MC9S08QE32CWL [NXP]

8-BIT, FLASH, 50.33MHz, MICROCONTROLLER, PDSO28, ROHS COMPLIANT, SOIC-28;
MC9S08QE32CWL
型号: MC9S08QE32CWL
厂家: NXP    NXP
描述:

8-BIT, FLASH, 50.33MHz, MICROCONTROLLER, PDSO28, ROHS COMPLIANT, SOIC-28

时钟 微控制器 光电二极管 外围集成电路
文件: 总34页 (文件大小:600K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: QFN_Addendum  
Rev. 0, 07/2014  
Freescale Semiconductor  
Addendum  
Addendum for New QFN  
Package Migration  
This addendum provides the changes to the 98A case outline numbers for products covered in this book.  
Case outlines were changed because of the migration from gold wire to copper wire in some packages. See  
the table below for the old (gold wire) package versus the new (copper wire) package.  
To view the new drawing, go to Freescale.com and search on the new 98A package number for your  
device.  
For more information about QFN package use, see EB806: Electrical Connection Recommendations for  
the Exposed Pad on QFN and DFN Packages.  
© Freescale Semiconductor, Inc., 2014. All rights reserved.  
Original (gold wire)  
package document number package document number  
Current (copper wire)  
Part Number  
Package Description  
48 QFN  
MC68HC908JW32  
MC9S08AC16  
MC9S908AC60  
MC9S08AC128  
MC9S08AW60  
MC9S08GB60A  
MC9S08GT16A  
MC9S08JM16  
MC9S08JM60  
MC9S08LL16  
MC9S08QE128  
MC9S08QE32  
MC9S08RG60  
MCF51CN128  
MC9RS08LA8  
MC9S08GT16A  
MC9S908QE32  
MC9S908QE8  
MC9S08JS16  
MC9S08QB8  
98ARH99048A  
98ASA00466D  
48 QFN  
32 QFN  
32 QFN  
32 QFN  
24 QFN  
98ARL10606D  
98ARH99035A  
98ARE10566D  
98ASA00071D  
98ARL10608D  
98ASA00466D  
98ASA00473D  
98ASA00473D  
98ASA00736D  
98ASA00734D  
MC9S08QG8  
MC9S08SH8  
24 QFN  
24 QFN  
24 QFN  
16 QFN  
8 DFN  
98ARL10605D  
98ARE10714D  
98ASA00087D  
98ARE10614D  
98ARL10557D  
98ASA00474D  
98ASA00474D  
98ASA00602D  
98ASA00671D  
98ASA00672D  
MC9RS08KB12  
MC9S08QG8  
MC9RS08KB12  
MC9S08QG8  
MC9RS08KA2  
6 DFN  
98ARL10602D  
98ASA00735D  
Addendum for New QFN Package Migration, Rev. 0  
2
Freescale Semiconductor  
Freescale Semiconductor  
Document Number: MC9S08QE32  
Rev. 7, 9/2011  
Data Sheet: Technical Data  
An Energy Efficient Solution by Freescale  
MC9S08QE32  
MC9S08QE32 Series  
Covers: MC9S08QE32 and  
MC9S08QE16  
48-QFN  
44-LQFP  
Case 1314  
7 mm 7 mm  
Case 824D  
10 mm 10 mm  
32-LQFP  
28-SOIC  
Case 873A  
7 mm 7 mm  
Case 751F  
Features  
8-Bit HCS08 Central Processor Unit (CPU)  
– Up to 50.33 MHz HCS08 CPU at 3.6 V to 2.4 V, 40 MHz CPU at 2.4  
V to 2.1 V and 20 MHz CPU at 2.1 V to 1.8 V across temperature  
range of –40 °C to 85 °C  
– HC08 instruction set with added BGND instruction  
– Support for up to 32 interrupt/reset sources  
On-Chip Memory  
– Flash read/program/erase over full operating voltage and  
temperature  
– Random-access memory (RAM)  
– Security circuitry to prevent unauthorized access to RAM and flash  
contents  
Power-Saving Modes  
– Two very low power stop modes  
– Reduced power wait mode  
– Peripheral clock enable register can disable clocks to unused  
modules, thereby reducing currents; allows clocks to remain enabled  
to specific peripherals in stop3 mode.  
Very low power external oscillator that can be used in run, wait, and  
stop modes to provide accurate clock source to real time counter.  
– 6 s typical wakeup time from stop3 mode  
Clock Source Options  
– Oscillator (XOSCVLP) — Loop-control Pierce oscillator; crystal or  
ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16  
MHz  
– Internal clock source (ICS) — Internal clock source module  
containing a frequency-locked-loop (FLL) controlled by internal or  
external reference; precision trimming of internal reference allows  
0.2% resolution and 2% deviation over temperature and voltage;  
supports CPU frequencies from  
32-QFN  
Case 1582  
5 mm 5 mm  
– On-chip in-circuit emulator (ICE) debug module containing three  
comparators and nine trigger modes. Eight deep FIFO for storing  
change-of-flow addresses and event-only data. Debug module  
supports both tag and force breakpoints  
Peripherals  
ADC — 10-channel, 12-bit resolution; 2.5s conversion time;  
automatic compare function; 1.7 mV/C temperature sensor;  
internal bandgap reference channel; operation in stop3; fully  
functional from 3.6 V to 1.8 V  
ACMPx — Two analog comparators with selectable interrupt on  
rising, falling, or either edge of comparator output; compare option  
to fixed internal bandgap reference voltage; outputs can be  
optionally routed to TPM module; operation in stop3  
SCIx — Two serial communications interface modules with  
optional 13-bit break. Full duplex non-return to zero (NRZ); LIN  
master extended break generation; LIN slave extended break  
detection; wake on active edge.  
SPI— One serial peripheral interface; full-duplex or single-wire  
bidirectional; double-buffered transmit and receive; master or  
slave mode; MSB-first or LSB-first shifting  
IIC — One IIC; up to 100 kbps with maximum bus loading;  
multi-master operation; programmable slave address; interrupt  
driven byte-by-byte data transfer; supports broadcast mode and  
10-bit addressing  
TPMx — One 6-channel (TPM3) and two 3-channel (TPM1 and  
TPM2); selectable input capture, output compare, or buffered  
edge- or center-aligned PWM on each channel;  
RTC — (Real-time counter) 8-bit modulus counter with binary or  
decimal based prescaler; external clock source for precise time  
base, time-of-day, calendar or task scheduling functions; free  
running on-chip low power oscillator (1 kHz) for cyclic wake-up  
without external components; runs in all MCU modes  
Input/Output  
– 40 GPIOs, including 1 output-only pin and 1 input-only pin  
– 16 KBI interrupts with selectable polarity  
– Hysteresis and configurable pull up device on all input pins;  
Configurable slew rate and drive strength on all output pins.  
Package Options  
4 kHz to 50.33 MHz.  
System Protection  
– Watchdog computer operating properly (COP) reset with option to  
run from dedicated 1 kHz internal clock source or bus clock.  
– Low-voltage warning with interrupt.  
– Low-voltage detection with reset or interrupt  
– Selectable trip points.  
– Illegal opcode detection with reset  
– Illegal address detection with reset  
– Flash block protection  
Development Support  
– Single-wire background debug interface  
– Breakpoint capability to allow single breakpoint setting during  
in-circuit debugging (plus three breakpoints in on-chip debug  
module)  
– 48-pin QFN, 44-pin LQFP, 32-pin LQFP/QFN, 28-pin SOIC  
This document contains information on a product under development. Freescale reserves the  
right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2008-2011. All rights reserved.  
Table of Contents  
1
2
3
MCU Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.2 Parameter Classification . . . . . . . . . . . . . . . . . . . 9  
3.3 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . 9  
3.4 Thermal Characteristics. . . . . . . . . . . . . . . . . . . 10  
3.5 ESD Protection and Latch-Up Immunity . . . . . . 12  
3.6 DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . 12  
3.7 Supply Current Characteristics . . . . . . . . . . . . . 16  
3.8 External Oscillator (XOSCVLP) Characteristics 18  
3.9 Internal Clock Source (ICS) Characteristics . . . 19  
3.10 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . 20  
3.10.1Control Timing. . . . . . . . . . . . . . . . . . . . . 20  
3.10.2TPM Module Timing . . . . . . . . . . . . . . . . 21  
3.10.3SPI Timing. . . . . . . . . . . . . . . . . . . . . . . . 22  
3.11 Analog Comparator (ACMP) Electricals . . . . . . 26  
3.12 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . 26  
3.13 Flash Specifications . . . . . . . . . . . . . . . . . . . . . 29  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5.1 Mechanical Drawings . . . . . . . . . . . . . . . . . . . . 30  
4
5
Revision History  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will  
be the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://freescale.com/  
The following revision history table summarizes changes contained in this document.  
Revision  
Date  
Description of Changes  
1
2
7/2/2008  
Initial public released.  
10/7/2008  
Updated the Stop2 and Stop3 mode supply current, and RIDD in FEI mode with all modules  
on at 25.165 MHz in the Table 8 Supply Current Characteristics.  
Replaced the stop mode adders section from Table 8 with an individual Table 9 Stop Mode  
Adders with new specifications.  
3
4
11/4/2008  
5/4/2009  
Updated operating voltage in Table 7.  
Added 1010 mm information to 44 LQFP in the front page.  
In Table 7, added |IOZTOT|.  
In Table 11, updated typicals and Max. for tIRST.  
In Table 16, removed the Rev. Voltage High item.  
Updated Table 17.  
5
6
7
8/27/2009  
10/13/2009  
9/16/2011  
Updated fint_t and fint_ut in the Table 11.  
Corrected the package size descriptions on the cover  
Added new package of 32-pin QFN.  
Related Documentation  
Find the most current versions of all documents at: http://www.freescale.com  
Reference Manual (MC9S08QE32RM)  
Contains extensive product information including modes of operation, memory,  
resets and interrupts, register definition, port pins, CPU, and all module  
information.  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
2
Freescale Semiconductor  
MCU Block Diagram  
1
MCU Block Diagram  
The block diagram, Figure 1, shows the structure of the MC9S08QE32 MCU.  
BKGD/MS  
PTA7/TPM2CH2/ADP9  
PTA6/TPM1CH2/ADP8  
PTA5/IRQ/TPM1CLK/RESET  
PTA4/ACMP1O/BKGD/MS  
PTA3/KBI1P3/SCL/ADP3  
PTA2/KBI1P2/SDA/ADP2  
HCS08 CORE  
BDC  
DEBUG MODULE (DBG)  
CPU  
REAL-TIME COUNTER  
(RTC)  
PTA1/KBI1P1/TPM2CH0/ADP1/ACMP1–  
PTA0/KBI1P0/TPM1CH0/ADP0/ACMP1+  
SCL  
SDA  
HCS08 SYSTEM CONTROL  
IIC MODULE (IIC)  
RESETS AND INTERRUPTS  
MODES OF OPERATION  
POWER MANAGEMENT  
PTB7/SCL/EXTAL  
PTB6/SDA/XTAL  
PTB5/TPM1CH1/SS  
PTB4/TPM2CH1/MISO  
PTB3/KBI1P7/MOSI/ADP7  
PTB2/KBI1P6/SPSCK/ADP6  
PTB1/KBI1P5/TxD1/ADP5  
PTB0/KBI1P4/RxD1/ADP4  
RxD1  
TxD1  
IRQ  
SERIAL COMMUNICATIONS  
INTERFACE MODULE(SCI1)  
COP  
IRQ  
LVD  
RxD2  
TxD2  
SERIAL COMMUNICATIONS  
INTERFACE MODULE(SCI2)  
USER FLASH  
SS  
(MC9S08QE32 = 32768 BYTES)  
MISO  
SERIAL PERIPHERAL  
INTERFACE MODULE(SPI)  
MOSI  
(MC9S08QE16 = 16384 BYTES)  
SPSCK  
USER RAM  
(MC9S08QE32 = 2048 BYTES)  
TPM1CLK  
PTC7/TxD2/ACMP2–  
PTC6/RxD2/ACMP2+  
PTC5/TPM3CH5/ACMP2O  
PTC4/TPM3CH4  
PTC3/TPM3CH3  
PTC2/TPM3CH2  
3-CHANNEL TIMER/PWM  
MODULE (TPM1)  
TPM1CH2–TPM1CH0  
(MC9S08QE16 = 1024 BYTES)  
TPM2CLK  
3-CHANNEL TIMER/PWM  
MODULE (TPM2)  
50.33 MHz INTERNAL CLOCK  
SOURCE (ICS)  
TPM2CH2–TPM2CH0  
EXTAL  
XTAL  
TPM3CLK  
PTC1/TPM3CH1  
PTC0/TPM3CH0  
LOW-POWER OSCILLATOR  
31.25 kHz to 38.4 kHz  
1 MHz to 16 MHz  
6-CHANNEL TIMER/PWM  
MODULE (TPM3)  
TPM3CH5–TPM3CH0  
(XOSCVLP)  
ACMP1O  
ACMP1–  
ACMP1+  
PTD7/KBI2P7  
PTD6/KBI2P6  
PTD5/KBI2P5  
PTD4/KBI2P4  
PTD3/KBI2P3  
PTD2/KBI2P2  
PTD1/KBI2P1  
PTD0/KBI2P0  
VSSAD  
VDDAD  
ANALOG COMPARATOR  
(ACMP1)  
VSS  
VDD  
VOLTAGE REGULATOR  
ACMP2O  
ACMP2–  
ACMP2+  
VSSAD  
VDDAD  
ANALOG COMPARATOR  
(ACMP2)  
VSSAD/VREFL  
VDDAD/VREFH  
10-CHANNEL, 12-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC12)  
ADP9–ADP0  
VREFL  
VREFH  
PTE7/TPM3CLK  
PTE6  
PTE5  
PTE4  
PTE3/SS  
PTE2/MISO  
PTE1/MOSI  
PTE0/TPM2CLK/SPSCK  
KBI1P7–KBI1P0  
KBI2P7–KBI2P0  
KEYBOARD INTERRUPT  
MODULE (KBI1)  
KEYBOARD INTERRUPT  
MODULE (KBI2)  
pins not available on 28-pin packages  
pins not available on 28-pin or 32-pin packages  
pins not available on 28-pin, 32-pin, or 44-pin packages  
Notes: When PTA5 is configured as RESET, pin becomes bi-directional with output being open-drain drive containing an internal pullup device.  
When PTA4 is configured as BKGD, pin becomes bi-directional.  
For the 28-pin packages, VSSAD/VREFL and V  
/VREFH are double bonded to VSS and VDD respectively.  
The 48-pin package is the only package withDthDeADoption of having the SPI pins (SS, MISO, MOSI, and SPSCK) available on PTE3-0 pins.  
Figure 1. MC9S08QE32 Series Block Diagram  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
3
 
Pin Assignments  
2
Pin Assignments  
This section shows the pin assignments for the MC9S08QE32 series devices.  
PTA2/KBI1P2/SDA/ADP2  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTD1/KBI2P1  
PTD0/KBI2P0  
1
PTA3/KBI1P3/SCL/ADP3  
PTD2/KBI2P2  
2
PTE7/TPM3CLK  
3
PTD3/KBI2P3  
4
VDD  
PTD4/KBI2P4  
VDDAD  
5
VREFH  
VSS  
6
VREFL  
7
VDD  
VSSAD  
PTE4  
8
VSS  
9
PTA6/TPM1CH2/ADP8  
PTA7/TPM2CH2/ADP9  
PTB0/KBI1P4/RxD1/ADP4  
PTB1/KBI1P5/TxD1/ADP5  
PTB7/SCL/EXTAL  
10  
11  
12  
PTB6/SDA/XTAL  
PTE6  
Pins in bold are lost in the next lower pin count package.  
Figure 2. 48-Pin QFN  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
4
Freescale Semiconductor  
Pin Assignments  
PTD1/KBI2P1  
PTD0/KBI2P0  
PTA2/KBI1P2/SDA/ADP2  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
PTA3/KBI1P3/SCL/ADP3  
PTD2/KBI2P2  
2
PTE7/TPM3CLK  
3
PTD3/KBI2P3  
VDD  
4
VDDAD  
PTD4/KBI2P4  
5
VREFH  
VREFL  
VSS  
6
VDD  
7
PTA6/TPM1CH2/ADP8  
PTA7/TPM2CH2/ADP9  
VSSAD  
8
VSS  
9
PTB0/KBI1P4/RxD1/ADP4  
PTB1/KBI1P5/TxD1/ADP5  
PTB7/SCL/EXTAL  
10  
PTB6/SDA/XTAL 11  
Pins in bold are lost in the next lower pin count package.  
Figure 3. 44-Pin LQFP  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
5
Pin Assignments  
31 30 29 28 27 26 25  
32  
PTD1/KBI2P1  
1
2
3
4
5
6
7
8
24  
23  
PTA2/KBI1P2/SDA/ADP2  
PTA3/KBI1P3/SCL/ADP3  
PTD0/KBI2P0  
VDD  
22  
21  
20  
19  
18  
17  
PTD2/KBI2P2  
PTD3/KBI2P3  
VDDAD/VREFH  
VSSAD/VREFL  
VSS  
PTA6/TPM1CH2/ADP8  
PTA7/TPM2CH2/ADP9  
PTB7/SCL/EXTAL  
PTB0/KBIP4/RxD1/ADP4  
PTB1/KBIP5/TxD1/ADP5  
PTB6/SDA/XTAL  
15 16  
10 11 12 13 14  
9
Pins in bold are lost in the next lower pin count package.  
Figure 4. 32-Pin LQFP/QFN  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
6
Freescale Semiconductor  
Pin Assignments  
PTC6/RxD2/ACMP2+  
PTC7/TxD2/ACMP2–  
PTC5/TPM3CH5/ACMP2O  
PTC4/TPM3CH4  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2
PTA5/IRQ/TPM1CLK/RESET  
PTA4/ACMP1O/BKGD/MS  
VDD  
PTA0/KBI1P0/TPM1CH0/ADP0/ACMP1+  
PTA1/KBI1P1/TPM2CH0/ADP1/ACMP1–  
PTA2/KBI1P2/SDA/ADP2  
3
4
5
VDDAD/VREFH  
PTA3/KBI1P3/SCL/ADP3  
PTA6/TPM1CH2/ADP8  
6
VSSAD/VREFL  
7
VSS  
PTA7/TPM2CH2/ADP9  
8
PTB7/SCL/EXTAL  
PTB6/SDA/XTAL  
PTB5/TPM1CH1/SS  
PTB0/KBI1P4/RxD1/ADP4  
9
10  
11  
12  
13  
14  
PTB1/KBI1P5/TxD1/ADP5  
PTB2/KBI1P6/SPSCK/ADP6  
PTB3/KBI1P7/MOSI/ADP7  
PTC0/TPM3CH0  
PTB4/TPM2CH1/MISO  
PTC3/TPM3CH3  
PTC2/TPM3CH2  
PTC1/TPM3CH1  
Figure 5. 28-Pin SOIC  
Table 1. MC9S08QE32 Series Pin Assignment by Package and Pin Sharing Priority  
Pin Number <-- Lowest Priority --> Highest  
48  
44  
32  
28  
Port Pin  
Alt 1  
Alt 2  
Alt 3  
Alt 4  
1
2
1
2
1
2
5
PTD1  
PTD0  
PTE7  
KBI2P1  
KBI2P0  
3
3
3
TPM3CLK  
4
4
VDD  
5
5
4
6
VDDAD  
VREFH  
VREFL  
VSSAD  
VSS  
6
6
7
7
5
7
8
8
9
9
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
10  
11  
12  
13  
14  
15  
16  
PTB7  
SCL1  
SDA1  
EXTAL  
XTAL  
8
10 PTB6  
9
PTE6  
PTE5  
11 PTB5  
12 PTB4  
13 PTC3  
14 PTC2  
TPM1CH1 SS2  
TPM2CH1 MISO2  
TPM3CH3  
10  
11  
12  
TPM3CH2  
PTD7  
KBI2P7  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
7
Pin Assignments  
Table 1. MC9S08QE32 Series Pin Assignment by Package and Pin Sharing Priority (continued)  
Pin Number <-- Lowest Priority --> Highest  
48  
44  
32  
28  
Port Pin  
Alt 1  
Alt 2  
Alt 3  
Alt 4  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
PTD6  
PTD5  
KBI2P6  
KBI2P5  
15 PTC1  
16 PTC0  
17 PTB3  
18 PTB2  
19 PTB1  
20 PTB0  
21 PTA7  
22 PTA6  
TPM3CH1  
TPM3CH0  
KBI1P7  
MOSI2  
SPSCK2  
ADP7  
KBI1P6  
ADP6  
ADP5  
ADP4  
ADP9  
ADP8  
KBI1P5  
TxD1  
KBI1P4  
RxD1  
TPM2CH2  
TPM1CH2  
PTE4  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
VDD  
VSS  
PTD4  
PTD3  
PTD2  
KBI2P4  
KBI2P3  
KBI2P2  
KBI1P3  
KBI1P2  
KBI1P1  
KBI1P0  
TxD2  
23 PTA3  
24 PTA2  
25 PTA1  
26 PTA0  
27 PTC7  
28 PTC6  
SCL1  
SDA1  
TPM2CH0 ADP13  
TPM1CH0 ADP03  
ADP3  
ADP2  
ACMP1–3  
ACMP1+3  
ACMP2–  
ACMP2+  
RxD2  
SS2  
MISO2  
MOSI2  
TPM2CLK SPSCK2  
1
PTE3  
PTE2  
PTE1  
PTE0  
PTC5  
PTC4  
PTA5  
PTA4  
38  
39  
40  
41  
42  
43  
44  
TPM3CH5  
ACMP2O  
2
TPM3CH4  
3
IRQ  
TPM1CLK RESET  
4
ACMP1O BKGD  
MS  
1
2
3
IIC pins, SCL and SDA can be repositioned using IICPS in SOPT2; default reset  
locations are PTA3 and PTA2.  
SPI pins (SS, MISO, MOSI, and SPSCK) can be repositioned using SPIPS in SOPT2.  
Default locations are PTB5, PTB4, PTB3, and PTB2.  
If ADC and ACMP1 are enabled, both modules will have access to the pin.  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
8
Freescale Semiconductor  
Electrical Characteristics  
3
Electrical Characteristics  
3.1  
Introduction  
This section contains electrical and timing specifications for the MC9S08QE32 series of microcontrollers  
available at the time of publication.  
3.2  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the  
customer a better understanding the following classification is used and the parameters are tagged  
accordingly in the tables where appropriate:  
Table 2. Parameter Classifications  
Those parameters are guaranteed during production testing on each individual device.  
P
C
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
T
Those parameters are derived mainly from simulations.  
D
NOTE  
The classification is shown in the column labeled “C” in the parameter  
tables where appropriate.  
3.3  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not  
guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent  
damage to the device. For functional operating conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for instance, either V or V ) or the programmable  
SS  
DD  
pull-up resistor associated with the pin is enabled.  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
9
Electrical Characteristics  
Table 3. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
IDD  
VIn  
ID  
–0.3 to +3.8  
120  
V
mA  
V
Maximum current into VDD  
Digital input voltage  
–0.3 to VDD + 0.3  
25  
Instantaneous maximum current  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
Tstg  
–55 to 150  
C  
1
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
2
3
All functional non-supply pins, except for PTA5 are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
IDD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low (which would reduce overall power  
consumption).  
3.4  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package  
thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in  
on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the  
MCU design. To take P into account in power calculations, determine the difference between actual pin  
I/O  
voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of unusually high  
SS  
DD  
pin current (heavy loads), the difference between pin voltage and V or V will be very small.  
SS  
DD  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
10  
Freescale Semiconductor  
Electrical Characteristics  
Unit  
Table 4. Thermal Characteristics  
Symbol  
Rating  
Value  
Operating temperature range  
(packaged)  
TL to TH  
–40 to 85  
TA  
C  
C  
Maximum junction temperature  
TJM  
95  
Thermal resistance  
Single-layer board  
48-pin QFN  
44-pin LQFP  
32-pin LQFP  
32-pin QFN  
28-pin SOIC  
81  
68  
66  
92  
57  
JA  
C/W  
Thermal resistance  
Four-layer board  
48-pin QFN  
44-pin LQFP  
32-pin LQFP  
32-pin QFN  
28-pin SOIC  
26  
46  
54  
33  
42  
JA  
C/W  
The average chip-junction temperature (T ) in C can be obtained from:  
J
T = T + (P   )  
JA  
Eqn. 1  
J
A
D
where:  
T = Ambient temperature, C  
A
= Package thermal resistance, junction-to-ambient, C/W  
JA  
P = P P  
D
int  
I/O  
P
P
= I V , Watts — chip internal power  
int  
I/O  
DD DD  
= Power dissipation on input and output pins — user determined  
For most applications, P  P and can be neglected. An approximate relationship between P and T  
I/O  
int  
D
J
(if P is neglected) is:  
I/O  
P = K (T + 273C)  
Eqn. 2  
D
J
Solving Equation 1 and Equation 2 for K gives:  
2
K = P (T + 273C) +   (P )  
Eqn. 3  
D
A
JA  
D
where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring  
P (at equilibrium) for a known T . Using this value of K, the values of P and T can be obtained by  
D
A
D
J
solving Equation 1 and Equation 2 iteratively for any value of T .  
A
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
11  
 
 
Electrical Characteristics  
3.5  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early  
CMOS circuits, normal handling precautions must be used to avoid exposure to static discharge.  
Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels  
of static without suffering any permanent damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade  
Integrated Circuits. During the device qualification ESD stresses were performed for the human body  
model (HBM), the machine model (MM) and the charge device model (CDM).  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification. Complete DC parametric and functional testing is performed per the applicable device  
specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification.  
Table 5. ESD and Latch-up Test Conditions  
Model  
Description  
Series resistance  
Symbol  
Value  
Unit  
Human  
Body  
R1  
1500  
Storage capacitance  
C
100  
3
pF  
Number of pulses per pin  
Machine  
Series resistance  
R1  
0
Storage capacitance  
C
200  
3
pF  
Number of pulses per pin  
Latch-up Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
V
Table 6. ESD and Latch-Up Protection Characteristics  
1
No.  
1
Symbol  
VHBM  
VMM  
Min  
2000  
200  
500  
100  
Max  
Unit  
V
Rating  
Human body model (HBM)  
Machine model (MM)  
2
V
VCDM  
ILAT  
3
Charge device model (CDM)  
Latch-up current at TA = 85C  
V
4
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted.  
3.6  
DC Characteristics  
This section includes information about power supply requirements and I/O pin characteristics.  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
12  
Freescale Semiconductor  
Electrical Characteristics  
Table 7. DC Characteristics  
Num  
C
Characteristic  
Operating Voltage  
Symbol  
Condition  
Min  
Typical1  
Max  
Unit  
1
V
DD rising  
2.0  
1.8  
3.6  
V
VDD falling  
Output high  
voltage2  
All I/O pins,  
low-drive strength  
C
1.8 V, ILoad = –2 mA VDD – 0.5  
P
T
2.7 V, ILoad = –10 mA VDD – 0.5  
2.3 V, ILoad = –6 mA VDD – 0.5  
1.8V, ILoad = –3 mA VDD – 0.5  
2
3
4
VOH  
V
mA  
V
All I/O pins,  
high-drive strength  
C
Output high  
current  
D
C
Max total IOH for all ports IOHT  
100  
0.5  
All I/O pins,  
low-drive strength  
1.8 V, ILoad = 2 mA  
Output low  
voltage  
P
T
2.7 V, ILoad = 10 mA  
2.3 V, ILoad = 6 mA  
1.8 V, ILoad = 3 mA  
0.5  
0.5  
0.5  
VOL  
All I/O pins,  
high-drive strength  
C
Output low  
current  
5
6
D
Max total IOL for all ports  
all digital inputs  
IOLT  
VIH  
100  
mA  
V
P
C
P
C
VDD 2.3 V  
VDD 1.8 V  
VDD 2.7 V  
VDD 1.8 V  
0.70 x VDD  
Input high  
voltage  
0.85 x VDD  
0.35 x VDD  
0.30 x VDD  
Input low  
voltage  
7
8
all digital inputs  
VIL  
Input  
hysteresis  
C
all digital inputs Vhys  
0.06 x VDD  
mV  
Input  
P leakage  
current  
all input only pins  
|IIn|  
9
VIn = VDD or VSS  
1
A  
(Per pin)  
Hi-Z  
(off-state)  
leakage  
all input/output  
10  
P
|IOZ  
|
VIn = VDD or VSS  
1
A  
(per pin)  
current  
Total  
leakage  
combined  
for all inputs  
and Hi-Z  
pins  
11  
C
All input only and I/O |IOZTOT  
|
VIn = VDD or VSS  
2
A  
k  
Pullup,  
11 P Pulldown  
resistors  
all digital inputs, when RPU,  
17.5  
52.5  
enabled  
RPD  
Single pin limit  
–0.2  
–5  
0.2  
5
mA  
mA  
DCinjection  
12 D current 3, 4,  
IIC  
VIN < VSS, VIN > VDD  
Total MCU limit, includes  
sum of all stressed pins  
5
13 C Input Capacitance, all pins  
14 C RAM retention voltage  
15 C POR re-arm voltage6  
CIn  
8
pF  
V
VRAM  
VPOR  
0.6  
1.4  
1.0  
2.0  
0.9  
V
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
13  
Electrical Characteristics  
Table 7. DC Characteristics (continued)  
Num  
C
Characteristic  
Symbol  
Condition  
Min  
Typical1  
Max  
Unit  
16 D POR re-arm time  
tPOR  
10  
s  
Low-voltage detection threshold —  
high range  
VDD falling  
VDD rising  
2.11  
2.16  
2.16  
2.21  
2.22  
2.27  
17  
18  
19  
20  
21  
P
P
P
P
C
VLVDH  
VLVDL  
VLVWH  
VLVWL  
V
V
V
V
Low-voltage detection threshold —  
low range  
VDD falling  
VDD rising  
1.80  
1.88  
1.82  
1.90  
1.91  
1.99  
Low-voltage warning threshold —  
high range  
VDD falling  
2.36  
2.36  
2.46  
2.46  
2.56  
2.56  
VDD rising  
Low-voltage warning threshold —  
low range  
VDD falling  
VDD rising  
2.11  
2.16  
2.16  
2.21  
2.22  
2.27  
Low-voltage inhibit reset/recover  
hysteresis  
22 P Bandgap Voltage Reference7  
Vhys  
VBG  
80  
mV  
V
1.15  
1.17  
1.18  
1
2
3
4
Typical values are measured at 25 C. Characterized, not tested  
As the supply voltage rises, the LVD circuit will hold the MCU in reset until the supply has risen above VLVDL  
All functional non-supply pins, except for PTA5 are internally clamped to VSS and VDD  
.
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
5
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could result  
in external power supply going out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or  
if clock rate is very low (which would reduce overall power consumption).  
6
7
Maximum is highest voltage that POR is guaranteed.  
Factory trimmed at VDD = 3.0 V, Temp = 25 C  
PULLDOWN RESISTOR TYPICALS  
PULLUP RESISTOR TYPICALS  
40  
35  
30  
25  
20  
40  
35  
30  
25  
20  
85C  
85C  
25C  
25C  
–40C  
–40C  
1.8  
2.3  
2.8  
VDD (V)  
3.3  
3.6  
1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6  
VDD (V)  
Figure 6. Pullup and Pulldown Typical Resistor Values (V = 3.0 V)  
DD  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
14  
Freescale Semiconductor  
Electrical Characteristics  
TYPICAL VOL VS IOL AT VDD = 3.0 V  
TYPICAL VOL VS VDD  
0.2  
0.15  
0.1  
1.2  
1
85C  
25C  
–40C  
0.8  
0.6  
0.4  
0.2  
0
85  
25  
–40  
C, IOL = 2 mA  
0.05  
0
C, IOL = 2 mA  
C, IOL = 2 mA  
1
2
3
4
0
5
10  
OL (mA)  
15  
20  
VDD (V)  
I
Figure 7. Typical Low-Side Driver (Sink) Characteristics Low Drive (PTxDSn = 0)  
TYPICAL VOL VS VDD  
TYPICAL VOL VS IOL AT VDD = 3.0 V  
1
0.4  
0.3  
0.2  
0.1  
85C  
85C  
25C  
–40C  
25C  
0.8  
0.6  
0.4  
0.2  
–40C  
IOL = 10 mA  
IOL = 6 mA  
IOL = 3 mA  
0
0
0
10  
20  
30  
1
2
3
4
VDD (V)  
IOL (mA)  
Figure 8. Typical Low-Side Driver (Sink) Characteristics High Drive (PTxDSn = 1)  
TYPICAL VDD – VOH VS IOH AT VDD = 3.0 V  
TYPICAL VDD – VOH VS VDD AT SPEC IOH  
1.2  
1
0.25  
0.2  
85C  
85  
C, IOH = 2 mA  
C, IOH = 2 mA  
C, IOH = 2 mA  
25C  
25  
–40C  
–40  
0.8  
0.6  
0.4  
0.2  
0
0.15  
0.1  
0.05  
0
0
–5  
–10  
IOH (mA))  
–15  
–20  
1
2
3
4
VDD (V)  
Figure 9. Typical High-Side (Source) Characteristics Low Drive (PTxDSn = 0)  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
15  
Electrical Characteristics  
TYPICAL VDD – VOH VS VDD AT SPEC IOH  
0.4  
0.3  
0.2  
0.1  
85C  
25C  
–40C  
TYPICAL V – V VS I AT V = 3.0 V  
DD  
OH  
OH  
DD  
0.8  
85C  
25C  
0.6  
0.4  
0.2  
0
–40C  
IOH = –10 mA  
IOH = –6 mA  
I
OH = –3 mA  
0
0
–5  
–10  
–15  
–20  
–25  
–30  
1
2
3
4
I
(mA)  
OH  
VDD (V)  
Figure 10. Typical High-Side (Source) Characteristics High Drive (PTxDSn = 1)  
3.7  
Supply Current Characteristics  
This section includes information about power supply current in various operating modes.  
Table 8. Supply Current Characteristics  
Parameter  
VDD  
(V)  
Bus  
Freq  
Temp  
(C)  
Typical1  
Num  
C
Symbol  
Max  
Unit  
P
P
T
T
T
C
T
T
T
T
T
13  
14  
14  
15  
–40 to 25  
85  
25.165 MHz  
Run supply current  
FEI mode, all modules on  
1
RIDD  
20 MHz  
8 MHz  
3
13.75  
5.59  
1.03  
11.5  
9.5  
mA  
–40 to 85  
1 MHz  
25.165 MHz  
20 MHz  
12.3  
Run supply current  
FEI mode, all modules off  
2
3
RIDD  
3
3
mA  
–40 to 85  
–40 to 85  
8 MHz  
4.6  
1 MHz  
1.0  
16 kHz FBILP  
16 kHz FBELP  
152  
115  
21.9  
Run supply current  
LPRS = 0, all modules off  
RIDD  
A  
Run supply current  
T
T
LPRS = 1, all modules off,  
running from Flash  
4
5
RIDD 16 kHz FBELP  
25.165 MHz  
3
3
A  
–40 to 85  
–-40 to 85  
Run supply current  
LPRS = 1, all modules off,  
running from RAM  
7.3  
C
T
T
T
5.74  
4.57  
2
6.00  
20 MHz  
WIDD  
Wait mode supply current  
FEI mode, all modules off  
mA  
8 MHz  
1 MHz  
0.73  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
16  
Freescale Semiconductor  
Electrical Characteristics  
Temp  
Table 8. Supply Current Characteristics (continued)  
Parameter  
VDD  
(V)  
Bus  
Freq  
Typical1  
Num  
C
Symbol  
Max  
Unit  
(C)  
P
C
P
C
C
C
P
C
P
C
C
C
T
0.35  
0.8  
2.0  
0.25  
0.65  
1.5  
0.45  
1.5  
4
0.65  
1.0  
4.5  
0.50  
0.85  
3.5  
1.00  
2.3  
8
–40 to 25C  
3
2
3
2
70  
85  
6
Stop2 mode supply current  
S2IDD  
A  
–40 to 25  
70  
85  
–40 to 25  
70  
85  
Stop3 mode supply current  
no clocks active  
7
S3IDD  
A  
0.35  
1
0.70  
2
–40 to 25  
70  
3.5  
500  
70  
6.0  
85  
8
EREFSTEN=1  
32 kHz  
32 kHz  
100 Hz  
300 bps  
1 kHz  
nA  
A  
A  
A  
nA  
9
T
IREFSTEN=1  
TPM PWM  
10  
11  
12  
T
12  
SCI, SPI, or IIC  
RTC using LPO  
T
15  
Low power  
mode adders:  
3
–40 to 85  
T
200  
RTC using  
ICSERCLK  
13  
T
32 kHz  
1
A  
LVD  
14  
15  
T
T
n/a  
n/a  
A  
A  
100  
20  
ACMP  
1
Data in Typical column was characterized at 3.0 V, 25 C or is typical recommended value.  
Table 9. Stop Mode Adders  
Temperature  
Num  
C
Parameter  
Condition  
Units  
–40C  
25C  
70C  
85C  
1
2
3
4
T
T
T
T
LPO  
50  
1000  
63  
75  
1000  
70  
100  
1100  
77  
150  
1500  
81  
nA  
nA  
A  
nA  
ERREFSTEN  
IREFSTEN1  
RTC  
RANGE = HGO = 0  
Does not include clock source  
current  
50  
75  
100  
150  
5
6
7
T
T
T
LVD1  
LVDSE = 1  
90  
18  
95  
100  
20  
110  
22  
115  
23  
A  
A  
A  
ACMP1  
ADC1  
Not using the bandgap (BGBE = 0)  
ADLPC = ADLSMP = 1  
106  
114  
120  
Not using the bandgap (BGBE = 0)  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
17  
Electrical Characteristics  
1
Not available in stop2 mode.  
3.8  
External Oscillator (XOSCVLP) Characteristics  
Reference Figure 11 and Figure 12 for crystal or resonator circuits.  
Table 10. XOSC and ICS Specifications (Temperature Range = –40 to 85C Ambient)  
Num  
C
Characteristic  
Symbol  
Min  
Typical1  
Max  
Unit  
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)  
Low range (RANGE = 0)  
High range (RANGE = 1), high gain (HGO = 1)  
High range (RANGE = 1), low power (HGO = 0)  
flo  
fhi  
fhi  
32  
1
1
38.4  
16  
8
kHz  
MHz  
MHz  
1
C
Load capacitors  
Low range (RANGE=0), low power (HGO=0)  
Other oscillator settings  
See Note 2  
See Note 3  
C1  
C2  
2
3
D
D
Feedback resistor  
Low range, low power (RANGE=0, HGO=0)2  
Low range, High Gain (RANGE=0, HGO=1)  
High range (RANGE=1, HGO=X)  
10  
1
RF  
M  
k  
Series resistor —  
Low range, low power (RANGE = 0, HGO = 0)2  
100  
0
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low power (RANGE = 1, HGO = 0)  
High range, high gain (RANGE = 1, HGO = 1)  
RS  
4
D
8 MHz  
4 MHz  
1 MHz  
0
0
0
0
10  
20  
Crystal start-up time 4  
Low range, low power  
Low range, high power  
High range, low power  
High range, high power  
t
200  
400  
5
CSTL  
5
6
C
D
ms  
t
CSTH  
15  
Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)  
FEE mode  
fextal  
0.03125  
0
40  
40  
MHz  
MHz  
FBE or FBELP mode  
1
2
3
4
Data in Typical column is characterized at 3.0 V, 25 C or is typical recommended value.  
Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE=HGO=0.  
See crystal or resonator manufacturer’s recommendation.  
Proper PC board layout procedures must be followed to achieve specifications.  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
18  
Freescale Semiconductor  
 
Electrical Characteristics  
XOSCVLP  
EXTAL  
XTAL  
RS  
RF  
Crystal or Resonator  
C1  
C2  
Figure 11. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain  
XOSCVLP  
EXTAL  
XTAL  
Crystal or Resonator  
Figure 12. Typical Crystal or Resonator Circuit: Low Range/Low Power  
3.9  
Internal Clock Source (ICS) Characteristics  
Table 11. ICS Frequency Specifications (Temperature Range = –40 to 85C Ambient)  
Num  
C
P
C
Characteristic  
Average internal reference frequency — factory trimmed  
Average internal reference frequency — untrimmed  
Internal reference start-up time  
Symbol  
fint_t  
Min  
Typical1 Max  
Unit  
kHz  
kHz  
s  
1
2
3
32.768  
fint_ut  
tIRST  
31.25  
39.06  
T
P
P
P
P
P
P
16  
32  
48  
5
10  
20  
40  
60  
Low range (DFR = 00)  
DCO output frequency  
Mid range (DFR = 01)  
trimmed2  
fdco_u  
4
5
MHz  
MHz  
High range (DFR = 10)  
DCO output frequency2  
Low range (DFR = 00)  
19.92  
39.85  
59.77  
reference = 32768 Hz  
and  
High range (DFR = 10)  
DMX32 = 1  
Mid range (DFR = 01)  
fdco_DMX32  
Resolution of trimmed DCO output frequency at fixed voltage  
and temperature (using FTRIM)  
fdco_res_t  
fdco_res_t  
%fdco  
%fdco  
6
7
C
C
0.1  
0.2  
0.2  
0.4  
Resolution of trimmed DCO output frequency at fixed voltage  
and temperature (not using FTRIM)  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
19  
Electrical Characteristics  
Table 11. ICS Frequency Specifications (Temperature Range = –40 to 85C Ambient) (continued)  
Num  
C
Characteristic  
Symbol  
Min  
Typical1 Max  
Unit  
Total deviation of trimmed DCO output frequency over voltage  
and temperature  
0.5  
2  
fdco_t  
%fdco  
8
C
–1.0  
Total deviation of trimmed DCO output frequency over fixed  
voltage and temperature range of 0 C to 70 C  
fdco_t  
tAcquire  
CJitter  
%fdco  
ms  
9
C
C
C
0.5  
1  
1
FLL acquisition time3  
10  
11  
Long term jitter of DCO output clock (averaged over 2-ms  
interval)4  
%fdco  
0.02  
0.2  
1
2
3
Data in Typical column is characterized at 3.0 V, 25 C or is typical recommended value.  
The resulting bus clock frequency must not exceed the maximum specified bus clock frequency of the device.  
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or  
changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as  
the reference, this specification assumes it is already running.  
4
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage  
for a given interval.  
3.10 AC Characteristics  
This section describes timing characteristics for each peripheral system.  
3.10.1 Control Timing  
Table 12. Control Timing  
Num  
C
Rating  
Symbol  
Min  
Typical1  
Max  
Unit  
Bus frequency (tcyc = 1/fBus  
)
10  
20  
25.165  
VDD 2.1V  
2.1<VDD 2.4V  
VDD > 2.4Vs  
fBus  
1
D
DC  
MHz  
tLPO  
textrst  
trstdrv  
2
3
4
D
D
D
Internal low power oscillator period  
700  
100  
1300  
s  
ns  
ns  
External reset pulse width2  
Reset low drive  
34 tcyc  
BKGD/MS setup time after issuing background debug  
force reset to enter user or BDM modes  
tMSSU  
tMSH  
5
6
D
D
500  
100  
ns  
BKGD/MS hold time after issuing background debug  
force reset to enter user or BDM modes 3  
s  
IRQ pulse width  
Asynchronous path2 tILIH, IHIL  
Synchronous path4  
t
100  
1.5 tcyc  
ns  
7
D
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
20  
Freescale Semiconductor  
Electrical Characteristics  
Table 12. Control Timing (continued)  
Rating Symbol  
Num  
C
Min  
Typical1  
Max  
Unit  
8
D
Keyboard interrupt pulse width  
Asynchronous path2 tILIH, IHIL  
Synchronous path5  
t
100  
1.5 tcyc  
ns  
Port rise and fall time —  
Low output drive (PTxDS = 0) (load = 50 pF)5  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
ns  
8
31  
9
C
Port rise and fall time —  
High output drive (PTxDS = 1) (load = 50 pF)  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
ns  
7
24  
Voltage regulator recovery time  
tVRR  
10  
C
4
s  
1
2
Typical values are based on characterization data at VDD = 3.0 V, 25 C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to  
override reset requests from internal sources.  
3
4
5
To enter BDM mode following a POR, BKGD/MS must be held low during the power-up and for a hold time of tMSH after VDD  
rises above VLVD  
.
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.  
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40 C to 85 C.  
textrst  
RESET PIN  
Figure 13. Reset Timing  
tIHIL  
KBIPx  
IRQ/KBIPx  
tILIH  
Figure 14. IRQ/KBIPx Timing  
3.10.2 TPM Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that  
can be used as the optional external source to the timer counter. These synchronizers operate from the  
current bus rate clock.  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
21  
Electrical Characteristics  
Table 13. TPM Input Timing  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
D
D
D
D
D
External clock frequency  
External clock period  
fTCLK  
tTCLK  
tclkh  
0
fBus/4  
Hz  
tcyc  
tcyc  
tcyc  
tcyc  
4
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
tclkl  
tICPW  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 15. Timer External Clock  
tICPW  
TPMCHn  
TPMCHn  
tICPW  
Figure 16. Timer Input Capture Pulse  
3.10.3 SPI Timing  
Table 14 and Figure 17 through Figure 20 describe the timing requirements for the SPI system.  
Table 14. SPI Timing  
No.  
C
Function  
Operating frequency  
Master  
Slave  
Symbol  
Min  
Max  
Unit  
D
fop  
fBus/2048  
0
fBus/21  
fBus/4  
Hz  
SPSCK period  
Master  
Slave  
tcyc  
tcyc  
1
2
3
D
D
D
tSPSCK  
tLead  
tLag  
2
4
2048  
Enable lead time  
Master  
Slave  
12  
1
tSPSCK  
tcyc  
Enable lag time  
Master  
Slave  
12  
1
tSPSCK  
tcyc  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
22  
Freescale Semiconductor  
 
 
 
 
Electrical Characteristics  
Table 14. SPI Timing (continued)  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
Clock (SPSCK) high or low time  
4
D
Master  
Slave  
tWSPSCK  
tcyc 30  
1024 tcyc  
ns  
ns  
t
cyc – 30  
Data setup time (inputs)  
5
6
D
D
Master  
Slave  
tSU  
15  
15  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tHI  
0
25  
ns  
ns  
7
8
D
D
Slave access time  
ta  
1
1
tcyc  
tcyc  
Slave MISO disable time  
tdis  
Data valid (after SPSCK edge)  
9
D
D
D
D
Master  
Slave  
tv  
25  
25  
ns  
ns  
Data hold time (outputs)  
Master  
Slave  
10  
11  
12  
tHO  
0
0
ns  
ns  
Rise time  
Input  
Output  
tRI  
tRO  
tcyc – 25  
25  
ns  
ns  
Fall time  
Input  
Output  
tFI  
tFO  
tcyc – 25  
25  
ns  
ns  
1
Max operating frequency limited to 8 MHz when input filter disabled and high output drive strength enabled. Max  
operating frequency limited to 5 MHz when input filter enabled and high output drive strength disabled.  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
23  
 
 
 
 
 
 
 
 
 
Electrical Characteristics  
SS1  
(OUTPUT)  
1
2
11  
12  
3
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN2  
LSB IN  
BIT 6 . . . 1  
9
9
10  
MOSI  
(OUTPUT)  
MSB OUT2  
BIT 6 . . . 1  
LSB OUT  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 17. SPI Master Timing (CPHA = 0)  
SS(1)  
(OUTPUT)  
1
2
11  
12  
3
12  
11  
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
MSB IN(2)  
BIT 6 . . . 1  
10  
BIT 6 . . . 1  
LSB IN  
9
MOSI  
(OUTPUT)  
MASTER MSB OUT(2)  
PORT DATA  
MASTER LSB OUT  
PORT DATA  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 18. SPI Master Timing (CPHA = 1)  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
24  
Freescale Semiconductor  
Electrical Characteristics  
SS  
(INPUT)  
11  
12  
3
1
12  
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
2
4
4
SPSCK  
(CPOL = 1)  
(INPUT)  
8
7
10  
9
10  
MISO  
(OUTPUT)  
SEE  
NOTE  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
6
SLAVE  
5
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
NOTE:  
1. Not defined but normally MSB of character just received  
Figure 19. SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
1
3
12  
2
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
4
4
11  
12  
SPSCK  
(CPOL = 1)  
(INPUT)  
9
10  
8
MISO  
(OUTPUT)  
SEE  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
SLAVE MSB OUT  
NOTE  
5
6
7
MOSI  
(INPUT)  
MSB IN  
BIT 6 . . . 1  
NOTE:  
1. Not defined but normally LSB of character just received  
Figure 20. SPI Slave Timing (CPHA = 1)  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
25  
Electrical Characteristics  
3.11 Analog Comparator (ACMP) Electricals  
Table 15. Analog Comparator Electrical Specifications  
C
Characteristic  
Symbol  
VDD  
Min  
Typical  
Max  
Unit  
D
Supply voltage  
1.8  
3.6  
V
IDDAC  
P
D
P
C
Supply current (active)  
VSS – 0.3  
20  
35  
VDD  
40  
A  
V
Analog input voltage  
VAIN  
VAIO  
VH  
Analog input offset voltage  
Analog comparator hysteresis  
20  
9.0  
mV  
mV  
3.0  
15.0  
IALKG  
tAINIT  
P
C
Analog input leakage current  
1.0  
1.0  
A  
s  
Analog comparator initialization delay  
3.12 ADC Characteristics  
Table 16. 12-Bit ADC Operating Conditions  
C
Characteristic  
Conditions  
Symb  
Min  
Typical1  
Max  
Unit  
Comment  
Supply voltage  
Absolute  
Delta to VDD (VDD  
VDDAD  
1.8  
3.6  
V
D
VDDAD  
–100  
0
100  
mV  
2
VDDAD  
)
Ground voltage  
Input voltage  
Delta to VSS (VSS  
D
D
C
VSSAD  
VADIN  
–100  
VREFL  
0
100  
VREFH  
5.5  
mV  
V
2
VSSAD  
)
Input  
capacitance  
CADIN  
4.5  
pF  
Input  
resistance  
C
RADIN  
5
7
k  
k  
Analog source  
resistance  
12-bit mode  
fADCK > 4 MHz  
ADCK < 4 MHz  
2
5
f
External to  
MCU  
C
10-bit mode  
RAS  
f
ADCK > 4 MHz  
5
10  
fADCK < 4 MHz  
8-bit mode (all valid fADCK  
High speed (ADLPC = 0)  
Low power (ADLPC = 1)  
)
10  
ADC  
conversion  
clock freq.  
0.4  
8.0  
D
fADCK  
MHz  
0.4  
4.0  
1
2
Typical values assume VDDAD = 3.0 V, Temp = 25 C, fADCK=1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
DC potential difference.  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
26  
Freescale Semiconductor  
 
Electrical Characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
+
VADIN  
CAS  
VAS  
+
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 21. ADC Input Impedance Equivalency Diagram  
Table 17. ADC Characteristics (V  
= V  
Min  
, V  
= V  
)
SSAD  
REFH  
DDAD REFL  
C
Characteristic  
Conditions  
Symbol  
Typ1  
Max  
Unit  
Comment  
Supply current  
ADLPC = 1  
ADLSMP = 1  
ADCO = 1  
T
IDDAD  
IDDAD  
IDDAD  
120  
1
A  
A  
A  
Supply current  
ADLPC = 1  
ADLSMP = 0  
ADCO = 1  
T
T
202  
288  
Supply current  
ADLPC = 0  
ADLSMP = 1  
ADCO = 1  
Supply current  
ADLPC = 0  
ADLSMP = 0  
ADCO = 1  
P
P
IDDAD  
2
0.532  
3.3  
mA  
ADC  
asynchronous  
clock source  
High speed (ADLPC = 0)  
Low power (ADLPC = 1)  
5
tADACK  
=
fADACK  
MHz  
1/fADACK  
1.25  
2
3.3  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
27  
Electrical Characteristics  
Table 17. ADC Characteristics (V  
= V  
, V  
= V  
) (continued)  
SSAD  
REFH  
DDAD REFL  
C
Characteristic  
Conditions  
Symbol  
Min  
Typ1  
20  
Max  
Unit  
Comment  
Conversion  
time (including  
sample time)  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
See  
ADCK  
cycles  
P
tADC  
reference  
manual for  
conversion  
time  
40  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
–40 C– 25 C  
3.5  
ADCK  
cycles  
P
D
Sample time  
tADS  
variances  
23.5  
1.646  
1.769  
Temp sensor  
slope  
m
mV/C  
25 C– 85 C  
Temp sensor  
voltage  
D
T
T
25 C  
VTEMP25  
701.2  
mV  
12-bit mode, 3.6> VDDAD > 2.7  
–1 to 3 –2.5 to 5.5  
–1 to 3 –3.0 to 6.5  
12-bit mode, 2.7> VDDAD  
1.8V  
>
Total  
unadjusted  
error  
Includes  
quantization  
ETUE  
LSB2  
P
P
T
P
P
10-bit mode  
8-bit mode  
1  
2.5  
1.0  
0.5  
1.0  
0.5  
0.3  
12-bit mode  
10-bit mode3  
8-bit mode3  
–1.5 to 2.0  
1.0  
Differential  
non-linearity  
DNL  
INL  
LSB2  
LSB2  
0.5  
–2.5 to  
2.75  
T
12-bit mode  
1.5  
Integral  
non-linearity  
T
T
T
P
P
T
P
P
10-bit mode  
8-bit mode  
12-bit mode  
10-bit mode  
8-bit mode  
12-bit mode  
0.5  
0.3  
1.5  
0.5  
0.5  
1.0  
0.5  
0.5  
–1 to 0  
1.0  
0.5  
2.5  
1.5  
0.5  
–3.5 to 1.0  
1  
Zero-scale  
error  
VADIN  
=
EZS  
EFS  
EQ  
LSB2  
LSB2  
LSB2  
LSB2  
VSSAD  
VADIN  
=
Full-scale error 10-bit mode  
8-bit mode  
VDDAD  
0.5  
12-bit mode  
Quantization  
10-bit mode  
error  
D
D
0.5  
0.5  
8-bit mode  
12-bit mode  
2  
Pad  
leakage4 *  
RAS  
Input leakage  
10-bit mode  
error  
EIL  
0.2  
0.1  
4  
8-bit mode  
1.2  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
28  
Freescale Semiconductor  
Electrical Characteristics  
1
Typical values assume VDDAD = 3.0 V, Temp = 25 C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
2
3
4
1 LSB = (VREFH – VREFL)/2N  
Monotonicity and No-missing-codes guaranteed in 10-bit and 8-bit modes  
Based on input pad leakage current. Refer to pad electricals.  
3.13 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for flash memory.  
Program and erase operations do not require any special power sources other than the normal V supply.  
DD  
For more detailed information about program/erase operations, see MC9S08QE32 Series Reference  
Manual Chapter 4 Memory.  
Table 18. Flash Characteristics  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Supply voltage for program/erase  
–40 C to 85 C  
D
Vprog/erase  
1.8  
3.6  
V
D
D
D
P
P
P
P
Supply voltage for read operation  
Internal FCLK frequency1  
Internal FCLK period (1/FCLK)  
Byte program time (random location)(2)  
Byte program time (burst mode)(2)  
Page erase time2  
Mass erase time(2)  
Byte program current3  
Page erase current3  
VRead  
fFCLK  
tFcyc  
1.8  
150  
5
3.6  
200  
6.67  
V
kHz  
s  
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
mA  
tBurst  
4
4000  
20,000  
4
tPage  
tMass  
RIDDBP  
RIDDPE  
6
mA  
Program/erase endurance4  
TL to TH = –40 C to 85 C  
T = 25 C  
C
C
10,000  
15  
100,000  
cycles  
years  
Data retention5  
tD_ret  
100  
1
2
The frequency of this clock is controlled by software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information is  
supplied for calculating approximate time to program and erase.  
3
4
The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures  
with VDD = 3.0 V, bus frequency = 4.0 MHz.  
Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how  
Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile  
Memory.  
5
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and  
de-rated to 25C using the Arrhenius equation. For additional information on how Freescale defines typical data retention,  
please refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
Freescale Semiconductor  
29  
 
Ordering Information  
4
Ordering Information  
This section contains ordering information for the MC9S08QE32 series of MCUs.  
Example of the device numbering system:  
32  
C
XX  
MC 9 S08 QE  
Status  
(MC = Fully Qualified)  
Package designator (see Table 19)  
Temperature range  
(C = –40 C to 85 C)  
Memory  
(9 = Flash-based)  
Core  
Approximate flash size in kbytes  
Family  
5
Package Information  
Table 19. Package Descriptions  
Pin Count  
Package Type  
Quad Flat No-Leads  
Abbreviation  
Designator  
Case No.  
Document No.  
48  
44  
32  
32  
28  
QFN  
LQFP  
LQFP  
QFN  
FT  
LD  
LC  
FM  
WL  
1314  
824D  
873A  
1582  
751F  
98ARH99048A  
98ASS23225W  
98ASH70029A  
98ARE10566D  
98ASB42345B  
Low Quad Flat Package  
Low Quad Flat Package  
Quad Flat No-Leads  
Small Outline Integrated Circuit  
SOIC  
5.1  
Mechanical Drawings  
The following pages are mechanical drawings for the packages described in Table 19. For the latest  
available drawings please visit our web site (http://www.freescale.com) and enter the package’s document  
number into the keyword search box.  
MC9S08QE32 Series MCU Data Sheet, Rev. 7  
30  
Freescale Semiconductor  
 
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of  
Freescale Semiconductor, Inc. All other product or service names  
are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2008-2011. All rights reserved.  
MC9S08QE32  
Rev. 7  
9/2011  

相关型号:

MC9S08QE32_09

8-Bit HCS08 Central Processor Unit (CPU)
FREESCALE

MC9S08QE4CTGR

MC9S08QE4CTGR
FREESCALE

MC9S08QE4CTGR

S08QE 8-bit MCU, S08 core, 4KB Flash, 20MHz, SOP 16
NXP

MC9S08QE4CWL

Taking the lead in low power
FREESCALE

MC9S08QE64CFT

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE64CLC

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE64CLC

8-BIT, FLASH, 50.33MHz, MICROCONTROLLER, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, LQFP-32
NXP

MC9S08QE64CLD

8-Bit HCS08 Central Processor Unit (CPU)
FREESCALE

MC9S08QE64CLD

S08QE 8-bit MCU, S08 core, 64KB Flash, 50MHz, QFP 44
NXP

MC9S08QE64CLH

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08QE64CLH

8-BIT, FLASH, 50.33MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, MS-026BCD, LQFP-64
NXP

MC9S08QE64CQD

8-Bit HCS08 Central Processor Unit
FREESCALE