeat step 3 for each subsequent transmission.  
At the start of a transmission, transmitter control logic automatically loads the transmit shift register with  
a preamble of logic 1s. After the preamble shifts out, control logic transfers the SCDR data into the  
transmit shift register. A logic 0 start bit automatically goes into the least significant bit position of the  
transmit shift register. A logic 1 stop bit goes into the most significant bit position.  
The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the  
transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data  
bus. If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a  
transmitter CPU interrupt request.  
When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition,  
logic 1. If at any time software clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and  
receiver relinquish control of the port pin.  
11.4.2.3 Break Characters  
Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break  
character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character  
length depends on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic continuously loads  
break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes  
transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the  
end of a break character guarantees the recognition of the start bit of the next character.  
The SCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a  
logic 0 where the stop bit should be.  
Receiving a break character has these effects on SCI registers:  
Sets the framing error bit (FE) in SCS1  
Sets the SCI receiver full bit (SCRF) in SCS1  
Clears the SCI data register (SCDR)  
Clears the R8 bit in SCC3  
Sets the break flag bit (BKF) in SCS2  
May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
155  
Serial Communications Interface Module (SCI)  
11.4.2.4 Idle Characters  
An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends  
on the M bit in SCC1. The preamble is a synchronizing idle character that begins every transmission.  
If the TE bit is cleared during a transmission, the TxD pin becomes idle after completion of the  
transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle  
character to be sent after the character currently being transmitted.  
NOTE  
When queueing an idle character, return the TE bit to logic 1 before the stop  
bit of the current character shifts out to the TxD pin. Setting TE after the  
stop bit appears on TxD causes data previously written to the SCDR to be  
lost.  
Toggle the TE bit for a queued idle character when the SCTE bit becomes  
set and just before writing the next byte to the SCDR.  
11.4.2.5 Inversion of Transmitted Output  
The transmit inversion bit (TXINV) in SCI control register 1 (SCC1) reverses the polarity of transmitted  
data. All transmitted values, including idle, break, start, and stop bits, are inverted when TXINV is at  
logic 1. (See 11.8.1 SCI Control Register 1.)  
11.4.2.6 Transmitter Interrupts  
These conditions can generate CPU interrupt requests from the SCI transmitter:  
SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates that the SCDR has transferred  
a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request.  
Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate  
transmitter CPU interrupt requests.  
Transmission complete (TC) — The TC bit in SCS1 indicates that the transmit shift register and  
the SCDR are empty and that no break or idle character has been generated. The transmission  
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU  
interrupt requests.  
11.4.3 Receiver  
Figure 11-5 shows the structure of the SCI receiver.  
11.4.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1  
(SCC1) determines character length. When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2)  
is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7).  
11.4.3.2 Character Reception  
During an SCI reception, the receive shift register shifts characters in from the RxD pin. The SCI data  
register (SCDR) is the read-only buffer between the internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data portion of the character transfers  
to the SCDR. The SCI receiver full bit, SCRF, in SCI status register 1 (SCS1) becomes set, indicating that  
MC68HC908AP A-Family Data Sheet, Rev. 3  
156  
Freescale Semiconductor  
Functional Description  
the received byte can be read. If the SCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the  
SCRF bit generates a receiver CPU interrupt request.  
INTERNAL BUS  
SCIBDSRC  
FROM  
CONFIG2  
SCR1  
SCR2  
SCR0  
SCP1  
SCP0  
SCI DATA REGISTER  
SL  
A
B
CGMXCLK  
IT12  
PRE- BAUD  
SCALER DIVIDER  
X
÷ 4  
÷ 16  
11-BIT  
RECEIVE SHIFT REGISTER  
SL = 0 => X = A  
SL = 1 => X = B  
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
RxD  
ALL 0s  
BKF  
RPF  
M
RWU  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
ILIE  
DMARE  
SCRF  
SCRIE  
DMARE  
SCRIE  
SCRF  
SCRIE  
DMARE  
DMARE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 11-5. SCI Receiver Block Diagram  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
157  
Serial Communications Interface Module (SCI)  
11.4.3.3 Data Sampling  
The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency  
16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at the following  
times (see Figure 11-6):  
After every start bit  
After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit  
samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and  
RT10 samples returns a valid logic 0)  
To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three  
logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.  
START BIT  
LSB  
RxD  
START BIT  
QUALIFICATION  
START BIT  
VERIFICATION  
DATA  
SAMPLING  
SAMPLES  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 11-6. Receiver Data Sampling  
To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7.  
Table 11-2 summarizes the results of the start bit verification samples.  
Table 11-2. Start Bit Verification  
RT3, RT5, and RT7  
Samples  
Start Bit  
Verification  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
MC68HC908AP A-Family Data Sheet, Rev. 3  
158  
Freescale Semiconductor  
Functional Description  
Start bit verification is not successful if any two of the three verification samples are logic 1s. If start bit  
verification is not successful, the RT clock is reset and a new search for a start bit begins.  
To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and  
RT10. Table 11-3 summarizes the results of the data bit samples.  
Table 11-3. Data Bit Recovery  
RT8, RT9, and RT10  
Samples  
Data Bit  
Determination  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
NOTE  
The RT8, RT9, and RT10 samples do not affect start bit verification. If any  
or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a  
successful start bit verification, the noise flag (NF) is set and the receiver  
assumes that the bit is a start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 11-4  
summarizes the results of the stop bit samples.  
Table 11-4. Stop Bit Recovery  
RT8, RT9, and RT10  
Samples  
Framing  
Error Flag  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
159  
Serial Communications Interface Module (SCI)  
11.4.3.4 Framing Errors  
If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming character,  
it sets the framing error bit, FE, in SCS1. A break character also sets the FE bit because a break character  
has no stop bit. The FE bit is set at the same time that the SCRF bit is set.  
11.4.3.5 Baud Rate Tolerance  
A transmitting device may be operating at a baud rate below or above the receiver baud rate.  
Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the  
actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing  
error occurs. In most applications, the baud rate tolerance is much more than the degree of misalignment  
that is likely to occur.  
As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge  
within the character. Resynchronization within characters corrects misalignments between transmitter bit  
times and receiver bit times.  
Slow Data Tolerance  
Figure 11-7 shows how much a slow received character can be misaligned without causing a noise error  
or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data  
samples at RT8, RT9, and RT10.  
MSB  
STOP  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 11-7. Slow Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 11-7, the receiver counts 154 RT cycles at the point when  
the count of the transmitting device is  
9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit  
character with no errors is  
154 147  
× 100 = 4.54%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 11-7, the receiver counts 170 RT cycles at the point when  
the count of the transmitting device is  
10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
160  
Freescale Semiconductor  
Functional Description  
The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit  
character with no errors is  
170 163  
× 100 = 4.12%  
-------------------------  
170  
Fast Data Tolerance  
Figure 11-8 shows how much a fast received character can be misaligned without causing a noise error  
or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data  
samples at RT8, RT9, and RT10.  
STOP  
IDLE OR NEXT CHARACTER  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 11-8. Fast Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 11-8, the receiver counts 154 RT cycles at the point when  
the count of the transmitting device is  
10 bit times × 16 RT cycles = 160 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit  
character with no errors is  
154 160  
-------------------------  
154  
˙
× 100 = 3.90%  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 11-8, the receiver counts 170 RT cycles at the point when  
the count of the transmitting device is  
11 bit times × 16 RT cycles = 176 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit  
character with no errors is  
170 176  
× 100 = 3.53%  
-------------------------  
170  
11.4.3.6 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems,  
the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the  
receiver into a standby state during which receiver interrupts are disabled.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
161  
Serial Communications Interface Module (SCI)  
Depending on the state of the WAKE bit in SCC1, either of two conditions on the RxD pin can bring the  
receiver out of the standby state:  
Address mark — An address mark is a logic 1 in the most significant bit position of a received  
character. When the WAKE bit is set, an address mark wakes the receiver from the standby state  
by clearing the RWU bit. The address mark also sets the SCI receiver full bit, SCRF. Software can  
then compare the character containing the address mark to the user-defined address of the  
receiver. If they are the same, the receiver remains awake and processes the characters that  
follow. If they are not the same, software can set the RWU bit and put the receiver back into the  
standby state.  
Idle input line condition — When the WAKE bit is clear, an idle character on the RxD pin wakes the  
receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver  
does not set the receiver idle bit, IDLE, or the SCI receiver full bit, SCRF. The idle line type bit,  
ILTY, determines whether the receiver begins counting logic 1s as idle character bits after the start  
bit or after the stop bit.  
NOTE  
With the WAKE bit clear, setting the RWU bit after the RxD pin has been  
idle may cause the receiver to wake up immediately.  
11.4.3.7 Receiver Interrupts  
The following sources can generate CPU interrupt requests from the SCI receiver:  
SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that the receive shift register has  
transferred a character to the SCDR. SCRF can generate a receiver CPU interrupt request. Setting  
the SCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver  
CPU interrupts.  
Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11 consecutive logic 1s shifted in  
from the RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate  
CPU interrupt requests.  
11.4.3.8 Error Interrupts  
The following receiver error flags in SCS1 can generate CPU interrupt requests:  
Receiver overrun (OR) — The OR bit indicates that the receive shift register shifted in a new  
character before the previous character was read from the SCDR. The previous character remains  
in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3  
enables OR to generate SCI error CPU interrupt requests.  
Noise flag (NF) — The NF bit is set when the SCI detects noise on incoming data or break  
characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3  
enables NF to generate SCI error CPU interrupt requests.  
Framing error (FE) — The FE bit in SCS1 is set when a logic 0 occurs where the receiver expects  
a stop bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI error  
CPU interrupt requests.  
Parity error (PE) — The PE bit in SCS1 is set when the SCI detects a parity error in incoming data.  
The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU interrupt  
requests.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
162  
Freescale Semiconductor  
Low-Power Modes  
11.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby modes.  
11.5.1 Wait Mode  
The SCI module remains active after the execution of a WAIT instruction. In wait mode, the SCI module  
registers are not accessible by the CPU. Any enabled CPU interrupt request from the SCI module can  
bring the MCU out of wait mode.  
If SCI module functions are not required during wait mode, reduce power consumption by disabling the  
module before executing the WAIT instruction.  
Refer to 7.6 Low-Power Modes for information on exiting wait mode.  
11.5.2 Stop Mode  
The SCI module is inactive after the execution of a STOP instruction. The STOP instruction does not  
affect SCI register states. SCI module operation resumes after an external interrupt.  
Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission  
or reception results in invalid data.  
Refer to 7.6 Low-Power Modes for information on exiting stop mode.  
11.6 SCI During Break Module Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state.  
To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status  
bit is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its  
default state), software can read and write I/O registers during the break state without affecting status bits.  
Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit  
before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the  
break, doing the second step clears the status bit.  
11.7 I/O Signals  
Port B shares two of its pins with the SCI module.  
The two SCI I/O pins are:  
PTB2/TxD — Transmit data  
PTB3/RxD — Receive data  
11.7.1 TxD (Transmit Data)  
When the SCI is enabled (ENSCI=1), the PTB2/TxD pin becomes the serial data output, TxD, from the  
SCI transmitter regardless of the state of the DDRB2 bit in data direction register B (DDRB). The TxD pin  
is an open-drain output and requires a pullup resistor to be connected for proper SCI operation.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
163  
Serial Communications Interface Module (SCI)  
NOTE  
The PTB2/TxD pin is an open-drain pin when configured as an output.  
Therefore, when configured as a general purpose output pin (PTB2), a  
pullup resistor must be connected to this pin.  
11.7.2 RxD (Receive Data)  
When the SCI is enabled (ENSCI=1), the PTB3/RxD pin becomes the serial data input, RxD, to the SCI  
receiver regardless of the state of the DDRB3 bit in data direction register B (DDRB).  
NOTE  
The PTB3/RxD pin is an open-drain pin when configured as an output.  
Therefore, when configured as a general purpose output pin (PTB3), a  
pullup resistor must be connected to this pin.  
11.8 I/O Registers  
These I/O registers control and monitor SCI operation:  
SCI control register 1 (SCC1)  
SCI control register 2 (SCC2)  
SCI control register 3 (SCC3)  
SCI status register 1 (SCS1)  
SCI status register 2 (SCS2)  
SCI data register (SCDR)  
SCI baud rate register (SCBR)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
164  
Freescale Semiconductor  
I/O Registers  
11.8.1 SCI Control Register 1  
SCI control register 1:  
Enables loop mode operation  
Enables the SCI  
Controls output polarity  
Controls character length  
Controls SCI wakeup method  
Controls idle character detection  
Enables parity function  
Controls parity type  
Address:  
$0013  
Bit 7  
6
ENSCI  
0
5
TXINV  
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
LOOPS  
0
Figure 11-9. SCI Control Register 1 (SCC1)  
LOOPS — Loop Mode Select Bit  
This read/write bit enables loop mode operation. In loop mode the RxD pin is disconnected from the  
SCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must  
be enabled to use loop mode. Reset clears the LOOPS bit.  
1 = Loop mode enabled  
0 = Normal operation enabled  
ENSCI — Enable SCI Bit  
This read/write bit enables the SCI and the SCI baud rate generator. Clearing ENSCI sets the SCTE  
and TC bits in SCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit.  
1 = SCI enabled  
0 = SCI disabled  
TXINV — Transmit Inversion Bit  
This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit.  
1 = Transmitter output inverted  
0 = Transmitter output not inverted  
NOTE  
Setting the TXINV bit inverts all transmitted values, including idle, break,  
start, and stop bits.  
M — Mode (Character Length) Bit  
This read/write bit determines whether SCI characters are eight or nine bits long. (See Table 11-5.)  
The ninth bit can serve as an extra stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears  
the M bit.  
1 = 9-bit SCI characters  
0 = 8-bit SCI characters  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
165  
Serial Communications Interface Module (SCI)  
WAKE — Wakeup Condition Bit  
This read/write bit determines which condition wakes up the SCI: a logic 1 (address mark) in the most  
significant bit position of a received character or an idle condition on the RxD pin. Reset clears the  
WAKE bit.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY — Idle Line Type Bit  
This read/write bit determines when the SCI starts counting logic 1s as idle character bits. The  
counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then  
a string of logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning  
the count after the stop bit avoids false idle character recognition, but requires properly synchronized  
transmissions. Reset clears the ILTY bit.  
1 = Idle character bit count begins after stop bit  
0 = Idle character bit count begins after start bit  
PEN — Parity Enable Bit  
This read/write bit enables the SCI parity function. (See Table 11-5.) When enabled, the parity function  
inserts a parity bit in the most significant bit position. (See Figure 11-3.) Reset clears the PEN bit.  
1 = Parity function enabled  
0 = Parity function disabled  
PTY — Parity Bit  
This read/write bit determines whether the SCI generates and checks for odd parity or even parity.  
(See Table 11-5.) Reset clears the PTY bit.  
1 = Odd parity  
0 = Even parity  
NOTE  
Changing the PTY bit in the middle of a transmission or reception can  
generate a parity error.  
Table 11-5. Character Format Selection  
Control Bits  
PEN:PTY  
Character Format  
Start  
Bits  
Data  
Bits  
Stop  
Character  
Length  
M
Parity  
Bits  
0
1
0
0
1
1
0X  
0X  
10  
11  
10  
11  
1
1
1
1
1
1
8
9
7
7
8
8
None  
None  
Even  
Odd  
1
10 bits  
11 bits  
10 bits  
10 bits  
11 bits  
11 bits  
1
1
1
Even  
Odd  
1
1
MC68HC908AP A-Family Data Sheet, Rev. 3  
166  
Freescale Semiconductor  
I/O Registers  
11.8.2 SCI Control Register 2  
SCI control register 2:  
Enables the following CPU interrupt requests:  
Enables the SCTE bit to generate transmitter CPU interrupt requests  
Enables the TC bit to generate transmitter CPU interrupt requests  
Enables the SCRF bit to generate receiver CPU interrupt requests  
Enables the IDLE bit to generate receiver CPU interrupt requests  
Enables the transmitter  
Enables the receiver  
Enables SCI wakeup  
Transmits SCI break characters  
Address:  
$0014  
Bit 7  
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
SCTIE  
0
Figure 11-10. SCI Control Register 2 (SCC2)  
SCTIE — SCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate SCI transmitter CPU interrupt requests. Reset  
clears the SCTIE bit.  
1 = SCTE enabled to generate CPU interrupt  
0 = SCTE not enabled to generate CPU interrupt  
TCIE — Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate SCI transmitter CPU interrupt requests. Reset clears  
the TCIE bit.  
1 = TC enabled to generate CPU interrupt requests  
0 = TC not enabled to generate CPU interrupt requests  
SCRIE — SCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate SCI receiver CPU interrupt requests. Reset clears  
the SCRIE bit.  
1 = SCRF enabled to generate CPU interrupt  
0 = SCRF not enabled to generate CPU interrupt  
ILIE — Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate SCI receiver CPU interrupt requests. Reset clears  
the ILIE bit.  
1 = IDLE enabled to generate CPU interrupt requests  
0 = IDLE not enabled to generate CPU interrupt requests  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
167  
Serial Communications Interface Module (SCI)  
TE — Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the  
transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any  
transmission in progress before the TxD returns to the idle condition (logic 1). Clearing and then setting  
TE during a transmission queues an idle character to be sent after the character currently being  
transmitted. Reset clears the TE bit.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE  
Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear.  
ENSCI is in SCI control register 1.  
RE — Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not  
affect receiver interrupt flag bits. Reset clears the RE bit.  
1 = Receiver enabled  
0 = Receiver disabled  
NOTE  
Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RWU — Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled.  
The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out  
of the standby state and clears the RWU bit. Reset clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
SBK — Send Break Bit  
Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic  
1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the  
transmitter continuously transmits break characters with no logic 1s between them. Reset clears the  
SBK bit.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE  
Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling  
SBK before the preamble begins causes the SCI to send a break character  
instead of a preamble.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
168  
Freescale Semiconductor  
I/O Registers  
11.8.3 SCI Control Register 3  
SCI control register 3:  
Stores the ninth SCI data bit received and the ninth SCI data bit to be transmitted  
Enables these interrupts:  
Receiver overrun interrupts  
Noise error interrupts  
Framing error interrupts  
Parity error interrupts  
Address:  
$0015  
Bit 7  
R8  
6
T8  
U
5
DMARE  
0
4
DMATE  
0
3
2
NEIE  
0
1
FEIE  
0
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
ORIE  
U
0
= Unimplemented  
U = Unaffected  
Figure 11-11. SCI Control Register 3 (SCC3)  
R8 — Received Bit 8  
When the SCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received  
character. R8 is received at the same time that the SCDR receives the other 8 bits.  
When the SCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7). Reset has no effect  
on the R8 bit.  
T8 — Transmitted Bit 8  
When the SCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted  
character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into  
the transmit shift register. Reset has no effect on the T8 bit.  
DMARE — DMA Receive Enable Bit  
CAUTION  
The DMA module is not included on this MCU. Writing a logic 1 to DMARE  
or DMATE may adversely affect MCU performance.  
1 = DMA not enabled to service SCI receiver DMA service requests generated by the SCRF bit (SCI  
receiver CPU interrupt requests enabled)  
0 = DMA not enabled to service SCI receiver DMA service requests generated by the SCRF bit (SCI  
receiver CPU interrupt requests enabled)  
DMATE — DMA Transfer Enable Bit  
CAUTION  
The DMA module is not included on this MCU. Writing a logic 1 to DMARE  
or DMATE may adversely affect MCU performance.  
1 = SCTE DMA service requests enabled; SCTE CPU interrupt requests disabled  
0 = SCTE DMA service requests disabled; SCTE CPU interrupt requests enabled  
ORIE — Receiver Overrun Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the receiver overrun bit, OR.  
1 = SCI error CPU interrupt requests from OR bit enabled  
0 = SCI error CPU interrupt requests from OR bit disabled  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
169  
Serial Communications Interface Module (SCI)  
NEIE — Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the noise error bit, NE.  
Reset clears NEIE.  
1 = SCI error CPU interrupt requests from NE bit enabled  
0 = SCI error CPU interrupt requests from NE bit disabled  
FEIE — Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the framing error bit, FE.  
Reset clears FEIE.  
1 = SCI error CPU interrupt requests from FE bit enabled  
0 = SCI error CPU interrupt requests from FE bit disabled  
PEIE — Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt  
requests generated by the parity error bit, PE. (See 11.8.4 SCI Status Register 1.) Reset clears PEIE.  
1 = SCI error CPU interrupt requests from PE bit enabled  
0 = SCI error CPU interrupt requests from PE bit disabled  
11.8.4 SCI Status Register 1  
SCI status register 1 (SCS1) contains flags to signal these conditions:  
Transfer of SCDR data to transmit shift register complete  
Transmission complete  
Transfer of receive shift register data to SCDR complete  
Receiver input idle  
Receiver overrun  
Noisy data  
Framing error  
Parity error  
Address:  
$0016  
Bit 7  
6
5
4
3
2
1
Bit 0  
PE  
Read:  
Write:  
Reset:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
1
1
0
0
0
0
0
0
= Unimplemented  
Figure 11-12. SCI Status Register 1 (SCS1)  
SCTE — SCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register.  
SCTE can generate an SCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set,  
SCTE generates an SCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by  
reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit.  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
MC68HC908AP A-Family Data Sheet, Rev. 3  
170  
Freescale Semiconductor  
 
I/O Registers  
TC — Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being  
transmitted. TC generates an SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also set.  
TC is automatically cleared when data, preamble or break is queued and ready to be sent. There may  
be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the  
transmission actually starting. Reset sets the TC bit.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF — SCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift register transfers to the SCI data  
register. SCRF can generate an SCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is  
set, SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading  
SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
IDLE — Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on the receiver input.  
IDLE generates an SCI receiver CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE  
bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must  
receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after  
the IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition  
can set the IDLE bit. Reset clears the IDLE bit.  
1 = Receiver input idle  
0 = Receiver input active (or idle since the IDLE bit was cleared)  
OR — Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the SCDR before the receive shift  
register receives the next character. The OR bit generates an SCI error CPU interrupt request if the  
ORIE bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is  
not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears  
the OR bit.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing  
sequence. Figure 11-13 shows the normal flag-clearing sequence and an example of an overrun  
caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit  
because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next  
flag-clearing sequence reads byte 3 in the SCDR instead of byte 2.  
In applications that are subject to software latency or in which it is important to know which byte is lost  
due to an overrun, the flag-clearing routine can check the OR bit in a second read of SCS1 after  
reading the data register.  
NF — Receiver Noise Flag Bit  
This clearable, read-only bit is set when the SCI detects noise on the RxD pin. NF generates an SCI  
error CPU interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and  
then reading the SCDR. Reset clears the NF bit.  
1 = Noise detected  
0 = No noise detected  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
171  
Serial Communications Interface Module (SCI)  
FE — Receiver Framing Error Bit  
This clearable, read-only bit is set when a logic 0 is accepted as the stop bit. FE generates an SCI error  
CPU interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set  
and then reading the SCDR. Reset clears the FE bit.  
1 = Framing error detected  
0 = No framing error detected  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 2  
READ SCDR  
BYTE 3  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 11-13. Flag Clearing Sequence  
PE — Receiver Parity Error Bit  
This clearable, read-only bit is set when the SCI detects a parity error in incoming data. PE generates  
an SCI error CPU interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1  
with PE set and then reading the SCDR. Reset clears the PE bit.  
1 = Parity error detected  
0 = No parity error detected  
MC68HC908AP A-Family Data Sheet, Rev. 3  
172  
Freescale Semiconductor  
I/O Registers  
11.8.5 SCI Status Register 2  
SCI status register 2 contains flags to signal the following conditions:  
Break character detected  
Incoming data  
Address:  
$0017  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
RPF  
Read:  
Write:  
Reset:  
BKF  
0
0
0
= Unimplemented  
Figure 11-14. SCI Status Register 2 (SCS2)  
BKF — Break Flag Bit  
This clearable, read-only bit is set when the SCI detects a break character on the RxD pin. In SCS1,  
the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF  
does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading  
the SCDR. Once cleared, BKF can become set again only after logic 1s again appear on the RxD pin  
followed by another break character. Reset clears the BKF bit.  
1 = Break character detected  
0 = No break character detected  
RPF — Reception in Progress Flag Bit  
This read-only bit is set when the receiver detects a logic 0 during the RT1 time period of the start bit  
search. RPF does not generate an interrupt request. RPF is reset after the receiver detects false start  
bits (usually from noise or a baud rate mismatch) or when the receiver detects an idle character. Polling  
RPF before disabling the SCI module or entering stop mode can show whether a reception is in  
progress.  
1 = Reception in progress  
0 = No reception in progress  
11.8.6 SCI Data Register  
The SCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit  
shift registers. Reset has no effect on data in the SCI data register.  
Address:  
$0018  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 11-15. SCI Data Register (SCDR)  
R7/T7–R0/T0 — Receive/Transmit Data Bits  
Reading the SCDR accesses the read-only received data bits, R7–R0. Writing to the SCDR writes the  
data to be transmitted, T7–T0. Reset has no effect on the SCDR.  
NOTE  
Do not use read/modify/write instructions on the SCI data register.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
173  
Serial Communications Interface Module (SCI)  
11.8.7 SCI Baud Rate Register  
The baud rate register (SCBR) selects the baud rate for both the receiver and the transmitter.  
Address:  
Read:  
$0019  
0
6
0
5
SCP1  
0
4
SCP0  
0
3
2
1
SCR1  
0
Bit 0  
SCR0  
0
R
SCR2  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 11-16. SCI Baud Rate Register (SCBR)  
SCP1 and SCP0 — SCI Baud Rate Prescaler Bits  
These read/write bits select the baud rate prescaler divisor as shown in Table 11-6. Reset clears SCP1  
and SCP0.  
Table 11-6. SCI Baud Rate Prescaling  
SCP1 and SCP0  
Prescaler Divisor (PD)  
00  
01  
10  
11  
1
3
4
13  
SCR2–SCR0 — SCI Baud Rate Select Bits  
These read/write bits select the SCI baud rate divisor as shown in Table 11-7. Reset clears  
SCR2–SCR0.  
Table 11-7. SCI Baud Rate Selection  
SCR2, SCR1, and SCR0  
Baud Rate Divisor (BD)  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
8
16  
32  
64  
128  
Use this formula to calculate the SCI baud rate:  
SCI clock source  
baud rate = --------------------------------------------  
64 × PD × BD  
where:  
SCI clock source = f  
or CGMXCLK  
BUS  
(selected by SCIBDSRC bit in CONFIG2 register)  
PD = prescaler divisor  
BD = baud rate divisor  
MC68HC908AP A-Family Data Sheet, Rev. 3  
174  
Freescale Semiconductor  
I/O Registers  
Table 11-8 shows the SCI baud rates that can be generated with a 4.9152-MHz bus clock when f  
selected as SCI clock source.  
is  
BUS  
Table 11-8. SCI Baud Rate Selection Examples  
Baud Rate  
(fBUS = 4.9152 MHz)  
Prescaler  
Divisor (PD)  
SCR2, SCR1,  
and SCR0  
Baud Rate  
Divisor (BD)  
SCP1 and SCP0  
00  
00  
00  
00  
00  
00  
00  
00  
01  
01  
01  
01  
01  
01  
01  
01  
10  
10  
10  
10  
10  
10  
10  
10  
11  
11  
11  
11  
11  
11  
11  
11  
1
1
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
76,800  
38,400  
19,200  
9600  
4800  
2400  
1200  
600  
1
4
1
8
1
16  
32  
64  
128  
1
1
1
1
3
25,600  
12,800  
6400  
3200  
1600  
800  
3
2
3
4
3
8
3
16  
32  
64  
128  
1
3
3
400  
3
200  
4
19,200  
9600  
4800  
2400  
1200  
600  
4
2
4
4
4
8
4
16  
32  
64  
128  
1
4
4
300  
4
150  
13  
13  
13  
13  
13  
13  
13  
13  
5908  
2954  
1477  
739  
2
4
8
16  
32  
64  
128  
369  
185  
92  
46  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
175  
Serial Communications Interface Module (SCI)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
176  
Freescale Semiconductor  
Chapter 12  
Infrared Serial Communications Interface Module (IRSCI)  
12.1 Introduction  
The MC68HC908AP64A has two SCI modules:  
SCI1 is a standard SCI module, and  
SCI2 is an infrared SCI module.  
This section describes SCI2, the infrared serial communications interface (IRSCI) module which allows  
high-speed asynchronous communications with peripheral devices and other MCUs. This IRSCI consists  
of an SCI module for conventional SCI functions and a software programmable infrared encoder/decoder  
sub-module for encoding/decoding the serial data for connection to infrared LEDs in remote control  
applications.  
NOTE  
When the IRSCI is enabled, the SCTxD pin is an open-drain output and  
requires a pullup resistor to be connected for proper SCI operation.  
Features of the SCI module include the following:  
Full duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
Programmable 8-bit or 9-bit character length  
Separately enabled transmitter and receiver  
Separate receiver and transmitter CPU interrupt requests  
Two receiver wakeup methods:  
Idle line wakeup  
Address mark wakeup  
Interrupt-driven operation with eight interrupt flags:  
Transmitter empty  
Transmission complete  
Receiver full  
Idle receiver input  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
Features of the infrared (IR) sub-module include the following:  
IR sub-module enable/disable for infrared SCI or conventional SCI on SCTxD and SCRxD pins  
Software selectable infrared modulation/demodulation  
(3/16, 1/16 or 1/32 width pulses)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
177  
Infrared Serial Communications Interface Module (IRSCI)  
12.2 Pin Name Conventions  
The generic names of the IRSCI I/O pins are:  
RxD (receive data)  
TxD (transmit data)  
IRSCI I/O (input/output) lines are implemented by sharing parallel I/O port pins. The full name of an IRSCI  
input or output reflects the name of the shared port pin. Table 12-1 shows the full names and the generic  
names of the IRSCI I/O pins. The generic pin names appear in the text of this section.  
Table 12-1. Pin Name Conventions  
Generic Pin Names:  
Full Pin Names:  
RxD  
TxD  
PTC6/SCTxD  
PTC7/SCRxD  
NOTE  
When the IRSCI is enabled, the SCTxD pin is an open-drain output and  
requires a pullup resistor to be connected for proper SCI operation.  
Addr.  
Register Name  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
4
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
M
0
IRSCI Control Register 1  
(IRSCC1)  
$0040  
0
SCTIE  
TCIE  
0
SCRIE  
0
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
IRSCI Control Register 2  
(IRSCC2)  
$0041  
$0042  
$0043  
$0044  
$0045  
$0046  
$0047  
0
0
R8  
T8  
DMARE  
DMATE  
ORIE  
NEIE  
FEIE  
PEIE  
IRSCI Control Register 3  
(IRSCC3)  
U
U
0
0
0
0
0
0
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
IRSCI Status Register 1  
(IRSCS1)  
1
1
0
0
0
0
0
0
BKF  
RPF  
IRSCI Status Register 2  
(IRSCS2)  
0
0
0
0
0
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
IRSCI Data Register  
(IRSCDR)  
Unaffected by reset  
0
CKS  
0
SCP1  
SCP0  
R
0
SCR2  
0
SCR1  
0
SCR0  
0
IRSCI Baud Rate Register  
(IRSCBR)  
0
0
0
0
0
0
IRSCI Infrared Control  
R
R
0
TNP1  
TNP0  
0
IREN  
0
Register Write:  
(IRSCIRCR)  
Reset:  
0
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 12-1. IRSCI I/O Registers Summary  
MC68HC908AP A-Family Data Sheet, Rev. 3  
178  
Freescale Semiconductor  
IRSCI Module Overview  
12.3 IRSCI Module Overview  
The IRSCI consists of a serial communications interface (SCI) and a infrared interface sub-module as  
shown in Figure 12-2.  
INTERNAL BUS  
SCI_TxD  
SCTxD  
SERIAL  
CGMXCLK  
SCI_R32XCLK  
SCI_R16XCLK  
COMMUNICATIONS  
INTERFACE MODULE  
(SCI)  
INFRARED  
SUB-MODULE  
BUS CLOCK  
SCI_RxD  
SCRxD  
Figure 12-2. IRSCI Block Diagram  
The SCI module provides serial data transmission and reception, with a programmable baud rate clock  
based on the bus clock or the CGMXCLK.  
