MC9S08LL16CLFR [NXP]

IC,MICROCONTROLLER,8-BIT,CMOS,QFP,48PIN,PLASTIC;
MC9S08LL16CLFR
型号: MC9S08LL16CLFR
厂家: NXP    NXP
描述:

IC,MICROCONTROLLER,8-BIT,CMOS,QFP,48PIN,PLASTIC

文件: 总44页 (文件大小:984K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
An Energy Efficient Solution by Freescale  
Document Number: MC9S08LL16  
Rev. 7, 1/2013  
48-LQFP  
Case 932  
64-LQFP  
Case 840F  
MC9S08LL16 Series  
Covers: MC9S08LL16 and  
MC9S08LL8  
48-QFN  
1314  
Features  
8-Bit HCS08 Central Processor Unit (CPU)  
– Up to 20-MHz CPU at 3.6V to 1.8V across temperature range  
of -40°C to 85°C  
– HC08 instruction set with added BGND instruction  
– Support for up to 32 interrupt/reset sources  
On-Chip Memory  
– Dual Array FLASH read/program/erase over full operating  
voltage and temperature  
– Random-access memory (RAM)  
– Security circuitry to prevent unauthorized access to RAM and  
FLASH contents  
Power-Saving Modes  
– Two low power stop modes  
– Reduced power wait mode  
– Low power run and wait modes allow peripherals to run while  
voltage regulator is in standby  
– Peripheral clock gating register can disable clocks to unused  
modules, thereby reducing currents.  
Very low power external oscillator that can be used in stop2 or  
stop3 modes to provide accurate clock source to real time  
counter  
– 6 usec typical wake up time from stop3 mode  
Clock Source Options  
– Oscillator (XOSC) — Loop-control Pierce oscillator; Crystal  
or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz  
to 16 MHz  
– Internal Clock Source (ICS) — Internal clock source module  
containing a frequency-locked-loop (FLL) controlled by  
internal or external reference; precision trimming of internal  
reference allows 0.2% resolution and 2% deviation over  
temperature and voltage; supports bus frequencies from 1MHz  
to 10 MHz.  
– On-chip in-circuit emulator (ICE) debug module containing  
three comparators and nine trigger modes. Eight deep FIFO for  
storing change-of-flow addresses and event-only data. Debug  
module supports both tag and force breakpoints  
Peripherals  
LCD — 4x28 or 8x24 LCD driver with internal charge pump  
and option to provide an internally regulated LCD reference  
that can be trimmed for contrast control.  
ADC — 8-channel, 12-bit resolution; 2.5 μs conversion time;  
automatic compare function; temperature sensor; internal  
bandgap reference channel; operation in stop3; fully functional  
from 3.6V to 1.8V  
ACMP — Analog comparator with selectable interrupt on  
rising, falling, or either edge of comparator output; compare  
option to fixed internal bandgap reference voltage; outputs can  
be optionally routed to TPM module; operation in stop3  
SCI — Full duplex non-return to zero (NRZ); LIN master  
extended break generation; LIN slave extended break  
detection; wake up on active edge  
SPI— Full-duplex or single-wire bidirectional;  
Double-buffered transmit and receive; Master or Slave mode;  
MSB-first or LSB-first shifting  
IIC — IIC with up to 100 kbps with maximum bus loading;  
Multi-master operation; Programmable slave address;  
Interrupt driven byte-by-byte data transfer; supports broadcast  
mode and 10-bit addressing  
TPMx — Two 2-channel (TPM1 and TPM2); Selectable input  
capture, output compare, or buffered edge- or center-aligned  
PWM on each channel;  
TOD— (Time Of Day) 8-bit quarter second counter with  
match register; External clock source for precise time base,  
time-of-day, calendar or task scheduling functions; Free  
running on-chip low power oscillator (1 kHz) for cyclic  
wake-up without external components.  
System Protection  
– Watchdog computer operating properly (COP) reset with  
option to run from dedicated 1-kHz internal clock source or  
bus clock  
– Low-Voltage Warning with interrupt  
– Low-Voltage Detection with reset or interrupt  
– Illegal opcode and illegal address detection with reset  
– Flash block protection  
Input/Output  
– 38 GPIOs, 2 output-only pins  
– 8 KBI interrupts with selectable polarity  
– Hysteresis and configurable pull up device on all input pins;  
Configurable slew rate and drive strength on all output pins.  
Package Options  
Development Support  
– 64-LQFP, 48-LQFP and 48-QFN  
– Single-wire background debug interface  
– Breakpoint capability to allow single breakpoint setting during  
in-circuit debugging (plus two more breakpoints in on-chip  
debug module)  
Table of Contents  
1
2
3
Devices in the MC9S08LL16 Series . . . . . . . . . . . . . . 4  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.2 Parameter Classification . . . . . . . . . . . . . . . . . . . 9  
3.3 Absolute Maximum Ratings. . . . . . . . . . . . . . . . 10  
3.4 Thermal Characteristics. . . . . . . . . . . . . . . . . . . 11  
3.5 ESD Protection and Latch-Up Immunity . . . . . . 12  
3.6 DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . 13  
3.7 Supply Current Characteristics . . . . . . . . . . . . . 25  
3.8 External Oscillator (XOSCVLP) Characteristics 27  
3.9 Internal Clock Source (ICS) Characteristics . . . 28  
3.10 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . .30  
3.10.1Control Timing. . . . . . . . . . . . . . . . . . . . . .30  
3.10.2TPM Module Timing . . . . . . . . . . . . . . . . .31  
3.10.3SPI Timing . . . . . . . . . . . . . . . . . . . . . . . .32  
3.11 Analog Comparator (ACMP) Electricals . . . . . . .35  
3.12 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . .35  
3.13 LCD Specifications . . . . . . . . . . . . . . . . . . . . . . .39  
3.14 Flash Specifications . . . . . . . . . . . . . . . . . . . . . .39  
3.15 EMC Performance . . . . . . . . . . . . . . . . . . . . . . .40  
3.15.1Radiated Emissions . . . . . . . . . . . . . . . . .40  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . .41  
4.1 Device Numbering System . . . . . . . . . . . . . . . . .41  
4
Revision History  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will  
be the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://freescale.com/  
The following revision history table summarizes changes contained in this document.  
Rev  
Date  
Description of Changes  
1
2
9/2008  
Initial Release.  
10/2008  
Updated electrical characteristics.  
Corrected 48-Pin QFN/LQFP pinouts for pins 29, 30, 32, and 32 in Figure 3.  
Extracted Stop Mode Adders from the Supply Current table and created a Separate  
table for the data (See Table 10). Added missing power consumption parameters in  
Supply Current Characteristics (Table 9).  
3
01/2009  
Completed all the TBDs.  
Changed V  
to V  
, V  
to V  
, I  
to I  
DDAD  
DDA  
SSAD  
SSA DDAD DDA.  
Corrected the data in the Table 8, and added |IInT|. Completed the Figure in the  
Section 3.6, “DC Characteristics.”  
4
5
07/21/2009  
10/13/2009  
Corrected RI in FEI mode with all modules on, WI at 8 MHz, FEI mode with all  
DD  
DD  
modules off, S2I , S3I ; added ApS3I in the Table 9.  
DD  
DD  
DD  
Corrected E  
, DNL, INL, E , E , E , and E in the Table 18.  
TUE  
ZS FS Q IL  
Updated R /R data in the Table 8.  
PU PD  
Added Figure 5.  
Changed the Max. of R /R at PTA[4:5], PTD[0:77] and PTE[0:7] to 69.5 kΩ in the  
Table 8.  
PU PD  
6
7
10/27/2010  
1/23/2013  
Updated |IIn| in the Table 8.  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
2
Freescale Semiconductor  
Related Documentation  
Find the most current versions of all documents at: http://www.freescale.com  
Reference Manual (MC9S08LL16RM)  
Contains extensive product information including modes of operation, memory,  
resets and interrupts, register definition, port pins, CPU, and all module  
information.  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
3
Devices in the MC9S08LL16 Series  
1
Devices in the MC9S08LL16 Series  
Table 1 summarizes the feature set available in the MC9S08LL16 series of MCUs.  
t
Table 1. MC9S08LL16 Series Features by MCU and Package  
Feature  
MC9S08LL16  
MC9S08LL8  
64-pin  
LQFP  
48-pin  
QFN/LQFP  
48-pin  
QFN/LQFP  
Package  
10,240  
(8K and 2K  
arrays)  
16,384  
(Dual 8K Arrays)  
FLASH  
RAM  
ACMP  
ADC  
IIC  
2080  
2080  
yes  
8-ch  
yes  
yes  
8
2080  
yes  
8-ch  
yes  
yes  
8
yes  
8-ch  
yes  
yes  
8
IRQ  
KBI  
SCI  
yes  
yes  
2-ch  
2-ch  
Yes  
yes  
yes  
2-ch  
-
yes  
yes  
2-ch  
-
SPI  
TPM1  
TPM2  
TOD  
Yes  
Yes  
8x24  
4x28  
8x16  
4x20  
8x16  
4x20  
LCD  
I/O pins1  
38  
31  
31  
1
I/O does not include two output-only port pins.  
The block diagram in Figure 1 shows the structure of the MC9S08LL16 series MCU.  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
4
Freescale Semiconductor  
Devices in the MC9S08LL16 Series  
HCS08 CORE  
ON-CHIP ICE  
PTA0/KBIP0/SS/ADP0  
DEBUG MODULE (DBG)  
PTA1/KBIP1/SPSCK/ADP1  
PTA2/KBIP2/SDA/MISO/ADP2  
PTA3/KBIP3/SCL/MOSI/ADP3  
PTA4/KBIP4/ADP4/LCD30  
PTA5/KBIP5/ADP5/LCD31  
PTA6/KBIP6/ADP6/ACMP+  
PTA7/KBIP7/ADP7/ACMP–  
CPU  
INT  
TIME OF DAY MODULE  
BKGD  
BKP  
(TOD)  
KBI[7:0]  
HCS08 SYSTEM CONTROL  
8-BIT KEYBOARD  
INTERRUPT (KBI)  
RESETS AND INTERRUPTS  
MODES OF OPERATION  
POWER MANAGEMENT  
BKGD/MS  
SS  
SPSCK  
MISO  
SERIAL PERIPHERAL  
PTB7/SS  
PTB6/SPSCK  
INTERFACE (SPI)  
RESET  
IRQ  
MOSI  
COP  
SCL  
SDA  
IRQ  
LVD  
IIC MODULE (IIC)  
PTB5/MOSI/SCL  
PTB4/MISO/SDA  
TPM2CH0  
USER FLASH A  
(LL16 = 8K BYTES)  
(LL8 = 8K BYTES)  
PTB3  
PTB2/RESET  
TPM2CH1  
TCLK  
2-CHANNEL TIMER/PWM  
(TPM2)  
TPM1CH0  
PTB1/XTAL  
USER FLASH B  
(LL16 = 8K BYTES)  
(LL8 = 2K BYTES)  
PTB0/EXTAL  
2-CHANNEL TIMER/PWM  
TPM1CH1  
TCLK  
(TPM1)  
PTC7/IRQ/TCLK  
PTC6/ACMPO//BKGD/MS  
TxD  
RxD  
SERIAL COMMUNICATIONS  
PTC5/TPM2CH1  
PTC4/TPM2CH0  
USER RAM  
INTERFACE (SCI)  
(LL16 = 2K BYTES)  
(LL8 = 2K BYTES)  
PTC3/TPM1CH1  
PTC2/TPM1CH0  
XTAL  
INTERNAL CLOCK  
Source (ICS)  
PTC1/TxD  
PTC0/RxD  
EXTAL  
LOW-POWER OSCILLATOR  
VLCD  
VLL1  
VLL2  
12-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
AD[7:0]  
PTD[7:0]/LCD[7:0]  
PTE[7:0]/LCD[15:8]  
LIQUID CRYSTAL  
DISPLAY DRIVER  
LCD  
VLL3  
VCAP1  
VCAP2  
ACMP–  
ACMP+  
ANALOG COMPARATOR  
(ACMP)  
LCD[31:0]  
ACMPO  
V
DD  
VOLTAGE  
REGULATOR  
K
EY  
Pins not available on 48-pin packages.  
LCD[23:16] not available on 48-pin packages.  
:
V
SS  
Notes: When PTB2 is configured as RESET, pin becomes bi-directional with  
V
V
/V  
DDA REFH  
output being open-drain drive containing an internal pull-up device.  
/V  
SSA REFL  
When PTC6 is configured as BKGD, pin becomes bi-directional.  
Figure 1. MC9S08LL16 Series Block Diagram  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
5
Pin Assignments  
2
Pin Assignments  
This section shows the pin assignments for the MC9S08LL16 series devices.  
LCD26  
LCD27  
LCD28  
LCD29  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PTE1/LCD9  
PTE0/LCD8  
PTD7/LCD7  
PTD6/LCD6  
PTD5/LCD5  
PTD4/LCD4  
PTD3/LCD3  
PTD2/LCD2  
PTD1/LCD1  
PTD0/LCD0  
VCAP1  
1
2
3
4
5
6
7
8
PTA5/KBIP5/ADP5/LCD30  
PTA4/KBIP4/ADP4/LCD31  
PTA3/KBIP3/SCL/MOSI/ADP3  
PTA2/KBIP2/SDA/MISO/ADP2  
PTA1/KBIP1/SPSCK/ADP1  
PTA0/KBIP0/SS/ADP0  
PTC7/IRQ/TCLK  
PTC6/ACMPO/BKGD/MS  
PTC5/TPM2CH1  
PTC4/TPM2CH0  
64-Pin LQFP  
9
10  
11  
12  
13  
14  
15  
16  
VCAP2  
VLL1  
VLL2  
VLL3  
PTC3/TPM1CH1  
PTC2/TPM1CH0  
VLCD  
Note: VREFH/VREFL are internally connected to VDDA/VSSA  
.
Figure 2. MC9S08LL16 Series in 64-pin LQFP Package  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
6
Freescale Semiconductor  
Pin Assignments  
37  
48  
47 46 45 44 43 42 41 40 39 38  
PTD7/LCD7  
PTD6/LCD6  
PTD5/LCD5  
LCD28  
LCD29  
1
36  
35  
34  
33  
2
3
4
5
6
7
8
9
PTA5/KBIP5/ADP5/LCD30  
PTA4/KBIP4/ADP4/LCD31  
PTA3/KBIP3/SCL/MOSI/ADP3  
PTA2/KBIP2/SDA/MISO/ADP2  
PTA1/KBIP1/SPSCK/ADP1  
PTD4/LCD4/  
PTD3/LCD3  
PTD2/LCD2  
32  
31  
30  
29  
28  
27  
26  
48-Pin QFN/LQFP  
PTD1/LCD1  
PTD0/LCD0  
VCAP1  
PTA0/KBIP0/SS/ADP0  
PTC7/IRQ/TCLK  
10  
11  
VCAP2  
VLL1  
PTC6/ACMPO/BKGD/MS  
PTC3/TPM1CH1  
PTC2/TPM1CH0  
25  
VLL2  
12  
19 20 21 22 23  
14 15  
17 18  
16  
24  
13  
Note: VREFH/VREFL are internally connected to VDDA/VSSA  
Figure 3. MC9S08LL16 Series in 48-Pin QFN/LQFP Packages  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
7
Pin Assignments  
Table 2. Pin Availability by Package Pin-Count  
<-- Lowest Priority --> Highest  
64  
48  
Port Pin  
Alt 1  
Alt 2  
Alt3  
Alt4  
1
2
47  
48  
1
PTE1  
PTE0  
PTD7  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
LCD9  
LCD8  
LCD7  
LCD6  
LCD5  
LCD4  
LCD3  
LCD2  
LCD1  
LCD0  
Vcap1  
Vcap2  
VLL1  
3
4
2
5
3
6
4
7
5
8
6
9
7
10  
11  
12  
13  
14  
15  
16  
17  
18  
8
9
10  
11  
12  
13  
14  
15  
VLL2  
VLL3  
VLCD  
KBIP6  
KBIP7  
PTA6  
PTA7  
ADP6  
ADP7  
ACMP+  
ACMP–  
VSSA  
19  
20  
16  
17  
VREFL  
VREFH  
VDDA  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
PTB0  
PTB1  
EXTAL  
XTAL  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
VDD  
VSS  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
PTC0  
PTC1  
PTC2  
PTC3  
PTC4  
PTC5  
PTC6  
PTC7  
PTA0  
RESET  
MISO  
MOSI  
SPSCK  
SS  
SDA  
SCL  
RxD  
TxD  
TPM1CH0  
TPM1CH1  
TPM2CH0  
TPM2CH1  
BKGD  
ACMPO  
KBIP0  
MS  
IRQ  
TCLK  
SS  
ADP0  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
8
Freescale Semiconductor  
Electrical Characteristics  
Table 2. Pin Availability by Package Pin-Count (continued)  
<-- Lowest Priority --> Highest  
64  
48  
Port Pin  
Alt 1  
Alt 2  
Alt3  
Alt4  
40  
41  
42  
43  
44  
45  
46  
47  
30  
31  
32  
33  
34  
35  
36  
37  
PTA1  
PTA2  
PTA3  
PTA4  
PTA5  
KBIP1  
KBIP2  
KBIP3  
KBIP4  
KBIP5  
LCD29  
LCD28  
LCD27  
SPSCK  
MISO  
ADP1  
ADP2  
ADP3  
SDA  
SCL  
ADP4  
ADP5  
MOSI  
LCD31  
LCD30  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
38  
39  
40  
LCD26  
LCD25  
LCD24  
LCD23  
LCD22  
LCD21  
LCD20  
LCD19  
LCD18  
LCD17  
LCD16  
LCD15  
LCD14  
LCD13  
LCD12  
LCD11  
LCD10  
41  
42  
43  
44  
45  
46  
PTE7  
PTE6  
PTE5  
PTE4  
PTE3  
PTE2  
3
Electrical Characteristics  
3.1  
Introduction  
This section contains electrical and timing specifications for the MC9S08LL16 series of microcontrollers  
available at the time of publication.  
3.2  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the  
customer a better understanding the following classification is used and the parameters are tagged  
accordingly in the tables where appropriate:  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
9
Electrical Characteristics  
Table 3. Parameter Classifications  
Those parameters are guaranteed during production testing on each individual device.  
P
C
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
T
Those parameters are derived mainly from simulations.  
D
NOTE  
The classification is shown in the column labeled “C” in the parameter  
tables where appropriate.  
3.3  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not  
guaranteed. Stress beyond the limits specified in Table 4 may affect device reliability or cause permanent  
damage to the device. For functional operating conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for instance, either VSS or VDD) or the programmable  
pull-up resistor associated with the pin is enabled.  
Table 4. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
IDD  
VIn  
ID  
–0.3 to 3.8  
120  
V
Maximum current into VDD  
Digital input voltage  
mA  
V
–0.3 to VDD + 0.3  
± 25  
Instantaneous maximum current  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
Tstg  
–55 to 150  
°C  
1
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
2
3
All functional non-supply pins, except for PTB2 are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
I
DD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low (which would reduce overall power  
consumption).  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
10  
Freescale Semiconductor  
Electrical Characteristics  
3.4  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package  
thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in  
on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the  
MCU design. To take PI/O into account in power calculations, determine the difference between actual pin  
voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high  
pin current (heavy loads), the difference between pin voltage and VSS or VDD will be very small.  
Table 5. Thermal Characteristics  
Rating  
Symbol  
Value  
Unit  
Operating temperature range  
(packaged)  
TL to TH  
–40 to 85  
TA  
°C  
°C  
Maximum junction temperature  
TJM  
95  
Thermal resistance  
Single-layer board  
64-pin LQFP  
48-pin QFN  
48-pin LQFP  
72  
84  
81  
θJA  
°C/W  
°C/W  
Thermal resistance  
Four-layer board  
64-pin LQFP  
48-pin QFN  
48-pin LQFP  
54  
30  
57  
θJA  
The average chip-junction temperature (TJ) in °C can be obtained from:  
T = T + (P × θ )  
JA  
Eqn. 3-1  
J
A
D
where:  
TA = Ambient temperature, °C  
JA = Package thermal resistance, junction-to-ambient, °C/W  
θ
PD = Pint + PI/O  
Pint = IDD × VDD, Watts — chip internal power  
PI/O = Power dissipation on input and output pins — user determined  
For most applications, PI/O << Pint and can be neglected. An approximate relationship between PD and TJ  
(if PI/O is neglected) is:  
P = K ÷ (T + 273°C)  
Eqn. 3-2  
Eqn. 3-3  
D
J
Solving Equation 3-1 and Equation 3-2 for K gives:  
2
K = P × (T + 273°C) + θ × (P )  
D
A
JA  
D
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
11  
Electrical Characteristics  
where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring  
PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by  
solving Equation 3-1 and Equation 3-2 iteratively for any value of TA.  
3.5  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early  
CMOS circuits, normal handling precautions should be taken to avoid exposure to static discharge.  
Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels  
of static without suffering any permanent damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade  
Integrated Circuits. During the device qualification, ESD stresses were performed for the human body  
model (HBM), the machine model (MM) and the charge device model (CDM).  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification. Complete DC parametric and functional testing is performed per the applicable device  
specification at room temperature followed by hot temperature, unless instructed otherwise in the device  
specification.  
Table 6. ESD and Latch-up Test Conditions  
Model  
Description  
Series resistance  
Symbol  
Value  
Unit  
Ω
R1  
1500  
Human  
Body Model  
Storage capacitance  
C
100  
3
pF  
Number of pulses per pin  
Series resistance  
R1  
0
Ω
Charge  
Device  
Model  
Storage capacitance  
C
200  
3
pF  
Number of pulses per pin  
Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
V
Latch-up  
Table 7. ESD and Latch-Up Protection Characteristics  
1
No.  
1
Symbol  
VHBM  
VCDM  
ILAT  
Min  
±2000  
±500  
±100  
Max  
Unit  
V
Rating  
Human body model (HBM)  
Charge device model (CDM)  
Latch-up current at TA = 85°C  
2
V
3
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted.  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
12  
Freescale Semiconductor  
Electrical Characteristics  
3.6  
DC Characteristics  
This section includes information about power supply requirements and I/O pin characteristics.  
Table 8. DC Characteristics  
Num  
C
Characteristic  
Symbol  
Condition  
Min  
Typ1  
Max  
Unit  
1
Operating voltage  
1.8  
3.6  
V
PTA[0:3], PTA[6:7],  
VDD >1.8 V  
ILoad = –0.6 mA  
C
PTB[0:7], PTC[0:7]2,  
low-drive strength  
VDD – 0.5  
Output high  
2
VOH  
V
DD > 2.7 V  
V
P voltage  
C
VDD – 0.5  
VDD – 0.5  
PTA[0:3], PTA[6:7],  
PTB[0:7], PTC[0:7]2,  
high-drive strength  
ILoad = –10 mA  
V
DD > 1.8 V  
ILoad = –3 mA  
PTA[4:5], PTD[0:7],  
PTE[0:7],  
low-drive strength  
VDD > 1.8 V  
ILoad = –0.5 mA  
C
VDD – 0.5  
VDD – 0.5  
Output high  
3
4
5
VOH  
VDD > 2.7 V  
ILoad = –3 mA  
V
mA  
V
P voltage  
PTA[4:5], PTD[0:7],  
PTE[0:7],  
high-drive strength  
V
DD > 1.8 V  
C
V
DD – 0.5  
ILoad = –1 mA  
Output high  
current  
D
C
Max total IOH for all ports IOHT  
100  
PTA[0:3], PTA[6:7],  
PTB[0:7], PTC[0:7],  
low-drive strength  
VDD >1.8 V  
ILoad = 0.6 mA  
0.5  
Output low  
VOL  
VDD > 2.7 V  
ILoad = 10 mA  
P voltage  
0.5  
0.5  
PTA[0:3], PTA[6:7],  
PTB[0:7], PTC[0:7],  
high-drive strength  
VDD > 1.8 V  
ILoad = 3 mA  
C
PTA[4:5], PTD[0:7],  
PTE[0:7],  
low-drive strength  
VDD > 1.8 V  
ILoad = 0.5 mA  
C
0.5  
Output low  
6
VOL  
VDD > 2.7 V  
ILoad = 3 mA  
V
P voltage  
0.5  
0.5  
PTA[4:5], PTD[0:7],  
PTE[0:7],  
high-drive strength  
VDD > 1.8 V  
ILoad = 1 mA  
C
Output low  
current  
7
8
D
Max total IOL for all ports  
all digital inputs  
IOLT  
VIH  
100  
mA  
V
P
C
P
C
VDD > 2.7 V  
VDD > 1.8 V  
VDD > 2.7 V  
VDD > 1.8 V  
0.70 × VDD  
Input high  
voltage  
0.85 × VDD  
all digital inputs  
all digital inputs  
0.35 x VDD  
0.30 x VDD  
Input low  
voltage  
9
VIL  
Input  
hysteresis  
10  
C
Vhys  
0.06 × VDD  
mV  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
13  
Electrical Characteristics  
Table 8. DC Characteristics (continued)  
Num  
C
Characteristic  
Symbol  
Condition  
In = VDD  
In = VSS  
In = VDD  
Min  
Typ1  
Max  
Unit  
all input only pins except for  
LCD only pins (LCD 16-29)  
V
0.025  
1
μA  
V
0.025  
1
μA  
Input leakage  
current  
11  
P
|IIn|  
V
100  
150  
1
μA  
μA  
LCD only pins (LCD 16-29)  
all input/output  
VIn = VSS  
0.025  
Hi-Z (off-state)  
12 P leakage  
current  
(per pin) |IOZ  
|
VIn = VDD or VSS  
0.025  
1
μA  
μA  
Total leakage Total leakage current for all  
13  
P
P
P
|IInT  
|
VIn = VDD or VSS  
2
current3  
pins  
PTA[0:3], PTA[6:7],  
PTB[0:7], PTC[0:7]  
Pullup,  
52.5  
pulldown  
resistors when  
enabled  
RPU,  
RPD  
14  
17.5  
kΩ  
PTA[4:5], PTD[0:7],  
PTE[0:7]  
69.5  
0.2  
5
Single pin limit  
–0.2  
–5  
mA  
mA  
DC injection  
current 4, 5, 6  
15  
D
IIC  
VIN < VSS, VIN > VDD  
Total MCU limit, includes  
sum of all stressed pins  
16 C Input capacitance, all pins  
17 C RAM retention voltage  
18 C POR re-arm voltage7  
19 D POR re-arm time  
CIn  
0.6  
1.4  
8
pF  
V
VRAM  
VPOR  
tPOR  
1.0  
2.0  
0.9  
10  
V
μs  
VDD falling  
VDD rising  
1.80  
1.88  
1.84  
1.92  
1.88  
1.96  
20 P Low-voltage detection threshold  
21 P Low-voltage warning threshold  
VLVD  
VLVW  
V
V
VDD falling  
VDD rising  
2.08  
2.14  
2.2  
22 P Low-voltage inhibit reset/recover hysteresis Vhys  
23 P Bandgap voltage reference8  
VBG  
80  
mV  
V
1.15  
1.17  
1.18  
1
2
3
Typical values are measured at 25 °C. Characterized, not tested  
All I/O pins except for LCD pins in open drain mode.  
Total leakage current is the sum value for all GPIO pins. This leakage current is not distributed evenly across all pins but  
characterization data shows that individual pin leakage current maximums are less than 250 nA.  
4
5
All functional non-supply pins, except for PTB2 are internally clamped to VSS and VDD  
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
6
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If the positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could  
result in external power supply going out of regulation. Ensure that external VDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is  
present, or if clock rate is very low (which would reduce overall power consumption).  
7
8
POR will occur below the minimum voltage.  
Factory trimmed at VDD = 3.0 V, Temp = 25 °C.  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
14  
Freescale Semiconductor  
Electrical Characteristics  
Figure 4. Non-LCD pins I/O Pullup and Pulldown Typical Resistor Values (V = 3.0 V)  
DD  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
15  
Electrical Characteristics  
Figure 5. LCD/GPIO Pins I/O Pullup/Pulldown Typical Resistor Values  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
16  
Freescale Semiconductor  
Electrical Characteristics  
Figure 6. Typical Low-Side Driver (Sink) Characteristics (Non-LCD pins)  
Low Drive (PTxDSn = 0)  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
17  
Electrical Characteristics  
Figure 7. Typical Low-Side Driver (Sink) Characteristics(Non-LCD pins)  
High Drive (PTxDSn = 1)  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
18  
Freescale Semiconductor  
Electrical Characteristics  
Figure 8. Typical High-Side (Source) Characteristics (Non-LCD Pins)  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Low Drive (PTxDSn = 0)  
Freescale Semiconductor  
19  
Electrical Characteristics  
Figure 9. Typical High-Side (Source) Characteristics(Non-LCD Pins)  
High Drive (PTxDSn = 1)  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
20  
Freescale Semiconductor  
Electrical Characteristics  
Figure 10. Typical Low-Side Driver (Sink) Characteristics (LCD/GPIO Pins)  
Low Drive (PTxDSn = 0)  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
21  
Electrical Characteristics  
Figure 11. Typical Low-Side Driver (Sink) Characteristics(LCD/GPIO Pins)  
High Drive (PTxDSn = 1)  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
22  
Freescale Semiconductor  
Electrical Characteristics  
Figure 12. Typical High-Side (Source) Characteristics (LCD/GPIO Pins)  
Low Drive (PTxDSn = 0)  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
23  
Electrical Characteristics  
Figure 13. Typical High-Side (Source) Characteristics(LCD/GPIO pins)  
High Drive (PTxDSn = 1)  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
24  
Freescale Semiconductor  
Electrical Characteristics  
3.7  
Supply Current Characteristics  
This section includes information about power supply current in various operating modes.  
Table 9. Supply Current Characteristics  
Parameter  
VDD  
(V)  
Bus  
Freq  
Temp  
(°C)  
Typ1  
Num  
C
Symbol  
Max  
Unit  
P
T
T
T
8 MHz  
1 MHz  
10 MHz  
1 MHz  
4.2  
1
5.7  
1.52  
Run supply current  
FEI mode, all modules on  
mA  
1
RIDD  
–40 to 85 °C  
–40 to 85 °C  
3
3
3.60  
0.50  
Run supply current  
FEI mode, all modules off  
2
3
RIDD  
mA  
16 kHz  
FBILP  
T
T
T
T
T
T
165  
105  
77  
Run supply current  
LPRS=0, all modules off  
RIDD  
3
3
3
μA  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
16 kHz  
FBELP  
16 kHz  
FBILP  
Run supply current  
LPRS=1, all modules off; running  
from Flash  
4
5
RIDD  
μA  
μA  
16 kHz  
FBELP  
21  
16 kHz  
FBILP  
77  
Run supply current  
LPRS=1, all modules off; running  
from RAM  
RIDD  
16 kHz  
FBELP  
7.3  
P
C
8 MHz  
1 MHz  
1.4  
0.8  
1.3  
3.5  
1.15  
Wait mode supply current  
FEI mode, all modules off  
6
7
WIDD  
WIDD  
3
3
mA  
–40 to 85 °C  
–40 to 85 °C  
Wait mode supply current  
LPRS = 1, all modules off  
16 kHz  
FBELP  
μA  
T
350  
1000  
2500  
5100  
250  
930  
–40 to 25 °C  
50 °C  
P
n/a  
n/a  
n/a  
n/a  
3
2
3
2
4000  
70 °C  
8
Stop2 mode supply current  
S2IDD  
nA  
85 °C  
–40 to 25 °C  
70 °C  
C
P
C
2000  
4000  
400  
85 °C  
1030  
–40 to 25 °C  
50 °C  
1300  
4000  
8000  
350  
6000  
70 °C  
Stop3 mode supply current  
No clocks active  
9
S3IDD  
nA  
85 °C  
–40 to 25 °C  
70 °C  
3000  
6000  
85 °C  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
25  
Electrical Characteristics  
Table 9. Supply Current Characteristics (continued)  
Parameter  
VDD  
(V)  
Bus  
Freq  
Temp  
(°C)  
Typ1  
Num  
C
Symbol  
Max  
Unit  
Application Stop3 mode supply  
current2  
ApS3IDD  
10  
C
n/a  
n/a  
3
3
6.1  
μA  
25 °C  
50 °C  
Application Stop3 mode supply  
current2  
ApS3IDD  
11  
C
7.5  
μA  
1
2
Typical values are measured at 25 °C. Characterized, not tested.  
32 kHz crystal enabled in low power mode. TOD module enabled. VIREG enabled for 3 V LCD glass 500pf 8x24 LCD glass at  
32 Hz frame rate with LCD Charge pump clock set to low setting and every other segment “on.”  
Table 10. Stop Mode Adders  
Temperature (°C)  
Num  
C
Parameter  
Condition  
Units  
–40  
25  
70  
85  
1
2
3
4
5
6
T
T
T
T
T
T
LPO  
100  
250  
63  
100  
360  
70  
150  
400  
77  
175  
460  
81  
nA  
nA  
μA  
nA  
μA  
μA  
ERREFSTEN  
IREFSTEN1  
TOD  
RANGE = HGO = 0  
Does not include clock source current  
LVDSE = 1  
50  
50  
75  
100  
115  
23  
LVD1  
110  
12  
110  
12  
112  
20  
ACMP1  
Not using the bandgap (BGBE = 0)  
ADLPC = ADLSMP = 1  
Not using the bandgap (BGBE = 0)  
7
T
ADC1  
LCD  
95  
95  
101  
120  
μA  
VIREG enabled for Contrast control, 1/8  
Duty cycle, 8x24 configuration for  
driving 192 Segments, 32Hz frame rate,  
No LCD glass connected.  
8
T
1
1
4.2  
12  
μA  
1
Not available in stop2 mode.  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
26  
Freescale Semiconductor  
Electrical Characteristics  
3.8  
External Oscillator (XOSCVLP) Characteristics  
Refer to Figure 14 and Figure 15 for crystal or resonator circuits.  
Table 11. XOSCVLP and ICS Specifications (Temperature Range = –40 to 85 °C Ambient)  
Num  
C
Characteristic  
Symbol  
Min  
Typ1  
Max  
Unit  
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)  
Low range (RANGE = 0)  
High range (RANGE = 1), high gain (HGO = 1)  
High range (RANGE = 1), low power (HGO = 0)  
flo  
fhi  
fhi  
32  
1
1
38.4  
16  
8
kHz  
MHz  
MHz  
1
C
Load capacitors  
Low range (RANGE=0), low power (HGO=0)  
Other oscillator settings  
See Note 2  
See Note 3  
C1,C2  
2
3
D
D
Feedback resistor  
Low range, low power (RANGE=0, HGO=0)2  
Low range, high gain (RANGE=0, HGO=1)  
High range (RANGE=1, HGO=X)  
10  
1
RF  
MΩ  
kΩ  
Series resistor —  
Low range, low power (RANGE = 0, HGO = 0)2  
100  
0
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low power (RANGE = 1, HGO = 0)  
High range, high gain (RANGE = 1, HGO = 1)  
RS  
4
D
8 MHz  
4 MHz  
1 MHz  
0
0
0
0
10  
20  
Crystal start-up time 4  
Low range, low power  
Low range, high gain  
High range, low power  
High range, high gain  
600  
400  
5
t
CSTL  
5
6
C
D
ms  
t
CSTH  
15  
Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)  
FEE mode  
fextal  
0.03125  
0
20  
20  
MHz  
MHz  
FBE or FBELP mode  
1
2
3
4
Data in Typical column was characterized at 3.0 V, 25°C or is typical recommended value.  
Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE=HGO=0.  
See crystal or resonator manufacturer’s recommendation.  
Proper PC board layout procedures must be followed to achieve specifications.  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
27  
Electrical Characteristics  
XOSCVLP  
EXTAL  
XTAL  
RS  
RF  
Crystal or Resonator  
C1  
C2  
Figure 14. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain  
XOSCVLP  
EXTAL  
XTAL  
Crystal or Resonator  
Figure 15. Typical Crystal or Resonator Circuit: Low Range/Low Power  
3.9  
Internal Clock Source (ICS) Characteristics  
Table 12. ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient)  
Num  
C
Characteristic  
Symbol  
Min  
Typ1  
Max  
Unit  
Average internal reference frequency — factory trimmed at  
VDD = 3.6 V and temperature = 25 °C  
fint_ft  
1
P
32.768  
kHz  
fint_t  
tIRST  
fdco_ut  
fdco_t  
2
3
4
5
P
T
P
P
Average internal reference frequency - trimmed  
Internal reference start-up time  
31.25  
39.063  
6
kHz  
μs  
DCO output frequency range - untrimmed  
DCO output frequency range - trimmed  
12.8  
16  
16.8  
21.33  
20  
MHz  
MHz  
Resolution of trimmed DCO output frequency at fixed  
voltage and temperature (using FTRIM)  
Δfdco_res_t  
Δfdco_res_t  
Δfdco_t  
%fdco  
%fdco  
%fdco  
6
7
8
C
C
C
±0.1  
±0.2  
±0.2  
±0.4  
±2  
Resolution of trimmed DCO output frequency at fixed  
voltage and temperature (not using FTRIM)  
Total deviation from trimmed DCO output frequency over  
voltage and temperature  
+ 0.5  
–1.0  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
28  
Freescale Semiconductor  
Electrical Characteristics  
Table 12. ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient) (continued)  
Num  
9
C
C
C
C
Characteristic  
Symbol  
Δfdco_t  
tAcquire  
CJitter  
Min  
Typ1  
±0.5  
Max  
±1  
Unit  
%fdco  
ms  
Total deviation from trimmed DCO output frequency over  
fixed voltage and temperature range of 0  
°C to 70 °C  
FLL acquisition time 2  
10  
1
Long term jitter of DCO output clock (averaged over 2-ms  
interval) 3  
%fdco  
11  
0.02  
0.2  
1
2
Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.  
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or  
changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as  
the reference, this specification assumes it is already running.  
3
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDD and VSS and variation in the crystal oscillator frequency increase the CJitter  
percentage for a given interval.  
Figure 16. Deviation of DCO Output from Trimmed Frequency (20 MHz, 3.0 V)  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
29  
Electrical Characteristics  
3.10 AC Characteristics  
This section describes timing characteristics for each peripheral system.  
3.10.1 Control Timing  
Table 13. Control Timing  
Num  
C
D
D
D
D
Rating  
Symbol  
fBus  
Min  
Typ1  
Max  
10  
Unit  
MHz  
μs  
Bus frequency (tcyc = 1/fBus  
)
1
2
3
4
dc  
700  
tLPO  
Internal low power oscillator period  
1300  
External reset pulse width2  
Reset low drive  
textrst  
trstdrv  
100  
ns  
34 × tcyc  
500  
ns  
BKGD/MS setup time after issuing background debug  
force reset to enter user or BDM modes  
tMSSU  
tMSH  
5
6
D
D
ns  
BKGD/MS hold time after issuing background debug  
force reset to enter user or BDM modes 3  
100  
μs  
IRQ pulse width  
D
7
8
Asynchronous path2  
Synchronous path4  
tILIH, IHIL  
t
100  
1.5 × tcyc  
ns  
ns  
D
Keyboard interrupt pulse width  
Asynchronous path2  
tILIH, IHIL  
t
100  
1.5 × tcyc  
Synchronous path4  
Port rise and fall time — Non-LCD Pins  
Low output drive (PTxDS = 0) (load = 50 pF)5, 6  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
t
Rise, tFall  
ns  
16  
23  
C
C
9
Port rise and fall time — Non-LCD Pins  
High output drive (PTxDS = 1) (load = 50 pF)5, 6  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
ns  
us  
5
9
tVRR  
10  
Voltage Regulator Recovery time  
6
10  
1
2
3
Typical values are based on characterization data at VDD = 3.0 V, 25 °C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a reset pin request.  
To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of tMSH after VDD  
rises above VLVD  
.
4
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.  
5
6
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40 °C to 85 °C.  
Except for LCD pins in Open Drain mode.  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
30  
Freescale Semiconductor  
Electrical Characteristics  
textrst  
RESET PIN  
Figure 17. Reset Timing  
tIHIL  
IRQ/KBIPx  
IRQ/KBIPx  
tILIH  
Figure 18. IRQ/KBIPx Timing  
3.10.2 TPM Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that  
can be used as the optional external source to the timer counter. These synchronizers operate from the  
current bus rate clock.  
Table 14. TP Input Timing  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
D
D
D
D
D
External clock frequency  
External clock period  
fTCLK  
tTCLK  
tclkh  
0
fBus/4  
Hz  
tcyc  
tcyc  
tcyc  
tcyc  
4
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
tclkl  
tICPW  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 19. Timer External Clock  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
31  
Electrical Characteristics  
t
ICPW  
TPMCHn  
TPMCHn  
t
ICPW  
Figure 20. Timer Input Capture Pulse  
3.10.3 SPI Timing  
Table 15 and Figure 21 through Figure 24 describe the timing requirements for the SPI system.  
Table 15. SPI Timing  
No.  
C
Function  
Operating frequency  
Symbol  
Min  
Max  
Unit  
D
Master  
Slave  
fop  
fBus/2048  
0
fBus/2  
fBus/4  
Hz  
SPSCK period  
Master  
Slave  
D
D
D
D
D
D
tSPSCK  
tLead  
tLag  
2
4
2048  
tcyc  
tcyc  
1
2
3
4
5
6
Enable lead time  
Master  
Slave  
1/2  
1
tSPSCK  
tcyc  
Enable lag time  
Master  
Slave  
1/2  
1
tSPSCK  
tcyc  
Clock (SPSCK) high or low time  
Master  
Slave  
tWSPSCK  
tcyc – 30  
tcyc – 30  
1024 tcyc  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU  
15  
15  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tHI  
0
25  
ns  
ns  
D
D
Slave access time  
ta  
1
1
tcyc  
7
8
9
Slave MISO disable time  
tdis  
tcyc  
Data valid (after SPSCK edge)  
Master  
Slave  
D
tv  
25  
25  
ns  
ns  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
32  
Freescale Semiconductor  
Electrical Characteristics  
Table 15. SPI Timing (continued)  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
Data hold time (outputs)  
D
Master  
Slave  
tHO  
0
0
ns  
ns  
10  
Rise time  
Input  
Output  
D
D
tRI  
tRO  
tcyc – 25  
25  
ns  
ns  
11  
12  
Fall time  
Input  
Output  
tFI  
tFO  
tcyc – 25  
25  
ns  
ns  
SS1  
(OUTPUT)  
1
2
11  
12  
3
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MS BIN2  
LSB IN  
BIT 6 . . . 1  
9
9
10  
MOSI  
(OUTPUT)  
MSB OUT2  
BIT 6 . . . 1  
LSB OUT  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 21. SPI Master Timing (CPHA = 0)  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
33  
Electrical Characteristics  
SS1  
(OUTPUT)  
1
2
11  
12  
3
12  
11  
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN2  
BIT 6 . . . 1  
10  
BIT 6 . . . 1  
LSB IN  
9
MOSI  
MASTER MSB OUT2  
PORT DATA  
(OUTPUT)  
MASTER LSB OUT  
PORT DATA  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 22. SPI Master Timing (CPHA =1)  
SS  
(INPUT)  
11  
12  
3
1
12  
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
2
4
4
SPSCK  
(CPOL = 1)  
(INPUT)  
8
7
10  
9
10  
MISO  
(OUTPUT)  
SEE  
NOTE 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
6
SLAVE  
5
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
NOTE:  
1. Not defined but normally MSB of character just received.  
Figure 23. SPI Slave Timing (CPHA = 0)  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
34  
Freescale Semiconductor  
Electrical Characteristics  
SS  
(INPUT)  
1
3
12  
2
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
4
4
11  
12  
SPSCK  
(CPOL = 1)  
(INPUT)  
9
10  
8
MISO  
(OUTPUT)  
SEE  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
SLAVE  
5
MSB OUT  
6
NOTE 1  
7
MOSI  
(INPUT)  
MSB IN  
BIT 6 . . . 1  
NOTE:  
1. Not defined but normally LSB of character just received.  
Figure 24. SPI Slave Timing (CPHA = 1)  
3.11 Analog Comparator (ACMP) Electricals  
Table 16. Analog Comparator Electrical Specifications  
C
Characteristic  
Symbol  
VDD  
Min  
Typical  
Max  
Unit  
D
Supply voltage  
1.8  
3.6  
V
IDDAC  
C
D
P
C
Supply current (active)  
20  
35  
VDD  
40  
μA  
V
Analog input voltage  
VAIN  
VAIO  
VH  
VSS – 0.3  
Analog input offset voltage  
Analog comparator hysteresis  
20  
9.0  
mV  
mV  
3.0  
15.0  
IALKG  
tAINIT  
P
C
Analog input leakage current  
1.0  
1.0  
μA  
μs  
Analog comparator initialization delay  
3.12 ADC Characteristics  
Table 17. 12-bit ADC Operating Conditions  
Characteristic  
Conditions  
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
Absolute  
Delta to VDD (VDD–VDDA  
VDDA  
ΔVDDA  
ΔVSSA  
1.8  
0
3.6  
100  
100  
V
Supply voltage  
Ground voltage  
2
)
–100  
–100  
mV  
mV  
2
Delta to VSS (VSS–VSSA  
)
0
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
35  
Electrical Characteristics  
Characteristic  
Table 17. 12-bit ADC Operating Conditions  
Conditions  
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
Ref Voltage  
High  
VREFH  
VADIN  
CADIN  
1.8  
VREFL  
VDDA  
VDDA  
VREFH  
5.5  
V
V
Input Voltage  
Input  
Capacitance  
4.5  
pF  
Input  
Resistance  
RADIN  
5
7
kΩ  
kΩ  
12-bit mode  
fADCK > 4MHz  
ADCK < 4MHz  
2
5
f
Analog Source  
Resistance  
10-bit mode  
ADCK > 4MHz  
RAS  
External to MCU  
f
5
10  
fADCK < 4MHz  
8-bit mode (all valid fADCK  
)
10  
ADC  
High speed (ADLPC = 0)  
0.4  
8.0  
Conversion  
Clock Freq.  
fADCK  
MHz  
Low power (ADLPC = 1)  
0.4  
4.0  
1
2
Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
DC potential difference.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
ADC SAR  
ENGINE  
input  
protection  
RAS  
RADIN  
+
VADIN  
CAS  
VAS  
+
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 25. ADC Input Impedance Equivalency Diagram  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
36  
Freescale Semiconductor  
Electrical Characteristics  
Table 18. 12-bit ADC Characteristics (V  
= V  
, V  
= V  
)
SSA  
REFH  
DDA  
REFL  
C
Characteristic  
Conditions  
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
Supply Current  
ADLPC=1  
ADLSMP=1  
ADCO=1  
T
IDDA  
120  
1
μA  
μA  
μA  
Supply Current  
ADLPC=1  
ADLSMP=0  
ADCO=1  
T
T
P
IDDA  
IDDA  
IDDA  
200  
290  
0.53  
Supply Current  
ADLPC=0  
ADLSMP=1  
ADCO=1  
Supply Current  
ADLPC=0  
ADLSMP=0  
ADCO=1  
mA  
P
C
P
C
P
ADC  
Asynchronous  
Clock Source  
High Speed (ADLPC=0)  
Low Power (ADLPC=1)  
2
1.25  
3.3  
2
5
tADACK  
1/fADACK  
=
fADACK  
MHz  
3.3  
Conversion  
Time(Including  
sample time)  
Short Sample (ADLSMP=0)  
Long Sample (ADLSMP=1)  
Short Sample (ADLSMP=0)  
20  
40  
3.5  
See ADC  
chapter in the  
LL16  
Reference  
Manual for  
conversion  
time variances  
ADCK  
cycles  
tADC  
ADCK  
cycles  
Sample Time  
tADS  
C
T
Long Sample (ADLSMP=1)  
23.5  
12-bit mode,  
3.6>VDDA>2.7V  
–2.5 to  
5.5  
–1 to 3  
Total  
Unadjusted  
Error  
12-bit mode,  
2.7>VDDA>1.8V  
–3.0 to  
6.0  
Includes  
quantization  
–1 to 3  
ETUE  
LSB2  
P
T
10-bit mode  
8-bit mode  
±1  
±2.5  
±1.0  
±0.5  
–1.5 to  
2.0  
T
12-bit mode  
±1  
Differential  
Non-Linearity  
DNL  
INL  
LSB2  
LSB2  
P
T
10-bit mode3  
8-bit mode3  
±0.5  
±0.3  
±1.0  
±0.5  
–2.5 to  
1.0  
T
12-bit mode  
±1.5  
Integral  
Non-Linearity  
P
T
10-bit mode  
8-bit mode  
±0.5  
±0.3  
±1.0  
±0.5  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
37  
Electrical Characteristics  
Table 18. 12-bit ADC Characteristics (V  
= V  
, V  
= V  
) (continued)  
SSA  
REFH  
DDA  
REFL  
Typ1  
C
Characteristic  
Conditions  
12-bit mode  
Symb  
Min  
Max  
±2.5  
Unit  
Comment  
T
P
T
±1.5  
±0.5  
±0.5  
Zero-Scale  
Error  
10-bit mode  
8-bit mode  
EZS  
±1.5  
±0.5  
LSB2  
VADIN = VSSA  
–3.5 to  
1.0  
T
12-bit mode  
±1  
Full-Scale  
Error  
EFS  
LSB2  
VADIN = VDDA  
P
T
10-bit mode  
8-bit mode  
±0.5  
±0.5  
±1  
±0.5  
12-bit mode  
10-bit mode  
8-bit mode  
–1 to 0  
Quantization  
Error  
D
D
EQ  
±0.5  
±0.5  
LSB2  
LSB2  
12-bit mode  
10-bit mode  
8-bit mode  
±2  
Input Leakage  
Error  
Padleakage4 *  
RAS  
EIL  
±0.2  
±0.1  
1.646  
1.769  
±4  
±1.2  
–40 °C to 25 °C  
25 °C to 85 °C  
Temp Sensor  
Slope  
D
D
m
mV/°C  
Temp Sensor  
Voltage  
25 °C  
VTEMP25  
701.2  
mV  
1
Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
2
3
4
1 LSB = (VREFH – VREFL)/2N  
Monotonicity and No-Missing-Codes guaranteed in 10-bit and 8-bit modes  
Based on input pad leakage current. Refer to pad electricals.  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
38  
Freescale Semiconductor  
Electrical Characteristics  
3.13 LCD Specifications  
Table 19. LCD Electricals, 3 V Glass  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
D
LCD Supply Voltage  
VLCD  
V
0.9  
28  
1.5  
30  
1.8  
58  
D
D
D
D
D
LCD Frame Frequency  
fFrame  
CLCD  
Hz  
nF  
nF  
pF  
LCD Charge Pump Capacitance  
LCD Bypass Capacitance  
LCD Glass Capacitance  
VIREG  
100  
100  
2000  
1.00  
1.67  
100  
CBYLCD  
Cglass  
VIREG  
100  
8000  
1.15  
1.851  
HRefSel = 0  
HRefSel = 1  
.89  
1.49  
1.5  
V
D
D
V
IREG TRIM Resolution  
VIREG Ripple  
LCD Buffered Adder2  
ΔRTRIM  
%
VIREG  
HRefSel = 0  
HRefSel = 1  
0.1  
V
0.15  
D
V
IBuff  
1
μA  
1
2
VIREG Max can not exceed VDD – 0.15 V  
VSUPPLY = 10, BYPASS = 0  
3.14 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for the flash  
memory.  
Program and erase operations do not require any special power sources other than the normal VDD supply.  
For more detailed information about program/erase operations, see the Memory section.  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
39  
Electrical Characteristics  
Table 20. Flash Characteristics  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Supply voltage for program/erase  
-40°C to 85°C  
D
Vprog/erase  
VRead  
fFCLK  
1.8  
1.8  
150  
5
3.6  
3.6  
V
D
D
D
P
P
P
P
D
D
Supply voltage for read operation  
Internal FCLK frequency1  
Internal FCLK period (1/FCLK)  
Byte program time (random location)2  
Byte program time (burst mode)2  
Page erase time2  
Mass erase time2  
Byte program current3  
Page erase current3  
V
200  
6.67  
kHz  
μs  
tFcyc  
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
mA  
mA  
tBurst  
4
4000  
20,000  
4
tPage  
tMass  
RIDDBP  
RIDDPE  
6
Program/erase endurance4  
TL to TH = –40°C to + 85°C  
T = 25°C  
C
C
10,000  
15  
100,000  
cycles  
years  
Data retention5  
tD_ret  
100  
1
2
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied  
for calculating approximate time to program and erase.  
3
4
The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures  
with VDD = 3.0 V, bus frequency = 4.0 MHz.  
Typical endurance for FLASH was evaluated for this product family on the 9S12Dx64. For additional information on how  
Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile  
Memory.  
5
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated  
to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please  
refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.  
3.15 EMC Performance  
Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the  
MCU resides. Board design and layout, circuit topology choices, location and characteristics of external  
components as well as MCU software operation all play a significant role in EMC performance. The  
system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263,  
AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.  
3.15.1 Radiated Emissions  
Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell  
method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed  
with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test  
software. The radiated emissions from the microcontroller are measured in a TEM cell in two package  
orientations (North and East).  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
40  
Freescale Semiconductor  
Ordering Information  
The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal  
to the reported emissions levels.  
Table 21. Radiated Emissions, Electric Field  
Level1  
Parameter  
Symbol  
Conditions  
Frequency  
fOSC/fBUS  
Unit  
(Max)  
VRE_TEM  
VDD = 3.3 V  
TA = 25 oC  
package type  
64-pin LQFP  
0.15 – 50 MHz  
50 – 150 MHz  
150 – 500 MHz  
500 – 1000 MHz  
IEC Level  
32 kHz crystal  
10 MHz bus  
–7  
–9  
–6  
–6  
N
dBμV  
Radiated emissions,  
electric field  
SAE Level  
1
1
Data based on qualification test results.  
4
Ordering Information  
This section contains the ordering information and the device numbering system for the MC9S08LL16  
Series.  
4.1  
Device Numbering System  
Example of the device numbering system:  
16  
C
XX  
9
MC S08 LL  
Status  
(MC = Fully Qualified)  
Package designator (see Table 22)  
Temperature range  
(C = –40 °C to 85 °C)  
Memory  
(9 = Flash-based)  
Core  
Approximate FLASH size in KB  
Family  
5
Package Information and Mechanical Drawings  
Table 22 provides the available package types and their document numbers. The latest package  
outline/mechanical drawings are available on the MC9S08LL16 Series Product Summary pages at  
http://www.freescale.com.  
To view the latest drawing, either:  
Click on the appropriate link in Table 22, or  
Open a browser to the Freescale® website (http://www.freescale.com), and enter the appropriate  
document number (from Table 22) in the “Enter Keyword” search box at the top of the page.  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
41  
Package Information and Mechanical Drawings  
Table 22. Package Descriptions  
Pin Count  
Package Type  
Abbreviation  
Designator  
Case No.  
Document No.  
64  
48  
48  
Low Quad Flat Package  
Low Quad Flat Package  
Quad Flat No-Leads  
LQFP  
LQFP  
QFN  
LH  
LF  
840F  
932  
98ASS23234W  
98ASH00962A  
98ARH99048A  
GT  
1314  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
42  
Freescale Semiconductor  
Package Information and Mechanical Drawings  
MC9S08LL16 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
43  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of  
Freescale Semiconductor, Inc. All other product or service names  
are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2008-2013. All rights reserved.  
MC9S08LL16  
Rev. 7  
1/2013  
MC9S08LL16  
Rev. 7, 1/2013  

相关型号:

MC9S08LL16CLH

MC9S08LL16 Series
FREESCALE

MC9S08LL16_10

MC9S08LL16 Series
FREESCALE

MC9S08LL36

Technical Data
FREESCALE

MC9S08LL36CLH

Technical Data
FREESCALE

MC9S08LL36CLH,557

Microcontroller, 8-Bit, FLASH, CMOS, PQFP64
NXP

MC9S08LL36CLK

Technical Data
FREESCALE

MC9S08LL64

Technical Data
FREESCALE

MC9S08LL64CLH

Technical Data
FREESCALE

MC9S08LL64CLK

Technical Data
FREESCALE

MC9S08LL64CLKR

IC MCU 8BIT 64KB FLASH 80LQFP
NXP

MC9S08LL64_10

Technical Data
FREESCALE

MC9S08LL8

MC9S08LL16 Series
FREESCALE