MC908LK24CFUE [NXP]

8 BIT MCU;
MC908LK24CFUE
型号: MC908LK24CFUE
厂家: NXP    NXP
描述:

8 BIT MCU

文件: 总464页 (文件大小:2347K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908LJ24  
MC68HC908LK24  
Data Sheet  
M68HC08  
Microcontrollers  
Rev. 2.1  
MC68HC908LJ24/D  
August 16, 2005  
freescale.com  
MC68HC908LJ24  
MC68HC908LK24  
Data Sheet  
To provide the most up-to-date information, the revision of our  
documents on the World Wide Web will be the most current. Your printed  
copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://freescale.com  
The following revision history table summarizes changes contained in  
this document. For your convenience, the page number designators  
have been linked to the appropriate location.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale, Inc., 2005  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
3
Revision History  
Revision History  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
8/2003  
2
First general release.  
Data Sheet  
4
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet — MC68HC908LJ24  
List of Sections  
Section 1. General Description . . . . . . . . . . . . . . . . . . . .37  
Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Section 3. Random-Access Memory (RAM) . . . . . . . . . .67  
Section 4. FLASH Memory (FLASH) . . . . . . . . . . . . . . . .69  
Section 5. Configuration Registers (CONFIG) . . . . . . . .79  
Section 6. Central Processor Unit (CPU) . . . . . . . . . . . .85  
Section 7. Oscillator (OSC) . . . . . . . . . . . . . . . . . . . . . .103  
Section 8. Clock Generator Module (CGM). . . . . . . . . .109  
Section 9. System Integration Module (SIM) . . . . . . . .139  
Section 10. Monitor ROM (MON) . . . . . . . . . . . . . . . . . .163  
Section 11. Timer Interface Module (TIM) . . . . . . . . . . .193  
Section 12. Real Time Clock (RTC) . . . . . . . . . . . . . . . .217  
Section 13. Infrared Serial Communications  
Interface Module (IRSCI) . . . . . . . . . . . .245  
Section 14. Serial Peripheral Interface Module (SPI). .287  
Section 15. Multi-Master IIC Interface (MMIIC) . . . . . . .319  
Section 16. Analog-to-Digital Converter (ADC) . . . . . .333  
Section 17. Liquid Crystal Display (LCD) Driver . . . . .349  
Section 18. Input/Output (I/O) Ports . . . . . . . . . . . . . . .375  
Section 19. External Interrupt (IRQ) . . . . . . . . . . . . . . .401  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
5
List of Sections  
List of Sections  
Section 20. Keyboard Interrupt Module (KBI). . . . . . . .407  
Section 21. Computer Operating Properly (COP) . . . .415  
Section 22. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . .421  
Section 23. Break Module (BRK) . . . . . . . . . . . . . . . . . .427  
Section 24. Electrical Specifications. . . . . . . . . . . . . . .435  
Section 25. Mechanical Specifications . . . . . . . . . . . . .451  
Section 26. Ordering Information . . . . . . . . . . . . . . . . .457  
Appendix A. MC68HC908LK24. . . . . . . . . . . . . . . . . . . .459  
Data Sheet  
6
MC68HC908LJ24/LK24 — Rev. 2.1  
List of Sections  
Freescale Semiconductor  
Data Sheet — MC68HC908LJ24  
Table of Contents  
Section 1. General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
1.6  
1.6.1  
1.6.2  
1.6.3  
1.6.4  
1.6.5  
1.6.6  
1.6.7  
1.6.8  
1.6.9  
Power Supply Pins (V and V ). . . . . . . . . . . . . . . . . . . .44  
DD SS  
Analog Power Supply Pin (V  
). . . . . . . . . . . . . . . . . . . . .44  
DDA  
LCD Bias Voltage (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
LCD  
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . .45  
External Reset Pin (RST). . . . . . . . . . . . . . . . . . . . . . . . . . .45  
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . .45  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . .45  
ADC Voltage High Reference Pin (V  
). . . . . . . . . . . . . .45  
REFH  
ADC Voltage Low Reference Pin (V  
) . . . . . . . . . . . . . .46  
REFL  
1.6.10 Port A Input/Output (I/O) Pins (PTA7–PTA0). . . . . . . . . . . .46  
1.6.11 Port B I/O Pins (PTB7–PTB0) . . . . . . . . . . . . . . . . . . . . . . .46  
1.6.12 Port C I/O Pins (PTC7–PTC0) . . . . . . . . . . . . . . . . . . . . . . .46  
1.6.13 Port D I/O Pins (PTD7–PTD0) . . . . . . . . . . . . . . . . . . . . . . .46  
1.6.14 Port E I/O Pins (PTE7–PTE0) . . . . . . . . . . . . . . . . . . . . . . .47  
1.6.15 Port F I/O Pins (PTF7–PTF0). . . . . . . . . . . . . . . . . . . . . . . .47  
1.6.16 LCD Backplane and Frontplane  
(BP0-BP2, BP3/FP0, FP1–FP10, FP27–FP32) . . . . . . .47  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
7
Table of Contents  
Table of Contents  
Section 2. Memory Map  
2.1  
2.2  
2.3  
2.4  
2.5  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . .49  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Section 3. Random-Access Memory (RAM)  
3.1  
3.2  
3.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Section 4. FLASH Memory (FLASH)  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .72  
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .73  
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
4.8  
4.8.1  
FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . .77  
Section 5. Configuration Registers (CONFIG)  
5.1  
5.2  
5.3  
5.4  
5.5  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . .81  
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . .82  
Data Sheet  
8
MC68HC908LJ24/LK24 — Rev. 2.1  
Table of Contents  
Freescale Semiconductor  
Table of Contents  
Section 6. Central Processor Unit (CPU)  
6.1  
6.2  
6.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
6.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
6.7  
6.8  
6.9  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Section 7. Oscillator (OSC)  
7.1  
7.2  
7.3  
7.4  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
X-tal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
7.5  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . .106  
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . .106  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . .106  
Internal RC Clock (ICLK) . . . . . . . . . . . . . . . . . . . . . . . . . .106  
CGM Oscillator Clock (CGMXCLK) . . . . . . . . . . . . . . . . . .106  
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . .106  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.5.5  
7.5.6  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
Table of Contents  
9
Table of Contents  
7.6  
7.6.1  
7.6.2  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
7.7  
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . .107  
Section 8. Clock Generator Module (CGM)  
8.1  
8.2  
8.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
8.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Oscillator Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . .114  
PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . .116  
Manual and Automatic PLL Bandwidth Modes. . . . . . . . . .116  
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
Special Programming Exceptions . . . . . . . . . . . . . . . . . . .122  
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . .122  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . .123  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.4.6  
8.4.7  
8.4.8  
8.4.9  
8.5  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . .124  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
8.5.7  
8.5.8  
PLL Analog Power Pin (V  
) . . . . . . . . . . . . . . . . . . . . . .124  
DDA  
PLL Analog Ground Pin (V  
) . . . . . . . . . . . . . . . . . . . . .124  
SSA  
Oscillator Output Frequency Signal (CGMXCLK) . . . . . . .124  
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . .124  
CGM VCO Clock Output (CGMVCLK) . . . . . . . . . . . . . . . .125  
CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . .125  
CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . .125  
8.6  
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . .128  
PLL Multiplier Select Registers . . . . . . . . . . . . . . . . . . . . .130  
PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . .131  
PLL Reference Divider Select Register . . . . . . . . . . . . . . .132  
8.6.1  
8.6.2  
8.6.3  
8.6.4  
8.6.5  
Data Sheet  
10  
MC68HC908LJ24/LK24 — Rev. 2.1  
Table of Contents  
Freescale Semiconductor  
Table of Contents  
8.7  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
8.8  
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134  
CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . .134  
8.8.1  
8.8.2  
8.8.3  
8.9  
Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . .135  
Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . .135  
Parametric Influences on Reaction Time . . . . . . . . . . . . . .135  
Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
8.9.1  
8.9.2  
8.9.3  
Section 9. System Integration Module (SIM)  
9.1  
9.2  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140  
9.3  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . .142  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
Clock Start-up from POR or LVI Reset. . . . . . . . . . . . . . . .143  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . .144  
9.3.1  
9.3.2  
9.3.3  
9.4  
9.4.1  
9.4.2  
9.4.2.1  
9.4.2.2  
9.4.2.3  
9.4.2.4  
9.4.2.5  
9.4.2.6  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . .144  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . .145  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
Computer Operating Properly (COP) Reset. . . . . . . . . .147  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . .148  
Monitor Mode Entry Module Reset (MODRST) . . . . . . .148  
9.5  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . .149  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . .149  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . .149  
9.5.1  
9.5.2  
9.5.3  
9.6  
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
9.6.1  
9.6.1.1  
9.6.1.2  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
Table of Contents  
11  
Table of Contents  
9.6.1.3  
9.6.1.4  
9.6.1.5  
9.6.1.6  
9.6.2  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . .153  
Interrupt Status Register 1. . . . . . . . . . . . . . . . . . . . . . .153  
Interrupt Status Register 2. . . . . . . . . . . . . . . . . . . . . . .155  
Interrupt Status Register 3. . . . . . . . . . . . . . . . . . . . . . .155  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . .156  
9.6.3  
9.6.4  
9.7  
9.7.1  
9.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
9.8  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . .160  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . .161  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . .162  
9.8.1  
9.8.2  
9.8.3  
Section 10. Monitor ROM (MON)  
10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
10.4.1 Entering Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
10.4.3 Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
10.4.4 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
10.4.5 Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
10.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
10.6 ROM-Resident Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
10.6.1 PRGRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
10.6.2 ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
10.6.3 LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
10.6.4 MON_PRGRNGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
10.6.5 MON_ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
10.6.6 MON_LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
10.6.7 EE_WRITE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
10.6.8 EE_READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
Data Sheet  
12  
MC68HC908LJ24/LK24 — Rev. 2.1  
Table of Contents  
Freescale Semiconductor  
Table of Contents  
Section 11. Timer Interface Module (TIM)  
11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
11.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
11.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
11.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
11.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
11.5.3.1  
11.5.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .200  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .201  
11.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .201  
11.5.4.1  
11.5.4.2  
11.5.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .202  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .203  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
11.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
11.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
11.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206  
11.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206  
11.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .206  
11.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
11.9.1 TIM Clock Pins (PTD4/KBI4/T1CLK, PTD5/KBI5/T2CLK) .207  
11.9.2 TIM Channel I/O Pins (PTB2/T1CH0, PTB3/T1CH1,  
PTB4/T2CH0, PTB5/T2CH1) . . . . . . . . . . . . . . . . . . . .207  
11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208  
11.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . .208  
11.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . .210  
11.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . .211  
11.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . .212  
11.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
13  
Table of Contents  
Table of Contents  
Section 12. Real Time Clock (RTC)  
12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
12.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219  
12.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
12.5.1 Time Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
12.5.2 Calendar Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
12.5.3 Alarm Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
12.5.4 Chronograph Functions . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
12.5.5 Timebase Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
12.6 RTC Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
12.7 RTC Clock Calibration and Compensation. . . . . . . . . . . . . . .225  
12.7.1 Calibration Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226  
12.8 RTC Register and Bit Write Protection . . . . . . . . . . . . . . . . . .227  
12.9 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
12.9.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
12.9.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230  
12.10 RTC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230  
12.10.1 RTC Calibration Control Register (RTCCOMR). . . . . . . . .231  
12.10.2 RTC Calibration Data Register (RTCCDAT) . . . . . . . . . . .233  
12.10.3 RTC Control Register 1 (RTCCR1) . . . . . . . . . . . . . . . . . .234  
12.10.4 RTC Control Register 2 (RTCCR2) . . . . . . . . . . . . . . . . . .235  
12.10.5 RTC Status Register (RTCSR). . . . . . . . . . . . . . . . . . . . . .237  
12.10.6 Alarm Minute and Hour Registers (ALMR and ALHR) . . . .240  
12.10.7 Second Register (SECR) . . . . . . . . . . . . . . . . . . . . . . . . . .241  
12.10.8 Minute Register (MINR) . . . . . . . . . . . . . . . . . . . . . . . . . . .241  
12.10.9 Hour Register (HRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242  
12.10.10 Day Register (DAYR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242  
12.10.11 Month Register (MTHR) . . . . . . . . . . . . . . . . . . . . . . . . . . .243  
12.10.12 Year Register (YRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243  
12.10.13 Day-Of-Week Register (DOWR) . . . . . . . . . . . . . . . . . . . .244  
12.10.14 Chronograph Data Register (CHRR) . . . . . . . . . . . . . . . . .244  
Data Sheet  
14  
MC68HC908LJ24/LK24 — Rev. 2.1  
Table of Contents  
Freescale Semiconductor  
Table of Contents  
Section 13. Infrared Serial Communications  
Interface Module (IRSCI)  
13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247  
13.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
13.5 IRSCI Module Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
13.6 Infrared Functional Description. . . . . . . . . . . . . . . . . . . . . . . .250  
13.6.1 Infrared Transmit Encoder . . . . . . . . . . . . . . . . . . . . . . . . .251  
13.6.2 Infrared Receive Decoder . . . . . . . . . . . . . . . . . . . . . . . . .251  
13.7 SCI Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
13.7.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253  
13.7.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
13.7.2.1  
13.7.2.2  
13.7.2.3  
13.7.2.4  
13.7.2.5  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255  
Character Transmission. . . . . . . . . . . . . . . . . . . . . . . . .255  
Break Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256  
Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256  
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .257  
13.7.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
13.7.3.1  
13.7.3.2  
13.7.3.3  
13.7.3.4  
13.7.3.5  
13.7.3.6  
13.7.3.7  
13.7.3.8  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
Framing Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
Baud Rate Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . .261  
Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .265  
Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265  
13.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
13.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
13.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
13.9 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .267  
13.10 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
13.10.1 PTB0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . .267  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
15  
Table of Contents  
Table of Contents  
13.10.2 PTB1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . .267  
13.11 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268  
13.11.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
13.11.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
13.11.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . .274  
13.11.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . .276  
13.11.5 SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . .280  
13.11.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281  
13.11.7 SCI Baud Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . . .282  
13.11.8 SCI Infrared Control Register. . . . . . . . . . . . . . . . . . . . . . .285  
Section 14. Serial Peripheral Interface Module (SPI)  
14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288  
14.4 Pin Name Conventions and I/O Register Addresses . . . . . . .289  
14.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290  
14.5.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
14.5.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
14.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
14.6.1 Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . .293  
14.6.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . .294  
14.6.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . .296  
14.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . .297  
14.7 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . .299  
14.8 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300  
14.8.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300  
14.8.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .302  
14.9 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304  
14.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306  
14.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307  
14.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307  
Data Sheet  
16  
MC68HC908LJ24/LK24 — Rev. 2.1  
Table of Contents  
Freescale Semiconductor  
Table of Contents  
14.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307  
14.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .308  
14.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308  
14.13.1 MISO (Master In/Slave Out). . . . . . . . . . . . . . . . . . . . . . . .309  
14.13.2 MOSI (Master Out/Slave In). . . . . . . . . . . . . . . . . . . . . . . .309  
14.13.3 SPSCK (Serial Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . .310  
14.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310  
14.13.5 CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . .311  
14.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312  
14.14.1 SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312  
14.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . .314  
14.14.3 SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
Section 15. Multi-Master IIC Interface (MMIIC)  
15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319  
15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320  
15.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320  
15.5 Multi-Master IIC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . .321  
15.5.1 Multi-Master IIC Address Register (MMADR) . . . . . . . . . .321  
15.5.2 Multi-Master IIC Control Register (MMCR) . . . . . . . . . . . .323  
15.5.3 Multi-Master IIC Master Control Register (MIMCR) . . . . . .324  
15.5.4 Multi-Master IIC Status Register (MMSR) . . . . . . . . . . . . .326  
15.5.5 Multi-Master IIC Data Transmit Register (MMDTR) . . . . . .328  
15.5.6 Multi-Master IIC Data Receive Register (MMDRR) . . . . . .329  
15.6 Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . .330  
Section 16. Analog-to-Digital Converter (ADC)  
16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334  
16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
17  
Table of Contents  
Table of Contents  
16.4 Functional Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335  
16.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335  
16.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
16.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
16.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
16.4.5 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
16.4.6 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339  
16.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
16.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
16.7.1 ADC Voltage In (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . .341  
ADIN  
16.7.2 ADC Analog Power Pin (V  
) . . . . . . . . . . . . . . . . . . . . .341  
DDA  
16.7.3 ADC Analog Ground Pin (V  
). . . . . . . . . . . . . . . . . . . . .341  
SSA  
16.7.4 ADC Voltage Reference High Pin (V  
). . . . . . . . . . . . .341  
REFH  
16.7.5 ADC Voltage Reference Low Pin (V  
) . . . . . . . . . . . . .341  
REFL  
16.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342  
16.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .342  
16.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344  
16.8.3 ADC Clock Control Register. . . . . . . . . . . . . . . . . . . . . . . .346  
Section 17. Liquid Crystal Display (LCD) Driver  
17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350  
17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350  
17.4 Pin Name Conventions and I/O Register Addresses . . . . . . .350  
17.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
17.5.1 LCD Duty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
17.5.2 LCD Voltages (V  
, V  
, V  
, V  
) . . . . . . . . . . .355  
LCD3  
LCD  
LCD1  
LCD2  
17.5.3 LCD Cycle Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
17.5.4 Fast Charge and Low Current . . . . . . . . . . . . . . . . . . . . . .356  
17.5.5 Contrast Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
Data Sheet  
18  
MC68HC908LJ24/LK24 — Rev. 2.1  
Table of Contents  
Freescale Semiconductor  
Table of Contents  
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358  
17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358  
17.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358  
17.7.1 BP0–BP3 (Backplane Drivers) . . . . . . . . . . . . . . . . . . . . . .359  
17.7.2 FP0–FP32 (Frontplane Drivers) . . . . . . . . . . . . . . . . . . . . .361  
17.8 Seven Segment Display Connection . . . . . . . . . . . . . . . . . . .365  
17.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .368  
17.9.1 LCD Control Register (LCDCR) . . . . . . . . . . . . . . . . . . . . .368  
17.9.2 LCD Clock Register (LCDCLK) . . . . . . . . . . . . . . . . . . . . .370  
17.9.3 LCD Data Registers (LDAT1–LDAT17) . . . . . . . . . . . . . . .372  
Section 18. Input/Output (I/O) Ports  
18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376  
18.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .380  
18.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . .380  
18.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . .381  
18.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .383  
18.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . .383  
18.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . .385  
18.4.3 Port B LED Control Register (LEDB) . . . . . . . . . . . . . . . . .386  
18.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387  
18.5.1 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . .387  
18.5.2 Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . .388  
18.5.3 Port C LED Control Register (LEDC) . . . . . . . . . . . . . . . . .389  
18.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .390  
18.6.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . .390  
18.6.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . .392  
18.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .394  
18.7.1 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . .394  
18.7.2 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . .395  
18.7.3 Port E LED Control Register (LEDE) . . . . . . . . . . . . . . . . .396  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
19  
Table of Contents  
Table of Contents  
18.8 Port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397  
18.8.1 Port F Data Register (PTF) . . . . . . . . . . . . . . . . . . . . . . . .397  
18.8.2 Data Direction Register F (DDRF) . . . . . . . . . . . . . . . . . . .398  
18.8.3 Port F LED Control Register (LEDF) . . . . . . . . . . . . . . . . .399  
Section 19. External Interrupt (IRQ)  
19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .401  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .401  
19.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .401  
19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .402  
19.4.1 IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404  
19.5 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .405  
19.6 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . .405  
Section 20. Keyboard Interrupt Module (KBI)  
20.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407  
20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408  
20.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408  
20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409  
20.5.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . .411  
20.6 Keyboard Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . .412  
20.6.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . .412  
20.6.2 Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . .413  
20.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .414  
20.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .414  
20.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .414  
20.8 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .414  
Data Sheet  
20  
MC68HC908LJ24/LK24 — Rev. 2.1  
Table of Contents  
Freescale Semiconductor  
Table of Contents  
Section 21. Computer Operating Properly (COP)  
21.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .415  
21.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .415  
21.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .416  
21.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417  
21.4.1 ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417  
21.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417  
21.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417  
21.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417  
21.4.5 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .418  
21.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .418  
21.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .418  
21.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . .418  
21.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419  
21.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419  
21.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419  
21.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419  
21.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .420  
21.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .420  
21.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .420  
Section 22. Low-Voltage Inhibit (LVI)  
22.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421  
22.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421  
22.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421  
22.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .422  
22.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .424  
22.4.2 Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . .424  
22.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . .424  
22.4.4 LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .425  
22.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .425  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
21  
Table of Contents  
Table of Contents  
22.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .426  
22.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .426  
22.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .426  
Section 23. Break Module (BRK)  
23.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .427  
23.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .427  
23.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .428  
23.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .428  
23.4.1 Flag Protection During Break Interrupts. . . . . . . . . . . . . . .430  
23.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .430  
23.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . .430  
23.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .430  
23.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .430  
23.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .430  
23.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431  
23.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431  
23.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . .431  
23.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .432  
23.6.3 SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . .432  
23.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . .434  
Section 24. Electrical Specifications  
24.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .435  
24.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .435  
24.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .436  
24.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .437  
24.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .437  
24.6 5V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . .438  
24.7 3.3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .439  
24.8 5V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .440  
Data Sheet  
22  
MC68HC908LJ24/LK24 — Rev. 2.1  
Table of Contents  
Freescale Semiconductor  
Table of Contents  
24.9 3.3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .441  
24.10 5V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .441  
24.11 3.3V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . .442  
24.12 5V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .443  
24.13 3.3V ADC Electrical Characteristics. . . . . . . . . . . . . . . . . . . .444  
24.14 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . .445  
24.15 CGM Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . .445  
24.16 5V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446  
24.17 3.3V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .447  
24.18 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . .450  
Section 25. Mechanical Specifications  
25.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .451  
25.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .451  
25.3 64-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . .452  
25.4 64-Pin Quad Flat Pack (QFP). . . . . . . . . . . . . . . . . . . . . . . . .453  
25.5 80-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . .454  
25.6 80-Pin Quad Flat Pack (QFP). . . . . . . . . . . . . . . . . . . . . . . . .455  
Section 26. Ordering Information  
26.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .457  
26.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .457  
26.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .457  
Appendix A. MC68HC908LK24  
A.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .459  
A.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .459  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
23  
Table of Contents  
Table of Contents  
A.3 Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .460  
A.4 Low-Voltage Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .460  
A.5 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .461  
A.5.1  
A.5.2  
A.5.3  
A.5.4  
5V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .461  
3.3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . .461  
5V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . .462  
3.3V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . .462  
A.6 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .462  
Data Sheet  
24  
MC68HC908LJ24/LK24 — Rev. 2.1  
Table of Contents  
Freescale Semiconductor  
Data Sheet — MC68HC908LJ24  
List of Figures  
Figure  
Title  
Page  
1-1  
1-2  
1-3  
1-4  
MC68HC908LJ24 Block Diagram. . . . . . . . . . . . . . . . . . . . . . .41  
80-Pin QFP and LQFP Pin Assignment . . . . . . . . . . . . . . . . . .42  
64-pin QFP and LQFP Pin Assignment . . . . . . . . . . . . . . . . . .43  
Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
2-1  
2-2  
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . .52  
4-1  
4-2  
4-3  
4-4  
FLASH I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . .70  
FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . .71  
FLASH Programming Flowchart. . . . . . . . . . . . . . . . . . . . . . . .75  
FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . .77  
5-1  
5-2  
5-3  
CONFIG Registers Summary . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . .81  
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . .82  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . .90  
7-1  
Oscillator Module Block Diagram . . . . . . . . . . . . . . . . . . . . . .104  
8-1  
8-2  
8-3  
8-4  
CGM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
CGM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . .113  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . . .123  
PLL Control Register (PCTL) . . . . . . . . . . . . . . . . . . . . . . . . .126  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
List of Figures  
25  
List of Figures  
Figure  
Title  
Page  
8-5  
8-6  
8-7  
8-8  
8-9  
PLL Bandwidth Control Register (PBWCR) . . . . . . . . . . . . . .129  
PLL Multiplier Select Register High (PMSH) . . . . . . . . . . . . .130  
PLL Multiplier Select Register Low (PMSL) . . . . . . . . . . . . . .130  
PLL VCO Range Select Register (PMRS) . . . . . . . . . . . . . . .131  
PLL Reference Divider Select Register (PMDS) . . . . . . . . . .132  
8-10 PLL Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
9-9  
SIM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .142  
CGM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
Interrupt Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
Interrupt Recovery Timing . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
9-10 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
9-11 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . .152  
9-12 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . .153  
9-13 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . .155  
9-14 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . .155  
9-15 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
9-16 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . .158  
9-17 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . .158  
9-18 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
9-19 Stop Mode Recovery from Interrupt or Break. . . . . . . . . . . . .159  
9-20 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . .160  
9-21 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . .161  
9-22 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . .162  
10-1 Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
10-2 Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . .170  
10-3 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
10-4 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
10-5 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
10-6 Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
Data Sheet  
26  
MC68HC908LJ24/LK24 — Rev. 2.1  
List of Figures  
Freescale Semiconductor  
List of Figures  
Figure  
Title  
Page  
10-7 Stack Pointer at Monitor Mode Entry . . . . . . . . . . . . . . . . . . .176  
10-8 Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . .177  
10-9 Data Block Format for ROM-Resident Routines. . . . . . . . . . .180  
10-10 EE_WRITE FLASH Memory Usage . . . . . . . . . . . . . . . . . . . .189  
11-1 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
11-2 TIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .197  
11-3 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . .202  
11-4 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . .208  
11-5 TIM Counter Registers High (TCNTH) . . . . . . . . . . . . . . . . . .210  
11-6 TIM Counter Registers Low (TCNTL). . . . . . . . . . . . . . . . . . .211  
11-7 TIM Counter Modulo Register High (TMODH) . . . . . . . . . . . .211  
11-8 TIM Counter Modulo Register Low (TMODL). . . . . . . . . . . . .211  
11-9 TIM Channel 0 Status and Control Register (TSC0) . . . . . . .212  
11-10 TIM Channel 1 Status and Control Register (TSC1) . . . . . . .212  
11-11 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
11-12 TIM Channel 0 Register High (TCH0H) . . . . . . . . . . . . . . . . .216  
11-13 TIM Channel 0 Register Low (TCH0L) . . . . . . . . . . . . . . . . . .216  
11-14 TIM Channel 1 Register High (TCH1H) . . . . . . . . . . . . . . . . .216  
11-15 TIM Channel 1 Register Low (TCH1L) . . . . . . . . . . . . . . . . . .216  
12-1 RTC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . .219  
12-2 RTC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
12-3 RTC Clock Calibration and Compensation. . . . . . . . . . . . . . .225  
12-4 1-Hz Clock Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . .227  
12-5 RTC Write Protect State Diagram. . . . . . . . . . . . . . . . . . . . . .228  
12-6 RTC Calibration Control Register (RTCCOMR) . . . . . . . . . . .231  
12-7 RTC Calibration Data Register (RTCCDAT). . . . . . . . . . . . . .233  
12-8 RTC Control Register 1 (RTCCR1) . . . . . . . . . . . . . . . . . . . .234  
12-9 RTC Control Register 2 (RTCCR2) . . . . . . . . . . . . . . . . . . . .235  
12-10 RTC Status Register (RTCSR). . . . . . . . . . . . . . . . . . . . . . . .237  
12-11 Alarm Minute Register (ALMR). . . . . . . . . . . . . . . . . . . . . . . .240  
12-12 Alarm Hour Register (ALHR) . . . . . . . . . . . . . . . . . . . . . . . . .240  
12-13 Second Register (SECR) . . . . . . . . . . . . . . . . . . . . . . . . . . . .241  
12-14 Minute Register (MINR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241  
12-15 Hour Register (HRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
27  
List of Figures  
List of Figures  
Figure  
Title  
Page  
12-16 Day Register (DAYR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242  
12-17 Month Register (MTHR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243  
12-18 Year Register (YRR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243  
12-19 Day-Of-Week Register (DOWR). . . . . . . . . . . . . . . . . . . . . . .244  
12-20 Chronograph Data Register (CHRR) . . . . . . . . . . . . . . . . . . .244  
13-1 IRSCI I/O Registers Summary . . . . . . . . . . . . . . . . . . . . . . . .248  
13-2 IRSCI Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
13-3 Infrared Sub-Module Diagram . . . . . . . . . . . . . . . . . . . . . . . .250  
13-4 Infrared SCI Data Example. . . . . . . . . . . . . . . . . . . . . . . . . . .251  
13-5 SCI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . .252  
13-6 SCI Data Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253  
13-7 SCI Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
13-8 SCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . .258  
13-9 Receiver Data Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
13-10 Slow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
13-11 Fast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
13-12 SCI Control Register 1 (SCC1). . . . . . . . . . . . . . . . . . . . . . . .269  
13-13 SCI Control Register 2 (SCC2). . . . . . . . . . . . . . . . . . . . . . . .272  
13-14 SCI Control Register 3 (SCC3). . . . . . . . . . . . . . . . . . . . . . . .274  
13-15 SCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . . . .276  
13-16 Flag Clearing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279  
13-17 SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . . .280  
13-18 SCI Data Register (SCDR) . . . . . . . . . . . . . . . . . . . . . . . . . . .281  
13-19 SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . . . .282  
13-20 SCI Infrared Control Register (SCIRCR) . . . . . . . . . . . . . . . .285  
14-1 SPI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .289  
14-2 SPI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . .290  
14-3 Full-Duplex Master-Slave Connections . . . . . . . . . . . . . . . . .291  
14-4 Transmission Format (CPHA = 0) . . . . . . . . . . . . . . . . . . . . .295  
14-5 CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295  
14-6 Transmission Format (CPHA = 1) . . . . . . . . . . . . . . . . . . . . .296  
14-7 Transmission Start Delay (Master) . . . . . . . . . . . . . . . . . . . . .298  
14-8 SPRF/SPTE CPU Interrupt Timing. . . . . . . . . . . . . . . . . . . . .299  
14-9 Missed Read of Overflow Condition . . . . . . . . . . . . . . . . . . . .301  
Data Sheet  
28  
MC68HC908LJ24/LK24 — Rev. 2.1  
List of Figures  
Freescale Semiconductor  
List of Figures  
Figure  
Title  
Page  
14-10 Clearing SPRF When OVRF Interrupt Is Not Enabled . . . . . .302  
14-11 SPI Interrupt Request Generation . . . . . . . . . . . . . . . . . . . . .305  
14-12 CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310  
14-13 SPI Control Register (SPCR) . . . . . . . . . . . . . . . . . . . . . . . . .312  
14-14 SPI Status and Control Register (SPSCR). . . . . . . . . . . . . . .314  
14-15 SPI Data Register (SPDR) . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
15-1 MMIIC I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . .321  
15-2 Multi-Master IIC Address Register (MMADR). . . . . . . . . . . . .321  
15-3 Multi-Master IIC Control Register (MMCR). . . . . . . . . . . . . . .323  
15-4 Multi-Master IIC Master Control Register (MIMCR) . . . . . . . .324  
15-5 Multi-Master IIC Status Register (MMSR) . . . . . . . . . . . . . . .326  
15-6 Multi-Master IIC Data Transmit Register (MMDTR) . . . . . . . .328  
15-7 Multi-Master IIC Data Receive Register (MMDRR) . . . . . . . .329  
15-8 Data Transfer Sequences for Master/Slave  
Transmit/Receive Modes. . . . . . . . . . . . . . . . . . . . . . . . . .331  
16-1 ADC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . .335  
16-2 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336  
16-3 8-Bit Truncation Mode Error . . . . . . . . . . . . . . . . . . . . . . . . . .339  
16-4 ADC Status and Control Register (ADSCR). . . . . . . . . . . . . .342  
16-5 ADRH and ADRL in 8-Bit Truncated Mode. . . . . . . . . . . . . . .344  
16-6 ADRH and ADRL in Right Justified Mode. . . . . . . . . . . . . . . .344  
16-7 ADRH and ADRL in Left Justified Mode. . . . . . . . . . . . . . . . .345  
16-8 ADRH and ADRL in Left Justified Sign Data Mode . . . . . . . .345  
16-9 ADC Clock Control Register (ADCLK) . . . . . . . . . . . . . . . . . .346  
17-1 LCD I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . .351  
17-2 LCD Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
17-3 Simplified LCD Schematic (1/3 Duty, 1/3 Bias) . . . . . . . . . . .354  
17-4 Fast Charge Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
17-5 Static LCD Backplane Driver Waveform. . . . . . . . . . . . . . . . .359  
17-6 1/3 Duty LCD Backplane Driver Waveforms. . . . . . . . . . . . . .359  
17-7 1/4 Duty LCD Backplane Driver Waveforms. . . . . . . . . . . . . .360  
17-8 Static LCD Frontplane Driver Waveforms. . . . . . . . . . . . . . . .361  
17-9 1/3 Duty LCD Frontplane Driver Waveforms . . . . . . . . . . . . .362  
17-10 1/4 Duty LCD Frontplane Driver Waveforms . . . . . . . . . . . . .363  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
29  
List of Figures  
List of Figures  
Figure  
Title  
Page  
17-11 1/4 Duty LCD Frontplane Driver Waveforms (continued) . . . .364  
17-12 7-Segment Display Example . . . . . . . . . . . . . . . . . . . . . . . . .365  
17-13 BP0–BP2 and FP0–FP2 Output Waveforms for  
7-Segment Display Example . . . . . . . . . . . . . . . . . . . . . . .366  
17-14 "f" Segment Voltage Waveform . . . . . . . . . . . . . . . . . . . . . . .367  
17-15 "e" Segment Voltage Waveform . . . . . . . . . . . . . . . . . . . . . . .367  
17-16 LCD Control Register (LCDCR) . . . . . . . . . . . . . . . . . . . . . . .368  
17-17 LCD Clock Register (LCDCLK). . . . . . . . . . . . . . . . . . . . . . . .370  
17-18 LCD Data Registers 1–17 (LDAT1–LDAT17). . . . . . . . . . . . .372  
18-1 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .376  
18-2 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . .380  
18-3 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . .381  
18-4 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382  
18-5 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . .383  
18-6 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . .385  
18-7 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385  
18-8 Port B LED Control Register (LEDB) . . . . . . . . . . . . . . . . . . .386  
18-9 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . .387  
18-10 Data Direction Register C (DDRC) . . . . . . . . . . . . . . . . . . . . .388  
18-11 Port C I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .388  
18-12 Port C LED Control Register (LEDC) . . . . . . . . . . . . . . . . . . .389  
18-13 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . .390  
18-14 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . .392  
18-15 Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .392  
18-16 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . . .394  
18-17 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . . .395  
18-18 Port E I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .395  
18-19 Port E LED Control Register (LEDE) . . . . . . . . . . . . . . . . . . .396  
18-20 Port F Data Register (PTF). . . . . . . . . . . . . . . . . . . . . . . . . . .397  
18-21 Data Direction Register F (DDRF) . . . . . . . . . . . . . . . . . . . . .398  
18-22 Port F I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .398  
18-23 Port F LED Control Register (LEDF) . . . . . . . . . . . . . . . . . . .399  
19-1 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . .403  
19-2 IRQ I/O Port Register Summary . . . . . . . . . . . . . . . . . . . . . . .403  
Data Sheet  
30  
MC68HC908LJ24/LK24 — Rev. 2.1  
List of Figures  
Freescale Semiconductor  
List of Figures  
Figure  
Title  
Page  
19-3 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . .406  
20-1 KBI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .408  
20-2 Keyboard Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . .409  
20-3 Keyboard Status and Control Register (KBSCR) . . . . . . . . . .412  
20-4 Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . .413  
21-1 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .416  
21-2 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . .418  
21-3 COP Control Register (COPCTL). . . . . . . . . . . . . . . . . . . . . .419  
22-1 LVI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .422  
22-2 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .422  
23-1 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . .429  
23-2 Break Module I/O Register Summary. . . . . . . . . . . . . . . . . . .429  
23-3 Break Status and Control Register (BRKSCR). . . . . . . . . . . .431  
23-4 Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . .432  
23-5 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . .432  
23-6 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . .433  
23-7 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . .434  
24-1 Typical Internal Oscillator Frequency . . . . . . . . . . . . . . . . . . .442  
24-2 SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .448  
24-3 SPI Slave Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .449  
25-1 64-Pin Low-Profile Quad Flat Pack (Case No. 840F). . . . . . .452  
25-2 64-Pin Quad Flat Pack (Case No. 840B) . . . . . . . . . . . . . . . .453  
25-3 80-Pin Low-Profile Quad Flat Pack (Case No. 917) . . . . . . . .454  
25-4 80-Pin Quad Flat Pack (Case No. 841B) . . . . . . . . . . . . . . . .455  
A-1 MC68HC908LK24 Crystal Oscillator Connection . . . . . . . . . 460  
A-2 MC68HC908LK24 Configuration Register 1 (CONFIG1) . . . 460  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
31  
List of Figures  
List of Figures  
Data Sheet  
32  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
List of Figures  
Data Sheet — MC68HC908LJ24  
List of Tables  
Table  
Title  
Page  
2-1  
4-1  
5-1  
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
FLASH Block Protect Register to Physical Address. . . . . . . . .78  
LVI Trip Point Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
6-1  
6-2  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
8-1  
8-3  
8-2  
Numeric Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
VPR1 and VPR0 Programming . . . . . . . . . . . . . . . . . . . . . . .128  
PRE 1 and PRE0 Programming . . . . . . . . . . . . . . . . . . . . . . .128  
9-1  
9-2  
9-3  
Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
10-1 Monitor Mode Signal Requirements and Options. . . . . . . . . .168  
10-2 Mode Differences (Vectors) . . . . . . . . . . . . . . . . . . . . . . . . . .170  
10-3 Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . .172  
10-4 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . .173  
10-5 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . .174  
10-6 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . .174  
10-7 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . .175  
10-8 READSP (Read Stack Pointer) Command. . . . . . . . . . . . . . .175  
10-9 RUN (Run User Program) Command. . . . . . . . . . . . . . . . . . .176  
10-10 Summary of ROM-Resident Routines . . . . . . . . . . . . . . . . . .179  
10-11 PRGRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
10-12 ERARNGE Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
10-13 LDRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
33  
List of Tables  
List of Tables  
Table  
Title  
Page  
10-14 MON_PRGRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
10-15 MON_ERARNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
10-16 ICP_LDRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
10-17 EE_WRITE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
10-18 EE_READ Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
11-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
11-2 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210  
11-3 Mode, Edge, and Level Selection. . . . . . . . . . . . . . . . . . . . . .214  
12-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219  
12-2 Compensation Algorithm for Different Values of E . . . . . . . . .226  
12-3 Write-Protected RTC Registers and Bits . . . . . . . . . . . . . . . .227  
12-4 CALOUT Pin Output Option . . . . . . . . . . . . . . . . . . . . . . . . . .232  
13-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
13-2 Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
13-3 Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
13-4 Stop Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
13-5 SCI Pin Functions (Standard and Infrared). . . . . . . . . . . . . . .268  
13-6 Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . . .271  
13-7 SCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . . .282  
13-8 SCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
13-9 SCI Baud Rate Selection Examples . . . . . . . . . . . . . . . . . . . .284  
13-10 Infrared Narrow Pulse Selection. . . . . . . . . . . . . . . . . . . . . . .285  
14-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289  
14-2 SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304  
14-3 SPI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311  
14-4 SPI Master Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . .316  
15-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320  
15-2 Baud Rate Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326  
16-1 MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343  
16-2 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
16-3 ADC Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347  
Data Sheet  
34  
MC68HC908LJ24/LK24 — Rev. 2.1  
List of Tables  
Freescale Semiconductor  
List of Tables  
Table  
Title  
Page  
17-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350  
17-3 LCD Bias Voltage Control. . . . . . . . . . . . . . . . . . . . . . . . . . . .369  
17-2 Resistor Ladder Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . .369  
17-4 Fast Charge Duty Cycle Selection . . . . . . . . . . . . . . . . . . . . .370  
17-5 LCD Duty Cycle Selection . . . . . . . . . . . . . . . . . . . . . . . . . . .371  
17-6 LCD Waveform Base Clock Selection . . . . . . . . . . . . . . . . . .371  
18-1 Port Control Register Bits Summary. . . . . . . . . . . . . . . . . . . .378  
18-2 Port A Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382  
18-3 Port B Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .386  
18-4 Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .389  
18-5 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393  
18-6 Port E Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .396  
18-7 Port F Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399  
20-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408  
22-1 LVI Status Register (LVISR). . . . . . . . . . . . . . . . . . . . . . . . . .425  
22-2 LVIOUT Bit Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .425  
24-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .436  
24-2 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .437  
24-3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .437  
24-4 5V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . .438  
24-5 3.3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .439  
24-6 5V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .440  
24-7 3.3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .441  
24-8 5V Oscillator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . .441  
24-9 3.3V Oscillator Specifications. . . . . . . . . . . . . . . . . . . . . . . . .442  
24-10 5V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .443  
24-11 3.3V ADC Electrical Characteristics. . . . . . . . . . . . . . . . . . . .444  
24-12 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . .445  
24-13 CGM Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . .445  
24-14 5V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446  
24-15 3.3V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .447  
24-16 FLASH Memory Electrical Characteristics . . . . . . . . . . . . . . .450  
26-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .457  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
35  
List of Tables  
List of Tables  
Table  
Title  
Page  
A-1 5V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . .461  
A-2 3.3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .461  
A-3 5V Oscillator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . .462  
A-4 3.3V Oscillator Specifications. . . . . . . . . . . . . . . . . . . . . . . . .462  
A-5 MC68HC908LK24 Order Numbers. . . . . . . . . . . . . . . . . . . . .462  
Data Sheet  
36  
MC68HC908LJ24/LK24 — Rev. 2.1  
List of Tables  
Freescale Semiconductor  
Data Sheet — MC68HC908LJ24  
Section 1. General Description  
1.1 Contents  
1.2  
1.3  
1.4  
1.5  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
1.6  
1.6.1  
1.6.2  
1.6.3  
1.6.4  
1.6.5  
1.6.6  
1.6.7  
1.6.8  
1.6.9  
Power Supply Pins (V and V ). . . . . . . . . . . . . . . . . . . .44  
DD SS  
Analog Power Supply Pin (V  
). . . . . . . . . . . . . . . . . . . . .44  
DDA  
LCD Bias Voltage (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
LCD  
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . .45  
External Reset Pin (RST). . . . . . . . . . . . . . . . . . . . . . . . . . .45  
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . .45  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . .45  
ADC Voltage High Reference Pin (V  
). . . . . . . . . . . . . .45  
REFH  
ADC Voltage Low Reference Pin (V  
) . . . . . . . . . . . . . .46  
REFL  
1.6.10 Port A Input/Output (I/O) Pins (PTA7–PTA0). . . . . . . . . . . .46  
1.6.11 Port B I/O Pins (PTB7–PTB0) . . . . . . . . . . . . . . . . . . . . . . .46  
1.6.12 Port C I/O Pins (PTC7–PTC0) . . . . . . . . . . . . . . . . . . . . . . .46  
1.6.13 Port D I/O Pins (PTD7–PTD0) . . . . . . . . . . . . . . . . . . . . . . .46  
1.6.14 Port E I/O Pins (PTE7–PTE0) . . . . . . . . . . . . . . . . . . . . . . .47  
1.6.15 Port F I/O Pins (PTF7–PTF0). . . . . . . . . . . . . . . . . . . . . . . .47  
1.6.16 LCD Backplane and Frontplane  
(BP0-BP2, BP3/FP0, FP1–FP10, FP27–FP32) . . . . . . .47  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
37  
General Description  
General Description  
1.2 Introduction  
The MC68HC908LJ24 is a member of the low-cost, high-performance  
M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08  
Family is based on the customer-specified integrated circuit (CSIC)  
design strategy. All MCUs in the family use the enhanced M68HC08  
central processor unit (CPU08) and are available with a variety of  
modules, memory sizes and types, and package types.  
1.3 Features  
Features of the MC68HC908LJ24 include the following:  
• High-performance M68HC08 architecture  
• Fully upward-compatible object code with M6805, M146805, and  
M68HC05 Families  
– 8-MHz at 5V operating voltage  
– 4-MHz at 3.3V operating voltage  
• 32.768kHz crystal oscillator clock input with 32MHz internal PLL  
• Optional continuous crystal oscillator operation in stop mode  
1
• 24K-bytes user program FLASH memory with security feature  
• 768 bytes of on-chip RAM  
• Up to 48 general-purpose input/output (I/O) pins:  
– High current 15mA sink capability on 30 pins  
• Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2)  
with selectable input capture, output compare, PWM capability on  
each channel, and external clock input option (T1CLK and T2CLK)  
• Real time clock (RTC) with:  
– Clock, calendar, alarm, and chronograph functions  
– Selectable periodic interrupt requests for seconds, minutes,  
hours, days, 2-Hz, 4-Hz, 8-Hz, 16-Hz, and 128-Hz  
1. No security feature is absolutely secure. However, Freescale strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Data Sheet  
38  
MC68HC908LJ24/LK24 — Rev. 2.1  
General Description  
Freescale Semiconductor  
General Description  
Features  
– Temperature drift compensation by user software and external  
temperature sensor with temperature drift profile from crystal  
vendor  
• Serial communications interface module (SCI) with infrared (IR)  
encoder/decoder  
• Inter-IC Bus interface module (IIC)  
• Serial peripheral interface module (SPI)  
• IRQ external interrupt pin with integrated pullup  
• 8-bit keyboard wakeup port with programmable pullup  
• 4/3 backplanes and static with maximum 32/33 frontplanes liquid  
crystal display (LCD) driver  
• 6-channel, 10-bit successive approximation analog-to-digital  
converter (ADC)  
• Resident routines for in-circuit programming and EEPROM  
emulation  
• Low-power design (fully static with stop and wait modes)  
• Master reset pin (with integrated pullup) and power-on reset  
• Spike filter protection for EMC performance enhancement  
• System protection features  
– Optional computer operating properly (COP) reset, driven by  
internal RC oscillator  
– Low-voltage detection with optional reset or interrupt  
– Illegal opcode detection with reset  
– Illegal address detection with reset  
• 80-pin quad flat pack (QFP), 80-pin low-profile quad flat pack  
(LQFP), 64-pin quad flat pack (QFP), and 64-pin low-profile quad  
flat pack (LQFP)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
39  
General Description  
General Description  
• Specific features of the MC68HC908LJ24 in 64-pin packages are:  
– 40 general-purpose I/Os only  
– High current 15-mA sink capability on 22 pins  
– 4/3 backplanes and static with maximum 26 or 27 frontplanes  
LCD driver  
Features of the CPU08 include the following:  
• Enhanced HC05 programming model  
• Extensive loop control functions  
• 16 addressing modes (eight more than the HC05)  
• 16-bit Index register and stack pointer  
• Memory-to-memory data transfers  
• Fast 8 × 8 multiply instruction  
• Fast 16/8 divide instruction  
• Binary-coded decimal (BCD) instructions  
• Optimization for controller applications  
• Efficient C language support  
1.4 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908LJ24.  
Data Sheet  
40  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
General Description  
General Description  
MCU Block Diagram  
INTERNAL BUS  
M68HC08 CPU  
PTA7/ADC3  
PTA6/ADC2  
PTA5/ADC1  
PTA4/ADC0  
PTA3/KBI3**  
PTA2/KBI2**  
PTA1/KBI1**  
PTA0/KBI0**  
CPU  
ARITHMETIC/LOGIC  
UNIT (ALU)  
KEYBOARD INTERRUPT  
MODULE  
REGISTERS  
CONTROL AND STATUS REGISTERS — 128 BYTES  
USER FLASH — 24,576 BYTES  
10-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
2-CHANNEL TIMER INTERFACE  
MODULE 1  
PTB7/ADC5  
PTB6/ADC4  
PTB5/T2CH1†  
PTB4/T2CH0†  
PTB3/T1CH1†  
PTB2/T1CH0†  
PTB1/RxD†  
USER RAM — 768 BYTES  
MONITOR ROM — 959 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE 2  
USER FLASH VECTOR SPACE — 48 BYTES  
CLOCK GENERATOR MODULE  
PTB0/TxD†  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
(WITH INFRARED  
OSC1  
32.768-kHz OSCILLATOR  
OSC2  
PTD7/KBI7/SDA  
PTD6/KBI6/SCL  
PTD5/KBI5/T2CLK**  
PTD4/KBI4/T1CLK**  
PTD3/SPSCK/CALOUT  
PTD2/MOSI  
ENCODER/DECODER)  
PHASE-LOCKED LOOP  
CGMXFC  
REAL TIME CLOCK  
MODULE  
SYSTEM INTEGRATION  
MODULE  
* RST  
* IRQ  
PTD1/MISO  
PTD0/SS/CALIN  
INTER IC BUS  
INTERFACE MODULE  
EXTERNAL INTERRUPT  
MODULE  
PTF7†  
:
SERIAL PERIPHERAL  
INTERFACE MODULE  
PTF0†  
COMPUTER OPERATING  
PROPERLY MODULE  
#
FP32  
:
FP27  
POWER-ON RESET  
MODULE  
PTC7/FP26†  
:
PTC0/FP19†  
LOW-VOLTAGE INHIBIT  
MODULE  
PTE7/FP18†  
:
LIQUID CRYSTAL DISPLAY  
DRIVER MODULE  
# VLCD  
PTE0/FP11†  
VDDA  
FP10  
:
FP1  
POWER  
VDD  
VSS  
BP2  
VREFH  
VREFL  
:
ADC REFERENCE  
BP0  
FP0/BP3  
* Pin contains integrated pullup device.  
** Pin contains integrated pullup device if configured as KBI.  
High current sink pin, 15mA.  
# Pins available on 80-pin packages only.  
Figure 1-1. MC68HC908LJ24 Block Diagram  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
41  
General Description  
General Description  
1.5 Pin Assignments  
1
60  
FP0/BP3  
VREFL  
2
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
PTD5/KBI5/T2CLK  
VREFH  
3
FP1  
PTB7/ADC5  
PTB6/ADC4  
PTA7/ADC3  
PTA6/ADC2  
4
FP2  
5
FP3  
6
FP4  
7
FP5  
PTA5/ADC1  
PTA4/ADC0  
8
FP6  
9
FP7  
FP30  
10  
FP8  
FP29  
11  
PTF7  
PTA3/KBI3  
PTA2/KBI2  
PTA1/KBI1  
PTA0/KBI0  
FP28  
12  
PTF6  
13  
PTD6/KBI6/SCL  
14  
PTD7/KBI7/SDA  
15  
FP9  
16  
FP10  
PTF5  
PTF4  
FP27  
17  
18  
19  
PTC7/FP26  
PTC6/FP25  
PTC5/FP24  
PTD0/SS/CALIN  
PTE0/FP11  
PTE1/FP12 20  
41  
Figure 1-2. 80-Pin QFP and LQFP Pin Assignment  
Data Sheet  
42  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
General Description  
General Description  
Pin Assignments  
1
48  
FP0/BP3  
VREFL  
2
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
PTD5/KBI5/T2CLK  
VREFH  
3
FP1  
FP2  
PTB7/ADC5  
PTB6/ADC4  
PTA7/ADC3  
PTA6/ADC2  
4
Pins not available on 64-LQFP package:  
5
PTF7  
PTF6  
PTF5  
PTF4  
PTF3  
PTF2  
PTF1  
PTF0  
FP32  
FP3  
FP31  
FP30  
FP29  
FP28  
FP27  
6
FP4  
7
FP5  
PTA5/ADC1  
PTA4/ADC0  
8
FP6  
9
FP7  
PTA3/KBI3  
PTA2/KBI2  
PTA1/KBI1  
PTA0/KBI0  
PTC7/FP26  
PTC6/FP25  
PTC5/FP24  
PTD0/SS/CALIN  
FP8  
10  
11  
12  
13  
14  
15  
VLCD  
PTD6/KBI6/SCL  
PTD7/KBI7/SDA  
FP9  
Internal PTF7–PTF0 pads are connected to VSS.  
Internal FP32–FP27 pads are unconnected.  
Internal VLCD pad is connected to VDD.  
FP10  
PTE0/FP11  
PTE1/FP12  
16  
33  
Figure 1-3. 64-pin QFP and LQFP Pin Assignment  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
43  
General Description  
General Description  
1.6 Pin Functions  
Description of pin functions are provided here.  
1.6.1 Power Supply Pins (V and V )  
DD  
SS  
V
and V are the power supply and ground pins. The MCU operates  
SS  
DD  
from a single power supply.  
Fast signal transitions on MCU pins place high, short-duration current  
demands on the power supply. To prevent noise problems, take special  
care to provide power supply bypassing at the MCU as Figure 1-4  
shows. Place the C1 bypass capacitor as close to the MCU as possible.  
Use a high-frequency-response ceramic capacitor for C1. C2 is an  
optional bulk current bypass capacitor for use in applications that require  
the port pins to source high current levels. V must be grounded for  
SS  
proper MCU operation.  
1.6.2 Analog Power Supply Pin (V  
)
DDA  
V
V
is the voltage supply for the analog parts of the MCU. Connect the  
DDA  
pin to the same voltage potential as V . For maximum noise  
DDA  
DD  
immunity, route V  
via a separate trace and place bypass capacitors  
DDA  
as close as possible to the package (see Figure 1-4).  
MCU  
VDD  
VSS  
VDDA  
0.1 µF  
0.1 µF  
C1(a)  
C1(b)  
+
+
C2(a)  
C2(b)  
NOTE: Component values shown  
represent typical applications.  
VDD  
VDD  
Figure 1-4. Power Supply Bypassing  
Data Sheet  
44  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
General Description  
 
General Description  
Pin Functions  
1.6.3 LCD Bias Voltage (V  
)
LCD  
V
V
is the bias voltage supply for the LCD driver module. Connect the  
LCD  
pin to the same voltage potential as V . For maximum noise  
LCD  
DD  
immunity, route V  
via a separate trace and place bypass capacitors  
LCD  
as close as possible to the package. See Section 17. Liquid Crystal  
Display (LCD) Driver.  
1.6.4 Oscillator Pins (OSC1 and OSC2)  
The OSC1 and OSC2 pins are the connections for the on-chip oscillator  
circuit. The OSC1 pin contains a schmitt-trigger and a spike filter for  
improved EMC performance. See Section 7. Oscillator (OSC).  
1.6.5 External Reset Pin (RST)  
A logic 0 on the RST pin forces the MCU to a known start-up state. RST  
is bidirectional, allowing a reset of the entire system. It is driven low when  
any internal reset source is asserted. A Schmitt-trigger and a spike filter  
is associated with this pin so that the device is more robust to EMC  
noise. This pin also contains an internal pullup resistor. See 9.4 Reset  
and System Initialization.  
1.6.6 External Interrupt Pin (IRQ)  
IRQ is an asynchronous external interrupt pin. This pin contains an  
internal pullup resistor. See Section 19. External Interrupt (IRQ).  
1.6.7 External Filter Capacitor Pin (CGMXFC)  
CGMXFC is an external filter capacitor connection for the CGM.  
See 8.4.9 CGM External Connections.  
1.6.8 ADC Voltage High Reference Pin (V  
)
REFH  
V
is the voltage input pin for the ADC voltage high reference.  
REFH  
See 16.7.4 ADC Voltage Reference High Pin (V  
).  
REFH  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
45  
General Description  
General Description  
1.6.9 ADC Voltage Low Reference Pin (V  
)
REFL  
V
is the voltage input pin for the ADC voltage low reference.  
REFL  
See 16.7.5 ADC Voltage Reference Low Pin (V  
).  
REFL  
1.6.10 Port A Input/Output (I/O) Pins (PTA7–PTA0)  
PTA7PTA0 are special function, bidirectional port pins. See 18.3 Port A.  
PTA7/ADC3PTA4/ADC0 are shared with ADC, and  
PTA3/KBI3PTA0/KBI0 are shared with the KBI module.  
1.6.11 Port B I/O Pins (PTB7–PTB0)  
PTB7PTB0 are special function, bidirectional port pins, with high  
current sink capability on PTB5–PTB0. See 18.4 Port B.  
PTB1/RxDPTB0/TxD are shared with the SCI module,  
PTB5/T2CH1PTB4/T2CH0 are shared with the TIM2,  
PTB3/T1CH1PTB2/T1CH0 are shared with the TIM1,  
PTB7/ADC5PTB6/ADC4 are shared with the ADC.  
1.6.12 Port C I/O Pins (PTC7–PTC0)  
PTC7PTC0 are special function, bidirectional port pins, with high  
current sink capability. See 18.5 Port C.  
PTC7/FP26PTC0/FP19 are shared with the LCD frontplane drivers.  
1.6.13 Port D I/O Pins (PTD7–PTD0)  
PTD7–PTD0 are special function, bidirectional port pins.  
PTD7/KBI7/SDA–PTD6/KBI6/SCL are shared with the KBI and IIC  
modules. See 18.6 Port D.  
PTD5/KBI5/T2CLK–PTD4/KBI4/T1CLK are shared with the KBI, TIM1,  
and TIM2 modules.  
PTD3/SPSCK/CALOUT–PTD0/SS/CALIN are shared with the SPI and  
RTC modules.  
Data Sheet  
46  
MC68HC908LJ24/LK24 — Rev. 2.1  
General Description  
Freescale Semiconductor  
General Description  
Pin Functions  
1.6.14 Port E I/O Pins (PTE7–PTE0)  
PTE7–PTE0 are special function, bidirectional port pins, with high  
current sink capability. See 18.7 Port E.  
PTE7/FP18–PTE0/FP11 are shared with the LCD frontplane drivers.  
1.6.15 Port F I/O Pins (PTF7–PTF0)  
PTF7–PTF0 are general purpose bidirectional port pins with high current  
sink capability. See 18.8 Port F.  
1.6.16 LCD Backplane and Frontplane (BP0-BP2, BP3/FP0, FP1–FP10, FP27–FP32)  
BP0–BP2 are the LCD backplane driver pins and FP1– FP10 and  
FP27–FP32 are the frontplane driver pins. FP0/BP3 is the shared driver  
pin between FP0 and BP3.  
See Section 17. Liquid Crystal Display (LCD) Driver.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
47  
General Description  
General Description  
Data Sheet  
48  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
General Description  
Data Sheet — MC68HC908LJ24  
Section 2. Memory Map  
2.1 Contents  
2.2  
2.3  
2.4  
2.5  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . .49  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
2.2 Introduction  
The CPU08 can address 64k-bytes of memory space. The memory  
map, shown in Figure 2-1, includes:  
• 24,576 bytes of user FLASH memory  
• 768 bytes of random-access memory (RAM)  
• 48 bytes of user-defined vectors  
• 959 bytes of monitor ROM  
2.3 Unimplemented Memory Locations  
Accessing an unimplemented location can cause an illegal address  
reset. In the memory map (Figure 2-1) and in register figures in this  
document, unimplemented locations are shaded.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
49  
Memory Map  
 
 
Memory Map  
2.4 Reserved Memory Locations  
Accessing a reserved location can have unpredictable effects on MCU  
operation. In Figure 2-2 and in register figures in this document,  
reserved locations are marked with the word Reserved or with the  
letter R.  
2.5 Input/Output (I/O) Section  
Most of the control, status, and data registers are in the zero page  
$0000–$007F. Additional I/O registers have the following addresses:  
• $FE00; SIM break status register, SBSR  
• $FE01; SIM reset status register, SRSR  
• $FE03; SIM break flag control register, SBFCR  
• $FE04; Interrupt status register 1, INT1  
• $FE05; Interrupt status register 2, INT2  
• $FE06; Interrupt status register 3, INT3  
• $FE07; Reserved  
• $FE08; FLASH control register, FLCR  
• $FE09; Reserved  
• $FE0A; Reserved  
• $FE0B; Reserved  
• $FE0C; break address register high, BRKH  
• $FE0D; break address register low, BRKL  
• $FE0E; break status and control register, BRKSCR  
• $FE0F; LVI status register, LVISR  
• $FFCF; FLASH block protect register, FLBPR (FLASH register)  
• $FFFF; COP control register, COPCTL  
Data registers are shown in Figure 2-2, Table 2-1 is a list of vector  
locations.  
Data Sheet  
50  
MC68HC908LJ24/LK24 — Rev. 2.1  
Memory Map  
Freescale Semiconductor  
Memory Map  
Input/Output (I/O) Section  
$0000  
$007F  
I/O Registers  
128 Bytes  
$0080  
$037F  
RAM  
768 Bytes  
$0380  
$8FFF  
Unimplemented  
35,968 Bytes  
$9000  
$EFFF  
User FLASH Memory  
24,576 Bytes  
$F000  
$FBFF  
Unimplemented  
3,072 Bytes  
$FC00  
$FDFF  
Monitor ROM 1  
512 Bytes  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
SIM Break Status Register (SBSR)  
SIM Reset Status Register (SRSR)  
Reserved  
SIM Break Flag Control Register (SBFCR)  
Interrupt Status Register 1 (INT1)  
Interrupt Status Register 2 (INT2)  
Interrupt Status Register 3 (INT3)  
Reserved  
FLASH Control Register (FLCR)  
Reserved  
Reserved  
Reserved  
Break Address Register High (BRKH)  
Break Address Register Low (BRKL)  
Break Status and Control Register (BRKSCR)  
LVI Status Register (LVISR)  
$FE10  
$FFCE  
Monitor ROM 2  
447 Bytes  
$FFCF  
FLASH Block Protect Register (FLBPR)  
$FFD0  
$FFFF  
User Vectors  
48 Bytes  
Figure 2-1. Memory Map  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
51  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
PTA7  
U
6
5
4
3
2
1
Bit 0  
PTA0  
U
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
Port A Data Register  
(PTA)  
$0000  
U
U
U
U
U
U
PTB7  
U
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
U
Port B Data Register  
(PTB)  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$0008  
$0009  
U
U
U
U
U
U
PTC7  
U
PTC6  
PTC5  
PTC4  
PTC3  
PTC2  
PTC1  
PTC0  
U
Port C Data Register  
(PTC)  
U
U
U
U
U
U
PTD7  
U
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
U
Port D Data Register  
(PTD)  
U
U
U
U
U
U
DDRA7  
0
DDRA6  
DDRA5  
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
0
Data Direction Register A  
(DDRA)  
0
0
0
0
0
0
DDRB7  
0
DDRB6  
DDRB5  
DDRB4  
DDRB3  
DDRB2  
DDRB1  
DDRB0  
0
Data Direction Register B  
(DDRB)  
0
0
0
0
0
0
DDRC7  
0
DDRC6  
DDRC5  
DDRC4  
DDRC3  
DDRC2  
DDRC1  
DDRC0  
0
Data Direction Register C  
(DDRC)  
0
DDRD6  
0
0
DDRD5  
0
0
DDRD4  
0
0
DDRD3  
0
0
DDRD2  
0
0
DDRD1  
0
DDRD7  
0
DDRD0  
0
Data Direction Register D  
(DDRD)  
PTE7  
U
PTE6  
U
PTE5  
U
PTE4  
U
PTE3  
U
PTE2  
U
PTE1  
U
PTE0  
U
Port E Data Register  
(PTE)  
DDRE7  
0
DDRE6  
0
DDRE5  
0
DDRE4  
0
DDRE3  
0
DDRE2  
0
DDRE1  
0
DDRE0  
0
Data Direction Register E  
(DDRE)  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 13)  
Data Sheet  
52  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
PTF7  
U
6
PTF6  
U
5
PTF5  
U
4
PTF4  
U
3
PTF3  
U
2
1
Bit 0  
PTF0  
U
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
PTF2  
PTF1  
Port F Data Register  
(PTF)  
$000A  
U
U
DDRF7  
DDRF6  
DDRF5  
0
DDRF4  
0
DDRF3  
0
DDRF2  
DDRF1  
DDRF0  
0
Data Direction Register F  
(DDRF)  
$000B  
$000C  
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
$0013  
0
0
0
0
0
0
Port-B LED Control  
LEDB5  
0
LEDB4  
0
LEDB3  
0
LEDB2  
LEDB1  
LEDB0  
0
Register Write:  
(LEDB)  
Reset:  
0
0
0
0
Read:  
Port-C LED Control  
LEDC7  
LEDC6  
LEDC5  
0
LEDC4  
0
LEDC3  
0
LEDC2  
LEDC1  
LEDC0  
0
Register Write:  
(LEDC)  
Reset:  
0
LEDE7  
0
0
0
0
LEDE1  
0
Read:  
Port-E LED Control  
LEDE6  
LEDE5  
0
LEDE4  
0
LEDE3  
0
LEDE2  
LEDE0  
0
Register Write:  
(LEDE)  
Reset:  
0
0
LEDF2  
0
Read:  
Port-F LED Control  
LEDF7  
0
LEDF6  
LEDF5  
0
LEDF4  
0
LEDF3  
0
LEDF1  
0
LEDF0  
0
Register Write:  
(LEDF)  
Reset:  
0
Read:  
SPRIE  
0
R
0
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
SPE  
0
SPTIE  
0
SPI Control Register  
Write:  
(SPCR)  
Reset:  
1
0
1
Read: SPRF  
OVRF  
MODF  
SPTE  
SPI Status and Control  
ERRIE  
MODFEN SPR1  
SPR0  
Register Write:  
(SPSCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
R7  
T7  
U
0
R6  
T6  
U
0
R5  
T5  
U
0
R4  
T4  
U
1
0
0
0
R3  
T3  
U
R2  
T2  
U
R1  
T1  
U
R0  
T0  
U
SPI Data Register  
(SPDR)  
0
LOOPS  
0
ENSCI  
0
M
0
WAKE  
0
ILTY  
0
PEN  
0
PTY  
0
SCI Control Register 1  
(SCC1)  
0
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 13)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
53  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
2
RE  
0
1
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
SCTIE  
RWU  
0
SCI Control Register 2  
(SCC2)  
$0014  
0
0
R8  
T8  
DMARE DMATE  
ORIE  
NEIE  
FEIE  
PEIE  
SCI Control Register 3  
(SCC3)  
$0015  
$0016  
$0017  
$0018  
$0019  
$001A  
$001B  
$001C  
$001D  
U
U
0
0
0
0
0
0
Read: SCTE  
Write:  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
SCI Status Register 1  
(SCS1)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
1
0
1
0
0
0
0
0
0
0
0
0
0
0
BKF  
RPF  
SCI Status Register 2  
(SCS2)  
0
R7  
T7  
U
0
R6  
T6  
U
0
R5  
T5  
U
0
0
0
0
0
R4  
T4  
U
R3  
T3  
U
R2  
T2  
U
R1  
T1  
U
R0  
T0  
U
SCI Data Register  
(SCDR)  
0
CKS  
0
SCP1  
SCP0  
R
0
SCR2  
0
SCR1  
0
SCR0  
0
SCI Baud Rate Register  
(SCBR)  
0
0
0
0
0
0
SCI Infrared Control  
R
CKTST  
TNP1  
TNP0  
0
IREN  
0
Register Write:  
(SCIRCR)  
Reset:  
0
0
0
0
0
0
0
0
0
0
Keyboard Status and Read:  
KEYF  
0
ACKK  
0
IMASKK MODEK  
Control Register  
Write:  
(KBSCR)  
Reset:  
0
KBIE7  
0
0
0
0
KBIE4  
0
0
KBIE3  
0
0
KBIE1  
0
0
KBIE0  
0
Read:  
Keyboard Interrupt  
KBIE6  
KBIE5  
KBIE2  
Enable Register Write:  
(KBIER)  
Reset:  
0
0
0
PCEL  
0
Read:  
STOP_  
IRCDIS XCLKEN  
STOP_  
PEE  
0
DIV2CLK PCEH  
LVISEL1 LVISEL0  
Configuration Register 2  
Write:  
(CONFIG2)  
††  
††  
Reset:  
0
0
0
0
0
1
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 13)  
Data Sheet  
54  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
0
0
0
0
IRQF  
IRQ Status and Control  
$001E  
Register Write:  
(INTSCR)  
ACK  
0
Reset:  
0
0
0
0
0
Read:  
0
COPRS LVISTOP LVIRSTD LVIPWRD  
SSREC  
0
STOP  
0
COPD  
0
Configuration Register 1  
$001F  
Write:  
(CONFIG1)  
††  
Reset:  
0
0
0
0
0
0
† One-time writable register after each reset.  
†† Reset by POR only.  
Read:  
TOF  
0
Timer 1 Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
Register Write:  
0
0
TRST  
0
(T1SC)  
Reset:  
0
1
0
0
0
9
0
Read: Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 1 Counter  
Register High Write:  
(T1CNTH)  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 1 Counter  
Register Low Write:  
(T1CNTL)  
Reset:  
0
Bit 15  
1
0
0
0
0
0
0
0
Read:  
Timer 1 Counter Modulo  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T1MODH)  
Reset:  
1
1
1
1
1
1
1
Read:  
Timer 1 Counter Modulo  
Bit 7  
6
5
1
4
1
3
2
1
Bit 0  
Register Low Write:  
(T1MODL)  
Reset:  
1
1
CH0IE  
0
1
ELS0B  
0
1
ELS0A  
0
1
1
Read: CH0F  
Timer 1 Channel 0 Status  
MS0B  
0
MS0A  
0
TOV0  
CH0MAX  
and Control Register Write:  
0
0
(T1SC0)  
Reset:  
0
9
X
0
Bit 8  
X
Read:  
Timer 1 Channel 0  
Bit 15  
X
14  
13  
X
12  
X
11  
10  
Register High Write:  
(T1CH0H)  
Reset:  
X
X
X
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 13)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
55  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
Bit 7  
X
6
5
4
3
2
1
Bit 0  
Bit 0  
X
Read:  
Timer 1 Channel 0  
6
5
4
3
2
1
$0027  
Register Low Write:  
(T1CH0L)  
Reset:  
X
CH1IE  
0
X
0
X
MS1A  
0
X
X
X
Read: CH1F  
Timer 1 Channel 1 Status  
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
$0028  
$0029  
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
$0030  
and Control Register Write:  
0
0
(T1SC1)  
Reset:  
0
0
11  
X
0
10  
X
0
9
Read:  
Timer 1 Channel 1  
Bit 15  
X
14  
13  
12  
X
Bit 8  
X
Register High Write:  
(T1CH1H)  
Reset:  
X
X
X
Read:  
Timer 1 Channel 1  
Bit 7  
6
5
X
4
3
2
1
Bit 0  
X
Register Low Write:  
(T1CH1L)  
Reset:  
X
TOF  
0
X
X
0
X
0
X
X
Read:  
Timer 2 Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
Register Write:  
(T2SC)  
TRST  
0
Reset:  
0
0
1
0
0
0
9
0
Read: Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 2 Counter  
Register High Write:  
(T2CNTH)  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 2 Counter  
Register Low Write:  
(T2CNTL)  
Reset:  
0
Bit 15  
1
0
0
0
0
0
0
0
Read:  
Timer 2 Counter Modulo  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T2MODH)  
Reset:  
1
1
1
1
1
1
1
Read:  
Timer 2 Counter Modulo  
Bit 7  
1
6
5
4
3
2
1
1
Bit 0  
Register Low Write:  
(T2MODL)  
Reset:  
1
CH0IE  
0
1
MS0B  
0
1
MS0A  
0
1
ELS0B  
0
1
ELS0A  
0
1
CH0MAX  
0
Read: CH0F  
Timer 2 Channel 0 Status  
TOV0  
0
and Control Register Write:  
0
0
(T2SC0)  
Reset:  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 13)  
Data Sheet  
56  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
Bit 15  
X
6
5
13  
X
4
12  
X
3
2
1
Bit 0  
Read:  
Timer 2 Channel 0  
14  
11  
10  
9
Bit 8  
$0031  
Register High Write:  
(T2CH0H)  
Reset:  
X
X
X
X
X
Read:  
Timer 2 Channel 0  
Bit 7  
6
5
4
3
2
1
Bit 0  
$0032  
$0033  
$0034  
$0035  
$0036  
$0037  
$0038  
$0039  
$003A  
Register Low Write:  
(T2CH0L)  
Reset:  
X
X
X
0
X
X
X
X
X
Read: CH1F  
Timer 2 Channel 1 Status  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
and Control Register Write:  
0
0
(T2SC1)  
Reset:  
0
14  
X
0
0
11  
X
0
10  
X
0
0
Bit 8  
X
Read:  
Timer 2 Channel 1  
Bit 15  
X
13  
12  
X
9
Register High Write:  
(T2CH1H)  
Reset:  
X
X
1
Read:  
Timer 2 Channel 1  
Bit 7  
X
6
5
X
4
3
2
Bit 0  
X
Register Low Write:  
(T2CH1L)  
Reset:  
X
X
X
X
X
Read:  
PLLF  
PLLIE  
0
PLLON  
1
BCS  
PRE1  
PRE0  
VPR1  
VPR0  
0
PLL Control Register  
Write:  
(PTCL)  
Reset:  
0
0
0
0
0
0
0
0
0
Read:  
LOCK  
PLL Bandwidth Control  
AUTO  
ACQ  
R
Register Write:  
(PBWC)  
Reset:  
0
0
0
0
0
0
0
0
0
MUL11  
0
0
MUL10  
0
0
MUL9  
0
0
Read:  
PLL Multiplier Select  
MUL8  
0
Register High Write:  
(PMSH)  
Reset:  
0
MUL7  
0
0
MUL6  
1
0
MUL5  
0
0
MUL4  
0
Read:  
PLL Multiplier Select  
MUL3  
0
MUL2  
0
MUL1  
0
MUL0  
0
Register Low Write:  
(PMSL)  
Reset:  
Read:  
PLL VCO Range Select  
VRS7  
0
VRS6  
1
VRS5  
0
VRS4  
0
VRS3  
0
VRS2  
0
VRS1  
0
VRS0  
0
Register Write:  
(PMRS)  
Reset:  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 13)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
57  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
5
4
3
RDS3  
0
2
RDS2  
0
1
RDS1  
0
Bit 0  
RDS0  
1
Read:  
0
0
0
0
PLL Reference Divider  
$003B  
Select Register Write:  
(PMDS)  
Reset:  
0
0
0
0
Read: COCO  
ADC Status and Control  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
$003D  
$003E  
$003F  
$0040  
$0041  
$0042  
$0043  
Register Write:  
(ADCSR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
ADx  
R
0
ADx  
R
0
ADx  
R
1
ADx  
R
1
ADx  
R
1
ADx  
R
1
ADx  
R
1
ADx  
R
ADC Data Register high  
(ADRH)  
0
0
0
0
0
0
0
0
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADC Data Register low  
(ADRL) Write:  
Reset:  
0
0
0
0
0
0
0
0
ADC Clock Control Read:  
0
0
ADIV2  
ADIV1  
ADIV0  
ADICLK MODE1 MODE0  
Register  
Write:  
R
(ADCLK)  
Reset:  
0
0
0
0
R
0
0
0
CAL  
0
0
0
1
OUTF0  
0
0
0
0
Read:  
0
RTC Calibration Control  
AUTOCAL OUTF1  
Register Write:  
R
0
RTCWE1 RTCWE0  
(RTCCOMR)  
Reset:  
0
E4  
0
E3  
1
0
Read: EOVL  
RTC Calibration Data  
E5  
E2  
E1  
E0  
Register Write:  
(RTCCDAT)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
U
ALMIE  
0
0
U
U
U
U
U
U
CHRIE  
DAYIE  
0
HRIE  
0
MINIE  
0
SECIE  
TB1IE  
TB2IE  
RTC Control Register 1  
(RTCCR1)  
0
0
0
0
0
0
0
0
CHRCLR  
0
COMEN  
U
CHRE  
0
RTCE  
TBH  
0
RTC Control Register 2  
(RTCCR2)  
††  
0
0
0
0
†† Reset by POR only.  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 13)  
Data Sheet  
58  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
Read: ALMF  
Write:  
6
5
4
3
2
1
Bit 0  
CHRF  
DAYF  
HRF  
MINF  
SECF  
TB1F  
TB2F  
RTC Status Register  
(RTCSR)  
$0044  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
AM4  
U
0
AM3  
U
0
AM2  
U
0
AM1  
U
0
AM0  
U
AM5  
Alarm Minute register  
(ALMR)  
$0045  
$0046  
$0047  
$0048  
$0049  
$004A  
$004B  
$004C  
$004D  
0
0
0
0
U
0
AH4  
U
AH3  
U
AH2  
U
AH1  
U
AH0  
U
Alarm Hour register  
(ALHR)  
0
0
0
0
0
SEC5  
U
SEC4  
U
SEC3  
U
SEC2  
U
SEC1  
U
SEC0  
U
Second Register  
(SECR)  
0
0
0
0
MIN5  
MIN4  
U
MIN3  
U
MIN2  
U
MIN1  
U
MIN0  
U
Minute Register  
(MINR)  
0
0
0
0
U
0
HR4  
U
HR3  
U
HR2  
U
HR1  
U
HR0  
U
Hour Register  
(HRR)  
0
0
0
0
0
0
DAY4  
DAY3  
U
DAY2  
U
DAY1  
U
DAY0  
U
Day Register  
(DAYR)  
0
0
0
0
0
0
U
0
MTH3  
U
MTH2  
U
MTH1  
U
MTH0  
U
Month Register  
(MTHR)  
0
0
0
0
YR7  
YR6  
YR5  
YR4  
YR3  
YR2  
U
YR1  
U
YR0  
U
Year Register  
(YRR)  
U
0
U
0
U
0
U
0
U
0
DOW2  
U
DOW1  
U
DOW0  
U
Day-Of-Week Register  
(DOWR)  
0
0
0
0
0
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 13)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
59  
Memory Map  
Memory Map  
Addr.  
Register Name  
Chronograph Data  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
CHR6  
CHR5  
CHR4  
CHR3  
CHR2  
CHR1  
CHR0  
$004E  
Register Write:  
(CHRR)  
Reset:  
0
0
0
0
0
0
0
0
0
Read:  
FCCTL1 FCCTL0 DUTY1  
DUTY0  
LCLK2  
LCLK1  
LCLK0  
LCD Clock Register  
$004F  
$0050  
$0051  
$0052  
$0053  
$0054  
$0055  
$0056  
$0057  
Write:  
Reset:  
Read:  
(LCDCLK)  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Reserved Write:  
Reset:  
Read:  
0
LCDE  
0
FC  
0
LC  
0
LCCON3 LCCON2 LCCON1 LCCON0  
LCD Control Register  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
(LCDCR)  
0
F1B2  
U
0
F0B3  
U
0
F0B2  
U
0
F0B1  
U
0
F0B0  
U
F1B3  
U
F1B1  
U
F1B0  
U
LCD Data Register 1  
(LDAT1)  
F3B3  
U
F3B2  
U
F3B1  
U
F3B0  
U
F2B3  
U
F2B2  
U
F2B1  
U
F2B0  
U
LCD Data Register 2  
(LDAT2)  
F5B3  
U
F5B2  
U
F5B1  
U
F5B0  
U
F4B3  
U
F4B2  
U
F4B1  
U
F4B0  
U
LCD Data Register 3  
(LDAT3)  
F7B3  
U
F7B2  
U
F7B1  
U
F7B0  
U
F6B3  
U
F6B2  
U
F6B1  
U
F6B0  
U
LCD Data Register 4  
(LDAT4)  
F9B3  
U
F9B2  
U
F9B1  
U
F9B0  
U
F8B3  
U
F8B2  
U
F8B1  
U
F8B0  
U
LCD Data Register 5  
(LDAT5)  
F11B3  
U
F11B2  
U
F11B1  
U
F11B0  
U
F10B3  
U
F10B2  
U
F10B1  
U
F10B0  
U
LCD Data Register 6  
(LDAT6)  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 9 of 13)  
Data Sheet  
60  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
F13B3  
U
6
F13B2  
U
5
F13B1  
U
4
F13B0  
U
3
F12B3  
U
2
F12B2  
U
1
F12B1  
U
Bit 0  
F12B0  
U
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
LCD Data Register 7  
(LDAT7)  
$0058  
F15B3  
U
F15B2  
U
F15B1  
U
F15B0  
U
F14B3  
U
F14B2  
U
F14B1  
U
F14B0  
U
LCD Data Register 8  
(LDAT8)  
$0059  
$005A  
$005B  
$005C  
$005D  
$005E  
$005F  
$0060  
$0061  
F17B3  
U
F17B2  
U
F17B1  
U
F17B0  
U
F16B3  
U
F16B2  
U
F16B1  
U
F16B0  
U
LCD Data Register 9  
(LDAT9)  
F19B3  
U
F19B2  
U
F19B1  
U
F19B0  
U
F18B3  
U
F18B2  
U
F18B1  
U
F18B0  
U
LCD Data Register 10  
(LDAT10)  
F21B3  
U
F21B2  
U
F21B1  
U
F21B0  
U
F20B3  
U
F20B2  
U
F20B1  
U
F20B0  
U
LCD Data Register 11  
(LDAT11)  
F23B3  
U
F23B2  
U
F23B1  
U
F23B0  
U
F22B3  
U
F22B2  
U
F22B1  
U
F22B0  
U
LCD Data Register 12  
(LDAT12)  
F25B3  
U
F25B2  
U
F25B1  
U
F25B0  
U
F24B3  
U
F24B2  
U
F24B1  
U
F24B0  
U
LCD Data Register 13  
(LDAT13)  
F27B3  
U
F27B2  
U
F27B1  
U
F27B0  
U
F26B3  
U
F26B2  
U
F26B1  
U
F26B0  
U
LCD Data Register 14  
(LDAT14)  
F29B3  
U
F29B2  
U
F29B1  
U
F29B0  
U
F28B3  
U
F28B2  
U
F28B1  
U
F28B0  
U
LCD Data Register 15  
(LDAT15)  
F31B3  
U
F31B2  
U
F31B1  
U
F31B0  
U
F30B3  
U
F30B2  
U
F30B1  
U
F30B0  
U
LCD Data Register 16  
(LDAT16)  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 10 of 13)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
61  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
5
4
3
F32B3  
U
2
F32B2  
U
1
F32B1  
U
Bit 0  
F32B0  
U
Read:  
Write:  
Reset:  
Read:  
LCD Data Register 17  
(LDAT17)  
$0062  
$0063  
to  
$0069  
Unimplemented Write:  
Reset:  
Read: MMALIF MMNAKIF MMBB  
MMIIC Master Control  
MMAST MMRW MMBR2 MMBR1 MMBR0  
$006A  
$006B  
$006C  
$006D  
$006E  
$006F  
Register Write:  
0
0
0
0
(MIMCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
MMAD7 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 MMAD1 MMEXTAD  
MMIIC Address Register  
(MMADR)  
1
MMEN  
0
0
MMIEN  
0
1
0
0
0
0
0
0
0
0
0
MMTXAK REPSEN  
MMIIC Control Register  
(MMCR)  
0
0
0
0
0
0
0
Read: MMRXIF MMTXIF MMATCH MMSRW MMRXAK  
MMTXBE MMRXBF  
MMIIC Status Register  
(MMSR)  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
1
0
1
0
MMIIC Data Transmit  
MMTD7 MMTD6 MMTD5 MMTD4 MMTD3 MMTD2 MMTD1 MMTD0  
Register Write:  
(MMDTR)  
Reset:  
1
1
1
1
1
1
1
1
Read: MMRD7 MMRD6 MMRD5 MMRD4 MMRD3 MMRD2 MMRD1 MMRD0  
MMIIC Data Receive  
Register Write:  
(MMDRR)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
$0070  
to  
$007F  
R
R
R
R
R
R
R
R
Reserved Write:  
Reset:  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 11 of 13)  
Data Sheet  
62  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
SBSW  
Note  
0
Bit 0  
Read:  
Write:  
Reset:  
R
R
R
R
R
R
R
SIM Break Status Register  
(SBSR)  
$FE00  
Note: Writing a logic 0 clears SBSW.  
Read: POR  
Write:  
PIN  
COP  
ILOP  
ILAD  
0
LVI  
0
SIM Reset Status Register  
$FE01  
(SRSR)  
POR:  
Read:  
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
Reserved Write:  
Reset:  
Read:  
SIM Break Flag Control  
BCFE  
R
R
R
R
R
R
R
Register Write:  
(SBFCR)  
Reset:  
0
IF6  
R
Read:  
IF5  
R
IF4  
R
IF3  
R
IF2  
R
IF1  
R
0
R
0
R
Interrupt Status Register 1  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
(INT1)  
0
0
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
R
IF9  
R
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2)  
0
0
0
0
0
0
0
0
0
0
0
0
IF18  
R
IF17  
R
IF16  
R
IF15  
R
Interrupt Status Register 3  
(INT3)  
R
R
R
R
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Reserved Write:  
Reset:  
Read:  
0
0
0
0
0
0
0
0
HVEN  
0
MASS  
0
ERASE  
0
PGM  
0
FLASH Control Register  
Write:  
(FLCR)  
Reset:  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 12 of 13)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
63  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Reserved Write:  
Reset:  
R
R
R
R
R
R
R
R
$FE09  
Read:  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
$FE0A  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
$FFCF  
Reserved Write:  
Reset:  
Read:  
Reserved Write:  
Reset:  
Read:  
Break Address  
Bit 15  
0
14  
13  
0
12  
0
11  
0
10  
0
9
0
1
Bit 8  
0
Register High Write:  
(BRKH)  
Reset:  
0
Read:  
Break Address  
Bit 7  
0
6
0
5
4
3
2
Bit 0  
Register Low Write:  
(BRKL)  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
BRKE  
0
BRKA  
0
Register Write:  
(BRKSCR)  
Reset:  
0
0
0
0
0
0
0
0
0
0
Read: LVIOUT  
LVIIF  
0
LVIIACK  
0
Low-Voltage Inhibit Status  
LVIIE  
0
Register Write:  
(LVISR)  
Reset:  
Read:  
0
0
0
0
0
0
FLASH Block Protect  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
Register Write:  
#
(FLBPR)  
Reset:  
Unaffected by reset; $FF when blank  
# Non-volatile FLASH register; write by programming.  
Read:  
Low byte of reset vector  
Writing clears COP counter (any value)  
Unaffected by reset  
COP Control Register  
$FFFF  
Write:  
(COPCTL)  
Reset:  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 13 of 13)  
Data Sheet  
64  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
.
Table 2-1. Vector Addresses  
Priority  
INT Flag Address  
Vector  
Lowest  
$FFD8  
$FFD9  
$FFDA  
$FFDB  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
$FFED  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
IF18  
IF17  
IF16  
IF15  
IF14  
IF13  
IF12  
IF11  
IF10  
IF9  
Real Time Clock  
ADC Conversion Complete  
Keyboard  
MMIIC  
SCI Transmit  
SCI Receive  
SCI Error  
SPI Receive  
SPI Transmit  
TIM2 Overflow  
TIM2 Channel 1  
TIM2 Channel 0  
TIM1 Overflow  
TIM1 Channel 1  
TIM1 Channel 0  
PLL  
IF8  
IF7  
IF6  
IF5  
IF4  
IF3  
IF2  
LVI  
IRQ Vector (High)  
IRQ Vector (Low)  
SWI Vector (High)  
SWI Vector (Low)  
Reset Vector (High)  
Reset Vector (Low)  
IF1  
Highest  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
65  
Memory Map  
 
Memory Map  
Data Sheet  
66  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Memory Map  
Data Sheet — MC68HC908LJ24  
Section 3. Random-Access Memory (RAM)  
3.1 Contents  
3.2  
3.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
3.2 Introduction  
This section describes the 768 bytes of RAM (random-access memory).  
3.3 Functional Description  
Addresses $0080 through $037F are RAM locations. The location of the  
stack RAM is programmable. The 16-bit stack pointer allows the stack to  
be anywhere in the 64K-byte memory space.  
NOTE: For correct operation, the stack pointer must point only to RAM  
locations.  
Within page zero are 128 bytes of RAM. Because the location of the  
stack RAM is programmable, all page zero RAM locations can be used  
for I/O control and user data or code. When the stack pointer is moved  
from its reset location at $00FF out of page zero, direct addressing mode  
instructions can efficiently access all page zero RAM locations. Page  
zero RAM, therefore, provides ideal locations for frequently accessed  
global variables.  
Before processing an interrupt, the CPU uses five bytes of the stack to  
save the contents of the CPU registers.  
NOTE: For M6805 compatibility, the H register is not stacked.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
67  
Random-Access Memory (RAM)  
 
 
Random-Access Memory (RAM)  
During a subroutine call, the CPU uses two bytes of the stack to store  
the return address. The stack pointer decrements during pushes and  
increments during pulls.  
NOTE: Be careful when using nested subroutines. The CPU may overwrite data  
in the RAM during a subroutine or during the interrupt stacking  
operation.  
Data Sheet  
68  
MC68HC908LJ24/LK24 — Rev. 2.1  
Random-Access Memory (RAM)  
Freescale Semiconductor  
Data Sheet — MC68HC908LJ24  
Section 4. FLASH Memory (FLASH)  
4.1 Contents  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .72  
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .73  
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
4.8  
4.8.1  
FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . .77  
4.2 Introduction  
This section describes the operation of the embedded FLASH memory.  
This memory can be read, programmed, and erased from a single  
external supply. The program and erase operations are enabled through  
the use of an internal charge pump.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
69  
FLASH Memory (FLASH)  
 
FLASH Memory (FLASH)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
HVEN  
0
MASS  
0
FLASH Control Register  
(FLCR)  
$FE08  
0
0
0
0
FLASH Block Protect  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
$FFCF  
Register Write:  
(FLBPR)  
#
Reset:  
Unaffected by reset; $FF when blank  
# Non-volatile FLASH register; write by programming.  
= Unimplemented  
Figure 4-1. FLASH I/O Register Summary  
4.3 Functional Description  
The FLASH memory consists of an array of 24,576 bytes for user  
memory plus a block of 48 bytes for user interrupt vectors. An erased bit  
reads as logic 1 and a programmed bit reads as a logic 0. The FLASH  
memory page size is defined as 128 bytes, and is the minimum size that  
can be erased in a page erase operation. Program and erase operations  
are facilitated through control bits in FLASH control register (FLCR). The  
address ranges for the FLASH memory are:  
• $9000–$EFFF; user memory, 24,576 bytes  
• $FFD0–$FFFF; user interrupt vectors, 48 bytes  
Programming tools are available from Freescale. Contact your local  
Freescale representative for more information.  
1
NOTE: A security feature prevents viewing of the FLASH contents.  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Data Sheet  
70  
MC68HC908LJ24/LK24 — Rev. 2.1  
FLASH Memory (FLASH)  
Freescale Semiconductor  
FLASH Memory (FLASH)  
FLASH Control Register  
4.4 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program and erase  
operations.  
Address: $FE08  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
Figure 4-2. FLASH Control Register (FLCR)  
HVEN — High Voltage Enable Bit  
This read/write bit enables the charge pump to drive high voltages for  
program and erase operations in the array. HVEN can only be set if  
either PGM = 1 or ERASE = 1 and the proper sequence for program  
or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS — Mass Erase Control Bit  
This read/write bit configures the memory for mass erase operation or  
block erase operation when the ERASE bit is set.  
1 = Mass Erase operation selected  
0 = Block Erase operation selected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation.  
ERASE is interlocked with the PGM bit such that both bits cannot be  
equal to 1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation not selected  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation.  
PGM is interlocked with the ERASE bit such that both bits cannot be  
equal to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation not selected  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
71  
FLASH Memory (FLASH)  
FLASH Memory (FLASH)  
4.5 FLASH Page Erase Operation  
Use the following procedure to erase a page of FLASH memory. A page  
consists of 128 consecutive bytes starting from addresses $xx00 or  
$xx80. The 48-byte user interrupt vectors area also forms a page. The  
48-byte user interrupt vectors cannot be erased by the page erase  
operation because of security reasons. Mass erase is required to erase  
this page.  
1. Set the ERASE bit and clear the MASS bit in the FLASH control  
register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH address within the page address  
range desired.  
4. Wait for a time, t  
(min. 10µs).  
nvs  
5. Set the HVEN bit.  
6. Wait for a time, t  
(1ms).  
erase  
7. Clear the ERASE bit.  
8. Wait for a time, t (5µs).  
nvh  
9. Clear the HVEN bit.  
10. After time, t (1µs), the memory can be accessed in read mode  
rcv  
again.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory; the code must be  
executed from RAM. While these operations must be performed in the  
order as shown, but other unrelated operations may occur between the  
steps.  
Data Sheet  
72  
MC68HC908LJ24/LK24 — Rev. 2.1  
FLASH Memory (FLASH)  
Freescale Semiconductor  
FLASH Memory (FLASH)  
FLASH Mass Erase Operation  
4.6 FLASH Mass Erase Operation  
Use the following procedure to erase the entire FLASH memory:  
1. Set both the ERASE bit and the MASS bit in the FLASH control  
register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH address within the FLASH memory  
address range.  
4. Wait for a time, t  
(10µs).  
nvs  
5. Set the HVEN bit.  
6. Wait for a time t  
(4ms).  
merase  
7. Clear the ERASE bit.  
8. Wait for a time, t  
(100µs).  
nvh1  
9. Clear the HVEN bit.  
10. After time, t (1µs), the memory can be accessed again in read  
rcv  
mode.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory; the code must be  
executed from RAM. While these operations must be performed in the  
order as shown, but other unrelated operations may occur between the  
steps.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
73  
FLASH Memory (FLASH)  
FLASH Memory (FLASH)  
4.7 FLASH Program Operation  
Programming of the FLASH memory is done on a row basis. A row  
consists of 64 consecutive bytes starting from addresses $xx00, $xx40,  
$xx80, or $xxC0. Use the following procedure to program a row of  
FLASH memory. (Figure 4-3 shows a flowchart of the programming  
algorithm.)  
1. Set the PGM bit. This configures the memory for program  
operation and enables the latching of address and data for  
programming.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH address within the row address  
range desired.  
4. Wait for a time, t  
(10µs).  
nvs  
5. Set the HVEN bit.  
6. Wait for a time, t  
(5µs).  
pgs  
7. Write data to the FLASH address to be programmed.  
8. Wait for time, t (30µs).  
prog  
9. Repeat steps 7 and 8 until all bytes within the row are programmed.  
10. Clear the PGM bit.  
11. Wait for time, t  
(5µs).  
nvh  
12. Clear the HVEN bit.  
13. After time, t (1µs), the memory can be accessed in read mode  
rcv  
again.  
This program sequence is repeated throughout the memory until all data  
is programmed.  
NOTE: The time between each FLASH address change (step 7 to step 7), or the  
time between the last FLASH addressed programmed to clearing the  
PGM bit (step 7 to step 10), must not exceed the maximum programming  
time, t  
max.  
prog  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps.  
Data Sheet  
74  
MC68HC908LJ24/LK24 — Rev. 2.1  
FLASH Memory (FLASH)  
Freescale Semiconductor  
FLASH Memory (FLASH)  
FLASH Program Operation  
1
2
3
Set PGM bit  
Algorithm for programming  
a row (64 bytes) of FLASH memory  
Read the FLASH block protect register  
Write any data to any FLASH location  
within the address range of the row to  
be programmed  
4
5
6
Wait for a time, tnvs  
Set HVEN bit  
Wait for a time, tpgs  
7
8
Write data to the FLASH address  
to be programmed  
Wait for a time, tprog  
Completed  
Y
programming  
this row?  
N
10  
Clear PGM bit  
Wait for a time, tnvh  
Clear HVEN bit  
NOTE:  
The time between each FLASH address change (step 7 to step 7), or  
the time between the last FLASH address programmed  
to clearing PGM bit (step 7 to step 10)  
must not exceed the maximum programming  
time, tprog max.  
11  
12  
13  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Wait for a time, trcv  
End of programming  
Figure 4-3. FLASH Programming Flowchart  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
75  
FLASH Memory (FLASH)  
FLASH Memory (FLASH)  
4.8 FLASH Block Protection  
Due to the ability of the on-board charge pump to erase and program the  
FLASH memory in the target application, provision is made to protect  
pages of memory from unintentional erase or program operations due to  
system malfunction. This protection is done by use of a FLASH block  
protect register (FLBPR). The FLBPR determines the range of the  
FLASH memory which is to be protected. The range of the protected  
area starts from a location defined by FLBPR and ends to the bottom of  
the FLASH memory ($FFFF). When the memory is protected, the HVEN  
bit cannot be set in either erase or program operations.  
NOTE: The 48 bytes of user interrupt vectors are always protected, regardless  
of the value in the FLASH block protect register. A mass erase is  
required to erase the vectors.  
When the FLBPR is program with $20, the entire memory is protected  
from being programmed and erased. When the FLBPR is erased ($FF),  
the entire memory is accessible for program and erase.  
Once the FLBPR is programmed with a value other than $FF, the FLBPR  
itself is protected. It can only be erased using a mass erase operation.  
NOTE: In performing a program or erase operation, the FLASH block protect  
register must be read after setting the PGM or ERASE bit and before  
asserting the HVEN bit  
Data Sheet  
76  
MC68HC908LJ24/LK24 — Rev. 2.1  
FLASH Memory (FLASH)  
Freescale Semiconductor  
FLASH Memory (FLASH)  
FLASH Block Protection  
4.8.1 FLASH Block Protect Register  
The FLASH block protect register (FLBPR) is implemented as a byte  
within the FLASH memory, and therefore can only be written during a  
programming sequence of the FLASH memory. The value in this register  
determines the starting location of the protected range within the FLASH  
memory.  
Address: $FFCF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
Unaffected by reset; $FF when blank  
Non-volatile FLASH register; write by programming.  
Figure 4-4. FLASH Block Protect Register (FLBPR)  
BPR[7:0] — FLASH Block Protect Bits  
BPR[7:0] represent bits [14:7] of a 16-bit memory address. Bits  
[15:14] are logic 1’s and bits [6:0] are logic 0’s.  
16-bit memory address  
Start address of FLASH block protect  
1
0 0 0 0 0 0 0  
BPR[7:0]  
The resultant 16-bit address is used for specifying the start address  
of the FLASH memory for block protection. The FLASH is protected  
from this start address to the end of FLASH memory, at $FFFF. With  
this mechanism, the protect start address can be $XX00 or $XX80 (at  
page boundaries — 128 bytes) within the FLASH memory.  
Examples of protect start address is shown in Table 4-1:  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
77  
FLASH Memory (FLASH)  
FLASH Memory (FLASH)  
Table 4-1. FLASH Block Protect Register to Physical Address  
(1)  
BPR[7:0]  
Start Address of Protection Range  
(2)  
$00 to $1F  
The entire FLASH memory is NOT protected.  
$9000 (1001 0000 0000 0000)  
The entire FLASH memory is protected.  
$20  
$21  
$22  
$23  
$24  
$9080 (1001 0000 1000 0000)  
$9100 (1001 0001 0000 0000)  
$9180 (1001 0001 1000 0000)  
$9200 (1001 0010 0000 0000)  
and so on...  
$DE  
$DF  
$EF00 (1110 1111 0000 0000)  
$EF80 (1110 1111 1000 0000)  
(2)  
$E0 to $FF  
The entire FLASH memory is NOT protected.  
Notes:  
1. The end address of the protected range is always $FFFF.  
2. Except the 48-byte user vectors, which is always protected.  
Data Sheet  
78  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
FLASH Memory (FLASH)  
Data Sheet — MC68HC908LJ24  
Section 5. Configuration Registers (CONFIG)  
5.1 Contents  
5.2  
5.3  
5.4  
5.5  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . .81  
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . .82  
5.2 Introduction  
This section describes the configuration registers, CONFIG1 and  
CONFIG2. The configuration registers enable or disable these options:  
• Computer operating properly module (COP)  
18  
4
13  
4
• COP timeout period (2 – 2 or 2 – 2 ICLK cycles)  
• Low-voltage inhibit (LVI) module power  
• LVI module reset  
• LVI module in stop mode  
• LVI module voltage trip point selection  
• STOP instruction  
• Stop mode recovery time (32 ICLK cycles or 4096 ICLK cycles)  
• Oscillator during stop mode  
• LCD frontplanes FP19–FP26 on port C  
• LCD frontplanes FP11–FP18 on port E  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
79  
Configuration Registers (CONFIG)  
 
 
Configuration Registers (CONFIG)  
Addr.  
Register Name  
Bit 7  
PEE  
0
6
5
4
3
2
PCEL  
0
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
STOP_  
IRCDIS XCLKEN  
STOP_  
DIV2CLK PCEH  
LVISEL1 LVISEL0  
Configuration Register 2  
$001D  
(CONFIG2)  
††  
††  
0
0
0
0
0
0
1
COPRS LVISTOP LVIRSTD LVIPWRD  
SSREC  
0
STOP  
0
COPD  
0
Configuration Register 1  
$001F  
(CONFIG1)  
††  
0
0
0
0
0
† One-time writable register after each reset.  
†† Reset by POR only.  
= Unimplemented  
Figure 5-1. CONFIG Registers Summary  
5.3 Functional Description  
The configuration registers are used in the initialization of various  
options. Since the various options affect the operation of the MCU, it is  
recommended that these registers be written immediately after reset.  
The configuration registers are located at $001D and $001F. The  
configuration registers may be read at anytime.  
NOTE: The CONFIG registers are one-time writable by the user after each  
reset. These registers are not in the FLASH memory but are special  
registers containing one-time writable latches after each reset. Upon a  
reset, the CONFIG registers default to predetermined settings as shown  
in Figure 5-2 and Figure 5-3.  
Although the LVISEL[1:0] bits default to predetermined setting of  
LVISEL[1:0] = 0:1 by a POR only, these bits can still be written once after  
each reset other than POR.  
Data Sheet  
80  
MC68HC908LJ24/LK24 — Rev. 2.1  
Configuration Registers (CONFIG)  
Freescale Semiconductor  
Configuration Registers (CONFIG)  
Configuration Register 1 (CONFIG1)  
5.4 Configuration Register 1 (CONFIG1)  
The CONFIG1 register can be written once after each reset.  
Address: $001F  
Bit 7  
6
5
4
3
0
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
COPRS LVISTOP LVIRSTD LVIPWRD  
Write:  
††  
Reset:  
0
0
0
0
0
†† Reset by POR only.  
= Unimplemented  
Figure 5-2. Configuration Register 1 (CONFIG1)  
COPRS — COP Rate Select  
COPRS selects the COP time-out period. Reset clears COPRS. (See  
Section 21. Computer Operating Properly (COP).)  
13  
4
1 = COP time out period = 2 – 2 ICLK cycles  
18  
4
0 = COP time out period = 2 – 2 ICLK cycles  
LVISTOP — LVI Enable in Stop Mode  
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the  
LVI to operate during stop mode. Reset clears LVISTOP. (See  
Section 22. Low-Voltage Inhibit (LVI).)  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
LVIRSTD — LVI Reset Disable  
LVIRSTD disables the reset signal from the LVI module. (See  
Section 22. Low-Voltage Inhibit (LVI).)  
1 = LVI module resets disabled  
0 = LVI module resets enabled  
LVIPWRD — LVI Power Disable Bit  
LVIPWRD disables the LVI module. (See Section 22. Low-Voltage  
Inhibit (LVI).)  
1 = LVI module power disabled  
0 = LVI module power enabled  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
81  
Configuration Registers (CONFIG)  
Configuration Registers (CONFIG)  
SSREC — Short Stop Recovery  
SSREC enables the CPU to exit stop mode with a delay of 32 ICLK  
cycles instead of a 4096 ICLK cycle delay.  
1 = Stop mode recovery after 32 ICLK cycles  
0 = Stop mode recovery after 4096 ICLK cycles  
NOTE: Exiting stop mode by pulling reset will result in the long stop recovery.  
If using an external crystal oscillator, do not set the SSREC bit.  
NOTE: When the LVISTOP is enabled, the system stabilization time for power  
on reset and long stop recovery (both 4096 ICLK cycles) gives a delay  
longer than the enable time for the LVI. There is no period where the  
MCU is not protected from a low power condition. However, when using  
the short stop recovery configuration option, the 32 ICLK delay is less  
than the LVI’s turn-on time and there exists a period in start-up where the  
LVI is not protecting the MCU.  
STOP — STOP Instruction Enable  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module. (See Section 21. Computer  
Operating Properly (COP).)  
1 = COP module disabled  
0 = COP module enabled  
5.5 Configuration Register 2 (CONFIG2)  
The CONFIG2 register can be written once after each reset.  
Address: $001D  
Bit 7  
PEE  
0
6
5
4
3
2
PCEL  
0
1
Bit 0  
Read:  
Write:  
Reset:  
STOP_  
IRCDIS XCLKEN  
STOP_  
DIV2CLK PCEH  
LVISEL1 LVISEL0  
††  
††  
0
0
0
0
0
1
†† Reset by POR only.  
Figure 5-3. Configuration Register 2 (CONFIG2)  
Data Sheet  
82  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Configuration Registers (CONFIG)  
Configuration Registers (CONFIG)  
Configuration Register 2 (CONFIG2)  
PEE — Port E Enable  
Setting PEE configures the PTE0/FP11–PTE7/FP18 pins for LCD  
frontplane driver use. Reset clears this bit.  
1 = PTE0/FP11–PTE7/FP18 pins configured as LCD frontplane  
driver pins: FP11–FP18  
0 = PTE0/FP11–PTE7/FP18 pins configured as standard I/O pins:  
PTE0–PTE7  
STOP_IRCDIS — Internal RC Oscillator Stop Mode Disable  
Setting STOP_IRCDIS disables the internal RC oscillator during stop  
mode. When this bit is cleared, the internal RC oscillator continues to  
operate in stop mode. Reset clears this bit.  
1 = Internal RC oscillator disabled during stop mode  
0 = Internal RC oscillator enabled during stop mode  
STOP_XCLKEN — Crystal Oscillator Stop Mode Enable  
Setting STOP_XCLKEN enables the external crystal (XTAL) oscillator  
to continue operating in stop mode. This is useful for driving the real  
time clock module to allow it to generate periodic wake up while in  
stop mode. When this bit is cleared, the external XTAL oscillator will  
be disabled during stop mode. Reset clears this bit.  
1 = XTAL oscillator enabled during stop mode  
0 = XTAL oscillator disabled during stop mode  
DIV2CLK — Divide-by-2 Clock Bypass  
When CGMXCLK is selected to drive the system clocks (BCS=0),  
setting DIV2CLK allows the CGMXCLK to bypass the divide-by-2  
divider in the CGM module; CGMOUT will equal CGMXCLK and bus  
clock will equal CGMXCLK divide-by-2.  
DIV2CLK bit has no effect when the BCS=1 in the PLL control  
register (CGMVCLK selected and divide-by-2 always enabled). Reset  
clears this bit.  
1 = Divide-by-2 divider bypassed;  
When BSC=0, CGMOUT equals CGMXCLK  
0 = Divide-by-2 divider enabled;  
When BSC=0, CGMOUT equals CGMXCLK divide-by-2  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
83  
Configuration Registers (CONFIG)  
Configuration Registers (CONFIG)  
PCEH — Port C Enable High Nibble  
Setting PCEH configures the PTC4/FP23–PTC7/FP26 pins for LCD  
frontplane driver use. Reset clears this bit.  
1 = PTC4/FP23–PTC7/FP26 pins configured as LCD frontplane  
driver pins: FP23–FP26  
0 = PTC4/FP23–PTC7/FP26 pins configured as standard I/O pins:  
PTC4–PTC7  
PCEL — Port C Enable Low Nibble  
Setting PCEL configures the PTC0/FP19–PTC3/FP22 pins for LCD  
frontplane driver use. Reset clears this bit.  
1 = PTC0/FP19–PTC3/FP22 pins configured as LCD frontplane  
driver pins: FP19–FP22  
0 = PTC0/FP19–PTC3/FP22 pins configured as standard I/O pins:  
PTC0–PTC3  
LVISEL[1:0] — LVI Operating Mode Selection  
LVISEL[1:0] selects the voltage operating mode of the LVI module.  
(See Section 22. Low-Voltage Inhibit (LVI).) The voltage mode  
selected for the LVI should match the operating V . See Section 24.  
DD  
Electrical Specifications for the LVI voltage trip points for each of  
the modes.  
Table 5-1. LVI Trip Point Selection  
LVISEL1  
LVISEL0  
Operating Mode  
0
0
1
1
0
1
0
1
Reserved  
(1)  
3.3V  
5V  
Reserved  
Notes:  
1. Default setting after a power-on-reset.  
Data Sheet  
84  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Configuration Registers (CONFIG)  
Data Sheet — MC68HC908LJ24  
Section 6. Central Processor Unit (CPU)  
6.1 Contents  
6.2  
6.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
6.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
6.7  
6.8  
6.9  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
Central Processor Unit (CPU)  
85  
Central Processor Unit (CPU)  
6.2 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully  
object-code-compatible version of the M68HC05 CPU. The CPU08  
Reference Manual (Freescale document order number CPU08RM/AD)  
contains a description of the CPU instruction set, addressing modes,  
and architecture.  
6.3 Features  
Feature of the CPU include:  
• Object code fully upward-compatible with M68HC05 Family  
• 16-bit stack pointer with stack manipulation instructions  
• 16-Bit index register with X-register manipulation instructions  
• 8-MHz CPU internal bus frequency  
• 64-Kbyte program/data memory space  
• 16 addressing modes  
• Memory-to-memory data moves without using accumulator  
• Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
• Enhanced binary-coded decimal (BCD) data handling  
• Modular architecture with expandable internal bus definition for  
extension of addressing range beyond 64-Kbytes  
• Low-power stop and wait modes  
Data Sheet  
86  
MC68HC908LJ24/LK24 — Rev. 2.1  
Central Processor Unit (CPU)  
Freescale Semiconductor  
Central Processor Unit (CPU)  
CPU Registers  
6.4 CPU Registers  
Figure 6-1 shows the five CPU registers. CPU registers are not part of  
the memory map.  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
V
0
C
1
1
H
I
N
Z
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 6-1. CPU Registers  
6.4.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the  
accumulator to hold operands and the results of arithmetic/logic  
operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 6-2. Accumulator (A)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
87  
Central Processor Unit (CPU)  
 
Central Processor Unit (CPU)  
6.4.2 Index Register  
The 16-bit index register allows indexed addressing of a 64K-byte  
memory space. H is the upper byte of the index register, and X is the  
lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the  
index register to determine the conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 6-3. Index Register (H:X)  
6.4.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next  
location on the stack. During a reset, the stack pointer is preset to  
$00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The  
stack pointer decrements as data is pushed onto the stack and  
increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the  
stack pointer can function as an index register to access data on the  
stack. The CPU uses the contents of the stack pointer to determine the  
conditional address of the operand.  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 6-4. Stack Pointer (SP)  
Data Sheet  
88  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
CPU Registers  
NOTE: The location of the stack is arbitrary and may be relocated anywhere in  
RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct  
address (page 0) space. For correct operation, the stack pointer must  
point only to RAM locations.  
6.4.4 Program Counter  
The program counter is a 16-bit register that contains the address of the  
next instruction or operand to be fetched.  
Normally, the program counter automatically increments to the next  
sequential memory location every time an instruction or operand is  
fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector  
address located at $FFFE and $FFFF. The vector address is the  
address of the first instruction to be executed after exiting the reset state.  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with Vector from $FFFE and $FFFF  
Figure 6-5. Program Counter (PC)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
89  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
6.4.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five  
flags that indicate the results of the instruction just executed. Bits 6 and  
5 are set permanently to logic 1. The following paragraphs describe the  
functions of the condition code register.  
Bit 7  
V
6
1
1
5
1
1
4
H
X
3
I
2
N
X
1
Z
X
Bit 0  
C
Read:  
Write:  
Reset:  
X
1
X
X = Indeterminate  
Figure 6-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow  
occurs. The signed branch instructions BGT, BGE, BLE, and BLT use  
the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between  
accumulator bits 3 and 4 during an add-without-carry (ADD) or add-  
with-carry (ADC) operation. The half-carry flag is required for binary-  
coded decimal (BCD) arithmetic operations. The DAA instruction  
uses the states of the H and C flags to determine the appropriate  
correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
Data Sheet  
90  
MC68HC908LJ24/LK24 — Rev. 2.1  
Central Processor Unit (CPU)  
Freescale Semiconductor  
Central Processor Unit (CPU)  
CPU Registers  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are  
disabled. CPU interrupts are enabled when the interrupt mask is  
cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but  
before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE: To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is  
serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from  
the stack and restores the interrupt mask from the stack. After any  
reset, the interrupt mask is set and can be cleared only by the clear  
interrupt mask software instruction (CLI).  
N — Negative Flag  
The CPU sets the negative flag when an arithmetic operation, logic  
operation, or data manipulation produces a negative result, setting  
bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z — Zero Flag  
The CPU sets the zero flag when an arithmetic operation, logic  
operation, or data manipulation produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
91  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation  
produces a carry out of bit 7 of the accumulator or when a subtraction  
operation requires a borrow. Some instructions — such as bit test and  
branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
6.5 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the  
instruction set.  
Refer to the CPU08 Reference Manual (Freescale document order  
number CPU08RM/AD) for a description of the instructions and  
addressing modes and more detail about the architecture of the CPU.  
6.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption  
standby modes.  
6.6.1 Wait Mode  
The WAIT instruction:  
• Clears the interrupt mask (I bit) in the condition code register,  
enabling interrupts. After exit from wait mode by interrupt, the I bit  
remains clear. After exit by reset, the I bit is set.  
• Disables the CPU clock.  
Data Sheet  
92  
MC68HC908LJ24/LK24 — Rev. 2.1  
Central Processor Unit (CPU)  
Freescale Semiconductor  
Central Processor Unit (CPU)  
CPU During Break Interrupts  
6.6.2 Stop Mode  
The STOP instruction:  
• Clears the interrupt mask (I bit) in the condition code register,  
enabling external interrupts. After exit from stop mode by external  
interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
• Disables the CPU clock.  
After exiting stop mode, the CPU clock begins running after the oscillator  
stabilization delay.  
6.7 CPU During Break Interrupts  
If the break module is enabled, a break interrupt causes the CPU to  
execute the software interrupt instruction (SWI) at the completion of the  
current CPU instruction. (See Section 23. Break Module (BRK).) The  
program counter vectors to $FFFC–$FFFD ($FEFC–$FEFD in monitor  
mode).  
A return-from-interrupt instruction (RTI) in the break routine ends the  
break interrupt and returns the MCU to normal operation if the break  
interrupt has been deasserted.  
6.8 Instruction Set Summary  
Table 6-1 provides a summary of the M68HC08 instruction set.  
6.9 Opcode Map  
The opcode map is provided in Table 6-2.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
93  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 1 of 8)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
ADC #opr  
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
ADC opr,SP  
ADC opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A9  
B9  
C9  
D9  
E9  
F9  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Add with Carry  
A (A) + (M) + (C)  
R
R
R R R  
SP1  
SP2  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AB  
BB  
CB  
DB  
EB  
FB  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Add without Carry  
A (A) + (M)  
R
R
R R R  
SP1  
SP2  
9EEB ff  
9EDB ee ff  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
– IMM  
– IMM  
A7  
AF  
ii  
ii  
2
2
AND #opr  
AND opr  
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A4  
B4  
C4  
D4  
E4  
F4  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Logical AND  
A (A) & (M)  
0
R R –  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
ASLX  
ASL opr,X  
ASL ,X  
ASL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38  
48  
58  
68  
78  
dd  
ff  
4
1
1
4
3
5
Arithmetic Shift Left  
(Same as LSL)  
R
R R R  
C
0
b7  
b7  
b0  
b0  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
37  
47  
57  
67  
77  
dd  
4
1
1
4
3
5
C
Arithmetic Shift Right  
R
R
R
R
ff  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24  
rr  
3
DIR (b0)  
11  
13  
15  
17  
19  
1B  
1D  
1F  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
4
4
4
4
4
4
4
4
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BCLR n, opr  
Clear Bit n in M  
Mn 0  
Data Sheet  
94  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary (Sheet 2 of 8)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
BCS rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25  
27  
rr  
rr  
3
3
BEQ rel  
BGE opr  
Branch if Greater Than or Equal To  
(Signed Operands)  
PC (PC) + 2 + rel ? (N V) = 0  
PC (PC) + 2 + rel ? (Z) | (N V) = 0  
– REL  
– REL  
90  
92  
rr  
rr  
3
3
Branch if Greater Than (Signed  
Operands)  
BGT opr  
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28  
29  
22  
rr  
rr  
rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24  
rr  
3
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F  
2E  
rr  
rr  
3
3
BIT #opr  
BIT opr  
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A5  
B5  
C5  
D5  
E5  
F5  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Bit Test  
(A) & (M)  
0
R
R
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
PC (PC) + 2 + rel ? (Z) | (N V) = 1  
– REL  
93  
rr  
3
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
PC (PC) + 2 + rel ? (C) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25  
23  
91  
2C  
2B  
2D  
26  
2A  
20  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
Branch if Less Than (Signed Operands) PC (PC) + 2 + rel ? (N V) =1  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
95  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 3 of 8)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
DIR (b0)  
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
01  
03  
05  
07  
09  
0B  
0D  
0F  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
R
BRN rel  
Branch Never  
PC (PC) + 2  
– REL  
21  
rr  
3
DIR (b0)  
00  
02  
04  
06  
08  
0A  
0C  
0E  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
5
5
5
5
5
5
5
5
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
R
DIR (b0)  
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
10  
12  
14  
16  
18  
1A  
1C  
1E  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
4
4
4
4
4
4
4
4
BSET n,opr  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
BSR rel  
Branch to Subroutine  
– REL  
AD  
rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
IMM  
31  
41  
51  
61  
71  
dd rr  
ii rr  
ii rr  
ff rr  
rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IX1+  
Compare and Branch if Equal  
IX+  
SP1  
CBEQ opr,SP,rel  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
CLR opr  
CLRA  
CLRX  
CLRH  
CLR opr,X  
CLR ,X  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
– INH  
IX1  
IX  
3F  
4F  
5F  
8C  
6F  
7F  
dd  
ff  
3
1
1
1
3
2
4
Clear  
0
0
1
CLR opr,SP  
SP1  
9E6F ff  
Data Sheet  
96  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary (Sheet 4 of 8)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A1  
B1  
C1  
D1  
E1  
F1  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Compare A with M  
(A) – (M)  
R
R
R
R
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
COMX  
COM opr,X  
COM ,X  
COM opr,SP  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
INH  
IX1  
IX  
33  
43  
53  
63  
73  
dd  
ff  
4
1
1
4
3
5
Complement (One’s Complement)  
Compare H:X with M  
0
R
R
R
R
1
SP1  
9E63 ff  
CPHX #opr  
CPHX opr  
IMM  
DIR  
65  
75  
ii ii+1  
dd  
3
4
(H:X) – (M:M + 1)  
R
R
CPX #opr  
CPX opr  
CPX opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A3  
B3  
C3  
D3  
E3  
F3  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
CPX ,X  
Compare X with M  
(X) – (M)  
R
R
R
R
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
SP1  
SP2  
9EE3 ff  
9ED3 ee ff  
DAA  
Decimal Adjust A  
(A)10  
U
R
R
R INH  
72  
2
A (A) – 1 or M (M) – 1 or X (X) – 1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
DBNZ opr,rel  
DBNZA rel  
DBNZX rel  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
DIR  
INH  
– INH  
IX1  
IX  
SP1  
3B  
4B  
5B  
6B  
7B  
dd rr  
rr  
rr  
ff rr  
rr  
5
3
3
5
4
6
Decrement and Branch if Not Zero  
9E6B ff rr  
DEC opr  
DECA  
DECX  
DEC opr,X  
DEC ,X  
DEC opr,SP  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
INH  
IX1  
IX  
3A  
4A  
5A  
6A  
7A  
dd  
ff  
4
1
1
4
3
5
Decrement  
Divide  
R
R
R
R
SP1  
9E6A ff  
A (H:A)/(X)  
H Remainder  
DIV  
R INH  
52  
7
EOR #opr  
EOR opr  
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A8  
B8  
C8  
D8  
E8  
F8  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Exclusive OR M with A  
A (A M)  
0
R
R
9EE8 ff  
9ED8 ee ff  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
97  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 5 of 8)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
INC opr  
INCA  
INCX  
INC opr,X  
INC ,X  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
INH  
IX1  
IX  
3C  
4C  
5C  
6C  
7C  
dd  
ff  
4
1
1
4
3
5
Increment  
R
R
R
INC opr,SP  
SP1  
9E6C ff  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
– IX2  
IX1  
IX  
BC  
CC  
DC  
EC  
FC  
dd  
2
3
4
3
2
hh ll  
ee ff  
ff  
Jump  
PC Jump Address  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD  
CD  
DD  
ED  
FD  
dd  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
hh ll  
ee ff  
ff  
Jump to Subroutine  
IX  
LDA #opr  
LDA opr  
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A6  
B6  
C6  
D6  
E6  
F6  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X ← (M:M + 1)  
X (M)  
0
0
0
R
R
R
R
R
R
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
45  
55  
ii jj  
dd  
3
4
DIR  
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
AE  
BE  
CE  
DE  
EE  
FE  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
9EEE ff  
9EDE ee ff  
LSL opr  
LSLA  
LSLX  
LSL opr,X  
LSL ,X  
LSL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38  
48  
58  
68  
78  
dd  
ff  
4
1
1
4
3
5
Logical Shift Left  
(Same as ASL)  
C
0
R
R
R
R
R
R
b7  
b0  
SP1  
9E68 ff  
LSR opr  
LSRA  
LSRX  
LSR opr,X  
LSR ,X  
LSR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
34  
44  
54  
64  
74  
dd  
4
1
1
4
3
5
0
C
Logical Shift Right  
0
R
ff  
b7  
b0  
SP1  
9E64 ff  
Data Sheet  
98  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary (Sheet 6 of 8)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E  
5E  
6E  
7E  
dd dd  
dd  
ii dd  
dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
IMD  
IX+D  
Move  
0
0
R
R
H:X (H:X) + 1 (IX+D, DIX+)  
MUL  
Unsigned multiply  
X:A (X) × (A)  
0 INH  
42  
5
NEG opr  
NEGA  
NEGX  
NEG opr,X  
NEG ,X  
NEG opr,SP  
DIR  
INH  
INH  
IX1  
IX  
30  
40  
50  
60  
70  
dd  
ff  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
Negate (Two’s Complement)  
R
R
R
R
SP1  
9E60 ff  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
1
3
A (A[3:0]:A[7:4])  
62  
ORA #opr  
ORA opr  
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
AA  
BA  
CA  
DA  
EA  
FA  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Inclusive OR A and M  
A (A) | (M)  
0
R
R
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
PULH  
PULX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
– INH  
– INH  
– INH  
87  
8B  
89  
86  
8A  
88  
2
2
2
2
2
2
ROL opr  
ROLA  
ROLX  
ROL opr,X  
ROL ,X  
ROL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
39  
49  
59  
69  
79  
dd  
ff  
4
1
1
4
3
5
C
Rotate Left through Carry  
R
R
R
R
b7  
b0  
SP1  
9E69 ff  
ROR opr  
RORA  
RORX  
ROR opr,X  
ROR ,X  
ROR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
36  
46  
56  
66  
76  
dd  
4
1
1
4
3
5
C
Rotate Right through Carry  
Reset Stack Pointer  
R
R
R
R
ff  
b7  
b0  
SP1  
9E66 ff  
RSP  
SP $FF  
– INH  
9C  
1
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
99  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 7 of 8)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
Return from Interrupt  
R
R
R
R
R
R INH  
80  
81  
7
4
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
– INH  
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2  
B2  
C2  
D2  
E2  
F2  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
IX2  
IX1  
Subtract with Carry  
A (A) – (M) – (C)  
R
R
R
R
IX  
SP1  
SP2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
STA opr  
DIR  
EXT  
IX2  
– IX1  
IX  
B7  
C7  
D7  
E7  
F7  
dd  
3
4
4
3
2
4
5
hh ll  
ee ff  
ff  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
R
R
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
R
R
– DIR  
– INH  
35  
8E  
dd  
4
1
STOP  
Enable IRQ Pin; Stop Oscillator  
I 0; Stop Oscillator  
STX opr  
STX opr  
DIR  
EXT  
IX2  
– IX1  
IX  
BF  
CF  
DF  
EF  
FF  
dd  
3
4
4
3
2
4
5
hh ll  
ee ff  
ff  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
R
R
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A0  
B0  
C0  
D0  
E0  
F0  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Subtract  
A (A) – (M)  
R
– – R R R  
9EE0 ff  
9ED0 ee ff  
Data Sheet  
100  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary (Sheet 8 of 8)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
SWI  
Software Interrupt  
1
– INH  
83  
9
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
R
R
R
R
R
R INH  
– INH  
– INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
A (CCR)  
TST opr  
TSTA  
TSTX  
TST opr,X  
TST ,X  
TST opr,SP  
DIR  
INH  
INH  
IX1  
IX  
3D  
4D  
5D  
6D  
7D  
dd  
ff  
3
1
1
3
2
4
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
R
R
SP1  
9E6D ff  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
(SP) (H:X) – 1  
A
C
Accumulator  
Carry/borrow bit  
n
Any bit  
opr Operand (one or two bytes)  
PC Program counter  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
CCR Condition code register  
dd Direct address of operand  
dd rr Direct address of operand and relative offset of branch instruction  
DD Direct to direct addressing mode  
DIR Direct addressing mode  
rel  
rr  
Relative program counter offset byte  
Relative program counter offset byte  
DIX+ Direct to indexed with post increment addressing mode  
ee ff High and low bytes of offset in indexed, 16-bit offset addressing  
EXT Extended addressing mode  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
ff  
H
H
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
hh ll High and low bytes of operand address in extended addressing  
I
Interrupt mask  
ii  
Immediate operand byte  
&
|
( )  
Logical AND  
Logical OR  
Logical EXCLUSIVE OR  
Contents of  
IMD Immediate source to direct destination addressing mode  
IMM Immediate addressing mode  
INH Inherent addressing mode  
IX  
Indexed, no offset addressing mode  
–( ) Negation (two’s complement)  
IX+  
Indexed, no offset, post increment addressing mode  
#
Immediate value  
Sign extend  
Loaded with  
If  
IX+D Indexed with post increment to direct addressing mode  
IX1 Indexed, 8-bit offset addressing mode  
IX1+ Indexed, 8-bit offset, post increment addressing mode  
«
?
IX2  
M
N
Indexed, 16-bit offset addressing mode  
Memory location  
Negative bit  
:
R
Concatenated with  
Set or cleared  
Not affected  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
101  
Central Processor Unit (CPU)  
Table 6-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
3
BRN  
REL 3 DIR  
3
BHI  
REL  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
3
BEQ  
1
1
2
IX1 3 SP1 1 IX  
5
1
1
INH  
4
RTS  
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
CMP  
EXT 3 IX2  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
4
4
4
4
4
4
4
4
4
4
4
4
SP2 2 IX1  
5
CMP  
SP2 2 IX1  
5
SBC  
SP2 2 IX1  
5
CPX  
SP2 2 IX1  
5
AND  
SP2 2 IX1  
5
BIT  
SP2 2 IX1  
5
LDA  
SP2 2 IX1  
5
STA  
SP2 2 IX1  
5
EOR  
SP2 2 IX1  
5
ADC  
SP2 2 IX1  
5
ORA  
SP2 2 IX1  
5
ADD  
SP2 2 IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1 1 IX  
4
CMP  
SP1 1 IX  
4
SBC  
SP1 1 IX  
4
CPX  
SP1 1 IX  
4
AND  
SP1 1 IX  
4
BIT  
SP1 1 IX  
4
LDA  
SP1 1 IX  
4
STA  
SP1 1 IX  
4
EOR  
SP1 1 IX  
4
ADC  
SP1 1 IX  
4
ORA  
SP1 1 IX  
4
ADD  
SP1 1 IX  
5
4
4
6
4
2
3
4
3
2
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
CBEQ  
BLT  
CMP  
CMP  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
IMM 3 IMM 3 IX1+  
4
SP1 2 IX+  
REL 2 IMM 2 DIR  
5
7
3
2
DAA  
3
BGT  
2
SBC  
3
SBC  
4
SBC  
3
SBC  
2
SBC  
BRSET1 BSET1  
MUL  
INH  
DIV  
INH  
NSA  
3
DIR  
5
2
DIR  
4
1
1
1
2
2
3
2
2
2
2
2
INH  
1
INH  
3
REL 2 IMM 2 DIR  
3
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
2
CPX  
3
CPX  
4
CPX  
3
CPX  
2
CPX  
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
COM  
SWI  
BLE  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1 1 IX  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
LSR  
SP1 1 IX  
3
LSR  
2
2
2
AND  
IMM 2 DIR  
2
BIT  
IMM 2 DIR  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
3
AND  
4
AND  
3
AND  
2
AND  
4
BRSET2 BSET2  
TAP  
TXS  
3
DIR  
5
2
DIR  
4
1
3
1
INH  
INH  
2
2
2
2
2
2
2
2
4
3
4
4
1
2
3
BIT  
4
BIT  
3
BIT  
2
BIT  
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
CPHX  
TPA  
TSX  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
2
DIR  
3
INH  
INH  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
3
LDA  
4
LDA  
3
LDA  
2
LDA  
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
SP1 1 IX  
5
ASR  
SP1 1 IX  
5
LSL  
SP1 1 IX  
5
ROL  
SP1 1 IX  
5
DEC  
SP1 1 IX  
ROR  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
3
ASR  
1
3
STA  
4
STA  
3
STA  
2
STA  
7
BRCLR3 BCLR3  
TAX  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
INH  
4
LSL  
3
LSL  
1
CLC  
INH  
1
3
EOR  
4
EOR  
3
EOR  
2
EOR  
8
BRSET4 BSET4 BHCC  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
4
ROL  
3
ROL  
3
ADC  
4
ADC  
3
ADC  
2
ADC  
9
BRCLR4 BCLR4 BHCS  
SEC  
INH  
2
CLI  
INH  
2
SEI  
INH  
1
RSP  
INH  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
3
BMC  
REL 2 DIR  
3
BMS  
REL 2 DIR  
3
BIL  
4
DEC  
3
DEC  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
ORA  
4
ORA  
3
ORA  
2
ORA  
A
B
C
D
E
F
BRSET5 BSET5  
3
DIR  
5
2
DIR  
4
5
3
3
5
6
4
3
ADD  
4
ADD  
3
ADD  
2
ADD  
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
DBNZ  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
INC  
IX1  
3
TST  
IX1  
4
MOV  
IMD  
3
CLR  
IX1  
SP1 2 IX  
5
4
INC  
3
INC  
2
JMP  
DIR  
4
JSR  
4
JMP  
3
JMP  
IX1  
5
JSR  
IX1  
3
LDX  
2
BRSET6 BSET6  
INCA  
INCX  
INC  
SP1 1 IX  
4
TST  
SP1 1 IX  
JMP  
3
DIR  
5
2
DIR  
4
INH  
1
TSTA  
INH  
5
MOV  
DD  
1
CLRA  
INH  
INH  
1
TSTX  
INH  
4
MOV  
DIX+  
1
CLRX  
INH  
2
2
2
1
1
IX  
3
TST  
2
TST  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
4
JSR  
IX  
2
LDX  
BRCLR6 BCLR6  
NOP  
3
DIR  
5
2
DIR  
4
INH  
2
2
2
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
LDX  
4
LDX  
BRSET7 BSET7  
MOV  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
BIH  
2
IX+D  
1
1
4
4
SP2 2 IX1  
5
3
3
SP1 1 IX  
4
3
CLR  
4
CLR  
SP1 1 IX  
2
CLR  
3
STX  
4
STX  
3
STX  
2
STX  
BRCLR7 BCLR7  
DIR DIR  
STX  
SP2 2 IX1  
STX  
SP1 1 IX  
3
2
REL 2 DIR  
3
1
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Data Sheet — MC68HC908LJ24  
Section 7. Oscillator (OSC)  
7.1 Contents  
7.2  
7.3  
7.4  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
X-tal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
7.5  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . .106  
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . .106  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . .106  
Internal RC Clock (ICLK) . . . . . . . . . . . . . . . . . . . . . . . . . .106  
CGM Oscillator Clock (CGMXCLK) . . . . . . . . . . . . . . . . . .106  
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . .106  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.5.5  
7.5.6  
7.6  
7.6.1  
7.6.2  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
7.7  
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . .107  
7.2 Introduction  
The oscillator module provides the reference clock for the clock  
generator module (CGM), the real time clock module (RTC), and other  
MCU sub-systems.  
The oscillator module consist of two types of oscillator circuits:  
• Internal RC oscillator  
• 32.768kHz crystal (x-tal) oscillator  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
103  
Oscillator (OSC)  
 
 
Oscillator (OSC)  
The reference clock for the CGM, real time clock module (RTC) and  
other MCU sub-systems is driven by the crystal oscillator. The COP  
module is always driven by internal RC clock.  
The internal RC oscillator runs continuously after a POR or reset and is  
always available in run and wait modes. In stop mode, it can be disabled  
by setting the STOP_IRCDIS bit in CONFIG2 register.  
Figure 7-1. shows the block diagram of the oscillator module.  
From SIM  
CONFIG2  
EN  
ICLK  
STOP_IRCDIS  
INTERNAL RC  
OSCILLATOR  
To SIM, COP  
To CGM PLL  
INTERNAL RC OSCILLATOR  
CGMRCLK  
CGMXCLK  
CONFIG2  
STOP_XCLKEN  
To RTC, ADC, LCD,  
CGM Clock Selection MUX  
CRYSTAL OSCILLATOR  
MCU  
OSC1  
OSC2  
RB  
RS*  
*RS can be zero (shorted) when used with higher-frequency crystals.  
Refer to manufacturer’s data.  
X1  
See Section 24. for component value requirements.  
32.768kHz  
(typical)  
C1  
C2  
Figure 7-1. Oscillator Module Block Diagram  
Data Sheet  
104  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Oscillator (OSC)  
 
Oscillator (OSC)  
Internal Oscillator  
7.3 Internal Oscillator  
The internal RC oscillator clock (ICLK) is a free running 64kHz clock (at  
= 5V) that requires no external components. It is the reference clock  
V
DD  
input to the computer operating properly (COP) module.  
The ICLK can be turned off in stop mode by setting the STOP_IRCDIS  
bit in CONFIG2. After reset, the bit is clear by default and ICLK is  
enabled during stop mode.  
7.4 X-tal Oscillator  
The crystal (x-tal) oscillator circuit is designed for use with an external  
32.768kHz crystal or ceramic resonator to provide an accurate clock  
source.  
In its typical configuration, the X-tal oscillator is connected in a Pierce  
oscillator configuration, as shown in Figure 7-1. This figure shows only  
the logical representation of the internal components and may not  
represent actual circuitry. The oscillator configuration uses five  
components:  
• Crystal, X (32.768kHz)  
1
• Fixed capacitor, C  
1
• Tuning capacitor, C (can also be a fixed capacitor)  
2
• Feedback resistor, RB  
• Series resistor, RS (optional)  
The series resistor (RS) is included in the diagram to follow strict Pierce  
oscillator guidelines and may not be required for all ranges of operation,  
especially with high frequency crystals. Refer to the crystal  
manufacturer’s data for more information.  
7.5 I/O Signals  
The following paragraphs describe the oscillator I/O signals.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
105  
Oscillator (OSC)  
Oscillator (OSC)  
7.5.1 Crystal Amplifier Input Pin (OSC1)  
OSC1 pin is an input to the crystal oscillator amplifier. Schmitt trigger and  
glitch filter are implemented on this pin to improve EMC performance.  
See Section 24. Electrical Specifications for detail specification of the  
glitch filter.  
7.5.2 Crystal Amplifier Output Pin (OSC2)  
OSC2 pin is the output of the crystal oscillator inverting amplifier.  
7.5.3 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal from the system integration module (SIM)  
enables/disables the x-tal oscillator circuit.  
7.5.4 Internal RC Clock (ICLK)  
The ICLK clock is the output from the internal RC oscillator. This clock  
drives the SIM and COP modules.  
7.5.5 CGM Oscillator Clock (CGMXCLK)  
The CGMXCLK clock is the output from the x-tal oscillator. This clock  
drives to CGM, real time clock module, analog-to-digital converter, liquid  
crystal display driver module, and other MCU sub-systems.  
7.5.6 CGM Reference Clock (CGMRCLK)  
This is buffered signal of CGMXCLK, it is used by the CGM as the  
phase-locked-loop (PLL) reference clock.  
7.6 Low Power Modes  
The WAIT and STOP instructions put the MCU in low-power  
consumption standby modes.  
Data Sheet  
106  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Oscillator (OSC)  
Oscillator (OSC)  
Oscillator During Break Mode  
7.6.1 Wait Mode  
7.6.2 Stop Mode  
The WAIT instruction has no effect on the oscillator module. CGMXCLK,  
CGMRCLK, and ICLK continues to drive the MCU modules.  
The STOP instruction clears the SIMOSCEN signal, and hence the  
CGMXCLK (and CGMRCLK) clock stops running. For continuous  
CGMXCLK operation in stop mode, set the STOP_XCLKEN to logic 1  
before entering stop mode. Continuous CGMXCLK operation in stop  
mode allows the RTC module to generate interrupts to wake up the CPU.  
By default, the internal RC oscillator clock, ICLK, continues to run in stop  
mode. To disable the ICLK in stop mode, set the STOP_IRCDIS bit to  
logic 1 before entering stop mode.  
7.7 Oscillator During Break Mode  
The oscillator circuits continue to drive CGMXCLK, CGMRCLK, and  
ICLK when the device enters the break state.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
107  
Oscillator (OSC)  
Oscillator (OSC)  
Data Sheet  
108  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Oscillator (OSC)  
Data Sheet — MC68HC908LJ24  
Section 8. Clock Generator Module (CGM)  
8.1 Contents  
8.2  
8.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
8.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Oscillator Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . .114  
PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . .116  
Manual and Automatic PLL Bandwidth Modes. . . . . . . . . .116  
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
Special Programming Exceptions . . . . . . . . . . . . . . . . . . .122  
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . .122  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . .123  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.4.6  
8.4.7  
8.4.8  
8.4.9  
8.5  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . .124  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
8.5.7  
8.5.8  
PLL Analog Power Pin (V  
) . . . . . . . . . . . . . . . . . . . . . .124  
DDA  
PLL Analog Ground Pin (V  
) . . . . . . . . . . . . . . . . . . . . .124  
SSA  
Oscillator Output Frequency Signal (CGMXCLK) . . . . . . .124  
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . .124  
CGM VCO Clock Output (CGMVCLK) . . . . . . . . . . . . . . . .125  
CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . .125  
CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . .125  
8.6  
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . .128  
PLL Multiplier Select Registers . . . . . . . . . . . . . . . . . . . . .130  
PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . .131  
PLL Reference Divider Select Register . . . . . . . . . . . . . . .132  
8.6.1  
8.6.2  
8.6.3  
8.6.4  
8.6.5  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
Clock Generator Module (CGM)  
109  
 
Clock Generator Module (CGM)  
8.7  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
8.8  
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134  
CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . .134  
8.8.1  
8.8.2  
8.8.3  
8.9  
Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . .135  
Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . .135  
Parametric Influences on Reaction Time . . . . . . . . . . . . . .135  
Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
8.9.1  
8.9.2  
8.9.3  
8.2 Introduction  
This section describes the clock generator module (CGM). The CGM  
generates the base clock signal, CGMOUT, which is based on either the  
oscillator clock divided by two or the divided phase-locked loop (PLL)  
clock, CGMPCLK, divided by two. CGMOUT is the clock from which the  
SIM derives the system clocks, including the bus clock, which is at a  
frequency of CGMOUT÷2.  
The PLL is a frequency generator designed for use with a low frequency  
crystal (typically 32.768kHz) to generate a base frequency and dividing  
to a maximum bus frequency of 8MHz.  
Data Sheet  
110  
MC68HC908LJ24/LK24 — Rev. 2.1  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
Features  
8.3 Features  
Features of the CGM include:  
• Phase-locked loop with output frequency in integer multiples of an  
integer dividend of the crystal reference  
• Low-frequency crystal operation with low-power operation and  
high-output frequency resolution  
• Programmable prescaler for power-of-two increases in frequency  
• Programmable hardware voltage-controlled oscillator (VCO) for  
low-jitter operation  
• Automatic bandwidth control mode for low-jitter operation  
• Automatic frequency lock detector  
• CPU interrupt on entry or exit from locked condition  
• Configuration register bit to allow oscillator operation during stop  
mode  
8.4 Functional Description  
The CGM consists of three major sub-modules:  
• Oscillator module — The oscillator module generates the constant  
reference frequency clock, CGMRCLK (buffered CGMXCLK).  
• Phase-locked loop (PLL) — The PLL generates the  
programmable VCO frequency clock, CGMVCLK, and the divided,  
CGMPCLK. The CGMPCLK is one of the reference clocks to the  
base clock selector circuit.  
• Base clock selector circuit — This software-controlled circuit  
selects the one of three clocks as the base clock, CGMOUT:  
CGMXCLK, CGMXCLK divided by two, or CGMPCLK divided by  
two.  
Figure 8-1 shows the structure of the CGM.  
Figure 8-2 is a summary of the CGM registers.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
111  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
OSCILLATOR (OSC) MODULE  
See Section 7. Oscillator (OSC).  
SIMOSCEN  
From SIM  
ICLK  
INTERNAL RC OSC  
To SIM (and COP)  
T0 RTC, ADC, LCD  
CGMXCLK  
CGMRCLK  
OSC2  
CRYSTAL OSCILLATOR  
OSC1  
USER MODE:  
CGMOUT = B  
RESET: A  
A
PHASE-LOCKED LOOP (PLL)  
CGMOUT  
A
RESET: A  
A
÷ 2  
B1  
To SIM  
S
B1  
S
B1  
S
CGMRDV  
SIMDIV2  
From SIM  
CGMRCLK  
CGMXFC  
REFERENCE  
DIVIDER  
BASE  
CLOCK  
SELECT  
CIRCUIT  
BCS  
CGMPCLK  
VPR[1:0]  
R
DIV2CLK  
CONFIG2  
RDS[3:0]  
VDDA  
VSSA  
VRS[7:0]  
2E  
L
VOLTAGE  
CONTROLLED  
OSCILLATOR  
PHASE  
DETECTOR  
LOOP  
FILTER  
PLL ANALOG  
AUTOMATIC  
MODE  
CONTROL  
CGMINT  
To SIM  
LOCK  
DETECTOR  
INTERRUPT  
CONTROL  
LOCK  
AUTO  
ACQ  
PLLIE  
PLLF  
MUL[11:0]  
PRE[1:0]  
2P  
N
CGMVCLK  
CGMVDV  
FREQUENCY  
DIVIDER  
FREQUENCY  
DIVIDER  
CGMPCLK  
Figure 8-1. CGM Block Diagram  
Data Sheet  
112  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
Functional Description  
Addr.  
Register Name  
Bit 7  
PLLIE  
0
6
5
PLLON  
1
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
PLLF  
BCS  
PRE1  
PRE0  
VPR1  
VPR0  
PLL Control Register  
(PTCL)  
$0036  
0
0
0
0
0
0
0
0
0
0
LOCK  
PLL Bandwidth Control  
AUTO  
ACQ  
R
$0037  
$0038  
$0039  
$003A  
$003B  
NOTES:  
Register Write:  
(PBWC)  
Reset:  
0
0
0
0
0
0
0
0
0
MUL11  
0
0
MUL10  
0
0
MUL9  
0
0
MUL8  
0
Read:  
PLL Multiplier Select  
Register High Write:  
(PMSH)  
Reset:  
0
0
0
0
Read:  
PLL Multiplier Select  
MUL7  
0
MUL6  
1
MUL5  
0
MUL4  
0
MUL3  
0
MUL2  
0
MUL1  
0
MUL0  
0
Register Low Write:  
(PMSL)  
Reset:  
Read:  
PLL VCO Range Select  
VRS7  
VRS6  
VRS5  
VRS4  
VRS3  
0
VRS2  
0
VRS1  
0
VRS0  
0
Register Write:  
(PMRS)  
Reset:  
0
0
1
0
0
0
0
0
Read:  
PLL Reference Divider  
RDS3  
RDS2  
RDS1  
0
RDS0  
1
Select Register Write:  
(PMDS)  
0
0
Reset:  
0
0
0
0
= Unimplemented  
R
= Reserved  
1. When AUTO = 0, PLLIE is forced clear and is read-only.  
2. When AUTO = 0, PLLF and LOCK read as clear.  
3. When AUTO = 1, ACQ is read-only.  
4. When PLLON = 0 or VRS7:VRS0 = $0, BCS is forced clear and is read-only.  
5. When PLLON = 1, the PLL programming register is read-only.  
6. When BCS = 1, PLLON is forced set and is read-only.  
Figure 8-2. CGM I/O Register Summary  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
113  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
8.4.1 Oscillator Module  
The oscillator module provides two clock outputs CGMXCLK and  
CGMRCLK to the CGM module. CGMXCLK or CGMXCLK divide-by-two  
can be selected to drive the SIM module to generate the system bus  
clocks. CGMRCLK is the reference clock for the phase-lock-loop, to  
generate a higher frequency clock. The oscillator module also provides  
the reference clock for the real time clock (RTC) module.  
See Section 7. Oscillator (OSC) for detailed description on oscillator  
module. See Section 12. Real Time Clock (RTC) for detailed  
description on RTC.  
8.4.2 Phase-Locked Loop Circuit (PLL)  
The PLL is a frequency generator that can operate in either acquisition  
mode or tracking mode, depending on the accuracy of the output  
frequency. The PLL can change between acquisition and tracking  
modes either automatically or manually.  
8.4.3 PLL Circuits  
The PLL consists of these circuits:  
• Voltage-controlled oscillator (VCO)  
• Reference divider  
• Frequency pre-scaler  
• Modulo VCO frequency divider  
• Phase detector  
• Loop filter  
• Lock detector  
Data Sheet  
114  
MC68HC908LJ24/LK24 — Rev. 2.1  
Clock Generator Module (CGM)  
Freescale Semiconductor  
 
Clock Generator Module (CGM)  
Functional Description  
The operating range of the VCO is programmable for a wide range of  
frequencies and for maximum immunity to external noise, including  
supply and CGMXFC noise. The VCO frequency is bound to a range  
from roughly one-half to twice the center-of-range frequency, f  
.
VRS  
Modulating the voltage on the CGMXFC pin changes the frequency  
within this range. By design, f is equal to the nominal center-of-range  
VRS  
frequency, f  
factor, E, or (L × 2 )f  
, (38.4 kHz) times a linear factor, L, and a power-of-two  
NOM  
E
.
NOM  
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK.  
CGMRCLK runs at a frequency, f , and is fed to the PLL through a  
RCLK  
programmable modulo reference divider, which divides f  
by a  
RCLK  
factor, R. The divider’s output is the final reference clock, CGMRDV,  
running at a frequency, f = f /R. With an external crystal  
RDV  
RCLK  
(30kHz–100kHz), always set R = 1 for specified performance. With an  
external high-frequency clock source, use R to divide the external  
frequency to between 30kHz and 100kHz.  
The VCO’s output clock, CGMVCLK, running at a frequency, f  
fed back through a programmable pre-scaler divider and a  
, is  
VCLK  
programmable modulo divider. The pre-scaler divides the VCO clock by  
a power-of-two factor P (the CGMPCLK) and the modulo divider reduces  
the VCO clock by a factor, N. The dividers’ output is the VCO feedback  
P
clock, CGMVDV, running at a frequency, f  
= f  
/(N × 2 ). (See  
VDV  
VCLK  
8.4.6 Programming the PLL for more information.)  
The phase detector then compares the VCO feedback clock, CGMVDV,  
with the final reference clock, CGMRDV. A correction pulse is generated  
based on the phase difference between the two signals. The loop filter  
then slightly alters the DC voltage on the external capacitor connected  
to CGMXFC based on the width and direction of the correction pulse.  
The filter can make fast or slow corrections depending on its mode,  
described in 8.4.4 Acquisition and Tracking Modes. The value of the  
external capacitor and the reference frequency determines the speed of  
the corrections and the stability of the PLL.  
The lock detector compares the frequencies of the VCO feedback clock,  
CGMVDV, and the final reference clock, CGMRDV. Therefore, the  
speed of the lock detector is directly proportional to the final reference  
frequency, f  
. The circuit determines the mode of the PLL and the lock  
RDV  
condition based on this comparison.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
115  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
8.4.4 Acquisition and Tracking Modes  
The PLL filter is manually or automatically configurable into one of two  
operating modes:  
• Acquisition mode — In acquisition mode, the filter can make large  
frequency corrections to the VCO. This mode is used at PLL start  
up or when the PLL has suffered a severe noise hit and the VCO  
frequency is far off the desired frequency. When in acquisition  
mode, the ACQ bit is clear in the PLL bandwidth control register.  
(See 8.6.2 PLL Bandwidth Control Register.)  
• Tracking mode — In tracking mode, the filter makes only small  
corrections to the frequency of the VCO. PLL jitter is much lower  
in tracking mode, but the response to noise is also slower. The  
PLL enters tracking mode when the VCO frequency is nearly  
correct, such as when the PLL is selected as the base clock  
source. (See 8.4.8 Base Clock Selector Circuit.) The PLL is  
automatically in tracking mode when not in acquisition mode or  
when the ACQ bit is set.  
8.4.5 Manual and Automatic PLL Bandwidth Modes  
The PLL can change the bandwidth or operational mode of the loop filter  
manually or automatically. Automatic mode is recommended for most  
users.  
In automatic bandwidth control mode (AUTO = 1), the lock detector  
automatically switches between acquisition and tracking modes.  
Automatic bandwidth control mode also is used to determine when the  
VCO clock, CGMVCLK, is safe to use as the source for the base clock,  
CGMOUT. (See 8.6.2 PLL Bandwidth Control Register.) If PLL  
interrupts are enabled, the software can wait for a PLL interrupt request  
and then check the LOCK bit. If interrupts are disabled, software can poll  
the LOCK bit continuously (during PLL start-up, usually) or at periodic  
intervals. In either case, when the LOCK bit is set, the VCO clock is safe  
to use as the source for the base clock. (See 8.4.8 Base Clock Selector  
Circuit.) If the VCO is selected as the source for the base clock and the  
LOCK bit is clear, the PLL has suffered a severe noise hit and the  
software must take appropriate action, depending on the application.  
(See 8.7 Interrupts for information and precautions on using interrupts.)  
Data Sheet  
116  
MC68HC908LJ24/LK24 — Rev. 2.1  
Clock Generator Module (CGM)  
Freescale Semiconductor  
 
Clock Generator Module (CGM)  
Functional Description  
The following conditions apply when the PLL is in automatic bandwidth  
control mode:  
• The ACQ bit (See 8.6.2 PLL Bandwidth Control Register.) is a  
read-only indicator of the mode of the filter. (See 8.4.4  
Acquisition and Tracking Modes.)  
• The ACQ bit is set when the VCO frequency is within a certain  
tolerance and is cleared when the VCO frequency is out of a  
certain tolerance. (See 8.9 Acquisition/Lock Time  
Specifications for more information.)  
• The LOCK bit is a read-only indicator of the locked state of the  
PLL.  
• The LOCK bit is set when the VCO frequency is within a certain  
tolerance and is cleared when the VCO frequency is out of a  
certain tolerance. (See 8.9 Acquisition/Lock Time  
Specifications for more information.)  
• CPU interrupts can occur if enabled (PLLIE = 1) when the PLL’s  
lock condition changes, toggling the LOCK bit. (See 8.6.1 PLL  
Control Register.)  
The PLL also may operate in manual mode (AUTO = 0). Manual mode  
is used by systems that do not require an indicator of the lock condition  
for proper operation. Such systems typically operate well below  
f
.
BUSMAX  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
117  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
The following conditions apply when in manual mode:  
• ACQ is a writable control bit that controls the mode of the filter.  
Before turning on the PLL in manual mode, the ACQ bit must be  
clear.  
• Before entering tracking mode (ACQ = 1), software must wait a  
given time, tACQ (See 8.9 Acquisition/Lock Time  
Specifications.), after turning on the PLL by setting PLLON in the  
PLL control register (PCTL).  
• Software must wait a given time, tAL, after entering tracking mode  
before selecting the PLL as the clock source to CGMOUT  
(BCS = 1).  
• The LOCK bit is disabled.  
• CPU interrupts from the CGM are disabled.  
8.4.6 Programming the PLL  
The following procedure shows how to program the PLL.  
NOTE: The round function in the following equations means that the real  
number should be rounded to the nearest integer number.  
1. Choose the desired bus frequency, f  
.
BUSDES  
2. Calculate the desired VCO frequency, f  
.
VCLKDES  
P
P
f
= 2 × f  
= 2 × 4 × f  
CGMPCLK BUSDES  
VCLKDES  
where P is the power of two multiplier, and can be 0, 1, 2, or 3  
3. Choose a practical PLL reference frequency, f , and the  
RCLK  
reference clock divider, R. Typically, the reference is 32.768kHz  
and R = 1.  
Frequency errors to the PLL are corrected at a rate of f  
/R. For  
RCLK  
stability and lock time reduction, this rate must be as fast as  
possible. The VCO frequency must be an integer multiple of this  
rate.  
Data Sheet  
118  
MC68HC908LJ24/LK24 — Rev. 2.1  
Clock Generator Module (CGM)  
Freescale Semiconductor  
 