The infrared sub-module receives two clock sources from the SCI module: SCI_R16XCLK and  
SCI_R32XCLK. Both reference clocks are used to generate the narrow pulses during data transmission.  
The SCI_R16XCLK and SCI_R32XCLK are internal clocks with frequencies that are 16 and 32 times the  
baud rate respectively. Both SCI_R16XCLK and SCI_R32XCLK clocks are used for transmitting data.  
The SCI_R16XCLK clock is used only for receiving data.  
NOTE  
For proper SCI function (transmit or receive), the bus clock MUST be  
programmed to at least 32 times that of the selected baud rate.  
When the infrared sub-module is disabled, signals on the TxD and RxD  
pins pass through unchanged to the SCI module.  
12.4 Infrared Functional Description  
Figure 12-3 shows the structure of the infrared sub-module.  
The infrared sub-module provides the capability of transmitting narrow pulses to an infrared LED and  
receiving narrow pulses and transforming them to serial bits, which are sent to the SCI module. The  
infrared sub-module receives two clocks from the SCI. One of these two clocks is selected as the base  
clock to generate the 3/16, 1/16, or 1/32 bit width narrow pulses during transmission.  
The sub-module consists of two main blocks: the transmit encoder and the receive decoder. When  
transmitting data, the SCI data stream is encoded by the infrared sub-module. For every "0" bit, a narrow  
"low" pulse is transmitted; no pulse is transmitted for "1" bits. When receiving data, the infrared pulses  
should be detected using an infrared photo diode for conversion to CMOS voltage levels before  
connecting to the RxD pin for the infrared decoder. The SCI data stream is reconstructed by stretching  
the "0" pulses.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
179  
Infrared Serial Communications Interface Module (IRSCI)  
TNP[1:0]  
IREN  
IR_TxD  
TRANSMIT  
SCI_TxD  
ENCODER  
SCTxD  
MUX  
SCI_R32XCLK  
SCI_R16XCLK  
IR_RxD  
RECEIVE  
SCRxD  
DECODER  
SCI_RxD  
MUX  
Figure 12-3. Infrared Sub-Module Diagram  
12.4.1 Infrared Transmit Encoder  
The infrared transmit encoder converts the "0" bits in the serial data stream from the SCI module to narrow  
"low" pulses, to the TxD pin. The narrow pulse is sent with a duration of 1/32, 1/16, or 3/16 of a data bit  
width. When two consecutive zeros are sent, the two consecutive narrow pulses will be separated by a  
time equal to a data bit width.  
DATA BIT WIDTH DETERMINED BY BAUD RATE  
SCI DATA  
INFRARED  
SCI DATA  
PULSE WIDTH = 1/32, 1/16, OR 3/16 DATA BIT WIDTH  
Figure 12-4. Infrared SCI Data Example  
12.4.2 Infrared Receive Decoder  
The infrared receive decoder converts low narrow pulses from the RxD pin to standard SCI data bits. The  
reference clock, SCI_R16XCLK, clocks a four bit internal counter which counts from 0 to 15. An incoming  
pulse starts the internal counter and a "0" is sent out to the IR_RxD output. Subsequent incoming pulses  
are ignored when the counter count is between 0 and 7; IR_RxD remains "0". Once the counter passes  
7, an incoming pulse will reset the counter; IR_RxD remains "0". When the counter reaches 15, the  
IR_RxD output returns to "1", the counter stops and waits for further pulses. A pulse is interpreted as jitter  
if it arrives shortly after the counter reaches 15; IR_RxD remains "1".  
MC68HC908AP A-Family Data Sheet, Rev. 3  
180  
Freescale Semiconductor  
SCI Functional Description  
12.5 SCI Functional Description  
Figure 12-5 shows the structure of the SCI.  
INTERNAL BUS  
SCI DATA  
REGISTER  
SCI DATA  
REGISTER  
RECEIVE  
SCI_RxD  
TRANSMIT  
SCI_TxD  
SHIFT REGISTER  
SHIFT REGISTER  
SCTIE  
TCIE  
R8  
T8  
SCRIE  
ILIE  
DMARE  
DMATE  
TE  
SCTE  
RE  
TC  
RWU  
SCRF  
SBK  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
M
BKF  
RPF  
CKS  
SL  
ENSCI  
WAKE  
ILTY  
PEN  
PTY  
BAUD RATE  
GENERATOR  
CGMXCLK  
A
X
BUS CLOCK  
B
SL = 0 => X = A  
SL = 1 => X = B  
DATA SELECTION  
CONTROL  
÷16  
SCI_R32XCLK  
SCI_R16XCLK  
Figure 12-5. SCI Module Block Diagram  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
181  
Infrared Serial Communications Interface Module (IRSCI)  
The SCI allows full-duplex, asynchronous, NRZ serial communication between the MCU and remote  
devices, including other MCUs. The transmitter and receiver of the SCI operate independently, although  
they use the same baud rate generator. During normal operation, the CPU monitors the status of the SCI,  
writes the data to be transmitted, and processes received data.  
NOTE  
For SCI operations, the IR sub-module is transparent to the SCI module.  
Data at going out of the SCI transmitter and data going into the SCI receiver  
is always in SCI format. It makes no difference to the SCI module whether  
the IR sub-module is enabled or disabled.  
NOTE  
This SCI module is a standard HC08 SCI module with the following  
modifications:  
A control bit, CKS, is added to the SCI baud rate control register to select between two input clocks  
for baud rate clock generation  
The TXINV bit is removed from the SCI control register 1  
12.5.1 Data Format  
The SCI uses the standard non-return-to-zero mark/space data format illustrated in Figure 12-6.  
8-BIT DATA FORMAT  
BIT M IN IRSCC1 CLEAR  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
9-BIT DATA FORMAT  
BIT M IN IRSCC1 SET  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
STOP  
BIT  
Figure 12-6. SCI Data Formats  
12.5.2 Transmitter  
Figure 12-7 shows the structure of the SCI transmitter.  
The baud rate clock source for the SCI can be selected by the CKS bit, in the SCI baud rate register (see  
12.9.7 IRSCI Baud Rate Register).  
12.5.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in IRSCI control register  
1 (IRSCC1) determines character length. When transmitting 9-bit data, bit T8 in IRSCI control register 3  
(IRSCC3) is the ninth bit (bit 8).  
MC68HC908AP A-Family Data Sheet, Rev. 3  
182  
Freescale Semiconductor  
SCI Functional Description  
CKS  
SL  
INTERNAL BUS  
PRE- BAUD  
SCALER DIVIDER  
CGMXCLK  
BUS CLOCK  
A
÷ 16  
SCI DATA REGISTER  
X
B
SL = 0 => X = A  
SL = 1 => X = B  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
H
8
7
6
5
4
3
2
1
0
L
SCI_TxD  
M
PEN  
PTY  
PARITY  
GENERATION  
T8  
DMATE  
TRANSMITTER  
CONTROL LOGIC  
DMATE  
SCTIE  
SCTE  
SCTE  
SBK  
DMATE  
SCTE  
LOOPS  
ENSCI  
TE  
SCTIE  
SCTIE  
TC  
TC  
TCIE  
TCIE  
Figure 12-7. SCI Transmitter  
12.5.2.2 Character Transmission  
During an SCI transmission, the transmit shift register shifts a character out to the TxD pin. The IRSCI  
data register (IRSCDR) is the write-only buffer between the internal data bus and the transmit shift  
register. To initiate an SCI transmission:  
1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI) in IRSCI control register 1  
(IRSCC1).  
2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE) in IRSCI control register  
2 (IRSCC2).  
3. Clear the SCI transmitter empty bit by first reading IRSCI status register 1 (IRSCS1) and then  
writing to the IRSCDR.  
4. Repeat step 3 for each subsequent transmission.  
At the start of a transmission, transmitter control logic automatically loads the transmit shift register with  
a preamble of logic 1s. After the preamble shifts out, control logic transfers the IRSCDR data into the  
transmit shift register. A logic 0 start bit automatically goes into the least significant bit position of the  
transmit shift register. A logic 1 stop bit goes into the most significant bit position.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
183  
Infrared Serial Communications Interface Module (IRSCI)  
The SCI transmitter empty bit, SCTE, in IRSCS1 becomes set when the IRSCDR transfers a byte to the  
transmit shift register. The SCTE bit indicates that the IRSCDR can accept new data from the internal  
data bus. If the SCI transmit interrupt enable bit, SCTIE, in IRSCC2 is also set, the SCTE bit generates  
a transmitter interrupt request.  
When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition, logic  
1. If at any time software clears the ENSCI bit in IRSCI control register 1 (IRSCC1), the transmitter and  
receiver relinquish control of the port pins.  
12.5.2.3 Break Characters  
Writing a logic 1 to the send break bit, SBK, in IRSCC2 loads the transmit shift register with a break  
character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character  
length depends on the M bit in IRSCC1. As long as SBK is at logic 1, transmitter logic continuously loads  
break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes  
transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the  
end of a break character guarantees the recognition of the start bit of the next character.  
The SCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a  
logic 0 where the stop bit should be.  
Receiving a break character has the following effects on SCI registers:  
Sets the framing error bit (FE) in IRSCS1  
Sets the SCI receiver full bit (SCRF) in IRSCS1  
Clears the SCI data register (IRSCDR)  
Clears the R8 bit in IRSCC3  
Sets the break flag bit (BKF) in IRSCS2  
May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits  
12.5.2.4 Idle Characters  
An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends  
on the M bit in IRSCC1. The preamble is a synchronizing idle character that begins every transmission.  
If the TE bit is cleared during a transmission, the TxD pin becomes idle after completion of the  
transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle  
character to be sent after the character currently being transmitted.  
NOTE  
When queueing an idle character, return the TE bit to logic 1 before the stop  
bit of the current character shifts out to the TxD pin. Setting TE after the  
stop bit appears on TxD causes data previously written to the IRSCDR to  
be lost.  
Toggle the TE bit for a queued idle character when the SCTE bit becomes  
set and just before writing the next byte to the IRSCDR.  
12.5.2.5 Transmitter Interrupts  
The following conditions can generate CPU interrupt requests from the SCI transmitter:  
MC68HC908AP A-Family Data Sheet, Rev. 3  
184  
Freescale Semiconductor  
SCI Functional Description  
SCI transmitter empty (SCTE) — The SCTE bit in IRSCS1 indicates that the IRSCDR has  
transferred a character to the transmit shift register. SCTE can generate a transmitter CPU  
interrupt request. Setting the SCI transmit interrupt enable bit, SCTIE, in IRSCC2 enables the  
SCTE bit to generate transmitter CPU interrupt requests.  
Transmission complete (TC) — The TC bit in IRSCS1 indicates that the transmit shift register and  
the IRSCDR are empty and that no break or idle character has been generated. The transmission  
complete interrupt enable bit, TCIE, in IRSCC2 enables the TC bit to generate transmitter CPU  
interrupt requests.  
12.5.3 Receiver  
Figure 12-8 shows the structure of the SCI receiver.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
185  
Infrared Serial Communications Interface Module (IRSCI)  
INTERNAL BUS  
SCR1  
CKS  
SL  
SCP1  
SCP0  
SCR2  
SCR0  
SCI DATA REGISTER  
PRE- BAUD  
SCALER DIVIDER  
CGMXCLK  
BUS CLOCK  
A
÷ 16  
X
B
11-BIT  
RECEIVE SHIFT REGISTER  
SL = 0 => X = A  
SL = 1 => X = B  
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
SCI_RxD  
ALL 0s  
BKF  
RPF  
M
RWU  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
ILIE  
DMARE  
SCRF  
SCRIE  
DMARE  
SCRIE  
SCRF  
SCRIE  
DMARE  
DMARE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 12-8. SCI Receiver Block Diagram  
12.5.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in IRSCI control register 1  
(IRSCC1) determines character length. When receiving 9-bit data, bit R8 in IRSCI control register 2  
(IRSCC2) is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7).  
MC68HC908AP A-Family Data Sheet, Rev. 3  
186  
Freescale Semiconductor  
SCI Functional Description  
12.5.3.2 Character Reception  
During an SCI reception, the receive shift register shifts characters in from the RxD pin. The SCI data  
register (IRSCDR) is the read-only buffer between the internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data portion of the character transfers  
to the IRSCDR. The SCI receiver full bit, SCRF, in IRSCI status register 1 (IRSCS1) becomes set,  
indicating that the received byte can be read. If the SCI receive interrupt enable bit, SCRIE, in IRSCC2 is  
also set, the SCRF bit generates a receiver CPU interrupt request.  
12.5.3.3 Data Sampling  
The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency  
16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at the following  
times (see Figure 12-9):  
After every start bit  
After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit  
samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and  
RT10 samples returns a valid logic 0)  
START BIT  
LSB  
SCI_RxD  
START BIT  
QUALIFICATION  
START BIT  
VERIFICATION  
DATA  
SAMPLING  
SAMPLES  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 12-9. Receiver Data Sampling  
To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three  
logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.  
To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7.  
Table 12-2 summarizes the results of the start bit verification samples.  
Table 12-2. Start Bit Verification  
RT3, RT5, and RT7  
Samples  
Start Bit  
Verification  
Noise Flag  
000  
001  
010  
Yes  
Yes  
Yes  
0
1
1
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
187  
Infrared Serial Communications Interface Module (IRSCI)  
Table 12-2. Start Bit Verification  
RT3, RT5, and RT7  
Samples  
Start Bit  
Verification  
Noise Flag  
011  
100  
101  
110  
111  
No  
Yes  
No  
No  
No  
0
1
0
0
0
If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.  
To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and  
RT10. Table 12-3 summarizes the results of the data bit samples.  
Table 12-3. Data Bit Recovery  
RT8, RT9, and RT10  
Samples  
Data Bit  
Determination  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
NOTE  
The RT8, RT9, and RT10 samples do not affect start bit verification. If any  
or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a  
successful start bit verification, the noise flag (NF) is set and the receiver  
assumes that the bit is a start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 12-4  
summarizes the results of the stop bit samples.  
Table 12-4. Stop Bit Recovery  
RT8, RT9, and RT10  
Samples  
Framing  
Error Flag  
Noise Flag  
000  
001  
1
1
0
1
MC68HC908AP A-Family Data Sheet, Rev. 3  
188  
Freescale Semiconductor  
SCI Functional Description  
Table 12-4. Stop Bit Recovery  
RT8, RT9, and RT10  
Framing  
Error Flag  
Noise Flag  
Samples  
010  
1
0
1
0
0
0
1
1
1
1
1
0
011  
100  
101  
110  
111  
12.5.3.4 Framing Errors  
If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming character,  
it sets the framing error bit, FE, in IRSCS1. The FE flag is set at the same time that the SCRF bit is set.  
A break character that has no stop bit also sets the FE bit.  
12.5.3.5 Baud Rate Tolerance  
A transmitting device may be operating at a baud rate below or above the receiver baud rate.  
Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the  
actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing  
error occurs. In most applications, the baud rate tolerance is much more than the degree of misalignment  
that is likely to occur.  
As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge  
within the character. Resynchronization within characters corrects misalignments between transmitter bit  
times and receiver bit times.  
Slow Data Tolerance  
Figure 12-10 shows how much a slow received character can be misaligned without causing a noise error  
or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data  
samples at RT8, RT9, and RT10.  
MSB  
STOP  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 12-10. Slow Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 12-10, the receiver counts 154 RT cycles at the point when  
the count of the transmitting device is 9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
189  
Infrared Serial Communications Interface Module (IRSCI)  
The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit  
character with no errors is  
154 147  
× 100 = 4.54%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 12-10, the receiver counts 170 RT cycles at the point when  
the count of the transmitting device is 10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit  
character with no errors is  
170 163  
× 100 = 4.12%  
-------------------------  
170  
Fast Data Tolerance  
Figure 12-11 shows how much a fast received character can be misaligned without causing a noise error  
or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data  
samples at RT8, RT9, and RT10.  
STOP  
IDLE OR NEXT CHARACTER  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 12-11. Fast Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 12-11, the receiver counts 154 RT cycles at the point when  
the count of the transmitting device is 10 bit times × 16 RT cycles = 160 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit  
character with no errors is  
154 160  
-------------------------  
154  
˙
× 100 = 3.90%  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 12-11, the receiver counts 170 RT cycles at the point when  
the count of the transmitting device is 11 bit times × 16 RT cycles = 176 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit  
character with no errors is  
MC68HC908AP A-Family Data Sheet, Rev. 3  
190  
Freescale Semiconductor  
SCI Functional Description  
170 176  
-------------------------  
170  
× 100 = 3.53%  
12.5.3.6 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems,  
the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in IRSCC2 puts the  
receiver into a standby state during which receiver interrupts are disabled.  
Depending on the state of the WAKE bit in IRSCC1, either of two conditions on the RxD pin can bring the  
receiver out of the standby state:  
Address mark — An address mark is a logic 1 in the most significant bit position of a received  
character. When the WAKE bit is set, an address mark wakes the receiver from the standby state  
by clearing the RWU bit. The address mark also sets the SCI receiver full bit, SCRF. Software can  
then compare the character containing the address mark to the user-defined address of the  
receiver. If they are the same, the receiver remains awake and processes the characters that  
follow. If they are not the same, software can set the RWU bit and put the receiver back into the  
standby state.  
Idle input line condition — When the WAKE bit is clear, an idle character on the RxD pin wakes the  
receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver  
does not set the receiver idle bit, IDLE, or the SCI receiver full bit, SCRF. The idle line type bit,  
ILTY, determines whether the receiver begins counting logic 1s as idle character bits after the start  
bit or after the stop bit.  
NOTE  
Clearing the WAKE bit after the RxD pin has been idle may cause the  
receiver to wake up immediately.  
12.5.3.7 Receiver Interrupts  
The following sources can generate CPU interrupt requests from the SCI receiver:  
SCI receiver full (SCRF) — The SCRF bit in IRSCS1 indicates that the receive shift register has  
transferred a character to the IRSCDR. SCRF can generate a receiver interrupt request. Setting  
the SCI receive interrupt enable bit, SCRIE, in IRSCC2 enables the SCRF bit to generate receiver  
CPU interrupts.  
Idle input (IDLE) — The IDLE bit in IRSCS1 indicates that 10 or 11 consecutive logic 1s shifted in  
from the RxD pin. The idle line interrupt enable bit, ILIE, in IRSCC2 enables the IDLE bit to  
generate CPU interrupt requests.  
12.5.3.8 Error Interrupts  
The following receiver error flags in IRSCS1 can generate CPU interrupt requests:  
Receiver overrun (OR) — The OR bit indicates that the receive shift register shifted in a new  
character before the previous character was read from the IRSCDR. The previous character  
remains in the IRSCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in  
IRSCC3 enables OR to generate SCI error CPU interrupt requests.  
Noise flag (NF) — The NF bit is set when the SCI detects noise on incoming data or break  
characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in  
IRSCC3 enables NF to generate SCI error CPU interrupt requests.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
191  
Infrared Serial Communications Interface Module (IRSCI)  
Framing error (FE) — The FE bit in IRSCS1 is set when a logic 0 occurs where the receiver expects  
a stop bit. The framing error interrupt enable bit, FEIE, in IRSCC3 enables FE to generate SCI error  
CPU interrupt requests.  
Parity error (PE) — The PE bit in IRSCS1 is set when the SCI detects a parity error in incoming  
data. The parity error interrupt enable bit, PEIE, in IRSCC3 enables PE to generate SCI error CPU  
interrupt requests.  
12.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby modes.  
12.6.1 Wait Mode  
The SCI module remains active after the execution of a WAIT instruction. In wait mode, the SCI module  
registers are not accessible by the CPU. Any enabled CPU interrupt request from the SCI module can  
bring the MCU out of wait mode.  
If SCI module functions are not required during wait mode, reduce power consumption by disabling the  
module before executing the WAIT instruction.  
Refer to 7.6 Low-Power Modes for information on exiting wait mode.  
12.6.2 Stop Mode  
The SCI module is inactive after the execution of a STOP instruction. The STOP instruction does not  
affect SCI register states. SCI module operation resumes after an external interrupt.  
Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission  
or reception results in invalid data.  
Refer to 7.6 Low-Power Modes for information on exiting stop mode.  
12.7 SCI During Break Module Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
interrupts generated by the break module. The BCFE bit in the SIM break flag control register (SBFCR)  
enables software to clear status bits during the break state.  
To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status  
bit is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its  
default state), software can read and write I/O registers during the break state without affecting status bits.  
Some status bits have a two-step read/write clearing procedure. If software does the first step on such a  
bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the  
break, doing the second step clears the status bit.  
12.8 I/O Signals  
The two IRSCI I/O pins are:  
PTC6/SCTxD — Transmit data  
PTC7/SCRxD — Receive data  
MC68HC908AP A-Family Data Sheet, Rev. 3  
192  
Freescale Semiconductor  
I/O Registers  
12.8.1 PTC6/SCTxD (Transmit Data)  
The PTC6/SCTxD pin is the serial data (standard or infrared) output from the SCI transmitter. The IRSCI  
shares the PTC6/SCTxD pin with port C. When the IRSCI is enabled, the PTC6/SCTxD pin is an output  
regardless of the state of the DDRC6 bit in data direction register C (DDRC).  
NOTE  
The PTC6/SCTxD pin is an open-drain pin when configured as an output.  
Therefore, when configured as SCTxD or a general purpose output pin  
(PTC6), a pullup resistor must be connected to this pin.  
12.8.2 PTC7/SCRxD (Receive Data)  
The PTC7/SCRxD pin is the serial data input to the IRSCI receiver. The IRSCI shares the PTC7/SCRxD  
pin with port C. When the IRSCI is enabled, the PTC7/SCRxD pin is an input regardless of the state of  
the DDRC7 bit in data direction register C (DDRC).  
NOTE  
The PTC7/SCRxD pin is an open-drain pin when configured as an output.  
Therefore, when configured as a general purpose output pin (PTC7), a  
pullup resistor must be connected to this pin.  
Table 12-5 shows a summary of I/O pin functions when the SCI is enabled.  
Table 12-5. SCI Pin Functions (Standard and Infrared)  
IRSCC1  
[ENSCI]  
IRSCIRCR  
[IREN]  
IRSCC2  
[TE]  
IRSCC2  
[RE]  
TxD Pin  
RxD Pin  
Hi-Z(1)  
Hi-Z(1)  
1
0
0
0
Input ignored (terminate externally)  
1
1
1
1
0
0
0
1
0
1
1
0
1
0
1
0
Input sampled, pin should idle high  
Input ignored (terminate externally)  
Input sampled, pin should idle high  
Input ignored (terminate externally)  
Output SCI (idle high)  
Output SCI (idle high)  
Hi-Z(1)  
Hi-Z(1)  
1
1
1
0
1
1
1
X
0
1
1
X
1
0
1
X
Input sampled, pin should idle high  
Input ignored (terminate externally)  
Input sampled, pin should idle high  
Output IR SCI (idle high)  
Output IR SCI (idle high)  
Pins under port control (standard I/O port)  
1. After completion of transmission in progress.  
12.9 I/O Registers  
The following I/O registers control and monitor SCI operation:  
IRSCI control register 1 (IRSCC1)  
IRSCI control register 2 (IRSCC2)  
IRSCI control register 3 (IRSCC3)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
193  
Infrared Serial Communications Interface Module (IRSCI)  
IRSCI status register 1 (IRSCS1)  
IRSCI status register 2 (IRSCS2)  
IRSCI data register (IRSCDR)  
IRSCI baud rate register (IRSCBR)  
IRSCI infrared control register (IRSCIRCR)  
12.9.1 IRSCI Control Register 1  
SCI control register 1:  
Enables loop mode operation  
Enables the SCI  
Controls output polarity  
Controls character length  
Controls SCI wakeup method  
Controls idle character detection  
Enables parity function  
Controls parity type  
Address:  
$0040  
Bit 7  
6
ENSCI  
0
5
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
LOOPS  
0
0
Figure 12-12. IRSCI Control Register 1 (IRSCC1)  
LOOPS — Loop Mode Select Bit  
This read/write bit enables loop mode operation for the SCI only. In loop mode the RxD pin is  
disconnected from the SCI, and the transmitter output goes into the receiver input. Both the transmitter  
and the receiver must be enabled to use loop mode. The infrared encoder/decoder is not in the loop.  
Reset clears the LOOPS bit.  
1 = Loop mode enabled  
0 = Normal operation enabled  
ENSCI — Enable SCI Bit  
This read/write bit enables the SCI and the SCI baud rate generator. Clearing ENSCI sets the SCTE  
and TC bits in SCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit.  
1 = SCI enabled  
0 = SCI disabled  
MC68HC908AP A-Family Data Sheet, Rev. 3  
194  
Freescale Semiconductor  
I/O Registers  
M — Mode (Character Length) Bit  
This read/write bit determines whether SCI characters are eight or nine bits long. (See Table 12-6.)  
The ninth bit can serve as an extra stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears  
the M bit.  
1 = 9-bit SCI characters  
0 = 8-bit SCI characters  
WAKE — Wakeup Condition Bit  
This read/write bit determines which condition wakes up the SCI: a logic 1 (address mark) in the most  
significant bit position of a received character or an idle condition on the RxD pin. Reset clears the  
WAKE bit.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY — Idle Line Type Bit  
This read/write bit determines when the SCI starts counting logic 1s as idle character bits. The  
counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then  
a string of logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning  
the count after the stop bit avoids false idle character recognition, but requires properly synchronized  
transmissions. Reset clears the ILTY bit.  
1 = Idle character bit count begins after stop bit  
0 = Idle character bit count begins after start bit  
PEN — Parity Enable Bit  
This read/write bit enables the SCI parity function. (See Table 12-6.) When enabled, the parity function  
inserts a parity bit in the most significant bit position. (See Figure 12-6.) Reset clears the PEN bit.  
1 = Parity function enabled  
0 = Parity function disabled  
PTY — Parity Bit  
This read/write bit determines whether the SCI generates and checks for odd parity or even parity.  
(See Table 12-6.) Reset clears the PTY bit.  
1 = Odd parity  
0 = Even parity  
NOTE  
Changing the PTY bit in the middle of a transmission or reception can  
generate a parity error.  
Table 12-6. Character Format Selection  
Control Bits  
PEN:PTY  
Character Format  
Start  
Bits  
Data  
Bits  
Stop  
Character  
Length  
M
Parity  
Bits  
0
1
0
0
1
1
0X  
0X  
10  
11  
10  
11  
1
1
1
1
1
1
8
9
7
7
8
8
None  
None  
Even  
Odd  
1
10 bits  
11 bits  
10 bits  
10 bits  
11 bits  
11 bits  
1
1
1
Even  
Odd  
1
1
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
195  
Infrared Serial Communications Interface Module (IRSCI)  
12.9.2 IRSCI Control Register 2  
IRSCI control register 2:  
Enables the following CPU interrupt requests:  
Enables the SCTE bit to generate transmitter CPU interrupt requests  
Enables the TC bit to generate transmitter CPU interrupt requests  
Enables the SCRF bit to generate receiver CPU interrupt requests  
Enables the IDLE bit to generate receiver CPU interrupt requests  
Enables the transmitter  
Enables the receiver  
Enables SCI wakeup  
Transmits SCI break characters  
Address:  
$0041  
Bit 7  
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
SCTIE  
0
Figure 12-13. IRSCI Control Register 2 (IRSCC2)  
SCTIE — SCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate SCI transmitter CPU interrupt requests. Reset  
clears the SCTIE bit.  
1 = SCTE enabled to generate CPU interrupt  
0 = SCTE not enabled to generate CPU interrupt  
TCIE — Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate SCI transmitter CPU interrupt requests. Reset clears  
the TCIE bit.  
1 = TC enabled to generate CPU interrupt requests  
0 = TC not enabled to generate CPU interrupt requests  
SCRIE — SCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate SCI receiver CPU interrupt requests. Reset clears  
the SCRIE bit.  
1 = SCRF enabled to generate CPU interrupt  
0 = SCRF not enabled to generate CPU interrupt  
ILIE — Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate SCI receiver CPU interrupt requests. Reset clears  
the ILIE bit.  
1 = IDLE enabled to generate CPU interrupt requests  
0 = IDLE not enabled to generate CPU interrupt requests  
TE — Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the  
transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any  
transmission in progress before the TxD returns to the idle condition (logic 1). Clearing and then setting  
TE during a transmission queues an idle character to be sent after the character currently being  
transmitted. Reset clears the TE bit.  
1 = Transmitter enabled  
0 = Transmitter disabled  
MC68HC908AP A-Family Data Sheet, Rev. 3  
196  
Freescale Semiconductor  
I/O Registers  
NOTE  
Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear.  
ENSCI is in SCI control register 1.  
RE — Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not  
affect receiver interrupt flag bits. Reset clears the RE bit.  
1 = Receiver enabled  
0 = Receiver disabled  
NOTE  
Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RWU — Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled.  
The WAKE bit in IRSCC1 determines whether an idle input or an address mark brings the receiver out  
of the standby state and clears the RWU bit. Reset clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
SBK — Send Break Bit  
Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic  
1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the  
transmitter continuously transmits break characters with no logic 1s between them. Reset clears the  
SBK bit.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE  
Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling  
SBK before the preamble begins causes the SCI to send a break character  
instead of a preamble.  
12.9.3 IRSCI Control Register 3  
IRSCI control register 3:  
Stores the ninth SCI data bit received and the ninth SCI data bit to be transmitted  
Enables the following interrupts:  
Receiver overrun interrupts  
Noise error interrupts  
Framing error interrupts  
Parity error interrupts  
Address:  
$0042  
Bit 7  
R8  
6
T8  
U
5
DMARE  
0
4
DMATE  
0
3
2
NEIE  
0
1
FEIE  
0
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
ORIE  
U
0
= Unimplemented  
U = Unaffected  
Figure 12-14. IRSCI Control Register 3 (IRSCC3)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
197  
Infrared Serial Communications Interface Module (IRSCI)  
R8 — Received Bit 8  
When the SCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received  
character. R8 is received at the same time that the IRSCDR receives the other 8 bits.  
When the SCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7). Reset has no effect  
on the R8 bit.  
T8 — Transmitted Bit 8  
When the SCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted  
character. T8 is loaded into the transmit shift register at the same time that the IRSCDR is loaded into  
the transmit shift register. Reset has no effect on the T8 bit.  
DMARE — DMA Receive Enable Bit  
CAUTION  
The DMA module is not included on this MCU. Writing a logic 1 to DMARE  
or DMATE may adversely affect MCU performance.  
1 = DMA not enabled to service SCI receiver DMA service requests generated by the SCRF bit (SCI  
receiver CPU interrupt requests enabled)  
0 = DMA not enabled to service SCI receiver DMA service requests generated by the SCRF bit (SCI  
receiver CPU interrupt requests enabled)  
DMATE — DMA Transfer Enable Bit  
CAUTION  
The DMA module is not included on this MCU. Writing a logic 1 to DMARE  
or DMATE may adversely affect MCU performance.  
1 = SCTE DMA service requests enabled; SCTE CPU interrupt requests disabled  
0 = SCTE DMA service requests disabled; SCTE CPU interrupt requests enabled  
ORIE — Receiver Overrun Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the receiver overrun bit, OR.  
Reset clears ORIE.  
1 = SCI error CPU interrupt requests from OR bit enabled  
0 = SCI error CPU interrupt requests from OR bit disabled  
NEIE — Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the noise error bit, NE.  
Reset clears NEIE.  
1 = SCI error CPU interrupt requests from NE bit enabled  
0 = SCI error CPU interrupt requests from NE bit disabled  
FEIE — Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the framing error bit, FE.  
Reset clears FEIE.  
1 = SCI error CPU interrupt requests from FE bit enabled  
0 = SCI error CPU interrupt requests from FE bit disabled  
PEIE — Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt  
requests generated by the parity error bit, PE. (See 12.9.4 IRSCI Status Register 1.) Reset clears  
PEIE.  
1 = SCI error CPU interrupt requests from PE bit enabled  
0 = SCI error CPU interrupt requests from PE bit disabled  
MC68HC908AP A-Family Data Sheet, Rev. 3  
198  
Freescale Semiconductor  
I/O Registers  
12.9.4 IRSCI Status Register 1  
SCI status register 1 contains flags to signal these conditions:  
Transfer of IRSCDR data to transmit shift register complete  
Transmission complete  
Transfer of receive shift register data to IRSCDR complete  
Receiver input idle  
Receiver overrun  
Noisy data  
Framing error  
Parity error  
Address:  
$0043  
Bit 7  
6
5
4
3
2
1
Bit 0  
PE  
Read:  
Write:  
Reset:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
1
1
0
0
0
0
0
0
= Unimplemented  
Figure 12-15. IRSCI Status Register 1 (IRSCS1)  
SCTE — SCI Transmitter Empty Bit  
This clearable, read-only bit is set when the IRSCDR transfers a character to the transmit shift register.  
SCTE can generate an SCI transmitter CPU interrupt request. When the SCTIE bit in IRSCC2 is set,  
SCTE generates an SCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by  
reading IRSCS1 with SCTE set and then writing to IRSCDR. Reset sets the SCTE bit.  
1 = IRSCDR data transferred to transmit shift register  
0 = IRSCDR data not transferred to transmit shift register  
TC — Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being  
transmitted. TC generates an SCI transmitter CPU interrupt request if the TCIE bit in IRSCC2 is also  
set. TC is automatically cleared when data, preamble or break is queued and ready to be sent. There  
may be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the  
transmission actually starting. Reset sets the TC bit.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF — SCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift register transfers to the SCI data  
register. SCRF can generate an SCI receiver CPU interrupt request. When the SCRIE bit in IRSCC2  
is set, SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading  
IRSCS1 with SCRF set and then reading the IRSCDR. Reset clears SCRF.  
1 = Received data available in IRSCDR  
0 = Data not available in IRSCDR  
IDLE — Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on the receiver input.  
IDLE generates an SCI receiver CPU interrupt request if the ILIE bit in IRSCC2 is also set. Clear the  
IDLE bit by reading IRSCS1 with IDLE set and then reading the IRSCDR. After the receiver is enabled,  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
199  
Infrared Serial Communications Interface Module (IRSCI)  
it must receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit.  
Also, after the IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle  
condition can set the IDLE bit. Reset clears the IDLE bit.  
1 = Receiver input idle  
0 = Receiver input active (or idle since the IDLE bit was cleared)  
OR — Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the IRSCDR before the receive shift  
register receives the next character. The OR bit generates an SCI error CPU interrupt request if the  
ORIE bit in IRSCC3 is also set. The data in the shift register is lost, but the data already in the IRSCDR  
is not affected. Clear the OR bit by reading IRSCS1 with OR set and then reading the IRSCDR. Reset  
clears the OR bit.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of IRSCS1 and IRSCDR in the  
flag-clearing sequence. Figure 12-16 shows the normal flag-clearing sequence and an example of an  
overrun caused by a delayed flag-clearing sequence. The delayed read of IRSCDR does not clear the  
OR bit because OR was not set when IRSCS1 was read. Byte 2 caused the overrun and is lost. The  
next flag-clearing sequence reads byte 3 in the IRSCDR instead of byte 2.  
In applications that are subject to software latency or in which it is important to know which byte is lost  
due to an overrun, the flag-clearing routine can check the OR bit in a second read of IRSCS1 after  
reading the data register.  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ IRSCS1  
SCRF = 1  
OR = 0  
READ IRSCS1  
SCRF = 1  
OR = 0  
READ IRSCS1  
SCRF = 1  
OR = 0  
READ IRSCDR  
BYTE 1  
READ IRSCDR  
BYTE 2  
READ IRSCDR  
BYTE 3  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ IRSCS1  
SCRF = 1  
OR = 0  
READ IRSCS1  
SCRF = 1  
OR = 1  
READ IRSCDR  
BYTE 1  
READ IRSCDR  
BYTE 3  
Figure 12-16. Flag Clearing Sequence  
MC68HC908AP A-Family Data Sheet, Rev. 3  
200  
Freescale Semiconductor  
I/O Registers  
NF — Receiver Noise Flag Bit  
This clearable, read-only bit is set when the SCI detects noise on the RxD pin. NF generates an SCI  
error CPU interrupt request if the NEIE bit in IRSCC3 is also set. Clear the NF bit by reading IRSCS1  
and then reading the IRSCDR. Reset clears the NF bit.  
1 = Noise detected  
0 = No noise detected  
FE — Receiver Framing Error Bit  
This clearable, read-only bit is set when a logic 0 is accepted as the stop bit. FE generates an SCI error  
CPU interrupt request if the FEIE bit in IRSCC3 also is set. Clear the FE bit by reading IRSCS1 with  
FE set and then reading the IRSCDR. Reset clears the FE bit.  
1 = Framing error detected  
0 = No framing error detected  
PE — Receiver Parity Error Bit  
This clearable, read-only bit is set when the SCI detects a parity error in incoming data. PE generates  
an SCI error CPU interrupt request if the PEIE bit in IRSCC3 is also set. Clear the PE bit by reading  
IRSCS1 with PE set and then reading the IRSCDR. Reset clears the PE bit.  
1 = Parity error detected  
0 = No parity error detected  
12.9.5 IRSCI Status Register 2  
IRSCI status register 2 contains flags to signal the following conditions:  
Break character detected  
Incoming data  
Address:  
$0044  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
RPF  
Read:  
Write:  
Reset:  
BKF  
0
0
0
= Unimplemented  
Figure 12-17. IRSCI Status Register 2 (IRSCS2)  
BKF — Break Flag Bit  
This clearable, read-only bit is set when the SCI detects a break character on the RxD pin. In IRSCS1,  
the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in IRSCC3 is cleared.  
BKF does not generate a CPU interrupt request. Clear BKF by reading IRSCS2 with BKF set and then  
reading the IRSCDR. Once cleared, BKF can become set again only after logic 1s again appear on  
the RxD pin followed by another break character. Reset clears the BKF bit.  
1 = Break character detected  
0 = No break character detected  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
201  
Infrared Serial Communications Interface Module (IRSCI)  
RPF — Reception in Progress Flag Bit  
This read-only bit is set when the receiver detects a logic 0 during the RT1 time period of the start bit  
search. RPF does not generate an interrupt request. RPF is reset after the receiver detects false start  
bits (usually from noise or a baud rate mismatch) or when the receiver detects an idle character. Polling  
RPF before disabling the SCI module or entering stop mode can show whether a reception is in  
progress.  
1 = Reception in progress  
0 = No reception in progress  
12.9.6 IRSCI Data Register  
The IRSCI data register is the buffer between the internal data bus and the receive and transmit shift  
registers. Reset has no effect on data in the IRSCI data register.  
Address:  
$0045  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 12-18. IRSCI Data Register (IRSCDR)  
R7/T7–R0/T0 — Receive/Transmit Data Bits  
Reading the IRSCDR accesses the read-only received data bits, R7–R0. Writing to the IRSCDR writes  
the data to be transmitted, T7–T0. Reset has no effect on the IRSCDR.  
NOTE  
Do not use read/modify/write instructions on the IRSCI data register.  
12.9.7 IRSCI Baud Rate Register  
The baud rate register selects the baud rate for both the receiver and the transmitter.  
Address:  
$0046  
Bit 7  
6
0
5
SCP1  
0
4
SCP0  
0
3
2
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
Write:  
Reset:  
CKS  
0
R
SCR2  
0
0
0
= Unimplemented  
R
= Reserved  
Figure 12-19. IRSCI Baud Rate Register (IRSCBR)  
CKS — Baud Clock Input Select  
This read/write bit selects the source clock for the baud rate generator. Reset clears the CKS bit,  
selecting CGMXCLK.  
1 = Bus clock drives the baud rate generator  
0 = CGMXCLK drives the baud rate generator  
SCP1 and SCP0 — SCI Baud Rate Prescaler Bits  
These read/write bits select the baud rate prescaler divisor as shown in Table 12-7. Reset clears SCP1  
and SCP0.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
202  
Freescale Semiconductor  
I/O Registers  
Table 12-7. SCI Baud Rate Prescaling  
SCP1 and SCP0  
Prescaler Divisor (PD)  
00  
01  
10  
11  
1
3
4
13  
SCR2–SCR0 — SCI Baud Rate Select Bits  
These read/write bits select the SCI baud rate divisor as shown in Table 12-8. Reset clears  
SCR2–SCR0.  
Table 12-8. IRSCI Baud Rate Selection  
SCR2, SCR1, and SCR0  
Baud Rate Divisor (BD)  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
8
16  
32  
64  
128  
Use this formula to calculate the SCI baud rate:  
SCI clock source  
baud rate = --------------------------------------------  
16 × PD × BD  
where:  
SCI clock source = f  
or CGMXCLK  
BUS  
(selected by CKS bit)  
PD = prescaler divisor  
BD = baud rate divisor  
Table 12-9 shows the SCI baud rates that can be generated with a 4.9152-MHz bus clock when f  
selected as SCI clock source.  
is  
BUS  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
203  
Infrared Serial Communications Interface Module (IRSCI)  
Table 12-9. IRSCI Baud Rate Selection Examples  
Baud Rate  
(fBUS = 4.9152 MHz)  
Prescaler  
Divisor (PD)  
SCR2, SCR1,  
and SCR0  
Baud Rate  
Divisor (BD)  
SCP1 and SCP0  
00  
00  
00  
00  
00  
00  
00  
00  
01  
01  
01  
01  
01  
01  
01  
01  
10  
10  
10  
10  
10  
10  
10  
10  
11  
11  
11  
11  
11  
11  
11  
11  
1
1
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
1
4
76800  
38400  
19200  
9600  
4800  
2400  
1
8
1
16  
32  
64  
128  
1
1
1
1
3
3
2
51200  
25600  
12800  
6400  
3200  
1600  
800  
3
4
3
8
3
16  
32  
64  
128  
1
3
3
3
4
76800  
38400  
19200  
9600  
4800  
2400  
1200  
600  
4
2
4
4
4
8
4
16  
32  
64  
128  
1
4
4
4
13  
13  
13  
13  
13  
13  
13  
13  
23632  
11816  
5908  
2954  
1477  
739  
2
4
8
16  
32  
64  
128  
369  
185  
MC68HC908AP A-Family Data Sheet, Rev. 3  
204  
Freescale Semiconductor  
I/O Registers  
12.9.8 IRSCI Infrared Control Register  
The infrared control register contains the control bits for the infrared sub-module.  
Enables the infrared sub-module  
Selects the infrared transmitter narrow pulse width  
Address:  
$0047  
Bit 7  
6
0
5
0
4
0
3
2
1
TNP0  
0
Bit 0  
IREN  
0
Read:  
Write:  
Reset:  
R
0
R
TNP1  
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 12-20. IRSCI Infrared Control Register (IRSCIRCR)  
TNP1 and TNP0 — Transmitter Narrow Pulse Bits  
These read/write bits select the infrared transmitter narrow pulse width as shown in Table 12-10. Reset  
clears TNP1 and TNP0.  
Table 12-10. Infrared Narrow Pulse Selection  
TNP1 and TNP0  
Prescaler Divisor (PD)  
00  
01  
10  
11  
SCI transmits a 3/16 narrow pulse  
SCI transmits a 1/16 narrow pulse  
SCI transmits a 1/32 narrow pulse  
IREN — Infrared Enable Bit  
This read/write bit enables the infrared sub-module for encoding and decoding the SCI data stream.  
When this bit is clear, the infrared sub-module is disabled. Reset clears the IREN bit.  
1 = infrared sub-module enabled  
0 = infrared sub-module disabled  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
205  
Infrared Serial Communications Interface Module (IRSCI)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
206  
Freescale Semiconductor  
Chapter 13  
Serial Peripheral Interface Module (SPI)  
13.1 Introduction  
This section describes the serial peripheral interface (SPI) module, which allows full-duplex,  
synchronous, serial communications with peripheral devices.  
13.2 Features  
Features of the SPI module include the following:  
Full-duplex operation  
Master and slave modes  
Double-buffered operation with separate transmit and receive registers  
Four master mode frequencies (maximum = bus frequency ÷ 2)  
Maximum slave mode frequency = bus frequency  
Serial clock with programmable polarity and phase  
Two separately enabled interrupts:  
SPRF (SPI receiver full)  
SPTE (SPI transmitter empty)  
Mode fault error flag with CPU interrupt capability  
Overflow error flag with CPU interrupt capability  
Programmable wired-OR mode  
13.3 Pin Name Conventions and I/O Register Addresses  
The text that follows describes the SPI. The SPI I/O pin names are SS (slave select), SPSCK (SPI serial  
clock), CGND (clock ground), MOSI (master out slave in), and MISO (master in/slave out). The SPI  
shares four I/O pins with four parallel I/O ports.  
The full names of the SPI I/O pins are shown in Table 13-1. The generic pin names appear in the text that  
follows.  
Table 13-1. Pin Name Conventions  
SPI Generic  
Pin Names:  
MISO  
MOSI  
SS  
SPSCK  
CGND  
Full SPI  
Pin Names:  
VSS  
SPI PTC2/MISO  
PTC3/MOSI  
PTC4/SS  
PTC5/SPSCK  
Figure 13-1 summarizes the SPI I/O registers.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
207  
Serial Peripheral Interface Module (SPI)  
=
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
SPRIE  
R
0
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
$0010 SPI Control Register (SPCR) Write:  
Reset:  
0
1
0
1
Read:  
SPRF  
OVRF  
MODF  
SPTE  
SPI Status and Control  
ERRIE  
MODFEN  
SPR1  
SPR0  
$0011  
$0012  
Register Write:  
(SPSCR)  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
1
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR)  
Unaffected by reset  
R
= Unimplemented  
= Reserved  
Figure 13-1. SPI I/O Register Summary  
13.4 Functional Description  
Figure 13-2 shows the structure of the SPI module.  
The SPI module allows full-duplex, synchronous, serial communication between the MCU and peripheral  
devices, including other MCUs. Software can poll the SPI status flags or SPI operation can be  
interrupt-driven.  
The following paragraphs describe the operation of the SPI module.  
13.4.1 Master Mode  
The SPI operates in master mode when the SPI master bit, SPMSTR, is set.  
NOTE  
Configure the SPI modules as master or slave before enabling them.  
Enable the master SPI before enabling the slave SPI. Disable the slave SPI  
before disabling the master SPI. (See 13.13.1 SPI Control Register.)  
Only a master SPI module can initiate transmissions. Software begins the transmission from a master SPI  
module by writing to the transmit data register. If the shift register is empty, the byte immediately transfers  
to the shift register, setting the SPI transmitter empty bit, SPTE. The byte begins shifting out on the MOSI  
pin under the control of the serial clock. (See Figure 13-3.)  
The SPR1 and SPR0 bits control the baud rate generator and determine the speed of the shift register.  
(See 13.13.2 SPI Status and Control Register.) Through the SPSCK pin, the baud rate generator of the  
master also controls the shift register of the slave peripheral.  
As the byte shifts out on the MOSI pin of the master, another byte shifts in from the slave on the master’s  
MISO pin. The transmission ends when the receiver full bit, SPRF, becomes set. At the same time that  
SPRF becomes set, the byte from the slave transfers to the receive data register. In normal operation,  
SPRF signals the end of a transmission. Software clears SPRF by reading the SPI status and control  
register with SPRF set and then reading the SPI data register. Writing to the SPI data register clears the  
SPTE bit.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
208  
Freescale Semiconductor  
Functional Description  
INTERNAL BUS  
TRANSMIT DATA REGISTER  
SHIFT REGISTER  
CGMOUT ÷ 2  
FROM SIM  
MISO  
7
6
5
4
3
2
1
0
÷ 2  
MOSI  
÷ 8  
÷ 32  
CLOCK  
DIVIDER  
RECEIVE DATA REGISTER  
PIN  
CONTROL  
LOGIC  
÷ 128  
CLOCK  
SPSCK  
SS  
SPMSTR SPE  
SELECT  
M
S
CLOCK  
LOGIC  
SPR1  
SPR0  
SPMSTR CPHA  
CPOL  
RESERVED  
MODFEN  
ERRIE  
SPTIE  
SPRIE  
R
SPWOM  
TRANSMITTER CPU INTERRUPT REQUEST  
RESERVED  
SPI  
CONTROL  
RECEIVER/ERROR CPU INTERRUPT REQUEST  
SPE  
SPRF  
SPTE  
OVRF  
MODF  
Figure 13-2. SPI Module Block Diagram  
MASTER MCU  
SLAVE MCU  
MISO  
MOSI  
MISO  
MOSI  
SHIFT REGISTER  
SHIFT REGISTER  
SPSCK  
SS  
SPSCK  
SS  
BAUD RATE  
GENERATOR  
V
DD  
Figure 13-3. Full-Duplex Master-Slave Connections  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
209  
Serial Peripheral Interface Module (SPI)  
13.4.2 Slave Mode  
The SPI operates in slave mode when the SPMSTR bit is clear. In slave mode, the SPSCK pin is the input  
for the serial clock from the master MCU. Before a data transmission occurs, the SS pin of the slave SPI  
must be at logic 0. SS must remain low until the transmission is complete. (See 13.7.2 Mode Fault Error.)  
In a slave SPI module, data enters the shift register under the control of the serial clock from the master  
SPI module. After a byte enters the shift register of a slave SPI, it transfers to the receive data register,  
and the SPRF bit is set. To prevent an overflow condition, slave software then must read the receive data  
register before another full byte enters the shift register.  
The maximum frequency of the SPSCK for an SPI configured as a slave is the bus clock speed (which is  
twice as fast as the fastest master SPSCK clock that can be generated). The frequency of the SPSCK for  
an SPI configured as a slave does not have to correspond to any SPI baud rate. The baud rate only  
controls the speed of the SPSCK generated by an SPI configured as a master. Therefore, the frequency  
of the SPSCK for an SPI configured as a slave can be any frequency less than or equal to the bus speed.  
When the master SPI starts a transmission, the data in the slave shift register begins shifting out on the  
MISO pin. The slave can load its shift register with a new byte for the next transmission by writing to its  
transmit data register. The slave must write to its transmit data register at least one bus cycle before the  
master starts the next transmission. Otherwise, the byte already in the slave shift register shifts out on the  
MISO pin. Data written to the slave shift register during a transmission remains in a buffer until the end of  
the transmission.  
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts a transmission. When CPHA is  
clear, the falling edge of SS starts a transmission. (See 13.5 Transmission Formats.)  
NOTE  
SPSCK must be in the proper idle state before the slave is enabled to  
prevent SPSCK from appearing as a clock edge.  
13.5 Transmission Formats  
During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted  
in serially). A serial clock synchronizes shifting and sampling on the two serial data lines. A slave select  
line allows selection of an individual slave SPI device; slave devices that are not selected do not interfere  
with SPI bus activities. On a master SPI device, the slave select line can optionally be used to indicate  
multiple-master bus contention.  
13.5.1 Clock Phase and Polarity Controls  
Software can select any of four combinations of serial clock (SPSCK) phase and polarity using two bits  
in the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects  
an active high or low clock and has no significant effect on the transmission format.  
The clock phase (CPHA) control bit selects one of two fundamentally different transmission formats. The  
clock phase and polarity should be identical for the master SPI device and the communicating slave  
device. In some cases, the phase and polarity are changed between transmissions to allow a master  
device to communicate with peripheral slaves having different requirements.  
NOTE  
Before writing to the CPOL bit or the CPHA bit, disable the SPI by clearing  
the SPI enable bit (SPE).  
MC68HC908AP A-Family Data Sheet, Rev. 3  
210  
Freescale Semiconductor  
 
Transmission Formats  
13.5.2 Transmission Format When CPHA = 0  
Figure 13-4 shows an SPI transmission in which CPHA is logic 0. The figure should not be used as a  
replacement for data sheet parametric information.  
Two waveforms are shown for SPSCK: one for CPOL = 0 and another for CPOL = 1. The diagram may  
be interpreted as a master or slave timing diagram since the serial clock (SPSCK), master in/slave out  
(MISO), and master out/slave in (MOSI) pins are directly connected between the master and the slave.  
The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The SS  
line is the slave select input to the slave. The slave SPI drives its MISO output only when its slave select  
input (SS) is at logic 0, so that only the selected slave drives to the master. The SS pin of the master is  
not shown but is assumed to be inactive. The SS pin of the master must be high or must be reconfigured  
as general-purpose I/O not affecting the SPI. (See 13.7.2 Mode Fault Error.) When CPHA = 0, the first  
SPSCK edge is the MSB capture strobe. Therefore, the slave must begin driving its data before the first  
SPSCK edge, and a falling edge on the SS pin is used to start the slave data transmission. The slave’s  
SS pin must be toggled back to high and then low again between each byte transmitted as shown in  
Figure 13-5.  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
LSB  
FROM MASTER  
MISO  
FROM SLAVE  
MSB  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 13-4. Transmission Format (CPHA = 0)  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 13-5. CPHA/SS Timing  
When CPHA = 0 for a slave, the falling edge of SS indicates the beginning of the transmission. This  
causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the  
transmission begins, no new data is allowed into the shift register from the transmit data register.  
Therefore, the SPI data register of the slave must be loaded with transmit data before the falling edge of  
SS. Any data written after the falling edge is stored in the transmit data register and transferred to the shift  
register after the current transmission.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
211  
Serial Peripheral Interface Module (SPI)  
13.5.3 Transmission Format When CPHA = 1  
Figure 13-6 shows an SPI transmission in which CPHA is logic 1. The figure should not be used as a  
replacement for data sheet parametric information. Two waveforms are shown for SPSCK: one for  
CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing  
diagram since the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI) pins  
are directly connected between the master and the slave. The MISO signal is the output from the slave,  
and the MOSI signal is the output from the master. The SS line is the slave select input to the slave. The  
slave SPI drives its MISO output only when its slave select input (SS) is at logic 0, so that only the selected  
slave drives to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS  
pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See  
13.7.2 Mode Fault Error.) When CPHA = 1, the master begins driving its MOSI pin on the first SPSCK  
edge. Therefore, the slave uses the first SPSCK edge as a start transmission signal. The SS pin can  
remain low between transmissions. This format may be preferable in systems having only one master and  
only one slave driving the MISO data line.  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
MSB  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
FROM MASTER  
MISO  
LSB  
FROM SLAVE  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 13-6. Transmission Format (CPHA = 1)  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning of the transmission. This  
causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the  
transmission begins, no new data is allowed into the shift register from the transmit data register.  
Therefore, the SPI data register of the slave must be loaded with transmit data before the first edge of  
SPSCK. Any data written after the first edge is stored in the transmit data register and transferred to the  
shift register after the current transmission.  
13.5.4 Transmission Initiation Latency  
When the SPI is configured as a master (SPMSTR = 1), writing to the SPDR starts a transmission. CPHA  
has no effect on the delay to the start of the transmission, but it does affect the initial state of the SPSCK  
signal. When CPHA = 0, the SPSCK signal remains inactive for the first half of the first SPSCK cycle.  
When CPHA = 1, the first SPSCK cycle begins with an edge on the SPSCK line from its inactive to its  
active level. The SPI clock rate (selected by SPR1:SPR0) affects the delay from the write to SPDR and  
the start of the SPI transmission. (See Figure 13-7.) The internal SPI clock in the master is a free-running  
derivative of the internal MCU clock. To conserve power, it is enabled only when both the SPE and  
SPMSTR bits are set. SPSCK edges occur halfway through the low time of the internal MCU clock. Since  
the SPI clock is free-running, it is uncertain where the write to the SPDR occurs relative to the slower  
SPSCK. This uncertainty causes the variation in the initiation delay shown in Figure 13-7. This delay is  
no longer than a single SPI bit time. That is, the maximum delay is two MCU bus cycles for DIV2, eight  
MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32, and 128 MCU bus cycles for DIV128.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
212  
Freescale Semiconductor  
Queuing Transmission Data  
WRITE  
TO SPDR  
INITIATION DELAY  
BUS  
CLOCK  
MOSI  
MSB  
BIT 6  
BIT 5  
SPSCK  
CPHA = 1  
SPSCK  
CPHA = 0  
SPSCK CYCLE  
NUMBER  
1
2
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN  
WRITE  
TO SPDR  
BUS  
CLOCK  
SPSCK = INTERNAL CLOCK ÷ 2;  
2 POSSIBLE START POINTS  
EARLIEST  
LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 8;  
LATEST  
LATEST  
LATEST  
8 POSSIBLE START POINTS  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 32;  
32 POSSIBLE START POINTS  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 128;  
128 POSSIBLE START POINTS  
Figure 13-7. Transmission Start Delay (Master)  
13.6 Queuing Transmission Data  
The double-buffered transmit data register allows a data byte to be queued and transmitted. For an SPI  
configured as a master, a queued data byte is transmitted immediately after the previous transmission  
has completed. The SPI transmitter empty flag (SPTE) indicates when the transmit data buffer is ready  
to accept new data. Write to the transmit data register only when the SPTE bit is high. Figure 13-8 shows  
the timing associated with doing back-to-back transmissions with the SPI (SPSCK has CPHA: CPOL =  
1:0).  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
213  
Serial Peripheral Interface Module (SPI)  
1
3
8
WRITE TO SPDR  
SPTE  
5
10  
2
SPSCK  
CPHA:CPOL = 1:0  
MOSI  
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT  
3
6
BYTE 1  
5
4
3
2
1
6
BYTE 2  
5
4
2
1
6
BYTE 3  
5
4
4
9
SPRF  
READ SPSCR  
READ SPDR  
6
11  
7
12  
1
2
CPU WRITES BYTE 1 TO SPDR, CLEARING SPTE BIT.  
7
8
CPU READS SPDR, CLEARING SPRF BIT.  
CPU WRITES BYTE 3 TO SPDR, QUEUEING BYTE  
3 AND CLEARING SPTE BIT.  
BYTE 1 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
9
SECOND INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
CPU WRITES BYTE 2 TO SPDR, QUEUEING BYTE 2  
AND CLEARING SPTE BIT.  
3
4
10  
FIRST INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
BYTE 3 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
11  
12  
CPU READS SPSCR WITH SPRF BIT SET.  
CPU READS SPDR, CLEARING SPRF BIT.  
5
6
BYTE 2 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
CPU READS SPSCR WITH SPRF BIT SET.  
Figure 13-8. SPRF/SPTE CPU Interrupt Timing  
The transmit data buffer allows back-to-back transmissions without the slave precisely timing its writes  
between transmissions as in a system with a single data buffer. Also, if no new data is written to the data  
buffer, the last value contained in the shift register is the next data word to be transmitted.  
For an idle master or idle slave that has no data loaded into its transmit buffer, the SPTE is set again no  
more than two bus cycles after the transmit buffer empties into the shift register. This allows the user to  
queue up a 16-bit value to send. For an already active slave, the load of the shift register cannot occur  
until the transmission is completed. This implies that a back-to-back write to the transmit data register is  
not possible. The SPTE indicates when the next write can occur.  
13.7 Error Conditions  
The following flags signal SPI error conditions:  
Overflow (OVRF) — Failing to read the SPI data register before the next full byte enters the shift  
register sets the OVRF bit. The new byte does not transfer to the receive data register, and the  
unread byte still can be read. OVRF is in the SPI status and control register.  
Mode fault error (MODF) — The MODF bit indicates that the voltage on the slave select pin (SS)  
is inconsistent with the mode of the SPI. MODF is in the SPI status and control register.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
214  
Freescale Semiconductor  
Error Conditions  
13.7.1 Overflow Error  
The overflow flag (OVRF) becomes set if the receive data register still has unread data from a previous  
transmission when the capture strobe of bit 1 of the next transmission occurs. The bit 1 capture strobe  
occurs in the middle of SPSCK cycle 7. (See Figure 13-4 and Figure 13-6.) If an overflow occurs, all data  
received after the overflow and before the OVRF bit is cleared does not transfer to the receive data  
register and does not set the SPI receiver full bit (SPRF). The unread data that transferred to the receive  
data register before the overflow occurred can still be read. Therefore, an overflow error always indicates  
the loss of data. Clear the overflow flag by reading the SPI status and control register and then reading  
the SPI data register.  
OVRF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also  
set. The SPRF, MODF, and OVRF interrupts share the same CPU interrupt vector. (See Figure 13-11.)  
It is not possible to enable MODF or OVRF individually to generate a receiver/error CPU interrupt request.  
However, leaving MODFEN low prevents MODF from being set.  
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not, watch for an overflow condition.  
Figure 13-9 shows how it is possible to miss an overflow. The first part of Figure 13-9 shows how it is  
possible to read the SPSCR and SPDR to clear the SPRF without problems. However, as illustrated by  
the second transmission example, the OVRF bit can be set in between the time that SPSCR and SPDR  
are read.  
BYTE 1  
1
BYTE 2  
4
BYTE 3  
6
BYTE 4  
8
SPRF  
OVRF  
READ  
SPSCR  
2
5
5
READ  
SPDR  
3
7
1
2
BYTE 1 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
6
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
3
4
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT,  
BUT NOT OVRF BIT.  
BYTE 2 SETS SPRF BIT.  
8
BYTE 4 FAILS TO SET SPRF BIT BECAUSE  
OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST.  
Figure 13-9. Missed Read of Overflow Condition  
In this case, an overflow can be missed easily. Since no more SPRF interrupts can be generated until this  
OVRF is serviced, it is not obvious that bytes are being lost as more transmissions are completed. To  
prevent this, either enable the OVRF interrupt or do another read of the SPSCR following the read of the  
SPDR. This ensures that the OVRF was not set before the SPRF was cleared and that future  
transmissions can set the SPRF bit. Figure 13-10 illustrates this process. Generally, to avoid this second  
SPSCR read, enable the OVRF to the CPU by setting the ERRIE bit.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
215  
Serial Peripheral Interface Module (SPI)  
BYTE 1  
BYTE 2  
5
BYTE 3  
7
BYTE 4  
11  
SPI RECEIVE  
COMPLETE  
1
SPRF  
OVRF  
READ  
SPSCR  
2
4
6
9
12  
14  
READ  
SPDR  
3
8
10  
13  
1
2
8
9
BYTE 1 SETS SPRF BIT.  
CPU READS BYTE 2 IN SPDR,  
CLEARING SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
3
4
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
10  
CPU READS BYTE 2 SPDR,  
CLEARING OVRF BIT.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
11  
12  
13  
BYTE 4 SETS SPRF BIT.  
CPU READS SPSCR.  
5
6
BYTE 2 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS BYTE 4 IN SPDR,  
CLEARING SPRF BIT.  
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
14  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
Figure 13-10. Clearing SPRF When OVRF Interrupt Is Not Enabled  
13.7.2 Mode Fault Error  
Setting the SPMSTR bit selects master mode and configures the SPSCK and MOSI pins as outputs and  
the MISO pin as an input. Clearing SPMSTR selects slave mode and configures the SPSCK and MOSI  
pins as inputs and the MISO pin as an output. The mode fault bit, MODF, becomes set any time the state  
of the slave select pin, SS, is inconsistent with the mode selected by SPMSTR.  
To prevent SPI pin contention and damage to the MCU, a mode fault error occurs if:  
The SS pin of a slave SPI goes high during a transmission  
The SS pin of a master SPI goes low at any time  
For the MODF flag to be set, the mode fault error enable bit (MODFEN) must be set. Clearing the  
MODFEN bit does not clear the MODF flag but does prevent MODF from being set again after MODF is  
cleared.  
MODF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also  
set. The SPRF, MODF, and OVRF interrupts share the same CPU interrupt vector. (See Figure 13-11.)  
It is not possible to enable MODF or OVRF individually to generate a receiver/error CPU interrupt request.  
However, leaving MODFEN low prevents MODF from being set.  
In a master SPI with the mode fault enable bit (MODFEN) set, the mode fault flag (MODF) is set if SS  
goes to logic 0. A mode fault in a master SPI causes the following events to occur:  
If ERRIE = 1, the SPI generates an SPI receiver/error CPU interrupt request.  
The SPE bit is cleared.  
The SPTE bit is set.  
The SPI state counter is cleared.  
The data direction register of the shared I/O port regains control of port drivers.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
216  
Freescale Semiconductor  
 
Interrupts  
NOTE  
To prevent bus contention with another master SPI after a mode fault error,  
clear all SPI bits of the data direction register of the shared I/O port before  
enabling the SPI.  
