MC9328MXLVM20 [NXP]

DRAGONBALL CORSICA PB-FR;
MC9328MXLVM20
型号: MC9328MXLVM20
厂家: NXP    NXP
描述:

DRAGONBALL CORSICA PB-FR

时钟 外围集成电路
文件: 总90页 (文件大小:1439K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC9328MXL  
Rev. 8, 12/2006  
Freescale Semiconductor  
Data Sheet: Technical Data  
MC9328MXL  
Package Information  
Plastic Package  
Case 1304B-01  
MC9328MXL  
(MAPBGA–225)  
Ordering Information  
See Table 1 on page 3  
Contents  
1 Introduction  
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2 Signals and Connections . . . . . . . . . . . . . . . 4  
3 Electrical Characteristics . . . . . . . . . . . . . . 17  
The i.MX Family of applications processors provides a  
leap in performance with an ARM9™ microprocessor  
core and highly integrated system functions. The i.MX  
family specifically addresses the requirements of the  
personal, portable product market by providing  
intelligent integrated peripherals, an advanced processor  
core, and power management capabilities.  
4 Functional Description and Application  
Information . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
5 Pin-Out and Package Information . . . . . . . . 84  
6 Product Documentation . . . . . . . . . . . . . . . . 88  
Contact Information . . . . . . . . . . . . . . . Last Page  
The MC9328MXL (i.MXL) processor features the  
advanced and power-efficient ARM920T™ core that  
operates at speeds up to 200 MHz. Integrated modules,  
which include a USB device, an LCD controller, and an  
MMC/SD host controller, support a suite of peripherals  
to enhance portable products seeking to provide a rich  
multimedia experience. It is packaged in either a  
256-contact Mold Array Process-Ball Grid Array  
(MAPBGA) or 225-contact MAPBGA package.  
Figure 1 shows the functional block diagram of the  
i.MXL processor.  
Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its  
products.  
© Freescale Semiconductor, Inc., 2004, 2005, 2006. All rights reserved.  
 
Introduction  
Standard  
System I/O  
System Control  
Power  
Control  
CGM  
(PLLx2)  
JTAG/ICE  
Bootstrap  
GPIO  
PWM  
Connectivity  
MC9328MXL  
CPU Complex  
ARM9TDMI™  
MMC/SD  
Timer 1 & 2  
RTC  
Memory Stick®  
Host Controller  
Watchdog  
SPI 1 and  
SPI 2  
I Cache  
D Cache  
Multimedia  
UART 1  
UART 2  
Multimedia  
Accelerator  
Interrupt  
Controller  
AIPI 1  
AIPI 2  
VMMU  
Video Port  
2
SSI/I S  
DMAC  
Bus  
Human Interface  
2
I C  
(11 Chnl)  
Control  
LCD Controller  
EIM &  
SDRAMC  
USB Device  
Figure 1. i.MXL Functional Block Diagram  
1.1  
Features  
To support a wide variety of applications, the processor offers a robust array of features, including the following:  
ARM920T™ Microprocessor Core  
AHB to IP Bus Interfaces (AIPIs)  
External Interface Module (EIM)  
SDRAM Controller (SDRAMC)  
DPLL Clock and Power Control Module  
Two Universal Asynchronous Receiver/Transmitters (UART 1 and UART 2)  
Serial Peripheral Interface (SPI)  
Two General-Purpose 32-bit Counters/Timers  
Watchdog Timer  
Real-Time Clock/Sampling Timer (RTC)  
LCD Controller (LCDC)  
Pulse-Width Modulation (PWM) Module  
Universal Serial Bus (USB) Device  
Multimedia Card and Secure Digital (MMC/SD) Host Controller Module  
Memory Stick® Host Controller (MSHC)  
Direct Memory Access Controller (DMAC)  
2
Synchronous Serial Interface and an Inter-IC Sound (SSI/I S) Module  
2
Inter-IC (I C) Bus Module  
MC9328MXL Technical Data, Rev. 8  
2
Freescale Semiconductor  
Introduction  
Video Port  
General-Purpose I/O (GPIO) Ports  
Bootstrap Mode  
Multimedia Accelerator (MMA)  
Power Management Features  
Operating Voltage Range: 1.7 V to 1.9 V core, 1.7 V to 3.3 V I/O  
256-pin MAPBGA Package  
225-contact MAPBGA Package  
1.2  
Target Applications  
The i.MXL processor is targeted for advanced information appliances, smart phones, Web browsers,  
digital MP3 audio players, handheld computers, and messaging applications.  
1.3  
Ordering Information  
Table 1 provides ordering information.  
Table 1. i.MXL Ordering Information  
Package Type  
Frequency  
Temperature  
Solderball Type  
Order Number  
256-lead MAPBGA  
200 MHz  
0OC to 70OC  
-30OC to 70OC  
0OC to 70OC  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
MC9328MXLVM20(R2)  
MC9328MXLDVM20(R2)  
MC9328MXLVM15(R2)  
MC9328MXLDVM15(R2)  
MC9328MXLCVM15(R2)  
MC9328MXLVP20(R2)  
MC9328MXLDVP20(R2)  
MC9328MXLVP15(R2)  
MC9328MXLDVP15(R2)  
MC9328MXLCVP15(R2)  
150 MHz  
-30OC to 70OC  
-40OC to 85OC  
0OC to 70OC  
225-lead MAPBGA  
200 MHz  
150 MHz  
-30OC to 70OC  
0°C to 70°C  
-30OC to 70OC  
-40OC to 85OC  
1.4  
Conventions  
This document uses the following conventions:  
OVERBAR is used to indicate a signal that is active when pulled low: for example, RESET.  
Logic level one is a voltage that corresponds to Boolean true (1) state.  
Logic level zero is a voltage that corresponds to Boolean false (0) state.  
To set a bit or bits means to establish logic level one.  
To clear a bit or bits means to establish logic level zero.  
A signal is an electronic construct whose state conveys or changes in state convey information.  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
3
 
Signals and Connections  
A pin is an external physical connection. The same pin can be used to connect a number of signals.  
Asserted means that a discrete signal is in active logic state.  
Active low signals change from logic level one to logic level zero.  
Active high signals change from logic level zero to logic level one.  
Negated means that an asserted discrete signal changes logic state.  
Active low signals change from logic level zero to logic level one.  
Active high signals change from logic level one to logic level zero.  
LSB means least significant bit or bits, and MSB means most significant bit or bits. References to  
low and high bytes or words are spelled out.  
Numbers preceded by a percent sign (%) are binary. Numbers preceded by a dollar sign ($) or 0x  
are hexadecimal.  
2 Signals and Connections  
Table 2 identifies and describes the i.MXL processor signals that are assigned to package pins. The signals  
are grouped by the internal module that they are connected to.  
Table 2. i.MXL Signal Descriptions  
Signal Name  
Function/Notes  
External Bus/Chip-Select (EIM)  
A[24:0]  
Address bus signals  
Data bus signals  
D[31:0]  
EB0  
MSB Byte Strobe—Active low external enable byte signal that controls D [31:24].  
Byte Strobe—Active low external enable byte signal that controls D [23:16].  
Byte Strobe—Active low external enable byte signal that controls D [15:8].  
LSB Byte Strobe—Active low external enable byte signal that controls D [7:0].  
Memory Output Enable—Active low output enables external data bus.  
EB1  
EB2  
EB3  
OE  
CS [5:0]  
Chip-Select—The chip-select signals CS [3:2] are multiplexed with CSD [1:0] and are selected by the  
Function Multiplexing Control Register (FMCR). By default CSD [1:0] is selected.  
ECB  
LBA  
Active low input signal sent by a flash device to the EIM whenever the flash device must terminate an  
on-going burst sequence and initiate a new (long first access) burst sequence.  
Active low signal sent by a flash device causing the external burst device to latch the starting burst  
address.  
BCLK (burst clock)  
RW  
Clock signal sent to external synchronous memories (such as burst flash) during burst mode.  
RW signal—Indicates whether external access is a read (high) or write (low) cycle. Used as a WE input  
signal by external DRAM.  
DTACK  
DTACK signal—The external input data acknowledge signal. When using the external DTACK signal  
as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not  
terminated by the external DTACK signal after 1022 clock counts have elapsed.  
MC9328MXL Technical Data, Rev. 8  
4
Freescale Semiconductor  
 
Signals and Connections  
Table 2. i.MXL Signal Descriptions (Continued)  
Signal Name  
Function/Notes  
Bootstrap  
BOOT [3:0]  
System Boot Mode Select—The operational system boot mode of the i.MXL processor upon system  
reset is determined by the settings of these pins.  
SDRAM Controller  
SDBA [4:0]  
SDIBA [3:0]  
SDRAM non-interleave mode bank address multiplexed with address signals A [15:11]. These signals  
are logically equivalent to core address p_addr [25:21] in SDRAM cycles.  
SDRAM interleave addressing mode bank address multiplexed with address signals A [19:16]. These  
signals are logically equivalent to core address p_addr [12:9] in SDRAM cycles.  
MA [11:10]  
MA [9:0]  
SDRAM address signals  
SDRAM address signals which are multiplexed with address signals A [10:1]. MA [9:0] are selected on  
SDRAM cycles.  
DQM [3:0]  
CSD0  
SDRAM data enable  
SDRAM Chip-select signal which is multiplexed with the CS2 signal. These two signals are selectable  
by programming the system control register.  
CSD1  
SDRAM Chip-select signal which is multiplexed with CS3 signal. These two signals are selectable by  
programming the system control register. By default, CSD1 is selected, so it can be used as boot  
chip-select by properly configuring BOOT [3:0] input pins.  
RAS  
SDRAM Row Address Select signal  
SDRAM Column Address Select signal  
SDRAM Write Enable signal  
SDRAM Clock Enable 0  
SDRAM Clock Enable 1  
SDRAM Clock  
CAS  
SDWE  
SDCKE0  
SDCKE1  
SDCLK  
RESET_SF  
Not Used  
Clocks and Resets  
EXTAL16M  
Crystal input (4 MHz to 16 MHz), or a 16 MHz oscillator input when the internal oscillator circuit is shut  
down.  
XTAL16M  
EXTAL32K  
XTAL32K  
CLKO  
Crystal output  
32 kHz crystal input  
32 kHz crystal output  
Clock Out signal selected from internal clock signals.  
RESET_IN  
Master Reset—External active low Schmitt trigger input signal. When this signal goes active, all  
modules (except the reset module and the clock control module) are reset.  
RESET_OUT  
POR  
Reset Out—Internal active low output signal from the Watchdog Timer module and is asserted from the  
following sources: Power-on reset, External reset (RESET_IN), and Watchdog time-out.  
Power On Reset—Internal active high Schmitt trigger input signal. The POR signal is normally  
generated by an external RC circuit designed to detect a power-up event.  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
5
Signals and Connections  
Signal Name  
Table 2. i.MXL Signal Descriptions (Continued)  
Function/Notes  
JTAG  
TRST  
TDO  
TDI  
Test Reset Pin—External active low signal used to asynchronously initialize the JTAG controller.  
Serial Output for test instructions and data. Changes on the falling edge of TCK.  
Serial Input for test instructions and data. Sampled on the rising edge of TCK.  
Test Clock to synchronize test logic and control register access through the JTAG port.  
TCK  
TMS  
Test Mode Select to sequence the JTAG test controller’s state machine. Sampled on the rising edge of  
TCK.  
DMA  
DMA_REQ  
DMA Request—external DMA request signal. Multiplexed with SPI1_SPI_RDY.  
BIG_ENDIAN  
Big Endian—Input signal that determines the configuration of the external chip-select space. If it is  
driven logic-high at reset, the external chip-select space will be configured to big endian. If it is driven  
logic-low at reset, the external chip-select space will be configured to little endian. This input must not  
change state after power-on reset negates or during chip operation.  
ETM  
ETMTRACESYNC  
ETMTRACECLK  
ETM sync signal which is multiplexed with A24. ETMTRACESYNC is selected in ETM mode.  
ETM clock signal which is multiplexed with A23. ETMTRACECLK is selected in ETM mode.  
ETMPIPESTAT [2:0] ETM status signals which are multiplexed with A [22:20]. ETMPIPESTAT [2:0] are selected in ETM  
mode.  
ETMTRACEPKT [7:0] ETM packet signals which are multiplexed with ECB, LBA, BCLK (burst clock), PA17, A [19:16].  
ETMTRACEPKT [7:0] are selected in ETM mode.  
CMOS Sensor Interface  
CSI_D [7:0]  
CSI_MCLK  
CSI_VSYNC  
CSI_HSYNC  
CSI_PIXCLK  
Sensor port data  
Sensor port master clock  
Sensor port vertical sync  
Sensor port horizontal sync  
Sensor port data latch clock  
LCD Controller  
LD [15:0]  
LCD Data Bus—All LCD signals are driven low after reset and when LCD is off.  
FLM/VSYNC  
Frame Sync or Vsync—This signal also serves as the clock signal output for the gate  
driver (dedicated signal SPS for Sharp panel HR-TFT).  
LP/HSYNC  
LSCLK  
Line pulse or H sync  
Shift clock  
ACD/OE  
CONTRAST  
SPL_SPR  
PS  
Alternate crystal direction/output enable.  
This signal is used to control the LCD bias voltage as contrast control.  
Program horizontal scan direction (Sharp panel dedicated signal).  
Control signal output for source driver (Sharp panel dedicated signal).  
MC9328MXL Technical Data, Rev. 8  
6
Freescale Semiconductor  
Signals and Connections  
Table 2. i.MXL Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
CLS  
Start signal output for gate driver. This signal is an inverted version of PS (Sharp panel dedicated  
signal).  
REV  
Signal for common electrode driving signal preparation (Sharp panel dedicated signal).  
SPI 1 and SPI 2  
SPI1_MOSI  
SPI1_MISO  
SPI1_SS  
Master Out/Slave In  
Slave In/Master Out  
Slave Select (Selectable polarity)  
Serial Clock  
SPI1_SCLK  
SPI1_SPI_RDY  
SPI2_TXD  
Serial Data Ready  
SPI2 Master TxData Output—This signal is multiplexed with a GPI/O pin yet shows up as a primary or  
alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in  
the MC9328MXL Reference Manual for information about how to bring this signal to the assigned pin.  
SPI2_RXD  
SPI2_SS  
SPI2 Master RxData Input—This signal is multiplexed with a GPI/O pin yet shows up as a primary or  
alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in  
the MC9328MXL Reference Manual for information about how to bring this signal to the assigned pin.  
SPI2 Slave Select—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative  
signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the  
MC9328MXL Reference Manual for information about how to bring this signal to the assigned pin.  
SPI2_SCLK  
SPI2 Serial Clock—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative  
signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the  
MC9328MXL Reference Manual for information about how to bring this signal to the assigned pin.  
General Purpose Timers  
TIN  
Timer Input Capture or Timer Input Clock—The signal on this input is applied to both timers  
simultaneously.  
TMR2OUT  
Timer 2 Output  
USB Device  
USBD_VMO  
USBD_VPO  
USBD_VM  
USB Minus Output  
USB Plus Output  
USB Minus Input  
USB Plus Input  
USBD_VP  
USBD_SUSPND  
USBD_RCV  
USBD_ROE  
USBD_AFE  
USB Suspend Output  
USB Receive Data  
USB OE  
USB Analog Front End Enable  
Secure Digital Interface  
SD_CMD  
SD_CLK  
SD Command—If the system designer does not wish to make use of the internal pull-up, via the Pull-up  
enable register, a 4.7K–69K external pull up resistor must be added.  
MMC Output Clock  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
7
Signals and Connections  
Table 2. i.MXL Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
SD_DAT [3:0]  
Data—If the system designer does not wish to make use of the internal pull-up, via the Pull-up enable  
register, a 50K–69K external pull up resistor must be added.  
Memory Stick Interface  
MS_BS  
Memory Stick Bus State (Output)—Serial bus control signal  
Memory Stick Serial Data (Input/Output)  
MS_SDIO  
MS_SCLKO  
MS_SCLKI  
Memory Stick Serial Clock (Input)—Serial protocol clock source for SCLK Divider  
Memory Stick External Clock (Output)—Test clock input pin for SCLK divider. This pin is only for test  
purposes, not for use in application mode.  
MS_PI0  
MS_PI1  
General purpose Input0—Can be used for Memory Stick Insertion/Extraction detect  
General purpose Input1—Can be used for Memory Stick Insertion/Extraction detect  
UARTs – IrDA/Auto-Bauding  
UART1_RXD  
UART1_TXD  
UART1_RTS  
UART1_CTS  
UART2_RXD  
UART2_TXD  
UART2_RTS  
UART2_CTS  
UART2_DSR  
UART2_RI  
Receive Data  
Transmit Data  
Request to Send  
Clear to Send  
Receive Data  
Transmit Data  
Request to Send  
Clear to Send  
Data Set Ready  
Ring Indicator  
UART2_DCD  
UART2_DTR  
Data Carrier Detect  
Data Terminal Ready  
Serial Audio Port – SSI (configurable to I2S protocol)  
SSI_TXDAT  
SSI_RXDAT  
SSI_TXCLK  
SSI_RXCLK  
SSI_TXFS  
Transmit Data  
Receive Data  
Transmit Serial Clock  
Receive Serial Clock  
Transmit Frame Sync  
Receive Frame Sync  
SSI_RXFS  
I2C  
I2C_SCL  
I2C_SDA  
I2C Clock  
I2C Data  
MC9328MXL Technical Data, Rev. 8  
8
Freescale Semiconductor  
Signals and Connections  
Table 2. i.MXL Signal Descriptions (Continued)  
Signal Name  
Function/Notes  
PWM  
PWMO  
PWM Output  
Test Function  
TRISTATE  
Forces all I/O signals to high impedance for test purposes. For normal operation, terminate this input  
with a 1 k ohm resistor to ground. (TRI-STATE® is a registered trademark of National Semiconductor.)  
Digital Supply Pins  
NVDD  
NVSS  
Digital Supply for the I/O pins  
Digital Ground for the I/O pins  
Supply Pins – Analog Modules  
Supply for analog blocks  
AVDD  
Internal Power Supply  
QVDD  
QVSS  
Power supply pins for silicon internal circuitry  
Ground pins for silicon internal circuitry  
2.1  
I/O Pads Power Supply and Signal Multiplexing Scheme  
This section describes detailed information about both the power supply for each I/O pin and its function  
multiplexing scheme. The user can reference information provided in Table 6 on page 18 to configure the  
power supply scheme for each device in the system (memory and external peripherals). The function  
multiplexing information also shown in Table 6 allows the user to select the function of each pin by  
configuring the appropriate GPIO registers when those pins are multiplexed to provide different functions.  
Table 3. MC9328MXLMC9328MXS Signal Multiplexing Scheme  
Primary  
Alternate  
GPIO  
225  
BGA  
Ball  
256  
BGA  
Ball  
I/O Supply  
Voltage  
AIN  
BIN  
AOUT  
Default  
Pull-  
Up  
Pull  
-Up  
Signal  
Dir  
Signal  
Dir  
Mux  
NVDD1  
D2  
B1  
A24  
O
ETMTRAC  
ESYNC  
O
PA0  
69K SPI2_  
SCLK  
A24  
NVDD1  
NVDD1  
C1  
D1  
C2  
C1  
D31  
A23  
I/O  
O
69K  
69K  
69K  
69K  
ETMTRAC  
ECLK  
O
O
O
PA31  
PA30  
PA29  
69K  
69K  
69K  
A23  
A22  
A21  
NVDD1  
NVDD1  
E3  
E2  
D2  
D1  
D30  
A22  
I/O  
O
ETMPIPE  
STAT2  
NVDD1  
NVDD1  
E4  
E1  
D3  
E2  
D29  
A21  
I/O  
O
ETMPIPE  
STAT1  
NVDD1  
F3  
E3  
D28  
I/O  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
9
 
 
Signals and Connections  
Table 3. MC9328MXLMC9328MXS Signal Multiplexing Scheme (Continued)  
Primary  
Alternate  
GPIO  
225  
I/O Supply  
BGA  
256  
BGA  
Ball  
AIN  
BIN  
AOUT  
Default  
Pull-  
Up  
Pull  
Voltage  
Signal  
Dir  
Signal  
Dir  
Mux  
Ball  
-Up  
NVDD1  
F1  
E1  
A20  
O
ETMPIPE  
STAT0  
O
PA28  
69K  
A20  
NVDD1  
NVDD1  
F4  
F2  
F2  
F4  
D27  
A19  
I/O  
O
69K  
69K  
69K  
69K  
ETMTRAC  
EPKT3  
O
O
O
O
PA27  
PA26  
PA25  
PA24  
69K  
69K  
69K  
69K  
A19  
A18  
A17  
A16  
NVDD1  
NVDD1  
G3  
G2  
E4  
F1  
D26  
A18  
I/O  
O
ETMTRAC  
EPKT2  
NVDD1  
NVDD1  
G4  
G1  
F3  
D25  
A17  
I/O  
O
G2  
ETMTRAC  
EPKT1  
NVDD1  
NVDD1  
H4  
H2  
G3  
F5  
D24  
A16  
I/O  
O
ETMTRAC  
EPKT0  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
H3  
H1  
H5  
J1  
G4  
G1  
H2  
H3  
G5  
H1  
H4  
J1  
D23  
A15  
D22  
A14  
D21  
A13  
D20  
A12  
D19  
A11  
D18  
A10  
D17  
A9  
I/O  
O
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
I/O  
O
J3  
I/O  
O
K1  
J4  
I/O  
O
J2  
K4  
K2  
L4  
L1  
L3  
L2  
M1  
N1  
M2  
N2  
P1  
R1  
M3  
P2  
N3  
P3  
R2  
J4  
I/O  
O
J2  
J3  
I/O  
O
K1  
K4  
K3  
K2  
L1  
I/O  
O
D16  
A8  
I/O  
O
L4  
D15  
A7  
I/O  
O
L2  
L5  
D14  
A6  
I/O  
O
M4  
L3  
D13  
A5  
I/O  
O
M1  
M2  
N1  
M3  
D12  
A4  
I/O  
O
D11  
I/O  
MC9328MXL Technical Data, Rev. 8  
10  
Freescale Semiconductor  
Signals and Connections  
Table 3. MC9328MXLMC9328MXS Signal Multiplexing Scheme (Continued)  
Primary  
Dir  
Alternate  
Signal Dir  
GPIO  
225  
BGA  
Ball  
256  
BGA  
Ball  
I/O Supply  
Voltage  
AIN  
BIN  
AOUT  
Default  
Pull-  
Up  
Pull  
Signal  
Mux  
-Up  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
N4  
M4  
P4  
R3  
N5  
R4  
P5  
M5  
N6  
R5  
P6  
L7  
P3  
N3  
P1  
N2  
P2  
R1  
T2  
R2  
R5  
T3  
R3  
T4  
N4  
R4  
N5  
P4  
P5  
T5  
M5  
T6  
T7  
R6  
P6  
EB0  
D10  
A3  
O
I/O  
O
69K  
69K  
EB1  
D9  
O
I/O  
O
EB2  
A2  
O
EB3  
D8  
O
I/O  
O
69K  
69K  
69K  
OE  
A1  
O
CS5  
D7  
O
PA23  
69K  
PA23  
R6  
M7  
R7  
N7  
P7  
K3  
R8  
M8  
N8  
P8  
L9  
I/O  
O
CS4  
A0  
PA22  
PA21  
69K  
69K  
PA22  
A0  
O
CS3  
D6  
O
CSD1  
CSD0  
CSD1  
I/O  
O
CS2  
SDCLK  
CS1  
CS0  
D5  
CSD0  
O
O
O
I/O  
I
69K  
69K  
69K  
69K  
69K  
ECB  
ETMTRAC  
EPKT7  
PA20  
PA19  
PA18  
PA17  
69K  
69K  
69K  
ECB  
LBA  
NVDD1  
NVDD1  
R9  
N6  
R7  
D4  
I/O  
O
R10  
LBA  
ETMTRAC  
EPKT6  
NVDD1  
NVDD1  
R11  
M9  
P8  
R8  
D3  
I/O  
I/O  
I/O  
BCLK  
ETMTRAC  
EPKT5  
BCLK  
PA17  
NVDD1  
NVDD1  
L8  
P7  
N7  
D2  
N9  
PA17  
ETMTRAC  
EPKT4  
69K SPI2_  
SS  
DTACK  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
K10  
M10  
P10  
P9  
N8  
M7  
T8  
D1  
RW  
MA11  
MA10  
D0  
O
O
M8  
R9  
P9  
N10  
R12  
I/O  
O
69K  
DQM3  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
11  
Signals and Connections  
Table 3. MC9328MXLMC9328MXS Signal Multiplexing Scheme (Continued)  
Primary  
Dir  
Alternate  
Signal Dir  
GPIO  
225  
I/O Supply  
BGA  
256  
BGA  
Ball  
AIN  
BIN  
AOUT  
Default  
Pull-  
Up  
Pull  
Voltage  
Signal  
Mux  
Ball  
-Up  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
N11  
P11  
N12  
P12  
R13  
R14  
N13  
P13  
P15  
T9  
N9  
DQM2  
DQM1  
DQM0  
RAS  
O
O
O
O
O
O
R10  
M9  
L8  
CAS  
T10  
R11  
P10  
N10  
SDWE  
SDCKE0  
SDCKE1  
O
O
O
RESET_S  
F
NVDD1  
AVDD1  
QVDD2  
AVDD1  
AVDD1  
P14  
R15  
M13  
N15  
N14  
T11  
T12  
R15  
P13  
CLKO  
O
AVDD1 Static  
QVDD2 Static  
TRST  
I
I
69K  
T13 TRISTATE  
1
AVDD1  
M15  
T14  
EXTAL16  
M
I
AVDD1  
AVDD1  
L14  
L15  
T15  
R16  
XTAL16M  
O
I
EXTAL32  
K
AVDD1  
AVDD1  
K15  
M14  
P16  
M10  
XTAL32K  
O
I
RESET_I  
N2  
69K  
AVDD1  
K14  
N11  
R12  
RESET_O  
UT  
O
POR2  
AVDD1  
AVDD1  
L12  
K13  
I
I
M11 BIG_ENDI  
AN3  
BOOT33  
P11  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
NVDD2  
M12  
K11  
J14  
J15  
J13  
I
I
BOOT23  
N12  
BOOT13  
R13  
I
BOOT03  
P12  
I
TDO4  
R14  
O
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
H15  
J12  
K12  
J11  
H14  
N15  
L9  
TMS  
TCK  
I
I
69K  
69K  
69K  
N16  
P14  
P15  
TDI  
I
I2C_SCL  
O
PA16  
PA15  
69K  
69K  
PA16  
PA15  
I2C_SDA I/O  
MC9328MXL Technical Data, Rev. 8  
12  
Freescale Semiconductor  
Signals and Connections  
Table 3. MC9328MXLMC9328MXS Signal Multiplexing Scheme (Continued)  
Primary  
Dir  
Alternate  
Signal Dir  
GPIO  
225  
BGA  
Ball  
256  
BGA  
Ball  
I/O Supply  
Voltage  
AIN  
BIN  
AOUT  
Default  
Pull-  
Up  
Pull  
Signal  
Mux  
-Up  
NVDD2  
NVDD2  
NVDD2  
H13  
G14  
H12  
N13  
M13  
M14  
CSI_PIXC  
LK  
I
I
I
PA14  
69K  
PA14  
PA13  
PA12  
CSI_HSY  
NC  
PA13  
PA12  
69K  
69K  
CSI_VSY  
NC  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
G13  
J10  
N14  
M15  
M16  
M12  
L16  
L15  
L14  
L13  
L12  
CSI_D7  
CSI_D6  
CSI_D5  
CSI_D4  
CSI_D3  
CSI_D2  
CSI_D1  
CSI_D0  
I
I
PA11  
PA10  
PA9  
PA8  
PA7  
PA6  
PA5  
PA4  
PA3  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
PA11  
PA10  
PA9  
PA8  
PA7  
PA6  
PA5  
PA4  
PA3  
G15  
F15  
G12  
F14  
H11  
E14  
E15  
I
I
I
I
I
I
CSI_MCL  
K
O
NVDD2  
NVDD2  
G11  
E13  
L11  
L10  
PWMO  
TIN  
O
I
PA2  
PA1  
69K  
69K  
PA2  
PA1  
SPI2_  
RXD_0  
NVDD2  
D14  
K15 TMR2OUT  
O
PD31  
69K  
SPI2_  
TXD  
PD31  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
F13  
F12  
D15  
C14  
D13  
E12  
C13  
C12  
B15  
B14  
A15  
A14  
B13  
A13  
D12  
B12  
C11  
K16  
K14  
K13  
K12  
J14  
LD15  
LD14  
LD13  
LD12  
LD11  
LD10  
LD9  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
PD30  
PD29  
PD28  
PD27  
PD26  
PD25  
PD24  
PD23  
PD22  
PD21  
PD20  
PD19  
PD18  
PD17  
PD16  
PD15  
PD14  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
PD30  
PD29  
PD28  
PD27  
PD26  
PD25  
PD24  
PD23  
PD22  
PD21  
PD20  
PD19  
PD18  
PD17  
PD16  
PD15  
PD14  
K11  
H15  
J13  
LD8  
J12  
LD7  
J11  
LD6  
H14  
H13  
H16  
H12  
G16  
H11  
G15  
LD5  
LD4  
LD3  
LD2  
LD1  
LD0  
FLM/VSY  
NC  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
13  
Signals and Connections  
Table 3. MC9328MXLMC9328MXS Signal Multiplexing Scheme (Continued)  
Primary  
Dir  
Alternate  
GPIO  
225  
I/O Supply  
BGA  
256  
BGA  
Ball  
AIN  
BIN  
AOUT  
Default  
Pull-  
Up  
Pull  
Voltage  
Signal  
Signal  
Dir  
Mux  
Ball  
-Up  
NVDD2  
D11  
G14  
LP/HSYN  
C
O
PD13  
69K  
PD13  
NVDD2  
NVDD2  
E11  
C10  
G13  
G12  
ACD/OE  
O
O
PD12  
PD11  
69K  
69K  
PD12  
PD11  
CONTRA  
ST  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
B11  
A12  
F10  
A11  
F16  
H10  
G11  
F12  
SPL_SPR  
O
O
O
O
O
UART2_D  
SR  
O
O
O
I
PD10  
PD9  
PD8  
PD7  
69K SPI2_  
TXD  
PD10  
PD9  
PD8  
PD7  
PS  
UART2_RI  
69K  
SPI2_  
RXD_1  
CLS  
UART2_D  
CD  
69K SPI2_  
SS  
REV  
UART2_D  
TR  
69K SPI2_  
SCLK  
NVDD2  
NVDD3  
B10  
D10  
F15  
G9  
LSCLK  
PD6  
69K  
69K  
PD6  
SPI1_MO I/O  
SI  
PC17  
PC17  
NVDD3  
E10  
F9  
SPI1_MIS I/O  
O
PC16  
69K  
PC16  
NVDD3  
NVDD3  
B9  
E9  
B9  
SPI1_SS  
I/O  
PC15  
PC14  
69K  
69K  
PC15  
PC14  
A10  
SPI1_SCL I/O  
K
DMA_REQ  
NVDD3  
NVDD3  
NVDD3  
NVDD3  
NVDD3  
NVDD3  
A9  
E8  
B8  
C9  
E9  
A8  
D9  
A9  
C9  
A8  
G8  
B8  
SPI1_SPI I/O  
_RDY  
PC13  
PC12  
PC11  
PC10  
PC9  
69K  
69K  
69K  
69K  
69K  
69K  
PC13  
PC12  
PC11  
PC10  
PC9  
UART1_R  
XD  
I
UART1_T  
XD  
O
I
UART1_R  
TS  
UART1_C  
TS  
O
SSI_TXCL I/O  
K
PC8  
PC8  
NVDD3  
NVDD3  
C8  
F9  
F8  
E8  
SSI_TXFS I/O  
PC7  
PC6  
69K  
69K  
PC7  
PC6  
SSI_TXDA  
T
O
NVDD3  
NVDD3  
B7  
F8  
D8  
B7  
SSI_RXD  
AT  
I
PC5  
PC4  
69K  
69K  
PC5  
PC4  
SSI_RXCL  
K
I
NVDD3  
NVDD4  
A7  
C7  
C8  
C7  
SSI_RXFS  
I
I
PC3  
69K  
69K  
PC3  
UART2_R  
XD  
PB31  
PB31  
MC9328MXL Technical Data, Rev. 8  
14  
Freescale Semiconductor  
Signals and Connections  
Table 3. MC9328MXLMC9328MXS Signal Multiplexing Scheme (Continued)  
Primary  
Dir  
Alternate  
Signal Dir  
GPIO  
225  
BGA  
Ball  
256  
BGA  
Ball  
I/O Supply  
Voltage  
AIN  
BIN  
AOUT  
Default  
Pull-  
Up  
Pull  
Signal  
Mux  
-Up  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
D8  
E7  
F7  
B6  
C6  
F7  
E7  
C6  
D7  
D6  
UART2_T  
XD  
O
I
PB30  
69K  
PB30  
PB29  
PB28  
PB27  
PB26  
UART2_R  
TS  
PB29  
PB28  
PB27  
PB26  
69K  
69K  
69K  
69K  
UART2_C  
TS  
O
O
O
USBD_VM  
O
USBD_VP  
O
NVDD4  
NVDD4  
NVDD4  
A6  
D6  
A5  
E6  
B6  
D5  
USBD_VM  
USBD_VP  
I
I
PB25  
PB24  
PB23  
69K  
69K  
69K  
PB25  
PB24  
PB23  
USBD_SU  
SPND  
O
NVDD4  
NVDD4  
NVDD4  
B5  
A4  
B4  
C5  
B5  
A5  
USBD_RC I/O  
V
PB22  
PB21  
PB20  
69K  
69K  
69K  
PB22  
PB21  
PB20  
USBD_RO  
E
O
USBD_AF  
E
O
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
A3  
C4  
D4  
B3  
A2  
C3  
A1  
B2  
G7  
F6  
G6  
B4  
C4  
D4  
B3  
A3  
PB19  
PB18  
PB17  
PB16  
PB15  
PB14  
I/O  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
PB19  
PB18  
PB17  
PB16  
PB15  
PB14  
PB13  
PB12  
I/O  
O
I
I
I
SD_CMD I/O  
SD_CLK  
MS_BS  
PB13  
PB12  
O
MS_SCLK  
O
NVDD4  
NVDD4  
B1  
C5  
A2  
E5  
SD_DAT3 I/O  
SD_DAT2 I/O  
MS_SDIO  
PB11  
PB10  
69K  
(pull  
down)  
PB11  
PB10  
MS_SCLK  
I
69K  
NVDD4  
NVDD4  
NVDD1  
D3  
C2  
D5  
G6  
E5  
H6  
J8  
B2  
C3  
K8  
A1  
H5  
T1  
H9  
H8  
SD_DAT1 I/O  
SD_DAT0 I/O  
NVDD1 Static  
MS_PI1  
MS_PI0  
PB9  
PB8  
69K  
69K  
PB9  
PB8  
NVSS  
NVDD1 Static  
NVSS Static  
QVDD1 Static  
QVSS Static  
Static  
NVDD1  
QVDD1  
E6  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
15  
Signals and Connections  
Table 3. MC9328MXLMC9328MXS Signal Multiplexing Scheme (Continued)  
Primary  
Dir  
Alternate  
Signal Dir  
GPIO  
225  
I/O Supply  
BGA  
256  
BGA  
Ball  
AIN  
BIN  
AOUT  
Default  
Pull-  
Up  
Pull  
-Up  
Voltage  
Signal  
Mux  
Ball  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
F5  
J6  
J5  
K6  
NVDD  
NVSS  
Static  
Static  
G5  
K6  
K5  
NVDD1 Static  
NVSS Static  
NVDD1 Static  
NVSS Static  
NVDD1 Static  
NVSS Static  
NVDD1 Static  
NVSS Static  
NVDD1 Static  
M6  
H6  
J7  
J5  
H7  
K5  
L6  
J7  
J7  
L5  
L6  
G8  
L5  
K7  
J8  
H8  
K7  
L7  
NVSS  
QVSS  
Static  
Static  
T16  
K10  
J10  
J15  
J16  
K9  
NVDD2  
QVDD3  
NVDD2  
QVDD4  
NVDD3  
H10  
G9  
F11  
G10  
C15  
H9  
D7  
L13  
D9  
J9  
NVDD2 Static  
NVSS Static  
QVDD3 Static  
QVSS Static  
NVDD2 Static  
NVSS Static  
QVDD4 Static  
QVSS Static  
NVDD3 Static  
J9  
A13  
B13  
A10  
A7  
NVSS  
NVSS  
Static  
Static  
K9  
A4  
NVDD4  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
G7  
F6  
A6  
NVDD4 Static  
NVDD1 Static  
NVDD1 Static  
NVDD1 Static  
NVDD1 Static  
L6  
M6  
K8  
L10  
L11  
M11  
NVSS  
NVSS  
NVSS  
Static  
Static  
Static  
1
2
3
4
Pull down this input with 1KΩ resistor to GND.  
External circuit required to drive this input.  
Tie this input high (to AVDD) or pull down with 1KΩ resistor to GND.  
Pull up this output with a resistor to NVDD2.  
MC9328MXL Technical Data, Rev. 8  
16  
Freescale Semiconductor  
Electrical Characteristics  
3 Electrical Characteristics  
This section contains the electrical specifications and timing diagrams for the i.MXL processor.  
3.1  
Maximum Ratings  
Table 4 provides information on maximum ratings which are those values beyond which damage to the  
device may occur. Functional operation should be restricted to the limits listed in Recommended Operating  
Range Table 5 on page 18 or the DC Characteristics table.  
Table 4. Maximum Ratings  
Symbol  
NVDD  
Rating  
Minimum  
-0.3  
Maximum  
3.3  
Unit  
V
DC I/O Supply Voltage  
QVDD  
DC Internal (core = 150 MHz) Supply Voltage  
DC Internal (core = 200 MHz) Supply Voltage  
DC Analog Supply Voltage  
-0.3  
1.9  
V
QVDD  
-0.3  
2.0  
V
AVDD  
-0.3  
3.3  
V
BTRFVDD  
DC Bluetooth Supply Voltage  
-0.3  
3.3  
V
VESD_HBM  
VESD_MM  
ILatchup  
Test  
ESD immunity with HBM (human body model)  
ESD immunity with MM (machine model)  
Latch-up immunity  
2000  
100  
200  
150  
V
V
mA  
°C  
Storage temperature  
-55  
8001  
13002  
Pmax  
Power Consumption  
mW  
A typical application with 30 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the ARM®  
core-that is, 7x GPIO, 15x Data bus, and 8x Address bus.  
1
2
A worst-case application with 70 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the  
ARM core-that is, 32x GPIO, 30x Data bus, 8x Address bus. These calculations are based on the core running its heaviest OS  
application at 200MHz, and where the whole image is running out of SDRAM. QVDD at 2.0V, NVDD and AVDD at 3.3V,  
therefore, 180mA is the worst measurement recorded in the factory environment, max 5mA is consumed for OSC pads, with  
each toggle GPIO consuming 4mA.  
3.2  
Recommended Operating Range  
Table 5 provides the recommended operating ranges for the supply voltages and temperatures. The i.MXL  
processor has multiple pairs of VDD and VSS power supply and return pins. QVDD and QVSS pins are  
used for internal logic. All other VDD and VSS pins are for the I/O pads voltage supply, and each pair of  
VDD and VSS provides power to the enclosed I/O pads. This design allows different peripheral supply  
voltage levels in a system.  
Because AVDD pins are supply voltages to the analog pads, it is recommended to isolate and noise-filter  
the AVDD pins from other VDD pins.  
For more information about I/O pads grouping per VDD, please refer to Table 2 on page 4.  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
17  
 
Electrical Characteristics  
Symbol  
Table 5. Recommended Operating Range  
Rating  
Minimum Maximum  
Unit  
TA  
Operating temperature range  
MC9328MXLVM20/MC9328MXLVM15  
0
70  
°C  
MC9328MXLVP20/MC9328MXLVP15  
TA  
Operating temperature range  
MC9328MXLDVM20/MC9328MXLDVM15  
MC9328MXLDVP20/MC9328MXLDVP15  
-30  
-40  
2.70  
70  
°C  
°C  
V
TA  
Operating temperature range  
MC9328MXLCVM15/  
MC9328MXLCVP15  
85  
NVDD  
I/O supply voltage (if using MSHC, CSI, SPI, LCD, and USBd which are  
only 3 V interfaces)  
3.30  
NVDD  
QVDD  
QVDD  
AVDD  
I/O supply voltage (if not using the peripherals listed above)  
Internal supply voltage (Core = 150 MHz)  
Internal supply voltage (Core = 200 MHz)  
Analog supply voltage  
1.70  
1.70  
1.80  
1.70  
3.30  
1.90  
2.00  
3.30  
V
V
V
V
3.3  
Power Sequence Requirements  
For required power-up and power-down sequencing, please refer to the “Power-Up Sequence” section of  
application note AN2537 on the i.MX applications processor website.  
3.4  
DC Electrical Characteristics  
Table 6 contains both maximum and minimum DC characteristics of the i.MXL processor.  
Table 6. Maximum and Minimum DC Characteristics  
Number or  
Symbol  
Parameter  
Min  
Typical  
Max  
Unit  
Iop  
Full running operating current at 1.8V for QVDD, 3.3V for  
NVDD/AVDD (Core = 96 MHz, System = 96 MHz, MPEG4  
decoding playback from external memory card to both  
external SSI audio decoder and driving TFT display panel,  
and OS with MMU enabled memory system is running on  
external SDRAM).  
QVDD at  
mA  
1.8V = 120mA;  
NVDD+AVDD at  
3.0V = 30mA  
Sidd1  
Sidd2  
Sidd3  
Sidd4  
Standby current  
(Core = 150 MHz, QVDD = 1.8V, temp = 25°C)  
25  
45  
35  
60  
μA  
μA  
μA  
μA  
Standby current  
(Core = 150 MHz, QVDD = 1.8V, temp = 55°C)  
Standby current  
(Core = 150 MHz, QVDD = 2.0V, temp = 25°C)  
Standby current  
(Core = 150 MHz, QVDD = 2.0V, temp = 55°C)  
MC9328MXL Technical Data, Rev. 8  
18  
Freescale Semiconductor  
 
Electrical Characteristics  
Table 6. Maximum and Minimum DC Characteristics (Continued)  
Number or  
Symbol  
Parameter  
Min  
0.7V  
Typical  
Max  
Unit  
V
Input high voltage  
Input low voltage  
Vdd+0.2  
0.4  
V
V
IH  
DD  
V
0.7V  
IL  
V
Output high voltage (I  
= 2.0 mA)  
Vdd  
0.4  
V
OH  
OH  
DD  
V
Output low voltage (I = -2.5 mA)  
OL  
V
OL  
IL  
I
Input low leakage current  
(V = GND, no pull-up or pull-down)  
1
μA  
IN  
I
Input high leakage current  
1
μA  
mA  
mA  
μA  
IH  
(V = V , no pull-up or pull-down)  
IN  
DD  
I
Output high current  
(V = 0.8VDD, VDD = 1.8V)  
4.0  
-4.0  
OH  
OH  
I
Output low current  
OL  
OZ  
(V = 0.4V, VDD = 1.8V)  
OL  
I
Output leakage current  
5
(V = V , output is high impedance)  
out  
DD  
C
Input capacitance  
Output capacitance  
5
5
pF  
pF  
i
C
o
3.5  
AC Electrical Characteristics  
The AC characteristics consist of output delays, input setup and hold times, and signal skew times. All  
signals are specified relative to an appropriate edge of other signals. All timing specifications are specified  
at a system operating frequency from 0 MHz to 96 MHz (core operating frequency 150 MHz) with an  
operating supply voltage from V  
timing is measured at 30 pF loading.  
to V  
under an operating temperature from T to T . All  
L H  
DD max  
DD min  
Table 7. Tristate Signal Timing  
Pin  
Parameter  
Minimum  
Maximum  
Unit  
TRISTATE Time from TRISTATE activate until I/O becomes Hi-Z  
Table 8. 32k/16M Oscillator Signal Timing  
20.8  
ns  
Parameter  
Minimum  
RMS  
Maximum  
Unit  
EXTAL32k input jitter (peak to peak)  
EXTAL32k startup time  
800  
5
20  
ns  
ms  
EXTAL16M input jitter (peak to peak) 1  
EXTAL16M startup time 1  
TBD  
TBD  
TBD  
1
The 16 MHz oscillator is not recommended for use in new designs.  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
19  
Functional Description and Application Information  
4 Functional Description and Application Information  
This section provides the electrical information including and timing diagrams for the individual modules  
of the i.MXL.  
4.1  
Embedded Trace Macrocell  
All registers in the ETM9 are programmed through a JTAG interface. The interface is an extension of the  
ARM920T processor’s TAP controller, and is assigned scan chain 6. The scan chain consists of a 40-bit  
shift register comprised of the following:  
32-bit data field  
7-bit address field  
A read/write bit  
The data to be written is scanned into the 32-bit data field, the address of the register into the 7-bit address  
field, and a 1 into the read/write bit.  
A register is read by scanning its address into the address field and a 0 into the read/write bit. The 32-bit  
data field is ignored. A read or a write takes place when the TAP controller enters the UPDATE-DR state.  
The timing diagram for the ETM9 is shown in Figure 2. See Table 9 for the ETM9 timing parameters used  
in Figure 2.  
2a  
1
2b  
3a  
TRACECLK  
3b  
TRACECLK  
(Half-Rate Clocking Mode)  
Output Trace Port  
Valid Data  
Valid Data  
4a  
Figure 2. Trace Port Timing Diagram  
4b  
Table 9. Trace Port Timing Diagram Parameter Table  
1.8 0.1 V 3.0 0.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
CLK frequency  
0
1.3  
3
85  
0
2
2
100  
MHz  
ns  
2a  
2b  
3a  
3b  
Clock high time  
Clock low time  
Clock rise time  
Clock fall time  
ns  
4
3
ns  
3
3
ns  
MC9328MXL Technical Data, Rev. 8  
20  
Freescale Semiconductor  
 
 
Functional Description and Application Information  
Table 9. Trace Port Timing Diagram Parameter Table (Continued)  
1.8 0.1 V 3.0 0.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
4a  
4b  
Output hold time  
Output setup time  
2.28  
3.42  
2
3
ns  
ns  
4.2  
DPLL Timing Specifications  
Parameters of the DPLL are given in Table 10. In this table, T is a reference clock period after the  
ref  
Table 10. DPLL Specifications  
Test Conditions  
pre-divider and T is the output double clock period.  
dck  
Parameter  
Minimum Typical Maximum  
Unit  
DPLL input clock freq range  
Vcc = 1.8V  
Vcc = 1.8V  
5
5
100  
30  
MHz  
Pre-divider output clock  
freq range  
MHz  
DPLL output clock freq range  
Pre-divider factor (PD)  
Vcc = 1.8V  
80  
1
220  
16  
MHz  
Total multiplication factor (MF) Includes both integer and fractional parts  
5
15  
MF integer part  
5
15  
MF numerator  
Should be less than the denominator  
0
1022  
1023  
312.5  
MF denominator  
Pre-multiplier lock-in time  
1
μsec  
Freq lock-in time after  
full reset  
FOL mode for non-integer MF  
(does not include pre-multi lock-in time)  
280  
(56 μs)  
Tref  
Tref  
250  
220  
300  
270  
300  
270  
400  
370  
0.01  
Freq lock-in time after  
partial reset  
FOL mode for non-integer MF (does not  
include pre-multi lock-in time)  
250  
(50 μs)  
Phase lock-in time after  
full reset  
FPL mode and integer MF (does not include  
pre-multi lock-in time)  
350  
(70 μs)  
Tref  
Phase lock-in time after  
partial reset  
FPL mode and integer MF (does not include  
pre-multi lock-in time)  
320  
(64 μs)  
Tref  
Freq jitter (p-p)  
0.005  
(0.01%)  
2•Tdck  
Phase jitter (p-p)  
Integer MF, FPL mode, Vcc=1.8V  
1.0  
(10%)  
1.7  
1.5  
2.5  
4
ns  
V
Power supply voltage  
Power dissipation  
FOL mode, integer MF,  
fdck = 200 MHz, Vcc = 1.8V  
mW  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
21  
 
Functional Description and Application Information  
4.3  
Reset Module  
The timing relationships of the Reset module with the POR and RESET_IN are shown in Figure 3 and  
Figure 4.  
NOTE  
Be aware that NVDD must ramp up to at least 1.8V before QVDD is powered up  
to prevent forward biasing.  
90% AVDD  
1
10% AVDD  
POR  
2
RESET_POR  
Exact 300ms  
3
7 cycles @ CLK32  
RESET_DRAM  
4
14 cycles @ CLK32  
HRESET  
RESET_OUT  
CLK32  
HCLK  
Figure 3. Timing Relationship with POR  
5
RESET_IN  
14 cycles @ CLK32  
HRESET  
4
RESET_OUT  
6
CLK32  
HCLK  
Figure 4. Timing Relationship with RESET_IN  
MC9328MXL Technical Data, Rev. 8  
22  
Freescale Semiconductor  
 
 
Functional Description and Application Information  
Table 11. Reset Module Timing Parameter Table  
1.8 0.1 V  
3.0 0.3 V  
Min Max  
Ref  
No.  
Parameter  
Unit  
Min  
Max  
note1  
300  
note1  
300  
1
2
Width of input POWER_ON_RESET  
Width of internal POWER_ON_RESET  
(CLK32 at 32 kHz)  
300  
300  
ms  
3
4
5
6
7K to 32K-cycle stretcher for SDRAM reset  
7
14  
4
7
14  
7
14  
4
7
14  
Cycles of  
CLK32  
14K to 32K-cycle stretcher for internal system reset  
HRESERT and output reset at pin RESET_OUT  
Cycles of  
CLK32  
Width of external hard-reset RESET_IN  
Cycles of  
CLK32  
4K to 32K-cycle qualifier  
4
4
4
4
Cycles of  
CLK32  
1
POR width is dependent on the 32 or 32.768 kHz crystal oscillator start-up time. Design margin should allow for crystal  
tolerance, i.MX chip variations, temperature impact, and supply voltage influence. Through the process of supplying crystals  
for use with CMOS oscillators, crystal manufacturers have developed a working knowledge of start-up time of their crystals.  
Typically, start-up times range from 400 ms to 1.2 seconds for this type of crystal.  
If an external stable clock source (already running) is used instead of a crystal, the width of POR should be ignored in  
calculating timing for the start-up process.  
4.4  
External Interface Module  
The External Interface Module (EIM) handles the interface to devices external to the i.MXL processor,  
including the generation of chip-selects for external peripherals and memory. The timing diagram for the  
EIM is shown in Figure 5, and Table 12 defines the parameters of signals.  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
23  
Functional Description and Application Information  
(HCLK) Bus Clock  
1a  
1b  
2b  
3b  
Address  
2a  
Chip-select  
3a  
Read (Write)  
4a  
5a  
4b  
5b  
OE (rising edge)  
OE (falling edge)  
EB (rising edge)  
EB (falling edge)  
4c  
5c  
4d  
5d  
6b  
6a  
LBA (negated falling edge)  
6a  
6c  
LBA (negated rising edge)  
7a  
7b  
BCLK (burst clock) - rising edge  
7c  
7d  
BCLK (burst clock) - falling edge  
Read Data  
8b  
9a  
9a  
8a  
9b  
Write Data (negated falling)  
9c  
Write Data (negated rising)  
DTACK_B  
10a  
10a  
Figure 5. EIM Bus Timing Diagram  
Table 12. EIM Bus Timing Parameter Table  
1.8 0.1 V  
3.0 0.3 V  
Ref No.  
Parameter  
Unit  
Min  
Typical Max  
Min  
Typical Max  
1a  
1b  
2a  
2b  
3a  
3b  
Clock fall to address valid  
2.48  
1.55  
2.69  
1.55  
1.35  
1.86  
3.31  
2.48  
3.31  
2.48  
2.79  
2.59  
9.11  
5.69  
7.87  
6.31  
6.52  
6.11  
2.4  
1.5  
2.6  
1.5  
1.3  
1.8  
3.2  
2.4  
3.2  
2.4  
2.7  
2.5  
8.8  
5.5  
7.6  
6.1  
6.3  
5.9  
ns  
ns  
ns  
ns  
ns  
ns  
Clock fall to address invalid  
Clock fall to chip-select valid  
Clock fall to chip-select invalid  
Clock fall to Read (Write) Valid  
Clock fall to Read (Write) Invalid  
MC9328MXL Technical Data, Rev. 8  
24  
Freescale Semiconductor  
 
 
Functional Description and Application Information  
Table 12. EIM Bus Timing Parameter Table (Continued)  
1.8 0.1 V  
3.0 0.3 V  
Ref No.  
Parameter  
Unit  
Min  
Typical Max  
Min  
Typical Max  
4a  
4b  
4c  
4d  
5a  
5b  
5c  
5d  
6a  
6b  
6c  
7a  
7b  
7c  
7d  
8a  
8b  
9a  
9b  
9c  
10a  
Clock1 rise to Output Enable Valid  
Clock1 rise to Output Enable Invalid  
Clock1 fall to Output Enable Valid  
Clock1 fall to Output Enable Invalid  
Clock1 rise to Enable Bytes Valid  
Clock1 rise to Enable Bytes Invalid  
Clock1 fall to Enable Bytes Valid  
Clock1 fall to Enable Bytes Invalid  
Clock1 fall to Load Burst Address Valid  
Clock1 fall to Load Burst Address Invalid  
Clock1 rise to Load Burst Address Invalid  
Clock1 rise to Burst Clock rise  
Clock1rise to Burst Clock fall  
2.32  
2.11  
2.38  
2.17  
1.91  
1.81  
1.97  
1.76  
2.07  
1.97  
1.91  
1.61  
1.61  
1.55  
1.55  
5.54  
0
2.62  
2.52  
2.69  
2.59  
2.52  
2.42  
2.59  
2.48  
2.79  
2.79  
2.62  
2.62  
2.62  
2.48  
2.59  
6.85  
6.55  
7.04  
6.73  
5.54  
5.24  
5.69  
5.38  
6.73  
6.83  
6.45  
5.64  
5.84  
5.59  
5.80  
2.3  
2.1  
2.3  
2.1  
1.9  
1.8  
1.9  
1.7  
2.0  
1.9  
1.9  
1.6  
1.6  
1.5  
1.5  
5.5  
0
2.6  
2.5  
2.6  
2.5  
2.5  
2.4  
2.5  
2.4  
2.7  
2.7  
2.6  
2.6  
2.6  
2.4  
2.5  
6.8  
6.5  
6.8  
6.5  
5.5  
5.2  
5.5  
5.2  
6.5  
6.6  
6.4  
5.6  
5.8  
5.4  
5.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock1 fall to Burst Clock rise  
Clock1 fall to Burst Clock fall  
Read Data setup time  
Read Data hold time  
Clock1 rise to Write Data Valid  
Clock1 fall to Write Data Invalid  
Clock1 rise to Write Data Invalid  
DTACK setup time  
1.81  
1.45  
1.63  
2.52  
2.72  
2.48  
6.85  
5.69  
1.8  
1.4  
1.62  
2.5  
2.7  
2.4  
6.8  
5.5  
1
Clock refers to the system clock signal, HCLK, generated from the System DPLL  
4.4.1  
DTACK Signal Description  
The DTACK signal is the external input data acknowledge signal. When using the external DTACK signal  
as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not  
terminated by the external DTACK signal after 1022 HCLK counts have elapsed. Only the CS5 group  
supports DTACK signal function when the external DTACK signal is used for data acknowledgement.  
4.4.2  
DTACK Signal Timing  
Figure 6 through Figure 9 show the access cycle timing used by chip-select 5. The signal values and units  
of measure for this figure are found in the associated tables.  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
25  
Functional Description and Application Information  
4.4.2.1  
WAIT Read Cycle without DMA  
3
Address  
2
CS5  
EB  
8
1
9
programmable  
min 0ns  
5
OE  
4
WAIT  
7
6
DATABUS  
10  
11  
XL  
Figure 6. WAIT Read Cycle without DMA  
Table 13. WAIT Read Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz  
3.0 0.3 V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
1
OE and EB assertion time  
CS5 pulse width  
See note 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
3T  
56.81  
3
OE negated to address inactive  
Wait asserted after OE asserted  
Wait asserted to OE negated  
Data hold timing after OE negated  
Data ready after wait asserted  
OE negated to CS negated  
OE negated after EB negated  
Become low after CS5 asserted  
Wait pulse width  
57.28  
1020T  
3T+7.33  
4
5
2T+1.57  
T-1.49  
0
6
7
T
8
9
1.5T-0.68  
0.06  
0
1.5T-0.06  
0.18  
10  
1019T  
1020T  
11  
1T  
Note:  
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)  
2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when  
EBC bit in CS5L register is clear.  
3. Address becomes valid and CS asserts at the start of read access cycle.  
4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.  
MC9328MXL Technical Data, Rev. 8  
26  
Freescale Semiconductor  
Functional Description and Application Information  
4.4.2.2  
WAIT Read Cycle DMA Enabled  
4
Address  
2
9
CS5  
1
10  
programmable  
min 0ns  
EB  
3
6
OE  
(logic high)  
RW  
5
WAIT  
7
11  
8
DATABUS  
12  
L
Figure 7. DTACK WAIT Read Cycle DMA Enabled  
Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz  
3.0 0.3 V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
1
2
OE and EB assertion time  
See note 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS pulse width  
3T  
3
OE negated before CS5 is negated  
Address inactived before CS negated  
Wait asserted after CS5 asserted  
Wait asserted to OE negated  
Data hold timing after OE negated  
Data ready after wait is asserted  
CS deactive to next CS active  
OE negate after EB negate  
1.5T-0.68  
1.5T-0.06  
0.05  
1020T  
3T+7.33  
4
5
6
2T+1.57  
7
T-1.49  
8
T
T
9
10  
11  
0.06  
0
0.18  
1019T  
Wait becomes low after CS5 asserted  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
27  
Functional Description and Application Information  
Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued)  
3.0 0.3 V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
12  
Wait pulse width  
1T  
1020T  
ns  
Note:  
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)  
2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when  
EBC bit in CS5L register is clear.  
3. Address becomes valid and CS asserts at the start of read access cycle.  
4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.  
4.4.2.3  
WAIT Write Cycle without DMA  
5
Address  
3
1
programmable  
min 0ns  
CS5  
2
10  
programmable  
min 0ns  
EB  
4
7
RW  
(logic high)  
WAIT  
OE  
6
11  
8
9
12  
DATABUS  
from i.MXL  
Figure 8. WAIT Write Cycle without DMA  
Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz  
3.0 0.3 V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
1
2
3
4
5
6
CS5 assertion time  
See note 2  
See note 2  
3T  
ns  
ns  
ns  
ns  
ns  
ns  
EB assertion time  
CS5 pulse width  
2.5T-1.16  
RW negated before CS5 is negated  
RW negated to Address inactive  
Wait asserted after CS5 asserted  
2.5T-3.63  
64.22  
1020T  
MC9328MXL Technical Data, Rev. 8  
28  
Freescale Semiconductor  
Functional Description and Application Information  
Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued)  
3.0 0.3 V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
7
8
Wait asserted to RW negated  
Data hold timing after RW negated  
Data ready after CS5 is asserted  
EB negated after CS5 is negated  
Wait becomes low after CS5 asserted  
Wait pulse width  
T+2.66  
2T+7.96  
ns  
ns  
ns  
ns  
ns  
ns  
2T+0.03  
9
0.5T  
0
T
10  
11  
12  
0.5T+0.5  
1019T  
1020T  
1T  
Note:  
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)  
2. CS5 assertion can be controlled by CSA bits. EB assertion can also be programmable by WEA bits in CS5L register.  
3. Address becomes valid and RW asserts at the start of write access cycle.  
4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.  
4.4.2.4  
WAIT Write Cycle DMA Enabled  
5
Address  
1
3
10  
programmable  
min 0ns  
CS5  
2
11  
programmable  
min 0ns  
EB  
4
7
RW  
OE (logic high)  
WAIT  
6
12  
9
8
13  
DATABUS  
Figure 9. WAIT Write Cycle DMA Enabled  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
29  
Functional Description and Application Information  
Table 16. WAIT Write Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz  
3.0 0.3 V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
1
2
CS5 assertion time  
See note 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
EB assertion time  
See note 2  
3
CS5 pulse width  
3T  
4
RW negated before CS5 is negated  
Address inactived after CS negated  
Wait asserted after CS5 asserted  
Wait asserted to RW negated  
Data hold timing after RW negated  
Data ready after CS5 is asserted  
CS deactive to next CS active  
EB negate after CS negate  
Wait becomes low after CS5 asserted  
Wait pulse width  
2.5T-3.63  
2.5T-1.16  
0.09  
1020T  
2T+7.96  
5
6
7
T+2.66  
8
2T+0.03  
9
T
T
10  
11  
12  
13  
0.5T  
0
0.5T+0.5  
1019T  
1020T  
ns  
ns  
1T  
Note:  
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)  
2. CS5 assertion can be controlled by CSA bits. EB assertion also can be programmable by WEA bits in CS5L register.  
3. Address becomes valid and RW asserts at the start of write access cycle.  
4.The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.  
4.4.3  
EIM External Bus Timing  
The External Interface Module (EIM) is the interface to devices external to the i.MXL, including  
generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown  
in Figure 5, and Table 12 defines the parameters of signals.  
MC9328MXL Technical Data, Rev. 8  
30  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[0]  
htrans  
Seq/Nonseq  
Read  
hwrite  
haddr  
hready  
V1  
weim_hrdata  
weim_hready  
Last Valid Data  
V1  
BCLK (burst clock)  
ADDR  
Last Valid Address  
V1  
CS2  
R/W  
Read  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
V1  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 10. WSC = 1, A.HALF/E.HALF  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
31  
Functional Description and Application Information  
hclk  
hsel_weim_cs[0]  
htrans  
hwrite  
haddr  
Nonseq  
Write  
V1  
hready  
hwdata  
Last Valid Data  
Write Data (V1)  
Unknown  
weim_hrdata  
Last Valid Data  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Address  
V1  
CS0  
R/W  
Write  
LBA  
OE  
EB  
DATA  
Last Valid Data  
Write Data (V1)  
Figure 11. WSC = 1, WEA = 1, WEN = 1, A.HALF/E.HALF  
MC9328MXL Technical Data, Rev. 8  
32  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[0]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS0  
Read  
R/W  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
1/2 Half Word  
2/2 Half Word  
DATA  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 12. WSC = 1, OEA = 1, A.WORD/E.HALF  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
33  
Functional Description and Application Information  
hclk  
hsel_weim_cs[0]  
Nonseq  
Write  
V1  
htrans  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS0  
R/W  
LBA  
Write  
OE  
EB  
DATA  
1/2 Half Word  
2/2 Half Word  
Figure 13. WSC = 1, WEA = 1, WEN = 2, A.WORD/E.HALF  
MC9328MXL Technical Data, Rev. 8  
34  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[3]  
htrans  
Nonseq  
hwrite  
Read  
V1  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS[3]  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
Note 1: x = 0, 1, 2 or 3  
1/2 Half Word  
2/2 Half Word  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 14. WSC = 3, OEA = 2, A.WORD/E.HALF  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
35  
Functional Description and Application Information  
hclk  
hsel_weim_cs[3]  
htrans  
hwrite  
haddr  
Nonseq  
Write  
V1  
hready  
hwdata Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS3  
R/W  
LBA  
OE  
Write  
EB  
DATA  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 15. WSC = 3, WEA = 1, WEN = 3, A.WORD/E.HALF  
MC9328MXL Technical Data, Rev. 8  
36  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
Read  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
weim_data_in  
1/2 Half Word  
2/2 Half Word  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 16. WSC = 3, OEA = 4, A.WORD/E.HALF  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
37  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
Write  
LBA  
OE  
EB  
DATA  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 17. WSC = 3, WEA = 2, WEN = 3, A.WORD/E.HALF  
MC9328MXL Technical Data, Rev. 8  
38  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
Note 1: x = 0, 1, 2 or 3  
1/2 Half Word  
2/2 Half Word  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 18. WSC = 3, OEN = 2, A.WORD/E.HALF  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
39  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
Note 1: x = 0, 1, 2 or 3  
1/2 Half Word  
2/2 Half Word  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 19. WSC = 3, OEA = 2, OEN = 2, A.WORD/E.HALF  
MC9328MXL Technical Data, Rev. 8  
40  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Unknown  
weim_hrdata  
Last Valid Data  
weim_hready  
BCLK (burst clock)  
ADDR Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
Write  
LBA  
OE  
EB  
DATA  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 20. WSC = 2, WWS = 1, WEA = 1, WEN = 2, A.WORD/E.HALF  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
41  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
Unknown  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
LBA  
OE  
Write  
EB  
DATA  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 21. WSC = 1, WWS = 2, WEA = 1, WEN = 2, A.WORD/E.HALF  
MC9328MXL Technical Data, Rev. 8  
42  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data  
Read Data  
weim_hrdata  
weim_hready  
Last Valid Data  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V8  
Write  
CS2  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
DATA  
Read Data  
Last Valid Data  
Write Data  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 22. WSC = 2, WWS = 2, WEA = 1, WEN = 2, A.HALF/E.HALF  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
43  
Functional Description and Application Information  
Read  
Idle  
Write  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data  
weim_hrdata  
weim_hready  
Last Valid Data  
Read Data  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V8  
Write  
CS2  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
DATA  
Read Data  
Last Valid Data  
Write Data  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 23. WSC = 2, WWS = 1, WEA = 1, WEN = 2, EDC = 1, A.HALF/E.HALF  
MC9328MXL Technical Data, Rev. 8  
44  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (Word)  
weim_hrdata  
Last Valid Data  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS  
R/W  
Write  
LBA  
OE  
EB  
DATA  
Last Valid Data  
Write Data (1/2 Half Word)  
Write Data (2/2 Half Word)  
Figure 24. WSC = 2, CSA = 1, WWS = 1, A.WORD/E.HALF  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
45  
Functional Description and Application Information  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
weim_hrdata  
weim_hready  
Last Valid Data  
Write Data  
Read Data  
Last Valid Data  
BCLK (burst clock)  
ADDR Last Valid Addr  
Address V1  
Address V8  
CS4  
R/W  
LBA  
OE  
Read  
Write  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
Read Data  
DATA  
DATA  
Last Valid Data  
Write Data  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 25. WSC = 3, CSA = 1, A.HALF/E.HALF  
MC9328MXL Technical Data, Rev. 8  
46  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Idle  
Seq  
Read  
V2  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
Last Valid Data  
Read Data (V1)  
Read Data (V2)  
BCLK (burst clock)  
ADDR  
Last Valid  
Address V1  
Address V2  
CNC  
CS4  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
Read Data  
(V1)  
Read Data  
(V2)  
DATA  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 26. WSC = 2, OEA = 2, CNC = 3, BCM = 1, A.HALF/E.HALF  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
47  
Functional Description and Application Information  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Idle Nonseq  
hwrite  
haddr  
Write  
V8  
hready  
hwdata  
Last Valid Data  
Write Data  
weim_hrdata  
Last Valid Data  
Read Data  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V8  
CNC  
CS4  
R/W  
LBA  
OE  
Read  
Write  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
DATA  
Read Data  
Last Valid Data  
Write Data  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 27. WSC = 2, OEA = 2, WEA = 1, WEN = 2, CNC = 3, A.HALF/E.HALF  
MC9328MXL Technical Data, Rev. 8  
48  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Idle  
Nonseq  
Read  
V1  
Nonse  
Read  
V5  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V5  
CS2  
Read  
R/W  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
ECB  
DATA  
V1 Word V2 Word  
V5 Word V6 Word  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 28. WSC = 3, SYNC = 1, A.HALF/E.HALF  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
49  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Idle  
Nonseq  
Seq  
Read  
V2  
Seq  
Read  
V3  
Seq  
Read  
V4  
hwrite  
haddr  
Read  
V1  
hready  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Data  
V1 Word  
V2 Word  
V3 Word  
V4 Word  
Last Valid Addr  
Address V1  
CS2  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
ECB  
DATA  
V1 Word  
V2 Word  
V3 Word  
V4 Word  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 29. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.WORD  
MC9328MXL Technical Data, Rev. 8  
50  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Idle  
Seq  
Nonseq  
hwrite  
Read  
V1  
Read  
V2  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
CS2  
Last Valid  
Address V1  
Address V2  
Read  
R/W  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
ECB  
DATA  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 30. WSC = 2, SYNC = 1, DOL = [1/0], A.WORD/E.HALF  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
51  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
Non  
seq  
Idle  
htrans  
Seq  
Read  
V2  
hwrite  
haddr  
Read  
V1  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
BCLK (burst clock)  
Last  
ADDR  
CS2  
Address V1  
Read  
R/W  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
ECB  
DATA  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 31. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 2, A.WORD/E.HALF  
MC9328MXL Technical Data, Rev. 8  
52  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Non  
seq  
Idle  
Seq  
Read  
V2  
hwrite  
Read  
V1  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last  
Address V1  
CS2  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
ECB  
DATA  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 32. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 1, A.WORD/E.HALF  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
53  
Functional Description and Application Information  
4.4.4  
Non-TFT Panel Timing  
T1  
T1  
VSYN  
T3  
T4  
T2  
T2  
XMAX  
HSYN  
SCLK  
Ts  
LD[15:0]  
Figure 33. Non-TFT Panel Timing  
Table 17. Non TFT Panel Timing Diagram  
Allowed Register  
Symbol  
Parameter  
Actual Value  
Unit  
Minimum Value1, 2  
Tpix4  
Tpix  
T1  
HSYN to VSYN delay3  
0
HWAIT2+2  
HWIDTH+1  
T2  
T3  
HSYN pulse width  
VSYN to SCLK  
0
0 T3 Ts5  
T4  
SCLK to HSYN  
0
HWAIT1+1  
Tpix  
1
Maximum frequency of LCDC_CLK is 48 MHz, which is controlled by Peripheral Clock Divider Register.  
Maximum frequency of SCLK is HCLK / 5, otherwise LD output will be wrong.  
2
3
VSYN, HSYN and SCLK can be programmed as active high or active low. In the above timing diagram, all  
these 3 signals are active high.  
4
5
Tpix is the pixel clock period which equals LCDC_CLK period * (PCD + 1).  
Ts is the shift clock period. Ts = Tpix * (panel data bus width).  
4.5  
SPI Timing Diagrams  
To use the internal transmit (TX) and receive (RX) data FIFOs when the SPI 1 module is configured as a  
master, two control signals are used for data transfer rate control: the SS signal (output) and the SPI_RDY  
signal (input). The SPI1 Sample Period Control Register (PERIODREG1) and the SPI2 Sample Period  
Control Register (PERIODREG2) can also be programmed to a fixed data transfer rate for either SPI 1 or  
SPI 2. When the SPI 1 module is configured as a slave, the user can configure the SPI1 Control Register  
(CONTROLREG1) to match the external SPI master’s timing. In this configuration, SS becomes an input  
signal, and is used to latch data into or load data out to the internal data shift registers, as well as to  
increment the data FIFO. Figure 34 through Figure 38 show the timing relationship of the master SPI using  
different triggering mechanisms.  
MC9328MXL Technical Data, Rev. 8  
54  
Freescale Semiconductor  
Functional Description and Application Information  
2
5
3
SS  
1
4
SPIRDY  
SCLK, MOSI, MISO  
Figure 34. Master SPI Timing Diagram Using SPI_RDY Edge Trigger  
SS  
SPIRDY  
SCLK, MOSI, MISO  
Figure 35. Master SPI Timing Diagram Using SPI_RDY Level Trigger  
SS (output)  
SCLK, MOSI, MISO  
Figure 36. Master SPI Timing Diagram Ignore SPI_RDY Level Trigger  
SS (input)  
SCLK, MOSI, MISO  
Figure 37. Slave SPI Timing Diagram FIFO Advanced by BIT COUNT  
SS (input)  
6
7
SCLK, MOSI, MISO  
Figure 38. Slave SPI Timing Diagram FIFO Advanced by SS Rising Edge  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
55  
 
 
Functional Description and Application Information  
Table 18. Timing Parameter Table for Figure 34 through Figure 38  
3.0 0.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
2T1  
1
2
SPI_RDY to SS output low  
ns  
ns  
3 • Tsclk2  
2 • Tsclk  
0
SS output low to first SCLK edge  
3
4
5
Last SCLK edge to SS output high  
SS output high to SPI_RDY low  
SS output pulse width  
ns  
ns  
ns  
Tsclk + WAIT 3  
6
7
SS input low to first SCLK edge  
SS input pulse width  
T
T
ns  
ns  
1
2
3
T = CSPI system clock period (PERCLK2).  
Tsclk = Period of SCLK.  
WAIT = Number of bit clocks (SCLK) or 32.768 kHz clocks per Sample Period Control Register.  
8
SCLK  
9
9
Figure 39. SPI SCLK Timing Diagram  
Table 19. Timing Parameter Table for SPI SCLK  
3.0 0.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
8
9
SCLK frequency  
SCLK pulse width  
0
10  
MHz  
ns  
100  
4.6  
LCD Controller  
This section includes timing diagrams for the LCD controller. For detailed timing diagrams of the LCD  
controller with various display configurations, refer to the LCD controller chapter of the MC9328MXL  
Reference Manual.  
LSCLK  
1
LD[15:0]  
Figure 40. SCLK to LD Timing Diagram  
MC9328MXL Technical Data, Rev. 8  
56  
Freescale Semiconductor  
Functional Description and Application Information  
Table 20. LCDC SCLK Timing Parameter Table  
3.0 0.3 V  
Ref No.  
Parameter  
Minimum  
Maximum  
Unit  
1
SCLK to LD valid  
2
ns  
Non-display  
Display region  
T3  
T1  
T4  
VSYN  
T2  
HSYN  
OE  
Line Y  
Line 1  
Line Y  
LD[15:0]  
T6  
T7  
T5  
XMAX  
HSYN  
SCLK  
OE  
T8  
(1,1)  
(1,2)  
LD[15:0]  
VSYN  
(1,X)  
T9  
T10  
Figure 41. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing  
Table 21. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing  
Symbol  
Description  
Minimum  
Corresponding Register Value  
Unit  
T1  
End of OE to beginning of VSYN  
T5+T6  
(VWAIT1·T2)+T5+T6+T7+T9  
Ts  
+T7+T9  
T2  
T3  
T4  
T5  
T6  
T7  
HSYN period  
XMAX+5  
XMAX+T5+T6+T7+T9+T10  
VWIDTH·(T2)  
VWAIT2·(T2)  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
VSYN pulse width  
T2  
2
End of VSYN to beginning of OE  
HSYN pulse width  
1
HWIDTH+1  
End of HSYN to beginning to T9  
End of OE to beginning of HSYN  
1
HWAIT2+1  
1
HWAIT1+1  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
57  
 
Functional Description and Application Information  
Table 21. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing (Continued)  
Symbol  
Description  
SCLK to valid LD data  
Minimum  
Corresponding Register Value  
Unit  
T8  
T9  
-3  
2
3
2
ns  
Ts  
End of HSYN idle2 to VSYN edge  
(for non-display region)  
T9  
End of HSYN idle2 to VSYN edge  
(for Display region)  
1
1
Ts  
T10  
T10  
VSYN to OE active (Sharp = 0) when VWAIT2 = 0  
VSYN to OE active (Sharp = 1) when VWAIT2 = 0  
1
2
1
2
Ts  
Ts  
Note:  
Ts is the SCLK period which equals LCDC_CLK / (PCD + 1). Normally LCDC_CLK = 15ns.  
VSYN, HSYN and OE can be programmed as active high or active low. In Figure 41, all 3 signals  
are active low.  
The polarity of SCLK and LD[15:0] can also be programmed.  
SCLK can be programmed to be deactivated during the VSYN pulse or the OE deasserted period.  
In Figure 41, SCLK is always active.  
For T9 non-display region, VSYN is non-active. It is used as an reference.  
XMAX is defined in pixels.  
4.7  
Multimedia Card/Secure Digital Host Controller  
The DMA interface block controls all data routing between the external data bus (DMA access), internal  
MMC/SD module data bus, and internal system FIFO access through a dedicated state machine that  
monitors the status of FIFO content (empty or full), FIFO address, and byte/block counters for the  
MMC/SD module (inner system) and the application (user programming).  
3a  
1
2
4b  
3b  
Bus Clock  
4a  
5b  
5a  
Valid Data  
CMD_DAT Input  
Valid Data  
7
CMD_DAT Output  
Valid Data  
Valid Data  
6a  
Figure 42. Chip-Select Read Cycle Timing Diagram  
6b  
MC9328MXL Technical Data, Rev. 8  
58  
Freescale Semiconductor  
Functional Description and Application Information  
Table 22. SDHC Bus Timing Parameter Table  
1.8 0.1 V  
3.0 0.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
CLK frequency at Data transfer Mode  
(PP)1—10/30 cards  
0
25/5  
0
25/5  
MHz  
2
CLK frequency at Identification Mode2  
Clock high time1—10/30 cards  
Clock low time1—10/30 cards  
Clock fall time1—10/30 cards  
0
6/33  
15/75  
400  
0
400  
kHz  
ns  
3a  
3b  
4a  
10/50  
10/50  
ns  
10/50  
10/50  
ns  
(5.00)3  
4b  
Clock rise time1—10/30 cards  
14/67  
(6.67)3  
10/50  
ns  
5a  
5b  
6a  
6b  
7
Input hold time3—10/30 cards  
Input setup time3—10/30 cards  
Output hold time3—10/30 cards  
Output setup time3—10/30 cards  
Output delay time3  
10.3/10.3  
10.3/10.3  
5.7/5.7  
5.7/5.7  
0
9/9  
9/9  
5/5  
5/5  
0
ns  
ns  
ns  
ns  
ns  
16  
14  
1
2
3
CL 100 pF / 250 pF (10/30 cards)  
CL 250 pF (21 cards)  
CL 25 pF (1 card)  
4.7.1  
Command Response Timing on MMC/SD Bus  
The card identification and card operation conditions timing are processed in open-drain mode. The card  
response to the host command starts after exactly N clock cycles. For the card address assignment,  
ID  
SET_RCA is also processed in the open-drain mode. The minimum delay between the host command and  
card response is NCR clock cycles as illustrated in Figure 43. The symbols for Figure 43 through  
Figure 47 are defined in Table 23.  
Table 23. State Signal Parameters for Figure 43 through Figure 47  
Card Active  
Definition  
Host Active  
Definition  
Symbol  
Symbol  
Z
D
High impedance state  
Data bits  
S
T
P
E
Start bit (0)  
Transmitter bit (Host = 1, Card = 0)  
One-cycle pull-up (1)  
End bit (1)  
*
Repetition  
CRC  
Cyclic redundancy check bits (7 bits)  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
59  
 
Functional Description and Application Information  
N
ID cycles  
Host Command  
Content  
CRC  
CID/OCR  
Content  
CMD  
CMD  
******  
ST  
E Z  
Z S T  
Z Z Z  
Identification Timing  
NCR cycles  
Host Command  
Content  
CRC  
CID/OCR  
******  
Content  
SET_RCA Timing  
ST  
E Z  
Z S T  
Z Z Z  
Figure 43. Timing Diagrams at Identification Mode  
After a card receives its RCA, it switches to data transfer mode. As shown on the first diagram in  
Figure 44, SD_CMD lines in this mode are driven with push-pull drivers. The command is followed by a  
period of two Z bits (allowing time for direction switching on the bus) and then by P bits pushed up by the  
responding card. The other two diagrams show the separating periods N and N  
.
RC  
CC  
NCR cycles  
Host Command  
Response  
Content  
CRC  
E Z Z Z  
CMD  
Content  
CRC  
******  
ST  
E Z Z P  
P S T  
Command response timing (data transfer mode)  
NRC cycles  
Response  
Content  
Host Command  
Content  
CRC  
E Z Z Z  
CMD  
CRC  
******  
ST  
E Z  
Z S T  
Timing response end to next CMD start (data transfer mode)  
NCC cycles  
Host Command  
Host Command  
Content  
CRC  
E Z Z Z  
CMD  
Content  
CRC  
E Z  
******  
ST  
Z S T  
Timing of command sequences (all modes)  
Figure 44. Timing Diagrams at Data Transfer Mode  
Figure 45 shows basic read operation timing. In a read operation, the sequence starts with a single block  
read command (which specifies the start address in the argument field). The response is sent on the  
SD_CMD lines as usual. Data transmission from the card starts after the access time delay N , beginning  
AC  
from the last bit of the read command. If the system is in multiple block read mode, the card sends a  
continuous flow of data blocks with distance N until the card sees a stop transmission command. The  
AC  
data stops two clock cycles after the end bit of the stop command.  
MC9328MXL Technical Data, Rev. 8  
60  
Freescale Semiconductor  
 
 
Functional Description and Application Information  
NCR cycles  
Host Command  
Response  
CMD  
DAT  
Content  
CRC  
******  
******  
Content  
CRC  
E Z  
ST  
E Z Z P  
P S T  
Z****Z  
*****  
Z Z P  
P S DDDD  
Read Data  
Timing of single block read  
NAC cycles  
NCR cycles  
Host Command  
Response  
Content  
CRC  
E Z  
CMD  
DAT  
Content  
CRC  
******  
ST  
E Z Z P  
Z Z P  
P S T  
Z****Z  
******  
*****  
Read Data  
*****  
*****  
Read Data  
P S DDDD  
P
P S DDDD  
NAC cycles  
NAC cycles  
Timing of multiple block read  
NCR cycles  
Host Command  
Response  
CMD  
Content  
CRC  
******  
Content  
CRC  
E Z  
ST  
E Z Z P  
P S T  
NST  
DAT  
*****  
*****  
DDDD  
DDDD E Z Z Z  
Timing of stop command  
(CMD12, data transfer mode)  
Valid Read Data  
Figure 45. Timing Diagrams at Data Read  
Figure 46 shows the basic write operation timing. As with the read operation, after the card response, the  
data transfer starts after N cycles. The data is suffixed with CRC check bits to allow the card to check  
WR  
for transmission errors. The card sends back the CRC check result as a CC status token on the data line. If  
there was a transmission error, the card sends a negative CRC status (101); otherwise, a positive CRC  
status (010) is returned. The card expects a continuous flow of data blocks if it is configured to multiple  
block mode, with the flow terminated by a stop transmission command.  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
61  
Functional Description and Application Information  
Figure 46. Timing Diagrams at Data Write  
The stop transmission command may occur when the card is in different states. Figure 47 shows the  
different scenarios on the bus.  
MC9328MXL Technical Data, Rev. 8  
62  
Freescale Semiconductor  
Functional Description and Application Information  
Figure 47. Stop Transmission During Different Scenarios  
Table 24. Timing Values for Figure 43 through Figure 47  
Parameter Symbol Minimum Maximum  
MMC/SD bus clock, CLK (All values are referred to minimum (VIH) and maximum (VIL)  
Unit  
Command response cycle  
Identification response cycle  
Access time delay cycle  
NCR  
NID  
2
5
2
64  
Clock cycles  
Clock cycles  
Clock cycles  
5
NAC  
TAAC + NSAC  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
63  
 
Functional Description and Application Information  
Table 24. Timing Values for Figure 43 through Figure 47 (Continued)  
Parameter  
Command read cycle  
Symbol  
Minimum  
Maximum  
Unit  
NRC  
NCC  
NWR  
NST  
8
8
2
2
2
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Command-command cycle  
Command write cycle  
Stop transmission cycle  
TAAC: Data read access time -1 defined in CSD register bit[119:112]  
NSAC: Data read access time -2 in CLK cycles (NSAC·100) defined in CSD register bit[111:104]  
4.7.2  
SDIO-IRQ and ReadWait Service Handling  
In SDIO, there is a 1-bit or 4-bit interrupt response from the SDIO peripheral card. In 1-bit mode, the  
interrupt response is simply that the SD_DAT[1] line is held low. The SD_DAT[1] line is not used as data  
in this mode. The memory controller generates an interrupt according to this low and the system interrupt  
continues until the source is removed (SD_DAT[1] returns to its high level).  
In 4-bit mode, the interrupt is less simple. The interrupt triggers at a particular period called the “Interrupt  
Period” during the data access, and the controller must sample SD_DAT[1] during this short period to  
determine the IRQ status of the attached card. The interrupt period only happens at the boundary of each  
block (512 bytes).  
CMD  
Content  
CRC  
Response  
******  
S
ST  
E Z Z P S  
E Z Z Z  
Z Z Z  
DAT[1]  
Interrupt Period  
IRQ  
IRQ  
Block Data  
Block Data  
S
E
E
For 4-bit  
L H  
DAT[1]  
Interrupt Period  
For 1-bit  
Figure 48. SDIO IRQ Timing Diagram  
ReadWait is another feature in SDIO that allows the user to submit commands during the data transfer. In  
this mode, the block temporarily pauses the data transfer operation counter and related status, yet keeps  
the clock running, and allows the user to submit commands as normal. After all commands are submitted,  
the user can switch back to the data transfer operation and all counter and status values are resumed as  
access continues.  
MC9328MXL Technical Data, Rev. 8  
64  
Freescale Semiconductor  
Functional Description and Application Information  
CMD  
******  
CMD52 CRC  
******  
P S T  
E Z Z Z  
DAT[1]  
Block Data  
Block Data  
Block Data  
S
S
E Z Z L H  
S
E
E
For 4-bit  
DAT[2]  
Block Data  
E Z Z L L L L L L L L L L L L L L L L L L L L L H Z S  
For 4-bit  
Figure 49. SDIO ReadWait Timing Diagram  
4.8  
Memory Stick Host Controller  
The Memory Stick protocol requires three interface signal line connections for data transfers: MS_BS,  
MS_SDIO, and MS_SCLKO. Communication is always initiated by the MSHC and operates the bus in  
either four-state or two-state access mode.  
The MS_BS signal classifies data on the SDIO into one of four states (BS0, BS1, BS2, or BS3) according  
to its attribute and transfer direction. BS0 is the INT transfer state, and during this state no packet  
transmissions occur. During the BS1, BS2, and BS3 states, packet communications are executed. The BS1,  
BS2, and BS3 states are regarded as one packet length and one communication transfer is always  
completed within one packet length (in four-state access mode).  
The Memory Stick usually operates in four state access mode and in BS1, BS2, and BS3 bus states. When  
an error occurs during packet communication, the mode is shifted to two-state access mode, and the BS0  
and BS1 bus states are automatically repeated to avoid a bus collision on the SDIO.  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
65  
Functional Description and Application Information  
2
3
5
1
4
MS_SCLKI  
6
8
7
MS_SCLKO  
MS_BS  
9
10  
11  
12  
11  
12  
MS_SDIO(output)  
14  
13  
MS_SDIO (input)  
(RED bit = 0)  
15  
16  
MS_SDIO (input)  
(RED bit = 1)  
Figure 50. MSHC Signal Timing Diagram  
Table 25. MSHC Signal Timing Parameter Table  
Parameter  
3.0 0.3 V  
Minimum Maximum  
Ref  
No.  
Unit  
1
2
MS_SCLKI frequency  
20  
20  
25  
MHz  
ns  
MS_SCLKI high pulse width  
MS_SCLKI low pulse width  
MS_SCLKI rise time  
3
ns  
4
3
ns  
5
MS_SCLKI fall time  
3
ns  
6
MS_SCLKO frequency1  
MS_SCLKO high pulse width1  
MS_SCLKO low pulse width1  
MS_SCLKO rise time1  
MS_SCLKO fall time1  
25  
MHz  
ns  
7
20  
15  
8
ns  
9
5
ns  
10  
11  
5
ns  
MS_BS delay time1  
3
ns  
MC9328MXL Technical Data, Rev. 8  
66  
Freescale Semiconductor  
Functional Description and Application Information  
Table 25. MSHC Signal Timing Parameter Table (Continued)  
3.0 0.3 V  
Ref  
No.  
Parameter  
MS_SDIO output delay time1,2  
Unit  
Minimum Maximum  
12  
13  
14  
15  
16  
18  
0
3
ns  
ns  
ns  
ns  
ns  
MS_SDIO input setup time for MS_SCLKO rising edge (RED bit = 0)3  
MS_SDIO input hold time for MS_SCLKO rising edge (RED bit = 0)3  
MS_SDIO input setup time for MS_SCLKO falling edge (RED bit = 1)4  
MS_SDIO input hold time for MS_SCLKO falling edge (RED bit = 1)4  
23  
0
1
2
Loading capacitor condition is less than or equal to 30pF.  
An external resistor (100 ~ 200 ohm) should be inserted in series to provide current control on the MS_SDIO pin,  
because of a possibility of signal conflict between the MS_SDIO pin and Memory Stick SDIO pin when the pin  
direction changes.  
3
4
If the MSC2[RED] bit = 0, MSHC samples MS_SDIO input data at MS_SCLKO rising edge.  
If the MSC2[RED] bit = 1, MSHC samples MS_SDIO input data at MS_SCLKO falling edge.  
4.9  
Pulse-Width Modulator  
The PWM can be programmed to select one of two clock signals as its source frequency. The selected  
clock signal is passed through a divider and a prescaler before being input to the counter. The output is  
available at the pulse-width modulator output (PWMO) external pin. Its timing diagram is shown in  
Figure 51 and the parameters are listed in Table 26.  
1
2a  
3b  
System Clock  
2b  
4b  
3a  
4a  
PWM Output  
Figure 51. PWM Output Timing Diagram  
Table 26. PWM Output Timing Parameter Table  
1.8 0.1 V  
3.0 0.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
System CLK frequency1  
Clock high time1  
Clock low time1  
0
87  
0
100  
MHz  
ns  
2a  
2b  
3a  
3.3  
7.5  
5/10  
5/10  
ns  
Clock fall time1  
5
5/10  
ns  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
67  
 
 
Functional Description and Application Information  
Table 26. PWM Output Timing Parameter Table (Continued)  
1.8 0.1 V 3.0 0.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
3b  
4a  
4b  
Clock rise time1  
6.67  
5
5
5/10  
ns  
ns  
ns  
Output delay time1  
Output setup time1  
5.7  
5.7  
1
CL of PWMO = 30 pF  
4.10 SDRAM Controller  
This section shows timing diagrams and parameters associated with the SDRAM (synchronous dynamic  
random access memory) Controller.  
1
SDCLK  
2
3S  
3
CS  
RAS  
CAS  
3H  
3S  
3S  
3H  
3S  
3H  
3H  
4H  
WE  
ADDR  
DQ  
4S  
ROW/BA  
COL/BA  
5
8
6
Data  
7
3S  
DQM  
3H  
Note: CKE is high during the read/write cycle.  
Figure 52. SDRAM Read Cycle Timing Diagram  
MC9328MXL Technical Data, Rev. 8  
68  
Freescale Semiconductor  
Functional Description and Application Information  
Table 27. SDRAM Read Timing Parameter Table  
1.8 0.1 V  
3.0 0.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
2.67  
6
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
11.4  
3.42  
2.28  
3.42  
2.28  
10  
3
3S CS, RAS, CAS, WE, DQM setup time  
3H CS, RAS, CAS, WE, DQM hold time  
4S Address setup time  
2
3
4H Address hold time  
2
5
5
5
6
7
7
7
8
SDRAM access time (CL = 3)  
6.84  
6.84  
22  
6
SDRAM access time (CL = 2)  
6
SDRAM access time (CL = 1)  
22  
Data out hold time  
2.85  
2.5  
Data out high-impedance time (CL = 3)  
Data out high-impedance time (CL = 2)  
Data out high-impedance time (CL = 1)  
Active to read/write command period (RC = 1)  
6.84  
6.84  
22  
6
6
22  
1
tRCD1  
tRCD  
1
tRCD = SDRAM clock cycle time. This settings can be found in the MC9328MXL reference manual.  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
69  
Functional Description and Application Information  
SDCLK  
1
3
2
CS  
RAS  
6
CAS  
WE  
ADDR  
DQ  
5
7
4
/ BA  
ROW/BA  
COL/BA  
DATA  
8
9
DQM  
Figure 53. SDRAM Write Cycle Timing Diagram  
Table 28. SDRAM Write Timing Parameter Table  
1.8 0.1 V  
3.0 0.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
4
5
6
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
Address setup time  
2.67  
6
4
4
ns  
ns  
ns  
ns  
ns  
ns  
11.4  
3.42  
2.28  
10  
3
Address hold time  
Precharge cycle period1  
2
2
tRP2  
tRP  
7
Active to read/write command delay  
tRCD2  
tRCD2  
ns  
8
9
Data setup time  
Data hold time  
4.0  
2
2
ns  
ns  
2.28  
1
Precharge cycle timing is included in the write timing diagram.  
2
tRP and tRCD = SDRAM clock cycle time. These settings can be found in the MC9328MXL reference manual.  
MC9328MXL Technical Data, Rev. 8  
70  
Freescale Semiconductor  
Functional Description and Application Information  
SDCLK  
CS  
1
3
2
RAS  
CAS  
6
7
7
WE  
ADDR  
DQ  
4
5
BA  
ROW/BA  
DQM  
Figure 54. SDRAM Refresh Timing Diagram  
Table 29. SDRAM Refresh Timing Parameter Table  
1.8 0.1 V  
3.0 0.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
4
5
6
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
Address setup time  
2.67  
6
4
4
ns  
ns  
ns  
ns  
ns  
ns  
11.4  
3.42  
2.28  
10  
3
Address hold time  
2
1
Precharge cycle period  
tRP1  
tRP  
7
Auto precharge command period  
tRC1  
tRC1  
ns  
1
tRP and tRC = SDRAM clock cycle time. These settings can be found in the MC9328MXL reference manual.  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
71  
Functional Description and Application Information  
SDCLK  
CS  
RAS  
CAS  
WE  
ADDR  
DQ  
BA  
DQM  
CKE  
Figure 55. SDRAM Self-Refresh Cycle Timing Diagram  
4.11 USB Device Port  
Four types of data transfer modes exist for the USB module: control transfers, bulk transfers, isochronous  
transfers, and interrupt transfers. From the perspective of the USB module, the interrupt transfer type is  
identical to the bulk data transfer mode, and no additional hardware is supplied to support it. This section  
covers the transfer modes and how they work from the ground up.  
Data moves across the USB in packets. Groups of packets are combined to form data transfers. The same  
packet transfer mechanism applies to bulk, interrupt, and control transfers. Isochronous data is also moved  
in the form of packets, however, because isochronous pipes are given a fixed portion of the USB  
bandwidth at all times, there is no end-of-transfer.  
MC9328MXL Technical Data, Rev. 8  
72  
Freescale Semiconductor  
Functional Description and Application Information  
USBD_AFE  
(Output)  
t VMO_ROE  
4
t ROE_VPO  
1
USBD_ROE  
(Output)  
6
3
tPERIOD  
tVPO_ROE  
USBD_VPO  
(Output)  
USBD_VMO  
(Output)  
tROE_VMO  
tFEOPT  
USBD_SUSPND  
(Output)  
2
5
USBD_RCV  
(Input)  
USBD_VP  
(Input)  
USBD_VM  
(Input)  
Figure 56. USB Device Timing Diagram for Data Transfer to USB Transceiver (TX)  
Table 30. USB Device Timing Parameters for Data Transfer to USB Transceiver (TX)  
3.0 0.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
1
2
3
4
5
6
t
ROE_VPO; USBD_ROE active to USBD_VPO low  
83.14  
81.55  
83.54  
248.90  
160.00  
11.97  
83.47  
81.98  
83.80  
249.13  
175.00  
12.03  
ns  
ns  
tROE_VMO; USBD_ROE active to USBD_VMO high  
tVPO_ROE; USBD_VPO high to USBD_ROE deactivated  
tVMO_ROE; USBD_VMO low to USBD_ROE deactivated (includes SE0)  
tFEOPT; SE0 interval of EOP  
ns  
ns  
ns  
tPERIOD; Data transfer rate  
Mb/s  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
73  
Functional Description and Application Information  
USBD_AFE  
(Output)  
USBD_ROE  
(Output)  
USBD_VPO  
(Output)  
USBD_VMO  
(Output)  
USBD_SUSPND  
(Output)  
USBD_RCV  
(Input)  
1
tFEOPR  
USBD_VP  
(Input)  
USBD_VM  
(Input)  
Figure 57. USB Device Timing Diagram for Data Transfer from USB Transceiver (RX)  
Table 31. USB Device Timing Parameter Table for Data Transfer from USB Transceiver (RX)  
3.0 0.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
1
tFEOPR; Receiver SE0 interval of EOP  
82  
ns  
2
4.12 I C Module  
2
The I C communication protocol consists of seven elements: START, Data Source/Recipient, Data  
Direction, Slave Acknowledge, Data, Data Acknowledge, and STOP.  
SDA  
5
3
4
SCL  
2
6
1
2
Figure 58. Definition of Bus Timing for I C  
MC9328MXL Technical Data, Rev. 8  
74  
Freescale Semiconductor  
Functional Description and Application Information  
2
Table 32. I C Bus Timing Parameter Table  
1.8 0.1 V  
3.0 0.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
4
5
6
Hold time (repeated) START condition  
Data hold time  
182  
0
171  
160  
0
150  
ns  
ns  
ns  
ns  
ns  
ns  
Data setup time  
11.4  
80  
10  
HIGH period of the SCL clock  
LOW period of the SCL clock  
Setup time for STOP condition  
120  
320  
160  
480  
182.4  
4.13 Synchronous Serial Interface  
The transmit and receive sections of the SSI can be synchronous or asynchronous. In synchronous mode,  
the transmitter and the receiver use a common clock and frame synchronization signal. In asynchronous  
mode, the transmitter and receiver each have their own clock and frame synchronization signals.  
Continuous or gated clock mode can be selected. In continuous mode, the clock runs continuously. In gated  
clock mode, the clock functions only during transmission. The internal and external clock timing diagrams  
are shown in Figure 60 through Figure 62.  
Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of  
I/O per frame. In network mode, a frame can contain between 2 and 32 data words. Network mode is  
typically used in star or ring-time division multiplex networks with other processors or codecs, allowing  
interface to time division multiplexed networks without additional logic. Use of the gated clock is not  
allowed in network mode. These distinctions result in the basic operating modes that allow the SSI to  
communicate with a wide variety of devices.  
1
STCK Output  
4
2
STFS (bl) Output  
STFS (wl) Output  
6
8
12  
11  
32  
10  
STXD Output  
SRXD Input  
31  
Note: SRXD input in synchronous mode only.  
Figure 59. SSI Transmitter Internal Clock Timing Diagram  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
75  
Functional Description and Application Information  
1
SRCK Output  
3
5
SRFS (bl) Output  
SRFS (wl) Output  
7
9
13  
14  
SRXD Input  
Figure 60. SSI Receiver Internal Clock Timing Diagram  
15  
16  
17  
STCK Input  
18  
20  
STFS (bl) Input  
STFS (wl) Input  
24  
22  
28  
27  
34  
26  
STXD Output  
SRXD Input  
33  
Note: SRXD Input in Synchronous mode only  
Figure 61. SSI Transmitter External Clock Timing Diagram  
MC9328MXL Technical Data, Rev. 8  
76  
Freescale Semiconductor  
Functional Description and Application Information  
15  
16  
17  
SRCK Input  
19  
21  
SRFS (bl) Input  
SRFS (wl) Input  
25  
23  
30  
29  
SRXD Input  
Figure 62. SSI Receiver External Clock Timing Diagram  
Table 33. SSI (Port C Primary Function) Timing Parameter Table  
1.8 0.1 V  
3.0 0.3 V  
Ref No.  
Parameter  
Unit  
Minimum Maximum Minimum Maximum  
Internal Clock Operation1 (Port C Primary Function2)  
1
2
STCK/SRCK clock period1  
95  
1.5  
4.5  
83.3  
1.3  
-1.1  
2.2  
0.1  
1.3  
-1.1  
2.2  
0.1  
12.5  
0.8  
0.5  
11.3  
18.5  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
STCK high to STXD valid from high impedance  
STCK high to STXD high  
3.9  
-1.5  
3.8  
-0.8  
3.9  
-1.5  
3.8  
-0.8  
13.8  
2.7  
2.8  
11.9  
3
-1.2  
2.5  
-1.7  
4.3  
4
5
0.1  
-0.8  
4.45  
-1.5  
4.33  
-0.8  
15.73  
3.08  
3.19  
13.57  
6
1.48  
-1.1  
2.51  
0.1  
7
8
9
10  
11a  
11b  
12  
13  
14  
14.25  
0.91  
0.57  
12.88  
21.1  
0
STCK high to STXD low  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hold time after SRCK low  
External Clock Operation (Port C Primary Function2)  
15  
16  
17  
STCK/SRCK clock period1  
STCK/SRCK clock high period  
STCK/SRCK clock low period  
92.8  
27.1  
61.1  
81.4  
40.7  
40.7  
ns  
ns  
ns  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
77  
Functional Description and Application Information  
Table 33. SSI (Port C Primary Function) Timing Parameter Table (Continued)  
1.8 0.1 V 3.0 0.3 V  
Minimum Maximum Minimum Maximum  
Ref No.  
Parameter  
Unit  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27a  
27b  
28  
29  
30  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
STCK high to STXD valid from high impedance  
STCK high to STXD high  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
28.16  
18.13  
18.24  
28.5  
0
0
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
24.7  
15.9  
16.0  
25.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
0
0
0
0
0
18.01  
8.98  
9.12  
18.47  
1.14  
0
15.8  
7.0  
8.0  
16.2  
1.0  
0
STCK high to STXD low  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hole time after SRCK low  
Synchronous Internal Clock Operation (Port C Primary Function2)  
31  
32  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
15.4  
0
13.5  
0
ns  
ns  
Synchronous External Clock Operation (Port C Primary Function2)  
33  
34  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
1.14  
0
1.0  
0
ns  
ns  
1
2
All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting  
the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.  
There are 2 sets of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad 261) and Port B  
alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they can be viewed both at Port C primary  
function and Port B alternate function. When SSI signals are configured as input, the SSI module selects the input based on  
status of the FMCR register bits in the Clock controller module (CRM). By default, the input are selected from Port C primary  
function.  
3
bl = bit length; wl = word length.  
MC9328MXL Technical Data, Rev. 8  
78  
Freescale Semiconductor  
Functional Description and Application Information  
Table 34. SSI (Port B Alternate Function) Timing Parameter Table  
1.8 0.1 V 3.0 0.3 V  
Minimum Maximum Minimum Maximum  
Internal Clock Operation1 (Port B Alternate Function2)  
Ref  
No.  
Parameter  
Unit  
1
2
3
4
5
6
7
8
9
STCK/SRCK clock period1  
95  
1.7  
83.3  
1.5  
-0.1  
2.7  
4.2  
1.0  
4.6  
2.0  
4.2  
1.0  
4.6  
2.0  
14.2  
3.0  
3.5  
12.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
4.8  
-0.1  
3.08  
1.25  
1.71  
-0.1  
3.08  
1.25  
14.93  
1.25  
2.51  
12.43  
20  
1.0  
5.24  
2.28  
4.79  
1.0  
1.1  
1.5  
-0.1  
2.7  
5.24  
2.28  
16.19  
3.42  
3.99  
14.59  
1.1  
10 STCK high to STXD valid from high impedance  
11a STCK high to STXD high  
13.1  
1.1  
11b STCK high to STXD low  
2.2  
10.9  
17.5  
0
12 STCK high to STXD high impedance  
13 SRXD setup time before SRCK low  
14 SRXD hold time after SRCK low  
0
External Clock Operation (Port B Alternate Function2)  
15 STCK/SRCK clock period1  
16 STCK/SRCK clock high period  
17 STCK/SRCK clock low period  
18 STCK high to STFS (bl) high3  
19 SRCK high to SRFS (bl) high3  
20 STCK high to STFS (bl) low3  
21 SRCK high to SRFS (bl) low3  
22 STCK high to STFS (wl) high3  
23 SRCK high to SRFS (wl) high3  
24 STCK high to STFS (wl) low3  
25 SRCK high to SRFS (wl) low3  
26 STCK high to STXD valid from high impedance  
27a STCK high to STXD high  
92.8  
27.1  
61.1  
81.4  
40.7  
40.7  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
29.07  
20.75  
21.32  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
25.5  
18.2  
18.7  
0
0
0
0
0
0
0
18.9  
9.23  
10.60  
16.6  
8.1  
9.3  
27b STCK high to STXD low  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
79  
Functional Description and Application Information  
Table 34. SSI (Port B Alternate Function) Timing Parameter Table (Continued)  
1.8 0.1 V 3.0 0.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
28 STCK high to STXD high impedance  
29 SRXD setup time before SRCK low  
30 SRXD hold time after SRCK low  
17.90  
1.14  
0
29.75  
15.7  
1.0  
0
26.1  
ns  
ns  
ns  
Synchronous Internal Clock Operation (Port B Alternate Function2)  
31 SRXD setup before STCK falling  
32 SRXD hold after STCK falling  
18.81  
0
16.5  
0
ns  
ns  
Synchronous External Clock Operation (Port B Alternate Function2)  
33 SRXD setup before STCK falling  
34 SRXD hold after STCK falling  
1.14  
0
1.0  
0
ns  
ns  
1
2
All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting  
the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.  
There are 2 set of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad 261) and Port B  
alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they can be viewed both at Port C primary  
function and Port B alternate function. When SSI signals are configured as inputs, the SSI module selects the input based on  
FMCR register bits in the Clock controller module (CRM). By default, the input are selected from Port C primary function.  
3
bl = bit length; wl = word length.  
4.14 CMOS Sensor Interface  
The CMOS Sensor Interface (CSI) module consists of a control register to configure the interface timing,  
a control register for statistic data generation, a status register, interface logic, a 32 × 32 image data receive  
FIFO, and a 16 × 32 statistic data FIFO.  
4.14.1 Gated Clock Mode  
Figure 63 shows the timing diagram when the CMOS sensor output data is configured for negative edge  
and the CSI is programmed to received data on the positive edge. Figure 64 shows the timing diagram  
when the CMOS sensor output data is configured for positive edge and the CSI is programmed to received  
data in negative edge. The parameters for the timing diagrams are listed in Table 35.  
MC9328MXL Technical Data, Rev. 8  
80  
Freescale Semiconductor  
Functional Description and Application Information  
1
VSYNC  
HSYNC  
7
5
6
2
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
3
4
Figure 63. Sensor Output Data on Pixel Clock Falling Edge  
CSI Latches Data on Pixel Clock Rising Edge  
1
VSYNC  
HSYNC  
7
6
5
2
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
3
4
Figure 64. Sensor Output Data on Pixel Clock Rising Edge  
CSI Latches Data on Pixel Clock Falling Edge  
Table 35. Gated Clock Mode Timing Parameters  
Ref No.  
Parameter  
Min  
Max  
Unit  
1
2
3
4
5
6
7
csi_vsync to csi_hsync  
csi_hsync to csi_pixclk  
csi_d setup time  
180  
ns  
ns  
1
1
ns  
csi_d hold time  
1
ns  
csi_pixclk high time  
csi_pixclk low time  
csi_pixclk frequency  
10.42  
10.42  
0
ns  
ns  
48  
MHz  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
81  
Functional Description and Application Information  
The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold  
time and setup time, according to:  
Rising-edge latch data  
max rise time allowed = (positive duty cycle - hold time)  
max fall time allowed = (negative duty cycle - setup time)  
In most of case, duty cycle is 50 / 50, therefore  
max rise time = (period / 2 - hold time)  
max fall time = (period / 2 - setup time)  
For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.  
positive duty cycle = 10 / 2 = 5ns  
=> max rise time allowed = 5 - 1 = 4ns  
negative duty cycle = 10 / 2 = 5ns  
=> max fall time allowed = 5 - 1 = 4ns  
Falling-edge latch data  
max fall time allowed = (negative duty cycle - hold time)  
max rise time allowed = (positive duty cycle - setup time)  
4.14.2 Non-Gated Clock Mode  
Figure 65 shows the timing diagram when the CMOS sensor output data is configured for negative edge  
and the CSI is programmed to received data on the positive edge. Figure 66 shows the timing diagram  
when the CMOS sensor output data is configured for positive edge and the CSI is programmed to received  
data in negative edge. The parameters for the timing diagrams are listed in Table 36.  
1
VSYNC  
6
4
5
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
2
3
Figure 65. Sensor Output Data on Pixel Clock Falling Edge  
CSI Latches Data on Pixel Clock Rising Edge  
MC9328MXL Technical Data, Rev. 8  
82  
Freescale Semiconductor  
 
Functional Description and Application Information  
1
VSYNC  
6
4
5
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
2
3
Figure 66. Sensor Output Data on Pixel Clock Rising Edge  
CSI Latches Data on Pixel Clock Falling Edge  
Table 36. Non-Gated Clock Mode Parameters  
Ref No.  
Parameter  
Min  
Max  
Unit  
1
2
3
4
5
6
csi_vsync to csi_pixclk  
csi_d setup time  
180  
1
ns  
ns  
csi_d hold time  
1
ns  
csi_pixclk high time  
csi_pixclk low time  
csi_pixclk frequency  
10.42  
10.42  
0
ns  
ns  
48  
MHz  
The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold  
time and setup time, according to:  
max rise time allowed = (positive duty cycle - hold time)  
max fall time allowed = (negative duty cycle - setup time)  
In most of case, duty cycle is 50 / 50, therefore:  
max rise time = (period / 2 - hold time)  
max fall time = (period / 2 - setup time)  
For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.  
positive duty cycle = 10 / 2 = 5ns  
=> max rise time allowed = 5 - 1 = 4ns  
negative duty cycle = 10 / 2 = 5ns  
=> max fall time allowed = 5 - 1 = 4ns  
Falling-edge latch data  
max fall time allowed = (negative duty cycle - hold time)  
max rise time allowed = (positive duty cycle - setup time)  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
83  
5 Pin-Out and Package Information  
Table 37 illustrates the package pin assignments for the 256-pin MAPBGA package. For a complete listing of signals, see the Signal  
Multiplexing Table 3 on page 9.  
Table 37. i.MXL 256 MAPBGA Pin Assignments  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
USBD_  
AFE  
UART1_  
RTS  
UART1_  
RXD  
A
B
C
D
E
F
NVSS  
SD_DAT3  
SD_CLK  
NVSS  
NVDD4  
NVSS  
NVDD3  
N.C.  
N.C.  
QVDD4  
N.C.  
N.C.  
N.C.  
A
B
C
D
E
F
USBD_  
ROE  
SSI_  
RXCLK  
SSI_  
TXCLK  
SPI1_  
SCLK  
A24  
A23  
A22  
A20  
A18  
A15  
SD_DAT1  
D31  
SD_CMD  
SD_DAT0  
D29  
PB16  
PB15  
PB14  
D26  
USBD_VP  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
CLS  
N.C.  
N.C.  
QVSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
USBD_  
RCV  
UART2_  
CTS  
UART2_  
RXD  
SSI_  
RXFS  
UART1_  
TXD  
USBD_  
SUSPND  
USBD_  
VPO  
USBD_  
VMO  
SSI_  
RXDAT  
SPI1_  
SPI_RDY  
D30  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
UART2_  
RTS  
SSI_  
TXDAT  
A21  
D28  
SD_DAT2  
A16  
USBD_VM  
PB18  
SPI1_SS  
N.C.  
N.C.  
N.C.  
UART2_  
TXD  
SSI_  
TXFS  
SPI1_  
MISO  
D27  
D25  
A19  
REV  
N.C.  
LSCLK  
SPL_SPR  
LD1  
UART1_  
CTS  
SPI1_  
MOSI  
LP/  
HSYNC  
FLM/  
VSYNC  
G
A17  
D24  
D23  
D21  
PB17  
PB19  
CONTRAST  
ACD/OE  
G
H
J
A13  
A12  
A10  
A8  
D22  
A11  
D16  
A7  
A14  
D18  
A9  
D20  
D19  
D17  
D15  
NVDD1  
NVDD1  
NVDD1  
D14  
NVDD1  
NVDD1  
NVSS  
NVSS  
NVSS  
NVSS  
NVSS  
QVSS  
NVDD1  
NVDD1  
CAS  
QVDD1  
NVSS  
NVDD2  
TCK  
PS  
NVSS  
NVDD2  
TIN  
LD0  
LD6  
LD2  
LD7  
LD4  
LD8  
LD5  
LD11  
LD9  
LD3  
QVSS  
LD15  
H
J
QVDD3  
TMR2OUT  
CSI_D2  
K
L
LD10  
PWMO  
LD12  
LD13  
CSI_D0  
LD14  
K
L
D13  
NVDD1  
CSI_MCLK  
CSI_D1  
CSI_D3  
BIG_  
ENDIAN  
CSI_  
HSYNC  
M
N
A5  
A4  
D12  
EB1  
D11  
D10  
A6  
D7  
SDCLK  
A0  
NVSS  
D4  
RW  
MA10  
RAS  
RESET_IN  
CSI_D4  
BOOT2  
CSI_VSYNC  
CSI_D7  
CSI_D6  
TMS  
CSI_D5  
TDI  
M
N
RESET_  
OUT  
CSI_  
PIXCLK  
1
PA17  
D1  
D3  
DQM1  
RESET_SF  
SDCKE1  
DQM0  
P
R
T
A3  
EB2  
NVSS  
1
D9  
EB3  
A2  
2
EB0  
A1  
OE  
3
CS3  
CS4  
CS5  
4
D6  
D8  
CS2  
5
ECB  
D5  
D2  
LBA  
CS0  
7
DQM3  
D0  
BOOT3  
SDCKE0  
CLKO  
11  
BOOT0  
POR  
TRST  
I2C_SCL  
TDO  
I2C_SDA  
QVDD2  
XTAL32K  
EXTAL32K  
QVSS  
P
R
T
2
BOOT1  
BCLK  
CS1  
6
MA11  
DQM2  
9
SDWE  
10  
AVDD1  
12  
TRISTATE EXTAL16M XTAL16M  
13 14 15  
8
16  
1
2
This signal is not used and should be floated in an actual application.  
burst clock  
 
Table 38 illustrates the package pin assignments for the 225-contact MAPBGA package. For a complete listing of signals, see the  
Signal Multiplexing Table 3 on page 9.  
Table 38. i.MXL 225 MAPBGA Pin Assignments  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
USBD_  
ROE  
USBD_  
SUSPND  
SSI_  
RXFS  
SSI_  
TXCLK  
SPI1_SPI_  
RDY  
SPI1_  
SCLK  
A
B
C
D
E
SD_CMD  
PB15  
PB19  
USBD_VM  
REV  
PS  
LD2  
LD4  
LD5  
A
B
C
D
E
USBD_  
AFE  
USBD_  
RCV  
USBD_  
VMO  
SSI_  
RXDAT  
UART1_  
TXD  
SPL_  
SPR  
SD_DAT3  
D31  
SD_CLK  
SD_DAT0  
A24  
PB16  
PB14  
SPI1_SS  
LSCLK  
LD0  
LD8  
LD3  
LD9  
LD6  
LD12  
LD7  
NVDD2  
LD13  
USBD_  
VPO  
UART2_  
RXD  
SSI_  
TXFS  
UART1_  
RTS  
PB18  
PB17  
D29  
SD_DAT2  
NVDD1  
CONTRAST FLM/VSYNC  
USBD_  
VP  
UART2_  
TXD  
SPI1_  
A23  
SD_DAT1  
D30  
QVDD4  
NVDD3  
LP/HSYNC  
MOSI  
LD1  
LD11  
TIN  
TMR2OUT  
CSI_D0  
CSI_D2  
UART2_  
RTS  
UART1_  
RXD  
UART1_  
CTS  
SPI1_  
CSI_  
MCLK  
A21  
A22  
NVDD1  
QVSS  
ACD/OE  
MISO  
LD10  
UART2_  
CTS  
SSI_  
RXCLK  
SSI_  
TXDAT  
F
G
H
J
A20  
A17  
A15  
A14  
A13  
A19  
A18  
A16  
A12  
A11  
D28  
D26  
D23  
D21  
CS2  
D27  
D25  
D24  
D20  
D19  
NVDD1  
NVDD1  
D22  
NVDD1  
NVSS  
NVSS  
NVSS  
NVSS  
CLS  
QVSS  
NVDD2  
CSI_D6  
D1  
QVDD3  
PWMO  
LD14  
LD15  
CSI_D4  
CSI_D5  
TMS  
F
G
H
J
NVDD4  
NVSS  
NVSS  
QVSS  
NVSS  
NVSS  
NVSS  
NVSS  
NVSS  
NVSS  
ECB  
CSI_D3  
CSI_D7 CSI_HSYNC  
CSI_  
VSYNC  
CSI_  
CSI_D1  
I2C_SCL  
BOOT2  
I2C_SDA  
PIXCLK  
NVDD1  
NVDD1  
QVDD1  
NVDD1  
TCK  
TDI  
TDO  
BOOT1  
BOOT0  
XTAL32K  
BIG_  
ENDIAN  
RESET_  
OUT  
K
K
L
M
N
P
R
A10  
D16  
A8  
A9  
D15  
A7  
D17  
D13  
D12  
A4  
D18  
D10  
EB0  
A3  
NVDD1  
EB3  
D9  
NVDD1  
NVDD1  
D8  
CS5  
CS4  
CS3  
D6  
D2  
CS1  
CS0  
D5  
NVSS  
RW  
NVSS  
NVSS  
DQM2  
DQM1  
D3  
POR  
BOOT3  
DQM0  
RAS  
QVSS  
XTAL16M EXTAL32K  
RESET_IN EXTAL16M  
L
M
N
P
R
1
QVDD2  
BCLK  
PA17  
MA10  
D4  
D0  
SDCKE0 TRISTATE  
TRST  
2
D14  
A6  
A5  
A2  
A1  
MA11  
LBA  
10  
SDCKE1  
CAS  
CLKO  
SDWE  
14  
RESET_SF  
AVDD1  
15  
D11  
2
EB1  
3
EB2  
4
OE  
D7  
A0  
SDCLK  
8
DQM3  
12  
1
5
6
7
9
11  
13  
1
2
Burst Clock  
This signal is not used and should be floated in an actual application.  
Pin-Out and Package Information  
5.1  
MAPBGA 256 Package Dimensions  
Figure 67 illustrates the 256 MAPBGA 14 mm × 14 mm × 1.30 mm package, with an 0.8 mm pad pitch.  
The device designator for the MAPBGA package is VH.  
Case Outline 1367  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2.INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14 5M-1994.  
3.MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.  
4. DATUM A, THE SEATING PLANE IS DEFINED BY SPHERICAL CROWNS OF THE SOLDER BALLS.  
Figure 67. i.MXL 256 MAPBGA Mechanical Drawing  
MC9328MXL Technical Data, Rev. 8  
86  
Freescale Semiconductor  
 
Pin-Out and Package Information  
5.2  
MAPBGA 225 Package Dimensions  
Figure 68 illustrates the 225 MAPBGA 13 mm × 13 mm package.  
Case Outline 1304B  
TOP VIEW  
BOTTOM VIEW  
SIDE VIEW  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2.DIMENSIONS AND TOLERANCES PER ASME Y14 5M-1994.  
3.MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.  
4. DATUM A, THE SEATING PLANE IS DEFINED BY SPHERICAL CROWNS OF THE SOLDER  
BALLS.  
5.PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE  
OF
P
A
CKAGE  
Figure 68. i.MXL 225 MAPBGA Mechanical Drawing  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
87  
 
Product Documentation  
6 Product Documentation  
6.1  
Revision History  
Table 39 provides revision history for this release. This history includes technical content revisions only  
and not stylistic or grammatical changes.  
Table 39. i.MXL Data Sheet Revision History Rev. 8  
Location  
Table 2 on page 4  
Revision  
• Added the DMA_REQ signal to table.  
Signal Names and  
Descriptions  
• Corrected signal name from USBD_OE to USBD_ROE  
Table 3 on page 9  
Signal Multiplex Table i.MXL  
Added Signal Multiplex table from Reference Manual with the following changes:  
• Changed I/O Supply Voltage,PB31–20, from NVDD3 to NVDD4  
• Added 225 BGA column.  
• Removed 69K pull-up resistor from EB1, EB2, and added to D9  
Table 10 on page 21  
Table 3 on page 9  
Changed first and second parameters descriptions:  
From: Reference Clock freq range, To: DPLL input clock freq range  
From: Double clock freq range, To: DPLL output freq range  
Added Signal Multiplex table.  
6.2  
Reference Documents  
The following documents are required for a complete description of the MC9328MXL and are necessary  
to design properly with the device. Especially for those not familiar with the ARM920T processor or  
previous i.MX processor products, the following documents are helpful when used in conjunction with this  
document.  
ARM Architecture Reference Manual (ARM Ltd., order number ARM DDI 0100)  
ARM9DT1 Data Sheet Manual (ARM Ltd., order number ARM DDI 0029)  
ARM Technical Reference Manual (ARM Ltd., order number ARM DDI 0151C)  
EMT9 Technical Reference Manual (ARM Ltd., order number DDI O157E)  
MC9328MXL Product Brief (order number MC9328MXLP)  
MC9328MXL Reference Manual (order number MC9328MXLRM)  
The Freescale manuals are available on the Freescale Semiconductors Web site at  
http://www.freescale.com/imx. These documents may be downloaded directly from the Freescale Web  
site, or printed versions may be ordered. The ARM Ltd. documentation is available from  
http://www.arm.com.  
MC9328MXL Technical Data, Rev. 8  
88  
Freescale Semiconductor  
 
NOTES  
MC9328MXL Technical Data, Rev. 8  
Freescale Semiconductor  
89  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
Freescale Semiconductor products. There are no express or implied copyright licenses granted  
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information  
in this document.  
Home Page:  
www.freescale.com  
E-mail:  
Freescale Semiconductor reserves the right to make changes without further notice to any products  
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters  
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating parameters,  
including “Typicals”, must be validated for each customer application by customer’s technical experts.  
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized for use as components  
in systems intended for surgical implant into the body, or other applications intended to support or  
sustain life, or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was  
negligent regarding the design or manufacture of the part.  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM and the  
ARM POWERED logo are the registered trademarks of ARM Limited. ARM9, ARM920T, and  
ARM9TDMI are the trademarks of ARM Limited. All other product or service names are the property  
of their respective owners.  
Asia/Pacific:  
© Freescale Semiconductor, Inc. 2006. All rights reserved.  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical  
characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further  
information, see http://www.freescale.com or contact your Freescale sales representative.  
Denver, Colorado 80217  
1-800-521-6274 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Document Number: MC9328MXL  
Rev. 8  
12/2006  

相关型号:

MC9328MXLVM20R2

RISC Microprocessor, 32-Bit, 200MHz, CMOS, PBGA256, 14 X 14 MM, 1.30 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, MAPBGA-256
MOTOROLA

MC9328MXLVM20R2

IC,MICROPROCESSOR,32-BIT,CMOS,BGA,256PIN,PLASTIC
NXP

MC9328MXLVP15

MX Family of applications processors
FREESCALE

MC9328MXLVP15

DRAGONBALL MXL 225 PB-FR
NXP

MC9328MXLVP20

i.MX Integrated Portable System Processor
FREESCALE

MC9328MXLVP20

200MHz, RISC PROCESSOR, PBGA225, 13 X 13 MM, 0.80 MM PITCH, LEAD FREE, PLASTIC, BGA-225
MOTOROLA

MC9328MXLVP20

32-BIT, 200MHz, RISC PROCESSOR, PBGA225, 13 X 13 MM, 0.80 MM PITCH, ROHS COMPLIANT, PLASTIC, MAPBGA-225
NXP

MC9328MXLVP20R2

IC,MICROPROCESSOR,32-BIT,CMOS,BGA,225PIN,PLASTIC
NXP

MC9328MXL_06

MX Family of applications processors
FREESCALE

MC9328MXS

MX Family of applications processors
FREESCALE

MC9328MXSCVF10

32-BIT, 100MHz, MICROPROCESSOR, PBGA225, 13 X 13 MM, PLASTIC, BGA-225
ROCHESTER

MC9328MXSCVF10(R2)

Advance Information
ETC