Clock Generator Module (CGM)  
Functional Description  
The relationship between the VCO frequency, f  
, and the  
VCLK  
reference frequency, f  
, is  
RCLK  
P
2 N  
= ----------- (f  
f
)
RCLK  
VCLK  
R
where N is the integer range multiplier, between 1 and 4095.  
In cases where desired bus frequency has some tolerance,  
choose f  
to a value determined either by other module  
RCLK  
requirements (such as modules which are clocked by CGMXCLK),  
cost requirements, or ideally, as high as the specified range  
allows. See Section 24. Electrical Specifications. Choose the  
reference divider, R = 1.  
When the tolerance on the bus frequency is tight, choose f  
to  
RCLK  
an integer divisor of f  
, and R = 1. If f  
cannot meet this  
RCLK  
BUSDES  
requirement, use the following equation to solve for R with  
practical choices of f  
lowest R.  
, and choose the f  
that gives the  
RCLK  
RCLK  
f
f
VCLKDES  
VCLKDES  
-------------------------  
-------------------------  
R = round R  
×
integer  
MAX  
f
f
RCLK  
RCLK  
4. Calculate N:  
R × f  
VCLKDES  
------------------------------------  
N = round  
P
f
× 2  
RCLK  
5. Calculate and verify the adequacy of the VCO and bus  
frequencies f  
and f  
.
VCLK  
BUS  
P
2 N  
R
f
= ----------- (f  
)
RCLK  
VCLK  
f
VCLK  
f
=
-----------  
BUS  
P
2 × 4  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
119  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
6. Select the VCO’s power-of-two range multiplier E, according to  
this table:  
Frequency Range  
E
0
1
2
0 < f  
< 9,830,400  
VCLK  
9,830,400 f  
< 19,660,800  
VCLK  
19,660,800 f  
< 39,321,600  
VCLK  
NOTE: Do not program E to a value of 3.  
7. Select a VCO linear range multiplier, L, where f  
= 38.4kHz  
NOM  
f
VCLK  
--------------------------  
L = round  
E
2 × f  
NOM  
8. Calculate and verify the adequacy of the VCO programmed  
center-of-range frequency, f . The center-of-range frequency is  
VRS  
the midpoint between the minimum and maximum frequencies  
attainable by the PLL.  
E
f
= (L × 2 )f  
VRS  
NOM  
For proper operation,  
E
f
× 2  
NOM  
--------------------------  
f
f  
VCLK  
VRS  
2
9. Verify the choice of P, R, N, E, and L by comparing f  
to f  
VRS  
VCLK  
and f  
. For proper operation, f  
must be within the  
VCLKDES  
VCLK  
application’s tolerance of f  
, and f  
must be as close as  
VCLKDES  
VRS  
possible to f  
VCLK.  
NOTE: Exceeding the recommended maximum bus frequency or VCO  
frequency can crash the MCU.  
Data Sheet  
120  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
Functional Description  
10. Program the PLL registers accordingly:  
a. In the PRE bits of the PLL control register (PCTL), program  
the binary equivalent of P.  
b. In the VPR bits of the PLL control register (PCTL), program  
the binary equivalent of E.  
c. In the PLL multiplier select register low (PMSL) and the PLL  
multiplier select register high (PMSH), program the binary  
equivalent of N.  
d. In the PLL VCO range select register (PMRS), program the  
binary coded equivalent of L.  
e. In the PLL reference divider select register (PMDS), program  
the binary coded equivalent of R.  
NOTE: The values for P, E, N, L, and R can only be programmed when the PLL  
is off (PLLON = 0).  
Table 8-1 provides numeric examples (numbers are in hexadecimal  
notation):  
Table 8-1. Numeric Examples  
f
f
RCLK  
CGMVCLK  
8.0 MHz  
CGMPCLK  
8.0 MHz  
R
1
1
1
1
1
1
1
1
1
1
1
N
P
0
0
0
0
0
0
0
0
1
2
3
E
0
1
1
1
2
2
2
2
2
2
2
L
BUS  
2.0 MHz  
32.768 kHz  
F5  
D1  
80  
83  
D1  
80  
82  
C0  
D0  
D0  
D0  
D0  
9.8304 MHz  
10.0 MHz  
16 MHz  
9.8304 MHz  
10.0 MHz  
16 MHz  
2.4576 MHz 32.768 kHz  
12C  
132  
1E9  
258  
263  
384  
3D1  
1E9  
F5  
2.5 MHz  
4.0 MHz  
32.768 kHz  
32.768 kHz  
19.6608 MHz 19.6608 MHz 4.9152 MHz 32.768 kHz  
20 MHz 20 MHz 5.0 MHz 32.768 kHz  
29.4912 MHz 29.4912 MHz 7.3728 MHz 32.768 kHz  
32 MHz  
32 MHz  
32 MHz  
32 MHz  
32 MHz  
16 MHz  
8 MHz  
4 MHz  
8.0 MHz  
4.0 MHz  
2.0 MHz  
1.0 MHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
7B  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
121  
Clock Generator Module (CGM)  
 
Clock Generator Module (CGM)  
8.4.7 Special Programming Exceptions  
The programming method described in 8.4.6 Programming the PLL  
does not account for three possible exceptions. A value of 0 for R, N, or  
L is meaningless when used in the equations given. To account for these  
exceptions:  
• A 0 value for R or N is interpreted exactly the same as a value of 1.  
• A 0 value for L disables the PLL and prevents its selection as the  
source for the base clock.  
(See 8.4.8 Base Clock Selector Circuit.)  
8.4.8 Base Clock Selector Circuit  
This circuit is used to select either the oscillator clock, CGMXCLK, or the  
divided VCO clock, CGMPCLK, as the source of the base clock,  
CGMOUT. The two input clocks go through a transition control circuit  
that waits up to three CGMXCLK cycles and three CGMPCLK cycles to  
change from one clock source to the other. During this time, CGMOUT  
is held in stasis. The output of the transition control circuit is then divided  
by two to correct the duty cycle. Therefore, the bus clock frequency,  
which is one-half of CGMOUT, is one-fourth the frequency of the  
selected clock (CGMXCLK or CGMPCLK).  
For the CGMXCLK, the divide-by-2 can be by-passed by setting the  
DIV2CLK bit in the CONFIG2 register. Therefore, the bus clock  
frequency can be one-half of CGMXCLK.  
The BCS bit in the PLL control register (PCTL) selects which clock drives  
CGMOUT. The divided VCO clock cannot be selected as the base clock  
source if the PLL is not turned on. The PLL cannot be turned off if the  
divided VCO clock is selected. The PLL cannot be turned on or off  
simultaneously with the selection or deselection of the divided VCO  
clock. The divided VCO clock also cannot be selected as the base clock  
source if the factor L is programmed to a 0. This value would set up a  
condition inconsistent with the operation of the PLL, so that the PLL  
would be disabled and the oscillator clock would be forced as the source  
of the base clock.  
Data Sheet  
122  
MC68HC908LJ24/LK24 — Rev. 2.1  
Clock Generator Module (CGM)  
Freescale Semiconductor  
 
 
Clock Generator Module (CGM)  
I/O Signals  
8.4.9 CGM External Connections  
In its typical configuration, the CGM requires up to four external  
components.  
Figure 8-3 shows the external components for the PLL:  
• Bypass capacitor, C  
• Filter network  
BYP  
Care should be taken with PCB routing in order to minimize signal cross  
talk and noise. (See 8.9 Acquisition/Lock Time Specifications for  
routing information, filter network and its effects on PLL performance.)  
MCU  
CGMXFC  
VSSA  
VDDA  
VDD  
10 kΩ  
CBYP  
0.1 µF  
0.01 µF  
0.033 µF  
Note: Filter network in box can be replaced with a 0.47µF capacitor, but will degrade stability.  
Figure 8-3. CGM External Connections  
8.5 I/O Signals  
The following paragraphs describe the CGM I/O signals.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
123  
Clock Generator Module (CGM)  
 
Clock Generator Module (CGM)  
8.5.1 External Filter Capacitor Pin (CGMXFC)  
The CGMXFC pin is required by the loop filter to filter out phase  
corrections. An external filter network is connected to this pin. (See  
Figure 8-3.)  
NOTE: To prevent noise problems, the filter network should be placed as close  
to the CGMXFC pin as possible, with minimum routing distances and no  
routing of other signals across the network.  
8.5.2 PLL Analog Power Pin (V  
)
DDA  
V
V
is a power pin used by the analog portions of the PLL. Connect the  
DDA  
DDA  
pin to the same voltage potential as the V pin.  
DD  
NOTE: Route V  
carefully for maximum noise immunity and place bypass  
DDA  
capacitors as close as possible to the package.  
8.5.3 PLL Analog Ground Pin (V  
)
SSA  
V
is a ground pin used by the analog portions of the PLL. Connect  
SSA  
the V  
pin to the same voltage potential as the V pin.  
SSA  
SS  
NOTE: Route V  
carefully for maximum noise immunity and place bypass  
SSA  
capacitors as close as possible to the package.  
NOTE: On this MCU, the V  
is physically bonded to the V pin.  
SS  
SSA  
8.5.4 Oscillator Output Frequency Signal (CGMXCLK)  
CGMXCLK is the oscillator output signal. It runs at the full speed of the  
oscillator, and is generated directly from the crystal oscillator circuit, the  
RC oscillator circuit, or the internal oscillator circuit.  
8.5.5 CGM Reference Clock (CGMRCLK)  
CGMRCLK is a buffered version of CGMXCLK, this clock is the  
reference clock for the phase-locked-loop circuit.  
Data Sheet  
124  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
CGM Registers  
8.5.6 CGM VCO Clock Output (CGMVCLK)  
CGMVCLK is the clock output from the VCO.  
8.5.7 CGM Base Clock Output (CGMOUT)  
CGMOUT is the clock output of the CGM. This signal goes to the SIM,  
which generates the MCU clocks. CGMOUT is a 50 percent duty cycle  
clock running at twice the bus frequency. CGMOUT is software  
programmable to be equal to CGMXCLK, CGMXCLK divided by two, or  
CGMPCLK divided by two.  
8.5.8 CGM CPU Interrupt (CGMINT)  
CGMINT is the interrupt signal generated by the PLL lock detector.  
The following registers control and monitor operation of the CGM:  
8.6 CGM Registers  
• PLL control register (PCTL)  
(See 8.6.1 PLL Control Register.)  
• PLL bandwidth control register (PBWC)  
(See 8.6.2 PLL Bandwidth Control Register.)  
• PLL multiplier select registers (PMSH and PMSL)  
(See 8.6.3 PLL Multiplier Select Registers.)  
• PLL VCO range select register (PMRS)  
(See 8.6.4 PLL VCO Range Select Register.)  
• PLL reference divider select register (PMDS)  
(See 8.6.5 PLL Reference Divider Select Register.)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
125  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
8.6.1 PLL Control Register  
The PLL control register (PCTL) contains the interrupt enable and flag  
bits, the on/off switch, the base clock selector bit, the prescaler bits, and  
the VCO power-of-two range selector bits.  
Address: $0036  
Bit 7  
PLLIE  
0
6
5
PLLON  
1
4
BCS  
0
3
PRE1  
0
2
PRE0  
0
1
VPR1  
0
Bit 0  
VPR0  
0
Read:  
Write:  
Reset:  
PLLF  
0
= Unimplemented  
Figure 8-4. PLL Control Register (PCTL)  
PLLIE — PLL Interrupt Enable Bit  
This read/write bit enables the PLL to generate an interrupt request  
when the LOCK bit toggles, setting the PLL flag, PLLF. When the  
AUTO bit in the PLL bandwidth control register (PBWC) is clear,  
PLLIE cannot be written and reads as logic 0. Reset clears the PLLIE  
bit.  
1 = PLL interrupts enabled  
0 = PLL interrupts disabled  
PLLF — PLL Interrupt Flag Bit  
This read-only bit is set whenever the LOCK bit toggles. PLLF  
generates an interrupt request if the PLLIE bit also is set. PLLF  
always reads as logic 0 when the AUTO bit in the PLL bandwidth  
control register (PBWC) is clear. Clear the PLLF bit by reading the  
PLL control register. Reset clears the PLLF bit.  
1 = Change in lock condition  
0 = No change in lock condition  
NOTE: Do not inadvertently clear the PLLF bit. Any read or read-modify-write  
operation on the PLL control register clears the PLLF bit.  
Data Sheet  
126  
MC68HC908LJ24/LK24 — Rev. 2.1  
Clock Generator Module (CGM)  
Freescale Semiconductor  
 
Clock Generator Module (CGM)  
CGM Registers  
PLLON — PLL On Bit  
This read/write bit activates the PLL and enables the VCO clock,  
CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the  
base clock, CGMOUT (BCS = 1). (See 8.4.8 Base Clock Selector  
Circuit.) Reset sets this bit so that the loop can stabilize as the MCU  
is powering up.  
1 = PLL on  
0 = PLL off  
BCS — Base Clock Select Bit  
This read/write bit selects either the oscillator output, CGMXCLK, or  
the divided VCO clock, CGMPCLK, as the source of the CGM output,  
CGMOUT. CGMOUT frequency is one-half the frequency of the  
selected clock. BCS cannot be set while the PLLON bit is clear. After  
toggling BCS, it may take up to three CGMXCLK and three  
CGMPCLK cycles to complete the transition from one source clock to  
the other. During the transition, CGMOUT is held in stasis. (See 8.4.8  
Base Clock Selector Circuit.) Reset clears the BCS bit.  
1 = CGMPCLK divided by two drives CGMOUT  
0 = CGMXCLK divided by two drives CGMOUT  
NOTE: PLLON and BCS have built-in protection that prevents the base clock  
selector circuit from selecting the VCO clock as the source of the base  
clock if the PLL is off. Therefore, PLLON cannot be cleared when BCS  
is set, and BCS cannot be set when PLLON is clear. If the PLL is off  
(PLLON = 0), selecting CGMPCLK requires two writes to the PLL control  
register. (See 8.4.8 Base Clock Selector Circuit.)  
PRE1 and PRE0 — Prescaler Program Bits  
These read/write bits control a prescaler that selects the prescaler  
power-of-two multiplier, P. (See 8.4.3 PLL Circuits and 8.4.6  
Programming the PLL.) PRE1 and PRE0 cannot be written when  
the PLLON bit is set. Reset clears these bits.  
These prescaler bits affects the relationship between the VCO clock  
and the final system bus clock.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
127  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
Table 8-2. PRE 1 and PRE0 Programming  
PRE1 and PRE0  
P
0
1
2
3
Prescaler Multiplier  
00  
01  
10  
11  
1
2
4
8
VPR1 and VPR0 — VCO Power-of-Two Range Select Bits  
These read/write bits control the VCO’s hardware power-of-two range  
multiplier E that, in conjunction with L (See 8.4.3 PLL Circuits, 8.4.6  
Programming the PLL, and 8.6.4 PLL VCO Range Select  
Register.) controls the hardware center-of-range frequency, fVRS  
.
VPR1:VPR0 cannot be written when the PLLON bit is set. Reset  
clears these bits.  
Table 8-3. VPR1 and VPR0 Programming  
VCO Power-of-Two  
Range Multiplier  
VPR1 and VPR0  
E
00  
01  
10  
0
1
2
1
2
4
NOTE: Do not program E to a value of 3.  
8.6.2 PLL Bandwidth Control Register  
The PLL bandwidth control register (PBWC):  
• Selects automatic or manual (software-controlled) bandwidth  
control mode  
• Indicates when the PLL is locked  
• In automatic bandwidth control mode, indicates when the PLL is in  
acquisition or tracking mode  
• In manual operation, forces the PLL into acquisition or tracking  
mode  
Data Sheet  
128  
MC68HC908LJ24/LK24 — Rev. 2.1  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
CGM Registers  
Address: $0037  
Bit 7  
6
5
ACQ  
0
4
0
3
0
2
0
1
0
Bit 0  
R
Read:  
AUTO  
Write:  
LOCK  
Reset:  
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 8-5. PLL Bandwidth Control Register (PBWCR)  
AUTO — Automatic Bandwidth Control Bit  
This read/write bit selects automatic or manual bandwidth control.  
When initializing the PLL for manual operation (AUTO = 0), clear the  
ACQ bit before turning on the PLL. Reset clears the AUTO bit.  
1 = Automatic bandwidth control  
0 = Manual bandwidth control  
LOCK — Lock Indicator Bit  
When the AUTO bit is set, LOCK is a read-only bit that becomes set  
when the VCO clock, CGMVCLK, is locked (running at the  
programmed frequency). When the AUTO bit is clear, LOCK reads as  
logic 0 and has no meaning. The write one function of this bit is  
reserved for test, so this bit must always be written a 0. Reset clears  
the LOCK bit.  
1 = VCO frequency correct or locked  
0 = VCO frequency incorrect or unlocked  
ACQ — Acquisition Mode Bit  
When the AUTO bit is set, ACQ is a read-only bit that indicates  
whether the PLL is in acquisition mode or tracking mode. When the  
AUTO bit is clear, ACQ is a read/write bit that controls whether the  
PLL is in acquisition or tracking mode.  
In automatic bandwidth control mode (AUTO = 1), the last-written  
value from manual operation is stored in a temporary location and is  
recovered when manual operation resumes. Reset clears this bit,  
enabling acquisition mode.  
1 = Tracking mode  
0 = Acquisition mode  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
129  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
8.6.3 PLL Multiplier Select Registers  
The PLL multiplier select registers (PMSH and PMSL) contain the  
programming information for the modulo feedback divider.  
Address: $0038  
Bit 7  
0
6
0
5
0
4
0
3
MUL11  
0
2
MUL10  
0
1
MUL9  
0
Bit 0  
MUL8  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 8-6. PLL Multiplier Select Register High (PMSH)  
Address: $0039  
Bit 7  
6
MUL6  
1
5
MUL5  
0
4
MUL4  
0
3
MUL3  
0
2
MUL2  
0
1
MUL1  
0
Bit 0  
MUL0  
0
Read:  
MUL7  
Write:  
Reset:  
0
Figure 8-7. PLL Multiplier Select Register Low (PMSL)  
MUL[11:0] — Multiplier Select Bits  
These read/write bits control the modulo feedback divider that selects  
the VCO frequency multiplier N. (See 8.4.3 PLL Circuits and 8.4.6  
Programming the PLL.) A value of $0000 in the multiplier select  
registers configure the modulo feedback divider the same as a value  
of $0001. Reset initializes the registers to $0040 for a default multiply  
value of 64.  
NOTE: The multiplier select bits have built-in protection such that they cannot  
be written when the PLL is on (PLLON = 1).  
Data Sheet  
130  
MC68HC908LJ24/LK24 — Rev. 2.1  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
CGM Registers  
8.6.4 PLL VCO Range Select Register  
The PLL VCO range select register (PMRS) contains the programming  
information required for the hardware configuration of the VCO.  
Address: $003A  
Bit 7  
VRS7  
0
6
VRS6  
1
5
VRS5  
0
4
VRS4  
0
3
VRS3  
0
2
VRS2  
0
1
VRS1  
0
Bit 0  
VRS0  
0
Read:  
Write:  
Reset:  
Figure 8-8. PLL VCO Range Select Register (PMRS)  
VRS[7:0] — VCO Range Select Bits  
These read/write bits control the hardware center-of-range linear  
multiplier L which, in conjunction with E (See 8.4.3 PLL Circuits,  
8.4.6 Programming the PLL, and 8.6.1 PLL Control Register.),  
controls the hardware center-of-range frequency, f  
. VRS[7:0]  
VRS  
cannot be written when the PLLON bit in the PCTL is set. (See 8.4.7  
Special Programming Exceptions.) A value of $00 in the VCO  
range select register disables the PLL and clears the BCS bit in the  
PLL control register (PCTL). (See 8.4.8 Base Clock Selector Circuit  
and 8.4.7 Special Programming Exceptions.). Reset initializes the  
register to $40 for a default range multiply value of 64.  
NOTE: The VCO range select bits have built-in protection such that they cannot  
be written when the PLL is on (PLLON = 1) and such that the VCO clock  
cannot be selected as the source of the base clock (BCS = 1) if the VCO  
range select bits are all clear.  
The PLL VCO range select register must be programmed correctly.  
Incorrect programming can result in failure of the PLL to achieve lock.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
131  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
8.6.5 PLL Reference Divider Select Register  
The PLL reference divider select register (PMDS) contains the  
programming information for the modulo reference divider.  
Address: $003B  
Bit 7  
0
6
0
5
0
4
0
3
RDS3  
0
2
RDS2  
0
1
RDS1  
0
Bit 0  
RDS0  
1
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 8-9. PLL Reference Divider Select Register (PMDS)  
RDS[3:0] — Reference Divider Select Bits  
These read/write bits control the modulo reference divider that selects  
the reference division factor, R. (See 8.4.3 PLL Circuits and 8.4.6  
Programming the PLL.) RDS[3:0] cannot be written when the  
PLLON bit in the PCTL is set. A value of $00 in the reference divider  
select register configures the reference divider the same as a value of  
$01. (See 8.4.7 Special Programming Exceptions.) Reset  
initializes the register to $01 for a default divide value of 1.  
NOTE: The reference divider select bits have built-in protection such that they  
cannot be written when the PLL is on (PLLON = 1).  
NOTE: The default divide value of 1 is recommended for all applications.  
Data Sheet  
132  
MC68HC908LJ24/LK24 — Rev. 2.1  
Clock Generator Module (CGM)  
Freescale Semiconductor  
 
Clock Generator Module (CGM)  
Interrupts  
8.7 Interrupts  
When the AUTO bit is set in the PLL bandwidth control register (PBWC),  
the PLL can generate a CPU interrupt request every time the LOCK bit  
changes state. The PLLIE bit in the PLL control register (PCTL) enables  
CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL,  
becomes set whether interrupts are enabled or not. When the AUTO bit  
is clear, CPU interrupts from the PLL are disabled and PLLF reads as  
logic 0.  
Software should read the LOCK bit after a PLL interrupt request to see  
if the request was due to an entry into lock or an exit from lock. When the  
PLL enters lock, the divided VCO clock, CGMPCLK, divided by two can  
be selected as the CGMOUT source by setting BCS in the PCTL. When  
the PLL exits lock, the VCO clock frequency is corrupt, and appropriate  
precautions should be taken. If the application is not frequency sensitive,  
interrupts should be disabled to prevent PLL interrupt service routines  
from impeding software performance or from exceeding stack  
limitations.  
NOTE: Software can select the CGMPCLK divided by two as the CGMOUT  
source even if the PLL is not locked (LOCK = 0). Therefore, software  
should make sure the PLL is locked before setting the BCS bit.  
8.8 Special Modes  
The WAIT instruction puts the MCU in low power-consumption standby  
modes.  
8.8.1 Wait Mode  
The WAIT instruction does not affect the CGM. Before entering wait  
mode, software can disengage and turn off the PLL by clearing the BCS  
and PLLON bits in the PLL control register (PCTL) to save power. Less  
power-sensitive applications can disengage the PLL without turning it  
off, so that the PLL clock is immediately available at WAIT exit. This  
would be the case also when the PLL is to wake the MCU from wait  
mode, such as when the PLL is first enabled and waiting for LOCK or  
LOCK is lost.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
133  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
8.8.2 Stop Mode  
If the oscillator stop mode enable bit (STOP_XCLKEN in CONFIG2  
register) is configured to disabled the oscillator in stop mode, then the  
STOP instruction disables the CGM (oscillator and phase locked loop)  
and holds low all CGM outputs (CGMOUT, CGMVCLK, CGMPCLK, and  
CGMINT).  
If the STOP instruction is executed with the divided VCO clock,  
CGMPCLK, divided by two driving CGMOUT, the PLL automatically  
clears the BCS bit in the PLL control register (PCTL), thereby selecting  
the oscillator clock, CGMXCLK, divided by two as the source of  
CGMOUT. When the MCU recovers from STOP, the crystal clock  
divided by two drives CGMOUT and BCS remains clear.  
If the oscillator stop mode enable bit is configured for continuous  
oscillator operation in stop mode, then the phase locked loop is shut off  
but the CGMXCLK will continue to drive the SIM and other MCU sub-  
systems.  
8.8.3 CGM During Break Interrupts  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. (See 9.8.3 SIM Break Flag Control  
Register.)  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect the PLLF bit during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
the PLL control register during the break state without affecting the PLLF  
bit.  
Data Sheet  
134  
MC68HC908LJ24/LK24 — Rev. 2.1  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
Acquisition/Lock Time Specifications  
8.9 Acquisition/Lock Time Specifications  
The acquisition and lock times of the PLL are, in many applications, the  
most critical PLL design parameters. Proper design and use of the PLL  
ensures the highest stability and lowest acquisition/lock times.  
8.9.1 Acquisition/Lock Time Definitions  
Typical control systems refer to the acquisition time or lock time as the  
reaction time, within specified tolerances, of the system to a step input.  
In a PLL, the step input occurs when the PLL is turned on or when it  
suffers a noise hit. The tolerance is usually specified as a percent of the  
step input or when the output settles to the desired value plus or minus  
a percent of the frequency change. Therefore, the reaction time is  
constant in this definition, regardless of the size of the step input. For  
example, consider a system with a 5 percent acquisition time tolerance.  
If a command instructs the system to change from 0Hz to 1MHz, the  
acquisition time is the time taken for the frequency to reach  
1MHz ±50kHz. 50kHz = 5% of the 1MHz step input. If the system is  
operating at 1MHz and suffers a –100kHz noise hit, the acquisition time  
is the time taken to return from 900kHz to 1MHz ±5kHz. 5kHz = 5% of  
the 100kHz step input.  
Other systems refer to acquisition and lock times as the time the system  
takes to reduce the error between the actual output and the desired  
output to within specified tolerances. Therefore, the acquisition or lock  
time varies according to the original error in the output. Minor errors may  
not even be registered. Typical PLL applications prefer to use this  
definition because the system requires the output frequency to be within  
a certain tolerance of the desired frequency regardless of the size of the  
initial error.  
8.9.2 Parametric Influences on Reaction Time  
Acquisition and lock times are designed to be as short as possible while  
still providing the highest possible stability. These reaction times are not  
constant, however. Many factors directly and indirectly affect the  
acquisition time.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
135  
Clock Generator Module (CGM)  
 
Clock Generator Module (CGM)  
The most critical parameter which affects the reaction times of the PLL  
is the reference frequency, f . This frequency is the input to the phase  
RDV  
detector and controls how often the PLL makes corrections. For stability,  
the corrections must be small compared to the desired frequency, so  
several corrections are required to reduce the frequency error.  
Therefore, the slower the reference the longer it takes to make these  
corrections. This parameter is under user control via the choice of crystal  
frequency f  
and the R value programmed in the reference divider.  
XCLK  
(See 8.4.3 PLL Circuits, 8.4.6 Programming the PLL, and 8.6.5 PLL  
Reference Divider Select Register.)  
Another critical parameter is the external filter network. The PLL  
modifies the voltage on the VCO by adding or subtracting charge from  
capacitors in this network. Therefore, the rate at which the voltage  
changes for a given frequency error (thus change in charge) is  
proportional to the capacitance. The size of the capacitor also is related  
to the stability of the PLL. If the capacitor is too small, the PLL cannot  
make small enough adjustments to the voltage and the system cannot  
lock. If the capacitor is too large, the PLL may not be able to adjust the  
voltage in a reasonable time. (See 8.9.3 Choosing a Filter.)  
Also important is the operating voltage potential applied to V  
. The  
DDA  
power supply potential alters the characteristics of the PLL. A fixed value  
is best. Variable supplies, such as batteries, are acceptable if they vary  
within a known range at very slow speeds. Noise on the power supply is  
not acceptable, because it causes small frequency errors which  
continually change the acquisition time of the PLL.  
Temperature and processing also can affect acquisition time because  
the electrical characteristics of the PLL change. The part operates as  
specified as long as these influences stay within the specified limits.  
External factors, however, can cause drastic changes in the operation of  
the PLL. These factors include noise injected into the PLL through the  
filter capacitor, filter capacitor leakage, stray impedances on the circuit  
board, and even humidity or circuit board contamination.  
Data Sheet  
136  
MC68HC908LJ24/LK24 — Rev. 2.1  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
Acquisition/Lock Time Specifications  
8.9.3 Choosing a Filter  
As described in 8.9.2 Parametric Influences on Reaction Time, the  
external filter network is critical to the stability and reaction time of the  
PLL. The PLL is also dependent on reference frequency and supply  
voltage.  
Either of the filter networks in Figure 8-10 is recommended when using  
a 32.768kHz reference clock (CGMRCLK). Figure 8-10 (a) is used for  
applications requiring better stability. Figure 8-10 (b) is used in low-cost  
applications where stability is not critical.  
CGMXFC  
CGMXFC  
10 kΩ  
0.01 µF  
0.47 µF  
0.033 µF  
VSSA  
VSSA  
(a)  
(b)  
Figure 8-10. PLL Filter  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
137  
Clock Generator Module (CGM)  
 
Clock Generator Module (CGM)  
Data Sheet  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
138  
Clock Generator Module (CGM)  
Data Sheet — MC68HC908LJ24  
Section 9. System Integration Module (SIM)  
9.1 Contents  
9.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140  
9.3  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . .142  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
Clock Start-up from POR or LVI Reset. . . . . . . . . . . . . . . .143  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . .144  
9.3.1  
9.3.2  
9.3.3  
9.4  
9.4.1  
9.4.2  
9.4.2.1  
9.4.2.2  
9.4.2.3  
9.4.2.4  
9.4.2.5  
9.4.2.6  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . .144  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . .145  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
Computer Operating Properly (COP) Reset. . . . . . . . . .147  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . .148  
Monitor Mode Entry Module Reset (MODRST) . . . . . . .148  
9.5  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . .149  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . .149  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . .149  
9.5.1  
9.5.2  
9.5.3  
9.6  
9.6.1  
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . .153  
Interrupt Status Register 1. . . . . . . . . . . . . . . . . . . . . . .153  
Interrupt Status Register 2. . . . . . . . . . . . . . . . . . . . . . .155  
Interrupt Status Register 3. . . . . . . . . . . . . . . . . . . . . . .155  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
9.6.1.1  
9.6.1.2  
9.6.1.3  
9.6.1.4  
9.6.1.5  
9.6.1.6  
9.6.2  
9.6.3  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
System Integration Module (SIM)  
139  
 
System Integration Module (SIM)  
9.6.4  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . .156  
9.7  
9.7.1  
9.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
9.8  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . .160  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . .161  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . .162  
9.8.1  
9.8.2  
9.8.3  
9.2 Introduction  
This section describes the system integration module (SIM). Together  
with the CPU, the SIM controls all MCU activities. A block diagram of the  
SIM is shown in Figure 9-1. Table 9-1 is a summary of the SIM  
input/output (I/O) registers. The SIM is a system state controller that  
coordinates CPU and exception timing. The SIM is responsible for:  
• Bus clock generation and control for CPU and peripherals:  
– Stop/wait/reset/break entry and recovery  
– Internal clock control  
• Master reset control, including power-on reset (POR) and COP  
timeout  
• Interrupt control:  
– Acknowledge timing  
– Arbitration control timing  
– Vector address generation  
• CPU enable/disable timing  
• Modular architecture expandable to 128 interrupt sources  
Table 9-1 shows the internal signal names used in this section.  
Data Sheet  
140  
MC68HC908LJ24/LK24 — Rev. 2.1  
System Integration Module (SIM)  
Freescale Semiconductor  
System Integration Module (SIM)  
Introduction  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO CGM, OSC)  
SIM  
COUNTER  
COP CLOCK  
ICLK (FROM OSC)  
CGMOUT (FROM CGM)  
÷ 2  
CLOCK  
CONTROL  
VDD  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULLUP  
DEVICE  
LVI (FROM LVI MODULE)  
RESET  
PIN LOGIC  
POR CONTROL  
MASTER  
ILLEGAL OPCODE (FROM CPU)  
RESET  
RESET PIN CONTROL  
ILLEGAL ADDRESS  
(FROM ADDRESS MAP DECODERS)  
CONTROL  
SIM RESET STATUS REGISTER  
COP (FROM COP MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 9-1. SIM Block Diagram  
Table 9-1. Signal Name Conventions  
Signal Name  
Description  
Internal RC oscillator clock  
ICLK  
CGMXCLK  
CGMPCLK  
Buffered version of OSC1 from the oscillator module  
The divided PLL output  
PLL-based or oscillator-based clock output from CGM module  
(Bus clock = CGMOUT ÷ 2)  
CGMOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
141  
System Integration Module (SIM)  
System Integration Module (SIM)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
SBSW  
Note  
0
Bit 0  
Read:  
Write:  
Reset:  
R
R
R
R
R
R
R
SIM Break Status Register  
(SBSR)  
$FE00  
Note: Writing a logic 0 clears SBSW.  
Read: POR  
Write:  
PIN  
COP  
ILOP  
ILAD  
0
LVI  
0
SIM Reset Status Register  
$FE01  
(SRSR)  
POR:  
Read:  
1
0
0
0
0
0
0
0
SIM Break Flag Control  
BCFE  
R
R
R
R
R
R
R
$FE03  
$FE04  
$FE05  
$FE06  
Register Write:  
(SBFCR)  
Reset:  
0
IF6  
R
Read:  
IF5  
R
IF4  
R
IF3  
R
IF2  
R
IF1  
0
R
0
R
Interrupt Status Register 1  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
R
(INT1)  
0
0
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
R
IF9  
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2)  
R
0
0
0
0
0
0
0
0
0
0
0
0
IF18  
R
IF17  
IF16  
R
IF15  
R
Interrupt Status Register 3  
(INT3)  
R
R
R
R
R
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 9-2. SIM I/O Register Summary  
9.3 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and  
peripherals on the MCU. The system clocks are generated from an  
incoming clock, CGMOUT, as shown in Figure 9-3. This clock can come  
from either the oscillator module or from the on-chip PLL. (See Section  
8. Clock Generator Module (CGM).)  
Data Sheet  
142  
MC68HC908LJ24/LK24 — Rev. 2.1  
System Integration Module (SIM)  
Freescale Semiconductor  
System Integration Module (SIM)  
SIM Bus Clock Control and Generation  
OSC2  
OSC1  
OSCILLATOR (OSC) MODULE  
CGMXCLK  
ICLK  
TO RTC, ADC  
SIM COUNTER  
SIMOSCEN  
STOP MODE CLOCK  
ENABLE SIGNALS  
FROM CONFIG2  
SYSTEM INTEGRATION MODULE  
IT12  
TO REST  
OF MCU  
CGMRCLK  
CGMOUT  
BUS CLOCK  
GENERATORS  
IT23  
TO REST  
OF MCU  
÷ 2  
PHASE-LOCKED LOOP (PLL)  
PTC1  
SIMDIV2  
MONITOR MODE  
USER MODE  
Figure 9-3. CGM Clock Signals  
9.3.1 Bus Timing  
In user mode, the internal bus frequency is either the oscillator output  
(CGMXCLK) divided by four, CGMXCLK divided by two, or the PLL  
output (CGMPCLK) divided by four.  
9.3.2 Clock Start-up from POR or LVI Reset  
When the power-on reset module or the low-voltage inhibit module  
generates a reset, the clocks to the CPU and peripherals are inactive  
and held in an inactive phase until after the 4096 ICLK cycle POR  
timeout has completed. The RST pin is driven low by the SIM during this  
entire period. The IBUS clocks start upon completion of the timeout.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
143  
System Integration Module (SIM)  
System Integration Module (SIM)  
9.3.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt, break, or reset, the SIM allows  
ICLK to clock the SIM counter. The CPU and peripheral clocks do not  
become active until after the stop delay timeout. This timeout is  
selectable as 4096 or 32 ICLK cycles. (See 9.7.2 Stop Mode.)  
In wait mode, the CPU clocks are inactive. The SIM also produces two  
sets of clocks for other modules. Refer to the wait mode subsection of  
each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
9.4 Reset and System Initialization  
The MCU has these reset sources:  
• Power-on reset module (POR)  
• External reset pin (RST)  
• Computer operating properly module (COP)  
• Low-voltage inhibit module (LVI)  
• Illegal opcode  
• Illegal address  
All of these resets produce the vector $FFFE:$FFFF ($FEFE:$FEFF in  
monitor mode) and assert the internal reset signal (IRST). IRST causes  
all registers to be returned to their default values and all modules to be  
returned to their reset states.  
An internal reset clears the SIM counter (see 9.5 SIM Counter), but an  
external reset does not. Each of the resets sets a corresponding bit in  
the SIM reset status register (SRSR). (See 9.8 SIM Registers.)  
Data Sheet  
144  
MC68HC908LJ24/LK24 — Rev. 2.1  
System Integration Module (SIM)  
Freescale Semiconductor  
System Integration Module (SIM)  
Reset and System Initialization  
9.4.1 External Pin Reset  
The RST pin circuit includes an internal pull-up device. Pulling the  
asynchronous RST pin low halts all processing. The PIN bit of the SIM  
reset status register (SRSR) is set as long as RST is held low for a  
minimum of 67 ICLK cycles, assuming that neither the POR nor the LVI  
was the source of the reset. See Table 9-2 for details.  
Figure 9-4 shows the relative timing.  
Table 9-2. PIN Bit Set Timing  
Reset Type  
POR/LVI  
Number of Cycles Required to Set PIN  
4163 (4096 + 64 + 3)  
All others  
67 (64 + 3)  
CGMOUT  
RST  
IAB  
VECT H VECT L  
PC  
Figure 9-4. External Reset Timing  
9.4.2 Active Resets from Internal Sources  
All internal reset sources actively pull the RST pin low for 32 ICLK cycles  
to allow resetting of external peripherals. The internal reset signal IRST  
continues to be asserted for an additional 32 cycles (see Figure 9-5). An  
internal reset can be caused by an illegal address, illegal opcode, COP  
timeout, LVI, or POR (see Figure 9-6).  
NOTE: For LVI or POR resets, the SIM cycles through 4096 + 32 ICLK cycles  
during which the SIM forces the RST pin low. The internal reset signal  
then follows the sequence from the falling edge of RST shown in  
Figure 9-5.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
145  
System Integration Module (SIM)  
 
 
 
System Integration Module (SIM)  
IRST  
RST  
ICLK  
RST PULLED LOW BY MCU  
32 CYCLES  
32 CYCLES  
IAB  
VECTOR HIGH  
Figure 9-5. Internal Reset Timing  
The COP reset is asynchronous to the bus clock.  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
LVI  
INTERNAL RESET  
POR  
Figure 9-6. Sources of Internal Reset  
The active reset feature allows the part to issue a reset to peripherals  
and other chips within a system built around the MCU.  
9.4.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module  
(POR) generates a pulse to indicate that power-on has occurred. The  
external reset pin (RST) is held low while the SIM counter counts out  
4096 + 32 ICLK cycles. Thirty-two ICLK cycles later, the CPU and  
memories are released from reset to allow the reset vector sequence to  
occur.  
At power-on, these events occur:  
• A POR pulse is generated.  
• The internal reset signal is asserted.  
• The SIM enables CGMOUT.  
• Internal clocks to the CPU and modules are held inactive for 4096  
ICLK cycles to allow stabilization of the oscillator.  
• The RST pin is driven low during the oscillator stabilization time.  
• The POR bit of the SIM reset status register (SRSR) is set and all  
other bits in the register are cleared.  
Data Sheet  
146  
MC68HC908LJ24/LK24 — Rev. 2.1  
System Integration Module (SIM)  
Freescale Semiconductor  
System Integration Module (SIM)  
Reset and System Initialization  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
ICLK  
CGMOUT  
RST  
IRST  
IAB  
$FFFE  
$FFFF  
Figure 9-7. POR Recovery  
9.4.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of  
the COP counter causes an internal reset and sets the COP bit in the  
SIM reset status register (SRSR). The SIM actively pulls down the RST  
pin for all internal reset sources.  
To prevent a COP module timeout, write any value to location $FFFF.  
Writing to location $FFFF clears the COP counter and bits 12 through 5  
of the SIM counter. The SIM counter output, which occurs at least every  
13  
4
2 – 2 ICLK cycles, drives the COP counter. The COP should be  
serviced as soon as possible out of reset to guarantee the maximum  
amount of time before the first timeout.  
The COP module is disabled if the RST pin or the IRQ pin is held at V  
TST  
while the MCU is in monitor mode. The COP module can be disabled  
only through combinational logic conditioned with the high voltage signal  
on the RST or the IRQ pin. This prevents the COP from becoming  
disabled as a result of external noise. During a break state, V  
RST pin disables the COP module.  
on the  
TST  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
147  
System Integration Module (SIM)  
System Integration Module (SIM)  
9.4.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An  
illegal instruction sets the ILOP bit in the SIM reset status register  
(SRSR) and causes a reset.  
If the stop enable bit, STOP, in the mask option register is logic 0, the  
SIM treats the STOP instruction as an illegal opcode and causes an  
illegal opcode reset. The SIM actively pulls down the RST pin for all  
internal reset sources.  
9.4.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal  
address reset. The SIM verifies that the CPU is fetching an opcode prior  
to asserting the ILAD bit in the SIM reset status register (SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not  
generate a reset. The SIM actively pulls down the RST pin for all internal  
reset sources.  
9.4.2.5 Low-Voltage Inhibit (LVI) Reset  
The low-voltage inhibit module (LVI) asserts its output to the SIM when  
the V voltage falls to the LVI trip falling voltage, V . The LVI bit in  
DD  
TRIPF  
the SIM reset status register (SRSR) is set, and the external reset pin  
(RST) is held low while the SIM counter counts out 4096 + 32 ICLK  
cycles. Thirty-two ICLK cycles later, the CPU is released from reset to  
allow the reset vector sequence to occur. The SIM actively pulls down  
the RST pin for all internal reset sources.  
9.4.2.6 Monitor Mode Entry Module Reset (MODRST)  
The monitor mode entry module reset (MODRST) asserts its output to  
the SIM when monitor mode is entered in the condition where the reset  
vectors are blank ($FF). (See Section 10. Monitor ROM (MON).) When  
MODRST gets asserted, an internal reset occurs. The SIM actively pulls  
down the RST pin for all internal reset sources.  
Data Sheet  
148  
MC68HC908LJ24/LK24 — Rev. 2.1  
System Integration Module (SIM)  
Freescale Semiconductor  
 
System Integration Module (SIM)  
SIM Counter  
9.5 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in  
stop mode recovery to allow the oscillator time to stabilize before  
enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM  
counter overflow supplies the clock for the COP module. The SIM  
counter is 12 bits long and is clocked by the falling edge of ICLK.  
9.5.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU.  
At power-on, the POR circuit asserts the signal PORRST. Once the SIM  
is initialized, it enables the clock generation module (CGM) to drive the  
bus clock state machine.  
9.5.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP  
instruction clears the SIM counter. After an interrupt, break, or reset, the  
SIM senses the state of the short stop recovery bit, SSREC, in the  
configuration register 1 (CONFIG1). If the SSREC bit is a logic 1, then  
the stop recovery is reduced from the normal delay of 4096 ICLK cycles  
down to 32 ICLK cycles. This is ideal for applications using canned  
oscillators that do not require long start-up times from stop mode.  
External crystal applications should use the full stop recovery time, that  
is, with SSREC cleared.  
9.5.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter. (See 9.7.2 Stop Mode  
for details.) The SIM counter is free-running after all reset states. (See  
9.4.2 Active Resets from Internal Sources for counter control and  
internal reset recovery sequences.)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
149  
System Integration Module (SIM)  
System Integration Module (SIM)  
9.6 Exception Control  
Normal, sequential program execution can be changed in three different  
ways:  
• Interrupts:  
– Maskable hardware CPU interrupts  
– Non-maskable software interrupt instruction (SWI)  
• Reset  
• Break interrupts  
9.6.1 Interrupts  
At the beginning of an interrupt, the CPU saves the CPU register  
contents on the stack and sets the interrupt mask (I bit) to prevent  
additional interrupts. At the end of an interrupt, the RTI instruction  
recovers the CPU register contents from the stack so that normal  
processing can resume. Figure 9-8 shows interrupt entry timing, and  
Figure 9-9 shows interrupt recovery timing.  
MODULE  
INTERRUPT  
I-BIT  
IAB  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L START ADDR  
IDB  
DUMMY PC – 1[7:0] PC – 1[15:8]  
X
A
CCR V DATA H V DATA L OPCODE  
R/W  
Figure 9-8. Interrupt Entry Timing  
MODULE  
INTERRUPT  
I-BIT  
IAB  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
IDB  
CCR  
A
X PC – 1[15:8] PC – 1[7:0] OPCODE OPERAND  
R/W  
Figure 9-9. Interrupt Recovery Timing  
Data Sheet  
150  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
System Integration Module (SIM)  
 
 
System Integration Module (SIM)  
Exception Control  
Interrupts are latched, and arbitration is performed in the SIM at the start  
of interrupt processing. The arbitration result is a constant that the CPU  
uses to determine which vector to fetch. Once an interrupt is latched by  
the SIM, no other interrupt can take precedence, regardless of priority,  
until the latched interrupt is serviced (or the I bit is cleared).  
(See Figure 9-10.)  
FROM RESET  
BREAK  
YES  
INTERRUPT?  
NO  
YES  
I-BIT SET?  
NO  
IRQ  
INTERRUPT?  
YES  
NO  
STACK CPU REGISTERS  
SET I-BIT  
LOAD PC WITH INTERRUPT VECTOR  
AS MANY INTERRUPTS  
AS EXIST ON CHIP  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
NO  
RTI  
YES  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
INSTRUCTION?  
NO  
Figure 9-10. Interrupt Processing  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
151  
System Integration Module (SIM)  
 
System Integration Module (SIM)  
9.6.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of  
a hardware interrupt begins after completion of the current instruction.  
When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the  
condition code register) and if the corresponding interrupt enable bit is  
set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction  
execution, the highest priority interrupt is serviced first. Figure 9-11  
demonstrates what happens when two interrupts are pending. If an  
interrupt is pending upon exit from the original interrupt service routine,  
the pending interrupt is serviced before the LDA instruction is executed.  
CLI  
BACKGROUND  
LDA #$FF  
ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 9-11. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI  
instructions. However, in the case of the INT1 RTI prefetch, this is a  
redundant operation.  
NOTE: To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
Data Sheet  
152  
MC68HC908LJ24/LK24 — Rev. 2.1  
System Integration Module (SIM)  
Freescale Semiconductor  
 
System Integration Module (SIM)  
Exception Control  
9.6.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an  
interrupt regardless of the state of the interrupt mask (I bit) in the  
condition code register.  
NOTE: A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
9.6.1.3 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt  
sources. Table 9-3 summarizes the interrupt sources and the interrupt  
status register flags that they set. The interrupt status registers can be  
useful for debugging.  
9.6.1.4 Interrupt Status Register 1  
Address: $FE04  
Bit 7  
6
5
IF4  
R
4
IF3  
R
3
IF2  
R
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF6  
R
IF5  
R
R
0
R
0
0
0
0
0
0
0
R
= Reserved  
Figure 9-12. Interrupt Status Register 1 (INT1)  
IF6–IF1 — Interrupt Flags 6–1  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 9-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0 and Bit 1 — Always read 0  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
153  
System Integration Module (SIM)  
System Integration Module (SIM)  
Table 9-3. Vector Addresses  
Priority  
INT Flag Address  
Vector  
Lowest  
$FFD8  
$FFD9  
$FFDA  
$FFDB  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
$FFED  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
Real Time Clock Vector (High)  
Real Time Clock Vector (Low)  
ADC Conversion Complete Vector (High)  
ADC Conversion Complete Vector (Low)  
Keyboard Vector (High)  
Keyboard Vector (Low)  
IF18  
IF17  
IF16  
IF15  
IF14  
IF13  
IF12  
IF11  
IF10  
IF9  
MMIIC Vector (High)  
MMIIC Vector (Low)  
SCI Transmit Vector (High)  
SCI Transmit Vector (Low)  
SCI Receive Vector (High)  
SCI Receive Vector (Low)  
SCI Error Vector (High)  
SCI Error Vector (Low)  
SPI Receive Vector (High)  
SPI Receive Vector (Low)  
SPI Transmit Vector (High)  
SPI Transmit Vector (Low)  
TIM2 Overflow Vector (High)  
TIM2 Overflow Vector (Low)  
TIM2 Channel 1 Vector (High)  
TIM2 Channel 1 Vector (Low)  
TIM2 Channel 0 Vector (High)  
TIM2 Channel 0 Vector (Low)  
TIM1 Overflow Vector (High)  
TIM1 Overflow Vector (Low)  
TIM1 Channel 1 Vector (High)  
TIM1 Channel 1 Vector (Low)  
TIM1 Channel 0 Vector (High)  
TIM1 Channel 0 Vector (Low)  
PLL Vector (High)  
IF8  
IF7  
IF6  
IF5  
IF4  
IF3  
PLL Vector (Low)  
LVI Vector (High)  
IF2  
LVI Vector (Low)  
IRQ Vector (High)  
IF1  
IRQ Vector (Low)  
SWI Vector (High)  
SWI Vector (Low)  
Reset Vector (High)  
Highest  
Reset Vector (Low)  
Data Sheet  
154  
MC68HC908LJ24/LK24 — Rev. 2.1  
System Integration Module (SIM)  
Freescale Semiconductor  
 
System Integration Module (SIM)  
Exception Control  
9.6.1.5 Interrupt Status Register 2  
Address: $FE05  
Bit 7  
6
5
IF12  
R
4
IF11  
R
3
IF10  
R
2
IF9  
R
1
IF8  
R
Bit 0  
IF7  
R
Read:  
Write:  
Reset:  
IF14  
R
IF13  
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 9-13. Interrupt Status Register 2 (INT2)  
IF14–IF7 — Interrupt Flags 14–7  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 9-3.  
1 = Interrupt request present  
0 = No interrupt request present  
9.6.1.6 Interrupt Status Register 3  
Address: $FE06  
Bit 7  
6
5
0
4
0
3
IF18  
R
2
IF17  
R
1
IF16  
R
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
0
R
0
0
R
R
0
R
0
0
0
0
0
0
R
= Reserved  
Figure 9-14. Interrupt Status Register 3 (INT3)  
IF18–IF15 — Interrupt Flags 18–15  
These flags indicate the presence of an interrupt request from the  
source shown in Table 9-3.  
1 = Interrupt request present  
0 = No interrupt request present  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
155  
System Integration Module (SIM)  
System Integration Module (SIM)  
9.6.2 Reset  
All reset sources always have equal and highest priority and cannot be  
arbitrated.  
9.6.3 Break Interrupts  
The break module can stop normal program flow at a software-  
programmable break point by asserting its break interrupt output. (See  
Section 23. Break Module (BRK).) The SIM puts the CPU into the  
break state by forcing it to the SWI vector location. Refer to the break  
interrupt subsection of each module to see how each module is affected  
by the break state.  
9.6.4 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can  
be cleared during break mode. The user can select whether flags are  
protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the SIM break flag control register (SBFCR).  
Protecting flags in break mode ensures that set flags will not be cleared  
while in break mode. This protection allows registers to be freely read  
and written during break mode without losing status flag information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in  
break mode, a flag remains cleared even when break mode is exited.  
Status flags with a 2-step clearing mechanism — for example, a read of  
one register followed by the read or write of another — are protected,  
even when the first step is accomplished prior to entering break mode.  
Upon leaving break mode, execution of the second step will clear the flag  
as normal.  
Data Sheet  
156  
MC68HC908LJ24/LK24 — Rev. 2.1  
System Integration Module (SIM)  
Freescale Semiconductor  
System Integration Module (SIM)  
Low-Power Modes  
9.7 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low power-  
consumption mode for standby situations. The SIM holds the CPU in a  
non-clocked state. The operation of each of these modes is described in  
the following subsections. Both STOP and WAIT clear the interrupt mask  
(I) in the condition code register, allowing interrupts to occur.  
9.7.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks  
continue to run. Figure 9-15 shows the timing for wait mode entry.  
A module that is active during wait mode can wake up the CPU with an  
interrupt if the interrupt is enabled. Stacking for the interrupt begins one  
cycle after the WAIT instruction during which the interrupt occurred. In  
wait mode, the CPU clocks are inactive. Refer to the wait mode  
subsection of each module to see if the module is active or inactive in  
wait mode. Some modules can be programmed to be active in wait  
mode.  
Wait mode also can be exited by a reset or break. A break interrupt  
during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM  
break status register (SBSR). If the COP disable bit, COPD, in the mask  
option register is logic 0, then the computer operating properly module  
(COP) is enabled and remains active in wait mode.  
IAB  
IDB  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
NOTE: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 9-15. Wait Mode Entry Timing  
Figure 9-16 and Figure 9-17 show the timing for WAIT recovery.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
157  
System Integration Module (SIM)  
 
 
System Integration Module (SIM)  
IAB  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
IDB  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt  
Figure 9-16. Wait Recovery from Interrupt or Break  
32  
CYCLES  
32  
CYCLES  
IAB  
$6E0B  
$A6  
RST VCT H RST VCT L  
IDB $A6  
RST  
$A6  
ICLK  
Figure 9-17. Wait Recovery from Internal Reset  
9.7.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are  
disabled. An interrupt request from a module can cause an exit from stop  
mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the clock generator module output (CGMOUT) in stop  
mode, stopping the CPU and peripherals. Stop recovery time is  
selectable using the SSREC bit in the configuration register 1  
(CONFIG1). If SSREC is set, stop recovery is reduced from the normal  
delay of 4096 ICLK cycles down to 32. This is ideal for applications using  
canned oscillators that do not require long start-up times from stop  
mode.  
NOTE: External crystal applications should use the full stop recovery time by  
clearing the SSREC bit.  
Data Sheet  
158  
MC68HC908LJ24/LK24 — Rev. 2.1  
System Integration Module (SIM)  
Freescale Semiconductor  
System Integration Module (SIM)  
SIM Registers  
A break interrupt during stop mode sets the SIM break stop/wait bit  
(SBSW) in the SIM break status register (SBSR).  
The SIM counter is held in reset from the execution of the STOP  
instruction until the beginning of stop recovery. It is then used to time the  
recovery period. Figure 9-18 shows stop mode entry timing.  
NOTE: To minimize stop current, all pins configured as inputs should be driven  
to a logic 1 or logic 0.  
CPUSTOP  
IAB  
IDB  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
NOTE: Previous data can be operand data or the STOP opcode, depending on the last  
instruction.  
Figure 9-18. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
ICLK  
INT/BREAK  
IAB  
STOP + 2 STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 9-19. Stop Mode Recovery from Interrupt or Break  
9.8 SIM Registers  
The SIM has three memory-mapped registers:  
SIM Break Status Register (SBSR) — $FE00  
SIM Reset Status Register (SRSR) — $FE01  
SIM Break Flag Control Register (SBFCR) — $FE03  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
159  
System Integration Module (SIM)  
 
System Integration Module (SIM)  
9.8.1 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a  
break caused an exit from stop mode or wait mode.  
Address: $FE00  
Bit 7  
6
5
4
3
2
1
SBSW  
Note  
0
Bit 0  
R
Read:  
Write:  
Reset:  
R
R
R
R
R
R
Note: Writing a logic 0 clears SBSW.  
R
= Reserved  
Figure 9-20. SIM Break Status Register (SBSR)  
SBSW — Break Wait Bit  
This status bit is set when a break interrupt causes an exit from wait  
mode or stop mode. Clear SBSW by writing a logic 0 to it. Reset clears  
SBSW.  
1 = Stop mode or wait mode was exited by break interrupt  
0 = Stop mode or wait mode was not exited by break interrupt  
SBSW can be read within the break interrupt routine. The user can  
modify the return address on the stack by subtracting 1 from it. The  
following code is an example.  
This code works if the H register has been pushed onto the stack in the break  
service routine software. This code should be executed at the end of the break  
service routine software.  
HIBYTE  
LOBYTE  
EQU  
EQU  
If not SBSW, do RTI  
BRCLR  
SBSW,SBSR, RETURN  
;See if wait mode or stop mode was exited by  
;break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
;If RETURNLO is not zero,  
;then just decrement low byte.  
;Else deal with high byte, too.  
;Point to WAIT/STOP opcode.  
;Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN  
PULH  
RTI  
Data Sheet  
160  
MC68HC908LJ24/LK24 — Rev. 2.1  
System Integration Module (SIM)  
Freescale Semiconductor  
System Integration Module (SIM)  
SIM Registers  
9.8.2 SIM Reset Status Register  
This register contains six flags that show the source of the last reset  
provided all previous reset status bits have been cleared. Clear the SIM  
reset status register by reading it. A power-on reset sets the POR bit and  
clears all other bits in the register.  
Address: $FE01  
Bit 7  
POR  
6
5
4
3
2
0
1
Bit 0  
0
Read:  
Write:  
Reset:  
PIN  
COP  
ILOP  
ILAD  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 9-21. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
LVI — Low-Voltage Inhibit Reset Bit  
1 = Last reset caused by the LVI circuit  
0 = POR or read of SRSR  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
161  
System Integration Module (SIM)  
System Integration Module (SIM)  
9.8.3 SIM Break Flag Control Register  
The SIM break control register contains a bit that enables software to  
clear status bits while the MCU is in a break state.  
Address: $FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 9-22. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
Data Sheet  
162  
MC68HC908LJ24/LK24 — Rev. 2.1  
System Integration Module (SIM)  
Freescale Semiconductor  
 
Data Sheet — MC68HC908LJ24  
Section 10. Monitor ROM (MON)  
10.1 Contents  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164  
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
10.4.1 Entering Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
10.4.3 Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
10.4.4 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171  
10.4.5 Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
10.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
10.6 ROM-Resident Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
10.6.1 PRGRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
10.6.2 ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
10.6.3 LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
10.6.4 MON_PRGRNGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
10.6.5 MON_ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
10.6.6 MON_LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
10.6.7 EE_WRITE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
10.6.8 EE_READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
163  
Monitor ROM (MON)  
Monitor ROM (MON)  
10.2 Introduction  
This section describes the monitor ROM (MON) and the monitor mode  
entry methods. The monitor ROM allows complete testing of the MCU  
through a single-wire interface with a host computer. Monitor mode entry  
can be achieved without use of the higher test voltage, V  
, as long as  
TST  
vector addresses $FFFE and $FFFF are blank, thus reducing the  
hardware requirements for in-circuit programming.  
In addition, to simplify user coding, routines are also stored in the  
monitor ROM area for FLASH memory program /erase and EEPROM  
emulation.  
10.3 Features  
Features of the monitor ROM include:  
• Normal user-mode pin functionality  
• One pin dedicated to serial communication between monitor ROM  
and host computer  
• Standard mark/space non-return-to-zero (NRZ) communication  
with host computer  
• Execution of code in RAM or FLASH  
1
• FLASH memory security feature  
• FLASH memory programming interface  
• Enhanced PLL (phase-locked loop) option to allow use of external  
32.768-kHz crystal to generate internal frequency of 2.4576 MHz  
• 959 bytes monitor ROM code size  
($FC00–$FDFF and $FE10–$FFCE)  
• Monitor mode entry without high voltage, V  
blank ($FFFE and $FFFF contain $FF)  
, if reset vector is  
TST  
• Standard monitor mode entry if high voltage, V  
IRQ  
, is applied to  
TST  
• Resident routines for in-circuit programming and EEPROM  
emulation  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Data Sheet  
164  
MC68HC908LJ24/LK24 — Rev. 2.1  
Monitor ROM (MON)  
Freescale Semiconductor  
Monitor ROM (MON)  
Functional Description  
10.4 Functional Description  
The monitor ROM receives and executes commands from a host  
computer. Figure 10-1 shows an example circuit used to enter monitor  
mode and communicate with a host computer via a standard RS-232  
interface.  
Simple monitor commands can access any memory address. In monitor  
mode, the MCU can execute code downloaded into RAM by a host  
computer while most MCU pins retain normal operating mode functions.  
All communication between the host computer and the MCU is through  
the PTA0 pin. A level-shifting and multiplexing interface is required  
between PTA0 and the host computer. PTA0 is used in a wired-OR  
configuration and requires a pullup resistor.  
The monitor code allows enabling the PLL to generate the internal clock,  
provided the reset vector is blank, when the device is being clocked by  
a low-frequency crystal. This entry method, which is enabled when IRQ  
is held low out of reset, is intended to support serial communication/  
programming at 9600 baud in monitor mode by stepping up the external  
frequency (assumed to be 32.768 kHz) by a fixed amount to generate  
the desired internal frequency (2.4576 MHz). Since this feature is  
enabled only when IRQ is held low out of reset, it cannot be used when  
the reset vector is non-zero because entry into monitor mode in this case  
requires V  
on IRQ.  
TST  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
165  
Monitor ROM (MON)  
Monitor ROM (MON)  
RST  
0.1 µF  
HC908LJ24  
VDD  
VDD  
VDDA  
VLCD  
VREFH  
0.1 µF  
VSS  
VREFL  
VDD  
4.9152MHz/9.8304MHz  
(50% DUTY)  
CGMXFC  
OSC1  
0.01 µF  
10k  
0.033 µF  
MUST BE USED IF SW2 IS AT POSITION C.  
CONNECT TO OSC1, WITH OSC2 UNCONNECTED.  
EXT OSC  
32.768kHz  
OSC1  
OSC2  
6–30 pF  
330k  
MAX232  
VDD  
1
16  
6–30 pF  
VCC  
C1+  
+
+
+
1 µF  
1 µF  
1 µF  
3
4
15  
1 µF  
C1–  
C2+  
GND  
XTAL CIRCUIT  
+
VTST  
C
2
6
SW2  
V+  
V–  
(SEE NOTE 1)  
VDD  
1 k  
IRQ  
8.5 V  
D
5
C2–  
1 µF  
10 k  
+
74HC125  
6
DB9  
5
10  
9
2
3
7
8
PTA0  
74HC125  
4
3
VDD  
2
VDD  
10 k  
1
5
10 k  
PTA1  
PTC1  
PTA2  
SW1  
A
(SEE NOTE 2)  
B
NOTES:  
1. Monitor mode entry method:  
10 k  
SW2: Position C — High voltage entry (VTST); must use external OSC  
Bus clock depends on SW1 (note 2).  
10 k  
SW2: Position D — Reset vector must be blank ($FFFE:$FFFF = $FF)  
Bus clock = 2.4576MHz.  
2. Affects high voltage entry to monitor mode only (SW2 at position C):  
SW1: Position A — Bus clock = OSC1 ÷ 4  
SW1: Position B — Bus clock = OSC1 ÷ 2  
5. See Table 24-4 for VTST voltage level requirements.  
Figure 10-1. Monitor Mode Circuit  
Data Sheet  
166  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Monitor ROM (MON)  
 
Monitor ROM (MON)  
Functional Description  
10.4.1 Entering Monitor Mode  
Table 10-1 shows the pin conditions for entering monitor mode. As  
specified in the table, monitor mode may be entered after a POR and will  
allow communication at 9600 baud provided one of the following sets of  
conditions is met:  
1. If $FFFE and $FFFF do not contain $FF (programmed state):  
– The external clock is 4.9152 MHz with PTC1 low or  
9.8304 MHz with PTC1 high  
– IRQ = V  
(PLL off)  
TST  
2. If $FFFE and $FFFF both contain $FF (erased state):  
– The external clock is 9.8304 MHz  
– IRQ = V (this can be implemented through the internal IRQ  
DD  
pullup; PLL off)  
3. If $FFFE and $FFFF both contain $FF (erased state):  
– The external clock is 32.768 kHz (crystal)  
– IRQ = V (this setting initiates the PLL to boost the external  
SS  
32.768 kHz to an internal bus frequency of 2.4576 MHz)  
If V  
is applied to IRQ and PTC1 is low upon monitor mode entry  
TST  
(above condition set 1), the bus frequency is a divide-by-two of the input  
clock. If PTC1 is high with V applied to IRQ upon monitor mode entry,  
TST  
the bus frequency will be a divide-by-four of the input clock. Holding the  
PTC1 pin low when entering monitor mode causes a bypass of a divide-  
by-two stage at the oscillator only if V  
is applied to IRQ. In this event,  
TST  
the CGMOUT frequency is equal to the CGMXCLK frequency, and the  
OSC1 input directly generates internal bus clocks. In this case, the  
OSC1 signal must have a 50% duty cycle at maximum bus frequency.  
If entering monitor mode without high voltage on IRQ (above condition  
set 2 or 3, where applied voltage is either V or V ), then all port A pin  
DD  
SS  
requirements and conditions, including the PTC1 frequency divisor  
selection, are not in effect. This is to reduce circuit requirements when  
performing in-circuit programming.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
167  
Monitor ROM (MON)  
Table 10-1. Monitor Mode Signal Requirements and Options  
Address  
$FFFE/  
$FFFF  
External  
Clock(2)  
Bus  
Frequency  
Baud  
Rate  
IRQ  
RST  
PTA2  
PTA1 PTA0(1) PTC1  
PLL  
COP  
Comment  
X
GND  
X
X
X
1
X
1
X
0
X
0
X
Disabled  
0
No operation until  
reset goes high  
(3)  
VDD  
X
0
0
4.9152  
MHz  
2.4576  
MHz  
OFF  
OFF  
Disabled  
Disabled  
9600  
PTA1 and PTA2  
voltages only  
required if  
VTST  
or  
VTST  
IRQ = VTST  
;
PTC1 determines  
frequency divider  
(3)  
VDD  
X
1
1
1
9.8304  
MHz  
2.4576  
MHz  
9600  
PTA1 and PTA2  
voltages only  
required if  
VTST  
or  
VTST  
IRQ = VTST  
;
PTC1 determines  
frequency divider  
VDD  
VDD  
Blank  
"$FFFF"  
X
X
X
X
1
1
X
X
9.8304  
MHz  
2.4576  
MHz  
OFF  
ON  
Disabled  
Disabled  
9600  
9600  
External frequency  
always divided by 4  
GND  
VDD  
Blank  
"$FFFF"  
32.768  
kHz  
2.4576  
MHz  
PLL enabled  
(BCS set)  
in monitor code  
VDD  
or  
VTST  
Blank  
"$FFFF"  
X
X
X
X
X
X
X
X
X
OFF  
OFF  
Enabled  
Enabled  
Enters user  
mode — will  
encounter an illegal  
address reset  
GND  
VDD  
VDD  
Not Blank  
X
Enters user mode  
or  
or  
GND  
VTST  
Notes:  
1. PTA0 = 1 if serial communication; PTA0 = 0 if parallel communication  
2. External clock is derived by a 32.768 kHz crystal or a 4.9152/9.8304 MHz off-chip oscillator  
3. Monitor mode entry by IRQ = VTST, a 4.9152/9.8304 MHz off-chip oscillator must be used. The MCU internal crystal oscillator circuit is bypassed.  
Monitor ROM (MON)  
Functional Description  
NOTE: If the reset vector is blank and monitor mode is entered, the chip will see  
an additional reset cycle after the initial POR reset. Once the part has  
been programmed, the traditional method of applying a voltage, V  
IRQ must be used to enter monitor mode.  
, to  
TST  
The COP module is disabled in monitor mode based on these  
conditions:  
• If monitor mode was entered as a result of the reset vector being  
blank (above condition set 2 or 3), the COP is always disabled  
regardless of the state of IRQ or RST.  
• If monitor mode was entered with V  
on IRQ (condition set 1),  
TST  
then the COP is disabled as long as V  
or RST.  
is applied to either IRQ  
TST  
The second condition states that as long as V  
is maintained on the  
TST  
IRQ pin after entering monitor mode, or if V  
is applied to RST after  
TST  
the initial reset to get into monitor mode (when V  
was applied to IRQ),  
TST  
then the COP will be disabled. In the latter situation, after V  
is applied  
TST  
to the RST pin, V  
can be removed from the IRQ pin in the interest of  
TST  
freeing the IRQ for normal functionality in monitor mode.  
Figure 10-2 shows a simplified diagram of the monitor mode entry when  
the reset vector is blank and just 1 x V voltage is applied to the IRQ  
DD  
pin. An external oscillator of 9.8304 MHz is required for a baud rate of  
9600, as the internal bus frequency is automatically set to the external  
frequency divided by four.  
Enter monitor mode with pin configuration shown in Figure 10-1 by  
pulling RST low and then high. The rising edge of RST latches monitor  
mode. Once monitor mode is latched, the values on the specified pins  
can change.  
Once out of reset, the MCU waits for the host to send eight security  
bytes. (See 10.5 Security.) After the security bytes, the MCU sends a  
break signal (10 consecutive logic 0s) to the host, indicating that it is  
ready to receive a command.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
169  
Monitor ROM (MON)  
Monitor ROM (MON)  
POR RESET  
NO  
NORMAL USER  
MODE  
IS VECTOR  
BLANK?  
YES  
MONITOR MODE  
EXECUTE  
MONITOR  
CODE  
POR  
TRIGGERED?  
NO  
YES  
Figure 10-2. Low-Voltage Monitor Mode Entry Flowchart  
In monitor mode, the MCU uses different vectors for reset, SWI  
(software interrupt), and break interrupt than those for user mode. The  
alternate vectors are in the $FE page instead of the $FF page and allow  
code execution from the internal monitor firmware instead of user code.  
NOTE: Exiting monitor mode after it has been initiated by having a blank reset  
vector requires a power-on reset (POR). Pulling RST low will not exit  
monitor mode in this situation.  
Table 10-2 summarizes the differences between user mode and monitor  
mode vectors.  
Table 10-2. Mode Differences (Vectors)  
Functions  
Modes  
Reset  
Vector  
High  
Reset  
Vector  
Low  
Break  
Vector  
High  
Break  
Vector  
Low  
SWI  
Vector  
High  
SWI  
Vector  
Low  
User  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Monitor  
Data Sheet  
170  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Monitor ROM (MON)  
 
Monitor ROM (MON)  
Functional Description  
10.4.2 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero  
(NRZ) mark/space data format. Transmit and receive baud rates must  
be identical.  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7  
Figure 10-3. Monitor Data Format  
10.4.3 Break Signal  
A start bit (logic 0) followed by nine logic 0 bits is a break signal. When  
the monitor receives a break signal, it drives the PTA0 pin high for the  
duration of two bits and then echoes back the break signal.  
MISSING STOP BIT  
2-STOP BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 10-4. Break Transaction  
10.4.4 Baud Rate  
The communication baud rate is controlled by the crystal frequency and  
the state of the PTC1 pin (when IRQ is set to V ) upon entry into  
TST  
monitor mode. When PTC1 is high, the divide by ratio is 1024. If the  
PTC1 pin is at logic 0 upon entry into monitor mode, the divide by ratio  
is 512.  
If monitor mode was entered with V on IRQ, then the divide by ratio is  
DD  
set at 1024, regardless of PTC1. If monitor mode was entered with V  
SS  
on IRQ, then the internal PLL steps up the external frequency, presumed  
to be 32.768 kHz, to 2.4576 MHz. These latter two conditions for monitor  
mode entry require that the reset vector is blank.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
171  
Monitor ROM (MON)  
Monitor ROM (MON)  
Table 10-3 lists external frequencies required to achieve a standard  
baud rate of 9600 BPS. Other standard baud rates can be accomplished  
using proportionally higher or lower frequency generators. If using a  
crystal as the clock source, be aware of the upper frequency limit that the  
internal clock module can handle.  
Table 10-3. Monitor Baud Rate Selection  
External  
Frequency  
Internal  
Frequency  
Baud Rate  
(BPS)  
IRQ  
PTC1  
V
4.9152 MHz  
9.8304 MHz  
9.8304 MHz  
32.768 kHz  
0
1
2.4576 MHz  
2.4576 MHz  
2.4576 MHz  
2.4576 MHz  
9600  
9600  
9600  
9600  
TST  
TST  
V
V
X
X
DD  
V
SS  
10.4.5 Commands  
The monitor ROM firmware uses these commands:  
• READ (read memory)  
• WRITE (write memory)  
• IREAD (indexed read)  
• IWRITE (indexed write)  
• READSP (read stack pointer)  
• RUN (run user program)  
The monitor ROM firmware echoes each received byte back to the PTA0  
pin for error checking. An 11-bit delay at the end of each command  
allows the host to send a break character to cancel the command. A  
delay of two bit times occurs before each echo and before READ,  
IREAD, or READSP data is returned. The data returned by a read  
command appears after the echo of the last byte of the command.  
NOTE: Wait one bit time after each echo before sending the next byte.  
Data Sheet  
172  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Monitor ROM (MON)  
 
Monitor ROM (MON)  
Functional Description  
FROM HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
1
READ  
DATA  
4
4
1
4
1
3, 2  
4
ECHO  
RETURN  
Notes:  
1 = Echo delay, 2 bit times  
2 = Data return delay, 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 10-5. Read Transaction  
FROM HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
1
WRITE  
3
3
1
3
1
3
1
2, 3  
ECHO  
Notes:  
1 = Echo delay, 2 bit times  
2 = Cancel command delay, 11 bit times  
3 = Wait 1 bit time before sending next byte.  
Figure 10-6. Write Transaction  
A brief description of each monitor mode command is given in  
Table 10-4 through Table 10-9.  
Table 10-4. READ (Read Memory) Command  
Description Read byte from memory  
Operand  
2-byte address in high-byte:low-byte order  
Returns contents of specified address  
Data  
Returned  
Opcode  
$4A  
Command Sequence  
SENT TO  
MONITOR  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
173  
Monitor ROM (MON)  
 
Monitor ROM (MON)  
Table 10-5. WRITE (Write Memory) Command  
Description Write byte to memory  
2-byte address in high-byte:low-byte order;  
low byte followed by data byte  
Operand  
Data  
Returned  
None  
Opcode  
$49  
Command Sequence  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
ECHO  
WRITE  
Table 10-6. IREAD (Indexed Read) Command  
Description Read next 2 bytes in memory from last address accessed  
Operand  
2-byte address in high byte:low byte order  
Returns contents of next two addresses  
Data  
Returned  
Opcode  
$1A  
Command Sequence  
FROM  
HOST  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
Data Sheet  
174  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Monitor ROM (MON)  
Monitor ROM (MON)  
Functional Description  
Table 10-7. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand  
Single data byte  
Data  
None  
$19  
Returned  
Opcode  
Command Sequence  
FROM  
HOST  
DATA  
DATA  
IWRITE  
IWRITE  
ECHO  
A sequence of IREAD or IWRITE commands can access a block of  
memory sequentially over the full 64-Kbyte memory map.  
Table 10-8. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand  
None  
Returns incremented stack pointer value (SP + 1) in  
high-byte:low-byte order  
Data  
Returned  
Opcode  
$0C  
Command Sequence  
FROM  
HOST  
SP  
HIGH  
SP  
LOW  
READSP  
READSP  
ECHO  
RETURN  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
175  
Monitor ROM (MON)  
Monitor ROM (MON)  
Table 10-9. RUN (Run User Program) Command  
Description Executes PULH and RTI instructions  
Operand  
None  
None  
$28  
Data  
Returned  
Opcode  
Command Sequence  
FROM  
HOST  
RUN  
RUN  
ECHO  
The MCU executes the SWI and PSHH instructions when it enters  
monitor mode. The RUN command tells the MCU to execute the PULH  
and RTI instructions. Before sending the RUN command, the host can  
modify the stacked CPU registers to prepare to run the host program.  
The READSP command returns the incremented stack pointer value,  
SP + 1. The high and low bytes of the program counter are at addresses  
SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER SP + 5  
LOW BYTE OF PROGRAM COUNTER SP + 6  
SP + 7  
Figure 10-7. Stack Pointer at Monitor Mode Entry  
Data Sheet  
176  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Monitor ROM (MON)  
Monitor ROM (MON)  
Security  
10.5 Security  
A security feature discourages unauthorized reading of FLASH locations  
while in monitor mode. The host can bypass the security feature at  
monitor mode entry by sending eight security bytes that match the bytes  
at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-  
defined data.  
NOTE: Do not leave locations $FFF6–$FFFD blank. For security reasons,  
program locations $FFF6–$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for  
the host to send the eight security bytes on pin PTA0. If the received  
bytes match those at locations $FFF6–$FFFD, the host bypasses the  
security feature and can read all FLASH locations and execute code  
from FLASH. Security remains bypassed until a power-on reset occurs.  
If the reset was not a power-on reset, security remains bypassed and  
security code entry is not required. (See Figure 10-8.)  
VDD  
4096 + 32 ICLK CYCLES  
RST  
256 BUS CYCLES (MINIMUM)  
FROM HOST  
PTA0  
1
1
4
1
4
2
1
FROM MCU  
NOTES:  
1 = Echo delay, 2 bit times.  
2 = Data return delay, 2 bit times.  
4 = Wait 1 bit time before sending next byte.  
Figure 10-8. Monitor Mode Entry Timing  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
177  
Monitor ROM (MON)  
 
Monitor ROM (MON)  
Upon power-on reset, if the received bytes of the security code do not  
match the data at locations $FFF6–$FFFD, the host fails to bypass the  
security feature. The MCU remains in monitor mode, but reading a  
FLASH location returns an invalid value and trying to execute code from  
FLASH causes an illegal address reset. After receiving the eight security  
bytes from the host, the MCU transmits a break character, signifying that  
it is ready to receive a command.  
NOTE: The MCU does not transmit a break character until after the host sends  
the eight security bits.  
To determine whether the security code entered is correct, check to see  
if bit 6 of RAM address $40 is set. If it is, then the correct security code  
has been entered and FLASH can be accessed.  
If the security sequence fails, the device should be reset by a power-on  
reset and brought up in monitor mode to attempt another entry. After  
failing the security sequence, the FLASH module can also be mass  
erased by executing an erase routine that was downloaded into internal  
RAM. The mass erase operation clears the security code locations so  
that all eight security bytes become $FF (blank).  
Data Sheet  
178  
MC68HC908LJ24/LK24 — Rev. 2.1  
Monitor ROM (MON)  
Freescale Semiconductor  
Monitor ROM (MON)  
ROM-Resident Routines  
10.6 ROM-Resident Routines  
Eight routines stored in the monitor ROM area (thus ROM-resident) are  
provided for FLASH memory manipulation. Six of the eight routines are  
intended to simplify FLASH program, erase, and load operations. The  
other two routines are intended to simplify the use of the FLASH memory  
as EEPROM. Table 10-10 shows a summary of the ROM-resident  
routines.  
Table 10-10. Summary of ROM-Resident Routines  
Call  
Address  
Stack Used  
(bytes)  
Routine Name  
Routine Description  
PRGRNGE  
ERARNGE  
LDRNGE  
Program a range of locations  
$FC06  
$FCBE  
$FF30  
14  
9
Erase a page or the entire array  
Loads data from a range of locations  
9
Program a range of locations in  
monitor mode  
MON_PRGRNGE  
MON_ERARNGE  
MON_LDRNGE  
EE_WRITE  
$FF28  
$FF2C  
$FF24  
$FC00  
$FC03  
16  
11  
11  
17  
15  
Erase a page or the entire array in  
monitor mode  
Loads data from a range of locations  
in monitor mode  
Emulated EEPROM write. Data size  
ranges from 2 to 15 bytes at a time.  
Emulated EEPROM read. Data size  
ranges from 2 to 15 bytes at a time.  
EE_READ  
The routines are designed to be called as stand-alone subroutines in the  
user program or monitor mode. The parameters that are passed to a  
routine are in the form of a contiguous data block, stored in RAM. The  
index register (H:X) is loaded with the address of the first byte of the data  
block (acting as a pointer), and the subroutine is called (JSR). Using the  
start address as a pointer, multiple data blocks can be used, any area of  
RAM be used. A data block has the control and data bytes in a defined  
order, as shown in Figure 10-9.  
During the software execution, it does not consume any dedicated RAM  
location, the run-time heap will extend the system stack, all other RAM  
location will not be affected.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
179  
Monitor ROM (MON)  
 
Monitor ROM (MON)  
R
A
M
FILE_PTR  
$XXXX  
BUS SPEED (BUS_SPD)  
DATA SIZE (DATASIZE)  
START ADDRESS HIGH (ADDRH)  
START ADDRESS LOW (ADDRL)  
DATA 0  
ADDRESS AS POINTER  
DATA  
DATA 1  
BLOCK  
DATA  
ARRAY  
DATA N  
Figure 10-9. Data Block Format for ROM-Resident Routines  
The control and data bytes are described below.  
Bus speed — This one byte indicates the operating bus speed of  
the MCU. The value of this byte should be equal to 4 times the bus  
speed. E.g., for a 4MHz bus, the value is 16 ($10). This control  
byte is useful where the MCU clock source is switched between  
the PLL clock and the crystal clock.  
Data size — This one byte indicates the number of bytes in the  
data array that are to be manipulated. The maximum data array  
size is 255. Routines EE_WRITE and EE_READ are restricted to  
manipulate a data array between 2 to 15 bytes. Whereas routines  
ERARNGE and MON_ERARNGE do not manipulate a data array,  
thus, this data size byte has no meaning.  
Start address — These two bytes, high byte followed by low byte,  
indicate the start address of the FLASH memory to be  
manipulated.  
Data array — This data array contains data that are to be  
manipulated. Data in this array are programmed to FLASH  
memory by the programming routines: PRGRNGE,  
MON_PRGRNGE, EE_WRITE. For the read routines: LDRNGE,  
MON_LDRNGE, and EE_READ, data is read from FLASH and  
stored in this array.  
Data Sheet  
180  
MC68HC908LJ24/LK24 — Rev. 2.1  
Monitor ROM (MON)  
Freescale Semiconductor  
Monitor ROM (MON)  
ROM-Resident Routines  
10.6.1 PRGRNGE  
PRGRNGE is used to program a range of FLASH locations with data  
loaded into the data array.  
Table 10-11. PRGRNGE Routine  
Routine Name  
PRGRNGE  
Routine Description Program a range of locations  
Calling Address  
Stack Used  
$FC06  
14 bytes  
Data Block Format  
Bus speed (BUS_SPD)  
Data size (DATASIZE)  
Start address high (ADDRH)  
Start address (ADDRL)  
Data 1 (DATA1)  
:
Data N (DATAN)  
The start location of the FLASH to be programmed is specified by the  
address ADDRH:ADDRL and the number of bytes from this location is  
specified by DATASIZE. The maximum number of bytes that can be  
programmed in one routine call is 255 bytes (max. DATASIZE is 255).  
ADDRH:ADDRL do not need to be at a page boundary, the routine  
handles any boundary misalignment during programming. A check to  
see that all bytes in the specified range are erased is not performed by  
this routine prior programming. Nor does this routine do a verification  
after programming, so there is no return confirmation that programming  
was successful. User must assure that the range specified is first  
erased.  
The coding example below is to program 64 bytes of data starting at  
FLASH location $EF00, with a bus speed of 4.9152 MHz. The coding  
assumes the data block is already loaded in RAM, with the address  
pointer, FILE_PTR, pointing to the first byte of the data block.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
181  
Monitor ROM (MON)  
 
Monitor ROM (MON)  
ORG  
RAM  
:
FILE_PTR:  
BUS_SPD  
DATASIZE  
START_ADDR  
DATAARRAY  
DS.B  
DS.B  
DS.W  
DS.B  
1
1
1
64  
; Indicates 4x bus frequency  
; Data size to be programmed  
; FLASH start address  
; Reserved data array  
PRGRNGE  
FLASH_START  
EQU  
EQU  
$FC06  
$EF00  
ORG  
FLASH  
INITIALISATION:  
MOV  
MOV  
#20,  
#64,  
BUS_SPD  
DATASIZE  
LDHX  
STHX  
RTS  
#FLASH_START  
START_ADDR  
MAIN:  
BSR  
:
INITIALISATION  
:
LDHX  
JSR  
#FILE_PTR  
PRGRNGE  
Data Sheet  
182  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Monitor ROM (MON)  
Monitor ROM (MON)  
ROM-Resident Routines  
10.6.2 ERARNGE  
ERARNGE is used to erase a range of locations in FLASH.  
Table 10-12. ERARNGE Routine  
Routine Name  
ERARNGE  
Routine Description Erase a page or the entire array  
Calling Address  
Stack Used  
$FCBE  
9 bytes  
Data Block Format  
Bus speed (BUS_SPD)  
Data size (DATASIZE)  
Starting address (ADDRH)  
Starting address (ADDRL)  
There are two sizes of erase ranges: a page or the entire array. The  
ERARNGE will erase the page (128 consecutive bytes) in FLASH  
specified by the address ADDRH:ADDRL. This address can be any  
address within the page. Calling ERARNGE with ADDRH:ADDRL equal  
to $FFFF will erase the entire FLASH array (mass erase). Therefore,  
care must be taken when calling this routine to prevent an accidental  
mass erase.  
The ERARNGE routine do not use a data array. The DATASIZE byte is  
a dummy byte that is also not used.  
The coding example below is to perform a page erase, from  
$EF00–$EF7F. The Initialization subroutine is the same as the coding  
example for PRGRNGE (see 10.6.1 PRGRNGE).  
ERARNGE  
MAIN:  
EQU  
$FCBE  
BSR  
:
INITIALISATION  
:
LDHX  
JSR  
:
#FILE_PTR  
ERARNGE  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
183  
Monitor ROM (MON)  
 
Monitor ROM (MON)  
10.6.3 LDRNGE  
LDRNGE is used to load the data array in RAM with data from a range  
of FLASH locations.  
Table 10-13. LDRNGE Routine  
Routine Name  
LDRNGE  
Routine Description Loads data from a range of locations  
Calling Address  
Stack Used  
$FF30  
9 bytes  
Data Block Format  
Bus speed (BUS_SPD)  
Data size (DATASIZE)  
Starting address (ADDRH)  
Starting address (ADDRL)  
Data 1  
:
Data N  
The start location of FLASH from where data is retrieved is specified by  
the address ADDRH:ADDRL and the number of bytes from this location  
is specified by DATASIZE. The maximum number of bytes that can be  
retrieved in one routine call is 255 bytes. The data retrieved from FLASH  
is loaded into the data array in RAM. Previous data in the data array will  
be overwritten. User can use this routine to retrieve data from FLASH  
that was previously programmed.  
The coding example below is to retrieve 64 bytes of data starting from  
$EF00 in FLASH. The Initialization subroutine is the same as the coding  
example for PRGRNGE (see 10.6.1 PRGRNGE).  
LDRNGE  
MAIN:  
EQU  
$FF30  
BSR  
:
INITIALIZATION  
:
LDHX  
JSR  
:
#FILE_PTR  
LDRNGE  
Data Sheet  
184  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Monitor ROM (MON)  
 
Monitor ROM (MON)  
ROM-Resident Routines  
10.6.4 MON_PRGRNGE  
In monitor mode, MON_PRGRNGE is used to program a range of  
FLASH locations with data loaded into the data array.  
Table 10-14. MON_PRGRNGE Routine  
Routine Name  
MON_PRGRNGE  
Routine Description Program a range of locations, in monitor mode  
Calling Address  
Stack Used  
$FC28  
16 bytes  
Data Block Format  
Bus speed  
Data size  
Starting address (high byte)  
Starting address (low byte)  
Data 1  
:
Data N  
The MON_PRGRNGE routine is designed to be used in monitor mode.  
It performs the same function as the PRGRNGE routine (see 10.6.1  
PRGRNGE), except that MON_PRGRNGE returns to the main program  
via an SWI instruction. After a MON_PRGRNGE call, the SWI instruction  
will return the control back to the monitor code.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
185  
Monitor ROM (MON)  
Monitor ROM (MON)  
10.6.5 MON_ERARNGE  
In monitor mode, ERARNGE is used to erase a range of locations in  
FLASH.  
Table 10-15. MON_ERARNGE Routine  
Routine Name  
MON_ERARNGE  
Routine Description Erase a page or the entire array, in monitor mode  
Calling Address  
Stack Used  
$FF2C  
11 bytes  
Data Block Format  
Bus speed  
Data size  
Starting address (high byte)  
Starting address (low byte)  
The MON_ERARNGE routine is designed to be used in monitor mode.  
It performs the same function as the ERARNGE routine (see 10.6.2  
ERARNGE), except that MON_ERARNGE returns to the main program  
via an SWI instruction. After a MON_ERARNGE call, the SWI instruction  
will return the control back to the monitor code.  
Data Sheet  
186  
MC68HC908LJ24/LK24 — Rev. 2.1  
Monitor ROM (MON)  
Freescale Semiconductor  
Monitor ROM (MON)  
ROM-Resident Routines  
10.6.6 MON_LDRNGE  
In monitor mode, LDRNGE is used to load the data array in RAM with  
data from a range of FLASH locations.  
Table 10-16. ICP_LDRNGE Routine  
Routine Name  
MON_LDRNGE  
Routine Description Loads data from a range of locations, in monitor mode  
Calling Address  
Stack Used  
$FF24  
11 bytes  
Data Block Format  
Bus speed  
Data size  
Starting address (high byte)  
Starting address (low byte)  
Data 1  
:
Data N  
The MON_LDRNGE routine is designed to be used in monitor mode. It  
performs the same function as the LDRNGE routine (see 10.6.3  
LDRNGE), except that MON_LDRNGE returns to the main program via  
an SWI instruction. After a MON_LDRNGE call, the SWI instruction will  
return the control back to the monitor code.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
187  
Monitor ROM (MON)  
Monitor ROM (MON)  
10.6.7 EE_WRITE  
EE_WRITE is used to write a set of data from the data array to FLASH.  
Table 10-17. EE_WRITE Routine  
Routine Name  
EE_WRITE  
Emulated EEPROM write. Data size ranges from 2 to 15  
bytes at a time.  
Routine Description  
Calling Address  
Stack Used  
$FC00  
17 bytes  
Data Block Format  
Bus speed (BUS_SPD)  
(1)  
Data size (DATASIZE)  
(2)  
Starting address (ADDRH)  
(1)  
Starting address (ADDRL)  
Data 1  
:
Data N  
Notes:  
1. The minimum data size is 2 bytes. The maximum data size is 15 bytes.  
2. The start address must be a page boundary start address, e.g. $xx00 or $xx80.  
The start location of the FLASH to be programmed is specified by the  
address ADDRH:ADDRL and the number of bytes in the data array is  
specified by DATASIZE. The minimum number of bytes that can be  
programmed in one routine call is 2 bytes, the maximum is 15 bytes.  
ADDRH:ADDRL must always be the start of boundary address (the page  
start address: $XX00 or $0080) and DATASIZE must be the same size  
when accessing the same page.  
In some applications, the user may want to repeatedly store and read a  
set of data from an area of non-volatile memory. This is easily possible  
when using an EEPROM array. As the write and erase operations can  
be executed on a byte basis. For FLASH memory, the minimum erase  
size is the page — 128 bytes per page for MC68HC908LJ24. If the data  
array size is less than the page size, writing and erasing to the same  
page cannot fully utilize the page. Unused locations in the page will be  
wasted. The EE_WRITE routine is designed to emulate the properties  
similar to the EEPROM. Allowing a more efficient use of the FLASH page  
for data storage.  
Data Sheet  
188  
MC68HC908LJ24/LK24 — Rev. 2.1  
Monitor ROM (MON)  
Freescale Semiconductor  
 
Monitor ROM (MON)  
ROM-Resident Routines  
When the user dedicates a page of FLASH for data storage, and the size  
of the data array defined, each call of the EE_WRTIE routine will  
automatically transfer the data in the data array (in RAM) to the next  
blank block of locations in the FLASH page. Once a page is filled up, the  
EE_WRITE routine automatically erases the page, and starts reuse the  
page again. In the 128-byte page, an 8-byte control block is used by the  
routine to monitor the utilization of the page. In effect, only 120 bytes are  
used for data storage. (see Figure 10-10). The page control operations  
are transparent to the user.  
F L A S H  
PAGE BOUNDARY  
CONTROL: 8 BYTES  
DATA ARRAY  
$XX00 OR $XX80  
DATA ARRAY  
DATA ARRAY  
ONE PAGE = 128 BYTES  
PAGE BOUNDARY  
Figure 10-10. EE_WRITE FLASH Memory Usage  
When using this routine to store a 2-byte data array, the FLASH page  
can be programmed 60 times before the an erase is required. In effect,  
the write/erase endurance is increased by 60 times. When a 15-byte  
data array is used, the write/erase endurance is increased by 8 times.  
Due to the FLASH page size limitation, the data array is limited from 2  
bytes to 15 bytes.  
The coding example below uses the $EF00–$EE7F page for data  
storage. The data array size is 15 bytes, and the bus speed is  
4.9152 MHz. The coding assumes the data block is already loaded in  
RAM, with the address pointer, FILE_PTR, pointing to the first byte of the  
data block.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
189  
Monitor ROM (MON)  
 
Monitor ROM (MON)  
ORG  
RAM  
:
FILE_PTR:  
BUS_SPD  
DATASIZE  
START_ADDR  
DATAARRAY  
DS.B  
DS.B  
DS.W  
DS.B  
1
1
1
15  
; Indicates 4x bus frequency  
; Data size to be programmed  
; FLASH starting address  
; Reserved data array  
EE_WRITE  
FLASH_START  
EQU  
EQU  
$FC00  
$EF00  
ORG  
FLASH  
INITIALISATION:  
MOV  
MOV  
#20,  
#15,  
BUS_SPD  
DATASIZE  
LDHX  
STHX  
RTS  
#FLASH_START  
START_ADDR  
MAIN:  
BSR  
:
INITIALISATION  
:
LHDX  
JSR  
#FILE_PTR  
EE_WRITE  
NOTE: The EE_WRITE routine is unable to check for incorrect data blocks,  
such as the FLASH page boundary address and data size. It is the  
responsibility of the user to ensure the starting address indicated in the  
data block is at the FLASH page boundary and the data size is 2 to 15.  
If the FLASH page is already programmed with a data array with a  
different size, the EE_WRITE call will be ignored.  
Data Sheet  
190  
MC68HC908LJ24/LK24 — Rev. 2.1  
Monitor ROM (MON)  
Freescale Semiconductor  
Monitor ROM (MON)  
ROM-Resident Routines  
10.6.8 EE_READ  
EE_READ is used to load the data array in RAM with a set of data from  
FLASH.  
Table 10-18. EE_READ Routine  
Routine Name  
EE_READ  
Emulated EEPROM read. Data size ranges from 2 to 15  
bytes at a time.  
Routine Description  
Calling Address  
Stack Used  
$FC03  
15 bytes  
Data Block Format  
Bus speed (BUS_SPD)  
Data size (DATASIZE)  
(1)  
Starting address (ADDRH)  
(1)  
Starting address (ADDRL)  
Data 1  
:
Data N  
Notes:  
1. The start address must be a page boundary start address, e.g. $xx00 or $xx80.  
The EE_READ routine reads data stored by the EE_WRITE routine. An  
EE_READ call will retrieve the last data written to a FLASH page and  
loaded into the data array in RAM. Same as EE_WRITE, the data size  
indicated by DATASIZE is 2 to 15, and the start address  
ADDRH:ADDRL must the FLASH page boundary address.  
The coding example below uses the data stored by the EE_WRITE  
coding example (see 10.6.7 EE_WRITE). It loads the 15-byte data set  
stored in the $EF00–$EE7F page to the data array in RAM. The  
initialization subroutine is the same as the coding example for  
EE_WRITE (see 10.6.7 EE_WRITE).  
EE_READ  
MAIN:  
EQU  
$FC03  
BSR  
:
INITIALIZATION  
:
LDHX  
JSR  
:
#FILE_PTR  
EE_READ  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
191  
Monitor ROM (MON)  
Monitor ROM (MON)  
NOTE: The EE_READ routine is unable to check for incorrect data blocks, such  
as the FLASH page boundary address and data size. It is the  
responsibility of the user to ensure the starting address indicated in the  
data block is at the FLASH page boundary and the data size is 2 to 15.  
If the FLASH page is programmed with a data array with a different size,  
the EE_READ call will be ignored.  
Data Sheet  
192  
MC68HC908LJ24/LK24 — Rev. 2.1  
Monitor ROM (MON)  
Freescale Semiconductor  
Data Sheet — MC68HC908LJ24  
Section 11. Timer Interface Module (TIM)  
11.1 Contents  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
11.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
11.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
11.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
11.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200  
11.5.3.1  
11.5.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .200  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .201  
11.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .201  
11.5.4.1  
11.5.4.2  
11.5.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .202  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .203  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
11.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
11.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
11.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206  
11.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206  
11.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .206  
11.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
11.9.1 TIM Clock Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
11.9.2 TIM Channel I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208  
11.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . .208  
11.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . .210  
11.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . .211  
11.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . .212  
11.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
193  
Timer Interface Module (TIM)  
 
 
Timer Interface Module (TIM)  
11.2 Introduction  
This section describes the timer interface (TIM) module. The TIM is a  
two-channel timer that provides a timing reference with input capture,  
output compare, and pulse-width-modulation functions. Figure 11-1 is a  
block diagram of the TIM.  
This particular MCU has two timer interface modules which are denoted  
as TIM1 and TIM2.  
11.3 Features  
Features of the TIM include:  
• Two input capture/output compare channels:  
– Rising-edge, falling-edge, or any-edge input capture trigger  
– Set, clear, or toggle output compare action  
• Buffered and unbuffered pulse-width-modulation (PWM) signal  
generation  
• Programmable TIM clock input  
– 7-frequency internal bus clock prescaler selection  
– External TIM clock input (bus frequency ÷2 maximum)  
• Free-running or modulo up-count operation  
• Toggle any channel pin on overflow  
• TIM counter stop and reset bits  
Data Sheet  
194  
MC68HC908LJ24/LK24 — Rev. 2.1  
Timer Interface Module (TIM)  
Freescale Semiconductor  
Timer Interface Module (TIM)  
Pin Name Conventions  
11.4 Pin Name Conventions  
The text that follows describes both timers, TIM1 and TIM2. The TIM  
input/output (I/O) pin names are T[1,2]CH0 (timer channel 0). T[1,2]CH1  
(timer channel 1), and T[1,2]CLK (external timer clock), where “1” is  
used to indicate TIM1 and “2” is used to indicate TIM2. The full names of  
the TIM I/O pins are listed in Table 11-1. The generic pin names appear  
in the text that follows.  
Table 11-1. Pin Name Conventions  
TIM Generic Pin Names:  
T[1,2]CH0  
PTB2/T1CH0  
PTB4/T2CH0  
T[1,2]CH1  
T[1,2]CLK  
TIM1  
PTB3/T1CH1 PTD4/KBI4/T1CLK  
PTB5/T2CH1 PTD5/KBI5/T2CLK  
Full TIM  
Pin Names:  
TIM2  
NOTE: References to either timer 1 or timer 2 may be made in the following text  
by omitting the timer number. For example, TCH0 may refer generically  
to T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1.  
The T1CLK and T2CLK pins are also shared with KBI4 and KBI5  
respectively. To avoid erratic behavior, these two pins should never be  
configured for use as TCLK and KBI inputs simultaneously.  
11.5 Functional Description  
Figure 11-1 shows the structure of the TIM. The central component of  
the TIM is the 16-bit TIM counter that can operate as a free-running  
counter or a modulo up-counter. The TIM counter provides the timing  
reference for the input capture and output compare functions. The TIM  
counter modulo registers, TMODH:TMODL, control the modulo value of  
the TIM counter. Software can read the TIM counter value at any time  
without affecting the counting sequence.  
The two TIM channels (per timer) are programmable independently as  
input capture or output compare channels.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
195  
Timer Interface Module (TIM)  
 
Timer Interface Module (TIM)  
T[1,2]CLK  
PRESCALER SELECT  
INTERNAL  
PRESCALER  
BUS CLOCK  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
ELS0B  
ELS0A  
ELS1A  
PORT  
CHANNEL 0  
CH0MAX  
T[1,2]CH0  
T[1,2]CH1  
LOGIC  
16-BIT COMPARATOR  
TCH0H:TCH0L  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH0IE  
MS0A  
MS0B  
CH1F  
TOV1  
ELS1B  
PORT  
LOGIC  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH1IE  
MS1A  
Figure 11-1. TIM Block Diagram  
Figure 11-2 summarizes the timer registers.  
NOTE: References to either timer 1 or timer 2 may be made in the following text  
by omitting the timer number. For example, TSC may generically refer to  
both T1SC and T2SC.  
Data Sheet  
196  
MC68HC908LJ24/LK24 — Rev. 2.1  
Timer Interface Module (TIM)  
Freescale Semiconductor  
Timer Interface Module (TIM)  
Functional Description  
Addr.  
Register Name  
Bit 7  
TOF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
0
Timer 1 Status and  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
Control Register Write:  
TRST  
0
(T1SC)  
Reset:  
0
0
1
0
0
0
9
0
Read: Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 1 Counter  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
Register High Write:  
(T1CNTH)  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 1 Counter  
Register Low Write:  
(T1CNTL)  
Reset:  
0
Bit 15  
1
0
0
0
0
0
0
0
Read:  
Timer 1 Counter Modulo  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T1MODH)  
Reset:  
1
1
1
1
1
1
1
Bit 0  
1
Read:  
Timer 1 Counter Modulo  
Bit 7  
1
6
1
5
1
4
1
3
2
1
Register Low Write:  
(T1MODL)  
Reset:  
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read: CH0F  
Timer 1 Channel 0 Status  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
and Control Register Write:  
0
0
(T1SC0)  
Reset:  
Read:  
Timer 1 Channel 0  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T1CH0H)  
Reset:  
Indeterminate after reset  
Read:  
Timer 1 Channel 0  
Bit 7  
6
5
4
3
2
1
Bit 0  
Register Low Write:  
(T1CH0L)  
Reset:  
Indeterminate after reset  
Read: CH1F  
0
0
Timer 1 Channel 1 Status  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
0
and Control Register Write:  
0
0
(T1SC1)  
Reset:  
= Unimplemented  
Figure 11-2. TIM I/O Register Summary (Sheet 1 of 3)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
197  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Timer 1 Channel 1  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
$0029  
Register High Write:  
(T1CH1H)  
Reset:  
Indeterminate after reset  
Read:  
Timer 1 Channel 1  
Bit 7  
6
5
4
3
2
1
Bit 0  
PS0  
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
$0030  
$0031  
Register Low Write:  
(T1CH1L)  
Reset:  
Indeterminate after reset  
Read:  
TOF  
0
TRST  
0
0
Timer 2 Status and  
TOIE  
TSTOP  
PS2  
PS1  
Control Register Write:  
0
0
(T2SC)  
Reset:  
0
1
0
0
0
9
0
Read: Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 2 Counter  
Register High Write:  
(T2CNTH)  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 2 Counter  
Register Low Write:  
(T2CNTL)  
Reset:  
0
Bit 15  
1
0
0
0
0
0
0
0
Read:  
Timer 2 Counter Modulo  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T2MODH)  
Reset:  
1
1
1
1
1
1
1
Bit 0  
1
Read:  
Timer 2 Counter Modulo  
Bit 7  
6
1
5
1
4
1
3
2
1
Register Low Write:  
(T2MODL)  
Reset:  
1
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read: CH0F  
Timer 2 Channel 0 Status  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
and Control Register Write:  
0
0
(T2SC0)  
Reset:  
Read:  
Timer 2 Channel 0  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T2CH0H)  
Reset:  
Indeterminate after reset  
= Unimplemented  
Figure 11-2. TIM I/O Register Summary (Sheet 2 of 3)  
Data Sheet  
198  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
Functional Description  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Timer 2 Channel 0  
Bit 7  
6
5
4
3
2
1
Bit 0  
$0032  
Register Low Write:  
(T2CH0L)  
Reset:  
Indeterminate after reset  
Read: CH1F  
0
Timer 2 Channel 1 Status  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
$0033  
$0034  
$0035  
and Control Register Write:  
0
0
(T2SC1)  
Reset:  
0
0
0
0
0
9
0
Read:  
Timer 2 Channel 1  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Register High Write:  
(T2CH1H)  
Reset:  
Indeterminate after reset  
Read:  
Timer 2 Channel 1  
Bit 7  
6
5
4
3
2
1
Bit 0  
Register Low Write:  
(T2CH1L)  
Reset:  
Indeterminate after reset  
= Unimplemented  
Figure 11-2. TIM I/O Register Summary (Sheet 3 of 3)  
11.5.1 TIM Counter Prescaler  
The TIM clock source can be one of the seven prescaler outputs or the  
TIM clock pin, TCLK. The prescaler generates seven clock rates from  
the internal bus clock. The prescaler select bits, PS[2:0], in the TIM  
status and control register select the TIM clock source.  
11.5.2 Input Capture  
With the input capture function, the TIM can capture the time at which an  
external event occurs. When an active edge occurs on the pin of an input  
capture channel, the TIM latches the contents of the TIM counter into the  
TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is  
programmable. Input captures can generate TIM CPU interrupt  
requests.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
199  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
11.5.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse  
with a programmable polarity, duration, and frequency. When the  
counter reaches the value in the registers of an output compare channel,  
the TIM can set, clear, or toggle the channel pin. Output compares can  
generate TIM CPU interrupt requests.  
11.5.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare  
pulses as described in 11.5.3 Output Compare. The pulses are  
unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an  
output compare value could cause incorrect operation for up to two  
counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new  
value prevents any compare during that counter overflow period. Also,  
using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass  
the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the  
output compare value on channel x:  
• When changing to a smaller value, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current output compare pulse. The interrupt routine has until  
the end of the counter overflow period to write the new value.  
• When changing to a larger output compare value, enable TIM  
overflow interrupts and write the new value in the TIM overflow  
interrupt routine. The TIM overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an  
output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same counter  
overflow period.  
Data Sheet  
200  
MC68HC908LJ24/LK24 — Rev. 2.1  
Timer Interface Module (TIM)  
Freescale Semiconductor  
 
Timer Interface Module (TIM)  
Functional Description  
11.5.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare  
channel whose output appears on the TCH0 pin. The TIM channel  
registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)  
links channel 0 and channel 1. The output compare value in the TIM  
channel 0 registers initially controls the output on the TCH0 pin. Writing  
to the TIM channel 1 registers enables the TIM channel 1 registers to  
synchronously control the output after the TIM overflows. At each  
subsequent overflow, the TIM channel registers (0 or 1) that control the  
output are the ones written to last. TSC0 controls and monitors the  
buffered output compare function, and TIM channel 1 status and control  
register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
TCH1, is available as a general-purpose I/O pin.  
NOTE: In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should  
track the currently active channel to prevent writing a new value to the  
active channel. Writing to the active channel registers is the same as  
generating unbuffered output compares.  
11.5.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel,  
the TIM can generate a PWM signal. The value in the TIM counter  
modulo registers determines the period of the PWM signal. The channel  
pin toggles when the counter reaches the value in the TIM counter  
modulo registers. The time between overflows is the period of the PWM  
signal.  
As Figure 11-3 shows, the output compare value in the TIM channel  
registers determines the pulse width of the PWM signal. The time  
between overflow and output compare is the pulse width. Program the  
TIM to clear the channel pin on output compare if the state of the PWM  
pulse is logic 1. Program the TIM to set the pin if the state of the PWM  
pulse is logic 0.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
201  
Timer Interface Module (TIM)  
 
Timer Interface Module (TIM)  
The value in the TIM counter modulo registers and the selected  
prescaler output determines the frequency of the PWM output. The  
frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIM counter modulo registers produces a PWM  
period of 256 times the internal bus clock period if the prescaler select  
value is $000. See 11.10.1 TIM Status and Control Register.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 11-3. PWM Period and Pulse Width  
The value in the TIM channel registers determines the pulse width of the  
PWM output. The pulse width of an 8-bit PWM signal is variable in 256  
increments. Writing $0080 (128) to the TIM channel registers produces  
a duty cycle of 128/256 or 50%.  
11.5.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as  
described in 11.5.4 Pulse Width Modulation (PWM). The pulses are  
unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM channel  
registers.  
An unsynchronized write to the TIM channel registers to change a pulse  
width value could cause incorrect operation for up to two PWM periods.  
For example, writing a new value before the counter reaches the old  
value but after the counter reaches the new value prevents any compare  
during that PWM period. Also, using a TIM overflow interrupt routine to  
write a new, smaller pulse width value may cause the compare to be  
missed. The TIM may pass the new value before it is written.  
Data Sheet  
202  
MC68HC908LJ24/LK24 — Rev. 2.1  
Timer Interface Module (TIM)  
Freescale Semiconductor  
Timer Interface Module (TIM)  
Functional Description  
Use the following methods to synchronize unbuffered changes in the  
PWM pulse width on channel x:  
• When changing to a shorter pulse width, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the  
PWM period to write the new value.  
• When changing to a longer pulse width, enable TIM overflow  
interrupts and write the new value in the TIM overflow interrupt  
routine. The TIM overflow interrupt occurs at the end of the current  
PWM period. Writing a larger value in an output compare interrupt  
routine (at the end of the current pulse) could cause two output  
compares to occur in the same PWM period.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare also can cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
11.5.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose  
output appears on the TCH0 pin. The TIM channel registers of the linked  
pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)  
links channel 0 and channel 1. The TIM channel 0 registers initially  
control the pulse width on the TCH0 pin. Writing to the TIM channel 1  
registers enables the TIM channel 1 registers to synchronously control  
the pulse width at the beginning of the next PWM period. At each  
subsequent overflow, the TIM channel registers (0 or 1) that control the  
pulse width are the ones written to last. TSC0 controls and monitors the  
buffered PWM function, and TIM channel 1 status and control register  
(TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1,  
is available as a general-purpose I/O pin.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
203  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
NOTE: In buffered PWM signal generation, do not write new pulse width values  
to the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as  
generating unbuffered PWM signals.  
11.5.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered  
PWM signals, use the following initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter and prescaler by setting the TIM reset  
bit, TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the  
value for the required PWM period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for  
the required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or  
1:0 (for buffered output compare or PWM signals) to the  
mode select bits, MSxB:MSxA. (See Table 11-3.)  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on  
compare) to the edge/level select bits, ELSxB:ELSxA. The  
output action on compare must force the output to the  
complement of the pulse width level. (See Table 11-3.)  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare can also cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit,  
TSTOP.  
Data Sheet  
204  
MC68HC908LJ24/LK24 — Rev. 2.1  
Timer Interface Module (TIM)  
Freescale Semiconductor  
Timer Interface Module (TIM)  
Interrupts  
Setting MS0B links channels 0 and 1 and configures them for buffered  
PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially  
control the buffered PWM output. TIM channel 0 status and control  
register (TSC0) controls and monitors the PWM signal from the linked  
channels.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM  
overflows. Subsequent output compares try to force the output to a state  
it is already in and have no effect. The result is a 0% duty cycle output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the  
TOVx bit generates a 100% duty cycle output. (See 11.10.4 TIM  
Channel Status and Control Registers.)  
11.6 Interrupts  
The following TIM sources can generate interrupt requests:  
• TIM overflow flag (TOF) — The TOF bit is set when the TIM  
counter reaches the modulo value programmed in the TIM counter  
modulo registers. The TIM overflow interrupt enable bit, TOIE,  
enables TIM overflow CPU interrupt requests. TOF and TOIE are  
in the TIM status and control register.  
• TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an  
input capture or output compare occurs on channel x. Channel x  
TIM CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests  
are enabled when CHxIE = 1. CHxF and CHxIE are in the TIM  
channel x status and control register.  
11.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
205  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
11.7.1 Wait Mode  
The TIM remains active after the execution of a WAIT instruction. In wait  
mode, the TIM registers are not accessible by the CPU. Any enabled  
CPU interrupt request from the TIM can bring the MCU out of wait mode.  
If TIM functions are not required during wait mode, reduce power  
consumption by stopping the TIM before executing the WAIT instruction.  
11.7.2 Stop Mode  
The TIM is inactive after the execution of a STOP instruction. The STOP  
instruction does not affect register conditions or the state of the TIM  
counter. TIM operation resumes when the MCU exits stop mode after an  
external interrupt.  
11.8 TIM During Break Interrupts  
A break interrupt stops the TIM counter.  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. (See 9.8.3 SIM Break Flag Control  
Register.)  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a 2-step read/write clearing procedure. If software does  
the first step on such a bit before the break, the bit cannot change during  
the break state as long as BCFE is at logic 0. After the break, doing the  
second step clears the status bit.  
Data Sheet  
206  
MC68HC908LJ24/LK24 — Rev. 2.1  
Timer Interface Module (TIM)  
Freescale Semiconductor  
Timer Interface Module (TIM)  
I/O Signals  
11.9 I/O Signals  
Port B shares four of its pins with the TIM channel I/O pins: T1CH0,  
T1CH1, T2CH0, and T2CH1.  
Port D shares two of its pins with the TIM clock input pins: T1CLK and  
T2CLK  
11.9.1 TIM Clock Pins (PTD4/KBI4/T1CLK, PTD5/KBI5/T2CLK)  
T[1,2]CLK is an external clock input that can be the clock source for the  
TIM[1,2] counter instead of the prescaled internal bus clock. Select the  
T[1,2]CLK input by writing logic 1’s to the three prescaler select bits,  
PS[2:0]. (See 11.10.1 TIM Status and Control Register.) The minimum  
T[1,2]CLK pulse width, T[1,2]CLKLMIN or T[1,2]CLKHMIN, is:  
1
------------------------------------- + t SU  
bus frequency  
The maximum T[1,2]CLK frequency is:  
bus frequency ÷ 2  
T1CLK and T2CLK are available as standard I/Os or KBI pins when not  
used as the TIM clock inputs.  
11.9.2 TIM Channel I/O Pins (PTB2/T1CH0, PTB3/T1CH1, PTB4/T2CH0, PTB5/T2CH1)  
Each channel I/O pin is programmable independently as an input  
capture pin or an output compare pin. T1CH0 and T2CH0 can be  
configured as buffered output compare or buffered PWM pins.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
207  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
11.10 I/O Registers  
NOTE: References to either timer 1 or timer 2 may be made in the following text  
by omitting the timer number. For example, TSC may generically refer to  
both T1SC AND T2SC.  
These I/O registers control and monitor operation of the TIM:  
• TIM status and control register (TSC)  
• TIM counter registers (TCNTH:TCNTL)  
• TIM counter modulo registers (TMODH:TMODL)  
• TIM channel status and control registers (TSC0, TSC1)  
• TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L)  
11.10.1 TIM Status and Control Register  
The TIM status and control register (TSC):  
• Enables TIM overflow interrupts  
• Flags TIM overflows  
• Stops the TIM counter  
• Resets the TIM counter  
• Prescales the TIM counter clock  
Address: T1SC, $0020 and T2SC, $002B  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 11-4. TIM Status and Control Register (TSC)  
Data Sheet  
208  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
I/O Registers  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter reaches the modulo  
value programmed in the TIM counter modulo registers. Clear TOF by  
reading the TIM status and control register when TOF is set and then  
writing a logic 0 to TOF. If another TIM overflow occurs before the  
clearing sequence is complete, then writing logic 0 to TOF has no  
effect. Therefore, a TOF interrupt request cannot be lost due to  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a  
logic 1 to TOF has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit  
becomes set. Reset clears the TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
TSTOP — TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when  
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM  
counter until software clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required  
to exit wait mode.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM  
prescaler. Setting TRST has no effect on any other registers.  
Counting resumes from $0000. TRST is cleared automatically after  
the TIM counter is reset and always reads as logic 0. Reset clears the  
TRST bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIM counter  
at a value of $0000.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
209  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
PS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the  
input to the TIM counter as Table 11-2 shows. Reset clears the  
PS[2:0] bits.  
Table 11-2. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
TCLK  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
11.10.2 TIM Counter Registers  
The two read-only TIM counter registers contain the high and low bytes  
of the value in the TIM counter. Reading the high byte (TCNTH) latches  
the contents of the low byte (TCNTL) into a buffer. Subsequent reads of  
TCNTH do not affect the latched TCNTL value until TCNTL is read.  
Reset clears the TIM counter registers. Setting the TIM reset bit (TRST)  
also clears the TIM counter registers.  
NOTE: If you read TCNTH during a break interrupt, be sure to unlatch TCNTL  
by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
Address: T1CNTH, $0021 and T2CNTH, $002C  
Bit 7  
Read: Bit 15  
Write:  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
14  
13  
12  
11  
10  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 11-5. TIM Counter Registers High (TCNTH)  
Data Sheet  
210  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Timer Interface Module (TIM)  
 
Timer Interface Module (TIM)  
I/O Registers  
Address: T1CNTL, $0022 and T2CNTL, $002D  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 11-6. TIM Counter Registers Low (TCNTL)  
11.10.3 TIM Counter Modulo Registers  
The read/write TIM modulo registers contain the modulo value for the  
TIM counter. When the TIM counter reaches the modulo value, the  
overflow flag (TOF) becomes set, and the TIM counter resumes counting  
from $0000 at the next timer clock. Writing to the high byte (TMODH)  
inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is  
written. Reset sets the TIM counter modulo registers.  
Address: T1MODH, $0023 and T2MODH, $002E  
Bit 7  
Bit 15  
1
6
14  
1
5
13  
1
4
12  
1
3
11  
1
2
10  
1
1
9
1
Bit 0  
Bit 8  
1
Read:  
Write:  
Reset:  
Figure 11-7. TIM Counter Modulo Register High (TMODH)  
Address: T1MODL, $0024 and T2MODL, $002F  
Bit 7  
Bit 7  
1
6
6
1
5
5
1
4
4
1
3
3
1
2
2
1
1
1
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Figure 11-8. TIM Counter Modulo Register Low (TMODL)  
NOTE: Reset the TIM counter before writing to the TIM counter modulo registers.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
211  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
11.10.4 TIM Channel Status and Control Registers  
Each of the TIM channel status and control registers:  
• Flags input captures and output compares  
• Enables input capture and output compare interrupts  
• Selects input capture, output compare, or PWM operation  
• Selects high, low, or toggling output on output compare  
• Selects rising edge, falling edge, or any edge as the active input  
capture trigger  
• Selects output toggling on TIM overflow  
• Selects 0% and 100% PWM duty cycle  
• Selects buffered or unbuffered output compare/PWM operation  
Address: T1SC0, $0025 and T2SC0, $0030  
Bit 7  
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read: CH0F  
Write:  
0
0
Reset:  
Figure 11-9. TIM Channel 0 Status and Control Register (TSC0)  
Address: T1SC1, $0028 and T2SC1, $0033  
Bit 7  
6
CH1IE  
0
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read: CH1F  
Write:  
0
0
Reset:  
0
= Unimplemented  
Figure 11-10. TIM Channel 1 Status and Control Register (TSC1)  
Data Sheet  
212  
MC68HC908LJ24/LK24 — Rev. 2.1  
Timer Interface Module (TIM)  
Freescale Semiconductor  
Timer Interface Module (TIM)  
I/O Registers  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set  
when an active edge occurs on the channel x pin. When channel x is  
an output compare channel, CHxF is set when the value in the TIM  
counter registers matches the value in the TIM channel x registers.  
When TIM CPU interrupt requests are enabled (CHxIE = 1), clear  
CHxF by reading TIM channel x status and control register with CHxF  
set and then writing a logic 0 to CHxF. If another interrupt request  
occurs before the clearing sequence is complete, then writing logic 0  
to CHxF has no effect. Therefore, an interrupt request cannot be lost  
due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupt service requests on  
channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation.  
MSxB exists only in the TIM1 channel 0 and TIM2 channel 0 status  
and control registers.  
Setting MS0B disables the channel 1 status and control register and  
reverts TCH1 to general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:ELSxA 0:0, this read/write bit selects either input  
capture operation or unbuffered output compare/PWM operation.  
See Table 11-3.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
213  
Timer Interface Module (TIM)  
Timer Interface Module (TIM)  
When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output  
level of the TCHx pin. See Table 11-3. Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE: Before changing a channel function by writing to the MSxB or MSxA bit,  
set the TSTOP and TRST bits in the TIM status and control register  
(TSC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits  
control the active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA  
control the channel x output behavior when an output compare  
occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected  
to an I/O port, and pin TCHx is available as a general-purpose I/O pin.  
Table 11-3 shows how ELSxB and ELSxA work. Reset clears the  
ELSxB and ELSxA bits.  
Table 11-3. Mode, Edge, and Level Selection  
MSxB:MSxA ELSxB:ELSxA  
Mode  
Configuration  
Pin under port control;  
initial output level high  
X0  
X1  
00  
00  
Output preset  
Pin under port control;  
initial output level low  
00  
00  
01  
10  
Capture on rising edge only  
Capture on falling edge only  
Input capture  
Capture on rising or  
falling edge  
00  
11  
01  
01  
01  
1X  
1X  
1X  
01  
10  
11  
01  
10  
11  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Output  
compare or  
PWM  
Buffered  
output  
compare or  
buffered PWM  
Data Sheet  
214  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Timer Interface Module (TIM)  
 
Timer Interface Module (TIM)  
I/O Registers  
NOTE: Before enabling a TIM channel register for input capture operation, make  
sure that the TCHx pin is stable for at least two bus clocks. User software  
should also clear CHxF before setting CHxIE to avoid any false  
interrupts.  
TOVx — Toggle On Overflow Bit  
When channel x is an output compare channel, this read/write bit  
controls the behavior of the channel x output when the TIM counter  
overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow  
0 = Channel x pin does not toggle on TIM counter overflow  
NOTE: When TOVx is set, a TIM counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic 1, setting the CHxMAX bit forces the  
duty cycle of buffered and unbuffered PWM signals to 100%. As  
Figure 11-11 shows, the CHxMAX bit takes effect in the cycle after it  
is set or cleared. The output stays at the 100% duty cycle level until  
the cycle after CHxMAX is cleared.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
TCHx  
OUTPUT  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
COMPARE  
CHxMAX  
Figure 11-11. CHxMAX Latency  
11.10.5 TIM Channel Registers  
These read/write registers contain the captured TIM counter value of the  
input capture function or the output compare value of the output  
compare function. The state of the TIM channel registers after reset is  
unknown.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
215  
Timer Interface Module (TIM)  
 
Timer Interface Module (TIM)  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the  
TIM channel x registers (TCHxH) inhibits input captures until the low  
byte (TCHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of  
the TIM channel x registers (TCHxH) inhibits output compares until the  
low byte (TCHxL) is written.  
Address: T1CH0H, $0026 and T2CH0H, $0031  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 11-12. TIM Channel 0 Register High (TCH0H)  
Address: T1CH0L, $0027 and T2CH0L $0032  
Bit 7  
6
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
Indeterminate after reset  
Figure 11-13. TIM Channel 0 Register Low (TCH0L)  
Address: T1CH1H, $0029 and T2CH1H, $0034  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 11-14. TIM Channel 1 Register High (TCH1H)  
Address: T1CH1L, $002A and T2CH1L, $0035  
Bit 7  
6
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
Indeterminate after reset  
Figure 11-15. TIM Channel 1 Register Low (TCH1L)  
Data Sheet  
216  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Timer Interface Module (TIM)  
Data Sheet — MC68HC908LJ24  
Section 12. Real Time Clock (RTC)  
12.1 Contents  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
12.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219  
12.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
12.5.1 Time Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
12.5.2 Calendar Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
12.5.3 Alarm Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
12.5.4 Chronograph Functions . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
12.5.5 Timebase Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
12.6 RTC Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
12.7 RTC Clock Calibration and Compensation. . . . . . . . . . . . . . .225  
12.7.1 Calibration Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226  
12.8 RTC Register and Bit Write Protection . . . . . . . . . . . . . . . . . .227  
12.9 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
12.9.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229  
12.9.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230  
12.10 RTC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230  
12.10.1 RTC Calibration Control Register (RTCCOMR). . . . . . . . .231  
12.10.2 RTC Calibration Data Register (RTCCDAT) . . . . . . . . . . .233  
12.10.3 RTC Control Register 1 (RTCCR1) . . . . . . . . . . . . . . . . . .234  
12.10.4 RTC Control Register 2 (RTCCR2) . . . . . . . . . . . . . . . . . .235  
12.10.5 RTC Status Register (RTCSR). . . . . . . . . . . . . . . . . . . . . .237  
12.10.6 Alarm Minute and Hour Registers (ALMR and ALHR) . . . .240  
12.10.7 Second Register (SECR) . . . . . . . . . . . . . . . . . . . . . . . . . .241  
12.10.8 Minute Register (MINR) . . . . . . . . . . . . . . . . . . . . . . . . . . .241  
12.10.9 Hour Register (HRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
217  
Real Time Clock (RTC)  
 
Real Time Clock (RTC)  
12.10.10 Day Register (DAYR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242  
12.10.11 Month Register (MTHR) . . . . . . . . . . . . . . . . . . . . . . . . . . .243  
12.10.12 Year Register (YRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243  
12.10.13 Day-Of-Week Register (DOWR) . . . . . . . . . . . . . . . . . . . .244  
12.10.14 Chronograph Data Register (CHRR) . . . . . . . . . . . . . . . . .244  
12.2 Introduction  
This section describes the real time clock (RTC) module. The RTC  
provides real time clock and calendar functions with automatic leap year  
adjustments. Other functions include alarm interrupt, periodic interrupts,  
and a chronograph timer.  
NOTE: This module is designed for a 32.768-kHz oscillator.  
12.3 Features  
Features of the RTC module include:  
• 32.768kHz clock input with frequency compensation  
• Counter registers for:  
– Second  
– Minute  
– Hour  
– Day  
– Day-of-week  
– Month  
– Year  
• Day counter with automatic month and leap year adjustment  
• 1/100 seconds chronograph counter  
• Seven periodic interrupts  
• Alarm interrupt  
Data Sheet  
218  
MC68HC908LJ24/LK24 — Rev. 2.1  
Real Time Clock (RTC)  
Freescale Semiconductor  
Real Time Clock (RTC)  
I/O Pins  
12.4 I/O Pins  
Two RTC clock calibration pins are shared with standard port I/O pins.  
Table 12-1. Pin Name Conventions  
RTC  
Pin Selected for RTC Function by  
Full MCU Pin Name  
Generic Pin Name  
Bits in RTCCOMR ($0040)  
AUTOCAL  
CALIN  
PTD0/SS/CALIN  
(1)  
CALOUT  
PTD3/SPSCK/CALOUT  
OUTF[1:0}  
Notes:  
1. Do not enable the SPI function if the pin is used for RTC calibration.  
Addr.  
Register Name  
Bit 7  
6
0
R
0
0
5
CAL  
0
4
3
2
OUTF0  
0
1
Bit 0  
Read:  
0
R
0
0
0
RTC Calibration Control  
AUTOCAL OUTF1  
$0040  
Register Write:  
(RTCCOMR)  
RTCWE1 RTCWE0  
Reset:  
0
E4  
0
E3  
0
0
Read: EOVL  
RTC Calibration Data  
E5  
E2  
E1  
E0  
$0041  
$0042  
$0043  
$0044  
$0045  
Register Write:  
(RTCCDAT)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
U
ALMIE  
0
0
U
U
U
U
U
U
CHRIE  
DAYIE  
0
HRIE  
0
MINIE  
0
SECIE  
TB1IE  
TB2IE  
RTC Control Register 1  
(RTCCR1)  
0
0
0
0
0
0
0
0
CHRCLR  
0
COMEN  
U
CHRE  
RTCE  
TBH  
RTC Control Register 2  
(RTCCR2)  
††  
0
0
0
0
0
0
Read: ALMF  
Write:  
CHRF  
DAYF  
HRF  
MINF  
SECF  
TB1F  
TB2F  
RTC Status Register  
(RTCSR)  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
0
AM5  
U
0
AM4  
U
0
AM3  
U
0
AM2  
U
0
AM1  
U
0
AM0  
U
Alarm Minute Register  
(ALMR)  
0
0
†† Reset by POR only.  
U = Unaffected  
= Unimplemented  
R
= Reserved  
Figure 12-1. RTC I/O Register Summary  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
219  
Real Time Clock (RTC)  
Real Time Clock (RTC)  
Read:  
0
0
0
AH4  
U
AH3  
U
AH2  
U
AH1  
U
AH0  
U
Alarm Hour Register  
(ALHR)  
$0046  
$0047  
$0048  
$0049  
$004A  
$004B  
$004C  
$004D  
$004E  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
0
SEC5  
U
SEC4  
U
SEC3  
U
SEC2  
U
SEC1  
U
SEC0  
U
Second Register  
(SECR)  
0
0
0
0
MIN5  
MIN4  
U
MIN3  
U
MIN2  
U
MIN1  
U
MIN0  
U
Minute Register  
(MINR)  
0
0
0
0
U
0
HR4  
U
HR3  
U
HR2  
U
HR1  
U
HR0  
U
Hour Register  
(HRR)  
0
0
0
0
0
0
DAY4  
DAY3  
U
DAY2  
U
DAY1  
U
DAY0  
U
Day Register  
(DAYR)  
0
0
0
0
0
0
U
0
MTH3  
U
MTH2  
U
MTH1  
U
MTH0  
U
Month Register  
(MTHR)  
0
0
0
0
YR7  
YR6  
YR5  
YR4  
YR3  
YR2  
U
YR1  
U
YR0  
U
Year Register  
(YRR)  
U
0
U
0
U
0
U
0
U
0
DOW2  
DOW1  
DOW0  
Day-Of-Week Register  
(DOWR)  
0
0
0
0
0
0
U
U
U
CHR6  
CHR5  
CHR4  
CHR3  
CHR2  
CHR1  
CHR0  
Chronograph Data  
Register Write:  
(CHRR)  
Reset:  
0
0
0
0
0
0
0
0
U = Unaffected  
= Unimplemented  
R
= Reserved  
Figure 12-1. RTC I/O Register Summary  
Data Sheet  
220  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Real Time Clock (RTC)  
Real Time Clock (RTC)  
Functional Description  
12.5 Functional Description  
The RTC module provides clock indications in seconds, minutes, and  
hours; calendar indications in day-of-week, day-of-month, month, and  
year; with automatic adjustment for month and leap year. Reading the  
clock and calendar registers return the current time and date. Writing to  
these registers set the time and date, and the counters will continue to  
count from the new settings.  
The alarm interrupt is set for the hour and minute. When the hour and  
minute counters matches the time set in the alarm hour and minute  
registers, the alarm flag is set. The alarm can be configured to generate  
a CPU interrupt request.  
A 1/100 seconds chronograph counter is provided for timing  
applications. This counter can be independently enabled or disabled,  
and cleared at any time.  
RTC module interrupts include the alarm interrupt and seven periodic  
interrupts from the clock and chronograph counters.  
A frequency compensation mechanism is built into this RTC module to  
allow adjustments made to the RTC clock when a less accurate  
32.768kHz crystal is used.  
The 1-Hz clock that drives the clock and calendar could make use of the  
built-in compensation mechanism for crystal frequency error  
compensation so that the 1-Hz clock could be made more accurate than  
the frequency accuracy of the crystal that drive the module. The  
compensation value can be provided by application software or acquire  
automatically during calibration operation of the module.  
Figure 12-2 shows the structure of the RTC module.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
221  
Real Time Clock (RTC)  
Real Time Clock (RTC)  
CALOUT  
1Hz  
CLOCK CALIBRATION  
CALIN  
REFERENCE  
AND  
1Hz  
TBH = 0 => X,Y = A  
TBH = 1 => X,Y = B  
TBH  
SL  
COMPENSATION CIRCUIT  
TO CLOCK  
COUNTERS  
2Hz  
÷ 256  
÷ 2  
÷ 2  
÷ 2  
÷ 2  
÷ 2  
÷ 2  
XA  
CGMXCLK  
(32.768kHz)  
X
Y
TB1F  
4Hz  
8Hz  
YA  
XB  
YB  
TB1IE  
TB2F  
16Hz  
TB2IE  
128 Hz  
CHRF  
CHRIE  
25 16  
×
+
CHRONOGRAPH COUNTER  
FROM CLOCK  
32 32  
1/100 SECONDS  
CHRONOGRAPH DATA REGISTER  
COMPENSATION CIRCUIT  
CHRE  
CHRCLR  
1Hz  
SECF  
SECIE  
SECOND COUNTER REGISTER  
MINUTE COUNTER REGISTER  
HOUR COUNTER REGISTER  
INTERRUPT  
LOGIC  
ALARM MINUTE REGISTER  
COMPARATOR  
MINF  
MINIE  
HRF  
ALARM HOUR REGISTER  
COMPARATOR  
HRIE  
ALMF  
ALMIE  
DAYF  
DAYIE  
DAY-OF-WEEK COUNTER REGISTER  
DAY COUNTER REGISTER  
MONTH COUNTER REGISTER  
YEAR COUNTER REGISTER  
Figure 12-2. RTC Block Diagram  
Data Sheet  
222  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Real Time Clock (RTC)  
Real Time Clock (RTC)  
Functional Description  
12.5.1 Time Functions  
Real time clock functions are provided by the second, minute, and hour  
counter registers. All three clock counters are able to generate interrupts  
on every counter increment, providing periodic interrupts for the second  
(SECF), minute (MINF), and hour (HRF). A CPU interrupt request is  
generated if the corresponding enable bit (SECIE, MINIE, and HRIE) is  
also set.  
12.5.2 Calendar Functions  
Calendar functions are provided by the day, day-of-week, month, and  
year counter registers. The roll over of the day counter is automatically  
adjusted for the month and leap years. The setting for the year counter  
ranges from 1901 to 2099.  
The day flag (DAYF) is set on every increment of the day counter. A CPU  
interrupt request is generated if the day interrupt enable bit (DAYIE) is  
also set.  
12.5.3 Alarm Functions  
An alarm function is provided for the minute and hour counters. When  
minute counter matches the value stored in the alarm minute register,  
and the hour counter matches the value stored in the alarm hour register,  
the alarm flag (ALMF) will be set. A CPU interrupt request is generated  
if the alarm interrupt enable bit (ALMIE) is also set.  
12.5.4 Chronograph Functions  
The chronograph function is provided by a counter clocked at 128Hz  
(CGMXCLK/256). This counter can be started, stopped, and cleared at  
any time. The value of this chronograph counter is converted to 100Hz  
resolution and stored in the chronograph data register. Hence, the value  
in the chronograph register counts from 0 to 99 (and rolls over), with  
each increment representing 1/100th of a second (10ms).  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
223  
Real Time Clock (RTC)  
 
Real Time Clock (RTC)  
The value in the chronograph data register satisfies the following  
equation:  
(128Hz counter value × 25) + 16  
-------------------------------------------------------------------------------------  
32  
The accuracy of the chronograph counter is ±5ms (max).  
12.5.5 Timebase Interrupts  
In addition to the second, minute, hour, and day periodic interrupts  
generated by the clock functions, the divider circuits generates four  
periodic clocks, separated into two groups: 2Hz and 4Hz; 8Hz and  
16Hz. The TBH bit in the RTC control register 2 (RTCCR2) selects the  
group for the timebase interrupts, indicated by TB1F and TB2F flags. A  
CPU interrupt request is generated if the corresponding enable bits  
(TB1IE and TB2IE) are also set.  
12.6 RTC Interrupts  
The RTC has one alarm interrupt and seven periodic interrupts:  
• Alarm interrupt  
• Periodic interrupts:  
– Second  
– Minute  
– Hour  
– Day  
– 1/128 seconds (chronograph)  
– Timebase 1 and 2:  
1/2 seconds and 1/4 seconds, or  
1/8 seconds and 1/16 seconds  
A CPU interrupt request is generated if the corresponding interrupt  
enable bits are also set.  
Data Sheet  
224  
MC68HC908LJ24/LK24 — Rev. 2.1  
Real Time Clock (RTC)  
Freescale Semiconductor  
Real Time Clock (RTC)  
RTC Clock Calibration and Compensation  
12.7 RTC Clock Calibration and Compensation  
The RTC module is built with a calibration and compensation circuit for  
the CGMXCLK. The circuit is used to compensate frequency errors of  
the 32.768kHz crystal so that a more accurate 1-Hz RTC clock can be  
achieved. Using this method, it is possible to use a less expensive  
crystal. If the crystal temperature profile and the current temperature is  
known, the calibration circuit can also be used to compensate crystal  
frequency errors due to ambient temperature change and crystal aging.  
The circuit provides a ±60ppm compensation range, which is suitable for  
common 30ppm crystals, and can achieve a compensated RTC clock  
accuracy between –3ppm and +2ppm.  
1-Hz REF  
÷ 30  
CALIN  
EVOL  
tdiff  
÷ 983040  
CGMXCLK  
(32.768-kHz)  
E-REGISTER  
÷ 32766  
÷ 32767  
÷ 32768  
÷ 32769  
÷ 32770  
1-Hz FROM  
CGMXCLK ÷ 32768  
1-Hz  
RTC CLOCK  
A
B1  
COMPENSATED  
1-Hz  
S
COMEN  
Figure 12-3. RTC Clock Calibration and Compensation  
The automatic calibration process works by comparing an external 1-Hz  
(1ppm) signal driven into the CALIN pin, with the CGMXCLK signal  
driven by the 32.768kHz crystal. The calibration is started by setting the  
CAL bit followed by the AUTOCAL bit in the RTC calibration register  
(RTCCOMR). During calibration, the tdiff block compares the time  
difference between the two clock sources for 15 seconds. This time  
difference is expressed in the number of CGMXCLK clock cycles and  
stored in two’s complement format in the 6-bit E-register (the RTC  
calibration data register, RTCCDAT).  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
225  
Real Time Clock (RTC)  
Real Time Clock (RTC)  
A negative E-value indicates the number of CGMXCLK cycles that  
needs to be subtracted, because the CGMXCLK is slower than the ideal  
32.768kHz; 32768 CGMXCLK cycles will be more longer than 1-second.  
A positive E-value indicates the number of CGMXCLK cycles that needs  
to be added, because the CGMXCLK is faster than the ideal 32.768kHz;  
32768 CGMXCLK cycles will be more shorter than 1-second.  
If the time difference is more than 31 CGMXCLK cycles, the E-register  
will overflow, causing the EVOL flag to be set. The maximum (+30) or  
minimum (–30) value will remain in the E-register.  
After calibration, with the E-value stored in the calibration data register,  
clock compensation is only enabled when the COMEN bit is set in  
RTCCR2. As the E-value is the time difference for 15 seconds, the  
CGMXCLK is modified for every 15-second intervals. The CGMXCLK  
additions and subtractions are simulated using programmable dividers,  
therefore, the compensated clock does not have the same period within  
the 15-second, but is consistent for every 15-second periods. See Table  
12-2 and Figure 12-4.  
12.7.1 Calibration Error  
During clock calibration, the reference signal to the CALIN pin is not  
synchronized to the CGMXCLK being measured. A maximum  
inaccuracy of minus 1.5×CGMXCLK period or plus 1×CGMXCLK period  
will be introduced to the time difference measured.  
Table 12-2. Compensation Algorithm for Different Values of E  
Period A  
Period B  
Number of  
CGMXCLK  
Divider A  
Number of  
CGMXCLK  
Divider B  
E
CGMXCLK Cycles  
(|E| – 15) × 32766  
|E| × 32767  
CGMXCLK Cycles  
(30 – |E|) × 32767  
(15 – |E|) × 32768  
–30 E –16  
–15 E –1  
E = 0  
32766  
32767  
32767  
32768  
No compensation is required: Divider is 32768 throughout.  
1 E 15  
16 E 30  
|E| × 32769  
32769  
32770  
(15 – |E|) × 32768  
(30 – |E|) × 32769  
32769  
32769  
(|E| – 15) × 32770  
Data Sheet  
226  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Real Time Clock (RTC)  
 
Real Time Clock (RTC)  
RTC Register and Bit Write Protection  
TRUE 15 SECONDS  
CGMXCLK  
UNCOMPENSATED  
1-Hz CLOCK  
(CGMXCLK ÷ 32768)  
COMPENSATED  
1-Hz CLOCK  
PERIOD A  
PERIOD B  
1-Hz CLOCK = CGMXCLK ÷ A  
1-Hz CLOCK = CGMXCLK ÷ B  
Figure 12-4. 1-Hz Clock Compensation  
12.8 RTC Register and Bit Write Protection  
A write-protect mechanism is implemented to prevent accidental writes  
to the RTC clock registers, calendar registers, and other control bits. The  
protected RTC registers and bits are listed in Table 12-3.  
Table 12-3. Write-Protected RTC Registers and Bits  
Register  
Bit  
CAL  
RTC Control Register 1  
AUTOCAL  
OUTF[1:0]  
COMEN  
RTCE  
RTC Control Register 2  
Second Register  
Minute Register  
Hour Register  
(All Bits)  
(All Bits)  
(All Bits)  
(All Bits)  
(All Bits)  
(All Bits)  
(All Bits)  
Day-Of-Week Register  
Day Register  
Month Register  
Year Register  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
227  
Real Time Clock (RTC)  
 
Real Time Clock (RTC)  
The mechanism uses the RTCWE[1:0] bits in the RTC calibration control  
register (RTCCOMR) in a state machine, which requires a bit-write  
sequence to disable the write-protection. A block diagram of the state  
machine is shown in Figure 12-5.  
Write-Protect ENABLED  
Write-Protect  
DISABLED  
Write any value  
other than 10  
to RTWE  
RTCWE = 10  
Note: Reading RTCWE[1:0]  
always return 00.  
RTCWE = 00  
Write any value  
other than 00  
to RTWE  
RTCWE = 11  
RTCWE 01  
Figure 12-5. RTC Write Protect State Diagram  
After a reset, the write-protect mechanism is disabled, allowing the user  
code to calibrate the RTC clock, set the time in the clock registers, and  
set the date in the calendar registers.  
To enable write-protect after reset or write-protect is disabled execute  
the following code:  
RTCWE1 EQU  
RTCWE0 EQU  
1
0
;RTCWE1 bit  
;RTCWE0 bit  
Data Sheet  
228  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Real Time Clock (RTC)  
 
Real Time Clock (RTC)  
Low-Power Modes  
RTCWE_REQU  
...  
$40  
;RTCCOMR register  
RTC_WRTIE_PROTECT  
...  
BSET RTCWE1,RTCWE_R ;write %10  
BSET RTCWE1,RTCWE_R ;write %10 again  
To disable write-protect after write-protect is enabled execute the  
following code:  
RTCWE1 EQU  
RTCWE0 EQU  
RTCWE_REQU  
...  
1
0
$40  
;RTCWE1 bit  
;RTCWE0 bit  
;RTCCOMR register  
RTC_WRITE_ENABLE  
...  
BSET RTCWE1,RTCWE_R ;write %10 twice to  
BSET RTCWE1,RTCWE_R ;ensure protected  
BCLR RTCWE1,RTCWE_R ;write %00  
BSET RTCWE0,RTCWE_R ;write %01  
LDA  
ORA  
STA  
RTCWE_R  
#%00000011  
RTCWE_R  
;write %11  
BSET RTCWE1,RTCWE_R ;write %10  
...  
; Write-protect is disabled, RTC registers/bits can be written.  
...  
; Protect register/bits again after write access.  
RTC_WRTIE_PROTECT  
...  
BSET RTCWE1,RTCWE_R ;write %10  
BSET RTCWE1,RTCWE_R ;write %10 again  
12.9 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-  
consumption standby modes.  
12.9.1 Wait Mode  
The RTC module continues normal operation in wait mode. Any enabled  
CPU interrupt request from the RTC can bring the MCU out of wait  
mode. If the RTC is not required to bring the MCU out of wait mode,  
power down the RTC by clearing the RTCE bit before executing the  
WAIT instruction.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
229  
Real Time Clock (RTC)  
Real Time Clock (RTC)  
12.9.2 Stop Mode  
For continuous RTC operation in stop mode, the oscillator stop mode  
enable bit (STOP_XCLKEN in CONFIG2 register) must be set before  
executing the STOP instruction. When STOP_XCLKEN is set,  
CGMXCLK continues to drive the RTC module, and any enabled CPU  
interrupt request from the RTC can bring the MCU out of stop mode.  
If STOP_XCLKEN bit is cleared, the RTC module is inactive after the  
execution of a STOP instruction. The STOP instruction does not affect  
RTC register states. RTC module operation resumes after an external  
interrupt. To further reduce power consumption, the RTC module should  
be powered-down by clearing the RTCE bit before executing the STOP  
instruction.  
12.10 RTC Registers  
The RTC module has fifteen memory-mapped registers:  
• RTC calibration control register (RTCCOMR)  
• RTC calibration data register (RTCCDAT)  
• RTC control register 1 (RTCCR1)  
• RTC control register 2 (RTCCR2)  
• RTC status register (RTCSR)  
• Alarm minute and hour registers (ALMR and ALHR)  
• Second register (SECR)  
• Minute register (MINR)  
• Hour register (HRR)  
• Day register (DAY)  
• Month register (MTHR)  
• Year register (YRR)  
• Day of the week register (DOWR)  
• Chronograph data register (CHRR)  
Data Sheet  
230  
MC68HC908LJ24/LK24 — Rev. 2.1  
Real Time Clock (RTC)  
Freescale Semiconductor  
Real Time Clock (RTC)  
RTC Registers  
12.10.1 RTC Calibration Control Register (RTCCOMR)  
The RTC calibration control register (RTCCOMR) contains control bits  
for RTC calibration, output option for the CALOUT pin, and registers/bits  
write-protect enable.  
Address: $0040  
Read:  
Write:  
Reset:  
0
R
0
0
R
0
0
0
AUTOCAL*  
CAL*  
0
OUTF1* OUTF0*  
RTCWE1 RTCWE0  
0
0
0
0
0
* CAL, AUTOCAL, and OUTF{1:0] bits are write-protected; unprotect by a write sequence to RTCWE[1:0].  
Figure 12-6. RTC Calibration Control Register (RTCCOMR)  
CAL — RTC Calibration Mode  
This read/write bit enables the RTC calibration circuit. The CAL bit is  
cleared automatically after completion of automatic calibration if  
AUTOCAL is also set when CAL bit is set.  
1 = RTC calibration mode enabled  
0 = RTC calibration mode disabled  
AUTOCAL — RTC Automatic Calibration Enable  
This read/write bit enables the CALIN pin to accept an incoming  
1-Hz signal and calibration circuits for RTC automatic calibration. This  
bit can only be set when the CAL bit is set. After calibration (approx.  
15 seconds), the AUTOCAL bit is automatically cleared.  
1 = RTC automatic calibration enabled  
0 = RTC automatic calibration disabled  
NOTE: RTC clock and calendar functions are not affected when calibration is  
enabled.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
231  
Real Time Clock (RTC)  
Real Time Clock (RTC)  
OUTF[1:0] — Calibration Mode CALOUT Pin Output Selection  
These two bits select the output option for the CALOUT pin.  
When CAL = 0, OUTF[1:0] is always 00.  
Table 12-4. CALOUT Pin Output Option  
OUTF[1:0]  
CALOUT Pin Output  
CALOUT pin is disconnected.  
00  
01  
10  
11  
CALOUT pin outputs compensated 1-Hz.  
CALOUT pin outputs CGMXCLK clock.  
Reserved  
RTCWE[1:0] — RTC Module Write Enable  
These two write-only bits control the write-protect function of several  
RTC registers and bits. After a reset, write-protect is disabled,  
allowing full write access to RTC registers and bits. These two bits  
always read as 0.  
To enable write-protect, perform the following sequence:  
1. Write %10 to RTCWE[1:0] bits  
2. Write %10 to RTCWE[1:0] bits  
To disable write-protect, perform the following sequence:  
1. Write %00 to RTCWE[1:0] bits  
2. Write %01 to RTCWE[1:0] bits  
3. Write %11 to RTCWE[1:0] bits  
4. Write %10 to RTCWE[1:0] bits  
To disable write-protect from an unsure protection state, first perform  
the enable write-protect sequence, followed by the disable write-  
protect sequence.  
Data Sheet  
232  
MC68HC908LJ24/LK24 — Rev. 2.1  
Real Time Clock (RTC)  
Freescale Semiconductor  
Real Time Clock (RTC)  
RTC Registers  
12.10.2 RTC Calibration Data Register (RTCCDAT)  
The RTC calibration data register (RTCCDAT) contains the RTC  
calibration data.  
Address: $0041  
Read: EOVL  
Write:  
0
0
E5  
U
E4  
U
E3  
U
E2  
U
E1  
U
E0  
U
Reset:  
U
Figure 12-7. RTC Calibration Data Register (RTCCDAT)  
EOVL — E Register Overflow  
This read-only bit indicates that the time difference recorded between  
CALIN and CGMXCLK after 15 seconds during the last automatic  
calibration had exceeded 31 CGMXCLK cycles. Clear this flag by  
writing to the E register after the CAL bit is set. Setting the AUTOCAL  
bit will also clear this flag, but subsequent automatic calibration may  
set this flag again.  
1 = E register overflow detected during the last automatic  
calibration  
0 = No E register overflow detected during last automatic  
calibration  
E[5:0] — RTC Compensation Value (E register)  
E[5:0] is a two’s complement number which indicates the number of  
CGMXCLK cycles the RTC requires to compensate for a 15 second  
duration. If the compensation exceeds the limit of ±31 CGMXCLK  
cycles, the E[5:0] bits remain at the maximum value of –30 (%100010)  
or +30 (%011110), and the EOVL flag will be set.  
When compensation is enabled (COMEN = 1): If E is negative, an E  
number of cycles will be subtracted from the 491520 CGMXCLK  
cycles (32768 × 15).  
When compensation is enabled (COMEN = 1): If E is positive, an E  
number of cycles will be added to the 491520 CGMXCLK cycles  
(32768 × 15).  
E[5:0] is written by the RTC compensation circuit during automatic  
calibration (AUTOCAL = 1). User can only write to E{5:0] when  
AUTOCAL = 0 and CAL = 1. Reset has no effect on E[1:0] bits.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
233  
Real Time Clock (RTC)  
Real Time Clock (RTC)  
12.10.3 RTC Control Register 1 (RTCCR1)  
The RTC control register 1 (RTCCR1) contains the eight interrupt enable  
bits for RTC interrupt functions.  
Address: $0042  
Read:  
ALMIE  
CHRIE  
0
DAYIE  
0
HRIE  
0
MINIE  
0
SECIE  
0
TB1IE  
0
TB2IE  
0
Write:  
Reset:  
0
Figure 12-8. RTC Control Register 1 (RTCCR1)  
ALMIE — Alarm Interrupt Enable  
This read/write bit enables the alarm flag, ALMF, to generate CPU  
interrupt requests. Reset clears the ALMIE bit.  
1 = ALMF enabled to generate CPU interrupt  
0 = ALMF not enabled to generate CPU interrupt  
CHRIE — Chronograph Interrupt Enable  
This read/write bit enables the chronograph flag, CHRF, to generate  
CPU interrupt requests. Reset clears the CHRIE bit.  
1 = CHRF enabled to generate CPU interrupt  
0 = CHRF not enabled to generate CPU interrupt  
DAYIE — Day Interrupt Enable  
This read/write bit enables the day flag, DAYF, to generate CPU  
interrupt requests. Reset clears the DAYIE bit.  
1 = DAYF enabled to generate CPU interrupt  
0 = DAYF not enabled to generate CPU interrupt  
HRIE — Hour Interrupt Enable  
This read/write bit enables the hour flag, HRF, to generate CPU  
interrupt requests. Reset clears the HRIE bit.  
1 = HRF enabled to generate CPU interrupt  
0 = HRF not enabled to generate CPU interrupt  
MINIE — Minute Interrupt Enable  
This read/write bit enables the minute flag, MINF, to generate CPU  
interrupt requests. Reset clears the MINIE bit.  
1 = MINF enabled to generate CPU interrupt  
0 = MINF not enabled to generate CPU interrupt  
Data Sheet  
234  
MC68HC908LJ24/LK24 — Rev. 2.1  
Real Time Clock (RTC)  
Freescale Semiconductor  
Real Time Clock (RTC)  
RTC Registers  
SECIE — Second Interrupt Enable  
This read/write bit enables the second flag, SECF, to generate CPU  
interrupt requests. Reset clears the SECIE bit.  
1 = SECF enabled to generate CPU interrupt  
0 = SECF not enabled to generate CPU interrupt  
TB1IE — Timebase 1 Interrupt Enable  
This read/write bit enables the timebase1 flag, TB1F, to generate  
CPU interrupt requests. Reset clears the TB1IE bit.  
1 = TB1F enabled to generate CPU interrupt  
0 = TB1F not enabled to generate CPU interrupt  
TB2IE — Timebase 2 Interrupt Enable  
This read/write bit enables the timebase2 flag, TB2F, to generate  
CPU interrupt requests. Reset clears the TB2IE bit.  
1 = TB2F enabled to generate CPU interrupt  
0 = TB2F not enabled to generate CPU interrupt  
12.10.4 RTC Control Register 2 (RTCCR2)  
The RTC control register 2 (RTCCR2) contains control and clock  
selection bits for RTC operation.  
Address: $0043  
Read:  
Write:  
Reset:  
0
CHRCLR  
0
0
0
0
0
0
0
COMEN*  
U
CHRE  
0
RTCE*  
TBH  
0
††  
0
= Unimplemented  
†† Reset by POR only.  
* COMEN and RTCE bits are write-protected; unprotect by a write sequence to RTCWE[1:0] in RTCCOMR.  
Figure 12-9. RTC Control Register 2 (RTCCR2)  
COMEN — RTC Compensation Enable  
This read/write bit enables the clock compensation mechanism for  
CGMXCLK frequency errors. Reset has no effect on COMEN bit.  
1 = Compensation mechanism enabled  
0 = Compensation mechanism not enabled  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
235  
Real Time Clock (RTC)  
Real Time Clock (RTC)  
NOTE: With compensation enabled, the RTC clock and calendar register  
updates may not be synchronized to the timebase and chronograph  
clocks, since their clocks are derived from the uncompensated  
CGMXCLK.  
Hence, time intervals for timebase ticks may not align with the RTC clock  
and calendar register updates.  
CHRCLR — Chronograph counter clear  
Setting this write-only bit resets the chronograph counter and the  
chronograph data register (CHRR). Setting CHRCLR has no effect on  
any other registers. Counting resumes from $00. CHRCLR is cleared  
automatically after the chronograph counter is reset and always reads  
as logic 0. Reset clears the CHRCLR bit.  
1 = Chronograph counter cleared  
0 = No effect  
CHRE — Chronograph Enable  
This read/write bit enables the chronograph counter. When the  
chronograph counter is disabled (CHRE = 0), the value in the  
chronograph data register is held at the count value. Reset clears the  
CHRE bit.  
1 = Chronograph counter enabled  
0 = Chronograph counter disabled  
RTCE — Real Time Clock Enable  
This read/write bit enables the entire RTC module, allowing all RTC  
and chronograph operations. Disabling the RTC module does not  
affect the contents in the RTC registers. Reset clears the RTCE bit.  
1 = RTC module enabled  
0 = RTC module disabled  
TBH — Timebase High Frequency Select  
This read/write bit selects the timebase interrupt period for TB1 and  
TB2. Reset clears the TBH bit.  
1 = TB1 interrupt is 0.125s; TB2 interrupt is 0.0625s  
0 = TB1 interrupt is 0.5s; TB2 interrupt is 0.25s  
Data Sheet  
236  
MC68HC908LJ24/LK24 — Rev. 2.1  
Real Time Clock (RTC)  
Freescale Semiconductor  
Real Time Clock (RTC)  
RTC Registers  
12.10.5 RTC Status Register (RTCSR)  
The RTC status register contains eight status flags. When a flag is set  
and the corresponding interrupt enable bit is also set, a CPU interrupt  
request is generated.  
Address: $0044  
Read: ALMF  
Write:  
CHRF  
0
DAYF  
0
HRF  
0
MINF  
0
SECF  
0
TB1F  
0
TB2F  
0
Reset:  
0
= Unimplemented  
Figure 12-10. RTC Status Register (RTCSR)  
ALMF — Alarm Flag  
This clearable, read-only bit is set when the value in the RTC hour and  
minute counters matches the value in the alarm hour and alarm  
minute registers. When the ALMIE bit in RTCCR1 is set, ALMF  
generates a CPU interrupt request. In normal operation, clear the  
ALMF bit by reading RTCSR with ALMF set and then reading the  
alarm hour register (ALHR). Reset clears ALMF.  
1 = RTC hour and minute counters matches the  
alarm hour and minute registers  
0 = No matching between hour and minute counters and alarm  
hour and minute registers  
CHRF — Chronograph Flag  
This clearable, read-only bit is set on every tick of the chronograph  
counter (every counter count). The tick is on every 1/128 seconds  
(see 12.5.4 Chronograph Functions). When the CHRIE bit in  
RTCCR1 is set, CHRF generates a CPU interrupt request. In normal  
operation, clear the CHRF bit by reading RTCSR with CHRF set and  
then reading the chronograph data register (CHRR). Reset clears  
CHRF.  
1 = A chronograph counter tick has occurred  
0 = No chronograph counter tick has occurred  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
237  
Real Time Clock (RTC)  
Real Time Clock (RTC)  
DAYF — Day Flag  
This clearable, read-only bit is set on every increment of the day  
counter. When the DAYIE bit in RTCCR1 is set, DAYF generates a  
CPU interrupt request. In normal operation, clear the DAYF bit by  
reading RTCSR with DAYF set and then reading the day register  
(DAYR). Reset clears DAYF.  
1 = Day counter incremented  
0 = No day counter incremented  
HRF — Hour Flag  
This clearable, read-only bit is set on every increment of the hour  
counter. When the HRIE bit in RTCCR1 is set, HRF generates a CPU  
interrupt request. In normal operation, clear the HRF bit by reading  
RTCSR with HRF set and then reading the hour register (HRR). Reset  
clears HRF.  
1 = Hour counter incremented  
0 = No hour counter incremented  
MINF — Minute Flag  
This clearable, read-only bit is set on every increment of the minute  
counter. When the MINIE bit in RTCCR1 is set, MINF generates a  
CPU interrupt request. In normal operation, clear the MINF bit by  
reading RTCSR with MINF set and then reading the minute register  
(MINR). Reset clears MINF.  
1 = Minute counter incremented  
0 = No minute counter incremented  
SECF — Second Flag  
This clearable, read-only bit is set on every increment of the second  
counter. When the SECIE bit in RTCCR1 is set, SECF generates a  
CPU interrupt request. In normal operation, clear the SECF bit by  
reading RTCSR with SECF set and then reading the second register  
(SECR). Reset clears SECF.  
1 = Second counter incremented  
0 = No second counter incremented  
Data Sheet  
238  
MC68HC908LJ24/LK24 — Rev. 2.1  
Real Time Clock (RTC)  
Freescale Semiconductor  
Real Time Clock (RTC)  
RTC Registers  
TB1F — Timebase 1 Flag  
This clearable, read-only bit is set on every tick of the timebase 1  
counter (every 0.5 or 0.125 seconds). When the TB1IE bit in RTCCR1  
is set, TB1F generates a CPU interrupt request. In normal operation,  
clear the TB1F bit by reading RTCSR with TB1F set and then reading  
the chronograph data register (CHRR). Reset clears TB1F.  
1 = A timebase 1 tick has occurred  
0 = No timebase 1 tick has occurred  
NOTE: Timebase 1 is not synchronized to the compensated RTC 1-Hz clock.  
Hence, time intervals for timebase ticks may not align with the RTC clock  
and calendar register updates.  
TB2F — Timebase 2 Flag  
This clearable, read-only bit is set on every tick of the timebase 2  
counter (every 0.25 or 0.0625 seconds). When the TB2IE bit in  
RTCCR1 is set, TB2F generates a CPU interrupt request. In normal  
operation, clear the TB2F bit by reading RTCSR with TB2F set and  
then reading the chronograph register (CHRR). Reset clears TB2F.  
1 = A timebase 2 tick has occurred  
0 = No timebase 2 tick has occurred  
NOTE: Timebase 2 is not synchronized to the compensated RTC 1-Hz clock.  
Hence, time intervals for timebase ticks may not align with the RTC clock  
and calendar register updates.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
239  
Real Time Clock (RTC)  
Real Time Clock (RTC)  
12.10.6 Alarm Minute and Hour Registers (ALMR and ALHR)  
These read/write registers contain the alarm minute and hour values for  
the hour and minute alarm function. When the hour counter matches the  
value in the alarm hour register (ALHR) and the minute counter matches  
the value in the alarm minute register (ALMR), the alarm flag, ALMF, is  
set. When ALMF is set and the alarm interrupt enable bit, ALMIE, is also  
set, a CPU interrupt request is generated.  
Address: $0045  
Read:  
Write:  
Reset:  
0
0
0
AM5  
U
AM4  
U
AM3  
U
AM2  
U
AM1  
U
AM0  
U
0
= Unimplemented  
Figure 12-11. Alarm Minute Register (ALMR)  
NOTE: Writing values other than 0 to 59, to ALMR is possible, but the alarm flag  
will never be set.  
Address: $0046  
Read:  
Write:  
Reset:  
0
0
0
0
0
AH4  
U
AH3  
U
AH2  
U
AH1  
U
AH0  
U
0
= Unimplemented  
Figure 12-12. Alarm Hour Register (ALHR)  
NOTE: Writing values other than 0 to 23, to ALHR is possible, but the alarm flag  
will never be set.  
Data Sheet  
240  
MC68HC908LJ24/LK24 — Rev. 2.1  
Real Time Clock (RTC)  
Freescale Semiconductor  
Real Time Clock (RTC)  
RTC Registers  
12.10.7 Second Register (SECR)  
This read/write register contains the current value of the second counter.  
This register can be read at any time without affecting the counter count.  
Writing to this register loads the value to the second counter and the  
counter continues to count from this new value.  
The second counter rolls over to 0 ($00) after reaching 59 ($4B). Writing  
a value other than 0 to 59 to this register has no effect.  
Address: $0047  
Read:  
Write:  
Reset:  
0
0
0
SEC5  
U
SEC4  
U
SEC3  
U
SEC2  
U
SEC1  
U
SEC0  
U
0
= Unimplemented  
This register is write-protected; unprotect by a write sequence to RTCWE[1:0] in RTCCOMR.  
Figure 12-13. Second Register (SECR)  
12.10.8 Minute Register (MINR)  
This read/write register contains the current value of the minute counter.  
This register can be read at any time without affecting the counter count.  
Writing to this register loads the value to the minute counter and the  
counter continues to count from this new value.  
The minute counter rolls over to 0 ($00) after reaching 59 ($4B). Writing  
a value other than 0 to 59 to this register has no effect.  
Address: $0048  
Read:  
Write:  
Reset:  
0
0
0
MIN5  
U
MIN4  
U
MIN3  
U
MIN2  
U
MIN1  
U
MIN0  
U
0
= Unimplemented  
This register is write-protected; unprotect by a write sequence to RTCWE[1:0] in RTCCOMR.  
Figure 12-14. Minute Register (MINR)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
241  
Real Time Clock (RTC)  
Real Time Clock (RTC)  
12.10.9 Hour Register (HRR)  
This read/write register contains the current value of the hour counter.  
This register can be read at any time without affecting the counter count.  
Writing to this register loads the value to the hour counter and the  
counter continues to count from this new value.  
The hour counter rolls over to 0 ($00) after reaching 23 ($17). Writing a  
value other than 0 to 23 to this register has no effect.  
Address: $0049  
Read:  
Write:  
Reset:  
0
0
0
0
0
HR4  
U
HR3  
U
HR2  
U
HR1  
U
HR0  
U
0
= Unimplemented  
This register is write-protected; unprotect by a write sequence to RTCWE[1:0] in RTCCOMR.  
Figure 12-15. Hour Register (HRR)  
12.10.10 Day Register (DAYR)  
This read/write register contains the current value of the day-of-month  
counter. This register can be read at any time without affecting the  
counter count. Writing to this register loads the value to the day counter  
and the counter continues to count from this new value.  
The day counter rolls over to 1 ($01) after reaching 28 ($1B), 29 ($1C),  
30 ($1D), or 31 ($1E), depending on the value in the month and year  
registers. Writing a value that is not valid for the month and year to this  
register has no effect.  
Address: $004A  
Read:  
Write:  
Reset:  
0
0
0
0
0
DAY4  
U
DAY3  
U
DAY2  
U
DAY1  
U
DAY0  
U
0
= Unimplemented  
This register is write-protected; unprotect by a write sequence to RTCWE[1:0] in RTCCOMR.  
Figure 12-16. Day Register (DAYR)  
Data Sheet  
242  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Real Time Clock (RTC)  
Real Time Clock (RTC)  
RTC Registers  
12.10.11 Month Register (MTHR)  
This read/write register contains the current value of the month counter.  
This register can be read at any time without affecting the counter count.  
Writing to this register loads the value to the month counter and the  
counter continues to count from this new value.  
The month counter rolls over to 1 ($01) after reaching 12 ($0B). Writing  
a value other than 1 to 12 to this register has no effect.  
Address: $004B  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
MTH3  
U
MTH2  
U
MTH1  
U
MTH0  
U
0
= Unimplemented  
This register is write-protected; unprotect by a write sequence to RTCWE[1:0] in RTCCOMR.  
Figure 12-17. Month Register (MTHR)  
12.10.12 Year Register (YRR)  
This read/write register contains the current value of the year counter.  
This register can be read at any time without affecting the counter count.  
Writing to this register loads the value to the year counter and the  
counter continues to count from this new value.  
The value stored in this register is a two’s complement representation of  
the year, relative to 2000. For example, the year 2008 is represented  
by 8 ($08), and the year 1979 is presented by –11 ($F5). The range of  
this register is only valid for –99 to +99.  
Address: $004C  
Read:  
YR7  
YR6  
U
YR5  
U
YR4  
U
YR3  
U
YR2  
U
YR1  
U
YR0  
U
Write:  
Reset:  
U
This register is write-protected; unprotect by a write sequence to RTCWE[1:0] in RTCCOMR.  
Figure 12-18. Year Register (YRR)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
243  
Real Time Clock (RTC)  
Real Time Clock (RTC)  
12.10.13 Day-Of-Week Register (DOWR)  
This read/write register contains the current value of the day-of-week  
counter. This register can be read at any time without affecting the  
counter count. Writing to this register loads the value to the day-of-week  
counter and the counter continues to count from this new value.  
The day-of-week counter value rolls over to 0 ($00) after reaching 6  
($06). Writing a value other than 0 to 6 to this register has no effect.  
Address: $004D  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
0
DOW2  
U
DOW1  
U
DOW0  
U
0
= Unimplemented  
This register is write-protected; unprotect by a write sequence to RTCWE[1:0] in RTCCOMR.  
Figure 12-19. Day-Of-Week Register (DOWR)  
12.10.14 Chronograph Data Register (CHRR)  
This read-only chronograph data register contains the value in the  
chronograph counter. Reset clears the chronograph data register.  
Setting the chronograph counter reset bit (CHRCLR) also clears the  
chronograph data register.  
The chronograph data register has a resolution of 1/100 seconds. The  
chronograph counter value rolls over to $00 after reaching $63.  
Address: $004E  
Read:  
Write:  
Reset:  
0
CHR6  
0
CHR5  
0
CHR4  
0
CHR3  
0
CHR2  
0
CHR1  
0
CHR0  
0
0
= Unimplemented  
Figure 12-20. Chronograph Data Register (CHRR)  
NOTE: The chronograph counter is not synchronized to the compensated RTC  
1-Hz clock. Hence, chronograph ticks may not align with the RTC clock  
and calendar register updates.  
Data Sheet  
244  
MC68HC908LJ24/LK24 — Rev. 2.1  
Real Time Clock (RTC)  
Freescale Semiconductor  
Data Sheet — MC68HC908LJ24  
Section 13. Infrared Serial Communications  
Interface Module (IRSCI)  
13.1 Contents  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247  
13.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
13.5 IRSCI Module Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
13.6 Infrared Functional Description. . . . . . . . . . . . . . . . . . . . . . . .250  
13.6.1 Infrared Transmit Encoder . . . . . . . . . . . . . . . . . . . . . . . . .251  
13.6.2 Infrared Receive Decoder . . . . . . . . . . . . . . . . . . . . . . . . .251  
13.7 SCI Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
13.7.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253  
13.7.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
13.7.2.1  
13.7.2.2  
13.7.2.3  
13.7.2.4  
13.7.2.5  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255  
Character Transmission. . . . . . . . . . . . . . . . . . . . . . . . .255  
Break Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256  
Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256  
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .257  
13.7.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
13.7.3.1  
13.7.3.2  
13.7.3.3  
13.7.3.4  
13.7.3.5  
13.7.3.6  
13.7.3.7  
13.7.3.8  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
Framing Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
Baud Rate Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . .261  
Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .265  
Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265  
13.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
13.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
13.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
MC68HC908LJ24/LK24 — Rev. 2.1  
Data Sheet  
245  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
 
Infrared Serial Communications  
13.9 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .267  
13.10 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
13.10.1 PTB0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . .267  
13.10.2 PTB1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . .267  
13.11 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268  
13.11.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
13.11.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
13.11.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . .274  
13.11.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . .276  
13.11.5 SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . .280  
13.11.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281  
13.11.7 SCI Baud Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . . .282  
13.11.8 SCI Infrared Control Register. . . . . . . . . . . . . . . . . . . . . . .285  
13.2 Introduction  
This section describes the infrared serial communications interface  
(IRSCI) module which allows high-speed asynchronous  
communications with peripheral devices and other MCUs. This IRSCI  
consists of an SCI module for conventional SCI functions and a software  
programmable infrared encoder/decoder sub-module for  
encoding/decoding the serial data for connection to infrared LEDs in  
remote control applications.  
NOTE: References to DMA (direct-memory access) and associated functions  
are only valid if the MCU has a DMA module. This MCU does not have  
the DMA function. Any DMA-related register bits should be left in their  
reset state for normal MCU operation.  
Data Sheet  
246  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
Infrared Serial Communications Interface Module (IRSCI)  
Features  
13.3 Features  
Features of the SCI module include the following:  
• Full duplex operation  
• Standard mark/space non-return-to-zero (NRZ) format  
• Programmable 8-bit or 9-bit character length  
• Separately enabled transmitter and receiver  
• Separate receiver and transmitter CPU interrupt requests  
• Two receiver wakeup methods:  
Idle line wakeup  
Address mark wakeup  
• Interrupt-driven operation with eight interrupt flags:  
Transmitter empty  
Transmission complete  
Receiver full  
Idle receiver input  
Receiver overrun  
Noise error  
Framing error  
Parity error  
• Receiver framing error detection  
• Hardware parity checking  
• 1/16 bit-time noise detection  
Features of the infrared (IR) sub-module include the following:  
• IR sub-module enable/disable for infrared SCI or conventional SCI  
on TxD and RxD pins  
• Software selectable infrared modulation/demodulation  
(3/16, 1/16 or 1/32 width pulses)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Data Sheet  
247  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Infrared Serial Communications  
Addr.  
Register Name  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
4
M
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
SCI Control Register 1  
(SCC1)  
$0013  
0
SCRIE  
0
0
SCTIE  
TCIE  
0
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
SCI Control Register 2  
(SCC2)  
$0014  
$0015  
$0016  
$0017  
$0018  
$0019  
$001A  
0
0
R8  
T8  
DMARE DMATE  
ORIE  
NEIE  
FEIE  
PEIE  
SCI Control Register 3  
(SCC3)  
U
U
0
0
0
0
0
0
Read: SCTE  
Write:  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
SCI Status Register 1  
(SCS1)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
1
0
1
0
0
0
0
0
0
0
0
0
0
0
BKF  
RPF  
SCI Status Register 2  
(SCS2)  
0
0
0
0
0
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR)  
Unaffected by reset  
0
CKS  
0
SCP1  
SCP0  
R
0
SCR2  
SCR1  
0
SCR0  
0
SCI Baud Rate Register  
(SCBR)  
0
0
0
0
0
0
0
TNP1  
0
SCI Infrared Control  
R
R
0
TNP0  
IREN  
0
Register Write:  
(SCIRCR)  
Reset:  
0
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 13-1. IRSCI I/O Registers Summary  
Data Sheet  
248  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
Infrared Serial Communications Interface Module (IRSCI)  
Pin Name Conventions  
13.4 Pin Name Conventions  
The generic names of the IRSCI I/O pins are:  
• RxD (receive data)  
• TxD (transmit data)  
IRSCI I/O (input/output) lines are implemented by sharing parallel I/O  
port pins. The full name of an IRSCI input or output reflects the name of  
the shared port pin. Table 13-1 shows the full names and the generic  
names of the IRSCI I/O pins.  
The generic pin names appear in the text of this section.  
Table 13-1. Pin Name Conventions  
Generic Pin Names:  
Full Pin Names:  
RxD  
TxD  
PTB0/TxD  
PTB1/RxD  
13.5 IRSCI Module Overview  
The IRSCI consists of a serial communications interface (SCI) and a  
infrared interface sub-module as shown in Figure 13-2.  
INTERNAL BUS  
SCI_TxD  
TxD  
SERIAL  
CGMXCLK  
SCI_R32XCLK  
SCI_R16XCLK  
COMMUNICATIONS  
INTERFACE MODULE  
(SCI)  
INFRARED  
SUB-MODULE  
BUS CLOCK  
SCI_RxD  
RxD  
Figure 13-2. IRSCI Block Diagram  
The SCI module provides serial data transmission and reception, with a  
programmable baud rate clock based on the bus clock or the  
CGMXCLK.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Data Sheet  
249  
 
 
Infrared Serial Communications  
The infrared sub-module receives two clock sources from the SCI  
module: SCI_R16XCLK and SCI_R32XCLK. Both reference clocks are  
used to generate the narrow pulses during data transmission.  
The SCI_R16XCLK and SCI_R32XCLK are internal clocks with  
frequencies that are 16 and 32 times the baud rate respectively. Both  
SCI_R16XCLK and SCI_R32XCLK clocks are used for transmitting  
data. The SCI_R16XCLK clock is used only for receiving data.  
NOTE: For proper SCI function (transmit or receive), the bus clock MUST be  
programmed to at least 32 times that of the selected baud rate.  
When the infrared sub-module is disabled, signals on the TxD and RxD  
pins pass through unchanged to the SCI module.  
13.6 Infrared Functional Description  
Figure 13-3 shows the structure of the infrared sub-module.  
TNP[1:0]  
IREN  
IR_TxD  
TRANSMIT  
ENCODER  
SCI_TxD  
TxD  
RxD  
MUX  
SCI_R32XCLK  
SCI_R16XCLK  
IR_RxD  
RECEIVE  
DECODER  
SCI_RxD  
MUX  
Figure 13-3. Infrared Sub-Module Diagram  
The infrared sub-module provides the capability of transmitting narrow  
pulses to an infrared LED and receiving narrow pulses and transforming  
them to serial bits, which are sent to the SCI module. The infrared sub-  
module receives two clocks from the SCI. One of these two clocks is  
selected as the base clock to generate the 3/16, 1/16, or 1/32 bit width  
narrow pulses during transmission.  
Data Sheet  
250  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
 
Infrared Serial Communications Interface Module (IRSCI)  
Infrared Functional Description  
The sub-module consists of two main blocks: the transmit encoder and  
the receive decoder. When transmitting data, the SCI data stream is  
encoded by the infrared sub-module. For every "0" bit, a narrow "low"  
pulse is transmitted; no pulse is transmitted for "1" bits. When receiving  
data, the infrared pulses should be detected using an infrared photo  
diode for conversion to CMOS voltage levels before connecting to the  
RxD pin for the infrared decoder. The SCI data stream is reconstructed  
by stretching the "0" pulses.  
13.6.1 Infrared Transmit Encoder  
The infrared transmit encoder converts the "0" bits in the serial data  
stream from the SCI module to narrow "low" pulses, to the TxD pin. The  
narrow pulse is sent with a duration of 1/32, 1/16, or 3/16 of a data bit  
width. When two consecutive zeros are sent, the two consecutive narrow  
pulses will be separated by a time equal to a data bit width.  
DATA BIT WIDTH DETERMINED BY BAUD RATE  
SCI DATA  
INFRARED  
SCI DATA  
PULSE WIDTH = 1/32, 1/16, OR 3/16 DATA BIT WIDTH  
Figure 13-4. Infrared SCI Data Example  
13.6.2 Infrared Receive Decoder  
The infrared receive decoder converts low narrow pulses from the RxD  
pin to standard SCI data bits. The reference clock, SCI_R16XCLK,  
clocks a four bit internal counter which counts from 0 to 15. An incoming  
pulse starts the internal counter and a "0" is sent out to the IR_RxD  
output. Subsequent incoming pulses are ignored when the counter count  
is between 0 and 7; IR_RxD remains "0". Once the counter passes 7, an  
incoming pulse will reset the counter; IR_RxD remains "0". When the  
counter reaches 15, the IR_RxD output returns to "1", the counter stops  
and waits for further pulses. A pulse is interpreted as jitter if it arrives  
shortly after the counter reaches 15; IR_RxD remains "1".  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Data Sheet  
251  
Infrared Serial Communications  
13.7 SCI Functional Description  
Figure 13-5 shows the structure of the SCI.  
INTERNAL BUS  
SCI DATA  
REGISTER  
SCI DATA  
REGISTER  
RECEIVE  
SHIFT REGISTER  
TRANSMIT  
SHIFT REGISTER  
SCI_TxD  
SCI_RxD  
SCTIE  
TCIE  
SCRIE  
ILIE  
R8  
T8  
DMARE  
DMATE  
TE  
SCTE  
TC  
RE  
RWU  
SBK  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
M
BKF  
RPF  
CKS  
SL  
ENSCI  
WAKE  
ILTY  
PEN  
PTY  
BAUD RATE  
CGMXCLK  
BUS CLOCK  
A
X
GENERATOR  
B
SL = 0 => X = A  
SL = 1 => X = B  
DATA SELECTION  
CONTROL  
÷16  
SCI_R32XCLK  
SCI_R16XCLK  
Figure 13-5. SCI Module Block Diagram  
Data Sheet  
252  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
 
Infrared Serial Communications Interface Module (IRSCI)  
SCI Functional Description  
The SCI allows full-duplex, asynchronous, NRZ serial communication  
between the MCU and remote devices, including other MCUs. The  
transmitter and receiver of the SCI operate independently, although they  
use the same baud rate generator. During normal operation, the CPU  
monitors the status of the SCI, writes the data to be transmitted, and  
processes received data.  
NOTE: For SCI operations, the IR sub-module is transparent to the SCI module.  
Data at going out of the SCI transmitter and data going into the SCI  
receiver is always in SCI format. It makes no difference to the SCI  
module whether the IR sub-module is enabled or disabled.  
NOTE: This SCI module is a standard HC08 SCI module with the following  
modifications:  
A control bit, CKS, is added to the SCI baud rate control register  
to select between two input clocks for baud rate clock generation  
The TXINV bit is removed from the SCI control register 1  
13.7.1 Data Format  
The SCI uses the standard non-return-to-zero mark/space data format  
illustrated in Figure 13-6.  
8-BIT DATA FORMAT  
PARITY  
BIT M IN SCC1 CLEAR  
NEXT  
START  
BIT  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 0  
BIT 1  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
9-BIT DATA FORMAT  
BIT M IN SCC1 SET  
PARITY  
BIT  
BIT 8  
NEXT  
START  
BIT  
START  
BIT  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
STOP  
BIT  
Figure 13-6. SCI Data Formats  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Data Sheet  
253  
 
Infrared Serial Communications  
13.7.2 Transmitter  
Figure 13-7 shows the structure of the SCI transmitter.  
The baud rate clock source for the SCI can be selected by the CKS bit,  
in the SCI baud rate register (see 13.11.7 SCI Baud Rate Register).  
CKS  
SL  
INTERNAL BUS  
PRE-  
BAUD  
CGMXCLK  
BUS CLOCK  
A
÷
16  
SCI DATA REGISTER  
X
SCALER DIVIDER  
B
SL = 0 => X = A  
SL = 1 => X = B  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
H
8
7
6
5
4
3
2
1
0
L
SCI_TxD  
M
PEN  
PTY  
PARITY  
GENERATION  
T8  
DMATE  
TRANSMITTER  
CONTROL LOGIC  
DMATE  
SCTIE  
SCTE  
SCTE  
SBK  
DMATE  
SCTE  
SCTIE  
LOOPS  
ENSCI  
TE  
SCTIE  
TC  
TC  
TCIE  
TCIE  
Figure 13-7. SCI Transmitter  
Data Sheet  
254  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
 
Infrared Serial Communications Interface Module (IRSCI)  
SCI Functional Description  
13.7.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of  
the M bit in SCI control register 1 (SCC1) determines character length.  
When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is  
the ninth bit (bit 8).  
13.7.2.2 Character Transmission  
During an SCI transmission, the transmit shift register shifts a character  
out to the TxD pin. The SCI data register (SCDR) is the write-only buffer  
between the internal data bus and the transmit shift register. To initiate  
an SCI transmission:  
1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI)  
in SCI control register 1 (SCC1).  
2. Enable the transmitter by writing a logic 1 to the transmitter enable  
bit (TE) in SCI control register 2 (SCC2).  
3. Clear the SCI transmitter empty bit by first reading SCI status  
register 1 (SCS1) and then writing to the SCDR.  
4. Repeat step 3 for each subsequent transmission.  
At the start of a transmission, transmitter control logic automatically  
loads the transmit shift register with a preamble of logic 1s. After the  
preamble shifts out, control logic transfers the SCDR data into the  
transmit shift register. A logic 0 start bit automatically goes into the least  
significant bit position of the transmit shift register. A logic 1 stop bit goes  
into the most significant bit position.  
The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the  
SCDR transfers a byte to the transmit shift register. The SCTE bit  
indicates that the SCDR can accept new data from the internal data bus.  
If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the  
SCTE bit generates a transmitter interrupt request.  
When the transmit shift register is not transmitting a character, the TxD  
pin goes to the idle condition, logic 1. If at any time software clears the  
ENSCI bit in SCI control register 1 (SCC1), the transmitter and receiver  
relinquish control of the port pins.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Data Sheet  
255  
Infrared Serial Communications  
13.7.2.3 Break Characters  
Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit  
shift register with a break character. A break character contains all logic  
0s and has no start, stop, or parity bit. Break character length depends  
on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic  
continuously loads break characters into the transmit shift register. After  
software clears the SBK bit, the shift register finishes transmitting the  
last break character and then transmits at least one logic 1. The  
automatic logic 1 at the end of a break character guarantees the  
recognition of the start bit of the next character.  
The SCI recognizes a break character when a start bit is followed by  
eight or nine logic 0 data bits and a logic 0 where the stop bit should be.  
Receiving a break character has the following effects on SCI registers:  
• Sets the framing error bit (FE) in SCS1  
• Sets the SCI receiver full bit (SCRF) in SCS1  
• Clears the SCI data register (SCDR)  
• Clears the R8 bit in SCC3  
• Sets the break flag bit (BKF) in SCS2  
• May set the overrun (OR), noise flag (NF), parity error (PE), or  
reception in progress flag (RPF) bits  
13.7.2.4 Idle Characters  
An idle character contains all logic 1s and has no start, stop, or parity bit.  
Idle character length depends on the M bit in SCC1. The preamble is a  
synchronizing idle character that begins every transmission.  
If the TE bit is cleared during a transmission, the TxD pin becomes idle  
after completion of the transmission in progress. Clearing and then  
setting the TE bit during a transmission queues an idle character to be  
sent after the character currently being transmitted.  
Data Sheet  
256  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
Infrared Serial Communications Interface Module (IRSCI)  
SCI Functional Description  
NOTE: When queueing an idle character, return the TE bit to logic 1 before the  
stop bit of the current character shifts out to the TxD pin. Setting TE after  
the stop bit appears on TxD causes data previously written to the SCDR  
to be lost.  
Toggle the TE bit for a queued idle character when the SCTE bit  
becomes set and just before writing the next byte to the SCDR.  
13.7.2.5 Transmitter Interrupts  
The following conditions can generate CPU interrupt requests from the  
SCI transmitter:  
• SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates  
that the SCDR has transferred a character to the transmit shift  
register. SCTE can generate a transmitter CPU interrupt request.  
Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2  
enables the SCTE bit to generate transmitter CPU interrupt  
requests.  
• Transmission complete (TC) — The TC bit in SCS1 indicates that  
the transmit shift register and the SCDR are empty and that no  
break or idle character has been generated. The transmission  
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to  
generate transmitter CPU interrupt requests.  
13.7.3 Receiver  
Figure 13-8 shows the structure of the SCI receiver.  
13.7.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the  
M bit in SCI control register 1 (SCC1) determines character length.  
When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the  
ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth  
bit (bit 7).  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Data Sheet  
257  
Infrared Serial Communications  
INTERNAL BUS  
SCR1  
SCR2  
SCR0  
CKS  
SL  
SCP1  
SCP0  
SCI DATA REGISTER  
PRE-  
BAUD  
CGMXCLK  
BUS CLOCK  
A
÷
16  
X
SCALER DIVIDER  
B
11-BIT  
RECEIVE SHIFT REGISTER  
SL = 0 => X = A  
SL = 1 => X = B  
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
SCI_RxD  
ALL 0s  
BKF  
RPF  
M
RWU  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
DMARE  
ILIE  
SCRF  
SCRIE  
DMARE  
SCRIE  
SCRF  
SCRIE  
DMARE  
DMARE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 13-8. SCI Receiver Block Diagram  
Data Sheet  
258  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
Infrared Serial Communications Interface Module (IRSCI)  
SCI Functional Description  
13.7.3.2 Character Reception  
During an SCI reception, the receive shift register shifts characters in  
from the RxD pin. The SCI data register (SCDR) is the read-only buffer  
between the internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data  
portion of the character transfers to the SCDR. The SCI receiver full bit,  
SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the  
received byte can be read. If the SCI receive interrupt enable bit, SCRIE,  
in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt  
request.  
13.7.3.3 Data Sampling  
The receiver samples the RxD pin at the RT clock rate. The RT clock is  
an internal signal with a frequency 16 times the baud rate. To adjust for  
baud rate mismatch, the RT clock is resynchronized at the following  
times (see Figure 13-9):  
• After every start bit  
• After the receiver detects a data bit change from logic 1 to logic 0  
(after the majority of data bit samples at RT8, RT9, and RT10  
returns a valid logic 1 and the majority of the next RT8, RT9, and  
RT10 samples returns a valid logic 0)  
START BIT  
LSB  
SCI_RxD  
START BIT  
START BIT  
DATA  
SAMPLES  
QUALIFICATION  
VERIFICATION  
SAMPLING  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 13-9. Receiver Data Sampling  
MC68HC908LJ24/LK24 — Rev. 2.1  
Data Sheet  
259  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
 
Infrared Serial Communications  
To locate the start bit, data recovery logic does an asynchronous search  
for a logic 0 preceded by three logic 1s. When the falling edge of a  
possible start bit occurs, the RT clock begins to count to 16.  
To verify the start bit and to detect noise, data recovery logic takes  
samples at RT3, RT5, and RT7. Table 13-2 summarizes the results of  
the start bit verification samples.  
Table 13-2. Start Bit Verification  
RT3, RT5, and RT7  
Samples  
Start Bit  
Verification  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
If start bit verification is not successful, the RT clock is reset and a new  
search for a start bit begins.  
To determine the value of a data bit and to detect noise, recovery logic  
takes samples at RT8, RT9, and RT10. Table 13-3 summarizes the  
results of the data bit samples.  
Table 13-3. Data Bit Recovery  
RT8, RT9, and RT10  
Samples  
Data Bit  
Determination  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
Data Sheet  
260  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
 
 
Infrared Serial Communications Interface Module (IRSCI)  
SCI Functional Description  
NOTE: The RT8, RT9, and RT10 samples do not affect start bit verification. If  
any or all of the RT8, RT9, and RT10 start bit samples are logic 1s  
following a successful start bit verification, the noise flag (NF) is set and  
the receiver assumes that the bit is a start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at  
RT8, RT9, and RT10. Table 13-4 summarizes the results of the stop bit  
samples.  
Table 13-4. Stop Bit Recovery  
RT8, RT9, and RT10  
Samples  
Framing  
Error Flag  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
13.7.3.4 Framing Errors  
If the data recovery logic does not detect a logic 1 where the stop bit  
should be in an incoming character, it sets the framing error bit, FE, in  
SCS1. The FE flag is set at the same time that the SCRF bit is set. A  
break character that has no stop bit also sets the FE bit.  
13.7.3.5 Baud Rate Tolerance  
A transmitting device may be operating at a baud rate below or above  
the receiver baud rate. Accumulated bit time misalignment can cause  
one of the three stop bit data samples to fall outside the actual stop bit.  
Then a noise error occurs. If more than one of the samples is outside the  
stop bit, a framing error occurs. In most applications, the baud rate  
tolerance is much more than the degree of misalignment that is likely to  
occur.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Data Sheet  
261  
 
Infrared Serial Communications  
As the receiver samples an incoming character, it resynchronizes the RT  
clock on any valid falling edge within the character. Resynchronization  
within characters corrects misalignments between transmitter bit times  
and receiver bit times.  
Slow Data Tolerance  
Figure 13-10 shows how much a slow received character can be  
misaligned without causing a noise error or a framing error. The slow  
stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit  
data samples at RT8, RT9, and RT10.  
MSB  
STOP  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 13-10. Slow Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 13-10, the receiver  
counts 154 RT cycles at the point when the count of the transmitting  
device is 9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a slow 8-bit character with no errors is  
154 147  
× 100 = 4.54%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 13-10, the receiver  
counts 170 RT cycles at the point when the count of the transmitting  
device is 10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles.  
Data Sheet  
262  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
 
Infrared Serial Communications Interface Module (IRSCI)  
SCI Functional Description  
The maximum percent difference between the receiver count and the  
transmitter count of a slow 9-bit character with no errors is  
170 163  
× 100 = 4.12%  
-------------------------  
170  
Fast Data Tolerance  
Figure 13-11 shows how much a fast received character can be  
misaligned without causing a noise error or a framing error. The fast stop  
bit ends at RT10 instead of RT16 but is still there for the stop bit data  
samples at RT8, RT9, and RT10.  
STOP  
IDLE OR NEXT CHARACTER  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 13-11. Fast Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 13-11, the receiver  
counts 154 RT cycles at the point when the count of the transmitting  
device is 10 bit times × 16 RT cycles = 160 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a fast 8-bit character with no errors is  
·
154 160  
× 100 = 3.90%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 13-11, the receiver  
counts 170 RT cycles at the point when the count of the transmitting  
device is 11 bit times × 16 RT cycles = 176 RT cycles.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Data Sheet  
263  
 
Infrared Serial Communications  
The maximum percent difference between the receiver count and the  
transmitter count of a fast 9-bit character with no errors is  
170 176  
× 100 = 3.53%  
-------------------------  
170  
13.7.3.6 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other  
receivers in multiple-receiver systems, the receiver can be put into a  
standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the  
receiver into a standby state during which receiver interrupts are  
disabled.  
Depending on the state of the WAKE bit in SCC1, either of two  
conditions on the RxD pin can bring the receiver out of the standby state:  
• Address mark — An address mark is a logic 1 in the most  
significant bit position of a received character. When the WAKE bit  
is set, an address mark wakes the receiver from the standby state  
by clearing the RWU bit. The address mark also sets the SCI  
receiver full bit, SCRF. Software can then compare the character  
containing the address mark to the user-defined address of the  
receiver. If they are the same, the receiver remains awake and  
processes the characters that follow. If they are not the same,  
software can set the RWU bit and put the receiver back into the  
standby state.  
• Idle input line condition — When the WAKE bit is clear, an idle  
character on the RxD pin wakes the receiver from the standby  
state by clearing the RWU bit. The idle character that wakes the  
receiver does not set the receiver idle bit, IDLE, or the SCI receiver  
full bit, SCRF. The idle line type bit, ILTY, determines whether the  
receiver begins counting logic 1s as idle character bits after the  
start bit or after the stop bit.  
NOTE: Clearing the WAKE bit after the RxD pin has been idle may cause the  
receiver to wake up immediately.  
Data Sheet  
264  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
Infrared Serial Communications Interface Module (IRSCI)  
SCI Functional Description  
13.7.3.7 Receiver Interrupts  
The following sources can generate CPU interrupt requests from the SCI  
receiver:  
• SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that  
the receive shift register has transferred a character to the SCDR.  
SCRF can generate a receiver interrupt request. Setting the SCI  
receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit  
to generate receiver CPU interrupts.  
• Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11  
consecutive logic 1s shifted in from the RxD pin. The idle line  
interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate  
CPU interrupt requests.  
13.7.3.8 Error Interrupts  
The following receiver error flags in SCS1 can generate CPU interrupt  
requests:  
• Receiver overrun (OR) — The OR bit indicates that the receive  
shift register shifted in a new character before the previous  
character was read from the SCDR. The previous character  
remains in the SCDR, and the new character is lost. The overrun  
interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI  
error CPU interrupt requests.  
• Noise flag (NF) — The NF bit is set when the SCI detects noise on  
incoming data or break characters, including start, data, and stop  
bits. The noise error interrupt enable bit, NEIE, in SCC3 enables  
NF to generate SCI error CPU interrupt requests.  
• Framing error (FE) — The FE bit in SCS1 is set when a logic 0  
occurs where the receiver expects a stop bit. The framing error  
interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI  
error CPU interrupt requests.  
• Parity error (PE) — The PE bit in SCS1 is set when the SCI  
detects a parity error in incoming data. The parity error interrupt  
enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU  
interrupt requests.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Data Sheet  
265  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Infrared Serial Communications  
13.8 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
13.8.1 Wait Mode  
The SCI module remains active after the execution of a WAIT  
instruction. In wait mode, the SCI module registers are not accessible by  
the CPU. Any enabled CPU interrupt request from the SCI module can  
bring the MCU out of wait mode.  
If SCI module functions are not required during wait mode, reduce power  
consumption by disabling the module before executing the WAIT  
instruction.  
Refer to 9.7 Low-Power Modes for information on exiting wait mode.  
13.8.2 Stop Mode  
The SCI module is inactive after the execution of a STOP instruction.  
The STOP instruction does not affect SCI register states. SCI module  
operation resumes after an external interrupt.  
Because the internal clock is inactive during stop mode, entering stop  
mode during an SCI transmission or reception results in invalid data.  
Refer to 9.7 Low-Power Modes for information on exiting stop mode.  
Data Sheet  
266  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
Infrared Serial Communications Interface Module (IRSCI)  
SCI During Break Module Interrupts  
13.9 SCI During Break Module Interrupts  
The system integration module (SIM) controls whether status bits in other  
modules can be cleared during interrupts generated by the break  
module. The BCFE bit in the SIM break flag control register (SBFCR)  
enables software to clear status bits during the break state.  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a two-step read/write clearing procedure. If software  
does the first step on such a bit before the break, the bit cannot change  
during the break state as long as BCFE is at logic 0. After the break,  
doing the second step clears the status bit.  
13.10 I/O Signals  
The two IRSCI I/O pins are:  
• PTB0/TxD — Transmit data  
• PTB1/RxD — Receive data  
13.10.1 PTB0/TxD (Transmit Data)  
The PTB0/TxD pin is the serial data (standard or infrared) output from  
the SCI transmitter. The IRSCI shares the PTB0/TxD pin with port B.  
When the IRSCI is enabled, the PTB0/TxD pin is an output regardless of  
the state of the DDRB0 bit in data direction register B (DDRB). TxD pin  
has high current (15mA) sink capability when the LEDB0 bit is set in the  
port B LED control register ($000C).  
13.10.2 PTB1/RxD (Receive Data)  
The PTB1/RxD pin is the serial data input to the IRSCI receiver. The  
IRSCI shares the PTB1/RxD pin with port B. When the IRSCI is enabled,  
the PTB1/RxD pin is an input regardless of the state of the DDRB1 bit in  
data direction register B (DDRB).  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Data Sheet  
267  
Infrared Serial Communications  
Table 13-5 shows a summary of I/O pin functions when the SCI is  
enabled.  
Table 13-5. SCI Pin Functions (Standard and Infrared)  
SCC1  
[ENSCI]  
SCIRCR  
[IREN]  
SCC2  
[TE]  
SCC2  
[RE]  
TxD Pin  
RxD Pin  
(1)  
(1)  
1
0
0
0
Input ignored (terminate externally)  
Hi-Z  
1
1
1
1
0
0
0
1
0
1
1
0
1
0
1
0
Input sampled, pin should idle high  
Input ignored (terminate externally)  
Input sampled, pin should idle high  
Input ignored (terminate externally)  
Hi-Z  
Output SCI (idle high)  
Output SCI (idle high)  
(1)  
Hi-Z  
(1)  
1
1
1
1
X
0
1
1
X
1
0
1
X
Input sampled, pin should idle high  
Hi-Z  
1
Output IR SCI (idle high) Input ignored (terminate externally)  
Output IR SCI (idle high) Input sampled, pin should idle high  
Pins under port control (standard I/O port)  
1
0
Notes:  
1. After completion of transmission in progress.  
13.11 I/O Registers  
The following I/O registers control and monitor SCI operation:  
• SCI control register 1 (SCC1)  
• SCI control register 2 (SCC2)  
• SCI control register 3 (SCC3)  
• SCI status register 1 (SCS1)  
• SCI status register 2 (SCS2)  
• SCI data register (SCDR)  
• SCI baud rate register (SCBR)  
• SCI infrared control register (SCIRCR)  
Data Sheet  
268  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
 
Infrared Serial Communications Interface Module (IRSCI)  
I/O Registers  
13.11.1 SCI Control Register 1  
SCI control register 1:  
• Enables loop mode operation  
• Enables the SCI  
• Controls output polarity  
• Controls character length  
• Controls SCI wakeup method  
• Controls idle character detection  
• Enables parity function  
• Controls parity type  
Address: $0013  
Bit 7  
6
ENSCI  
0
5
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
LOOPS  
0
0
Figure 13-12. SCI Control Register 1 (SCC1)  
LOOPS — Loop Mode Select Bit  
This read/write bit enables loop mode operation for the SCI only. In  
loop mode the RxD pin is disconnected from the SCI, and the  
transmitter output goes into the receiver input. Both the transmitter  
and the receiver must be enabled to use loop mode. The infrared  
encoder/decoder is not in the loop. Reset clears the LOOPS bit.  
1 = Loop mode enabled  
0 = Normal operation enabled  
ENSCI — Enable SCI Bit  
This read/write bit enables the SCI and the SCI baud rate generator.  
Clearing ENSCI sets the SCTE and TC bits in SCI status register 1  
and disables transmitter interrupts. Reset clears the ENSCI bit.  
1 = SCI enabled  
0 = SCI disabled  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Data Sheet  
269  
Infrared Serial Communications  
M — Mode (Character Length) Bit  
This read/write bit determines whether SCI characters are eight or  
nine bits long. (See Table 13-6.) The ninth bit can serve as an extra  
stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears  
the M bit.  
1 = 9-bit SCI characters  
0 = 8-bit SCI characters  
WAKE — Wakeup Condition Bit  
This read/write bit determines which condition wakes up the SCI: a  
logic 1 (address mark) in the most significant bit position of a received  
character or an idle condition on the RxD pin. Reset clears the WAKE  
bit.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY — Idle Line Type Bit  
This read/write bit determines when the SCI starts counting logic 1s  
as idle character bits. The counting begins either after the start bit or  
after the stop bit. If the count begins after the start bit, then a string of  
logic 1s preceding the stop bit may cause false recognition of an idle  
character. Beginning the count after the stop bit avoids false idle  
character recognition, but requires properly synchronized  
transmissions. Reset clears the ILTY bit.  
1 = Idle character bit count begins after stop bit  
0 = Idle character bit count begins after start bit  
PEN — Parity Enable Bit  
This read/write bit enables the SCI parity function. (See Table 13-6.)  
When enabled, the parity function inserts a parity bit in the most  
significant bit position. (See Figure 13-6.) Reset clears the PEN bit.  
1 = Parity function enabled  
0 = Parity function disabled  
Data Sheet  
270  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
Infrared Serial Communications Interface Module (IRSCI)  
I/O Registers  
PTY — Parity Bit  
This read/write bit determines whether the SCI generates and checks  
for odd parity or even parity. (See Table 13-6.) Reset clears the PTY  
bit.  
1 = Odd parity  
0 = Even parity  
NOTE: Changing the PTY bit in the middle of a transmission or reception can  
generate a parity error.  
Table 13-6. Character Format Selection  
Control Bits  
PEN:PTY  
Character Format  
Start  
Bits  
Data  
Bits  
Stop  
Parity  
Character  
Length  
M
Bits  
0
1
0
0
1
1
0X  
0X  
10  
11  
10  
11  
1
1
1
1
1
1
8
9
7
7
8
8
None  
None  
Even  
Odd  
1
1
1
1
1
1
10 bits  
11 bits  
10 bits  
10 bits  
11 bits  
11 bits  
Even  
Odd  
13.11.2 SCI Control Register 2  
SCI control register 2:  
• Enables the following CPU interrupt requests:  
Enables the SCTE bit to generate transmitter CPU interrupt  
requests  
Enables the TC bit to generate transmitter CPU interrupt  
requests  
Enables the SCRF bit to generate receiver CPU interrupt  
requests  
Enables the IDLE bit to generate receiver CPU interrupt  
requests  
• Enables the transmitter  
• Enables the receiver  
• Enables SCI wakeup  
• Transmits SCI break characters  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Data Sheet  
271  
 
Infrared Serial Communications  
Address: $0014  
Bit 7  
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
SCTIE  
Write:  
Reset:  
0
Figure 13-13. SCI Control Register 2 (SCC2)  
SCTIE — SCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate SCI transmitter  
CPU interrupt requests. Reset clears the SCTIE bit.  
1 = SCTE enabled to generate CPU interrupt  
0 = SCTE not enabled to generate CPU interrupt  
TCIE — Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate SCI transmitter CPU  
interrupt requests. Reset clears the TCIE bit.  
1 = TC enabled to generate CPU interrupt requests  
0 = TC not enabled to generate CPU interrupt requests  
SCRIE — SCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate SCI receiver  
CPU interrupt requests. Reset clears the SCRIE bit.  
1 = SCRF enabled to generate CPU interrupt  
0 = SCRF not enabled to generate CPU interrupt  
ILIE — Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate SCI receiver CPU  
interrupt requests. Reset clears the ILIE bit.  
1 = IDLE enabled to generate CPU interrupt requests  
0 = IDLE not enabled to generate CPU interrupt requests  
TE — Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a  
preamble of 10 or 11 logic 1s from the transmit shift register to the  
TxD pin. If software clears the TE bit, the transmitter completes any  
transmission in progress before the TxD returns to the idle condition  
Data Sheet  
272  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
Infrared Serial Communications Interface Module (IRSCI)  
I/O Registers  
(logic 1). Clearing and then setting TE during a transmission queues  
an idle character to be sent after the character currently being  
transmitted. Reset clears the TE bit.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE: Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RE — Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit  
disables the receiver but does not affect receiver interrupt flag bits.  
Reset clears the RE bit.  
1 = Receiver enabled  
0 = Receiver disabled  
NOTE: Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RWU — Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which  
receiver interrupts are disabled. The WAKE bit in SCC1 determines  
whether an idle input or an address mark brings the receiver out of the  
standby state and clears the RWU bit. Reset clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
SBK — Send Break Bit  
Setting and then clearing this read/write bit transmits a break  
character followed by a logic 1. The logic 1 after the break character  
guarantees recognition of a valid start bit. If SBK remains set, the  
transmitter continuously transmits break characters with no logic 1s  
between them. Reset clears the SBK bit.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE: Do not toggle the SBK bit immediately after setting the SCTE bit.  
Toggling SBK before the preamble begins causes the SCI to send a  
break character instead of a preamble.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Data Sheet  
273  
Infrared Serial Communications  
13.11.3 SCI Control Register 3  
SCI control register 3:  
• Stores the ninth SCI data bit received and the ninth SCI data bit to  
be transmitted  
• Enables the following interrupts:  
Receiver overrun interrupts  
Noise error interrupts  
Framing error interrupts  
Parity error interrupts  
Address: $0015  
Bit 7  
R8  
6
T8  
U
5
4
3
ORIE  
0
2
NEIE  
0
1
FEIE  
0
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
DMARE DMATE  
U
0
0
= Unimplemented  
U = Unaffected  
Figure 13-14. SCI Control Register 3 (SCC3)  
R8 — Received Bit 8  
When the SCI is receiving 9-bit characters, R8 is the read-only ninth  
bit (bit 8) of the received character. R8 is received at the same time  
that the SCDR receives the other 8 bits.  
When the SCI is receiving 8-bit characters, R8 is a copy of the eighth  
bit (bit 7). Reset has no effect on the R8 bit.  
T8 — Transmitted Bit 8  
When the SCI is transmitting 9-bit characters, T8 is the read/write  
ninth bit (bit 8) of the transmitted character. T8 is loaded into the  
transmit shift register at the same time that the SCDR is loaded into  
the transmit shift register. Reset has no effect on the T8 bit.  
Data Sheet  
274  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
Infrared Serial Communications Interface Module (IRSCI)  
I/O Registers  
DMARE — DMA Receive Enable Bit  
CAUTION: The DMA module is not included on this MCU. Writing a logic 1 to  
DMARE or DMATE may adversely affect MCU performance.  
1 = DMA not enabled to service SCI receiver DMA service requests  
generated by the SCRF bit (SCI receiver CPU interrupt  
requests enabled)  
0 = DMA not enabled to service SCI receiver DMA service requests  
generated by the SCRF bit (SCI receiver CPU interrupt  
requests enabled)  
DMATE — DMA Transfer Enable Bit  
CAUTION: The DMA module is not included on this MCU. Writing a logic 1 to  
DMARE or DMATE may adversely affect MCU performance.  
1 = SCTE DMA service requests enabled; SCTE CPU interrupt  
requests disabled  
0 = SCTE DMA service requests disabled; SCTE CPU interrupt  
requests enabled  
ORIE — Receiver Overrun Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests  
generated by the receiver overrun bit, OR. Reset clears ORIE.  
1 = SCI error CPU interrupt requests from OR bit enabled  
0 = SCI error CPU interrupt requests from OR bit disabled  
NEIE — Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests  
generated by the noise error bit, NE. Reset clears NEIE.  
1 = SCI error CPU interrupt requests from NE bit enabled  
0 = SCI error CPU interrupt requests from NE bit disabled  
FEIE — Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests  
generated by the framing error bit, FE. Reset clears FEIE.  
1 = SCI error CPU interrupt requests from FE bit enabled  
0 = SCI error CPU interrupt requests from FE bit disabled  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Data Sheet  
275  
Infrared Serial Communications  
PEIE — Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt  
requests generated by the parity error bit, PE. (See 13.11.4 SCI  
Status Register 1.) Reset clears PEIE.  
1 = SCI error CPU interrupt requests from PE bit enabled  
0 = SCI error CPU interrupt requests from PE bit disabled  
13.11.4 SCI Status Register 1  
SCI status register 1 contains flags to signal these conditions:  
• Transfer of SCDR data to transmit shift register complete  
• Transmission complete  
• Transfer of receive shift register data to SCDR complete  
• Receiver input idle  
• Receiver overrun  
• Noisy data  
• Framing error  
• Parity error  
Address: $0016  
Bit 7  
Read: SCTE  
Write:  
6
5
4
3
2
1
Bit 0  
PE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
Reset:  
1
1
0
0
0
0
0
0
= Unimplemented  
Figure 13-15. SCI Status Register 1 (SCS1)  
SCTE — SCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a  
character to the transmit shift register. SCTE can generate an SCI  
transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set,  
SCTE generates an SCI transmitter CPU interrupt request. In normal  
Data Sheet  
276  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
 
Infrared Serial Communications Interface Module (IRSCI)  
I/O Registers  
operation, clear the SCTE bit by reading SCS1 with SCTE set and  
then writing to SCDR. Reset sets the SCTE bit.  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
TC — Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set, and no data,  
preamble, or break character is being transmitted. TC generates an  
SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also  
set. TC is automatically cleared when data, preamble or break is  
queued and ready to be sent. There may be up to 1.5 transmitter  
clocks of latency between queueing data, preamble, and break and  
the transmission actually starting. Reset sets the TC bit.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF — SCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift  
register transfers to the SCI data register. SCRF can generate an SCI  
receiver CPU interrupt request. When the SCRIE bit in SCC2 is set,  
SCRF generates a CPU interrupt request. In normal operation, clear  
the SCRF bit by reading SCS1 with SCRF set and then reading the  
SCDR. Reset clears SCRF.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
IDLE — Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s  
appear on the receiver input. IDLE generates an SCI receiver CPU  
interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit  
by reading SCS1 with IDLE set and then reading the SCDR. After the  
receiver is enabled, it must receive a valid character that sets the  
SCRF bit before an idle condition can set the IDLE bit. Also, after the  
IDLE bit has been cleared, a valid character must again set the SCRF  
bit before an idle condition can set the IDLE bit. Reset clears the IDLE  
bit.  
1 = Receiver input idle  
0 = Receiver input active (or idle since the IDLE bit was cleared)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Data Sheet  
277  
Infrared Serial Communications  
OR — Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the  
SCDR before the receive shift register receives the next character.  
The OR bit generates an SCI error CPU interrupt request if the ORIE  
bit in SCC3 is also set. The data in the shift register is lost, but the data  
already in the SCDR is not affected. Clear the OR bit by reading SCS1  
with OR set and then reading the SCDR. Reset clears the OR bit.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of  
SCS1 and SCDR in the flag-clearing sequence. Figure 13-16 shows  
the normal flag-clearing sequence and an example of an overrun  
caused by a delayed flag-clearing sequence. The delayed read of  
SCDR does not clear the OR bit because OR was not set when SCS1  
was read. Byte 2 caused the overrun and is lost. The next flag-  
clearing sequence reads byte 3 in the SCDR instead of byte 2.  
In applications that are subject to software latency or in which it is  
important to know which byte is lost due to an overrun, the flag-  
clearing routine can check the OR bit in a second read of SCS1 after  
reading the data register.  
NF — Receiver Noise Flag Bit  
This clearable, read-only bit is set when the SCI detects noise on the  
RxD pin. NF generates an SCI error CPU interrupt request if the NEIE  
bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then  
reading the SCDR. Reset clears the NF bit.  
1 = Noise detected  
0 = No noise detected  
FE — Receiver Framing Error Bit  
This clearable, read-only bit is set when a logic 0 is accepted as the  
stop bit. FE generates an SCI error CPU interrupt request if the FEIE  
bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set  
and then reading the SCDR. Reset clears the FE bit.  
1 = Framing error detected  
0 = No framing error detected  
Data Sheet  
278  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
Infrared Serial Communications Interface Module (IRSCI)  
I/O Registers  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 2  
READ SCDR  
BYTE 3  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 13-16. Flag Clearing Sequence  
PE — Receiver Parity Error Bit  
This clearable, read-only bit is set when the SCI detects a parity error  
in incoming data. PE generates an SCI error CPU interrupt request if  
the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1  
with PE set and then reading the SCDR. Reset clears the PE bit.  
1 = Parity error detected  
0 = No parity error detected  
MC68HC908LJ24/LK24 — Rev. 2.1  
Data Sheet  
279  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Infrared Serial Communications  
13.11.5 SCI Status Register 2 (SCS2)  
SCI status register 2 contains flags to signal the following conditions:  
• Break character detected  
• Incoming data  
Address: $0017  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
RPF  
Read:  
Write:  
Reset:  
0
BKF  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-17. SCI Status Register 2 (SCS2)  
BKF — Break Flag Bit  
This clearable, read-only bit is set when the SCI detects a break  
character on the RxD pin. In SCS1, the FE and SCRF bits are also  
set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared.  
BKF does not generate a CPU interrupt request. Clear BKF by  
reading SCS2 with BKF set and then reading the SCDR. Once  
cleared, BKF can become set again only after logic 1s again appear  
on the RxD pin followed by another break character. Reset clears the  
BKF bit.  
1 = Break character detected  
0 = No break character detected  
RPF — Reception in Progress Flag Bit  
This read-only bit is set when the receiver detects a logic 0 during the  
RT1 time period of the start bit search. RPF does not generate an  
interrupt request. RPF is reset after the receiver detects false start bits  
(usually from noise or a baud rate mismatch) or when the receiver  
detects an idle character. Polling RPF before disabling the SCI  
module or entering stop mode can show whether a reception is in  
progress.  
1 = Reception in progress  
0 = No reception in progress  
Data Sheet  
280  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
Infrared Serial Communications Interface Module (IRSCI)  
I/O Registers  
13.11.6 SCI Data Register  
The SCI data register is the buffer between the internal data bus and the  
receive and transmit shift registers. Reset has no effect on data in the  
SCI data register.  
Address: $0018  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 13-18. SCI Data Register (SCDR)  
R7/T7–R0/T0 — Receive/Transmit Data Bits  
Reading the SCDR accesses the read-only received data bits,  
R7–R0. Writing to the SCDR writes the data to be transmitted, T7–T0.  
Reset has no effect on the SCDR.  
NOTE: Do not use read/modify/write instructions on the SCI data register.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Data Sheet  
281  
Infrared Serial Communications  
13.11.7 SCI Baud Rate Register  
The baud rate register selects the baud rate for both the receiver and the  
transmitter.  
Address: $0019  
Bit 7  
6
0
5
SCP1  
0
4
SCP0  
0
3
2
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
CKS  
R
SCR2  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 13-19. SCI Baud Rate Register (SCBR)  
CKS — Baud Clock Input Select  
This read/write bit selects the source clock for the baud rate  
generator. Reset clears the CKS bit, selecting CGMXCLK.  
1 = Bus clock drives the baud rate generator  
0 = CGMXCLK drives the baud rate generator  
SCP1 and SCP0 — SCI Baud Rate Prescaler Bits  
These read/write bits select the baud rate prescaler divisor as shown  
in Table 13-7. Reset clears SCP1 and SCP0.  
Table 13-7. SCI Baud Rate Prescaling  
SCP1 and SCP0  
Prescaler Divisor (PD)  
00  
01  
10  
11  
1
3
4
13  
SCR2–SCR0 — SCI Baud Rate Select Bits  
These read/write bits select the SCI baud rate divisor as shown in  
Table 13-8. Reset clears SCR2–SCR0.  
Data Sheet  
282  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
 
Infrared Serial Communications Interface Module (IRSCI)  
I/O Registers  
Table 13-8. SCI Baud Rate Selection  
SCR2, SCR1, and SCR0  
Baud Rate Divisor (BD)  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
8
16  
32  
64  
128  
Use this formula to calculate the SCI baud rate:  
SCI clock source  
baud rate = --------------------------------------------  
16 × PD × BD  
where:  
SCI clock source = f  
or CGMXCLK  
BUS  
(selected by CKS bit)  
PD = prescaler divisor  
BD = baud rate divisor  
Table 13-9 shows the SCI baud rates that can be generated with a  
4.9152-MHz bus clock when f is selected as SCI clock source.  
BUS  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Data Sheet  
283  
Infrared Serial Communications  
Table 13-9. SCI Baud Rate Selection Examples  
Baud Rate  
BUS  
SCP1 and  
SCP0  
Prescaler  
Divisor (PD)  
SCR2, SCR1,  
and SCR0  
Baud Rate  
Divisor (BD)  
(f  
= 4.9152 MHz)  
00  
00  
00  
00  
00  
00  
00  
00  
01  
01  
01  
01  
01  
01  
01  
01  
10  
10  
10  
10  
10  
10  
10  
10  
11  
11  
11  
11  
11  
11  
11  
11  
1
1
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
1
4
76800  
38400  
19200  
9600  
4800  
2400  
1
8
1
16  
32  
64  
128  
1
1
1
1
3
3
2
51200  
25600  
12800  
6400  
3200  
1600  
800  
3
4
3
8
3
16  
32  
64  
128  
1
3
3
3
4
76800  
38400  
19200  
9600  
4800  
2400  
1200  
600  
4
2
4
4
4
8
4
16  
32  
64  
128  
1
4
4
4
13  
13  
13  
13  
13  
13  
13  
13  
23632  
11816  
5908  
2954  
1477  
739  
2
4
8
16  
32  
64  
128  
369  
185  
Data Sheet  
284  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
Infrared Serial Communications Interface Module (IRSCI)  
I/O Registers  
13.11.8 SCI Infrared Control Register  
The infrared control register contains the control bits for the infrared sub-  
module.  
• Enables the infrared sub-module  
• Selects the infrared transmitter narrow pulse width  
Address: $001A  
Bit 7  
6
0
5
0
4
0
3
2
1
TNP0  
0
Bit 0  
IREN  
0
Read:  
Write:  
Reset:  
R
R
TNP1  
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 13-20. SCI Infrared Control Register (SCIRCR)  
TNP1 and TNP0 — Transmitter Narrow Pulse Bits  
These read/write bits select the infrared transmitter narrow pulse  
width as shown in Table 13-10. Reset clears TNP1 and TNP0.  
Table 13-10. Infrared Narrow Pulse Selection  
TNP1 and TNP0  
Prescaler Divisor (PD)  
00  
01  
10  
11  
SCI transmits a 3/16 narrow pulse  
SCI transmits a 1/16 narrow pulse  
SCI transmits a 1/32 narrow pulse  
IREN — Infrared Enable Bit  
This read/write bit enables the infrared sub-module for encoding and  
decoding the SCI data stream. When this bit is clear, the infrared sub-  
module is disabled. Reset clears the IREN bit.  
1 = Infrared sub-module enabled  
0 = Infrared sub-module disabled  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor Infrared Serial Communications Interface Module (IRSCI)  
Data Sheet  
285  
 
Infrared Serial Communications  
Data Sheet  
MC68HC908LJ24/LK24 — Rev. 2.1  
Infrared Serial Communications Interface Module (IRSCI) Freescale Semiconductor  
286  
Data Sheet — MC68HC908LJ24  
Section 14. Serial Peripheral Interface Module (SPI)  
14.1 Contents  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288  
14.4 Pin Name Conventions and I/O Register Addresses . . . . . . .289  
14.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290  
14.5.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
14.5.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
14.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
14.6.1 Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . .293  
14.6.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . .294  
14.6.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . .296  
14.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . .297  
14.7 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . .299  
14.8 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300  
14.8.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300  
14.8.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .302  
14.9 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304  
14.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306  
14.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307  
14.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307  
14.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307  
14.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .308  
14.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308  
14.13.1 MISO (Master In/Slave Out). . . . . . . . . . . . . . . . . . . . . . . .309  
14.13.2 MOSI (Master Out/Slave In). . . . . . . . . . . . . . . . . . . . . . . .309  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
287  
Serial Peripheral Interface Module (SPI)  
 
Serial Peripheral Interface Module (SPI)  
14.13.3 SPSCK (Serial Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . .310  
14.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310  
14.13.5 CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . .311  
14.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312  
14.14.1 SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312  
14.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . .314  
14.14.3 SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
14.2 Introduction  
14.3 Features  
This section describes the serial peripheral interface (SPI) module,  
which allows full-duplex, synchronous, serial communications with  
peripheral devices.  
Features of the SPI module include the following:  
• Full-duplex operation  
• Master and slave modes  
• Double-buffered operation with separate transmit and receive  
registers  
• Four master mode frequencies (maximum = bus frequency ÷ 2)  
• Maximum slave mode frequency = bus frequency  
• Serial clock with programmable polarity and phase  
• Two separately enabled interrupts:  
– SPRF (SPI receiver full)  
– SPTE (SPI transmitter empty)  
• Mode fault error flag with CPU interrupt capability  
• Overflow error flag with CPU interrupt capability  
• Programmable wired-OR mode  
Data Sheet  
288  
MC68HC908LJ24/LK24 — Rev. 2.1  
Serial Peripheral Interface Module (SPI)  
Freescale Semiconductor  
Serial Peripheral Interface Module (SPI)  
Pin Name Conventions and I/O Register Addresses  
14.4 Pin Name Conventions and I/O Register Addresses  
The text that follows describes the SPI. The SPI I/O pin names are SS  
(slave select), SPSCK (SPI serial clock), CGND (clock ground), MOSI  
(master out slave in), and MISO (master in/slave out). The SPI shares  
four I/O pins with four parallel I/O ports.  
The full names of the SPI I/O pins are shown in Table 14-1. The generic  
pin names appear in the text that follows.  
Table 14-1. Pin Name Conventions  
SPI Generic  
Pin Names:  
MISO  
MOSI  
SS  
SPSCK  
CGND  
PTD0/SS PTD3/SPSCK/  
Full SPI  
Pin Names:  
V
SPI PTD1/MISO PTD2/MOSI  
SS  
CALIN  
CALOUT  
NOTE: The SS and SPSCK pins are also shared with CALIN and CALOUT  
respectively. To avoid erratic behavior, these two pins should never be  
configured for use as SPI and RTC calibration simultaneously.  
Figure 14-1 summarizes the SPI I/O registers.  
=
Addr.  
Register Name  
Bit 7  
SPRIE  
0
6
5
4
3
2
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
R
0
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
SPI Control Register  
(SPCR)  
$0010  
1
0
1
Read: SPRF  
OVRF  
MODF  
SPTE  
SPI Status and Control  
ERRIE  
MODFEN  
SPR1  
SPR0  
$0011  
$0012  
Register Write:  
(SPSCR)  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
1
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR)  
Unaffected by reset  
R
= Unimplemented  
= Reserved  
Figure 14-1. SPI I/O Register Summary  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
289  
Serial Peripheral Interface Module (SPI)  
 
 
Serial Peripheral Interface Module (SPI)  
14.5 Functional Description  
Figure 14-2 shows the structure of the SPI module.  
INTERNAL BUS  
TRANSMIT DATA REGISTER  
SHIFT REGISTER  
CGMOUT ÷ 2  
FROM SIM  
MISO  
MOSI  
7
6
5
4
3
2
1
0
÷ 2  
÷ 8  
÷ 32  
CLOCK  
DIVIDER  
RECEIVE DATA REGISTER  
PIN  
CONTROL  
LOGIC  
÷ 128  
CLOCK  
SPSCK  
SS  
SPMSTR SPE  
SELECT  
M
CLOCK  
LOGIC  
S
SPR1  
SPR0  
SPMSTR CPHA  
CPOL  
RESERVED  
MODFEN  
ERRIE  
SPTIE  
SPRIE  
R
SPWOM  
TRANSMITTER CPU INTERRUPT REQUEST  
RESERVED  
SPI  
CONTROL  
RECEIVER/ERROR CPU INTERRUPT REQUEST  
SPE  
SPRF  
SPTE  
OVRF  
MODF  
Figure 14-2. SPI Module Block Diagram  
The SPI module allows full-duplex, synchronous, serial communication  
between the MCU and peripheral devices, including other MCUs.  
Software can poll the SPI status flags or SPI operation can be interrupt-  
driven.  
The following paragraphs describe the operation of the SPI module.  
Data Sheet  
290  
MC68HC908LJ24/LK24 — Rev. 2.1  
Serial Peripheral Interface Module (SPI)  
Freescale Semiconductor  
 
Serial Peripheral Interface Module (SPI)  
Functional Description  
14.5.1 Master Mode  
The SPI operates in master mode when the SPI master bit, SPMSTR, is  
set.  
NOTE: Configure the SPI modules as master or slave before enabling them.  
Enable the master SPI before enabling the slave SPI. Disable the slave  
SPI before disabling the master SPI. (See 14.14.1 SPI Control  
Register.)  
Only a master SPI module can initiate transmissions. Software begins  
the transmission from a master SPI module by writing to the transmit  
data register. If the shift register is empty, the byte immediately transfers  
to the shift register, setting the SPI transmitter empty bit, SPTE. The byte  
begins shifting out on the MOSI pin under the control of the serial clock.  
(See Figure 14-3.)  
MASTER MCU  
SLAVE MCU  
MISO  
MOSI  
MISO  
MOSI  
SHIFT REGISTER  
SHIFT REGISTER  
SPSCK  
SS  
SPSCK  
SS  
BAUD RATE  
GENERATOR  
VDD  
Figure 14-3. Full-Duplex Master-Slave Connections  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
291  
Serial Peripheral Interface Module (SPI)  
 
Serial Peripheral Interface Module (SPI)  
The SPR1 and SPR0 bits control the baud rate generator and determine  
the speed of the shift register. (See 14.14.2 SPI Status and Control  
Register.) Through the SPSCK pin, the baud rate generator of the  
master also controls the shift register of the slave peripheral.  
As the byte shifts out on the MOSI pin of the master, another byte shifts  
in from the slave on the master’s MISO pin. The transmission ends when  
the receiver full bit, SPRF, becomes set. At the same time that SPRF  
becomes set, the byte from the slave transfers to the receive data  
register. In normal operation, SPRF signals the end of a transmission.  
Software clears SPRF by reading the SPI status and control register with  
SPRF set and then reading the SPI data register. Writing to the SPI data  
register clears the SPTE bit.  
14.5.2 Slave Mode  
The SPI operates in slave mode when the SPMSTR bit is clear. In slave  
mode, the SPSCK pin is the input for the serial clock from the master  
MCU. Before a data transmission occurs, the SS pin of the slave SPI  
must be at logic 0. SS must remain low until the transmission is  
complete. (See 14.8.2 Mode Fault Error.)  
In a slave SPI module, data enters the shift register under the control of  
the serial clock from the master SPI module. After a byte enters the shift  
register of a slave SPI, it transfers to the receive data register, and the  
SPRF bit is set. To prevent an overflow condition, slave software then  
must read the receive data register before another full byte enters the  
shift register.  
The maximum frequency of the SPSCK for an SPI configured as a slave  
is the bus clock speed (which is twice as fast as the fastest master  
SPSCK clock that can be generated). The frequency of the SPSCK for  
an SPI configured as a slave does not have to correspond to any SPI  
baud rate. The baud rate only controls the speed of the SPSCK  
generated by an SPI configured as a master. Therefore, the frequency  
of the SPSCK for an SPI configured as a slave can be any frequency  
less than or equal to the bus speed.  
Data Sheet  
292  
MC68HC908LJ24/LK24 — Rev. 2.1  
Serial Peripheral Interface Module (SPI)  
Freescale Semiconductor  
Serial Peripheral Interface Module (SPI)  
Transmission Formats  
When the master SPI starts a transmission, the data in the slave shift  
register begins shifting out on the MISO pin. The slave can load its shift  
register with a new byte for the next transmission by writing to its transmit  
data register. The slave must write to its transmit data register at least  
one bus cycle before the master starts the next transmission. Otherwise,  
the byte already in the slave shift register shifts out on the MISO pin.  
Data written to the slave shift register during a transmission remains in  
a buffer until the end of the transmission.  
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts  
a transmission. When CPHA is clear, the falling edge of SS starts a  
transmission. (See 14.6 Transmission Formats.)  
NOTE: SPSCK must be in the proper idle state before the slave is enabled to  
prevent SPSCK from appearing as a clock edge.  
14.6 Transmission Formats  
During an SPI transmission, data is simultaneously transmitted (shifted  
out serially) and received (shifted in serially). A serial clock synchronizes  
shifting and sampling on the two serial data lines. A slave select line  
allows selection of an individual slave SPI device; slave devices that are  
not selected do not interfere with SPI bus activities. On a master SPI  
device, the slave select line can optionally be used to indicate multiple-  
master bus contention.  
14.6.1 Clock Phase and Polarity Controls  
Software can select any of four combinations of serial clock (SPSCK)  
phase and polarity using two bits in the SPI control register (SPCR). The  
clock polarity is specified by the CPOL control bit, which selects an  
active high or low clock and has no significant effect on the transmission  
format.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
293  
Serial Peripheral Interface Module (SPI)  
 
Serial Peripheral Interface Module (SPI)  
The clock phase (CPHA) control bit selects one of two fundamentally  
different transmission formats. The clock phase and polarity should be  
identical for the master SPI device and the communicating slave device.  
In some cases, the phase and polarity are changed between  
transmissions to allow a master device to communicate with peripheral  
slaves having different requirements.  
NOTE: Before writing to the CPOL bit or the CPHA bit, disable the SPI by  
clearing the SPI enable bit (SPE).  
14.6.2 Transmission Format When CPHA = 0  
Figure 14-4 shows an SPI transmission in which CPHA is logic 0. The  
figure should not be used as a replacement for data sheet parametric  
information.  
Two waveforms are shown for SPSCK: one for CPOL = 0 and another  
for CPOL = 1. The diagram may be interpreted as a master or slave  
timing diagram since the serial clock (SPSCK), master in/slave out  
(MISO), and master out/slave in (MOSI) pins are directly connected  
between the master and the slave. The MISO signal is the output from  
the slave, and the MOSI signal is the output from the master. The SS line  
is the slave select input to the slave. The slave SPI drives its MISO  
output only when its slave select input (SS) is at logic 0, so that only the  
selected slave drives to the master. The SS pin of the master is not  
shown but is assumed to be inactive. The SS pin of the master must be  
high or must be reconfigured as general-purpose I/O not affecting the  
SPI. (See 14.8.2 Mode Fault Error.) When CPHA = 0, the first SPSCK  
edge is the MSB capture strobe. Therefore, the slave must begin driving  
its data before the first SPSCK edge, and a falling edge on the SS pin is  
used to start the slave data transmission. The slave’s SS pin must be  
toggled back to high and then low again between each byte transmitted  
as shown in Figure 14-5.  
Data Sheet  
294  
MC68HC908LJ24/LK24 — Rev. 2.1  
Serial Peripheral Interface Module (SPI)  
Freescale Semiconductor  
Serial Peripheral Interface Module (SPI)  
Transmission Formats  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
LSB  
FROM MASTER  
MISO  
FROM SLAVE  
MSB  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 14-4. Transmission Format (CPHA = 0)  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 14-5. CPHA/SS Timing  
When CPHA = 0 for a slave, the falling edge of SS indicates the  
beginning of the transmission. This causes the SPI to leave its idle state  
and begin driving the MISO pin with the MSB of its data. Once the  
transmission begins, no new data is allowed into the shift register from  
the transmit data register. Therefore, the SPI data register of the slave  
must be loaded with transmit data before the falling edge of SS. Any data  
written after the falling edge is stored in the transmit data register and  
transferred to the shift register after the current transmission.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
295  
Serial Peripheral Interface Module (SPI)  
 
Serial Peripheral Interface Module (SPI)  
14.6.3 Transmission Format When CPHA = 1  
Figure 14-6 shows an SPI transmission in which CPHA is logic 1. The  
figure should not be used as a replacement for data sheet parametric  
information. Two waveforms are shown for SPSCK: one for CPOL = 0  
and another for CPOL = 1. The diagram may be interpreted as a master  
or slave timing diagram since the serial clock (SPSCK), master in/slave  
out (MISO), and master out/slave in (MOSI) pins are directly connected  
between the master and the slave. The MISO signal is the output from  
the slave, and the MOSI signal is the output from the master. The SS line  
is the slave select input to the slave. The slave SPI drives its MISO  
output only when its slave select input (SS) is at logic 0, so that only the  
selected slave drives to the master. The SS pin of the master is not  
shown but is assumed to be inactive. The SS pin of the master must be  
high or must be reconfigured as general-purpose I/O not affecting the  
SPI. (See 14.8.2 Mode Fault Error.) When CPHA = 1, the master  
begins driving its MOSI pin on the first SPSCK edge. Therefore, the  
slave uses the first SPSCK edge as a start transmission signal. The SS  
pin can remain low between transmissions. This format may be  
preferable in systems having only one master and only one slave driving  
the MISO data line.  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
MSB  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
FROM MASTER  
MISO  
LSB  
FROM SLAVE  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 14-6. Transmission Format (CPHA = 1)  
Data Sheet  
296  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Serial Peripheral Interface Module (SPI)  
 
Serial Peripheral Interface Module (SPI)  
Transmission Formats  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the  
beginning of the transmission. This causes the SPI to leave its idle state  
and begin driving the MISO pin with the MSB of its data. Once the  
transmission begins, no new data is allowed into the shift register from  
the transmit data register. Therefore, the SPI data register of the slave  
must be loaded with transmit data before the first edge of SPSCK. Any  
data written after the first edge is stored in the transmit data register and  
transferred to the shift register after the current transmission.  
14.6.4 Transmission Initiation Latency  
When the SPI is configured as a master (SPMSTR = 1), writing to the  
SPDR starts a transmission. CPHA has no effect on the delay to the start  
of the transmission, but it does affect the initial state of the SPSCK  
signal. When CPHA = 0, the SPSCK signal remains inactive for the first  
half of the first SPSCK cycle. When CPHA = 1, the first SPSCK cycle  
begins with an edge on the SPSCK line from its inactive to its active  
level. The SPI clock rate (selected by SPR1:SPR0) affects the delay  
from the write to SPDR and the start of the SPI transmission. (See  
Figure 14-7.) The internal SPI clock in the master is a free-running  
derivative of the internal MCU clock. To conserve power, it is enabled  
only when both the SPE and SPMSTR bits are set. SPSCK edges occur  
halfway through the low time of the internal MCU clock. Since the SPI  
clock is free-running, it is uncertain where the write to the SPDR occurs  
relative to the slower SPSCK. This uncertainty causes the variation in  
the initiation delay shown in Figure 14-7. This delay is no longer than a  
single SPI bit time. That is, the maximum delay is two MCU bus cycles  
for DIV2, eight MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32,  
and 128 MCU bus cycles for DIV128.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
297  
Serial Peripheral Interface Module (SPI)  
Serial Peripheral Interface Module (SPI)  
WRITE  
TO SPDR  
INITIATION DELAY  
BUS  
CLOCK  
MOSI  
MSB  
BIT 6  
BIT 5  
SPSCK  
CPHA = 1  
SPSCK  
CPHA = 0  
SPSCK CYCLE  
NUMBER  
1
2
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN  
WRITE  
TO SPDR  
BUS  
CLOCK  
SPSCK = INTERNAL CLOCK ÷ 2;  
2 POSSIBLE START POINTS  
EARLIEST  
LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 8;  
LATEST  
LATEST  
LATEST  
8 POSSIBLE START POINTS  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 32;  
32 POSSIBLE START POINTS  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = INTERNAL CLOCK ÷ 128;  
128 POSSIBLE START POINTS  
Figure 14-7. Transmission Start Delay (Master)  
Data Sheet  
298  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Serial Peripheral Interface Module (SPI)  
Serial Peripheral Interface Module (SPI)  
Queuing Transmission Data  
14.7 Queuing Transmission Data  
The double-buffered transmit data register allows a data byte to be  
queued and transmitted. For an SPI configured as a master, a queued  
data byte is transmitted immediately after the previous transmission has  
completed. The SPI transmitter empty flag (SPTE) indicates when the  
transmit data buffer is ready to accept new data. Write to the transmit  
data register only when the SPTE bit is high. Figure 14-8 shows the  
timing associated with doing back-to-back transmissions with the SPI  
(SPSCK has CPHA: CPOL = 1:0).  
1
3
8
WRITE TO SPDR  
SPTE  
5
10  
2
SPSCK  
CPHA:CPOL = 1:0  
MOSI  
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT  
6
5
4
3
2
1
6
5
4
3
2
1
6
5
4
BYTE 1  
BYTE 2  
BYTE 3  
4
9
SPRF  
READ SPSCR  
READ SPDR  
6
11  
7
12  
1
2
CPU WRITES BYTE 1 TO SPDR, CLEARING SPTE BIT.  
7
8
CPU READS SPDR, CLEARING SPRF BIT.  
CPU WRITES BYTE 3 TO SPDR, QUEUEING BYTE  
3 AND CLEARING SPTE BIT.  
BYTE 1 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
9
SECOND INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
CPU WRITES BYTE 2 TO SPDR, QUEUEING BYTE 2  
AND CLEARING SPTE BIT.  
3
4
10  
FIRST INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
BYTE 3 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
CPU READS SPSCR WITH SPRF BIT SET.  
CPU READS SPDR, CLEARING SPRF BIT.  
11  
12  
5
6
BYTE 2 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
CPU READS SPSCR WITH SPRF BIT SET.  
Figure 14-8. SPRF/SPTE CPU Interrupt Timing  
The transmit data buffer allows back-to-back transmissions without the  
slave precisely timing its writes between transmissions as in a system  
with a single data buffer. Also, if no new data is written to the data buffer,  
the last value contained in the shift register is the next data word to be  
transmitted.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
299  
Serial Peripheral Interface Module (SPI)  
 
Serial Peripheral Interface Module (SPI)  
For an idle master or idle slave that has no data loaded into its transmit  
buffer, the SPTE is set again no more than two bus cycles after the  
transmit buffer empties into the shift register. This allows the user to  
queue up a 16-bit value to send. For an already active slave, the load of  
the shift register cannot occur until the transmission is completed. This  
implies that a back-to-back write to the transmit data register is not  
possible. The SPTE indicates when the next write can occur.  
14.8 Error Conditions  
The following flags signal SPI error conditions:  
• Overflow (OVRF) — Failing to read the SPI data register before  
the next full byte enters the shift register sets the OVRF bit. The  
new byte does not transfer to the receive data register, and the  
unread byte still can be read. OVRF is in the SPI status and control  
register.  
• Mode fault error (MODF) — The MODF bit indicates that the  
voltage on the slave select pin (SS) is inconsistent with the mode  
of the SPI. MODF is in the SPI status and control register.  
14.8.1 Overflow Error  
The overflow flag (OVRF) becomes set if the receive data register still  
has unread data from a previous transmission when the capture strobe  
of bit 1 of the next transmission occurs. The bit 1 capture strobe occurs  
in the middle of SPSCK cycle 7. (See Figure 14-4 and Figure 14-6.) If  
an overflow occurs, all data received after the overflow and before the  
OVRF bit is cleared does not transfer to the receive data register and  
does not set the SPI receiver full bit (SPRF). The unread data that  
transferred to the receive data register before the overflow occurred can  
still be read. Therefore, an overflow error always indicates the loss of  
data. Clear the overflow flag by reading the SPI status and control  
register and then reading the SPI data register.  
OVRF generates a receiver/error CPU interrupt request if the error  
interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF  
Data Sheet  
300  
MC68HC908LJ24/LK24 — Rev. 2.1  
Serial Peripheral Interface Module (SPI)  
Freescale Semiconductor  
Serial Peripheral Interface Module (SPI)  
Error Conditions  
interrupts share the same CPU interrupt vector. (See Figure 14-11.) It is  
not possible to enable MODF or OVRF individually to generate a  
receiver/error CPU interrupt request. However, leaving MODFEN low  
prevents MODF from being set.  
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not,  
watch for an overflow condition. Figure 14-9 shows how it is possible to  
miss an overflow. The first part of Figure 14-9 shows how it is possible  
to read the SPSCR and SPDR to clear the SPRF without problems.  
However, as illustrated by the second transmission example, the OVRF  
bit can be set in between the time that SPSCR and SPDR are read.  
BYTE 1  
1
BYTE 2  
4
BYTE 3  
6
BYTE 4  
8
SPRF  
OVRF  
READ  
2
5
5
SPSCR  
READ  
SPDR  
3
7
1
2
BYTE 1 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
6
7
3
4
CPU READS BYTE 1 IN SPDR,  
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT,  
BUT NOT OVRF BIT.  
BYTE 4 FAILS TO SET SPRF BIT BECAUSE  
OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST.  
CLEARING SPRF BIT.  
BYTE 2 SETS SPRF BIT.  
8
Figure 14-9. Missed Read of Overflow Condition  
In this case, an overflow can be missed easily. Since no more SPRF  
interrupts can be generated until this OVRF is serviced, it is not obvious  
that bytes are being lost as more transmissions are completed. To  
prevent this, either enable the OVRF interrupt or do another read of the  
SPSCR following the read of the SPDR. This ensures that the OVRF  
was not set before the SPRF was cleared and that future transmissions  
can set the SPRF bit. Figure 14-10 illustrates this process. Generally, to  
avoid this second SPSCR read, enable the OVRF to the CPU by setting  
the ERRIE bit.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
301  
Serial Peripheral Interface Module (SPI)  
 
Serial Peripheral Interface Module (SPI)  
BYTE 1  
BYTE 2  
5
BYTE 3  
7
BYTE 4  
11  
SPI RECEIVE  
COMPLETE  
1
SPRF  
OVRF  
READ  
2
4
6
9
12  
14  
SPSCR  
READ  
SPDR  
3
8
10  
13  
1
2
8
9
BYTE 1 SETS SPRF BIT.  
CPU READS BYTE 2 IN SPDR,  
CLEARING SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
3
4
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
10  
CPU READS BYTE 2 SPDR,  
CLEARING OVRF BIT.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
11  
12  
13  
BYTE 4 SETS SPRF BIT.  
CPU READS SPSCR.  
5
6
BYTE 2 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS BYTE 4 IN SPDR,  
CLEARING SPRF BIT.  
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
14  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
Figure 14-10. Clearing SPRF When OVRF Interrupt Is Not Enabled  
14.8.2 Mode Fault Error  
Setting the SPMSTR bit selects master mode and configures the  
SPSCK and MOSI pins as outputs and the MISO pin as an input.  
Clearing SPMSTR selects slave mode and configures the SPSCK and  
MOSI pins as inputs and the MISO pin as an output. The mode fault bit,  
MODF, becomes set any time the state of the slave select pin, SS, is  
inconsistent with the mode selected by SPMSTR.  
To prevent SPI pin contention and damage to the MCU, a mode fault  
error occurs if:  
• The SS pin of a slave SPI goes high during a transmission  
• The SS pin of a master SPI goes low at any time  
For the MODF flag to be set, the mode fault error enable bit (MODFEN)  
must be set. Clearing the MODFEN bit does not clear the MODF flag but  
does prevent MODF from being set again after MODF is cleared.  
Data Sheet  
302  
MC68HC908LJ24/LK24 — Rev. 2.1  
Serial Peripheral Interface Module (SPI)  
Freescale Semiconductor  
 
Serial Peripheral Interface Module (SPI)  
Error Conditions  
MODF generates a receiver/error CPU interrupt request if the error  
interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF  
interrupts share the same CPU interrupt vector. (See Figure 14-11.) It is  
not possible to enable MODF or OVRF individually to generate a  
receiver/error CPU interrupt request. However, leaving MODFEN low  
prevents MODF from being set.  
In a master SPI with the mode fault enable bit (MODFEN) set, the mode  
fault flag (MODF) is set if SS goes to logic 0. A mode fault in a master  
SPI causes the following events to occur:  
• If ERRIE = 1, the SPI generates an SPI receiver/error CPU  
interrupt request.  
• The SPE bit is cleared.  
• The SPTE bit is set.  
• The SPI state counter is cleared.  
• The data direction register of the shared I/O port regains control of  
port drivers.  
NOTE: To prevent bus contention with another master SPI after a mode fault  
error, clear all SPI bits of the data direction register of the shared I/O port  
before enabling the SPI.  
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS  
goes high during a transmission. When CPHA = 0, a transmission begins  
when SS goes low and ends once the incoming SPSCK goes back to its  
idle level following the shift of the eighth data bit. When CPHA = 1, the  
transmission begins when the SPSCK leaves its idle level and SS is  
already low. The transmission continues until the SPSCK returns to its  
idle level following the shift of the last data bit. (See 14.6 Transmission  
Formats.)  
NOTE: Setting the MODF flag does not clear the SPMSTR bit. The SPMSTR bit  
has no function when SPE = 0. Reading SPMSTR when MODF = 1  
shows the difference between a MODF occurring when the SPI is a  
master and when it is a slave.  
When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0)  
and later unselected (SS is at logic 1) even if no SPSCK is sent to that  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
303  
Serial Peripheral Interface Module (SPI)  
Serial Peripheral Interface Module (SPI)  
slave. This happens because SS at logic 0 indicates the start of the  
transmission (MISO driven out with the value of MSB) for CPHA = 0.  
When CPHA = 1, a slave can be selected and then later unselected with  
no transmission occurring. Therefore, MODF does not occur since a  
transmission was never begun.  
In a slave SPI (MSTR = 0), the MODF bit generates an SPI  
receiver/error CPU interrupt request if the ERRIE bit is set. The MODF  
bit does not clear the SPE bit or reset the SPI in any way. Software can  
abort the SPI transmission by clearing the SPE bit of the slave.  
NOTE: A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high  
impedance state. Also, the slave SPI ignores all incoming SPSCK  
clocks, even if it was already in the middle of a transmission.  
To clear the MODF flag, read the SPSCR with the MODF bit set and then  
write to the SPCR register. This entire clearing mechanism must occur  
with no MODF condition existing or else the flag is not cleared.  
14.9 Interrupts  
Four SPI status flags can be enabled to generate CPU interrupt  
requests.  
Table 14-2. SPI Interrupts  
Flag  
Request  
SPTE  
Transmitter empty  
SPI transmitter CPU interrupt request  
(DMAS = 0, SPTIE = 1, SPE = 1)  
SPRF  
Receiver full  
SPI receiver CPU interrupt request  
(DMAS = 0, SPRIE = 1)  
OVRF  
Overflow  
SPI receiver/error interrupt request (ERRIE = 1)  
SPI receiver/error interrupt request (ERRIE = 1)  
MODF  
Mode fault  
Data Sheet  
304  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Serial Peripheral Interface Module (SPI)  
 
Serial Peripheral Interface Module (SPI)  
Interrupts  
Reading the SPI status and control register with SPRF set and then  
reading the receive data register clears SPRF. The clearing mechanism  
for the SPTE flag is always just a write to the transmit data register.  
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag  
to generate transmitter CPU interrupt requests, provided that the SPI is  
enabled (SPE = 1).  
The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to  
generate receiver CPU interrupt requests, regardless of the state of the  
SPE bit. (See Figure 14-11.)  
The error interrupt enable bit (ERRIE) enables both the MODF and  
OVRF bits to generate a receiver/error CPU interrupt request.  
The mode fault enable bit (MODFEN) can prevent the MODF flag from  
being set so that only the OVRF bit is enabled by the ERRIE bit to  
generate receiver/error CPU interrupt requests.  
NOT AVAILABLE  
SPTE  
SPTIE  
SPE  
SPI TRANSMITTER  
CPU INTERRUPT REQUEST  
R
NOT AVAILABLE  
SPRIE  
SPRF  
SPI RECEIVER/ERROR  
CPU INTERRUPT REQUEST  
ERRIE  
MODF  
OVRF  
Figure 14-11. SPI Interrupt Request Generation  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
305  
Serial Peripheral Interface Module (SPI)  
 
Serial Peripheral Interface Module (SPI)  
The following sources in the SPI status and control register can generate  
CPU interrupt requests:  
• SPI receiver full bit (SPRF) — The SPRF bit becomes set every  
time a byte transfers from the shift register to the receive data  
register. If the SPI receiver interrupt enable bit, SPRIE, is also set,  
SPRF generates an SPI receiver/error CPU interrupt request.  
• SPI transmitter empty (SPTE) — The SPTE bit becomes set every  
time a byte transfers from the transmit data register to the shift  
register. If the SPI transmit interrupt enable bit, SPTIE, is also set,  
SPTE generates an SPTE CPU interrupt request.  
14.10 Resetting the SPI  
Any system reset completely resets the SPI. Partial resets occur  
whenever the SPI enable bit (SPE) is low. Whenever SPE is low, the  
following occurs:  
• The SPTE flag is set.  
• Any transmission currently in progress is aborted.  
• The shift register is cleared.  
• The SPI state counter is cleared, making it ready for a new  
complete transmission.  
• All the SPI port logic is defaulted back to being general-purpose  
I/O.  
These items are reset only by a system reset:  
• All control bits in the SPCR register  
• All control bits in the SPSCR register (MODFEN, ERRIE, SPR1,  
and SPR0)  
• The status flags SPRF, OVRF, and MODF  
By not resetting the control bits when SPE is low, the user can clear SPE  
between transmissions without having to set all control bits again when  
SPE is set back high for the next transmission.  
Data Sheet  
306  
MC68HC908LJ24/LK24 — Rev. 2.1  
Serial Peripheral Interface Module (SPI)  
Freescale Semiconductor  
 
Serial Peripheral Interface Module (SPI)  
Low-Power Modes  
By not resetting the SPRF, OVRF, and MODF flags, the user can still  
service these interrupts after the SPI has been disabled. The user can  
disable the SPI by writing 0 to the SPE bit. The SPI can also be disabled  
by a mode fault occurring in an SPI that was configured as a master with  
the MODFEN bit set.  
14.11 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
14.11.1 Wait Mode  
The SPI module remains active after the execution of a WAIT instruction.  
In wait mode the SPI module registers are not accessible by the CPU.  
Any enabled CPU interrupt request from the SPI module can bring the  
MCU out of wait mode.  
If SPI module functions are not required during wait mode, reduce power  
consumption by disabling the SPI module before executing the WAIT  
instruction.  
To exit wait mode when an overflow condition occurs, enable the OVRF  
bit to generate CPU interrupt requests by setting the error interrupt  
enable bit (ERRIE). (See 14.9 Interrupts.)  
14.11.2 Stop Mode  
The SPI module is inactive after the execution of a STOP instruction.  
The STOP instruction does not affect register conditions. SPI operation  
resumes after an external interrupt. If stop mode is exited by reset, any  
transfer in progress is aborted, and the SPI is reset.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
307  
Serial Peripheral Interface Module (SPI)  
Serial Peripheral Interface Module (SPI)  
14.12 SPI During Break Interrupts  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. (See Section 9. System Integration  
Module (SIM).)  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a 2-step read/write clearing procedure. If software does  
the first step on such a bit before the break, the bit cannot change during  
the break state as long as BCFE is at logic 0. After the break, doing the  
second step clears the status bit.  
Since the SPTE bit cannot be cleared during a break with the BCFE bit  
cleared, a write to the transmit data register in break mode does not  
initiate a transmission nor is this data transferred into the shift register.  
Therefore, a write to the SPDR in break mode with the BCFE bit cleared  
has no effect.  
14.13 I/O Signals  
The SPI module has five I/O pins and shares four of them with a parallel  
I/O port. They are:  
• MISO — Data received  
• MOSI — Data transmitted  
• SPSCK — Serial clock  
• SS — Slave select  
• CGND — Clock ground (internally connected to V )  
SS  
Data Sheet  
308  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Serial Peripheral Interface Module (SPI)  
Serial Peripheral Interface Module (SPI)  
I/O Signals  
2
The SPI has limited inter-integrated circuit (I C) capability (requiring  
software support) as a master in a single-master environment. To  
2
communicate with I C peripherals, MOSI becomes an open-drain output  
2
when the SPWOM bit in the SPI control register is set. In I C  
communication, the MOSI and MISO pins are connected to a  
2
bidirectional pin from the I C peripheral and through a pullup resistor to  
V .  
DD  
14.13.1 MISO (Master In/Slave Out)  
MISO is one of the two SPI module pins that transmits serial data. In full  
duplex operation, the MISO pin of the master SPI module is connected  
to the MISO pin of the slave SPI module. The master SPI simultaneously  
receives data on its MISO pin and transmits data from its MOSI pin.  
Slave output data on the MISO pin is enabled only when the SPI is  
configured as a slave. The SPI is configured as a slave when its  
SPMSTR bit is logic 0 and its SS pin is at logic 0. To support a multiple-  
slave system, a logic 1 on the SS pin puts the MISO pin in a high-  
impedance state.  
When enabled, the SPI controls data direction of the MISO pin  
regardless of the state of the data direction register of the shared I/O  
port.  
14.13.2 MOSI (Master Out/Slave In)  
MOSI is one of the two SPI module pins that transmits serial data. In full-  
duplex operation, the MOSI pin of the master SPI module is connected  
to the MOSI pin of the slave SPI module. The master SPI simultaneously  
transmits data from its MOSI pin and receives data on its MISO pin.  
When enabled, the SPI controls data direction of the MOSI pin  
regardless of the state of the data direction register of the shared I/O  
port.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
309  
Serial Peripheral Interface Module (SPI)  
Serial Peripheral Interface Module (SPI)  
14.13.3 SPSCK (Serial Clock)  
The serial clock synchronizes data transmission between master and  
slave devices. In a master MCU, the SPSCK pin is the clock output. In a  
slave MCU, the SPSCK pin is the clock input. In full-duplex operation,  
the master and slave MCUs exchange a byte of data in eight serial clock  
cycles.  
When enabled, the SPI controls data direction of the SPSCK pin  
regardless of the state of the data direction register of the shared I/O  
port.  
14.13.4 SS (Slave Select)  
The SS pin has various functions depending on the current state of the  
SPI. For an SPI configured as a slave, the SS is used to select a slave.  
For CPHA = 0, the SS is used to define the start of a transmission. (See  
14.6 Transmission Formats.) Since it is used to indicate the start of a  
transmission, the SS must be toggled high and low between each byte  
transmitted for the CPHA = 0 format. However, it can remain low  
between transmissions for the CPHA = 1 format. See Figure 14-12.  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 14-12. CPHA/SS Timing  
When an SPI is configured as a slave, the SS pin is always configured  
as an input. It cannot be used as a general-purpose I/O regardless of the  
state of the MODFEN control bit. However, the MODFEN bit can still  
prevent the state of the SS from creating a MODF error. (See 14.14.2  
SPI Status and Control Register.)  
NOTE: A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high-  
impedance state. The slave SPI ignores all incoming SPSCK clocks,  
even if it was already in the middle of a transmission.  
Data Sheet  
310  
MC68HC908LJ24/LK24 — Rev. 2.1  
Serial Peripheral Interface Module (SPI)  
Freescale Semiconductor  
 
 
Serial Peripheral Interface Module (SPI)  
I/O Signals  
When an SPI is configured as a master, the SS input can be used in  
conjunction with the MODF flag to prevent multiple masters from driving  
MOSI and SPSCK. (See 14.8.2 Mode Fault Error.) For the state of the  
SS pin to set the MODF flag, the MODFEN bit in the SPSCK register  
must be set. If the MODFEN bit is low for an SPI master, the SS pin can  
be used as a general-purpose I/O under the control of the data direction  
register of the shared I/O port. With MODFEN high, it is an input-only pin  
to the SPI regardless of the state of the data direction register of the  
shared I/O port.  
The CPU can always read the state of the SS pin by configuring the  
appropriate pin as an input and reading the port data register. (See  
Table 14-3.)  
Table 14-3. SPI Configuration  
SPE SPMSTR  
MODFEN  
SPI Configuration  
Not enabled  
State of SS Logic  
General-purpose I/O;  
SS ignored by SPI  
(1)  
0
1
1
1
X
X
0
X
0
Slave  
Input-only to SPI  
General-purpose I/O;  
SS ignored by SPI  
1
1
Master without MODF  
Master with MODF  
1
Input-only to SPI  
Note 1. X = Don’t care  
14.13.5 CGND (Clock Ground)  
CGND is the ground return for the serial clock pin, SPSCK, and the  
ground for the port output buffers. It is internally connected to V as  
SS  
shown in Table 14-1.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
311  
Serial Peripheral Interface Module (SPI)  
 
Serial Peripheral Interface Module (SPI)  
14.14 I/O Registers  
Three registers control and monitor SPI operation:  
• SPI control register (SPCR)  
• SPI status and control register (SPSCR)  
• SPI data register (SPDR)  
14.14.1 SPI Control Register  
The SPI control register:  
• Enables SPI module interrupt requests  
• Configures the SPI module as master or slave  
• Selects serial clock polarity and phase  
• Configures the SPSCK, MOSI, and MISO pins as open-drain  
outputs  
• Enables the SPI module  
Address: $0010  
Bit 7  
SPRIE  
0
6
R
0
5
SPMSTR  
1
4
CPOL  
0
3
2
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
CPHA  
SPWOM  
1
0
= Unimplemented  
R
= Reserved  
Figure 14-13. SPI Control Register (SPCR)  
SPRIE — SPI Receiver Interrupt Enable Bit  
This read/write bit enables CPU interrupt requests generated by the  
SPRF bit. The SPRF bit is set when a byte transfers from the shift  
register to the receive data register. Reset clears the SPRIE bit.  
1 = SPRF CPU interrupt requests enabled  
0 = SPRF CPU interrupt requests disabled  
Data Sheet  
312  
MC68HC908LJ24/LK24 — Rev. 2.1  
Serial Peripheral Interface Module (SPI)  
Freescale Semiconductor  
Serial Peripheral Interface Module (SPI)  
I/O Registers  
SPMSTR — SPI Master Bit  
This read/write bit selects master mode operation or slave mode  
operation. Reset sets the SPMSTR bit.  
1 = Master mode  
0 = Slave mode  
CPOL — Clock Polarity Bit  
This read/write bit determines the logic state of the SPSCK pin  
between transmissions. (See Figure 14-4 and Figure 14-6.) To  
transmit data between SPI modules, the SPI modules must have  
identical CPOL values. Reset clears the CPOL bit.  
CPHA — Clock Phase Bit  
This read/write bit controls the timing relationship between the serial  
clock and SPI data. (See Figure 14-4 and Figure 14-6.) To transmit  
data between SPI modules, the SPI modules must have identical  
CPHA values. When CPHA = 0, the SS pin of the slave SPI module  
must be set to logic 1 between bytes. (See Figure 14-12.) Reset sets  
the CPHA bit.  
SPWOM — SPI Wired-OR Mode Bit  
This read/write bit disables the pullup devices on pins SPSCK, MOSI,  
and MISO so that those pins become open-drain outputs.  
1 = Wired-OR SPSCK, MOSI, and MISO pins  
0 = Normal push-pull SPSCK, MOSI, and MISO pins  
SPE — SPI Enable  
This read/write bit enables the SPI module. Clearing SPE causes a  
partial reset of the SPI. (See 14.10 Resetting the SPI.) Reset clears  
the SPE bit.  
1 = SPI module enabled  
0 = SPI module disabled  
SPTIE— SPI Transmit Interrupt Enable  
This read/write bit enables CPU interrupt requests generated by the  
SPTE bit. SPTE is set when a byte transfers from the transmit data  
register to the shift register. Reset clears the SPTIE bit.  
1 = SPTE CPU interrupt requests enabled  
0 = SPTE CPU interrupt requests disabled  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
313  
Serial Peripheral Interface Module (SPI)  
Serial Peripheral Interface Module (SPI)  
14.14.2 SPI Status and Control Register  
The SPI status and control register contains flags to signal these  
conditions:  
• Receive data register full  
• Failure to clear SPRF bit before next byte is received (overflow  
error)  
• Inconsistent logic level on SS pin (mode fault error)  
• Transmit data register empty  
The SPI status and control register also contains bits that perform these  
functions:  
• Enable error interrupts  
• Enable mode fault error detection  
• Select master SPI baud rate  
Address: $0011  
Bit 7  
Read: SPRF  
Write:  
6
ERRIE  
0
5
4
3
2
1
Bit 0  
SPR0  
0
OVRF  
MODF  
SPTE  
MODFEN SPR1  
Reset:  
0
0
0
1
0
0
= Unimplemented  
Figure 14-14. SPI Status and Control Register (SPSCR)  
SPRF — SPI Receiver Full Bit  
This clearable, read-only flag is set each time a byte transfers from  
the shift register to the receive data register. SPRF generates a CPU  
interrupt request if the SPRIE bit in the SPI control register is set also.  
During an SPRF CPU interrupt, the CPU clears SPRF by reading the  
SPI status and control register with SPRF set and then reading the  
SPI data register. Reset clears the SPRF bit.  
1 = Receive data register full  
0 = Receive data register not full  
Data Sheet  
314  
MC68HC908LJ24/LK24 — Rev. 2.1  
Serial Peripheral Interface Module (SPI)  
Freescale Semiconductor  
Serial Peripheral Interface Module (SPI)  
I/O Registers  
ERRIE — Error Interrupt Enable Bit  
This read/write bit enables the MODF and OVRF bits to generate  
CPU interrupt requests. Reset clears the ERRIE bit.  
1 = MODF and OVRF can generate CPU interrupt requests  
0 = MODF and OVRF cannot generate CPU interrupt requests  
OVRF — Overflow Bit  
This clearable, read-only flag is set if software does not read the byte  
in the receive data register before the next full byte enters the shift  
register. In an overflow condition, the byte already in the receive data  
register is unaffected, and the byte that shifted in last is lost. Clear the  
OVRF bit by reading the SPI status and control register with OVRF set  
and then reading the receive data register. Reset clears the OVRF bit.  
1 = Overflow  
0 = No overflow  
MODF — Mode Fault Bit  
This clearable, read-only flag is set in a slave SPI if the SS pin goes  
high during a transmission with the MODFEN bit set. In a master SPI,  
the MODF flag is set if the SS pin goes low at any time with the  
MODFEN bit set. Clear the MODF bit by reading the SPI status and  
control register (SPSCR) with MODF set and then writing to the SPI  
control register (SPCR). Reset clears the MODF bit.  
1 = SS pin at inappropriate logic level  
0 = SS pin at appropriate logic level  
SPTE — SPI Transmitter Empty Bit  
This clearable, read-only flag is set each time the transmit data  
register transfers a byte into the shift register. SPTE generates an  
SPTE CPU interrupt request if the SPTIE bit in the SPI control register  
is set also.  
NOTE: Do not write to the SPI data register unless the SPTE bit is high.  
During an SPTE CPU interrupt, the CPU clears the SPTE bit by  
writing to the transmit data register.  
Reset sets the SPTE bit.  
1 = Transmit data register empty  
0 = Transmit data register not empty  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
315  
Serial Peripheral Interface Module (SPI)  
Serial Peripheral Interface Module (SPI)  
MODFEN — Mode Fault Enable Bit  
This read/write bit, when set to 1, allows the MODF flag to be set. If  
the MODF flag is set, clearing the MODFEN does not clear the MODF  
flag. If the SPI is enabled as a master and the MODFEN bit is low,  
then the SS pin is available as a general-purpose I/O.  
If the MODFEN bit is set, then this pin is not available as a general-  
purpose I/O. When the SPI is enabled as a slave, the SS pin is not  
available as a general-purpose I/O regardless of the value of  
MODFEN. (See 14.13.4 SS (Slave Select).)  
If the MODFEN bit is low, the level of the SS pin does not affect the  
operation of an enabled SPI configured as a master. For an enabled  
SPI configured as a slave, having MODFEN low only prevents the  
MODF flag from being set. It does not affect any other part of SPI  
operation. (See 14.8.2 Mode Fault Error.)  
SPR1 and SPR0 — SPI Baud Rate Select Bits  
In master mode, these read/write bits select one of four baud rates as  
shown in Table 14-4. SPR1 and SPR0 have no effect in slave mode.  
Reset clears SPR1 and SPR0.  
Table 14-4. SPI Master Baud Rate Selection  
SPR1 and SPR0  
Baud Rate Divisor (BD)  
00  
01  
10  
11  
2
8
32  
128  
Use this formula to calculate the SPI baud rate:  
CGMOUT  
Baud rate = --------------------------  
2 × BD  
where:  
CGMOUT = base clock output of the clock generator module (CGM)  
BD = baud rate divisor  
Data Sheet  
316  
MC68HC908LJ24/LK24 — Rev. 2.1  
Serial Peripheral Interface Module (SPI)  
Freescale Semiconductor  
 
Serial Peripheral Interface Module (SPI)  
I/O Registers  
14.14.3 SPI Data Register  
The SPI data register consists of the read-only receive data register and  
the write-only transmit data register. Writing to the SPI data register  
writes data into the transmit data register. Reading the SPI data register  
reads data from the receive data register. The transmit data and receive  
data registers are separate registers that can contain different values.  
(See Figure 14-2.)  
Address: $0012  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 14-15. SPI Data Register (SPDR)  
R7–R0/T7–T0 — Receive/Transmit Data Bits  
NOTE: Do not use read-modify-write instructions on the SPI data register since  
the register read is not the same as the register written.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
317  
Serial Peripheral Interface Module (SPI)  
Serial Peripheral Interface Module (SPI)  
Data Sheet  
MC68HC908LJ24/LK24 — Rev. 2.1  
Serial Peripheral Interface Module (SPI) Freescale Semiconductor  
318  
Data Sheet — MC68HC908LJ24  
Section 15. Multi-Master IIC Interface (MMIIC)  
15.1 Contents  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319  
15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320  
15.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320  
15.5 Multi-Master IIC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . .321  
15.5.1 Multi-Master IIC Address Register (MMADR) . . . . . . . . . .321  
15.5.2 Multi-Master IIC Control Register (MMCR) . . . . . . . . . . . .323  
15.5.3 Multi-Master IIC Master Control Register (MIMCR) . . . . . .324  
15.5.4 Multi-Master IIC Status Register (MMSR) . . . . . . . . . . . . .326  
15.5.5 Multi-Master IIC Data Transmit Register (MMDTR) . . . . . .328  
15.5.6 Multi-Master IIC Data Receive Register (MMDRR) . . . . . .329  
15.6 Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . .330  
15.2 Introduction  
This Multi-master IIC (MMIIC) Interface is designed for internal serial  
communication between the MCU and other IIC devices. A hardware  
circuit generates "start" and "stop" signal, while byte by byte data  
transfer is interrupt driven by the software algorithm. Therefore, it can  
greatly help the software in dealing with other devices to have higher  
system efficiency in a typical digital monitor system.  
This module not only can be applied in internal communications, but can  
also be used as a typical command reception serial bus for factory setup  
and alignment purposes. It also provides the flexibility of hooking  
additional devices to an existing system for future expansion without  
adding extra hardware.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
319  
Multi-Master IIC Interface (MMIIC)  
 
 
Multi-Master IIC Interface (MMIIC)  
This Multi-master IIC module uses the SCL clock line and the SDA data  
line to communicate with external DDC host or IIC interface. These two  
pins are shared with port pins PTD6/KBI6 and PTD7/KBI7 respectively.  
The outputs of SCL and SDA pins are open-drain type — no clamping  
diode is connected between the pin and internal V . The maximum  
DD  
data rate typically is 750k-bps. The maximum communication length and  
the number of devices that can be connected are limited by a maximum  
bus capacitance of 400pF.  
15.3 Features  
• Compatibility with multi-master IIC bus standard  
• Software controllable acknowledge bit generation  
• Interrupt driven byte by byte data transfer  
• Calling address identification interrupt  
• Auto detection of R/W bit and switching of transmit or receive  
mode  
• Detection of START, repeated START, and STOP signals  
• Auto generation of START and STOP condition in master mode  
• Arbitration loss detection and No-ACK awareness in master mode  
• 8 selectable baud rate master clocks  
• Automatic recognition of the received acknowledge bit  
15.4 I/O Pins  
The MMIIC module uses two I/O pins, shared with standard port I/O pins.  
The full name of the MMIIC I/O pins are listed in Table 15-1. The generic  
pin name appear in the text that follows.  
Table 15-1. Pin Name Conventions  
MMIIC  
Generic Pin Names:  
Pin Selected for  
IIC Function By:  
Full MCU Pin Names:  
(1)  
(1)  
SDA  
SCL  
PTD7/KBI7/SDA  
PTD6/KBI6/SCL  
MMEN bit in MMCR ($006C)  
MMEN bit in MMCR ($006C)  
Notes:  
1. Do not enable the MMIIC function if the pin is used for KBI.  
Data Sheet  
320  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
 
Multi-Master IIC Interface (MMIIC)  
Multi-Master IIC Registers  
Addr.  
Register Name  
Multi-Master IIC  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: MMALIF MMNAKIF MMBB  
MMAST MMRW MMBR2 MMBR1 MMBR0  
$006A Master Control Register Write:  
0
0
0
0
(MIMCR)  
Reset:  
0
0
0
0
0
0
Read:  
Multi-Master IIC Address  
MMAD7 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 MMAD1 MMEXTAD  
$006B  
$006C  
$006D  
$006E  
$006F  
Register Write:  
(MMADR)  
Reset:  
1
MMEN  
0
0
MMIEN  
0
1
0
0
0
0
0
0
0
0
0
Read:  
Multi-Master IIC Control  
MMTXAK REPSEN  
Register Write:  
(MMCR)  
Reset:  
0
0
0
0
0
0
0
Read: MMRXIF MMTXIF MMATCH MMSRW MMRXAK  
MMTXBE MMRXBF  
Multi-Master IIC  
Status Register Write:  
0
0
0
0
(MMSR)  
Reset:  
0
0
1
0
1
0
Read:  
Multi-Master IIC  
MMTD7 MMTD6 MMTD5 MMTD4 MMTD3 MMTD2 MMTD1 MMTD0  
Data Transmit Register Write:  
(MMDTR)  
Reset:  
1
1
1
1
1
1
1
1
Multi-Master IIC Read: MMRD7 MMRD6 MMRD5 MMRD4 MMRD3 MMRD2 MMRD1 MMRD0  
Data Receive Register  
Write:  
(MMDRR)  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 15-1. MMIIC I/O Register Summary  
15.5 Multi-Master IIC Registers  
Six registers are associated with the Multi-master IIC module, they are  
outlined in the following sections.  
15.5.1 Multi-Master IIC Address Register (MMADR)  
Address: $006B  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
MMAD7 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 MMAD1 MMEXTAD  
Write:  
Reset:  
1
0
1
0
0
0
0
0
Figure 15-2. Multi-Master IIC Address Register (MMADR)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
321  
Multi-Master IIC Interface (MMIIC)  
Multi-Master IIC Interface (MMIIC)  
MMAD[7:1] — Multi-Master Address  
These seven bits represent the MMIIC interface’s own specific slave  
address when in slave mode, and the calling address when in master  
mode. Software must update MMAD[7:1] as the calling address while  
entering master mode and restore its own slave address after master  
mode is relinquished. This register is cleared as $A0 upon reset.  
MMEXTAD — Multi-Master Expanded Address  
This bit is set to expand the address of the MMIIC in slave mode.  
When set, the MMIIC will acknowledge the following addresses from  
a calling master: $MMAD[7:1], 0000000, and 0001100.  
Reset clears this bit.  
1 = MMIIC responds to the following calling addresses:  
$MMAD[7:1], 0000000, and 0001100.  
0 = MMIIC responds to address $MMAD[7:1]  
For example, when MMADR is configured as:  
MMAD7 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 MMAD1 MMEXTAD  
1
1
0
1
0
1
0
1
The MMIIC module will respond to the calling address:  
Bit 7  
1
6
1
5
0
4
1
3
0
2
1
Bit 1  
0
or the general calling address:  
0
0
0
0
0
0
0
or the calling address:  
0
0
0
1
1
0
0
NOTE: bit-0 of the 8-bit calling address is the MMRW bit from the calling master.  
Data Sheet  
322  
MC68HC908LJ24/LK24 — Rev. 2.1  
Multi-Master IIC Interface (MMIIC)  
Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
Multi-Master IIC Registers  
15.5.2 Multi-Master IIC Control Register (MMCR)  
Address: $006C  
Bit 7  
MMEN  
0
6
MMIEN  
0
5
0
4
0
3
2
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
MMTXAK REPSEN  
0
0
0
0
0
0
= Unimplemented  
Figure 15-3. Multi-Master IIC Control Register (MMCR)  
MMEN — Multi-Master IIC Enable  
This bit is set to enable the Multi-master IIC module. When  
MMEN = 0, module is disabled and all flags will restore to its power-  
on default states. Reset clears this bit.  
1 = MMIIC module enabled  
0 = MMIIC module disabled  
MMIEN — Multi-Master IIC Interrupt Enable  
When this bit is set, the MMTXIF, MMRXIF, MMALIF, and MMNAKIF  
flags are enabled to generate an interrupt request to the CPU. When  
MMIEN is cleared, the these flags are prevented from generating an  
interrupt request. Reset clears this bit.  
1 = MMTXIF, MMRXIF, MMALIF, and/or MMNAKIF bit set will  
generate interrupt request to CPU  
0 = MMTXIF, MMRXIF, MMALIF, and/or MMNAKIF bit set will not  
generate interrupt request to CPU  
MMTXAK — Transmit Acknowledge Enable  
This bit is set to disable the MMIIC from sending out an acknowledge  
signal to the bus at the 9th clock bit after receiving 8 data bits. When  
MMTXAK is cleared, an acknowledge signal will be sent at the 9th  
clock bit. Reset clears this bit.  
1 = MMIIC does not send acknowledge signals at 9th clock bit  
0 = MMIIC sends acknowledge signal at 9th clock bit  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
323  
Multi-Master IIC Interface (MMIIC)  
Multi-Master IIC Interface (MMIIC)  
REPSEN — Repeated Start Enable  
This bit is set to enable repeated START signal to be generated when  
in master mode transfer (MMAST = 1). The REPSEN bit is cleared by  
hardware after the completion of repeated START signal or when the  
MMAST bit is cleared. Reset clears this bit.  
1 = Repeated START signal will be generated if MMAST bit is set  
0 = No repeated START signal will be generated  
15.5.3 Multi-Master IIC Master Control Register (MIMCR)  
Address: $006A  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: MMALIF MMNAKIF MMBB  
MMAST MMRW MMBR2 MMBR1 MMBR0  
Write:  
0
0
0
0
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 15-4. Multi-Master IIC Master Control Register (MIMCR)  
MMALIF — Multi-Master Arbitration Lost Interrupt Flag  
This flag is set when software attempt to set MMAST but the MMBB  
has been set by detecting the start condition on the lines or when the  
MMIIC is transmitting a "1" to SDA line but detected a "0" from SDA  
line in master mode – an arbitration loss. This bit generates an  
interrupt request to the CPU if the MMIEN bit in MMCR is also set.  
This bit is cleared by writing "0" to it or by reset.  
1 = Lost arbitration in master mode  
0 = No arbitration lost  
MMNAKIF — No Acknowledge Interrupt Flag  
This flag is only set in master mode (MMAST = 1) when there is no  
acknowledge bit detected after one data byte or calling address is  
transferred. This flag also clears MMAST. MMNAKIF generates an  
interrupt request to CPU if the MMIEN bit in MMCR is also set. This  
bit is cleared by writing "0" to it or by reset.  
1 = No acknowledge bit detected  
0 = Acknowledge bit detected  
Data Sheet  
324  
MC68HC908LJ24/LK24 — Rev. 2.1  
Multi-Master IIC Interface (MMIIC)  
Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
Multi-Master IIC Registers  
MMBB — Bus Busy Flag  
This flag is set after a start condition is detected (bus busy), and is  
cleared when a stop condition (bus idle) is detected.  
Reset clears this bit.  
1 = Start condition detected  
0 = Stop condition detected or MMIIC is disabled  
MMAST — Master Control Bit  
This bit is set to initiate a master mode transfer. In master mode, the  
module generates a start condition to the SDA and SCL lines,  
followed by sending the calling address stored in MMADR.  
When the MMAST bit is cleared by MMNAKIF set (no acknowledge)  
or by software, the module generates the stop condition to the lines  
after the current byte is transmitted.  
If an arbitration loss occurs (MMALIF = 1), the module reverts to slave  
mode by clearing MMAST, and releasing SDA and SCL lines  
immediately.  
This bit is cleared by writing "0" to it or by reset.  
1 = Master mode operation  
0 = Slave mode operation  
MMRW — Master Read/Write  
This bit will be transmitted out as bit 0 of the calling address when the  
module sets the MMAST bit to enter master mode. The MMRW bit  
determines the transfer direction of the data bytes that follows. When  
it is "1", the module is in master receive mode. When it is "0", the  
module is in master transmit mode. Reset clears this bit.  
1 = Master mode receive  
0 = Master mode transmit  
MMBR2–MMBR0 — Baud Rate Select  
These three bits select one of eight clock rates as the master clock  
when the module is in master mode.  
Since this master clock is derived the CPU bus clock, the user  
program should not execute the WAIT instruction when the MMIIC  
module in master mode. This will cause the SDA and SCL lines to  
hang, as the WAIT instruction places the MCU in wait mode, with CPU  
clock is halted. These bits are cleared upon reset.  
(See Table 15-2 . Baud Rate Select.)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
325  
Multi-Master IIC Interface (MMIIC)  
Multi-Master IIC Interface (MMIIC)  
Table 15-2. Baud Rate Select  
MMBR2  
MMBR1  
MMBR0  
Baud Rate  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
Internal bus clock ÷ 128  
Internal bus clock ÷ 256  
Internal bus clock ÷ 512  
Internal bus clock ÷ 1024  
15.5.4 Multi-Master IIC Status Register (MMSR)  
Address: $006D  
Bit 7  
6
5
4
3
2
0
1
Bit 0  
Read: MMRXIF MMTXIF MMATCH MMSRW MMRXAK  
MMTXBE MMRXBF  
Write:  
0
0
0
0
Reset:  
0
0
1
0
1
0
= Unimplemented  
Figure 15-5. Multi-Master IIC Status Register (MMSR)  
MMRXIF — Multi-Master IIC Receive Interrupt Flag  
This flag is set after the data receive register (MMDRR) is loaded with  
a new received data. Once the MMDRR is loaded with received data,  
no more received data can be loaded to the MMDRR register until the  
CPU reads the data from the MMDRR to clear MMRXBF flag.  
MMRXIF generates an interrupt request to CPU if the MMIEN bit in  
MMCR is also set. This bit is cleared by writing "0" to it or by reset; or  
when the MMEN = 0.  
1 = New data in data receive register (MMDRR)  
0 = No data received  
Data Sheet  
326  
MC68HC908LJ24/LK24 — Rev. 2.1  
Multi-Master IIC Interface (MMIIC)  
Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
Multi-Master IIC Registers  
MMTXIF — Multi-Master Transmit Interrupt Flag  
This flag is set when data in the data transmit register (MMDTR) is  
downloaded to the output circuit, and that new data can be written to  
the MMDTR. MMTXIF generates an interrupt request to CPU if the  
MMIEN bit in MMCR is also set. This bit is cleared by writing "0" to it  
or when the MMEN = 0.  
1 = Data transfer completed  
0 = Data transfer in progress  
MMATCH — Multi-Master Address Match  
This flag is set when the received data in the data receive register  
(MMDRR) is an calling address which matches with the address or its  
extended addresses (MMEXTAD=1) specified in the MMADR  
register.  
1 = Received address matches MMADR  
0 = Received address does not match  
MMSRW — Multi-Master Slave Read/Write  
This bit indicates the data direction when the module is in slave mode.  
It is updated after the calling address is received from a master  
device. MMSRW = 1 when the calling master is reading data from the  
module (slave transmit mode). MMSRW = 0 when the master is  
writing data to the module (receive mode).  
1 = Slave mode transmit  
0 = Slave mode receive  
MMRXAK — Multi-Master Receive Acknowledge  
When this bit is cleared, it indicates an acknowledge signal has been  
received after the completion of 8 data bits transmission on the bus.  
When MMRXAK is set, it indicates no acknowledge signal has been  
detected at the 9th clock; the module will release the SDA line for the  
master to generate "stop" or "repeated start" condition. Reset sets this  
bit.  
1 = No acknowledge signal received at 9th clock bit  
0 = Acknowledge signal received at 9th clock bit  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
327  
Multi-Master IIC Interface (MMIIC)  
Multi-Master IIC Interface (MMIIC)  
MMTXBE — Multi-Master Transmit Buffer Empty  
This flag indicates the status of the data transmit register (MMDTR).  
When the CPU writes the data to the MMDTR, the MMTXBE flag will  
be cleared. MMTXBE is set when MMDTR is emptied by a transfer of  
its data to the output circuit. Reset sets this bit.  
1 = Data transmit register empty  
0 = Data transmit register full  
MMRXBF — Multi-Master Receive Buffer Full  
This flag indicates the status of the data receive register (MMDRR).  
When the CPU reads the data from the MMDRR, the MMRXBF flag  
will be cleared. MMRXBF is set when MMDRR is full by a transfer of  
data from the input circuit to the MMDRR. Reset clears this bit.  
1 = Data receive register full  
0 = Data receive register empty  
15.5.5 Multi-Master IIC Data Transmit Register (MMDTR)  
Address: $006E  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
MMTD7 MMTD6 MMTD5 MMTD4 MMTD3 MMTD2 MMTD1 MMTD0  
Write:  
Reset:  
1
1
1
1
1
1
1
1
Figure 15-6. Multi-Master IIC Data Transmit Register (MMDTR)  
When the MMIIC module is enabled, MMEN = 1, data written into this  
register depends on whether module is in master or slave mode.  
In slave mode, the data in MMDTR will be transferred to the output circuit  
when:  
• the module detects a matched calling address (MMATCH = 1),  
with the calling master requesting data (MMSRW = 1); or  
• the previous data in the output circuit has be transmitted and the  
receiving master returns an acknowledge bit, indicated by a  
received acknowledge bit (MMRXAK = 0).  
Data Sheet  
328  
MC68HC908LJ24/LK24 — Rev. 2.1  
Multi-Master IIC Interface (MMIIC)  
Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
Multi-Master IIC Registers  
If the calling master does not return an acknowledge bit (MMRXAK = 1),  
the module will release the SDA line for master to generate a "stop" or  
"repeated start" condition. The data in the MMDTR will not be transferred  
to the output circuit until the next calling from a master. The transmit  
buffer empty flag remains cleared (MMTXBE = 0).  
In master mode, the data in MMDTR will be transferred to the output  
circuit when:  
• the module receives an acknowledge bit (MMRXAK = 0), after  
setting master transmit mode (MMRW = 0), and the calling  
address has been transmitted; or  
• the previous data in the output circuit has be transmitted and the  
receiving slave returns an acknowledge bit, indicated by a  
received acknowledge bit (MMRXAK = 0).  
If the slave does not return an acknowledge bit (MMRXAK = 1), the  
master will generate a "stop" or "repeated start" condition. The data in  
the MMDTR will not be transferred to the output circuit. The transmit  
buffer empty flag remains cleared (MMTXBE = 0).  
The sequence of events for slave transmit and master transmit are  
illustrated in Figure 15-8.  
15.5.6 Multi-Master IIC Data Receive Register (MMDRR)  
Address: $006F  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: MMRD7 MMRD6 MMRD5 MMRD4 MMRD3 MMRD2 MMRD1 MMRD0  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 15-7. Multi-Master IIC Data Receive Register (MMDRR)  
When the MMIIC module is enabled, MMEN = 1, data in this read-only  
register depends on whether module is in master or slave mode.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
329  
Multi-Master IIC Interface (MMIIC)  
Multi-Master IIC Interface (MMIIC)  
In slave mode, the data in MMDRR is:  
• the calling address from the master when the address match flag  
is set (MMATCH = 1); or  
• the last data received when MMATCH = 0.  
In master mode, the data in the MMDRR is:  
• the last data received.  
When the MMDRR is read by the CPU, the receive buffer full flag is  
cleared (MMRXBF = 0), and the next received data is loaded to the  
MMDRR. Each time when new data is loaded to the MMDRR, the  
MMRXIF interrupt flag is set, indicating that new data is available in  
MMDRR.  
The sequence of events for slave receive and master receive are  
illustrated in Figure 15-8.  
15.6 Programming Considerations  
When the MMIIC module detects an arbitration loss in master mode, it  
will release both SDA and SCL lines immediately. But if there are no  
further STOP conditions detected, the module will hang up. Therefore, it  
is recommended to have time-out software to recover from such ill  
condition. The software can start the time-out counter by looking at the  
MMBB (Bus Busy) flag in the MIMCR and reset the counter on the  
completion of one byte transmission. If a time-out occur, software can  
clear the MMEN bit (disable MMIIC module) to release the bus, and  
hence clearing the MMBB flag. This is the only way to clear the MMBB  
flag by software if the module hangs up due to a no STOP condition  
received. The MMIIC can resume operation again by setting the MMEN  
bit.  
Data Sheet  
330  
MC68HC908LJ24/LK24 — Rev. 2.1  
Multi-Master IIC Interface (MMIIC)  
Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
Programming Considerations  
(a) Master Transmit Mode  
TX Data1  
START  
Address  
0
ACK  
ACK  
TX DataN  
ACK  
STOP  
MMTXBE=0  
MMTXBE=1  
MMTXIF=1  
MMTXBE=1  
MMNAKIF=1  
MMAST=0  
MMTXBE=1  
MMRW=0  
MMTXIF=1  
MMTXIF=1  
MMAST=1  
Data2 MMDTR  
Data3 MMDTR  
MMTXBE=0  
DataN+2 MMDTR  
Data1 MMDTR  
(b) Master Receive Mode  
RX Data1  
START  
Address  
1
ACK  
ACK  
RX DataN  
NAK  
STOP  
MMRXBF=0  
MMRW=1  
MMNAKIF=1  
MMAST=0  
Data1 MMDRR  
MMRXIF=1  
MMRXBF=1  
DataN MMDRR  
MMRXIF=1  
MMAST=1  
MMTXBE=0  
MMRXBF=1  
(dummy data MMDTR)  
(c) Slave Transmit Mode  
TX Data1  
START  
Address  
1
ACK  
ACK  
TX DataN  
NAK  
STOP  
MMTXBE=1  
MMRXIF=1  
MMNAKIF=1  
MMTXBE=0  
MMTXBE=1  
MMTXBE=1  
MMRXBF=0  
MMRXBF=1  
MMATCH=1  
MMSRW=1  
MMTXIF=1  
MMTXIF=1  
Data2 MMDTR  
DataN+2 MMDTR  
Data1 MMDTR  
(d) Slave Receive Mode  
RX Data1  
START  
Address  
0
ACK  
ACK  
RX DataN  
ACK  
STOP  
Data1 MMDRR  
MMRXIF=1  
MMRXBF=1  
DataN MMDRR  
MMRXIF=1  
MMTXBE=0  
MMRXBF=0  
MMRXIF=1  
MMRXBF=1  
MMATCH=1  
MMSRW=0  
MMRXBF=1  
Shaded data packets indicate transmissions by the MCU  
Figure 15-8. Data Transfer Sequences for Master/Slave Transmit/Receive Modes  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
331  
Multi-Master IIC Interface (MMIIC)  
Multi-Master IIC Interface (MMIIC)  
Data Sheet  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
332  
Multi-Master IIC Interface (MMIIC)  
Data Sheet — MC68HC908LJ24  
Section 16. Analog-to-Digital Converter (ADC)  
16.1 Contents  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334  
16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334  
16.4 Functional Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335  
16.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335  
16.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
16.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
16.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
16.4.5 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
16.4.6 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339  
16.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
16.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
16.7.1 ADC Voltage In (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . .341  
ADIN  
16.7.2 ADC Analog Power Pin (V  
) . . . . . . . . . . . . . . . . . . . . .341  
DDA  
16.7.3 ADC Analog Ground Pin (V  
). . . . . . . . . . . . . . . . . . . . .341  
SSA  
16.7.4 ADC Voltage Reference High Pin (V  
). . . . . . . . . . . . .341  
REFH  
16.7.5 ADC Voltage Reference Low Pin (V  
) . . . . . . . . . . . . .341  
REFL  
16.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342  
16.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .342  
16.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344  
16.8.3 ADC Clock Control Register. . . . . . . . . . . . . . . . . . . . . . . .346  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
333  
Analog-to-Digital Converter (ADC)  
 
Analog-to-Digital Converter (ADC)  
16.2 Introduction  
This section describes the analog-to-digital convert (ADC). The ADC is  
a 6-channel 10-bit linear successive approximation ADC.  
16.3 Features  
Features of the ADC module include:  
• Six channels with multiplexed input  
• High impedance buffered input  
• Linear successive approximation with monotonicity  
• 10-Bit resolution  
• Single or continuous conversion  
• Conversion complete flag or conversion complete interrupt  
• Selectable ADC clock  
• Conversion result justification  
– 8-bit truncated mode  
– Right justified mode  
– Left justified mode  
– Left justified sign mode  
Data Sheet  
334  
MC68HC908LJ24/LK24 — Rev. 2.1  
Analog-to-Digital Converter (ADC)  
Freescale Semiconductor  
Analog-to-Digital Converter (ADC)  
Functional Descriptions  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: COCO  
ADC Status and Control  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
Register Write:  
(ADSCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
ADx  
R
0
ADx  
R
0
ADx  
R
1
ADx  
R
1
ADx  
R
1
ADx  
R
1
ADx  
R
1
ADx  
R
ADC Data Register High  
(ADRH)  
$003D  
$003E  
$003F  
0
0
0
0
0
0
0
0
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADC Data Register Low  
(ADRL) Write:  
Reset:  
0
0
0
0
0
0
0
0
Read:  
0
0
ADC Clock Register  
ADIV2  
0
ADIV1  
0
ADIV0  
0
ADICLK MODE1 MODE0  
(ADCLK) Write:  
Reset:  
R
0
0
1
0
0
= Unimplemented  
R
= Reserved  
Figure 16-1. ADC I/O Register Summary  
16.4 Functional Descriptions  
The ADC provides six pins for sampling external sources at pins  
PTA4/ADC0–PTA7/ADC3 and PTB6/ADC4–PTB7/ADC5. An analog  
multiplexer allows the single ADC converter to select one of ten ADC  
channels as ADC voltage in (V  
). V  
is converted by the  
ADIN  
ADIN  
successive approximation register-based analog-to-digital converter.  
When the conversion is completed, ADC places the result in the ADC  
data register, high and low byte (ADRH and ADRL), and sets a flag or  
generates an interrupt.  
Figure 16-2 shows the structure of the ADC module.  
16.4.1 ADC Port I/O Pins  
PTA4–PTA7 and PTB6–PTB7 are general-purpose I/O pins that are  
shared with the ADC channels. The channel select bits, ADCH[4:0],  
define which ADC channel/port pin will be used as the input signal. The  
ADC overrides the port I/O logic by forcing that pin as input to the ADC.  
The remaining ADC channels/port pins are controlled by the port I/O  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
335  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
logic and can be used as general-purpose I/O pins. Writes to the port  
data register or data direction register will not have any affect on the port  
pin that is selected by the ADC. Read of a port pin which is in use by the  
ADC will return the pin condition if the corresponding DDR bit is at  
logic 0. If the DDR bit is at logic 1, the value in the port data latch is read.  
INTERNAL  
DATA BUS  
READ DDRAx/DDRBx  
WRITE DDRAx/DDRBx  
DISABLE  
DDRAx/DDRBx  
PTAx/PTBx  
RESET  
WRITE PTAx/PTBx  
PTAx/PTBx  
READ PTAx/PTBx  
ADC0–ADC5  
(6 CHANNELS)  
DISABLE  
ADC DATA REGISTERS  
VLCD  
VREFH  
VREFL  
ADRH  
ADRL  
1.2V  
BANDGAP  
REFERENCE  
ADC  
VOLTAGE IN  
CONVERSION  
COMPLETE  
(VADIN  
)
CHANNEL  
SELECT  
INTERRUPT  
LOGIC  
ADC  
ADC CLOCK  
AIEN  
COCO  
ADCH[4:0]  
CGMXCLK  
CLOCK  
GENERATOR  
BUS CLOCK  
ADIV[2:0] ADICLK  
Figure 16-2. ADC Block Diagram  
Data Sheet  
336  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
Functional Descriptions  
16.4.2 Voltage Conversion  
When the input voltage to the ADC equals V  
, the ADC converts the  
REFH  
signal to $3FF (full scale). If the input voltage equals V  
, the ADC  
REFL  
converts it to $000. Input voltages between V  
and V  
are  
REFH  
REFL  
straight-line linear conversions. All other input voltages will result in  
$3FF if greater than V and $000 if less than V  
.
REFL  
REFH  
NOTE: Input voltage should not exceed the analog supply voltages.  
16.4.3 Conversion Time  
Conversion starts after a write to the ADSCR. A conversion is between  
16 and 17 ADC clock cycles, therefore:  
16 to17 ADC cycles  
Conversion time =  
ADC frequency  
Number of bus cycles = conversion time × bus frequency  
The ADC conversion time is determined by the clock source chosen and  
the divide ratio selected. The clock source is either the bus clock or  
CGMXCLK and is selectable by the ADICLK bit located in the ADC clock  
control register. The divide ratio is selected by the ADIV[2:0] bits.  
For example, if a 4MHz CGMXCLK is selected as the ADC input clock  
source, with a divide-by-2 prescale, and the bus speed is set at 8MHz:  
16 to 17 ADC cycles  
Conversion time =  
= 8 to 8.5 µs  
4MHz ÷ 2  
Number of bus cycles = 8µs x 8MHz = 64 to 68 cycles  
NOTE: The ADC frequency must be between f minimum and f  
ADIC  
ADIC  
maximum to meet ADC specifications. See 24.12 5V ADC Electrical  
Characteristics and 24.13 3.3V ADC Electrical Characteristics.  
Since an ADC cycle may be comprised of several bus cycles (eight in the  
previous example) and the start of a conversion is initiated by a bus cycle  
write to the ADSCR, from zero to four additional bus cycles may occur  
before the start of the initial ADC cycle. This results in a fractional ADC  
cycle and is represented as the 17th cycle.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
337  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
16.4.4 Continuous Conversion  
In the continuous conversion mode, the ADC continuously converts the  
selected channel, filling the ADC data register (ADRH:ADRL) with new  
data after each conversion. Data from the previous conversion will be  
overwritten whether that data has been read or not. Conversions will  
continue until the ADCO bit is cleared. The COCO bit is set after each  
conversion and can be cleared by writing to the ADC status and control  
register or reading of the ADRL data register.  
16.4.5 Result Justification  
The conversion result may be formatted in four different ways.  
• Left justified  
• Right justified  
• Left justified sign data mode  
• 8-bit truncation  
All four of these modes are controlled using MODE0 and MODE1 bits  
located in the ADC clock control register (ADCLK).  
Left justification will place the eight most significant bits (MSB) in the  
ADC data register high (ADRH). This may be useful if the result is to be  
treated as an 8-bit result where the least significant two bits, located in  
the ADC data register low (ADRL) can be ignored. However, ADRL must  
be read after ADRH or else the interlocking will prevent all new  
conversions from being stored.  
Right justification will place only the two MSBs in the corresponding ADC  
data register high (ADRH) and the eight LSB bits in ADC data register  
low (ADRL). This mode of operation typically is used when a 10-bit  
unsigned result is desired.  
Left justified sign data mode is similar to left justified mode with one  
exception. The MSB of the 10-bit result, AD9 located in ADRH is  
complemented. This mode of operation is useful when a result,  
represented as a signed magnitude from mid-scale, is needed.  
Data Sheet  
338  
MC68HC908LJ24/LK24 — Rev. 2.1  
Analog-to-Digital Converter (ADC)  
Freescale Semiconductor  
Analog-to-Digital Converter (ADC)  
Functional Descriptions  
Finally, 8-bit truncation mode will place the eight MSBs in ADC data  
register low (ADRL). The two LSBs are dropped. This mode of operation  
is used when compatibility with 8-bit ADC designs are required. No  
interlocking between ADRH and ADRL is present.  
NOTE: Quantization error is affected when only the most significant eight bits  
are used as a result. See Figure 16-3.  
8-BIT 10-BIT  
RESULT RESULT  
IDEAL 8-BIT CHARACTERISTIC  
WITH QUANTIZATION = ±1/2  
10-BIT TRUNCATED  
TO 8-BIT RESULT  
003  
00B  
00A  
009  
IDEAL 10-BIT CHARACTERISTIC  
WITH QUANTIZATION = ±1/2  
002  
001  
000  
008  
007  
006  
005  
004  
003  
002  
001  
000  
WHEN TRUNCATION IS USED,  
ERROR FROM IDEAL 8-BIT = 3/8 LSB  
DUE TO NON-IDEAL QUANTIZATION.  
INPUT VOLTAGE  
1/2  
2 1/2  
4 1/2  
6 1/2  
8 1/2  
REPRESENTED AS 10-BIT  
INPUT VOLTAGE  
REPRESENTED AS 8-BIT  
1 1/2  
3 1/2  
5 1/2  
7 1/2  
9 1/2  
1/2  
1 1/2  
2 1/2  
Figure 16-3. 8-Bit Truncation Mode Error  
16.4.6 Monotonicity  
The conversion process is monotonic and has no missing codes.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
339  
Analog-to-Digital Converter (ADC)  
 
Analog-to-Digital Converter (ADC)  
16.5 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating a  
CPU interrupt after each ADC conversion. A CPU interrupt is generated  
if the COCO bit is at logic 0. The COCO bit is not used as a conversion  
complete flag when interrupts are enabled. The interrupt vector is  
defined in Table 2-1 . Vector Addresses.  
16.6 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-  
consumption standby modes.  
16.6.1 Wait Mode  
The ADC continues normal operation in wait mode. Any enabled CPU  
interrupt request from the ADC can bring the MCU out of wait mode. If  
the ADC is not required to bring the MCU out of wait mode, power down  
the ADC by setting the ADCH[4:0] bits to logic 1’s before executing the  
WAIT instruction.  
16.6.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction.  
Any pending conversion is aborted. ADC conversions resume when the  
MCU exits stop mode. Allow one conversion cycle to stabilize the analog  
circuitry before attempting a new ADC conversion after exiting stop  
mode.  
16.7 I/O Signals  
The ADC module has ten channels, six channels are shared with port A  
and port B I/O pins; two channels are the ADC voltage reference inputs,  
V
and V  
; one channel is the V  
input; and one channel is the  
LCD  
REFH  
REFL  
1.2V bandgap reference voltage.  
Data Sheet  
340  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
I/O Signals  
16.7.1 ADC Voltage In (V  
)
ADIN  
V
is the input voltage signal from one of the ten channels to the ADC  
ADIN  
module.  
16.7.2 ADC Analog Power Pin (V  
)
DDA  
The ADC analog portion uses V  
as its power pin. Connect the V  
DDA  
DDA  
pin to the same voltage potential as V . External filtering may be  
DD  
necessary to ensure clean V  
for good results.  
DDA  
NOTE: Route V  
carefully for maximum noise immunity and place bypass  
DDA  
capacitors as close as possible to the package.  
16.7.3 ADC Analog Ground Pin (V  
)
SSA  
The ADC analog portion uses V  
as its ground pin. Connect the V  
SSA  
SSA  
pin to the same voltage potential as V .  
SS  
NOTE: On the 64-pin and 80-pin MC68HC908LJ24, V  
is internally bonded  
SSA  
to V .  
SS  
16.7.4 ADC Voltage Reference High Pin (V  
)
REFH  
V
is the power supply for setting the reference voltage V  
.
REFH  
REFH  
Connect the V  
pin to the same voltage potential as V  
. There will  
REFH  
DDA  
be a finite current associated with V  
(see 24.12 5V ADC Electrical  
REFH  
Characteristics).  
NOTE: Route V  
carefully for maximum noise immunity and place bypass  
REFH  
capacitors as close as possible to the package.  
16.7.5 ADC Voltage Reference Low Pin (V  
)
REFL  
V
is the lower reference supply for the ADC. Connect the V  
pin  
REFL  
REFL  
to the same voltage potential as V  
. There will be a finite current  
SSA  
associated with V  
(see 24.12 5V ADC Electrical Characteristics).  
REFL  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
Analog-to-Digital Converter (ADC)  
341  
Analog-to-Digital Converter (ADC)  
16.8 I/O Registers  
These I/O registers control and monitor operation of the ADC:  
• ADC status and control register, (ADSCR)  
• ADC data register (ADRH:ADRL)  
• ADC clock control register (ADCLK)  
16.8.1 ADC Status and Control Register  
This section describes the function of the ADC status and control  
register (ADSCR). Writing ADSCR aborts the current conversion and  
initiates a new conversion.  
Address: $003C  
Read: COCO  
AIEN  
0
ADCO  
0
ADCH4  
1
ADCH3  
1
ADCH2  
1
ADCH1  
1
ADCH0  
1
Write:  
Reset:  
0
= Unimplemented  
Figure 16-4. ADC Status and Control Register (ADSCR)  
COCO — Conversions Complete Bit  
When the AIEN bit is a logic 0, the COCO is a read-only bit which is  
set each time a conversion is completed. This bit is cleared whenever  
the ADSCR is written, or whenever the ADC clock control register is  
written, or whenever the ADC data register low, ADRL, is read.  
If the AIEN bit is logic 1, the COCO bit always read as logic 0, CPU to  
service the ADC interrupt will be generated at the end if an ADC  
conversion. Reset clears the COCO bit.  
1 = Conversion completed (AIEN = 0)  
0 = Conversion not completed (AIEN = 0)/CPU interrupt (AIEN=1)  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC  
conversion. The interrupt signal is cleared when the data register,  
ADR0, is read or the ADSCR is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
Data Sheet  
342  
MC68HC908LJ24/LK24 — Rev. 2.1  
Analog-to-Digital Converter (ADC)  
Freescale Semiconductor  
Analog-to-Digital Converter (ADC)  
I/O Registers  
ADCO — ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the  
ADC data register at the end of each conversion. Only one conversion  
is allowed when this bit is cleared. Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
ADCH[4:0] — ADC Channel Select Bits  
ADCH[4:0] form a 5-bit field which is used to select one of the ADC  
channels when not in auto-scan mode. The five channel select bits  
are detailed in Table 16-1.  
NOTE: Care should be taken when using a port pin as both an analog and a  
digital input simultaneously to prevent switching noise from corrupting  
the analog signal.  
Recovery from the disabled state requires one conversion cycle to  
stabilize.  
Table 16-1. MUX Channel Select  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
ADC Channel  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC8  
Input Select  
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
0
1
PTA4  
PTA5  
PTA6  
PTA7  
PTB6  
PTB7  
1.2V Bandgap reference  
V
LCD  
Reserved  
ADC28  
ADC29  
V
(see Note 2)  
(see Note 2)  
REFH  
V
1
1
1
1
1
1
1
0
1
ADC30  
REFL  
1
ADC powered-off  
NOTES:  
1. If any reserved channels are selected, the resulting ADC conversion will be unknown.  
2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the operation of  
the ADC converter both in production test and for user applications.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
343  
Analog-to-Digital Converter (ADC)  
 
Analog-to-Digital Converter (ADC)  
16.8.2 ADC Data Register  
The ADC data register consist of a pair of 8-bit registers: high byte  
(ADRH), and low byte (ADRL). This pair form a 16-bit register to store  
the 10-bit ADC result for the selected ADC result justification mode.  
In 8-bit truncated mode, the ADRL holds the eight most significant bits  
(MSBs) of the 10-bit result. The ADRL is updated each time an ADC  
conversion completes. In 8-bit truncated mode, ADRL contains no  
interlocking with ADRH. (See Figure 16-5 . ADRH and ADRL in 8-Bit  
Truncated Mode.)  
Addr.  
Register Name  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
ADC Data Register High  
(ADRH)  
$003D  
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
AD9  
R
AD8  
R
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
ADC Data Register Low  
(ADRL)  
$003E  
0
0
0
0
0
0
0
0
Figure 16-5. ADRH and ADRL in 8-Bit Truncated Mode  
In right justified mode the ADRH holds the two MSBs, and the ADRL  
holds the eight least significant bits (LSBs), of the 10-bit result. ADRH  
and ADRL are updated each time a single channel ADC conversion  
completes. Reading ADRH latches the contents of ADRL. Until ADRL is  
read all subsequent ADC results will be lost.  
(See Figure 16-6 . ADRH and ADRL in Right Justified Mode.)  
Addr.  
Register Name  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
AD9  
R
Bit 0  
AD8  
R
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
ADC Data Register High  
(ADRH)  
$003D  
R
R
R
R
R
R
0
0
0
0
0
0
0
0
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
AD1  
R
AD0  
R
ADC Data Register Low  
(ADRL)  
$003E  
0
0
0
0
0
0
0
0
Figure 16-6. ADRH and ADRL in Right Justified Mode  
Data Sheet  
344  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Analog-to-Digital Converter (ADC)  
 
 
Analog-to-Digital Converter (ADC)  
I/O Registers  
In left justified mode the ADRH holds the eight most significant bits  
(MSBs), and the ADRL holds the two least significant bits (LSBs), of the  
10-bit result. The ADRH and ADRL are updated each time a single  
channel ADC conversion completes. Reading ADRH latches the  
contents of ADRL. Until ADRL is read all subsequent ADC results will be  
lost. (See Figure 16-7 . ADRH and ADRL in Left Justified Mode.)  
Addr.  
Register Name  
Bit 7  
AD9  
R
6
AD8  
R
5
AD7  
R
4
AD6  
R
3
AD5  
R
2
AD4  
R
1
AD3  
R
Bit 0  
AD2  
R
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
ADC Data Register High  
(ADRH)  
$003D  
0
0
0
0
0
0
0
0
AD1  
R
AD0  
R
0
0
0
0
0
0
ADC Data Register Low  
(ADRL)  
$003E  
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Figure 16-7. ADRH and ADRL in Left Justified Mode  
In left justified sign mode the ADRH holds the eight MSBs with the MSB  
complemented, and the ADRL holds the two least significant bits (LSBs),  
of the 10-bit result. The ADRH and ADRL are updated each time a single  
channel ADC conversion completes. Reading ADRH latches the  
contents of ADRL. Until ADRL is read all subsequent ADC results will be  
lost. (See Figure 16-8 . ADRH and ADRL in Left Justified Sign Data  
Mode.)  
Addr.  
Register Name  
Bit 7  
AD9  
R
6
AD8  
R
5
AD7  
R
4
AD6  
R
3
AD5  
R
2
AD4  
R
1
AD3  
R
Bit 0  
AD2  
R
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
ADC Data Register High  
(ADRH)  
$003D  
0
0
0
0
0
0
0
0
AD1  
R
AD0  
R
0
0
0
0
0
0
ADC Data Register Low  
(ADRL)  
$003E  
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Figure 16-8. ADRH and ADRL in Left Justified Sign Data Mode  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
345  
Analog-to-Digital Converter (ADC)  
 
 
Analog-to-Digital Converter (ADC)  
16.8.3 ADC Clock Control Register  
The ADC clock control register (ADCLK) selects the clock frequency for  
the ADC.  
Address: $003F  
Read:  
ADIV2  
Write:  
0
0
0
R
0
ADIV1  
0
ADIV0  
0
ADICLK MODE1 MODE0  
Reset:  
0
0
0
1
= Unimplemented  
R
= Reserved  
Figure 16-9. ADC Clock Control Register (ADCLK)  
ADIV[2:0] — ADC Clock Prescaler Bits  
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide  
ratio used by the ADC to generate the internal ADC clock.  
Table 16-2 shows the available clock configurations. The ADC clock  
should be set to between 32kHz and 2MHz.  
Table 16-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC input clock ÷ 1  
ADC input clock ÷ 2  
ADC input clock ÷ 4  
ADC input clock ÷ 8  
ADC input clock ÷ 16  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
X = don’t care  
ADICLK — ADC Input Clock Select Bit  
ADICLK selects either bus clock or CGMXCLK as the input clock  
source to generate the internal ADC clock. Reset selects CGMXCLK  
as the ADC clock source.  
Data Sheet  
346  
MC68HC908LJ24/LK24 — Rev. 2.1  
Analog-to-Digital Converter (ADC)  
Freescale Semiconductor  
 
Analog-to-Digital Converter (ADC)  
I/O Registers  
If the external clock (CGMXCLK) is equal to or greater than 1MHz,  
CGMXCLK can be used as the clock source for the ADC. If  
CGMXCLK is less than 1MHz, use the PLL-generated bus clock as  
the clock source. As long as the internal ADC clock is at f  
, correct  
ADIC  
operation can be guaranteed.  
1 = Internal bus clock  
0 = External clock, CGMXCLK  
CGMXCLK or bus frequency  
f
=
ADIC  
ADIV[2:0]  
MODE1 and MODE0 — Modes of Result Justification  
MODE1 and MODE0 selects between four modes of operation. The  
manner in which the ADC conversion results will be placed in the ADC  
data registers is controlled by these modes of operation. Reset  
returns right-justified mode.  
Table 16-3. ADC Mode Select  
MODE1  
MODE0  
ADC Clock Rate  
8-bit truncated mode  
Right justified mode  
0
0
1
1
0
1
0
1
Left justified mode  
Left justified sign data mode  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
347  
Analog-to-Digital Converter (ADC)  
Analog-to-Digital Converter (ADC)  
Data Sheet  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
348  
Analog-to-Digital Converter (ADC)  
Data Sheet — MC68HC908LJ24  
Section 17. Liquid Crystal Display (LCD) Driver  
17.1 Contents  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350  
17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350  
17.4 Pin Name Conventions and I/O Register Addresses . . . . . . .350  
17.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354  
17.5.1 LCD Duty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356  
17.5.2 LCD Voltages (V  
, V  
, V  
, V  
) . . . . . . . . . . .356  
LCD3  
LCD  
LCD1  
LCD2  
17.5.3 LCD Cycle Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356  
17.5.4 Fast Charge and Low Current . . . . . . . . . . . . . . . . . . . . . .357  
17.5.5 Contrast Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358  
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358  
17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359  
17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359  
17.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359  
17.7.1 BP0–BP3 (Backplane Drivers) . . . . . . . . . . . . . . . . . . . . . .360  
17.7.2 FP0–FP32 (Frontplane Drivers) . . . . . . . . . . . . . . . . . . . . .362  
17.8 Seven Segment Display Connection . . . . . . . . . . . . . . . . . . .366  
17.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .369  
17.9.1 LCD Control Register (LCDCR) . . . . . . . . . . . . . . . . . . . . .369  
17.9.2 LCD Clock Register (LCDCLK) . . . . . . . . . . . . . . . . . . . . .371  
17.9.3 LCD Data Registers (LDAT1–LDAT17) . . . . . . . . . . . . . . .373  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
349  
Liquid Crystal Display (LCD) Driver  
 
Liquid Crystal Display (LCD) Driver  
17.2 Introduction  
This section describes the liquid crystal display (LCD) driver module.  
The LCD driver module can drive a maximum of 33 frontplanes and 4  
backplanes, depending on the LCD duty selected.  
17.3 Features  
Features of the LCD driver module include the following:  
• Software programmable driver segment configurations:  
– 32 frontplanes × 4 backplanes (128 segments)  
– 33 frontplanes × 3 backplanes (99 segments)  
– 33 frontplanes × 1 backplane (33 segments)  
• LCD bias voltages generated by internal resistor ladder  
• Software programmable contrast control  
17.4 Pin Name Conventions and I/O Register Addresses  
Three dedicated I/O pins are for the backplanes, BP0–BP2; sixteen  
dedicated I/O pins are for the frontplanes, FP1–FP10 and FP27–FP32;  
and the sixteen frontplanes, FP11–FP26, are shared with port C and E  
pins. FP0 and BP3 shares the same pin and configured by the  
DUTY[1:0] bits in the LCD clock register.  
The full names of the LCD output pins are shown in Table 17-1. The  
generic pin names appear in the text that follows.  
Table 17-1. Pin Name Conventions  
LCD Generic Pin Name  
FP0/BP3  
Full MCU Pin Name  
FP0/BP3  
Pin Selected for LCD Function by:  
BP0–BP2  
BP0–BP2  
FP1–FP10  
FP1–FP10  
PEE in CONFIG2  
PCEL:PCEH in CONFIG2  
FP11–FP18  
FP19–FP26  
FP27–FP32  
PTE0/FP11–PTE7/FP18  
PTC0/FP19–PTC7/FP26  
FP27–FP32  
Data Sheet  
350  
MC68HC908LJ24/LK24 — Rev. 2.1  
Liquid Crystal Display (LCD) Driver  
Freescale Semiconductor  
 
Liquid Crystal Display (LCD) Driver  
Pin Name Conventions and I/O Register Addresses  
Addr.  
Register Name  
Bit 7  
6
5
4
3
DUTY0  
0
2
LCLK2  
0
1
LCLK1  
0
Bit 0  
LCLK0  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
FCCTL1 FCCTL0 DUTY1  
LCD Clock Register  
(LCDCLK)  
$004F  
0
LCDE  
0
0
0
0
FC  
0
LC  
LCCON3 LCCON2 LCCON1 LCCON0  
LCD Control Register  
(LCDCR)  
$0051  
$0052  
$0053  
$0054  
$0055  
$0056  
$0057  
$0058  
$0059  
0
F1B2  
U
0
0
0
F0B3  
U
0
F0B2  
U
0
F0B1  
U
0
F0B0  
U
F1B3  
U
F1B1  
U
F1B0  
U
LCD Data Register 1  
(LDAT1)  
F3B3  
U
F3B2  
U
F3B1  
U
F3B0  
U
F2B3  
U
F2B2  
U
F2B1  
U
F2B0  
U
LCD Data Register 2  
(LDAT2)  
F5B3  
U
F5B2  
U
F5B1  
U
F5B0  
U
F4B3  
U
F4B2  
U
F4B1  
U
F4B0  
U
LCD Data Register 3  
(LDAT3)  
F7B3  
U
F7B2  
U
F7B1  
U
F7B0  
U
F6B3  
U
F6B2  
U
F6B1  
U
F6B0  
U
LCD Data Register 4  
(LDAT4)  
F9B3  
U
F9B2  
U
F9B1  
U
F9B0  
U
F8B3  
U
F8B2  
U
F8B1  
U
F8B0  
U
LCD Data Register 5  
(LDAT5)  
F11B3  
U
F11B2  
U
F11B1  
U
F11B0  
U
F10B3  
U
F10B2  
U
F10B1  
U
F10B0  
U
LCD Data Register 6  
(LDAT6)  
F13B3  
U
F13B2  
U
F13B1  
U
F13B0  
U
F12B3  
U
F12B2  
U
F12B1  
U
F12B0  
U
LCD Data Register 7  
(LDAT7)  
F15B3  
U
F15B2  
U
F15B1  
U
F15B0  
U
F14B3  
U
F14B2  
U
F14B1  
U
F14B0  
U
LCD Data Register 8  
(LDAT8)  
U = Unaffected  
= Unimplemented  
Figure 17-1. LCD I/O Register Summary  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
351  
Liquid Crystal Display (LCD) Driver  
Liquid Crystal Display (LCD) Driver  
Read:  
F17B3  
U
F17B2  
U
F17B1  
U
F17B0  
U
F16B3  
U
F16B2  
U
F16B1  
U
F16B0  
U
LCD Data Register 9  
(LDAT9)  
$005A  
$005B  
$005C  
$005D  
$005E  
$005F  
$0060  
$0061  
$0062  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
F19B3  
U
F19B2  
U
F19B1  
U
F19B0  
U
F18B3  
U
F18B2  
U
F18B1  
U
F18B0  
U
LCD Data Register 10  
(LDAT10)  
F21B3  
U
F21B2  
U
F21B1  
U
F21B0  
U
F20B3  
U
F20B2  
U
F20B1  
U
F20B0  
U
LCD Data Register 11  
(LDAT11)  
F23B3  
U
F23B2  
U
F23B1  
U
F23B0  
U
F22B3  
U
F22B2  
U
F22B1  
U
F22B0  
U
LCD Data Register 12  
(LDAT12)  
F25B3  
U
F25B2  
U
F25B1  
U
F25B0  
U
F24B3  
U
F24B2  
U
F24B1  
U
F24B0  
U
LCD Data Register 13  
(LDAT13)  
F27B3  
U
F27B2  
U
F27B1  
U
F27B0  
U
F26B3  
U
F26B2  
U
F26B1  
U
F26B0  
U
LCD Data Register 14  
(LDAT14)  
F29B3  
U
F29B2  
U
F29B1  
U
F29B0  
U
F28B3  
U
F28B2  
U
F28B1  
U
F28B0  
U
LCD Data Register 15  
(LDAT15)  
F31B3  
U
F31B2  
U
F31B1  
U
F31B0  
U
F30B3  
U
F30B2  
U
F30B1  
U
F30B0  
U
LCD Data Register 16  
(LDAT16)  
F32B3  
U
F32B2  
U
F32B1  
U
F32B0  
U
LCD Data Register 17  
(LDAT17)  
U = Unaffected  
= Unimplemented  
Figure 17-1. LCD I/O Register Summary  
Data Sheet  
352  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Liquid Crystal Display (LCD) Driver  
Liquid Crystal Display (LCD) Driver  
Functional Description  
17.5 Functional Description  
Figure 17-2 shows a block diagram of the LCD driver module, and  
Figure 17-3 shows a simplified schematic of the LCD system.  
The LCD driver module uses a 1/3 biasing method. The LCD power is  
supplied by the V  
pin. Voltages V  
, V  
, and V  
are  
LCD  
LCD1  
LCD2  
LCD3  
generated by an internal resistor ladder.  
The LCD data registers, LDAT1–LDAT17, control the LCD segments’  
ON/OFF, with each data register controlling two frontplanes. When a  
logic 1 is written to a FxBx bit in the data register, the corresponding  
frontplane-backplane segment will turn ON. When a logic 0 is written, the  
the segment will turn OFF.  
When the LCD driver module is disabled (LCDE = 0), the LCD display  
will be OFF, all backplane and frontplane drivers have the same  
potential as V . The resistor ladder is disconnected from V to reduce  
DD  
DD  
power consumption.  
PORT-E LOGIC  
LCD FRONTPLANE DRIVER AND DATA LATCH  
PTC0/FP19  
PTC1/FP20  
PTC2/FP21  
PTC3/FP22  
PTC4/FP23  
PTC5/FP24  
PTC6/FP25  
PTC7/FP26  
FP27  
FP4  
FP3  
FP2  
FP1  
1/3  
1/4  
FP0/BP3  
BP2  
LCDE (LCDC)  
BP1  
STATE  
CONTROL  
FP28  
BP0  
FP29  
1/1 1/3 1/4  
FP30  
FP31  
FP32  
Figure 17-2. LCD Block Diagram  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
353  
Liquid Crystal Display (LCD) Driver  
 
Liquid Crystal Display (LCD) Driver  
LCD  
FP0  
FP1  
FP24  
BP0  
BP1  
BP2  
R
R
R
R
R
R
FP  
FP  
FP  
BP  
BP  
BP  
V
LCD  
V
LCD  
R
LCD  
V
V
LCD1  
LCD2  
R
R
LCD  
LCD  
V
V
LCD3  
bias  
BIAS  
CONTROL  
V
R
LCCON[3:0]  
Figure 17-3. Simplified LCD Schematic (1/3 Duty, 1/3 Bias)  
Data Sheet  
354  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Liquid Crystal Display (LCD) Driver  
 
Liquid Crystal Display (LCD) Driver  
Functional Description  
17.5.1 LCD Duty  
The setting of the LCD output waveform duty is dependent on the  
number of backplane drivers required. Three LCD duties are available:  
• Static duty — BP0 is used only  
• 1/3 duty — BP0, BP1, and BP3 are used  
• 1/4 duty — BP0, BP1, BP2, and BP3 are used  
When the LCD driver module is enabled the backplane waveforms for  
the selected duty are driven out of the backplane pins. The backplane  
waveforms are periodic and are shown are shown in Figure 17-5,  
Figure 17-6, and Figure 17-7.  
17.5.2 LCD Voltages (V  
V
V
, V  
)
LCD3  
LCD, LCD1, LCD2  
The voltage V  
is from the V  
pin and must not exceed V . V  
,
LCD  
LCD  
DD LCD1  
V
, and V  
are internal bias voltages for the LCD driver  
LCD3  
LCD2  
waveforms. They are derived from V  
using a resistor ladder (see  
LCD  
Figure 17-3).  
The relative potential of the LCD voltages are:  
• V  
• V  
• V  
• V  
= V  
DD  
LCD  
= 2/3 × (V  
= 1/3 × (V  
– V  
– V  
)
)
LCD1  
LCD2  
LCD3  
LCD  
LCD  
bias  
bias  
= V  
bias  
The V  
bias voltage, V , is controlled by the LCD contrast control  
bias  
LCD3  
bits, LCCON[2:0].  
17.5.3 LCD Cycle Frame  
The LCD driver module uses the CGMXCLK (see Section 7. Oscillator  
(OSC))as the input reference clock. This clock is divided to produce the  
LCD waveform base clock, LCDCLK, by configuring the LCLK[2:0] bits  
in the LCD clock register. The LCDCLK clocks the backplane and the  
frontplane output waveforms.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
355  
Liquid Crystal Display (LCD) Driver  
Liquid Crystal Display (LCD) Driver  
The LCD cycle frame is determined by the equation:  
1
LCD CYCLE FRAME =  
LCD WAVEFORM BASE CLOCK × DUTY  
For example, for 1/3 duty and 256Hz waveform base clock:  
1
LCD CYCLE FRAME =  
256 × (1/3)  
= 11.72 ms  
17.5.4 Fast Charge and Low Current  
The default value for each of the bias resistors (see Figure 17-3), R  
,
LCD  
in the resistor ladder is approximately 37kat V  
= 3V. The relatively  
LCD  
high current drain through the 37kresistor ladder may not be suitable  
for some LCD panel connections. Lowering this current is possible by  
setting the LC bit in the LCD control register, switching the R  
value  
LCD  
to 146k.  
Although the lower current drain is desirable, but in some LCD panel  
connections, the higher current is required to drive the capacitive load of  
the LCD panel. In most cases, the higher current is only required when  
the LCD waveforms change state (the rising and falling edges in the LCD  
output waveforms). The fast charge option is designed to have the high  
current for the switching and the low current for the steady state. Setting  
the FC bit in the LCD control register selects the fast charge option. The  
R
value is set to 37k(for high current) for a fraction of time for each  
LCD  
LCD waveform switching edge, and then back to 146kfor the steady  
state period. The duration of the fast charge time is set by configuring the  
FCCTL[1:0] bits in the LCD clock register, and can be LCDCLK/32,  
LCDCLK/64, or LCDCLK/128. Figure 17-4 shows the fast charge clock  
relative to the BP0 waveform.  
Data Sheet  
356  
MC68HC908LJ24/LK24 — Rev. 2.1  
Liquid Crystal Display (LCD) Driver  
Freescale Semiconductor  
 
Liquid Crystal Display (LCD) Driver  
Low-Power Modes  
LCDCLK  
LCD WAVEFORM  
EXAMPLE: BP0  
FAST CHARGE CLOCK  
HIGH CURRENT SELECTED BEFORE SWITCHING EDGE,  
PERIOD IS DEFINED BY FCCTL[1:0]  
Figure 17-4. Fast Charge Timing  
17.5.5 Contrast Control  
The contrast of the connected LCD panel can be adjusted by configuring  
the LCCON[3:0] bits in the LCD control register. The LCCON[3:0] bits  
provide a 16-step contrast control, which adjusts the bias voltage in the  
resistor ladder for LCD voltage, V  
. The relative voltages, V  
and  
LCD1  
LCD3  
V
, are altered accordingly. For example, setting LCCON[3:0] = $F,  
LCD2  
the relative panel potential voltage (V  
– V  
) is reduced from  
LCD  
LCD3  
maximum 3.3V to approximate 2.45V.  
The V voltage can be monitored by the ADC channel, ADC7, and  
LCD  
then adjustments to the bias voltage by the user software to provide  
automatic contrast control.  
17.6 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-  
consumption standby modes.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
357  
Liquid Crystal Display (LCD) Driver  
Liquid Crystal Display (LCD) Driver  
17.6.1 Wait Mode  
The LCD driver module continues normal operation in wait mode. If the  
LCD is not required in wait mode, power down the LCD module by  
clearing the LCDE bit before executing the WAIT instruction.  
17.6.2 Stop Mode  
For continuous LCD module operation in stop mode, the oscillator stop  
mode enable bit (STOP_XCLKEN in CONFIG2 register) must be set  
before executing the STOP instruction. When STOP_XCLKEN is set,  
CGMXCLK continues to drive the LCD module.  
If STOP_XCLKEN bit is cleared, the LCD module is inactive after the  
execution of a STOP instruction. The STOP instruction does not affect  
LCD register states. LCD module operation resumes after an external  
interrupt. To further reduce power consumption, the LCD module should  
be powered-down by clearing the LCDE bit before executing the STOP  
instruction.  
17.7 I/O Signals  
The LCD driver module has thirty-six (36) output pins and shares eight  
of them with port C I/O pins and eight with port E I/O pins.  
• FP0/BP3 (multiplexed; selected as FP0 or BP3 by DUTY[1:0])  
• BP0–BP2  
• FP1–FP10  
• FP11–FP18 (shared with port E)  
• FP19–FP26 (shared with port C)  
• FP27–FP32  
Data Sheet  
358  
MC68HC908LJ24/LK24 — Rev. 2.1  
Liquid Crystal Display (LCD) Driver  
Freescale Semiconductor  
Liquid Crystal Display (LCD) Driver  
I/O Signals  
17.7.1 BP0–BP3 (Backplane Drivers)  
BP0–BP3 are the backplane driver output pins. These are connected to  
the backplane of the LCD panel. Depending on the LCD duty selected,  
the voltage waveforms in Figure 17-5, Figure 17-6, and Figure 17-7  
appear on the backplane pins.  
BP3 pin is only used when 1/4 duty is selected. The pin becomes FP0  
for static and 1/3 duty operations.  
DUTY = STATIC  
BP0  
1FRAME  
V
V
V
LCD  
LCD1  
LCD2  
V
LCD3  
NOTES:  
1. BP1, BP2, and BP3 are not used.  
2. At static duty, 1FRAME is equal to the cycle of LCD waveform base clock.  
Figure 17-5. Static LCD Backplane Driver Waveform  
DUTY = 1/3  
BP0  
1FRAME  
V
V
V
LCD  
LCD1  
LCD2  
V
LCD3  
V
V
V
V
LCD  
LCD1  
LCD2  
LCD3  
BP1  
BP2  
V
V
V
V
LCD  
LCD1  
LCD2  
LCD3  
NOTES:  
1. BP3 is not used.  
2. At 1/3 duty, 1FRAME has three times the cycle of LCD waveform base clock.  
Figure 17-6. 1/3 Duty LCD Backplane Driver Waveforms  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
359  
Liquid Crystal Display (LCD) Driver  
 
 
Liquid Crystal Display (LCD) Driver  
DUTY = 1/4  
BP0  
1FRAME  
V
V
V
LCD  
LCD1  
LCD2  
V
LCD3  
V
V
V
V
LCD  
LCD1  
LCD2  
LCD3  
BP1  
BP2  
V
V
V
V
LCD  
LCD1  
LCD2  
LCD3  
V
LCD  
V
V
LCD1  
LCD2  
BP3  
V
LCD3  
Figure 17-7. 1/4 Duty LCD Backplane Driver Waveforms  
Data Sheet  
360  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Liquid Crystal Display (LCD) Driver  
Liquid Crystal Display (LCD) Driver  
I/O Signals  
17.7.2 FP0–FP32 (Frontplane Drivers)  
FP0–FP32 are the frontplane driver output pins. These are connected to  
the frontplane of the LCD panel. Depending on LCD duty selected and  
the contents in the LCD data registers, the voltage waveforms in Figure  
17-8, Figure 17-9, Figure 17-10 and Figure 17-11 appear on the  
frontplane pins.  
FP11–FP18 are shared with port E I/O pins. These pins are configured  
for standard I/O or LCD use by the PEE bit in CONFIG2 register.  
FP19–FP26 are shared with port C I/O pins. These pins are configured  
for standard I/O or LCD use by the PCEL and PCEH bits in CONFIG2  
register.  
DUTY = STATIC  
DATA LATCH: 1 = ON, 0 = OFF  
FPx OUTPUT  
1FRAME  
V
V
V
LCD  
FxB0  
LCD1  
LCD2  
0
V
LCD3  
V
V
V
V
LCD  
FxB0  
1
LCD1  
LCD2  
LCD3  
Figure 17-8. Static LCD Frontplane Driver Waveforms  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
361  
Liquid Crystal Display (LCD) Driver  
 
Liquid Crystal Display (LCD) Driver  
DUTY = 1/3  
DATA LATCH: 1 = ON, 0 = OFF  
FPx OUTPUT  
1FRAME  
V
V
V
LCD  
FxB2  
0
FxB1  
0
FxB0  
0
LCD1  
LCD2  
V
LCD3  
V
V
V
V
LCD  
FxB2  
0
FxB1  
0
FxB0  
1
LCD1  
LCD2  
LCD3  
V
V
V
V
LCD  
FxB2  
0
FxB1  
1
FxB0  
0
LCD1  
LCD2  
LCD3  
V
V
V
V
LCD  
FxB2  
1
FxB1  
0
FxB0  
0
LCD1  
LCD2  
LCD3  
V
V
V
V
LCD  
FxB2  
0
FxB1  
1
FxB0  
1
LCD1  
LCD2  
LCD3  
V
V
V
V
LCD  
FxB2  
1
FxB1  
1
FxB0  
0
LCD1  
LCD2  
LCD3  
V
V
V
V
LCD  
FxB2  
1
FxB1  
0
FxB0  
1
LCD1  
LCD2  
LCD3  
V
V
V
V
LCD  
FxB2  
1
FxB1  
1
FxB0  
1
LCD1  
LCD2  
LCD3  
Figure 17-9. 1/3 Duty LCD Frontplane Driver Waveforms  
Data Sheet  
362  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Liquid Crystal Display (LCD) Driver  
Liquid Crystal Display (LCD) Driver  
I/O Signals  
FPx OUTPUT  
DUTY = 1/4  
DATA LATCH: 1 = ON, 0 = OFF  
1FRAME  
V
V
V
LCD  
FxB3  
0
FxB2  
0
FxB1  
0
FxB0  
0
LCD1  
LCD2  
V
LCD3  
FxB3  
0
FxB2  
0
FxB1  
0
FxB0  
1
FxB3  
0
FxB2  
0
FxB1  
1
FxB0  
0
FxB3  
0
FxB2  
0
FxB1  
1
FxB0  
1
FxB3  
0
FxB2  
1
FxB1  
0
FxB0  
0
FxB3  
0
FxB2  
1
FxB1  
0
FxB0  
1
FxB3  
0
FxB2  
1
FxB1  
1
FxB0  
0
FxB3  
0
FxB2  
1
FxB1  
1
FxB0  
1
Figure 17-10. 1/4 Duty LCD Frontplane Driver Waveforms  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
363  
Liquid Crystal Display (LCD) Driver  
Liquid Crystal Display (LCD) Driver  
FPx OUTPUT  
DUTY = 1/4  
DATA LATCH: 1 = ON, 0 = OFF  
1FRAME  
V
V
V
LCD  
FxB3  
1
FxB2  
0
FxB1  
0
FxB0  
0
LCD1  
LCD2  
V
LCD3  
FxB3  
1
FxB2  
0
FxB1  
0
FxB0  
1
FxB3  
1
FxB2  
0
FxB1  
1
FxB0  
0
FxB3  
1
FxB2  
0
FxB1  
1
FxB0  
1
FxB3  
1
FxB2  
1
FxB1  
0
FxB0  
0
FxB3  
1
FxB2  
1
FxB1  
0
FxB0  
1
FxB3  
1
FxB2  
1
FxB1  
1
FxB0  
0
FxB3  
1
FxB2  
1
FxB1  
1
FxB0  
1
Figure 17-11. 1/4 Duty LCD Frontplane Driver Waveforms (continued)  
Data Sheet  
364  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Liquid Crystal Display (LCD) Driver  
Liquid Crystal Display (LCD) Driver  
Seven Segment Display Connection  
17.8 Seven Segment Display Connection  
The following shows an example for connecting a 7-segment LCD  
display to the LCD driver.  
The example uses 1/3 duty cycle, with pins BP0, BP1, BP2, FP0, FP1,  
and FP2 connected as shown in Figure 17-12. The output waveforms  
are shown in Figure 17-13.  
FP CONNECTION  
BP CONNECTION  
a
a
BP0 (a, b COMMONED)  
f
b
f
b
g
g
BP1 (c, f, g COMMONED)  
BP2 (d, e COMMONED)  
e
c
e
c
d
d
FP2 (b, c COMMONED)  
FP1 (a, d, g COMMONED)  
FP0 (e, f COMMONED)  
The segment assignments for each bit in the data registers are:  
F1B3  
F1B2  
F1B1  
F1B0  
F0B3  
F0B2  
F0B1  
F0B0  
LDAT1  
$0052  
d
g
a
e
f
FP1  
FP0  
F3B3  
F3B2  
F3B1  
F3B0  
F2B3  
F2B2  
F2B1  
F2B0  
LDAT2  
$0053  
c
b
FP2  
To display the character "4": LDAT1 = X010X01X, LDAT2 = XXXXXX11  
a
g
LDAT1  
$0052  
X
0
1
0
X
X
0
1
1
X
1
f
b
c
e
LDAT2  
$0053  
d
X
X
X
X
X
X = don’t care  
Figure 17-12. 7-Segment Display Example  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
365  
Liquid Crystal Display (LCD) Driver  
 
Liquid Crystal Display (LCD) Driver  
DUTY = 1/3  
1FRAME  
V
V
V
LCD  
LCD1  
LCD2  
BP0  
BP1  
V
LCD3  
V
V
V
V
LCD  
LCD1  
LCD2  
LCD3  
V
V
V
V
LCD  
LCD1  
LCD2  
LCD3  
BP2  
V
V
V
V
LCD  
F0B2 F0B1 F0B0  
LCD1  
LCD2  
LCD3  
0
1
0
FP0  
V
V
V
V
LCD  
F1B2 F1B1 F1B0  
LCD1  
LCD2  
LCD3  
0
1
0
FP1  
FP2  
V
V
V
V
LCD  
F2B2 F2B1 F2B0  
LCD1  
LCD2  
LCD3  
0
1
1
Figure 17-13. BP0–BP2 and FP0–FP2 Output Waveforms for  
7-Segment Display Example  
Data Sheet  
366  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Liquid Crystal Display (LCD) Driver  
Liquid Crystal Display (LCD) Driver  
Seven Segment Display Connection  
The voltage waveform across the "f" segment of the LCD (between BP1  
and FP0) is illustrated in Figure 17-14. As shown in the waveform, the  
voltage peaks reach the LCD-ON voltage, V  
will be ON.  
, therefore, the segment  
LCD  
+V  
+V  
+V  
LCD  
LCD1  
LCD2  
BP1–FP0  
0
–V  
–V  
–V  
LCD2  
LCD1  
LCD  
Figure 17-14. "f" Segment Voltage Waveform  
The voltage waveform across the "e" segment of the LCD (between BP2  
and FP0) is illustrated in Figure 17-15. As shown in the waveform, the  
voltage peaks do not reach the LCD-ON voltage, V  
segment will be OFF.  
, therefore, the  
LCD  
+V  
LCD  
+V  
+V  
0
LCD1  
LCD2  
BP2–FP0  
–V  
–V  
–V  
LCD2  
LCD1  
LCD  
Figure 17-15. "e" Segment Voltage Waveform  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
367  
Liquid Crystal Display (LCD) Driver  
 
 
Liquid Crystal Display (LCD) Driver  
17.9 I/O Registers  
Nineteen (19) registers control LCD driver module operation:  
• LCD control register (LCDCR)  
• LCD clock register (LCDCLK)  
• LCD data registers (LDAT1–LDAT17)  
17.9.1 LCD Control Register (LCDCR)  
The LCD control register (LCDCR):  
• Enables the LCD driver module  
• Selects bias resistor value and fast-charge control  
• Selects LCD contrast  
Address: $0051  
Bit 7  
LCDE  
0
6
0
5
FC  
0
4
LC  
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
LCCON3 LCCON2 LCCON1 LCCON0  
0
0
0
0
0
= Unimplemented  
Figure 17-16. LCD Control Register (LCDCR)  
LCDE — LCD Enable  
This read/write bit enables the LCD driver module; the backplane and  
frontplane drive LCD waveforms out of BPx and FPx pins. Reset  
clears the LCDE bit.  
1 = LCD driver module enabled  
0 = LCD driver module disabled  
FC — Fast Charge  
LC — Low Current  
These read/write bits are used to select the value of the resistors in  
resistor ladder for LCD voltages. Reset clears the FC and LC bits.  
Data Sheet  
368  
MC68HC908LJ24/LK24 — Rev. 2.1  
Liquid Crystal Display (LCD) Driver  
Freescale Semiconductor  
Liquid Crystal Display (LCD) Driver  
I/O Registers  
Table 17-2. Resistor Ladder Selection  
FC  
X
LC  
0
Action  
Each resistor is approximately 37 k(default)  
Each resistor is approximately 146 kΩ  
Fast charge mode  
0
1
1
1
LCCON[3:0] — LCD Contrast Control  
These read/write bits select the bias voltage, V . This voltage  
bias  
controls the contrast of the LCD.  
Maximum contrast is set when LCCON[3:0] =%0000;  
minimum contrast is set when LCCON[3:0] =%1111.  
Table 17-3. LCD Bias Voltage Control  
Bias Voltage  
LCCON3  
LCCON2  
LCCON1  
LCCON0  
(% of V  
)
DD  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.6  
2.9  
5.2  
7.4  
9.6  
11.6  
13.5  
15.3  
17.2  
18.8  
20.5  
22.0  
23.6  
25.0  
26.4  
27.7  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
369  
Liquid Crystal Display (LCD) Driver  
Liquid Crystal Display (LCD) Driver  
17.9.2 LCD Clock Register (LCDCLK)  
The LCD clock register (LCDCLK):  
• Selects the fast charge duty cycle  
• Selects LCD driver duty cycle  
• Selects LCD waveform base clock  
Address: $004F  
Bit 7  
6
5
4
3
DUTY0  
0
2
LCLK2  
0
1
LCLK1  
0
Bit 0  
LCLK0  
0
Read:  
Write:  
Reset:  
0
FCCTL1 FCCTL0 DUTY1  
0
0
0
0
= Unimplemented  
Figure 17-17. LCD Clock Register (LCDCLK)  
FCCTL[1:0] — Fast Charge Duty Cycle Select  
These read/write bits select the duty cycle of the fast charge duration.  
Reset clears these bits. (See 17.5.4 Fast Charge and Low Current)  
Table 17-4. Fast Charge Duty Cycle Selection  
FCCTL1:FCCTL0  
Fast Charge Duty Cycle  
In each LCDCLK/2 period, each bias resistor is reduced to  
37 kfor a duration of LCDCLK/32.  
00  
In each LCDCLK/2 period, each bias resistor is reduced to  
37 kfor a duration of LCDCLK/64.  
01  
In each LCDCLK/2 period, each bias resistor is reduced to  
37 kfor a duration of LCDCLK/128.  
10  
11  
Not used  
Data Sheet  
370  
MC68HC908LJ24/LK24 — Rev. 2.1  
Liquid Crystal Display (LCD) Driver  
Freescale Semiconductor  
Liquid Crystal Display (LCD) Driver  
I/O Registers  
DUTY[1:0] — Duty Cycle Select  
These read/write bits select the duty cycle of the LCD driver output  
waveforms. The multiplexed FP0/BP3 pin is controlled by the duty  
cycle selected. Reset clears these bits.  
Table 17-5. LCD Duty Cycle Selection  
DUTY1:DUTY0  
Description  
00  
01  
10  
11  
Static selected; FP0/BP3 pin function as FP0.  
1/3 duty cycle selected; FP0/BP3 pin functions as FP0.  
1/4 duty cycle selected; FP0/BP3 pin functions as BP3.  
Not used  
LCLK[2:0] — LCD Waveform Base Clock Select  
These read/write bits selects the LCD waveform base clock. Reset  
clears these bits.  
Table 17-6. LCD Waveform Base Clock Selection  
LCD Frame Rate  
LCD Frame Rate  
LCD Waveform Base  
Clock Frequency  
LCDCLK (Hz)  
(1)  
f
=
f
=
XTAL  
4.9152MHz  
XTAL  
Divide  
Ratio  
32.768kHz  
LCLK2 LCLK1 LCLK0  
f
=
f
=
1/3  
1/4  
1/3  
1/4  
XTAL  
XTAL  
duty  
85.3  
42.7  
21.3  
10.7  
duty  
duty  
duty  
32.768kHz 4.9152MHz  
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
128  
256  
256  
128  
64  
32  
64  
32  
16  
8
0
0
512  
0
1024  
16384  
32768  
65536  
1
300  
150  
75  
100  
50  
75  
1
1
37.5  
18.75  
25  
1
Reserved  
Notes:  
1. fXTAL is the same as CGMXCLK (see Section 7. Oscillator (OSC)).  
MC68HC908LJ24/LK24 — Rev. 2.1  
Data Sheet  
371  
Freescale Semiconductor  
Liquid Crystal Display (LCD) Driver  
Liquid Crystal Display (LCD) Driver  
17.9.3 LCD Data Registers (LDAT1–LDAT17)  
The seventeen (17) LCD data registers enable and disable the drive to  
the corresponding LCD segments.  
Addr.  
Register Name  
Bit 7  
F1B3  
U
6
F1B2  
U
5
F1B1  
U
4
F1B0  
U
3
F0B3  
U
2
F0B2  
U
1
F0B1  
U
Bit 0  
F0B0  
U
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
LCD Data Register 1  
(LDAT1)  
$0052  
F3B3  
U
F3B2  
U
F3B1  
U
F3B0  
U
F2B3  
U
F2B2  
U
F2B1  
U
F2B0  
U
LCD Data Register 2  
(LDAT2)  
$0053  
$0054  
$0055  
$0056  
$0057  
$0058  
$0059  
$005A  
F5B3  
U
F5B2  
U
F5B1  
U
F5B0  
U
F4B3  
U
F4B2  
U
F4B1  
U
F4B0  
U
LCD Data Register 3  
(LDAT3)  
F7B3  
U
F7B2  
U
F7B1  
U
F7B0  
U
F6B3  
U
F6B2  
U
F6B1  
U
F6B0  
U
LCD Data Register 4  
(LDAT4)  
F9B3  
U
F9B2  
U
F9B1  
U
F9B0  
U
F8B3  
U
F8B2  
U
F8B1  
U
F8B0  
U
LCD Data Register 5  
(LDAT5)  
F11B3  
U
F11B2  
U
F11B1  
U
F11B0  
U
F10B3  
U
F10B2  
U
F10B1  
U
F10B0  
U
LCD Data Register 6  
(LDAT6)  
F13B3  
U
F13B2  
U
F13B1  
U
F13B0  
U
F12B3  
U
F12B2  
U
F12B1  
U
F12B0  
U
LCD Data Register 7  
(LDAT7)  
F15B3  
U
F15B2  
U
F15B1  
U
F15B0  
U
F14B3  
U
F14B2  
U
F14B1  
U
F14B0  
U
LCD Data Register 8  
(LDAT8)  
F17B3  
F17B2  
F17B1  
U
F17B0  
F16B3  
F16B2  
U
F16B1  
U
F16B0  
U
LCD Data Register 9  
(LDAT9)  
U
U
U
U
U = Unaffected  
= Unimplemented  
Figure 17-18. LCD Data Registers 1–17 (LDAT1–LDAT17)  
Data Sheet  
372  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Liquid Crystal Display (LCD) Driver  
Liquid Crystal Display (LCD) Driver  
I/O Registers  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
F19B3  
U
F19B2  
U
F19B1  
U
F19B0  
U
F18B3  
U
F18B2  
U
F18B1  
U
F18B0  
U
LCD Data Register 10  
(LDAT10)  
$005B  
$005C  
$005D  
$005E  
$005F  
$0060  
$0061  
$0062  
F21B3  
U
F21B2  
U
F21B1  
U
F21B0  
U
F20B3  
U
F20B2  
U
F20B1  
U
F20B0  
U
LCD Data Register 11  
(LDAT11)  
F23B3  
U
F23B2  
U
F23B1  
U
F23B0  
U
F22B3  
U
F22B2  
U
F22B1  
U
F22B0  
U
LCD Data Register 12  
(LDAT12)  
F25B3  
U
F25B2  
U
F25B1  
U
F25B0  
U
F24B3  
U
F24B2  
U
F24B1  
U
F24B0  
U
LCD Data Register 13  
(LDAT13)  
F27B3  
U
F27B2  
U
F27B1  
U
F27B0  
U
F26B3  
U
F26B2  
U
F26B1  
U
F26B0  
U
LCD Data Register 14  
(LDAT14)  
F29B3  
U
F29B2  
U
F29B1  
U
F29B0  
U
F28B3  
U
F28B2  
U
F28B1  
U
F28B0  
U
LCD Data Register 15  
(LDAT15)  
F31B3  
U
F31B2  
U
F31B1  
U
F31B0  
U
F30B3  
U
F30B2  
U
F30B1  
U
F30B0  
U
LCD Data Register 16  
(LDAT16)  
F32B3  
F32B2  
U
F32B1  
U
F32B0  
U
LCD Data Register 17  
(LDAT17)  
U
U = Unaffected  
= Unimplemented  
Figure 17-18. LCD Data Registers 1–17 (LDAT1–LDAT17)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
373  
Liquid Crystal Display (LCD) Driver  
Liquid Crystal Display (LCD) Driver  
Data Sheet  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
374  
Liquid Crystal Display (LCD) Driver  
Data Sheet — MC68HC908LJ24  
Section 18. Input/Output (I/O) Ports  
18.1 Contents  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376  
18.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .380  
18.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . .380  
18.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . .381  
18.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .383  
18.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . .383  
18.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . .385  
18.4.3 Port B LED Control Register (LEDB) . . . . . . . . . . . . . . . . .386  
18.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387  
18.5.1 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . .387  
18.5.2 Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . .388  
18.5.3 Port C LED Control Register (LEDC) . . . . . . . . . . . . . . . . .389  
18.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .390  
18.6.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . .390  
18.6.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . .392  
18.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .394  
18.7.1 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . .394  
18.7.2 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . .395  
18.7.3 Port E LED Control Register (LEDE) . . . . . . . . . . . . . . . . .396  
18.8 Port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397  
18.8.1 Port F Data Register (PTF) . . . . . . . . . . . . . . . . . . . . . . . .397  
18.8.2 Data Direction Register F (DDRF) . . . . . . . . . . . . . . . . . . .398  
18.8.3 Port F LED Control Register (LEDF) . . . . . . . . . . . . . . . . .399  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
375  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
18.2 Introduction  
Forty-eight (48) bidirectional input-output (I/O) pins form six parallel  
ports. All I/O pins are programmable as inputs or outputs.  
NOTE: Connect any unused I/O pins to an appropriate logic level, either VDD or  
VSS. Although the I/O ports do not require termination for proper  
operation, termination reduces excess current consumption and the  
possibility of electrostatic damage.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Port A Data Register  
(PTA)  
$0000  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
PTB7  
PTC7  
PTD7  
PTB6  
PTC6  
PTD6  
PTB5  
PTC5  
PTD5  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
Port B Data Register  
(PTB)  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
Port C Data Register  
(PTC)  
Port D Data Register  
(PTD)  
DDRA7  
DDRA6  
DDRA5  
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
Data Direction Register A  
(DDRA)  
0
0
0
0
0
0
0
0
DDRB7  
DDRB6  
DDRB5  
DDRB4  
DDRB3  
DDRB2  
DDRB1  
DDRB0  
Data Direction Register B  
(DDRB)  
0
DDRC7  
0
0
DDRC6  
0
0
DDRC5  
0
0
DDRC4  
0
0
DDRC3  
0
0
DDRC2  
0
0
DDRC1  
0
0
DDRC0  
0
Data Direction Register C  
(DDRC)  
DDRD7  
0
DDRD6  
0
DDRD5  
0
DDRD4  
0
DDRD3  
0
DDRD2  
0
DDRD1  
0
DDRD0  
0
Data Direction Register D  
(DDRD)  
Figure 18-1. I/O Port Register Summary  
Data Sheet  
376  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
Introduction  
Addr.  
Register Name  
Bit 7  
PTE7  
U
6
PTE6  
U
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
PTE5  
PTE4  
PTE3  
PTE2  
PTE1  
PTE0  
Port E Data Register  
(PTE)  
$0008  
U
U
U
U
U
U
DDRE7  
0
DDRE6  
0
DDRE5  
DDRE4  
DDRE3  
DDRE2  
DDRE1  
DDRE0  
Data Direction Register E  
(DDRE)  
$0009  
$000A  
$000B  
$000C  
$000D  
$000E  
$000F  
0
0
0
0
0
0
PTF7  
U
PTF6  
U
PTF5  
PTF4  
PTF3  
PTF2  
PTF1  
PTF0  
Port F Data Register  
(PTF)  
U
U
U
U
U
U
DDRF7  
DDRF6  
DDRF5  
DDRF4  
DDRF3  
DDRF2  
DDRF1  
DDRF0  
Data Direction Register F  
(DDRF)  
0
0
0
0
0
0
0
0
0
0
Port-B LED Control  
LEDB5  
LEDB4  
LEDB3  
LEDB2  
LEDB1  
LEDB0  
Register Write:  
(LEDB)  
Reset:  
0
LEDC7  
0
0
LEDC6  
0
0
LEDC5  
0
0
LEDC4  
0
0
LEDC3  
0
0
LEDC2  
0
0
LEDC1  
0
0
LEDC0  
0
Read:  
Port-C LED Control  
Register Write:  
(LEDC)  
Reset:  
Read:  
Port-E LED Control  
LEDE7  
0
LEDE6  
0
LEDE5  
0
LEDE4  
0
LEDE3  
0
LEDE2  
0
LEDE1  
0
LEDE0  
0
Register Write:  
(LEDE)  
Reset:  
Read:  
Port-F LED Control  
LEDF7  
0
LEDF6  
0
LEDF5  
0
LEDF4  
0
LEDF3  
0
LEDF2  
0
LEDF1  
0
LEDF0  
0
Register Write:  
(LEDF)  
Reset:  
Figure 18-1. I/O Port Register Summary  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
377  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
Table 18-1. Port Control Register Bits Summary (Sheet 1 of 2)  
Module Control  
Register  
Port  
Bit  
DDR  
Pin  
Module  
Control Bit  
KBIE0  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
DDRA0  
DDRA1  
DDRA2  
DDRA3  
DDRA4  
DDRA5  
DDRA6  
DDRA7  
DDRB0  
DDRB1  
DDRB2  
DDRB3  
DDRB4  
DDRB5  
DDRB6  
DDRB7  
DDRC0  
DDRC1  
DDRC2  
DDRC3  
DDRC4  
DDRC5  
DDRC6  
DDRC7  
PTA0/KBI0  
PTA1/KBI1  
PTA2/KBI2  
PTA3/KBI3  
PTA4/ADC0  
PTA5/ADC1  
PTA6/ADC2  
PTA7/ADC3  
PTB0/TxD  
KBIE1  
KBI  
KBIER ($001C)  
KBIE2  
KBIE3  
A
ADC  
ADSCR ($003C)  
SCC1 ($0013)  
ADCH[4:0]  
SCI  
TIM1  
TIM2  
ADC  
ENSCI  
PTB1/RxD  
T1SC0 ($0025) ELS0B:ELS0A  
T1SC1 ($0028) ELS1B:ELS1A  
T2SC0 ($0030) ELS0B:ELS0A  
T2SC1 ($0033) ELS1B:ELS1A  
PTB2/T1CH0  
PTB3/T1CH1  
PTB4/T2CH0  
PTB5/T2CH1  
PTB6/ADC4  
PTB7/ADC5  
PTC0/FP19  
PTC1/FP20  
PTC2/FP21  
PTC3/FP22  
PTC4/FP23  
PTC5/FP24  
PTC6/FP25  
PTC7/FP26  
B
ADSCR ($003C)  
ADCH[4:0]  
PCEL  
C
LCD  
CONFIG2 ($001D)  
PCEH  
Data Sheet  
378  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
Introduction  
Table 18-1. Port Control Register Bits Summary (Sheet 2 of 2)  
Module Control  
Register  
Port  
Bit  
DDR  
Pin  
Module  
Control Bit  
SPE  
SPCR ($0010)  
RTCCOMR ($0040)  
0
DDRD0  
PTD0/SS/CALIN  
CAL  
1
2
DDRD1  
DDRD2  
PTD1/MISO  
PTD2/MOSI  
SPI  
RTC  
SPCR ($0010)  
SPE  
SPCR ($0010)  
RTCCOMR ($0040)  
KBIER ($001C)  
T1SC ($0020)  
SPE  
CAL  
3
4
5
6
7
DDRD3  
DDRD4  
DDRD5  
DDRD6  
DDRD7  
PTD3/SPSCK/CALOUT  
PTD4/KBI4/T1CLK  
PTD5/KBI5/T2CLK  
PTD6/KBI6/SCL  
KBIE4  
PS[2:0]  
KBIE5  
PS[2:0]  
KBIE6  
MMEN  
KBIE7  
MMEN  
(1)  
D
KBI  
TIM  
KBIER ($001C)  
T2SC ($002B)  
KBIER ($001C)  
MMCR ($006C)  
KBIER ($001C)  
MMCR ($006C)  
KBI  
MMIIC  
PTD7/KBI7/SDA  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
DDRE0  
DDRE1  
DDRE2  
DDRE3  
DDRE4  
DDRE5  
DDRE6  
DDRE7  
DDRF0  
DDRF1  
DDRF2  
DDRF3  
DDRF4  
DDRF5  
DDRF6  
DDRF7  
PTE0/FP11  
PTE1/FP12  
PTE2/FP13  
PTE3/FP14  
PTE4/FP15  
PTE5/FP16  
PTE6/FP17  
PTE7/FP18  
PTF0  
E
LCD  
CONFIG2 ($001D)  
PEE  
PTF1  
PTF2  
PTF3  
F
PTF4  
PTF5  
PTF6  
PTF7  
Notes:  
1. In addition to the standard I/O function on PTD0 and PTD3–PTD7 pins, these pins are shared with two other modules.  
For each of the pins, ONLY enable ONE module at any one time to avoid pin contention.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
379  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
18.3 Port A  
Port A is an 8-bit special function port that shares four of its port pins with  
the analog-to-digital converter (ADC) module and four of its port pins  
with the keyboard interrupt module (KBI).  
18.3.1 Port A Data Register (PTA)  
The port A data register contains a data latch for each of the eight port A  
pins.  
Address: $0000  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Unaffected by Reset  
ADC0 KBI3  
Alternative Function: ADC3  
ADC2  
ADC1  
KBI2  
KBI1  
KBI0  
Figure 18-2. Port A Data Register (PTA)  
PTA[7:0] — Port A Data Bits  
These read/write bits are software programmable. Data direction of  
each port A pin is under the control of the corresponding bit in data  
direction register A. Reset has no effect on port A data.  
KBI[3:0] — Keyboard Interrupt Channels 3 to 0  
KBI[3:0] are pins used for the keyboard interrupt input. The  
corresponding input, KBI[3:0], can be enabled in the keyboard  
interrupt enable register, KBIER. Port pins used as KBI input will  
override any control from the port I/O logic. See Section 20.  
Keyboard Interrupt Module (KBI).  
Data Sheet  
380  
MC68HC908LJ24/LK24 — Rev. 2.1  
Input/Output (I/O) Ports  
Freescale Semiconductor  
Input/Output (I/O) Ports  
Port A  
ADC[3:0] — ADC channels 0 to 3  
ADC[3:0] are pins used for the input channels to the analog-to-digital  
converter module. The channel select bits, ADCH[4:0], in the ADC  
status and control register define which port pin will be used as an  
ADC input and overrides any control from the port I/O logic. See  
Section 16. Analog-to-Digital Converter (ADC).  
NOTE: Care must be taken when reading port A while applying analog voltages  
to ADC[3:0] pins. If the appropriate ADC channel is not enabled,  
excessive current drain may occur if analog voltages are applied to the  
PTAx/ADCx pin, while PTA is read as a digital input. Those ports not  
selected as analog input channels are considered digital I/O ports.  
18.3.2 Data Direction Register A (DDRA)  
Data direction register A determines whether each port A pin is an input  
or an output. Writing a logic 1 to a DDRA bit enables the output buffer for  
the corresponding port A pin; a logic 0 disables the output buffer.  
Address: $0004  
Bit 7  
DDRA7  
0
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
Figure 18-3. Data Direction Register A (DDRA)  
DDRA[7:0] — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears  
DDRA[7:0], configuring all port A pins as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE: Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1. Figure 18-4 shows  
the port A I/O logic.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
381  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
READ DDRA ($0004)  
WRITE DDRA ($0004)  
DDRAx  
PTAx  
RESET  
WRITE PTA ($0000)  
READ PTA ($0000)  
PTAx  
Figure 18-4. Port A I/O Circuit  
When DDRAx is a logic 1, reading address $0000 reads the PTAx data  
latch. When DDRAx is a logic 0, reading address $0000 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit.  
Table 18-2 summarizes the operation of the port A pins.  
Table 18-2. Port A Pin Functions  
Accesses to DDRA  
Read/Write  
Accesses to PTA  
DDRA  
Bit  
PTA Bit  
I/O Pin Mode  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
DDRA[7:0]  
PTA[7:0]  
X
Output  
DDRA[7:0]  
PTA[7:0]  
PTA[7:0]  
Notes:  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect input.  
Data Sheet  
382  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Input/Output (I/O) Ports  
 
Input/Output (I/O) Ports  
Port B  
18.4 Port B  
Port B is a 8-bit special function port that shares two of its port pins with  
the infrared serial communication interface (IRSCI) module, two of its  
port pins with the timer interface module 1 (TIM1) module, two of its port  
pins with the timer interface module 2 (TIM2), and two of its port pins with  
the ADC module.  
Port pins PTB0–PTB5 can be configured for direct LED drive.  
18.4.1 Port B Data Register (PTB)  
The port B data register contains a data latch for each of the eight port B  
pins.  
Address: $0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
PTB7  
Write:  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Reset:  
Unaffected by reset  
T2CH0 T1CH1  
Alternative Function: ADC5  
Additional Function:  
ADC4  
T2CH1  
T1CH0  
RxD  
TxD  
LED drive LED drive LED drive LED drive LED drive LED drive  
Figure 18-5. Port B Data Register (PTB)  
PTB[7:0] — Port B Data Bits  
These read/write bits are software programmable. Data direction of  
each port B pin is under the control of the corresponding bit in data  
direction register B. Reset has no effect on port B data.  
TxD, RxD — SCI Data I/O Pins  
The TxD and RxD pins are the transmit data output and receive data  
input for the IRSCI module. The enable SCI bit, ENSCI, in the SCI  
control register 1 enables the PTB0/TxD and PTB1/RxD pins as SCI  
TxD and RxD pins and overrides any control from the port I/O. See  
Section 13. Infrared Serial Communications Interface Module  
(IRSCI).  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
383  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
T1CH[1:0] — Timer 1 Channel I/O Bits  
The T1CH1 and T1CH0 pins are the TIM1 input capture/output  
compare pins. The edge/level select bits, ELSxB:ELSxA, determine  
whether the PTB2/T1CH0 and PTB3/T1CH1 pins are timer channel  
I/O pins or general-purpose I/O pins. See Section 11. Timer  
Interface Module (TIM).  
T2CH[1:0] — Timer 2 Channel I/O Bits  
The T2CH1 and T2CH0 pins are the TIM1 input capture/output  
compare pins. The edge/level select bits, ELSxB:ELSxA, determine  
whether the PTB4/T2CH0 and PTB5/T2CH1 pins are timer channel  
I/O pins or general-purpose I/O pins. See Section 11. Timer  
Interface Module (TIM).  
ADC[5:4] — ADC Channels 5 and 4  
ADC[5:4] are pins used for the input channels to the analog-to-digital  
converter module. The channel select bits, ADCH[4:0], in the ADC  
status and control register define which port pin will be used as an  
ADC input and overrides any control from the port I/O logic. See  
Section 16. Analog-to-Digital Converter (ADC).  
NOTE: Care must be taken when reading port B while applying analog voltages  
to ADC[5:4] pins. If the appropriate ADC channel is not enabled,  
excessive current drain may occur if analog voltages are applied to the  
PTBx/ADCx pin, while PTB is read as a digital input. Those ports not  
selected as analog input channels are considered digital I/O ports.  
LED Drive — Direct LED Drive Pins  
PTB0–PTB5 pins can be configured for direct LED drive. See 18.4.3  
Port B LED Control Register (LEDB).  
Data Sheet  
384  
MC68HC908LJ24/LK24 — Rev. 2.1  
Input/Output (I/O) Ports  
Freescale Semiconductor  
Input/Output (I/O) Ports  
Port B  
18.4.2 Data Direction Register B (DDRB)  
Data direction register B determines whether each port B pin is an input  
or an output. Writing a logic 1 to a DDRB bit enables the output buffer for  
the corresponding port B pin; a logic 0 disables the output buffer.  
Address: $0005  
Bit 7  
DDRB7  
0
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
Figure 18-6. Data Direction Register B (DDRB)  
DDRB[7:0] — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears  
DDRB[7:0], configuring all port B pins as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE: Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1. Figure 18-7 shows  
the port B I/O logic.  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
RESET  
WRITE PTB ($0001)  
PTBx  
PTBx  
READ PTB ($0001)  
Figure 18-7. Port B I/O Circuit  
When DDRBx is a logic 1, reading address $0001 reads the PTBx data  
latch. When DDRBx is a logic 0, reading address $0001 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
385  
Input/Output (I/O) Ports  
 
Input/Output (I/O) Ports  
Table 18-3 summarizes the operation of the port B pins.  
Table 18-3. Port B Pin Functions  
Accesses to DDRB  
I/O Pin Mode  
Accesses to PTB  
DDRB  
Bit  
PTB Bit  
Read/Write  
DDRB[7:0]  
DDRB[7:0]  
Read  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
Output  
Pin  
PTB[7:0]  
X
PTB[7:0]  
PTB[7:0]  
Notes:  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect input.  
18.4.3 Port B LED Control Register (LEDB)  
The port-B LED control register (LEDB) controls the direct LED drive  
capability on PTB5–PTB0 pins. Each bit is individually configurable and  
requires that the data direction register, DDRB, bit be configured as an  
output.  
When the IRSCI is enabled, setting the LEDB0 bit also enables high  
current (15mA) sink capability for the TxD pin.  
Address: $000C  
Bit 7  
0
6
0
5
LEDB5  
0
4
LEDB4  
0
3
LEDB3  
0
2
LEDB2  
0
1
LEDB1  
0
Bit 0  
LEDB0  
0
Read:  
Write:  
Reset:  
0
0
Figure 18-8. Port B LED Control Register (LEDB)  
LEDB[5:0] — Port B LED Drive Enable Bits  
These read/write bits are software programmable to enable the direct  
LED drive on an output port pin.  
1 = Corresponding port B pin is configured for direct LED drive,  
with 15mA current sinking capability  
0 = Corresponding port B pin is configured for standard drive  
Data Sheet  
386  
MC68HC908LJ24/LK24 — Rev. 2.1  
Input/Output (I/O) Ports  
Freescale Semiconductor  
 
Input/Output (I/O) Ports  
Port C  
18.5 Port C  
Port C is an 8-bit special function port that shares all of its port pins with  
the liquid crystal display (LCD) driver module.  
Port pins PTC0–PTC7 can be configured for direct LED drive.  
18.5.1 Port C Data Register (PTC)  
The port C data register contains a data latch for each of the eight port C  
pins.  
Address: $0002  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
PTC7  
Write:  
PTC6  
PTC5  
PTC4  
PTC3  
PTC2  
PTC1  
PTC0  
Reset:  
Unaffected by reset  
FP23 FP22  
Alternative Function: FP26  
FP25  
FP24  
FP21  
FP20  
FP19  
Additional Function: LED drive LED drive LED drive LED drive LED drive LED drive LED drive LED drive  
Figure 18-9. Port C Data Register (PTC)  
PTC[7:0] — Port C Data Bits  
These read/write bits are software programmable. Data direction of  
each port C pin is under the control of the corresponding bit in data  
direction register C. Reset has no effect on port C data.  
FP[26:19] — LCD Driver Frontplanes 26–19  
FP[26:19] are pins used for the frontplane output of the LCD driver  
module. The enable bits, PCEH and PCEL, in the CONFIG2 register,  
determine whether the PTC7/FP26–PTC4/FP23 and  
PTC3/FP22–PTC0/FP19 pins are LCD frontplane driver pins or  
general-purpose I/O pins. See Section 17. Liquid Crystal Display  
(LCD) Driver.  
LED drive — Direct LED Drive Pins  
PTC0–PTC7 pins can be configured for direct LED drive. See 18.5.3  
Port C LED Control Register (LEDC).  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
387  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
18.5.2 Data Direction Register C (DDRC)  
Data direction register C determines whether each port C pin is an input  
or an output. Writing a logic 1 to a DDRC bit enables the output buffer for  
the corresponding port C pin; a logic 0 disables the output buffer.  
Address: $0006  
Bit 7  
DDRC7  
0
6
DDRC6  
0
5
DDRC5  
0
4
DDRC4  
0
3
DDRC3  
0
2
DDRC2  
0
1
DDRC1  
0
Bit 0  
DDRC0  
0
Read:  
Write:  
Reset:  
Figure 18-10. Data Direction Register C (DDRC)  
DDRC[7:0] — Data Direction Register C Bits  
These read/write bits control port C data direction. Reset clears  
DDRC[7:0], configuring all port C pins as inputs.  
1 = Corresponding port C pin configured as output  
0 = Corresponding port C pin configured as input  
NOTE: Avoid glitches on port C pins by writing to the port C data register before  
changing data direction register C bits from 0 to 1. Figure 18-11 shows  
the port C I/O logic.  
READ DDRC ($0006)  
WRITE DDRC ($0006)  
DDRCx  
RESET  
WRITE PTC ($0002)  
PTCx  
PTCx  
READ PTC ($0002)  
Figure 18-11. Port C I/O Circuit  
Data Sheet  
388  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Input/Output (I/O) Ports  
 
Input/Output (I/O) Ports  
Port C  
When DDRCx is a logic 1, reading address $0002 reads the PTCx data  
latch. When DDRCx is a logic 0, reading address $0002 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit.  
Table 18-4 summarizes the operation of the port C pins.  
Table 18-4. Port C Pin Functions  
Accesses to DDRC  
Read/Write  
Accesses to PTC  
DDRC  
Bit  
PTC Bit  
I/O Pin Mode  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
DDRC[7:0]  
PTC[7:0]  
X
Output  
DDRC[7:0]  
PTC[7:0]  
PTC[7:0]  
Notes:  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect input.  
18.5.3 Port C LED Control Register (LEDC)  
Port-C LED control register (LEDC) controls the direct LED drive  
capability on PTC7–PTC0 pins. Each bit is individually configurable and  
requires that the data direction register, DDRC, bit be configured as an  
output.  
Address: $000D  
Bit 7  
LEDC7  
0
6
LEDC6  
0
5
LEDC5  
0
4
LEDC4  
0
3
LEDC3  
0
2
LEDC2  
0
1
LEDC1  
0
Bit 0  
LEDC0  
0
Read:  
Write:  
Reset:  
Figure 18-12. Port C LED Control Register (LEDC)  
LEDC[7:0] — Port C LED Drive Enable Bits  
These read/write bits are software programmable to enable the direct  
LED drive on an output port pin.  
1 = Corresponding port C pin is configured for direct LED drive,  
with 15mA current sinking capability  
0 = Corresponding port C pin is configured for standard drive  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
389  
Input/Output (I/O) Ports  
 
Input/Output (I/O) Ports  
18.6 Port D  
Port D is an 8-bit special function port that shares its pins with the serial  
peripheral interface (SPI) module, keyboard interrupt module, RTC  
module, MMIIC module, and timer modules.  
18.6.1 Port D Data Register (PTD)  
The port D data register contains a data latch for each of the eight port D  
pins.  
Address: $0003  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTD7  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
Unaffected by reset  
KBI4/ SPSCK/  
KBI7/  
SDA*  
KBI6/  
SCL*  
KBI5/  
SS/  
CALIN*  
Alternative Function:  
MOSI  
MISO  
T2CLK* T1CLK* CALOUT*  
* These port pins are shared with two other modules. For each of the pins, ONLY enable ONE module at any one  
time to avoid pin contention.  
Figure 18-13. Port D Data Register (PTD)  
PTD[7:0] — Port D Data Bits  
These read/write bits are software programmable. Data direction of  
each port D pin is under the control of the corresponding bit in data  
direction register D. Reset has no effect on port D data.  
KBI[7:4] — Keyboard Interrupt Channels 7 to 4  
KBI[7:4] are pins used for the keyboard interrupt input. The  
corresponding input, KBI[7:4], can be enabled in the keyboard  
interrupt enable register, KBIER. Port pins used as KBI input will  
override any control from the port I/O logic. See Section 20.  
Keyboard Interrupt Module (KBI).  
Data Sheet  
390  
MC68HC908LJ24/LK24 — Rev. 2.1  
Input/Output (I/O) Ports  
Freescale Semiconductor  
Input/Output (I/O) Ports  
Port D  
SDA, SCL — Multi-Master IIC Data and Clock Pins  
The SDA and SCL pins are multi-master IIC data and clock open-  
drain pins, enabled by setting the MMEN bit in the MMIIC control  
register (MMCR). Port pins used as MMIIC will override any control  
from the port I/O logic. See Section 15. Multi-Master IIC Interface  
(MMIIC).  
T2CLK — TIM2 Clock Input Pin  
The T2CLK pin is the external clock input for TIM2, enabled by setting  
the prescaler select bits, PS[2:0] to %111, in the TIM2 status and  
control register (T2SC). Port pin used as T2CLK will override any  
control from the port I/O logic. See Section 11. Timer Interface  
Module (TIM).  
T1CLK — TIM1 Clock Input Pin  
The T1CLK pin is the external clock input for TIM1, enabled by setting  
the prescaler select bits, PS[2:0] to %111, in the TIM1 status and  
control register (T1SC). Port pin used as T1CLK will override any  
control from the port I/O logic. See Section 11. Timer Interface  
Module (TIM).  
SPSCK, MOSI, MISO, and SS — SPI Functional Pins  
These four pins are the SPI clock, master-output-slave-input, master-  
input-slave-output, and slave select pins; enabled by setting the SPI  
enable bit, SPE, in the SPI control register (SPCR). Port pins used as  
SPI will override any control from the port I/O logic. See Section 14.  
Serial Peripheral Interface Module (SPI).  
CALOUT, CALIN — RTC Calibration Pins  
The CALOUT and CALIN pins are RTC calibration pins, enabled by  
setting the CAL bit in the RTC calibration register (RTCCOMR). Port  
pins used for RTC calibration will override any control from the port  
I/O logic. See Section 12. Real Time Clock (RTC).  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
391  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
18.6.2 Data Direction Register D (DDRD)  
Data direction register D determines whether each port D pin is an input  
or an output. Writing a logic 1 to a DDRD bit enables the output buffer for  
the corresponding port D pin; a logic 0 disables the output buffer.  
Address: $0007  
Bit 7  
DDRD7  
0
6
DDRD6  
0
5
DDRD5  
0
4
DDRD4  
0
3
DDRD3  
0
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
Figure 18-14. Data Direction Register D (DDRD)  
DDRD[7:0] — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears  
DDRD[7:0], configuring all port D pins as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE: Avoid glitches on port D pins by writing to the port D data register before  
changing data direction register D bits from 0 to 1. Figure 18-15 shows  
the port D I/O logic.  
READ DDRD ($0007)  
WRITE DDRD ($0007)  
DDRDx  
RESET  
WRITE PTD ($0003)  
PTDx  
PTDx  
READ PTD ($0003)  
Figure 18-15. Port D I/O Circuit  
Data Sheet  
392  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Input/Output (I/O) Ports  
 
Input/Output (I/O) Ports  
Port D  
When DDRDx is a logic 1, reading address $0003 reads the PTDx data  
latch. When DDRDx is a logic 0, reading address $0003 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit.  
Table 18-5 summarizes the operation of the port D pins.  
Table 18-5. Port D Pin Functions  
Accesses to DDRD  
Read/Write  
Accesses to PTD  
DDRD  
Bit  
PTD Bit  
I/O Pin Mode  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
DDRD[7:0]  
PTD[7:0]  
X
Output  
DDRD[7:0]  
PTD[7:0]  
PTD[7:0]  
Notes:  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect input.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
393  
Input/Output (I/O) Ports  
 
Input/Output (I/O) Ports  
18.7 Port E  
Port E is an 8-bit special function port that shares all of its port pins with  
the liquid crystal display (LCD) driver module.  
Port pins PTE0–PTE7 can be configured for direct LED drive.  
18.7.1 Port E Data Register (PTE)  
The port E data register contains a data latch for each of the eight port E  
pins.  
Address: $0008  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTE7  
PTE6  
PTE5  
PTE4  
PTE3  
PTE2  
PTE1  
PTE0  
Unaffected by reset  
FP15 FP14  
Alternative Function: FP18  
FP17  
FP16  
FP13  
FP12  
FP11  
Additional Function: LED drive LED drive LED drive LED drive LED drive LED drive LED drive LED drive  
Figure 18-16. Port E Data Register (PTE)  
PTE[7:0] — Port E Data Bits  
These read/write bits are software programmable. Data direction of  
each port E pin is under the control of the corresponding bit in data  
direction register E. Reset has no effect on port E data.  
FP[18:11] — LCD Driver Frontplanes 18–11  
FP[18:11] are pins used for the frontplane output of the LCD driver  
module. The enable bit, PEE, in the CONFIG2 register, determines  
whether the PTE7/FP18–PTE0/FP11 pins are LCD frontplane driver  
pins or general-purpose I/O pins. See Section 17. Liquid Crystal  
Display (LCD) Driver.  
LED drive — Direct LED Drive Pins  
PTE0–PTE7 pins can be configured for direct LED drive. See 18.7.3  
Port E LED Control Register (LEDE).  
Data Sheet  
394  
MC68HC908LJ24/LK24 — Rev. 2.1  
Input/Output (I/O) Ports  
Freescale Semiconductor  
Input/Output (I/O) Ports  
Port E  
18.7.2 Data Direction Register E (DDRE)  
Data direction register E determines whether each port E pin is an input  
or an output. Writing a logic 1 to a DDRE bit enables the output buffer for  
the corresponding port E pin; a logic 0 disables the output buffer.  
Address: $0009  
Bit 7  
DDRE7  
0
6
DDRE6  
0
5
DDRE5  
0
4
DDRE4  
0
3
DDRE3  
0
2
DDRE2  
0
1
DDRE1  
0
Bit 0  
DDRE0  
0
Read:  
Write:  
Reset:  
Figure 18-17. Data Direction Register E (DDRE)  
DDRE[7:0] — Data Direction Register E Bits  
These read/write bits control port E data direction. Reset clears  
DDRE[7:0], configuring all port E pins as inputs.  
1 = Corresponding port E pin configured as output  
0 = Corresponding port E pin configured as input  
NOTE: Avoid glitches on port E pins by writing to the port E data register before  
changing data direction register E bits from 0 to 1. Figure 18-18 shows  
the port E I/O logic.  
READ DDRE ($0009)  
WRITE DDRE ($0009)  
DDREx  
RESET  
WRITE PTE ($0008)  
PTEx  
PTEx  
READ PTE ($0008)  
Figure 18-18. Port E I/O Circuit  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
395  
Input/Output (I/O) Ports  
 
Input/Output (I/O) Ports  
When DDREx is a logic 1, reading address $0008 reads the PTEx data  
latch. When DDREx is a logic 0, reading address $0008 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit.  
Table 18-6 summarizes the operation of the port E pins.  
Table 18-6. Port E Pin Functions  
Accesses to DDRE  
Read/Write  
Accesses to PTE  
DDRE  
Bit  
PTE Bit  
I/O Pin Mode  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
DDRE[7:0]  
PTE[7:0]  
X
Output  
DDRE[7:0]  
PTE[7:0]  
PTE[7:0]  
Notes:  
1. X = don’t care; except.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect input.  
18.7.3 Port E LED Control Register (LEDE)  
The port-E LED control register (LEDE) controls the direct LED drive  
capability on PTE7–PTE0 pins. Each bit is individually configurable and  
requires that the data direction register, DDRE, bit be configured as an  
output.  
Address: $000E  
Bit 7  
LEDE7  
0
6
LEDE6  
0
5
LEDE5  
0
4
LEDE4  
0
3
LEDE3  
0
2
LEDE2  
0
1
LEDE1  
0
Bit 0  
LEDE0  
0
Read:  
Write:  
Reset:  
Figure 18-19. Port E LED Control Register (LEDE)  
LEDE[7:0] — Port E LED Drive Enable Bits  
These read/write bits are software programmable to enable the direct  
LED drive on an output port pin.  
1 = Corresponding port E pin is configured for direct LED drive,  
with 15mA current sinking capability  
0 = Corresponding port E pin is configured for standard drive  
Data Sheet  
396  
MC68HC908LJ24/LK24 — Rev. 2.1  
Input/Output (I/O) Ports  
Freescale Semiconductor  
 
Input/Output (I/O) Ports  
Port F  
18.8 Port F  
Port F is an 8-bit general-purpose I/O port.  
Port pins PTF0–PTF7 can be configured for direct LED drive.  
NOTE: PTF0–PTF7 are not available in the 64-pin packages.  
18.8.1 Port F Data Register (PTF)  
The port F data register contains a data latch for each of the eight port F  
pins.  
Address: $000A  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTF7  
PTF6  
PTF5  
PTF4  
PTF3  
PTF2  
PTF1  
PTF0  
Unaffected by Reset  
Additional Function: LED drive LED drive LED drive LED drive LED drive LED drive LED drive LED drive  
Figure 18-20. Port F Data Register (PTF)  
PTF[7:0] — Port F Data Bits  
These read/write bits are software programmable. Data direction of  
each port F pin is under the control of the corresponding bit in data  
direction register F. Reset has no effect on port F data.  
LED drive — Direct LED Drive Pins  
PTF0–PTF7 pins can be configured for direct LED drive. See 18.8.3  
Port F LED Control Register (LEDF).  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
397  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
18.8.2 Data Direction Register F (DDRF)  
Data direction register F determines whether each port F pin is an input  
or an output. Writing a logic 1 to a DDRF bit enables the output buffer for  
the corresponding port F pin; a logic 0 disables the output buffer.  
NOTE: For those devices packaged in a 64-pin package, PTF0–PTF7 are  
connected to ground internally. DDRF0–DDRF7 should be set to a 0 to  
configure PTF0–PTF7 as inputs.  
Address: $000B  
Bit 7  
DDRF7  
0
6
DDRF6  
0
5
DDRF5  
0
4
DDRF4  
0
3
DDRF3  
0
2
DDRF2  
0
1
DDRF1  
0
Bit 0  
DDRF0  
0
Read:  
Write:  
Reset:  
Figure 18-21. Data Direction Register F (DDRF)  
DDRF[7:0] — Data Direction Register F Bits  
These read/write bits control port F data direction. Reset clears  
DDRF[7:0], configuring all port F pins as inputs.  
1 = Corresponding port F pin configured as output  
0 = Corresponding port F pin configured as input  
NOTE: Avoid glitches on port F pins by writing to the port F data register before  
changing data direction register F bits from 0 to 1. Figure 18-22 shows  
the port F I/O logic.  
READ DDRF ($000B)  
WRITE DDRF ($000B)  
DDRFx  
RESET  
WRITE PTF ($000A)  
PTFx  
PTFx  
READ PTF ($000A)  
Figure 18-22. Port F I/O Circuit  
Data Sheet  
398  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Input/Output (I/O) Ports  
 
Input/Output (I/O) Ports  
Port F  
When DDRFx is a logic 1, reading address $000A reads the PTFx data  
latch. When DDRFx is a logic 0, reading address $000A reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit.  
Table 18-7 summarizes the operation of the port F pins.  
Table 18-7. Port F Pin Functions  
Accesses to DDRF  
Read/Write  
Accesses to PTF  
Read Write  
DDRF  
Bit  
PTF Bit  
I/O Pin Mode  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
DDRF[7:0]  
Pin  
PTF[7:0]  
PTF[7:0]  
X
Output  
DDRF[7:0]  
PTF[7:0]  
Notes:  
1. X = don’t care; except.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect input.  
18.8.3 Port F LED Control Register (LEDF)  
Port-F LED control register (LEDF) controls the direct LED drive  
capability on PTF7–PTF0 pins. Each bit is individually configurable and  
requires that the data direction register, DDRF, bit be configured as an  
output.  
Address: $000F  
Bit 7  
LEDF7  
0
6
LEDF6  
0
5
LEDF5  
0
4
LEDF4  
0
3
LEDF3  
0
2
LEDF2  
0
1
LEDF1  
0
Bit 0  
LEDF0  
0
Read:  
Write:  
Reset:  
Figure 18-23. Port F LED Control Register (LEDF)  
LEDF[7:0] — Port F LED Drive Enable Bits  
These read/write bits are software programmable to enable the direct  
LED drive on an output port pin.  
1 = Corresponding port F pin is configured for direct LED drive,  
with 15mA current sinking capability  
0 = Corresponding port F pin is configured for standard drive  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
399  
Input/Output (I/O) Ports  
 
Input/Output (I/O) Ports  
Data Sheet  
400  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Input/Output (I/O) Ports  
Data Sheet — MC68HC908LJ24  
Section 19. External Interrupt (IRQ)  
19.1 Contents  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .401  
19.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .401  
19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .402  
19.4.1 IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404  
19.5 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .405  
19.6 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . .405  
19.2 Introduction  
19.3 Features  
The external interrupt (IRQ) module provides a maskable interrupt input.  
Features of the IRQ module include the following:  
• A dedicated external interrupt pin (IRQ)  
• IRQ interrupt control bits  
• Hysteresis buffer  
• Programmable edge-only or edge and level interrupt sensitivity  
• Automatic interrupt acknowledge  
• Internal pullup resistor  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
401  
External Interrupt (IRQ)  
 
 
External Interrupt (IRQ)  
19.4 Functional Description  
A logic 0 applied to the external interrupt pin can latch a CPU interrupt  
request. Figure 19-1 shows the structure of the IRQ module.  
Interrupt signals on the IRQ pin are latched into the IRQ latch. An  
interrupt latch remains set until one of the following actions occurs:  
• Vector fetch — A vector fetch automatically generates an interrupt  
acknowledge signal that clears the IRQ latch.  
• Software clear — Software can clear the interrupt latch by writing  
to the acknowledge bit in the interrupt status and control register  
(INTSCR). Writing a logic 1 to the ACK bit clears the IRQ latch.  
• Reset — A reset automatically clears the interrupt latch.  
The external interrupt pin is falling-edge-triggered and is software-  
configurable to be either falling-edge or low-level-triggered. The MODE  
bit in the INTSCR controls the triggering sensitivity of the IRQ pin.  
When the interrupt pin is edge-triggered only, the CPU interrupt request  
remains set until a vector fetch, software clear, or reset occurs.  
When the interrupt pin is both falling-edge and low-level-triggered, the  
CPU interrupt request remains set until both of the following occur:  
• Vector fetch or software clear  
• Return of the interrupt pin to logic 1  
The vector fetch or software clear may occur before or after the interrupt  
pin returns to logic 1. As long as the pin is low, the interrupt request  
remains pending. A reset will clear the latch and the MODE control bit,  
thereby clearing the interrupt even if the pin stays low.  
When set, the IMASK bit in the INTSCR mask all external interrupt  
requests. A latched interrupt request is not presented to the interrupt  
priority logic unless the IMASK bit is clear.  
NOTE: The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including external interrupt requests.  
Data Sheet  
402  
MC68HC908LJ24/LK24 — Rev. 2.1  
External Interrupt (IRQ)  
Freescale Semiconductor  
External Interrupt (IRQ)  
Functional Description  
RESET  
ACK  
TO CPU FOR  
BIL/BIH  
VECTOR  
FETCH  
INSTRUCTIONS  
DECODER  
VDD  
VDD  
INTERNAL  
PULLUP  
DEVICE  
IRQF  
CLR  
D
Q
IRQ  
SYNCHRONIZER  
INTERRUPT  
REQUEST  
CK  
IRQ  
IMASK  
MODE  
TO MODE  
SELECT  
LOGIC  
HIGH  
VOLTAGE  
DETECT  
Figure 19-1. IRQ Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
IRQF  
IRQ Status and Control  
Register  
IMASK MODE  
$001E  
ACK  
0
(INTSCR)  
0
0
0
0
0
0
0
= Unimplemented  
Figure 19-2. IRQ I/O Port Register Summary  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
403  
External Interrupt (IRQ)  
External Interrupt (IRQ)  
19.4.1 IRQ Pin  
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch.  
A vector fetch, software clear, or reset clears the IRQ latch.  
If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and low-  
level-sensitive. With MODE set, both of the following actions must occur  
to clear IRQ:  
• Vector fetch or software clear — A vector fetch generates an  
interrupt acknowledge signal to clear the latch. Software may  
generate the interrupt acknowledge signal by writing a logic 1 to  
the ACK bit in the interrupt status and control register (INTSCR).  
The ACK bit is useful in applications that poll the IRQ pin and  
require software to clear the IRQ latch. Writing to the ACK bit prior  
to leaving an interrupt service routine can also prevent spurious  
interrupts due to noise. Setting ACK does not affect subsequent  
transitions on the IRQ pin. A falling edge that occurs after writing  
to the ACK bit latches another interrupt request. If the IRQ mask  
bit, IMASK, is clear, the CPU loads the program counter with the  
vector address at locations $FFFA and $FFFB.  
• Return of the IRQ pin to logic 1 — As long as the IRQ pin is at  
logic 0, IRQ remains active.  
The vector fetch or software clear and the return of the IRQ pin to logic 1  
may occur in any order. The interrupt request remains pending as long  
as the IRQ pin is at logic 0. A reset will clear the latch and the MODE  
control bit, thereby clearing the interrupt even if the pin stays low.  
If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With  
MODE clear, a vector fetch or software clear immediately clears the IRQ  
latch.  
The IRQF bit in the INTSCR register can be used to check for pending  
interrupts. The IRQF bit is not affected by the IMASK bit, which makes it  
useful in applications where polling is preferred.  
Use the BIH of BIL instruction to read the logic level on the IRQ pin.  
NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
Data Sheet  
404  
MC68HC908LJ24/LK24 — Rev. 2.1  
External Interrupt (IRQ)  
Freescale Semiconductor  
External Interrupt (IRQ)  
IRQ Module During Break Interrupts  
19.5 IRQ Module During Break Interrupts  
The system integration module (SIM) controls whether the IRQ latch can  
be cleared during the break state. The BCFE bit in the break flag control  
register (BFCR) enables software to clear the latches during the break  
state. (See Section 23. Break Module (BRK).)  
To allow software to clear the IRQ latch during a break interrupt, write a  
logic 1 to the BCFE bit. If a latch is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect the latches during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), writing to the ACK bit in the  
IRQ status and control register during the break state has no effect on  
the IRQ latch.  
19.6 IRQ Status and Control Register (INTSCR)  
The IRQ status and control register (INTSCR) controls and monitors  
operation of the IRQ module. The INTSCR has the following functions:  
• Shows the state of the IRQ flag  
• Clears the IRQ latch  
• Masks IRQ and interrupt request  
• Controls triggering sensitivity of the IRQ interrupt pin  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
405  
External Interrupt (IRQ)  
External Interrupt (IRQ)  
Address: $001E  
Bit 7  
0
6
0
5
0
4
0
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
Write:  
Reset:  
IRQF  
ACK  
0
0
0
0
0
0
= Unimplemented  
Figure 19-3. IRQ Status and Control Register (INTSCR)  
IRQF — IRQ Flag Bit  
This read-only status bit is high when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK — IRQ Interrupt Request Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the IRQ latch. ACK always  
reads as logic 0. Reset clears ACK.  
IMASK — IRQ Interrupt Mask Bit  
Writing a logic 1 to this read/write bit disables IRQ interrupt requests.  
Reset clears IMASK.  
1 = IRQ interrupt requests disabled  
0 = IRQ interrupt requests enabled  
MODE — IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin.  
Reset clears MODE.  
1 = IRQ interrupt requests on falling edges and low levels  
0 = IRQ interrupt requests on falling edges only  
Data Sheet  
406  
MC68HC908LJ24/LK24 — Rev. 2.1  
External Interrupt (IRQ)  
Freescale Semiconductor  
Data Sheet — MC68HC908LJ24  
Section 20. Keyboard Interrupt Module (KBI)  
20.1 Contents  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407  
20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408  
20.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408  
20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .409  
20.5.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . .411  
20.6 Keyboard Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . .412  
20.6.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . .412  
20.6.2 Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . .413  
20.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .414  
20.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .414  
20.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .414  
20.8 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .414  
20.2 Introduction  
The keyboard interrupt module (KBI) provides eight independently  
maskable external interrupts which are accessible via PTA0–PTA3 and  
PTD4–PTD7. When a port pin is enabled for keyboard interrupt function  
(except PTD6 and PTD7), an internal 30kpullup device is also enabled  
on the pin.  
NOTE: PTD6/KBI6/SCL–PTD7/KBI7/SDA pins do not have internal pullup  
devices. These two pins are open-drain when configured as outputs.  
User should connect pullup devices when using these two pins for KBI  
function.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
407  
Keyboard Interrupt Module (KBI)  
 
Keyboard Interrupt Module (KBI)  
20.3 Features  
Features of the keyboard interrupt module include the following:  
• Eight keyboard interrupt pins with pullup devices  
• Separate keyboard interrupt enable bits and one keyboard  
interrupt mask  
• Programmable edge-only or edge- and level- interrupt sensitivity  
• Exit from low-lower modes  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status and  
IMASKK MODEK  
$001B  
Control Register Write:  
(KBSCR)  
Reset:  
0
KBIE7  
0
0
KBIE6  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
0
KBIE1  
0
0
KBIE0  
0
Read:  
Keyboard Interrupt  
KBIE2  
0
$001C  
Enable Register Write:  
(KBIER)  
Reset:  
= Unimplemented  
Figure 20-1. KBI I/O Register Summary  
20.4 I/O Pins  
The eight keyboard interrupt pins are shared with standard port I/O pins.  
The full name of the KBI pins are listed in Table 20-1. The generic pin  
name appear in the text that follows.  
Table 20-1. Pin Name Conventions  
KBI  
Pin Selected for KBI Function by  
Full MCU Pin Name  
Generic Pin Name  
KBIEx Bit in KBIER  
KBIE0–KBIE3  
KBIE4  
KBI0–KBI3  
KBI4  
PTA0/KBI0–PTA3/KBI3  
(1)  
PTD4/KBI4/T1CLK  
(1)  
KBI5  
PTD5/KBI5/T2CLK  
KBIE5  
(1)  
KBI6  
PTD6/KBI6/SCL  
KBIE6  
(1)  
KBI7  
PTD7/KBI7/SDA  
KBIE7  
Notes:  
1. Do not enable the KBI function if the pin is used for TIM / MMIIC function.  
Data Sheet  
408  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Keyboard Interrupt Module (KBI)  
 
Keyboard Interrupt Module (KBI)  
Functional Description  
20.5 Functional Description  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
KBI0  
ACKK  
VDD  
KEYF  
RESET  
CLR  
.
D
Q
KEYBOARD  
INTERRUPT  
REQUEST  
SYNCHRONIZER  
KBIE0  
.
CK  
TO PULLUP ENABLE  
.
KEYBOARD  
INTERRUPT FF  
IMASKK  
KBI7  
MODEK  
KBIE7  
TO PULLUP ENABLE  
Figure 20-2. Keyboard Interrupt Block Diagram  
Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register  
independently enables or disables a port A or port D pin as a keyboard  
interrupt pin. Enabling a keyboard interrupt pin in port A or port D also  
enables its internal pullup device. A logic 0 applied to an enabled  
keyboard interrupt pin latches a keyboard interrupt request.  
A keyboard interrupt is latched when one or more keyboard pins goes  
low after all were high. The MODEK bit in the keyboard status and  
control register controls the triggering mode of the keyboard interrupt.  
• If the keyboard interrupt is edge-sensitive only, a falling edge on a  
keyboard pin does not latch an interrupt request if another  
keyboard pin is already low. To prevent losing an interrupt request  
on one pin because another pin is still low, software can disable  
the latter pin while it is low.  
• If the keyboard interrupt is falling edge- and low level-sensitive, an  
interrupt request is present as long as any keyboard pin is low.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
409  
Keyboard Interrupt Module (KBI)  
Keyboard Interrupt Module (KBI)  
If the MODEK bit is set, the keyboard interrupt pins are both falling edge-  
and low level-sensitive, and both of the following actions must occur to  
clear a keyboard interrupt request:  
• Vector fetch or software clear — A vector fetch generates an  
interrupt acknowledge signal to clear the interrupt request.  
Software may generate the interrupt acknowledge signal by  
writing a logic 1 to the ACKK bit in the keyboard status and control  
register KBSCR. The ACKK bit is useful in applications that poll  
the keyboard interrupt pins and require software to clear the  
keyboard interrupt request. Writing to the ACKK bit prior to leaving  
an interrupt service routine can also prevent spurious interrupts  
due to noise. Setting ACKK does not affect subsequent transitions  
on the keyboard interrupt pins. A falling edge that occurs after  
writing to the ACKK bit latches another interrupt request. If the  
keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the  
program counter with the vector address at locations $FFDC and  
$FFDD.  
• Return of all enabled keyboard interrupt pins to logic 1 — As long  
as any enabled keyboard interrupt pin is at logic 0, the keyboard  
interrupt remains set.  
The vector fetch or software clear and the return of all enabled keyboard  
interrupt pins to logic 1 may occur in any order.  
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge-  
sensitive only. With MODEK clear, a vector fetch or software clear  
immediately clears the keyboard interrupt request.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing  
the interrupt request even if a keyboard interrupt pin stays at logic 0.  
The keyboard flag bit (KEYF) in the keyboard status and control register  
can be used to see if a pending interrupt exists. The KEYF bit is not  
affected by the keyboard interrupt mask bit (IMASKK) which makes it  
useful in applications where polling is preferred.  
To determine the logic level on a keyboard interrupt pin, use the data  
direction register to configure the pin as an input and read the data  
register.  
Data Sheet  
410  
MC68HC908LJ24/LK24 — Rev. 2.1  
Keyboard Interrupt Module (KBI)  
Freescale Semiconductor  
Keyboard Interrupt Module (KBI)  
Functional Description  
NOTE: Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction  
register. However, the data direction register bit must be a logic 0 for  
software to read the pin.  
20.5.1 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal  
pullup to reach a logic 1. Therefore a false interrupt can occur as soon  
as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting the IMASKK bit in the  
keyboard status and control register.  
2. Enable the KBI pins by setting the appropriate KBIEx bits in the  
keyboard interrupt enable register.  
3. Write to the ACKK bit in the keyboard status and control register  
to clear any false interrupts.  
4. Clear the IMASKK bit.  
An interrupt signal on an edge-triggered pin can be acknowledged  
immediately after enabling the pin. An interrupt signal on an edge- and  
level-triggered interrupt pin must be acknowledged after a delay that  
depends on the external load.  
Another way to avoid a false interrupt:  
1. Configure the keyboard pins as outputs by setting the appropriate  
DDR bits in data direction register.  
2. Write logic 1s to the appropriate data register bits.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in the  
keyboard interrupt enable register.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
411  
Keyboard Interrupt Module (KBI)  
Keyboard Interrupt Module (KBI)  
20.6 Keyboard Interrupt Registers  
Two registers control the operation of the keyboard interrupt module:  
• Keyboard status and control register (KBSCR)  
• Keyboard interrupt enable register (KBIER)  
20.6.1 Keyboard Status and Control Register  
• Flags keyboard interrupt requests  
• Acknowledges keyboard interrupt requests  
• Masks keyboard interrupt requests  
• Controls keyboard interrupt triggering sensitivity  
Address: $001B  
Bit 7  
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
KEYF  
0
ACKK  
0
IMASKK MODEK  
0
0
0
0
0
0
0
= Unimplemented  
Figure 20-3. Keyboard Status and Control Register (KBSCR)  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending.  
Reset clears the KEYF bit.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
ACKK — Keyboard Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the keyboard interrupt  
request. ACKK always reads as logic 0. Reset clears ACKK.  
Data Sheet  
412  
MC68HC908LJ24/LK24 — Rev. 2.1  
Keyboard Interrupt Module (KBI)  
Freescale Semiconductor  
Keyboard Interrupt Module (KBI)  
Keyboard Interrupt Registers  
IMASKK — Keyboard Interrupt Mask Bit  
Writing a logic 1 to this read/write bit prevents the output of the  
keyboard interrupt mask from generating interrupt requests. Reset  
clears the IMASKK bit.  
1 = Keyboard interrupt requests masked  
0 = Keyboard interrupt requests not masked  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard  
interrupt pins. Reset clears MODEK.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
20.6.2 Keyboard Interrupt Enable Register  
The keyboard interrupt enable register individually enables or disables  
the PTA0/KBI0–PTA3/KBI3 and PTD4/KBI4–PTD7/KBI7 pins to operate  
as a keyboard interrupt pin.  
Address: $001C  
Bit 7  
KBIE7  
0
6
KBIE6  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
Figure 20-4. Keyboard Interrupt Enable Register (KBIER)  
KBIE7–KBIE0 — Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard  
interrupt pin to latch interrupt requests. Reset clears the keyboard  
interrupt enable register.  
1 = KBIx pin enabled as keyboard interrupt pin  
0 = KBIx pin not enabled as keyboard interrupt pin  
NOTE: KBI5–KBI0 pin has an internal pullup device when KBIEx is set.  
KBI7–KBI6 pin does not have an internal pullup device.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
413  
Keyboard Interrupt Module (KBI)  
Keyboard Interrupt Module (KBI)  
20.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
20.7.1 Wait Mode  
20.7.2 Stop Mode  
The keyboard interrupt module remains active in wait mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of wait mode.  
The keyboard interrupt module remains active in stop mode. Clearing  
the IMASKK bit in the keyboard status and control register enables  
keyboard interrupt requests to bring the MCU out of stop mode.  
20.8 Keyboard Module During Break Interrupts  
The system integration module (SIM) controls whether the keyboard  
interrupt latch can be cleared during the break state. The BCFE bit in the  
SIM break flag control register (BFCR) enables software to clear status  
bits during the break state.  
To allow software to clear the keyboard interrupt latch during a break  
interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the  
break state, it remains cleared when the MCU exits the break state.  
To protect the latch during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), writing to the keyboard  
acknowledge bit (ACKK) in the keyboard status and control register  
during the break state has no effect.  
Data Sheet  
414  
MC68HC908LJ24/LK24 — Rev. 2.1  
Keyboard Interrupt Module (KBI)  
Freescale Semiconductor  
Data Sheet — MC68HC908LJ24  
Section 21. Computer Operating Properly (COP)  
21.1 Contents  
21.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .415  
21.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .416  
21.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417  
21.4.1 ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417  
21.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417  
21.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417  
21.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .417  
21.4.5 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .418  
21.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .418  
21.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .418  
21.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . .418  
21.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419  
21.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419  
21.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419  
21.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .419  
21.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .420  
21.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .420  
21.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .420  
21.2 Introduction  
The computer operating properly (COP) module contains a free-running  
counter that generates a reset if allowed to overflow. The COP module  
helps software recover from runaway code. Prevent a COP reset by  
clearing the COP counter periodically. The COP module can be disabled  
through the COPD bit in the configuration register 1 (CONFIG1).  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
415  
Computer Operating Properly (COP)  
 
Computer Operating Properly (COP)  
21.3 Functional Description  
Figure 21-1 shows the structure of the COP module.  
RESET CIRCUIT  
12-BIT COP PRESCALER  
ICLK  
RESET STATUS REGISTER  
STOP INSTRUCTION  
INTERNAL RESET SOURCES  
RESET VECTOR FETCH  
COPCTL WRITE  
COP CLOCK  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COP DISABLE  
(COPD FROM CONFIG1)  
RESET  
CLEAR  
COPCTL WRITE  
COP COUNTER  
COP RATE SEL  
(COPRS FROM CONFIG1)  
Figure 21-1. COP Block Diagram  
The COP counter is a free-running 6-bit counter preceded by a 12-bit  
prescaler counter. If not cleared by software, the COP counter overflows  
18  
4
13  
4
and generates an asynchronous reset after 2 – 2 or 2 – 2 ICLK  
cycles, depending on the state of the COP rate select bit, COPRS, in the  
13  
4
CONFIG1 register. With a 2 – 2 ICLK cycle overflow option, a 47-kHz  
ICLK gives a COP timeout period of 174ms. Writing any value to location  
$FFFF before an overflow occurs prevents a COP reset by clearing the  
COP counter and stages 12 through 5 of the prescaler.  
NOTE: Service the COP immediately after reset and before entering or after  
exiting STOP Mode to guarantee the maximum time before the first COP  
counter overflow.  
Data Sheet  
416  
MC68HC908LJ24/LK24 — Rev. 2.1  
Computer Operating Properly (COP)  
Freescale Semiconductor  
 
Computer Operating Properly (COP)  
I/O Signals  
A COP reset pulls the RST pin low for 32 ICLK cycles and sets the COP  
bit in the SIM reset status register (SRSR).  
In monitor mode, the COP is disabled if the RST pin or the IRQ is held  
at V  
. During the break state, V  
on the RST pin disables the COP.  
TST  
TST  
NOTE: Place COP clearing instructions in the main program and not in an  
interrupt subroutine. Such an interrupt subroutine could keep the COP  
from generating a reset even while the main program is not working  
properly.  
21.4 I/O Signals  
The following paragraphs describe the signals shown in Figure 21-1.  
21.4.1 ICLK  
ICLK is the internal oscillator output signal. ICLK frequency is  
approximately equal to 47-kHz. See Section 24. Electrical  
Specifications for ICLK parameters.  
21.4.2 STOP Instruction  
The STOP instruction clears the COP prescaler.  
21.4.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 21.5 COP  
Control Register) clears the COP counter and clears bits 12 through 5  
of the prescaler. Reading the COP control register returns the low byte  
of the reset vector.  
21.4.4 Power-On Reset  
The power-on reset (POR) circuit clears the COP prescaler 4096 ICLK  
cycles after power-up.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
417  
Computer Operating Properly (COP)  
Computer Operating Properly (COP)  
21.4.5 Internal Reset  
An internal reset clears the COP prescaler and the COP counter.  
21.4.6 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data  
bus. A reset vector fetch clears the COP prescaler.  
21.4.7 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the  
CONFIG1 register. (See Figure 21-2 and Section 5. Configuration  
Registers (CONFIG).)  
21.4.8 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS)  
in the CONFIG1 register.  
Address: $001F  
Bit 7  
6
5
4
3
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
0
COPRS LVISTOP LVIRSTD LVIPWRD  
††  
0
0
0
0
0
†† Reset by POR only.  
= Unimplemented  
Figure 21-2. Configuration Register 1 (CONFIG1)  
COPRS — COP Rate Select  
COPRS selects the COP time-out period. Reset clears COPRS.  
13  
4
1 = COP time out period = 2 – 2 ICLK cycles  
18  
4
0 = COP time out period = 2 – 2 ICLK cycles  
COPD — COP Disable Bit  
COPD disables the COP module.  
1 = COP module disabled  
0 = COP module enabled  
Data Sheet  
418  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Computer Operating Properly (COP)  
 
Computer Operating Properly (COP)  
COP Control Register  
21.5 COP Control Register  
The COP control register is located at address $FFFF and overlaps the  
reset vector. Writing any value to $FFFF clears the COP counter and  
starts a new timeout period. Reading location $FFFF returns the low  
byte of the reset vector.  
Address: $FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 21-3. COP Control Register (COPCTL)  
21.6 Interrupts  
The COP does not generate CPU interrupt requests.  
21.7 Monitor Mode  
When monitor mode is entered with V  
on the IRQ pin, the COP is  
TST  
disabled as long as V  
remains on the IRQ pin or the RST pin. When  
TST  
monitor mode is entered by having blank reset vectors and not having  
on the IRQ pin, the COP is automatically disabled until a POR  
V
TST  
occurs.  
21.8 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
419  
Computer Operating Properly (COP)  
Computer Operating Properly (COP)  
21.8.1 Wait Mode  
The COP remains active during wait mode. To prevent a COP reset  
during wait mode, periodically clear the COP counter in a CPU interrupt  
routine.  
21.8.2 Stop Mode  
Stop mode turns off the ICLK input to the COP and clears the COP  
prescaler. Service the COP immediately before entering or after exiting  
stop mode to ensure a full COP timeout period after entering or exiting  
stop mode.  
To prevent inadvertently turning off the COP with a STOP instruction, a  
configuration option is available that disables the STOP instruction.  
When the STOP bit in the configuration register has the STOP  
instruction is disabled, execution of a STOP instruction results in an  
illegal opcode reset.  
21.9 COP Module During Break Mode  
The COP is disabled during a break interrupt when V  
is present on  
TST  
the RST pin.  
Data Sheet  
420  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Computer Operating Properly (COP)  
Data Sheet — MC68HC908LJ24  
Section 22. Low-Voltage Inhibit (LVI)  
22.1 Contents  
22.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421  
22.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421  
22.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .422  
22.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .424  
22.4.2 Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . .424  
22.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . .424  
22.4.4 LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .425  
22.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .425  
22.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .426  
22.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .426  
22.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .426  
22.2 Introduction  
22.3 Features  
This section describes the low-voltage inhibit (LVI) module, which  
monitors the voltage on the V pin and can force a reset when the V  
DD  
DD  
voltage falls below the LVI trip falling voltage, V  
.
TRIPF  
Features of the LVI module include:  
• Programmable LVI interrupt and reset  
• Selectable LVI trip voltage  
• Programmable stop mode operation  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
421  
Low-Voltage Inhibit (LVI)  
 
 
Low-Voltage Inhibit (LVI)  
Addr.  
Register Name  
Bit 7  
6
LVIIE  
0
5
4
3
2
1
Bit 0  
Read: LVIOUT  
LVIIF  
0
LVIIACK  
0
0
0
0
0
Low-Voltage Inhibit Status  
$FE0F  
Register Write:  
(LVISR)  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 22-1. LVI I/O Register Summary  
22.4 Functional Description  
Figure 22-2 shows the structure of the LVI module.  
VDD  
STOP INSTRUCTION  
LVISTOP  
FROM CONFIG1  
DEFAULT  
FROM CONFIG1  
LVIRSTD  
ENABLED  
LVIPWRD  
FROM CONFIG1  
V
V
DD > VTRIPR = 0  
LVI RESET  
LOW VDD  
DETECTOR  
DD VTRIPF = 1  
FROM LVISR  
LVIIE  
LVISEL[1:0]  
FROM CONFIG2  
LVI  
INTERRUPT  
REQUEST  
EDGE  
DETECT  
LATCH  
CLR  
LVIOUT  
LVIIACK  
LVIIF  
TO LVISR  
FROM LVISR TO LVISR  
Figure 22-2. LVI Module Block Diagram  
The LVI is enabled out of reset. The LVI module contains a bandgap  
reference circuit and comparator. Clearing the LVI power disable bit,  
LVIPWRD, enables the LVI to monitor V voltage. Clearing the LVI  
DD  
reset disable bit, LVIRSTD, enables the LVI module to generate a reset  
when V falls below a voltage, V  
. Setting the LVI enable in stop  
TRIPF  
DD  
mode bit, LVISTOP, enables the LVI to operate in stop mode.  
Data Sheet  
422  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Low-Voltage Inhibit (LVI)  
 
Low-Voltage Inhibit (LVI)  
Functional Description  
The LVI trip point selection bits, LVISEL[1:0], select the trip point  
voltage, V , to be configured for 5V or 3V operation. The actual trip  
TRIPF  
points are shown in Section 24. Electrical Specifications.  
Setting LVI interrupt enable bit, LVIIE, enables LVI interrupts whenever  
the LVIOUT bit toggles (from logic 0 to logic 1, or from logic 1 to logic 0).  
NOTE: After a power-on reset (POR) the LVI’s default mode of operation is 3V.  
If a 5V system is used, the user must modified the LVISEL[1:0] bits to  
raise the trip point to 5V operation. Note that this must be done after  
every power-on reset since the default will revert back to 3V mode after  
each power-on reset. If the V supply is below the 3V mode trip voltage  
DD  
when POR is released, the MCU will immediately go into reset. The LVI  
in this case will hold the MCU in reset until either V goes above the  
DD  
rising 3V trip point, V  
, which will release reset or V decreases to  
DD  
TRIPR  
approximately 0V which will re-trigger the power-on reset.  
LVISTOP, LVIPWRD, LVIRSTD, and LVISEL[1:0] are in the  
configuration registers. See Section 5. Configuration Registers  
(CONFIG) for details of the LVI’s configuration bits. Once an LVI reset  
occurs, the MCU remains in reset until V rises above a voltage,  
DD  
V
, which causes the MCU to exit reset. See 9.4.2.5 Low-Voltage  
TRIPR  
Inhibit (LVI) Reset for details of the interaction between the SIM and the  
LVI. The output of the comparator controls the state of the LVIOUT flag  
in the LVI status register (LVISR). The LVIIE, LVIIF, and LVIIACK bits in  
the LVISR control LVI interrupt functions.  
An LVI reset also drives the RST pin low to provide low-voltage  
protection to external peripheral devices.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
423  
Low-Voltage Inhibit (LVI)  
Low-Voltage Inhibit (LVI)  
22.4.1 Polled LVI Operation  
In applications that can operate at V levels below the V  
level,  
TRIPF  
DD  
software can monitor V by polling the LVIOUT bit, or by setting the LVI  
DD  
interrupt enable bit, LVIIE, to enable interrupt requests. In the  
configuration register 1 (CONFIG1), the LVIPWRD bit must be at logic 0  
to enable the LVI module, and the LVIRSTD bit must be at logic 1 to  
disable LVI resets.  
The LVI interrupt flag, LVIIF, is set whenever the LVIOUT bit changes  
state (toggles). When LVIF is set, a CPU interrupt request is generated  
if the LVIIE is also set. In the LVI interrupt service subroutine, LVIIF bit  
can be cleared by writing a logic 1 to the LVI interrupt acknowledge bit,  
LVIIACK.  
22.4.2 Forced Reset Operation  
In applications that require V to remain above the V  
level,  
TRIPF  
DD  
enabling LVI resets allows the LVI module to reset the MCU when V  
DD  
falls below the V  
level. In the configuration register 1 (CONFIG1),  
TRIPF  
the LVIPWRD and LVIRSTD bits must be at logic 0 to enable the LVI  
module and to enable LVI resets.  
If LVIIE is set to enable LVI interrupts when LVIRSTD is cleared, LVI  
reset has a higher priority over LVI interrupt. In this case, when V falls  
DD  
below the V  
cleared.  
level, an LVI reset will occur, and the LVIIE bit will be  
TRIPF  
22.4.3 Voltage Hysteresis Protection  
Once the LVI has triggered (by having V fall below V  
), the LVI  
TRIPF  
DD  
will maintain a reset condition until V rises above the rising trip point  
DD  
voltage, V  
. This prevents a condition in which the MCU is  
TRIPR  
continually entering and exiting reset if V is approximately equal to  
DD  
V
. V  
is greater than V  
by the hysteresis voltage, V  
.
TRIPF  
TRIPR  
TRIPF  
HYS  
Data Sheet  
424  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Low-Voltage Inhibit (LVI)  
Low-Voltage Inhibit (LVI)  
LVI Status Register  
22.4.4 LVI Trip Selection  
The trip point selection bits, LVISEL[1:0], in the CONFIG2 register select  
whether the LVI is configured for 5V or 3V operation. (See Section 5.  
Configuration Registers (CONFIG).)  
NOTE: The MCU is guaranteed to operate at a minimum supply voltage. The trip  
point (V  
[5V] or V  
[3V]) may be lower than this. (See  
TRIPF  
TRIPF  
Section 24. Electrical Specifications for the actual trip point voltages.)  
22.5 LVI Status Register  
The LVI status register (LVISR) controls LVI interrupt functions and  
indicates if the V voltage was detected below the V  
level.  
TRIPF  
DD  
Address: $FE0F  
Bit 7  
Read: LVIOUT  
Write:  
6
LVIIE  
0
5
4
3
0
2
0
1
Bit 0  
0
LVIIF  
0
LVIIACK  
0
0
Reset:  
0
0
0
0
0
0
= Unimplemented  
Table 22-1. LVI Status Register (LVISR)  
LVIOUT — LVI Output Bit  
This read-only flag becomes set when the V voltage falls below the  
DD  
V
trip voltage (see Table 22-2). Reset clears the LVIOUT bit.  
TRIPF  
Table 22-2. LVIOUT Bit Indication  
V
LVIOUT  
DD  
V
> V  
< V  
0
DD  
TRIPR  
V
1
DD  
TRIPF  
V
< V < V  
DD TRIPR  
Previous value  
TRIPF  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
425  
Low-Voltage Inhibit (LVI)  
 
Low-Voltage Inhibit (LVI)  
LVIIE — LVI Interrupt Enable Bit  
This read/write bit enables the LVIIF bit to generate CPU interrupt  
requests. Reset clears the LVIIE bit.  
1 = LVIIF can generate CPU interrupt requests  
0 = LVIIF cannot generate CPU interrupt requests  
LVIIF — LVI Interrupt Flag  
This clearable, read-only flag is set whenever the LVIOUT bit toggles.  
Reset clears the LVIIF bit.  
1 = LVIOUT has toggled  
0 = LVIOUT has not toggled  
LVIIACK — LVI Interrupt Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the LVI interrupt flag,  
LVIIF. LVIIACK always reads as logic 0.  
1 = Clears LVIIF bit  
0 = No effect  
22.6 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-  
consumption standby modes.  
22.6.1 Wait Mode  
22.6.2 Stop Mode  
If enabled, the LVI module remains active in wait mode. If enabled to  
generate resets or interrupts, the LVI module can generate a reset or an  
interrupt and bring the MCU out of wait mode.  
If enabled in stop mode (LVISTOP = 1), the LVI module remains active  
in stop mode. If enabled to generate resets or interrupts, the LVI module  
can generate a reset or an interrupt and bring the MCU out of stop mode.  
NOTE: If enabled to generate both resets and interrupts, there will be no LVI  
interrupts, as resets have a higher priority.  
Data Sheet  
426  
MC68HC908LJ24/LK24 — Rev. 2.1  
Low-Voltage Inhibit (LVI)  
Freescale Semiconductor  
Data Sheet — MC68HC908LJ24  
Section 23. Break Module (BRK)  
23.1 Contents  
23.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .427  
23.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .428  
23.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .428  
23.4.1 Flag Protection During Break Interrupts. . . . . . . . . . . . . . .430  
23.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .430  
23.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . .430  
23.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .430  
23.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .430  
23.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .430  
23.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431  
23.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431  
23.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . .431  
23.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .432  
23.6.3 SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . .432  
23.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . .434  
23.2 Introduction  
This section describes the break module. The break module can  
generate a break interrupt that stops normal program flow at a defined  
address to enter a background program.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
427  
Break Module (BRK)  
 
Break Module (BRK)  
23.3 Features  
Features of the break module include:  
• Accessible input/output (I/O) registers during the break interrupt  
• CPU-generated break interrupts  
• Software-generated break interrupts  
• COP disabling during break interrupts  
23.4 Functional Description  
When the internal address bus matches the value written in the break  
address registers, the break module issues a breakpoint signal to the  
CPU. The CPU then loads the instruction register with a software  
interrupt instruction (SWI) after completion of the current CPU  
instruction. The program counter vectors to $FFFC and $FFFD ($FEFC  
and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
• A CPU-generated address (the address in the program counter)  
matches the contents of the break address registers.  
• Software writes a logic 1 to the BRKA bit in the break status and  
control register.  
When a CPU-generated address matches the contents of the break  
address registers, the break interrupt begins after the CPU completes its  
current instruction. A return-from-interrupt instruction (RTI) in the break  
routine ends the break interrupt and returns the MCU to normal  
operation. Figure 23-1 shows the structure of the break module.  
Data Sheet  
428  
MC68HC908LJ24/LK24 — Rev. 2.1  
Break Module (BRK)  
Freescale Semiconductor  
Break Module (BRK)  
Functional Description  
IAB15–IAB8  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
IAB15–IAB0  
CONTROL  
BREAK  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
IAB7–IAB0  
Figure 23-1. Break Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
SBSW  
Note  
0
Bit 0  
Read:  
R
R
R
R
R
R
R
SIM Break Status Register  
(SBSR)  
$FE00  
Write:  
Reset:  
Read:  
SIM Break Flag Control  
BCFE  
R
R
R
R
R
R
R
$FE03  
$FE0C  
$FE0D  
$FE0E  
Register Write:  
(SBFCR)  
Reset:  
0
Bit 15  
0
Read:  
Break Address  
14  
13  
0
12  
0
11  
0
10  
0
9
0
1
Bit 8  
0
Register High Write:  
(BRKH)  
Reset:  
0
Read:  
Break Address  
Bit 7  
0
6
5
4
3
2
Bit 0  
Register Low Write:  
(BRKL)  
Reset:  
0
BRKA  
0
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
BRKE  
0
Register Write:  
(BRKSCR)  
Reset:  
0
0
0
0
0
0
Note: Writing a logic 0 clears SBSW.  
= Unimplemented  
R
= Reserved  
Figure 23-2. Break Module I/O Register Summary  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
429  
Break Module (BRK)  
Break Module (BRK)  
23.4.1 Flag Protection During Break Interrupts  
The BCFE bit in the SIM break flag control register (SBFCR) enables  
software to clear status bits during the break state.  
23.4.2 CPU During Break Interrupts  
The CPU starts a break interrupt by:  
• Loading the instruction register with the SWI instruction  
• Loading the program counter with $FFFC and $FFFD  
($FEFC and $FEFD in monitor mode)  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
23.4.3 TIM1 and TIM2 During Break Interrupts  
A break interrupt stops the timer counters.  
23.4.4 COP During Break Interrupts  
The COP is disabled during a break interrupt when V  
the RST pin.  
is present on  
TST  
23.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
23.5.1 Wait Mode  
If enabled, the break module is active in wait mode. In the break routine,  
the user can subtract one from the return address on the stack if SBSW  
is set (see Section 9. System Integration Module (SIM)). Clear the  
SBSW bit by writing logic 0 to it.  
Data Sheet  
430  
MC68HC908LJ24/LK24 — Rev. 2.1  
Break Module (BRK)  
Freescale Semiconductor  
Break Module (BRK)  
Break Module Registers  
23.5.2 Stop Mode  
A break interrupt causes exit from stop mode and sets the SBSW bit in  
the break status register.  
23.6 Break Module Registers  
These registers control and monitor operation of the break module:  
• Break status and control register (BRKSCR)  
• Break address register high (BRKH)  
• Break address register low (BRKL)  
• SIM break status register (SBSR)  
• SIM break flag control register (SBFCR)  
23.6.1 Break Status and Control Register  
The break status and control register (BRKSCR) contains break module  
enable and status bits.  
Address: $FE0E  
Bit 7  
BRKE  
0
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 23-3. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches.  
Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled on 16-bit address match  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
431  
Break Module (BRK)  
Break Module (BRK)  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address  
match occurs. Writing a logic 1 to BRKA generates a break interrupt.  
Clear BRKA by writing a logic 0 to it before exiting the break routine.  
Reset clears the BRKA bit.  
1 = (When read) Break address match  
0 = (When read) No break address match  
23.6.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low  
bytes of the desired breakpoint address. Reset clears the break address  
registers.  
Address: $FE0C  
Bit 7  
Bit 15  
0
6
14  
0
5
13  
0
4
12  
0
3
11  
0
2
10  
0
1
9
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Figure 23-4. Break Address Register High (BRKH)  
Address: $FE0D  
Bit 7  
6
6
0
5
5
0
4
4
0
3
3
0
2
2
0
1
1
0
Bit 0  
Bit 0  
0
Read:  
Bit 7  
Write:  
Reset:  
0
Figure 23-5. Break Address Register Low (BRKL)  
23.6.3 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a  
break caused an exit from wait mode. The flag is useful in applications  
requiring a return to wait mode after exiting from a break interrupt.  
Data Sheet  
432  
MC68HC908LJ24/LK24 — Rev. 2.1  
Break Module (BRK)  
Freescale Semiconductor  
Break Module (BRK)  
Break Module Registers  
Address: $FE00  
Bit 7  
6
R
0
5
4
3
R
0
2
R
0
1
SBSW  
Note  
0
Bit 0  
R
Read:  
R
R
R
Write:  
Reset:  
0
0
0
0
Note: Writing a logic 0 clears SBSW.  
R
= Reserved  
Figure 23-6. SIM Break Status Register (SBSR)  
SBSW — Break Wait Bit  
This status bit is set when a break interrupt causes an exit from wait  
mode or stop mode. Clear SBSW by writing a logic 0 to it. Reset clears  
SBSW.  
1 = Stop mode or wait mode was exited by break interrupt  
0 = Stop mode or wait mode was not exited by break interrupt  
SBSW can be read within the break interrupt routine. The user can  
modify the return address on the stack by subtracting 1 from it. The  
following code is an example.  
;This code works if the H register has been pushed onto the stack in the break  
;service routine software. This code should be executed at the end of the break  
;service routine software.  
HIBYTE  
LOBYTE  
EQU  
EQU  
5
6
;
If not SBSW, do RTI  
BRCLR  
SBSW,SBSR, RETURN  
;See if wait mode or stop mode was exited by  
;break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
;If RETURNLO is not zero,  
;then just decrement low byte.  
;Else deal with high byte, too.  
;Point to WAIT/STOP opcode.  
;Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN  
PULH  
RTI  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
Break Module (BRK)  
433  
Break Module (BRK)  
23.6.4 SIM Break Flag Control Register  
The SIM break flag control register (SBFCR) contains a bit that enables  
software to clear status bits while the MCU is in a break state.  
Address: $FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 23-7. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
Data Sheet  
434  
MC68HC908LJ24/LK24 — Rev. 2.1  
Break Module (BRK)  
Freescale Semiconductor  
Data Sheet — MC68HC908LJ24  
Section 24. Electrical Specifications  
24.1 Contents  
24.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .435  
24.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .436  
24.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .437  
24.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .437  
24.6 5V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . .438  
24.7 3.3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .439  
24.8 5V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .440  
24.9 3.3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .441  
24.10 5V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .441  
24.11 3.3V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . .442  
24.12 5V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .443  
24.13 3.3V ADC Electrical Characteristics. . . . . . . . . . . . . . . . . . . .444  
24.14 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . .445  
24.15 CGM Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . .445  
24.16 5V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .446  
24.17 3.3V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .447  
24.18 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . .450  
24.2 Introduction  
This section contains electrical and timing specifications.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
435  
Electrical Specifications  
 
Electrical Specifications  
24.3 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the MCU can be  
exposed without permanently damaging it.  
NOTE: This device is not guaranteed to operate properly at the maximum  
ratings. Refer to DC Electrical Characteristics for guaranteed  
operating conditions.  
Table 24-1. Absolute Maximum Ratings  
(1)  
Symbol  
Value  
Unit  
Characteristic  
Supply voltage  
V
–0.3 to +6.0  
V
DD  
Input voltage  
All pins (except IRQ)  
IRQ pin  
V
– 0.3 to V + 0.3  
V
V
SS  
DD  
IN  
V
– 0.3 to 8.5  
SS  
Maximum current per pin  
I
±25  
mA  
excluding V and V  
DD  
SS  
Maximum current out of V  
Maximum current into V  
I
100  
100  
mA  
mA  
°C  
SS  
MVSS  
I
DD  
MVDD  
T
Storage temperature  
–55 to +150  
STG  
Notes:  
1. Voltages referenced to VSS  
.
This device contains circuitry to protect the inputs against damage due  
to high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that V and V  
be constrained to the  
IN  
OUT  
range V (V or V  
) V . Reliability of operation is enhanced if  
DD  
SS  
IN  
OUT  
unused inputs are connected to an appropriate logic voltage level (for  
example, either V or V .)  
SS  
DD  
Data Sheet  
436  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Electrical Specifications  
Electrical Specifications  
Functional Operating Range  
24.4 Functional Operating Range  
Table 24-2. Functional Operating Range  
Characteristic  
Symbol  
Value  
Unit  
T
Operating temperature range  
– 40 to +85  
°C  
A
3.3 ± 10%  
5 ± 10%  
V
Operating voltage range  
V
DD  
24.5 Thermal Characteristics  
Table 24-3. Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance  
64-pin LQFP  
64-pin QFP  
80-pin LQFP  
80-pin QFP  
72  
67  
85  
75  
θ
°C/W  
JA  
P
I/O pin power dissipation  
User determined  
W
W
I/O  
P = (I × V ) + P =  
I/O  
D
DD  
DD  
(1)  
P
Power dissipation  
D
K/(T + 273 °C)  
J
P x (T + 273 °C)  
D
A
(2)  
K
W/°C  
°C  
Constant  
2
+ P × θ  
D
JA  
T
T + (P × θ )  
A D JA  
Average junction temperature  
J
Notes:  
1. Power dissipation is a function of temperature.  
2. K constant unique to the device. K can be determined for a known TA and measured PD.  
With this value of K, PD and TJ can be determined for any value of TA.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
437  
Electrical Specifications  
Electrical Specifications  
24.6 5V DC Electrical Characteristics  
Table 24-4. 5V DC Electrical Characteristics  
(1)  
(2)  
Characteristic  
Symbol  
Min  
–0.8  
Typ  
Max  
Unit  
Output high voltage (I  
All ports  
= –2.0 mA)  
LOAD  
V
V
V
OH  
DD  
Output low voltage  
(I  
= 1.6mA) All ports  
LOAD  
V
0.4  
V
OL  
(I  
= 15.0 mA) PTB0–PTB5, PTC0–PTC7,  
LOAD  
PTE0–PTE7, PTF0–PTF7  
Input high voltage  
All ports, RST, IRQ, OSC1  
V
0.7 × V  
V
V
V
IH  
DD  
DD  
Input low voltage  
All ports, RST, IRQ, OSC1  
V
V
0.3 × V  
DD  
IL  
SS  
V
supply current  
DD  
(3)  
Run , f  
= 8 MHz  
OP  
with all modules on  
with ADC on  
with ADC off  
(4)  
15  
13  
10.5  
20  
18  
14  
mA  
mA  
mA  
I
DD  
Wait , f = 8 MHz (all modules off)  
5
8
mA  
OP  
(5)  
Stop, f = 8 kHz  
OP  
(6)  
with OSC, RTC, LCD , LVI on  
300  
20  
7
400  
30  
12  
1
µA  
µA  
µA  
µA  
(6)  
with OSC, RTC, LCD on  
with OSC, RTC on  
all modules off  
Digital I/O ports Hi-Z leakage current  
All ports, RST  
I
I
± 10  
± 1  
µA  
µA  
IL  
Input current  
IRQ  
IN  
C
Capacitance  
Ports (as input or output)  
12  
8
OUT  
pF  
C
IN  
(7)  
V
0
100  
8
mV  
V/ms  
V
POR re-arm voltage  
POR  
POR  
(8)  
R
0.035  
POR rise-time ramp rate  
V
1.5 × V  
Monitor mode entry voltage (at IRQ pin)  
TST  
DD  
(9)  
Pullup resistors  
R
R
21  
21  
30  
30  
39  
39  
kΩ  
kΩ  
PU1  
PU2  
PTA0–PTA3 and PTD4–PTD7 as KBI0–KBI7  
RST, IRQ  
V
V
Low-voltage inhibit, trip falling voltage  
Low-voltage inhibit, trip rising voltage  
3.6  
3.7  
4.6  
4.7  
V
V
TRIPF  
TRIPR  
Data Sheet  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
438  
Electrical Specifications  
Electrical Specifications  
3.3V DC Electrical Characteristics  
Notes:  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than  
100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD  
4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on  
all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD  
.
.
5. The 8kHz clock is from a 32kHz external square wave clock input at OSC1, for the driving the RTC. Due to loading effects,  
the IDD values will be larger when a 32kHz crystal circuit is connected.  
6. LCD driver configured for low current mode.  
7. Maximum is highest voltage that POR is guaranteed.  
8. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
VDD is reached.  
9. RPU1 and RPU2 are measured at VDD = 5.0V  
24.7 3.3V DC Electrical Characteristics  
Table 24-5. 3.3V DC Electrical Characteristics  
(1)  
(2)  
Characteristic  
Symbol  
Min  
–0.4  
Typ  
Max  
Unit  
Output high voltage (I  
All ports  
= –1.0 mA)  
LOAD  
V
V
V
OH  
DD  
Output low voltage  
(I  
= 0.8mA) All ports  
LOAD  
V
0.4  
V
OL  
(I  
= 10.0 mA) PTB0–PTB5, PTC0–PTC7,  
LOAD  
PTE0–PTE7, PTF0–PTF7  
Input high voltage  
All ports, RST, IRQ, OSC1  
V
0.7 × V  
V
V
V
IH  
DD  
DD  
Input low voltage  
All ports, RST, IRQ, OSC1  
V
V
0.3 × V  
DD  
IL  
SS  
V
supply current  
DD  
(3)  
Run , f  
= 4 MHz  
OP  
with all modules on  
with ADC on  
with ADC off  
(4)  
5.5  
4.5  
3
8
6
5
mA  
mA  
mA  
I
DD  
Wait , f = 4 MHz (all modules off)  
1.5  
2.5  
mA  
OP  
(5)  
Stop, f = 8 kHz  
OP  
(6)  
with OSC, RTC, LCD , LVI on  
180  
15  
2.5  
250  
20  
4
µA  
µA  
µA  
µA  
(6)  
with OSC, RTC, LCD on  
with OSC, RTC on  
all modules off  
1
Digital I/O ports Hi-Z leakage current  
All ports, RST  
I
I
± 10  
± 1  
µA  
µA  
IL  
Input current  
IRQ  
IN  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
439  
Electrical Specifications  
Electrical Specifications  
Table 24-5. 3.3V DC Electrical Characteristics  
(1)  
(2)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
C
Capacitance  
Ports (as input or output)  
12  
8
OUT  
pF  
C
IN  
(7)  
V
R
0
0.02  
100  
8
mV  
V/ms  
V
POR re-arm voltage  
POR  
POR  
(8)  
POR rise-time ramp rate  
V
1.5 × V  
Monitor mode entry voltage (at IRQ pin)  
HI  
DD  
(9)  
Pullup resistors  
R
R
21  
21  
30  
30  
39  
39  
kΩ  
kΩ  
PU1  
PU2  
PTA0–PTA3 and PTD4–PTD7 as KBI0–KBI7  
RST, IRQ  
V
V
Low-voltage inhibit, trip falling voltage  
Low-voltage inhibit, trip rising voltage  
Notes:  
2.1  
2.2  
2.8  
2.9  
V
V
TRIPF  
TRIPR  
1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than  
100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD  
4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on  
all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD  
.
.
5. The 8kHz clock is from a 32kHz external square wave clock input at OSC1, for the driving the RTC. Due to loading effects,  
the IDD values will be larger when a 32kHz crystal circuit is connected.  
6. LCD driver configured for low current mode.  
7. Maximum is highest voltage that POR is guaranteed.  
8. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
VDD is reached.  
9. RPU1 and RPU2 are measured at VDD = 3.3V.  
24.8 5V Control Timing  
Table 24-6. 5V Control Timing  
(1)  
Characteristic  
Symbol  
Min  
Max  
8
Unit  
MHz  
ns  
(2)  
f
Internal operating frequency  
OP  
(3)  
t
750  
RST input pulse width low  
IRL  
Notes:  
1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted.  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this  
information.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
Data Sheet  
440  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Electrical Specifications  
Electrical Specifications  
3.3V Control Timing  
24.9 3.3V Control Timing  
Table 24-7. 3.3V Control Timing  
(1)  
Characteristic  
Symbol  
Min  
Max  
4
Unit  
MHz  
µs  
(2)  
f
Internal operating frequency  
OP  
(3)  
t
1.5  
RST input pulse width low  
IRL  
Notes:  
1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted.  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this  
information.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
24.10 5V Oscillator Characteristics  
Table 24-8. 5V Oscillator Specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
f
Internal oscillator clock frequency  
Hz  
50k  
ICLK  
(2)  
f
dc  
20M  
Hz  
Hz  
External reference clock to OSC1  
OSC  
(3)  
f
32.768k  
4.9152M  
Crystal reference frequency  
XCLK  
(4)  
C
Crystal load capacitance  
L
C
2 × C (27p)  
Crystal fixed capacitance  
Crystal tuning capacitance  
Feedback bias resistor  
F
F
1
L
C
2 × C (33p)  
2
L
R
20M  
B
(5)  
R
100k  
Series resistor  
S
Notes:  
1. Typical value reflect average measurements at midpoint of voltage range, 25 ×C only. See Figure 24-1 for plot.  
2. No more than 10% duty cycle deviation from 50%.  
3. Fundamental mode crystals only.  
4. Consult crystal manufacturer’s data.  
5. Not Required for high frequency crystals.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
441  
Electrical Specifications  
Electrical Specifications  
24.11 3.3V Oscillator Characteristics  
Table 24-9. 3.3V Oscillator Specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
f
Internal oscillator clock frequency  
Hz  
47k  
ICLK  
(2)  
f
dc  
16M  
Hz  
Hz  
External reference clock to OSC1  
OSC  
(3)  
f
32.768k  
4.9152M  
Crystal reference frequency  
XCLK  
(4)  
C
Crystal load capacitance  
L
C
2 × C (27p)  
Crystal fixed capacitance  
Crystal tuning capacitance  
Feedback bias resistor  
F
F
1
L
C
2 × C (33p)  
2
L
R
20M  
B
(5)  
R
100k  
Series resistor  
S
Notes:  
1. Typical value reflect average measurements at midpoint of voltage range, 25 ×C only. See Figure 24-1 for plot.  
2. No more than 10% duty cycle deviation from 50%.  
3. Fundamental mode crystals only.  
4. Consult crystal manufacturer’s data.  
5. Not Required for high frequency crystals.  
65  
–40  
°
C
60  
55  
50  
45  
40  
35  
+25  
+85  
°
°
C
C
2
3
4
5
6
Supply Voltage, VDD (V)  
Figure 24-1. Typical Internal Oscillator Frequency  
Data Sheet  
442  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Electrical Specifications  
 
Electrical Specifications  
5V ADC Electrical Characteristics  
24.12 5V ADC Electrical Characteristics  
Table 24-10. 5V ADC Electrical Characteristics  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
V
V
is an dedicated pin and  
DDA  
V
Supply voltage  
4.5  
5.5  
V
should be tied to V on the  
DDA  
DD  
PCB with proper decoupling.  
V
V
V  
DDA  
Input range  
Resolution  
0
V
ADIN  
DDA  
ADIN  
B
10  
10  
bits  
AD  
Includes quantization.  
±0.5 LSB = ±1 ADC count.  
A
Absolute accuracy  
± 1.5  
LSB  
AD  
f
t
= 1/f  
ADC internal clock  
Conversion range  
32 k  
2 M  
Hz  
V
ADIC  
ADIC ADIC  
R
V
V
REFH  
AD  
REFL  
ADC voltage  
reference high  
V
V
+ 0.1  
DDA  
V
V
REFH  
ADC voltage  
reference low  
V
V
– 0.1  
V
is tied to V internally.  
17  
REFL  
SSA  
SSA  
SS  
t
ADIC  
t
Conversion time  
Sample time  
16  
5
ADC  
cycles  
t
ADIC  
t
ADS  
cycles  
M
Monotonically  
Guaranteed  
AD  
Z
V
= V  
Zero input reading  
Full-scale reading  
Input capacitance  
Input impedance  
000  
3FC  
001  
3FF  
20  
HEX  
HEX  
pF  
ADI  
ADIN  
REFL  
F
V
= V  
ADI  
ADIN  
REFH  
C
Not tested.  
ADI  
R
20M  
ADI  
V
/V  
I
1.6  
mA  
Not tested.  
REFH REFL  
VREF  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
443  
Electrical Specifications  
Electrical Specifications  
24.13 3.3V ADC Electrical Characteristics  
Table 24-11. 3.3V ADC Electrical Characteristics  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
V
V
is an dedicated pin and  
DDA  
V
Supply voltage  
3.0  
3.6  
V
should be tied to V on the  
DDA  
DD  
PCB with proper decoupling.  
V
V
V  
DDA  
Input range  
Resolution  
0
V
ADIN  
DDA  
ADIN  
B
10  
10  
bits  
AD  
Includes quantization.  
±0.5 LSB = ±1 ADC count.  
A
Absolute accuracy  
± 1.5  
LSB  
AD  
f
t
= 1/f  
ADC internal clock  
Conversion range  
32 k  
2 M  
Hz  
V
ADIC  
ADIC ADIC  
R
V
V
REFH  
AD  
REFL  
ADC voltage  
reference high  
V
V
+ 0.1  
DDA  
V
V
REFH  
ADC voltage  
reference low  
V
V
– 0.1  
V
is tied to V internally.  
17  
REFL  
SSA  
SSA  
SS  
t
ADIC  
t
Conversion time  
Sample time  
16  
5
ADC  
cycles  
t
ADIC  
t
ADS  
cycles  
M
Monotonically  
Guaranteed  
AD  
Z
V
= V  
Zero input reading  
Full-scale reading  
Input capacitance  
Input impedance  
000  
3FC  
001  
3FF  
20  
HEX  
HEX  
pF  
ADI  
ADIN  
REFL  
F
V
= V  
ADI  
ADIN  
REFH  
C
Not tested.  
ADI  
R
20M  
Measured at 5V  
Not tested.  
ADI  
V
/V  
I
1.6  
mA  
REFH REFL  
VREF  
Data Sheet  
444  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Electrical Specifications  
Electrical Specifications  
Timer Interface Module Characteristics  
24.14 Timer Interface Module Characteristics  
Table 24-12. Timer Interface Module Characteristics  
Characteristic  
Input capture pulse width  
Symbol  
, t  
Min  
Max  
Unit  
t
t
1
TIH TIL  
CYC  
24.15 CGM Electrical Specifications  
Table 24-13. CGM Electrical Specifications  
Characteristic  
Reference frequency  
Symbol  
Min  
30  
Typ  
Max  
100  
Unit  
kHz  
kHz  
Hz  
f
32.768  
38.4  
RDV  
f
Range nominal multiplies  
VCO center-of-range frequency  
VCO range linear range multiplier  
VCO power-of-two-range multiplier  
VCO multiply factor  
NOM  
f
38.4k  
1
40.0M  
255  
4
VRS  
L
E
1
2
N
1
4095  
8
P
VCO prescale multiplier  
Reference divider factor  
VCO operating frequency  
Manual acquisition time  
1
2
R
1
1
15  
f
38.4k  
40.0M  
50  
Hz  
ms  
ms  
VCLK  
t
LOCK  
t
Automatic lock time  
50  
LOCK  
f
×
RCLK  
(1)  
f
0.025% ×  
0
Hz  
PLL jitter  
J
P
2 N/4  
Notes:  
1. Deviation of average bus frequency over 2ms. N = VCO multiplier.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
445  
Electrical Specifications  
Electrical Specifications  
24.16 5V SPI Characteristics  
Table 24-14. 5V SPI Characteristics  
Diagram  
Number  
(2)  
Symbol  
Min  
Max  
Unit  
Characteristic  
Operating frequency  
(1)  
Master  
Slave  
f
f
f
/128  
dc  
f /2  
OP  
MHz  
MHz  
OP(M)  
OP  
f
OP(S)  
OP  
Cycle time  
Master  
Slave  
1
t
t
2
1
128  
t
t
CYC(M)  
CYC  
CYC  
CYC(S)  
2
3
Enable lead time  
Enable lag time  
t
1
1
t
t
Lead(S)  
CYC  
CYC  
t
Lag(S)  
Clock (SPSCK) high time  
4
5
6
7
Master  
Slave  
t
t
t
–25  
64 t  
ns  
ns  
SCKH(M)  
CYC  
CYC  
1/2 t  
–25  
SCKH(S)  
CYC  
Clock (SPSCK) low time  
Master  
Slave  
t
t
t
–25  
64 t  
ns  
ns  
SCKL(M)  
CYC  
CYC  
1/2 t  
–25  
SCKL(S)  
CYC  
Data setup time (inputs)  
Master  
Slave  
t
30  
30  
ns  
ns  
SU(M)  
t
SU(S)  
Data hold time (inputs)  
Master  
Slave  
t
30  
30  
ns  
ns  
H(M)  
t
H(S)  
(3)  
Access time, slave  
8
9
CPHA = 0  
CPHA = 1  
t
t
0
0
40  
40  
ns  
ns  
A(CP0)  
A(CP1)  
(4)  
Disable time, slave  
t
40  
ns  
DIS(S)  
Data valid time, after enable edge  
Master  
Slave  
10  
t
t
50  
50  
ns  
ns  
V(M)  
(5)  
V(S)  
Data hold time, outputs, after enable edge  
11  
Master  
Slave  
t
t
0
0
ns  
ns  
HO(M)  
HO(S)  
Notes:  
1. Numbers refer to dimensions in Figure 24-2 and Figure 24-3.  
2. All timing is shown with respect to 20% V and 70% V , unless noted; 100 pF load on all SPI pins.  
DD  
DD  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
Data Sheet  
446  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Electrical Specifications  
Electrical Specifications  
3.3V SPI Characteristics  
24.17 3.3V SPI Characteristics  
Table 24-15. 3.3V SPI Characteristics  
Diagram  
Number  
(2)  
Symbol  
Min  
Max  
Unit  
Characteristic  
(1)  
Operating frequency  
Master  
Slave  
f
f
f
/128  
dc  
f /2  
OP  
MHz  
MHz  
OP(M)  
OP  
f
OP(S)  
OP  
Cycle time  
Master  
Slave  
1
t
t
2
1
128  
t
t
CYC(M)  
CYC  
CYC  
CYC(S)  
2
3
Enable lead time  
Enable lag time  
t
1
1
t
t
Lead(s)  
CYC  
CYC  
t
Lag(s)  
Clock (SPSCK) high time  
4
5
6
7
Master  
Slave  
t
t
t
–35  
64 t  
ns  
ns  
SCKH(M)  
CYC  
CYC  
1/2 t  
–35  
SCKH(S)  
CYC  
Clock (SPSCK) low time  
Master  
Slave  
t
t
t
–35  
64 t  
ns  
ns  
SCKL(M)  
CYC  
CYC  
1/2 t  
–35  
SCKL(S)  
CYC  
Data setup time (inputs)  
Master  
Slave  
t
40  
40  
ns  
ns  
SU(M)  
t
SU(S)  
Data hold time (inputs)  
Master  
Slave  
t
40  
40  
ns  
ns  
H(M)  
t
H(S)  
(3)  
Access time, slave  
8
9
CPHA = 0  
CPHA = 1  
t
t
0
0
50  
50  
ns  
ns  
A(CP0)  
A(CP1)  
(4)  
Disable time, slave  
t
50  
ns  
DIS(S)  
Data valid time, after enable edge  
Master  
Slave  
10  
t
t
60  
60  
ns  
ns  
V(M)  
(5)  
V(S)  
Data hold time, outputs, after enable edge  
11  
Master  
Slave  
t
t
0
0
ns  
ns  
HO(M)  
HO(S)  
Notes:  
1. Numbers refer to dimensions in Figure 24-2 and Figure 24-3.  
2. All timing is shown with respect to 20% V  
and 70% V , unless noted; 100 pF load on all SPI pins.  
DD  
DD  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
447  
Electrical Specifications  
Electrical Specifications  
SS  
SS PIN OF MASTER HELD HIGH  
INPUT  
1
5
4
SPSCK OUTPUT  
CPOL = 0  
NOTE  
NOTE  
4
5
SPSCK OUTPUT  
CPOL = 1  
6
7
MISO  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
INPUT  
11  
MASTER MSB OUT  
10  
11  
MOSI  
MASTER LSB OUT  
OUTPUT  
Note: This first clock edge is generated internally, but is not seen at the SPSCK pin.  
a) SPI Master Timing (CPHA = 0)  
SS  
SS PIN OF MASTER HELD HIGH  
1
INPUT  
SPSCK OUTPUT  
CPOL = 0  
5
NOTE  
NOTE  
4
SPSCK OUTPUT  
CPOL = 1  
5
4
6
7
MISO  
MSB IN  
11  
BITS 6–1  
BITS 6–1  
LSB IN  
INPUT  
10  
10  
MOSI  
MASTER MSB OUT  
MASTER LSB OUT  
OUTPUT  
Note: This last clock edge is generated internally, but is not seen at the SPSCK pin.  
b) SPI Master Timing (CPHA = 1)  
Figure 24-2. SPI Master Timing  
Data Sheet  
448  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Electrical Specifications  
Electrical Specifications  
3.3V SPI Characteristics  
SS  
INPUT  
3
1
SPSCK INPUT  
CPOL = 0  
5
4
4
5
2
SPSCK INPUT  
CPOL = 1  
9
8
MISO  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
NOTE  
INPUT  
11  
6
7
10  
MOSI  
MSB IN  
LSB IN  
OUTPUT  
Note: Not defined but normally MSB of character just received  
a) SPI Slave Timing (CPHA = 0)  
SS  
INPUT  
1
SPSCK INPUT  
CPOL = 0  
5
4
5
2
3
SPSCK INPUT  
CPOL = 1  
4
10  
9
8
MISO  
NOTE  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
OUTPUT  
11  
6
7
10  
MOSI  
MSB IN  
LSB IN  
INPUT  
Note: Not defined but normally LSB of character previously transmitted  
b) SPI Slave Timing (CPHA = 1)  
Figure 24-3. SPI Slave Timing  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
449  
Electrical Specifications  
Electrical Specifications  
24.18 FLASH Memory Characteristics  
Table 24-16. FLASH Memory Electrical Characteristics  
Characteristic  
RAM data retention voltage  
Symbol  
Min.  
Max.  
Unit  
V
V
1.3  
RDR  
Number of rows per page  
Number of bytes per page  
2
Rows  
Bytes  
128  
(1)  
Read bus clock frequency  
Page erase time  
32k  
1
8M  
Hz  
ms  
f
read  
(2)  
t
erase  
(3)  
Mass erase time  
4
10  
5
40  
30  
30  
ms  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
t
merase  
t
PGM/ERASE to HVEN setup time  
High-voltage hold time  
High-voltage hold time (mass erase)  
Program hold time  
nvs  
t
nvh  
t
100  
5
nvhl  
t
pgs  
t
Program time  
30  
1
prog  
t
Address/data setup time  
Address/data hold time  
Recovery time  
ads  
t
adh  
(4)  
t
rcv  
(5)  
Cumulative HV period  
10k  
10k  
10  
25  
ms  
t
hv  
(6)  
Cycles  
Cycles  
Years  
Row erase endurance  
(7)  
Row program endurance  
(8)  
Data retention time  
Notes:  
1. fread is defined as the frequency range for which the FLASH memory can be read.  
2. If the page erase time is longer than terase (Min.), there is no erase-disturb, but it reduces the endurance of the FLASH  
memory.  
3. If the mass erase time is longer than tmerase (Min.), there is no erase-disturb, but is reduces the endurance of the FLASH  
memory.  
4. It is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing  
HVEN to logic 0.  
5. thv is the cumulative high voltage programming time to the same row before next erase, and the same address can not be  
programmed twice before next erase.  
6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many  
erase/program cycles.  
7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many  
erase/program cycle.  
8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time  
specified.  
Data Sheet  
450  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Electrical Specifications  
Data Sheet — MC68HC908LJ24  
Section 25. Mechanical Specifications  
25.1 Contents  
25.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .451  
25.3 64-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . .452  
25.4 64-Pin Quad Flat Pack (QFP). . . . . . . . . . . . . . . . . . . . . . . . .453  
25.5 80-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . .454  
25.6 80-Pin Quad Flat Pack (QFP). . . . . . . . . . . . . . . . . . . . . . . . .455  
25.2 Introduction  
This section gives the dimensions for:  
• 64-pin low-profile quad flat pack (case no. 840F)  
• 64-pin quad flat pack (case no. 840B)  
• 80-pin low-profile quad flat pack (case no. 917)  
• 80-pin quad flat pack (case no. 841B)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
451  
Mechanical Specifications  
 
Mechanical Specifications  
25.3 64-Pin Low-Profile Quad Flat Pack (LQFP)  
4X  
4X 16 TIPS  
0.2  
H
A–B  
D
0.2  
C
A–B D  
A2  
S
0.05  
64  
49  
(S)  
1
48  
2X R R1  
θ
1
0.25  
A
B
GAGE PLANE  
θ
E
E1  
(L2)  
A1  
L
(L)  
3X  
E1/2  
VIEW Y  
E/2  
VIEW AA  
16  
33  
NOTES:  
17  
32  
1. ALL DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE H IS COINCIDENT WITH THE  
BOTTOM OF THE LEAD WHERE THE LEAD EXITS  
THE PLASTIC BODY AT THE BOTTOM OF THE  
PARTING LINE.  
D
D1/2  
D/2  
4. DATUMS A, B AND D TO BE DETERMINED AT  
DATUM PLANE H.  
D1  
5. DIMENSIONS D AND E TO BE DETERMINED AT  
SEATING PLANE C.  
D
6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25  
PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE  
MOLD MISMATCH AND ARE DETERMINED AT  
DATUM PLANE H.  
7. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. THE DAMBAR PROTRUSION  
SHALL NOT CAUSE THE b DIMENSION TO  
EXCEED 0.35. MINIMUM SPACE BETWEEN  
PROTRUSION AND ADJACENT LEAD OR  
PROTRUSION 0.07.  
4X (θ2)  
4X (θ3)  
H
C
A
0.08  
C
MILLIMETERS  
SEATING  
PLANE  
DIM  
A
A1  
A2  
b
b1  
c
c1  
D
MIN  
MAX  
1.60  
0.15  
1.45  
0.27  
0.23  
0.20  
0.16  
VIEW AA  
0.05  
1.35  
0.17  
0.17  
0.09  
0.09  
BASE METAL  
12.00 BSC  
b1  
D1  
e
E
E1  
L
10.00 BSC  
0.50 BSC  
12.00 BSC  
10.00 BSC  
X
X=A, B OR D  
c
c1  
0.45  
0.75  
L1  
L2  
R1  
S
1.00 REF  
0.50 REF  
C
L
0.10  
0.20  
0.20 REF  
AB  
AB  
e/2  
PLATING  
θ
0
0
°
°
7°  
b
θ
θ
θ
1
2
3
60X e  
12  
12  
°
°
REF  
REF  
M
0.08  
C A–B D  
VIEW Y  
SECTION AB–AB  
ROTATED 90° CLOCKWISE  
Figure 25-1. 64-Pin Low-Profile Quad Flat Pack (Case No. 840F)  
Data Sheet  
452  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Mechanical Specifications  
Mechanical Specifications  
64-Pin Quad Flat Pack (QFP)  
25.4 64-Pin Quad Flat Pack (QFP)  
L
48  
33  
49  
32  
B
P
B
–A–  
–B–  
L
V
B
–A–, –B–, –D–  
DETAIL A  
DETAIL A  
64  
17  
F
1
16  
–D–  
A
M
S
S
S
0.20 (0.008)  
H
A–B  
D
D
J
N
0.05 (0.002) A–B  
S
BASE  
METAL  
M
S
0.20 (0.008)  
C
A–B  
E
C
D
DETAIL C  
M
M
S
S
D
0.20 (0.008)  
C
A–B  
SECTION B–B  
VIEW ROTATED 90°  
DATUM  
PLANE  
–H–  
–C–  
SEATING  
PLANE  
0.10 (0.004)  
M
H
G
U
NOTES:  
MILLIMETERS  
INCHES  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
DIM  
A
B
C
D
E
MIN  
13.90  
13.90  
2.15  
0.30  
2.00  
0.30  
0.80 BSC  
0.13  
0.65  
12.00 REF  
MAX  
14.10  
14.10  
2.45  
0.45  
2.40  
MIN  
MAX  
0.555  
0.555  
0.096  
0.018  
0.094  
0.016  
0.547  
0.547  
0.085  
0.012  
0.079  
0.012  
0.031 BSC  
0.005  
0.026  
0.472 REF  
5 °  
0.005  
0.016 BSC  
0°  
0.005  
0.667  
0.005  
0°  
0.667  
0.014  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS –A–, –B– AND –D– TO BE DETERMINED  
AT DATUM PLANE –H–.  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE –C–.  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25  
(0.010) PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE –H–.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
T
R
F
0.40  
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
W
X
DATUM  
PLANE  
–H–  
0.25  
0.23  
0.95  
0.010  
0.009  
0.037  
Q
5°  
0.13  
0.40 BSC  
10°  
0.17  
10°  
0.007  
K
0°  
0.13  
16.95  
0.13  
0°  
16.95  
0.35  
1.6 REF  
7°  
0.30  
17.45  
17.45  
0.45  
7°  
0.012  
0.687  
0.687  
0.018  
W
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN  
EXCESS OF THE D DIMENSION AT MAXIMUM  
MATERIAL CONDITION. DAMBAR CANNOT BE  
LOCATED ON THE LOWER RADIUS OR THE FOOT.  
X
DETAIL C  
0.063 REF  
Figure 25-2. 64-Pin Quad Flat Pack (Case No. 840B)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
453  
Mechanical Specifications  
Mechanical Specifications  
25.5 80-Pin Low-Profile Quad Flat Pack (LQFP)  
B
B
D
D/2  
D1  
D1/2  
VIEW Y  
e/2  
PIN 1  
IDEx  
80  
61  
X
X=A, B, or D  
1
60  
VIEW Y  
3 PLACES  
E/2  
b1  
PLATING  
E
c
c1  
E1  
A
B
BASE  
METAL  
E1/2  
b
M
0.08  
C
A–B  
D
20  
41  
SECTION B–B  
80 PLACES  
21  
40  
ROTATED 90° CLOCKWISE  
NOTES:  
D
0.200  
H
A–B  
D
4X  
1. ALL DIMENSIONS AND TOLERANCES TO  
CONFORM TO ASME Y14.5M, 1994.  
4X  
0.200  
C
A–B  
D
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE H IS COINCIDENT WITH THE  
BOTTOM OF THE LEAD WHERE THE LEAD  
EXITS THE PLASTIC BODY AT THE BOTTOM OF  
THE PARTING LINE.  
4. DATUMS A, B AND D TO BE DETERMINED AT  
DATUM PLANE H.  
5. DIMENSIONS D AND E TO BE DETERMINED AT  
SEATING PLANE C.  
6. DIMENSIONS D1 AND E1 DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS  
D1 AND E1 DO INCLUDE MOLD MISMATCH AND  
ARE DETERMINED AT DATUM PLANE H.  
7. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. THE DAMBAR PROTRUSION  
SHALL NOT CAUSE THE b DIMENSION TO  
EXCEED 0.35.  
θ2  
8X  
VIEW P  
A2  
A1  
H
0.1  
C
A
e
76X  
SEATING  
PLANE  
C
MILLIMETERS  
DIM  
A
A1  
A2  
D
MIN  
0.05  
1.35  
MAX  
1.60  
0.15  
1.45  
S
14.00 BSC  
D1  
E
E1  
L
12.00 BSC  
14.00 BSC  
12.00 BSC  
0.45  
0.75  
θ1  
L1  
L2  
R1  
R2  
S
b
b1  
c
1.00 REF  
0.50 REF  
0.20 REF  
0.20 REF  
0.17 REF  
R (R1)  
R (R2)  
0.17  
0.27  
0.23  
0.20  
0.16  
GAGE  
PLANE  
θ
0.17  
0.12  
0.12  
c1  
e
θ
0.50 BSC  
(L2)  
0
°
7°  
0.25  
L
θ
θ
1
2
0
10  
°
°
14°  
(L1)  
VIEW P  
Figure 25-3. 80-Pin Low-Profile Quad Flat Pack (Case No. 917)  
Data Sheet  
454  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Mechanical Specifications  
Mechanical Specifications  
80-Pin Quad Flat Pack (QFP)  
25.6 80-Pin Quad Flat Pack (QFP)  
L
60  
61  
41  
40  
B
P
B
–B–  
–A–  
L
B
V
–A–,–B–,–D–  
DETAIL A  
DEATIL A  
21  
80  
F
1
20  
–D–  
A
S
M
S
S
S
0.20  
H
A–B  
D
0.05 A–B  
J
N
M
S
0.20  
C
A–B  
D
D
M
E
DETAIL C  
M
S
S
0.20  
C
A–B  
D
SECTION B–B  
VIEW ROTATED 90°  
C
DATUM  
PLANE  
–H–  
–C–  
0.10  
H
SEATING  
PLANE  
M
G
NOTES:  
MILLIMETERS  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD WHERE  
THE LEAD EXITS THE PLASTIC BODY AT THE  
BOTTOM OF THE PARTING LINE.  
4. DATUMS –A–, –B– AND –D– TO BE DETERMINED AT  
DATUM PLANE –H–.  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE –C–.  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25  
PER SIDE. DIMENSIONS A AND B DO INCLUDE  
MOLD MISMATCH AND ARE DETERMINED AT  
DATUM PLANE –H–.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.08 TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT.  
DIM  
A
B
C
D
E
MIN  
13.90  
13.90  
2.15  
0.22  
2.00  
0.22  
MAX  
14.10  
14.10  
2.45  
0.38  
2.40  
U
T
F
0.33  
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
W
X
0.65 BSC  
DATUM –H–  
0.13  
0.65  
0.25  
0.23  
0.95  
PLANE  
R
12.35 REF  
5°  
10°  
0.13  
0.17  
0.325 BSC  
K
0°  
0.13  
16.95  
0.13  
0°  
7°  
0.30  
17.45  
Q
W
X
DETAIL C  
16.95  
0.35  
17.45  
0.45  
1.6 REF  
Figure 25-4. 80-Pin Quad Flat Pack (Case No. 841B)  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
455  
Mechanical Specifications  
Mechanical Specifications  
Data Sheet  
456  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Mechanical Specifications  
Data Sheet — MC68HC908LJ24  
Section 26. Ordering Information  
26.1 Contents  
26.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .457  
26.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .457  
26.2 Introduction  
This section contains ordering numbers for the MC68HC908LJ24.  
26.3 MC Order Numbers  
Table 26-1. MC Order Numbers  
Operating  
MC Order Number  
MC68HC908LJ24CPB  
Package  
Temperature Range  
64-pin LQFP  
64-pin QFP  
80-pin LQFP  
80-pin QFP  
–40 to +85 °C  
–40 to +85 °C  
–40 to +85 °C  
–40 to +85 °C  
MC68HC908LJ24CFU  
MC68HC908LJ24CPK  
MC68HC908LJ24CFQ  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
457  
Ordering Information  
 
 
Ordering Information  
Data Sheet  
458  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Ordering Information  
Data Sheet — MC68HC908LJ24  
Appendix A. MC68HC908LK24  
A.1 Contents  
A.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .459  
A.3 Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .460  
A.4 Low-Voltage Inhibit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .460  
A.5 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .461  
A.5.1  
A.5.2  
A.5.3  
A.5.4  
5V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .461  
3.3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . .461  
5V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . .462  
3.3V Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . .462  
A.6 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .462  
A.2 Introduction  
The MC68HC908LK24 is a MC68HC908LJ24 with a low-power  
oscillator that supports a 32.768kHz crystal only.  
The entire data book apply to the MC68HC908LK24 device, with  
exceptions outlined in this appendix.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
459  
 
A.3 Oscillator  
The low-power oscillator supports a reference frequency of 32.768kHz  
only; either from a crystal oscillator circuit (Figure A-1) or a direct clock  
input to the OSC1 pin.  
MCU  
OSC1  
OSC2  
RB  
RS  
32.768kHz  
X1  
C1  
C2  
Figure A-1. MC68HC908LK24 Crystal Oscillator Connection  
A.4 Low-Voltage Inhibit  
The LVIPWRD bit in CONFIG1 register is logic 1 after any reset.  
Address: $001F  
Bit 7  
6
5
4
3
0
2
1
Bit 0  
Read:  
COPRS LVISTOP LVIRSTD LVIPWRD  
SSREC  
STOP  
COPD  
Write:  
Reset:  
Reset:  
MC68HC908LK24  
MC68HC908LJ24  
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
††  
0
†† Reset by POR only.  
= Unimplemented  
Figure A-2. MC68HC908LK24 Configuration Register 1 (CONFIG1)  
LVIPWRD — LVI Power Disable Bit  
LVIPWRD disables the LVI module.  
1 = LVI module power disabled  
0 = LVI module power enabled  
Data Sheet  
460  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
 
A.5 Electrical Specifications  
Electrical specifications for the MC68HC908LJ24 apply to the  
MC68HC908LK24, except for the parameters indicated below.  
A.5.1 5V DC Electrical Characteristics  
Table A-1. 5V DC Electrical Characteristics  
(1)  
(2)  
Characteristic  
supply current  
Symbol  
Min  
Typ  
Max  
Unit  
V
DD  
(3)  
I
DD  
Stop, f = 8 kHz  
OP  
with OSC, RTC on  
5.5  
µA  
7.5  
Low-voltage inhibit, trip rising voltage  
LVI reset disabled (LVIRSTD = 1)  
LVI reset enabled (LVIRSTD = 0)  
V
3.7  
3.62  
4.7  
4.62  
V
V
TRIPR  
Notes:  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. The 8kHz clock is from a 32kHz external square wave clock input at OSC1, for the driving the RTC. Due to loading effects,  
the IDD values will be larger when a 32kHz crystal circuit is connected.  
A.5.2 3.3V DC Electrical Characteristics  
Table A-2. 3.3V DC Electrical Characteristics  
(1)  
(2)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Low-voltage inhibit, trip rising voltage  
LVI disabled (LVIRSTD = 1)  
LVI enabled (LVIRSTD = 0)  
V
2.2  
2.12  
2.9  
2.82  
V
V
TRIPR  
Notes:  
1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
Data Sheet  
461  
A.5.3 5V Oscillator Characteristics  
Table A-3. 5V Oscillator Specifications  
Characteristic  
Symbol  
Min  
dc  
Typ  
Max  
Unit  
Hz  
(1)  
f
32.768k  
32.768k  
External reference clock to OSC1  
OSC  
(2)  
f
Hz  
Crystal reference frequency  
XCLK  
Notes:  
1. No more than 10% duty cycle deviation from 50%.  
2. Fundamental mode crystals only.  
A.5.4 3.3V Oscillator Characteristics  
Table A-4. 3.3V Oscillator Specifications  
Characteristic  
Symbol  
Min  
dc  
Typ  
Max  
Unit  
Hz  
(1)  
f
32.768k  
32.768k  
External reference clock to OSC1  
OSC  
(2)  
f
Hz  
Crystal reference frequency  
XCLK  
Notes:  
1. No more than 10% duty cycle deviation from 50%.  
2. Fundamental mode crystals only.  
A.6 MC Order Numbers  
Table A-5 shows the ordering numbers for the MC68HC908LK24.  
Table A-5. MC68HC908LK24 Order Numbers  
Operating  
Temperature Range  
MC Order Number  
Package  
MC68HC908LK24CPB  
MC68HC908LK24CFU  
MC68HC908LK24CPK  
MC68HC908LK24CFQ  
64-pin LQFP  
64-pin QFP  
80-pin LQFP  
80-pin QFP  
–40 to +85 °C  
–40 to +85 °C  
–40 to +85 °C  
–40 to +85 °C  
Data Sheet  
462  
MC68HC908LJ24/LK24 — Rev. 2.1  
Freescale Semiconductor  
 
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
How to Reach Us:  
Home Page:  
www.freescale.com  
For information on Freescale.s Environmental Products program, go to  
http://www.freescale.com/epp.  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Semiconductor was negligent regarding the design or manufacture of the part.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners. The ARM  
POWERED logo is a registered trademark of ARM Limited. ARM7TDMI-S is a  
trademark of ARM Limited. Java and all other Java-based marks are trademarks or  
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. The  
Bluetooth trademarks are owned by their proprietor and used by Freescale  
Semiconductor, Inc. under license.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Rev. 2.1  
MC68HC908LJ24/D  
August 16, 2005  

相关型号:

MC908MR16

MC908MR16
FREESCALE

MC908MR16CBE

MC908MR16CBE
FREESCALE

MC908MR16CFUE

On-chip programming firmware for use with host personal computer, Clock generator module (CGM)
FREESCALE

MC908MR32CBE

MC908MR32CBE
FREESCALE

MC908MR32CFUE

MC908MR32CFUE
FREESCALE

MC908MR8CDWR2

8-BIT, FLASH, 8.2MHz, MICROCONTROLLER, PDSO28, SOIC-28
MOTOROLA

MC908MR8CFAR2

Microcontroller, 8-Bit, FLASH, 8.2MHz, HCMOS, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, PLASTIC, LQFP-32
MOTOROLA

MC908MR8MDWR2

Microcontroller, 8-Bit, FLASH, 8.2MHz, HCMOS, PDSO28, SOIC-28
MOTOROLA

MC908MR8MFAR2

8-BIT, FLASH, 8.2MHz, MICROCONTROLLER, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, PLASTIC, LQFP-32
MOTOROLA

MC908MR8VDWR2

Microcontroller, 8-Bit, FLASH, 8.2MHz, HCMOS, PDSO28, SOIC-28
MOTOROLA

MC908MR8VFAR2

Microcontroller, 8-Bit, FLASH, 8.2MHz, HCMOS, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, PLASTIC, LQFP-32
MOTOROLA

MC908QB4

To provide the most up-to-date information, the revision of our documents
FREESCALE