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS goes high during a transmission.  
When CPHA = 0, a transmission begins when SS goes low and ends once the incoming SPSCK goes  
back to its idle level following the shift of the eighth data bit. When CPHA = 1, the transmission begins  
when the SPSCK leaves its idle level and SS is already low. The transmission continues until the SPSCK  
returns to its idle level following the shift of the last data bit. (See 13.5 Transmission Formats.)  
NOTE  
Setting the MODF flag does not clear the SPMSTR bit. The SPMSTR bit  
has no function when SPE = 0. Reading SPMSTR when MODF = 1 shows  
the difference between a MODF occurring when the SPI is a master and  
when it is a slave.  
When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0) and  
later unselected (SS is at logic 1) even if no SPSCK is sent to that slave.  
This happens because SS at logic 0 indicates the start of the transmission  
(MISO driven out with the value of MSB) for CPHA = 0. When CPHA = 1, a  
slave can be selected and then later unselected with no transmission  
occurring. Therefore, MODF does not occur since a transmission was  
never begun.  
In a slave SPI (MSTR = 0), the MODF bit generates an SPI receiver/error CPU interrupt request if the  
ERRIE bit is set. The MODF bit does not clear the SPE bit or reset the SPI in any way. Software can abort  
the SPI transmission by clearing the SPE bit of the slave.  
NOTE  
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high  
impedance state. Also, the slave SPI ignores all incoming SPSCK clocks,  
even if it was already in the middle of a transmission.  
To clear the MODF flag, read the SPSCR with the MODF bit set and then write to the SPCR register. This  
entire clearing mechanism must occur with no MODF condition existing or else the flag is not cleared.  
13.8 Interrupts  
Four SPI status flags can be enabled to generate CPU interrupt requests.  
Table 13-2. SPI Interrupts  
Flag  
Request  
SPTE  
Transmitter empty  
SPI transmitter CPU interrupt request  
(SPTIE = 1, SPE = 1)  
SPRF  
Receiver full  
SPI receiver CPU interrupt request  
(SPRIE = 1)  
OVRF  
Overflow  
SPI receiver/error interrupt request (ERRIE = 1)  
SPI receiver/error interrupt request (ERRIE = 1)  
MODF  
Mode fault  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
217  
 
Serial Peripheral Interface Module (SPI)  
Reading the SPI status and control register with SPRF set and then reading the receive data register  
clears SPRF. The clearing mechanism for the SPTE flag is always just a write to the transmit data  
register.  
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag to generate transmitter CPU  
interrupt requests, provided that the SPI is enabled (SPE = 1).  
The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to generate receiver CPU interrupt  
requests, regardless of the state of the SPE bit. (See Figure 13-11.)  
The error interrupt enable bit (ERRIE) enables both the MODF and OVRF bits to generate a receiver/error  
CPU interrupt request.  
The mode fault enable bit (MODFEN) can prevent the MODF flag from being set so that only the OVRF  
bit is enabled by the ERRIE bit to generate receiver/error CPU interrupt requests.  
NOT AVAILABLE  
SPTE  
SPTIE  
SPE  
SPI TRANSMITTER  
CPU INTERRUPT REQUEST  
R
NOT AVAILABLE  
SPRIE  
SPRF  
SPI RECEIVER/ERROR  
CPU INTERRUPT REQUEST  
ERRIE  
MODF  
OVRF  
Figure 13-11. SPI Interrupt Request Generation  
The following sources in the SPI status and control register can generate CPU interrupt requests:  
SPI receiver full bit (SPRF) — The SPRF bit becomes set every time a byte transfers from the shift  
register to the receive data register. If the SPI receiver interrupt enable bit, SPRIE, is also set,  
SPRF generates an SPI receiver/error CPU interrupt request.  
SPI transmitter empty (SPTE) — The SPTE bit becomes set every time a byte transfers from the  
transmit data register to the shift register. If the SPI transmit interrupt enable bit, SPTIE, is also set,  
SPTE generates an SPTE CPU interrupt request.  
13.9 Resetting the SPI  
Any system reset completely resets the SPI. Partial resets occur whenever the SPI enable bit (SPE) is  
low. Whenever SPE is low, the following occurs:  
The SPTE flag is set.  
Any transmission currently in progress is aborted.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
218  
Freescale Semiconductor  
 
Low-Power Modes  
The shift register is cleared.  
The SPI state counter is cleared, making it ready for a new complete transmission.  
All the SPI port logic is defaulted back to being general-purpose I/O.  
These items are reset only by a system reset:  
All control bits in the SPCR register  
All control bits in the SPSCR register (MODFEN, ERRIE, SPR1, and SPR0)  
The status flags SPRF, OVRF, and MODF  
By not resetting the control bits when SPE is low, the user can clear SPE between transmissions without  
having to set all control bits again when SPE is set back high for the next transmission.  
By not resetting the SPRF, OVRF, and MODF flags, the user can still service these interrupts after the  
SPI has been disabled. The user can disable the SPI by writing 0 to the SPE bit. The SPI can also be  
disabled by a mode fault occurring in an SPI that was configured as a master with the MODFEN bit set.  
13.10 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
13.10.1 Wait Mode  
The SPI module remains active after the execution of a WAIT instruction. In wait mode the SPI module  
registers are not accessible by the CPU. Any enabled CPU interrupt request from the SPI module can  
bring the MCU out of wait mode.  
If SPI module functions are not required during wait mode, reduce power consumption by disabling the  
SPI module before executing the WAIT instruction.  
To exit wait mode when an overflow condition occurs, enable the OVRF bit to generate CPU interrupt  
requests by setting the error interrupt enable bit (ERRIE). (See 13.8 Interrupts.)  
13.10.2 Stop Mode  
The SPI module is inactive after the execution of a STOP instruction. The STOP instruction does not  
affect register conditions. SPI operation resumes after an external interrupt. If stop mode is exited by  
reset, any transfer in progress is aborted, and the SPI is reset.  
13.11 SPI During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. (See Chapter 7 System Integration Module (SIM).)  
To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status  
bit is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its  
default state), software can read and write I/O registers during the break state without affecting status bits.  
Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit  
before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the  
break, doing the second step clears the status bit.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
219  
Serial Peripheral Interface Module (SPI)  
Since the SPTE bit cannot be cleared during a break with the BCFE bit cleared, a write to the transmit  
data register in break mode does not initiate a transmission nor is this data transferred into the shift  
register. Therefore, a write to the SPDR in break mode with the BCFE bit cleared has no effect.  
13.12 I/O Signals  
The SPI module has five I/O pins and shares four of them with a parallel I/O port. They are:  
MISO — Data received  
MOSI — Data transmitted  
SPSCK — Serial clock  
SS — Slave select  
CGND — Clock ground (internally connected to V )  
SS  
2
The SPI has limited inter-integrated circuit (I C) capability (requiring software support) as a master in a  
2
single-master environment. To communicate with I C peripherals, MOSI becomes an open-drain output  
2
when the SPWOM bit in the SPI control register is set. In I C communication, the MOSI and MISO pins  
2
are connected to a bidirectional pin from the I C peripheral and through a pullup resistor to V  
.
DD  
13.12.1 MISO (Master In/Slave Out)  
MISO is one of the two SPI module pins that transmits serial data. In full duplex operation, the MISO pin  
of the master SPI module is connected to the MISO pin of the slave SPI module. The master SPI  
simultaneously receives data on its MISO pin and transmits data from its MOSI pin.  
Slave output data on the MISO pin is enabled only when the SPI is configured as a slave. The SPI is  
configured as a slave when its SPMSTR bit is logic 0 and its SS pin is at logic 0. To support a  
multiple-slave system, a logic 1 on the SS pin puts the MISO pin in a high-impedance state.  
When enabled, the SPI controls data direction of the MISO pin regardless of the state of the data direction  
register of the shared I/O port.  
13.12.2 MOSI (Master Out/Slave In)  
MOSI is one of the two SPI module pins that transmits serial data. In full-duplex operation, the MOSI pin  
of the master SPI module is connected to the MOSI pin of the slave SPI module. The master SPI  
simultaneously transmits data from its MOSI pin and receives data on its MISO pin.  
When enabled, the SPI controls data direction of the MOSI pin regardless of the state of the data direction  
register of the shared I/O port.  
13.12.3 SPSCK (Serial Clock)  
The serial clock synchronizes data transmission between master and slave devices. In a master MCU,  
the SPSCK pin is the clock output. In a slave MCU, the SPSCK pin is the clock input. In full-duplex  
operation, the master and slave MCUs exchange a byte of data in eight serial clock cycles.  
When enabled, the SPI controls data direction of the SPSCK pin regardless of the state of the data  
direction register of the shared I/O port.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
220  
Freescale Semiconductor  
I/O Signals  
13.12.4 SS (Slave Select)  
The SS pin has various functions depending on the current state of the SPI. For an SPI configured as a  
slave, the SS is used to select a slave. For CPHA = 0, the SS is used to define the start of a transmission.  
(See 13.5 Transmission Formats.) Since it is used to indicate the start of a transmission, the SS must be  
toggled high and low between each byte transmitted for the CPHA = 0 format. However, it can remain low  
between transmissions for the CPHA = 1 format. See Figure 13-12.  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 13-12. CPHA/SS Timing  
When an SPI is configured as a slave, the SS pin is always configured as an input. It cannot be used as  
a general-purpose I/O regardless of the state of the MODFEN control bit. However, the MODFEN bit can  
still prevent the state of the SS from creating a MODF error. (See 13.13.2 SPI Status and Control  
Register.)  
NOTE  
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a  
high-impedance state. The slave SPI ignores all incoming SPSCK clocks,  
even if it was already in the middle of a transmission.  
When an SPI is configured as a master, the SS input can be used in conjunction with the MODF flag to  
prevent multiple masters from driving MOSI and SPSCK. (See 13.7.2 Mode Fault Error.) For the state of  
the SS pin to set the MODF flag, the MODFEN bit in the SPSCK register must be set. If the MODFEN bit  
is low for an SPI master, the SS pin can be used as a general-purpose I/O under the control of the data  
direction register of the shared I/O port. With MODFEN high, it is an input-only pin to the SPI regardless  
of the state of the data direction register of the shared I/O port.  
The CPU can always read the state of the SS pin by configuring the appropriate pin as an input and  
reading the port data register. (See Table 13-3.)  
Table 13-3. SPI Configuration  
SPE  
SPMSTR  
MODFEN  
SPI Configuration  
Not enabled  
State of SS Logic  
General-purpose I/O;  
SS ignored by SPI  
X(1)  
0
0
1
1
1
X
X
0
1
Slave  
Input-only to SPI  
General-purpose I/O;  
SS ignored by SPI  
1
Master without MODF  
Master with MODF  
1
Input-only to SPI  
Note 1. X = Don’t care  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
221  
 
Serial Peripheral Interface Module (SPI)  
13.12.5 CGND (Clock Ground)  
CGND is the ground return for the serial clock pin, SPSCK, and the ground for the port output buffers. It  
is internally connected to V as shown in Table 13-1.  
SS  
13.13 I/O Registers  
Three registers control and monitor SPI operation:  
SPI control register (SPCR)  
SPI status and control register (SPSCR)  
SPI data register (SPDR)  
13.13.1 SPI Control Register  
The SPI control register:  
Enables SPI module interrupt requests  
Configures the SPI module as master or slave  
Selects serial clock polarity and phase  
Configures the SPSCK, MOSI, and MISO pins as open-drain outputs  
Enables the SPI module  
Address:  
$0010  
Bit 7  
6
R
0
5
SPMSTR  
1
4
CPOL  
0
3
2
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
SPRIE  
0
CPHA  
SPWOM  
1
0
= Unimplemented  
= Reserved  
R
Figure 13-13. SPI Control Register (SPCR)  
SPRIE — SPI Receiver Interrupt Enable Bit  
This read/write bit enables CPU interrupt requests generated by the SPRF bit. The SPRF bit is set  
when a byte transfers from the shift register to the receive data register. Reset clears the SPRIE bit.  
1 = SPRF CPU interrupt requests enabled  
0 = SPRF CPU interrupt requests disabled  
SPMSTR — SPI Master Bit  
This read/write bit selects master mode operation or slave mode operation. Reset sets the SPMSTR  
bit.  
1 = Master mode  
0 = Slave mode  
CPOL — Clock Polarity Bit  
This read/write bit determines the logic state of the SPSCK pin between transmissions. (See  
Figure 13-4 and Figure 13-6.) To transmit data between SPI modules, the SPI modules must have  
identical CPOL values. Reset clears the CPOL bit.  
CPHA — Clock Phase Bit  
MC68HC908AP A-Family Data Sheet, Rev. 3  
222  
Freescale Semiconductor  
I/O Registers  
This read/write bit controls the timing relationship between the serial clock and SPI data. (See  
Figure 13-4 and Figure 13-6.) To transmit data between SPI modules, the SPI modules must have  
identical CPHA values. When CPHA = 0, the SS pin of the slave SPI module must be set to logic 1  
between bytes. (See Figure 13-12.) Reset sets the CPHA bit.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
223  
Serial Peripheral Interface Module (SPI)  
SPWOM — SPI Wired-OR Mode Bit  
This read/write bit disables the pullup devices on pins SPSCK, MOSI, and MISO so that those pins  
become open-drain outputs.  
1 = Wired-OR SPSCK, MOSI, and MISO pins  
0 = Normal push-pull SPSCK, MOSI, and MISO pins  
SPE — SPI Enable  
This read/write bit enables the SPI module. Clearing SPE causes a partial reset of the SPI. (See 13.9  
Resetting the SPI.) Reset clears the SPE bit.  
1 = SPI module enabled  
0 = SPI module disabled  
SPTIE— SPI Transmit Interrupt Enable  
This read/write bit enables CPU interrupt requests generated by the SPTE bit. SPTE is set when a byte  
transfers from the transmit data register to the shift register. Reset clears the SPTIE bit.  
1 = SPTE CPU interrupt requests enabled  
0 = SPTE CPU interrupt requests disabled  
13.13.2 SPI Status and Control Register  
The SPI status and control register contains flags to signal these conditions:  
Receive data register full  
Failure to clear SPRF bit before next byte is received (overflow error)  
Inconsistent logic level on SS pin (mode fault error)  
Transmit data register empty  
The SPI status and control register also contains bits that perform these functions:  
Enable error interrupts  
Enable mode fault error detection  
Select master SPI baud rate  
Address  
$0011  
Bit 7  
6
ERRIE  
0
5
4
3
2
MODFEN  
0
1
SPR1  
0
Bit 0  
SPR0  
0
Read:  
Write:  
Reset:  
SPRF  
OVRF  
MODF  
SPTE  
0
0
0
1
= Unimplemented  
Figure 13-14. SPI Status and Control Register (SPSCR)  
SPRF — SPI Receiver Full Bit  
This clearable, read-only flag is set each time a byte transfers from the shift register to the receive data  
register. SPRF generates a CPU interrupt request if the SPRIE bit in the SPI control register is set also.  
During an SPRF CPU interrupt, the CPU clears SPRF by reading the SPI status and control register  
with SPRF set and then reading the SPI data register. Reset clears the SPRF bit.  
1 = Receive data register full  
0 = Receive data register not full  
MC68HC908AP A-Family Data Sheet, Rev. 3  
224  
Freescale Semiconductor  
I/O Registers  
ERRIE — Error Interrupt Enable Bit  
This read/write bit enables the MODF and OVRF bits to generate CPU interrupt requests. Reset clears  
the ERRIE bit.  
1 = MODF and OVRF can generate CPU interrupt requests  
0 = MODF and OVRF cannot generate CPU interrupt requests  
OVRF — Overflow Bit  
This clearable, read-only flag is set if software does not read the byte in the receive data register before  
the next full byte enters the shift register. In an overflow condition, the byte already in the receive data  
register is unaffected, and the byte that shifted in last is lost. Clear the OVRF bit by reading the SPI  
status and control register with OVRF set and then reading the receive data register. Reset clears the  
OVRF bit.  
1 = Overflow  
0 = No overflow  
MODF — Mode Fault Bit  
This clearable, read-only flag is set in a slave SPI if the SS pin goes high during a transmission with  
the MODFEN bit set. In a master SPI, the MODF flag is set if the SS pin goes low at any time with the  
MODFEN bit set. Clear the MODF bit by reading the SPI status and control register (SPSCR) with  
MODF set and then writing to the SPI control register (SPCR). Reset clears the MODF bit.  
1 = SS pin at inappropriate logic level  
0 = SS pin at appropriate logic level  
SPTE — SPI Transmitter Empty Bit  
This clearable, read-only flag is set each time the transmit data register transfers a byte into the shift  
register. SPTE generates an SPTE CPU interrupt request if the SPTIE bit in the SPI control register is  
set also.  
NOTE  
Do not write to the SPI data register unless the SPTE bit is high.  
During an SPTE CPU interrupt, the CPU clears the SPTE bit by writing to the transmit data register.  
Reset sets the SPTE bit.  
1 = Transmit data register empty  
0 = Transmit data register not empty  
MODFEN — Mode Fault Enable Bit  
This read/write bit, when set to 1, allows the MODF flag to be set. If the MODF flag is set, clearing the  
MODFEN does not clear the MODF flag. If the SPI is enabled as a master and the MODFEN bit is low,  
then the SS pin is available as a general-purpose I/O.  
If the MODFEN bit is set, then this pin is not available as a general-purpose I/O. When the SPI is  
enabled as a slave, the SS pin is not available as a general-purpose I/O regardless of the value of  
MODFEN. (See 13.12.4 SS (Slave Select).)  
If the MODFEN bit is low, the level of the SS pin does not affect the operation of an enabled SPI  
configured as a master. For an enabled SPI configured as a slave, having MODFEN low only prevents  
the MODF flag from being set. It does not affect any other part of SPI operation. (See 13.7.2 Mode  
Fault Error.)  
SPR1 and SPR0 — SPI Baud Rate Select Bits  
In master mode, these read/write bits select one of four baud rates as shown in Table 13-4. SPR1 and  
SPR0 have no effect in slave mode. Reset clears SPR1 and SPR0.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
225  
Serial Peripheral Interface Module (SPI)  
Table 13-4. SPI Master Baud Rate Selection  
SPR1 and SPR0  
Baud Rate Divisor (BD)  
00  
01  
10  
11  
2
8
32  
128  
Use this formula to calculate the SPI baud rate:  
CGMOUT  
Baud rate = --------------------------  
2 × BD  
where:  
CGMOUT = base clock output of the clock generator module (CGM)  
BD = baud rate divisor  
13.13.3 SPI Data Register  
The SPI data register consists of the read-only receive data register and the write-only transmit data  
register. Writing to the SPI data register writes data into the transmit data register. Reading the SPI data  
register reads data from the receive data register. The transmit data and receive data registers are  
separate registers that can contain different values. (See Figure 13-2.)  
Address:  
$0012  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 13-15. SPI Data Register (SPDR)  
R7–R0/T7–T0 — Receive/Transmit Data Bits  
NOTE  
Do not use read-modify-write instructions on the SPI data register since the  
register read is not the same as the register written.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
226  
Freescale Semiconductor  
Chapter 14  
Multi-Master IIC Interface (MMIIC)  
14.1 Introduction  
The multi-master IIC (MMIIC) interface is a two wire, bidirectional serial bus which provides a simple,  
efficient way for data exchange between devices. The interface is designed for internal serial  
communication between the MCU and other IIC devices. It has hardware generated START and STOP  
signals; and byte by byte interrupt driven software algorithm.  
This bus is suitable for applications which need frequent communications over a short distance between  
a number of devices. It also provides a flexibility that allows additional devices to be connected to the bus.  
The maximum data rate is 100k-bps, and the maximum communication distance and number of devices  
that can be connected is limited by a maximum bus capacitance of 400pF.  
This MMIIC interface is also SMBus (System Management Bus) version 1.0 and 1.1 compatible, with  
hardware cyclic redundancy code (CRC) generation, making it suitable for smart battery applications.  
14.2 Features  
Features of the MMIC module include:  
Full SMBus version 1.0/1.1 compliance  
Multi-master IIC bus standard  
Software programmable for one of eight different serial clock frequencies  
Software controllable acknowledge bit generation  
Interrupt driven byte by byte data transfer  
Calling address identification interrupt  
Arbitration loss detection and no-ACK awareness in master mode and automatic mode switching  
from master to slave  
Auto detection of R/W bit and switching of transmit or receive mode accordingly  
Detection of START, repeated START, and STOP signals  
Auto generation of START and STOP condition in master mode  
Repeated start generation  
Master clock generator with eight selectable baud rates  
Automatic recognition of the received acknowledge bit  
Busy detection  
Software enabled 8-bit CRC generation/decoding  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
227  
Multi-Master IIC Interface (MMIIC)  
14.3 I/O Pins  
The MMIIC module uses two I/O pins, shared with standard port I/O pins. The full name of the MMIIC I/O  
pins are listed in Table 14-1. The generic pin name appear in the text that follows.  
The SDA and SDL pins are open-drain. When configured as general purpose output pins (PTB0 and  
PTB1), pullup resistors must be connected to these pins.  
Table 14-1. Pin Name Conventions  
MMIIC Generic Pin Names:  
Full MCU Pin Names:  
PTB0/SDA  
Pin Selected for MMIIC Function By:  
SDA  
SCL  
MMEN bit in MMCR1 ($0049)  
PTB1/SCL  
Addr.  
Register Name  
Bit 7  
MMAD7  
1
6
MMAD6  
0
5
4
3
MMAD3  
0
2
MMAD2  
0
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
MMAD5  
MMAD4  
MMAD1 MMEXTAD  
MMIIC Address Register  
(MMADR)  
$0048  
$0049  
$004A  
$004B  
$004C  
$004D  
$004E  
$004F  
1
0
0
0
0
0
0
MMCLRBB  
0
MMCRCBYTE  
MMEN  
0
MMIEN  
0
MMTXAK REPSEN  
MMIIC Control Register 1  
(MMCR1)  
0
MMAST  
0
0
MMRW  
0
0
0
0
0
0
Read: MMALIF MMNAKIF  
MMBB  
MMCRCEF  
Unaffected  
MMIIC Control Register 2  
(MMCR2)  
Write:  
0
0
0
0
Reset:  
0
0
0
Read: MMRXIF  
MMTXIF MMATCH MMSRW MMRXAK MMCRCBF MMTXBE MMRXBF  
0
MMIIC Status Register  
(MMSR)  
Write:  
Reset:  
Read:  
0
0
0
0
0
1
0
1
0
MMIIC Data Transmit  
MMTD7  
MMTD6  
MMTD5  
MMTD4  
MMTD3  
MMTD2  
MMTD1  
MMTD0  
Register Write:  
(MMDTR)  
Reset:  
0
0
0
0
0
0
0
0
Read: MMRD7  
MMRD6  
MMRD5  
MMRD4  
MMRD3  
MMRD2  
MMRD1  
MMRD0  
MMIIC Data Receive  
Register Write:  
(MDDRR)  
Reset:  
0
0
0
0
0
0
0
0
Read: MMCRCD7 MMCRCD6 MMCRCD5 MMCRCD4 MMCRCD3 MMCRCD2 MMCRCD1 MMCRCD0  
Write:  
MMIIC CRC Data Register  
(MMCRDR)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
MMBR2  
1
0
MMBR1  
0
0
MMBR0  
0
MMIIC Frequency Divider  
Register Write:  
(MMFDR)  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 14-1. MMIIC I/O Register Summary  
14.4 Multi-Master IIC System Configuration  
The multi-master IIC system uses a serial data line SDA and a serial clock line SCL for data transfer. All  
devices connected to it must have open collector (drain) outputs and the logical-AND function is  
performed on both lines by two pull-up resistors.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
228  
Freescale Semiconductor  
Multi-Master IIC Bus Protocol  
14.5 Multi-Master IIC Bus Protocol  
Normally a standard communication is composed of four parts:  
1. START signal,  
2. slave address transmission,  
3. data transfer, and  
4. STOP signal.  
These are described briefly in the following sections and illustrated in Figure 14-2.  
9th clock pulse  
9th clock pulse  
LSB  
MSB  
1
LSB  
1
MSB  
1
SCL  
SDA  
1
0
0
0
0
1
1
0
1
0
0
1
1
ACK  
Data must be stable  
when SCL is HIGH  
No ACK  
START  
signal  
STOP  
signal  
MSB  
1
LSB  
1
MSB  
1
LSB  
1
SCL  
SDA  
1
0
0
0
0
1
1
0
1
0
0
1
ACK  
No ACK  
Repeated  
START  
signal  
START  
signal  
STOP  
signal  
Figure 14-2. Multi-Master IIC Bus Transmission Signal Diagram  
14.5.1 START Signal  
When the bus is free, (i.e. no master device is engaging the bus — both SCL and SDA lines are at logic  
high) a master may initiate communication by sending a START signal. As shown in Figure 14-2, a  
START signal is defined as a high to low transition of SDA while SCL is high. This signal denotes the  
beginning of a new data transfer (each data transfer may contain several bytes of data) and wakes up all  
slaves.  
14.5.2 Slave Address Transmission  
The first byte transferred immediately after the START signal is the slave address transmitted by the  
master. This is a 7-bit calling address followed by a R/W-bit. The R/W-bit dictates to the slave the desired  
direction of the data transfer. A logic 0 indicates that the master wishes to transmit data to the slave; a  
logic 1 indicates that the master wishes to receive data from the slave.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
229  
Multi-Master IIC Interface (MMIIC)  
Only the slave with a matched address will respond by sending back an acknowledge bit by pulling SDA  
low on the 9th clock cycle.  
(See Figure 14-2.)  
14.5.3 Data Transfer  
Once a successful slave addressing is achieved, the data transfer can proceed byte by byte in the  
direction specified by the R/W-bit sent by the calling master.  
Each data byte is 8 bits. Data can be changed only when SCL is low and must be held stable when SCL  
is high as shown in Figure 14-2. The MSB is transmitted first and each byte has to be followed by an  
acknowledge bit. This is signalled by the receiving device by pulling the SDA low on the 9th clock cycle.  
Therefore, one complete data byte transfer requires 9 clock cycles.  
If the slave receiver does not acknowledge the master, the SDA line should be left high by the slave. The  
master can then generate a STOP signal to abort the data transfer or a START signal (repeated START)  
to commence a new transfer.  
If the master receiver does not acknowledge the slave transmitter after a byte has been transmitted, it  
means an “end of data” to the slave. The slave should release the SDA line for the master to generate a  
STOP or START signal.  
14.5.4 Repeated START Signal  
As shown in Figure 14-2, a repeated START signal is used to generate START signal without first  
generating a STOP to terminate the communication. This is used by the master to communicate with  
another slave or with the same slave in a different mode (transmit/receive mode) without releasing the  
bus.  
14.5.5 STOP Signal  
The master can terminate the communication by generating a STOP signal to free the bus. However, the  
master may generate a START signal followed by a calling command without first generating a STOP  
signal. This is called repeat START. A STOP signal is defined as a low to high transition of SDA while  
SCL is at logic high (see Figure 14-2).  
14.5.6 Arbitration Procedure  
The interface circuit is a multi-master system which allows more than one master to be connected. If two  
or more masters try to control the bus at the same time, a clock synchronization procedure determines  
the bus clock. The clock low period is equal to the longest clock low period and the clock high period is  
equal to the shortest one among the masters. A data arbitration procedure determines the priority. A  
master will lose arbitration if it transmits a logic 1 while another transmits a logic 0. The losing master will  
immediately switch over to slave receive mode and stops its data and clock outputs. The transition from  
master to slave will not generate a STOP condition. Meanwhile a software bit will be set by hardware to  
indicates loss of arbitration.  
14.5.7 Clock Synchronization  
Since wired-AND logic is performed on SCL line, a high to low transition on the SCL line will affect the  
devices connected to the bus. The devices start counting their low period once a device’s clock has gone  
low, it will hold the SCL line low until the clock high state is reached. However, the change of low to high  
MC68HC908AP A-Family Data Sheet, Rev. 3  
230  
Freescale Semiconductor  
MMIIC I/O Registers  
in this device clock may not change the state of the SCL line if another device clock is still in its low period.  
Therefore the synchronized clock SCL will be held low by the device which last releases SCL to logic high.  
Devices with shorter low periods enter a high wait state during this time. When all devices concerned have  
counted off their low period, the synchronized SCL line will be released and go high, and all devices will  
start counting their high periods. The first device to complete its high period will again pull the SCL line  
low. Figure 14-3 illustrates the clock synchronization waveforms.  
Start counting high period  
WAIT  
SCL1  
SCL2  
SCL  
Internal counter reset  
Figure 14-3. Clock Synchronization  
14.5.8 Handshaking  
The clock synchronization mechanism can be used as a handshake in data transfer. A slave device may  
hold the SCL low after completion of one byte data transfer and will halt the bus clock, forcing the master  
clock into a wait state until the slave releases the SCL line.  
14.5.9 Packet Error Code  
The packet error code (PEC) for the MMIIC interface is in the form a cyclic redundancy code (CRC). The  
PEC is generated by hardware for every transmitted and received byte of data. The transmission of the  
generated PEC is controlled by user software.  
The CRC data register, MMCRCDR, contains the generated PEC byte, with three other bits in the MMIIC  
control registers and status register monitoring and controlling the PEC byte.  
14.6 MMIIC I/O Registers  
These I/O registers control and monitor MMIIC operation:  
MMIIC address register (MMADR) — $0048  
MMIIC control register 1 (MMCR1) — $0049  
MMIIC control register 2 (MMCR2) — $004A  
MMIIC status register (MMSR) — $004B  
MMIIC data transmit register (MMDTR) — $004C  
MMIIC data receive register (MMDRR) — $004D  
MMIIC CRC data register (MMCRCDR) — $004E  
MMIIC frequency divide register (MMFDR) — $004F  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
231  
Multi-Master IIC Interface (MMIIC)  
14.6.1 MMIIC Address Register (MMADR)  
Address:  
$0048  
Bit 7  
6
MMAD6  
0
5
MMAD5  
1
4
MMAD4  
0
3
MMAD3  
0
2
MMAD2  
0
1
Bit 0  
Read:  
Write:  
Reset:  
MMAD7  
1
MMAD1 MMEXTAD  
0
0
Figure 14-4. MMIIC Address Register (MMADR)  
MMAD[7:1] — Multi-Master Address  
These seven bits represent the MMIIC interface’s own specific slave address when in slave mode, and  
the calling address when in master mode. Software must update MMAD[7:1] as the calling address  
while entering master mode and restore its own slave address after master mode is relinquished. This  
register is cleared as $A0 upon reset.  
MMEXTAD — Multi-Master Expanded Address  
This bit is set to expand the address of the MMIIC in slave mode. When set, the MMIIC will  
acknowledge the following addresses from a calling master: $MMAD[7:1], 0000000, and 0001100.  
Reset clears this bit.  
1 = MMIIC responds to the following calling addresses:  
$MMAD[7:1], 0000000, and 0001100.  
0 = MMIIC responds to address $MMAD[7:1]  
For example, when MMADR is configured as:  
MMAD7  
1
MMAD6  
1
MMAD5  
0
MMAD4  
1
MMAD3  
0
MMAD2  
1
MMAD1 MMEXTAD  
0
1
The MMIIC module will respond to the calling address:  
Bit 7  
1
6
1
5
0
4
1
3
0
2
1
Bit 1  
0
or the general calling address:  
0
0
0
0
0
0
0
or the calling address:  
Bit 7  
0
6
0
5
0
4
1
3
1
2
0
Bit 1  
0
Note that bit-0 of the 8-bit calling address is the MMRW bit from the calling master.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
232  
Freescale Semiconductor  
MMIIC I/O Registers  
14.6.2 MMIIC Control Register 1 (MMCR1)  
Address:  
$0049  
Bit 7  
6
MMIEN  
0
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
MMCRCBYTE  
MMEN  
0
MMTXAK REPSEN  
MMCLRBB  
0
0
0
0
0
0
= Unimplemented  
Figure 14-5. MMIIC Control Register 1 (MMCR1)  
MMEN — MMIIC Enable  
This bit is set to enable the Multi-master IIC module. When MMEN = 0, module is disabled and all flags  
will restore to its power-on default states. Reset clears this bit.  
1 = MMIIC module enabled  
0 = MMIIC module disabled  
MMIEN — MMIIC Interrupt Enable  
When this bit is set, the MMTXIF, MMRXIF, MMALIF, and MMNAKIF flags are enabled to generate an  
interrupt request to the CPU. When MMIEN is cleared, the these flags are prevented from generating  
an interrupt request. Reset clears this bit.  
1 = MMTXIF, MMRXIF, MMALIF, and/or MMNAKIF bit set will generate interrupt request to CPU  
0 = MMTXIF, MMRXIF, MMALIF, and/or MMNAKIF bit set will not generate interrupt request to CPU  
MMCLRBB — MMIIC Clear Busy Flag  
Writing a logic 1 to this write-only bit clears the MMBB flag. MMCLRBB always reads as a logic 0.  
Reset clears this bit.  
1 = Clear MMBB flag  
0 = No affect on MMBB flag  
MMTXAK — MMIIC Transmit Acknowledge Enable  
This bit is set to disable the MMIIC from sending out an acknowledge signal to the bus at the 9th clock  
bit after receiving 8 data bits. When MMTXAK is cleared, an acknowledge signal will be sent at the 9th  
clock bit. Reset clears this bit.  
1 = MMIIC does not send acknowledge signals at 9th clock bit  
0 = MMIIC sends acknowledge signal at 9th clock bit  
REPSEN — Repeated Start Enable  
This bit is set to enable repeated START signal to be generated when in master mode transfer  
(MMAST = 1). The REPSEN bit is cleared by hardware after the completion of repeated START signal  
or when the MMAST bit is cleared. Reset clears this bit.  
1 = Repeated START signal will be generated if MMAST bit is set  
0 = No repeated START signal will be generated  
MMCRCBYTE — MMIIC CRC Byte  
In receive mode, this bit is set by software to indicate that the next receiving byte will be the packet  
error checking (PEC) data.  
In master receive mode, after completion of CRC generation on the received PEC data, an  
acknowledge signal is sent if MMTXAK = 0; no acknowledge is sent If MMTXAK = 1.  
In slave receive mode, no acknowledge signal is sent if a CRC error is detected on the received PEC  
data. If no CRC error is detected, an acknowledge signal is sent if MMTXAK = 0; no acknowledge is  
sent If MMTXAK = 1.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
233  
Multi-Master IIC Interface (MMIIC)  
Under normal operation, the user software should clear MMTXAK bit before setting MMCRCBYTE bit  
to ensure that an acknowledge signal is sent when no CRC error is detected.  
The MMCRCBYTE bit should not be set in transmit mode. This bit is cleared by the next START signal.  
Reset also clears this bit.  
1 = Next receiving byte is the packet error checking (PEC) data  
0 = Next receiving byte is not PEC data  
14.6.3 MMIIC Control Register 2 (MMCR2)  
Address:  
$004A  
Bit 7  
6
5
4
MMAST  
0
3
MMRW  
0
2
0
1
0
Bit 0  
Read: MMALIF MMNAKIF  
MMBB  
MMCRCEF  
Unaffected  
Write:  
0
0
0
0
Reset:  
0
0
0
= Unimplemented  
Figure 14-6. MMIIC Control Register 2 (MMCR2)  
MMALIF — Arbitration Loss Interrupt Flag  
This flag is set when software attempt to set MMAST but the MMBB has been set by detecting the start  
condition on the lines or when the MMIIC is transmitting a "1" to SDA line but detected a "0" from SDA  
line in master mode — an arbitration loss. This bit generates an interrupt request to the CPU if the  
MMIEN bit in MMCR1 is set. This bit is cleared by writing "0" to it or by reset.  
1 = Lost arbitration in master mode  
0 = No arbitration lost  
MMNAKIF — No AcKnowledge Interrupt Flag (Master Mode)  
This flag is only set in master mode (MMAST = 1) when there is no acknowledge bit detected after one  
data byte or calling address is transferred. This flag also clears MMAST. MMNAKIF generates an  
interrupt request to CPU if the MMIEN bit in MMCR1 is set. This bit is cleared by writing "0" to it or by  
reset.  
1 = No acknowledge bit detected  
0 = Acknowledge bit detected  
MMBB — MMIIC Bus Busy Flag  
This flag is set after a start condition is detected (bus busy), and is cleared when a stop condition (bus  
idle) is detected or the MMIIC is disabled. Reset clears this bit.  
1 = Start condition detected  
0 = Stop condition detected or MMIIC is disabled  
MMAST — MMIIC Master Control  
This bit is set to initiate a master mode transfer. In master mode, the module generates a start  
condition to the SDA and SCL lines, followed by sending the calling address stored in MMADR.  
When the MMAST bit is cleared by MMNAKIF set (no acknowledge) or by software, the module  
generates the stop condition to the lines after the current byte is transmitted.  
If an arbitration loss occurs (MMALIF = 1), the module reverts to slave mode by clearing MMAST, and  
releasing SDA and SCL lines immediately.  
This bit is cleared by writing "0" to it or by reset.  
1 = Master mode operation  
0 = Slave mode operation  
MC68HC908AP A-Family Data Sheet, Rev. 3  
234  
Freescale Semiconductor  
MMIIC I/O Registers  
MMRW — MMIIC Master Read/Write  
This bit is transmitted out as bit 0 of the calling address when the module sets the MMAST bit to enter  
master mode. The MMRW bit determines the transfer direction of the data bytes that follows. When it  
is "1", the module is in master receive mode. When it is "0", the module is in master transmit mode.  
Reset clears this bit.  
1 = Master mode receive  
0 = Master mode transmit  
MMCRCEF — MMIIC CRC Error Flag  
This flag is set when a CRC error is detected, and cleared when no CRC error is detected. The  
MMCRCEF is only meaningful after receiving a PEC data. This flag is unaffected by reset.  
1 = CRC error detected on PEC byte  
0 = No CRC error detected on PEC byte  
14.6.4 MMIIC Status Register (MMSR)  
Address:  
$004B  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: MMRXIF  
MMTXIF MMATCH MMSRW MMRXAK MMCRCBF MMTXBE MMRXBF  
0
Write:  
0
0
Reset:  
0
0
0
1
0
1
0
= Unimplemented  
Figure 14-7. MMIIC Status Register (MMSR)  
MMRXIF — MMIIC Receive Interrupt Flag  
This flag is set after the data receive register (MMDRR) is loaded with a new received data. Once the  
MMDRR is loaded with received data, no more received data can be loaded to the MMDRR register  
until the CPU reads the data from the MMDRR to clear MMRXBF flag. MMRXIF generates an interrupt  
request to CPU if the MMIEN bit in MMCR is also set. This bit is cleared by writing "0" to it or by reset;  
or when the MMEN = 0.  
1 = New data in data receive register (MMDRR)  
0 = No data received  
MMTXIF — MMIIC Transmit Interrupt Flag  
This flag is set when data in the data transmit register (MMDTR) is downloaded to the output circuit,  
and that new data can be written to the MMDTR. MMTXIF generates an interrupt request to CPU if the  
MMIEN bit in MMCR is also set. This bit is cleared by writing "0" to it or when the MMEN = 0.  
1 = Data transfer completed  
0 = Data transfer in progress  
MMATCH — MMIIC Address Match Flag  
This flag is set when the received data in the data receive register (MMDRR) is a calling address which  
matches with the address or its extended addresses (MMEXTAD = 1) specified in the address register  
(MMADR). The MMATCH flag is set at the 9th clock of the calling address and will be cleared on the  
9th clock of the next receiving data. Note: slave transmits do not clear MMATCH.  
1 = Received address matches MMADR  
0 = Received address does not match  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
235  
Multi-Master IIC Interface (MMIIC)  
MMSRW — MMIIC Slave Read/Write Select  
This bit indicates the data direction when the module is in slave mode. It is updated after the calling  
address is received from a master device. MMSRW = 1 when the calling master is reading data from  
the module (slave transmit mode). MMSRW = 0 when the master is writing data to the module (receive  
mode).  
1 = Slave mode transmit  
0 = Slave mode receive  
MMRXAK — MMIIC Receive Acknowledge  
When this bit is cleared, it indicates an acknowledge signal has been received after the completion of  
eight data bits transmission on the bus. When MMRXAK is set, it indicates no acknowledge signal has  
been detected at the 9th clock; the module will release the SDA line for the master to generate STOP  
or repeated START condition. Reset sets this bit.  
1 = No acknowledge signal received at 9th clock  
0 = Acknowledge signal received at 9th clock  
MMCRCBF — CRC Data Buffer Full Flag  
This flag is set when the CRC data register (MMCRCDR) is loaded with a CRC byte for the current  
received or transmitted data.  
In transmit mode, after a byte of data has been sent (MMTXIF = 1), the MMCRCBF will be set when  
the CRC byte has been generated and ready in the MMCRCDR. The content of the MMCRCDR should  
be copied to the MMDTR for transmission.  
In receive mode, the MMCRCBF is set when the CRC byte has been generated and ready in  
MMCRCDR, for the current byte of received data.  
The MMCRCBF bit is cleared when the CRC data register is read. Reset also clears this bit.  
1 = Data ready in CRC data register (MMCRCDR)  
0 = Data not ready in CRC data register (MMCRCDR)  
MMTXBE — MMIIC Transmit Buffer Empty  
This flag indicates the status of the data transmit register (MMDTR). When the CPU writes the data to  
the MMDTR, the MMTXBE flag will be cleared. MMTXBE is set when MMDTR is emptied by a transfer  
of its data to the output circuit. Reset sets this bit.  
1 = Data transmit register empty  
0 = Data transmit register full  
MMRXBF — MMIIC Receive Buffer Full  
This flag indicates the status of the data receive register (MMDRR). When the CPU reads the data  
from the MMDRR, the MMRXBF flag will be cleared. MMRXBF is set when MMDRR is full by a transfer  
of data from the input circuit to the MMDRR. Reset clears this bit.  
1 = Data receive register full  
0 = Data receive register empty  
14.6.5 MMIIC Data Transmit Register (MMDTR)  
Address:  
$004C  
Bit 7  
6
MMTD6  
0
5
MMTD5  
0
4
MMTD4  
0
3
MMTD3  
0
2
MMTD2  
0
1
MMTD1  
0
Bit 0  
MMTD0  
0
Read:  
Write:  
Reset:  
MMTD7  
0
Figure 14-8. MMIIC Data Transmit Register (MMDTR)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
236  
Freescale Semiconductor  
MMIIC I/O Registers  
When the MMIIC module is enabled, MMEN = 1, data written into this register depends on whether  
module is in master or slave mode.  
In slave mode, the data in MMDTR will be transferred to the output circuit when:  
the module detects a matched calling address (MMATCH = 1), with the calling master requesting  
data (MMSRW = 1); or  
the previous data in the output circuit has be transmitted and the receiving master returns an  
acknowledge bit, indicated by a received acknowledge bit (MMRXAK = 0).  
If the calling master does not return an acknowledge bit (MMRXAK = 1), the module will release the SDA  
line for master to generate a STOP or repeated START condition. The data in the MMDTR will not be  
transferred to the output circuit until the next calling from a master. The transmit buffer empty flag remains  
cleared (MMTXBE = 0).  
In master mode, the data in MMDTR will be transferred to the output circuit when:  
the module receives an acknowledge bit (MMRXAK = 0), after  
setting master transmit mode (MMRW = 0), and the calling address has been transmitted; or  
the previous data in the output circuit has be transmitted and the receiving slave returns an  
acknowledge bit, indicated by a received acknowledge bit (MMRXAK = 0).  
If the slave does not return an acknowledge bit (MMRXAK = 1), the master will generate a STOP or  
repeated START condition. The data in the MMDTR will not be transferred to the output circuit. The  
transmit buffer empty flag remains cleared (MMTXBE = 0).  
The sequence of events for slave transmit and master transmit are illustrated in Figure 14-12.  
14.6.6 MMIIC Data Receive Register (MMDRR)  
Address:  
$004D  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: MMRD7  
Write:  
MMRD6  
MMRD5  
MMRD4  
MMRD3  
MMRD2  
MMRD1  
MMRD0  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-9. MMIIC Data Receive Register (MMDRR)  
When the MMIIC module is enabled, MMEN = 1, data in this read-only register depends on whether  
module is in master or slave mode.  
In slave mode, the data in MMDRR is:  
the calling address from the master when the address match flag is set (MMATCH = 1); or  
the last data received when MMATCH = 0.  
In master mode, the data in the MMDRR is:  
the last data received.  
When the MMDRR is read by the CPU, the receive buffer full flag is cleared (MMRXBF = 0), and the next  
received data is loaded to the MMDRR. Each time when new data is loaded to the MMDRR, the MMRXIF  
interrupt flag is set, indicating that new data is available in MMDRR.  
The sequence of events for slave receive and master receive are illustrated in Figure 14-12.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
237  
Multi-Master IIC Interface (MMIIC)  
14.6.7 MMIIC CRC Data Register (MMCRCDR)  
Address:  
$004E  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: MMCRCD7 MMCRCD6 MMCRCD5 MMCRCD4 MMCRCD3 MMCRCD2 MMCRCD1 MMCRCD0  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-10. MMIIC CRC Data Register (MMCRCDR)  
When the MMIIC module is enabled, MMEN = 1, and the CRC buffer full flag is set (MMCRCBF = 1), data  
in this read-only register contains the generated CRC byte for the last byte of received or transmitted data.  
A CRC byte is generated for each received and transmitted data byte and loaded to the CRC data  
register. The MMCRCBF bit will be set to indicate the CRC byte is ready in the CRC data register.  
Reading the CRC data register clears the MMCRCBF bit. If the CRC data register is not read, the  
MMCRCBF bit will be cleared by hardware before the next CRC byte is loaded.  
14.6.8 MMIIC Frequency Divider Register (MMFDR)  
Address:  
$004F  
Bit 7  
0
6
0
5
0
4
0
3
0
2
MMBR2  
1
1
MMBR1  
0
Bit 0  
MMBR0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 14-11. MMIIC Frequency Divider Register (MMFDR)  
The three bits in the frequency divider register (MMFDR) selects the divider to divide the bus clock to the  
desired baud rate for the MMIIC data transfer.  
Table 14-2 shows the divider values for MMBR[2:0].  
MC68HC908AP A-Family Data Sheet, Rev. 3  
238  
Freescale Semiconductor  
Program Algorithm  
Table 14-2. MMIIC Baud Rate Selection  
MMIIC Baud Rates for Bus Clocks:  
MMBR2  
MMBR1  
MMBR0  
Divider  
8MHz  
400kHz  
200kHz  
100kHz  
50kHz  
4MHz  
200kHz  
100kHz  
50kHz  
2MHz  
100kHz  
1MHz  
50kHz  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
20  
40  
50kHz  
25kHz  
80  
25kHz  
12.5kHz  
6.25kHz  
3.125kHz  
1.5625kHz  
0.78125kHz  
0.3906kHz  
160  
320  
640  
1280  
2560  
25kHz  
12.5kHz  
6.25kHz  
3.125kHz  
1.5625kHz  
0.78125kHz  
25kHz  
12.5kHz  
6.25kHz  
3.125kHz  
1.5625kHz  
12.5kHz  
6.25kHz  
3.125kHz  
NOTE  
The frequency of the MMIIC baud rate is only guaranteed for 100kHz to  
10kHz. The divider is available for the flexibility on bus frequency selection.  
14.7 Program Algorithm  
When the MMIIC module detects an arbitration loss in master mode, it releases both SDA and SCL lines  
immediately. But if there are no further STOP conditions detected, the module will hang up. Therefore, it  
is recommended to have time-out software to recover from this condition. The software can start the  
time-out counter by looking at the MMBB (bus busy) flag and reset the counter on the completion of one  
byte transmission. If a time-out has occurred, software can clear the MMEN bit (disable MMIIC module)  
to release the bus, and hence clear the MMBB flag. This is the only way to clear the MMBB flag by  
software if the module hangs up due to a no STOP condition received. The MMIIC can resume operation  
again by setting the MMEN bit.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
239  
Multi-Master IIC Interface (MMIIC)  
14.7.1 Data Sequence  
(a) Master Transmit Mode  
TX Data1  
START  
Address  
0
ACK  
ACK  
TX DataN  
ACK  
STOP  
MMTXBE=0  
MMRW=0  
MMAST=1  
Data1 MMDTR  
MMTXBE=1  
MMTXIF=1  
Data2 MMDTR  
MMTXBE=1  
MMTXIF=1  
Data3 MMDTR  
MMNAKIF=1  
MMAST=0  
MMTXBE=0  
MMTXBE=1  
MMTXIF=1  
DataN+2 MMDTR  
(b) Master Receive Mode  
RX Data1  
START  
Address  
1
ACK  
ACK  
RX DataN  
NAK  
STOP  
MMRXBF=0  
MMRW=1  
MMAST=1  
MMTXBE=0  
MMNAKIF=1  
MMAST=0  
Data1 MMDRR  
MMRXIF=1  
MMRXBF=1  
DataN MMDRR  
MMRXIF=1  
MMRXBF=1  
(dummy data MMDTR)  
(c) Slave Transmit Mode  
TX Data1  
START  
Address  
1
ACK  
ACK  
TX DataN  
NAK  
STOP  
MMTXBE=1  
MMRXBF=0  
MMRXIF=1  
MMNAKIF=1  
MMTXBE=0  
MMTXBE=1  
MMTXIF=1  
Data2 MMDTR  
MMTXBE=1  
MMTXIF=1  
MMRXBF=1  
MMATCH=1  
MMSRW=1  
DataN+2 MMDTR  
Data1 MMDTR  
(d) Slave Receive Mode  
RX Data1  
START  
Address  
0
ACK  
ACK  
RX DataN  
ACK  
STOP  
Data1 MMDRR  
MMRXIF=1  
MMRXBF=1  
DataN MMDRR  
MMRXIF=1  
MMRXBF=1  
MMTXBE=0  
MMRXBF=0  
MMRXIF=1  
MMRXBF=1  
MMATCH=1  
MMSRW=0  
Shaded data packets indicate transmissions by the MCU  
Figure 14-12. Data Transfer Sequences for Master/Slave Transmit/Receive Modes  
MC68HC908AP A-Family Data Sheet, Rev. 3  
240  
Freescale Semiconductor  
SMBus Protocols with PEC and without PEC  
14.8 SMBus Protocols with PEC and without PEC  
Following is a description of the various MMIIC bus protocols with and without a packet error code (PEC).  
14.8.1 Quick Command  
1
7
1
1
1
Master to Slave  
Slave to Master  
START  
Slave Address RW ACK  
STOP  
Start Condition  
Command Bit  
Acknowledge  
Stop Condition  
Figure 14-13. Quick Command  
14.8.2 Send Byte  
Command Code  
Command Code  
START  
Slave Address  
W
W
ACK  
ACK  
ACK  
ACK  
STOP  
(a) Send Byte Protocol  
PEC  
START  
Slave Address  
ACK  
STOP  
(b) Send Byte Protocol with PEC  
Figure 14-14. Send Byte  
14.8.3 Receive Byte  
Data Byte  
Data Byte  
START  
Slave Address  
R
R
ACK  
ACK  
NAK  
ACK  
STOP  
(a) Receive Byte Protocol  
PEC  
START  
Slave Address  
NAK  
STOP  
(b) Receive Byte Protocol with PEC  
Figure 14-15. Receive Byte  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
241  
Multi-Master IIC Interface (MMIIC)  
14.8.4 Write Byte/Word  
Command Code  
Command Code  
Command Code  
Command Code  
Data Byte  
Data Byte  
START  
Slave Address  
W
W
W
W
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
STOP  
(a) Write Byte Protocol  
PEC  
START  
Slave Address  
ACK  
ACK  
ACK  
STOP  
STOP  
(b) Write Byte Protocol with PEC  
Data Byte Low  
Data Byte Low  
Data Byte High  
Data Byte High  
START  
Slave Address  
(c) Write Word Protocol  
START  
Slave Address  
PEC  
ACK  
STOP  
(d) Write Word Protocol with PEC  
Figure 14-16. Write Byte/Word  
14.8.5 Read Byte/Word  
Command Code  
Command Code  
Data Byte  
START  
Slave Address  
W
ACK  
ACK  
ACK  
START  
START  
Slave Address  
Slave Address  
R
R
ACK  
ACK  
NAK  
STOP  
(a) Read Byte Protocol  
Data Byte  
START  
Slave Address  
W
ACK  
ACK  
ACK  
ACK  
PEC  
NAK  
STOP  
(b) Read Byte Protocol with PEC  
Command Code  
Data Byte Low  
START  
Slave Address  
W
ACK  
ACK  
ACK  
START  
START  
Slave Address  
R
ACK  
ACK  
Data Byte High  
NAK  
STOP  
(c) Read Word Protocol  
Command Code  
Data Byte Low  
START  
Slave Address  
W
ACK  
PEC  
Slave Address  
R
Data Byte High  
ACK  
NAK  
STOP  
(d) Read Word Protocol with PEC  
Figure 14-17. Read Byte/Word  
MC68HC908AP A-Family Data Sheet, Rev. 3  
242  
Freescale Semiconductor  
SMBus Protocols with PEC and without PEC  
14.8.6 Process Call  
Command Code  
Data Byte Low  
Data Byte Low  
Data Byte High  
Data Byte High  
STOP  
START  
Slave Address  
Slave Address  
W
R
ACK  
ACK  
ACK  
ACK  
ACK  
NAK  
ACK  
START  
(a) Process Call  
Command Code  
Data Byte Low  
Data Byte Low  
Data Byte High  
Data Byte High  
STOP  
START  
START  
Slave Address  
Slave Address  
W
R
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
PEC  
NAK  
STOP  
(b) Process Call with PEC  
Figure 14-18. Process Call  
14.8.7 Block Read/Write  
Command Code  
ACK  
Data Byte N  
Byte Count = N  
STOP  
Data Byte 1  
START  
Slave Address  
W
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
Data Byte 2  
(a) Block Read  
Command Code  
Byte Count = N  
PEC  
Data Byte 1  
START  
Slave Address  
ACK  
W
ACK  
ACK  
Data Byte 2  
Data Byte N  
ACK  
ACK  
STOP  
(b) Block Read with PEC  
Command Code  
ACK  
Byte Count = N  
START  
Slave Address  
W
ACK  
ACK  
START  
Data Byte N  
Slave Address  
R
ACK  
ACK  
ACK  
Data Byte 1  
Data Byte 2  
ACK  
NAK  
STOP  
(c) Block Write  
Command Code  
ACK  
Byte Count = N  
NAK  
STOP  
START  
Slave Address  
ACK  
W
ACK  
ACK  
START  
Slave Address  
R
ACK  
Data Byte 1  
Data Byte 2  
Data Byte N  
PEC  
ACK  
(d) Block Write with PEC  
Figure 14-19. Block Read/Write  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
243  
Multi-Master IIC Interface (MMIIC)  
14.9 SMBus Protocol Implementation  
Shaded data packets indicate transmissions by the MCU  
MASTER MODE  
Command  
RX Data1  
RX DataN  
START Address 0 ACK  
ACK START Address 1 ACK  
ACK  
ACK  
NAK STOP  
OPERATION:  
OPERATION:  
OPERATION:  
OPERATION:  
Read received data  
Prepare for repeated START  
Generate STOP  
Get ready to receive data  
FLAGS:  
FLAGS:  
FLAGS:  
FLAGS:  
MMRXIF set  
MMTXIF set  
MMRXAK clear  
MMRXIF set  
MMTXIF set  
MMRXAK clear  
ACTION:  
ACTION:  
ACTION:  
Read DataN from MMDRR  
Read Data1 from MMDRR  
ACTION:  
1. Set MMRW  
2. Set REPSEN  
3. Clear MMTXAK  
Load dummy ($FF) to MMDTR  
4. Load dummy ($FF) to MMDTR  
OPERATION:  
Read received data and prepare for STOP  
OPERATION:  
Prepare for Master mode  
FLAGS:  
MMRXIF set  
ACTION:  
1. Load slave address to MMADR  
2. Clear MMRW  
ACTION:  
1. Set MMTXAK  
3. Load command to MMDTR  
4. Set MMAST  
2. Read Data(N-1) from MMDRR  
3. Clear MMAST  
SLAVE MODE  
Command  
TX Data1  
TX DataN  
START Address 0 ACK  
ACK START Address 1 ACK  
ACK  
ACK  
NAK STOP  
OPERATION:  
OPERATION:  
OPERATION:  
OPERATION:  
Transmit data  
Slave address match and  
check for data direction  
Slave address match and  
get ready to transmit data  
Last data sent  
FLAGS:  
FLAGS:  
FLAGS:  
FLAGS:  
MMTXIF set  
MMRXAK clear  
MMTXIF set  
MMRXAK set  
MMRXIF set  
MMATCH set  
MMRXIF set  
MMATCH set  
ACTION:  
ACTION:  
MMSRW depends on 8th  
bit of calling address byte  
MMSRW depends on 8th  
bit of calling address byte  
Load dummy ($FF) to MMDTR  
Load Data3 to MMDTR  
ACTION:  
ACTION:  
1. Check MMSRW  
2. Read Slave address  
Check MMSRW  
OPERATION:  
OPERATION:  
Read and decode received command  
Last data is going to be sent  
OPERATION:  
OPERATION:  
Transmit data  
FLAGS:  
FLAGS:  
Prepare for Slave mode  
MMRXIF set  
MMATCH clear  
MMTXIF set  
MMRXAK clear  
FLAGS:  
ACTION:  
MMTXIF set  
1. Load slave address to MMADR  
2. Clear MMTXAK  
3. Clear MMAST  
ACTION:  
ACTION:  
ACTION:  
Load Data1 to MMDTR  
Load dummy ($FF) to MMDTR  
Load Data2 to MMDTR  
Figure 14-20. SMBus Protocol Implementation  
MC68HC908AP A-Family Data Sheet, Rev. 3  
244  
Freescale Semiconductor  
Chapter 15  
Analog-to-Digital Converter (ADC)  
15.1 Introduction  
This section describes the analog-to-digital converter (ADC). The ADC is a 8-channel 10-bit linear  
successive approximation ADC.  
15.2 Features  
Features of the ADC module include:  
Eight channels with multiplexed input  
High impedance buffered input  
Linear successive approximation with monotonicity  
10-bit resolution  
Single or continuous conversion  
Auto-scan conversion on four channels  
Conversion complete flag or conversion complete interrupt  
Selectable ADC clock  
Conversion result justification  
8-bit truncated mode  
Right justified mode  
Left justified mode  
Left justified sign mode  
Addr.  
Register Name  
Bit 7  
Read: COCO  
6
AIEN  
0
5
4
3
2
1
Bit 0  
ADC Status and Control  
Register Write:  
(ADSCR)  
ADCO  
0
ADCH4  
1
ADCH3  
1
ADCH2  
1
ADCH1  
ADCH0  
$0057  
Reset:  
Read:  
0
1
0
1
0
ADC Clock Control  
ADIV2  
ADIV1  
ADIV0  
ADICLK  
MODE1  
MODE0  
$0058  
$0059  
$005A  
$005B  
Register Write:  
R
(ADICLK)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
ADx  
R
0
ADx  
R
0
ADx  
R
0
ADx  
R
0
ADx  
R
1
ADx  
R
0
ADx  
R
0
ADx  
R
ADC Data Register High 0  
(ADRH0)  
0
0
0
0
0
0
0
0
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADC Data Register Low 0  
(ADRL0)  
0
0
0
0
0
0
0
0
AD9  
R
AD8  
R
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
ADC Data Register Low 1  
(ADRL1)  
0
0
0
0
0
0
0
0
Figure 15-1. ADC I/O Register Summary  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
245  
Analog-to-Digital Converter (ADC)  
Read:  
AD9  
R
AD8  
R
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
ADC Data Register Low 2  
(ADRL3)  
$005C  
$005D  
$005E  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
0
0
AD9  
R
AD8  
R
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
ADC Data Register Low 3  
(ADRL3)  
0
0
0
0
0
0
0
0
0
0
0
0
0
ADC Auto-scan Control  
AUTO1  
AUTO0  
0
ASCAN  
0
Register Write:  
(ADASCR)  
Reset:  
0
0
0
0
0
0
= Unimplemented  
= Reserved  
R
Figure 15-1. ADC I/O Register Summary  
15.3 Functional Description  
The ADC provides eight pins for sampling external sources at pins PTA0/ADC0–PTA7/ADC7. An analog  
multiplexer allows the single ADC converter to select one of eight ADC channels as ADC voltage in  
(V  
). V  
is converted by the successive approximation register-based analog-to-digital converter.  
ADIN  
ADIN  
When the conversion is completed, ADC places the result in the ADC data register, high and low byte  
(ADRH0 and ADRL0), and sets a flag or generates an interrupt.  
An additional three ADC data registers (ADRL1–ADRL3) are available to store the individual converted  
data for ADC channels ADC1–ADC3 when the auto-scan mode is enabled. Data from channel ADC0 is  
stored in ADRL0 in the auto-scan mode.  
Figure 15-2 shows the structure of the ADC module.  
15.3.1 ADC Port I/O Pins  
PTA0–PTA7 are general-purpose I/O pins that are shared with the ADC channels. The channel select  
bits, ADCH[4:0], define which ADC channel/port pin will be used as the input signal. The ADC overrides  
the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are  
controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port data register  
or data direction register will not have any affect on the port pin that is selected by the ADC. Read of a  
port pin which is in use by the ADC will return the pin condition if the corresponding DDR bit is at logic 0.  
If the DDR bit is at logic 1, the value in the port data latch is read.  
15.3.2 Voltage Conversion  
When the input voltage to the ADC equals V  
, the ADC converts the signal to $3FF (full scale). If the  
REFH  
input voltage equals V  
, the ADC converts it to $000. Input voltages between V  
and V  
are a  
REFL  
REFH  
REFL  
straight-line linear conversion. All other input voltages will result in $3FF if greater than V  
and $000  
REFH  
if less than V  
.
REFL  
NOTE  
Input voltage should not exceed the analog supply voltages.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
246  
Freescale Semiconductor  
Functional Description  
INTERNAL  
DATA BUS  
READ DDRAx  
WRITE DDRAx  
DISABLE  
DDRAx  
PTAx  
RESET  
WRITE PTAx  
READ PTAx  
PTAx/ADCx  
ADC0–ADC7  
(8 CHANNELS)  
DISABLE  
ADC DATA REGISTERS  
ADRH0 ADRL0  
ADRL1  
ADRL2  
VREFH  
VREFL  
ADRL3  
ADC  
VOLTAGE IN  
CONVERSION  
COMPLETE  
(V  
)
ADIN  
CHANNEL  
SELECT  
INTERRUPT  
LOGIC  
10-BIT ADC  
ADCICLK  
AIEN  
COCO  
MUX  
ASCAN  
CGMXCLK  
CLOCK  
GENERATOR  
BUS CLOCK  
ADCH[4:0]  
ADIV[2:0] ADICLK  
2-BIT UP-COUNTER  
AUTO[1:0]  
Figure 15-2. ADC Block Diagram  
15.3.3 Conversion Time  
Conversion starts after a write to the ADSCR. One conversion will take between 16 and 17 ADC clock  
cycles, therefore:  
16 to17 ADC cycles  
Conversion time =  
ADC frequency  
Number of bus cycles = conversion time × bus frequency  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
247  
Analog-to-Digital Converter (ADC)  
The ADC conversion time is determined by the clock source chosen and the divide ratio selected. The  
clock source is either the bus clock or CGMXCLK and is selectable by the ADICLK bit located in the ADC  
clock register. The divide ratio is selected by the ADIV[2:0] bits.  
For example, if a 4MHz CGMXCLK is selected as the ADC input clock source, with a divide-by-four  
prescale, and the bus speed is set at 2MHz:  
16 to17 ADC cycles  
Conversion time =  
= 16 to 17 µs  
4MHz ÷ 4  
Number of bus cycles = 16 µs × 2MHz = 32 to 34 cycles  
NOTE  
The ADC frequency must be between f  
minimum and f  
maximum  
ADIC  
ADIC  
to meet A/D specifications. (See 22.5 5V DC Electrical Characteristics.).  
Since an ADC cycle may be comprised of several bus cycles (four in the previous example) and the start  
of a conversion is initiated by a bus cycle write to the ADSCR, from zero to four additional bus cycles may  
occur before the start of the initial ADC cycle. This results in a fractional ADC cycle and is represented as  
the 17th cycle.  
15.3.4 Continuous Conversion  
In the continuous conversion mode, the ADC continuously converts the selected channel, filling the ADC  
data register with new data after each conversion. Data from the previous conversion will be overwritten  
whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The  
COCO bit is set after each conversion and can be cleared by writing to the ADC status and control register  
or reading of the ADRL0 data register.  
15.3.5 Auto-Scan Mode  
In auto-scan mode, the ADC input channel is selected by the value of the 2-bit up-counter, instead of the  
channel select bits, ADCH[4:0]. The value of the counter also defines the data register ADRLx to be used  
to store the conversion result. When ASCAN bit is set, a write to ADC status and control register (ADSCR)  
will reset the auto-scan up-counter and ADC conversion will start on the channel 0 up to the channel  
number defined by the integer value of AUTO[1:0]. After a channel conversion is completed, data is stored  
in ADRLx and the COCO-bit will be set. The counter value will be incremented by 1 and a new conversion  
will start. This process will continue until the counter value reaches the value of AUTO[1:0]. When this  
happens, it indicates that the current channel is the last channel to be converted. Upon the completion on  
the last channel, the counter value will not be incremented and no further conversion will be performed.  
To start another auto-scan cycle, a write to ADSCR must be performed.  
NOTE  
The system only provides 8-bit data storage in auto-scan code, user must  
clear MODE[1:0] bits to select 8-bit truncation mode before entering  
auto-scan mode.  
It is recommended that user should disable the auto-scan function before switching channel and also  
before entering STOP mode.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
248  
Freescale Semiconductor  
Interrupts  
15.3.6 Result Justification  
The conversion result may be formatted in four different ways.  
Left justified  
Right justified  
Left justified sign data mode  
8-bit truncation  
All four of these modes are controlled using MODE0 and MODE1 bits located in the ADC clock control  
register (ADICLK).  
Left justification will place the eight most significant bits (MSB) in the corresponding ADC data register  
high (ADRH). This may be useful if the result is to be treated as an 8-bit result where the least significant  
two bits, located in the ADC data register low (ADRL) can be ignored. However, you must read ADRL  
after ADRH or else the interlocking will prevent all new conversions from being stored.  
Right justification will place only the two MSBs in the corresponding ADC data register high (ADRH) and  
the eight LSB bits in ADC data register low (ADRL). This mode of operation typically is used when a 10-bit  
unsigned result is desired.  
Left justified sign data mode is similar to left justified mode with one exception. The MSB of the 10-bit  
result, AD9 located in ADRH is complemented. This mode of operation is useful when a result,  
represented as a signed magnitude from mid-scale, is needed.  
Finally, 8-bit truncation mode will place the eight MSBs in ADC data register low (ADRL). The two LSBs  
are dropped. This mode of operation is used when compatibility with 8-bit ADC designs are required. No  
interlocking between ADRH and ADRL is present.  
15.3.7 Data Register Interlocking  
Reading ADRH in any 10-bit mode latches the contents of ADRL until ADRL is read. Until ADRL is read  
all subsequent ADC results will be lost. This register interlocking can also be reset by a write to the ADC  
status and control register, or ADC clock control register. A power-on reset or reset will also clear the  
interlocking. Note that an external conversion request will not reset the lock.  
15.3.8 Monotonicity  
The conversion process is monotonic and has no missing codes.  
15.4 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC  
conversion or after an auto-scan conversion cycle. A CPU interrupt is generated if the COCO bit is at  
logic 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled. The  
interrupt vector is defined in Table 2-1 . Vector Addresses.  
15.5 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-consumption standby modes.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
249  
Analog-to-Digital Converter (ADC)  
15.5.1 Wait Mode  
The ADC continues normal operation in wait mode. Any enabled CPU interrupt request from the ADC can  
bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power  
down the ADC by setting the ADCH[4:0] bits to logic 1’s before executing the WAIT instruction.  
15.5.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted.  
ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the  
analog circuitry before attempting a new ADC conversion after exiting stop mode.  
15.6 I/O Signals  
The ADC module has eight channels shared with port A I/O pins.  
15.6.1 ADC Voltage In (V  
)
ADIN  
V
is the input voltage signal from one of the eight ADC channels to the ADC module.  
ADIN  
15.6.2 ADC Analog Power Pin (V  
)
DDA  
The ADC analog portion uses V  
as its power pin. Connect the V  
pin to the same voltage potential  
DDA  
DDA  
as V . External filtering may be necessary to ensure clean V  
for good results.  
DD  
DDA  
NOTE  
Route V  
carefully for maximum noise immunity and place bypass  
DDA  
capacitors as close as possible to the package.  
15.6.3 ADC Analog Ground Pin (V  
)
SSA  
The ADC analog portion uses V  
as its ground pin. Connect the V  
pin to the same voltage potential  
SSA  
SSA  
as V .  
SS  
15.6.4 ADC Voltage Reference High Pin (V  
)
REFH  
V
is the power supply for setting the reference voltage V  
. Connect the V  
pin to the same  
REFH  
REFH  
REFH  
voltage potential as V  
. There will be a finite current associated with V  
(see Chapter 22 Electrical  
DDA  
REFH  
Specifications).  
NOTE  
Route V  
carefully for maximum noise immunity and place bypass  
REFH  
capacitors as close as possible to the package.  
15.6.5 ADC Voltage Reference Low Pin (V  
)
REFL  
V
V
is the lower reference supply for the ADC. Connect the V  
pin to the same voltage potential as  
REFL  
REFL  
. There will be a finite current associated with V  
(see Chapter 22 Electrical Specifications).  
SSA  
REFL  
MC68HC908AP A-Family Data Sheet, Rev. 3  
250  
Freescale Semiconductor  
I/O Registers  
15.7 I/O Registers  
These I/O registers control and monitor ADC operation:  
ADC status and control register (ADSCR) — $0057  
ADC clock control register (ADICLK) — $0058  
ADC data register high:low 0 (ADRH0:ADRL0) — $0059:$005A  
ADC data register low 1–3 (ADRL1–ADRL3) — $005B–$005D  
ADC auto-scan control register (ADASCR) — $005E  
15.7.1 ADC Status and Control Register  
Function of the ADC status and control register is described here.  
Address:  
Read:  
$0057  
COCO  
AIEN  
0
ADCO  
0
ADCH4  
1
ADCH3  
1
ADCH2  
1
ADCH1  
1
ADCH0  
1
Write:  
Reset:  
0
Figure 15-3. ADC Status and Control Register (ADSCR)  
COCO — Conversions Complete Bit  
In non-interrupt mode (AIEN = 0), COCO is a read-only bit that is set at the end of each conversion.  
COCO will stay set until cleared by a read of the ADC data register. Reset clears this bit.  
In interrupt mode (AIEN = 1), COCO is a read-only bit that is not set at the end of a conversion. It  
always reads as a 0.  
1 = Conversion completed (AIEN = 0)  
0 = Conversion not completed (AIEN = 0) or CPU interrupt enabled (AIEN = 1)  
NOTE  
The write function of the COCO bit is reserved. When writing to the ADSCR  
register, always have a 0 in the COCO bit position.  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is  
cleared when the data register, ADR0, is read or the ADSCR is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
ADCO — ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the ADC data register at the end of  
each conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
This bit should not be set when auto-scan mode is enabled; i.e. when ASCAN=1.  
ADCH[4:0] — ADC Channel Select Bits  
ADCH[4:0] form a 5-bit field which is used to select one of the ADC channels when not in auto-scan  
mode. The five channel select bits are detailed in Table 15-1.  
NOTE  
Care should be taken when using a port pin as both an analog and a digital  
input simultaneously to prevent switching noise from corrupting the analog  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
251  
Analog-to-Digital Converter (ADC)  
signal. Recovery from the disabled state requires one conversion cycle to  
stabilize.  
Table 15-1. MUX Channel Select  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
ADC Channel  
ADC0  
Input Select  
PTA0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
ADC1  
PTA1  
ADC2  
PTA2  
ADC3  
PTA3  
ADC4  
PTA4  
ADC5  
PTA5  
ADC6  
PTA6  
ADC7  
PTA7  
0
1
1
1
0
1
0
0
0
0
ADC8  
ADC28  
Reserved  
VREFH (see Note 2)  
VREFL (see Note 2)  
1
1
1
1
1
1
1
0
1
1
1
0
1
ADC29  
ADC30  
1
1
ADC powered-off  
NOTES:  
1. If any unused channels are selected, the resulting ADC conversion will be unknown.  
2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the operation of  
the ADC converter both in production test and for user applications.  
15.7.2 ADC Clock Control Register  
The ADC clock control register (ADICLK) selects the clock frequency for the ADC.  
Address:  
Read:  
$0058  
ADIV2  
0
0
0
0
R
0
ADIV1  
0
ADIV0  
0
ADICLK  
0
MODE1  
MODE0  
Write:  
Reset:  
0
1
= Unimplemented  
R
= Reserved  
Figure 15-4. ADC Clock Control Register (ADICLK)  
ADIV[2:0] — ADC Clock Prescaler Bits  
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate  
the internal ADC clock.  
Table 15-2 shows the available clock configurations. The ADC clock should be set to between 500kHz  
and 1MHz.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
252  
Freescale Semiconductor  
I/O Registers  
Table 15-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC input clock ÷ 1  
ADC input clock ÷ 2  
ADC input clock ÷ 4  
ADC input clock ÷ 8  
ADC input clock ÷ 16  
0
0
0
1
1
X
0
1
0
1
X
0
0
0
1
X = don’t care  
ADICLK — ADC Input Clock Select Bit  
ADICLK selects either bus clock or CGMXCLK as the input clock source to generate the internal ADC  
clock. Reset selects CGMXCLK as the ADC clock source.  
If the external clock (CGMXCLK) is equal to or greater than 1MHz, CGMXCLK can be used as the  
clock source for the ADC. If CGMXCLK is less than 1MHz, use the PLL-generated bus clock as the  
clock source. As long as the internal ADC clock is at f  
, correct operation can be guaranteed.  
ADIC  
1 = Internal bus clock  
0 = External clock, CGMXCLK  
CGMXCLK or bus frequency  
ADIV[2:0]  
f
=
ADIC  
MODE1 and MODE0 — Modes of Result Justification  
MODE1 and MODE0 selects between four modes of operation. The manner in which the ADC  
conversion results will be placed in the ADC data registers is controlled by these modes of operation.  
Reset returns right-justified mode.  
Table 15-3. ADC Mode Select  
MODE1  
MODE0  
Justification Mode  
8-bit truncated mode  
0
0
1
1
0
1
0
1
Right justified mode  
Left justified mode  
Left justified sign data mode  
15.7.3 ADC Data Register 0 (ADRH0 and ADRL0)  
The ADC data register 0 consist of a pair of 8-bit registers: high byte (ADRH0), and low byte (ADRL0).  
This pair form a 16-bit register to store the 10-bit ADC result for the selected ADC result justification mode.  
In 8-bit truncated mode, the ADRL0 holds the eight most significant bits (MSBs) of the 10-bit result. The  
ADRL0 is updated each time an ADC conversion completes. In 8-bit truncated mode, ADRL0 contains no  
interlocking with ADRH0. (See Figure 15-5 . ADRH0 and ADRL0 in 8-Bit Truncated Mode.)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
253  
Analog-to-Digital Converter (ADC)  
Addr.  
Register Name  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
ADC Data Register High 0  
(ADRH0)  
$0059  
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
AD9  
R
AD8  
R
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
ADC Data Register Low 0  
(ADRL0)  
$005A  
0
0
0
0
0
0
0
0
Figure 15-5. ADRH0 and ADRL0 in 8-Bit Truncated Mode  
In right justified mode the ADRH0 holds the two MSBs, and the ADRL0 holds the eight least significant  
bits (LSBs), of the 10-bit result. ADRH0 and ADRL0 are updated each time a single channel ADC  
conversion completes. Reading ADRH0 latches the contents of ADRL0. Until ADRL0 is read all  
subsequent ADC results will be lost. (See Figure 15-6 . ADRH0 and ADRL0 in Right Justified Mode.)  
Addr.  
Register Name  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
AD9  
R
Bit 0  
AD8  
R
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
ADC Data Register High 0  
(ADRH0)  
$0059  
R
R
R
R
R
R
0
0
0
0
0
0
0
0
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
AD1  
R
AD0  
R
ADC Data Register Low 0  
(ADRL0)  
$005A  
0
0
0
0
0
0
0
0
Figure 15-6. ADRH0 and ADRL0 in Right Justified Mode  
In left justified mode the ADRH0 holds the eight most significant bits (MSBs), and the ADRL0 holds the  
two least significant bits (LSBs), of the 10-bit result. The ADRH0 and ADRL0 are updated each time a  
single channel ADC conversion completes. Reading ADRH0 latches the contents of ADRL0. Until ADRL0  
is read all subsequent ADC results will be lost. (See Figure 15-7 . ADRH0 and ADRL0 in Left Justified  
Mode.)  
Addr.  
Register Name  
Bit 7  
AD9  
R
6
AD8  
R
5
AD7  
R
4
AD6  
R
3
AD5  
R
2
AD4  
R
1
AD3  
R
Bit 0  
AD2  
R
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
ADC Data Register High 0  
(ADRH0)  
$0059  
0
0
0
0
0
0
0
0
AD1  
R
AD0  
R
0
0
0
0
0
0
ADC Data Register Low 0  
(ADRL0)  
$005A  
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Figure 15-7. ADRH0 and ADRL0 in Left Justified Mode  
In left justified sign mode the ADRH0 holds the eight MSBs with the MSB complemented, and the ADRL0  
holds the two least significant bits (LSBs), of the 10-bit result. The ADRH0 and ADRL0 are updated each  
time a single channel ADC conversion completes. Reading ADRH0 latches the contents of ADRL0. Until  
ADRL0 is read all subsequent ADC results will be lost. (See Figure 15-8 ADRH0 and ADRL0 in Left  
Justified Sign Data Mode.)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
254  
Freescale Semiconductor  
I/O Registers  
Addr.  
Register Name  
Bit 7  
AD9  
R
6
AD8  
R
5
AD7  
R
4
AD6  
R
3
AD5  
R
2
AD4  
R
1
AD3  
R
Bit 0  
AD2  
R
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
ADC Data Register High 0  
(ADRH0)  
$0059  
0
0
0
0
0
0
0
0
AD1  
R
AD0  
R
0
0
0
0
0
0
ADC Data Register Low 0  
(ADRL0)  
$005A  
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Figure 15-8 ADRH0 and ADRL0 in Left Justified Sign Data Mode  
15.7.4 ADC Auto-Scan Mode Data Registers (ADRL1–ADRL3)  
The ADC data registers 1 to 3 (ADRL1–ADRL3), are 8-bit registers for conversion results in 8-bit  
truncated mode, for channels ADC1 to ADC3, when the ADC is operating in auto-scan mode  
(MODE[1:0] = 00).  
Address: ADRL1, $005B; ADRL2, $005C; and ADRL3, $005D  
Read:  
Write:  
Reset:  
AD9  
R
AD8  
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 15-9. ADC Data Register Low 1 to 3 (ADRL1–ADRL3)  
15.7.5 ADC Auto-Scan Control Register (ADASCR)  
The ADC auto-scan control register (ADASCR) enables and controls the ADC auto-scan function.  
Address:  
Read:  
$005E  
0
0
0
0
0
0
0
0
AUTO1  
AUTO0  
0
ASCAN  
0
Write:  
Reset:  
0
0
0
= Unimplemented  
R
= Reserved  
Figure 15-10. ADC Scan Control Register (ADASCR)  
AUTO[1:0] — Auto-Scan Mode Channel Select Bits  
AUTO1 and AUTO0 form a 2-bit field which is used to define the number of auto-scan channels used  
when in auto-scan mode. Reset clears these bits.  
Table 15-4. Auto-scan Mode Channel Select  
AUTO1  
AUTO0  
Auto-Scan Channels  
ADC0 only  
0
0
1
1
0
1
0
1
ADC0 to ADC1  
ADC0 to ADC2  
ADC0 to ADC3  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
255  
Analog-to-Digital Converter (ADC)  
ASCAN — Auto-scan Mode Enable Bit  
This bit enable/disable the auto-scan mode. Reset clears this bit.  
1 = Auto-scan mode is enabled  
0 = Auto-scan mode is disabled  
Auto-scan mode should not be enabled when ADC continuous conversion is enabled; i.e. when  
ADCO=1.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
256  
Freescale Semiconductor  
Chapter 16  
Input/Output (I/O) Ports  
16.1 Introduction  
Thirty-two (32) bidirectional input-output (I/O) pins form four parallel ports. All I/O pins are programmable  
as inputs or outputs.  
Input pins and I/O port pins that are not used in the application must be terminated. This prevents excess  
current caused by floating inputs, and enhances immunity during noise or transient events. Termination  
methods include:  
1. Configuring unused pins as outputs and driving high or low;  
2. Configuring unused pins as inputs and enabling internal pull-ups;  
3. Configuring unused pins as inputs and using external pull-up or pull-down resistors.  
Never connect unused pins directly to V or V .  
DD  
SS  
Since some general-purpose I/O pins are not available on all packages, these pins must be terminated  
as well. Either method 1 or 2 above are appropriate.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Port A Data Register  
(PTA)  
$0000  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
PTB7  
PTC7  
PTD7  
PTB6  
PTC6  
PTD6  
PTB5  
PTC5  
PTD5  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
Port B Data Register  
(PTB)  
$0001  
$0002 Port C Data Register (PTC) Write:  
Reset:  
Read:  
$0003 Port D Data Register (PTD) Write:  
Reset:  
Read:  
DDRA7  
DDRA6  
DDRA5  
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
Data Direction Register A  
(DDRA)  
$0004  
$0005  
$0006  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
DDRB7  
0
0
DDRB6  
0
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
(DDRB)  
DDRC7  
0
DDRC6  
0
DDRC5  
0
DDRC4  
0
DDRC3  
0
DDRC2  
0
DDRC1  
0
DDRC0  
0
Data Direction Register C  
(DDRC)  
Figure 16-1. I/O Port Register Summary  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
257  
Input/Output (I/O) Ports  
Addr.  
Register Name  
Bit 7  
DDRD7  
0
6
DDRD6  
0
5
DDRD5  
0
4
DDRD4  
0
3
DDRD3  
0
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
Read:  
Data Direction Register D  
(DDRD)  
$0007  
Port-A LED Control  
LEDA7  
0
LEDA6  
0
LEDA5  
0
LEDA4  
0
LEDA3  
0
LEDA2  
0
LEDA1  
0
LEDA0  
0
$000C  
Register Write:  
(LEDA)  
Reset:  
Figure 16-1. I/O Port Register Summary (Continued)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
258  
Freescale Semiconductor  
Introduction  
Table 16-1. Port Control Register Bits Summary  
Module Control  
Port  
Bit  
DDR  
Pin  
Module  
Register  
Control Bit  
0
1
2
3
4
5
6
7
0
DDRA0  
DDRA1  
DDRA2  
DDRA3  
DDRA4  
DDRA5  
DDRA6  
DDRA7  
DDRB0  
PTA0/ADC0  
PTA1/ADC1  
PTA2/ADC2  
PTA3/ADC3  
PTA4/ADC4  
PTA5/ADC5  
PTA6/ADC6  
PTA7/ADC7  
A
ADC  
ADSCR ($0057)  
ADCH[4:0]  
PTB0/SDA(1)  
PTB1/SCL(1)  
MBUS  
SCI  
MMCR1 ($0049)  
SCC1 ($0013)  
MMEN  
ENSCI  
1
2
3
4
5
6
7
DDRB1  
DDRB2  
DDRB3  
DDRB4  
DDRB5  
DDRB6  
DDRB7  
PTB2/TxD(1)  
PTB3/RxD(1)  
B
PTB4/T1CH0(2)  
PTB5/T1CH1(2)  
PTB6/T2CH0(2)  
PTB7/T2CH1(2)  
T1SC0 ($0025)  
T1SC1 ($0028)  
T2SC0 ($0030)  
T2SC1 ($0033)  
INTSCR2 ($001C)  
ELS0B:ELS0A  
ELS1B:ELS1A  
ELS0B:ELS0A  
ELS1B:ELS1A  
IMASK2  
TIM1  
TIM2  
PTC0/IRQ2(2)  
PTC1  
0
1
2
3
4
5
6
DDRC0  
DDRC1  
DDRC2  
DDRC3  
DDRC4  
DDRC5  
DDRC6  
IRQ2  
PTC2/MISO  
PTC3/MOSI  
PTC4/SS  
SPI  
SPCR ($0010)  
SPE  
C
PTC5/SPSCK  
PTC6/SCTxD(1)  
IRSCI  
IRSCC1 ($0040)  
ENSCI  
PTC7/SCRxD(1)  
PTD0/KBI0(2)  
PTD1/KBI1(2)  
PTD2/KBI2(2)  
PTD3/KBI3(2)  
PTD4/KBI4(2)  
PTD5/KBI5(2)  
PTD6/KBI6(2)  
PTD7/KBI7(2)  
7
0
1
2
3
4
5
6
7
DDRC7  
DDRD0  
DDRD1  
DDRD2  
DDRD3  
DDRD4  
DDRD5  
DDRD6  
DDRD7  
KBIE0  
KBIE1  
KBIE2  
KBIE3  
KBIE4  
KBIE5  
KBIE6  
KBIE7  
D
KBI  
KBIER ($001B)  
1. Pin is open-drain when configured as output. Pullup resistor must be connected when configured as output.  
2. Pin has schmitt trigger when configured as input.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
259  
Input/Output (I/O) Ports  
16.2 Port A  
Port A is an 8-bit special-function port that shares all of its pins with the analog-to-digital converter (ADC)  
module. Port A pins also have LED direct drive capability.  
16.2.1 Port A Data Register (PTA)  
The port A data register contains a data latch for each of the eight port A pins.  
Address:  
$0000  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Reset:  
Unaffected by reset  
ADC4 ADC3  
Alternative Function:  
ADC7  
ADC6  
ADC5  
ADC2  
ADC1  
ADC0  
Additional Function: LED drive LED drive LED drive LED drive LED drive LED drive LED drive LED drive  
Figure 16-2. Port A Data Register (PTA)  
PTA[7:0] — Port A Data Bits  
These read/write bits are software-programmable. Data direction of each port A pin is under the control  
of the corresponding bit in data direction register A. Reset has no effect on port A data.  
ADC7–ADC0 — ADC Channels 7 to 0  
ADC7–ADC0 are pins used for the input channels to the analog-to-digital converter module. The  
channel select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used  
as an ADC input and overrides any control from the port I/O logic.  
NOTE  
Care must be taken when reading port A while applying analog voltages to  
ADC7–ADC0 pins. If the appropriate ADC channel is not enabled,  
excessive current drain may occur if analog voltages are applied to the  
PTAx/ADCx pin, while PTA is read as a digital input. Those ports not  
selected as analog input channels are considered digital I/O ports.  
LED drive — Direct LED drive pins  
PTA7–PTA0 pins can be configured for direct LED drive. See 16.2.3 Port-A LED Control Register  
(LEDA).  
16.2.2 Data Direction Register (DDRA)  
Data direction register A determines whether each port A pin is an input or an output. Writing a logic 1 to  
a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer.  
Address:  
$0004  
Bit 7  
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
DDRA7  
0
Figure 16-3. Data Direction Register A (DDRA)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
260  
Freescale Semiconductor  
Port A  
DDRA[7:0] — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears DDRA[7:0], configuring all port A pins  
as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE  
Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
Figure 16-4 shows the port A I/O logic.  
READ DDRA ($0004)  
WRITE DDRA ($0004)  
DDRAx  
RESET  
WRITE PTA ($0000)  
PTAx  
PTAx  
READ PTA ($0000)  
Figure 16-4. Port A I/O Circuit  
When DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When DDRAx is a logic 0,  
reading address $0000 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit.  
Table 16-2 summarizes the operation of the port A pins.  
Table 16-2. Port A Pin Functions  
Accesses to DDRA  
Read/Write  
Accesses to PTA  
DDRA  
Bit  
PTA Bit  
I/O Pin Mode  
Read  
Pin  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTA[7:0](3)  
PTA[7:0]  
0
1
DDRA[7:0]  
DDRA[7:0]  
PTA[7:0]  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect input.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
261  
Input/Output (I/O) Ports  
16.2.3 Port-A LED Control Register (LEDA)  
The port-A LED control register (LEDA) controls the direct LED drive capability on PTA7–PTA0 pins. Each  
bit is individually configurable and requires that the data direction register, DDRA, bit be configured as an  
output.  
Address:  
$000C  
Bit 7  
6
LEDA6  
0
5
LEDA5  
0
4
LEDA4  
0
3
LEDA3  
0
2
LEDA2  
0
1
LEDA1  
0
Bit 0  
LEDA0  
0
Read:  
Write:  
Reset:  
LEDA7  
0
Figure 16-5. Port A LED Control Register (LEDA)  
LEDA[7:0] — Port A LED Drive Enable Bits  
These read/write bits are software programmable to enable the direct LED drive on an output port pin.  
1 = Corresponding port A pin is configured for direct LED drive,  
with 15mA current sinking capability  
0 = Corresponding port A pin is configured for standard drive  
16.3 Port B  
Port B is an 8-bit special-function port that shares two of its pins with the multi-master IIC (MMIIC) module,  
two of its pins with SCI module, and four of its pins with two timer interface (TIM1 and TIM2) modules.  
NOTE  
PTB3–PTB0 are open-drain pins when configured as outputs regardless  
whether the pins are used as general purpose I/O pins, MMIIC pins, or SCI  
pins. Therefore, when configured as general purpose output pins, MMIIC  
pins, or SCI pins (the TxD pin), pullup resistors must be connected to these  
pins.  
16.3.1 Port B Data Register (PTB)  
The port B data register contains a data latch for each of the eight port B pins.  
Address:  
$0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Unaffected by reset  
T1CH0 RxD  
Alternative Function: T2CH1  
T2CH0  
T1CH1  
TxD  
SCL  
SDA  
Figure 16-6. Port B Data Register (PTB)  
PTB[7:0] — Port B Data Bits  
These read/write bits are software-programmable. Data direction of each port B pin is under the control  
of the corresponding bit in data direction register B. Reset has no effect on port B data.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
262  
Freescale Semiconductor  
Port B  
SDA and SCL — Multi-Master IIC Data and Clock  
The SDA and SCL pins are multi-master IIC data and clock pins. Setting the MMEN bit in the MMIIC  
control register 1 (MMCR1) configures the PTB0/SDA and PTB1/SCL pins for MMIIC function and  
overrides any control from the port I/O logic.  
TxD and RxD — SCI Transmit and Receive Data  
The TxD and RxD pins are SCI transmit and receive data pins. Setting the ENSCI bit in the SCI control  
register 1 (SCC1) configures the PTB2/TxD and PTB3/RxD pins for SCI function and overrides any  
control from the port I/O logic.  
T1CH0 and T1CH1 — Timer 1 Channel I/O  
The T1CH0 and T1CH1 pins are the TIM1 input capture/output compare pins. The edge/level select  
bits, ELSxB:ELSxA, determine whether the PTB4/T1CH0–PTB5/T1CH1 pins are timer channel I/O  
pins or general-purpose I/O pins.  
T2CH0 and T2CH1 — Timer 2 Channel I/O  
The T2CH0 and T2CH1 pins are the TIM2 input capture/output compare pins. The edge/level select  
bits, ELSxB:ELSxA, determine whether the PTB6/T2CH0–PTB7/T2CH1 pins are timer channel I/O  
pins or general-purpose I/O pins.  
16.3.2 Data Direction Register B (DDRB)  
Data direction register B determines whether each port B pin is an input or an output. Writing a logic 1 to  
a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer.  
Address:  
$0005  
Bit 7  
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
DDRB7  
0
Figure 16-7. Data Direction Register B (DDRB)  
DDRB[7:0] — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins  
as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE  
Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1.  
Figure 16-8 shows the port B I/O logic.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
263  
Input/Output (I/O) Ports  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
PTBx  
RESET  
WRITE PTB ($0001)  
READ PTB ($0001)  
#
PTBx  
# PTB3–PTB0 are open-drain pins when configured as outputs.  
PTB7–PTB4 have schmitt trigger inputs.  
Figure 16-8. Port B I/O Circuit  
When DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When DDRBx is a logic 0,  
reading address $0001 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit.  
Table 16-3 summarizes the operation of the port B pins.  
Table 16-3. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
DDRB  
Bit  
PTB Bit  
I/O Pin Mode  
Read  
Pin  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTB[7:0](3)  
PTB[7:0]  
0
1
DDRB[7:0]  
DDRB[7:0]  
PTB[7:0]  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect input.  
16.4 Port C  
Port C is an 8-bit special-function port that shares one of its pins with the IRQ2, four of its pins with the  
SPI module, and two of its pins with the IRSCI module.  
16.4.1 Port C Data Register (PTC)  
The port C data register contains a data latch for each of the eight port C pins.  
Address:  
$0002  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTC7  
PTC6  
PTC5  
PTC4  
PTC3  
PTC2  
PTC1  
PTC0  
Unaffected by reset  
SS MOSI  
Alternative Function: SCRxD  
SCTxD  
SPSCK  
MISO  
IRQ2  
Figure 16-9. Port C Data Register (PTC)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
264  
Freescale Semiconductor  
Port C  
PTC[7:0] — Port C Data Bits  
These read/write bits are software-programmable. Data direction of each port C pin is under the control  
of the corresponding bit in data direction register C. Reset has no effect on port C data.  
IRQ2 — IRQ2 input pin  
The PTC0/IRQ2 pin is always available as input pin to the IRQ2 module. Care must be taken to  
available unwanted interrupts when this pin is used as general purpose I/O. PTC0/IRQ2 pin has an  
internal pullup, and can be disabled by setting the PUC0ENB bit in the IRQ2 status and control register  
(INTSCR2).  
MISO, MOSI, SS, and SPSCK — SPI Data I/O, Select, and Clock Pins  
These pins are the SPI data in/out, select, and clock pins. Setting the SPE bit in the SPI control register  
(SPCR) configures PTC2/MISO, PTC3/MOSI, PTC4/SS, and PTC5/SPSCK pins for SPI function and  
overrides any control from the port I/O logic.  
SCTxD and SCRxD — IrSCI Transmit and Receive Data  
The SCTxD and SCRxD pins are IRSCI transmit and receive data pins. Setting the ENSCI bit in the  
IRSCI control register 1 (IRSCC1) configures the PTC6/SCTxD and PTC7/SCRxD pins for IRSCI  
function and overrides any control from the port I/O logic.  
16.4.2 Data Direction Register C (DDRC)  
Data direction register C determines whether each port C pin is an input or an output. Writing a logic 1 to  
a DDRC bit enables the output buffer for the corresponding port C pin; a logic 0 disables the output buffer.  
Address:  
$0006  
Bit 7  
6
DDRC6  
0
5
DDRC5  
0
4
DDRC4  
0
3
DDRC3  
0
2
DDRC2  
0
1
DDRC1  
0
Bit 0  
DDRC0  
0
Read:  
Write:  
Reset:  
DDRC7  
0
Figure 16-10. Data Direction Register C (DDRC)  
DDRC[7:0] — Data Direction Register C Bits  
These read/write bits control port C data direction. Reset clears DDRC[7:0], configuring all port C pins  
as inputs.  
1 = Corresponding port C pin configured as output  
0 = Corresponding port C pin configured as input  
NOTE  
Avoid glitches on port C pins by writing to the port C data register before  
changing data direction register C bits from 0 to 1.  
Figure 16-11 shows the port C I/O logic.  
NOTE  
For those devices packaged in a 42-pin shrink dual in-line package, PTC0  
and PTC1 are not connected. DDRC0 and DDRC1 should be set to a 1 to  
configure PTC0 and PTC1 as outputs.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
265  
Input/Output (I/O) Ports  
READ DDRC ($0006)  
WRITE DDRC ($0006)  
DDRCx  
PTCx  
RESET  
WRITE PTC ($0002)  
READ PTC ($0002)  
#
PTCx  
# PTC0 has schmitt trigger input.  
Figure 16-11. Port C I/O Circuit  
When DDRCx is a logic 1, reading address $0002 reads the PTCx data latch. When DDRCx is a logic 0,  
reading address $0002 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit.  
