MC908QC16CDZE [NXP]

8BIT MCU 16KFLASH PBFREE;
MC908QC16CDZE
型号: MC908QC16CDZE
厂家: NXP    NXP
描述:

8BIT MCU 16KFLASH PBFREE

时钟 微控制器 光电二极管 外围集成电路
文件: 总275页 (文件大小:2345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Addendum to MC68HC908QC16, rev. 5  
This addendum introduces a change to this data sheet.  
Chapter 18 Development Support, Section 18.3.2 Security  
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host  
can bypass the security feature at monitor mode entry by sending eight security bytes that match the  
bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data.  
NOTE  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors.  
Changes to:  
Chapter 18 Development Support, Section 18.3.2 Security  
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host  
can bypass the security feature at monitor mode entry by sending eight security bytes that match the  
bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data.  
NOTE  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors. An improved  
security function denies monitor mode entry if five or more of the eight  
security bytes are $00 (zero bytes).  
MC68HC908QC16 Data Sheet, Addendum 5/2012  
Freescale Semiconductor  
1
MC68HC908QC16  
MC68HC908QC8  
MC68HC908QC4  
Data Sheet  
M68HC08  
Microcontrollers  
MC68HC908QC16  
Rev. 5  
4/2008  
freescale.com  
MC68HC908QC16  
MC68HC908QC8  
MC68HC908QC4  
Data Sheet  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be  
the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://www.freescale.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc., 2007, 2008. All rights reserved.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
3
Revision History  
The following revision history table summarizes changes contained in this document. For your  
convenience, the page number designators have been linked to the appropriate location.  
Revision History  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
April, 2006  
1.0  
Initial release  
N/A  
237  
240  
243  
19.5 5-V DC Electrical Characteristics — Updated values  
19.8 3.3-V DC Electrical Characteristics — Updated values  
19.11 Oscillator Characteristics — Updated values  
May, 2006  
1.1  
Figure 19-9. Typical 5-Volt Run Current versus Bus Frequency (25 C) and  
Figure 19-10. Typical 3.3-Volt Run Current versus Bus Frequency (25 C) —  
added  
247  
1.7 Unused Pin Termination — Added new section  
24  
11.2 Unused Pin Termination — Replaced note with new section  
107  
19.5 5-V DC Electrical Characteristics — New values for:  
DC injection current  
237  
Low-voltage inhibit reset, trip rising voltage  
19.8 3.3-V DC Electrical Characteristics — New values for:  
DC injection current  
October, 2006  
2.0  
240  
246  
Low-voltage inhibit reset, trip rising voltage  
19.12 Supply Current Characteristics — New values for stop mode supply  
currents at –40 to 125°C  
20.3 Package Dimensions — Updated package dimension drawing for the  
28-lead TSSOP.  
261  
22  
Table 1-2. Pin Functions — Added note  
Figure 2-2. Control, Status, and Data Registers — Corrected Port C Data  
Register bit PTC3  
27  
Chapter 3 Analog-to-Digital Converter (ADC10) Module — Renamed ADCSC  
register to ADSCR to be consistent with development tools  
45  
Chapter 4 Configuration Registers (CONFIG1 and CONFIG2) — Changed  
CGMXCLK to BUSCLKX4  
60  
11.3 Port A — Added information to first paragraph of note  
107  
108  
April, 2007  
3.0  
11.3.1 Port A Data Register — Corrected bit designations for the first entry  
under Figure 11-1. Port A Data Register (PTA).  
11.5 Port C — Added note and corrected address location designation in last  
paragraph  
112  
113  
Chapter 13 Enhanced Serial Communications Interface (ESCI) Module —  
Changed SCIBDSRC to ESCIBDSRC and CGMXCLK to BUSCLKX4  
123  
150  
234  
13.9.3 Bit Time Measurement — Corrected first sentence of listing number 1  
Figure 18-18. Monitor Mode Entry Timing — Changed CGMXCLK to  
BUSCLKX4  
In 19.12 Supply Current Characteristics, updated stop IDD values  
October, 2007  
April, 2008  
4.0  
5.0  
246  
246  
In 19.12 Supply Current Characteristics, reverted to Rev. 3 stop IDD values  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
4
List of Sections  
Chapter 1 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Chapter 2 Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Chapter 3 Analog-to-Digital Converter (ADC10) Module. . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Chapter 4 Configuration Registers (CONFIG1 and CONFIG2) . . . . . . . . . . . . . . . . . . . . . .59  
Chapter 5 Computer Operating Properly (COP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Chapter 6 Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
Chapter 7 External Interrupt (IRQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Chapter 8 Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Chapter 9 Low-Voltage Inhibit (LVI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Chapter 10 Oscillator Mode (OSC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Chapter 11 Input/Output Ports (PORTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
Chapter 12 Periodic Wakeup Module (PWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
Chapter 13 Enhanced Serial Communications Interface (ESCI) Module . . . . . . . . . . . . .123  
Chapter 14 System Integration Module (SIM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
Chapter 15 Serial Peripheral Interface (SPI) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
Chapter 16 Timer Interface Module (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
Chapter 17 Timer Interface Module (TIM2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
Chapter 18 Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219  
Chapter 19 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
Chapter 20 Ordering Information and Mechanical Specifications . . . . . . . . . . . . . . . . . .257  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
5
List of Sections  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
6
Table of Contents  
Chapter 1  
General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Pin Function Priority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Unused Pin Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Chapter 2  
Memory  
2.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Direct Page Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
FLASH Memory (FLASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
FLASH Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
FLASH Page Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
FLASH Mass Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
FLASH Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
FLASH Block Protect Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
EEPROM Memory Emulation Using FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
2.2  
2.3  
2.4  
2.5  
2.6  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
2.6.5  
2.6.6  
2.6.7  
Chapter 3  
Analog-to-Digital Converter (ADC10) Module  
3.1  
3.2  
3.3  
3.3.1  
3.3.2  
3.3.3  
3.3.3.1  
3.3.3.2  
3.3.3.3  
3.3.3.4  
3.3.4  
3.3.4.1  
3.3.4.2  
3.3.4.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Clock Select and Divide Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Input Select and Pin Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Conversion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Initiating Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Completing Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Aborting Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Total Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Sources of Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Sampling Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Pin Leakage Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Noise-Induced Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
7
Table of Contents  
3.3.4.4  
3.3.4.5  
3.3.4.6  
3.4  
Code Width and Quantization Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Linearity Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Code Jitter, Non-Monotonicity and Missing Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
ADC10 During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
3.5  
3.5.1  
3.5.2  
3.6  
3.7  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
3.7.5  
3.8  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
ADC10 Analog Power Pin (V  
ADC10 Analog Ground Pin (V  
ADC10 Voltage Reference High Pin (V  
ADC10 Voltage Reference Low Pin (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
DDA  
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
SSA  
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
REFH  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
REFL  
ADC10 Channel Pins (ADn). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
ADC10 Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
ADC10 Result High Register (ADRH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
ADC10 Result Low Register (ADRL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
ADC10 Clock Register (ADCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Chapter 4  
Configuration Registers (CONFIG1 and CONFIG2)  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
4.1  
4.2  
Chapter 5  
Computer Operating Properly (COP)  
5.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
BUSCLKX4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
5.2  
5.3  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.4  
5.5  
5.6  
5.7  
5.7.1  
5.7.2  
5.8  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
8
Freescale Semiconductor  
Chapter 6  
Central Processor Unit (CPU)  
6.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
6.2  
6.3  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.4  
6.5  
6.5.1  
6.5.2  
6.6  
6.7  
6.8  
Chapter 7  
External Interrupt (IRQ)  
7.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
MODE = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
MODE = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
IRQ Input Pins (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
7.2  
7.3  
7.3.1  
7.3.2  
7.4  
7.5  
7.5.1  
7.5.2  
7.6  
7.7  
7.7.1  
7.8  
Chapter 8  
Keyboard Interrupt Module (KBI)  
8.1  
8.2  
8.3  
8.3.1  
8.3.1.1  
8.3.1.2  
8.3.2  
8.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Keyboard Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
MODEK = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
MODEK = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
KBI During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
8.5  
8.5.1  
8.5.2  
8.6  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
9
Table of Contents  
8.7  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
8.7.1  
8.8  
8.8.1  
8.8.2  
8.8.3  
KBI Input Pins (KBI7:KBI0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Keyboard Status and Control Register (KBSCR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Keyboard Interrupt Enable Register (KBIER). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Keyboard Interrupt Polarity Register (KBIPR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Chapter 9  
Low-Voltage Inhibit (LVI)  
9.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
LVI Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
9.2  
9.3  
9.3.1  
9.3.2  
9.3.3  
9.3.4  
9.4  
9.5  
9.5.1  
9.5.2  
9.6  
Chapter 10  
Oscillator Mode (OSC)  
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
10.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
10.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
10.3.1  
Internal Signal Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
XTAL Oscillator Clock (XTALCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Internal Oscillator Clock (INTCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Bus Clock Times 4 (BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Bus Clock Times 2 (BUSCLKX2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Internal Oscillator Trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Internal to External Clock Switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
External to Internal Clock Switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
External Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
10.3.1.1  
10.3.1.2  
10.3.1.3  
10.3.1.4  
10.3.1.5  
10.3.1.6  
10.3.2  
10.3.2.1  
10.3.2.2  
10.3.2.3  
10.3.3  
10.3.4  
10.3.5  
10.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
10.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
10.5.1  
10.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
10.6 OSC During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
10.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
10.7.1  
10.7.2  
Oscillator Input Pin (OSC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Oscillator Output Pin (OSC2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
10  
Freescale Semiconductor  
10.8 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
10.8.1  
10.8.2  
Oscillator Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Chapter 11  
Input/Output Ports (PORTS)  
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
11.2 Unused Pin Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
11.3 Port A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
11.3.1  
11.3.2  
11.3.3  
Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
11.4 Port B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
11.4.1  
11.4.2  
11.4.3  
Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Port B Input Pullup Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
11.5 Port C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
11.5.1  
11.5.2  
11.5.3  
Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Port C Input Pullup Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
11.6 Port D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
11.6.1  
11.6.2  
11.6.3  
Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Data Direction Register D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Port D Input Pullup Enable Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Chapter 12  
Periodic Wakeup Module (PWU)  
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
12.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
12.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
12.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
12.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
12.5.1  
12.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
12.6 PWU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
12.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
12.8 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
12.8.1  
12.8.2  
12.8.3  
Periodic Wakeup Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
Periodic Wakeup Prescaler Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Periodic Wakeup Modulo Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Chapter 13  
Enhanced Serial Communications Interface (ESCI) Module  
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
13.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
13.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
13.3.1  
13.3.2  
13.3.2.1  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
11  
Table of Contents  
13.3.2.2  
13.3.2.3  
13.3.2.4  
13.3.2.5  
13.3.3  
13.3.3.1  
13.3.3.2  
13.3.3.3  
13.3.3.4  
13.3.3.5  
13.3.3.6  
Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Idle Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Inversion of Transmitted Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Character Reception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Receiver Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
13.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
13.4.1  
13.4.2  
13.4.3  
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
13.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
13.5.1  
13.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
13.6 ESCI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
13.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
13.7.1  
13.7.2  
ESCI Transmit Data (TxD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
ESCI Receive Data (RxD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
13.8 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
13.8.1  
13.8.2  
13.8.3  
13.8.4  
13.8.5  
13.8.6  
13.8.7  
13.8.8  
ESCI Control Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
ESCI Control Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
ESCI Control Register 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
ESCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
ESCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
ESCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
ESCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
ESCI Prescaler Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
13.9 ESCI Arbiter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
13.9.1  
13.9.2  
13.9.3  
13.9.4  
ESCI Arbiter Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
ESCI Arbiter Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Bit Time Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Arbitration Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
Chapter 14  
System Integration Module (SIM)  
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
14.2 RST and IRQ Pins Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
14.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
14.3.1  
14.3.2  
14.3.3  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Clock Start-Up from POR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
Clocks in Stop Mode and Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
14.4 Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
14.4.1  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
12  
Freescale Semiconductor  
14.4.2  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Computer Operating Properly (COP) Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
14.4.2.1  
14.4.2.2  
14.4.2.3  
14.4.2.4  
14.4.2.5  
14.5 SIM Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
14.5.1  
14.5.2  
14.5.3  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
14.6 Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
14.6.1  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
SWI Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
14.6.1.1  
14.6.1.2  
14.6.2  
14.6.2.1  
14.6.2.2  
14.6.2.3  
14.6.3  
14.6.4  
14.6.5  
14.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
14.7.1  
14.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
14.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
14.8.1  
14.8.2  
SIM Reset Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
Break Flag Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Chapter 15  
Serial Peripheral Interface (SPI) Module  
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
15.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
15.3.1  
15.3.2  
15.3.3  
15.3.3.1  
15.3.3.2  
15.3.3.3  
15.3.3.4  
15.3.4  
15.3.5  
15.3.6  
15.3.6.1  
15.3.6.2  
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Transmission Format When CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
Transmission Format When CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Queuing Transmission Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Mode Fault Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
15.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
15.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
15.5.1  
15.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
13  
Table of Contents  
15.6 SPI During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
15.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
15.7.1  
15.7.2  
15.7.3  
15.7.4  
MISO (Master In/Slave Out). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
MOSI (Master Out/Slave In). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
SPSCK (Serial Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
SS (Slave Select). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
15.8 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
15.8.1  
15.8.2  
15.8.3  
SPI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
SPI Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
SPI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Chapter 16  
Timer Interface Module (TIM1)  
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
16.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
16.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
16.3.1  
16.3.2  
16.3.3  
16.3.3.1  
16.3.3.2  
16.3.4  
16.3.4.1  
16.3.4.2  
16.3.4.3  
TIM1 Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
16.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
16.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
16.5.1  
16.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
16.6 TIM1 During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
16.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
16.7.1  
16.7.2  
TIM1 Channel I/O Pins (T1CH3:T1CH0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
TIM1 Clock Pin (T1CLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
16.8 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
16.8.1  
16.8.2  
16.8.3  
16.8.4  
16.8.5  
TIM1 Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
TIM1 Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
TIM1 Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
TIM1 Channel Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
TIM1 Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Chapter 17  
Timer Interface Module (TIM2)  
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
17.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
17.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
17.3.1  
17.3.2  
TIM2 Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
14  
Freescale Semiconductor  
17.3.3  
Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
17.3.3.1  
17.3.3.2  
17.3.4  
17.3.4.1  
17.3.4.2  
17.3.4.3  
17.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
17.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
17.5.1  
17.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
17.6 TIM2 During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
17.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
17.7.1  
17.7.2  
TIM2 Channel I/O Pins (T2CH1:T2CH0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
TIM2 Clock Pin (T2CLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
17.8 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
17.8.1  
17.8.2  
17.8.3  
17.8.4  
17.8.5  
TIM2 Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
TIM2 Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
TIM2 Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
TIM2 Channel Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
TIM2 Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
Chapter 18  
Development Support  
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
18.2 Break Module (BRK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
18.2.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
Flag Protection During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
TIM1 During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
Break Module Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Break Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
Break Auxiliary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
18.2.1.1  
18.2.1.2  
18.2.1.3  
18.2.2  
18.2.2.1  
18.2.2.2  
18.2.2.3  
18.2.2.4  
18.2.2.5  
18.2.3  
18.3 Monitor Module (MON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
18.3.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
Normal Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228  
Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Monitor Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Baud Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230  
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234  
18.3.1.1  
18.3.1.2  
18.3.1.3  
18.3.1.4  
18.3.1.5  
18.3.1.6  
18.3.1.7  
18.3.2  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
15  
Table of Contents  
Chapter 19  
Electrical Specifications  
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
19.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235  
19.3 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
19.4 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
19.5 5-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
19.6 Typical 5-V Output Drive Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239  
19.7 5-V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
19.8 3.3-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240  
19.9 Typical 3.3-V Output Drive Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242  
19.10 3.3-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
19.11 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
19.12 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  
19.13 ADC10 Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248  
19.14 5.0-Volt SPI Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
19.15 3.3-Volt SPI Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
19.16 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254  
19.17 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  
Chapter 20  
Ordering Information and Mechanical Specifications  
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257  
20.2 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257  
20.3 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
16  
Freescale Semiconductor  
Chapter 1  
General Description  
1.1 Introduction  
The MC68HC908QC16, MC68HC908QC8, and MC68HC908QC4 are members of the low-cost,  
high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). All MCUs in the family use the  
enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory  
sizes and types, and package types.  
0.4  
Table 1-1. Summary of Device Variations  
FLASH  
Device  
RAM  
Pin Count  
Memory Size  
16 Kbytes  
8 Kbytes  
MC68HC908QC16  
MC68HC908QC8  
MC68HC908QC4  
512 bytes  
384 bytes  
384 bytes  
16, 20, 28 pins  
16, 20, 28 pins  
16, 20, 28 pins  
4 Kbytes  
1.2 Features  
Features include:  
High-performance M68HC08 CPU core  
Fully upward-compatible object code with M68HC05 Family  
5.0-V and 3.3-V operating voltages (V  
)
DD  
8-MHz internal bus operation at 5 V, 4-MHz at 3.3 V  
Trimmable internal oscillator  
Software selectable 1 MHz, 2 MHz, 3.2 MHz, or 6.4 MHz internal bus operation  
8-bit trim capability  
25% untrimmed  
(1)  
Trimmable to approximately 0.4%  
Software selectable crystal oscillator range, 32–100 kHz, 1–8 MHz, and 8–32 MHz  
Software configurable input clock from either internal or external source  
Auto wakeup from STOP capability using dedicated internal 32-kHz RC or bus clock source  
(2)  
FLASH security  
On-chip in-application programmable FLASH memory (with internal program/erase voltage  
generation)  
1. See 19.11 Oscillator Characteristics for internal oscillator specifications  
2. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
17  
General Description  
Enhanced serial communications interface (ESCI) module  
Serial peripheral interface (SPI) module  
4-channel, 16-bit timer interface (TIM1) module  
2-channel, 16-bit timer interface (TIM2) module  
10-channel, 10-bit analog-to-digital converter (ADC) with internal bandgap reference channel  
(ADC10)  
Up to 24 bidirectional input/output (I/O) lines and two input only:  
Six shared with keyboard interrupt function  
Ten shared with ADC  
Four shared with TIM1  
Two shared with TIM2  
Two shared with ESCI  
Four shared with SPI  
One input only shared with external interrupt (IRQ)  
High current sink/source capability on all port pins  
Selectable pullups on all ports, selectable on an individual bit basis  
Three-state ability on all port pins  
6-bit keyboard interrupt with wakeup feature (KBI)  
Programmable for rising/falling edge or high/low level detection  
Low-voltage inhibit (LVI) module features:  
Software selectable trip point in CONFIG register  
System protection features:  
Computer operating properly (COP) watchdog  
Low-voltage detection with reset  
Illegal opcode detection with reset  
Illegal address detection with reset  
External asynchronous interrupt pin with internal pullup (IRQ) shared with general-purpose input  
pin  
Master asynchronous reset pin with internal pullup (RST) shared with general-purpose input/output  
(I/O) pin  
Memory mapped I/O registers  
Power saving stop and wait modes  
MC68HC908QC16, MC68HC908QC8, and MC68HC908QC4 are available in these packages:  
28-pin small outline integrated circuit package (SOIC)  
28-pin thin shrink small outline package (TSSOP)  
20-pin SOIC  
20-pin TSSOP  
16-pin SOIC  
16-pin TSSOP  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
18  
Freescale Semiconductor  
MCU Block Diagram  
Features of the CPU08 include the following:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16/8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
Efficient C language support  
1.3 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908QC16, MC68HC908QC8, and MC68HC908QC4.  
1.4 Pin Assignments  
The MC68HC908QC16, MC68HC908QC8, and MC68HC908QC4 are available in 16-pin, 20-pin, and  
28-pin packages. Figure 1-2 shows the pin assignment for these packages.  
1.5 Pin Functions  
Table 1-2 provides a description of the pin functions.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
19  
General Description  
PTA0/T1CH0/AD0/KBI0  
PTA1/T1CH1/AD1/KBI1  
PTA2/IRQ/KBI2/T1CLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0/SPSCK/AD4  
PTB1/MOSI/T2CH1/AD5  
PTB2/MISO/T2CH0/AD6  
PTB3/SS/T2CLK/AD7  
PTB4/RxD/T2CH0/AD8  
PTB5/TxD/T2CH1/AD9  
PTB6/T1CH2  
BREAK  
MODULE  
PERIODIC WAKEUP  
MODULE  
PTB7/T1CH3  
PTC0  
PTC1  
PTC2  
PTC3  
LOW-VOLTAGE  
INHIBIT  
MC68HC908QC16  
16,384 BYTES  
4-CHANNEL 16-BIT  
TIMER MODULE  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
MC68HC908QC8  
8192 BYTES  
2-CHANNEL 16-BIT  
TIMER MODULE  
MC68HC908QC4  
4096 BYTES  
USER FLASH  
COP  
MODULE  
10-CHANNEL  
10-BIT ADC  
MC68HC908QC16  
512 BYTES  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
MC68HC908QC8  
384 BYTES  
MC68HC908QC4  
384 BYTES  
SERIAL PERIPHERAL  
INTERFACE  
USER RAM  
MONITOR ROM  
V
V
DD  
SS  
POWER SUPPLY  
All port pins can be configured with internal pullup  
PTC not available on 16-pin devices (see note in 11.1 Introduction)  
PTD not available on 16-pin or 20-pin devices (see note in 11.1 Introduction)  
Figure 1-1. Block Diagram  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
20  
Pin Functions  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
SS  
DD  
PTB7/T1CH3  
PTB6/T1CH2  
PTB0/SPSCK/AD4  
PTB1/MOSI/T2CH1/AD5  
PTA0/T1CH0/AD0/KBI0  
PTA1/T1CH1/AD1/KBI1  
PTB2/MISO/T2CH0/AD6  
PTB3/SS/T2CLK/AD7  
PTA2/IRQ/KBI2/T1CLK  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PTA0/T1CH0/AD0/KBI0  
PTB1/MOSI/T2CH1/AD5  
PTB0/SPSCK/AD4  
PTA1/T1CH1/AD1/KBI1  
PTB2/MISO/T2CH0/AD6  
PTB3/SS/T2CLK/AD7  
PTA2/IRQ/KBI2/T1CLK  
PTA3/RST/KBI3  
PTB4/RxD/T2CH0/AD8  
PTB5/TxD/T2CH1/AD9  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
PTA4/OSC2/AD2/KBI4  
PTB5/TxD/T2CH1/AD9  
PTB4/RxD/T2CH0/AD8  
PTA3/RST/KBI3  
V
SS  
V
DD  
PTB7/T1CH3  
PTB6/T1CH2  
PTA5/OSC1/AD3/KBI5  
16-PIN ASSIGNMENT  
MC68HC908QCxx SOIC  
16-PIN ASSIGNMENT  
MC68HC908QCxx TSSOP  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
V
DD  
SS  
PTB7/T1CH3  
PTB6/T1CH2  
PTB0/SPSCK/AD4  
PTB1/MOSI/T2CH1/AD5  
PTA0/T1CH0/AD0/KBI0  
PTC2  
3
4
PTA5/OSC1/AD3/KBI5  
PTA4/OSC2/AD2/KBI4  
PTC1  
PTC2  
PTA0/T1CH0/AD0/KBI0  
PTB1/MOSI/T2CH1/AD5  
PTB0/SPSCK/AD4  
PTC3  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
5
PTA1/T1CH1/AD1/KBI1  
PTB2/MISO/T2CH0/AD6  
PTB3/SS/T2CLK/AD7  
PTA2/IRQ/KBI2/T1CLK  
PTA3/RST/KBI3  
PTB4/RxD/T2CH0/AD8  
PTB5/TxD/T2CH1/AD9  
PTC0  
6
PTC3  
7
V
PTC0  
PTA1/T1CH1/AD1/KBI1  
PTB2/MISO/T2CH0/AD6  
PTB3/SS/T2CLK/AD7  
PTA2/IRQ/KBI2/T1CLK  
SS  
V
DD  
8
PTB5/TxD/T2CH1/AD9  
PTB4/RxD/T2CH0/AD8  
PTA3/RST/KBI3  
PTB7/T1CH3  
PTB6/T1CH2  
PTA5/OSC1/AD3/KBI5  
PTA4/OSC2/AD2/KBI4  
9
10  
PTC1  
20-PIN ASSIGNMENT  
MC68HC908QCxx SOIC  
20-PIN ASSIGNMENT  
MC68HC908QCxx TSSOP  
V
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
DD  
SS  
2
PTB7/T1CH3  
PTB6/T1CH2  
PTA5/OSC1/AD3/KBI5  
PTA4/OSC2/AD2/KBI4  
PTC1  
PTB0/SPSCK/AD4  
PTB1/MOSI/T2CH1/AD5  
PTA0/T1CH0/AD0/KBI0  
PTC2  
3
4
5
6
PTD4  
PTD5  
PTD4  
PTC2  
PTD6  
PTD7  
PTC3  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
7
PTD3  
PTD5  
8
PTD2  
PTD6  
PTA0/T1CH0/AD0/KBI0  
PTB1/MOSI/T2CH1/AD5  
PTB0/SPSCK/AD4  
PTA1/T1CH1/AD1/KBI1  
PTB2/MISO/T2CH0/AD6  
PTB3/SS/T2CLK/AD7  
PTA2/IRQ/KBI2/T1CLK  
PTA3/RST/KBI3  
PTB4/RxD/T2CH0/AD8  
PTB5/TxD/T2CH1/AD9  
PTC0  
PTD1  
9
PTD7  
PTD0  
10  
11  
12  
13  
14  
PTC3  
V
SS  
V
DD  
PTC0  
PTA1/T1CH1/AD1/KBI1  
PTB2/MISO/T2CH0/AD6  
PTB3/SS/T2CLK/AD7  
PTA2/IRQ/KBI2/T1CLK  
9
PTB7/T1CH3  
PTB6/T1CH2  
PTA5/OSC1/AD3/KBI5  
PTA4/OSC2/AD2/KBI4  
PTC1  
10  
11  
12  
13  
14  
PTB5/TxD/T2CH1/AD9  
PTB4/RxD/T2CH0/AD8  
PTA3/RST/KBI3  
PTD0  
PTD1  
PTD2  
PTD3  
28-PIN ASSIGNMENT  
MC68HC908QCxx SOIC  
28-PIN ASSIGNMENT  
MC68HC908QCxx TSSOP  
NOTE: T2CH0 and T2CH1 can be repositioned using TIM2POS in CONFIG2.  
Figure 1-2. MC68HC908QC16, MC68HC908QC8, and MC68HC908QC4 Pin Assignments  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
21  
General Description  
Pin Name  
Table 1-2. Pin Functions  
Input/Outpu  
t
Description  
VDD  
VSS  
Power supply  
Power  
Power supply ground  
Power  
Input/Output  
Input/Output  
Input  
PTA0 — General purpose I/O port  
T1CH0 — Timer Channel 0 I/O  
PTA0  
PTA1  
AD0 — A/D channel 0 input  
KBI0 — Keyboard interrupt input 0  
Input  
PTA1 — General purpose I/O port  
Input/Output  
Input/Output  
Input  
T1CH1 — Timer Channel 1 I/O  
AD1 — A/D channel 1 input  
KBI1 — Keyboard interrupt input 1  
Input  
PTA2 — General purpose input-only port  
IRQ — External interrupt with programmable pullup and Schmitt trigger input  
KBI2 — Keyboard interrupt input 2  
Input  
Input  
PTA2(1)  
PTA3  
Input  
T1CLK — TIM1 timer clock input  
Input  
PTA3 — General purpose I/O port  
Input/Output  
Input  
RST — Reset input, active low with internal pullup and Schmitt trigger  
KBI3 — Keyboard interrupt input 3  
Input  
PTA4 — General purpose I/O port  
Input/Output  
OSC2 —XTAL oscillator output (XTAL option only)  
RC or internal oscillator output (OSC2EN = 1 in PTAPUE register)  
Output  
Output  
PTA4  
AD2 — A/D channel 2 input  
Input  
Input  
KBI4 — Keyboard interrupt input 4  
PTA5 — General purpose I/O port  
OSC1 — XTAL, RC, or external oscillator input  
AD3 — A/D channel 3 input  
Input/Output  
Input  
PTA5  
PTB0  
PTB1  
Input  
KBI5 — Keyboard interrupt input 5  
PTB0 — General-purpose I/O port  
SPSCK— SPI serial clock  
Input  
Input/Output  
Input/Output  
Input  
AD4 — A/D channel 4 input  
PTB1 — General-purpose I/O port  
MOSI — SPI data transmitted  
Input/Output  
Input/Output  
Input/Output  
Input  
T2CH1(2) — TIM2 channel 1  
AD5 — A/D channel 5 input  
— Continued on next page  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
22  
Pin Functions  
Table 1-2. Pin Functions (Continued)  
Input/Outpu  
t
Pin Name  
Description  
PTB2 — General-purpose I/O port  
Input/Output  
Input/Output  
Input/Output  
Input  
MISO — SPI data received  
PTB2  
T2CH0(2) — TIM2 channel 0  
AD6 — A/D channel 6 input  
PTB3 — General-purpose I/O port  
SS — SPI slave select  
Input/Output  
Input  
PTB3  
PTB4  
PTB5  
T2CLK — TIM2 timer clock input  
AD7 — A/D channel 7 input  
PTB4 — General-purpose I/O port  
RxD — ESCI receive data I/O  
Input  
Input  
Input/Output  
Input  
T2CH0(2) — TIM2 channel 0  
AD8 — A/D channel 8 input  
Input/Output  
Input  
PTB5 — General-purpose I/O port  
TxD — ESCI transport data I/O  
Input/Output  
Output  
T2CH1(2) — TIM2 channel 1  
AD9 — A/D channel 9 input  
PTB6 — General-purpose I/O port  
T1CH2 — Timer channel 2 I/O  
PTB7 — General-purpose I/O port  
T1CH3 — Timer channel 3 I/O  
General-purpose I/O port  
Input/Output  
Input  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
PTB6  
PTB7  
PTC0–PTC2(3)  
PTC3(1, 3)  
General-purpose input port  
General-purpose I/O port  
Input  
PTD0–PTD7(4)  
Input/Output  
1. PTA2 and PTC3 pins have high voltage detectors to enter special modes.  
2. T2CH0 and T2CH1 can be repositioned using TIM2POS in CONFIG2.  
3. Pins not available on 16-pin devices (see note in 11.1 Introduction).  
4. Pins not available on 16-pin or 20-pin devices (see note in 11.1 Introduction).  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
23  
General Description  
1.6 Pin Function Priority  
Table 1-3 is meant to resolve the priority if multiple functions are enabled on a single pin.  
NOTE  
Upon reset all pins come up as input ports regardless of the priority table.  
Table 1-3. Function Priority in Shared Pins  
Pin Name  
Highest-to-Lowest Priority Sequence  
AD0 T1CH0 KBI0 PTA0  
PTA0(1)  
PTA1(1)  
PTA2  
AD1 T1CH1 KBI1 PTA1  
IRQ T1CLK KBI2 PTA2  
RST KBI3 PTA3  
PTA3  
PTA4(1)  
PTA5(1)  
PTB0(1)  
PTB1(1)  
PTB2(1)  
PTB3(1)  
PTB4(1)  
OSC2 AD2 KBI4 PTA4  
OSC1 AD3 KBI5 PTA5  
AD4 SPSCK PTB0  
AD5 MOSI T2CH1(2) PTB1  
AD6 MISO T2CH0(2) PTB2  
AD7 SS T2CLK PTB3  
AD8 RxD T2CH0(2) PTB4  
PTB5(1)  
PTB6  
PTB7  
PTCx  
PTDx  
AD9 TxD T2CH1(2) PTB5  
T1CH2 PTB6  
T1CH3 PTB7  
PTCx  
PTDx  
1. When a pin is to be used as an ADC pin, the I/O port function should be left as  
an input and all other shared modules should be disabled. The ADC does not  
override additional modules using the pin.  
2. T2CH0 and T2CH1 can be repositioned using TIM2POS in CONFIG2  
(see Figure 2-2. Control, Status, and Data Registers).  
1.7 Unused Pin Termination  
Input pins and I/O port pins that are not used in the application must be terminated. This prevents excess  
current caused by floating inputs, and enhances immunity during noise or transient events. Termination  
methods include:  
1. Configuring unused pins as outputs and driving high or low;  
2. Configuring unused pins as inputs and enabling internal pull-ups;  
3. Configuring unused pins as inputs and using external pull-up or pull-down resistors.  
Never connect unused pins directly to V or V .  
DD  
SS  
Since some general-purpose I/O pins are not available on all packages, these pins must be terminated  
as well. Either method 1 or 2 above are appropriate.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
24  
Freescale Semiconductor  
 
Chapter 2  
Memory  
2.1 Introduction  
The central processor unit (CPU08) can address 64 Kbytes of memory space. The memory map is shown  
in Figure 2-1.  
2.2 Unimplemented Memory Locations  
Executing code from an unimplemented location will cause an illegal address reset. In Figure 2-1,  
unimplemented locations are shaded.  
2.3 Reserved Memory Locations  
Accessing a reserved location can have unpredictable effects on MCU operation. In Figure 2-1, reserved  
locations are marked with the word reserved or with the letter R.  
2.4 Direct Page Registers  
Figure 2-2 shows the memory mapped registers. Registers with addresses between $0000 and $00FF  
are considered direct page registers and all instructions including those with direct page addressing  
modes can access them. Registers between $0100 and $FFFF require non-direct page addressing  
modes. See Chapter 6 Central Processor Unit (CPU) for more information on addressing modes.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
25  
Memory  
$0000  
DIRECT PAGE REGISTERS  
64 BYTES  
$003F  
$0040  
$0040  
$0040  
RAM  
RAM  
RAM  
512 BYTES  
384 BYTES  
384 BYTES  
$023F  
$01BF  
$01BF  
$0240  
$01C0  
$023F  
$01C0  
$023F  
REGISTERS  
16 BYTES  
RESERVED  
128 BYTES  
RESERVED  
128 BYTES  
$024F  
$0250  
UNIMPLEMENTED  
9648 BYTES  
$27FF  
$2800  
AUXILIARY ROM  
544 BYTES  
$2A1F  
$2A20  
UNIMPLEMENTED  
1374 BYTES  
$2F7D  
$2F7E  
AUXILIARY ROM  
130 BYTES  
$2FFF  
$3000  
UNIMPLEMENTED  
36,352 BYTES  
$BDFF  
$BE00  
$BE00  
$BE00  
RESERVED  
8192 BYTES  
FLASH MEMORY  
16,384 BYTES  
RESERVED  
12,288 BYTES  
$DDFF  
$FDFF  
$EDFF  
$DE00  
FLASH MEMORY  
8192 BYTES  
$EE00  
$FDFF  
$FE00  
MISCELLANEOUS REGISTERS  
32 BYTES  
FLASH MEMORY  
4096 BYTES  
$FDFF  
$FE1F  
$FE20  
MONITOR ROM  
350 BYTES  
$FF7D  
$FF7E  
UNIMPLEMENTED  
50 BYTES  
$FFAF  
$FFB0  
FLASH  
14 BYTES  
$FFBD  
$FFBE  
MISCELLANEOUS REGISTERS  
$FFC1  
$FFC2  
FLASH  
14 BYTES  
$FFCF  
$FFD0  
USER VECTORS  
48 BYTES  
$FFFF  
MC68HC908QC16 Memory Map  
MC68HC908QC8 Memory Map  
MC68HC908QC4 Memory Map  
Figure 2-1. Memory Map  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
26  
 
Direct Page Registers  
Addr.  
Register Name  
Bit 7  
6
R
0
5
4
3
2
1
Bit 0  
Read:  
0
PTA2  
Port A Data Register  
PTA5  
PTA4  
PTA3  
PTA1  
PTA0  
$0000  
(PTA) Write:  
See page 108.  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Port B Data Register  
PTB7  
0
PTB6  
0
PTB5  
0
PTB2  
PTC2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
(PTB) Write:  
See page 110.  
Reset:  
Read:  
Unaffected by reset  
PTC3  
0
Port C Data Register  
(PTC) Write:  
See page 112.  
Reset:  
Read:  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
Port D Data Register  
PTD7  
0
PTD6  
0
PTD5  
PTD2  
0
(PTD) Write:  
See page 114.  
Reset:  
Read:  
Data Direction Register A  
DDRA5  
0
DDRA4  
0
DDRA3  
0
DDRA1  
DDRA0  
(DDRA) Write:  
See page 108.  
Reset:  
Read:  
0
0
0
0
0
Data Direction Register B  
DDRB7  
DDRB6  
DDRB5  
DDRB4  
DDRB3  
DDRB2  
DDRB1  
DDRB0  
(DDRB) Write:  
See page 110.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
DDRC2  
0
0
DDRC1  
0
0
DDRC0  
0
Data Direction Register C  
(DDRC) Write:  
See page 113.  
Reset:  
Read:  
0
DDRD7  
0
0
DDRD6  
0
0
DDRD5  
0
0
DDRD4  
0
0
DDRD3  
0
Data Direction Register D  
DDRD2  
0
DDRD1  
0
DDRD0  
0
$0007  
$0008  
(DDRD) Write:  
See page 115.  
Reset:  
Reserved  
Read:  
0
0
0
0
0
0
0
0
Port C Input Pullup Enable  
PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0  
$0009  
$000A  
$000B  
$000C  
Register (PTCPUE) Write:  
See page 114.  
Reset:  
0
0
0
0
Read:  
Port D Input Pullup Enable  
PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
Register (PTDPUE) Write:  
See page 116.  
Reset:  
0
OSC2EN  
0
0
0
0
0
0
0
0
0
Read:  
Port A Input Pullup Enable  
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
Register (PTAPUE) Write:  
See page 109.  
Reset:  
0
0
0
0
0
0
0
Read:  
Port B Input Pullup Enable  
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE1 PTBPUE0  
Register (PTBPUE) Write:  
See page 111.  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 8)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
27  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
SPI Control Register  
SPRIE  
R
0
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
$0013  
$0014  
$0015  
$0016  
$0017  
$0018  
(SPCR) Write:  
See page 185.  
Reset:  
Read:  
0
1
0
1
SPRF  
OVRF  
MODF  
SPTE  
SPI Status and Control  
ERRIE  
MODFEN  
SPR1  
SPR0  
Register (SPSCR) Write:  
See page 186.  
Reset:  
0
0
0
0
1
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR) Write:  
See page 188.  
Reset:  
Unaffected by reset  
Read:  
ESCI Control Register 1  
LOOPS  
0
ENSCI  
TXINV  
M
0
WAKE  
0
ILTY  
0
PEN  
0
PTY  
0
(SCC1) Write:  
See page 136.  
Reset:  
0
TCIE  
0
0
Read:  
ESCI Control Register 2  
SCTIE  
SCRIE  
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
(SCC2) Write:  
See page 138.  
Reset:  
0
0
0
Read:  
R8  
ESCI Control Register 3  
T8  
R
R
ORIE  
NEIE  
FEIE  
PEIE  
(SCC3) Write:  
See page 141.  
Reset:  
U
0
0
0
0
0
0
0
Read:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ESCI Status Register 1  
(SCS1) Write:  
See page 141.  
Reset:  
1
0
1
0
0
0
0
0
0
0
0
0
0
0
Read:  
BKF  
RPF  
ESCI Status Register 2  
(SCS2) Write:  
See page 143.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
ESCI Data Register  
(SCDR) Write:  
See page 144.  
Reset:  
Unaffected by reset  
Read:  
ESCI Baud Rate Register  
LINT  
0
LINR  
SCP1  
0
SCP0  
0
R
0
SCR2  
0
SCR1  
0
SCR0  
0
(SCBR) Write:  
See page 144.  
Reset:  
0
Read:  
ESCI Prescaler Register  
PDS2  
0
PDS1  
PDS0  
0
PSSB4  
0
PSSB3  
PSSB2  
PSSB1  
PSSB0  
(SCPSC) Write:  
See page 146.  
Reset:  
0
R
0
0
0
0
0
Read:  
AFIN  
ARUN  
AROVFL  
ARD8  
ESCI Arbiter Control  
Register (SCIACTL) Write:  
AM1  
0
AM0  
ACLK  
See page 149.  
Reset:  
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 8)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
28  
Freescale Semiconductor  
Direct Page Registers  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
ARD7  
ARD6  
ARD5  
ARD4  
ARD3  
ARD2  
ARD1  
ARD0  
ESCI Arbiter Data Register  
$0019  
(SCIADAT) Write:  
See page 150.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
MODEK  
0
Read:  
KEYF  
0
ACKK  
0
Keyboard Status and  
$001A Control Register (KBSCR) Write:  
IMASKK  
See page 90.  
Reset:  
0
0
0
0
0
0
0
KBIE1  
0
Read:  
Keyboard Interrupt  
Enable Register (KBIER) Write:  
R
KBIE5  
0
KBIE4  
0
KBIE3  
0
KBIE2  
0
KBIE0  
0
$001B  
$001C  
$001D  
$001E  
See page 90.  
Reset:  
0
0
0
0
Read:  
Keyboard Interrupt Polarity  
KBIP5  
KBIP4  
KBIP3  
KBIP2  
KBIP1  
0
KBIP0  
0
Register (KBIPR) Write:  
See page 91.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
Read:  
IRQF  
IRQ Status and Control  
Register (INTSCR) Write:  
IMASK  
0
MODE  
0
ACK  
0
See page 83.  
Reset:  
0
IRQPUD  
0
0
IRQEN  
0
0
0
0
0
0
Read:  
OSCENIN-  
STOP  
Configuration Register 2  
TIM2POS ESCIBDSRC  
RSTEN  
0(2)  
(CONFIG2)(1) Write:  
See page 59.  
Reset:  
0
0
0
0
0
1. One-time writable register after each reset.  
2. RSTEN reset to 0 by a power-on reset (POR) only.  
Read:  
Configuration Register 1  
LVIPWRD  
0
COPRS  
0
LVISTOP LVIRSTD  
LVITRIP  
0(2)  
SSREC  
0
STOP  
0
COPD  
0
$001F  
(CONFIG1)(1) Write:  
See page 60.  
Reset:  
0
0
1. One-time writable register after each reset.  
2. LVI5OR3 reset to 0 by a power-on reset (POR) only.  
Read:  
TOF  
0
0
0
TIM1 Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
$0021  
$0022  
$0023  
Register (T1SC) Write:  
See page 198.  
Reset:  
TRST  
0
0
0
1
0
0
0
0
Read:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
TIM1 Counter Register  
High (T1CNTH) Write:  
See page 199.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TIM1 Counter Register Low  
(T1CNTL) Write:  
See page 199.  
Reset:  
0
Bit 15  
1
0
Bit 14  
1
0
Bit 13  
1
0
0
0
Bit 10  
1
0
Bit 9  
1
0
Bit 8  
1
Read:  
TIM1 Counter Modulo  
Register High (T1MODH) Write:  
Bit 12  
Bit 11  
See page 200.  
Reset:  
1
1
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 8)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
29  
Memory  
Addr.  
Register Name  
Bit 7  
6
Bit 6  
1
5
Bit 5  
1
4
Bit 4  
1
3
Bit 3  
1
2
Bit 2  
1
1
Bit 1  
1
Bit 0  
Bit 0  
1
Read:  
TIM1 Counter Modulo  
Register Low (T1MODL) Write:  
Bit 7  
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
See page 200.  
Reset:  
1
CH0F  
0
Read:  
TIM1 Channel 0 Status and  
Control Register (T1SC0) Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
CH0MAX  
0
See page 201.  
Reset:  
0
Read:  
TIM1 Channel 0  
Register High (T1CH0H) Write:  
Bit 15  
Bit 7  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See page 204.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
Read:  
TIM1 Channel 0  
Register Low (T1CH0L) Write:  
Bit 6  
Bit 5  
0
Bit 2  
Bit 1  
Bit 0  
See page 204.  
Reset:  
Read:  
CH1F  
TIM1 Channel 1 Status and  
Control Register (T1SC1) Write:  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
0
0
See page 198.  
Reset:  
0
0
Read:  
TIM1 Channel 1  
Register High (T1CH1H) Write:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See page 204.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
Read:  
TIM1 Channel 1  
Register Low (T1CH1L) Write:  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
See page 204.  
Reset:  
$002B  
Reserved  
$002F  
Read:  
CH2F  
0
TIM1 Channel 2 Status and  
Control Register (T1SC2) Write:  
CH2IE  
0
MS2A  
0
ELS2B  
0
ELS2A  
0
TOV2  
0
CH2MAX  
$0030  
$0031  
$0032  
$0033  
0
0
See page 201.  
Reset:  
0
0
Read:  
TIM1 Channel 2  
Register High (T1CH2H) Write:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See page 204.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
Read:  
TIM1 Channel 2  
Register Low (T1CH2L) Write:  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
See page 204.  
Reset:  
Read:  
CH3F  
0
0
TIM1 Channel 3 Status and  
Control Register (T1SC3) Write:  
CH3IE  
0
MS3A  
ELS3B  
ELS3A  
0
TOV3  
0
CH3MAX  
0
0
0
See page 201.  
Reset:  
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 8)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
30  
Freescale Semiconductor  
Direct Page Registers  
Addr.  
Register Name  
TIM1 Channel 3  
Register High (T1CH3H) Write:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
$0034  
See page 204.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
Read:  
TIM1 Channel 3  
Register Low (T1CH3L) Write:  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
$0035  
See page 204.  
Reset:  
Read:  
ECGST  
0
Oscillator Status and  
$0036 Control Register (OSCSC) Write:  
OSCOPT1 OSCOPT0  
ICFS1  
0
ICFS0  
0
ECFS1  
0
ECFS0  
0
ECGON  
0
See page 104.  
Reset:  
0
0
Reserved  
$0037  
$0038  
Oscillator Trim Register Read:  
(OSCTRIM)  
TRIM7  
1
TRIM6  
0
TRIM5  
0
TRIM4  
0
TRIM3  
0
TRIM2  
0
TRIM1  
0
TRIM0  
0
Write:  
See page 105.  
Reset:  
$0039  
Reserved  
$003B  
Read: COCO  
Register (ADSCR) Write:  
ADC10 Status and Control  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
$003D  
$003E  
$003F  
$0240  
See page 54.  
Reset:  
Read:  
0
0
0
0
0
0
1
0
1
0
1
0
1
AD9  
R
1
AD8  
R
ADC10 Data Register High  
(ADRH) Write:  
R
R
R
R
R
R
See page 56.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
AD1  
R
AD0  
R
ADC10 Data Register Low  
(ADRL) Write:  
See page 56.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
ADC10 Clock Register  
ADLPC  
ADIV1  
0
ADIV0  
0
ADICLK  
MODE1  
MODE0  
0
ADLSMP ADACKEN  
(ADCLK) Write:  
See page 56.  
Reset:  
Read:  
0
TOF  
0
0
0
0
0
0
0
TIM2 Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
Register (T2SC) Write:  
See page 213.  
Reset:  
TRST  
0
0
0
1
0
0
0
0
TIM2 Counter Register Read:  
High  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Write:  
$0241  
(T2CNTH)  
See page 214.  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 8)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
31  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TIM2 Counter Register Low  
$0242  
$0243  
$0244  
$0245  
$0246  
$0247  
$0248  
$0249  
(T2CNTL) Write:  
See page 214.  
Reset:  
Read:  
0
Bit 15  
1
0
Bit 14  
1
0
Bit 13  
1
0
Bit 12  
1
0
Bit 11  
1
0
Bit 10  
1
0
Bit 9  
1
0
TIM2 Counter Modulo  
Bit 8  
Register High (T2MODH) Write:  
See page 215.  
Reset:  
1
Bit 0  
1
Read:  
TIM2 Counter Modulo  
Register Low (T2MODL) Write:  
Bit 7  
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
1
Bit 2  
1
Bit 1  
1
See page 215.  
Reset:  
1
CH0F  
0
Read:  
TIM2 Channel 0 Status and  
Control Register (T2SC0) Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
CH0MAX  
0
See page 215.  
Reset:  
0
Read:  
TIM2 Channel 0 Register  
Bit 15  
Bit 7  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
High (T2CH0H) Write:  
See page 218.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
Read:  
TIM2 Channel 0 Register  
Bit 6  
Bit 5  
0
Bit 2  
Bit 1  
Bit 0  
Low (T2CH0L) Write:  
See page 218.  
Reset:  
Read:  
CH1F  
TIM2 Channel 1 Status and  
Control Register (T2SC1) Write:  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
0
0
See page 215.  
Reset:  
0
0
Read:  
TIM2 Channel 1 Register  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
High (T2CH1H) Write:  
See page 218.  
Reset:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
Read:  
TIM2 Channel 1 Register  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
$024A  
$024B  
Low (T2CH1L) Write:  
See page 218.  
Reset:  
Reserved  
Periodic Wakeup Status Read:  
and Control Register  
0
0
PWUF  
0
0
PWUCLK-  
SEL  
PWUON  
PWUIE  
0
SMODE  
0
Write:  
PWUACK  
$024C  
(PWUSC)  
See page 119.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
Periodic Wakeup Prescaler  
PS3  
0
PS2  
0
PS1  
0
PS0  
0
$024D  
$024E  
Register (PWUP) Write:  
See page 120.  
Reset:  
0
Bit 7  
0
0
Bit 6  
0
0
Bit 5  
0
0
Read:  
Periodic Wakeup Modulo  
Register (PWUMOD) Write:  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
See page 121.  
Reset:  
0
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 8)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
32  
Freescale Semiconductor  
Direct Page Registers  
Addr.  
Register Name  
Reserved  
Bit 7  
6
5
4
3
2
1
Bit 0  
$024F  
Read:  
(BSR) Write:  
SBSW  
Break Status Register  
R
R
R
R
R
R
R
0
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
0
0
See page 223.  
Reset:  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
SIM Reset Status Register  
(SRSR) Write:  
See page 167.  
Break Auxiliary Register  
POR:  
Read:  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BDCOP  
(BRKAR) Write:  
See page 223.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Break Flag Control Register  
BCFE  
R
R
R
R
R
R
R
(BFCR) Write:  
See page 223.  
Reset:  
Read:  
0
IF6  
R
IF5  
R
IF4  
R
IF3  
R
IF2  
R
IF1  
R
0
R
0
R
Interrupt Status Register 1  
(INT1) Write:  
See page 163.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
R
IF9  
R
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2) Write:  
See page 163.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
IF22  
R
IF21  
R
IF20  
R
IF19  
R
IF18  
R
IF17  
R
IF16  
R
IF15  
R
Interrupt Status Register 3  
$FE06  
$FE07  
(INT3) Write:  
See page 163.  
Reset:  
0
0
0
0
0
0
0
0
Reserved  
Read:  
0
0
0
0
FLASH Control Register  
HVEN  
0
MASS  
0
ERASE  
0
PGM  
0
$FE08  
$FE09  
$FE0A  
$FE0B  
(FLCR) Write:  
See page 36.  
Reset:  
Read:  
0
Bit 15  
0
0
Bit 14  
0
0
Bit 13  
0
0
Bit 12  
0
Break Address High  
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
Register (BRKH) Write:  
See page 222.  
Reset:  
Read:  
Break Address low  
Register (BRKL) Write:  
Bit 7  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
See page 222.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
Register (BRKSCR) Write:  
BRKE  
0
BRKA  
See page 223.  
Reset:  
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 8)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
33  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: LVIOUT  
0
0
0
0
0
0
R
LVI Status Register  
$FE0C  
(LVISR) Write:  
See page 95.  
Reset:  
0
0
0
0
0
0
0
0
$FE0D  
$FE0F  
Reserved  
Read:  
FLASH Block Protect  
Register (FLBPR) Write:  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
$FFBE  
$FFBF  
See page 41.  
Reset:  
Unaffected by reset  
Read:  
TRIM7  
TRIM6  
TRIM5  
TRIM4  
TRIM3  
TRIM2  
TRIM1  
TRIM0  
Internal Oscillator  
Trim Value  
$FFC0  
$FFC1  
Write:  
Reset:  
FLASH location with factory programmed trim value.  
Read:  
LOW BYTE OF RESET VECTOR  
WRITING CLEARS COP COUNTER (ANY VALUE)  
Unaffected by reset  
COP Control Register  
$FFFF  
(COPCTL) Write:  
See page 65.  
Reset:  
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 8)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
34  
Freescale Semiconductor  
Random-Access Memory (RAM)  
.
Table 2-1. Vector Addresses  
Vector Priority  
Vector  
Address  
Vector  
IF22-  
IF20  
$FFD0-  
Lowest  
Unused vectors (available for user program)  
$FFD5  
$FFD6,7  
$FFD8,9  
$FFDA,B  
$FFDC,D  
$FFDE,F  
$FFE0,1  
$FFE2,3  
$FFE4,5  
$FFE6,7  
$FFE8,9  
$FFEA,B  
IF19  
IF18  
IF17  
IF16  
IF15  
IF14  
IF13  
IF12  
IF11  
IF10  
IF9  
PWU vector  
TIM2 overflow vector  
TIM2 channel 1 vector  
TIM2 channel 0 vector  
ADC conversion complete vector  
Keyboard vector  
SPI transmit vector  
SPI receive vector  
ESCI transmit vector  
ESCI receive vector  
ESCI error vector  
Not used  
IF8  
IF7  
$FFEE,F  
$FFF0,1  
$FFF2,3  
$FFF4,5  
$FFF6,7  
TIM1 Channel 3 vector  
TIM1 Channel 2 vector  
TIM1 overflow vector  
TIM1 Channel 1 vector  
TIM1 Channel 0 vector  
Not used  
IF6  
IF5  
IF4  
IF3  
IF2  
IF1  
$FFFA,B  
$FFFC,D  
$FFFE,F  
IRQ vector  
SWI vector  
Highest  
Reset vector  
2.5 Random-Access Memory (RAM)  
This MCU includes static RAM. The locations in RAM below $0100 can be accessed using the more  
efficient direct addressing mode, and any single bit in this area can be accessed with the bit manipulation  
instructions (BCLR, BSET, BRCLR, and BRSET). Locating the most frequently accessed program  
variables in this area of RAM is preferred.  
The RAM retains data when the MCU is in low-power wait or stop mode. At power-on, the contents of  
RAM are uninitialized. RAM data is unaffected by any reset provided that the supply voltage does not drop  
below the minimum value for RAM retention.  
For compatibility with older M68HC05 MCUs, the HC08 resets the stack pointer to $00FF. In the devices  
that have RAM above $00FF, it is usually best to reinitialize the stack pointer to the top of the RAM so the  
direct page RAM can be used for frequently accessed RAM variables and bit-addressable program  
variables. Include the following 2-instruction sequence in your reset initialization routine (where RamLast  
is equated to the highest address of the RAM).  
LDHX  
TXS  
#RamLast+1  
;point one past RAM  
;SP<-(H:X-1)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
35  
Memory  
2.6 FLASH Memory (FLASH)  
The FLASH memory is intended primarily for program storage. In-circuit programming allows the  
operating program to be loaded into the FLASH memory after final assembly of the application product.  
It is possible to program the entire array through the single-wire monitor mode interface. Because no  
special voltages are needed for FLASH erase and programming operations, in-application programming  
is also possible through other software-controlled communication paths.  
This subsection describes the operation of the embedded FLASH memory. The FLASH memory can be  
read, programmed, and erased from the internal V supply. The program and erase operations are  
DD  
enabled through the use of an internal charge pump.  
The minimum size of FLASH memory that can be erased is 64 bytes; and the maximum size of FLASH  
memory that can be programmed in a program cycle is 32 bytes (a row). Program and erase operations  
are facilitated through control bits in the FLASH control register (FLCR). Details for these operations  
appear later in this section.  
NOTE  
An erased bit reads as a 1 and a programmed bit reads as a 0. A security  
(1)  
feature prevents viewing of the FLASH contents.  
2.6.1 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program and erase operations.  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 2-3. FLASH Control Register (FLCR)  
HVEN — High Voltage Enable Bit  
This read/write bit enables high voltage from the charge pump to the memory for either program or  
erase operation. It can only be set if either PGM =1 or ERASE =1 and the proper sequence for  
program or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS — Mass Erase Control Bit  
This read/write bit configures the memory for mass erase operation.  
1 = Mass erase operation selected  
0 = Mass erase operation unselected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit  
such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation unselected  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult  
for unauthorized users.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
36  
Freescale Semiconductor  
FLASH Memory (FLASH)  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE  
bit such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation unselected  
2.6.2 FLASH Page Erase Operation  
Use the following procedure to erase a page of FLASH memory. A page consists of 64 consecutive bytes  
starting from addresses $XX00, $XX40, $XX80, or $XXC0. The 48-byte user interrupt vectors area also  
forms a page. Any FLASH memory page can be erased alone.  
1. Set the ERASE bit and clear the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH location within the address range of the block to be erased.  
4. Wait for a time, t  
.
NVS  
5. Set the HVEN bit.  
6. Wait for a time, t  
.
Erase  
7. Clear the ERASE bit.  
8. Wait for a time, t  
.
NVH  
9. Clear the HVEN bit.  
10. After time, t  
, the memory can be accessed in read mode again.  
RCV  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, other unrelated operations may  
occur between the steps.  
NOTE  
A page erase of the vector page will erase the internal oscillator trim value  
at $FFC0.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
37  
Memory  
2.6.3 FLASH Mass Erase Operation  
Use the following procedure to erase the entire FLASH memory to read as a 1:  
1. Set both the ERASE bit and the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
(1)  
3. Write any data to any FLASH address within the FLASH memory address range.  
4. Wait for a time, t  
.
NVS  
5. Set the HVEN bit.  
6. Wait for a time, t  
.
MErase  
7. Clear the ERASE and MASS bits.  
NOTE  
Mass erase is disabled whenever any block is protected (FLBPR does not  
equal $FF).  
8. Wait for a time, t  
.
NVHL  
9. Clear the HVEN bit.  
10. After time, t  
, the memory can be accessed in read mode again.  
RCV  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, other unrelated operations may  
occur between the steps.  
CAUTION  
A mass erase will erase the internal oscillator trim value at $FFC0.  
1. When in monitor mode, with security sequence failed (see 18.3.2 Security), write to the FLASH block protect register in-  
stead of any FLASH address.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
38  
Freescale Semiconductor  
FLASH Memory (FLASH)  
2.6.4 FLASH Program Operation  
Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes  
starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0, or $XXE0. Use the  
following step-by-step procedure to program a row of FLASH memory  
Figure 2-4 shows a flowchart of the programming algorithm.  
NOTE  
Do not program any byte in the FLASH more than once after a successful  
erase operation. Reprogramming bits to a byte which is already  
programmed is not allowed without first erasing the page in which the byte  
resides or mass erasing the entire FLASH memory. Programming without  
first erasing may disturb data stored in the FLASH.  
1. Set the PGM bit. This configures the memory for program operation and enables the latching of  
address and data for programming.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH location within the address range desired.  
4. Wait for a time, t  
.
NVS  
5. Set the HVEN bit.  
6. Wait for a time, t  
.
PGS  
(1)  
7. Write data to the FLASH address being programmed .  
8. Wait for time, t  
.
PROG  
9. Repeat step 7 and 8 until all desired bytes within the row are programmed.  
(1)  
10. Clear the PGM bit  
11. Wait for time, t  
.
.
NVH  
12. Clear the HVEN bit.  
13. After time, t , the memory can be accessed in read mode again.  
RCV  
This program sequence is repeated throughout the memory until all data is programmed.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps. Do not exceed t  
Memory Characteristics.  
maximum, see 19.17  
PROG  
1. The time between each FLASH address change, or the time between the last FLASH address programmed to clearing  
PGM bit, must not exceed the maximum programming time, tPROG maximum.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
39  
Memory  
Algorithm for Programming  
a Row (32 Bytes) of FLASH Memory  
1
2
3
SET PGM BIT  
READ THE FLASH BLOCK PROTECT REGISTER  
WRITE ANY DATA TO ANY FLASH ADDRESS  
WITHIN THE ROW ADDRESS RANGE DESIRED  
4
5
6
WAIT FOR A TIME, t  
NVS  
SET HVEN BIT  
WAIT FOR A TIME, t  
PGS  
7
8
WRITE DATA TO THE FLASH ADDRESS  
TO BE PROGRAMMED  
WAIT FOR A TIME, t  
PROG  
COMPLETED  
Y
PROGRAMMING  
THIS ROW?  
9
N
10  
CLEAR PGM BIT  
11  
12  
13  
WAIT FOR A TIME, t  
NVH  
NOTES:  
CLEAR HVEN BIT  
The time between each FLASH address change (step 7 to step 7 loop),  
or the time between the last FLASH address programmed  
to clearing PGM bit (step 7 to step 10)  
WAIT FOR A TIME, t  
RCV  
must not exceed the maximum programming  
time, tPROG max.  
END OF PROGRAMMING  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Figure 2-4. FLASH Programming Flowchart  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
40  
FLASH Memory (FLASH)  
2.6.5 FLASH Protection  
Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target  
application, provision is made to protect blocks of memory from unintentional erase or program  
operations due to system malfunction. This protection is done by use of a FLASH block protect register  
(FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range  
of the protected area starts from a location defined by FLBPR and ends to the bottom of the FLASH  
memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or  
PROGRAM operations.  
NOTE  
In performing a program or erase operation, the FLASH block protect  
register must be read after setting the PGM or ERASE bit and before  
asserting the HVEN bit.  
When the FLBPR is programmed with all 0 s, the entire memory is protected from being programmed and  
erased. When all the bits are erased (all 1’s), the entire memory is accessible for program and erase.  
When bits within the FLBPR are programmed, they lock a block of memory. The address ranges are  
shown in 2.6.6 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than  
$FF, any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. Mass  
erase is disabled whenever any block is protected (FLBPR does not equal $FF). The FLBPR itself can  
be erased or programmed only with an external voltage, V  
allows entry from reset into the monitor mode.  
, present on the IRQ pin. This voltage also  
TST  
2.6.6 FLASH Block Protect Register  
The FLASH block protect register is implemented as a byte within the FLASH memory, and therefore can  
only be written during a programming sequence of the FLASH memory. The value in this register  
determines the starting address of the protected range within the FLASH memory.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
Unaffected by reset. Initial value from factory is 1.  
Write to this register is by a programming sequence to the FLASH memory.  
Figure 2-5. FLASH Block Protect Register (FLBPR)  
BPR[7:0] — FLASH Protection Register Bits [7:0]  
These eight bits in FLBPR represent bits [13:6] of a 16-bit memory address. Bits [15:14] are 1s and  
bits [5:0] are 0s.  
The resultant 16-bit address is used for specifying the start address of the FLASH memory for block  
protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF.  
With this mechanism, the protect start address can be $XX00, $XX40, $XX80, or $XXC0 within the  
FLASH memory. See Figure 2-6 and Table 2-2.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
41  
 
Memory  
16-BIT MEMORY ADDRESS  
FLBPR VALUE  
START ADDRESS OF  
1
1
0
0
0
0
0
0
FLASH BLOCK PROTECT  
Figure 2-6. FLASH Block Protect Start Address  
Table 2-2. Examples of Protect Start Address  
Start of Address of Protect Range(1)  
BPR[7:0]  
$00(2)  
$01 (0000 0001)  
$02 (0000 0010)  
$03 (0000 0011)  
and so on...  
The entire FLASH memory is protected.  
$C040 (1100 0000 0100 0000)  
$C080 (1100 0000 1000 0000)  
$C0C0 (1100 0000 1100 0000)  
$FD (1111 1101)  
$FE (1111 1110)  
$FF  
$FF40 (1111 1111 0100 0000)  
$FF80 (1111 1111 1000 0000)  
The entire FLASH memory is not protected.  
1. The end address of the protected range is always $FFFF.  
2. $BE00–$BFFF is always protected unless the entire FLASH memory is un-  
protected, BPR[7:0] = $FF.  
2.6.7 EEPROM Memory Emulation Using FLASH Memory  
In some applications, the user may want to repeatedly store and read a set of data from an area of  
nonvolatile memory. This is easily implemented in EEPROM memory because single byte erase is  
allowed in EEPROM.  
When using FLASH memory, the minimum erase size is a page. However, the FLASH can be used as  
EEPROM memory. This technique is called “EEPROM emulation”.  
The basic concept of EEPROM emulation using FLASH is that a page is continuously programmed with  
a new data set without erasing the previously programmed locations. Once the whole page is completely  
programmed or the page does not have enough bytes to program a new data set, the user software  
automatically erases the page and then programs a new data set in the erased page.  
In EEPROM emulation when data is read from the page, the user software must find the latest data set  
in the page since the previous data still remains in the same page. There are many ways to monitor the  
page erase timing and the latest data set. One example is unprogrammed FLASH bytes are detected by  
checking programmed bytes (non-$FF value) in a page. In this way, the end of the data set will contain  
unprogrammed data ($FF value).  
A couple of application notes, describing how to emulate EEPROM using FLASH, are available on our  
web site. Titles and order numbers for these application notes are given at the end of this subsection.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
42  
Freescale Semiconductor  
FLASH Memory (FLASH)  
For EEPROM emulation software to work successfully, the following items must be taken care of in the  
user software:  
1. Each FLASH byte in a page must be programmed only one time until the page is erased.  
2. A page must be erased before the FLASH cumulative program HV period (t ) is beyond the  
HV  
maximum t . t is defined as the cumulative high-voltage programming time to the same row  
HV HV  
before the next erase. For more detailed information, refer to 19.17 Memory Characteristics.  
3. FLASH row erase and program cycles should not exceed 10,000 cycles, respectively.  
The above EEPROM emulation software can be easily developed by using the on-chip FLASH routines  
implemented in the MCU. These routines are located in the ROM memory and support FLASH program  
and erase operations. Proper utilization of the on-chip FLASH routines guarantee conformance to the  
FLASH specifications.  
In the on-chip FLASH programming routine called PRGRNGE, the high-voltage programming time is  
enabled for less than 125 µs when programming a single byte at any operating bus frequency between  
1.0 MHz and 8.4 MHz. Therefore, even when a row is programmed by 32 separate single-byte  
programming operations, t is less than the maximum t . Hence, item 2 listed above is already taken  
HV  
HV  
care of by using this routine.  
A page erased operation is provided in the FLASH erase routine called ERARNGE.  
Application note AN2635 (On-Chip FLASH Programming Routines) describes how to use these routines.  
The following application notes, available at www.freescale.com, describe how EERPOM emulation is  
implemented using FLASH:  
AN2183 — Using FLASH as EEPROM on the MC68HC908GP32  
AN2346 — EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs  
AN2690 — Low Frequency EEPROM Emulation on the MC68HC908QY4  
An EEPROM emulation driver, available at www.freescale.com, has been developed and qualified:  
AN3040 — M68HC08 EEPROM Emulation Driver  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
43  
Memory  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
44  
Chapter 3  
Analog-to-Digital Converter (ADC10) Module  
3.1 Introduction  
This section describes the 10-bit successive approximation analog-to-digital converter (ADC10).  
The ADC10 module shares its pins with general-purpose input/output (I/O) port pins. See Figure 3-1 for  
port location of these shared pins. The ADC10 on this MCU uses V and V as its supply and reference  
DD  
SS  
pins. This MCU uses BUSCLKX4 as its alternate clock source for the ADC. This MCU does not have a  
hardware conversion trigger.  
3.2 Features  
Features of the ADC10 module include:  
Linear successive approximation algorithm with 10-bit resolution  
Output formatted in 10- or 8-bit right-justified format  
Single or continuous conversion (automatic power-down in single conversion mode)  
Configurable sample time and conversion speed (to save power)  
Conversion complete flag and interrupt  
Input clock selectable from up to three sources  
Operation in wait and stop modes for lower noise operation  
Selectable asynchronous hardware conversion trigger  
3.3 Functional Description  
The ADC10 uses successive approximation to convert the input sample taken from ADVIN to a digital  
representation. The approximation is taken and then rounded to the nearest 10- or 8-bit value to provide  
greater accuracy and to provide a more robust mechanism for achieving the ideal code-transition voltage.  
Figure 3-2 shows a block diagram of the ADC10  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
45  
 
Analog-to-Digital Converter (ADC10) Module  
PTA0/T1CH0/AD0/KBI0  
PTA1/T1CH1/AD1/KBI1  
PTA2/IRQ/KBI2/T1CLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0/SPSCK/AD4  
PTB1/MOSI/T2CH1/AD5  
PTB2/MISO/T2CH0/AD6  
PTB3/SS/T2CLK/AD7  
PTB4/RxD/T2CH0/AD8  
PTB5/TxD/T2CH1/AD9  
PTB6/T1CH2  
BREAK  
MODULE  
PERIODIC WAKEUP  
MODULE  
PTB7/T1CH3  
PTC0  
PTC1  
PTC2  
PTC3  
LOW-VOLTAGE  
INHIBIT  
MC68HC908QC16  
16,384 BYTES  
4-CHANNEL 16-BIT  
TIMER MODULE  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
MC68HC908QC8  
8192 BYTES  
2-CHANNEL 16-BIT  
TIMER MODULE  
MC68HC908QC4  
4096 BYTES  
USER FLASH  
COP  
MODULE  
10-CHANNEL  
10-BIT ADC  
MC68HC908QC16  
512 BYTES  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
MC68HC908QC8  
384 BYTES  
MC68HC908QC4  
384 BYTES  
SERIAL PERIPHERAL  
INTERFACE  
USER RAM  
MONITOR ROM  
V
DD  
POWER SUPPLY  
V
SS  
All port pins can be configured with internal pullup  
PTC not available on 16-pin devices (see note in 11.1 Introduction)  
PTD not available on 16-pin or 20-pin devices (see note in 11.1 Introduction)  
Figure 3-1. Block Diagram Highlighting ADC10 Block and Pins  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
46  
Freescale Semiconductor  
 
Functional Description  
ADSCR  
ADCLK  
ASYNC  
CLOCK  
GENERATOR  
ACLKEN  
ACLK  
1
2
ADCK  
MCU STOP  
ADHWT  
CLOCK  
DIVIDE  
BUS CLOCK  
CONTROL SEQUENCER  
ALTERNATE CLOCK SOURCE  
AD0  
ADn  
1
2
AIEN  
INTERRUPT  
COCO  
ADVIN  
SAR CONVERTER  
V
REFH  
DATA REGISTERS ADRH:ADRL  
V
REFL  
Figure 3-2. ADC10 Block Diagram  
The ADC10 can perform an analog-to-digital conversion on one of the software selectable channels. The  
output of the input multiplexer (ADVIN) is converted by a successive approximation algorithm into a 10-bit  
digital result. When the conversion is completed, the result is placed in the data registers (ADRH and  
ADRL). In 8-bit mode, the result is rounded to 8 bits and placed in ADRL. The conversion complete flag  
is then set and an interrupt request is generated if AIEN has been set.  
3.3.1 Clock Select and Divide Circuit  
The clock select and divide circuit selects one of three clock sources and divides it by a configurable value  
to generate the input clock to the converter (ADCK). The clock can be selected from one of the following  
sources:  
The asynchronous clock source (ACLK) — This clock source is generated from a dedicated clock  
source which is enabled when the ADC10 is converting and the clock source is selected by setting  
ACLKEN. When ADLPC is clear, this clock operates from 1–2 MHz; when ADLPC is set, it  
operates at 0.5–1 MHz. This clock is not disabled in STOP and allows conversions in stop mode  
for lower noise operation.  
Alternate Clock Source — This clock source is equal to the external oscillator clock or four times  
the bus clock. The alternate clock source is MCU specific, see 3.1 Introduction to determine source  
and availability of this clock source option. This clock is selected when ADICLK and ACLKEN are  
both clear.  
The bus clock — This clock source is equal to the bus frequency. This clock is selected when  
ADICLK is set and ACLKEN is clear.  
Whichever clock is selected, its frequency must fall within the acceptable frequency range for ADCK. If  
the available clocks are too slow, the ADC10 will not perform according to specifications. If the available  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
47  
Analog-to-Digital Converter (ADC10) Module  
clocks are too fast, then the clock must be divided to the appropriate frequency. This divider is specified  
by ADIV[1:0] and can be divide-by 1, 2, 4, or 8.  
3.3.2 Input Select and Pin Control  
Only one analog input may be used for conversion at any given time. The channel select bits in ADSCR  
are used to select the input signal for conversion.  
3.3.3 Conversion Control  
Conversions can be performed in either 10-bit mode or 8-bit mode as determined by the MODE bits.  
Conversions can be initiated by either a software or hardware trigger. In addition, the ADC10 module can  
be configured for low power operation, long sample time, and continuous conversion.  
3.3.3.1 Initiating Conversions  
A conversion is initiated:  
Following a write to ADSCR (with ADCH bits not all 1s) if software triggered operation is selected.  
Following a hardware trigger event if hardware triggered operation is selected.  
Following the transfer of the result to the data registers when continuous conversion is enabled.  
If continuous conversions are enabled a new conversion is automatically initiated after the completion of  
the current conversion. In software triggered operation, continuous conversions begin after ADSCR is  
written and continue until aborted. In hardware triggered operation, continuous conversions begin after a  
hardware trigger event and continue until aborted.  
3.3.3.2 Completing Conversions  
A conversion is completed when the result of the conversion is transferred into the data result registers,  
ADRH and ADRL. This is indicated by the setting of COCO. An interrupt request is generated if AIEN is  
set at the time that COCO is set.  
A blocking mechanism prevents a new result from overwriting previous data in ADRH and ADRL if the  
previous data is in the process of being read while in 10-bit mode (ADRH has been read but ADRL has  
not). In this case the data transfer is blocked, COCO is not set, and the new result is lost. When a data  
transfer is blocked, another conversion is initiated regardless of the state of ADCO (single or continuous  
conversions enabled). If single conversions are enabled, this could result in several discarded  
conversions and excess power consumption. To avoid this issue, the data registers must not be read after  
initiating a single conversion until the conversion completes.  
3.3.3.3 Aborting Conversions  
Any conversion in progress will be aborted when:  
A write to ADSCR occurs (the current conversion will be aborted and a new conversion will be  
initiated, if ADCH are not all 1s).  
A write to ADCLK occurs.  
The MCU is reset.  
The MCU enters stop mode with ACLK not enabled.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
48  
Freescale Semiconductor  
Functional Description  
When a conversion is aborted, the contents of the data registers, ADRH and ADRL, are not altered but  
continue to be the values transferred after the completion of the last successful conversion. In the case  
that the conversion was aborted by a reset, ADRH and ADRL return to their reset states.  
Upon reset or when a conversion is otherwise aborted, the ADC10 module will enter a low power, inactive  
state. In this state, all internal clocks and references are disabled. This state is entered asynchronously  
and immediately upon aborting of a conversion.  
3.3.3.4 Total Conversion Time  
The total conversion time depends on many factors such as sample time, bus frequency, whether  
ACLKEN is set, and synchronization time. The total conversion time is summarized in Table 3-1.  
Table 3-1. Total Conversion Time versus Control Conditions  
Conversion Mode  
ACLKEN  
Maximum Conversion Time  
8-Bit Mode (short sample — ADLSMP = 0):  
Single or 1st continuous  
Single or 1st continuous  
0
1
X
18 ADCK + 3 bus clock  
18 ADCK + 3 bus clock + 5 µs  
16 ADCK  
Subsequent continuous (fBus fADCK  
)
8-Bit Mode (long sample — ADLSMP = 1):  
Single or 1st continuous  
Single or 1st continuous  
0
1
X
38 ADCK + 3 bus clock  
38 ADCK + 3 bus clock + 5 µs  
36 ADCK  
Subsequent continuous (fBus fADCK  
)
10-Bit Mode (short sample — ADLSMP = 0):  
Single or 1st continuous  
Single or 1st continuous  
0
1
X
21 ADCK + 3 bus clock  
21 ADCK + 3 bus clock + 5 µs  
19 ADCK  
Subsequent continuous (fBus fADCK  
)
10-Bit Mode (long sample — ADLSMP = 1):  
Single or 1st continuous  
Single or 1st continuous  
0
1
X
41 ADCK + 3 bus clock  
41 ADCK + 3 bus clock + 5 µs  
39 ADCK  
Subsequent continuous (fBus fADCK  
)
The maximum total conversion time for a single conversion or the first conversion in continuous  
conversion mode is determined by the clock source chosen and the divide ratio selected. The clock  
source is selectable by ADICLK and ACLKEN, and the divide ratio is specified by ADIV. For example, if  
the alternative clock source is 16 MHz and is selected as the input clock source, the input clock  
divide-by-8 ratio is selected and the bus frequency is 4 MHz, then the conversion time for a single 10-bit  
conversion is:  
21 ADCK cycles  
16 MHz/8  
3 bus cycles  
4 MHz  
= 11.25 µs  
Conversion time =  
+
Number of bus cycles = 11.25 µs x 4 MHz = 45 cycles  
NOTE  
The ADCK frequency must be between f  
minimum and f  
ADCK  
ADCK  
maximum to meet A/D specifications.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
49  
 
Analog-to-Digital Converter (ADC10) Module  
3.3.4 Sources of Error  
Several sources of error exist for ADC conversions. These are discussed in the following sections.  
3.3.4.1 Sampling Error  
For proper conversions, the input must be sampled long enough to achieve the proper accuracy. Given  
the maximum input resistance of approximately 15 kand input capacitance of approximately 10 pF,  
sampling to within 1/4LSB (at 10-bit resolution) can be achieved within the minimum sample window (3.5  
cycles / 2 MHz maximum ADCK frequency) provided the resistance of the external analog source (R )  
AS  
is kept below 10 k. Higher source resistances or higher-accuracy sampling is possible by setting  
ADLSMP (to increase the sample window to 23.5 cycles) or decreasing ADCK frequency to increase  
sample time.  
3.3.4.2 Pin Leakage Error  
Leakage on the I/O pins can cause conversion error if the external analog source resistance (R ) is high.  
AS  
If this error cannot be tolerated by the application, keep R lower than V  
/ (4096*I  
) for less than  
AS  
ADVIN  
Leak  
1/4LSB leakage error (at 10-bit resolution).  
3.3.4.3 Noise-Induced Errors  
System noise which occurs during the sample or conversion process can affect the accuracy of the  
conversion. The ADC10 accuracy numbers are guaranteed as specified only if the following conditions  
are met:  
There is a 0.1µF low-ESR capacitor from V  
There is a 0.1µF low-ESR capacitor from V  
to V  
(if available).  
REFL  
REFH  
to V  
(if available).  
SSA  
DDA  
If inductive isolation is used from the primary supply, an additional 1µF capacitor is placed from  
V
to V  
(if available).  
DDA  
SSA  
V
and V  
(if available) is connected to V at a quiet point in the ground plane.  
SSA  
REFL SS  
The MCU is placed in wait mode immediately after initiating the conversion (next instruction after  
write to ADSCR).  
There is no I/O switching, input or output, on the MCU during the conversion.  
There are some situations where external system activity causes radiated or conducted noise emissions  
or excessive V noise is coupled into the ADC10. In these cases, or when the MCU cannot be placed  
DD  
in wait or I/O activity cannot be halted, the following recommendations may reduce the effect of noise on  
the accuracy:  
Place a 0.01 µF capacitor on the selected input channel to V  
or V  
(if available). This will  
SSA  
REFL  
improve noise issues but will affect sample rate based on the external analog source resistance.  
Operate the ADC10 in stop mode by setting ACLKEN, selecting the channel in ADSCR, and  
executing a STOP instruction. This will reduce V noise but will increase effective conversion time  
DD  
due to stop recovery.  
Average the input by converting the output many times in succession and dividing the sum of the  
results. Four samples are required to eliminate the effect of a 1LSB, one-time error.  
Reduce the effect of synchronous noise by operating off the asynchronous clock (ACLKEN=1) and  
averaging. Noise that is synchronous to the ADCK cannot be averaged out.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
50  
Freescale Semiconductor  
Functional Description  
3.3.4.4 Code Width and Quantization Error  
The ADC10 quantizes the ideal straight-line transfer function into 1024 steps (in 10-bit mode). Each step  
ideally has the same height (1 code) and width. The width is defined as the delta between the transition  
points from one code to the next. The ideal code width for an N bit converter (in this case N can be 8 or  
10), defined as 1LSB, is:  
N
1LSB = (V  
–V  
) / 2  
REFL  
REFH  
Because of this quantization, there is an inherent quantization error. Because the converter performs a  
conversion and then rounds to 8 or 10 bits, the code will transition when the voltage is at the midpoint  
between the points where the straight line transfer function is exactly represented by the actual transfer  
function. Therefore, the quantization error will be 1/2LSB in 8- or 10-bit mode. As a consequence,  
however, the code width of the first ($000) conversion is only 1/2LSB and the code width of the last ($FF  
or $3FF) is 1.5LSB.  
3.3.4.5 Linearity Errors  
The ADC10 may also exhibit non-linearity of several forms. Every effort has been made to reduce these  
errors but the user should be aware of them because they affect overall accuracy. These errors are:  
Zero-Scale Error (E ) (sometimes called offset) — This error is defined as the difference between  
ZS  
the actual code width of the first conversion and the ideal code width (1/2LSB). Note, if the first  
conversion is $001, then the difference between the actual $001 code width and its ideal (1LSB) is  
used.  
Full-Scale Error (E ) — This error is defined as the difference between the actual code width of  
FS  
the last conversion and the ideal code width (1.5LSB). Note, if the last conversion is $3FE, then the  
difference between the actual $3FE code width and its ideal (1LSB) is used.  
Differential Non-Linearity (DNL) — This error is defined as the worst-case difference between the  
actual code width and the ideal code width for all conversions.  
Integral Non-Linearity (INL) — This error is defined as the highest-value the (absolute value of the)  
running sum of DNL achieves. More simply, this is the worst-case difference of the actual transition  
voltage to a given code and its corresponding ideal transition voltage, for all codes.  
Total Unadjusted Error (TUE) — This error is defined as the difference between the actual transfer  
function and the ideal straight-line transfer function, and therefore includes all forms of error.  
3.3.4.6 Code Jitter, Non-Monotonicity and Missing Codes  
Analog-to-digital converters are susceptible to three special forms of error. These are code jitter,  
non-monotonicity, and missing codes.  
Code jitter is when, at certain points, a given input voltage converts to one of two values when  
sampled repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition  
voltage, the converter yields the lower code (and vice-versa). However, even very small amounts  
of system noise can cause the converter to be indeterminate (between two codes) for a range of  
input voltages around the transition voltage. This range is normally around 1/2LSB but will increase  
with noise.  
Non-monotonicity is defined as when, except for code jitter, the converter converts to a lower code  
for a higher input voltage.  
Missing codes are those which are never converted for any input value. In 8-bit or 10-bit mode, the  
ADC10 is guaranteed to be monotonic and to have no missing codes.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
51  
Analog-to-Digital Converter (ADC10) Module  
3.4 Interrupts  
When AIEN is set, the ADC10 is capable of generating an interrupt request after each conversion. An  
interrupt request is generated when the conversion completes (indicated by COCO being set). COCO will  
set at the end of a conversion regardless of the state of AIEN.  
3.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
3.5.1 Wait Mode  
The ADC10 will continue the conversion process and will generate an interrupt request following a  
conversion if AIEN is set. If the ADC10 is not required in wait mode, power down the ADC by setting the  
channel select bits (ADCH[4:0]) to all 1s to enter a low power state before executing the WAIT instruction.  
3.5.2 Stop Mode  
If ACLKEN is clear, executing a STOP instruction will abort the current conversion and place the ADC10  
in a low-power state. Upon return from stop mode, a write to ADSCR is required to resume conversions,  
and the result stored in ADRH and ADRL will represent the last completed conversion until the new  
conversion completes.  
If ACLKEN is set, the ADC10 continues normal operation during stop mode. The ADC10 will continue the  
conversion process and will generate an interrupt following a conversion if AIEN is set. If the ADC10 is  
not required to bring the MCU out of stop mode, ensure that the ADC10 is not in continuous conversion  
mode by clearing ADCO in the ADC10 status and control register before executing the STOP instruction.  
In single conversion mode the ADC10 automatically enters a low-power state when the conversion is  
complete. It is not necessary to set the channel select bits (ADCH[4:0]) to all 1s to enter a low-power state.  
If ACLKEN is set, a conversion can be initiated while in stop using the external hardware trigger  
ADEXTCO when in external convert mode. The ADC10 will operate in a low-power mode until the trigger  
is asserted, at which point it will perform a conversion and assert the interrupt when complete (if AIEN is  
set).  
3.6 ADC10 During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. BCFE in the break flag control register (BFCR) enables software to clear status bits  
during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing  
the second step clears the status bit.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
52  
Freescale Semiconductor  
I/O Signals  
3.7 I/O Signals  
The ADC10 module shares its pins with general-purpose input/output (I/O) port pins. See Figure 3-1 for  
port location of these shared pins. The ADC10 on this MCU uses V and V as its supply and reference  
DD  
SS  
pins. This MCU does not have an external trigger source.  
3.7.1 ADC10 Analog Power Pin (V  
)
DDA  
The ADC10 analog portion uses V  
as its power pin. In some packages, V  
is connected internally  
DDA  
DDA  
to V . If externally available, connect the V  
pin to the same voltage potential as V . External filtering  
DD  
DDA  
DD  
may be necessary to ensure clean V  
for good results.  
DDA  
NOTE  
If externally available, route V  
carefully for maximum noise immunity  
DDA  
and place bypass capacitors as near as possible to the package.  
3.7.2 ADC10 Analog Ground Pin (V  
)
SSA  
The ADC10 analog portion uses V  
as its ground pin. In some packages, V  
is connected internally  
SSA  
SSA  
to V . If externally available, connect the V  
pin to the same voltage potential as V .  
SS  
SSA  
SS  
In cases where separate power supplies are used for analog and digital power, the ground connection  
between these supplies should be at the V pin. This should be the only ground connection between  
SSA  
these supplies if possible. The V  
pin makes a good single point ground location.  
SSA  
3.7.3 ADC10 Voltage Reference High Pin (V  
)
REFH  
V
V
is the power supply for setting the high-reference voltage for the converter. In some packages,  
REFH  
REFH  
is connected internally to V  
. If externally available, V  
may be connected to the same  
DDA  
REFH  
potential as V  
, or may be driven by an external source that is between the minimum V  
spec and  
DDA  
DDA  
the V  
potential (V  
must never exceed V  
).  
DDA  
REFH  
DDA  
NOTE  
carefully for maximum noise immunity and place bypass  
Route V  
REFH  
capacitors as near as possible to the package.  
AC current in the form of current spikes required to supply charge to the capacitor array at each  
successive approximation step is drawn through the V and V loop. The best external component  
REFH  
REFL  
to meet this current demand is a 0.1 µF capacitor with good high frequency characteristics. This capacitor  
is connected between V and V and must be placed as close as possible to the package pins.  
REFH  
REFL  
Resistance in the path is not recommended because the current will cause a voltage drop which could  
result in conversion errors. Inductance in this path must be minimum (parasitic only).  
3.7.4 ADC10 Voltage Reference Low Pin (V  
)
REFL  
V
V
is the power supply for setting the low-reference voltage for the converter. In some packages,  
REFL  
REFL  
is connected internally to V  
. If externally available, connect the V  
pin to the same voltage  
SSA  
REFL  
potential as V  
. There will be a brief current associated with V  
when the sampling capacitor is  
SSA  
REFL  
charging. If externally available, connect the V  
pin to the same potential as V  
at the single point  
SSA  
REFL  
ground location.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
53  
Analog-to-Digital Converter (ADC10) Module  
3.7.5 ADC10 Channel Pins (ADn)  
The ADC10 has multiple input channels. Empirical data shows that capacitors on the analog inputs  
improve performance in the presence of noise or when the source impedance is high. 0.01 µF capacitors  
with good high-frequency characteristics are sufficient. These capacitors are not necessary in all cases,  
but when used they must be placed as close as possible to the package pins and be referenced to V  
.
SSA  
3.8 Registers  
These registers control and monitor operation of the ADC10:  
ADC10 status and control register, ADSCR  
ADC10 data registers, ADRH and ADRL  
ADC10 clock register, ADCLK  
3.8.1 ADC10 Status and Control Register  
This section describes the function of the ADC10 status and control register (ADSCR). Writing ADSCR  
aborts the current conversion and initiates a new conversion (if the ADCH[4:0] bits are equal to a value  
other than all 1s).  
Bit 7  
6
AIEN  
0
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
Write:  
Reset:  
COCO  
0
= Unimplemented  
Figure 3-3. ADC10 Status and Control Register (ADSCR)  
COCO — Conversion Complete Bit  
COCO is a read-only bit which is set each time a conversion is completed. This bit is cleared whenever  
the status and control register is written or whenever the data register (low) is read.  
1 = Conversion completed  
0 = Conversion not completed  
AIEN — ADC10 Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of a conversion. The interrupt signal is cleared  
when the data register is read or the status/control register is written.  
1 = ADC10 interrupt enabled  
0 = ADC10 interrupt disabled  
ADCO — ADC10 Continuous Conversion Bit  
When this bit is set, the ADC10 will begin to convert samples continuously (continuous conversion  
mode) and update the result registers at the end of each conversion, provided ADCH[4:0] do not  
decode to all 1s. The ADC10 will continue to convert until the MCU enters reset, the MCU enters stop  
mode (if ACLKEN is clear), ADCLK is written, or until ADSCR is written again. If stop is entered (with  
ACLKEN low), continuous conversions will cease and can be restarted only with a write to ADSCR.  
Any write to ADSCR with ADCO set and the ADCH bits not all 1s will abort the current conversion and  
begin continuous conversions.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
54  
Freescale Semiconductor  
Registers  
If the bus frequency is less than the ADCK frequency, precise sample time for continuous conversions  
cannot be guaranteed in short-sample mode (ADLSMP = 0). If the bus frequency is less than 1/11th  
of the ADCK frequency, precise sample time for continuous conversions cannot be guaranteed in  
long-sample mode (ADLSMP = 1).  
When clear, the ADC10 will perform a single conversion (single conversion mode) each time ADSCR  
is written (assuming ADCH[4:0] do not decode all 1s).  
1 = Continuous conversion following a write to ADSCR  
0 = One conversion following a write to ADSCR  
ADCH[4:0] — Channel Select Bits  
The ADCH[4:0] bits form a 5-bit field that is used to select one of the input channels. The input  
channels are detailed in Table 3-2. The successive approximation converter subsystem is turned off  
when the channel select bits are all set to 1. This feature allows explicit disabling of the ADC10 and  
isolation of the input channel from the I/O pad. Terminating continuous conversion mode this way will  
prevent an additional, single conversion from being performed. It is not necessary to set the channel  
select bits to all 1s to place the ADC10 in a low-power state, however, because the module is  
automatically placed in a low-power state when a conversion completes.  
Table 3-2. Input Channel Select  
Input Select(1)  
AD0  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
Unused  
Unused  
Unused  
AD8  
Continuing through  
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
AD9  
BANDGAP REF(2)  
Reserved  
Reserved  
VREFH  
VREFL  
Low-power state  
1. If any unused or reserved channels are selected, the resulting conversion will  
be unknown.  
2. Requires LVI to be powered (LVIPWRD =0, in CONFIG1)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
55  
 
Analog-to-Digital Converter (ADC10) Module  
3.8.2 ADC10 Result High Register (ADRH)  
This register holds the MSBs of the result and is updated each time a conversion completes. All other bits  
read as 0s. Reading ADRH prevents the ADC10 from transferring subsequent conversion results into the  
result registers until ADRL is read. If ADRL is not read until the after next conversion is completed, then  
the intermediate conversion result will be lost. In 8-bit mode, this register contains no interlocking with  
ADRL.  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 3-4. ADC10 Data Register High (ADRH), 8-Bit Mode  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
AD8  
Read:  
Write:  
Reset:  
AD9  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 3-5. ADC10 Data Register High (ADRH), 10-Bit Mode  
3.8.3 ADC10 Result Low Register (ADRL)  
This register holds the LSBs of the result. This register is updated each time a conversion completes.  
Reading ADRH prevents the ADC10 from transferring subsequent conversion results into the result  
registers until ADRL is read. If ADRL is not read until the after next conversion is completed, then the  
intermediate conversion result will be lost. In 8-bit mode, there is no interlocking with ADRH.  
Bit 7  
AD7  
6
5
4
3
2
1
Bit 0  
AD0  
Read:  
Write:  
Reset:  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 3-6. ADC10 Data Register Low (ADRL)  
3.8.4 ADC10 Clock Register (ADCLK)  
This register selects the clock frequency for the ADC10 and the modes of operation.  
Bit 7  
ADLPC  
0
6
ADIV1  
0
5
ADIV0  
0
4
ADICLK  
0
3
MODE1  
0
2
MODE0  
0
1
Bit 0  
Read:  
Write:  
Reset:  
ADLSMP ACLKEN  
0
0
Figure 3-7. ADC10 Clock Register (ADCLK)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
56  
Registers  
ADLPC — ADC10 Low-Power Configuration Bit  
ADLPC controls the speed and power configuration of the successive approximation converter. This  
is used to optimize power consumption when higher sample rates are not required.  
1 = Low-power configuration: The power is reduced at the expense of maximum clock speed.  
0 = High-speed configuration  
ADIV[1:0] — ADC10 Clock Divider Bits  
ADIV1 and ADIV0 select the divide ratio used by the ADC10 to generate the internal clock ADCK.  
Table 3-3 shows the available clock configurations.  
Table 3-3. ADC10 Clock Divide Ratio  
ADIV1  
ADIV0  
Divide Ratio (ADIV)  
Clock Rate  
Input clock ÷ 1  
Input clock ÷ 2  
Input clock ÷ 4  
Input clock ÷ 8  
0
0
1
1
0
1
0
1
1
2
4
8
ADICLK — Input Clock Select Bit  
If ACLKEN is clear, ADICLK selects either the bus clock or an alternate clock source as the input clock  
source to generate the internal clock ADCK. If the alternate clock source is less than the minimum  
clock speed, use the internally-generated bus clock as the clock source. As long as the internal clock  
ADCK, which is equal to the selected input clock divided by ADIV, is at a frequency (f  
) between  
ADCK  
the minimum and maximum clock speeds (considering ALPC), correct operation can be guaranteed.  
1 = The internal bus clock is selected as the input clock source  
0 = The alternate clock source is selected  
MODE[1:0] — 10- or 8-Bit or Hardware Triggered Mode Selection  
These bits select 10- or 8-bit operation. The successive approximation converter generates a result  
that is rounded to 8- or 10-bit value based on the mode selection. This rounding process sets the  
transfer function to transition at the midpoint between the ideal code voltages, causing a quantization  
error of 1/2LSB.  
Reset returns 8-bit mode.  
00 = 8-bit, right-justified, ADSCR software triggered mode enabled  
01 = 10-bit, right-justified, ADSCR software triggered mode enabled  
10 = Reserved  
11 = 10-bit, right-justified, hardware triggered mode enabled  
ADLSMP — Long Sample Time Configuration  
This bit configures the sample time of the ADC10 to either 3.5 or 23.5 ADCK clock cycles. This adjusts  
the sample period to allow higher impedance inputs to be accurately sampled or to maximize  
conversion speed for lower impedance inputs. Longer sample times can also be used to lower overall  
power consumption in continuous conversion mode if high conversion rates are not required.  
1 = Long sample time (23.5 cycles)  
0 = Short sample time (3.5 cycles)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
57  
 
Analog-to-Digital Converter (ADC10) Module  
ACLKEN — Asynchronous Clock Source Enable  
This bit enables the asynchronous clock source as the input clock to generate the internal clock ADCK,  
and allows operation in stop mode. The asynchronous clock source will operate between 1 MHz and  
2 MHz if ADLPC is clear, and between 0.5 MHz and 1 MHz if ADLPC is set.  
1 = The asynchronous clock is selected as the input clock source (the clock generator is only  
enabled during the conversion)  
0 = ADICLK specifies the input clock source and conversions will not continue in stop mode  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
58  
Freescale Semiconductor  
Chapter 4  
Configuration Registers (CONFIG1 and CONFIG2)  
4.1 Introduction  
This section describes the configuration registers (CONFIG1 and CONFIG2). The configuration registers  
enable or disable the following options:  
Stop mode recovery time (32 × BUSCLKX4 cycles or 4096 × BUSCLKX4 cycles)  
STOP instruction  
Computer operating properly module (COP)  
COP reset period (COPRS): 8176 × BUSCLKX4 or 262,128 × BUSCLKX4  
Low-voltage inhibit (LVI) enable and trip voltage selection  
Allow clock source to remain enabled in STOP  
Enable IRQ pin  
Disable IRQ pin pullup device  
Enable RST pin  
Clock source selection for the enhanced serial communication interface (ESCI) module  
Reposition TIM2 timer channels  
4.2 Functional Description  
The configuration registers are used in the initialization of various options. The configuration registers can  
be written once after each reset. Most of the configuration register bits are cleared during reset. Since the  
various options affect the operation of the microcontroller unit (MCU) it is recommended that this register  
be written immediately after reset. The configuration registers are located at $001E and $001F, and may  
be read at anytime.  
NOTE  
The CONFIG registers are one-time writable by the user after each reset.  
Upon a reset, the CONFIG registers default to predetermined settings as  
shown in Figure 4-1 and Figure 4-2.  
Bit 7  
6
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
POR:  
ESCIBD-  
SRC  
OSCENIN  
STOP  
IRQPUD  
IRQEN  
TIM2POS  
RSTEN  
0
0
0
0
0
0
0
0
0
0
0
0
0
U
0
0
= Unimplemented  
U = Unaffected  
Figure 4-1. Configuration Register 2 (CONFIG2)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
59  
 
 
Configuration Registers (CONFIG1 and CONFIG2)  
IRQPUD — IRQ Pin Pullup Control Bit  
1 = Internal pullup is disconnected  
0 = Internal pullup is connected between IRQ pin and V  
DD  
IRQEN — IRQ Pin Function Selection Bit  
1 = Interrupt request function active in pin  
0 = Interrupt request function inactive in pin  
TIM2POS — TIM2 Position Bit  
TIM2POS is used to reposition the timer channels for TIM2 to a different pair of pins. This allows the  
user to free up one of the communication ports based on application needs.  
1 = TIM2 timer channel pins share PTB4 and PTB5  
0 = TIM2 timer channel pins share PTB1 and PTB2  
ESCIBDSRC — ESCI Baud Rate Clock Source Bit  
ESCIBDSRC controls the clock source used for the ESCI. The setting of the bit affects the frequency  
at which the ESCI operates.  
1 = Internal data bus clock used as clock source for ESCI  
0 = BUSCLKX4 used as clock source for ESCI  
OSCENINSTOP— Oscillator Enable in Stop Mode Bit  
OSCENINSTOP, when set, will allow the clock source to continue to generate clocks in stop mode.  
This function can be used to keep the periodic wakeup running while the rest of the microcontroller  
stops. When clear, the clock source is disabled when the microcontroller enters stop mode.  
1 = Oscillator enabled to operate during stop mode  
0 = Oscillator disabled during stop mode  
RSTEN — RST Pin Function Selection  
1 = Reset function active in pin  
0 = Reset function inactive in pin  
NOTE  
The RSTEN bit is cleared by a power-on reset (POR) only. Other resets will  
leave this bit unaffected.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
POR:  
COPRS  
LVISTOP LVIRSTD LVIPWRD LVITRIP  
SSREC  
STOP  
COPD  
0
0
0
0
0
0
0
U
0
0
0
0
0
0
0
0
U = Unaffected  
Figure 4-2. Configuration Register 1 (CONFIG1)  
COPRS — COP Reset Period Selection Bit  
1 = COP reset short cycle = 8176 × BUSCLKX4  
0 = COP reset long cycle = 262,128 × BUSCLKX4  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
60  
Functional Description  
LVISTOP — LVI Enable in Stop Mode Bit  
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode.  
Reset clears LVISTOP.  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
LVIRSTD — LVI Reset Disable Bit  
LVIRSTD disables the reset signal from the LVI module.  
1 = LVI module resets disabled  
0 = LVI module resets enabled  
LVIPWRD — LVI Power Disable Bit  
LVIPWRD disables the LVI module.  
1 = LVI module power disabled  
0 = LVI module power enabled  
LVITRIP — LVI Trip Point Selection Bit  
LVITRIP selects the voltage operating mode of the LVI module. The voltage mode selected for the LVI  
should match the operating V for the LVI’s voltage trip points for each of the modes.  
DD  
1 = LVI operates for a 5-V protection  
0 = LVI operates for a 3.3-V protection  
NOTE  
The LVITRIP bit is cleared by a power-on reset (POR) only. Other resets  
will leave this bit unaffected.  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32 BUSCLKX4 cycles instead of a 4096  
BUSCLKX4 cycle delay.  
1 = Stop mode recovery after 32 BUSCLKX4 cycles  
0 = Stop mode recovery after 4096 BUSCLKX4 cycles  
NOTE  
Exiting stop mode by an LVI reset will result in the long stop recovery.  
When using the LVI during normal operation but disabling during stop mode, the LVI will have an  
enable time of t . The system stabilization time for power-on reset and long stop recovery (both 4096  
EN  
BUSCLKX4 cycles) gives a delay longer than the LVI enable time for these startup scenarios. There  
is no period where the MCU is not protected from a low-power condition. However, when using the  
short stop recovery configuration option, the 32 BUSCLKX4 delay must be greater than the LVI’s turn  
on time to avoid a period in startup where the LVI is not protecting the MCU.  
STOP — STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module.  
1 = COP module disabled  
0 = COP module enabled  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
61  
Configuration Registers (CONFIG1 and CONFIG2)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
62  
Chapter 5  
Computer Operating Properly (COP)  
5.1 Introduction  
The computer operating properly (COP) module contains a free-running counter that generates a reset if  
allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset  
by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the  
configuration 1 (CONFIG1) register.  
5.2 Functional Description  
SIM MODULE  
SIM RESET CIRCUIT  
12-BIT SIM COUNTER  
BUSCLKX4  
RESET STATUS REGISTER  
(1)  
INTERNAL RESET SOURCES  
STOP INSTRUCTION  
COPCTL WRITE  
COP CLOCK  
COP MODULE  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COPD (FROM CONFIG1)  
CLEAR  
COP COUNTER  
RESET  
COPCTL WRITE  
COP RATE SELECT  
(COPRS FROM CONFIG1)  
1. See Chapter 14 System Integration Module (SIM) for more details.  
Figure 5-1. COP Block Diagram  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
63  
 
Computer Operating Properly (COP)  
The COP counter is a free-running 6-bit counter preceded by the 12-bit system integration module (SIM)  
counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset  
after 262,128 or 8176 BUSCLKX4 cycles; depending on the state of the COP rate select bit, COPRS, in  
configuration register 1. With a 262,128 BUSCLKX4 cycle overflow option, the internal 12.8-MHz  
oscillator gives a COP timeout period of 20.48 ms. Writing any value to location $FFFF before an overflow  
occurs prevents a COP reset by clearing the COP counter and stages 12–5 of the SIM counter.  
NOTE  
Service the COP immediately after reset and before entering or after exiting  
stop mode to guarantee the maximum time before the first COP counter  
overflow.  
A COP reset pulls the RST pin low (if the RSTEN bit is set in the CONFIG1 register) for 32 × BUSCLKX4  
cycles and sets the COP bit in the reset status register (RSR). See 14.8.1 SIM Reset Status Register.  
NOTE  
Place COP clearing instructions in the main program and not in an interrupt  
subroutine. Such an interrupt subroutine could keep the COP from  
generating a reset even while the main program is not working properly.  
5.3 I/O Signals  
The following paragraphs describe the signals shown in Figure 5-1.  
5.3.1 BUSCLKX4  
BUSCLKX4 is the oscillator output signal. BUSCLKX4 frequency is equal to the crystal frequency, internal  
oscillator frequency, or the RC-oscillator frequency.  
5.3.2 STOP Instruction  
The STOP instruction clears the SIM counter.  
5.3.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 5.4 COP Control Register) clears the COP  
counter and clears stages 12–5 of the SIM counter. Reading the COP control register returns the low byte  
of the reset vector.  
5.3.4 Power-On Reset  
The power-on reset (POR) circuit in the SIM clears the SIM counter 4096 × BUSCLKX4 cycles after  
power up.  
5.3.5 Internal Reset  
An internal reset clears the SIM counter and the COP counter.  
5.3.6 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register (CONFIG).  
See Chapter 4 Configuration Registers (CONFIG1 and CONFIG2).  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
64  
Freescale Semiconductor  
COP Control Register  
5.3.7 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register 1  
(CONFIG1). See Chapter 4 Configuration Registers (CONFIG1 and CONFIG2).  
5.4 COP Control Register  
The COP control register (COPCTL) is located at address $FFFF and overlaps the reset vector. Writing  
any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF  
returns the low byte of the reset vector.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
LOW BYTE OF RESET VECTOR  
CLEAR COP COUNTER  
Unaffected by reset  
Figure 5-2. COP Control Register (COPCTL)  
5.5 Interrupts  
The COP does not generate CPU interrupt requests.  
5.6 Monitor Mode  
The COP is disabled in monitor mode when V  
is present on the IRQ pin.  
TST  
5.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
5.7.1 Wait Mode  
The COP continues to operate during wait mode. To prevent a COP reset during wait mode, periodically  
clear the COP counter.  
5.7.2 Stop Mode  
Stop mode turns off the BUSCLKX4 input to the COP and clears the SIM counter. Service the COP  
immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering  
or exiting stop mode.  
5.8 COP Module During Break Mode  
The COP is disabled during a break interrupt with monitor mode when BDCOP bit is set in break auxiliary  
register (BRKAR).  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
65  
Computer Operating Properly (COP)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
66  
Chapter 6  
Central Processor Unit (CPU)  
6.1 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of  
the M68HC05 CPU. The CPU08 Reference Manual (document order number CPU08RM/AD) contains a  
description of the CPU instruction set, addressing modes, and architecture.  
6.2 Features  
Features of the CPU include:  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with x-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for extension of addressing range  
beyond 64 Kbytes  
Low-power stop and wait modes  
6.3 CPU Registers  
Figure 6-1 shows the five CPU registers. CPU registers are not part of the memory map.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
67  
Central Processor Unit (CPU)  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
0
V
1
1
H
I
N
Z
C
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 6-1. CPU Registers  
6.3.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands  
and the results of arithmetic/logic operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 6-2. Accumulator (A)  
6.3.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of  
the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the index register to determine the  
conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
0
8
0
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 6-3. Index Register (H:X)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
68  
CPU Registers  
6.3.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a  
reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data  
is pushed onto the stack and increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an  
index register to access data on the stack. The CPU uses the contents of the stack pointer to determine  
the conditional address of the operand.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 6-4. Stack Pointer (SP)  
NOTE  
The location of the stack is arbitrary and may be relocated anywhere in  
random-access memory (RAM). Moving the SP out of page 0 ($0000 to  
$00FF) frees direct address (page 0) space. For correct operation, the  
stack pointer must point only to RAM locations.  
6.3.4 Program Counter  
The program counter is a 16-bit register that contains the address of the next instruction or operand to be  
fetched.  
Normally, the program counter automatically increments to the next sequential memory location every  
time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF.  
The vector address is the address of the first instruction to be executed after exiting the reset state.  
Bit  
15 14 13 12 11 10  
Bit  
0
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with vector from $FFFE and $FFFF  
Figure 6-5. Program Counter (PC)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
69  
Central Processor Unit (CPU)  
6.3.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the  
instruction just executed. Bits 6 and 5 are set permanently to 1. The following paragraphs describe the  
functions of the condition code register.  
Bit 7  
6
1
1
5
1
1
4
H
X
3
2
N
X
1
Z
X
Bit 0  
Read:  
Write:  
Reset:  
V
I
C
X
1
X
X = Indeterminate  
Figure 6-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch  
instructions BGT, BGE, BLE, and BLT use the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an  
add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for  
binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and  
C flags to determine the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled  
when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE  
To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the  
interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the  
clear interrupt mask software instruction (CLI).  
N — Negative Flag  
The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation  
produces a negative result, setting bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
70  
Freescale Semiconductor  
Arithmetic/Logic Unit (ALU)  
Z — Zero Flag  
The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation  
produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the  
accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test  
and branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
6.4 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the instruction set.  
Refer to the CPU08 Reference Manual (document order number CPU08RM/AD) for a description of the  
instructions and addressing modes and more detail about the architecture of the CPU.  
6.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
6.5.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from  
wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
6.5.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After  
exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.  
6.6 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in progress. If the break address  
register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU  
to normal operation if the break interrupt has been deasserted.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
71  
Central Processor Unit (CPU)  
6.7 Instruction Set Summary  
Table 6-1 provides a summary of the M68HC08 instruction set.  
Table 6-1. Instruction Set Summary (Sheet 1 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
IMM  
DIR  
EXT  
IX2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
FB  
9EEB ff  
9EDB ee ff  
2
3
4
4
3
2
4
5
Add without Carry  
A (A) + (M)  
IX1  
IX  
SP1  
SP2  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
– IMM  
– IMM  
A7 ii  
AF ii  
2
2
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
AND #opr  
AND opr  
IMM  
DIR  
EXT  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IX2  
Logical AND  
A (A) & (M)  
0
IX1  
IX  
F4  
SP1  
SP2  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
ASLX  
Arithmetic Shift Left  
(Same as LSL)  
INH  
58  
C
0
ASL opr,X  
ASL ,X  
IX1  
68 ff  
78  
b7  
b7  
b0  
b0  
IX  
ASL opr,SP  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
37 dd  
47  
4
1
1
4
3
5
INH  
57  
C
Arithmetic Shift Right  
IX1  
67 ff  
77  
IX  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25 rr  
27 rr  
3
3
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
BGT opr  
– REL  
– REL  
90 rr  
92 rr  
3
PC (PC) + 2 + rel ? (N V) = 0  
Branch if Greater Than (Signed  
Operands)  
3
3
PC (PC) + 2 + rel ? (Z) | (N V) = 0  
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28 rr  
29 rr  
22 rr  
3
3
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
72  
 
Instruction Set Summary  
Table 6-1. Instruction Set Summary (Sheet 2 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F rr  
2E rr  
3
3
BIT #opr  
BIT opr  
IMM  
DIR  
EXT  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IX2  
Bit Test  
(A) & (M)  
0
IX1  
IX  
F5  
SP1  
SP2  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
– REL  
93 rr  
3
PC (PC) + 2 + rel ? (Z) | (N V) = 1  
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25 rr  
23 rr  
91 rr  
2C rr  
2B rr  
2D rr  
26 rr  
2A rr  
20 rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (N V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
PC (PC) + 2  
BRN rel  
Branch Never  
– REL  
21 rr  
3
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
BSR rel  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
Branch to Subroutine  
– REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IMM  
Compare and Branch if Equal  
IX1+  
IX+  
CBEQ opr,SP,rel  
SP1  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
73  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 3 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
CLR opr  
CLRA  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
3F dd  
4F  
3
1
1
1
3
2
4
CLRX  
5F  
CLRH  
Clear  
0
0
1
– INH  
IX1  
8C  
CLR opr,X  
CLR ,X  
6F ff  
7F  
IX  
SP1  
CLR opr,SP  
9E6F ff  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
IX2  
Compare A with M  
(A) – (M)  
IX1  
IX  
F1  
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
33 dd  
43  
4
1
1
4
3
5
COMX  
INH  
53  
Complement (One’s Complement)  
Compare H:X with M  
0
1
COM opr,X  
COM ,X  
COM opr,SP  
IX1  
63 ff  
73  
9E63 ff  
IX  
SP1  
CPHX #opr  
CPHX opr  
IMM  
65 ii ii+1  
75 dd  
3
4
(H:X) – (M:M + 1)  
DIR  
CPX #opr  
CPX opr  
IMM  
DIR  
EXT  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
CPX ,X  
IX2  
Compare X with M  
(X) – (M)  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
IX1  
IX  
F3  
SP1  
SP2  
9EE3 ff  
9ED3 ee ff  
(A)  
DAA  
Decimal Adjust A  
U –  
INH  
72  
2
10  
A (A) – 1 or M (M) – 1 or X (X) – 1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DIR  
INH  
3B dd rr  
4B rr  
DBNZX rel  
Decrement and Branch if Not Zero  
– INH  
IX1  
5B rr  
DBNZ opr,X,rel  
DBNZ X,rel  
6B ff rr  
7B rr  
IX  
SP1  
DBNZ opr,SP,rel  
9E6B ff rr  
DEC opr  
DECA  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
3A dd  
4A  
4
1
1
4
3
5
DECX  
INH  
5A  
Decrement  
Divide  
DEC opr,X  
DEC ,X  
DEC opr,SP  
IX1  
6A ff  
7A  
9E6A ff  
IX  
SP1  
A (H:A)/(X)  
DIV  
INH  
52  
7
H Remainder  
EOR #opr  
EOR opr  
IMM  
DIR  
EXT  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IX2  
Exclusive OR M with A  
0
A (A M)  
IX1  
IX  
F8  
SP1  
SP2  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
3C dd  
4C  
4
1
1
4
3
5
INCX  
INH  
5C  
Increment  
INC opr,X  
INC ,X  
IX1  
6C ff  
7C  
IX  
INC opr,SP  
SP1  
9E6C ff  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
74  
Instruction Set Summary  
Table 6-1. Instruction Set Summary (Sheet 4 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
JMP opr  
DIR  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
2
3
4
3
2
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
EXT  
Jump  
PC Jump Address  
– IX2  
IX1  
IX  
FC  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
Jump to Subroutine  
IX  
FD  
LDA #opr  
LDA opr  
IMM  
DIR  
EXT  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IX2  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X ← (M:M + 1)  
X (M)  
0
0
0
IX1  
IX  
F6  
SP1  
SP2  
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
45 ii jj  
55 dd  
3
4
DIR  
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
FE  
9EEE ff  
9EDE ee ff  
2
3
4
4
3
2
4
5
IX2  
IX1  
IX  
SP1  
SP2  
LSL opr  
LSLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
LSLX  
Logical Shift Left  
(Same as ASL)  
INH  
58  
C
0
LSL opr,X  
LSL ,X  
LSL opr,SP  
IX1  
68 ff  
78  
9E68 ff  
b7  
b0  
b0  
IX  
SP1  
LSR opr  
LSRA  
DIR  
INH  
34 dd  
44  
4
1
1
4
3
5
LSRX  
INH  
54  
0
C
Logical Shift Right  
0
LSR opr,X  
LSR ,X  
IX1  
64 ff  
74  
b7  
IX  
LSR opr,SP  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
5
4
4
4
(M)  
(M)  
Source  
Destination  
DIX+  
Move  
0
0
IMD  
IX+D  
6E ii dd  
7E dd  
H:X (H:X) + 1 (IX+D, DIX+)  
X:A (X) × (A)  
MUL  
Unsigned multiply  
0 INH  
42  
5
NEG opr  
NEGA  
DIR  
INH  
30 dd  
40  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
NEGX  
INH  
50  
Negate (Two’s Complement)  
NEG opr,X  
NEG ,X  
NEG opr,SP  
IX1  
60 ff  
70  
9E60 ff  
IX  
SP1  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
62  
1
3
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
EXT  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IX2  
Inclusive OR A and M  
A (A) | (M)  
0
IX1  
IX  
FA  
SP1  
SP2  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
– INH  
– INH  
– INH  
87  
8B  
89  
2
2
2
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
75  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Sheet 5 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PULA  
PULH  
PULX  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
86  
8A  
88  
2
2
2
ROL opr  
ROLA  
DIR  
INH  
39 dd  
49  
4
1
1
4
3
5
ROLX  
INH  
59  
C
Rotate Left through Carry  
Rotate Right through Carry  
ROL opr,X  
ROL ,X  
ROL opr,SP  
IX1  
69 ff  
79  
9E69 ff  
b7  
b0  
IX  
SP1  
ROR opr  
RORA  
DIR  
INH  
36 dd  
46  
4
1
1
4
3
5
RORX  
INH  
56  
C
ROR opr,X  
ROR ,X  
IX1  
66 ff  
76  
b7  
b0  
IX  
ROR opr,SP  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
INH  
80  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
81  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
IX2  
A (A) – (M) – (C)  
IX1  
IX  
SP1  
SP2  
F2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
DIR  
EXT  
IX2  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
– IX1  
IX  
F7  
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
– DIR  
35 dd  
4
Enable Interrupts, Stop Processing,  
Refer to MCU Documentation  
STOP  
I 0; Stop Processing  
– INH  
8E  
1
STX opr  
DIR  
EXT  
IX2  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
– IX1  
IX  
FF  
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
IX2  
Subtract  
A (A) – (M)  
IX1  
IX  
F0  
SP1  
SP2  
9EE0 ff  
9ED0 ee ff  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
76  
Opcode Map  
Table 6-1. Instruction Set Summary (Sheet 6 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SWI  
Software Interrupt  
1
– INH  
83  
9
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
A (CCR)  
INH  
– INH  
– INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
TST opr  
TSTA  
DIR  
INH  
3D dd  
4D  
3
1
1
3
2
4
TSTX  
INH  
5D  
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
TST opr,X  
TST ,X  
TST opr,SP  
IX1  
6D ff  
7D  
9E6D ff  
IX  
SP1  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
(SP) (H:X) – 1  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
I bit 0; Inhibit CPU clocking  
WAIT  
Enable Interrupts; Wait for Interrupt  
0
– INH  
8F  
1
until interrupted  
A
Accumulator  
n
Any bit  
C
Carry/borrow bit  
opr Operand (one or two bytes)  
PC Program counter  
CCR  
dd  
Condition code register  
Direct address of operand  
Direct address of operand and relative offset of branch instruction  
Direct to direct addressing mode  
Direct addressing mode  
Direct to indexed with post increment addressing mode  
High and low bytes of offset in indexed, 16-bit offset addressing  
Extended addressing mode  
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
rel  
rr  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
&
|
dd rr  
DD  
DIR  
DIX+  
ee ff  
EXT  
ff  
Relative program counter offset byte  
Relative program counter offset byte  
H
H
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
hh ll  
I
High and low bytes of operand address in extended addressing  
Interrupt mask  
Immediate operand byte  
Immediate source to direct destination addressing mode  
ii  
Logical AND  
Logical OR  
IMD  
IMM  
INH  
IX  
Immediate addressing mode  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
Logical EXCLUSIVE OR  
Contents of  
( )  
–( ) Negation (two’s complement)  
#
IX+  
Immediate value  
IX+D  
IX1  
IX1+  
IX2  
M
Indexed with post increment to direct addressing mode  
Indexed, 8-bit offset addressing mode  
Indexed, 8-bit offset, post increment addressing mode  
Indexed, 16-bit offset addressing mode  
Memory location  
«
?
Sign extend  
Loaded with  
If  
Concatenated with  
Set or cleared  
Not affected  
:
N
Negative bit  
6.8 Opcode Map  
See Table 6-2.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
77  
Table 6-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
IX  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
IX  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
1
1
2
IX1 3 SP1  
5
1
2
1
1
1
2
1
1
1
1
1
2
1
1
2
1
1
1
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
4
4
4
4
4
4
4
4
4
4
4
SP2  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
BRN  
REL 3 DIR  
5
4
4
6
4
CBEQ  
IX+  
2
DAA  
INH  
3
COM  
IX  
3
LSR  
IX  
4
CPHX  
DIR  
3
ROR  
IX  
3
ASR  
IX  
3
LSL  
IX  
3
ROL  
IX  
3
DEC  
IX  
4
DBNZ  
IX  
3
INC  
IX  
4
3
BLT  
2
CMP  
3
CMP  
4
CMP  
EXT 3 IX2  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
CMP  
5
3
4
2
CMP  
IX  
2
SBC  
IX  
2
CPX  
IX  
2
AND  
IX  
2
BIT  
IX  
2
LDA  
IX  
2
STA  
IX  
2
EOR  
IX  
2
ADC  
IX  
2
ORA  
IX  
2
ADD  
IX  
2
JMP  
IX  
4
JSR  
IX  
2
LDX  
IX  
2
STX  
IX  
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
RTS  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
IMM 3 IMM 3 IX1+  
4
SP1  
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
3
5
7
3
3
BGT  
2
SBC  
3
SBC  
4
SBC  
5
3
4
BRSET1 BSET1  
BHI  
MUL  
INH  
DIV  
INH  
NSA  
SBC  
SBC  
SBC  
3
DIR  
5
2
DIR  
4
REL  
1
1
1
2
2
3
2
2
2
2
2
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
3
BLE  
2
CPX  
3
CPX  
4
CPX  
5
3
4
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
SWI  
CPX  
CPX  
CPX  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
SP2  
IX1  
SP1  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
2
2
2
AND  
IMM 2 DIR  
3
AND  
4
AND  
5
3
4
4
BRSET2 BSET2  
LSR  
TAP  
TXS  
AND  
AND  
AND  
3
DIR  
5
2
DIR  
4
1
3
1
SP1  
INH  
INH  
2
2
2
2
2
2
2
2
SP2  
IX1  
SP1  
4
3
4
1
2
2
BIT  
3
BIT  
4
BIT  
5
3
4
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
TPA  
TSX  
BIT  
BIT  
BIT  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
INH  
INH  
IMM 2 DIR  
SP2  
IX1  
SP1  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
LDA  
4
LDA  
5
3
4
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
LDA  
LDA  
LDA  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
SP1  
5
SP2  
IX1  
SP1  
3
BEQ  
REL 2 DIR  
3
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
1
3
STA  
4
STA  
5
3
4
7
BRCLR3 BCLR3  
ASR  
TAX  
STA  
STA  
STA  
3
DIR  
5
2
DIR  
4
1
1
1
1
1
1
1
1
SP1  
5
1
1
1
1
1
1
1
INH  
SP2  
IX1  
SP1  
4
LSL  
1
3
EOR  
4
EOR  
5
3
4
8
BRSET4 BSET4 BHCC  
LSL  
CLC  
EOR  
EOR  
EOR  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
SP1  
5
INH  
SP2  
IX1  
SP1  
4
ROL  
1
3
ADC  
4
ADC  
5
3
4
9
BRCLR4 BCLR4 BHCS  
ROL  
SEC  
ADC  
ADC  
ADC  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
SP1  
5
INH  
SP2  
IX1  
SP1  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
3
BMC  
REL 2 DIR  
4
DEC  
2
3
ORA  
4
ORA  
5
3
4
A
B
C
D
E
F
BRSET5 BSET5  
DEC  
CLI  
ORA  
ORA  
ORA  
3
DIR  
5
2
DIR  
4
SP1  
6
INH  
SP2  
IX1  
SP1  
5
3
3
5
2
3
ADD  
4
ADD  
5
3
4
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
SEI  
ADD  
ADD  
ADD  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
SP1  
5
INH  
SP2  
IX1  
SP1  
4
INC  
1
2
JMP  
4
JMP  
3
BRSET6 BSET6  
INCA  
INCX  
INC  
INC  
RSP  
JMP  
3
DIR  
5
2
DIR  
4
INH  
1
INH  
1
IX1  
3
SP1  
4
INH  
2
DIR  
4
IX1  
3
BMS  
3
TST  
2
TST  
IX  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
5
BRCLR6 BCLR6  
TSTA  
TSTX  
TST  
TST  
NOP  
JSR  
JSR  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
INH  
5
INH  
4
IX1  
4
SP1  
INH  
2
2
2
IX1  
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
3
4
BRSET7 BSET7  
BIL  
MOV  
MOV  
MOV  
MOV  
IX+D  
LDX  
LDX  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
DD  
DIX+  
IMD  
3
1
1
4
4
SP2  
IX1  
3
3
SP1  
3
CLR  
1
CLRA  
INH  
1
CLRX  
INH  
4
2
CLR  
IX  
3
STX  
4
STX  
5
3
4
BRCLR7 BCLR7  
BIH  
CLR  
CLR  
SP1  
STX  
STX  
STX  
3
DIR  
2
DIR  
REL 2 DIR  
IX1  
3
1
SP2  
IX1  
SP1  
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Chapter 7  
External Interrupt (IRQ)  
7.1 Introduction  
The IRQ (external interrupt) module provides a maskable interrupt input.  
IRQ functionality is enabled by setting configuration register 2 (CONFIG2) IRQEN bit accordingly. A zero  
disables the IRQ function and IRQ will assume the other shared functionalities. A one enables the IRQ  
function. See Chapter 4 Configuration Registers (CONFIG1 and CONFIG2) for more information on  
enabling the IRQ pin.  
The IRQ pin shares its pin with general-purpose input/output (I/O) port pins. See Figure 7-1 for port  
location of this shared pin.  
7.2 Features  
Features of the IRQ module include:  
A dedicated external interrupt pin IRQ  
IRQ interrupt control bits  
Programmable edge-only or edge and level interrupt sensitivity  
Automatic interrupt acknowledge  
Internal pullup device  
7.3 Functional Description  
A low level applied to the external interrupt request (IRQ) pin can latch a CPU interrupt request. Figure 7-2  
shows the structure of the IRQ module.  
Interrupt signals on the IRQ pin are latched into the IRQ latch. The IRQ latch remains set until one of the  
following actions occurs:  
IRQ vector fetch. An IRQ vector fetch automatically generates an interrupt acknowledge signal that  
clears the latch that caused the vector fetch.  
Software clear. Software can clear the IRQ latch by writing a 1 to the ACK bit in the interrupt status  
and control register (INTSCR).  
Reset. A reset automatically clears the IRQ latch.  
The external IRQ pin is falling edge sensitive out of reset and is software-configurable to be either falling  
edge or falling edge and low level sensitive. The MODE bit in INTSCR controls the triggering sensitivity  
of the IRQ pin.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
79  
External Interrupt (IRQ)  
PTA0/T1CH0/AD0/KBI0  
PTA1/T1CH1/AD1/KBI1  
PTA2/IRQ/KBI2/T1CLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0/SPSCK/AD4  
PTB1/MOSI/T2CH1/AD5  
PTB2/MISO/T2CH0/AD6  
PTB3/SS/T2CLK/AD7  
PTB4/RxD/T2CH0/AD8  
PTB5/TxD/T2CH1/AD9  
PTB6/T1CH2  
BREAK  
MODULE  
PERIODIC WAKEUP  
MODULE  
PTB7/T1CH3  
PTC0  
PTC1  
PTC2  
PTC3  
LOW-VOLTAGE  
INHIBIT  
MC68HC908QC16  
16,384 BYTES  
4-CHANNEL 16-BIT  
TIMER MODULE  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
MC68HC908QC8  
8192 BYTES  
2-CHANNEL 16-BIT  
TIMER MODULE  
MC68HC908QC4  
4096 BYTES  
USER FLASH  
COP  
MODULE  
10-CHANNEL  
10-BIT ADC  
MC68HC908QC16  
512 BYTES  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
MC68HC908QC8  
384 BYTES  
MC68HC908QC4  
384 BYTES  
SERIAL PERIPHERAL  
INTERFACE  
USER RAM  
MONITOR ROM  
V
V
DD  
SS  
POWER SUPPLY  
All port pins can be configured with internal pullup  
PTC not available on 16-pin devices (see note in 11.1 Introduction)  
PTD not available on 16-pin or 20-pin devices (see note in 11.1 Introduction)  
Figure 7-1. Block Diagram Highlighting IRQ Block and Pin  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
80  
Freescale Semiconductor  
Functional Description  
When set, the IMASK bit in INTSCR masks the IRQ interrupt request. A latched interrupt request is not  
presented to the interrupt priority logic unless IMASK is clear.  
NOTE  
The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including the IRQ interrupt request.  
A falling edge on the IRQ pin can latch an interrupt request into the IRQ latch. An IRQ vector fetch,  
software clear, or reset clears the IRQ latch.  
RESET  
ACK  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
IRQ VECTOR  
FETCH  
DECODER  
V
DD  
INTERNAL  
PULLUP  
DEVICE  
V
DD  
IRQF  
CLR  
D
Q
IRQ  
INTERRUPT  
REQUEST  
SYNCHRONIZER  
CK  
IRQ  
IMASK  
IRQ LATCH  
MODE  
TO MODE  
SELECT  
LOGIC  
HIGH  
VOLTAGE  
DETECT  
Figure 7-2. IRQ Module Block Diagram  
7.3.1 MODE = 1  
If the MODE bit is set, the IRQ pin is both falling edge sensitive and low level sensitive. With MODE set,  
both of the following actions must occur to clear the IRQ interrupt request:  
Return of the IRQ pin to a high level. As long as the IRQ pin is low, the IRQ request remains active.  
IRQ vector fetch or software clear. An IRQ vector fetch generates an interrupt acknowledge signal  
to clear the IRQ latch. Software generates the interrupt acknowledge signal by writing a 1 to ACK  
in INTSCR. The ACK bit is useful in applications that poll the IRQ pin and require software to clear  
the IRQ latch. Writing to ACK prior to leaving an interrupt service routine can also prevent spurious  
interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling  
edge that occurs after writing to ACK latches another interrupt request. If the IRQ mask bit, IMASK,  
is clear, the CPU loads the program counter with the IRQ vector address.  
The IRQ vector fetch or software clear and the return of the IRQ pin to a high level may occur in any order.  
The interrupt request remains pending as long as the IRQ pin is low. A reset will clear the IRQ latch and  
the MODE control bit, thereby clearing the interrupt even if the pin stays low.  
Use the BIH or BIL instruction to read the logic level on the IRQ pin.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
81  
External Interrupt (IRQ)  
7.3.2 MODE = 0  
If the MODE bit is clear, the IRQ pin is falling edge sensitive only. With MODE clear, an IRQ vector fetch  
or software clear immediately clears the IRQ latch.  
The IRQF bit in INTSCR can be read to check for pending interrupts. The IRQF bit is not affected by  
IMASK, which makes it useful in applications where polling is preferred.  
NOTE  
When using the level-sensitive interrupt trigger, avoid false IRQ interrupts  
by masking interrupt requests in the interrupt routine.  
7.4 Interrupts  
The following IRQ source can generate interrupt requests:  
Interrupt flag (IRQF) — The IRQF bit is set when the IRQ pin is asserted based on the IRQ mode.  
The IRQ interrupt mask bit, IMASK, is used to enable or disable IRQ interrupt requests.  
7.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
7.5.1 Wait Mode  
The IRQ module remains active in wait mode. Clearing IMASK in INTSCR enables IRQ interrupt requests  
to bring the MCU out of wait mode.  
7.5.2 Stop Mode  
The IRQ module remains active in stop mode. Clearing IMASK in INTSCR enables IRQ interrupt requests  
to bring the MCU out of stop mode.  
7.6 IRQ Module During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing  
the second step clears the status bit.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
82  
Freescale Semiconductor  
I/O Signals  
7.7 I/O Signals  
The IRQ module does not share its pin with any module on this MCU.  
7.7.1 IRQ Input Pins (IRQ)  
The IRQ pin provides a maskable external interrupt source. The IRQ pin contains an internal pullup  
device.  
7.8 Registers  
The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. The  
INTSCR:  
Shows the state of the IRQ flag  
Clears the IRQ latch  
Masks the IRQ interrupt request  
Controls triggering sensitivity of the IRQ interrupt pin  
Bit 7  
0
6
0
5
0
4
0
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
Write:  
Reset:  
IRQF  
ACK  
0
0
0
0
0
0
= Unimplemented  
Figure 7-3. IRQ Status and Control Register (INTSCR)  
IRQF — IRQ Flag Bit  
This read-only status bit is set when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK — IRQ Interrupt Request Acknowledge Bit  
Writing a 1 to this write-only bit clears the IRQ latch. ACK always reads 0.  
IMASK — IRQ Interrupt Mask Bit  
Writing a 1 to this read/write bit disables the IRQ interrupt request.  
1 = IRQ interrupt request disabled  
0 = IRQ interrupt request enabled  
MODE — IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin.  
1 = IRQ interrupt request on falling edges and low levels  
0 = IRQ interrupt request on falling edges only  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
83  
External Interrupt (IRQ)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
84  
Chapter 8  
Keyboard Interrupt Module (KBI)  
8.1 Introduction  
The keyboard interrupt module (KBI) provides independently maskable external interrupts. The KBI  
shares its pins with general-purpose input/output (I/O) port pins. See Figure 8-2 for port location of these  
shared pins.  
8.2 Features  
Features of the keyboard interrupt module include:  
Keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt  
mask  
Programmable edge-only or edge and level interrupt sensitivity  
Edge sensitivity programmable for rising or falling edge  
Level sensitivity programmable for high or low level  
Pullup or pulldown device automatically enabled based on the polarity of edge or level detect  
Exit from low-power modes  
8.3 Functional Description  
The keyboard interrupt module controls the enabling/disabling of interrupt functions on the KBI pins.  
These pins can be enabled/disabled independently of each other.  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
ACKK  
RESET  
1
0
KBI0  
V
S
DD  
KBIE0  
KEYF  
CLR  
TO PULLUP/  
PULLDOWN ENABLE  
D
Q
SYNCHRONIZER  
IMASKK  
KBIP0  
CK  
1
0
KBI LATCH  
KBIx  
KEYBOARD  
INTERRUPT  
REQUEST  
S
KBIEx  
MODEK  
TO PULLUP/  
PULLDOWN ENABLE  
KBIPx  
Figure 8-1. Keyboard Interrupt Block Diagram  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
85  
 
Keyboard Interrupt Module (KBI)  
PTA0/T1CH0/AD0/KBI0  
PTA1/T1CH1/AD1/KBI1  
PTA2/IRQ/KBI2/T1CLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0/SPSCK/AD4  
PTB1/MOSI/T2CH1/AD5  
PTB2/MISO/T2CH0/AD6  
PTB3/SS/T2CLK/AD7  
PTB4/RxD/T2CH0/AD8  
PTB5/TxD/T2CH1/AD9  
PTB6/T1CH2  
BREAK  
MODULE  
PERIODIC WAKEUP  
MODULE  
PTB7/T1CH3  
PTC0  
PTC1  
PTC2  
PTC3  
LOW-VOLTAGE  
INHIBIT  
MC68HC908QC16  
16,384 BYTES  
4-CHANNEL 16-BIT  
TIMER MODULE  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
MC68HC908QC8  
8192 BYTES  
2-CHANNEL 16-BIT  
TIMER MODULE  
MC68HC908QC4  
4096 BYTES  
USER FLASH  
COP  
MODULE  
10-CHANNEL  
10-BIT ADC  
MC68HC908QC16  
512 BYTES  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
MC68HC908QC8  
384 BYTES  
MC68HC908QC4  
384 BYTES  
SERIAL PERIPHERAL  
INTERFACE  
USER RAM  
MONITOR ROM  
V
V
DD  
SS  
POWER SUPPLY  
All port pins can be configured with internal pullup  
PTC not available on 16-pin devices (see note in 11.1 Introduction)  
PTD not available on 16-pin or 20-pin devices (see note in 11.1 Introduction)  
Figure 8-2. Block Diagram Highlighting KBI Block and Pins  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
86  
Freescale Semiconductor  
 
Functional Description  
8.3.1 Keyboard Operation  
Writing to the KBIEx bits in the keyboard interrupt enable register (KBIER) independently enables or  
disables each KBI pin. The polarity of the keyboard interrupt is controlled using the KBIPx bits in the  
keyboard interrupt polarity register (KBIPR). Edge-only or edge and level sensitivity is controlled using  
the MODEK bit in the keyboard status and control register (KBISCR).  
Enabling a keyboard interrupt pin also enables its internal pullup or pulldown device based on the polarity  
enabled. On falling edge or low level detection, a pullup device is configured. On rising edge or high level  
detection, a pulldown device is configured.  
The keyboard interrupt latch is set when one or more enabled keyboard interrupt inputs are asserted.  
If the keyboard interrupt sensitivity is edge-only, for KBIPx = 0, a falling (for KBIPx = 1, a rising) edge  
on a keyboard interrupt input does not latch an interrupt request if another enabled keyboard pin is  
already asserted. To prevent losing an interrupt request on one input because another input remains  
asserted, software can disable the latter input while it is asserted.  
If the keyboard interrupt is edge and level sensitive, an interrupt request is present as long as any  
enabled keyboard interrupt input is asserted.  
8.3.1.1 MODEK = 1  
If the MODEK bit is set, the keyboard interrupt inputs are both edge and level sensitive. The KBIPx bit will  
determine whether a edge sensitive pin detects rising or falling edges and on level sensitive pins whether  
the pin detects low or high levels. With MODEK set, both of the following actions must occur to clear a  
keyboard interrupt request:  
Return of all enabled keyboard interrupt inputs to a deasserted level. As long as any enabled  
keyboard interrupt pin is asserted, the keyboard interrupt remains active.  
Vector fetch or software clear. A KBI vector fetch generates an interrupt acknowledge signal to clear  
the KBI latch. Software generates the interrupt acknowledge signal by writing a 1 to ACKK in KBSCR.  
The ACKK bit is useful in applications that poll the keyboard interrupt inputs and require software to  
clear the KBI latch. Writing to ACKK prior to leaving an interrupt service routine can also prevent  
spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the  
keyboard interrupt inputs. An edge detect that occurs after writing to ACKK latches another interrupt  
request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program counter with  
the KBI vector address.  
The KBI vector fetch or software clear and the return of all enabled keyboard interrupt pins to a  
deasserted level may occur in any order.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a  
keyboard interrupt input stays asserted.  
8.3.1.2 MODEK = 0  
If the MODEK bit is clear, the keyboard interrupt inputs are edge sensitive. The KBIPx bit will determine  
whether an edge sensitive pin detects rising or falling edges. A KBI vector fetch or software clear  
immediately clears the KBI latch.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
87  
Keyboard Interrupt Module (KBI)  
The keyboard flag bit (KEYF) in KBSCR can be read to check for pending interrupts. The KEYF bit is not  
affected by IMASKK, which makes it useful in applications where polling is preferred.  
NOTE  
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction register.  
However, the data direction register bit must be a 0 for software to read the  
pin.  
8.3.2 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal pullup or pulldown device to pull  
the pin to its deasserted level. Therefore a false interrupt can occur as soon as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting IMASKK in KBSCR.  
2. Enable the KBI polarity by setting the appropriate KBIPx bits in KBIPR.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in KBIER.  
4. Write to ACKK in KBSCR to clear any false interrupts.  
5. Clear IMASKK.  
An interrupt signal on an edge sensitive pin can be acknowledged immediately after enabling the pin. An  
interrupt signal on an edge and level sensitive pin must be acknowledged after a delay that depends on  
the external load.  
8.4 Interrupts  
The following KBI source can generate interrupt requests:  
Keyboard flag (KEYF) — The KEYF bit is set when any enabled KBI pin is asserted based on the  
KBI mode and pin polarity. The keyboard interrupt mask bit, IMASKK, is used to enable or disable  
KBI interrupt requests.  
8.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
8.5.1 Wait Mode  
The KBI module remains active in wait mode. Clearing IMASKK in KBSCR enables keyboard interrupt  
requests to bring the MCU out of wait mode.  
8.5.2 Stop Mode  
The KBI module remains active in stop mode. Clearing IMASKK in KBSCR enables keyboard interrupt  
requests to bring the MCU out of stop mode.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
88  
Freescale Semiconductor  
KBI During Break Interrupts  
8.6 KBI During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing  
the second step clears the status bit.  
8.7 I/O Signals  
The KBI module can share its pins with the general-purpose I/O pins. See Figure 8-2 for the port pins that  
are shared.  
8.7.1 KBI Input Pins (KBI7:KBI0)  
Each KBI pin is independently programmable as an external interrupt source. KBI pin polarity can be  
controlled independently. Each KBI pin when enabled will automatically configure the appropriate  
pullup/pulldown device based on polarity.  
8.8 Registers  
The following registers control and monitor operation of the KBI module:  
KBSCR (keyboard interrupt status and control register)  
KBIER (keyboard interrupt enable register)  
KBIPR (keyboard interrupt polarity register)  
8.8.1 Keyboard Status and Control Register (KBSCR)  
Features of the KBSCR:  
Flags keyboard interrupt requests  
Acknowledges keyboard interrupt requests  
Masks keyboard interrupt requests  
Controls keyboard interrupt triggering sensitivity  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
89  
Keyboard Interrupt Module (KBI)  
Bit 7  
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
0
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 8-3. Keyboard Status and Control Register (KBSCR)  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
ACKK — Keyboard Acknowledge Bit  
Writing a 1 to this write-only bit clears the KBI request. ACKK always reads 0.  
IMASKK— Keyboard Interrupt Mask Bit  
Writing a 1 to this read/write bit prevents the output of the KBI latch from generating interrupt requests.  
1 = Keyboard interrupt requests disabled  
0 = Keyboard interrupt requests enabled  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard interrupt pins.  
1 = Keyboard interrupt requests on edge and level  
0 = Keyboard interrupt requests on edge only  
8.8.2 Keyboard Interrupt Enable Register (KBIER)  
KBIER enables or disables each keyboard interrupt pin.  
Bit 7  
0
6
R
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 8-4. Keyboard Interrupt Enable Register (KBIER)  
KBIE5–KBIE0 — Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard interrupt pin to latch KBI interrupt  
requests.  
1 = KBIx pin enabled as keyboard interrupt pin  
0 = KBIx pin not enabled as keyboard interrupt pin  
R — Reserved bit  
This reserved bit should always be written to a 0 and will read 0.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
90  
Freescale Semiconductor  
Registers  
8.8.3 Keyboard Interrupt Polarity Register (KBIPR)  
KBIPR determines the polarity of the enabled keyboard interrupt pin and enables the appropriate pullup  
or pulldown device.  
Bit 7  
0
6
0
5
KBIP5  
0
4
KBIP4  
0
3
KBIP3  
0
2
KBIP2  
0
1
KBIP1  
0
Bit 0  
KBIP0  
0
Read:  
Write:  
Reset:  
0
0
= Unimplemented  
Figure 8-5. Keyboard Interrupt Polarity Register (KBIPR)  
KBIP5–KBIP0 — Keyboard Interrupt Polarity Bits  
Each of these read/write bits enables the polarity of the keyboard interrupt detection.  
1 = Keyboard polarity is high level and/or rising edge  
0 = Keyboard polarity is low level and/or falling edge  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
91  
Keyboard Interrupt Module (KBI)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
92  
Chapter 9  
Low-Voltage Inhibit (LVI)  
9.1 Introduction  
The low-voltage inhibit (LVI) module is provided as a system protection mechanism to prevent the MCU  
from operating below a certain operating supply voltage level. The module has several configuration  
options to allow functionality to be tailored to different system level demands.  
The configuration registers (see Chapter 4 Configuration Registers (CONFIG1 and CONFIG2)) contain  
control bits for this module.  
9.2 Features  
Features of the LVI module include:  
Programmable LVI reset  
Selectable LVI trip voltage  
Programmable stop mode operation  
9.3 Functional Description  
Figure 9-1 shows the structure of the LVI module. LVISTOP, LVIPWRD, LVITRIP, and LVIRSTD are user  
selectable options found in the configuration register.  
V
DD  
STOP INSTRUCTION  
LVISTOP  
FROM CONFIGURATION REGISTER  
FROM CONFIGURATION REGISTER  
LVIRSTD  
LVIPWRD  
FROM CONFIGURATION REGISTER  
0 IF V > V  
DD  
LVI RESET  
TRIPR  
TRIPF  
LOW V  
DD  
DETECTOR  
1 IF V V  
DD  
LVIOUT  
LVITRIP  
FROM CONFIGURATION REGISTER  
Figure 9-1. LVI Module Block Diagram  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
93  
 
Low-Voltage Inhibit (LVI)  
The LVI module contains a bandgap reference circuit and comparator. When the LVITRIP bit is cleared,  
the default state at power-on reset, V  
is configured for the lower V operating range. The actual  
TRIPF  
DD  
trip points are specified in 19.5 5-V DC Electrical Characteristics and 19.8 3.3-V DC Electrical  
Characteristics.  
Because the default LVI trip point after power-on reset is configured for low voltage operation, a system  
requiring high voltage LVI operation must set the LVITRIP bit during system initialization. V must be  
DD  
above the LVI trip rising voltage, V  
go into LVI reset.  
, for the high voltage operating range or the MCU will immediately  
TRIPR  
After an LVI reset occurs, the MCU remains in reset until V rises above V  
. See Chapter 14 System  
DD  
TRIPR  
Integration Module (SIM) for the reset recovery sequence.  
The output of the comparator controls the state of the LVIOUT flag in the LVI status register (LVISR) and  
can be used for polling LVI operation when the LVI reset is disabled.  
The LVI is enabled out of reset. The following bits located in the configuration register can alter the default  
conditions.  
Setting the LVI power disable bit, LVIPWRD, disables the LVI.  
Setting the LVI reset disable bit, LVIRSTD, prevents the LVI module from generating a reset.  
Setting the LVI enable in stop mode bit, LVISTOP, enables the LVI to operate in stop mode.  
Setting the LVI trip point bit, LVITRIP, configures the trip point voltage (V  
operating range.  
) for the higher V  
TRIPF  
DD  
9.3.1 Polled LVI Operation  
In applications that can operate at V levels below the V  
level, software can monitor V by polling  
DD  
DD  
TRIPF  
the LVIOUT bit. In the configuration register, LVIPWRD must be cleared to enable the LVI module, and  
LVIRSTD must be set to disable LVI resets.  
9.3.2 Forced Reset Operation  
In applications that require V to remain above the V  
level, enabling LVI resets allows the LVI  
DD  
TRIPF  
module to reset the MCU when V falls below the V  
level. In the configuration register, LVIPWRD  
DD  
TRIPF  
and LVIRSTD must be cleared to enable the LVI module and to enable LVI resets.  
9.3.3 LVI Hysteresis  
The LVI has hysteresis to maintain a stable operating condition. After the LVI has triggered (by having  
V
V
fall below V  
), the MCU will remain in reset until V rises above the rising trip point voltage,  
DD  
TRIPF DD  
. This prevents a condition in which the MCU is continually entering and exiting reset if V is  
TRIPR  
DD  
approximately equal to V  
. V  
is greater than V  
by the typical hysteresis voltage, V  
.
TRIPF  
TRIPR  
TRIPF  
HYS  
9.3.4 LVI Trip Selection  
LVITRIP in the configuration register selects the LVI protection range. The default setting out of reset is  
for the low voltage range. Because LVITRIP is in a write-once configuration register, the protection range  
cannot be changed after initialization.  
NOTE  
The MCU is guaranteed to operate at a minimum supply voltage. The trip  
point (V  
) may be lower than this. See the Electrical Characteristics  
TRIPF  
section for the actual trip point voltages.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
94  
Freescale Semiconductor  
LVI Interrupts  
9.4 LVI Interrupts  
The LVI module does not generate interrupt requests.  
9.5 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-consumption standby modes.  
9.5.1 Wait Mode  
If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can  
generate a reset and bring the MCU out of wait mode.  
9.5.2 Stop Mode  
If the LVIPWRD bit in the configuration register is cleared and the LVISTOP bit in the configuration  
register is set, the LVI module remains active. If enabled to generate resets, the LVI module can generate  
a reset and bring the MCU out of stop mode.  
9.6 Registers  
The LVI status register (LVISR) contains a status bit that is useful when the LVI is enabled and LVI reset  
is disabled.  
Bit 7  
Read: LVIOUT  
Write:  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
R
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 9-2. LVI Status Register (LVISR)  
LVIOUT — LVI Output Bit  
This read-only flag becomes set when the V voltage falls below the V  
trip voltage and is cleared  
DD  
TRIPF  
when V voltage rises above V  
. (See Table 9-1.)  
TRIPR  
DD  
Table 9-1. LVIOUT Bit Indication  
VDD  
LVIOUT  
VDD > VTRIPR  
VDD < VTRIPF  
0
1
VTRIPF < VDD < VTRIPR  
Previous value  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
95  
 
Low-Voltage Inhibit (LVI)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
96  
Chapter 10  
Oscillator Mode (OSC)  
10.1 Introduction  
The oscillator (OSC) module is used to provide a stable clock source for the MCU system and bus.  
The OSC shares its pins with general-purpose input/output (I/O) port pins. See Figure 10-1 for port  
location of these shared pins. The OSC2EN bit is located in the port A pull enable register (PTAPUEN)  
on this MCU. See Chapter 11 Input/Output Ports (PORTS) for information on PTAPUEN register.  
10.2 Features  
The bus clock frequency is one fourth of any of these clock source options:  
1. Internal oscillator: An internally generated, fixed frequency clock, trimmable to 0.4%. There are  
four choices for the internal oscillator, 25.6 MHz, 12.8 MHz, 8 MHz, or 4 MHz. The 4-MHz internal  
oscillator is the default option out of reset.  
2. External oscillator: An external clock that can be driven directly into OSC1.  
3. External RC: A built-in oscillator module (RC oscillator) that requires an external R connection only.  
The capacitor is internal to the chip.  
4. External crystal: A built-in XTAL oscillator that requires an external crystal or ceramic-resonator.  
There are three crystal frequency ranges supported, 8–32 MHz, 1–8 MHz, and 32–100 kHz.  
10.3 Functional Description  
The oscillator contains these major subsystems:  
Internal oscillator circuit  
Internal or external clock switch control  
External clock circuit  
External crystal circuit  
External RC clock circuit  
10.3.1 Internal Signal Definitions  
The following signals and clocks are used in the functional description and figures of the OSC module.  
10.3.1.1 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM) and disables the XTAL oscillator  
circuit, the RC oscillator, or the internal oscillator in stop mode. OSCENINSTOP in the configuration  
register can be used to override this signal.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
97  
Oscillator Mode (OSC)  
PTA0/T1CH0/AD0/KBI0  
PTA1/T1CH1/AD1/KBI1  
PTA2/IRQ/KBI2/T1CLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0/SPSCK/AD4  
PTB1/MOSI/T2CH1/AD5  
PTB2/MISO/T2CH0/AD6  
PTB3/SS/T2CLK/AD7  
PTB4/RxD/T2CH0/AD8  
PTB5/TxD/T2CH1/AD9  
PTB6/T1CH2  
BREAK  
MODULE  
PERIODIC WAKEUP  
MODULE  
PTB7/T1CH3  
PTC0  
PTC1  
PTC2  
PTC3  
LOW-VOLTAGE  
INHIBIT  
MC68HC908QC16  
16,384 BYTES  
4-CHANNEL 16-BIT  
TIMER MODULE  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
MC68HC908QC8  
8192 BYTES  
2-CHANNEL 16-BIT  
TIMER MODULE  
MC68HC908QC4  
4096 BYTES  
USER FLASH  
COP  
MODULE  
10-CHANNEL  
10-BIT ADC  
MC68HC908QC16  
512 BYTES  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
MC68HC908QC8  
384 BYTES  
MC68HC908QC4  
384 BYTES  
SERIAL PERIPHERAL  
INTERFACE  
USER RAM  
MONITOR ROM  
V
V
DD  
SS  
POWER SUPPLY  
All port pins can be configured with internal pullup  
PTC not available on 16-pin devices (see note in 11.1 Introduction)  
PTD not available on 16-pin or 20-pin devices (see note in 11.1 Introduction)  
Figure 10-1. Block Diagram Highlighting OSC Block and Pins  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
98  
Freescale Semiconductor  
 
Functional Description  
10.3.1.2 XTAL Oscillator Clock (XTALCLK)  
XTALCLK is the XTAL oscillator output signal. It runs at the full speed of the crystal (f  
) and comes  
XCLK  
directly from the crystal oscillator circuit. Figure 10-2 shows only the logical relation of XTALCLK to OSC1  
and OSC2 and may not represent the actual circuitry. The duty cycle of XTALCLK is unknown and may  
depend on the crystal and other external factors. The frequency of XTALCLK can be unstable at start up.  
10.3.1.3 RC Oscillator Clock (RCCLK)  
RCCLK is the RC oscillator output signal. Its frequency is directly proportional to the time constant of the  
external R (R  
) and internal C. Figure 10-3 shows only the logical relation of RCCLK to OSC1 and may  
EXT  
not represent the actual circuitry.  
10.3.1.4 Internal Oscillator Clock (INTCLK)  
INTCLK is the internal oscillator output signal. INTCLK is software selectable to be nominally 25.6 MHz,  
12.8 MHz, 8.0 MHz, or 4.0 MHz. INTCLK can be digitally adjusted using the oscillator trimming feature of  
the OSCTRIM register (see 10.3.2.1 Internal Oscillator Trimming).  
10.3.1.5 Bus Clock Times 4 (BUSCLKX4)  
BUSCLKX4 is the same frequency as the input clock (XTALCLK, RCCLK, or INTCLK). This signal is  
driven to the SIM module and is used during recovery from reset and stop and is the clock source for the  
COP module.  
10.3.1.6 Bus Clock Times 2 (BUSCLKX2)  
The frequency of this signal is equal to half of the BUSCLKX4. This signal is driven to the SIM for  
generation of the bus clocks used by the CPU and other modules on the MCU. BUSCLKX2 will be divided  
by two in the SIM. The internal bus frequency is one fourth of the XTALCLK, RCCLK, or INTCLK  
frequency.  
10.3.2 Internal Oscillator  
The internal oscillator circuit is designed for use with no external components to provide a clock source  
with a tolerance of less than 25%untrimmed. An 8-bit register (OSCTRIM) allows the digital adjustment  
to a tolerance of ACC . See the oscillator characteristics in the Electrical section of this data sheet.  
INT  
The internal oscillator is capable of generating clocks of 25.6 MHz, 12.8 MHz, 8.0 MHz, or 4.0 MHz  
(INTCLK) resulting in a bus frequency (INTCLK divided by 4) of 6.4 MHz, 3.2 MHz, 2.0 MHz, or 1.0 MHz  
respectively. The bus clock is software selectable and defaults to the 1.0-MHz bus out of reset. Users can  
increase the bus frequency based on the voltage range of their application.  
Figure 10-3 shows how BUSCLKX4 is derived from INTCLK and OSC2 can output BUSCLKX4 by setting  
OSC2EN.  
10.3.2.1 Internal Oscillator Trimming  
OSCTRIM allows a clock period adjustment of +127 and –128 steps. Increasing the OSCTRIM value  
increases the clock period, which decreases the clock frequency. Trimming allows the internal clock  
frequency to be fine tuned to the target frequency.  
All devices are factory programmed with a trim value that is stored in FLASH memory at location $FFC0.  
This trim value is not automatically loaded into OSCTRIM register. User software must copy the trim value  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
99  
 
Oscillator Mode (OSC)  
from $FFC0 into OSCTRIM if needed. The factory trim value provides the accuracy required for  
communication using force monitor mode. Trimming the device in the user application board will provide  
the most accurate trim value. See Oscillator Characteristics in the Electrical Chapter of this data book for  
additional information on factory trim.  
10.3.2.2 Internal to External Clock Switching  
When external clock source (external OSC, RC, or XTAL) is desired, the user must perform the following  
steps:  
1. For external crystal circuits only, configure OSCOPT[1:0] to external crystal. To help precharge an  
external crystal oscillator, momentarily configure OSC2 as an output and drive it high for several  
cycles. This can help the crystal circuit start more robustly.  
2. Configure OSCOPT[1:0] and ECFS[1:0] according to 10.8.1 Oscillator Status and Control  
Register. The oscillator module control logic will then enable OSC1 as an external clock input and,  
if the external crystal option is selected, OSC2 will also be enabled as the clock output. If RC  
oscillator option is selected, enabling the OSC2 output may change the bus frequency.  
3. Create a software delay to provide the stabilization time required for the selected clock source  
(crystal, resonator, RC). A good rule of thumb for crystal oscillators is to wait 4096 cycles of the  
crystal frequency; i.e., for a 4-MHz crystal, wait approximately 1 ms.  
4. After the stabilization delay has elapsed, set ECGON.  
After ECGON set is detected, the OSC module checks for oscillator activity by waiting two external clock  
rising edges. The OSC module then switches to the external clock. Logic provides a coherent transition.  
The OSC module first sets ECGST and then stops the internal oscillator.  
10.3.2.3 External to Internal Clock Switching  
After following the procedures to switch to an external clock source, it is possible to go back to the internal  
source. By clearing the OSCOPT[1:0] bits and clearing the ECGON bit, the external circuit will be  
disengaged. The bus clock will be derived from the selected internal clock source based on the ICFS[1:0]  
bits.  
10.3.3 External Oscillator  
The external oscillator option is designed for use when a clock signal is available in the application to  
provide a clock source to the MCU. The OSC1 pin is enabled as an input by the oscillator module. The  
clock signal is used directly to create BUSCLKX4 and also divided by two to create BUSCLKX2.  
In this configuration, the OSC2 pin cannot output BUSCLKX4. The OSC2EN bit will be forced clear to  
enable alternative functions on the pin.  
10.3.4 XTAL Oscillator  
The XTAL oscillator circuit is designed for use with an external crystal or ceramic resonator to provide an  
accurate clock source. In this configuration, the OSC2 pin is dedicated to the external crystal circuit. The  
OSC2EN bit has no effect when this clock mode is selected.  
In its typical configuration, the XTAL oscillator is connected in a Pierce oscillator configuration, as shown  
in Figure 10-2. This figure shows only the logical representation of the internal components and may not  
represent actual circuitry.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
100  
Freescale Semiconductor  
 
Functional Description  
The oscillator configuration uses five components:  
Crystal, X  
1
Fixed capacitor, C  
1
Tuning capacitor, C (can also be a fixed capacitor)  
2
Feedback resistor, RB  
Series resistor, RS (optional)  
NOTE  
The series resistor (RS) is included in the diagram to follow strict Pierce  
oscillator guidelines and may not be required for all ranges of operation,  
especially with high frequency crystals. Refer to the oscillator  
characteristics table in the Electricals section for more information.  
SIMOSCEN (internal signal) OR  
OSCENINSTOP (bit located in  
configuration register))  
BUSCLKX4  
BUSCLKX2  
XTALCLK  
2
MCU  
OSC1  
OSC2  
RS  
R
B
X
1
C
C
2
1
See the electrical section for details.  
Figure 10-2. XTAL Oscillator External Connections  
10.3.5 RC Oscillator  
The RC oscillator circuit is designed for use with an external resistor (R  
a tolerance within 25% of the expected frequency. See Figure 10-3.  
) to provide a clock source with  
EXT  
The capacitor (C) for the RC oscillator is internal to the MCU. The R  
or less to minimize its effect on the frequency.  
value must have a tolerance of 1%  
EXT  
In this configuration, the OSC2 pin can be used as general-purpose input/output (I/O) port pins or other  
alternative pin function. The OSC2EN bit can be set to enable the OSC2 output function on the pin.  
Enabling the OSC2 output can affect the external RC oscillator frequency, f  
.
RCCLK  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
101  
Oscillator Mode (OSC)  
OSCOPT = EXTERNAL RC SELECTED  
BUSCLKX2  
SIMOSCEN (internal signal) OR  
OSCENINSTOP (bit located in  
configuration register))  
BUSCLKX4  
INTCLK  
RCCLK  
0
1
EXTERNAL RC  
EN  
2
OSCILLATOR  
1
0
ALTERNATIVE  
PIN FUNCTION  
OSC2EN  
MCU  
OSC1  
OSC2- available for alternative pin function  
V
DD  
See the Electricals section  
for component value.  
R
EXT  
Figure 10-3. RC Oscillator External Connections  
10.4 Interrupts  
There are no interrupts associated with the OSC module.  
10.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
10.5.1 Wait Mode  
The OSC module remains active in wait mode.  
10.5.2 Stop Mode  
The OSC module can be configured to remain active in stop mode by setting OSCENINSTOP located in  
a configuration register.  
10.6 OSC During Break Interrupts  
There are no status flags associated with the OSC module.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
102  
Freescale Semiconductor  
I/O Signals  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing  
the second step clears the status bit.  
10.7 I/O Signals  
The OSC shares its pins with general-purpose input/output (I/O) port pins. See Figure 10-1 for port  
location of these shared pins.  
10.7.1 Oscillator Input Pin (OSC1)  
The OSC1 pin is an input to the crystal oscillator amplifier, an input to the RC oscillator circuit, or an input  
from an external clock source.  
When the OSC is configured for internal oscillator, the OSC1 pin can be used as a general-purpose  
input/output (I/O) port pin or other alternative pin function.  
10.7.2 Oscillator Output Pin (OSC2)  
For the XTAL oscillator option, the OSC2 pin is the output of the crystal oscillator amplifier.  
When the OSC is configured for internal oscillator, external clock, or RC, the OSC2 pin can be used as a  
general-purpose I/O port pin or other alternative pin function. When the oscillator is configured for internal  
or RC, the OSC2 pin can be used to output BUSCLKX4.  
Table 10-1. OSC2 Pin Function  
Option  
OSC2 Pin Function  
XTAL oscillator  
External clock  
Inverting OSC1  
General-purpose I/O or alternative pin function  
Internal oscillator  
or  
RC oscillator  
Controlled by OSC2EN bit  
OSC2EN = 0: General-purpose I/O or alternative pin function  
OSC2EN = 1: BUSCLKX4 output  
10.8 Registers  
The oscillator module contains two registers:  
Oscillator status and control register (OSCSC)  
Oscillator trim register (OSCTRIM)  
10.8.1 Oscillator Status and Control Register  
The oscillator status and control register (OSCSC) contains the bits for switching between internal and  
external clock sources. If the application uses an external crystal, bits in this register are used to select  
the crystal oscillator amplifier necessary for the desired crystal. While running off the internal clock  
source, the user can use bits in this register to select the internal clock source frequency.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
103  
Oscillator Mode (OSC)  
Bit 7  
6
5
ICFS1  
0
4
ICFS0  
0
3
ECFS1  
0
2
ECFS0  
0
1
ECGON  
0
Bit 0  
Read:  
Write:  
Reset:  
ECGST  
OSCOPT1 OSCOPT0  
0
0
0
= Unimplemented  
Figure 10-4. Oscillator Status and Control Register (OSCSC)  
OSCOPT1:OSCOPT0 — OSC Option Bits  
These read/write bits allow the user to change the clock source for the MCU. The default reset  
condition has the bus clock being derived from the internal oscillator. See 10.3.2.2 Internal to External  
Clock Switching for information on changing clock sources.  
OSCOPT1  
OSCOPT0  
Oscillator Modes  
Internal oscillator (frequency selected using ICFSx bits)  
External oscillator clock  
0
0
1
1
0
1
0
1
External RC  
External crystal (range selected using ECFSx bits)  
ICFS1:ICFS0 — Internal Clock Frequency Select Bits  
These read/write bits enable the frequency to be increased for applications requiring a faster bus clock  
when running off the internal oscillator. The WAIT instruction has no effect on the oscillator logic.  
BUSCLKX2 and BUSCLKX4 continue to drive to the SIM module.  
ICFS1  
ICFS0  
Internal Clock Frequency  
4.0 MHz — default reset condition  
0
0
1
1
0
1
0
1
8.0 MHz  
12.8 MHz  
25.6 MHz  
ECFS1:ECFS0 — External Crystal Frequency Select Bits  
These read/write bits enable the specific amplifier for the crystal frequency range. Refer to oscillator  
characteristics table in the Electricals section for information on maximum external clock frequency  
versus supply voltage.  
ECFS1  
ECFS0  
External Crystal Frequency  
8 MHz – 32 MHz  
0
0
1
1
0
1
0
1
1 MHz – 8 MHz  
32 kHz – 100 kHz  
Reserved  
ECGON — External Clock Generator On Bit  
This read/write bit enables the OSC1 pin as the clock input to the MCU, so that the switching process  
can be initiated. This bit is cleared by reset. This bit is ignored in monitor mode with the internal  
oscillator bypassed.  
1 = External clock enabled  
0 = External clock disabled  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
104  
Freescale Semiconductor  
Registers  
ECGST — External Clock Status Bit  
This read-only bit indicates whether an external clock source is engaged to drive the system clock.  
1 = An external clock source engaged  
0 = An external clock source disengaged  
10.8.2 Oscillator Trim Register (OSCTRIM)  
Bit 7  
TRIM7  
1
6
TRIM6  
0
5
TRIM5  
0
4
TRIM4  
0
3
TRIM3  
0
2
TRIM2  
0
1
TRIM1  
0
Bit 0  
TRIM0  
0
Read:  
Write:  
Reset:  
Figure 10-5. Oscillator Trim Register (OSCTRIM)  
TRIM7–TRIM0 — Internal Oscillator Trim Factor Bits  
These read/write bits change the internal capacitance used by the internal oscillator. By measuring the  
period of the internal clock and adjusting this factor accordingly, the frequency of the internal clock can  
be fine tuned. Increasing (decreasing) this factor by one increases (decreases) the period by  
approximately 0.2% of the untrimmed oscillator period. The oscillator period is based on the oscillator  
frequency selected by the ICFS bits in OSCSC.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
105  
Oscillator Mode (OSC)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
106  
Chapter 11  
Input/Output Ports (PORTS)  
11.1 Introduction  
The MC68HC908QC16 has up to 24 bidirectional input-output (I/O) pins and two input only pins  
depending on the package selection. All I/O pins are programmable as inputs and outputs.  
11.2 Unused Pin Termination  
Input pins and I/O port pins that are not used in the application must be terminated. This prevents excess  
current caused by floating inputs, and enhances immunity during noise or transient events. Termination  
methods include:  
1. Configuring unused pins as outputs and driving high or low;  
2. Configuring unused pins as inputs and enabling internal pull-ups;  
3. Configuring unused pins as inputs and using external pull-up or pull-down resistors.  
Never connect unused pins directly to V or V .  
DD  
SS  
Since some general-purpose I/O pins are not available on all packages, these pins must be terminated  
as well. Either method 1 or 2 above are appropriate.  
11.3 Port A  
Port A is an 6-bit special function port that shares all six of its pins with the keyboard interrupt (KBI)  
module (see Chapter 8 Keyboard Interrupt Module (KBI)). Each port A pin also has a software  
configurable pullup device if the corresponding port pin is configured as an input port.  
NOTE  
PTA2 is input only. PTA2 has a high voltage detector to enable entry into  
special modes. Do not exceed the V level on this pin in normal operation.  
DD  
When the IRQ function is enabled in the configuration register 2  
(CONFIG2), bit 2 of the port A data register (PTA) will always read a 0. In  
this case, the BIH and BIL instructions can be used to read the logic level  
on the PTA2 pin. When the IRQ function is disabled, these instructions will  
behave as if the PTA2 pin is a logic 1. However, reading bit 2 of PTA will  
read the actual logic level on the pin.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
107  
 
Input/Output Ports (PORTS)  
11.3.1 Port A Data Register  
The port A data register (PTA) contains a data latch for each of the six port A pins.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
PTA2  
R
R
PTA5  
PTA4  
PTA3  
PTA1  
PTA0  
Reset:  
Unaffected by reset  
KBI4 KBI3  
Additional Functions:  
KBI5  
KBI2  
KBI1  
KBI0  
R
= Reserved  
= Unimplemented  
Figure 11-1. Port A Data Register (PTA)  
PTA5–PTA3, PTA1, PTA0 — Port A Data Bits  
These read/write bits are software programmable. Data direction of each port A pin is under the control  
of the corresponding bit in data direction register A. Reset has no effect on port A data.  
PTA2 — Port A Data Bit  
This read-only bit reads the state of the PTA2 pin.  
KBI[5:0] — Port A Keyboard Interrupts  
The keyboard interrupt enable bits, KBIE5–KBIE0, in the keyboard interrupt control enable register  
(KBIER) enable the port A pins as external interrupt pins (see Chapter 8 Keyboard Interrupt Module  
(KBI)).  
11.3.2 Data Direction Register A  
Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a 1  
to a DDRA bit enables the output buffer for the corresponding port A pin; a 0 disables the output buffer.  
Bit 7  
R
6
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
R
0
0
0
R
= Reserved  
= Unimplemented  
Figure 11-2. Data Direction Register A (DDRA)  
DDRA[5:0] — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears DDRA[5:0], configuring all port A pins  
as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE  
Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
108  
Freescale Semiconductor  
Port A  
Figure 11-3 shows the port A I/O logic.  
READ DDRA ($0004)  
PTAPUEx  
WRITE DDRA ($0004)  
RESET  
DDRAx  
PTAx  
PULLUP  
WRITE PTA ($0000)  
PTAx  
READ PTA ($0000)  
TO KEYBOARD INTERRUPT CIRCUIT  
Figure 11-3. Port A I/O Circuit  
NOTE  
Figure 11-3 does not apply to PTA2.  
When DDRAx is a 1, reading address $0000 reads the PTAx data latch. When DDRAx is a 0, reading  
address $0000 reads the voltage level on the pin. The data latch can always be written, regardless of the  
state of its data direction bit.  
11.3.3 Port A Input Pullup Enable Register  
The port A input pullup enable register (PTAPUE) contains a software configurable pullup device for each  
if the six port A pins. Each bit is individually configurable and requires the corresponding data direction  
register, DDRAx, to be configured as input. Each pullup device is automatically and dynamically disabled  
when its corresponding DDRAx bit is configured as output.  
Bit 7  
OSC2EN  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
0
0
0
0
0
0
0
= Unimplemented  
Figure 11-4. Port A Input Pullup Enable Register (PTAPUE)  
OSC2EN — Enable PTA4 on OSC2 Pin  
This read/write bit configures the OSC2 pin function when internal oscillator or RC oscillator option is  
selected. This bit has no effect for the XTAL or external oscillator options.  
1 = OSC2 pin outputs the internal or RC oscillator clock (BUSCLKX4)  
0 = OSC2 pin configured for PTA4 I/O, having all the interrupt and pullup functions  
PTAPUE[5:0] — Port A Input Pullup Enable Bits  
These read/write bits are software programmable to enable pullup devices on port A pins.  
1 = Corresponding port A pin configured to have internal pull if its DDRA bit is set to 0  
0 = Pullup device is disconnected on the corresponding port A pin regardless of the state of its  
DDRA bit  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
109  
 
Input/Output Ports (PORTS)  
Table 11-1 summarizes the operation of the port A pins.  
Table 11-1. Port A Pin Functions  
Accesses to DDRA  
Read/Write  
Accesses to PTA  
PTAPUE  
Bit  
DDRA  
Bit  
PTA  
Bit  
I/O Pin  
Mode  
Read  
Write  
(2)  
X(1)  
X
PTA5–PTA0(3)  
PTA5–PTA0(3)  
PTA5–PTA0(5)  
1
0
X
0
0
1
DDRA5–DDRA0  
DDRA5–DDRA0  
DDRA5–DDRA0  
Pin  
Pin  
Input, VDD  
Input, Hi-Z(4)  
Output  
X
PTA5–PTA0  
1. X = don’t care  
2. I/O pin pulled to VDD by internal pullup.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = high impedance  
5. Output does not apply to PTA2  
11.4 Port B  
Port B is an 8-bit general purpose I/O port. Each port B pin can be configured to have an internal pullup  
when used as an input port pin.  
11.4.1 Port B Data Register  
The port B data register (PTB) contains a data latch for each of the eight port B pins.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Unaffected by reset  
Figure 11-5. Port B Data Register (PTB)  
PTB[7:0] — Port B Data Bits  
These read/write bits are software programmable. Data direction of each port B pin is under the control  
of the corresponding bit in data direction register B. Reset has no effect on port B data.  
11.4.2 Data Direction Register B  
Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a 1  
to a DDRB bit enables the output buffer for the corresponding port B pin; a 0 disables the output buffer.  
Bit 7  
DDRB7  
0
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
Figure 11-6. Data Direction Register B (DDRB)  
DDRB[7:0] — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins  
as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
110  
Freescale Semiconductor  
 
Port B  
NOTE  
Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1. Figure 11-7 shows the  
port B I/O logic.  
READ DDRB ($0005)  
PTBPUEx  
WRITE DDRB ($0005)  
DDRBx  
RESET  
PULLUP  
WRITE PTB ($0001)  
PTBx  
PTBx  
READ PTB ($0001)  
Figure 11-7. Port B I/O Circuit  
When DDRBx is a 1, reading address $0001 reads the PTBx data latch. When DDRBx is a 0, reading  
address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the  
state of its data direction bit.  
11.4.3 Port B Input Pullup Enable Register  
The port B input pullup enable register (PTBPUE) contains a software configurable pullup device for each  
of the eight port B pins. Each bit is individually configurable and requires the corresponding data direction  
register, DDRBx, be configured as input. Each pullup device is automatically and dynamically disabled  
when its corresponding DDRBx bit is configured as output.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE2 PTBPUE0  
0
0
0
0
0
0
0
0
Figure 11-8. Port B Input Pullup Enable Register (PTBPUE)  
PTBPUE[7:0] — Port B Input Pullup Enable Bits  
These read/write bits are software programmable to enable pullup devices on port B pins  
1 = Corresponding port B pin configured to have internal pull if its DDRB bit is set to 0  
0 = Pullup device is disconnected on the corresponding port B pin regardless of the state of its  
DDRB bit.  
Table 11-2 summarizes the operation of the port B pins.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
111  
 
Input/Output Ports (PORTS)  
Table 11-2. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
PTBPUE  
Bit  
DDRB  
Bit  
PTB  
Bit  
I/O Pin  
Mode  
Read  
Write  
(2)  
X(1)  
X
PTB7–PTB0(3)  
1
0
DDRB7–DDRB0  
Pin  
Input, VDD  
Input, Hi-Z(4)  
Output  
PTB7–PTB0(3)  
PTB7–PTB0  
0
0
1
DDRB7–DDRB0  
DDRB7–DDRB0  
Pin  
X
X
PTB7–PTB0  
1. X = don’t care  
2. I/O pin pulled to VDD by internal pullup.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = high impedance  
11.5 Port C  
Port C is an 4-bit general purpose port. PTC3 is an input only port pin, while PTC2–PTC0 can be  
configured for either input or output. Each port C pin can be configured to have an internal pullup when  
used as an input pin.  
NOTE  
PTC3 has a high voltage detector to enable entry into special modes. Do  
not exceed the V level on this pin in normal operation.  
DD  
11.5.1 Port C Data Register  
The port C data register (PTC) contains a data latch for each of the port C pins.  
Bit 7  
0
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTC3  
PTC2  
PTC1  
PTC0  
Unaffected by reset  
= Unimplemented  
Figure 11-9. Port C Data Register (PTC)  
PTC[2:0] — Port C Data Bits  
These read/write bits are software programmable. Data direction of each port C pin is under the control  
of the corresponding bit in data direction register C. Reset has no effect on port C data.  
PTC3 — Port C Data Bit  
This read-only bit reads the state of the PTC3 pin.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
112  
Freescale Semiconductor  
Port C  
11.5.2 Data Direction Register C  
Data direction register C (DDRC) determines whether each port C pin is an input or an output. Writing a 1  
to a DDRC bit enables the output buffer for the corresponding port C pin; a 0 disables the output buffer.  
Bit 7  
0
6
0
5
0
4
0
3
0
2
DDRC2  
0
1
DDRC1  
0
Bit 0  
DDRC0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 11-10. Data Direction Register C (DDRC)  
DDRC[2:0] — Data Direction Register C Bits  
These read/write bits control port C data direction. Reset clears DDRC[2:0], configuring all port C pins  
as inputs.  
1 = Corresponding port C pin configured as output  
0 = Corresponding port C pin configured as input  
NOTE  
Avoid glitches on port C pins by writing to the port C data register before  
changing data direction register C bits from 0 to 1. Figure 11-11 shows the  
port C I/O logic.  
READ DDRC ($0006)  
PTCPUEx  
WRITE DDRC ($0006)  
DDRCx  
RESET  
PULLUP  
WRITE PTC ($0002)  
PTCx  
PTCx  
READ PTC ($0002)  
Figure 11-11. Port C I/O Circuit  
NOTE  
Figure 11-11 does not apply to PTC3.  
When DDRCx is a 1, reading address $0002 reads the PTCx data latch. When DDRCx is a 0, reading  
address $0002 reads the voltage level on the pin. The data latch can always be written, regardless of the  
state of its data direction bit.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
113  
 
Input/Output Ports (PORTS)  
11.5.3 Port C Input Pullup Enable Register  
The port C input pullup enable register (PTCPUE) contains a software configurable pullup device for each  
of the four port C pins. Each bit is individually configurable and requires the corresponding data direction  
register, DDRCx, be configured as input. Each pullup device is automatically and dynamically disabled  
when its corresponding DDRCx bit is configured as output.  
Bit 7  
0
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTCPUE3 PTCPUE2 PTCPUE1 PTCPUE0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 11-12. Port C Input Pullup Enable Register (PTCPUE)  
PTCPUE[3:0] — Port C Input Pullup Enable Bits  
These read/write bits are software programmable to enable pullup devices on port C pins  
1 = Corresponding port C pin configured to have internal pull if its DDRC bit is set to 0  
0 = Pullup device is disconnected on the corresponding port C pin regardless of the state of its  
DDRC bit.  
Table 11-3 summarizes the operation of the port C pins.  
Table 11-3. Port C Pin Functions  
Accesses to DDRC  
Read/Write  
Accesses to PTC  
PTCPUE  
Bit  
DDRC  
Bit  
PTC  
Bit  
I/O Pin  
Mode  
Read  
Write  
(2)  
X(1)  
X
PTC3–PTC0(3)  
1
0
DDRC2–DDRC0  
Pin  
Input, VDD  
Input, Hi-Z(4)  
Output  
PTC3–PTC0(3)  
PTC3–PTC0  
0
0
1
DDRC2–DDRC0  
DDRC2–DDRC0  
Pin  
X
X
PTC3–PTC0  
1. X = don’t care  
2. I/O pin pulled to VDD by internal pullup.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = high impedance  
11.6 Port D  
Port D is an 8-bit general purpose I/O port. Each port D pin can be configured to have an internal pullup  
when used as an input port pin.  
11.6.1 Port D Data Register  
The port D data register (PTD) contains a data latch for each of the eight port D pins.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTD7  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
Unaffected by reset  
Figure 11-13. Port D Data Register (PTD)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
114  
 
Port D  
PTD[7:0] — Port D Data Bits  
These read/write bits are software programmable. Data direction of each port D pin is under the control  
of the corresponding bit in data direction register D. Reset has no effect on port D data.  
11.6.2 Data Direction Register D  
Data direction register D (DDRD) determines whether each port D pin is an input or an output. Writing a  
1 to a DDRD bit enables the output buffer for the corresponding port D pin; a 0 disables the output buffer.  
Bit 7  
DDRD7  
0
6
DDRD6  
0
5
DDRD5  
0
4
DDRD4  
0
3
DDRD3  
0
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
Figure 11-14. Data Direction Register D (DDRD)  
DDRD[7:0] — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears DDRD[7:0], configuring all port D pins  
as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE  
Avoid glitches on port D pins by writing to the port D data register before  
changing data direction register D bits from 0 to 1. Figure 11-15 shows the  
port D I/O logic.  
READ DDRD ($0007)  
PTDPUEx  
WRITE DDRD ($0007)  
DDRDx  
RESET  
PULLUP  
WRITE PTD ($0003)  
PTDx  
PTDx  
READ PTD ($0003)  
Figure 11-15. Port D I/O Circuit  
When DDRDx is a 1, reading address $0003 reads the PTDx data latch. When DDRDx is a 0, reading  
address $0003 reads the voltage level on the pin. The data latch can always be written, regardless of the  
state of its data direction bit.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
115  
 
Input/Output Ports (PORTS)  
11.6.3 Port D Input Pullup Enable Register  
The port D input pullup enable register (PTDPUE) contains a software configurable pullup device for each  
of the eight port D pins. Each bit is individually configurable and requires the corresponding data direction  
register, DDRDx, be configured as input. Each pullup device is automatically and dynamically disabled  
when its corresponding DDRDx bit is configured as output.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTDPUE7 PTDPUE6 PTDPUE5 PTDPUE4 PTDPUE3 PTDPUE2 PTDPUE1 PTDPUE0  
0
0
0
0
0
0
0
0
Figure 11-16. Port D Input Pullup Enable Register (PTDPUE)  
PTDPUE[7:0] — Port D Input Pullup Enable Bits  
These read/write bits are software programmable to enable pullup devices on port D pins  
1 = Corresponding port D pin configured to have internal pull if its DDRD bit is set to 0  
0 = Pullup device is disconnected on the corresponding port D pin regardless of the state of its  
DDRD bit.  
Table 11-4 summarizes the operation of the port D pins.  
Table 11-4. Port D Pin Functions  
Accesses to DDRD  
Read/Write  
Accesses to PTD  
PTDPUE  
Bit  
DDRD  
Bit  
PTD  
Bit  
I/O Pin  
Mode  
Read  
Write  
(2)  
X(1)  
X
PTD7–PTD0(3)  
1
0
DDRD7–DDRD0  
Pin  
Input, VDD  
Input, Hi-Z(4)  
Output  
PTD7–PTD0(3)  
PTD7–PTD0  
0
0
1
DDRD7–DDRD0  
DDRD7–DDRD0  
Pin  
X
X
PTD7–PTD0  
1. X = don’t care  
2. I/O pin pulled to VDD by internal pullup.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = high impedance  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
116  
 
Chapter 12  
Periodic Wakeup Module (PWU)  
12.1 Introduction  
This section describes the periodic wakeup (PWU) module.The PWU is available in all modes of  
operation (run, wait, and stop) and performs two main functions:  
Generate periodic wakeup requests to bring the microcontroller unit (MCU) out of stop mode.  
Generate periodic interrupt requests during run and wait modes.  
12.2 Features  
Features of the periodic wakeup module include:  
Interrupt with separate interrupt enable bit, interrupt vector and interrupt mask bit  
Exit from low-power stop mode without external signals  
Programmable clock input  
Selectable timeout periods (40 µs to 3 minutes with an adjustment resolution of better than 1% for  
periods over 4 ms)  
Dedicated low-power 32 kHz internal oscillator separate from the main system clock sources  
Option to allow bus clock source to run the PWU  
Accessible in all modes of operation (run, wait, and stop)  
12.3 Functional Description  
Figure 12-1 is a block diagram of the PWU.  
The PWU module consists of a PWU counter whose count is reset once it equals the value stored in the  
PWU modulo register (PWUMOD). The PWU counter clock, PWUCLOCK, frequency is selectable using  
the PWU prescaler register (PWUP). The prescaler clock source can be selected using the PWUCLKSEL  
bit in the PWU status and control register (PWUSC) and can either be the internal RC oscillator or the  
BUSCLKX4 clock.The PWUCLKSEL bit, PWUMOD and PWUP registers can only be written to when the  
PWUON bit is clear.  
The PWUON bit in PWUSC is used to enable the PWU module. The SMODE bit in PWUSC is used to  
allow an enabled PWU module to continue running in stop mode. BUSCLKX4 must be enabled to run in  
stop mode if used as the clock source for the PWU when SMODE is set. See Chapter 4 Configuration  
Registers (CONFIG1 and CONFIG2) on enabling BUSCLKX4 to run in stop mode.  
The PWU counter when enabled will count until it reaches the value stored in the PWU modulo register  
(PWUMOD), when they are equal the read-only PWU flag (PWUF) in PWUSC is latched. The PWU  
interrupt enable bit, PWUIE, in PWUSC enables a PWU interrupt request. The PWUF can be cleared by  
writing to the PWU acknowledge bit, PWUACK in PWUSC or by a PWU interrupt vector fetch.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
117  
Periodic Wakeup Module (PWU)  
VDD  
PWU CLOCK SOURCE  
PWUMOD  
=?  
COUNTER = PWUMOD  
D
E
Q
PWUF  
PWUCLKSEL  
BUSCLKX4  
PWUP  
PWU COUNTER  
1
0
M
U
X
PWUIREQ  
CLK  
R
PRESCALER  
EN  
RST  
EN  
32 kHz  
INTERNAL RC  
OSCILLATOR  
PWUIE  
PWU CLOCK  
PWUCLKSEL  
RESET  
PWUACK  
RESET  
STOP  
SMODE  
VECTOR FETCH  
DECODER  
PWUON  
Note:  
PWUCLKSEL bit, PWUMOD and PWUP registers can only be written to with PWUON=0  
STOP is an internal MCU signal and when STOP = 0, indicates the MCU is in stop mode.  
RESET is an internal MCU signal, indicates the MCU has taken a reset.  
BUSCLKX4 is an internal MCU clock source, used to create the bus frequency for the MCU.  
PWUIREQ is an internal MCU signal, used to request an interrupt to the MCU.  
Figure 12-1. Periodic Wakeup Interrupt Request Generation Logic  
Once the modulo value has been reached, the counter will be reset to $00. The PWU counter is also reset  
when the module is disabled, or when the MCU enters stop mode with SMODE clear.  
The periodic wakeup RC oscillator is highly dependent on operating voltage and temperature and  
consequently would provide limited accuracy if used as a time-keeping function.  
12.4 Interrupts  
The following PWU source can generate interrupt requests:  
PWU flag (PWUF) — The PWUF bit is set when the counter reaches the modulo value  
programmed in the PWUMOD register. The PWU interrupt enable bit, PWUIE, enables PWU  
interrupt requests. PWUF and PWUIE are in the PWUSC register.  
12.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
12.5.1 Wait Mode  
The PWU module remains active in wait mode while the PWUON bit in PWUSC is set. Setting PWUIE in  
PWUSC enables PWU interrupts to bring the MCU out of wait mode. If the PWU is not required during  
wait mode, power consumption can be reduced by disabling the PWU module (PWUON = 0) before  
entering wait mode.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
118  
Freescale Semiconductor  
PWU During Break Interrupts  
12.5.2 Stop Mode  
The PWU module remains active in stop mode while the PWUON and SMODE bits in PWUSC is set.  
Setting PWUIE in PWUSC enables PWU interrupts to bring the MCU out of stop mode.  
12.6 PWU During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing  
the second step clears the status bit.  
12.7 I/O Signals  
The PWU module is not associated with any external I/O pins.  
12.8 Registers  
The PWU registers control and monitor operation of the PWU. The registers that are relevant to the use  
of the PWU are as follows.  
Periodic wakeup status and control register (PWUSC)  
Periodic wakeup prescaler register (PWUP)  
Periodic wakeup modulo register (PWUMOD)  
12.8.1 Periodic Wakeup Status and Control Register  
The PWUSC register contains bits that:  
Enables or disables the periodic wakeup module  
Selects the clock source to the periodic wakeup prescaler register  
Flags periodic wakeup interrupt requests  
Acknowledges periodic wakeup interrupts  
Enables or disables periodic wakeup interrupts  
Enables or disables the module during stop mode  
Bit 7  
0
6
0
5
4
3
2
1
PWUIE  
0
Bit 0  
SMODE  
0
Read:  
Write:  
Reset:  
PWUF  
0
PWUACK  
0
PWUON PWUCLKSEL  
0
0
0
0
0
= Unimplemented  
Figure 12-2. Periodic Wakeup Status and Control Register (PWUSC)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
119  
Periodic Wakeup Module (PWU)  
PWUON — Periodic Wakeup Enabled Bit  
This read/write bit enables or disables the periodic wakeup module.  
1 = Periodic wakeup module is enabled.  
0 = Periodic wakeup module is disabled.  
PWUCLKSEL — Periodic Wakeup Clock Select Bit  
This read/write bit selects the clock source for the prescaler.  
1 = BUSCLKX4 is selected as the clock source for the prescaler.  
0 = The internal 32 kHz RC oscillator is selected as the clock source for the prescaler.  
NOTE  
The PWUCLKSEL bit can only be written to when PWUON is clear.  
PWUF — Periodic Wakeup Flag Bit  
This read-only bit is set when the counter reaches the modulo value programmed in the PWUMOD  
register. This bit is cleared by writing a 1 to the PWUACK bit or by a PWU interrupt vector fetch.  
1 = Periodic wakeup interrupt pending  
0 = No periodic wakeup interrupt pending.  
PWUACK — Periodic Wakeup Acknowledge Bit  
Writing a 1 to this write-only bit clears the PWUF. PWUACK always reads as 0.  
PWUIE — Periodic Wakeup Interrupt Enable Bit  
This read/write bit enables periodic wakeup interrupt requests.  
1 = Periodic wakeup interrupt requests enabled.  
0 = Periodic wakeup interrupt requests disabled.  
SMODE — Periodic Wakeup Module Enabled in Stop Mode Bit  
This read/write bit is used to allow the PWU module to continue running in stop mode.  
1 = Periodic wakeup module continues to run in stop mode.  
0 = Periodic wakeup module disabled in stop mode.  
12.8.2 Periodic Wakeup Prescaler Register  
The PWUP register is used to select the clock rate that will be input to the PWU counter. The prescaler  
generates sixteen clock rates from either the dedicated low-power internal oscillator or from the bus clock  
source (BUSCLKX4).  
Bit 7  
0
6
0
5
0
4
0
3
PS3  
0
2
PS2  
1
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 12-3. Periodic Wakeup Prescaler Register (PWUP)  
PS3–PS0 — Prescaler Select Bits  
These read/write bits select one of the sixteen prescaler outputs to be the input to the PWU counter.  
NOTE  
The PWUP register can only be written to when PWUON is clear.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
120  
Freescale Semiconductor  
Registers  
Table 12-1. Prescaler Selection  
PWU Counter Clock Source  
(PWU Clock Divided by:)  
Nominal Period  
PS3-PS0  
(@ 32kHz)  
31.25 µs  
62.5 µs  
125 µs  
250 µs  
500 µs  
1 ms  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1
2
4
8
16  
32  
64  
2 ms  
128  
256  
512  
1024  
2048  
4096  
8192  
16384  
32768  
4 ms  
8 ms  
16 ms  
32 ms  
64 ms  
128 ms  
256 ms  
512 ms  
1 s  
12.8.3 Periodic Wakeup Modulo Register  
The PWU modulo register contains the modulo value for the counter. When the counter reaches the  
modulo value, the PWU flag (PWUF) becomes set, and the counter resumes counting from $00 at the  
next PWU clock. If PWUIE is set, a PWU interrupt is requested.The value in the PWUMOD register and  
the selected prescaler output determine the frequency of the periodic interrupt. The frequency of the  
periodic interrupt can be calculated by multiplying the prescaler period (see Table 12-1) by the value in  
the modulo register.  
NOTE  
The PWUMOD register can only be written to when PWUON is clear.  
Bit 7  
Bit 7  
0
6
Bit 6  
0
5
Bit 5  
0
4
Bit 4  
0
3
Bit 3  
0
2
Bit 2  
0
1
Bit 1  
0
Bit 0  
Bit 0  
0
Read:  
Write:  
Reset:  
Figure 12-4. Periodic Wakeup Modulo Register (PWUMOD)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
121  
 
Periodic Wakeup Module (PWU)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
122  
Chapter 13  
Enhanced Serial Communications Interface (ESCI) Module  
13.1 Introduction  
The enhanced serial communications interface (ESCI) module allows asynchronous communications  
with peripheral devices and other microcontroller units (MCU).  
The ESCI module shares its pins with general-purpose input/output (I/O) port pins. See Figure 13-1 for  
port location of these shared pins. The ESCI baud rate clock source is controlled by a bit (ESCIBDSRC)  
located in the configuration register.  
13.2 Features  
Features include:  
Full-duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
Programmable baud rates  
Programmable 8-bit or 9-bit character length  
Separately enabled transmitter and receiver  
Separate receiver and transmitter interrupt requests  
Programmable transmitter output polarity  
Receiver wakeup methods  
Idle line  
Address mark  
Interrupt-driven operation with eight interrupt flags:  
Transmitter empty  
Transmission complete  
Receiver full  
Idle receiver input  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
123  
Enhanced Serial Communications Interface (ESCI) Module  
PTA0/T1CH0/AD0/KBI0  
PTA1/T1CH1/AD1/KBI1  
PTA2/IRQ/KBI2/T1CLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0/SPSCK/AD4  
PTB1/MOSI/T2CH1/AD5  
PTB2/MISO/T2CH0/AD6  
PTB3/SS/T2CLK/AD7  
PTB4/RxD/T2CH0/AD8  
PTB5/TxD/T2CH1/AD9  
PTB6/T1CH2  
BREAK  
MODULE  
PERIODIC WAKEUP  
MODULE  
PTB7/T1CH3  
PTC0  
PTC1  
PTC2  
PTC3  
LOW-VOLTAGE  
INHIBIT  
MC68HC908QC16  
16,384 BYTES  
4-CHANNEL 16-BIT  
TIMER MODULE  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
MC68HC908QC8  
8192 BYTES  
2-CHANNEL 16-BIT  
TIMER MODULE  
MC68HC908QC4  
4096 BYTES  
USER FLASH  
COP  
MODULE  
10-CHANNEL  
10-BIT ADC  
MC68HC908QC16  
512 BYTES  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
MC68HC908QC8  
384 BYTES  
MC68HC908QC4  
384 BYTES  
SERIAL PERIPHERAL  
INTERFACE  
USER RAM  
MONITOR ROM  
V
V
DD  
SS  
POWER SUPPLY  
All port pins can be configured with internal pullup  
PTC not available on 16-pin devices (see note in 11.1 Introduction)  
PTD not available on 16-pin or 20-pin devices (see note in 11.1 Introduction)  
Figure 13-1. Block Diagram Highlighting ESCI Block and Pins  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
124  
Freescale Semiconductor  
 
Functional Description  
13.3 Functional Description  
shows the structure of the ESCI module. The ESCI allows full-duplex, asynchronous, NRZ serial  
communication between the MCU and remote devices, including other MCUs. The transmitter and  
receiver of the ESCI operate independently, although they use the same baud rate generator.  
INTERNAL BUS  
ESCI DATA  
REGISTER  
ESCI DATA  
REGISTER  
RxD  
SCI_TxD  
TxD  
RECEIVE  
SHIFT REGISTER  
TRANSMIT  
SHIFT REGISTER  
RxD  
BUS CLOCK  
TXINV  
LINR  
SCTIE  
TCIE  
SCRIE  
ILIE  
R8  
T8  
SL  
ACLK BIT  
IN SCIACTL  
TE  
SCTE  
TC  
RE  
RWU  
SBK  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
M
WAKE  
ILTY  
PEN  
PTY  
BKF  
RPF  
BUS  
CLOCK  
LINT  
ENSCI  
ENHANCED  
PRESCALER  
BUSCLKX4  
PRE- BAUD RATE  
SCALER GENERATOR  
÷ 4  
SL  
DATA SELECTION  
CONTROL  
÷ 16  
SL = 1 -> SCI_CLK = BUSCLK  
SL = 0 -> SCI_CLK = BUSCLKX4  
Figure 13-2. ESCI Module Block Diagram  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
125  
 
Enhanced Serial Communications Interface (ESCI) Module  
13.3.1 Data Format  
The SCI uses the standard mark/space non-return-to-zero (NRZ) format illustrated in Figure 13-3.  
PARITY  
OR DATA  
BIT  
8-BIT DATA FORMAT  
(BIT M IN SCC1 CLEAR)  
NEXT  
START  
BIT  
START  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
STOP  
BIT  
PARITY  
OR DATA  
BIT  
9-BIT DATA FORMAT  
(BIT M IN SCC1 SET)  
NEXT  
START  
BIT  
START  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
STOP  
BIT  
Figure 13-3. SCI Data Formats  
13.3.2 Transmitter  
Figure 13-4 shows the structure of the SCI transmitter.  
13.3.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in ESCI control  
register 1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in ESCI control  
register 3 (SCC3) is the ninth bit (bit 8).  
13.3.2.2 Character Transmission  
During an ESCI transmission, the transmit shift register shifts a character out to the TxD pin. The ESCI  
data register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register.  
To initiate an ESCI transmission:  
1. Enable the ESCI by writing a 1 to the enable ESCI bit (ENSCI) in ESCI control register 1 (SCC1).  
2. Enable the transmitter by writing a 1 to the transmitter enable bit (TE) in ESCI control register 2  
(SCC2).  
3. Clear the ESCI transmitter empty bit (SCTE) by first reading ESCI status register 1 (SCS1) and  
then writing to the SCDR. For 9-bit data, also write the T8 bit in SCC3.  
4. Repeat step 3 for each subsequent transmission.  
At the start of a transmission, transmitter control logic automatically loads the transmit shift register with  
a preamble of 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit  
shift register. A 0 start bit automatically goes into the least significant bit (LSB) position of the transmit  
shift register. A 1 stop bit goes into the most significant bit (MSB) position.  
The ESCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the  
transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data  
bus. If the ESCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a  
transmitter interrupt request.  
When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition, high.  
If at any time software clears the ENSCI bit in ESCI control register 1 (SCC1), the transmitter and receiver  
relinquish control of the port pins.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
126  
Freescale Semiconductor  
 
Functional Description  
INTERNAL BUS  
PRE- BAUD  
SCALER DIVIDER  
÷ 16  
÷ 4  
ESCI DATA REGISTER  
SCP1  
SCP0  
SCR2  
SCR1  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
STOP  
8
7
6
5
4
3
2
1
0
START  
SCI_TxD  
TXINV  
M
PDS2  
PDS1  
PEN  
PTY  
PARITY  
GENERATION  
T8  
BUSCLKX4  
OR  
BUS CLOCK  
PDS0  
PSSB4  
PSSB3  
PSSB2  
PSSB1  
PSSB0  
TRANSMITTER  
CONTROL LOGIC  
TRANSMITTER  
INTERRUPT REQUEST  
SCTE  
SBK  
SCTE  
LOOPS  
ENSCI  
TE  
SCTIE  
SCTIE  
TC  
TC  
TCIE  
TCIE  
LINT  
Figure 13-4. ESCI Transmitter  
13.3.2.3 Break Characters  
Writing a 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character.  
For TXINV = 0 (output not inverted), a transmitted break character contains all 0s and has no start, stop,  
or parity bit. Break character length depends on the M bit in SCC1 and the LINR bits in SCBR. As long  
as SBK is set, transmitter logic continuously loads break characters into the transmit shift register. After  
software clears the SBK bit, the shift register finishes transmitting the last break character and then  
transmits at least one 1. The automatic 1 at the end of a break character guarantees the recognition of  
the start bit of the next character.  
When LINR is cleared in SCBR, the ESCI recognizes a break character when a start bit is followed by  
eight or nine 0 data bits and a 0 where the stop bit should be, resulting in a total of 10 or 11 consecutive  
0 data bits. When LINR is set in SCBR, the ESCI recognizes a break character when a start bit is followed  
by 9 or 10 0 data bits and a 0 where the stop bit should be, resulting in a total of 11 or 12 consecutive 0  
data bits.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
127  
Enhanced Serial Communications Interface (ESCI) Module  
Receiving a break character has these effects on ESCI registers:  
Sets the framing error bit (FE) in SCS1  
Sets the ESCI receiver full bit (SCRF) in SCS1  
Clears the ESCI data register (SCDR)  
Clears the R8 bit in SCC3  
Sets the break flag bit (BKF) in SCS2  
May set the overrun (OR), noise flag (NF), parity error (PE),  
or reception in progress flag (RPF) bits  
13.3.2.4 Idle Characters  
For TXINV = 0 (output not inverted), a transmitted idle character contains all 1s and has no start, stop, or  
parity bit. Idle character length depends on the M bit in SCC1. The preamble is a synchronizing idle  
character that begins every transmission.  
If the TE bit is cleared during a transmission, the TxD pin becomes idle after completion of the  
transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle  
character to be sent after the character currently being transmitted.  
13.3.2.5 Inversion of Transmitted Output  
The transmit inversion bit (TXINV) in ESCI control register 1 (SCC1) reverses the polarity of transmitted  
data. All transmitted values including idle, break, start, and stop bits, are inverted when TXINV is set. See  
13.8.1 ESCI Control Register 1.  
13.3.3 Receiver  
Figure 13-5 shows the structure of the ESCI receiver.  
13.3.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in ESCI control register 1  
(SCC1) determines character length. When receiving 9-bit data, bit R8 in ESCI control register 3 (SCC3)  
is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7).  
13.3.3.2 Character Reception  
During an ESCI reception, the receive shift register shifts characters in from the RxD pin. The ESCI data  
register (SCDR) is the read-only buffer between the internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data portion of the character transfers  
to the SCDR. The ESCI receiver full bit, SCRF, in ESCI status register 1 (SCS1) becomes set, indicating  
that the received byte can be read. If the ESCI receive interrupt enable bit, SCRIE, in SCC2 is also set,  
the SCRF bit generates a receiver interrupt request.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
128  
Freescale Semiconductor  
Functional Description  
INTERNAL BUS  
SCR2  
SCR1  
SCR0  
LINR  
SCP1  
SCP0  
ESCI DATA REGISTER  
PRE- BAUD  
SCALER DIVIDER  
÷ 4  
÷ 16  
11-BIT  
RECEIVE SHIFT REGISTER  
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
RxD  
ALL ZEROS  
BKF  
RPF  
PDS2  
PDS1  
BUSCLKX4  
OR  
BUS CLOCK  
PDS0  
M
RWU  
PSSB4  
PSSB3  
PSSB2  
PSSB1  
PSSB0  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
ILIE  
RECEIVER  
INTERRUPT  
REQUEST  
SCRF  
SCRIE  
SCRIE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
ERROR  
INTERRUPT  
REQUEST  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 13-5. ESCI Receiver Block Diagram  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
129  
Enhanced Serial Communications Interface (ESCI) Module  
13.3.3.3 Data Sampling  
The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency  
16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at these times  
(see Figure 13-6):  
After every start bit  
After the receiver detects a data bit change from 1 to 0 (after the majority of data bit samples at  
RT8, RT9, and RT10 returns a valid 1 and the majority of the next RT8, RT9, and RT10 samples  
returns a valid 0)  
To locate the start bit, data recovery logic does an asynchronous search for a 0 preceded by three 1s.  
When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.  
START BIT  
LSB  
RxD  
START BIT  
QUALIFICATION  
START BIT DATA  
VERIFICATION SAMPLING  
SAMPLES  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 13-6. Receiver Data Sampling  
To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7.  
Table 13-1 summarizes the results of the start bit verification samples.  
Table 13-1. Start Bit Verification  
RT3, RT5, and RT7 Samples Start Bit Verification Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
130  
Freescale Semiconductor  
 
 
Functional Description  
To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and  
RT10. Table 13-2 summarizes the results of the data bit samples.  
Table 13-2. Data Bit Recovery  
RT8, RT9, and RT10 Samples Data Bit Determination Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
NOTE  
The RT8, RT9, and RT10 samples do not affect start bit verification. If any  
or all of the RT8, RT9, and RT10 start bit samples are 1s following a  
successful start bit verification, the noise flag (NF) is set and the receiver  
assumes that the bit is a start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 13-3  
summarizes the results of the stop bit samples.  
Table 13-3. Stop Bit Recovery  
RT8, RT9, and RT10 Samples Framing Error Flag Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
13.3.3.4 Framing Errors  
If the data recovery logic does not detect a 1 where the stop bit should be in an incoming character, it sets  
the framing error bit, FE, in SCS1. A break character also sets the FE bit because a break character has  
no stop bit. The FE bit is set at the same time that the SCRF bit is set.  
13.3.3.5 Baud Rate Tolerance  
A transmitting device may be operating at a baud rate below or above the receiver baud rate.  
Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the  
actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
131  
 
 
Enhanced Serial Communications Interface (ESCI) Module  
error occurs. In most applications, the baud rate tolerance is much more than the degree of misalignment  
that is likely to occur.  
As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge  
within the character. Resynchronization within characters corrects misalignments between transmitter bit  
times and receiver bit times.  
Slow Data Tolerance  
Figure 13-7 shows how much a slow received character can be misaligned without causing a noise  
error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop  
bit data samples at RT8, RT9, and RT10.  
MSB  
STOP  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 13-7. Slow Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 13-7, the receiver counts 154 RT cycles at the point  
when the count of the transmitting device is  
9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit  
character with no errors is:  
154 147  
× 100 = 4.54%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 13-7, the receiver counts 170 RT cycles at the point  
when the count of the transmitting device is  
10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit  
character with no errors is:  
170 163  
× 100 = 4.12%  
-------------------------  
170  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
132  
 
Functional Description  
Fast Data Tolerance  
Figure 13-8 shows how much a fast received character can be misaligned without causing a noise  
error or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit  
data samples at RT8, RT9, and RT10.  
STOP  
IDLE OR NEXT CHARACTER  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 13-8. Fast Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 13-8, the receiver counts 154 RT cycles at the point  
when the count of the transmitting device is 10 bit times × 16 RT cycles = 160 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit  
character with no errors is  
154 160  
× 100 = 3.90%.  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 13-8, the receiver counts 170 RT cycles at the point  
when the count of the transmitting device is 11 bit times × 16 RT cycles = 176 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit  
character with no errors is:  
170 176  
× 100 = 3.53%.  
-------------------------  
170  
13.3.3.6 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems,  
the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the  
receiver into a standby state during which receiver interrupts are disabled.  
Depending on the state of the WAKE bit in SCC1, either of two conditions on the RxD pin can bring the  
receiver out of the standby state:  
1. Address mark — An address mark is a 1 in the MSB position of a received character. When the  
WAKE bit is set, an address mark wakes the receiver from the standby state by clearing the RWU  
bit. The address mark also sets the ESCI receiver full bit, SCRF. Software can then compare the  
character containing the address mark to the user-defined address of the receiver. If they are the  
same, the receiver remains awake and processes the characters that follow. If they are not the  
same, software can set the RWU bit and put the receiver back into the standby state.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
133  
 
Enhanced Serial Communications Interface (ESCI) Module  
2. Idle input line condition — When the WAKE bit is clear, an idle character on the RxD pin wakes the  
receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver  
does not set the receiver idle bit, IDLE, or the ESCI receiver full bit, SCRF. The idle line type bit,  
ILTY, determines whether the receiver begins counting 1s as idle character bits after the start bit  
or after the stop bit.  
NOTE  
With the WAKE bit clear, setting the RWU bit after the RxD pin has been  
idle will cause the receiver to wake up.  
13.4 Interrupts  
The following sources can generate ESCI interrupt requests:  
13.4.1 Transmitter Interrupts  
These conditions can generate interrupt requests from the ESCI transmitter:  
ESCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates that the SCDR has transferred  
a character to the transmit shift register. SCTE can generate a transmitter interrupt request. Setting  
the ESCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate  
transmitter interrupt requests.  
Transmission complete (TC) — The TC bit in SCS1 indicates that the transmit shift register and  
the SCDR are empty and that no break or idle character has been generated. The transmission  
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter interrupt  
requests.  
13.4.2 Receiver Interrupts  
These sources can generate interrupt requests from the ESCI receiver:  
ESCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that the receive shift register has  
transferred a character to the SCDR. SCRF can generate a receiver interrupt request. Setting the  
ESCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver  
interrupts.  
Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11 consecutive 1s shifted in from the  
RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate interrupt  
requests.  
13.4.3 Error Interrupts  
These receiver error flags in SCS1 can generate interrupt requests:  
Receiver overrun (OR) — The OR bit indicates that the receive shift register shifted in a new  
character before the previous character was read from the SCDR. The previous character remains  
in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3  
enables OR to generate ESCI error interrupt requests.  
Noise flag (NF) — The NF bit is set when the ESCI detects noise on incoming data or break  
characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3  
enables NF to generate ESCI error interrupt requests.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
134  
Freescale Semiconductor  
Low-Power Modes  
Framing error (FE) — The FE bit in SCS1 is set when a 0 occurs where the receiver expects a stop  
bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate ESCI error  
interrupt requests.  
Parity error (PE) — The PE bit in SCS1 is set when the ESCI detects a parity error in incoming  
data. The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate ESCI error  
interrupt requests.  
13.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
13.5.1 Wait Mode  
The ESCI module remains active in wait mode. Any enabled interrupt request from the ESCI module can  
bring the MCU out of wait mode.  
If ESCI module functions are not required during wait mode, reduce power consumption by disabling the  
module before executing the WAIT instruction.  
13.5.2 Stop Mode  
The ESCI module is inactive in stop mode. The STOP instruction does not affect ESCI register states.  
ESCI module operation resumes after the MCU exits stop mode.  
Because the internal clock is inactive during stop mode, entering stop mode during an ESCI transmission  
or reception results in invalid data.  
13.6 ESCI During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing  
the second step clears the status bit.  
13.7 I/O Signals  
The ESCI module can share its pins with the general-purpose I/O pins. See Figure 13-1 for the port pins  
that are shared.  
13.7.1 ESCI Transmit Data (TxD)  
The TxD pin is the serial data output from the ESCI transmitter. When the ESCI is enabled, the TxD pin  
becomes an output.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
135  
Enhanced Serial Communications Interface (ESCI) Module  
13.7.2 ESCI Receive Data (RxD)  
The RxD pin is the serial data input to the ESCI receiver. When the ESCI is enabled, the RxD pin becomes  
an input.  
13.8 Registers  
The following registers control and monitor operation of the ESCI:  
ESCI control register 1, SCC1  
ESCI control register 2, SCC2  
ESCI control register 3, SCC3  
ESCI status register 1, SCS1  
ESCI status register 2, SCS2  
ESCI data register, SCDR  
ESCI baud rate register, SCBR  
ESCI prescaler register, SCPSC  
ESCI arbiter control register, SCIACTL  
ESCI arbiter data register, SCIADAT  
13.8.1 ESCI Control Register 1  
ESCI control register 1 (SCC1):  
Enables loop mode operation  
Enables the ESCI  
Controls output polarity  
Controls character length  
Controls ESCI wakeup method  
Controls idle character detection  
Enables parity function  
Controls parity type  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
TXINV  
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Figure 13-9. ESCI Control Register 1 (SCC1)  
LOOPS — Loop Mode Select Bit  
This read/write bit enables loop mode operation. In loop mode the RxD pin is disconnected from the  
ESCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver  
must be enabled to use loop mode.  
1 = Loop mode enabled  
0 = Normal operation enabled  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
136  
Freescale Semiconductor  
Registers  
ENSCI — Enable ESCI Bit  
This read/write bit enables the ESCI and the ESCI baud rate generator. Clearing ENSCI sets the SCTE  
and TC bits in ESCI status register 1 and disables transmitter interrupts.  
1 = ESCI enabled  
0 = ESCI disabled  
TXINV — Transmit Inversion Bit  
This read/write bit reverses the polarity of transmitted data.  
1 = Transmitter output inverted  
0 = Transmitter output not inverted  
NOTE  
Setting the TXINV bit inverts all transmitted values including idle, break,  
start, and stop bits.  
M — Mode (Character Length) Bit  
This read/write bit determines whether ESCI characters are eight or nine bits long (see Table 13-4).  
The ninth bit can serve as a receiver wakeup signal or as a parity bit.  
1 = 9-bit ESCI characters  
0 = 8-bit ESCI characters  
Table 13-4. Character Format Selection  
Control Bits  
PEN:PTY  
0 X  
Character Format  
M
0
1
0
0
1
1
Start Bits  
Data Bits  
Parity  
None  
None  
Even  
Odd  
Stop Bits  
Character Length  
10 bits  
1
1
1
1
1
1
8
9
7
7
8
8
1
1
1
1
1
1
0 X  
11 bits  
1 0  
10 bits  
1 1  
10 bits  
1 0  
Even  
Odd  
11 bits  
1 1  
11 bits  
WAKE — Wakeup Condition Bit  
This read/write bit determines which condition wakes up the ESCI: a 1 (address mark) in the MSB  
position of a received character or an idle condition on the RxD pin.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY — Idle Line Type Bit  
This read/write bit determines when the ESCI starts counting 1s as idle character bits. The counting  
begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string  
of 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after  
the stop bit avoids false idle character recognition, but requires properly synchronized transmissions.  
1 = Idle character bit count begins after stop bit  
0 = Idle character bit count begins after start bit  
PEN — Parity Enable Bit  
This read/write bit enables the ESCI parity function (see Table 13-4). When enabled, the parity  
function inserts a parity bit in the MSB position (see Table 13-2).  
1 = Parity function enabled  
0 = Parity function disabled  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
137  
 
Enhanced Serial Communications Interface (ESCI) Module  
PTY — Parity Bit  
This read/write bit determines whether the ESCI generates and checks for odd parity or even parity  
(see Table 13-4).  
1 = Odd parity  
0 = Even parity  
NOTE  
Changing the PTY bit in the middle of a transmission or reception can  
generate a parity error.  
13.8.2 ESCI Control Register 2  
ESCI control register 2 (SCC2):  
Enables these interrupt requests:  
SCTE bit to generate transmitter interrupt requests  
TC bit to generate transmitter interrupt requests  
SCRF bit to generate receiver interrupt requests  
IDLE bit to generate receiver interrupt requests  
Enables the transmitter  
Enables the receiver  
Enables ESCI wakeup  
Transmits ESCI break characters  
Bit 7  
SCTIE  
0
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
Figure 13-10. ESCI Control Register 2 (SCC2)  
SCTIE — ESCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate ESCI transmitter interrupt requests. Setting the  
SCTIE bit in SCC2 enables the SCTE bit to generate interrupt requests.  
1 = SCTE enabled to generate interrupt  
0 = SCTE not enabled to generate interrupt  
TCIE — Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate ESCI transmitter interrupt requests.  
1 = TC enabled to generate interrupt requests  
0 = TC not enabled to generate interrupt requests  
SCRIE — ESCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate ESCI receiver interrupt requests. Setting the  
SCRIE bit in SCC2 enables the SCRF bit to generate interrupt requests.  
1 = SCRF enabled to generate interrupt  
0 = SCRF not enabled to generate interrupt  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
138  
Freescale Semiconductor  
Registers  
ILIE — Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate ESCI receiver interrupt requests.  
1 = IDLE enabled to generate interrupt requests  
0 = IDLE not enabled to generate interrupt requests  
TE — Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 1s from the  
transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any  
transmission in progress before the TxD returns to the idle condition (high). Clearing and then setting  
TE during a transmission queues an idle character to be sent after the character currently being  
transmitted.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE  
Writing to the TE bit is not allowed when the enable ESCI bit (ENSCI) is  
clear. ENSCI is in ESCI control register 1.  
RE — Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not  
affect receiver interrupt flag bits.  
1 = Receiver enabled  
0 = Receiver disabled  
NOTE  
Writing to the RE bit is not allowed when the enable ESCI bit (ENSCI) is  
clear. ENSCI is in ESCI control register 1.  
RWU — Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled.  
The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out  
of the standby state and clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
SBK — Send Break Bit  
Setting and then clearing this read/write bit transmits a break character followed by a 1. The 1 after the  
break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter  
continuously transmits break characters with no 1s between them.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE  
Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling  
SBK before the preamble begins causes the ESCI to send a break  
character instead of a preamble.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
139  
Enhanced Serial Communications Interface (ESCI) Module  
13.8.3 ESCI Control Register 3  
ESCI control register 3 (SCC3):  
Stores the ninth ESCI data bit received and the ninth ESCI data bit to be transmitted.  
Enables these interrupts:  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Bit 7  
6
T8  
0
5
R
0
4
3
2
NEIE  
0
1
FEIE  
0
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
R8  
R
ORIE  
U
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 13-11. ESCI Control Register 3 (SCC3)  
R8 — Received Bit 8  
When the ESCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received  
character. R8 is received at the same time that the SCDR receives the other 8 bits.  
When the ESCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7).  
T8 — Transmitted Bit 8  
When the ESCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted  
character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into  
the transmit shift register.  
ORIE — Receiver Overrun Interrupt Enable Bit  
This read/write bit enables ESCI error interrupt requests generated by the receiver overrun bit, OR.  
1 = ESCI error interrupt requests from OR bit enabled  
0 = ESCI error interrupt requests from OR bit disabled  
NEIE — Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables ESCI error interrupt requests generated by the noise error bit, NE.  
1 = ESCI error interrupt requests from NE bit enabled  
0 = ESCI error interrupt requests from NE bit disabled  
FEIE — Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables ESCI error interrupt requests generated by the framing error bit, FE.  
1 = ESCI error interrupt requests from FE bit enabled  
0 = ESCI error interrupt requests from FE bit disabled  
PEIE — Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables ESCI receiver interrupt requests generated by the parity error bit, PE.  
1 = ESCI error interrupt requests from PE bit enabled  
0 = ESCI error interrupt requests from PE bit disabled  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
140  
Freescale Semiconductor  
Registers  
13.8.4 ESCI Status Register 1  
ESCI status register 1 (SCS1) contains flags to signal these conditions:  
Transfer of SCDR data to transmit shift register complete  
Transmission complete  
Transfer of receive shift register data to SCDR complete  
Receiver input idle  
Receiver overrun  
Noisy data  
Framing error  
Parity error  
Bit 7  
6
5
4
3
2
1
Bit 0  
PE  
Read:  
Write:  
Reset:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
1
1
0
0
0
0
0
0
= Unimplemented  
Figure 13-12. ESCI Status Register 1 (SCS1)  
SCTE — ESCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register.  
SCTE can generate an ESCI transmitter interrupt request. When the SCTIE bit in SCC2 is set, SCTE  
generates an ESCI transmitter interrupt request. In normal operation, clear the SCTE bit by reading  
SCS1 with SCTE set and then writing to SCDR  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
TC — Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being  
transmitted. TC generates an ESCI transmitter interrupt request if the TCIE bit in SCC2 is also set. TC  
is cleared automatically when data, preamble, or break is queued and ready to be sent. There may be  
up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the  
transmission actually starting.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF — ESCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift register transfers to the ESCI data  
register. SCRF can generate an ESCI receiver interrupt request. When the SCRIE bit in SCC2 is set  
the SCRF generates a interrupt request. In normal operation, clear the SCRF bit by reading SCS1 with  
SCRF set and then reading the SCDR.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
IDLE — Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive 1s appear on the receiver input. IDLE  
generates an ESCI receiver interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit by  
reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must receive  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
141  
Enhanced Serial Communications Interface (ESCI) Module  
a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after the  
IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition can  
set the IDLE bit.  
1 = Receiver input idle  
0 = Receiver input active (or idle since the IDLE bit was cleared)  
OR — Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the SCDR before the receive shift  
register receives the next character. The OR bit generates an ESCI error interrupt request if the ORIE  
bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is not  
affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing  
sequence. Figure 13-13 shows the normal flag-clearing sequence and an example of an overrun  
caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit  
because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next  
flag-clearing sequence reads byte 3 in the SCDR instead of byte 2.  
In applications that are subject to software latency or in which it is important to know which byte is lost  
due to an overrun, the flag-clearing routine can check the OR bit in a second read of SCS1 after  
reading the data register.  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
READ SCDR  
BYTE 2  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 13-13. Flag Clearing Sequence  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
142  
 
Registers  
NF — Receiver Noise Flag Bit  
This clearable, read-only bit is set when the ESCI detects noise on the RxD pin. NF generates an NF  
interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then reading  
the SCDR.  
1 = Noise detected  
0 = No noise detected  
FE — Receiver Framing Error Bit  
This clearable, read-only bit is set when a 0 is accepted as the stop bit. FE generates an ESCI error  
interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set and  
then reading the SCDR.  
1 = Framing error detected  
0 = No framing error detected  
PE — Receiver Parity Error Bit  
This clearable, read-only bit is set when the ESCI detects a parity error in incoming data. PE generates  
a PE interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with PE  
set and then reading the SCDR.  
1 = Parity error detected  
0 = No parity error detected  
13.8.5 ESCI Status Register 2  
ESCI status register 2 (SCS2) contains flags to signal these conditions:  
Break character detected  
Reception in progress  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
RPF  
Read:  
Write:  
Reset:  
0
BKF  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-14. ESCI Status Register 2 (SCS2)  
BKF — Break Flag Bit  
This clearable, read-only bit is set when the ESCI detects a break character on the RxD pin. In SCS1,  
the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF  
does not generate a interrupt request. Clear BKF by reading SCS2 with BKF set and then reading the  
SCDR. Once cleared, BKF can become set again only after 1s again appear on the RxD pin followed  
by another break character.  
1 = Break character detected  
0 = No break character detected  
RPF — Reception in Progress Flag Bit  
This read-only bit is set when the receiver detects a 0 during the RT1 time period of the start bit search.  
RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits  
(usually from noise or a baud rate mismatch), or when the receiver detects an idle character. Polling  
RPF before disabling the ESCI module or entering stop mode can show whether a reception is in  
progress.  
1 = Reception in progress  
0 = No reception in progress  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
143  
Enhanced Serial Communications Interface (ESCI) Module  
13.8.6 ESCI Data Register  
The ESCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit  
shift registers. Reset has no effect on data in the ESCI data register.  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 13-15. ESCI Data Register (SCDR)  
R7/T7:R0/T0 — Receive/Transmit Data Bits  
Reading SCDR accesses the read-only received data bits, R7:R0.  
Writing to SCDR writes the data to be transmitted, T7:T0.  
NOTE  
Do not use read-modify-write instructions on the ESCI data register.  
13.8.7 ESCI Baud Rate Register  
The ESCI baud rate register (SCBR) together with the ESCI prescaler register selects the baud rate for  
both the receiver and the transmitter.  
NOTE  
There are two prescalers available to adjust the baud rate — one in the  
ESCI baud rate register and one in the ESCI prescaler register.  
Bit 7  
LINT  
6
5
SCP1  
0
4
SCP0  
0
3
R
0
2
SCR2  
0
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
Write:  
Reset:  
LINR  
0
0
R
= Reserved  
Figure 13-16. ESCI Baud Rate Register (SCBR)  
LINT — LIN Transmit Enable  
This read/write bit selects the enhanced ESCI features for the local interconnect network (LIN) protocol  
as shown in Table 13-5.  
LINR — LIN Receiver Bits  
This read/write bit selects the enhanced ESCI features for the local interconnect network (LIN) protocol  
as shown in Table 13-5.  
In LIN (version 1.2 and later) systems, the master node transmits a break character which will appear  
as 11.05–14.95 dominant bits to the slave node. A data character of 0x00 sent from the master might  
appear as 7.65–10.35 dominant bit times. This is due to the oscillator tolerance requirement that the  
slave node must be within 15%of the master node's oscillator. Because a slave node cannot know if  
it is running faster or slower than the master node (prior to synchronization), the LINR bit allows the  
slave node to differentiate between a 0x00 character of 10.35 bits and a break character of 11.05 bits.  
The break symbol length must be verified in software in any case, but the LINR bit serves as a filter,  
preventing false detections of break characters that are really 0x00 data characters.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
144  
Freescale Semiconductor  
Registers  
Table 13-5. ESCI LIN Control Bits  
LINT  
LINR  
M
X
0
1
0
1
0
1
Functionality  
Normal ESCI functionality  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
11-bit break detect enabled for LIN receiver  
12-bit break detect enabled for LIN receiver  
13-bit generation enabled for LIN transmitter  
14-bit generation enabled for LIN transmitter  
11-bit break detect/13-bit generation enabled for LIN  
12-bit break detect/14-bit generation enabled for LIN  
SCP1 and SCP0 — ESCI Baud Rate Register Prescaler Bits  
These read/write bits select the baud rate register prescaler divisor as shown in Table 13-6.  
Table 13-6. ESCI Baud Rate Prescaling  
Baud Rate Register  
SCP[1:0]  
Prescaler Divisor (BPD)  
0 0  
0 1  
1 0  
1 1  
1
3
4
13  
SCR2–SCR0 — ESCI Baud Rate Select Bits  
These read/write bits select the ESCI baud rate divisor as shown in Table 13-7. Reset clears  
SCR2–SCR0.  
Table 13-7. ESCI Baud Rate Selection  
SCR[2:1:0]  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
Baud Rate Divisor (BD)  
1
2
4
8
16  
32  
64  
128  
13.8.8 ESCI Prescaler Register  
The ESCI prescaler register (SCPSC) together with the ESCI baud rate register selects the baud rate for  
both the receiver and the transmitter.  
NOTE  
There are two prescalers available to adjust the baud rate — one in the  
ESCI baud rate register and one in the ESCI prescaler register.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
145  
 
 
Enhanced Serial Communications Interface (ESCI) Module  
Bit 7  
PDS2  
0
6
PDS1  
0
5
PDS0  
0
4
PSSB4  
0
3
PSSB3  
0
2
PSSB2  
0
1
PSSB1  
0
Bit 0  
PSSB0  
0
Read:  
Write:  
Reset:  
Figure 13-17. ESCI Prescaler Register (SCPSC)  
PDS2–PDS0 — Prescaler Divisor Select Bits  
These read/write bits select the prescaler divisor as shown in Table 13-8.  
NOTE  
The setting of ‘000’ will bypass this prescaler. Do not bypass the prescaler  
while ENSCI is set, because unexpected results may occur.  
Table 13-8. ESCI Prescaler Division Ratio  
PDS[2:1:0]  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
Prescaler Divisor (PD)  
Bypass this prescaler  
2
3
4
5
6
7
8
PSSB4–PSSB0 — Clock Insertion Select Bits  
These read/write bits select the number of clocks inserted in each 32 output cycle frame to achieve  
more timing resolution on the average prescaler frequency as shown in Table 13-9.  
Use the following formula to calculate the ESCI baud rate:  
Frequency of the SCI clock source  
64 x BPD x BD x (PD + PDFA)  
Baud rate =  
where:  
SCI clock source = bus clock or BUSCLKX4 (selected by ESCIBDSRC in the configuration register)  
BPD = Baud rate register prescaler divisor  
BD = Baud rate divisor  
PD = Prescaler divisor  
PDFA = Prescaler divisor fine adjust  
Table 13-10 shows the ESCI baud rates that can be generated with a 4.9152-MHz bus frequency.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
146  
Freescale Semiconductor  
 
Registers  
Table 13-9. ESCI Prescaler Divisor Fine Adjust  
PSSB[4:3:2:1:0]  
Prescaler Divisor Fine Adjust (PDFA)  
0/32 = 0  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 0  
0 0 1 0 1  
0 0 1 1 0  
0 0 1 1 1  
0 1 0 0 0  
0 1 0 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 0 0  
0 1 1 0 1  
0 1 1 1 0  
0 1 1 1 1  
1 0 0 0 0  
1 0 0 0 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 0 0  
1 0 1 0 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 0 0  
1 1 0 0 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 1 0  
1 1 1 1 1  
1/32 = 0.03125  
2/32 = 0.0625  
3/32 = 0.09375  
4/32 = 0.125  
5/32 = 0.15625  
6/32 = 0.1875  
7/32 = 0.21875  
8/32 = 0.25  
9/32 = 0.28125  
10/32 = 0.3125  
11/32 = 0.34375  
12/32 = 0.375  
13/32 = 0.40625  
14/32 = 0.4375  
15/32 = 0.46875  
16/32 = 0.5  
17/32 = 0.53125  
18/32 = 0.5625  
19/32 = 0.59375  
20/32 = 0.625  
21/32 = 0.65625  
22/32 = 0.6875  
23/32 = 0.71875  
24/32 = 0.75  
25/32 = 0.78125  
26/32 = 0.8125  
27/32 = 0.84375  
28/32 = 0.875  
29/32 = 0.90625  
30/32 = 0.9375  
31/32 = 0.96875  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
147  
Enhanced Serial Communications Interface (ESCI) Module  
Table 13-10. ESCI Baud Rate Selection Examples  
Prescaler  
Divisor  
(BPD)  
Baud Rate  
Divisor  
(BD)  
Baud Rate  
(fBus= 4.9152 MHz)  
PDS[2:1:0]  
PSSB[4:3:2:1:0]  
SCP[1:0]  
SCR[2:1:0]  
0 0 0  
1 1 1  
1 1 1  
1 1 1  
1 1 1  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
X X X X X  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
1 1 1 1 1  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1
1
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
1
1
76,800  
9600  
9562.65  
9525.58  
8563.07  
38,400  
19,200  
9600  
4800  
2400  
1200  
600  
1
1
1
1
1
1
1
2
1
4
1
8
1
16  
32  
64  
128  
1
1
1
1
3
25,600  
12,800  
6400  
3200  
1600  
800  
3
2
3
4
3
8
3
16  
32  
64  
128  
1
3
3
400  
3
200  
4
19,200  
9600  
4800  
2400  
1200  
600  
4
2
4
4
4
8
4
16  
32  
64  
128  
1
4
4
300  
4
150  
13  
13  
13  
13  
13  
13  
13  
13  
5908  
2954  
1477  
739  
2
4
8
16  
32  
64  
128  
369  
185  
92  
46  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
148  
ESCI Arbiter  
13.9 ESCI Arbiter  
The ESCI module comprises an arbiter module designed to support software for communication tasks as  
bus arbitration, baud rate recovery and break time detection. The arbiter module consists of an 9-bit  
counter with 1-bit overflow and control logic. The can control operation mode via the ESCI arbiter control  
register (SCIACTL).  
13.9.1 ESCI Arbiter Control Register  
Bit 7  
AM1  
0
6
5
AM0  
0
4
ACLK  
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
ALOST  
AFIN  
ARUN  
AROVFL  
ARD8  
0
0
0
0
0
= Unimplemented  
Figure 13-18. ESCI Arbiter Control Register (SCIACTL)  
AM1 and AM0 — Arbiter Mode Select Bits  
These read/write bits select the mode of the arbiter module as shown in Table 13-11.  
Table 13-11. ESCI Arbiter Selectable Modes  
AM[1:0]  
0 0  
ESCI Arbiter Mode  
Idle / counter reset  
0 1  
Bit time measurement  
Bus arbitration  
1 0  
1 1  
Reserved / do not use  
ALOST — Arbitration Lost Flag  
This read-only bit indicates loss of arbitration. Clear ALOST by writing a 0 to AM1.  
ACLK — Arbiter Counter Clock Select Bit  
This read/write bit selects the arbiter counter clock source.  
1 = Arbiter counter is clocked with one half of the ESCI input clock generated by the ESCI prescaler  
0 = Arbiter counter is clocked with the bus clock divided by four  
NOTE  
For ACLK = 1, the arbiter input clock is driven from the ESCI prescaler. The  
prescaler can be clocked by either the bus clock or BUSCLKX4 depending  
on the state of the ESCIBDSRC bit in configuration register.  
AFIN— Arbiter Bit Time Measurement Finish Flag  
This read-only bit indicates bit time measurement has finished. Clear AFIN by writing any value to  
SCIACTL.  
1 = Bit time measurement has finished  
0 = Bit time measurement not yet finished  
ARUN— Arbiter Counter Running Flag  
This read-only bit indicates the arbiter counter is running.  
1 = Arbiter counter running  
0 = Arbiter counter stopped  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
149  
 
Enhanced Serial Communications Interface (ESCI) Module  
AROVFL— Arbiter Counter Overflow Bit  
This read-only bit indicates an arbiter counter overflow. Clear AROVFL by writing any value to  
SCIACTL. Writing 0s to AM1 and AM0 resets the counter keeps it in this idle state.  
1 = Arbiter counter overflow has occurred  
0 = No arbiter counter overflow has occurred  
ARD8— Arbiter Counter MSB  
This read-only bit is the MSB of the 9-bit arbiter counter. Clear ARD8 by writing any value to SCIACTL.  
13.9.2 ESCI Arbiter Data Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
ARD7  
ARD6  
ARD5  
ARD4  
ARD3  
ARD2  
ARD1  
ARD0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-19. ESCI Arbiter Data Register (SCIADAT)  
ARD7–ARD0 — Arbiter Least Significant Counter Bits  
These read-only bits are the eight LSBs of the 9-bit arbiter counter. Clear ARD7–ARD0 by writing any  
value to SCIACTL. Writing 0s to AM1 and AM0 permanently resets the counter and keeps it in this idle  
state.  
13.9.3 Bit Time Measurement  
Two bit time measurement modes, described here, are available according to the state of ACLK.  
1. ACLK = 0 — The counter is clocked with one quarter of the bus clock. The counter is started when  
a falling edge on the RxD pin is detected. The counter will be stopped on the next falling edge.  
ARUN is set while the counter is running, AFIN is set on the second falling edge on RxD (for  
instance, the counter is stopped). This mode is used to recover the received baud rate. See  
Figure 13-20.  
2. ACLK = 1 — The counter is clocked with one half of the ESCI input clock generated by the ESCI  
prescaler. The counter is started when a 0 is detected on RxD (see Figure 13-21). A 0 on RxD on  
enabling the bit time measurement with ACLK = 1 leads to immediate start of the counter (see  
Figure 13-22). The counter will be stopped on the next rising edge of RxD. This mode is used to  
measure the length of a received break.  
MEASURED TIME  
RXD  
Figure 13-20. Bit Time Measurement with ACLK = 0  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
150  
Freescale Semiconductor  
 
ESCI Arbiter  
MEASURED TIME  
RXD  
Figure 13-21. Bit Time Measurement with ACLK = 1, Scenario A  
MEASURED TIME  
RXD  
Figure 13-22. Bit Time Measurement with ACLK = 1, Scenario B  
13.9.4 Arbitration Mode  
If AM[1:0] is set to 10, the arbiter module operates in arbitration mode. On every rising edge of SCI_TxD  
(output of the transmit shift register, see ), the counter is started. When the counter reaches $38  
(ACLK = 0) or $08 (ACLK = 1), RxD is statically sensed. If in this case, RxD is sensed low (for example,  
another bus is driving the bus dominant) ALOST is set. As long as ALOST is set, the TxD pin is forced  
to 1, resulting in a seized transmission.  
If SCI_TxD senses 0 without having sensed a 0 before on RxD, the counter will be reset, arbitration  
operation will be restarted after the next rising edge of SCI_TxD.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
151  
Enhanced Serial Communications Interface (ESCI) Module  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
152  
Chapter 14  
System Integration Module (SIM)  
14.1 Introduction  
This section describes the system integration module (SIM), which supports up to 24 external and/or  
internal interrupts. Together with the central processor unit (CPU), the SIM controls all microcontroller unit  
(MCU) activities. A block diagram of the SIM is shown in Figure 14-1. The SIM is a system state controller  
that coordinates CPU and exception timing.  
The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals  
Stop/wait/reset/break entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and computer operating properly (COP)  
timeout  
Interrupt control:  
Acknowledge timing  
Arbitration control timing  
Vector address generation  
CPU enable/disable timing  
Table 14-1. Signal Name Conventions  
Signal Name  
Description  
BUSCLKX4  
Buffered clock from the internal, RC or XTAL oscillator circuit.  
The BUSCLKX4 frequency divided by two. This signal is again divided by two  
in the SIM to generate the internal bus clocks (bus clock = BUSCLKX4 4).  
BUSCLKX2  
Address bus  
Data bus  
PORRST  
IRST  
Internal address bus  
Internal data bus  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
14.2 RST and IRQ Pins Initialization  
RST and IRQ pins come out of reset as PTA3 and PTA2 respectively. RST and IRQ functions can be  
activated by programing CONFIG2 accordingly. Refer to Chapter 4 Configuration Registers (CONFIG1  
and CONFIG2).  
14.3 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The  
system clocks are generated from an incoming clock, BUSCLKX2, as shown in Figure 14-2.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
153  
System Integration Module (SIM)  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO OSCILLATOR)  
SIM  
COUNTER  
COP CLOCK  
BUSCLKX4 (FROM OSCILLATOR)  
BUSCLKX2 (FROM OSCILLATOR)  
÷2  
V
DD  
CLOCK  
CONTROL  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULL-UP  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
RESET  
PIN LOGIC  
POR CONTROL  
RESET PIN CONTROL  
MASTER  
RESET  
CONTROL  
COP TIMEOUT (FROM COP MODULE)  
LVI RESET (FROM LVI MODULE)  
SIM RESET STATUS REGISTER  
FORCED MON MODE ENTRY (FROM MENRST MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 14-1. SIM Block Diagram  
FROM  
OSCILLATOR  
BUSCLKX4  
BUSCLKX2  
SIM COUNTER  
FROM  
OSCILLATOR  
BUS CLOCK  
GENERATORS  
÷ 2  
SIM  
Figure 14-2. SIM Clock Signals  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
154  
Freescale Semiconductor  
Reset and System Initialization  
14.3.1 Bus Timing  
In user mode, the internal bus frequency is the oscillator frequency (BUSCLKX4) divided by four.  
14.3.2 Clock Start-Up from POR  
When the power-on reset module generates a reset, the clocks to the CPU and peripherals are inactive  
and held in an inactive phase until after the 4096 BUSCLKX4 cycle POR time out has completed. The  
IBUS clocks start upon completion of the time out.  
14.3.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt or reset, the SIM allows BUSCLKX4 to clock the SIM counter.  
The CPU and peripheral clocks do not become active until after the stop delay time out. This time out is  
selectable as 4096 or 32 BUSCLKX4 cycles. See 14.7.2 Stop Mode.  
In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules.  
Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
14.4 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly module (COP)  
Low-voltage inhibit module (LVI)  
Illegal opcode  
Illegal address  
All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in monitor mode) and assert the  
internal reset signal (IRST). IRST causes all registers to be returned to their default values and all  
modules to be returned to their reset states.  
An internal reset clears the SIM counter (see 14.5 SIM Counter), but an external reset does not. Each of  
the resets sets a corresponding bit in the SIM reset status register (SRSR). See 14.8 SIM Registers.  
14.4.1 External Pin Reset  
The RST pin circuits include an internal pullup device. Pulling the asynchronous RST pin low halts all  
processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for at  
least the minimum t time. Figure 14-3 shows the relative timing. The RST pin function is only available  
RL  
if the RSTEN bit is set in the CONFIG2 register.  
BUSCLKX2  
RST  
VECT H VECT L  
ADDRESS BUS  
PC  
Figure 14-3. External Reset Timing  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
155  
 
System Integration Module (SIM)  
14.4.2 Active Resets from Internal Sources  
The RST pin is initially setup as a general-purpose input after a POR. Setting the RSTEN bit in the  
CONFIG2 register enables the pin for the reset function. This section assumes the RSTEN bit is set when  
describing activity on the RST pin.  
NOTE  
For POR and LVI resets, the SIM cycles through 4096 BUSCLKX4 cycles.  
The internal reset signal then follows the sequence from the falling edge of  
RST shown in Figure 14-4.  
The COP reset is asynchronous to the bus clock.  
The active reset feature allows the part to issue a reset to peripherals and other chips within a system  
built around the MCU.  
All internal reset sources actively pull the RST pin low for 32 BUSCLKX4 cycles to allow resetting of  
external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles  
(see Figure 14-4). An internal reset can be caused by an illegal address, illegal opcode, COP time out,  
LVI, or POR (see Figure 14-5).  
IRST  
RST PULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
BUSCLKX4  
ADDRESS  
BUS  
VECTOR HIGH  
Figure 14-4. Internal Reset Timing  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
POR  
INTERNAL RESET  
LVI  
Figure 14-5. Sources of Internal Reset  
Table 14-2. Reset Recovery Timing  
Reset Recovery Type  
POR/LVI  
All others  
Actual Number of Cycles  
4163 (4096 + 64 + 3)  
67 (64 + 3)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
156  
 
 
 
Reset and System Initialization  
14.4.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate  
that power on has occurred. The SIM counter counts out 4096 BUSCLKX4 cycles. Sixty-four BUSCLKX4  
cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur.  
At power on, the following events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables the oscillator to drive BUSCLKX4.  
Internal clocks to the CPU and modules are held inactive for 4096 BUSCLKX4 cycles to allow  
stabilization of the oscillator.  
The POR bit of the SIM reset status register (SRSR) is set.  
See Figure 14-6.  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
BUSCLKX4  
BUSCLKX2  
RST  
(RST PIN IS A GENERAL-PURPOSE INPUT AFTER A POR)  
ADDRESS BUS  
$FFFE  
$FFFF  
Figure 14-6. POR Recovery  
14.4.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an  
internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down  
the RST pin for all internal reset sources.  
To prevent a COP module time out, write any value to location $FFFF. Writing to location $FFFF clears  
the COP counter and stages 12–5 of the SIM counter. The SIM counter output, which occurs at least  
every 4080 BUSCLKX4 cycles, drives the COP counter. The COP should be serviced as soon as possible  
out of reset to guarantee the maximum amount of time before the first time out.  
The COP module is disabled during a break interrupt with monitor mode when BDCOP bit is set in break  
auxiliary register (BRKAR).  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
157  
 
System Integration Module (SIM)  
14.4.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP  
bit in the SIM reset status register (SRSR) and causes a reset.  
If the stop enable bit, STOP, in the mask option register is 0, the SIM treats the STOP instruction as an  
illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal  
reset sources.  
14.4.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the  
CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively  
pulls down the RST pin for all internal reset sources. See Figure 2-1. Memory Map for memory ranges.  
14.4.2.5 Low-Voltage Inhibit (LVI) Reset  
The LVI asserts its output to the SIM when the V voltage falls to the LVI trip voltage V  
. The LVI  
DD  
TRIPF  
bit in the SIM reset status register (SRSR) is set, and the external reset pin (RST) is held low while the  
SIM counter counts out 4096 BUSCLKX4 cycles after V rises above V . Sixty-four BUSCLKX4  
DD  
TRIPR  
cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur.  
The SIM actively pulls down the (RST) pin for all internal reset sources.  
14.5 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the  
oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM counter uses 12 stages for  
counting, followed by a 13th stage that triggers a reset of SIM counters and supplies the clock for the COP  
module. The SIM counter is clocked by the falling edge of BUSCLKX4.  
14.5.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit  
asserts the signal PORRST. Once the SIM is initialized, it enables the oscillator to drive the bus clock  
state machine.  
14.5.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After  
an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the  
configuration register 1 (CONFIG1). If the SSREC bit is a 1, then the stop recovery is reduced from the  
normal delay of 4096 BUSCLKX4 cycles down to 32 BUSCLKX4 cycles. This is ideal for applications  
using canned oscillators that do not require long start-up times from stop mode. External crystal  
applications should use the full stop recovery time, that is, with SSREC cleared in the configuration  
register 1 (CONFIG1).  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
158  
Freescale Semiconductor  
Exception Control  
14.5.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter (see 14.7.2 Stop Mode for details.) The SIM counter is  
free-running after all reset states. See 14.4.2 Active Resets from Internal Sources for counter control and  
internal reset recovery sequences.  
14.6 Exception Control  
Normal sequential program execution can be changed in three different ways:  
1. Interrupts  
a. Maskable hardware CPU interrupts  
b. Non-maskable software interrupt instruction (SWI)  
2. Reset  
3. Break interrupts  
14.6.1 Interrupts  
An interrupt temporarily changes the sequence of program execution to respond to a particular event.  
Figure 14-7 flow charts the handling of system interrupts.  
Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The  
arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is  
latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched  
interrupt is serviced (or the I bit is cleared).  
At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the  
interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers  
the CPU register contents from the stack so that normal processing can resume. Figure 14-8 shows  
interrupt entry timing. Figure 14-9 shows interrupt recovery timing.  
14.6.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after  
completion of the current instruction. When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the  
corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt  
is serviced first. Figure 14-10 demonstrates what happens when two interrupts are pending. If an interrupt  
is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the  
LDA instruction is executed.  
The LDA opcode is prefetched by both the INT1 and INT2 return-from-interrupt (RTI) instructions.  
However, in the case of the INT1 RTI prefetch, this is a redundant operation.  
NOTE  
To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
159  
System Integration Module (SIM)  
FROM RESET  
YES  
BREAK INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ  
INTERRUPT?  
NO  
TIMER  
INTERRUPT?  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
(AS MANY INTERRUPTS AS EXIST ON CHIP)  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
YES  
NO  
RTI  
INSTRUCTION?  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
NO  
Figure 14-7. Interrupt Processing  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
160  
Exception Control  
MODULE  
INTERRUPT  
I BIT  
ADDRESS BUS  
DATA BUS  
R/W  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L START ADDR  
DUMMY PC – 1[7:0] PC – 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
Figure 14-8. Interrupt Entry  
MODULE  
INTERRUPT  
I BIT  
ADDRESS BUS  
DATA BUS  
R/W  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
CCR  
A
X
PC – 1[7:0] PC – 1[15:8] OPCODE OPERAND  
Figure 14-9. Interrupt Recovery  
CLI  
LDA #$FF  
BACKGROUND ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 14-10. Interrupt Recognition Example  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
161  
System Integration Module (SIM)  
14.6.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the  
interrupt mask (I bit) in the condition code register.  
NOTE  
A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
14.6.2 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt sources. Table 14-3 summarizes the  
interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be  
useful for debugging.  
Table 14-3. Interrupt Sources  
INT  
Register Flag  
Vector  
Address  
Mask(1)  
Priority  
Source  
Flag  
Highest Reset  
$FFFE–$FFFF  
$FFFC–$FFFD  
$FFFA–$FFFB  
$FFF6–$FFF7  
$FFF4–$FFF5  
$FFF2–$FFF3  
$FFF0–$FFF1  
$FFEE–$FFEF  
SWI instruction  
IRQ pin  
IRQF  
CH0F  
CH1F  
TOF  
IMASK  
CH0IE  
CH1IE  
TOIE  
IF1  
IF3  
IF4  
IF5  
IF6  
IF7  
TIM1 channel 0 interrupt  
TIM1 channel 1 interrupt  
TIM1 overflow interrupt  
TIM1 channel 2 vector  
TIM1 channel 3 vector  
CH2F  
CH3F  
CH2IE  
CH3IE  
OR, HF,  
FE, PE  
ORIE, NEIE,  
FEIE, PEIE  
ESCI error vector  
IF9  
$FFEA–$FFEB  
ESCI receive vector  
ESCI transmit vector  
SCRF  
SCRIE  
IF10  
IF11  
IF12  
IF13  
IF14  
IF15  
IF16  
IF17  
IF18  
IF19  
$FFE8–$FFE9  
$FFE6–$FFE7  
$FFE4–$FFE5  
$FFE2–$FFE3  
$FFE0–$FFE1  
$FFDE–$FFDF  
$FFDC–$FFDD  
$FFDA–$FFDB  
$FFD8–$FFD9  
$FFD6–$FFD7  
SCTE, TC  
SCTIE, TCIE  
SPI receive  
SPRF, OVRF, MODF SPRIE, ERRIE  
SPI transmit  
SPTE  
KEYF  
COCO  
CH0F  
CH1F  
TOF  
SPTIE  
IMASKK  
AIEN  
Keyboard interrupt  
ADC conversion complete interrupt  
TIM2 channel 0 interrupt flag  
TIM2 channel 1 interrupt flag  
TIM2 overflow interrupt flag  
Lowest Periodic wakeup interrupt flag  
CH0IE  
CH1IE  
TOIEINT  
PWUIE  
PWUF  
1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
162  
Freescale Semiconductor  
 
Exception Control  
14.6.2.1 Interrupt Status Register 1  
Bit 7  
IF6  
R
6
5
IF4  
R
4
IF3  
R
3
IF2  
R
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF5  
R
R
0
R
0
0
0
0
0
0
0
R
= Reserved  
Figure 14-11. Interrupt Status Register 1 (INT1)  
IF1–IF6 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the sources shown in Table 14-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0 and 1— Always read 0  
14.6.2.2 Interrupt Status Register 2  
Bit 7  
IF14  
R
6
5
IF12  
R
4
IF11  
R
3
IF10  
R
2
IF9  
R
1
IF8  
R
Bit 0  
IF7  
R
Read:  
Write:  
Reset:  
IF13  
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 14-12. Interrupt Status Register 2 (INT2)  
IF7–IF14 — Interrupt Flags  
This flag indicates the presence of interrupt requests from the sources shown in Table 14-3.  
1 = Interrupt request present  
0 = No interrupt request present  
14.6.2.3 Interrupt Status Register 3  
Bit 7  
IF22  
R
6
5
IF20  
R
4
IF19  
R
3
IF18  
R
2
IF17  
R
1
IF16  
R
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
IF21  
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 14-13. Interrupt Status Register 3 (INT3)  
IF22–IF15 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the sources shown in Table 14-3.  
1 = Interrupt request present  
0 = No interrupt request present  
14.6.3 Reset  
All reset sources always have equal and highest priority and cannot be arbitrated.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
163  
System Integration Module (SIM)  
14.6.4 Break Interrupts  
The break module can stop normal program flow at a software programmable break point by asserting its  
break interrupt output. (See Chapter 18 Development Support.) The SIM puts the CPU into the break  
state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to  
see how each module is affected by the break state.  
14.6.5 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can be cleared during break mode. The  
user can select whether flags are protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the break flag control register (BFCR).  
Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This  
protection allows registers to be freely read and written during break mode without losing status flag  
information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains  
cleared even when break mode is exited. Status flags with a two-step clearing mechanism — for example,  
a read of one register followed by the read or write of another — are protected, even when the first step  
is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step  
will clear the flag as normal.  
14.7 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low power- consumption mode for standby  
situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is  
described below. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing  
interrupts to occur.  
14.7.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 14-14 shows  
the timing for wait mode entry.  
ADDRESS BUS  
DATA BUS  
R/W  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction.  
Figure 14-14. Wait Mode Entry Timing  
A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled.  
Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred.  
In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if  
the module is active or inactive in wait mode. Some modules can be programmed to be active in wait  
mode.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
164  
Freescale Semiconductor  
 
Low-Power Modes  
Wait mode can also be exited by a reset (or break in emulation mode). A break interrupt during wait mode  
sets the SIM break stop/wait bit, SBSW, in the break status register (BSR). If the COP disable bit, COPD,  
in the configuration register is 0, then the computer operating properly module (COP) is enabled and  
remains active in wait mode.  
Figure 14-15 and Figure 14-16 show the timing for wait recovery.  
ADDRESS BUS  
DATA BUS  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt  
Figure 14-15. Wait Recovery from Interrupt  
32  
CYCLES  
32  
CYCLES  
ADDRESS BUS  
$6E0B  
$A6  
RSTVCTH RSTVCTL  
DATA BUS $A6  
$A6  
(1)  
RST  
BUSCLKX4  
1. RST is only available if the RSTEN bit in the CONFIG2 register is set.  
Figure 14-16. Wait Recovery from Internal Reset  
14.7.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a  
module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the oscillator signals (BUSCLKX2 and BUSCLKX4) in stop mode, stopping the CPU  
and peripherals. If OSCENINSTOP is set, BUSCLKX4 will remain running in STOP and can be used to  
run the PWU. Stop recovery time is selectable using the SSREC bit in the configuration register 1  
(CONFIG1). If SSREC is set, stop recovery is reduced from the normal delay of 4096 BUSCLKX4 cycles  
down to 32. This is ideal for the internal oscillator, RC oscillator, and external oscillator options which do  
not require long start-up times from stop mode.  
NOTE  
External crystal applications should use the full stop recovery time by  
clearing the SSREC bit.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
165  
 
 
System Integration Module (SIM)  
The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop  
recovery. It is then used to time the recovery period. Figure 14-17 shows stop mode entry timing and  
Figure 14-18 shows the stop mode recovery time from interrupt or break  
NOTE  
To minimize stop current, all pins configured as inputs should be driven to  
a logic 1 or logic 0.  
CPUSTOP  
ADDRESS BUS  
DATA BUS  
R/W  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction.  
Figure 14-17. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
BUSCLKX4  
INTERRUPT  
ADDRESS BUS  
STOP + 2  
STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 14-18. Stop Mode Recovery from Interrupt  
14.8 SIM Registers  
The SIM has three memory mapped registers. Table 14-4 shows the mapping of these registers.  
Table 14-4. SIM Registers  
Address  
$FE00  
$FE01  
$FE03  
Register  
BSR  
Access Mode  
User  
SRSR  
BFCR  
User  
User  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
166  
 
 
 
SIM Registers  
14.8.1 SIM Reset Status Register  
The SRSR register contains flags that show the source of the last reset. The status register will  
automatically clear after reading SRSR. A power-on reset sets the POR bit and clears all other bits in the  
register. All other reset sources set the individual flag bits but do not clear the register. More than one  
reset source can be flagged at any time depending on the conditions at the time of the internal or external  
reset. For example, the POR and LVI bit can both be set if the power supply has a slow rise time.  
Bit 7  
POR  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
POR:  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-19. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (illegal attempt to fetch an opcode from an unimplemented  
address)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MODRST — Monitor Mode Entry Module Reset bit  
1 = Last reset caused by monitor mode entry when vector locations $FFFE and $FFFF are $FF after  
POR while IRQ V  
TST  
0 = POR or read of SRSR  
LVI — Low Voltage Inhibit Reset bit  
1 = Last reset caused by LVI circuit  
0 = POR or read of SRSR  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
167  
System Integration Module (SIM)  
14.8.2 Break Flag Control Register  
The break control register (BFCR) contains a bit that enables software to clear status bits while the MCU  
is in a break state.  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
= Reserved  
R
Figure 14-20. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
168  
Freescale Semiconductor  
 
Chapter 15  
Serial Peripheral Interface (SPI) Module  
15.1 Introduction  
This section describes the serial peripheral interface (SPI) module, which allows full-duplex,  
synchronous, serial communications with peripheral devices.  
The SPI shares its pins with general-purpose input/output (I/O) port pins. See Figure 15-1 for port location  
of these shared pins.  
15.2 Features  
Features of the SPI module include:  
Full-duplex operation  
Master and slave modes  
Double-buffered operation with separate transmit and receive registers  
Four master mode frequencies (maximum = bus frequency ÷ 2)  
Maximum slave mode frequency = bus frequency  
Serial clock with programmable polarity and phase  
Two separately enabled interrupts:  
SPRF (SPI receiver full)  
SPTE (SPI transmitter empty)  
Mode fault error flag with interrupt capability  
Overflow error flag with interrupt capability  
Programmable wired-OR mode  
15.3 Functional Description  
The SPI module allows full-duplex, synchronous, serial communication between the MCU and peripheral  
devices, including other MCUs. Software can poll the SPI status flags or SPI operation can be interrupt  
driven.  
The following paragraphs describe the operation of the SPI module.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
169  
Serial Peripheral Interface (SPI) Module  
PTA0/T1CH0/AD0/KBI0  
PTA1/T1CH1/AD1/KBI1  
PTA2/IRQ/KBI2/T1CLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0/SPSCK/AD4  
PTB1/MOSI/T2CH1/AD5  
PTB2/MISO/T2CH0/AD6  
PTB3/SS/T2CLK/AD7  
PTB4/RxD/T2CH0/AD8  
PTB5/TxD/T2CH1/AD9  
PTB6/T1CH2  
BREAK  
MODULE  
PERIODIC WAKEUP  
MODULE  
PTB7/T1CH3  
PTC0  
PTC1  
PTC2  
PTC3  
LOW-VOLTAGE  
INHIBIT  
MC68HC908QC16  
16,384 BYTES  
4-CHANNEL 16-BIT  
TIMER MODULE  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
MC68HC908QC8  
8192 BYTES  
2-CHANNEL 16-BIT  
TIMER MODULE  
MC68HC908QC4  
4096 BYTES  
USER FLASH  
COP  
MODULE  
10-CHANNEL  
10-BIT ADC  
MC68HC908QC16  
512 BYTES  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
MC68HC908QC8  
384 BYTES  
MC68HC908QC4  
384 BYTES  
SERIAL PERIPHERAL  
INTERFACE  
USER RAM  
MONITOR ROM  
V
DD  
POWER SUPPLY  
V
SS  
All port pins can be configured with internal pullup  
PTC not available on 16-pin devices (see note in 11.1 Introduction)  
PTD not available on 16-pin or 20-pin devices (see note in 11.1 Introduction)  
Figure 15-1. Block Diagram Highlighting SPI Block and Pins  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
170  
Freescale Semiconductor  
 
Functional Description  
INTERNAL BUS  
TRANSMIT DATA REGISTER  
SHIFT REGISTER  
BUSCLK  
MISO  
MOSI  
7
6
5
4
3
2
1
0
÷ 2  
÷ 8  
CLOCK  
DIVIDER  
RECEIVE DATA REGISTER  
÷ 32  
÷ 128  
PIN  
CONTROL  
LOGIC  
CLOCK  
SELECT  
SPSCK  
SS  
SPMSTR  
SPE  
M
S
CLOCK  
LOGIC  
SPR1  
SPR0  
SPMSTR  
CPHA  
CPOL  
MODFEN  
ERRIE  
SPTIE  
SPRIE  
SPE  
SPWOM  
TRANSMITTER interrupt REQUEST  
RECEIVER/ERROR interrupt REQUEST  
SPI  
CONTROL  
SPRF  
SPTE  
OVRF  
MODF  
Figure 15-2. SPI Module Block Diagram  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
171  
 
Serial Peripheral Interface (SPI) Module  
15.3.1 Master Mode  
The SPI operates in master mode when the SPI master bit, SPMSTR, is set.  
NOTE  
In a multi-SPI system, configure the SPI modules as master or slave before  
enabling them. Enable the master SPI before enabling the slave SPI.  
Disable the slave SPI before disabling the master SPI. See 15.8.1 SPI  
Control Register.  
Only a master SPI module can initiate transmissions. Software begins the transmission from a master SPI  
module by writing to the transmit data register. If the shift register is empty, the byte immediately transfers  
to the shift register, setting the SPI transmitter empty bit, SPTE. The byte begins shifting out on the MOSI  
pin under the control of the serial clock. See Figure 15-3.  
MASTER MCU  
SLAVE MCU  
MISO  
MOSI  
MISO  
MOSI  
SHIFT REGISTER  
SHIFT REGISTER  
SPSCK  
SS  
SPSCK  
SS  
BAUD RATE  
GENERATOR  
V
DD  
Figure 15-3. Full-Duplex Master-Slave Connections  
The SPR1 and SPR0 bits control the baud rate generator and determine the speed of the shift register.  
(See 15.8.2 SPI Status and Control Register.) Through the SPSCK pin, the baud rate generator of the  
master also controls the shift register of the slave peripheral.  
While the byte shifts out on the MOSI pin of the master, another byte shifts in from the slave on the  
master’s MISO pin. The transmission ends when the receiver full bit, SPRF, becomes set. At the same  
time that SPRF becomes set, the byte from the slave transfers to the receive data register. In normal  
operation, SPRF signals the end of a transmission. Software clears SPRF by reading the SPI status and  
control register (SPSCR) with SPRF set and then reading the SPI data register (SPDR). Writing to SPDR  
clears SPTE.  
15.3.2 Slave Mode  
The SPI operates in slave mode when SPMSTR is clear. In slave mode, the SPSCK pin is the input for  
the serial clock from the master MCU. Before a data transmission occurs, the SS pin of the slave SPI must  
be low. SS must remain low until the transmission is complete. See 15.3.6.2 Mode Fault Error.  
In a slave SPI module, data enters the shift register under the control of the serial clock from the master  
SPI module. After a byte enters the shift register of a slave SPI, it transfers to the receive data register,  
and the SPRF bit is set. To prevent an overflow condition, slave software then must read the receive data  
register before another full byte enters the shift register.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
172  
Freescale Semiconductor  
 
Functional Description  
The maximum frequency of the SPSCK for an SPI configured as a slave is the bus clock speed (which is  
twice as fast as the fastest master SPSCK clock that can be generated). The frequency of the SPSCK for  
an SPI configured as a slave does not have to correspond to any SPI baud rate. The baud rate only  
controls the speed of the SPSCK generated by an SPI configured as a master. Therefore, the frequency  
of the SPSCK for an SPI configured as a slave can be any frequency less than or equal to the bus speed.  
When the master SPI starts a transmission, the data in the slave shift register begins shifting out on the  
MISO pin. The slave can load its shift register with a new byte for the next transmission by writing to its  
transmit data register. The slave must write to its transmit data register at least one bus cycle before the  
master starts the next transmission. Otherwise, the byte already in the slave shift register shifts out on the  
MISO pin. Data written to the slave shift register during a transmission remains in a buffer until the end of  
the transmission.  
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts a transmission. When CPHA is  
clear, the falling edge of SS starts a transmission. See 15.3.3 Transmission Formats.  
NOTE  
SPSCK must be in the proper idle state before the slave is enabled to  
prevent SPSCK from appearing as a clock edge.  
15.3.3 Transmission Formats  
During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted  
in serially). A serial clock synchronizes shifting and sampling on the two serial data lines. A slave select  
line allows selection of an individual slave SPI device; slave devices that are not selected do not interfere  
with SPI bus activities. On a master SPI device, the slave select line can optionally be used to indicate  
multiple-master bus contention.  
15.3.3.1 Clock Phase and Polarity Controls  
Software can select any of four combinations of serial clock (SPSCK) phase and polarity using two bits  
in the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects  
an active high or low clock and has no significant effect on the transmission format.  
The clock phase (CPHA) control bit selects one of two fundamentally different transmission formats. The  
clock phase and polarity should be identical for the master SPI device and the communicating slave  
device. In some cases, the phase and polarity are changed between transmissions to allow a master  
device to communicate with peripheral slaves having different requirements.  
NOTE  
Before writing to the CPOL bit or the CPHA bit, disable the SPI by clearing  
the SPI enable bit (SPE).  
15.3.3.2 Transmission Format When CPHA = 0  
Figure 15-4 shows an SPI transmission in which CPHA = 0. The figure should not be used as a  
replacement for data sheet parametric information.  
Two waveforms are shown for SPSCK: one for CPOL = 0 and another for CPOL = 1. The diagram may  
be interpreted as a master or slave timing diagram because the serial clock (SPSCK), master in/slave out  
(MISO), and master out/slave in (MOSI) pins are directly connected between the master and the slave.  
The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The SS  
line is the slave select input to the slave. The slave SPI drives its MISO output only when its slave select  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
173  
 
Serial Peripheral Interface (SPI) Module  
input (SS) is low, so that only the selected slave drives to the master. The SS pin of the master is not  
shown but is assumed to be inactive. The SS pin of the master must be high or must be reconfigured as  
general-purpose I/O not affecting the SPI. (See 15.3.6.2 Mode Fault Error.) When CPHA = 0, the first  
SPSCK edge is the MSB capture strobe. Therefore, the slave must begin driving its data before the first  
SPSCK edge, and a falling edge on the SS pin is used to start the slave data transmission. The slave’s  
SS pin must be toggled back to high and then low again between each byte transmitted as shown in  
Figure 15-5.  
When CPHA = 0 for a slave, the falling edge of SS indicates the beginning of the transmission. This  
causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. After the  
transmission begins, no new data is allowed into the shift register from the transmit data register.  
Therefore, the SPI data register of the slave must be loaded with transmit data before the falling edge of  
SS. Any data written after the falling edge is stored in the transmit data register and transferred to the shift  
register after the current transmission.  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
FROM MASTER  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
LSB  
MISO  
FROM SLAVE  
MSB  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 15-4. Transmission Format (CPHA = 0)  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 15-5. CPHA/SS Timing  
15.3.3.3 Transmission Format When CPHA = 1  
Figure 15-6 shows an SPI transmission in which CPHA = 1. The figure should not be used as a  
replacement for data sheet parametric information. Two waveforms are shown for SPSCK: one for  
CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing  
diagram because the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI)  
pins are directly connected between the master and the slave. The MISO signal is the output from the  
slave, and the MOSI signal is the output from the master. The SS line is the slave select input to the slave.  
The slave SPI drives its MISO output only when its slave select input (SS) is low, so that only the selected  
slave drives to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
174  
Freescale Semiconductor  
 
 
Functional Description  
pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See  
15.3.6.2 Mode Fault Error.) When CPHA = 1, the master begins driving its MOSI pin on the first SPSCK  
edge. Therefore, the slave uses the first SPSCK edge as a start transmission signal. The SS pin can  
remain low between transmissions. This format may be preferable in systems having only one master and  
only one slave driving the MISO data line.  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning of the transmission. This  
causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. After the  
transmission begins, no new data is allowed into the shift register from the transmit data register.  
Therefore, the SPI data register of the slave must be loaded with transmit data before the first edge of  
SPSCK. Any data written after the first edge is stored in the transmit data register and transferred to the  
shift register after the current transmission.  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
FROM MASTER  
MSB  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
MISO  
FROM SLAVE  
LSB  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 15-6. Transmission Format (CPHA = 1)  
15.3.3.4 Transmission Initiation Latency  
When the SPI is configured as a master (SPMSTR = 1), writing to the SPDR starts a transmission. CPHA  
has no effect on the delay to the start of the transmission, but it does affect the initial state of the SPSCK  
signal. When CPHA = 0, the SPSCK signal remains inactive for the first half of the first SPSCK cycle.  
When CPHA = 1, the first SPSCK cycle begins with an edge on the SPSCK line from its inactive to its  
active level. The SPI clock rate (selected by SPR1:SPR0) affects the delay from the write to SPDR and  
the start of the SPI transmission. (See Figure 15-7.) The internal SPI clock in the master is a free-running  
derivative of the internal MCU clock. To conserve power, it is enabled only when both the SPE and  
SPMSTR bits are set. Because the SPI clock is free-running, it is uncertain where the write to the SPDR  
occurs relative to the slower SPSCK. This uncertainty causes the variation in the initiation delay shown  
in Figure 15-7. This delay is no longer than a single SPI bit time. That is, the maximum delay is two MCU  
bus cycles for DIV2, eight MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32, and 128 MCU bus  
cycles for DIV128.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
175  
 
Serial Peripheral Interface (SPI) Module  
WRITE  
TO SPDR  
INITIATION DELAY  
BUS  
CLOCK  
MOSI  
MSB  
BIT 6  
BIT 5  
SPSCK  
CPHA = 1  
SPSCK  
CPHA = 0  
SPSCK CYCLE  
NUMBER  
1
2
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN  
WRITE  
TO SPDR  
BUS  
CLOCK  
SPSCK = BUS CLOCK ÷ 2;  
2 POSSIBLE START POINTS  
EARLIEST  
LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
WRITE  
TO SPDR  
SPSCK = BUS CLOCK ÷ 8;  
8 POSSIBLE START POINTS  
LATEST  
LATEST  
LATEST  
BUS  
CLOCK  
EARLIEST  
WRITE  
TO SPDR  
SPSCK = BUS CLOCK ÷ 32;  
32 POSSIBLE START POINTS  
BUS  
CLOCK  
EARLIEST  
SPSCK = BUS CLOCK ÷ 128;  
128 POSSIBLE START POINTS  
Figure 15-7. Transmission Start Delay (Master)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
176  
Functional Description  
15.3.4 Queuing Transmission Data  
The double-buffered transmit data register allows a data byte to be queued and transmitted. For an SPI  
configured as a master, a queued data byte is transmitted immediately after the previous transmission  
has completed. The SPI transmitter empty flag (SPTE) indicates when the transmit data buffer is ready  
to accept new data. Write to the transmit data register only when the SPTE bit is high. Figure 15-8  
shows the timing associated with doing back-to-back transmissions with the SPI (SPSCK has  
CPHA: CPOL = 1:0).  
1
3
8
WRITE TO SPDR  
SPTE  
5
10  
2
SPSCK  
CPHA:CPOL = 1:0  
MOSI  
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT  
3
6
BYTE 1  
5
4
3
2
1
6
BYTE 2  
5
4
2
1
6
BYTE 3  
5
4
4
9
SPRF  
READ SPSCR  
READ SPDR  
6
11  
7
12  
1
2
WRITE BYTE 1 TO SPDR, CLEARING SPTE BIT.  
BYTE 1 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
7
8
READ SPDR, CLEARING SPRF BIT.  
WRITE BYTE 3 TO SPDR, QUEUEING BYTE  
3 AND CLEARING SPTE BIT.  
9
SECOND INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
WRITE BYTE 2 TO SPDR, QUEUEING BYTE 2  
AND CLEARING SPTE BIT.  
3
4
10  
FIRST INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
BYTE 3 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
11  
12  
READ SPSCR WITH SPRF BIT SET.  
READ SPDR, CLEARING SPRF BIT.  
5
6
BYTE 2 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
READ SPSCR WITH SPRF BIT SET.  
Figure 15-8. SPRF/SPTE interrupt Timing  
The transmit data buffer allows back-to-back transmissions without the slave precisely timing its writes  
between transmissions as in a system with a single data buffer. Also, if no new data is written to the data  
buffer, the last value contained in the shift register is the next data word to be transmitted.  
For an idle master or idle slave that has no data loaded into its transmit buffer, the SPTE is set again no  
more than two bus cycles after the transmit buffer empties into the shift register. This allows the user to  
queue up a 16-bit value to send. For an already active slave, the load of the shift register cannot occur  
until the transmission is completed. This implies that a back-to-back write to the transmit data register is  
not possible. SPTE indicates when the next write can occur.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
177  
 
Serial Peripheral Interface (SPI) Module  
15.3.5 Resetting the SPI  
Any system reset completely resets the SPI. Partial resets occur whenever the SPI enable bit (SPE) is 0.  
Whenever SPE is 0, the following occurs:  
The SPTE flag is set.  
Any transmission currently in progress is aborted.  
The shift register is cleared.  
The SPI state counter is cleared, making it ready for a new complete transmission.  
All the SPI pins revert back to being general-purpose I/O.  
These items are reset only by a system reset:  
All control bits in the SPCR register  
All control bits in the SPSCR register (MODFEN, ERRIE, SPR1, and SPR0)  
The status flags SPRF, OVRF, and MODF  
By not resetting the control bits when SPE is low, the user can clear SPE between transmissions without  
having to set all control bits again when SPE is set high for the next transmission.  
By not resetting the SPRF, OVRF, and MODF flags, the user can still service these interrupts after the  
SPI has been disabled. The user can disable the SPI by writing 0 to the SPE bit. The SPI can also be  
disabled by a mode fault occurring in an SPI that was configured as a master with the MODFEN bit set.  
15.3.6 Error Conditions  
The following flags signal SPI error conditions:  
Overflow (OVRF) — Failing to read the SPI data register before the next full byte enters the shift  
register sets the OVRF bit. The new byte does not transfer to the receive data register, and the  
unread byte still can be read. OVRF is in the SPI status and control register.  
Mode fault error (MODF) — The MODF bit indicates that the voltage on the slave select pin (SS)  
is inconsistent with the mode of the SPI. MODF is in the SPI status and control register.  
15.3.6.1 Overflow Error  
The overflow flag (OVRF) becomes set if the receive data register still has unread data from a previous  
transmission when the capture strobe of bit 1 of the next transmission occurs. The bit 1 capture strobe  
occurs in the middle of SPSCK cycle 7 (see Figure 15-4 and Figure 15-6.) If an overflow occurs, all data  
received after the overflow and before the OVRF bit is cleared does not transfer to the receive data  
register and does not set the SPI receiver full bit (SPRF). The unread data that transferred to the receive  
data register before the overflow occurred can still be read. Therefore, an overflow error always indicates  
the loss of data. Clear the overflow flag by reading the SPI status and control register and then reading  
the SPI data register.  
OVRF generates a receiver/error interrupt request if the error interrupt enable bit (ERRIE) is also set. The  
SPRF, MODF, and OVRF interrupts share the same interrupt vector (see Figure 15-11.) It is not possible  
to enable MODF or OVRF individually to generate a receiver/error interrupt request. However, leaving  
MODFEN low prevents MODF from being set.  
If the SPRF interrupt is enabled and the OVRF interrupt is not, watch for an overflow condition.  
Figure 15-9 shows how it is possible to miss an overflow. The first part of Figure 15-9 shows how it is  
possible to read the SPSCR and SPDR to clear the SPRF without problems. However, as illustrated by  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
178  
Freescale Semiconductor  
 
Functional Description  
the second transmission example, the OVRF bit can be set in between the time that SPSCR and SPDR  
are read.  
In this case, an overflow can be missed easily. Because no more SPRF interrupts can be generated until  
this OVRF is serviced, it is not obvious that bytes are being lost as more transmissions are completed.  
To prevent this, either enable the OVRF interrupt or do another read of the SPSCR following the read of  
the SPDR. This ensures that the OVRF was not set before the SPRF was cleared and that future  
transmissions can set the SPRF bit. Figure 15-10 illustrates this process. Generally, to avoid this second  
SPSCR read, enable OVRF by setting the ERRIE bit.  
BYTE 1  
1
BYTE 2  
4
BYTE 3  
6
BYTE 4  
8
SPRF  
OVRF  
READ  
SPSCR  
2
5
5
READ  
SPDR  
3
7
1
2
BYTE 1 SETS SPRF BIT.  
READ SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
READ SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
6
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
3
4
READ BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
READ BYTE 2 IN SPDR, CLEARING SPRF BIT,  
BUT NOT OVRF BIT.  
BYTE 2 SETS SPRF BIT.  
8
BYTE 4 FAILS TO SET SPRF BIT BECAUSE  
OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST.  
Figure 15-9. Missed Read of Overflow Condition  
BYTE 1  
1
BYTE 2  
5
BYTE 3  
7
BYTE 4  
11  
SPI RECEIVE  
COMPLETE  
SPRF  
OVRF  
READ  
SPSCR  
2
4
6
9
12  
14  
READ  
SPDR  
3
8
10  
13  
1
2
5
9
BYTE 1 SETS SPRF BIT.  
BYTE 2 SETS SPRF BIT.  
READ SPSCR AGAIN TO CHECK OVRF BIT.  
READ BYTE 2 SPDR, CLEARING OVRF BIT.  
BYTE 4 SETS SPRF BIT.  
6
10  
11  
12  
13  
14  
READ SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
READ SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
3
4
READ BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
7
8
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
READ BYTE 2 IN SPDR, CLEARING SPRF BIT.  
READ SPSCR.  
READ SPSCR AGAIN TO CHECK OVRF BIT.  
READ BYTE 4 IN SPDR, CLEARING SPRF BIT.  
READ SPSCR AGAIN TO CHECK OVRF BIT.  
Figure 15-10. Clearing SPRF When OVRF Interrupt Is Not Enabled  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
179  
 
Serial Peripheral Interface (SPI) Module  
15.3.6.2 Mode Fault Error  
Setting SPMSTR selects master mode and configures the SPSCK and MOSI pins as outputs and the  
MISO pin as an input. Clearing SPMSTR selects slave mode and configures the SPSCK and MOSI pins  
as inputs and the MISO pin as an output. The mode fault bit, MODF, becomes set any time the state of  
the slave select pin, SS, is inconsistent with the mode selected by SPMSTR.  
To prevent SPI pin contention and damage to the MCU, a mode fault error occurs if:  
The SS pin of a slave SPI goes high during a transmission  
The SS pin of a master SPI goes low at any time  
For the MODF flag to be set, the mode fault error enable bit (MODFEN) must be set. Clearing the  
MODFEN bit does not clear the MODF flag but does prevent MODF from being set again after MODF is  
cleared.  
MODF generates a receiver/error interrupt request if the error interrupt enable bit (ERRIE) is also set. The  
SPRF, MODF, and OVRF interrupts share the same interrupt vector. (See Figure 15-11.) It is not possible  
to enable MODF or OVRF individually to generate a receiver/error interrupt request. However, leaving  
MODFEN low prevents MODF from being set.  
In a master SPI with the mode fault enable bit (MODFEN) set, the mode fault flag (MODF) is set if SS  
goes low. A mode fault in a master SPI causes the following events to occur:  
If ERRIE = 1, the SPI generates an SPI receiver/error interrupt request.  
The SPE bit is cleared.  
The SPTE bit is set.  
The SPI state counter is cleared.  
The data direction register of the shared I/O port regains control of port drivers.  
NOTE  
To prevent bus contention with another master SPI after a mode fault error,  
clear all SPI bits of the data direction register of the shared I/O port before  
enabling the SPI.  
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS goes high during a transmission.  
When CPHA = 0, a transmission begins when SS goes low and ends after the incoming SPSCK goes to  
its idle level following the shift of the eighth data bit. When CPHA = 1, the transmission begins when the  
SPSCK leaves its idle level and SS is already low. The transmission continues until the SPSCK returns  
to its idle level following the shift of the last data bit. See 15.3.3 Transmission Formats.  
NOTE  
Setting the MODF flag does not clear the SPMSTR bit. SPMSTR has no  
function when SPE = 0. Reading SPMSTR when MODF = 1 shows the  
difference between a MODF occurring when the SPI is a master and when  
it is a slave.  
When CPHA = 0, a MODF occurs if a slave is selected (SS is low) and later  
unselected (SS is high) even if no SPSCK is sent to that slave. This  
happens because SS low indicates the start of the transmission (MISO  
driven out with the value of MSB) for CPHA = 0. When CPHA = 1, a slave  
can be selected and then later unselected with no transmission occurring.  
Therefore, MODF does not occur because a transmission was never  
begun.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
180  
Freescale Semiconductor  
 
Interrupts  
In a slave SPI (MSTR = 0), MODF generates an SPI receiver/error interrupt request if the ERRIE bit is  
set. The MODF bit does not clear the SPE bit or reset the SPI in any way. Software can abort the SPI  
transmission by clearing the SPE bit of the slave.  
NOTE  
A high on the SS pin of a slave SPI puts the MISO pin in a high impedance  
state. Also, the slave SPI ignores all incoming SPSCK clocks, even if it was  
already in the middle of a transmission.  
To clear the MODF flag, read the SPSCR with the MODF bit set and then write to the SPCR register. This  
entire clearing mechanism must occur with no MODF condition existing or else the flag is not cleared.  
15.4 Interrupts  
Four SPI status flags can be enabled to generate interrupt requests. See Table 15-1.  
Table 15-1. SPI Interrupts  
Flag  
Request  
SPTE — Transmitter empty  
SPRF — Receiver full  
OVRF — Overflow  
SPI transmitter interrupt request (SPTIE = 1, SPE = 1)  
SPI receiver interrupt request (SPRIE = 1)  
SPI receiver/error interrupt request (ERRIE = 1)  
SPI receiver/error interrupt request (ERRIE = 1)  
MODF — Mode fault  
Reading the SPI status and control register with SPRF set and then reading the receive data register  
clears SPRF. The clearing mechanism for the SPTE flag is requires only a write to the transmit data  
register.  
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag to generate transmitter interrupt  
requests, provided that the SPI is enabled (SPE = 1).  
The SPI receiver interrupt enable bit (SPRIE) enables SPRF to generate receiver interrupt requests,  
regardless of the state of SPE. See Figure 15-11.  
SPTE  
SPTIE  
SPRF  
SPE  
SPI TRANSMITTER  
INTERRUPT REQUEST  
SPRIE  
SPI RECEIVER/ERROR  
INTERRUPT REQUEST  
ERRIE  
MODF  
OVRF  
Figure 15-11. SPI Interrupt Request Generation  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
181  
 
 
 
Serial Peripheral Interface (SPI) Module  
The error interrupt enable bit (ERRIE) enables both the MODF and OVRF bits to generate a receiver/error  
interrupt request.  
The mode fault enable bit (MODFEN) can prevent the MODF flag from being set so that only the OVRF  
bit is enabled by the ERRIE bit to generate receiver/error interrupt requests.  
The following sources in the SPI status and control register can generate interrupt requests:  
SPI receiver full bit (SPRF) — SPRF becomes set every time a byte transfers from the shift register  
to the receive data register. If the SPI receiver interrupt enable bit, SPRIE, is also set, SPRF  
generates an SPI receiver/error interrupt request.  
SPI transmitter empty bit (SPTE) — SPTE becomes set every time a byte transfers from the  
transmit data register to the shift register. If the SPI transmit interrupt enable bit, SPTIE, is also set,  
SPTE generates an SPTE interrupt request.  
15.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
15.5.1 Wait Mode  
The SPI module remains active after the execution of a WAIT instruction. In wait mode the SPI module  
registers are not accessible by the CPU. Any enabled interrupt request from the SPI module can bring  
the MCU out of wait mode.  
If SPI module functions are not required during wait mode, reduce power consumption by disabling the  
SPI module before executing the WAIT instruction.  
To exit wait mode when an overflow condition occurs, enable the OVRF bit to generate interrupt requests  
by setting the error interrupt enable bit (ERRIE). See 15.4 Interrupts.  
15.5.2 Stop Mode  
The SPI module is inactive after the execution of a STOP instruction. The STOP instruction does not  
affect register conditions. SPI operation resumes after an external interrupt. If stop mode is exited by  
reset, any transfer in progress is aborted, and the SPI is reset.  
15.6 SPI During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing  
the second step clears the status bit.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
182  
Freescale Semiconductor  
I/O Signals  
15.7 I/O Signals  
The SPI module can share its pins with the general-purpose I/O pins. See Figure 15-1 for the port pins  
that are shared.  
The SPI module has four I/O pins:  
MISO — Master input/slave output  
MOSI — Master output/slave input  
SPSCK — Serial clock  
SS — Slave select  
15.7.1 MISO (Master In/Slave Out)  
MISO is one of the two SPI module pins that transmits serial data. In full duplex operation, the MISO pin  
of the master SPI module is connected to the MISO pin of the slave SPI module. The master SPI  
simultaneously receives data on its MISO pin and transmits data from its MOSI pin.  
Slave output data on the MISO pin is enabled only when the SPI is configured as a slave. The SPI is  
configured as a slave when its SPMSTR bit is 0 and its SS pin is low. To support a multiple-slave system,  
a high on the SS pin puts the MISO pin in a high-impedance state.  
When enabled, the SPI controls data direction of the MISO pin regardless of the state of the data direction  
register of the shared I/O port.  
15.7.2 MOSI (Master Out/Slave In)  
MOSI is one of the two SPI module pins that transmits serial data. In full-duplex operation, the MOSI pin  
of the master SPI module is connected to the MOSI pin of the slave SPI module. The master SPI  
simultaneously transmits data from its MOSI pin and receives data on its MISO pin.  
When enabled, the SPI controls data direction of the MOSI pin regardless of the state of the data direction  
register of the shared I/O port.  
15.7.3 SPSCK (Serial Clock)  
The serial clock synchronizes data transmission between master and slave devices. In a master MCU,  
the SPSCK pin is the clock output. In a slave MCU, the SPSCK pin is the clock input. In full-duplex  
operation, the master and slave MCUs exchange a byte of data in eight serial clock cycles.  
When enabled, the SPI controls data direction of the SPSCK pin regardless of the state of the data  
direction register of the shared I/O port.  
15.7.4 SS (Slave Select)  
The SS pin has various functions depending on the current state of the SPI. For an SPI configured as a  
slave, SS is used to select a slave. For CPHA = 0, the SS is used to define the start of a transmission.  
(See 15.3.3 Transmission Formats.) Because it is used to indicate the start of a transmission, SS must  
be toggled high and low between each byte transmitted for the CPHA = 0 format. However, it can remain  
low between transmissions for the CPHA = 1 format. See Figure 15-12.  
When an SPI is configured as a slave, the SS pin is always configured as an input. It cannot be used as  
a general-purpose I/O regardless of the state of the MODFEN control bit. However, the MODFEN bit can  
still prevent the state of SS from creating a MODF error. See 15.8.2 SPI Status and Control Register.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
183  
 
Serial Peripheral Interface (SPI) Module  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 15-12. CPHA/SS Timing  
NOTE  
A high on the SS pin of a slave SPI puts the MISO pin in a high-impedance  
state. The slave SPI ignores all incoming SPSCK clocks, even if it was  
already in the middle of a transmission.  
When an SPI is configured as a master, the SS input can be used in conjunction with the MODF flag to  
prevent multiple masters from driving MOSI and SPSCK. (See 15.3.6.2 Mode Fault Error.) For the state  
of the SS pin to set the MODF flag, the MODFEN bit in the SPSCK register must be set. If the MODFEN  
bit is 0 for an SPI master, the SS pin can be used as a general-purpose I/O under the control of the data  
direction register of the shared I/O port. When MODFEN is 1, it is an input-only pin to the SPI regardless  
of the state of the data direction register of the shared I/O port.  
User software can read the state of the SS pin by configuring the appropriate pin as an input and reading  
the port data register. See Table 15-2.  
Table 15-2. SPI Configuration  
SPE  
SPMSTR  
MODFEN  
SPI Configuration  
Not enabled  
Function of SS Pin  
General-purpose I/O; SS ignored by SPI  
Input-only to SPI  
X(1)  
0
0
1
1
1
X
X
0
1
Slave  
1
Master without MODF  
Master with MODF  
General-purpose I/O; SS ignored by SPI  
Input-only to SPI  
1
1. X = Don’t care  
15.8 Registers  
The following registers allow the user to control and monitor SPI operation:  
SPI control register (SPCR)  
SPI status and control register (SPSCR)  
SPI data register (SPDR)  
15.8.1 SPI Control Register  
The SPI control register:  
Enables SPI module interrupt requests  
Configures the SPI module as master or slave  
Selects serial clock polarity and phase  
Configures the SPSCK, MOSI, and MISO pins as open-drain outputs  
Enables the SPI module  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
184  
Freescale Semiconductor  
 
 
Registers  
Bit 7  
6
5
SPMSTR  
1
4
CPOL  
0
3
CPHA  
1
2
SPWOM  
0
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
SPRIE  
R
0
0
= Reserved  
R
Figure 15-13. SPI Control Register (SPCR)  
SPRIE — SPI Receiver Interrupt Enable Bit  
This read/write bit enables interrupt requests generated by the SPRF bit. The SPRF bit is set when a  
byte transfers from the shift register to the receive data register.  
1 = SPRF interrupt requests enabled  
0 = SPRF interrupt requests disabled  
SPMSTR — SPI Master Bit  
This read/write bit selects master mode operation or slave mode operation.  
1 = Master mode  
0 = Slave mode  
CPOL — Clock Polarity Bit  
This read/write bit determines the logic state of the SPSCK pin between transmissions. (See  
Figure 15-4 and Figure 15-6.) To transmit data between SPI modules, the SPI modules must have  
identical CPOL values.  
CPHA — Clock Phase Bit  
This read/write bit controls the timing relationship between the serial clock and SPI data. (See  
Figure 15-4 and Figure 15-6.) To transmit data between SPI modules, the SPI modules must have  
identical CPHA values. When CPHA = 0, the SS pin of the slave SPI module must be high between  
bytes. (See Figure 15-12.)  
SPWOM — SPI Wired-OR Mode Bit  
This read/write bit configures pins SPSCK, MOSI, and MISO so that these pins become open-drain  
outputs.  
1 = Wired-OR SPSCK, MOSI, and MISO pins  
0 = Normal push-pull SPSCK, MOSI, and MISO pins  
SPE — SPI Enable  
This read/write bit enables the SPI module. Clearing SPE causes a partial reset of the SPI. (See 15.3.5  
Resetting the SPI.)  
1 = SPI module enabled  
0 = SPI module disabled  
SPTIE— SPI Transmit Interrupt Enable  
This read/write bit enables interrupt requests generated by the SPTE bit. SPTE is set when a byte  
transfers from the transmit data register to the shift register.  
1 = SPTE interrupt requests enabled  
0 = SPTE interrupt requests disabled  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
185  
Serial Peripheral Interface (SPI) Module  
15.8.2 SPI Status and Control Register  
The SPI status and control register contains flags to signal these conditions:  
Receive data register full  
Failure to clear SPRF bit before next byte is received (overflow error)  
Inconsistent logic level on SS pin (mode fault error)  
Transmit data register empty  
The SPI status and control register also contains bits that perform these functions:  
Enable error interrupts  
Enable mode fault error detection  
Select master SPI baud rate  
Bit 7  
6
ERRIE  
0
5
4
3
2
MODFEN  
0
1
SPR1  
0
Bit 0  
SPR0  
0
Read:  
Write:  
Reset:  
SPRF  
OVRF  
MODF  
SPTE  
0
0
0
1
= Unimplemented  
Figure 15-14. SPI Status and Control Register (SPSCR)  
SPRF — SPI Receiver Full Bit  
This clearable, read-only flag is set each time a byte transfers from the shift register to the receive data  
register. SPRF generates a interrupt request if the SPRIE bit in the SPI control register is set also.  
During an SPRF interrupt, user software can clear SPRF by reading the SPI status and control register  
with SPRF set followed by a read of the SPI data register.  
1 = Receive data register full  
0 = Receive data register not full  
ERRIE — Error Interrupt Enable Bit  
This read/write bit enables the MODF and OVRF bits to generate interrupt requests.  
1 = MODF and OVRF can generate interrupt requests  
0 = MODF and OVRF cannot generate interrupt requests  
OVRF — Overflow Bit  
This clearable, read-only flag is set if software does not read the byte in the receive data register before  
the next full byte enters the shift register. In an overflow condition, the byte already in the receive data  
register is unaffected, and the byte that shifted in last is lost. Clear the OVRF bit by reading the SPI  
status and control register with OVRF set and then reading the receive data register.  
1 = Overflow  
0 = No overflow  
MODF — Mode Fault Bit  
This clearable, read-only flag is set in a slave SPI if the SS pin goes high during a transmission with  
MODFEN set. In a master SPI, the MODF flag is set if the SS pin goes low at any time with the  
MODFEN bit set. Clear MODF by reading the SPI status and control register (SPSCR) with MODF set  
and then writing to the SPI control register (SPCR).  
1 = SS pin at inappropriate logic level  
0 = SS pin at appropriate logic level  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
186  
Freescale Semiconductor  
Registers  
SPTE — SPI Transmitter Empty Bit  
This clearable, read-only flag is set each time the transmit data register transfers a byte into the shift  
register. SPTE generates an SPTE interrupt request if the SPTIE bit in the SPI control register is also  
set.  
NOTE  
Do not write to the SPI data register unless SPTE is high.  
During an SPTE interrupt, user software can clear SPTE by writing to the transmit data register.  
1 = Transmit data register empty  
0 = Transmit data register not empty  
MODFEN — Mode Fault Enable Bit  
This read/write bit, when set, allows the MODF flag to be set. If the MODF flag is set, clearing  
MODFEN does not clear the MODF flag. If the SPI is enabled as a master and the MODFEN bit is 0,  
then the SS pin is available as a general-purpose I/O.  
If the MODFEN bit is 1, then this pin is not available as a general-purpose I/O. When the SPI is enabled  
as a slave, the SS pin is not available as a general-purpose I/O regardless of the value of MODFEN.  
See 15.7.4 SS (Slave Select).  
If the MODFEN bit is 0, the level of the SS pin does not affect the operation of an enabled SPI  
configured as a master. For an enabled SPI configured as a slave, having MODFEN low only prevents  
the MODF flag from being set. It does not affect any other part of SPI operation. See 15.3.6.2 Mode  
Fault Error.  
SPR1 and SPR0 — SPI Baud Rate Select Bits  
In master mode, these read/write bits select one of four baud rates as shown in Table 15-3. SPR1 and  
SPR0 have no effect in slave mode.  
Table 15-3. SPI Master Baud Rate Selection  
SPR1 and SPR0  
Baud Rate Divisor (BD)  
00  
01  
10  
11  
2
8
32  
128  
Use this formula to calculate the SPI baud rate:  
Baud rate =  
BUSCLK  
BD  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
187  
 
Serial Peripheral Interface (SPI) Module  
15.8.3 SPI Data Register  
The SPI data register consists of the read-only receive data register and the write-only transmit data  
register. Writing to the SPI data register writes data into the transmit data register. Reading the SPI data  
register reads data from the receive data register. The transmit data and receive data registers are  
separate registers that can contain different values. See Figure 15-2.  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 15-15. SPI Data Register (SPDR)  
R7–R0/T7–T0 — Receive/Transmit Data Bits  
NOTE  
Do not use read-modify-write instructions on the SPI data register because  
the register read is not the same as the register written.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
188  
Freescale Semiconductor  
Chapter 16  
Timer Interface Module (TIM1)  
16.1 Introduction  
This section describes the timer interface module (TIM1). The TIM1 module is a 4-channel timer that  
provides a timing reference with input capture, output compare, and pulse-width-modulation functions.  
The TIM1 module shares its pins with general-purpose input/output (I/O) port pins. See Figure 16-1 for  
port location of these shared pins.  
16.2 Features  
Features include the following:  
Four input capture/output compare channels  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered output compare pulse-width modulation (PWM) signal generation  
Programmable clock input  
7-frequency internal bus clock prescaler selection  
External clock input pin if available, see Figure 16-1  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
Counter stop and reset bits  
16.3 Functional Description  
Figure 16-2 shows the structure of the TIM1. The central component of the TIM1 is the 16-bit counter that  
can operate as a free-running counter or a modulo up-counter. The counter provides the timing reference  
for the input capture and output compare functions. The TIM1 counter modulo registers,  
T1MODH:T1MODL, control the modulo value of the counter. Software can read the counter value,  
T1CNTH:T1CNTL, at any time without affecting the counting sequence.  
The four TIM1 channels are programmable independently as input capture or output compare channels.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
189  
Timer Interface Module (TIM1)  
PTA0/T1CH0/AD0/KBI0  
PTA1/T1CH1/AD1/KBI1  
PTA2/IRQ/KBI2/T1CLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0/SPSCK/AD4  
PTB1/MOSI/T2CH1/AD5  
PTB2/MISO/T2CH0/AD6  
PTB3/SS/T2CLK/AD7  
PTB4/RxD/T2CH0/AD8  
PTB5/TxD/T2CH1/AD9  
PTB6/T1CH2  
BREAK  
MODULE  
PERIODIC WAKEUP  
MODULE  
PTB7/T1CH3  
PTC0  
PTC1  
PTC2  
PTC3  
LOW-VOLTAGE  
INHIBIT  
MC68HC908QC16  
16,384 BYTES  
4-CHANNEL 16-BIT  
TIMER MODULE  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
MC68HC908QC8  
8192 BYTES  
2-CHANNEL 16-BIT  
TIMER MODULE  
MC68HC908QC4  
4096 BYTES  
USER FLASH  
COP  
MODULE  
10-CHANNEL  
10-BIT ADC  
MC68HC908QC16  
512 BYTES  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
MC68HC908QC8  
384 BYTES  
MC68HC908QC4  
384 BYTES  
SERIAL PERIPHERAL  
INTERFACE  
USER RAM  
MONITOR ROM  
V
V
DD  
SS  
POWER SUPPLY  
All port pins can be configured with internal pullup  
PTC not available on 16-pin devices (see note in 11.1 Introduction)  
PTD not available on 16-pin or 20-pin devices (see note in 11.1 Introduction)  
Figure 16-1. Block Diagram Highlighting TIM1 Block and Pins  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
190  
Freescale Semiconductor  
 
Functional Description  
T1CLK  
T1CLK  
(IF AVAILABLE)  
PRESCALER SELECT  
INTERNAL  
BUS CLOCK  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
T1CNTH:T1CNTL  
TOIE  
16-BIT COMPARATOR  
T1MODH:T1MODL  
TOV0  
ELS0B  
ELS0A  
PORT  
T1CH0  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
T1CH0H:T1CH0L  
16-BIT LATCH  
CH0MAX  
CH0F  
INTERRUPT  
LOGIC  
CH0IE  
MS0A  
MS0B  
CH1F  
TOV1  
ELS1B  
ELS1A  
PORT  
T1CH1  
LOGIC  
CHANNEL 1  
CH1MAX  
16-BIT COMPARATOR  
T1CH1H:T1CH1L  
16-BIT LATCH  
INTERRUPT  
LOGIC  
CH1IE  
MS1A  
TOV2  
ELS2B  
ELS2A  
PORT  
T1CH2  
LOGIC  
CHANNEL 2  
CH2MAX  
16-BIT COMPARATOR  
T1CH2H:T1CH2L  
CH2F  
MS2B  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CHANNEL 3  
CH2IE  
MS2A  
TOV3  
ELS3B  
ELS3A  
PORT  
T1CH3  
LOGIC  
CH3MAX  
16-BIT COMPARATOR  
T1CH3H:T1CH3L  
CH3F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH3IE  
MS3A  
Figure 16-2. TIM1 Block Diagram  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
191  
Timer Interface Module (TIM1)  
16.3.1 TIM1 Counter Prescaler  
The TIM1 clock source is one of the seven prescaler outputs or the external clock input pin, T1CLK if  
available. The prescaler generates seven clock rates from the internal bus clock. The prescaler select  
bits, PS[2:0], in the TIM1 status and control register (T1SC) select the clock source.  
16.3.2 Input Capture  
With the input capture function, the TIM1 can capture the time at which an external event occurs. When  
an active edge occurs on the pin of an input capture channel, the TIM1 latches the contents of the counter  
into the TIM1 channel registers, T1CHxH:T1CHxL. The polarity of the active edge is programmable. Input  
captures can be enabled to generate interrupt requests.  
16.3.3 Output Compare  
With the output compare function, the TIM1 can generate a periodic pulse with a programmable polarity,  
duration, and frequency. When the counter reaches the value in the registers of an output compare  
channel, the TIM1 can set, clear, or toggle the channel pin. Output compares can be enabled to generate  
interrupt requests.  
16.3.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as described in 16.3.3  
Output Compare. The pulses are unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM1 channel registers.  
An unsynchronized write to the TIM1 channel registers to change an output compare value could cause  
incorrect operation for up to two counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new value prevents any compare during  
that counter overflow period. Also, using a TIM1 overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM1 may pass the new value before it is  
written.  
Use the following methods to synchronize unbuffered changes in the output compare value on channel x:  
When changing to a smaller value, enable channel x output compare interrupts and write the new  
value in the output compare interrupt routine. The output compare interrupt occurs at the end of  
the current output compare pulse. The interrupt routine has until the end of the counter overflow  
period to write the new value.  
When changing to a larger output compare value, enable TIM1 overflow interrupts and write the  
new value in the TIM1 overflow interrupt routine. The TIM1 overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an output compare interrupt routine  
(at the end of the current pulse) could cause two output compares to occur in the same counter  
overflow period.  
16.3.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the  
T1CH0 pin. The TIM1 channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM1 channel 0 status and control register (T1SC0) links channel 0 and channel 1.  
The output compare value in the TIM1 channel 0 registers initially controls the output on the T1CH0 pin.  
Writing to the TIM1 channel 1 registers enables the TIM1 channel 1 registers to synchronously control the  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
192  
Freescale Semiconductor  
 
Functional Description  
output after the TIM1 overflows. At each subsequent overflow, the TIM1 channel registers (0 or 1) that  
control the output are the ones written to last. T1SC0 controls and monitors the buffered output compare  
function, and TIM1 channel 1 status and control register (T1SC1) is unused. While the MS0B bit is set,  
the channel 1 pin, T1CH1, is available as a general-purpose I/O pin.  
Channels 2 and 3 can be linked to form a buffered output compare channel whose output appears on the  
T1CH2 pin. The TIM1 channel registers of the linked pair alternately control the output.  
Setting the MS2B bit in TIM1 channel 2 status and control register (T1SC2) links channel 2 and channel 3.  
The output compare value in the TIM1 channel 2 registers initially controls the output on the T1CH2 pin.  
Writing to the TIM1 channel 3 registers enables the TIM1 channel 3 registers to synchronously control the  
output after the TIM1 overflows. At each subsequent overflow, the TIM1 channel registers (2 or 3) that  
control the output are the ones written to last. T1SC2 controls and monitors the buffered output compare  
function, and TIM1 channel 3 status and control register (T1SC3) is unused. While the MS2B bit is set,  
the channel 3 pin, T1CH3, is available as a general-purpose I/O pin.  
NOTE  
In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should track  
the currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered output compares.  
16.3.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIM1 can generate a PWM  
signal. The value in the TIM1 counter modulo registers determines the period of the PWM signal. The  
channel pin toggles when the counter reaches the value in the TIM1 counter modulo registers. The time  
between overflows is the period of the PWM signal.  
As Figure 16-3 shows, the output compare value in the TIM1 channel registers determines the pulse width  
of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM1  
to clear the channel pin on output compare if the polarity of the PWM pulse is 1 (ELSxA = 0). Program  
the TIM1 to set the pin if the polarity of the PWM pulse is 0 (ELSxA = 1).  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
POLARITY = 1  
(ELSxA = 0)  
T1CHx  
T1CHx  
PULSE  
WIDTH  
POLARITY = 0  
(ELSxA = 1)  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 16-3. PWM Period and Pulse Width  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
193  
 
 
Timer Interface Module (TIM1)  
The value in the TIM1 counter modulo registers and the selected prescaler output determines the  
frequency of the PWM output The frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIM1 counter modulo registers produces a PWM period of 256 times the internal bus  
clock period if the prescaler select value is 000. See 16.8.1 TIM1 Status and Control Register.  
The value in the TIM1 channel registers determines the pulse width of the PWM output. The pulse width  
of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM1 channel registers  
produces a duty cycle of 128/256 or 50%.  
16.3.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described in 16.3.4 Pulse Width  
Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM1 channel registers.  
An unsynchronized write to the TIM1 channel registers to change a pulse width value could cause  
incorrect operation for up to two PWM periods. For example, writing a new value before the counter  
reaches the old value but after the counter reaches the new value prevents any compare during that PWM  
period. Also, using a TIM1 overflow interrupt routine to write a new, smaller pulse width value may cause  
the compare to be missed. The TIM1 may pass the new value before it is written to the timer channel  
(T1CHxH:T1CHxL).  
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output compare interrupts and write the  
new value in the output compare interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the PWM period to write the new  
value.  
When changing to a longer pulse width, enable TIM1 overflow interrupts and write the new value  
in the TIM1 overflow interrupt routine. The TIM1 overflow interrupt occurs at the end of the current  
PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current  
pulse) could cause two output compares to occur in the same PWM period.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare also can  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
16.3.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the T1CH0  
pin. The TIM1 channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM1 channel 0 status and control register (T1SC0) links channel 0 and channel 1.  
The TIM1 channel 0 registers initially control the pulse width on the T1CH0 pin. Writing to the TIM1  
channel 1 registers enables the TIM1 channel 1 registers to synchronously control the pulse width at the  
beginning of the next PWM period. At each subsequent overflow, the TIM1 channel registers (0 or 1) that  
control the pulse width are the ones written to last. T1SC0 controls and monitors the buffered PWM  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
194  
Freescale Semiconductor  
Functional Description  
function, and TIM1 channel 1 status and control register (T1SC1) is unused. While the MS0B bit is set,  
the channel 1 pin, T1CH1, is available as a general-purpose I/O pin.  
Channels 2 and 3 can be linked to form a buffered PWM channel whose output appears on the T1CH2  
pin. The TIM1 channel registers of the linked pair alternately control the output.  
Setting the MS2B bit in TIM1 channel 2 status and control register (T1SC2) links channel 2 and channel 3.  
The TIM1 channel 2 registers initially control the pulse width on the T1CH2 pin. Writing to the TIM1  
channel 3 registers enables the TIM1 channel 3 registers to synchronously control the pulse width at the  
beginning of the next PWM period. At each subsequent overflow, the TIM1 channel registers (2 or 3) that  
control the pulse width are the ones written to last. T1SC2 controls and monitors the buffered PWM  
function, and TIM1 channel 3 status and control register (T1SC3) is unused. While the MS2B bit is set,  
the channel 3 pin, T1CH3, is available as a general-purpose I/O pin.  
NOTE  
In buffered PWM signal generation, do not write new pulse width values to  
the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered PWM signals.  
16.3.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals, use the following  
initialization procedure:  
1. In the TIM1 status and control register (T1SC):  
a. Stop the counter by setting the TIM1 stop bit, TSTOP.  
b. Reset the counter and prescaler by setting the TIM1 reset bit, TRST.  
2. In the TIM1 counter modulo registers (T1MODH:T1MODL), write the value for the required PWM  
period.  
3. In the TIM1 channel x registers (T1CHxH:T1CHxL), write the value for the required pulse width.  
4. In TIM1 channel x status and control register (T1SCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare  
or PWM signals) to the mode select bits, MSxB:MSxA. See Table 16-2.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (polarity 1 — to clear output on compare) or 1:1 (polarity 0 — to set output on  
compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must  
force the output to the complement of the pulse width level. See Table 16-2.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare can also  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
5. In the TIM1 status control register (T1SC), clear the TIM1 stop bit, TSTOP.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
195  
Timer Interface Module (TIM1)  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM1  
channel 0 registers (T1CH0H:T1CH0L) initially control the buffered PWM output. TIM1 status control  
register 0 (T1SC0) controls and monitors the PWM signal from the linked channels. MS0B takes priority  
over MS0A.  
Setting MS2B links channels 2 and 3 and configures them for buffered PWM operation. The TIM1  
channel 2 registers (T1CH2H:T1CH2L) initially control the buffered PWM output. TIM1 status control  
register 2 (T1SC2) controls and monitors the PWM signal from the linked channels. MS2B takes priority  
over MS2A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM1 overflows. Subsequent output  
compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle  
output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty  
cycle output. See 16.8.4 TIM1 Channel Status and Control Registers.  
16.4 Interrupts  
The following TIM1 sources can generate interrupt requests:  
TIM1 overflow flag (TOF) — The TOF bit is set when the counter reaches the modulo value  
programmed in the TIM1 counter modulo registers. The TIM1 overflow interrupt enable bit, TOIE,  
enables TIM1 overflow interrupt requests. TOF and TOIE are in the T1SC register.  
TIM1 channel flags (CH3F:CH0F) — The CHxF bit is set when an input capture or output compare  
occurs on channel x. Channel x TIM1 interrupt requests are controlled by the channel x interrupt  
enable bit, CHxIE. Channel x TIM1 interrupt requests are enabled when CHxIE =1. CHxF and  
CHxIE are in the T1SCx register.  
16.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
16.5.1 Wait Mode  
The TIM1 remains active after the execution of a WAIT instruction. In wait mode the TIM1 registers are  
not accessible by the CPU. Any enabled interrupt request from the TIM1 can bring the MCU out of wait  
mode.  
If TIM1 functions are not required during wait mode, reduce power consumption by stopping the TIM1  
before executing the WAIT instruction.  
16.5.2 Stop Mode  
The TIM1 module is inactive after the execution of a STOP instruction. The STOP instruction does not  
affect register conditions. TIM1 operation resumes after an external interrupt. If stop mode is exited by  
reset, the TIM1 is reset.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
196  
Freescale Semiconductor  
TIM1 During Break Interrupts  
16.6 TIM1 During Break Interrupts  
A break interrupt stops the counter and inhibits input captures.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing  
the second step clears the status bit.  
16.7 I/O Signals  
The TIM1 module can share its pins with the general-purpose I/O pins. See Figure 16-1 for the port pins  
that are shared.  
16.7.1 TIM1 Channel I/O Pins (T1CH3:T1CH0)  
Each channel I/O pin is programmable independently as an input capture pin or an output compare pin.  
T1CH0 and T1CH2 can be configured as buffered output compare or buffered PWM pins.  
16.7.2 TIM1 Clock Pin (T1CLK)  
T1CLK is an external clock input that can be the clock source for the counter instead of the prescaled  
internal bus clock. Select the T1CLK input by writing 1s to the three prescaler select bits, PS[2:0]. The  
Timer Interface Module Characteristics table in the Electricals section. The maximum T1CLK frequency  
is the least of 4 MHz or bus frequency ÷ 2.  
16.8 Registers  
The following registers control and monitor operation of the TIM1:  
TIM1 status and control register (T1SC)  
TIM1 control registers (T1CNTH:T1CNTL)  
TIM1 counter modulo registers (T1MODH:T1MODL)  
TIM1 channel status and control registers (T1SC0 through T1SC3)  
TIM1 channel registers (T1CH0H:T1CH0L through T1CH3H:T1CH3L)  
16.8.1 TIM1 Status and Control Register  
The TIM1 status and control register (T1SC) does the following:  
Enables TIM1 overflow interrupts  
Flags TIM1 overflows  
Stops the counter  
Resets the counter  
Prescales the counter clock  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
197  
Timer Interface Module (TIM1)  
Bit 7  
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TOF  
0
0
TRST  
0
0
= Unimplemented  
Figure 16-4. TIM1 Status and Control Register (T1SC)  
TOF — TIM1 Overflow Flag Bit  
This read/write flag is set when the counter reaches the modulo value programmed in the TIM1 counter  
modulo registers. Clear TOF by reading the T1SC register when TOF is set and then writing a 0 to  
TOF. If another TIM1 overflow occurs before the clearing sequence is complete, then writing 0 to TOF  
has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF.  
Writing a 1 to TOF has no effect.  
1 = Counter has reached modulo value  
0 = Counter has not reached modulo value  
TOIE — TIM1 Overflow Interrupt Enable Bit  
This read/write bit enables TIM1 overflow interrupts when the TOF bit becomes set.  
1 = TIM1 overflow interrupts enabled  
0 = TIM1 overflow interrupts disabled  
TSTOP — TIM1 Stop Bit  
This read/write bit stops the counter. Counting resumes when TSTOP is cleared. Reset sets the  
TSTOP bit, stopping the counter until software clears the TSTOP bit.  
1 = Counter stopped  
0 = Counter active  
NOTE  
Do not set the TSTOP bit before entering wait mode if the TIM1 is required  
to exit wait mode. Also, when the TSTOP bit is set and the timer is  
configured for input capture operation, input captures are inhibited until the  
TSTOP bit is cleared.  
When using TSTOP to stop the timer counter, see if any timer flags are set.  
If a timer flag is set, it must be cleared by clearing TSTOP, then clearing the  
flag, then setting TSTOP again.  
TRST — TIM1 Reset Bit  
Setting this write-only bit resets the counter and the TIM1 prescaler. Setting TRST has no effect on  
any other timer registers. Counting resumes from $0000. TRST is cleared automatically after the  
counter is reset and always reads as 0.  
1 = Prescaler and counter cleared  
0 = No effect  
NOTE  
Setting the TSTOP and TRST bits simultaneously stops the counter at a  
value of $0000.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
198  
Freescale Semiconductor  
Registers  
PS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the input to the counter as  
Table 16-1 shows.  
Table 16-1. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM1 Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
T1CLK (if available)  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
16.8.2 TIM1 Counter Registers  
The two read-only TIM1 counter registers contain the high and low bytes of the value in the counter.  
Reading the high byte (T1CNTH) latches the contents of the low byte (T1CNTL) into a buffer. Subsequent  
reads of T1CNTH do not affect the latched T1CNTL value until T1CNTL is read. Reset clears the TIM1  
counter registers. Setting the TIM1 reset bit (TRST) also clears the TIM1 counter registers.  
NOTE  
If you read T1CNTH during a break interrupt, be sure to unlatch T1CNTL  
by reading T1CNTL before exiting the break interrupt. Otherwise, T1CNTL  
retains the value latched during the break.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
0
0
0
0
0
0
0
0
Figure 16-5. TIM1 Counter High Register (T1CNTH)  
Bit 7  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
0
0
0
0
0
0
0
Reset:  
= Unimplemented  
Figure 16-6. TIM1 Counter Low Register (T1CNTL)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
199  
 
Timer Interface Module (TIM1)  
16.8.3 TIM1 Counter Modulo Registers  
The read/write TIM1 modulo registers contain the modulo value for the counter. When the counter  
reaches the modulo value, the overflow flag (TOF) becomes set, and the counter resumes counting from  
$0000 at the next timer clock. Writing to the high byte (T1MODH) inhibits the TOF bit and overflow  
interrupts until the low byte (T1MODL) is written. Reset sets the TIM1 counter modulo registers.  
Bit 7  
Bit15  
1
6
Bit14  
1
5
Bit13  
1
4
Bit12  
1
3
Bit11  
1
2
Bit10  
1
1
Bit9  
1
Bit 0  
Bit8  
1
Read:  
Write:  
Reset:  
Figure 16-7. TIM1 Counter Modulo High Register (T1MODH)  
Bit 7  
Bit7  
1
6
Bit6  
1
5
Bit5  
1
4
Bit4  
1
3
Bit3  
1
2
Bit2  
1
1
Bit1  
1
Bit 0  
Bit0  
1
Read:  
Write:  
Reset:  
Figure 16-8. TIM1 Counter Modulo Low Register (T1MODL)  
NOTE  
Reset the counter before writing to the TIM1 counter modulo registers.  
16.8.4 TIM1 Channel Status and Control Registers  
Each of the TIM1 channel status and control registers does the following:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input capture trigger  
Selects output toggling on TIM1 overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
200  
Freescale Semiconductor  
Registers  
Bit 7  
CH0F  
0
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
0
Figure 16-9. TIM1 Channel 0 Status and Control Register (T1SC0)  
Bit 7  
CH1F  
0
6
CH1IE  
0
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
0
0
Figure 16-10. TIM1 Channel 1 Status and Control Register (T1SC1)  
Bit 7  
CH2F  
0
6
CH2IE  
0
5
MS2B  
0
4
MS2A  
0
3
ELS2B  
0
2
ELS2A  
0
1
TOV2  
0
Bit 0  
CH2MAX  
0
Read:  
Write:  
Reset:  
0
Figure 16-11. TIM1 Channel 2 Status and Control Register (T1SC2)  
Bit 7  
CH3F  
0
6
5
0
4
MS3A  
0
3
ELS3B  
0
2
ELS3A  
0
1
TOV3  
0
Bit 0  
CH3MAX  
0
Read:  
Write:  
Reset:  
CH3IE  
0
0
0
= Unimplemented  
Figure 16-12. TIM1 Channel 3 Status and Control Register (T1SC3)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set when an active edge occurs on  
the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the  
counter registers matches the value in the TIM1 channel x registers.  
Clear CHxF by reading the T1SCx register with CHxF set and then writing a 0 to CHxF. If another  
interrupt request occurs before the clearing sequence is complete, then writing 0 to CHxF has no  
effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF.  
Writing a 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM1 interrupt service requests on channel x.  
1 = Channel x interrupt requests enabled  
0 = Channel x interrupt requests disabled  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
201  
Timer Interface Module (TIM1)  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the T1SC0  
and T1SC2 registers.  
Setting MS0B causes the contents of T1SC1 to be ignored by the TIM1 and reverts T1CH1 to  
general-purpose I/O.  
Setting MS2B causes the contents of T1SC3 to be ignored by the TIM1 and reverts T1CH3 to  
general-purpose I/O.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture operation or unbuffered output  
compare/PWM operation. See Table 16-2.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level of the T1CHx pin (see  
Table 16-2).  
1 = Initial output level low  
0 = Initial output level high  
NOTE  
Before changing a channel function by writing to the MSxB or MSxA bit, set  
the TSTOP and TRST bits in the TIM1 status and control register (T1SC).  
Table 16-2. Mode, Edge, and Level Selection  
MSxB MSxA  
ELSxB  
ELSxA  
Mode  
Configuration  
Pin under port control; initial output level high  
Pin under port control; initial output level low  
Capture on rising edge only  
Capture on falling edge only  
Capture on rising or falling edge  
Software compare only  
X
X
0
0
0
0
0
0
0
1
1
1
0
1
0
0
0
1
1
1
1
X
X
X
0
0
0
1
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
1
0
1
Output preset  
Input capture  
Toggle output on compare  
Output compare  
or PWM  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Buffered output  
compare or  
buffered PWM  
Clear output on compare  
Set output on compare  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic  
on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the channel x output  
behavior when an output compare occurs.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
202  
Freescale Semiconductor  
 
Registers  
When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port, and pin T1CHx is  
available as a general-purpose I/O pin. Table 16-2 shows how ELSxB and ELSxA work.  
NOTE  
After initially enabling a TIM1 channel register for input capture operation  
and selecting the edge sensitivity, clear CHxF to ignore any erroneous  
edge detection flags.  
TOVx — Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the behavior of the channel  
x output when the counter overflows. When channel x is an input capture channel, TOVx has no effect.  
1 = Channel x pin toggles on counter overflow.  
0 = Channel x pin does not toggle on counter overflow.  
NOTE  
When TOVx is set, a counter overflow takes precedence over a channel x  
output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered  
PWM signals to 100%. As Figure 16-13 shows, the CHxMAX bit takes effect in the cycle after it is set  
or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
T1CHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
Figure 16-13. CHxMAX Latency  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
203  
 
Timer Interface Module (TIM1)  
16.8.5 TIM1 Channel Registers  
These read/write registers contain the captured counter value of the input capture function or the output  
compare value of the output compare function. The state of the TIM1 channel registers after reset is  
unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM1 channel x registers  
(T1CHxH) inhibits input captures until the low byte (T1CHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of the TIM1 channel x registers  
(T1CHxH) inhibits output compares until the low byte (T1CHxL) is written.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Indeterminate after reset  
Figure 16-14. TIM1 Channel x Register High (T1CHxH)  
Bit 7  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
Figure 16-15. TIM1 Channel Register Low (T1CHxL)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
204  
Chapter 17  
Timer Interface Module (TIM2)  
17.1 Introduction  
This section describes the timer interface module (TIM2). The TIM2 module is a 2-channel timer that  
provides a timing reference with input capture, output compare, and pulse-width-modulation functions.  
The TIM2 module shares its pins with general-purpose input/output (I/O) port pins. See Figure 17-1 for  
port location of these shared pins.  
17.2 Features  
Features include the following:  
Two input capture/output compare channels  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered output compare pulse-width modulation (PWM) signal generation  
Programmable clock input  
7-frequency internal bus clock prescaler selection  
External clock input pin if available, See Figure 17-1  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
Counter stop and reset bits  
17.3 Functional Description  
Figure 17-2 shows the structure of the TIM2. The central component of the TIM2 is the 16-bit counter that  
can operate as a free-running counter or a modulo up-counter. The counter provides the timing reference  
for the input capture and output compare functions. The counter modulo registers, T2MODH:T2MODL,  
control the modulo value of the counter. Software can read the counter value, T2CNTH:T2CNTL, at any  
time without affecting the counting sequence.  
The two TIM2 channels are programmable independently as input capture or output compare channels.  
17.3.1 TIM2 Counter Prescaler  
The TIM2 clock source is one of the seven prescaler outputs or the external clock input pin, T2CLK if  
available. The prescaler generates seven clock rates from the internal bus clock. The prescaler select  
bits, PS[2:0], in the TIM2 status and control register (T2SC) select the clock source.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
205  
Timer Interface Module (TIM2)  
PTA0/T1CH0/AD0/KBI0  
PTA1/T1CH1/AD1/KBI1  
PTA2/IRQ/KBI2/T1CLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0/SPSCK/AD4  
PTB1/MOSI/T2CH1/AD5  
PTB2/MISO/T2CH0/AD6  
PTB3/SS/T2CLK/AD7  
PTB4/RxD/T2CH0/AD8  
PTB5/TxD/T2CH1/AD9  
PTB6/T1CH2  
BREAK  
MODULE  
PERIODIC WAKEUP  
MODULE  
PTB7/T1CH3  
PTC0  
PTC1  
PTC2  
PTC3  
LOW-VOLTAGE  
INHIBIT  
MC68HC908QC16  
16,384 BYTES  
4-CHANNEL 16-BIT  
TIMER MODULE  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
MC68HC908QC8  
8192 BYTES  
2-CHANNEL 16-BIT  
TIMER MODULE  
MC68HC908QC4  
4096 BYTES  
USER FLASH  
COP  
MODULE  
10-CHANNEL  
10-BIT ADC  
MC68HC908QC16  
512 BYTES  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
MC68HC908QC8  
384 BYTES  
MC68HC908QC4  
384 BYTES  
SERIAL PERIPHERAL  
INTERFACE  
USER RAM  
MONITOR ROM  
V
V
DD  
SS  
POWER SUPPLY  
All port pins can be configured with internal pullup  
PTC not available on 16-pin devices (see note in 11.1 Introduction)  
PTD not available on 16-pin or 20-pin devices (see note in 11.1 Introduction)  
Figure 17-1. Block Diagram Highlighting TIM2 Block and Pins  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
206  
Freescale Semiconductor  
 
Functional Description  
T2CLK  
T2CLK  
(IF AVAILABLE)  
PRESCALER SELECT  
INTERNAL  
BUS CLOCK  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
T2CNTH:T2CNTL  
TOIE  
16-BIT COMPARATOR  
T2MODH:T2MODL  
TOV0  
ELS0B  
ELS0A  
PORT  
T2CH0  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
T2CH0H:T2CH0L  
CH0MAX  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH0IE  
MS0A  
MS0B  
CH1F  
TOV1  
ELS1B  
ELS1A  
PORT  
T2CH1  
LOGIC  
CHANNEL 1  
16-BIT COMPARATOR  
T2CH1H:T2CH1L  
16-BIT LATCH  
CH1MAX  
INTERRUPT  
LOGIC  
CH1IE  
MS1A  
Figure 17-2. TIM2 Block Diagram  
17.3.2 Input Capture  
With the input capture function, the TIM2 can capture the time at which an external event occurs. When  
an active edge occurs on the pin of an input capture channel, the TIM2 latches the contents of the counter  
into the TIM2 channel registers, T2CHxH:T2CHxL. The polarity of the active edge is programmable. Input  
captures can be enabled to generate interrupt requests.  
17.3.3 Output Compare  
With the output compare function, the TIM2 can generate a periodic pulse with a programmable polarity,  
duration, and frequency. When the counter reaches the value in the registers of an output compare  
channel, the TIM2 can set, clear, or toggle the channel pin. Output compares can be enabled to generate  
interrupt requests.  
17.3.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as described in 17.3.3  
Output Compare. The pulses are unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM2 channel registers.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
207  
 
Timer Interface Module (TIM2)  
An unsynchronized write to the TIM2 channel registers to change an output compare value could cause  
incorrect operation for up to two counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new value prevents any compare during  
that counter overflow period. Also, using a TIM2 overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM2 may pass the new value before it is  
written.  
Use the following methods to synchronize unbuffered changes in the output compare value on channel x:  
When changing to a smaller value, enable channel x output compare interrupts and write the new  
value in the output compare interrupt routine. The output compare interrupt occurs at the end of  
the current output compare pulse. The interrupt routine has until the end of the counter overflow  
period to write the new value.  
When changing to a larger output compare value, enable TIM2 overflow interrupts and write the  
new value in the TIM2 overflow interrupt routine. The TIM2 overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an output compare interrupt routine  
(at the end of the current pulse) could cause two output compares to occur in the same counter  
overflow period.  
17.3.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the  
T2CH0 pin. The TIM2 channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM2 channel 0 status and control register (T2SC0) links channel 0 and channel  
1. The output compare value in the TIM2 channel 0 registers initially controls the output on the T2CH0  
pin. Writing to the TIM2 channel 1 registers enables the TIM2 channel 1 registers to synchronously control  
the output after the TIM2 overflows. At each subsequent overflow, the TIM2 channel registers (0 or 1) that  
control the output are the ones written to last. T2SC0 controls and monitors the buffered output compare  
function, and TIM2 channel 1 status and control register (T2SC1) is unused. While the MS0B bit is set,  
the channel 1 pin, T2CH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should track  
the currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered output compares.  
17.3.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIM2 can generate a PWM  
signal. The value in the TIM2 counter modulo registers determines the period of the PWM signal. The  
channel pin toggles when the counter reaches the value in the TIM2 counter modulo registers. The time  
between overflows is the period of the PWM signal.  
As Figure 17-3 shows, the output compare value in the TIM2 channel registers determines the pulse width  
of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM2  
to clear the channel pin on output compare if the polarity of the PWM pulse is 1 (ELSxA = 0). Program  
the TIM2 to set the pin if the polarity of the PWM pulse is 0 (ELSxA = 1).  
The value in the TIM2 counter modulo registers and the selected prescaler output determines the  
frequency of the PWM output The frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
208  
Freescale Semiconductor  
 
Functional Description  
$00FF (255) to the TIM2 counter modulo registers produces a PWM period of 256 times the internal bus  
clock period if the prescaler select value is 000. See 17.8.1 TIM2 Status and Control Register.  
The value in the TIM2 channel registers determines the pulse width of the PWM output. The pulse width  
of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM2 channel registers  
produces a duty cycle of 128/256 or 50%.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
POLARITY = 1  
(ELSxA = 0)  
T2CHx  
PULSE  
WIDTH  
POLARITY = 0 T2CHx  
(ELSxA = 1)  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 17-3. PWM Period and Pulse Width  
17.3.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described in 17.3.4 Pulse Width  
Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM2 channel registers.  
An unsynchronized write to the TIM2 channel registers to change a pulse width value could cause  
incorrect operation for up to two PWM periods. For example, writing a new value before the counter  
reaches the old value but after the counter reaches the new value prevents any compare during that PWM  
period. Also, using a TIM2 overflow interrupt routine to write a new, smaller pulse width value may cause  
the compare to be missed. The TIM2 may pass the new value before it is written to the timer channel  
(T2CHxH:T2CHxL).  
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output compare interrupts and write the  
new value in the output compare interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the PWM period to write the new  
value.  
When changing to a longer pulse width, enable TIM2 overflow interrupts and write the new value  
in the TIM2 overflow interrupt routine. The TIM2 overflow interrupt occurs at the end of the current  
PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current  
pulse) could cause two output compares to occur in the same PWM period.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare also can  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
209  
Timer Interface Module (TIM2)  
17.3.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the T2CH0  
pin. The TIM2 channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM2 channel 0 status and control register (T2SC0) links channel 0 and channel 1.  
The TIM2 channel 0 registers initially control the pulse width on the T2CH0 pin. Writing to the TIM2  
channel 1 registers enables the TIM2 channel 1 registers to synchronously control the pulse width at the  
beginning of the next PWM period. At each subsequent overflow, the TIM2 channel registers (0 or 1) that  
control the pulse width are the ones written to last. T2SC0 controls and monitors the buffered PWM  
function, and TIM2 channel 1 status and control register (T2SC1) is unused. While the MS0B bit is set,  
the channel 1 pin, T2CH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered PWM signal generation, do not write new pulse width values to  
the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered PWM signals.  
17.3.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals, use the following  
initialization procedure:  
1. In the TIM2 status and control register (T2SC):  
a. Stop the counter by setting the TIM2 stop bit, TSTOP.  
b. Reset the counter and prescaler by setting the TIM2 reset bit, TRST.  
2. In the TIM2 counter modulo registers (T2MODH:T2MODL), write the value for the required PWM  
period.  
3. In the TIM2 channel x registers (T2CHxH:T2CHxL), write the value for the required pulse width.  
4. In TIM2 channel x status and control register (T2SCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare  
or PWM signals) to the mode select bits, MSxB:MSxA. See Table 17-2.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (polarity 1 — to clear output on compare) or 1:1 (polarity 0 — to set output on  
compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must  
force the output to the complement of the pulse width level. See Table 17-2.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare can also  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
5. In the TIM2 status control register (T2SC), clear the TIM2 stop bit, TSTOP.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
210  
Freescale Semiconductor  
Interrupts  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM2  
channel 0 registers (T2CH0H:T2CH0L) initially control the buffered PWM output. TIM2 status control  
register 0 (T2SCR0) controls and monitors the PWM signal from the linked channels. MS0B takes priority  
over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM2 overflows. Subsequent output  
compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle  
output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty  
cycle output. See 17.8.1 TIM2 Status and Control Register.  
17.4 Interrupts  
The following TIM2 sources can generate interrupt requests:  
TIM2 overflow flag (TOF) — The TOF bit is set when the counter reaches the modulo value  
programmed in the TIM2 counter modulo registers. The TIM2 overflow interrupt enable bit, TOIE,  
enables TIM2 overflow interrupt requests. TOF and TOIE are in the T2SC register.  
TIM2 channel flags (CH1F:CH0F) — The CHxF bit is set when an input capture or output compare  
occurs on channel x. Channel x TIM2 interrupt requests are controlled by the channel x interrupt  
enable bit, CHxIE. Channel x TIM2 interrupt requests are enabled when CHxIE =1. CHxF and  
CHxIE are in the T2SCx register.  
17.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
17.5.1 Wait Mode  
The TIM2 remains active after the execution of a WAIT instruction. In wait mode the TIM2 registers are  
not accessible by the CPU. Any enabled interrupt request from the TIM2 can bring the MCU out of wait  
mode.  
If TIM2 functions are not required during wait mode, reduce power consumption by stopping the TIM2  
before executing the WAIT instruction.  
17.5.2 Stop Mode  
The TIM2 module is inactive after the execution of a STOP instruction. The STOP instruction does not  
affect register conditions. TIM2 operation resumes after an external interrupt. If stop mode is exited by  
reset, the TIM2 is reset.  
17.6 TIM2 During Break Interrupts  
A break interrupt stops the counter and inhibits input captures.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
211  
Timer Interface Module (TIM2)  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing  
the second step clears the status bit.  
17.7 I/O Signals  
The TIM2 module can share its pins with the general-purpose I/O pins. See Figure 17-1 for the port pins  
that are shared.  
17.7.1 TIM2 Channel I/O Pins (T2CH1:T2CH0)  
Each channel I/O pin is programmable independently as an input capture pin or an output compare pin.  
T2CH0 can be configured as buffered output compare or buffered PWM pin.  
17.7.2 TIM2 Clock Pin (T2CLK)  
T2CLK is an external clock input that can be the clock source for the counter instead of the prescaled  
internal bus clock. Select the T2CLK input by writing 1s to the three prescaler select bits, PS[2:0]. The  
minimum T2CLK pulse width is specified in the Timer Interface Module Characteristics table in the  
Electricals section. The maximum T2CLK frequency is the least of 4 MHz or bus  
frequency ÷ 2.  
17.8 Registers  
The following registers control and monitor operation of the TIM2:  
TIM2 status and control register (T2SC)  
TIM2 control registers (T2CNTH:T2CNTL)  
TIM2 counter modulo registers (T2MODH:T2MODL)  
TIM2 channel status and control registers (T2SC0 and T2SC1)  
TIM2 channel registers (T2CH0H:T2CH0L and T2CH1H:T2CH1L)  
17.8.1 TIM2 Status and Control Register  
The TIM2 status and control register (T2SC) does the following:  
Enables TIM2 overflow interrupts  
Flags TIM2 overflows  
Stops the counter  
Resets the counter  
Prescales the counter clock  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
212  
Registers  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 17-4. TIM2 Status and Control Register (T2SC)  
TOF — TIM2 Overflow Flag Bit  
This read/write flag is set when the counter reaches the modulo value programmed in the TIM2 counter  
modulo registers. Clear TOF by reading the T2SC register when TOF is set and then writing a 0 to  
TOF. If another TIM2 overflow occurs before the clearing sequence is complete, then writing 0 to TOF  
has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF.  
Writing a 1 to TOF has no effect.  
1 = Counter has reached modulo value  
0 = Counter has not reached modulo value  
TOIE — TIM2 Overflow Interrupt Enable Bit  
This read/write bit enables TIM2 overflow interrupts when the TOF bit becomes set.  
1 = TIM2 overflow interrupts enabled  
0 = TIM2 overflow interrupts disabled  
TSTOP — TIM2 Stop Bit  
This read/write bit stops the counter. Counting resumes when TSTOP is cleared. Reset sets the  
TSTOP bit, stopping the counter until software clears the TSTOP bit.  
1 = Counter stopped  
0 = Counter active  
NOTE  
Do not set the TSTOP bit before entering wait mode if the TIM2 is required  
to exit wait mode. Also, when the TSTOP bit is set and the timer is  
configured for input capture operation, input captures are inhibited until the  
TSTOP bit is cleared.  
When using TSTOP to stop the timer counter, see if any timer flags are set.  
If a timer flag is set, it must be cleared by clearing TSTOP, then clearing the  
flag, then setting TSTOP again.  
TRST — TIM2 Reset Bit  
Setting this write-only bit resets the counter and the TIM2 prescaler. Setting TRST has no effect on  
any other timer registers. Counting resumes from $0000. TRST is cleared automatically after the  
counter is reset and always reads as 0.  
1 = Prescaler and counter cleared  
0 = No effect  
NOTE  
Setting the TSTOP and TRST bits simultaneously stops the counter at a  
value of $0000.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
213  
Timer Interface Module (TIM2)  
PS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the input to the counter as  
Table 17-1 shows.  
Table 17-1. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM2 Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
T2CLK (if available)  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
17.8.2 TIM2 Counter Registers  
The two read-only TIM2 counter registers contain the high and low bytes of the value in the counter.  
Reading the high byte (T2CNTH) latches the contents of the low byte (T2CNTL) into a buffer. Subsequent  
reads of T2CNTH do not affect the latched T2CNTL value until T2CNTL is read. Reset clears the TIM2  
counter registers. Setting the TIM2 reset bit (TRST) also clears the TIM2 counter registers.  
NOTE  
If you read T2CNTH during a break interrupt, be sure to unlatch T2CNTL  
by reading T2CNTL before exiting the break interrupt. Otherwise, T2CNTL  
retains the value latched during the break.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
0
0
0
0
0
0
0
0
Figure 17-5. TIM2 Counter High Register (T2CNTH)  
Bit 7  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 17-6. TIM2 Counter Low Register (T2CNTL)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
214  
 
Registers  
17.8.3 TIM2 Counter Modulo Registers  
The read/write TIM2 modulo registers contain the modulo value for the counter. When the counter  
reaches the modulo value, the overflow flag (TOF) becomes set, and the counter resumes counting from  
$0000 at the next timer clock. Writing to the high byte (T2MODH) inhibits the TOF bit and overflow  
interrupts until the low byte (T2MODL) is written. Reset sets the TIM2 counter modulo registers.  
Bit 7  
Bit15  
1
6
Bit14  
1
5
Bit13  
1
4
Bit12  
1
3
Bit11  
1
2
Bit10  
1
1
Bit9  
1
Bit 0  
Bit8  
1
Read:  
Write:  
Reset:  
Figure 17-7. TIM2 Counter Modulo High Register (T2MODH)  
Bit 7  
Bit7  
1
6
Bit6  
1
5
Bit5  
1
4
Bit4  
1
3
Bit3  
1
2
Bit2  
1
1
Bit1  
1
Bit 0  
Bit0  
1
Read:  
Write:  
Reset:  
Figure 17-8. TIM2 Counter Modulo Low Register (T2MODL)  
NOTE  
Reset the counter before writing to the TIM2 counter modulo registers.  
17.8.4 TIM2 Channel Status and Control Registers  
Each of the TIM2 channel status and control registers does the following:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input capture trigger  
Selects output toggling on TIM2 overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Bit 7  
CH0F  
0
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
0
Figure 17-9. TIM2 Channel 0 Status and Control Register (T2SC0)  
Bit 7  
CH1F  
0
6
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
CH1IE  
0
0
0
= Unimplemented  
Figure 17-10. TIM2 Channel 1 Status and Control Register (T2SC1)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
215  
Timer Interface Module (TIM2)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set when an active edge occurs on  
the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the  
counter registers matches the value in the TIM2 channel x registers.  
Clear CHxF by reading the T2SCx register with CHxF set and then writing a 0 to CHxF. If another  
interrupt request occurs before the clearing sequence is complete, then writing 0 to CHxF has no  
effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF.  
Writing a 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM2 interrupt service requests on channel x.  
1 = Channel x interrupt requests enabled  
0 = Channel x interrupt requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the T2SC0.  
Setting MS0B causes the contents of T2SC1 to be ignored by the TIM2 and reverts T2CH1 to  
general-purpose I/O.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture operation or unbuffered output  
compare/PWM operation. See Table 17-2.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level of the T2CHx pin (see  
Table 17-2).  
1 = Initial output level low  
0 = Initial output level high  
NOTE  
Before changing a channel function by writing to the MSxB or MSxA bit, set  
the TSTOP and TRST bits in the TIM2 status and control register (T2SC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic  
on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the channel x output  
behavior when an output compare occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port, and pin T2CHx is  
available as a general-purpose I/O pin. Table 17-2 shows how ELSxB and ELSxA work.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
216  
Freescale Semiconductor  
Registers  
Table 17-2. Mode, Edge, and Level Selection  
MSxB  
MSxA  
ELSxB  
ELSxA  
Mode  
Configuration  
Pin under port control; initial output level high  
Pin under port control; initial output level low  
Capture on rising edge only  
Capture on falling edge only  
Capture on rising or falling edge  
Software compare only  
X
X
0
0
0
0
0
0
0
1
1
1
0
1
0
0
0
1
1
1
1
X
X
X
0
0
0
1
1
0
0
1
1
0
1
1
0
0
1
0
1
0
1
0
1
1
0
1
Output preset  
Input capture  
Toggle output on compare  
Output compare  
or PWM  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Buffered output  
compare or  
buffered PWM  
Clear output on compare  
Set output on compare  
NOTE  
After initially enabling a TIM2 channel register for input capture operation  
and selecting the edge sensitivity, clear CHxF to ignore any erroneous  
edge detection flags.  
TOVx — Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the behavior of the channel  
x output when the counter overflows. When channel x is an input capture channel, TOVx has no effect.  
1 = Channel x pin toggles on TIM2 counter overflow.  
0 = Channel x pin does not toggle on TIM2 counter overflow.  
NOTE  
When TOVx is set, a counter overflow takes precedence over a channel x  
output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered  
PWM signals to 100%. As Figure 17-11 shows, the CHxMAX bit takes effect in the cycle after it is set  
or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
T2CHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
Figure 17-11. CHxMAX Latency  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
217  
 
Timer Interface Module (TIM2)  
17.8.5 TIM2 Channel Registers  
These read/write registers contain the captured counter value of the input capture function or the output  
compare value of the output compare function. The state of the TIM2 channel registers after reset is  
unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM2 channel x registers  
(T2CHxH) inhibits input captures until the low byte (T2CHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of the TIM2 channel x registers  
(T2CHxH) inhibits output compares until the low byte (T2CHxL) is written.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Indeterminate after reset  
Figure 17-12. TIM2 Channel x Register High (T2CHxH)  
Bit 7  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
Figure 17-13. TIM2 Channel Register Low (T2CHxL)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
218  
Freescale Semiconductor  
Chapter 18  
Development Support  
18.1 Introduction  
This section describes the break module, the monitor module (MON), and the monitor mode entry  
methods.  
18.2 Break Module (BRK)  
The break module can generate a break interrupt that stops normal program flow at a defined address to  
enter a background program.  
Features include:  
Accessible input/output (I/O) registers during the break Interrupt  
Central processor unit (CPU) generated break interrupts  
Software-generated break interrupts  
Computer operating properly (COP) disabling during break interrupts  
18.2.1 Functional Description  
When the internal address bus matches the value written in the break address registers, the break module  
issues a breakpoint signal (BKPT) to the system integration module (SIM). The SIM then causes the CPU  
to load the instruction register with a software interrupt instruction (SWI). The program counter vectors to  
$FFFC and $FFFD ($FEFC and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
A CPU generated address (the address in the program counter) matches the contents of the break  
address registers.  
Software writes a 1 to the BRKA bit in the break status and control register.  
When a CPU generated address matches the contents of the break address registers, the break interrupt  
is generated. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and  
returns the microcontroller unit (MCU) to normal operation.  
Figure 18-2 shows the structure of the break module.  
When the internal address bus matches the value written in the break address registers or when software  
writes a 1 to the BRKA bit in the break status and control register, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
219  
Development Support  
PTA0/T1CH0/AD0/KBI0  
PTA1/T1CH1/AD1/KBI1  
PTA2/IRQ/KBI2/T1CLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0/SPSCK/AD4  
PTB1/MOSI/T2CH1/AD5  
PTB2/MISO/T2CH0/AD6  
PTB3/SS/T2CLK/AD7  
PTB4/RxD/T2CH0/AD8  
PTB5/TxD/T2CH1/AD9  
PTB6/T1CH2  
BREAK  
MODULE  
PERIODIC WAKEUP  
MODULE  
PTB7/T1CH3  
PTC0  
PTC1  
PTC2  
PTC3  
LOW-VOLTAGE  
INHIBIT  
MC68HC908QC16  
16,384 BYTES  
4-CHANNEL 16-BIT  
TIMER MODULE  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
MC68HC908QC8  
8192 BYTES  
2-CHANNEL 16-BIT  
TIMER MODULE  
MC68HC908QC4  
4096 BYTES  
USER FLASH  
COP  
MODULE  
10-CHANNEL  
10-BIT ADC  
MC68HC908QC16  
512 BYTES  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
MC68HC908QC8  
384 BYTES  
MC68HC908QC4  
384 BYTES  
SERIAL PERIPHERAL  
INTERFACE  
USER RAM  
MONITOR ROM  
V
V
DD  
SS  
POWER SUPPLY  
All port pins can be configured with internal pullup  
PTC not available on 16-pin devices (see note in 11.1 Introduction)  
PTD not available on 16-pin or 20-pin devices (see note in 11.1 Introduction)  
Figure 18-1. Block Diagram Highlighting BRK and MON Blocks  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
220  
Freescale Semiconductor  
Break Module (BRK)  
ADDRESS BUS[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
ADDRESS BUS[15:0]  
CONTROL  
BKPT  
(TO SIM)  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
ADDRESS BUS[7:0]  
Figure 18-2. Break Module Block Diagram  
The break interrupt timing is:  
When a break address is placed at the address of the instruction opcode, the instruction is not  
executed until after completion of the break interrupt routine.  
When a break address is placed at an address of an instruction operand, the instruction is  
executed before the break interrupt.  
When software writes a 1 to the BRKA bit, the break interrupt occurs just before the next instruction  
is executed.  
By updating a break address and clearing the BRKA bit in a break interrupt routine, a break interrupt can  
be generated continuously.  
CAUTION  
A break address should be placed at the address of the instruction opcode. When software does not  
change the break address and clears the BRKA bit in the first break interrupt routine, the next break  
interrupt will not be generated after exiting the interrupt routine even when the internal address bus  
matches the value written in the break address registers.  
18.2.1.1 Flag Protection During Break Interrupts  
The system integration module (SIM) controls whether or not module status bits can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See 14.8.2 Break Flag Control Register and the Break Interrupts subsection  
for each module.  
18.2.1.2 TIM1 During Break Interrupts  
A break interrupt stops the timer counter and inhibits input captures.  
18.2.1.3 COP During Break Interrupts  
The COP is disabled during a break interrupt with monitor mode when BDCOP bit is set in break auxiliary  
register (BRKAR).  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
221  
Development Support  
18.2.2 Break Module Registers  
These registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
Break status register (BSR)  
Break flag control register (BFCR)  
18.2.2.1 Break Status and Control Register  
The break status and control register (BRKSCR) contains break module enable and status bits.  
Bit 7  
BRKE  
0
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 18-3. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches. Clear BRKE by writing a 0 to  
bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address match occurs. Writing a 1 to BRKA  
generates a break interrupt. Clear BRKA by writing a 0 to it before exiting the break routine. Reset  
clears the BRKA bit.  
1 = Break address match  
0 = No break address match  
18.2.2.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint  
address. Reset clears the break address registers.  
Bit 7  
Bit 15  
0
6
Bit 14  
0
5
Bit 13  
0
4
Bit 12  
0
3
Bit 11  
0
2
Bit 10  
0
1
Bit 9  
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Figure 18-4. Break Address Register High (BRKH)  
Bit 7  
Bit 7  
0
6
Bit 6  
0
5
Bit 5  
0
4
Bit 4  
0
3
Bit 3  
0
2
Bit 2  
0
1
Bit 1  
0
Bit 0  
Bit 0  
0
Read:  
Write:  
Reset:  
Figure 18-5. Break Address Register Low (BRKL)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
222  
Break Module (BRK)  
18.2.2.3 Break Auxiliary Register  
The break auxiliary register (BRKAR) contains a bit that enables software to disable the COP while the  
MCU is in a state of break interrupt with monitor mode.  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
BDCOP  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
= Unimplemented  
Figure 18-6. Break Auxiliary Register (BRKAR)  
BDCOP — Break Disable COP Bit  
This read/write bit disables the COP during a break interrupt. Reset clears the BDCOP bit.  
1 = COP disabled during break interrupt  
0 = COP enabled during break interrupt  
18.2.2.4 Break Status Register  
The break status register (BSR) contains a flag to indicate that a break caused an exit from wait mode.  
This register is only used in emulation mode.  
Bit 7  
R
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
R
R
R
R
= Reserved  
1. Writing a 0 clears SBSW.  
Figure 18-7. Break Status Register (BSR)  
SBSW — SIM Break Stop/Wait  
SBSW can be read within the break state SWI routine. The user can modify the return address on the  
stack by subtracting one from it.  
1 = Wait mode was exited by break interrupt  
0 = Wait mode was not exited by break interrupt  
18.2.2.5 Break Flag Control Register  
The break control register (BFCR) contains a bit that enables software to clear status bits while the MCU  
is in a break state.  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
= Reserved  
R
Figure 18-8. Break Flag Control Register (BFCR)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
223  
Development Support  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
18.2.3 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes. If enabled, the  
break module will remain enabled in wait and stop modes. However, since the internal address bus does  
not increment in these modes, a break interrupt will never be triggered.  
18.3 Monitor Module (MON)  
The monitor module allows debugging and programming of the microcontroller unit (MCU) through a  
single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher  
test voltage, V  
, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware  
TST  
requirements for in-circuit programming.  
Features include:  
Normal user-mode pin functionality  
One pin dedicated to serial communication between MCU and host computer  
Standard non-return-to-zero (NRZ) communication with host computer  
Standard communication baud rate (7200 @ 2-MHz bus frequency)  
Execution of code in random-access memory (RAM) or FLASH  
(1)  
FLASH memory security feature  
FLASH memory programming interface  
Use of external 9.8304 MHz oscillator to generate internal frequency of 2.4576 MHz  
Simple internal oscillator mode of operation (no external clock or high voltage)  
Monitor mode entry without high voltage, V  
$FF)  
, if reset vector is blank ($FFFE and $FFFF contain  
TST  
Normal monitor mode entry if V  
is applied to IRQ  
TST  
18.3.1 Functional Description  
Figure 18-9 shows a simplified diagram of monitor mode entry.  
The monitor module receives and executes commands from a host computer. Figure 18-10, Figure 18-11,  
and Figure 18-12 show example circuits used to enter monitor mode and communicate with a host  
computer via a standard RS-232 interface.  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
224  
Freescale Semiconductor  
Monitor Module (MON)  
POR RESET  
YES  
NO  
IRQ = V  
?
TST  
CONDITIONS  
PTA0 = 1,  
PTA1 = 1, AND  
PTA4 = 0?  
PTA0 = 1,  
RESET VECTOR  
BLANK?  
NO  
NO  
FROM Table 18-1  
YES  
YES  
FORCED  
MONITOR MODE  
NORMAL  
USER MODE  
NORMAL  
MONITOR MODE  
INVALID  
USER MODE  
HOST SENDS  
8 SECURITY BYTES  
YES  
IS RESET  
POR?  
NO  
ARE ALL  
SECURITY BYTES  
CORRECT?  
YES  
NO  
ENABLE FLASH  
DISABLE FLASH  
MONITOR MODE ENTRY  
DEBUGGING  
AND FLASH  
PROGRAMMING  
(IF FLASH  
IS ENABLED)  
EXECUTE  
MONITOR CODE  
NO  
YES  
DOES RESET  
OCCUR?  
Figure 18-9. Simplified Monitor Mode Entry Flowchart  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
225  
Development Support  
V
DD  
V
DD  
10 k*  
V
DD  
RST (PTA3)  
0.1 µF  
9.8304 MHz CLOCK  
MAX232  
V
DD  
OSC1 (PTA5)  
1
16  
15  
2
C1+  
V
TST  
+
+
+
V
DD  
1 µF  
1 µF  
3
4
C1–  
C2+  
1 µF  
1 kΩ  
+
10 k*  
10 k*  
PTA1  
PTA4  
V+  
V–  
IRQ (PTA2)  
V
DD  
1 µF  
6
5
9.1 V  
C2–  
1 µF  
10 kΩ  
+
74HC125  
6
DB9  
5
10  
9
2
7
8
PTA0  
74HC125  
3
2
4
3
5
V
SS  
1
* Value not critical  
Figure 18-10. Monitor Mode Circuit (External Clock, with High Voltage)  
V
DD  
N.C.  
RST (PTA3)  
V
DD  
0.1 µF  
MAX232  
V
DD  
1
16  
15  
2
9.8304 MHz CLOCK  
C1+  
OSC1 (PTA5)  
+
+
1 µF  
1 µF  
3
4
1 µF  
C1–  
C2+  
+
PTA1  
N.C.  
N.C.  
10 k*  
V+  
V–  
V
+
IRQ (PTA2)  
DD  
1 µF  
6
PTA4  
5
C2–  
1 µF  
10 kΩ  
+
74HC125  
DB9  
5
10  
9
6
2
7
8
PTA0  
74HC125  
3
4
3
5
2
V
SS  
1
* Value not critical  
Figure 18-11. Monitor Mode Circuit (External Clock, No High Voltage)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
226  
Freescale Semiconductor  
 
Monitor Module (MON)  
V
DD  
N.C.  
N.C.  
RST (PTA3)  
V
DD  
0.1 µF  
MAX232  
V
DD  
OSC1 (PTA5)  
IRQ (PTA2)  
1
16  
15  
2
C1+  
+
+
+
1 µF  
1 µF  
PTA1  
PTA4  
N.C.  
N.C.  
3
4
1 µF  
C1–  
C2+  
+
10 k*  
V+  
V–  
V
DD  
1 µF  
6
5
C2–  
1 µF  
10 kΩ  
+
74HC125  
DB9  
5
10  
9
2
7
8
6
PTA0  
V
SS  
74HC125  
3
2
4
3
5
1
* Value not critical  
Figure 18-12. Monitor Mode Circuit (Internal Clock, No High Voltage)  
Simple monitor commands can access any memory address. In monitor mode, the MCU can execute  
code downloaded into RAM by a host computer while most MCU pins retain normal operating mode  
functions. All communication between the host computer and the MCU is through the PTA0 pin. A  
level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used  
in a wired-OR configuration and requires a pullup resistor.  
The monitor code has been updated from previous versions of the monitor code to allow enabling the  
internal oscillator to generate the internal clock. This addition, which is enabled when IRQ is held low out  
of reset, is intended to support serial communication/programming at 9600 baud in monitor mode by using  
the internal oscillator, and the internal oscillator user trim value OSCTRIM (FLASH location $FFC0, if  
programmed) to generate the desired internal frequency (3.2 MHz). Since this feature is enabled only  
when IRQ is held low out of reset, it cannot be used when the reset vector is programmed (i.e., the value  
is not $FFFF) because entry into monitor mode in this case requires V  
on IRQ. The IRQ pin must  
TST  
remain low during this monitor session in order to maintain communication.  
Table 18-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode  
may be entered after a power-on reset (POR) and will allow communication at 9600 baud provided one  
of the following sets of conditions is met:  
If $FFFE and $FFFF do not contain $FF (programmed state):  
The external clock is 9.8304 MHz  
IRQ = V  
TST  
If $FFFE and $FFFF contain $FF (erased state):  
The external clock is 9.8304 MHz  
IRQ = V (this can be implemented through the internal IRQ pullup)  
DD  
If $FFFE and $FFFF contain $FF (erased state):  
IRQ = V (internal oscillator is selected, no external clock required)  
SS  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
227  
 
Development Support  
Table 18-1. Monitor Mode Signal Requirements and Options  
Serial  
Communi-  
cation  
Mode  
Selection  
Communication  
Speed  
IRQ  
RST  
Reset  
Mode  
COP  
Comments  
(PTA2) (PTA3) Vector  
External  
Clock Frequency Rate  
Bus  
Baud  
PTA0  
PTA1 PTA4  
Normal  
Monitor  
9.8304  
MHz  
2.4576  
MHz  
Provide external  
clock at OSC1.  
VTST  
VDD  
X
1
1
0
Disabled  
9600  
$FFFF  
(blank)  
9.8304  
MHz  
2.4576  
MHz  
Provide external  
clock at OSC1.  
VDD  
VSS  
X
X
X
X
1
1
X
X
X
X
X
X
Disabled  
Disabled  
Enabled  
9600  
9600  
X
Forced  
Monitor  
$FFFF  
(blank)  
3.2 MHz  
(Trimmed)  
Internal clock is  
active.  
X
X
Not  
$FFFF  
User  
X
X
MON08  
Function  
[Pin No.]  
MOD MOD  
VTST  
[6]  
RST  
[4]  
COM  
[8]  
OSC1  
[13]  
0
1
[12]  
[10]  
1. PTA0 must have a pullup resistor to VDD in monitor mode.  
2. Communication speed in the table is an example to obtain a baud rate of 9600. Baud rate using external oscillator is bus  
frequency / 256 and baud rate using internal oscillator is bus frequency / 335.  
3. External clock is a 9.8304 MHz oscillator on OSC1.  
4. X = don’t care  
5. MON08 pin refers to P&E Microcomputer Systems’ MON08-Cyclone 2 by 8-pin connector.  
NC  
NC  
NC  
NC  
NC  
1
3
5
7
9
2
4
GND  
RST  
IRQ  
6
8
PTA0  
PTA4  
PTA1  
NC  
10  
12  
14  
16  
NC 11  
OSC1 13  
VDD  
15  
NC  
The rising edge of the internal RST signal latches the monitor mode. Once monitor mode is latched, the  
values on PTA1 and PTA4 pins can be changed.  
Once out of reset, the MCU waits for the host to send eight security bytes (see 18.3.2 Security). After the  
security bytes, the MCU sends a break signal (10 consecutive 0s) to the host, indicating that it is ready to  
receive a command.  
18.3.1.1 Normal Monitor Mode  
RST and OSC1 functions will be active on the PTA3 and PTA5 pins respectively as long as V  
is  
TST  
applied to the IRQ pin. If the IRQ pin is lowered (no longer V  
) then the chip will still be operating in  
TST  
monitor mode, but the pin functions will be determined by the settings in the configuration registers (see  
Chapter 4 Configuration Registers (CONFIG1 and CONFIG2)) when V was lowered. With V  
TST  
TST  
lowered, the BIH and BIL instructions will read the IRQ pin state only if IRQEN is set in the CONFIG2  
register.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
228  
Freescale Semiconductor  
 
Monitor Module (MON)  
If monitor mode was entered with V  
IRQ.  
on IRQ, then the COP is disabled as long as V  
is applied to  
TST  
TST  
18.3.1.2 Forced Monitor Mode  
If entering monitor mode without high voltage on IRQ, then startup port pin requirements and conditions,  
(PTA1/PTA4) are not in effect. This is to reduce circuit requirements when performing in-circuit  
programming.  
NOTE  
If the reset vector is blank and monitor mode is entered, the chip will see an  
additional reset cycle after the initial power-on reset (POR). Once the reset  
vector has been programmed, the traditional method of applying a voltage,  
V
, to IRQ must be used to enter monitor mode.  
TST  
If monitor mode was entered as a result of the reset vector being blank, the COP is always disabled  
regardless of the state of IRQ.  
If the voltage applied to the IRQ is less than V  
, the MCU will come out of reset in user mode. Internal  
TST  
circuitry monitors the reset vector fetches and will assert an internal reset if it detects that the reset vectors  
are erased ($FF). When the MCU comes out of reset, it is forced into monitor mode without requiring high  
voltage on the IRQ pin. Once out of reset, the monitor code is initially executing with the internal clock at  
its default frequency.  
If IRQ is held high, all pins will default to regular input port functions except for PTA0 and PTA5 which will  
operate as a serial communication port and OSC1 input respectively (refer to Figure 18-11). That will  
allow the clock to be driven from an external source through OSC1 pin.  
If IRQ is held low, all pins will default to regular input port function except for PTA0 which will operate as  
serial communication port. Refer to Figure 18-12.  
Regardless of the state of the IRQ pin, it will not function as a port input pin in monitor mode. Bit 2 of the  
Port A data register will always read 0. The BIH and BIL instructions will behave as if the IRQ pin is  
enabled, regardless of the settings in the configuration register. See Chapter 4 Configuration Registers  
(CONFIG1 and CONFIG2).  
The COP module is disabled in forced monitor mode. Any reset other than a power-on reset (POR) will  
automatically force the MCU to come back to the forced monitor mode.  
18.3.1.3 Monitor Vectors  
In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt  
than those for user mode. The alternate vectors are in the $FE page instead of the $FF page and allow  
code execution from the internal monitor firmware instead of user code.  
NOTE  
Exiting monitor mode after it has been initiated by having a blank reset  
vector requires a power-on reset (POR). Pulling RST (when RST pin  
available) low will not exit monitor mode in this situation.  
Table 18-2 summarizes the differences between user mode and monitor mode regarding vectors.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
229  
Development Support  
Table 18-2. Mode Difference  
Functions  
Modes  
Reset  
Reset  
Break  
Break  
SWI  
SWI  
Vector High Vector Low Vector High Vector Low Vector High Vector Low  
User  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Monitor  
18.3.1.4 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format.  
Transmit and receive baud rates must be identical.  
NEXT  
START  
BIT  
START  
BIT  
BIT 6  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 7  
Figure 18-13. Monitor Data Format  
18.3.1.5 Break Signal  
A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor receives a break signal,  
it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal.  
MISSING STOP BIT  
2-STOP BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 18-14. Break Transaction  
18.3.1.6 Baud Rate  
The monitor communication baud rate is controlled by the frequency of the external or internal oscillator  
and the state of the appropriate pins as shown in Table 18-1.  
Table 18-1 also lists the bus frequencies to achieve standard baud rates. The effective baud rate is the  
bus frequency divided by 256 when using an external oscillator. When using the internal oscillator in  
forced monitor mode, the effective baud rate is the bus frequency divided by 335.  
18.3.1.7 Commands  
The monitor ROM firmware uses these commands:  
READ (read memory)  
WRITE (write memory)  
IREAD (indexed read)  
IWRITE (indexed write)  
READSP (read stack pointer)  
RUN (run user program)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
230  
Monitor Module (MON)  
The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit  
delay at the end of each command allows the host to send a break character to cancel the command. A  
delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned.  
The data returned by a read command appears after the echo of the last byte of the command.  
NOTE  
Wait one bit time after each echo before sending the next byte.  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
4
4
1
1
4
1
3, 2  
4
ECHO  
RETURN  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 18-15. Read Transaction  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
3
3
1
1
3
1
3
1
2, 3  
ECHO  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Cancel command delay, 11 bit times  
3 = Wait 1 bit time before sending next byte.  
Figure 18-16. Write Transaction  
A brief description of each monitor mode command is given in Table 18-3 through Table 18-8.  
Table 18-3. READ (Read Memory) Command  
Description Read byte from memory  
Operand 2-byte address in high-byte:low-byte order  
Data Returned Returns contents of specified address  
Opcode $4A  
Command Sequence  
SENT TO MONITOR  
ADDRESS ADDRESS ADDRESS  
HIGH HIGH LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
231  
 
Development Support  
Table 18-4. WRITE (Write Memory) Command  
Description Write byte to memory  
Operand 2-byte address in high-byte:low-byte order; low byte followed by data byte  
Data Returned None  
Opcode $49  
Command Sequence  
FROM HOST  
ADDRESS ADDRESS ADDRESS ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
HIGH  
HIGH  
LOW  
ECHO  
Table 18-5. IREAD (Indexed Read) Command  
Description Read next 2 bytes in memory from last address accessed  
Operand None  
Data Returned Returns contents of next two addresses  
Opcode $1A  
Command Sequence  
FROM HOST  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
Table 18-6. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand Single data byte  
Data Returned None  
Opcode $19  
Command Sequence  
FROM HOST  
DATA  
DATA  
IWRITE  
ECHO  
IWRITE  
A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full  
64-Kbyte memory map.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
232  
Freescale Semiconductor  
Monitor Module (MON)  
Table 18-7. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand None  
Returns incremented stack pointer value (SP + 1) in high-byte:low-byte  
order  
Data Returned  
Opcode $0C  
Command Sequence  
FROM HOST  
SP  
HIGH  
SP  
LOW  
READSP  
ECHO  
READSP  
RETURN  
Table 18-8. RUN (Run User Program) Command  
Description Executes PULH and RTI instructions  
Operand None  
Data Returned None  
Opcode $28  
Command Sequence  
FROM HOST  
RUN  
ECHO  
RUN  
The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command  
tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can  
modify the stacked CPU registers to prepare to run the host program. The READSP command returns  
the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at  
addresses SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
SP + 5  
SP + 6  
SP + 7  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER  
LOW BYTE OF PROGRAM COUNTER  
Figure 18-17. Stack Pointer at Monitor Mode Entry  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
233  
Development Support  
18.3.2 Security  
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host  
can bypass the security feature at monitor mode entry by sending eight security bytes that match the  
bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data.  
NOTE  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security  
bytes on pin PTA0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the  
security feature and can read all FLASH locations and execute code from FLASH. Security remains  
bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed  
and security code entry is not required. See Figure 18-18.  
Upon power-on reset, if the received bytes of the security code do not match the data at locations  
$FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but  
reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an  
illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break  
character, signifying that it is ready to receive a command.  
NOTE  
The MCU does not transmit a break character until after the host sends the  
eight security bytes.  
To determine whether the security code entered is correct, check to see if bit 6 of RAM address $80 is  
set. If it is, then the correct security code has been entered and FLASH can be accessed.  
If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor  
mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass  
erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation  
clears the security code locations so that all eight security bytes become $FF (blank).  
V
DD  
4096 + 32 BUSCLKX4 CYCLES  
RST  
FROM HOST  
PA0  
1
4
3
1
2
3
1
1
FROM MCU  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
3 = Wait 1 bit time before sending next byte  
4 = Wait until clock is stable and monitor runs  
Figure 18-18. Monitor Mode Entry Timing  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
234  
 
Chapter 19  
Electrical Specifications  
19.1 Introduction  
This section contains electrical and timing specifications.  
19.2 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the microcontroller unit (MCU) can be exposed without  
permanently damaging it.  
NOTE  
This device is not guaranteed to operate properly at the maximum ratings.  
Refer to 19.5 5-V DC Electrical Characteristics and 19.8 3.3-V DC Electrical  
Characteristics for guaranteed operating conditions.  
Characteristic(1)  
Symbol  
VDD  
Value  
Unit  
V
Supply voltage  
Input voltage  
–0.3 to +6.0  
VIN  
VSS –0.3 to VDD +0.3  
VSS –0.3 to +9.1  
V
Mode entry voltage, IRQ pin  
VTST  
V
Maximum current per pin excluding  
PTA0–PTA5, VDD, and VSS  
I
15  
mA  
Maximum current for pins PTA0–PTA5  
Storage temperature  
I
PTA0—IPTA5  
25  
–55 to +150  
100  
mA  
°C  
TSTG  
Maximum current out of VSS  
IMVSS  
mA  
Maximum current into VDD  
IMVDD  
100  
mA  
1. Voltages references to VSS  
.
NOTE  
This device contains circuitry to protect the inputs against damage due to  
high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that V and V  
be constrained to the  
IN  
OUT  
range V (V or V  
) V . Reliability of operation is enhanced if  
SS  
IN  
OUT  
DD  
unused inputs are connected to an appropriate logic voltage level (for  
example, either V or V .)  
SS  
DD  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
235  
Electrical Specifications  
19.3 Functional Operating Range  
Temp.  
Code  
Characteristic  
Symbol  
Value  
Unit  
40 to +125  
40 to +105  
40 to +85  
M
V
C
Operating temperature range  
TA  
°C  
Operating voltage range  
VDD  
3.0 to 5.5  
135  
V
Maximum junction temperature  
TMAX  
°C  
19.4 Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package  
thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in  
on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the  
MCU design. To take P into account in power calculations, determine the difference between actual pin  
I/O  
voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of unusually high  
SS  
DD  
pin current (heavy loads), the difference between pin voltage and V or V will be very small.  
SS  
DD  
Table 19-1. Thermal Characteristics  
Rating  
Symbol  
Value  
Unit  
Thermal resistance  
Single-layer board (1 signal plane)  
28-pin SOIC  
28-pin TSSOP  
20-pin SOIC  
68  
94  
75  
θJA  
°C/W  
20-pin TSSOP  
16-pin SOIC  
109  
84  
16-pin TSSOP  
123  
Thermal resistance  
Four-layer board (2 signal planes, 2 power planes)  
28-pin SOIC  
45  
61  
46  
68  
50  
77  
28-pin TSSOP  
20-pin SOIC  
θJA  
°C/W  
20-pin TSSOP  
16-pin SOIC  
16-pin TSSOP  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
236  
5-V DC Electrical Characteristics  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
T = T + (P × θ )  
Eqn. 19-1  
J
A
D
JA  
where:  
T = Ambient temperature, °C  
A
θ
= Package thermal resistance, junction-to-ambient, °C/W  
JA  
P = P + P  
D
int  
I/O  
P
P
= I × V , Watts — chip internal power  
= Power dissipation on input and output pins — user determined  
int  
I/O  
DD DD  
For most applications, P << P and can be neglected. An approximate relationship between P and  
I/O  
int  
D
T (if P is neglected) is:  
J
I/O  
P = K ÷ (T + 273°C)  
Eqn. 19-2  
D
J
Solving Equation 19-1 and Equation 19-2 for K gives:  
K = P × (T + 273°C) + θ × (P )  
2
Eqn. 19-3  
D
A
JA  
D
where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring  
P (at equilibrium) for a known T . Using this value of K, the values of P and T can be obtained by  
D
A
D
J
solving Equation 19-1 and Equation 19-2 iteratively for any value of T .  
A
19.5 5-V DC Electrical Characteristics  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
V
Output high voltage  
Load = –2.0 mA, all I/O pins  
ILoad = –10.0 mA, all I/O pins  
I
VDD–0.4  
DD–1.5  
DD–0.8  
VOH  
V
V
ILoad = –15.0 mA, PTA0, PTA1, PTA3–PTA5 only  
Maximum combined IOH (all I/O pins)  
Output low voltage  
IOHT  
50  
mA  
V
I
Load = 1.6 mA, all I/O pins  
0.4  
1.5  
0.8  
VOL  
ILoad = 10.0 mA, all I/O pins  
ILoad = 15.0 mA, PTA0, PTA1, PTA3–PTA5 only  
Maximum combined IOL (all I/O pins)  
IOHL  
VIH  
50  
mA  
V
Input high voltage  
PTA0–PTA5, PTB0–PTB7, PTC3–PTC0, PTD7–PTD0  
0.7 x VDD  
VDD  
Input low voltage  
PTA0–PTA5, PTB0–PTB7, PTC3–PTC0, PTD7–PTD0  
VIL  
VSS  
0.3 x VDD  
V
V
Input hysteresis  
VHYS  
0.06 x VDD  
— Continued on next page  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
237  
 
 
Electrical Specifications  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
DC injection current(3) (4) (5) (6)  
Single pin limit  
V
in > VDD  
0
0
2
–0.2  
Vin < VSS  
IIC  
mA  
Total MCU limit, includes sum of all stressed pins  
0
0
25  
–5  
Vin > VDD  
Vin < VSS  
Ports Hi-Z leakage current  
IIL  
0
1
8
µA  
Capacitance  
CIN  
pF  
Ports (as input)(3)  
POR rearm voltage  
VPOR  
RPOR  
VTST  
750  
0.035  
mV  
V/ms  
V
POR rise time ramp rate(3)(7)  
Monitor mode entry voltage (3)  
VDD + 2.5  
9.1  
Pullup resistors(8)  
PTA0–PTA5, PTB0–PTB7, PTC3–PTC0, PTD7–PTD0  
RPU  
RPD  
16  
16  
26  
26  
36  
36  
kΩ  
kΩ  
Pulldown resistors(6)  
PTA0–PTA5  
Low-voltage inhibit reset, trip falling voltage(9)  
Low-voltage inhibit reset, trip rising voltage  
Low-voltage inhibit reset/recover hysteresis  
VTRIPF  
VTRIPR  
VHYS  
3.90  
4.00  
4.20  
4.30  
100  
4.50  
4.60  
V
V
mV  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 Conly. Typical values are for reference only  
and are not tested in production.  
3. Values are based on characterization results, not tested in production.  
4. All functional non-supply pins are internally clamped to VSS and VDD  
.
5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
6. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If positive injection current (Vin > VDD) is greater than IDD, the injection current may flow out of VDD and could  
result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is  
present, or if clock rate is very low (which would reduce overall power consumption).  
7. If minimum VDD is not reached before the internal POR reset is released, the LVI will hold the part in reset until minimum  
VDD is reached.  
8. RPU and RPD, is measured at VDD = 5.0 V. Pulldown resistors only available when KBIx is enabled with KBIxPOL =1.  
9. Functionality of MCU guaranteed by production test down to minimum LVI trip point. The electrical parameters are only  
guaranteed within the specified operating voltage range.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
238  
Freescale Semiconductor  
 
Typical 5-V Output Drive Characteristics  
19.6 Typical 5-V Output Drive Characteristics  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
5V PTA  
5V PTB,PTC,PTD  
0
-5  
-10  
-15  
-20  
-25  
-30  
IOH (mA)  
Figure 19-1. Typical 5-Volt Output High Voltage  
versus Output High Current (25°C)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
5V PTA  
5V PTB,PTC,PTD  
0
5
10  
15  
20  
25  
30  
IOL (mA)  
Figure 19-2. Typical 5-Volt Output Low Voltage  
versus Output Low Current (25°C)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
239  
Electrical Specifications  
19.7 5-V Control Timing  
Characteristic(1)  
Internal operating frequency  
Internal clock period (1/fOP  
Symbol  
Min  
Max  
Unit  
fOP  
8
MHz  
(fBUS  
tCYC  
tRL  
tILIH  
tILIL  
)
)
125  
100  
ns  
ns  
RST input pulse width low(2)  
IRQ interrupt pulse width low (edge-triggered)(2)  
IRQ interrupt pulse period(2)  
100  
ns  
Note(3)  
tCYC  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VSS, unless otherwise  
noted.  
2. Values are based on characterization results, not tested in production.  
3. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tCYC  
.
t
RL  
RST  
t
ILIL  
t
ILIH  
IRQ  
Figure 19-3. RST and IRQ Timing  
19.8 3.3-V DC Electrical Characteristics  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
V
Output high voltage  
Load = –0.6 mA, all I/O pins  
ILoad = –4.0 mA, all I/O pins  
ILoad = –10.0 mA, PTA0, PTA1, PTA3–PTA5 only  
I
VDD–0.3  
DD–1.0  
DD–0.8  
VOH  
V
V
Maximum combined IOH (all I/O pins)  
Output low voltage  
IOHT  
50  
mA  
V
ILoad = 0.5 mA, all I/O pins  
0.3  
1.0  
0.8  
VOL  
ILoad = 6.0 mA, all I/O pins  
ILoad = 10.0 mA, PTA0, PTA1, PTA3–PTA5 only  
Maximum combined IOL (all I/O pins)  
IOHL  
VIH  
50  
mA  
V
Input high voltage  
PTA0–PTA5, PTB0–PTB7, PTC3–PTC0, PTD7–PTD0  
0.7 x VDD  
VSS  
VDD  
Input low voltage  
PTA0–PTA5, PTB0–PTB7, PTC3–PTC0, PTD7–PTD0  
VIL  
0.3 x VDD  
V
— Continued on next page  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
240  
3.3-V DC Electrical Characteristics  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
Input hysteresis  
VHYS  
0.06 x VDD  
V
DC injection current(3) (4) (5) (6)  
Single pin limit  
V
in > VDD  
0
0
2
–0.2  
Vin < VSS  
IIC  
mA  
Total MCU limit, includes sum of all stressed pins  
0
0
25  
–5  
Vin > VDD  
Vin < VSS  
Ports Hi-Z leakage current  
IIL  
0
1
8
µA  
Capacitance  
CIN  
pF  
Ports (as input)(3)  
POR rearm voltage  
VPOR  
RPOR  
VTST  
750  
0.035  
mV  
V/ms  
V
POR rise time ramp rate(3)(7)  
Monitor mode entry voltage (3)  
VDD + 2.5  
VDD + 4.0  
Pullup resistors(8)  
PTA0–PTA5, PTB0–PTB7, PTC3–PTC0, PTD7–PTD0  
RPU  
RPD  
16  
16  
26  
26  
36  
36  
kΩ  
kΩ  
Pulldown resistors(6)  
PTA0–PTA5  
Low-voltage inhibit reset, trip falling voltage(9)  
Low-voltage inhibit reset, trip rising voltage  
Low-voltage inhibit reset/recover hysteresis  
VTRIPF  
VTRIPR  
VHYS  
2.65  
2.73  
2.85  
2.93  
80  
3.0  
3.08  
V
V
mV  
1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 C only.  
3. Values are based on characterization results, not tested in production.  
4. All functional non-supply pins are internally clamped to VSS and VDD  
.
5. Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
6. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If positive injection current (Vin > VDD) is greater than IDD, the injection current may flow out of VDD and could  
result in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is  
present, or if clock rate is very low (which would reduce overall power consumption).  
7. If minimum VDD is not reached before the internal POR reset is released, the LVI will hold the part in reset until minimum  
VDD is reached.  
8. RPU and RPD measured at VDD = 3.3 V. Pulldown resistors only available when KBIx is enabled with KBIxPOL =1.  
9. Functionality of MCU guaranteed by production test down to minimum LVI trip point. The electrical parameters are only  
guaranteed within the specified operating voltage range.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
241  
Electrical Specifications  
19.9 Typical 3.3-V Output Drive Characteristics  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.3V PTA  
3.3V PTB,PTC,PTD  
0
-5  
-10  
-15  
-20  
-25  
IOH (mA)  
Figure 19-4. Typical 3.3-Volt Output High Voltage  
versus Output High Current (25 C)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.3V PTA  
3.3V PTB,PTC,PTD  
0
5
10  
15  
20  
25  
IOL (mA)  
Figure 19-5. Typical 3.3-Volt Output Low Voltage  
versus Output Low Current (25 C)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
242  
3.3-V Control Timing  
19.10 3.3-V Control Timing  
Characteristic(1)  
Symbol  
OP (fBus  
tCYC  
Min  
Max  
4
Unit  
MHz  
ns  
Internal operating frequency  
f
)
Internal clock period (1/fOP  
)
250  
200  
RST input pulse width low(2)  
tRL  
ns  
IRQ interrupt pulse width low (edge-triggered)(2)  
IRQ interrupt pulse period(2)  
tILIH  
tILIL  
200  
ns  
Note(3)  
tCYC  
1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VDD, unless otherwise  
noted.  
2. Values are based on characterization results, not tested in production.  
3. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tCYC  
.
t
RL  
RST  
t
ILIL  
t
ILIH  
IRQ  
Figure 19-6. RST and IRQ Timing  
19.11 Oscillator Characteristics  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Internal oscillator frequency(1)  
ICFS1:ICFS0 = 00  
ICFS1:ICFS0 = 01  
ICFS1:ICFS0 = 10  
4
8
12.8  
25.6  
fINTCLK  
MHz  
ICFS1:ICFS0 = 11 (not allowed if VDD < 4.5 V)  
Trim accuracy(2)(3)  
0.4  
%
%
TRIM_ACC  
Deviation from trimmed Internal oscillator(3)(4)  
4, 8, 12.8, 25.6MHz, VDD 10%, 0 to 70°C  
4, 8, 12.8, 25.6MHz, VDD 10%, –40 to 125°C  
2
5
INT_TRIM  
External RC oscillator frequency, RCCLK(1) (3)  
VDD 4.5 V  
fRCCLK  
2
2
12  
8.4  
MHz  
MHz  
VDD < 4.5 V  
External clock reference frequency (1) (5) (6)  
VDD 4.5 V  
VDD 3.0 V  
fOSCXCLK  
dc  
dc  
32  
16  
— Continued on next page  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
243  
Electrical Specifications  
Characteristic  
RC oscillator external resistor  
Symbol  
Min  
Typ  
Max  
Unit  
V
DD = 5 V  
REXT  
See Figure 19-7  
See Figure 19-8  
VDD = 3.3 V  
Crystal frequency, XTALCLK (1) (7) (8)  
ECFS1:ECFS0 = 00 (VDD 4.5 V)  
ECFS1:ECFS0 = 00  
ECFS1:ECFS0 = 01  
ECFS1:ECFS0 = 10  
8
8
1
32  
16  
8
MHz  
MHz  
MHz  
kHz  
fOSCXCLK  
30  
100  
ECFS1:ECFS0 = 00(9) (fOSCXCLK: 8–32 MHz)  
Feedback bias resistor  
Crystal load capacitance(10)  
Crystal capacitors(10)  
RB  
CL  
C1, C2  
1
20  
MΩ  
pF  
pF  
(2 x CL) – 5pF  
ECFS1:ECFS0 = 01(9) (fOSCXCLK: 1–8 MHz)  
Crystal series damping resistor  
fOSCXCLK = 1 MHz  
fOSCXCLK = 4 MHz  
fOXCSCLK = 8 MHz  
Feedback bias resistor  
Crystal load capacitance(10)  
Crystal capacitors(10)  
RS  
20  
10  
0
5
18  
kΩ  
kΩ  
kΩ  
MΩ  
pF  
RB  
CL  
C1, C2  
(2 x CL) –10pF  
pF  
ECFS1:ECFS0 = 10(9) (fOSCXCLK: 30–100 kHz)  
Feedback bias resistor  
Crystal load capacitance(10)  
Crystal capacitors(10)  
RB  
CL  
C1, C2  
10  
12.5  
(2 x CL) –10  
MΩ  
pF  
pF  
PWU module Internal RC oscillator frequency  
fINTRC  
32  
kHz  
1. Bus frequency, fOP, is oscillator frequency divided by 4.  
2. Factory trimmed to provided 12.8MHz accuracy requirement ( 5%, @ 25 C and VDD = 5.0 V) for forced monitor mode  
communication. User should trim in-circuit to obtain the most accurate internal oscillator frequency for his application.  
3. Values are based on characterization results, not tested in production.  
4. Deviation values assumes trimming in target application @25 C and midpoint of voltage range, for example 5.0 V for  
5 V 10% operation.  
5. No more than 10% duty cycle deviation from 50%.  
6. When external oscillator clock is greater than 1 MHz, ECFS1:ECFS0 must be 00 or 01.  
7. Use fundamental mode only, do not use overtone crystals or overtone ceramic resonators.  
8. Due to variations in electrical properties of external components such as, ESR and Load Capacitance, operation above  
16 MHz is not guaranteed for all crystals or ceramic resonators. Operation above 16 MHz requires that a Negative  
Resistance Margin (NRM) characterization and component optimization be performed by the crystal or ceramic resonator  
vendor for every different type of crystal or ceramic resonator which will be used. This characterization and optimization must  
be performed at the extremes of voltage and temperature which will be applied to the microcontroller in the application. The  
NRM must meet or exceed 10x the maximum ESR of the crystal or ceramic resonator for acceptable performance.  
9. Do not use damping resistor when ECFS1:ECFS0 = 00 or 10.  
10. Consult crystal vendor data sheet.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
244  
Freescale Semiconductor  
Oscillator Characteristics  
14  
12  
10  
8
5 V 25 C  
6
4
2
0
0
10  
20  
30  
40  
50  
60  
REXT (kΩ)  
Figure 19-7. RC versus Frequency (5 Volts @ 25 C)  
12  
10  
8
3.3V 25 oC  
6
4
2
0
0
10  
20  
30  
40  
50  
60  
R
ext (k ohms)  
Figure 19-8. RC versus Frequency (3.3 Volts @ 25 C)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
245  
Electrical Specifications  
19.12 Supply Current Characteristics  
Bus  
Characteristic(1)  
Typ(2)  
Voltage Frequency  
(MHz)  
Symbol  
Max  
Unit  
5.0  
3.3  
3.2  
3.2  
5.0  
2.6  
8.5  
4.5  
Run mode VDD supply current(3)  
RIDD  
mA  
mA  
5.0  
3.3  
3.2  
3.2  
1.8  
1.2  
3.3  
2.2  
Wait mode VDD supply current(4)  
Stop mode VDD supply current(5)  
WIDD  
0.40  
12  
125  
1.5  
2.0  
6.5  
–40 to 85°C  
–40 to 105°C  
5.0  
3.3  
µA  
µA  
–40 to 125°C  
25°C with PWU enabled  
Incremental current with LVI enabled at 25°C  
SIDD  
Stop mode VDD supply current(5)  
0.23  
2
100  
1.5  
2.0  
5.0  
–40 to 85°C  
–40 to 105°C  
–40 to 125°C  
25°C with PWU enabled  
Incremental current with LVI enabled at 25°C  
1. VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurement at 25°C only. Typical values are for reference only and are not tested in  
production.  
3. Run (operating) IDD measured using trimmed internal oscillator, ADC off, all modules enabled. All pins configured as inputs  
and tied to 0.2 V from rail.  
4. Wait IDD measured using trimmed internal oscillator, ADC off, all modules enabled. All pins configured as inputs and tied to  
0.2 V from rail.  
5. Stop IDD measured with all pins configured as inputs and tied to 0.2 V from rail. On the 8-pin versions, port B is configured  
as inputs with pullups enabled.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
246  
Freescale Semiconductor  
Supply Current Characteristics  
12  
10  
8
Internal Oscillator No A/D Serial  
Internal Oscillator A/D Serial  
Crystal No A/D Serial  
6
4
Crystal A/D Serial  
2
0
0
1
2
3
4
5
6
7
BUS FREQUENCY (MHz)  
Figure 19-9. Typical 5-Volt Run Current  
versus Bus Frequency (25 C)  
5
4
3
2
1
0
Internal Oscillator No A/D Serial  
Internal Oscillator A/D Serial  
Crystal No A/D Serial  
Crystal A/D Serial  
0
1
2
3
4
BUS FREQUENCY (MHz)  
Figure 19-10. Typical 3.3-Volt Run Current  
versus Bus Frequency (25 C)  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
247  
Electrical Specifications  
19.13 ADC10 Characteristics  
Typ(1)  
Characteristic  
Supply voltage  
Conditions  
Symbol  
Min  
3.0  
Max  
5.5  
Unit  
Comment  
Absolute  
DD < 3.6 V (3.3 V Typ)  
VDD  
V
Supply Current  
ADLPC = 1  
ADLSMP = 1  
ADCO = 1  
V
55  
(2)  
µA  
µA  
µA  
IDD  
VDD < 5.5 V (5.0 V Typ)  
DD < 3.6 V (3.3 V Typ)  
VDD < 5.5 V (5.0 V Typ)  
DD < 3.6 V (3.3 V Typ)  
VDD < 5.5 V (5.0 V Typ)  
DD < 3.6 V (3.3 V Typ)  
75  
Supply current  
ADLPC = 1  
ADLSMP = 0  
ADCO = 1  
V
120  
175  
140  
180  
340  
440  
(2)  
IDD  
Supply current  
ADLPC = 0  
ADLSMP = 1  
ADCO = 1  
V
(2)  
IDD  
Supply current  
ADLPC = 0  
ADLSMP = 0  
ADCO = 1  
V
(2)  
µA  
IDD  
VDD < 5.5 V (5.0 V Typ)  
615  
High speed (ADLPC = 0)  
0.40(3)  
0.40(3)  
19  
19  
39  
16  
36  
4
2.00  
1.00  
21  
tADCK  
1/fADCK  
=
ADC internal clock  
fADCK  
tADC  
tADC  
tADS  
MHz  
Low power (ADLPC = 1)  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
Conversion time(4)  
10-bit Mode  
tADCK  
cycles  
39  
41  
16  
18  
Conversion time(4)  
8-bit Mode  
tADCK  
cycles  
36  
38  
4
4
tADCK  
cycles  
Sample time  
24  
24  
7
24  
Input voltage  
VADIN  
CADIN  
RADIN  
VSS  
VDD  
10  
V
Input capacitance  
Input impedance  
pF  
kΩ  
Not tested  
Not tested  
5
15  
External to  
MCU  
Analog source impedance  
Ideal resolution (1 LSB)  
RAS  
10  
kΩ  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
1.758  
7.031  
0
5
5.371  
21.48  
2.5  
RES  
mV  
VREFH/2N  
20  
1.5  
0.7  
Includes  
quantization  
Total unadjusted error  
ETUE  
LSB  
0
1.0  
— Continued on next page  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
248  
ADC10 Characteristics  
Typ(1)  
0.5  
Characteristic  
Conditions  
10-bit mode  
Symbol  
Min  
0
Max  
Unit  
Comment  
DNL  
LSB  
Differential non-linearity  
8-bit mode  
0
0.3  
Monotonicity and no-missing-codes guaranteed  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
0
0
0.5  
0.3  
0.5  
0.3  
0.5  
0.3  
0.5  
0.5  
5
Integral non-linearity  
Zero-scale error  
Full-scale error  
INL  
EZS  
EFS  
EQ  
LSB  
LSB  
LSB  
LSB  
0
VADIN = VSS  
0
0
VADIN = VDD  
0
0
8-bit mode is  
not truncated  
Quantization error  
0.2  
0.1  
Pad leakage(5)  
* RAS  
Input leakage error  
EIL  
LSB  
V
0
1.2  
Bandgap voltage input(3(6)  
VBG  
1.17  
1.245 1.32  
1. Typical values assume VDD = 5.0 V, temperature = 25 C, Af DCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. Incremental IDD added to MCU mode current.  
3. Values are based on characterization results, not tested in production.  
4. Reference the ADC module specification for more information on calculating conversion times.  
5. Based on typical input pad leakage current.  
6. LVI must be enabled, (LVIPWRD = 0, in CONFIG1). Voltage input to ADCH4:0 = $1A, an ADC conversion on this channel  
allows user to determine supply voltage.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
249  
Electrical Specifications  
19.14 5.0-Volt SPI Characteristics  
Diagram  
Characteristic(2)  
Number(1)  
Symbol  
Min  
Max  
Unit  
Operating frequency  
Master  
Slave  
fOP(M)  
fOP(S)  
fOP/128  
dc  
fOP/2  
fOP  
MHz  
MHz  
Cycle time  
1
Master  
Slave  
tCYC(M)  
tCYC(S)  
2
1
128  
tCYC  
tCYC  
2
3
Enable lead time  
Enable lag time  
tLead(S)  
tLag(S)  
1
1
tCYC  
tCYC  
Clock (SPSCK) high time  
4
5
6
7
Master  
Slave  
tSCKH(M)  
tSCKH(S)  
tCYC –25  
1/2 tCYC –25  
64 tCYC  
ns  
ns  
Clock (SPSCK) low time  
Master  
Slave  
tSCKL(M)  
tSCKL(S)  
tCYC –25  
1/2 tCYC –25  
64 tCYC  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU(M)  
tSU(S)  
30  
30  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tH(M)  
tH(S)  
30  
30  
ns  
ns  
Access time, slave(3)  
CPHA = 0  
CPHA = 1  
8
9
tA(CP0)  
tA(CP1)  
0
0
40  
40  
ns  
ns  
Disable time, slave(4)  
tDIS(S)  
40  
ns  
Data valid time, after enable edge  
Master  
Slave(5)  
10  
tV(M)  
tV(S)  
50  
50  
ns  
ns  
Data hold time, outputs, after enable edge  
11  
Master  
Slave  
tHO(M)  
tHO(S)  
0
0
ns  
ns  
1. Numbers refer to dimensions in Figure 19-11 and Figure 19-12.  
2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins.  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
250  
Freescale Semiconductor  
3.3-Volt SPI Characteristics  
19.15 3.3-Volt SPI Characteristics  
Diagram  
Characteristic(2)  
Number(1)  
Symbol  
Min  
Max  
Unit  
Operating frequency  
Master  
Slave  
fOP(M)  
fOP(S)  
fOP/128  
DC  
fOP/2  
fOP  
MHz  
MHz  
Cycle time  
1
Master  
Slave  
tCYC(M)  
tCYC(S)  
2
1
128  
tCYC  
tCYC  
2
3
Enable lead time  
Enable lag time  
tLead(S)  
tLag(S)  
1
1
tCYC  
tCYC  
Clock (SPSCK) high time  
4
5
6
7
Master  
Slave  
tSCKH(M)  
tSCKH(S)  
tCYC –35  
1/2 tCYC –35  
64 tCYC  
ns  
ns  
Clock (SPSCK) low time  
Master  
Slave  
tSCKL(M)  
tSCKL(S)  
tCYC –35  
1/2 tCYC –35  
64 tCYC  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU(M)  
tSU(S)  
40  
40  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tH(M)  
tH(S)  
40  
40  
ns  
ns  
Access time, slave(3)  
CPHA = 0  
CPHA = 1  
8
9
tA(CP0)  
tA(CP1)  
0
0
50  
50  
ns  
ns  
Disable time, slave(4)  
tDIS(S)  
50  
ns  
Data valid time, after enable edge  
Master  
Slave(5)  
10  
tV(M)  
tV(S)  
60  
60  
ns  
ns  
Data hold time, outputs, after enable edge  
11  
Master  
Slave  
tHO(M)  
tHO(S)  
0
0
ns  
ns  
1. Numbers refer to dimensions in Figure 19-11 and Figure 19-12.  
2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins.  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
251  
Electrical Specifications  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
5
4
SPSCK OUTPUT  
CPOL = 0  
NOTE  
4
5
SPSCK OUTPUT  
CPOL = 1  
NOTE  
6
7
MISO  
INPUT  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
11  
MASTER MSB OUT  
10  
11  
MOSI  
OUTPUT  
MASTER LSB OUT  
Note: This first clock edge is generated internally, but is not seen at the SPSCK pin.  
a) SPI Master Timing (CPHA = 0)  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
SPSCK OUTPUT  
CPOL = 0  
5
NOTE  
NOTE  
4
SPSCK OUTPUT  
CPOL = 1  
5
4
6
7
MISO  
INPUT  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
11  
10  
10  
MOSI  
OUTPUT  
MASTER MSB OUT  
MASTER LSB OUT  
Note: This last clock edge is generated internally, but is not seen at the SPSCK pin.  
b) SPI Master Timing (CPHA = 1)  
Figure 19-11. SPI Master Timing  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
252  
3.3-Volt SPI Characteristics  
SS  
INPUT  
3
1
SPSCK INPUT  
CPOL = 0  
5
4
4
5
2
SPSCK INPUT  
CPOL = 1  
9
8
MISO  
INPUT  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
NOTE  
11  
6
7
10  
MOSI  
OUTPUT  
MSB IN  
LSB IN  
Note: Not defined but normally MSB of character just received  
a) SPI Slave Timing (CPHA = 0)  
SS  
INPUT  
1
SPSCK INPUT  
CPOL = 0  
5
4
5
2
3
SPSCK INPUT  
CPOL = 1  
4
10  
9
8
MISO  
OUTPUT  
NOTE  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
6
7
10  
MOSI  
INPUT  
MSB IN  
LSB IN  
Note: Not defined but normally LSB of character previously transmitted  
b) SPI Slave Timing (CPHA = 1)  
Figure 19-12. SPI Slave Timing  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
253  
Electrical Specifications  
19.16 Timer Interface Module Characteristics  
Characteristic  
Symbol  
tTH, TL  
Min  
2
Max  
Unit  
tCYC  
tCYC  
ns  
Timer input capture pulse width(1)  
Timer input capture period  
t
tTLTL  
Note(2)  
tCYC + 5  
Timer input clock pulse width(1)  
tTCL, tTCH  
1. Values are based on characterization results, not tested in production.  
2. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tCYC  
.
t
TLTL  
t
TH  
INPUT CAPTURE  
RISING EDGE  
t
TLTL  
t
TL  
INPUT CAPTURE  
FALLING EDGE  
t
TLTL  
t
t
TH  
TL  
INPUT CAPTURE  
BOTH EDGES  
t
TCH  
TCLK  
t
TCL  
Figure 19-13. Timer Input Timing  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
254  
Memory Characteristics  
19.17 Memory Characteristics  
Typ(1)  
Characteristic  
Symbol  
Min  
Max  
Unit  
RAM data retention voltage (2)  
VRDR  
1.3  
1
V
MHz  
V
FLASH program bus clock frequency  
FLASH PGM/ERASE supply voltage (VDD  
)
VPGM/ERASE  
2.7  
0
5.5  
8 M  
5.5  
(3)  
FLASH read bus clock frequency  
FLASH page erase time  
fRead  
Hz  
tErase  
tMErase  
tNVS  
3.6  
4
4
ms  
ms  
µs  
FLASH mass erase time  
FLASH PGM/ERASE to HVEN setup time  
FLASH high-voltage hold time  
10  
5
tNVH  
µs  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
tNVHL  
tPGS  
100  
5
µs  
µs  
FLASH program time  
tPROG  
30  
1
40  
µs  
(4)  
FLASH return to read time  
tRCV  
µs  
(5)  
FLASH cumulative program HV period  
tHV  
10 k  
4
ms  
Cycles  
FLASH endurance(6)  
100 k  
FLASH data retention time(7)  
15  
100  
Years  
1. Typical values are for reference only and are not tested in production.  
2. Values are based on characterization results, not tested in production.  
3. fRead is defined as the frequency range for which the FLASH memory can be read.  
4. tRCV is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing  
HVEN to 0.  
5. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
t
HV must satisfy this condition: tNVS + tNVH + tPGS + (tPROG x 32) tHV maximum.  
6. Typical endurance was evaluated for this product family. For additional information on how Freescale defines Typical  
Endurance, please refer to Engineering Bulletin EB619.  
7. Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated  
to 25 C using the Arrhenius equation. For additional information on how Freescale definesTypical Data Retention, please  
refer to Engineering Bulletin EB618.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
255  
Electrical Specifications  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
256  
Chapter 20  
Ordering Information and Mechanical Specifications  
20.1 Introduction  
This section contains order numbers for the MC68HC908QC16, MC68HC908QC8, and  
MC68HC908QC4. See Table 20-1 and Figure 20-1.  
20.2 MC Order Numbers  
Table 20-1. MC Order Numbers  
Temp. Range  
16 TSSOP  
16 SOIC  
20 TSSOP  
20 SOIC  
28 TSSOP  
S908QC16CDRE  
S908QC8CDRE  
28 SOIC  
S908QC16CDTE(R)  
S908QC8CDTE  
S908QC16CDSE  
S908QC8CDSE  
C = –40°C to 85°C  
S908QC16VDSE  
S908QC8VDSE  
V = –40°C to 105°C  
S908QC16MDTE  
S908QC16MDSE(R)  
S908QC8MDSE(R)  
S908QC4MDSE(R)  
S908QC16MDRE  
S908QC8 MDRE  
S908AC4MDRE  
M = –40°C to 125°C S908QC8MDTE  
MC908QC16CDTE MC908QC16CDXE MC908QC16CDSE MC908QC16CDYE MC908QC16CDRE MC908QC16CDZE  
C = –40°C to 85°C MC908QC8CDTE MC908QC8CDXE MC908QC8CDSE  
MC908QC8CDYE MC908QC8CDRE MC908QC8CDZE  
MC908QC4CDRE  
MC908QC16VDSE  
MC908QC8VDSE  
MC908QC16VDRE  
V = –40°C to 105°C  
MC908QC8VDRE  
Temperature designators:  
C = –40°C to +85°C  
V = –40°C to +105°C  
M = –40°C to +125°C  
Package designators:  
DX = 16-pin SOIC  
DY = 20-pin SOIC  
DZ = 28-pin SOIC  
DT = 16-pin TSSOP  
DS = 20-pin TSSOP  
DR = 28-pin TSSOP  
X 908 QCX X XX E R  
Tape and Reel  
Pb Free  
Package Designator  
Device Grade:  
S = Auto  
MC = Consumer  
Family  
Temperature Range  
Figure 20-1. Device Numbering System  
20.3 Package Dimensions  
Refer to the following pages for detailed package dimensions.  
MC68HC908QC16 • MC68HC908QC8 • MC68HC908QC4 Data Sheet, Rev. 5  
Freescale Semiconductor  
257  
 
 
How to Reach Us:  
Home Page:  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
Semiconductor was negligent regarding the design or manufacture of the part.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2008. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MC68HC908QC16  
Rev.5, 4/2008  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY