MCF51JM128VLH [NXP]

32-BIT, FLASH, 50.33MHz, RISC MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40MM HEIGHT, 0.50 MM PITCH, MS-026BCD, LQFP-64;
MCF51JM128VLH
型号: MCF51JM128VLH
厂家: NXP    NXP
描述:

32-BIT, FLASH, 50.33MHz, RISC MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40MM HEIGHT, 0.50 MM PITCH, MS-026BCD, LQFP-64

时钟 CD 微控制器 外围集成电路
文件: 总49页 (文件大小:1007K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MCF51JM128  
Rev. 4, 05/2012  
MCF51JM128  
80 LQFP  
64 LQFP  
14 mm 14 mm  
10 mm 10 mm  
MCF51JM128 ColdFire  
Microcontroller  
64 QFP  
14 mm 14 mm  
44 LQFP  
10 mm 10 mm  
The MCF51JM128 is a member of the ColdFire family of  
32-bit reduced instruction set computing (RISC)  
microprocessors. This document provides an overview of the  
MCF51JM128 series, focusing on its highly integrated and  
diverse feature set.  
The MCF51JM128 series is based on the V1 ColdFire core  
and operates at processor core speeds up to 50.33 MHz. As  
®
part of Freescale’s Controller Continuum , it is an ideal  
upgrade for designs based on the MC9S08JM60 series of 8-bit  
microcontrollers.  
The MCF51JM128 features the following functional units:  
• V1 ColdFire core with background debug module  
• Up to 128 KB of flash memory  
• Up to 16 KB of static RAM (SRAM)  
• Multipurpose clock generator (MCG)  
• Dual-role Universal Serial Bus On-The-Go device  
(USBOTG)  
• Controller-area network (MSCAN)  
• Cryptographic acceleration unit (CAU)  
• Random number generator accelerator (RNGA)  
• Analog comparators (ACMP)  
• Analog-to-digital converter (ADC) with up to 12 channels  
• Two Inter-integrated circuit (IIC) modules  
• Two serial peripheral interfaces (SPI)  
• Two serial communications interfaces (SCI)  
• Carrier modulation timer (CMT)  
• Eight-channel timer/pulse-width modulators (TPM)  
• Real-time counter (RTC)  
• 66 general-purpose input/output (GPIO) modules plus  
Interrupt request input  
• Eight keyboard interrupts (KBI)  
• 16-bit Rapid GPIO  
This document contains information on a product under development. Freescale reserves the  
right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2008-2012. All rights reserved.  
Table of Contents  
1
2
MCF51JM128 Family Configurations . . . . . . . . . . . . . . . . . . . .3  
Figure 13.Timer Input Capture Pulse. . . . . . . . . . . . . . . . . . . . . 30  
Figure 14.SPI Master Timing (CPHA = 0) . . . . . . . . . . . . . . . . . 32  
Figure 15.SPI Master Timing (CPHA = 1) . . . . . . . . . . . . . . . . . 32  
Figure 16.SPI Slave Timing (CPHA = 0) . . . . . . . . . . . . . . . . . . 33  
Figure 17.SPI Slave Timing (CPHA = 1) . . . . . . . . . . . . . . . . . . 33  
Figure 18.80-pin LQFP Diagram - I . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 19.80-pin LQFP Diagram - II. . . . . . . . . . . . . . . . . . . . . . 37  
Figure 20.80-pin LQFP Diagram - III . . . . . . . . . . . . . . . . . . . . . 38  
Figure 21.64-pin LQFP Diagram - I . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 22.64-pin LQFP Diagram - II. . . . . . . . . . . . . . . . . . . . . . 40  
Figure 23.64-pin LQFP Diagram - III . . . . . . . . . . . . . . . . . . . . . 41  
Figure 24.64-pin QFP Diagram - I . . . . . . . . . . . . . . . . . . . . . . . 42  
Figure 25.64-pin QFP Diagram - II. . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 26.64-pin QFP Diagram - III . . . . . . . . . . . . . . . . . . . . . . 44  
Figure 27.44-pin LQFP Diagram - I . . . . . . . . . . . . . . . . . . . . . . 45  
Figure 28.44-pin LQFP Diagram - II. . . . . . . . . . . . . . . . . . . . . . 46  
Figure 29.44-pin LQFP Diagram - III . . . . . . . . . . . . . . . . . . . . . .47  
1.1 Device Comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.2 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
1.4 Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
1.5 Pinouts and Packaging . . . . . . . . . . . . . . . . . . . . . . . . .10  
Preliminary Electrical Characteristics . . . . . . . . . . . . . . . . . . .15  
2.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . .15  
2.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .15  
2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .16  
2.4 Electrostatic Discharge (ESD) Protection Characteristics  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.5 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.6 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .21  
2.7 Analog Comparator (ACMP) Electricals . . . . . . . . . . . .23  
2.8 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
2.9 External Oscillator (XOSC) Characteristics . . . . . . . . .26  
2.10 MCG Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
2.11 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
2.12 SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
2.13 Flash Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
2.14 USB Electricals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
2.15 EMC Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Mechanical Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . .36  
3.1 80-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
3.2 64-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
3.3 64-pin QFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
3.4 44-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
List of Tables  
Table 1. MCF51JM128 Series Device Comparison . . . . . . . . . . 3  
Table 2. MCF51JM128 Series Functional Units . . . . . . . . . . . . . 5  
Table 3. Orderable Part Number Summary. . . . . . . . . . . . . . . . . 8  
Table 4. Pin Assignments by Package and Pin Sharing Priority 12  
Table 5. Parameter Classifications . . . . . . . . . . . . . . . . . . . . . . 15  
Table 6. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . 16  
Table 7. Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 8. ESD and Latch-up Test Conditions . . . . . . . . . . . . . . . 17  
Table 9. ESD and Latch-Up Protection Characteristics. . . . . . . 18  
Table 10.DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Table 11. Supply Current Characteristics. . . . . . . . . . . . . . . . . . 21  
Table 12.Analog Comparator Electrical Specifications. . . . . . . . 23  
Table 13.5 Volt 12-bit ADC Operating Conditions . . . . . . . . . . . 23  
Table 14.5 Volt 12-bit ADC Characteristics (VREFH = VDDA, VREFL  
= VSSA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 15.Oscillator Electrical Specifications (Temperature Range =  
–40 to 105×C Ambient) . . . . . . . . . . . . . . . . . . . . . . . . 26  
Table 16.MCG Frequency Specifications (Temperature Range = –40  
to 125×C Ambient) . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 17.Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 18.TPM Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 19.MSCAN Wake-up Pulse Characteristics . . . . . . . . . . . 30  
Table 20.SPI Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 21.Flash Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 22.Internal USB 3.3V Voltage Regulator Characteristics . 35  
Table 23.Internal Revision History . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 24.Changes Between Revisions. . . . . . . . . . . . . . . . . . . . 51  
3
4
List of Figures  
Figure 1.MCF51JM128 Block Diagram . . . . . . . . . . . . . . . . . . . . 4  
Figure 2.80-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 3.64-pin QFP and LQFP . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 4.44-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 5.Typical Low-side Drive (sink) characteristics – High Drive  
(PTxDSn = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 6.Typical Low-side Drive (sink) characteristics – Low Drive  
(PTxDSn = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 7.Typical High-side Drive (source) characteristics – High  
Drive (PTxDSn = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 8.Typical High-side Drive (source) characteristics – Low Drive  
(PTxDSn = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 9.ADC Input Impedance Equivalency Diagram . . . . . . . 24  
Figure 10.Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 11.IRQ/KBIPx Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 12.Timer External Clock. . . . . . . . . . . . . . . . . . . . . . . . . 29  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
2
Freescale Semiconductor  
MCF51JM128 Family Configurations  
1
MCF51JM128 Family Configurations  
1.1  
Device Comparison  
The MCF51JM128 series consists of the devices compared in Table 1.  
Table 1. MCF51JM128 Series Device Comparison  
MCF51JM32  
MCF51JM128  
Feature  
MCF51JM64  
80-pin 64-pin 44-pin 80-pin 64-pin 44-pin 80-pin 64-pin 44-pin  
Flash memory size (KB)  
RAM size (KB)  
128  
16  
64  
16  
32  
16  
V1 ColdFire core with BDM (background  
debug module)  
Yes  
ACMP (analog comparator)  
ADC channels (12-bit)  
CAN (controller area network)  
RNGA + CAU  
Yes  
12  
8
12  
8
12  
8
Yes  
Yes  
No  
Yes  
Yes  
Yes1  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
CMT (carrier modulator timer)  
COP (computer operating properly)  
IIC1 (inter-integrated circuit)  
IIC2  
Yes  
8
No  
Yes  
8
No  
Yes  
8
No  
IRQ (interrupt request input)  
KBI (keyboard interrupts)  
LVD (low-voltage detector)  
MCG (multipurpose clock generator)  
Port I/O2  
Yes  
8
8
6
6
8
6
Yes  
Yes  
51  
66  
16  
51  
6
33  
0
66  
16  
33  
0
66  
16  
51  
6
33  
0
RGPIO (rapid general-purpose I/O)  
RTC (real-time counter)  
SCI1 (serial communications interface)  
SCI2  
6
Yes  
Yes  
Yes  
Yes  
Yes  
6
SPI1 (serial peripheral interface)  
SPI2  
TPM1 (timer/pulse-width modulator)  
channels  
6
6
4
6
4
6
6
4
TPM2 channels  
2
USBOTG (USB On-The-Go dual-role  
controller)  
Yes  
XOSC (crystal oscillator)  
Yes  
1
Only existed on special part number  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
3
 
MCF51JM128 Family Configurations  
2
Up to 16 pins on Ports A, H, and J are shared with the ColdFire Rapid GPIO module.  
1.2  
Block Diagram  
Figure 1 shows the connections between the MCF51JM128 series pins and modules.  
PTA7/RGPIO7  
PTA6/RGPIO6  
PTA5/RGPIO5  
PTA4/RGPIO4  
PTA3/RGPIO3  
PTA2/RGPIO2  
PTA1/RGPIO1  
PTA0/RGPIO0  
VREFH  
VREFL  
VDDA  
VSSA  
VREFH  
VREFL  
VDDAD  
VSSAD  
Port B:  
ADP7  
ADP6  
ADP5  
ADP4  
ADP3  
ADP2  
ADP1  
ADP0  
Port D:  
ADP11  
ADP10  
ADP9  
ADP8  
Port D:  
ACMPO  
ACMP–  
ACMP+  
ACMP  
Port C:  
IRO  
BKGD/MS  
CMT  
IIC1  
DBG  
BDM  
CAU  
ADC  
PTB7/ADP7  
PTB6/ADP6  
Port C:  
SDA1  
SCL1  
PTB5/KBIP5/ADP5  
PTB4/KBIP4/ADP4  
PTB3/SS2/ADP3  
PTB2/SPSCK2/ADP2  
PTB1/MOSI2/ADP1  
PTB0/MISO2/ADP0  
V1 ColdFire core  
SYSCTL  
RESET  
Port H:  
SCL2  
SDA2  
IIC2  
IRQ/TPMCLK  
TPMCLK  
Port F:  
TPM1CH5  
TPM1CH4  
TPM1CH3  
TPM1CH2  
Port E:  
PTC7  
Port B:  
KBIP5  
KBIP4  
Port D:  
KBIP3  
KBIP2  
Port G:  
KBIP7  
KBIP6  
KBIP1  
KBIP0  
PTC6/RXCAN  
PTC5/RXD2  
PTC4  
PTC3/TXD2  
PTC2/IRO  
PTC1/SDA1  
PTC0/SCL1  
TPM1  
TPM2  
TPM1CH1  
TPM1CH0  
IRQ  
COP  
LVD  
KBI  
TPMCLK  
Port F:  
TPM2CH1  
TPM2CH0  
PTD7  
PTD6  
PTD5  
PTD4/ADP11  
PTD3/KBIP3/ADP10  
PTD2/KBIP2/ACMPO  
PTD1/ACMP–/ADP9  
PTD0/ACMP+/ADP8  
FLASH  
128 or 64 KB  
Port G:  
EXTAL  
XTAL  
MCG  
XOSC  
CAN  
RAM  
16 or 8 KB  
PTE7/SS1  
Port C:  
RXCAN  
Port F:  
TXCAN  
Port J:  
PTE6/SPSCK1  
PTE5/MOSI1  
PTE4/MISO1  
PTE3/TPM1CH1  
PTE2/TPM1CH0  
PTE1/RXD1  
RGPIO15  
RGPIO14  
RGPIO13  
RGPIO12  
RGPIO11  
Port H:  
PTE0/TXD1  
RGPIO10  
RGPIO9  
RGPIO8  
Port A:  
RGPIO7  
RGPIO6  
RGPIO5  
RGPIO4  
RGPIO3  
RGPIO2  
RGPIO1  
RGPIO0  
PTF7/TXCAN  
PTF6  
RGPIO  
PTF5/TPM2CH1  
PTF4/TPM2CH0  
PTF3/TPM1CH5  
PTF2/TPM1CH4  
PTF1/TPM1CH3  
PTF0/TPM1CH2  
Port E:  
RXD1  
TXD1  
PTG7  
PTG6  
SCI1  
SCI2  
PTG5/EXTAL  
PTG4/XTAL  
PTG3/KBIP7  
PTG2/KBIP6  
PTG1/KBIP1  
PTG0/KBIP0  
Port C:  
RXD2  
TXD2  
VDD  
VDD  
VSS  
VSS  
VREG  
Port E:  
SS1  
SPSCK1  
MOSI1  
MISO1  
PTH4/RGPIO10  
PTH3/RGPIO9  
PTH2/RGPIO8  
PTH1/SCL2  
SPI1  
SPI2  
INTC  
RNGA  
RTC  
PTH0/SDA2  
Port B:  
SS2  
SPSCK2  
MOSI2  
MISO2  
PTJ4/RGPIO15  
PTJ3/RGPIO14  
PTJ2/RGPIO13  
PTJ1/RGPIO12  
PTJ0/RGPIO11  
USBDN  
USBDP  
VUSB33  
USB  
Figure 1. MCF51JM128 Block Diagram  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
4
Freescale Semiconductor  
 
MCF51JM128 Family Configurations  
1.3  
Features  
Table 2 describes the functional units of the MCF51JM128 series.  
Table 2. MCF51JM128 Series Functional Units  
Unit  
Function  
CF1CORE (V1 ColdFire core)  
BDM (background debug module)  
DBG (debug)  
Executes programs and interrupt handlers  
Provides a single-pin debugging interface (part of the V1 ColdFire core)  
Provides debugging and emulation capabilities (part of the V1 ColdFire core)  
Provides LVD, COP, external interrupt request, and so on  
Provides storage for program code and constants  
Provides storage for program code, constants, and variables  
Allows I/O port access at CPU clock speeds  
SYSCTL (system control)  
FLASH (flash memory)  
RAM (random-access memory)  
RGPIO (rapid general-purpose input/output)  
VREG (voltage regulator)  
Controls power management throughout the device  
Supports the USB On-The-Go dual-role controller  
Measures analog voltages at up to 12 bits of resolution  
Provide a variety of timing-based features  
USBOTG (USB On-The-Go)  
ADC (analog-to-digital converter)  
TPM1, TPM2 (timer/pulse-width modulators)  
CF1_INTC (interrupt controller)  
CAU (cryptographic acceleration unit)  
Controls and prioritizes all device interrupts  
Co-processor support for DES, 3DES, AES, MD5, and SHA-1  
RNGA (random number generator accelerator) 32-bit random number generator that complies with FIPS-140  
RTC (real-time counter)  
Provides a constant-time base with optional interrupt  
Compares two analog inputs  
ACMP (analog comparator)  
CMT (carrier modulator timer)  
IIC1, IIC2 (inter-integrated circuits)  
KBI (keyboard interrupt)  
Infrared output used for the Remote Controller  
Supports the standard IIC communications protocol  
Provides pin interrupt capabilities  
MCG (multipurpose clock generator)  
Provides clocking options for the device, including a phase-locked loop (PLL)  
and frequency-locked loop (FLL) for multiplying slower reference clock  
sources  
XOSC (crystal oscillator)  
Supports low/high range crystals  
CAN (controller area network)  
Supports standard CAN communications protocol  
Serial communications UARTs that can support RS-232 and LIN protocols  
Provide a 4-pin synchronous serial interface  
SCI1, SCI2 (serial communications interfaces)  
SPI1, SPI2 (serial peripheral interfaces)  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
5
 
MCF51JM128 Family Configurations  
1.3.1  
Feature List  
32-bit Version 1 ColdFire Central Processor Unit (CPU)  
— Up to 50.33 MHz at 2.7 V – 5.5 V  
— Performance (Dhrystone 2.1):  
0.94 Dhrystone 2.1 MIPS per MHz when running from internal RAM  
0.76 Dhrystone 2.1 MIPS per MHz when running from flash  
— Implements Instruction Set Revision C (ISA_C)  
— Supports up to 30 peripheral interrupt requests and seven software interrupts  
On-chip memory  
— Up to 128 KB Flash memory with read/program/erase over full operating voltage and temperature range  
— Up to 16 KB static random access memory (RAM)  
— Security circuitry to prevent unauthorized access to RAM and flash contents  
Power-saving modes  
— Two low-power stop plus wait modes  
— Peripheral clock enable register can disable clocks to unused modules, thereby reducing currents; this behavior  
allows clocks to remain enabled to specific perhipherals in Stop3 mode  
Very lower power real-time counter for use in run, wait, and stop modes with internal and external clock sources  
Four Clock Source Options  
— Oscillator (XOSC) — Loop-control Pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz  
or 1 MHz to 16 MHz  
— FLL/PLL controlled by internal or external reference  
— Trimmable internal reference allows 0.2% resolution and 2% deviation  
System protection features  
— Watchdog computer operating properly (COP) reset with option to run from dedicated 1 kHz internal clock source  
or bus clock  
— Low-voltage detection with reset or interrupt; selectable trip points  
— Illegal opcode and illegal address detection with programmable reset or exception response  
— Flash block protection  
Debug support  
— Single-wire Background debug interface  
— 4 Program Counters plus two address (optional data) breakpoint registers with programmable 1- or 2-level trigger  
response  
— 64-entry processor status and debug data trace buffer with programmable start/stop conditions  
Universal Serial Bus (USB) On-The-Go dual-role controller  
— Full-speed USB device controller  
Fully compliant with USB specification 1.1 and 2.0  
16 bidirectional endpoints, with double buffering to provide the maximum throughput  
Supports control, bulk, interrupt, and isochronous endpoints  
Supports bus-powered capability with low-power consumption  
— Full-speed / low-speed host controller  
Host mode allows control, bulk, interrupt, and isochronous transfers  
— OTG protocol logic  
— On-chip USB transceiver  
— On-chip 3.3 V USB regulator and pull-up resistors save system cost  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
6
Freescale Semiconductor  
MCF51JM128 Family Configurations  
Controller area network (MSCAN)  
— Implementation of the CAN protocol — Version 2.0A/B  
— Five receive buffers with FIFO storage scheme  
— Three transmit buffers with internal prioritization using a “local priority” concept  
— Flexible maskable identifier filter programmable as 2x32-bit, 4x16-bit, or 8x8-bit  
— Programmable wakeup functionality with integrated low-pass filter  
— Programmable loopback mode supports self-test operation  
— Programmable bus-off recovery functionality  
— Internal timer for time-stamping of received and transmitted messages  
Cryptographic acceleration unit (CAU)  
— Co-processor support of DES, 3DES, AES, MD5, and SHA-1  
Random number generator accelerator (RNGA)  
— 32-bit random number generator that complies with FIPS-140  
Analog-to-digital converter (ADC)  
— 12-channel, 12-bit resolution  
— Output formatted in 12-, 10-, or 8-bit right-justified format  
— Single or continuous conversion, and selectable asynchronous hardware conversion trigger  
— Operation in Stop3 mode  
— Automatic compare function  
— Internal temperature sensor  
Analog comparators (ACMP)  
— Selectable interrupt on rising edge, falling edge, or either rising or falling edges of comparator output  
— Option to compare to fixed internal bandgap reference voltage  
— Option to route output to TPM module  
— Operation in Stop3 mode  
Inter-integrated circuit (IIC)  
— Up to 100 kbps with maximum bus loading  
— Multi-master operation  
— Programmable slave address  
— Supports broadcast mode and 10-bit address extension  
Serial communications interfaces (SCI)  
— Two SCIs with full-duplex, non-return-to-zero (NRZ) format  
— LIN master extended break generation  
— LIN slave extended break detection  
— Programmable 8-bit or 9-bit character length  
— Wake up on active edge  
Serial peripheral interfaces (SPI)  
— Two serial peripheral interfaces with full-duplex or single-wire bidirectional  
— Double-buffered transmit and receive  
— Programmable transmit bit rate, phase, polarity, and Slave Select output  
— MSB-first or LSB-first shifting  
Timer/pulse width modulator (TPM)  
— 16-bit free-running or modulo up/down count operation  
— Up to eight channels, where each channel can be an input capture, output compare, or edge-aligned PWM  
— One interrupt per channel plus terminal count interrupt  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
7
MCF51JM128 Family Configurations  
RTC  
— 8-bit modulus counter with binary- or decimal-based prescaler  
— External clock source for precise time base, time-of-day, calendar or task scheduling functions  
— Free running on-chip low power oscillator (1 kHz) for cyclic wake-up without external components  
Carrier modulator timer (CMT)  
— carrier generator, modulator, and transmitter drive the infrared out (IRO) pin  
— operation in independent high/low time control, baseband, FSK, and direct IRO control modes  
Input/Output  
— 66 GPIOs  
— Eight keyboard interrupt pins with selectable polarity  
— Hysteresis and configurable pull-up device on all input pins; configurable slew rate and drive strength on all output  
pins  
— 16 bits of Rapid GPIO connected to the processor’s local 32-bit platform bus with set, clear, and faster toggle  
functionality  
1.4  
Part Numbers  
Table 3. Orderable Part Number Summary  
Freescale Part  
Number  
Flash / SRAM  
(KB)  
Description  
Package  
Temperature  
MCF51JM128EVLK  
MCF51JM128 ColdFire Microcontroller  
with CAU and RNGA Enabled  
128 / 16  
80 LQFP  
–40 to +105 C  
MCF51JM128VLK  
MCF51JM128EVLH  
MCF51JM128 ColdFire Microcontroller  
128 / 16  
128 / 16  
80 LQFP  
64 LQFP  
–40 to +105 C  
–40 to +105 C  
MCF51JM128 ColdFire Microcontroller  
with CAU and RNGA Enabled  
MCF51JM128VLH  
MCF51JM128 ColdFire Microcontroller  
128 / 16  
128 / 16  
64 LQFP  
64 QFP  
–40 to +105 C  
–40 to +105 C  
MCF51JM128EVQH  
MCF51JM128 ColdFire Microcontroller  
with CAU and RNGA Enabled  
MCF51JM128VQH  
MCF51JM128EVLD  
MCF51JM128 ColdFire Microcontroller  
128 / 16  
128 / 16  
64 QFP  
–40 to +105 C  
–40 to +105 C  
MCF51JM128 ColdFire Microcontroller  
with CAU and RNGA Enabled  
44 LQFP  
MCF51JM128VLD  
MCF51JM64EVLK  
MCF51JM128 ColdFire Microcontroller  
128 / 16  
64 / 16  
44 LQFP  
80 LQFP  
–40 to +105 C  
–40 to +105 C  
MCF51JM64 ColdFire Microcontroller  
with CAU and RNGA Enabled  
MCF51JM64VLK  
MCF51JM64EVLH  
MCF51JM64 ColdFire Microcontroller  
64 / 16  
64 / 16  
80 LQFP  
64 LQFP  
–40 to +105 C  
–40 to +105 C  
MCF51JM64 ColdFire Microcontroller  
with CAU and RNGA Enabled  
MCF51JM64VLH  
MCF51JM64 ColdFire Microcontroller  
64 / 16  
64 / 16  
64 LQFP  
64 QFP  
–40 to +105 C  
–40 to +105 C  
MCF51JM64EVQH  
MCF51JM64 ColdFire Microcontroller  
with CAU and RNGA Enabled  
MCF51JM64VQH  
MCF51JM64 ColdFire Microcontroller  
64 / 16  
64 QFP  
–40 to +105 C  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
8
Freescale Semiconductor  
MCF51JM128 Family Configurations  
Table 3. Orderable Part Number Summary (continued)  
MCF51JM64EVLD  
MCF51JM64 ColdFire Microcontroller  
with CAU and RNGA Enabled  
64 / 16  
44 LQFP  
–40 to +105 C  
MCF51JM64VLD  
MCF51JM32EVLK  
MCF51JM64 ColdFire Microcontroller  
64 / 16  
32 / 16  
44 LQFP  
80 LQFP  
–40 to +105 C  
–40 to +105 C  
MCF51JM32 ColdFire Microcontroller  
with CAU and RNGA Enabled  
MCF51JM32VLK  
MCF51JM32EVLH  
MCF51JM32 ColdFire Microcontroller  
32 / 16  
32 / 16  
80 LQFP  
64 LQFP  
–40 to +105 C  
–40 to +105 C  
MCF51JM32 ColdFire Microcontroller  
with CAU and RNGA Enabled  
MCF51JM32VLH  
MCF51JM32 ColdFire Microcontroller  
32 / 16  
32 / 16  
64 LQFP  
64 QFP  
–40 to +105 C  
–40 to +105 C  
MCF51JM32EVQH  
MCF51JM32 ColdFire Microcontroller  
with CAU and RNGA Enabled  
MCF51JM32VQH  
MCF51JM32EVLD  
MCF51JM32 ColdFire Microcontroller  
32 / 16  
32 / 16  
64 QFP  
–40 to +105 C  
–40 to +105 C  
MCF51JM32 ColdFire Microcontroller  
with CAU and RNGA Enabled  
44 LQFP  
MCF51JM32VLD  
MCF51JM32 ColdFire Microcontroller  
32 / 16  
44 LQFP  
–40 to +105 C  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
9
MCF51JM128 Family Configurations  
1.5  
Pinouts and Packaging  
Figure 2 shows the pinout of the 80-pin LQFP.  
PTC4  
IRQ / TPMCLK  
RESET  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
PTJ3 / RGPIO14  
PTJ2 / RGPIO13  
PTJ1 / RGPIO12  
PTJ0 / RGPIO11  
PTD2 / KBIP2 / ACMPO  
VSSA  
2
3
PTF0 / TPM1CH2  
PTF1 / TPM1CH3  
PTF2 / TPM1CH4  
PTF3 / TPM1CH5  
PTF4 / TPM2CH0  
PTC6 / RXCAN  
PTF7 / TXCAN  
PTF5 / TPM2CH1  
PTF6  
4
5
6
7
VREFL  
8
VREFH  
9
VDDA  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PTD1 / ADP9 / ACMP–  
PTD0 / ADP8 / ACMP+  
PTB7 / ADP7  
PTE0 / TXD1  
PTB6 / ADP6  
PTE1 / RXD1  
PTE2 / TPM1CH0  
PTE3 / TPM1CH1  
PTC7  
PTB5 / KBIP5 / ADP5  
PTB4 / KBIP4 / ADP4  
PTB3 / SS2 / ADP3  
PTB2 / SPSCK2 / ADP2  
PTB1 / MOSI2 / ADP1  
PTB0 / MISO2 / ADP0  
PTA7 / RGPIO7  
PTH0 / SDA2  
PTH1 / SCL2  
PTH2 / RGPIO8  
Figure 2. 80-pin LQFP  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
10  
Freescale Semiconductor  
 
MCF51JM128 Family Configurations  
Figure 3 shows the pinout of the 64-pin LQFP and QFP.  
PTC4  
IRQ / TPMCLK  
RESET  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PTD2 / KBIP2 / ACMPO  
VSSA  
2
3
VREFL  
PTF0 / TPM1CH2  
PTF1 / TPM1CH3  
PTF2 / TPM1CH4  
PTF3 / TPM1CH5  
PTF4 / TPM2CH0  
PTC6 / RXCAN  
PTF7 / TXCAN  
PTF5 / TPM2CH1  
PTF6  
4
VREFH  
5
VDDA  
6
PTD1 / ADP9 / ACMP–  
PTD0 / ADP8 / ACMP+  
PTB7 / ADP7  
7
8
9
PTB6 / ADP6  
10  
11  
12  
13  
14  
15  
16  
PTB5 / KBIP5 / ADP5  
PTB4 / KBIP4 / ADP4  
PTB3 / SS2 / ADP3  
PTB2 / SPSCK2 / ADP2  
PTB1 / MOSI2 / ADP1  
PTB0 / MISO2 / ADP0  
PTA5 / RGPIO5  
PTE0 / TXD1  
PTE1 / RXD1  
PTE2 / TPM1CH0  
PTE3 / TPM1CH1  
Figure 3. 64-pin QFP and LQFP  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
11  
 
MCF51JM128 Family Configurations  
Figure 4 shows the pinout of the 44-pin LQFP.  
PTC4  
IRQ / TPMCLK  
RESET  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
PTD2 / KBIP2 / ACMPO  
VSSA / VREFL  
2
3
VDDA / VREFH  
PTF0 / TPM1CH2  
PTF1 / TPM1CH3  
PTF4 / TPM2CH0  
PTF5 / TPM2CH1  
PTE0 / TXD1  
4
PTD1 / ADP9 / ACMP–  
PTD0 / ADP8 / ACMP+  
PTB5 / KBIP5 / ADP5  
PTB4 / KBIP4 / ADP4  
PTB3 / SS2 / ADP3  
PTB2 / SPSCK2 / ADP2  
PTB1 / MOSI2 / ADP1  
PTB0 / MISO2 / ADP0  
5
6
7
8
PTE1 / RXD1  
9
PTE2 / TPM1CH0  
PTE3 / TPM1CH1  
10  
11  
Figure 4. 44-pin LQFP  
Table 4 shows the package pin assignments.  
Table 4. Pin Assignments by Package and Pin Sharing Priority  
Pin Number <-- Lowest Priority --> Highest  
80  
64  
44  
Port Pin  
Alt 1  
Alt 2  
1
2
1
2
1
2
PTC4  
IRQ  
TPMCLK  
3
3
3
RESET  
4
4
4
PTF0  
PTF1  
PTF2  
PTF3  
PTF4  
PTC6  
PTF7  
PTF5  
PTF6  
PTE0  
PTE1  
PTE2  
TPM1CH2  
TPM1CH3  
TPM1CH4  
TPM1CH5  
TPM2CH0  
RXCAN  
TXCAN  
5
5
5
6
6
6
7
7
8
8
BUSCLK_OUT  
9
9
7
10  
11  
12  
13  
14  
15  
10  
11  
12  
13  
14  
15  
TPM2CH1  
8
TXD1  
9
RXD1  
10  
TPM1CH0  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
12  
Freescale Semiconductor  
 
 
MCF51JM128 Family Configurations  
Table 4. Pin Assignments by Package and Pin Sharing Priority (continued)  
Pin Number <-- Lowest Priority --> Highest  
80  
64  
44  
Port Pin  
Alt 1  
Alt 2  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
PTE3  
PTC7  
PTH0  
PTH1  
PTH2  
PTH3  
PTH4  
PTE4  
PTE5  
PTE6  
PTE7  
TPM1CH1  
SDA2  
SCL2  
RGPIO8  
RGPIO9  
RGPIO10  
MISO1  
MOSI1  
SPSCK1  
SS1  
VDD  
VSS  
USBDN  
USBDP  
VUSB33  
USB_ALT_CLK  
PTG0  
PTG1  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
PTA5  
PTA6  
PTA7  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
KBIP0  
KBIP1  
RGPIO0  
RGPIO1  
RGPIO2  
RGPIO3  
RGPIO4  
RGPIO5  
RGPIO6  
RGPIO7  
MISO2  
MOSI2  
SPSCK2  
SS2  
USB_SESSVLD  
USB_SESSEND  
USB_VBUSVLD  
USB_PULLUP(D+)  
USB_DM_DOWN  
USB_DP_DOWN  
USB_ID  
ADP0  
ADP1  
ADP2  
ADP3  
KBIP4  
KBIP5  
ADP6  
ADP4  
ADP5  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
13  
MCF51JM128 Family Configurations  
Table 4. Pin Assignments by Package and Pin Sharing Priority (continued)  
Pin Number <-- Lowest Priority --> Highest  
80  
64  
44  
Port Pin  
Alt 1  
Alt 2  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
29  
30  
31  
PTB7  
PTD0  
PTD1  
ADP7  
ADP8  
ADP9  
ACMP+  
ACMP–  
VDDA  
VREFH  
VREFL  
VSSA  
ACMPO  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
PTD2  
PTJ0  
PTJ1  
PTJ2  
PTJ3  
PTJ4  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
PTG2  
PTG3  
KBIP2  
RGPIO11  
RGPIO12  
RGPIO13  
RGPIO14  
RGPIO15  
KBIP3  
ADP11  
ADP10  
KBIP6  
KBIP7  
BKGD  
XTAL  
EXTAL  
MS  
PTG4  
PTG5  
VSS  
VDD  
PTG6  
PTG7  
PTC0  
PTC1  
PTC2  
PTC3  
PTC5  
SCL1  
SDA1  
IRO  
TXD2  
RXD2  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
14  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
2
Preliminary Electrical Characteristics  
This section contains electrical specification tables and reference timing diagrams for the MCF51JM128 microcontroller,  
including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.  