Table 16-4 summarizes the operation of the port C pins.  
Table 16-4. Port C Pin Functions  
Accesses to DDRC  
Read/Write  
Accesses to PTC  
DDRC  
Bit  
PTC Bit  
I/O Pin Mode  
Read  
Pin  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTC[7:0](3)  
PTC[7:0]  
0
1
DDRC[7:0]  
DDRC[7:0]  
PTC[7:0]  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect input.  
16.5 Port D  
Port D is an 8-bit special function port that shares all of its pins with the keyboard interrupt module.  
16.5.1 Port D Data Register (PTD)  
The port D data register contains a data latch for each of the eight port D pins.  
Address:  
$0003  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
PTD7  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
Reset:  
Unaffected by reset  
KBI4 KBI3  
Alternative Function:  
KBI7  
KBI6  
KBI5  
KBI2  
KBI1  
KBI0  
Figure 16-12. Port D Data Register (PTD)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
266  
Freescale Semiconductor  
Port D  
PTD[7:0] — Port D Data Bits  
These read/write bits are software programmable. Data direction of each port D pin is under the control  
of the corresponding bit in data direction register D. Reset has no effect on port D data.  
KBI7–KBI0 — Keyboard Interrupt Inputs  
The keyboard interrupt enable bits, KBIE[7:0], in the keyboard interrupt enable register (KBIER),  
enable the port D pins as external interrupt pins. See Chapter 18 Keyboard Interrupt Module (KBI).  
16.5.2 Data Direction Register D (DDRD)  
Data direction register D determines whether each port D pin is an input or an output. Writing a logic 1 to  
a DDRD bit enables the output buffer for the corresponding port D pin; a logic 0 disables the output buffer.  
Address:  
$0007  
Bit 7  
6
DDRD6  
0
5
DDRD5  
0
4
DDRD4  
0
3
DDRD3  
0
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
DDRD7  
0
Figure 16-13. Data Direction Register D (DDRD)  
DDRD[7:0] — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears DDRD[7:0], configuring all port D pins  
as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE  
Avoid glitches on port D pins by writing to the port D data register before  
changing data direction register D bits from 0 to 1.  
Figure 16-14 shows the port D I/O logic.  
READ DDRD ($0007)  
KBIEx  
WRITE DDRD ($0007)  
DDRDx  
RESET  
WRITE PTD ($0003)  
#
PTDx  
PTDx  
READ PTD ($0003)  
# PTD7–PTD0 have schmitt trigger inputs.  
Figure 16-14. Port D I/O Circuit  
When bit DDRDx is a logic 1, reading address $0003 reads the PTDx data latch. When bit DDRDx is a  
logic 0, reading address $0003 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
267  
Input/Output (I/O) Ports  
Table 16-5 summarizes the operation of the port D pins.  
Table 16-5. Port D Pin Functions  
Accesses to DDRD  
Read/Write  
Accesses to PTD  
DDRD  
Bit  
PTD Bit  
I/O Pin Mode  
Read  
Pin  
Write  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTD[7:0](3)  
PTD[7:0]  
0
1
DDRD[7:0]  
DDRD[7:0]  
PTD[7:0]  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect input.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
268  
Freescale Semiconductor  
Chapter 17  
External Interrupt (IRQ)  
17.1 Introduction  
The external interrupt (IRQ) module provides two maskable interrupt inputs: IRQ1 and IRQ2.  
17.2 Features  
Features of the IRQ module include:  
A dedicated external interrupt pin, IRQ1  
An external interrupt pin shared with a port pin, PTC0/IRQ2  
Separate IRQ interrupt control bits for IRQ1 and IRQ2  
Programmable edge-only or edge and level interrupt sensitivity  
Automatic interrupt acknowledge  
Internal pullup resistor, with disable option on IRQ2  
NOTE  
References to either IRQ1 or IRQ2 may be made in the following text by  
omitting the IRQ number. For example, IRQF may refer generically to  
IRQ1F and IRQ2F, and IMASK may refer to IMASK1 and IMASK2.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
MODE2  
0
Read:  
0
0
0
IRQ2F  
0
IRQ2 Status and Control  
PUC0ENB  
IMASK2  
$001C  
Register Write:  
(INTSCR2)  
ACK2  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
IMASK1  
0
IRQ1F  
IRQ1 Status and Control  
MODE1  
0
$001E  
Register Write:  
(INTSCR1)  
ACK1  
0
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 17-1. External Interrupt I/O Register Summary  
17.3 Functional Description  
A logic 0 applied to the external interrupt pin can latch a CPU interrupt request. Figure 17-2 and  
Figure 17-3 shows the structure of the IRQ module.  
Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of  
the following actions occurs:  
Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears  
the latch that caused the vector fetch.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
269  
External Interrupt (IRQ)  
Software clear — Software can clear an interrupt latch by writing to the appropriate acknowledge  
bit in the interrupt status and control register (INTSCR). Writing a logic 1 to the ACK bit clears the  
IRQ latch.  
Reset — A reset automatically clears the interrupt latch.  
The external interrupt pin is falling-edge-triggered and is software-configurable to be either falling-edge  
or falling-edge and low-level-triggered. The MODE bit in the INTSCR controls the triggering sensitivity of  
the IRQ pin.  
When an interrupt pin is edge-triggered only, the interrupt remains set until a vector fetch, software clear,  
or reset occurs.  
When an interrupt pin is both falling-edge and low-level-triggered, the interrupt remains set until both of  
the following occur:  
Vector fetch or software clear  
Return of the interrupt pin to logic 1  
The vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. As long as  
the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE1 control  
bit, thereby clearing the interrupt even if the pin stays low.  
When set, the IMASK bit in the INTSCR mask all external interrupt requests. A latched interrupt request  
is not presented to the interrupt priority logic unless the IMASK bit is clear.  
NOTE  
The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including external interrupt requests.  
RESET  
ACK1  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
VECTOR  
FETCH  
DECODER  
VDD  
V
INTERNAL  
PULLUP  
DEVICE  
DD  
IRQ1F  
CLR  
D
Q
IRQ1  
INTERRUPT  
REQUEST  
SYNCHRONIZER  
CK  
IRQ1  
IMASK1  
MODE1  
TO MODE  
SELECT  
LOGIC  
HIGH  
VOLTAGE  
DETECT  
Figure 17-2. IRQ1 Block Diagram  
MC68HC908AP A-Family Data Sheet, Rev. 3  
270  
Freescale Semiconductor  
IRQ1 and IRQ2 Pins  
RESET  
ACK2  
VECTOR  
FETCH  
DECODER  
VDD  
INTERNAL  
PULLUP  
DEVICE  
V
DD  
IRQ2F  
PUC0ENB  
CLR  
D
Q
IRQ2  
INTERRUPT  
REQUEST  
SYNCHRONIZER  
CK  
IRQ2  
IMASK2  
MODE2  
Figure 17-3. IRQ2 Block Diagram  
17.4 IRQ1 and IRQ2 Pins  
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear,  
or reset clears the IRQ latch.  
If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and low-level-sensitive. With MODE set,  
both of the following actions must occur to clear IRQ:  
Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear  
the latch. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACK  
bit in the interrupt status and control register (INTSCR). The ACK bit is useful in applications that  
poll the IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit prior to leaving  
an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does  
not affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to the ACK  
bit another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program  
counter with the vector address at location defined in Table 2-1 . Vector Addresses.  
Return of the IRQ pin to logic 1 — As long as the IRQ pin is at logic 0, IRQ remains active.  
The vector fetch or software clear and the return of the IRQ pin to logic 1 may occur in any order. The  
interrupt request remains pending as long as the IRQ pin is at logic 0. A reset will clear the latch and the  
MODE control bit, thereby clearing the interrupt even if the pin stays low.  
If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With MODE clear, a vector fetch or  
software clear immediately clears the IRQ latch.  
The IRQF bit in the INTSCR register can be used to check for pending interrupts. The IRQF bit is not  
affected by the IMASK bit, which makes it useful in applications where polling is preferred.  
Use the BIH or BIL instruction to read the logic level on the IRQ1 pin.  
NOTE  
The BIH and BIL instructions do not read the logic level on the IRQ2 pin.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
271  
External Interrupt (IRQ)  
NOTE  
When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
The IRQ1 pin has a permanent internal pullup device connected, while the IRQ2 pin has an optional  
pullup device that can be enabled or disabled by the PUC0ENB bit in the INTSCR2 register.  
17.5 IRQ Module During Break Interrupts  
The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear the latch during  
the break state. (See Chapter 21 Break Module (BRK).)  
To allow software to clear the IRQ latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch  
is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect CPU interrupt flags during the break state, write a logic 0 to the BCFE bit. With BCFE at logic  
0 (its default state), writing to the ACK bit in the IRQ status and control register during the break state has  
no effect on the IRQ interrupt flags.  
17.6 IRQ Registers  
Each IRQ is controlled and monitored by an status and control register.  
IRQ1 Status and Control Register — $001E  
IRQ2 Status and Control Register — $001C  
17.6.1 IRQ1 Status and Control Register  
The IRQ1 status and control register (INTSCR1) controls and monitors operation of IRQ1. The INTSCR1  
has the following functions:  
Shows the state of the IRQ1 flag  
Clears the IRQ1 latch  
Masks IRQ1 interrupt request  
Controls triggering sensitivity of the IRQ1 interrupt pin  
Address:  
$001E  
Bit 7  
0
6
0
5
0
4
0
3
2
0
1
IMASK1  
0
Bit 0  
MODE1  
0
Read:  
Write:  
Reset:  
IRQ1F  
ACK1  
0
0
0
0
0
0
= Unimplemented  
Figure 17-4. IRQ1 Status and Control Register (INTSCR1)  
IRQ1F — IRQ1 Flag Bit  
This read-only status bit is high when the IRQ1 interrupt is pending.  
1 = IRQ1 interrupt pending  
0 = IRQ1 interrupt not pending  
ACK1 — IRQ1 Interrupt Request Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the IRQ1 latch. ACK1 always reads as logic 0. Reset clears  
ACK1.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
272  
Freescale Semiconductor  
 
IRQ Registers  
IMASK1 — IRQ1 Interrupt Mask Bit  
Writing a logic 1 to this read/write bit disables IRQ1 interrupt requests. Reset clears IMASK1.  
1 = IRQ1 interrupt requests disabled  
0 = IRQ1 interrupt requests enabled  
MODE1 — IRQ1 Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ1 pin. Reset clears MODE1.  
1 = IRQ1 interrupt requests on falling edges and low levels  
0 = IRQ1 interrupt requests on falling edges only  
17.6.2 IRQ2 Status and Control Register  
The IRQ2 status and control register (INTSCR2) controls and monitors operation of IRQ2. The INTSCR2  
has the following functions:  
Enables/disables the internal pullup device on IRQ2 pin  
Shows the state of the IRQ2 flag  
Clears the IRQ2 latch  
Masks IRQ2 interrupt request  
Controls triggering sensitivity of the IRQ2 interrupt pin  
Address:  
$001C  
Bit 7  
0
6
PUC0ENB  
0
5
0
4
0
3
2
0
1
IMASK2  
0
Bit 0  
MODE2  
0
Read:  
Write:  
Reset:  
IRQ2F  
ACK2  
0
0
0
0
0
= Unimplemented  
Figure 17-5. IRQ2 Status and Control Register (INTSCR2)  
PUC0ENB — IRQ2 Pin Pullup Enable Bit.  
Setting this bit to logic 1 disables the pullup on PTC0/IRQ2 pin.  
Reset clears this bit.  
1 = IRQ2 pin internal pullup is disabled  
0 = IRQ2 pin internal pullup is enabled  
IRQ2F — IRQ2 Flag Bit  
This read-only status bit is high when the IRQ2 interrupt is pending.  
1 = IRQ2 interrupt pending  
0 = IRQ2 interrupt not pending  
ACK2 — IRQ2 Interrupt Request Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the IRQ2 latch. ACK2 always reads as logic 0. Reset clears  
ACK2.  
IMASK2 — IRQ2 Interrupt Mask Bit  
Writing a logic 1 to this read/write bit disables IRQ2 interrupt requests. Reset clears IMASK2.  
1 = IRQ2 interrupt requests disabled  
0 = IRQ2 interrupt requests enabled  
MODE2 — IRQ2 Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ2 pin. Reset clears MODE2.  
1 = IRQ2 interrupt requests on falling edges and low levels  
0 = IRQ2 interrupt requests on falling edges only  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
273  
External Interrupt (IRQ)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
274  
Freescale Semiconductor  
Chapter 18  
Keyboard Interrupt Module (KBI)  
18.1 Introduction  
The keyboard interrupt module (KBI) provides eight independently maskable external interrupts which are  
accessible via PTD0–PTD7. When a port pin is enabled for keyboard interrupt function, an internal 30kΩ  
pullup device is also enabled on the pin.  
18.2 Features  
Features of the keyboard interrupt module include the following:  
Eight keyboard interrupt pins with pullup devices  
Separate keyboard interrupt enable bits and one keyboard interrupt mask  
Programmable edge-only or edge- and level- interrupt sensitivity  
Exit from low-lower modes  
Addr.  
Register Name  
Keyboard Status  
and Control Register Write:  
Bit 7  
6
5
4
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
0
0
0
0
KEYF  
0
ACKK  
0
$001A  
(KBSCR)  
Reset:  
Read:  
0
KBIE7  
0
0
KBIE6  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
Keyboard Interrupt Enable  
KBIE2  
0
KBIE1  
0
KBIE0  
0
$001B  
Register Write:  
(KBIER)  
Reset:  
= Unimplemented  
Figure 18-1. KBI I/O Register Summary  
18.3 I/O Pins  
The eight keyboard interrupt pins are shared with standard port I/O pins. The full name of the KBI pins  
are listed in Table 18-1. The generic pin name appear in the text that follows.  
Table 18-1. Pin Name Conventions  
KBI  
Pin Selected for KBI Function by KBIEx  
Bit in KBIER  
Full MCU Pin Name  
Generic Pin Name  
KBI0–KBI7  
PTD0/KBI0–PTD7/KBI7  
KBIE0–KBIE7  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
275  
Keyboard Interrupt Module (KBI)  
18.4 Functional Description  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
KBI0  
ACKK  
V
DD  
KEYF  
RESET  
CLR  
.
D
Q
SYNCHRONIZER  
Keyboard  
Interrupt  
Request  
KBIE0  
.
CK  
TO PULLUP ENABLE  
.
KEYBOARD  
INTERRUPT FF  
IMASKK  
KBI7  
MODEK  
KBIE7  
TO PULLUP ENABLE  
Figure 18-2. Keyboard Interrupt Block Diagram  
Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register independently enables or  
disables each port D pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin in port D also  
enables its internal pull-up device. A logic 0 applied to an enabled keyboard interrupt pin latches a  
keyboard interrupt request.  
A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK  
bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt.  
If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an  
interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on  
one pin because another pin is still low, software can disable the latter pin while it is low.  
If the keyboard interrupt is falling edge- and low level-sensitive, an interrupt request is present as  
long as any keyboard pin is low.  
If the MODEK bit is set, the keyboard interrupt pins are both falling edge- and low level-sensitive, and both  
of the following actions must occur to clear a keyboard interrupt request:  
Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear  
the interrupt request. Software may generate the interrupt acknowledge signal by writing a logic 1  
to the ACKK bit in the keyboard status and control register KBSCR. The ACKK bit is useful in  
applications that poll the keyboard interrupt pins and require software to clear the keyboard  
interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also  
prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on  
the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another  
interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program  
counter with the vector address at locations $FFE0 and $FFE1.  
Return of all enabled keyboard interrupt pins to logic 1 — As long as any enabled keyboard  
interrupt pin is at logic 0, the keyboard interrupt remains set.  
The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may  
occur in any order.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
276  
Freescale Semiconductor  
Keyboard Interrupt Registers  
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge-sensitive only. With MODEK clear, a  
vector fetch or software clear immediately clears the keyboard interrupt request.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a  
keyboard interrupt pin stays at logic 0.  
The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending  
interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes  
it useful in applications where polling is preferred.  
To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the  
pin as an input and read the data register.  
NOTE  
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction register.  
However, the data direction register bit must be a logic 0 for software to  
read the pin.  
18.4.1 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal pull-up to reach a logic 1. Therefore  
a false interrupt can occur as soon as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register.  
2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.  
3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts.  
4. Clear the IMASKK bit.  
An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An  
interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that  
depends on the external load.  
Another way to avoid a false interrupt:  
1. Configure the keyboard pins as outputs by setting the appropriate DDR bits in data direction  
register.  
2. Write logic 1s to the appropriate data register bits.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.  
18.5 Keyboard Interrupt Registers  
Two registers control the operation of the keyboard interrupt module:  
Keyboard Status and Control Register — $001A  
Keyboard Interrupt Enable Register — $001B  
18.5.1 Keyboard Status and Control Register  
Flags keyboard interrupt requests  
Acknowledges keyboard interrupt requests  
Masks keyboard interrupt requests  
Controls keyboard interrupt triggering sensitivity  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
277  
 
Keyboard Interrupt Module (KBI)  
Address:  
$001A  
Bit 7  
0
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 18-3. Keyboard Status and Control Register (KBSCR)  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending. Reset clears the KEYF bit.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
ACKK — Keyboard Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the keyboard interrupt request. ACKK always reads as logic  
0. Reset clears ACKK.  
IMASKK — Keyboard Interrupt Mask Bit  
Writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from  
generating interrupt requests. Reset clears the IMASKK bit.  
1 = Keyboard interrupt requests masked  
0 = Keyboard interrupt requests not masked  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard interrupt pins. Reset clears  
MODEK.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
18.5.2 Keyboard Interrupt Enable Register  
The port-D keyboard interrupt enable register enables or disables each port-D pin to operate as a  
keyboard interrupt pin.  
Address:  
$001B  
Bit 7  
6
KBIE6  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
KBIE7  
0
Figure 18-4. Keyboard Interrupt Enable Register (KBIER)  
KBIE7–KBIE0 — Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard interrupt pin to latch interrupt  
requests. Reset clears the keyboard interrupt enable register.  
1 = KBIx pin enabled as keyboard interrupt pin  
0 = KBIx pin not enabled as keyboard interrupt pin  
MC68HC908AP A-Family Data Sheet, Rev. 3  
278  
Freescale Semiconductor  
Low-Power Modes  
18.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
18.6.1 Wait Mode  
The keyboard interrupt module remains active in wait mode. Clearing the IMASKK bit in the keyboard  
status and control register enables keyboard interrupt requests to bring the MCU out of wait mode.  
18.6.2 Stop Mode  
The keyboard interrupt module remains active in stop mode. Clearing the IMASKK bit in the keyboard  
status and control register enables keyboard interrupt requests to bring the MCU out of stop mode.  
18.7 Keyboard Module During Break Interrupts  
The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during  
the break state. The BCFE bit in the SIM break flag control register (BFCR) enables software to clear  
status bits during the break state.  
To allow software to clear the keyboard interrupt latch during a break interrupt, write a logic 1 to the BCFE  
bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect the latch during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default  
state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during  
the break state has no effect.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
279  
Keyboard Interrupt Module (KBI)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
280  
Freescale Semiconductor  
Chapter 19  
Computer Operating Properly (COP)  
19.1 Introduction  
The computer operating properly (COP) module contains a free-running counter that generates a reset if  
allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset  
by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the  
configuration register 1 (CONFIG1).  
19.2 Functional Description  
Figure 19-1 shows the structure of the COP module.  
RESET CIRCUIT  
12-BIT COP PRESCALER  
ICLK  
RESET STATUS REGISTER  
STOP INSTRUCTION  
INTERNAL RESET SOURCES  
RESET VECTOR FETCH  
COPCTL WRITE  
COP CLOCK  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COP DISABLE  
(COPD FROM CONFIG1)  
RESET  
CLEAR  
COPCTL WRITE  
COP COUNTER  
COP RATE SEL  
(COPRS FROM CONFIG1)  
Figure 19-1. COP Block Diagram  
The COP counter is a free-running 6-bit counter preceded by the 12-bit SIM counter. If not cleared by  
software, the COP counter overflows and generates an asynchronous reset after 262,128 or 8176 ICLK  
cycles, depending on the state of the COP rate select bit, COPRS, in the CONFIG1 register. With a  
8176 ICLK cycle overflow option, a 88-kHz ICLK gives a COP timeout period of ~93ms. Writing any value  
to location $FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and  
stages 12 through 5 of the SIM counter.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
281  
Computer Operating Properly (COP)  
NOTE  
Service the COP immediately after reset and before entering or after exiting  
STOP Mode to guarantee the maximum time before the first COP counter  
overflow.  
A COP reset pulls the RST pin low for 32 ICLK cycles and sets the COP bit in the SIM reset status register  
(SRSR).  
In monitor mode, the COP is disabled if the RST pin or the IRQ1 is held at V  
. During the break state,  
TST  
V
on the RST pin disables the COP.  
TST  
NOTE  
Place COP clearing instructions in the main program and not in an interrupt  
subroutine. Such an interrupt subroutine could keep the COP from  
generating a reset even while the main program is not working properly.  
19.3 I/O Signals  
The following paragraphs describe the signals shown in Figure 19-1.  
19.3.1 ICLK  
ICLK is the internal oscillator output signal. See Chapter 22 Electrical Specifications for ICLK frequency  
specification.  
19.3.2 STOP Instruction  
The STOP instruction clears the COP prescaler.  
19.3.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 19.4 COP Control Register) clears the COP  
counter and clears bits 12 through 5 of the prescaler. Reading the COP control register returns the low  
byte of the reset vector.  
19.3.4 Power-On Reset  
The power-on reset (POR) circuit clears the COP prescaler 4096 ICLK cycles after power-up.  
19.3.5 Internal Reset  
An internal reset clears the COP prescaler and the COP counter.  
19.3.6 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears  
the COP prescaler.  
19.3.7 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the CONFIG1 register. (See  
Figure 19-2 . Configuration Register 1 (CONFIG1).)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
282  
Freescale Semiconductor  
COP Control Register  
19.3.8 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS) in the CONFIG1 register.  
Address:  
$001F  
Bit 7  
6
5
4
3
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
0
LVISTOP LVIRSTD LVIPWRD LVIREGD  
0
0
0
0
Figure 19-2. Configuration Register 1 (CONFIG1)  
COPRS — COP Rate Select Bit  
COPRS selects the COP time out period. Reset clears COPRS.  
13  
4
1 = COP time out period = 2 – 2 ICLK cycles  
18  
4
0 = COP time out period = 2 – 2 ICLK cycles  
COPD — COP Disable Bit  
COPD disables the COP module.  
1 = COP module disabled  
0 = COP module enabled  
19.4 COP Control Register  
The COP control register is located at address $FFFF and overlaps the reset vector. Writing any value to  
$FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low  
byte of the reset vector.  
Address:  
$FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 19-3. COP Control Register (COPCTL)  
19.5 Interrupts  
The COP does not generate CPU interrupt requests.  
19.6 Monitor Mode  
When monitor mode is entered with V  
on the IRQ1 pin, the COP is disabled as long as V  
remains  
TST  
TST  
on the IRQ1 pin or the RST pin. When monitor mode is entered by having blank reset vectors and not  
having V on the IRQ1 pin, the COP is automatically disabled until a POR occurs.  
TST  
19.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
283  
Computer Operating Properly (COP)  
19.7.1 Wait Mode  
The COP remains active during wait mode. To prevent a COP reset during wait mode, periodically clear  
the COP counter in a CPU interrupt routine.  
19.7.2 Stop Mode  
Stop mode turns off the ICLK input to the COP and clears the COP prescaler. Service the COP  
immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering  
or exiting stop mode.  
To prevent inadvertently turning off the COP with a STOP instruction, a configuration option is available  
that disables the STOP instruction. When the STOP bit in the configuration register has the STOP  
instruction is disabled, execution of a STOP instruction results in an illegal opcode reset.  
19.8 COP Module During Break Mode  
The COP is disabled during a break interrupt when V  
is present on the RST pin.  
TST  
MC68HC908AP A-Family Data Sheet, Rev. 3  
284  
Freescale Semiconductor  
Chapter 20  
Low-Voltage Inhibit (LVI)  
20.1 Introduction  
This section describes the low-voltage inhibit (LVI) module. The LVI module monitors the voltage on the  
V
pin and V  
pin, and can force a reset when V voltage falls below V  
, or V voltage falls  
DD  
REG  
DD  
TRIPF1  
REG  
below V  
.
TRIPF2  
NOTE  
The V  
pin is the output of the internal voltage regulator and is  
REG  
guaranteed to meet operating specification as long as V is within the  
DD  
MCU operating voltage.  
The LVI feature is intended to provide the safe shutdown of the  
microcontroller and thus protection of related circuitry prior to any  
application V voltage collapsing completely to an unsafe level. It is not  
DD  
intended that users operate the microcontroller at lower than the specified  
operating voltage, VDD.  
20.2 Features  
Features of the LVI module include:  
Independent voltage monitoring circuits for V and V  
DD REG  
Independent disable for V and V  
LVI circuits  
DD  
REG  
Programmable LVI reset  
Programmable stop mode operation  
Addr.  
Register Name  
Bit 7  
Read: LVIOUT  
Write:  
6
5
4
3
2
1
Bit 0  
0
0
0
0
0
0
0
LVI Status Register  
(LVISR)  
$FE0F  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 20-1. LVI I/O Register Summary  
20.3 Functional Description  
Figure 20-2 shows the structure of the LVI module. The LVI is enabled out of reset. The LVI module  
contains independent bandgap reference circuit and comparator for monitoring the V voltage and the  
DD  
V
voltage. An LVI reset performs a MCU internal reset and drives the RST pin low to provide  
REG  
low-voltage protection to external peripheral devices.  
LVISTOP, LVIPWRD, LVIRSTD, and LVIREGD are in the CONFIG1 register. See Chapter 3  
Configuration & Mask Option Registers (CONFIG & MOR) for details of the LVI configuration bits. Once  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
285  
Low-Voltage Inhibit (LVI)  
an LVI reset occurs, the MCU remains in reset until V rises above V  
and V  
rises above  
DD  
TRIPR1  
REG  
V
, which causes the MCU to exit reset. The output of the comparator controls the state of the  
TRIPR2  
LVIOUT flag in the LVI status register (LVISR).  
An LVI reset also drives the RST pin low to provide low-voltage protection to external peripheral devices.  
V
DD  
STOP INSTRUCTION  
LVISTOP  
FROM CONFIG1  
LVIPWRD  
FROM CONFIG1  
LVIRSTD  
FROM CONFIG1  
V
V
> V  
V  
= 0  
= 1  
LOW V  
DD  
DD  
TRIPR1  
DD  
DETECTOR  
TRIPF1  
LVI RESET  
V
V
> V  
= 0  
= 1  
REG  
REG  
TRIPR2  
TRIPF2  
LOW V  
REG  
DETECTOR  
V  
LVIOUT  
TO LVISR  
FROM CONFIG1  
LVIREGD  
FROM CONFIG1  
LVISTOP  
STOP INSTRUCTION  
V
REG  
Figure 20-2. LVI Module Block Diagram  
20.3.1 Low V Detector  
DD  
The low V detector circuit monitors the V voltage and forces a LVI reset when the V voltage falls  
DD  
DD  
DD  
below the trip voltage, V  
. The V LVI circuit can be disabled by the setting the LVIPWRD bit in  
TRIPF1  
DD  
CONFIG1 register.  
20.3.2 Low V  
Detector  
REG  
The low V  
detector circuit monitors the V  
voltage and forces a LVI reset when the V  
voltage  
REG  
REG  
REG  
falls below the trip voltage, V  
. The V  
LVI circuit can be disabled by the setting the LVIREGD bit  
TRIPF2  
REG  
in CONFIG1 register.  
20.3.3 Polled LVI Operation  
In applications that can operate at V levels below the V  
level, software can monitor V by polling  
DD  
DD  
TRIPF1  
the LVIOUT bit. In the CONFIG1 register, the LVIPWRD bit must be at logic 0 to enable the LVI module,  
and the LVIRSTD bit must be at logic 1 to disable LVI resets.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
286  
Freescale Semiconductor  
LVI Status Register  
20.3.4 Forced Reset Operation  
In applications that require V to remain above the V  
level, enabling LVI resets allows the LVI  
DD  
TRIPF1  
module to reset the MCU when V falls below the V  
level. In the CONFIG1 register, the LVIPWRD  
DD  
TRIPF1  
and LVIRSTD bits must be at logic 0 to enable the LVI module and to enable LVI resets.  
20.3.5 Voltage Hysteresis Protection  
Once the LVI has triggered (by having V fall below V  
), the LVI will maintain a reset condition until  
DD  
TRIPF1  
V
rises above the rising trip point voltage, V  
. This prevents a condition in which the MCU is  
DD  
TRIPR1  
continually entering and exiting reset if V is approximately equal to V  
. V  
is greater than  
DD  
TRIPF1  
TRIPR1  
V
by the hysteresis voltage, V  
.
TRIPF1  
HYS  
20.4 LVI Status Register  
The LVI status register (LVISR) indicates if the V voltage was detected below V  
or V  
voltage  
REG  
DD  
TRIPF1  
was detected below V  
.
TRIPF2  
Address:  
$FE0F  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
Read: LVIOUT  
Write:  
0
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 20-3. LVI Status Register  
LVIOUT — LVI Output Bit  
This read-only flag becomes set when the V or V  
falls below their respective trip voltages. Reset  
DD  
REG  
clears the LVIOUT bit.  
Table 20-1. LVIOUT Bit Indication  
VDD, VREG  
LVIOUT  
VDD > VTRIPR1  
and  
0
VREG > VTRIPR2  
VDD < VTRIPF1  
or  
1
VDD < VTRIPF2  
VTRIPF1 < VDD < VTRIPR1  
or  
Previous value  
VTRIPF2 < VREG< VTRIPR2  
20.5 LVI Interrupts  
The LVI module does not generate interrupt requests.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
287  
Low-Voltage Inhibit (LVI)  
20.6 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-consumption standby modes.  
20.6.1 Wait Mode  
If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can  
generate a reset and bring the MCU out of wait mode.  
20.6.2 Stop Mode  
If enabled in stop mode (LVISTOP = 1), the LVI module remains active in stop mode. If enabled to  
generate resets (LVIRSTD = 0), the LVI module can generate a reset and bring the MCU out of stop  
mode.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
288  
Freescale Semiconductor  
Chapter 21  
Break Module (BRK)  
21.1 Introduction  
This section describes the break module. The break module can generate a break interrupt that stops  
normal program flow at a defined address to enter a background program.  
21.2 Features  
Features of the break module include:  
Accessible input/output (I/O) registers during the break interrupt  
CPU-generated break interrupts  
Software-generated break interrupts  
COP disabling during break interrupts  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
SBSW  
Note  
0
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
R
R
R
R
R
R
R
SIM Break Status Register  
(SBSR)  
$FE00  
SIM Break Flag Control  
Register  
(SBFCR)  
BCFE  
0
R
R
R
R
R
R
R
$FE03  
$FE0C  
$FE0D  
$FE0E  
Break Address  
Register High  
(BRKH)  
Bit 15  
0
14  
13  
0
12  
0
11  
0
10  
0
9
0
1
Bit 8  
0
0
Break Address  
Register Low  
(BRKL)  
Bit 7  
0
6
5
4
3
2
Bit 0  
0
BRKA  
0
0
0
0
0
0
0
0
0
0
0
0
0
Break Status and Control  
Register  
(BRKSCR)  
BRKE  
0
0
0
0
0
0
0
Note: Writing a logic 0 clears BW.  
= Unimplemented  
= Reserved  
R
Figure 21-1. Break Module I/O Register Summary  
21.3 Functional Description  
When the internal address bus matches the value written in the break address registers, the break module  
issues a breakpoint signal to the SIM. The SIM then causes the CPU to load the instruction register with  
a software interrupt instruction (SWI) after completion of the current CPU instruction. The program  
counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode).  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
289  
Break Module (BRK)  
The following events can cause a break interrupt to occur:  
A CPU-generated address (the address in the program counter) matches the contents of the break  
address registers.  
Software writes a logic 1 to the BRKA bit in the break status and control register.  
When a CPU-generated address matches the contents of the break address registers, the break interrupt  
is generated. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and  
returns the MCU to normal operation. Figure 21-2 shows the structure of the break module.  
IAB15–IAB8  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
IAB15–IAB0  
CONTROL  
BREAK  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
IAB7–IAB0  
Figure 21-2. Break Module Block Diagram  
21.3.1 Flag Protection During Break Interrupts  
The system integration module (SIM) controls whether or not module status bits can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state.  
21.3.2 CPU During Break Interrupts  
When the internal address bus matches the value written in the break address registers or when software  
writes a 1 to the BRKA bit in the break status and control register, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode)  
The break interrupt timing is:  
When a break address is placed at the address of the instruction opcode, the instruction is not  
executed until after completion of the break interrupt routine.  
When a break address is placed at an address of an instruction operand, the instruction is  
executed before the break interrupt.  
When software writes a 1 to the BRKA bit, the break interrupt occurs just before the next instruction  
is executed.  
By updating a break address and clearing the BRKA bit in a break interrupt routine, a break interrupt can  
be generated continuously.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
290  
Freescale Semiconductor  
Low-Power Modes  
CAUTION  
A break address should be placed at the address of the instruction opcode.  
When software does not change the break address and clears the BRKA  
bit in the first break interrupt routine, the next break interrupt will not be  
generated after exiting the interrupt routine even when the internal address  
bus matches the value written in the break address registers.  
21.3.3 TIMI and TIM2 During Break Interrupts  
A break interrupt stops the timer counters.  
21.3.4 COP During Break Interrupts  
The COP is disabled during a break interrupt when V  
is present on the RST pin.  
TST  
21.4 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
21.4.1 Wait Mode  
If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from  
the return address on the stack if SBSW is set. (see Chapter 7 System Integration Module (SIM)) Clear  
the BW bit by writing logic 0 to it.  
21.5 Break Module Registers  
These registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
SIM break status register (SBSR)  
SIM break flag control register (SBFCR)  
21.5.1 Break Status and Control Register  
The break status and control register (BRKSCR) contains break module enable and status bits.  
Address: $FE0E  
Bit 7  
BRKE  
0
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 21-3. Break Status and Control Register (BRKSCR)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
291  
Break Module (BRK)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic  
0 to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled on 16-bit address match  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address match occurs. Writing a logic 1 to  
BRKA generates a break interrupt. Clear BRKA by writing a logic 0 to it before exiting the break routine.  
Reset clears the BRKA bit.  
1 = (When read) Break address match  
0 = (When read) No break address match  
21.5.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint  
address. Reset clears the break address registers.  
Address: $FE0C  
Bit 7  
Bit 15  
0
6
14  
0
5
13  
0
4
12  
0
3
11  
0
2
10  
0
1
9
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Figure 21-4. Break Address Register High (BRKH)  
Address: $FE0D  
Bit 7  
6
6
0
5
5
0
4
4
0
3
3
0
2
2
0
1
1
0
Bit 0  
Bit 0  
0
Read:  
Bit 7  
Write:  
Reset:  
0
Figure 21-5. Break Address Register Low (BRKL)  
21.5.3 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from wait  
mode. This register is used only in emulation mode.  
Address:  
$FE00  
Bit 7  
6
5
4
3
2
1
SBSW  
Note  
0
Bit 0  
R
Read:  
Write:  
Reset:  
R
R
R
R
R
R
Note: Writing a logic 0 clears SBSW.  
R
= Reserved  
Figure 21-6. SIM Break Status Register (SBSR)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
292  
Freescale Semiconductor  
Break Module Registers  
SBSW — Break Wait Bit  
SBSW can be read within the break interrupt routine. The user can modify the return address on the  
stack by subtracting 1 from it. The following code is an example.  
1 = Wait mode was exited by break interrupt  
0 = Wait mode was not exited by break interrupt  
21.5.4 SIM Break Flag Control Register  
The SIM break flag control register (SBFCR) contains a bit that enables software to clear status bits while  
the MCU is in a break state.  
Address:  
$FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 21-7. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
293  
Break Module (BRK)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
294  
Freescale Semiconductor  
Chapter 22  
Electrical Specifications  
22.1 Introduction  
This section contains electrical and timing specifications.  
22.2 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it.  
NOTE  
This device is not guaranteed to operate properly at the maximum ratings.  
Refer to 5V DC Electrical Characteristics for guaranteed operating  
conditions.  
Table 22-1. Absolute Maximum Ratings  
Characteristic(1)  
Supply voltage  
Symbol  
Value  
Unit  
VDD  
–0.3 to +6.0  
V
Input voltage  
All pins (except IRQ1)  
IRQ1 pin  
VSS–0.3 to VDD +0.3  
VSS–0.3 to 8.5  
VIN  
V
V
Maximum current per pin excluding  
I
25  
mA  
VDD and VSS  
Maximum current out of VSS  
Maximum current into VDD  
IMVSS  
IMVDD  
TSTG  
100  
100  
mA  
mA  
°C  
Storage temperature  
–55 to +150  
1. Voltages referenced to VSS  
.
NOTE  
This device contains circuitry to protect the inputs against damage due to  
high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that V and V  
be constrained to the  
IN  
OUT  
range V (V or V  
) V . Reliability of operation is enhanced if  
SS  
IN  
OUT  
DD  
unused inputs are connected to an appropriate logic voltage level (for  
example, either V or V .)  
SS  
DD  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
295  
Electrical Specifications  
22.3 Functional Operating Range  
Table 22-2. Operating Range  
Characteristic  
Operating temperature range  
Operating voltage range  
Symbol  
Value  
Unit  
°C  
TA  
40 to +85  
4.5 to 5.5 (1)  
VDD  
V
1. Functionality of the device has been characterized down to the LVI trip voltage, but user  
should ensure that the device supply voltage is within the specified range of 4.5 to 5.5V  
after power-up in order for the LVI circuit to configure properly.  
22.4 Thermal Characteristics  
Table 22-3. Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance  
42-Pin SDIP  
44-Pin QFP  
48-Pin LQFP  
60  
95  
80  
°C/W  
°C/W  
°C/W  
θJA  
PI/O  
PD  
I/O pin power dissipation  
Power dissipation(1)  
User determined  
W
PD = (IDD × VDD) + PI/O  
K/(TJ + 273 °C)  
=
W
PD x (TA + 273 °C)  
+ PD2 × θJA  
Constant(2)  
K
W/°C  
TJ  
TA + (PD × θJA)  
Average junction temperature  
Maximum junction temperature  
°C  
°C  
TJM  
100  
1. Power dissipation is a function of temperature.  
2. K constant unique to the device. K can be determined for a known TA and measured PD.  
With this value of K, PD and TJ can be determined for any value of TA.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
296  
Freescale Semiconductor  
5V DC Electrical Characteristics  
22.5 5V DC Electrical Characteristics  
Table 22-4. DC Electrical Characteristics (5V)  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
Output high voltage  
(ILOAD = –12mA) PTA[0:7], PTB[4:7], PTC[0:5], PTD[0:7]  
(ILOAD = –15mA) PTA[0:7], PTB[4:7], PTC[0:5], PTD[0:7]  
VOH  
VOH  
VDD–0.8  
VDD–1.0  
V
V
Output low voltage  
(ILOAD = 6mA) PTA[0:7], PTB[4:7], PTC[0:5], PTD[0:7]  
(ILOAD = 12mA) PTB[0:3], PTC[6:7]  
(ILOAD = 15mA) PTA[0:7], PTB[4:7], PTC[0:5], PTD[0:7]  
(ILOAD = 15mA) PTB[0:3], PTC[6:7]  
(ILOAD = 15mA) as TxD, RxD, SCTxD, SCRxD  
(ILOAD = see Table 22-8) as SDA, SCL  
VOL  
VOL  
VOL  
VOL  
VOLSCI  
VOLIIC  
0.4  
0.4  
0.8  
0.6  
0.4  
0.4  
V
V
V
V
V
V
LED sink current (VOL = 3V)  
PTA[0:7]  
IOL  
9
15  
25  
mA  
Input high voltage  
PTA[0:7], PTB[0:7], PTC[0:7], PTD[0:7], RST, IRQ1  
OSC1  
0.7 × VDD  
0.7 × VREG  
VDD  
VREG  
VIH  
V
V
Input low voltage  
PTA[0:7], PTB[0:7], PTC[0:7], PTD[0:7], RST, IRQ1  
OSC1  
VSS  
VSS  
0.3 × VDD  
0.3 × VREG  
VIL  
V
V
VDD supply current, fOP = 8 MHz  
Run(3)  
Wait(4)  
10  
2.5  
20  
10  
mA  
mA  
IDD  
Stop  
with OSC, TBM, and LVI modules on(5)  
with OSC and TBM modules on(5)  
all modules off(6)  
1.8  
1
20  
2.5  
1.5  
125  
mA  
mA  
µA  
IIL  
Digital I/O ports Hi-Z leakage current  
Input current  
10  
1
µA  
µA  
IIN  
COUT  
CIN  
Capacitance  
Ports (as input or output)  
12  
8
pF  
pF  
POR rearm voltage(7)  
VPOR  
RPOR  
VTST  
0
100  
mV  
V/ms  
V
POR rise time ramp rate(8)  
Monitor mode entry voltage  
0.035  
1.4 × VDD  
8.5  
Pullup resistors(9)  
PTD[0:7]  
RST, IRQ1, IRQ2  
RPU1  
RPU2  
21  
21  
27  
27  
39  
39  
kΩ  
kΩ  
VTRIPF1  
VTRIPR1  
Low-voltage inhibit, trip falling voltage1  
Low-voltage inhibit, trip rising voltage1  
2.90  
3.25  
3.10  
3.45  
3.30  
3.65  
V
V
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
297  
Electrical Specifications  
Table 22-4. DC Electrical Characteristics (5V)  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
2.25  
2.25  
Max  
2.65  
2.75  
Unit  
V
VTRIPF2  
Low-voltage inhibit, trip voltage2  
2.45  
(10)  
VREG  
2.50  
V
VREG  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external 32MHz clock to OSC1; all inputs 0.2 V from rail; no dc loads; less than 100pF  
on all outputs; CL = 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly affects run IDD; measured  
with all modules enabled.  
4. Wait IDD measured using external 32MHz to OSC1; all inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs.  
CL = 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly affects wait IDD  
5. STOP IDD measured using external 8MHz clock to OSC1; no port pins sourcing current.  
6. STOP IDD measured with OSC1 grounded; no port pins sourcing current.  
.
7. Maximum is highest voltage that POR is guaranteed. The rearm voltage is triggered by VREG  
8. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
DD is reached.  
.
V
9. RPU1 and RPU2 are measured at VDD = 5.0V  
10. Measured from VDD = VTRIPF1 (Min) to 5.5 V.  
22.6 5V Control Timing  
Table 22-5. Control Timing (5V)  
Characteristic(1)  
Internal operating frequency(2)  
RST input pulse width low(3)  
Symbol  
fOP  
Min  
Max  
8
Unit  
MHz  
ns  
tRL  
100  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted.  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this  
information.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
298  
Freescale Semiconductor  
5V Oscillator Characteristics  
22.7 5V Oscillator Characteristics  
Table 22-6. Oscillator Specifications (5V)  
Characteristic(1)  
Symbol  
Min  
Typ  
Max  
Unit  
88k(2)  
fICLK  
Internal oscillator clock frequency  
64k  
104k  
Hz  
External reference clock to OSC1(3)  
fOSC  
dc  
32M  
Hz  
Hz  
Crystal reference frequency(4)  
Crystal load capacitance(5)  
Crystal fixed capacitance(5)  
fXTALCLK  
CL  
1M  
8M  
C1  
2 × CL  
2 × CL  
1M  
Crystal tuning capacitance(5)  
Feedback bias resistor  
C2  
RB  
Series resistor(5)  
RS  
0
fRCCLK  
REXT  
External RC clock frequency  
RC oscillator external R  
RC oscillator external C  
7.6M  
Hz  
See Figure 22-1  
10  
CEXT  
pF  
1. The oscillator circuit operates at VREG  
.
2. Typical value reflect average measurements at midpoint of voltage range, 25 °C only.  
3. No more than 10% duty cycle deviation from 50%. The max. frequency is limited by an EMC filter.  
4. Fundamental mode crystals only.  
5. Consult crystal vendor data sheet.  
MCU  
C
V
= 10 pF  
EXT  
8
6
4
2
0
= 5V, @ 25°C  
DD  
OSC1  
V
REG  
R
C
EXT  
EXT  
0
10  
20  
30  
(k)  
40  
50  
Resistor, R  
EXT  
Figure 22-1. RC vs. Frequency  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
299  
Electrical Specifications  
22.8 5V ADC Electrical Characteristics  
Table 22-7. ADC Electrical Characteristics (5V)  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Notes  
V
DDA is an dedicated pin and should  
VDDA  
Supply voltage  
4.5  
5.5  
V
be tied to VDD on the PCB with  
proper decoupling.  
VADIN  
BAD  
VDDA  
10  
VADIN VDDA  
Input range  
Resolution  
0
V
10  
bits  
Includes quantization.  
0.5 LSB = 1 ADC step.  
AAD  
Absolute accuracy  
1.5  
LSB  
fADIC  
RAD  
tADIC = 1/fADIC  
ADC internal clock  
Conversion range  
500k  
1.048M  
VREFH  
Hz  
V
VREFL  
ADC voltage reference  
high  
VREFH  
VREFL  
tADC  
VDDA + 0.1  
V
V
ADC voltage reference  
low  
VSSA – 0.1  
17  
tADIC  
cycles  
Conversion time  
Sample time  
16  
5
tADIC  
cycles  
tADS  
MAD  
ZADI  
FADI  
Monotonicity  
Guaranteed  
VADIN = VREFL  
VADIN = VREFH  
Not tested.  
Zero input reading  
Full-scale reading  
Input capacitance  
Input impedance  
000  
3FD  
001  
3FF  
20  
HEX  
HEX  
pF  
CADI  
RADI  
IVREF  
20M  
VREFH/VREFL  
1.6  
mA  
Not tested.  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
300  
Freescale Semiconductor  
MMIIC Electrical Characteristics  
22.9 MMIIC Electrical Characteristics  
Table 22-8. MMIIC DC Electrical Characteristics  
Characteristic(1)  
Input low  
Symbol  
VIL  
Min  
–0.5  
2.1  
Typ  
Max  
0.8  
Unit  
V
Comments  
Data, clock input low.  
Data, clock input high.  
VIH  
Input high  
5.5  
V
Data, clock output low;  
@IPULLUP,MAX  
VOL  
Output low  
Input leakage  
0.4  
5
V
ILEAK  
µA  
Input leakage current  
Current through pull-up resistor  
or current source.  
See note.(2)  
IPULLUP  
Pullup current  
100  
350  
µA  
1. VDD = 4.5 to 5.5Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. The IPULLUP (max) specification is determined primarily by the need to accommodate a maximum of 1.1kequivalent se-  
ries resistor of removable SMBus devices, such as the smart battery, while maintaining the VOL (max) of the bus.  
SDA  
SCL  
t
t
t
t
t
t
t
SU.STO  
HD.STA  
LOW  
HIGH  
SU.DAT  
HD.DAT  
SU.STA  
Figure 22-2. MMIIC Signal Timings  
See Table 22-9 for MMIIC timing parameters.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
301  
Electrical Specifications  
Table 22-9. MMIIC Interface Input/Output Signal Timing  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Comments  
fSMB  
Operating frequency  
10  
100  
kHz MMIIC operating frequency  
Bus free time between STOP and  
START condition  
tBUF  
Bus free time  
4.7  
4.0  
µs  
Hold time after (repeated) START  
condition. After this period, the first  
clock is generated.  
tHD.STA  
Repeated start hold time.  
µs  
tSU.STA  
tSU.STO  
tHD.DAT  
tSU.DAT  
tTIMEOUT  
tLOW  
Repeated start setup time.  
Stop setup time  
Hold time  
4.7  
4.0  
300  
250  
25  
35  
µs  
µs  
ns  
ns  
ms  
µs  
µs  
Repeated START condition setup time.  
Stop condition setup time.  
Data hold time.  
Setup time  
Data setup time.  
Clock low time-out.(1)  
Clock low period  
Clock low time-out  
Clock low  
4.7  
4.0  
Clock high period.(2)  
tHIGH  
Clock high  
Cumulative clock low extend time (slave  
device)(3)  
tLOW.SEXT  
Slave clock low extend time  
Master clock low extend time  
25  
10  
ms  
ms  
Cumulative clock low extend time  
(master device) (4)  
tLOW.MEXT  
Clock/Data Fall Time(5)  
Clock/Data Rise Time(5)  
tF  
Fall time  
300  
ns  
ns  
tR  
Rise time  
1000  
1. Devices participating in a transfer will timeout when any clock low exceeds the value of TTIMEOUT min. of 25ms. Devices  
that have detected a timeout condition must reset the communication no later than TTIMEOUT max of 35ms. The maximum  
value specified must be adhered to by both a master and a slave as it incorporates the cumulative limit for both a master  
(10 ms) and a slave (25 ms).  
Software should turn-off the MMIIC module to release the SDA and SCL lines.  
2. THIGH MAX provides a simple guaranteed method for devices to detect the idle conditions.  
3. TLOW.SEXT is the cumulative time a slave device is allowed to extend the clock cycles in one message from the initial start  
to the stop. If a slave device exceeds this time, it is expected to release both its clock and data lines and reset itself.  
4. TLOW.MEXT is the cumulative time a master device is allowed to extend its clock cycles within each byte of a message as  
defined from start-to-ack, ack-to-ack, or ack-to-stop.  
5. Rise and fall time is defined as follows: TR = (VILMAX – 0.15) to (VIHMIN + 0.15), TF = 0.9×VDD to (VILMAX – 0.15).  
MC68HC908AP A-Family Data Sheet, Rev. 3  
302  
Freescale Semiconductor  
CGM Electrical Specification  
22.10 CGM Electrical Specification  
Table 22-10. CGM Electrical Specifications  
Characteristic  
Reference frequency  
Symbol  
Min  
1
Typ  
125  
1
Max  
8
Unit  
MHz  
kHz  
Hz  
fRDV  
fNOM  
fVRS  
L
Range nominal multiplies  
VCO center-of-range frequency  
VCO range linear range multiplier  
VCO power-of-two-range multiplier  
VCO multiply factor  
125k  
1
40M  
255  
4
2E  
N
1
1
4095  
8
2P  
R
VCO prescale multiplier  
Reference divider factor  
VCO operating frequency  
Manual acquisition time  
1
1
15  
fVCLK  
125k  
40M  
50  
Hz  
ms  
ms  
tLOCK  
tLOCK  
Automatic lock time  
50  
fRCLK  
×
PLL jitter(1)  
0.025% × 2P  
fJ  
0
Hz  
N/4  
1. Deviation of average bus frequency over 2ms. N = VCO multiplier.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
303  
Electrical Specifications  
22.11 5V SPI Characteristics  
Table 22-11. SPI Characteristics (5V)  
Diagram  
Number(1)  
Characteristic(2)  
Symbol  
Min  
Max  
Unit  
Operating frequency  
Master  
Slave  
f
f
f
/2  
OP  
f
/128  
dc  
MHz  
MHz  
OP(M)  
OP  
f
OP(S)  
OP  
Cycle time  
Master  
Slave  
tCYC  
tCYC  
tCYC  
1
2
1
128  
(M)  
t
CYC(S)  
t
tCYC  
tCYC  
2
3
Enable lead time  
Enable lag time  
1
1
Lead(S)  
t
Lag(S)  
Clock (SPSCK) high time  
Master  
Slave  
t
t
tCYC –25  
1/2 tCYC –25  
64 tCYC  
4
5
6
7
ns  
ns  
SCKH(M)  
SCKH(S)  
Clock (SPSCK) low time  
Master  
Slave  
t
t
tCYC –25  
1/2 tCYC –25  
64 tCYC  
ns  
ns  
SCKL(M)  
SCKL(S)  
Data setup time (inputs)  
Master  
Slave  
t
ns  
ns  
30  
30  
SU(M)  
t
SU(S)  
Data hold time (inputs)  
Master  
Slave  
t
ns  
ns  
30  
30  
H(M)  
t
H(S)  
Access time, slave(3)  
CPHA = 0  
CPHA = 1  
t
t
8
9
0
0
40  
40  
ns  
ns  
A(CP0)  
A(CP1)  
Disable time, slave(4)  
t
40  
ns  
DIS(S)  
Data valid time, after enable edge  
Master  
Slave(5)  
t
t
10  
ns  
ns  
50  
50  
V(M)  
V(S)  
Data hold time, outputs, after enable edge  
Master  
Slave  
t
t
11  
0
0
ns  
ns  
HO(M)  
HO(S)  
1. Numbers refer to dimensions in Figure 22-3 and Figure 22-4.  
2. All timing is shown with respect to 20% V and 70% V , unless noted; 100 pF load on all SPI pins.  
DD  
DD  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC908AP A-Family Data Sheet, Rev. 3  
304  
Freescale Semiconductor  
5V SPI Characteristics  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
5
4
SPSCK OUTPUT  
CPOL = 0  
NOTE  
4
5
SPSCK OUTPUT  
CPOL = 1  
NOTE  
6
7
MISO  
INPUT  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
11  
MASTER MSB OUT  
10  
11  
MOSI  
OUTPUT  
MASTER LSB OUT  
Note: This first clock edge is generated internally, but is not seen at the SPSCK pin.  
a) SPI Master Timing (CPHA = 0)  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
SPSCK OUTPUT  
CPOL = 0  
5
NOTE  
NOTE  
4
SPSCK OUTPUT  
CPOL = 1  
5
4
6
7
MISO  
INPUT  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
11  
10  
10  
MOSI  
OUTPUT  
MASTER MSB OUT  
MASTER LSB OUT  
Note: This last clock edge is generated internally, but is not seen at the SPSCK pin.  
b) SPI Master Timing (CPHA = 1)  
Figure 22-3. SPI Master Timing  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
305  
Electrical Specifications  
SS  
INPUT  
3
1
SPSCK INPUT  
CPOL = 0  
5
4
4
5
2
SPSCK INPUT  
CPOL = 1  
9
8
MISO  
INPUT  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
NOTE  
11  
6
7
10  
MOSI  
OUTPUT  
MSB IN  
LSB IN  
Note: Not defined but normally MSB of character just received  
a) SPI Slave Timing (CPHA = 0)  
SS  
INPUT  
1
SPSCK INPUT  
CPOL = 0  
5
4
5
2
3
SPSCK INPUT  
CPOL = 1  
4
10  
9
8
MISO  
OUTPUT  
NOTE  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
6
7
10  
MOSI  
INPUT  
MSB IN  
LSB IN  
Note: Not defined but normally LSB of character previously transmitted  
b) SPI Slave Timing (CPHA = 1)  
Figure 22-4. SPI Slave Timing  
MC68HC908AP A-Family Data Sheet, Rev. 3  
306  
Freescale Semiconductor  
Memory Characteristics  
22.12 Memory Characteristics  
Table 22-12. Memory Characteristics  
Characteristic  
Symbol  
Min.  
Max.  
Unit  
V
VRDR  
Data retention voltage  
1.3  
Number of rows per page  
Number of bytes per page  
8
Rows  
Bytes  
512  
(1)  
Read bus clock frequency  
Page erase time  
32k  
20  
8M  
Hz  
ms  
fread  
(2)  
terase  
(3)  
Mass erase time  
200  
5
40  
30  
ms  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
tme  
tnvs  
tnvh  
tnvh1  
tpgs  
tprog  
tads  
tadh  
PGM/ERASE to HVEN setup time  
High-voltage hold time  
High-voltage hold time (mass erase)  
Program hold time  
5
100  
10  
20  
20  
1
Program time  
Address/data setup time  
Address/data hold time  
Recovery time  
(4)  
trcv  
(5)  
Cumulative HV period  
10k  
10k  
10  
8
ms  
thv  
Row erase endurance(6)  
Row program endurance(7)  
Data retention time(8)  
Cycles  
Cycles  
Years  
1. fread is defined as the frequency range for which the FLASH memory can be read.  
2. If the page erase time is longer than terase (Min.), there is no erase-disturb, but it reduces the endurance of the FLASH  
memory.  
3. If the mass erase time is longer than tme (Min.), there is no erase-disturb, but it reduces the endurance of the FLASH  
memory.  
4. It is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing  
HVEN to logic 0.  
5. thv is the cumulative high voltage programming time to the same row before next erase, and the same address can not be  
programmed twice before next erase.  
6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many  
erase/program cycles.  
7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many  
erase/program cycle.  
8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time  
specified.  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
307  
Electrical Specifications  
MC68HC908AP A-Family Data Sheet, Rev. 3  
308  
Freescale Semiconductor  
Chapter 23  
Mechanical Specifications  
23.1 Introduction  
This section gives the dimensions for:  
48-pin plastic low-profile quad flat pack (case #932)  
44-pin plastic quad flat pack (case #824A)  
42-pin shrink dual in-line package (case #858)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
309  
Mechanical Specifications  
23.2 48-Pin Low-Profile Quad Flat Pack (LQFP)  
4X  
NOTES:  
0.200 AB T–U  
Z
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE AB IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS T, U, AND Z TO BE DETERMINED AT  
DATUM PLANE AB.  
DETAIL Y  
9
A
P
A1  
48  
37  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE AC.  
1
36  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE AB.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.350.  
T
U
B
V
AE  
AE  
B1  
V1  
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076.  
12  
25  
9. EXACT SHAPE OF EACH CORNER IS OPTIONAL.  
MILLIMETERS  
13  
24  
DIM  
A
MIN  
MAX  
Z
7.000 BSC  
A1  
B
B1  
C
D
E
3.500 BSC  
7.000 BSC  
3.500 BSC  
S1  
T, U, Z  
1.400  
1.600  
0.270  
1.450  
0.230  
S
0.170  
1.350  
0.170  
DETAIL Y  
4X  
F
G
0.200 AC T–U  
Z
0.500 BSC  
H
J
K
L
M
N
0.050  
0.090  
0.500  
1°  
0.150  
0.200  
0.700  
5°  
0.080 AC  
12° REF  
G
AB  
AC  
0.090  
0.160  
P
0.250 BSC  
R
0.150  
0.250  
S
9.000 BSC  
S1  
V
V1  
W
AA  
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
AD  
°
M
BASE METAL  
TOP & BOTTOM  
R
N
J
E
C
H
F
D
M
0.080  
AC T–U Z  
SECTION AE–AE  
W
°
L
K
DETAIL AD  
AA  
Figure 23-1. 48-Pin LQFP (Case #932)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
310  
Freescale Semiconductor  
44-Pin Quad Flat Pack (QFP)  
23.3 44-Pin Quad Flat Pack (QFP)  
B
B
L
33  
23  
22  
34  
–A–, –B–, –D–  
DETAIL A  
–A–  
–B–  
F
BASE METAL  
J
N
DETAIL A  
D
M
S
S
D
0.20 (0.008)  
C
A–B  
44  
12  
1
11  
SECTION B–B  
VIEW ROTATED 90°  
NOTES:  
–D–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD WHERE  
THE LEAD EXITS THE PLASTIC BODY AT THE  
BOTTOM OF THE PARTING LINE.  
4. DATUMS –A–, –B– AND –D– TO BE DETERMINED AT  
DATUM PLANE –H–.  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE –C–.  
A
M
S
S
S
0.20 (0.008)  
H
A–B  
A–B  
D
0.05 (0.002) A–B  
S
M
S
0.20 (0.008)  
C
D
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25  
(0.010) PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE DETERMINED  
AT DATUM PLANE –H–.  
M
DETAIL C  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT.  
E
C
DATUM  
–H–  
PLANE  
–C–  
0.10 (0.004)  
SEATING  
PLANE  
H
G
M
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
E
MIN  
9.90  
9.90  
2.10  
0.30  
2.00  
0.30  
0.80 BSC  
0.13  
0.65  
MAX  
10.10  
10.10  
2.45  
0.45  
2.10  
MIN  
MAX  
0.398  
0.398  
0.096  
0.018  
0.083  
0.016  
0.390  
0.390  
0.083  
0.012  
0.079  
0.012  
0.031 BSC  
0.005  
0.026  
M
F
0.40  
T
G
H
J
K
L
M
N
Q
R
S
0.25  
0.23  
0.95  
0.010  
0.009  
0.037  
DATUM  
PLANE  
–H–  
R
8.00 REF  
10  
0.17  
0.315 REF  
10  
0.005 0.007  
5
°
°
5
°
°
0.13  
K
0
°
7
°
0
°
7°  
Q
W
0.13  
12.95  
0.13  
0.30  
13.45  
0.005  
0.510  
0.005  
0.012  
0.530  
X
T
U
V
W
X
0
°
13.45  
0
°
0.530  
12.95  
0.40  
0.510  
0.016  
0.063 REF  
DETAIL C  
1.6 REF  
Figure 23-2. 44-Pin QFP (Case #824A)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
311  
Mechanical Specifications  
23.4 42-Pin Shrink Dual In-Line Package (SDIP)  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH. MAXIMUM MOLD FLASH 0.25 (0.010).  
42  
1
22  
21  
–B–  
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
MIN  
MAX  
1.465  
0.560  
0.200  
0.022  
0.046  
MIN  
36.45  
13.72  
3.94  
0.36  
0.81  
MAX  
37.21  
14.22  
5.08  
0.56  
1.17  
L
1.435  
0.540  
0.155  
0.014  
0.032  
H
C
K
G
H
J
K
L
0.070 BSC  
0.300 BSC  
1.778 BSC  
7.62 BSC  
0.008  
0.115  
0.015  
0.135  
0.20  
2.92  
0.38  
3.43  
–T–  
SEATING  
PLANE  
0.600 BSC  
15.24 BSC  
N
G
M
N
0°  
0.020  
15°  
0.040  
0 °  
0.51  
15°  
1.02  
M
F
J 42 PL  
D 42 PL  
M
S
0.25 (0.010)  
T B  
M
S
0.25 (0.010)  
T A  
Figure 23-3. 42-Pin SDIP (Case #858)  
MC68HC908AP A-Family Data Sheet, Rev. 3  
312  
Freescale Semiconductor  
Chapter 24  
Ordering Information  
24.1 Introduction  
This section contains device ordering numbers.  
24.2 MC Order Numbers  
Table 24-1. MC Order Numbers  
RAM Size  
(bytes)  
FLASH Size  
(bytes)  
Operating  
Temperature Range  
MC Order Number  
MC908AP64ACB  
Package  
2,048  
2,048  
2,048  
2,048  
2,048  
2,048  
1,024  
1,024  
1,024  
1,024  
1,024  
1,024  
62,368  
62,368  
62,368  
32,768  
32,768  
32,768  
16,384  
16,384  
16,384  
8,192  
42-pin SDIP  
44-pin QFP  
48-pin LQFP  
42-pin SDIP  
44-pin QFP  
48-pin LQFP  
42-pin SDIP  
44-pin QFP  
48-pin LQFP  
42-pin SDIP  
44-pin QFP  
48-pin LQFP  
40 to +85 °C  
40 to +85 °C  
40 to +85 °C  
40 to +85 °C  
40 to +85 °C  
40 to +85 °C  
40 to +85 °C  
40 to +85 °C  
40 to +85 °C  
40 to +85 °C  
40 to +85 °C  
40 to +85 °C  
MC908AP64ACFB  
MC908AP64ACFA  
MC908AP32ACB  
MC908AP32ACFB  
MC908AP32ACFA  
MC908AP16ACB  
MC908AP16ACFB  
MC908AP16ACFA  
MC908AP8ACB  
MC908AP8ACFB  
MC908AP8ACFA  
8,192  
8,192  
MC68HC908AP A-Family Data Sheet, Rev. 3  
Freescale Semiconductor  
313  
Ordering Information  
MC68HC908AP A-Family Data Sheet, Rev. 3  
314  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
Semiconductor was negligent regarding the design or manufacture of the part.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2007. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MC68HC908AP64A  
Rev. 3, 10/2007  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY