MC9S08LL64CLKR [NXP]

IC MCU 8BIT 64KB FLASH 80LQFP;
MC9S08LL64CLKR
型号: MC9S08LL64CLKR
厂家: NXP    NXP
描述:

IC MCU 8BIT 64KB FLASH 80LQFP

时钟 外围集成电路
文件: 总47页 (文件大小:886K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC9S08LL64  
Rev. 7.1, 08/2012  
Freescale Semiconductor  
MC9S08LL64 Series Data Sheet  
by: Automotive and Industrial Solutions Group  
This is the MC9S08LL64 Series Data Sheet set consisting of the following files:  
MC9S08LL64 Data Sheet Addendum, Rev 1  
MC9S08LL64 Series Data Sheet, Rev 7  
© Freescale Semiconductor, Inc., 2012. All rights reserved.  
MC9S08LL64AD  
Rev. 1, 08/2012  
Freescale Semiconductor  
Data Sheet Addendum  
MC9S08LL64 Data Sheet  
Addendum  
by: Automotive and Industrial Solutions Group  
Table of Contents  
Addendum for Revision 7 . . . . . . . . . . . . . . . . . . . 2  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
This document describes corrections to the  
1
2
MC9S08LL64 Series Data Sheet, order number  
MC9S08LL64. For convenience, the addenda items are  
grouped by revision. Please check our website at  
http://www.freescale.com for the latest updates.  
The current available version of the MC9S08LL64 Series  
Data Sheet is Revision 7.  
© Freescale Semiconductor, Inc., 2012. All rights reserved.  
Addendum for Revision 7  
1 Addendum for Revision 7  
Table 1. MC9S08LL64 Data Sheet Rev 7 Addendum  
Description  
Location  
Section 3.7, “Supply Current In the table, for numbers 3 and 4, change “LPS” to “LPR”.  
Characteristics”/Table 9/Page  
23  
Section 3.12, “ADC  
Add the following data of the ADC conversion clock frequency:  
Characteristics”/Page 33  
Characteris  
Conditions  
Symb  
Min  
Typ  
Max  
Unit  
tic  
ADC  
Conversion  
Clock  
ADLPC=0, ADHSC=1  
ADLPC=0, ADHSC=0  
ADLPC=1, ADHSC=0  
fADCK  
1.0  
1.0  
1.0  
8
5
MHz  
Frequency  
2.5  
2 Revision History  
Table 2 provides a revision history for this document.  
Table 2. Revision History Table  
Rev. Number  
Substantive Changes  
Date of Release  
1.0  
Initial release. Correct errors in the following sections:  
• Section 3.7, “Supply Current Characteristics”  
• Section 3.12, “ADC Characteristics”  
07/2012  
MC9S08LL64 Data Sheet Addendum, Rev. 1  
2
Freescale Semiconductor  
 
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc. All other product or service names are the property  
of their respective owners.© Freescale Semiconductor, Inc. 2012. All rights  
reserved.  
MC9S08LL64AD  
Rev. 1  
08/2012  
Document Number: MC9S08LL64  
Rev. 7, 4/2012  
Freescale Semiconductor  
Data Sheet: Technical Data  
An Energy Efficient Solution by Freescale  
80-LQFP  
Case 917A  
64-LQFP  
Case 840F  
MC9S08LL64 Series  
Covers: MC9S08LL64 and MC9S08LL36  
8-Bit HCS08 Central Processor Unit (CPU)  
– Up to 40 MHz CPU at 3.6 V to 2.1 V across temperature  
range of –40 °C to 85 °C  
Peripherals  
– LCD — Up to 8×36 or 4×40 LCD driver with internal  
charge pump and option to provide an  
– Up to 20 MHz at 2.1 V to 1.8 V across temperature range  
of –40 °C to 85 °C  
– HC08 instruction set with added BGND instruction  
– Support for up to 32 interrupt/reset sources  
On-Chip Memory  
– Dual array flash read/program/erase over full operating  
voltage and temperature  
– Random-access memory (RAM)  
– Security circuitry to prevent unauthorized access to RAM  
and flash contents  
Power-Saving Modes  
– Two low-power stop modes  
– Reduced-power wait mode  
internally-regulated LCD reference that can be trimmed  
for contrast control  
– ADC —10-channel, 12-bit resolution; up to 2.5 μs  
conversion time; automatic compare function;  
temperature sensor; operation in stop3; fully functional  
from 3.6 V to 1.8 V  
– IIC — Inter-integrated circuit bus module to operate at up  
to 100 kbps with maximum bus loading; multi-master  
operation; programmable slave address; interrupt-driven  
byte-by-byte data transfer; broadcast mode; 10-bit  
addressing  
– ACMP — Analog comparator with selectable interrupt on  
rising, falling, or either edge of comparator output;  
compare option to fixed internal reference voltage;  
outputs can be optionally routed to TPM module;  
operation in stop3  
– SCIx — Two full-duplex non-return to zero (NRZ)  
modules (SCI1 and SCI2); LIN master extended break  
generation; LIN slave extended break detection; wakeup  
on active edge  
– SPI — Full-duplex or single-wire bidirectional;  
double-buffered transmit and receive; master or slave  
mode; MSB-first or LSB-first shifting  
– TPMx — Two 2-channel (TPM1 and TPM2); selectable  
input capture, output compare, or buffered edge- or  
center-aligned PWM on each channel  
– TOD — (Time-of-day) 8-bit, quarter second counter with  
match register; external clock source for precise time  
base, time-of-day, calendar, or task scheduling functions  
– VREFx — Trimmable via an 8-bit register in 0.5 mV  
steps; automatically loaded with room temperature value  
upon reset; can be enabled to operate in stop3 mode;  
trim register is not available in stop modes.  
Input/Output  
– Dedicated accurate voltage reference output pin, 1.15 V  
output (VREFOx); trimmable with 0.5 mV resolution  
– Up to 39 GPIOs, two output-only pins  
– Hysteresis and configurable pullup device on all input  
pins; configurable slew rate and drive strength on all  
output pins  
– Low-power run and wait modes allow peripherals to run  
while voltage regulator is in standby  
– Peripheral clock gating register can disable clocks to  
unused modules, thereby reducing currents  
– Very low-power external oscillator that can be used in  
stop2 or stop3 modes to provide accurate clock source to  
time-of-day (TOD) module  
– 6 μs typical wakeup time from stop3 mode  
Clock Source Options  
– Oscillator (XOSC) — Loop-control Pierce oscillator;  
crystal or ceramic resonator range of 31.25 kHz to  
38.4 kHz or 1 MHz to 16 MHz  
– Internal Clock Source (ICS) — Internal clock source  
module containing a frequency-locked-loop (FLL)  
controlled by internal or external reference; precision  
trimming of internal reference allows 0.2% resolution and  
2% deviation over temperature and voltage; supporting  
bus frequencies from 1 MHz to 20 MHz  
System Protection  
– Watchdog computer operating properly (COP) reset with  
option to run from dedicated 1 kHz internal clock source  
or bus clock  
– Low-voltage warning with interrupt  
– Low-voltage detection with reset or interrupt  
– Illegal opcode detection with reset; illegal address  
detection with reset  
– Flash block protection  
Development Support  
– Single-wire background debug interface  
– Breakpoint capability to allow single breakpoint setting  
during in-circuit debugging (plus two more breakpoints in  
on-chip debug module)  
Package Options  
– 14mm × 14mm 80-pin LQFP, 10 mm × 10 mm 64-pin  
LQFP  
– On-chip in-circuit emulator (ICE) debug module  
containing three comparators and nine trigger modes  
© Freescale Semiconductor, Inc., 2009-2012. All rights reserved.  
Contents  
1
2
3
Devices in the MC9S08LL64 Series. . . . . . . . . . . . . . . . . . . . . 3  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.2 Parameter Classification. . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . 9  
3.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.5 ESD Protection and Latch-Up Immunity. . . . . . . . . . . . 11  
3.6 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.7 Supply Current Characteristics. . . . . . . . . . . . . . . . . . . 23  
3.8 External Oscillator (XOSCVLP) Characteristics . . . . . . 25  
3.9 Internal Clock Source (ICS) Characteristics. . . . . . . . . 26  
3.10 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.10.1 Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.10.2 TPM Module Timing. . . . . . . . . . . . . . . . . . . . . .29  
3.10.3 SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
3.11 Analog Comparator (ACMP) Electricals . . . . . . . . . . . .33  
3.12 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
3.13 VREF Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
3.14 LCD Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
3.15 Flash Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
3.16 EMC Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
3.16.1 Radiated Emissions. . . . . . . . . . . . . . . . . . . . . .40  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
4.1 Device Numbering System . . . . . . . . . . . . . . . . . . . . . .41  
4.2 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
4.3 Mechanical Drawings . . . . . . . . . . . . . . . . . . . . . . . . . .41  
4
Revision History  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will  
be the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://freescale.com/  
The following revision history table summarizes changes contained in this document.  
Rev  
Date  
Description of Changes  
Incorporated revisions for customer release.  
Completed all the TBDs; corrected Pin out in the Figure 2, Figure 3 and Table 2; updated VOH  
3
4
03/2009  
08/2009  
,
|IIn|, |IOZ|, RPU, RPD, added |IINT| in the Table 8; updated Table 9; updated ERREFSTEN and  
added LCD in the Table 10; updated fADACK, ETUE, DNL, INL, EZS and EFS in the Table 18.  
updated V Room Temp in the Table 19.  
5
6
1/2010  
6/2011  
Added 80-pin LQFP package information for MC9S08LL36.  
Changed the ERREFSTEN to EREFSTEN, updated the VREFOx to 1.15 V  
Added LCD specification in the Table 10.  
7
4/2012  
Updated |IIn| in the Table 8.  
Related Documentation  
Find the most current versions of all documents at: http://www.freescale.com  
Reference Manual —MC9S08LL64RM  
Contains extensive product information including modes of operation, memory,  
resets and interrupts, register definition, port pins, CPU, and all module  
information.  
© Freescale Semiconductor, Inc., 2009-2012. All rights reserved.  
1
Devices in the MC9S08LL64 Series  
Table 1 summarizes the feature set available in the MC9S08LL64 series of MCUs.  
Table 1. MC9S08LL64 Series Features by MCU and Package  
Feature  
MC9S08LL64  
MC9S08LL36  
80-pin  
LQFP  
64-pin  
LQFP  
80-pin  
LQFP  
64-pin  
LQFP  
Package  
64 KB  
36 KB  
FLASH  
(32,768 and 32,768 Arrays)  
(24,576 and 12,288 Arrays)  
RAM  
ACMP  
ADC  
IIC  
4000  
yes  
4000  
yes  
10-ch  
8-ch  
10-ch  
8-ch  
yes  
yes  
8
yes  
yes  
8
IRQ  
KBI  
SCI1  
SCI2  
SPI  
yes  
yes  
yes  
2-ch  
2-ch  
yes  
yes  
yes  
yes  
2-ch  
2-ch  
yes  
TPM1  
TPM2  
TOD  
8×36  
4×40  
8×24  
4×28  
8×36  
4×40  
8×24  
4×28  
LCD  
VREFO1  
VREFO2  
I/O pins1  
yes  
no  
no  
yes  
37  
yes  
no  
no  
yes  
37  
39  
39  
1
The 39 I/O pins include two output-only pins and 18 LCD GPIO.  
The block diagram in Figure 1 shows the structure of the MC9S08LL64 series MCU.  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
3
 
HCS08 CORE  
ON-CHIP ICE  
DEBUG MODULE (DBG)  
PTA7/KBIP7/ADP11/ACMP–  
PTA6/KBIP6/ADP10/ACMP+  
CPU  
INT  
PTA5/KBIP5/ADP9/LCD42  
PTA4/KBIP4/ADP8/LCD43  
TIME OF DAY MODULE  
BKGD  
BKP  
(TOD)  
PTA3/KBIP3/SCL/MOSI/ADP7  
PTA2/KBIP2/SDA/MISO/ADP6  
KBI[7:0]  
SS  
HCS08 SYSTEM CONTROL  
8-BIT KEYBOARD  
PTA1/KBIP1/SPSCK/ADP5  
PTA0/KBIP0/SS/ADP4  
INTERRUPT (KBI  
)
RESETS AND INTERRUPTS  
MODES OF OPERATION  
POWER MANAGEMENT  
BKGD/MS  
SPSCK  
MISO  
SERIAL PERIPHERAL  
PTB7/TxD2/SS  
PTB6/RxD2/SPSCK  
INTERFACE (SPI)  
RESET  
IRQ  
MOSI  
COP  
SCL  
SDA  
IRQ  
LVD  
IIC MODULE (IIC  
)
PTB5/MOSI/SCL  
PTB4/MISO/SDA  
USER FLASH A  
(LL64 = 32,768 BYTES)  
(LL36 = 24,576 BYTES)  
TPM2CH0  
TPM2CH1  
TCLK  
PTB2/RESET  
2-CHANNEL TIMER/PWM  
TPM2  
(
)
PTB1/XTAL  
USER FLASH B  
(LL64 = 32,768 BYTES)  
(LL36 = 12,288 BYTES)  
PTB0/EXTAL  
TPM1CH0  
2-CHANNEL TIMER/PWM  
TPM1  
TPM1CH1  
TCLK  
PTC7/IRQ/TCLK  
PTC6/ACMPO//BKGD/MS  
(
)
PTC5/TPM2CH1  
PTC4/TPM2CH0  
TxD1  
RxD1  
USER RAM  
SERIAL COMMUNICATIONS  
INTERFACE (SCI1)  
4 KB  
PTC3/TPM1CH1  
PTC2/TPM1CH0  
TxD2  
RxD2  
INTERNAL CLOCK  
SOURCE (ICS)  
SERIAL COMMUNICATIONS  
INTERFACE (SCI2)  
PTC1/TxD1  
PTC0/RxD1  
XTAL  
EXTAL  
LOW-POWER OSCILLATOR  
ADP0  
ADP12  
ADP[11:4]  
ADP0  
VDDA  
VSSA  
VREFH  
12-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
VREFL  
ADP12  
VDD  
VSS  
PTD[7:0]/LCD[7:0]  
VOLTAGE  
REGULATOR  
ACMP–  
ACMP+  
ANALOG COMPARATOR  
VREFO1  
VREFO2  
VREF1  
VREF2  
(
ACMP)  
PTE[7:0]/LCD[13:20]  
VLCD  
VLL1  
ACMPO  
NOTES  
VLL2  
VLL3  
Pins are not available on 64-pin packages. LCD[8:12] and LCD[31:37] are  
not available on the 64-pin package.  
REFH and VREFL are internally connected to VDDA and VSSA for the 64-pin  
package. VREFO2 is available only on the 64-pin package.  
When PTB2 is configured as RESET, the pin becomes bi-directional with  
output being an open-drain drive.  
LIQUID CRYSTAL  
DISPLAY  
VCAP1  
VCAP2  
V
(LCD)  
LCD[43:0]  
When PTC6 is configured as BKGD, the pin becomes bi-directional.  
Figure 1. MC9S08LL64 Series Block Diagram  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
4
Freescale Semiconductor  
2
Pin Assignments  
This section shows the pin assignments for the This section shows the pin assignments for the  
MC9S08LL64 series devices.  
LCD38  
LCD39  
LCD40  
LCD41  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PTE1/LCD14  
PTE0/LCD13  
PTD7/LCD7  
PTD6/LCD6  
PTD5/LCD5  
PTD4/LCD4  
PTD3/LCD3  
PTD2/LCD2  
PTD1/LCD1  
PTD0/LCD0  
VCAP1  
1
2
3
4
5
6
7
8
PTA5/KBIP5/ADP9/LCD42  
PTA4/KBIP4/ADP8/LCD43  
PTA3/KBIP3/SCL/MOSI/ADP7  
PTA2/KBIP2/SDA/MISO/ADP6  
PTA1/KBIP1/SPSCK/ADP5  
PTA0/KBIP0/SS/ADP4  
PTC7/IRQ/TCLK  
PTC6/ACMPO/BKGD/MS  
PTC5/TPM2CH1  
PTC4/TPM2CH0  
64-Pin LQFP  
9
10  
11  
12  
13  
14  
15  
16  
VCAP2  
VLL1  
VLL2  
VLL3  
PTC3/TPM1CH1  
PTC2/TPM1CH0  
VLCD  
Figure 2. 64-Pin LQFP  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
5
PTE0/LCD13  
LCD12  
LCD34  
LCD35  
LCD36  
LCD37  
LCD38  
LCD39  
LCD40  
LCD41  
1
2
3
4
5
6
7
8
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
LCD11  
LCD10  
LCD9  
LCD8  
PTD7/LCD7  
PTD6/LCD6  
PTD5/LCD5  
PTD4/LCD4  
PTD3/LCD3  
PTD2/LCD2  
PTD1/LCD1  
PTD0/LCD0  
VCAP1  
PTA5/KBIP5/ADP9/LCD42  
9
80-Pin  
LQFP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PTA4/KBIP4/ADP8/LCD43  
PTA3/KBIP3/SCL/MOSI/ADP7  
PTA2/KBIP2/SDA/MISO/ADP6  
PTA1/KBIP1/SPSCK/ADP5  
PTA0/KBIP0/SS/ADP4  
PTC7/IRQ/TCLK  
PTC6/ACMPO/BKGD/MS  
PTC5/TPM2CH1  
PTC4/TPM2CH0  
VCAP2  
VLL1  
VLL2  
VLL3  
PTC3/TPM1CH1  
PTC2/TPM1CH0  
VLCD  
Figure 3. 80-Pin LQFP  
Table 2. Pin Availability by Package Pin-Count  
<-- Lowest Priority --> Highest  
80  
64  
Port Pin  
Alt 1  
Alt 2  
Alt3  
Alt4  
1
2
3
4
5
6
2
PTE0  
LCD12  
LCD11  
LCD10  
LCD9  
LCD13  
LCD8  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
6
Freescale Semiconductor  
Table 2. Pin Availability by Package Pin-Count (continued)  
<-- Lowest Priority --> Highest  
80  
64  
Port Pin  
Alt 1  
Alt 2  
Alt3  
Alt4  
7
3
4
PTD7  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
VCAP1  
VCAP2  
VLL1  
LCD7  
LCD6  
LCD5  
LCD4  
LCD3  
LCD2  
LCD1  
LCD0  
8
9
5
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
VLL2  
VLL3  
VLCD  
PTA6  
PTA7  
VSSA  
KBIP6  
KBIP7  
ADP10  
ADP11  
ACMP+  
ACMP–  
19  
VREFL  
ADP0  
ADP12  
VREFO1  
VREFH  
VDDA  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
PTB0  
PTB1  
VDD  
EXTAL  
XTAL  
VSS  
PTB2  
VREFO2  
PTB4  
PTB5  
PTB6  
PTB7  
PTC0  
PTC1  
PTC2  
PTC3  
PTC4  
RESET  
35  
36  
37  
38  
39  
40  
41  
42  
43  
MISO  
MOSI  
SDA  
SCL  
RxD2  
SPSCK  
SS  
TxD2  
RxD1  
TxD1  
TPM1CH0  
TPM1CH1  
TPM2CH0  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
7
Table 2. Pin Availability by Package Pin-Count (continued)  
<-- Lowest Priority --> Highest  
80  
64  
Port Pin  
Alt 1  
Alt 2  
Alt3  
Alt4  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
PTC5  
PTC6  
TPM2CH1  
ACMPO  
IRQ  
BKGD  
TCLK  
MS  
PTC7  
PTA0  
KBIP0  
KBIP1  
KBIP2  
KBIP3  
KBIP4  
KBIP5  
SS  
ADP4  
ADP5  
ADP6  
ADP7  
PTA1  
SPSCK  
MISO  
PTA2  
SDA  
SCL  
PTA3  
MOSI  
PTA4  
ADP8  
ADP9  
LCD43  
LCD42  
PTA5  
LCD41  
LCD40  
LCD39  
LCD38  
LCD37  
LCD36  
LCD35  
LCD34  
LCD33  
LCD32  
LCD31  
LCD30  
LCD29  
LCD28  
LCD27  
LCD26  
LCD25  
LCD24  
LCD23  
LCD22  
LCD21  
PTE7  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
1
LCD20  
LCD19  
LCD18  
LCD17  
LCD16  
LCD15  
LCD14  
PTE6  
PTE5  
PTE4  
PTE3  
PTE2  
PTE1  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
8
Freescale Semiconductor  
Introduction  
3
Electrical Characteristics  
3.1  
Introduction  
This section contains electrical and timing specifications for the MC9S08LL64 series of microcontrollers  
available at the time of publication.  
3.2  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the  
customer a better understanding, the following classification is used and the parameters are tagged  
accordingly in the tables where appropriate:  
Table 3. Parameter Classifications  
Those parameters are guaranteed during production testing on each individual device.  
P
C
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
T
Those parameters are derived mainly from simulations.  
D
NOTE  
The classification is shown in the column labeled “C” in the parameter  
tables where appropriate.  
3.3  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not  
guaranteed. Stress beyond the limits specified in Table 4 may affect device reliability or cause permanent  
damage to the device. For functional operating conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high-static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for instance, either VSS or VDD) or the programmable  
pullup resistor associated with the pin is enabled.  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
9
Thermal Characteristics  
Table 4. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
IDD  
VIn  
ID  
–0.3 to +3.8  
120  
V
mA  
V
Maximum current into VDD  
Digital input voltage  
–0.3 to VDD + 0.3  
± 25  
Instantaneous maximum current  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
Tstg  
–55 to 150  
°C  
1
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
2
3
All functional non-supply pins, except for PTB2 are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
IDD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low (which would reduce overall power  
consumption).  
3.4  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package  
thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in  
on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the  
MCU design. To take PI/O into account in power calculations, determine the difference between actual pin  
voltage and VSS or VDD and multiply by the pin current for each I/O pin. Except in cases of unusually high  
pin current (heavy loads), the difference between pin voltage and VSS or VDD will be very small.  
Table 5. Thermal Characteristics  
Rating  
Symbol  
Value  
Unit  
Operating temperature range  
(packaged)  
TL to TH  
–40 to 85  
TA  
TJ  
°C  
°C  
Maximum junction temperature  
95  
Thermal resistance  
Single-layer board  
80-pin LQFP  
64-pin LQFP  
55  
73  
θJA  
°C/W  
°C/W  
Thermal resistance  
Four-layer board  
80-pin LQFP  
64-pin LQFP  
42  
54  
θJA  
The average chip-junction temperature (TJ) in °C can be obtained from:  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
10  
Freescale Semiconductor  
ESD Protection and Latch-Up Immunity  
T = T + (P × θ )  
JA  
Eqn. 1  
J
A
D
where:  
TA = Ambient temperature, °C  
JA = Package thermal resistance, junction-to-ambient, °C/W  
θ
PD = Pint + PI/O  
Pint = IDD × VDD, Watts — chip internal power  
PI/O = Power dissipation on input and output pins — user determined  
For most applications, PI/O << Pint and can be neglected. An approximate relationship between PD and TJ  
(if PI/O is neglected) is:  
P = K ÷ (T + 273°C)  
Eqn. 2  
D
J
Solving Equation 1 and Equation 2 for K gives:  
2
K = P × (T + 273°C) + θ × (P )  
Eqn. 3  
D
A
JA  
D
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring  
PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by  
solving Equation 1 and Equation 2 iteratively for any value of TA.  
3.5  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early  
CMOS circuits, normal handling precautions should be taken to avoid exposure to static discharge.  
Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels  
of static without suffering any permanent damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade  
Integrated Circuits. During the device qualification, ESD stresses were performed for the human body  
model (HBM), the machine model (MM) and the charge device model (CDM).  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification. Complete DC parametric and functional testing is performed per the applicable device  
specification at room temperature followed by hot temperature, unless instructed otherwise in the device  
specification.  
Table 6. ESD and Latch-up Test Conditions  
Model  
Description  
Series resistance  
Symbol  
Value  
Unit  
R1  
C
1500  
100  
3
Ω
Human  
body model  
Storage capacitance  
Number of pulses per pin  
Series resistance  
pF  
R1  
C
0
Ω
Charge  
device  
model  
Storage capacitance  
Number of pulses per pin  
200  
3
pF  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
11  
 
 
 
DC Characteristics  
Table 6. ESD and Latch-up Test Conditions (continued)  
Model  
Description  
Symbol  
Value  
Unit  
Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
V
Latch-up  
Table 7. ESD and Latch-Up Protection Characteristics  
No.  
Rating1  
Symbol  
Min  
Max  
Unit  
1
2
3
Human body model (HBM)  
Charge device model (CDM)  
Latch-up current at TA = 85°C  
VHBM  
VCDM  
ILAT  
±2000  
±500  
±100  
V
V
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted.  
3.6  
DC Characteristics  
This section includes information about power supply requirements and I/O pin characteristics.  
Table 8. DC Characteristics  
Num  
C
Characteristic  
Symbol  
Condition  
Min  
Typ1  
Max  
Unit  
1
Operating Voltage  
1.8  
3.6  
V
PTA[0:3], PTA[6:7],  
VDD >1.8 V  
ILoad = –0.6 mA  
C
PTB[0:7], PTC[0:7]2,  
low-drive strength  
V
V
DD – 0.5  
DD – 0.5  
Output high  
voltage  
2
VOH  
VDD > 2.7 V  
ILoad = –10 mA  
V
P
C
PTA[0:3], PTA[6:7],  
PTB[0:7], PTC[0:7]2,  
high-drive strength  
VDD > 1.8 V  
ILoad = –3 mA  
VDD – 0.5  
VDD – 0.5  
PTA[4:5], PTD[0:7],  
PTE[0:7],  
low-drive strength  
VDD > 1.8 V  
ILoad = –0.5 mA  
C
Output high  
voltage  
3
4
5
VOH  
VDD > 2.7 V  
ILoad = –2.5 mA  
V
mA  
V
P
C
D
VDD – 0.5  
VDD – 0.5  
PTA[4:5], PTD[0:7],  
PTE[0:7],  
high-drive strength  
VDD > 1.8 V  
ILoad = –1 mA  
Output high  
current  
Max total IOH for all ports IOHT  
100  
PTA[0:3], PTA[6:7],  
PTB[0:7], PTC[0:7],  
low-drive strength  
VDD >1.8 V  
Load = 0.6 mA  
C
0.5  
I
Output low  
voltage  
VOL  
VDD > 2.7 V  
P
C
0.5  
0.5  
PTA[0:3], PTA[6:7],  
PTB[0:7], PTC[0:7],  
high-drive strength  
I
Load = 10 mA  
DD > 1.8 V  
ILoad = 3 mA  
V
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
12  
Freescale Semiconductor  
DC Characteristics  
Table 8. DC Characteristics (continued)  
Num  
C
Characteristic  
PTA[4:5], PTD[0:7],  
Symbol  
Condition  
Min  
Typ1  
Max  
Unit  
VDD > 1.8 V  
Load = 0.5 mA  
C
PTE[0:7],  
low-drive strength  
0.5  
I
Output low  
voltage  
6
VOL  
V
DD > 2.7 V  
V
P
C
D
0.5  
0.5  
PTA[4:5], PTD[0:7],  
PTE[0:7],  
high-drive strength  
ILoad = 3 mA  
VDD > 1.8 V  
ILoad = 1 mA  
Output low  
current  
7
8
Max total IOL for all ports  
all digital inputs  
IOLT  
VIH  
100  
mA  
V
P
C
P
C
VDD > 2.7 V  
VDD > 1.8 V  
VDD > 2.7 V  
VDD > 1.8 V  
0.70 x VDD  
Input high  
voltage  
0.85 x VDD  
0.35 x VDD  
0.30 x VDD  
Input low  
voltage  
9
all digital inputs  
all digital inputs  
VIL  
Input  
hysteresis  
10  
C
Vhys  
0.06 x VDD  
1
mV  
all input only pins except for  
LCD only pins (LCD 8-12,  
21-41)  
VIn = VDD  
VIn = VSS  
0.025  
μA  
0.025  
1
μA  
Input  
11  
12  
P
leakage  
current  
|IIn|  
VIn = VDD  
VIn = VSS  
100  
150  
1
μA  
μA  
LCD only pins (LCD 8-12,  
21-41)  
0.025  
Hi-Z  
(off-state)  
leakage  
current  
all input/output  
(per pin)  
P
|IOZ  
|
VIn = VDD or VSS  
0.025  
1
μA  
Total  
Total leakage current for all  
pins  
13  
14  
15  
P
P
P
leakage  
|IInT  
|
VIn = VDD or VSS  
17.5  
35  
3
μA  
kΩ  
kΩ  
current3  
Pullup,  
Pulldown  
resistors  
all non-LCD pins when RPU,  
enabled RPD  
52.5  
77  
Pullup,  
Pulldown  
resistors  
LCD/GPIO pins when RPU,  
enabled RPD  
Single pin limit  
–0.2  
–5  
0.2  
5
mA  
mA  
DCinjection  
16 D current 4, 5,  
IIC  
VIN < VSS, VIN > VDD  
Total MCU limit, includes  
sum of all stressed pins  
6
17 C Input Capacitance, all pins  
18 C RAM retention voltage  
19 C POR re-arm voltage7  
20 D POR re-arm time  
CIn  
0.6  
1.4  
8
pF  
V
VRAM  
VPOR  
tPOR  
1.0  
2.0  
0.9  
10  
V
μs  
VDD falling  
VDD rising  
1.80  
1.88  
1.84  
1.92  
1.88  
1.96  
Low-voltage detection threshold  
21  
P
VLVD  
V
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
13  
DC Characteristics  
Table 8. DC Characteristics (continued)  
Num  
C
Characteristic  
Symbol  
Condition  
VDD falling  
Min  
Typ1  
Max  
Unit  
Low-voltage warning threshold  
22  
P
VLVW  
2.08  
2.14  
2.2  
V
VDD rising  
Low-voltage inhibit reset/recover  
hysteresis  
Bandgap Voltage Reference8  
23  
24  
P
P
Vhys  
VBG  
80  
mV  
V
1.15  
1.17  
1.18  
1
2
3
Typical values are measured at 25°C. Characterized, not tested  
All I/O pins except for LCD pins in Open Drain mode.  
Total leakage current is the sum value for all GPIO pins. This leakage current is not distributed evenly across all pins but  
characterization data shows that individual pin leakage current maximums are less than 250 nA.  
4
5
All functional non-supply pins, except for PTB2 are internally clamped to VSS and VDD  
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
6
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If the positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could  
result in external power supply going out of regulation. Ensure that external VDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is  
present, or if clock rate is very low (which would reduce overall power consumption).  
7
8
POR will occur below the minimum voltage.  
Factory trimmed at VDD = 3.0 V, Temp = 25 °C  
Figure 4. Non LCD pins I/O Pullup Typical Resistor Values  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
14  
Freescale Semiconductor  
DC Characteristics  
Figure 5. Typical Low-Side Driver (Sink) Characteristics (Non LCD Pins)  
Low Drive (PTxDSn = 0)  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
15  
DC Characteristics  
Figure 6. Typical Low-Side Driver (Sink) Characteristics(Non LCD Pins)  
High Drive (PTxDSn = 1)  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
16  
Freescale Semiconductor  
DC Characteristics  
Figure 7. Typical High-Side (Source) Characteristics (Non LCD Pins)  
Low Drive (PTxDSn = 0)  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
17  
DC Characteristics  
Figure 8. Typical High-Side (Source) Characteristics(Non LCD Pins)  
High Drive (PTxDSn = 1)  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
18  
Freescale Semiconductor  
DC Characteristics  
Figure 9. Typical Low-Side Driver (Sink) Characteristics (LCD/GPIO Pins)  
Low Drive (PTxDSn = 0)  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
19  
DC Characteristics  
Figure 10. Typical Low-Side Driver (Sink) Characteristics (LCD/GPIO Pins)  
High Drive (PTxDSn = 1)  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
20  
Freescale Semiconductor  
DC Characteristics  
Figure 11. Typical High-Side (Source) Characteristics (LCD/GPIO Pins)Low Drive (PTxDSn = 0)  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
21  
DC Characteristics  
Figure 12. Typical High-Side (Source) Characteristics (LCD/GPIO Pins)  
High Drive (PTxDSn = 1)  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
22  
Freescale Semiconductor  
Supply Current Characteristics  
3.7  
Supply Current Characteristics  
This section includes information about power supply current in various operating modes.  
Table 9. Supply Current Characteristics  
Bus  
Freq  
VDD  
(V)  
Temp  
(°C)  
Num  
C
Parameter  
Symbol  
Typ1  
Max  
Unit  
T
T
T
T
T
T
20 MHz  
10 MHz  
1 MHz  
13.75  
7
17.9  
Run supply current  
FEI mode, all modules on  
1
RIDD  
3
3
mA  
–40 to 85  
–40 to 85  
2
20 MHz  
10 MHz  
1 MHz  
8.9  
5.5  
0.9  
Run supply current  
FEI mode, all modules off  
2
3
RIDD  
mA  
16 kHz  
FBILP  
T
T
185  
115  
Run supply current  
LPS=0, all modules on  
RIDD  
3
3
μA  
–-40 to 85  
16 kHz  
FBELP  
Run supply current  
LPS=1, all modules off, running  
from Flash  
0 to 70  
–40 to 85  
0 to 70  
T
T
25  
16 kHz  
FBELP  
4
5
RIDD  
μA  
Run supply current  
LPS=1, all modules off, running  
from RAM  
7.3  
–40 to 85  
T
T
20 MHz  
8 MHz  
1 MHz  
4.57  
2
6
1.3  
6
Wait mode supply current  
FEI mode, all modules off  
WIDD  
3
3
2
3
2
mA  
–40 to 85  
T
0.73  
0.4  
4
P
C
P
C
C
C
P
C
P
C
C
C
–40 to 25  
70  
85  
8.5  
0.35  
3.9  
7.7  
0.65  
5.7  
12.2  
0.6  
5
13  
1
6
Stop2 mode supply current  
S2IDD  
n/a  
μA  
–40 to 25  
70  
5
10  
1.8  
8
85  
–40 to 25  
70  
20  
1.5  
6.8  
14  
85  
Stop3 mode supply current  
No clocks active  
7
S3IDD  
n/a  
μA  
–40 to 25  
70  
11.5  
85  
1
Typical values are measured at 25 °C. Characterized, not tested  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
23  
Supply Current Characteristics  
Table 10. Stop Mode Adders  
Condition  
Temperature (°C)  
Num  
C
Parameter  
Units  
–40  
25  
70  
85  
1
2
3
4
5
6
T
T
T
T
T
T
LPO  
100  
750  
63  
100  
750  
70  
150  
800  
77  
175  
850  
81  
nA  
nA  
μA  
nA  
μA  
μA  
EREFSTEN  
IREFSTEN1  
TOD  
RANGE = HGO = 0  
Does not include clock source current  
LVDSE = 1  
50  
50  
75  
100  
115  
23  
LVD1  
110  
12  
110  
12  
112  
20  
ACMP1  
Not using the bandgap (BGBE = 0)  
ADLPC = ADLSMP = 1  
Not using the bandgap (BGBE = 0)  
7
T
ADC1  
LCD  
95  
95  
101  
120  
μA  
VIREG enabled for Contrast control, 1/8 Duty  
cycle, 8x24 configuration for driving 192  
segments, 32 Hz frame rate, No LCD glass  
connected.  
8
T
1
1
6
13  
μA  
LCD configured for 1/8 duty cycle, 8x24  
configuration for driving 192 segments, 32 Hz  
frame rate, no LCD glass connected.  
9
T
LCD  
0.2  
0.24  
0.5  
0.65  
μA  
1
Not available in stop2 mode.  
Figure 13. Typical Run I for FBE and FEI, I vs. V  
DD  
DD  
DD  
(ADC and ACMP off, All Other Modules Enabled)  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
24  
Freescale Semiconductor  
 
External Oscillator (XOSCVLP) Characteristics  
3.8  
External Oscillator (XOSCVLP) Characteristics  
Reference Figure 14 and Figure 15 for crystal or resonator circuits.  
Table 11. XOSCVLP and ICS Specifications (Temperature Range = –40 to 85°C Ambient)  
Num  
C
Characteristic  
Symbol  
Min  
Typ1  
Max  
Unit  
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)  
Low range (RANGE = 0)  
High range (RANGE = 1), high gain (HGO = 1)  
High range (RANGE = 1), low power (HGO = 0)  
flo  
fhi  
fhi  
32  
1
1
38.4  
16  
8
kHz  
MHz  
MHz  
1
C
Load capacitors  
Low range (RANGE=0), low power (HGO=0)  
Other oscillator settings  
See Note 2  
See Note 3  
C1,C2  
2
3
D
D
Feedback resistor  
Low range, low power (RANGE=0, HGO=0)2  
Low range, high gain (RANGE=0, HGO=1)  
High range (RANGE=1, HGO=X)  
10  
1
RF  
MΩ  
kΩ  
Series resistor —  
Low range, low power (RANGE = 0, HGO = 0)2  
100  
0
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low power (RANGE = 1, HGO = 0)  
High range, high gain (RANGE = 1, HGO = 1)  
RS  
4
D
8 MHz  
4 MHz  
1 MHz  
0
0
0
0
10  
20  
Crystal start-up time 4  
Low range, low power  
Low range, high gain  
High range, low power  
High range, high gain  
600  
400  
5
t
CSTL  
5
6
C
D
ms  
t
CSTH  
15  
Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)  
FEE mode  
fextal  
0.03125  
0
20  
20  
MHz  
MHz  
FBE or FBELP mode  
1
2
3
4
Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.  
Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE = HGO = 0.  
See crystal or resonator manufacturer’s recommendation.  
Proper PC board layout procedures must be followed to achieve specifications.  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
25  
Internal Clock Source (ICS) Characteristics  
XOSCVLP  
EXTAL  
XTAL  
RS  
RF  
Crystal or Resonator  
C1  
C2  
Figure 14. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain  
XOSCVLP  
EXTAL  
XTAL  
Crystal or Resonator  
Figure 15. Typical Crystal or Resonator Circuit: Low Range/Low Power  
3.9  
Internal Clock Source (ICS) Characteristics  
Table 12. ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient)  
Num  
C
Characteristic  
Symbol  
Min  
Typ1  
Max  
Unit  
1
2
3
4
C
P
P
T
Average internal reference frequency — untrimmed  
Average internal reference frequency — user-trimmed  
Average internal reference frequency — factory-trimmed  
Internal reference start-up time  
fint_ut  
fint_t  
25  
31.25  
32.7  
41.66  
39.06  
kHz  
kHz  
kHz  
μs  
fint_t  
32.7  
60  
tIRST  
100  
P
C
P
P
Low range (DFR = 00)  
DCO output frequency  
12.8  
25.6  
16  
16.8  
33.6  
21.33  
42.67  
20  
5
6
fdco_ut  
MHz  
MHz  
range — untrimmed  
Mid range (DFR = 01)  
Low range (DFR = 00)  
DCO output frequency  
fdco_t  
range — trimmed  
Mid range (DFR = 01)  
32  
40  
Resolution of trimmed DCO output frequency at fixed  
voltage and temperature (using FTRIM)  
7
8
C
C
Δfdco_res_t  
±0.1  
±0.2  
±0.4  
%fdco  
%fdco  
Resolution of trimmed DCO output frequency at fixed  
voltage and temperature (not using FTRIM)  
Δfdco_res_t  
± 0.2  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
26  
Freescale Semiconductor  
Internal Clock Source (ICS) Characteristics  
Table 12. ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient) (continued)  
Num  
C
Characteristic  
Symbol  
Min  
Typ1  
Max  
Unit  
Total deviation of trimmed DCO output frequency over  
voltage and temperature  
+ 0.5  
–1.0  
9
C
Δfdco_t  
±2  
%fdco  
Total deviation of trimmed DCO output frequency over fixed  
10  
11  
12  
C
C
C
Δfdco_t  
tAcquire  
CJitter  
± 0.5  
±1  
1
%fdco  
ms  
voltage and temperature range of 0  
°C to 70 °C  
FLL acquisition time2  
Long term jitter of DCO output clock (averaged over 2 ms  
interval)3  
0.02  
0.2  
%fdco  
1
2
Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.  
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or  
changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as  
the reference, this specification assumes it is already running.  
3
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage  
for a given interval.  
Figure 16. Deviation of DCO Output from Trimmed Frequency (20 MHz, 3.0 V)  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
27  
AC Characteristics  
3.10 AC Characteristics  
This section describes timing characteristics for each peripheral system.  
3.10.1 Control Timing  
Table 13. Control Timing  
Num  
C
Rating  
Bus frequency (tcyc = 1/fBus  
Symbol  
Min  
Typ1  
Max  
Unit  
)
1
D
VDD 2.1V  
VDD > 2.1V  
fBus  
dc  
dc  
10  
20  
MHz  
tLPO  
textrst  
trstdrv  
2
3
4
D
D
D
Internal low power oscillator period  
700  
100  
1300  
μs  
ns  
ns  
External reset pulse width2  
Reset low drive  
34 × tcyc  
BKGD/MS setup time after issuing background debug  
force reset to enter user or BDM modes  
tMSSU  
tMSH  
5
6
D
D
500  
100  
ns  
BKGD/MS hold time after issuing background debug  
force reset to enter user or BDM modes 3  
μs  
IRQ pulse width  
7
8
D
D
Asynchronous path2  
Synchronous path4  
100  
1.5 × tcyc  
t
ILIH, tIHIL  
ns  
ns  
ns  
Keyboard interrupt pulse width  
Asynchronous path2  
100  
1.5 × tcyc  
tILIH, IHIL  
t
Synchronous path4  
Port rise and fall time —  
Low output drive (PTxDS = 0) (load = 50 pF)5, 6  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
16  
23  
9
C
Port rise and fall time —  
High output drive (PTxDS = 1) (load = 50 pF)5, 6  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
ns  
5
9
1
2
3
Typical values are based on characterization data at VDD = 3.0 V, 25 °C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a reset pin request.  
To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of tMSH after VDD  
rises above VLVD  
.
4
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.  
5
6
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40 °C to 85 °C.  
Except for LCD pins in open drain mode.  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
28  
Freescale Semiconductor  
AC Characteristics  
textrst  
RESET PIN  
Figure 17. Reset Timing  
tIHIL  
IRQ/KBIPx  
IRQ/KBIPx  
tILIH  
Figure 18. IRQ/KBIPx Timing  
3.10.2 TPM Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that  
can be used as the optional external source to the timer counter. These synchronizers operate from the  
current bus rate clock.  
Table 14. TPM Input Timing  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
D
D
D
D
D
External clock frequency  
External clock period  
fTCLK  
tTCLK  
tclkh  
0
fBus/4  
Hz  
tcyc  
tcyc  
tcyc  
tcyc  
4
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
tclkl  
tICPW  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 19. Timer External Clock  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
29  
AC Characteristics  
t
ICPW  
TPMCHn  
TPMCHn  
t
ICPW  
Figure 20. Timer Input Capture Pulse  
3.10.3 SPI Timing  
Table 15 and Figure 21 through Figure 24 describe the timing requirements for the SPI system.  
Table 15. SPI Timing  
No.  
C
Function  
Operating frequency  
Symbol  
Min  
Max  
Unit  
D
Master  
Slave  
fop  
fBus/2048  
0
fBus/2  
fBus/4  
Hz  
SPSCK period  
Master  
Slave  
D
D
D
D
D
D
tSPSCK  
tLead  
tLag  
2
4
2048  
tcyc  
tcyc  
1
2
3
4
5
6
Enable lead time  
Master  
Slave  
1/2  
1
tSPSCK  
tcyc  
Enable lag time  
Master  
Slave  
1/2  
1
tSPSCK  
tcyc  
Clock (SPSCK) high or low time  
Master  
Slave  
tWSPSCK  
tcyc – 30  
tcyc – 30  
1024 tcyc  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU  
15  
15  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tHI  
0
25  
ns  
ns  
D
D
Slave access time  
ta  
1
1
tcyc  
7
8
Slave MISO disable time  
tdis  
tcyc  
Data valid (after SPSCK edge)  
D
Master  
Slave  
tv  
25  
25  
ns  
ns  
9
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
30  
Freescale Semiconductor  
 
AC Characteristics  
Unit  
Table 15. SPI Timing (continued)  
No.  
C
Function  
Symbol  
Min  
Max  
Data hold time (outputs)  
D
Master  
Slave  
tHO  
0
0
ns  
ns  
10  
Rise time  
Input  
Output  
D
D
tRI  
tRO  
tcyc – 25  
25  
ns  
ns  
11  
12  
Fall time  
Input  
Output  
tFI  
tFO  
tcyc – 25  
25  
ns  
ns  
SS1  
(OUTPUT)  
1
2
11  
3
SPSCK  
(CPOL = 0)  
4
(OUTPUT)  
4
12  
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MS BIN2  
LSB IN  
BIT 6 . . . 1  
9
9
10  
MOSI  
(OUTPUT)  
MSB OUT2  
BIT 6 . . . 1  
LSB OUT  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 21. SPI Master Timing (CPHA = 0)  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
31  
AC Characteristics  
SS1  
(OUTPUT)  
1
2
11  
12  
3
12  
11  
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN2  
BIT 6 . . . 1  
10  
BIT 6 . . . 1  
LSB IN  
9
MOSI  
(OUTPUT)  
MASTER MSB OUT2  
PORT DATA  
MASTER LSB OUT  
PORT DATA  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 22. SPI Master Timing (CPHA =1)  
SS  
(INPUT)  
11  
12  
3
1
12  
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
2
4
4
SPSCK  
(CPOL = 1)  
(INPUT)  
8
7
10  
9
10  
MISO  
(OUTPUT)  
SEE  
NOTE 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
6
SLAVE  
5
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
NOTE:  
1. Not defined but normally MSB of character just received.  
Figure 23. SPI Slave Timing (CPHA = 0)  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
32  
Freescale Semiconductor  
Analog Comparator (ACMP) Electricals  
SS  
(INPUT)  
1
3
12  
2
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
4
4
11  
12  
SPSCK  
(CPOL = 1)  
(INPUT)  
9
10  
c
MISO  
(OUTPUT)  
SEE  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
SLAVE  
‘c  
MSB OUT  
6
NOTE 1  
7
MOSI  
(INPUT)  
MSB IN  
BIT 6 . . . 1  
NOTE:  
1. Not defined but normally LSB of character just received  
Figure 24. SPI Slave Timing (CPHA = 1)  
3.11 Analog Comparator (ACMP) Electricals  
Table 16. Analog Comparator Electrical Specifications  
No  
1
C
D
P
Characteristic  
Symbol  
VDD  
Min  
Typical  
Max  
Unit  
Supply voltage  
1.8  
3.6  
V
2
Supply current (active)  
IDDAC  
VSS – 0.3  
20  
35  
VDD  
40  
μA  
V
3
4
5
D
P
C
Analog input voltage  
VAIN  
VAIO  
VH  
Analog input offset voltage  
Analog comparator hysteresis  
20  
9.0  
mV  
mV  
3.0  
15.0  
6
7
P
C
Analog input leakage current  
IALKG  
tAINIT  
1.0  
1.0  
μA  
μs  
Analog comparator initialization delay  
3.12 ADC Characteristics  
Table 17. 12-Bit ADC Operating Conditions  
No.  
Characteristic  
Conditions  
Absolute  
Symb  
Min  
Typ1  
Max  
Unit  
VDDA  
1.8  
3.6  
V
Delta to VDD  
(VDD – VDDA  
1
Supply voltage  
2
)
ΔVDDA  
–100  
0
100  
mV  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
33  
ADC Characteristics  
Table 17. 12-Bit ADC Operating Conditions (continued)  
No.  
Characteristic  
Conditions  
Delta to VSS  
Symb  
Min  
Typ1  
Max  
Unit  
2
Ground voltage  
ΔVSSA  
–100  
0
100  
mV  
2
(VSS – VSSA  
)
3
4
5
6
7
Reference voltage high  
Reference voltage low  
Input voltage  
VREFH  
VREFL  
VADIN  
CADIN  
RADIN  
1.8  
VSSA  
VREFL  
VDDA  
VSSA  
VDDA  
VSSA  
VREFH  
5
V
V
V
Input capacitance  
Input resistance  
8/10/12-bit modes  
4
pF  
kΩ  
5
7
1
2
Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
DC potential difference.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
ADC SAR  
ENGINE  
input  
protection  
RAS  
RADIN  
+
VADIN  
CAS  
VAS  
+
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 25. ADC Input Impedance Equivalency Diagram  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
34  
Freescale Semiconductor  
ADC Characteristics  
Table 18. 12-Bit ADC Characteristics (V  
= V  
, V  
= V  
)
SSA  
REFH  
Min  
DDA  
REFL  
#
Characteristic  
Conditions  
ADLPC = 1  
C
Symb  
Typ1  
Max  
Unit  
Comment  
ADHSC = 0  
ADLSMP = 0  
ADCO = 1  
1
Supply current  
T
IDDA  
200  
μA  
μA  
μA  
ADLPC = 1  
ADHSC = 1  
ADLSMP = 0  
ADCO = 1  
2
3
Supply current  
Supply current  
T
T
T
IDDA  
280  
370  
0.61  
ADLPC = 0  
ADHSC = 0  
ADLSMP = 0  
ADCO = 1  
IDDA  
ADLPC = 0  
ADHSC = 1  
ADLSMP = 0  
ADCO = 1  
4
5
Supply current  
Supply current  
IDDA  
mA  
Stop, reset, module  
off  
IDDA  
2
0.01  
3.3  
2
0.8  
5
μA  
High speed  
(ADLPC = 0)  
ADC  
asynchronous  
clock source  
tADACK  
=
6
P
fADACK  
MHz  
1/fADACK  
Low power  
(ADLPC = 1)  
1.25  
3.3  
Single/first  
continuous  
ADLSMP = 0  
ADHSC = 0  
7
Sample time  
ADLSMP = 0  
ADLSTS = XX  
C
C
ts  
ts  
6
ADCK  
ADHSC = 1  
ADLSMP = 0  
ADLSTS = XX  
10  
Subsequent  
continuous  
ADLSMP = 0  
ADHSC = 0  
8
Sample time  
ADLSMP = 0  
ADLSTS = XX  
C
C
ts  
ts  
4
8
ADCK  
ADHSC = 1  
ADLSMP = 0  
ADLSTS = XX  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
35  
ADC Characteristics  
Table 18. 12-Bit ADC Characteristics (V  
= V  
, V  
= V  
) (continued)  
SSA  
REFH  
DDA  
REFL  
#
Characteristic  
Conditions  
Subsequent  
C
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
Continuous or  
Single/First  
Continuous  
ADLSMP = 1  
ADHSC = 0  
ADLSMP = 1  
ADLSTS = 00  
C
C
C
C
C
C
C
C
ts  
ts  
ts  
ts  
ts  
ts  
ts  
ts  
24  
16  
10  
6
ADHSC = 0  
ADLSMP = 1  
ADLSTS = 01  
ADHSC = 0  
ADLSMP = 1  
ADLSTS = 10  
9
Sample time  
ADHSC = 0  
ADLSMP = 1  
ADLSTS = 11  
ADHSC = 1  
ADLSMP = 1  
ADLSTS = 00  
28  
20  
14  
10  
ADHSC = 1  
ADLSMP = 1  
ADLSTS = 01  
ADHSC = 1  
ADLSMP = 1  
ADLSTS = 10  
ADHSC = 1  
ADLSMP = 1  
ADLSTS = 11  
12-bit mode  
3.6 > VDDA > 2.7V  
–2.5 to  
3.25  
T
T
±4  
Total  
unadjusted  
error  
12-bit mode,  
2.7 > VDDA > 1.8V  
–5.5 to  
6.5  
Includes  
quantization  
±3.25  
10  
11  
ETUE  
LSB2  
10-bit mode  
8-bit mode  
T
T
±1  
±2.5  
±1.0  
±0.5  
–1 to  
1.75  
–1.5 to  
2.5  
12-bit mode  
T
Differential  
non-linearity  
DNL  
LSB2  
10-bit mode3  
8-bit mode3  
T
T
±0.5  
±0.3  
±1.0  
±0.5  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
36  
Freescale Semiconductor  
ADC Characteristics  
) (continued)  
Table 18. 12-Bit ADC Characteristics (V  
= V  
, V  
= V  
REFL SSA  
REFH  
DDA  
#
Characteristic  
Conditions  
12-bit mode  
C
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
–1.5 to  
2.25  
T
±2.75  
Integral  
non-linearity  
12  
INL  
EZS  
EFS  
LSB2  
10-bit mode  
8-bit mode  
T
T
±0.5  
±0.3  
±1.0  
±0.5  
–1.25  
to 1  
12-bit mode  
T
±1  
Zero-scale  
error  
13  
14  
LSB2  
LSB2  
VADIN = VSSA  
10-bit mode  
8-bit mode  
T
T
±0.5  
±0.5  
±1  
±0.5  
–3.5 to  
2.25  
12-bit mode  
T
±1.0  
Full-scale error  
VADIN = VDDA  
10-bit mode  
8-bit mode  
T
T
±0.5  
±0.5  
–1 to 0  
±1  
±0.5  
12-bit mode  
10-bit mode  
8-bit mode  
Quantization  
error  
15  
16  
D
D
EQ  
±0.5  
±0.5  
LSB2  
LSB2  
12-bit mode  
10-bit mode  
8-bit mode  
±2  
Input leakage  
error  
Padleakage4 *  
RAS  
EIL  
±0.2  
±0.1  
1.646  
1.769  
±4  
±1.2  
–40 °C– 25 °C  
25 °C– 125 °C  
Temp sensor  
slope  
17  
18  
D
D
m
mV/°C  
Temp sensor  
voltage  
25°C  
VTEMP25  
701.2  
mV  
1
Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
2
3
4
1 LSB = (VREFH – VREFL)/2N  
Monotonicity and No-Missing-Codes guaranteed in 10-bit and 8-bit modes.  
Based on input pad leakage current. Refer to pad electricals.  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
37  
 
VREF Specifications  
3.13 VREF Specifications  
Table 19. VREF Electrical Specifications  
Num  
Characteristic  
Supply voltage  
Symbol  
Typical  
Min  
Max  
Unit  
1
2
3
VDD  
Top  
1.80  
–40  
3.60  
105  
10  
V
Operating temperature range  
Maximum load  
°C  
mA  
Operation across Temperature  
4
5
6
V Room Temp  
V Room Temp  
Untrimmed –40 °C  
Trimmed –40 °C  
Untrimmed 0 °C  
Trimmed 0 °C  
1.15  
V
–2 to –6 from Room Temp  
Voltage  
mV  
Untrimmed –40 °C  
Trimmed –40 °C  
Untrimmed 0 °C  
Trimmed 0 °C  
± 1 from Room Temp Voltage  
mV  
mV  
+1 to –2 from Room Temp  
Voltage  
7
± 0.5 from Room Temp Voltage  
mV  
mV  
+1 to –2 from Room Temp  
Voltage  
8
Untrimmed 50 °C  
Untrimmed 50 °C  
9
Trimmed 50 °C  
Untrimmed 85 °C  
Trimmed 85 °C  
Trimmed 50 °C  
Untrimmed 85 °C  
Trimmed 85 °C  
± 0.5 from Room Temp Voltage  
0 to –4 from Room Temp Voltage  
± 0.5 from Room Temp Voltage  
mV  
mV  
mV  
mV  
10  
11  
–2 to –6 from Room Temp  
Voltage  
12  
Untrimmed 125 °C  
Untrimmed 125 °C  
13  
14  
15  
Trimmed 125 °C  
Trimmed 125 °C  
± 1 from Room Temp Voltage  
mV  
Load bandwidth  
Mode = 10  
DC  
Load regulation mode = 10 at 1mA load  
20  
100  
μV/mA  
mV  
± 0.1 from Room Temp Voltage  
16  
Line regulation (power supply rejection)  
AC  
–60  
dB  
Power Consumption  
Powered down Current (Stop Mode,  
VREFEN = 0, VRSTEN = 0)  
μA  
17  
I
.100  
18  
19  
20  
21  
Bandgap only (Mode[1:0] 00)  
Low-power buffer (Mode[1:0] 01)  
Tight-regulation buffer (Mode[1:0] 10)  
RESERVED (Mode[1:0] 11)  
I
I
75  
125  
1.1  
μA  
μA  
mA  
I
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
38  
Freescale Semiconductor  
LCD Specifications  
3.14 LCD Specifications  
Table 20. LCD Electricals, 3-V Glass  
No.  
C
Characteristic  
LCD supply voltage  
Symbol  
Min  
Typ  
Max  
Unit  
1
2
D
D
D
D
D
VLCD  
fFrame  
CLCD  
.9  
28  
1.5  
30  
1.8  
58  
V
LCD frame frequency  
Hz  
nF  
nF  
pF  
3
LCD charge pump capacitance  
LCD bypass capacitance  
LCD glass capacitance  
100  
100  
2000  
1.00  
1.67  
100  
100  
8000  
1.15  
1.851  
4
CBYLCD  
Cglass  
VIREG  
5
6
HRefSel = 0  
HRefSel = 1  
.89  
1.49  
1.5  
D
D
D
D
VIREG  
V
% VIREG  
V
7
8
VIREG trim resolution  
ΔRTRIM  
9
HRefSel = 0  
HRefSel = 1  
.1  
V
IREG ripple  
10  
.15  
11  
VLCD buffered adder2  
IBuff  
1
μA  
1
2
VIREG Max can not exceed VDD –.15 V  
VSUPPLY = 10, BYPASS = 0  
3.15 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for the Flash  
memory.  
Program and erase operations do not require any special power sources other than the normal VDD supply.  
For more detailed information about program/erase operations, see the Memory section.  
Table 21. Flash Characteristics  
No.  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Supply voltage for program/erase  
–40 °C to 85 °C  
1
D
Vprog/erase  
1.8  
3.6  
V
2
3
4
5
6
7
8
9
D
D
D
P
P
P
P
D
Supply voltage for read operation  
Internal FCLK frequency1  
Internal FCLK period (1/FCLK)  
Byte program time (random location)2  
Byte program time (burst mode)2  
Page erase time2  
VRead  
fFCLK  
tFcyc  
1.8  
150  
5
3.6  
200  
6.67  
V
kHz  
μs  
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
mA  
tBurst  
tPage  
tMass  
RIDDBP  
4
4000  
20,000  
4
Mass erase time2  
Byte program current3  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
39  
EMC Performance  
Table 21. Flash Characteristics (continued)  
No.  
C
Characteristic  
Page erase current3  
Program/erase endurance4  
TL to TH = –40°C to 85°C  
T = 25°C  
Symbol  
Min  
Typical  
Max  
Unit  
10  
D
RIDDPE  
6
mA  
11  
C
10,000  
15  
100,000  
cycles  
years  
12  
C
Data retention5  
tD_ret  
100  
1
2
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for  
calculating approximate time to program and erase.  
3
4
5
The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures with  
VDD = 3.0 V, bus frequency = 4.0 MHz.  
Typical endurance for Flash was evaluated for this product family on the 9S12Dx64. For additional information on how  
Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile Memory.  
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to  
25 °C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to  
Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.  
3.16 EMC Performance  
Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the  
MCU resides. Board design and layout, circuit topology choices, location and characteristics of external  
components as well as MCU software operation all play a significant role in EMC performance. The  
system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263,  
AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.  
3.16.1 Radiated Emissions  
Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell  
method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed  
with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test  
software. The radiated emissions from the microcontroller are measured in a TEM cell in two package  
orientations (North and East).  
4
Ordering Information  
This appendix contains ordering information for the device numbering system MC9S08LL64 and  
MC9S08LL36 devices. See Table 1 for feature summary by package information.  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
40  
Freescale Semiconductor  
Device Numbering System  
Table 22. Device Numbering System  
Memory  
Device Number1  
Available Packages2  
Flash  
RAM  
64 KB  
64 KB  
36 KB  
36 KB  
4000  
4000  
4000  
4000  
80 LQFP  
64 LQFP  
80 LQFP  
64 LQFP  
MC9S08LL64  
MC9S08LL36  
1
2
See Table 1 for a complete description of modules included on each device.  
See Table 23 for package information.  
4.1  
Device Numbering System  
Example of the device numbering system:  
64  
C
XX  
9
MC S08 LL  
Status  
(MC = Fully qualified)  
Package designator (see Table 23)  
Temperature range  
(C = –40 °C to 85 °C)  
Memory  
(9 = Flash-based)  
Core  
Approximate flash size in KB  
Family  
4.2  
Package Information  
Table 23. Package Descriptions  
Pin Count  
Package Type  
Abbreviation  
Designator  
Case No.  
Document No.  
80  
64  
Low Quad Flat Package  
Low Quad Flat Package  
LQFP  
LQFP  
LK  
LH  
917A  
840F  
98ASS23237W  
98ASS23234W  
4.3  
Mechanical Drawings  
Table 23 provides the available package types and their document numbers. The latest package  
outline/mechanical drawings are available on the MC9S08LL64 series Product Summary pages at  
http://www.freescale.com.  
To view the latest drawing, either:  
Click on the appropriate link in Table 23, or  
Open a browser to the Freescale website (http://www.freescale.com), and enter the appropriate  
document number (from Table 23) in the “Enter Keyword” search box at the top of the page.  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
41  
 
Mechanical Drawings  
MC9S08LL64 Series MCU Data Sheet, Rev. 7  
42  
Freescale Semiconductor  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Semiconductor was negligent regarding the design or manufacture of the part.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
China  
+86 10 5879 8000  
support.asia@freescale.com  
© Freescale Semiconductor, Inc. 2009-2012. All rights reserved.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MC9S08LL64  
Rev. 7, 4/2012  

相关型号:

MC9S08LL64_10

Technical Data
FREESCALE

MC9S08LL8

MC9S08LL16 Series
FREESCALE

MC9S08LL8CLF

MC9S08LL8CLF
FREESCALE

MC9S08MM128

Advanced Information
FREESCALE

MC9S08MM128CLH

Advanced Information
FREESCALE

MC9S08MM128CLK

Advanced Information
FREESCALE

MC9S08MM128CLK80

8-BIT, FLASH, 48MHz, MICROCONTROLLER, PQFP80
NXP

MC9S08MM128CMB

Advanced Information
FREESCALE

MC9S08MM128VLH

Advanced Information
FREESCALE

MC9S08MM128VLH

S08MM 8-bit MCU, S08 core, 128KB Flash, 48MHz, QFP 64
NXP

MC9S08MM128VLH64

8-BIT, FLASH, 48MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, ROHS COMPLIANT, LQFP-64
NXP

MC9S08MM128VLK

Advanced Information
FREESCALE