The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not  
be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for  
production silicon. Finalized specifications will be published after complete characterization and device qualifications have  
been completed.  
NOTE  
The parameters specified in this data sheet supersede any values found in the module  
specifications.  
2.1  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:  
Table 5. Parameter Classifications  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a  
statistically relevant sample size across process variations.  
Those parameters are achieved by design characterization on a small sample size from  
typical devices under typical conditions unless otherwise noted. All values shown in the  
typical column are within this category.  
T
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled C in the parameter tables where  
appropriate.  
2.2  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the  
limits specified in Table 6 may affect device reliability or cause permanent damage to the device. For functional operating  
conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised  
that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for  
instance, V or V ).  
SS  
DD  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
15  
Preliminary Electrical Characteristics  
Table 6. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
Input voltage  
V
–0.3 to + 5.8  
V
V
DD  
V
– 0.3 to VDD + 0.3  
In  
Instantaneous maximum current Single pin limit  
(applies to all port pins)1, 2, 3  
ID  
IDD  
25  
mA  
Maximum current into V  
Storage temperature  
120  
–55 to +150  
150  
mA  
C  
DD  
T
stg  
TJ  
Maximum junction temperature  
C  
1
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
2
3
All functional non-supply pins are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
IDD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load shunt current is greater than maximum injection  
current. This is the greatest risk when the MCU is not consuming power. Examples: if no system  
clock is present or if the clock rate is low, which would reduce overall power consumption.  
2.3  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power  
dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than  
being controlled by the MCU design. To take P into account in power calculations, determine the difference between actual  
I/O  
pin voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current  
SS  
DD  
(heavy loads), the difference between pin voltage and V or V is small.  
SS  
DD  
Table 7. Thermal Characteristics  
Rating  
Operating temperature range (packaged)  
Thermal resistance 1,2,3,4  
Symbol  
Value  
Unit  
TA  
–40 to +105  
C  
80-pin LQFP  
64-pin LQFP  
64-pin QFP  
44-pin LQFP  
1s  
2s2p  
52  
40  
1s  
2s2p  
65  
47  
JA  
C/W  
1s  
2s2p  
54  
40  
1s  
2s2p  
69  
48  
1
2
Junction temperature is a function of die size, on-chip power dissipation, package thermal  
resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation  
of other components on the board, and board thermal resistance.  
Junction to Ambient Natural Convection  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
16  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
3
4
1s - Single Layer Board, one signal layer  
2s2p - Four Layer Board, 2 signal and 2 power layers  
The average chip-junction temperature (T ) in C can be obtained from:  
J
T = T + (P   )  
JA  
Eqn. 1  
J
A
D
where:  
T = Ambient temperature, C= Package thermal resistance, junction-to-ambient, C/WP = P P  
P
=
A
JA  
D
int  
I/O int  
I
V , Watts — chip internal powerP = Power dissipation on input and output pins — user determined  
DD  
DD I/O  
For most applications, P  P and can be neglected. An approximate relationship between P and T (if P is neglected)  
I/O  
int  
D
J
I/O  
is:  
P = K (T + 273C)  
Eqn. 2  
D
J
Solving equations 1 and 2 for K gives:  
2
K = P (T + 273C) +   (P )  
Eqn. 3  
D
A
JA  
D
where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving equations 1 and 2 iteratively for any  
A
D
J
value of T .  
A
2.4  
Electrostatic Discharge (ESD) Protection Characteristics  
Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling  
precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices  
can withstand exposure to reasonable levels of static without suffering any permanent damage.  
All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits.  
(http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.  
A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification  
requirements. Complete DC parametric and functional testing is performed per the applicable device specification at room  
temperature followed by hot temperature, unless specified otherwise in the device specification.  
Table 8. ESD and Latch-up Test Conditions  
Model  
Description  
Symbol Value Unit  
Series Resistance  
R1  
C
1500  
100  
3
Human Body  
Storage Capacitance  
pF  
Number of Pulse per pin  
Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
V
Latch-up  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
17  
Preliminary Electrical Characteristics  
Table 9. ESD and Latch-Up Protection Characteristics  
Num  
Rating  
Symbol  
Min  
Max  
Unit  
1
2
3
Human Body Model (HBM)  
Charge Device Model (CDM)  
Latch-up Current at TA = 105C  
VHBM  
VCDM  
ILAT  
+/– 2000  
+/– 500  
+/– 100  
V
V
mA  
2.5  
DC Characteristics  
This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various  
operating modes.  
Table 10. DC Characteristics  
Num C  
Parameter  
Symbol  
Min  
Typ1  
Max  
Unit  
1
Operating voltage2  
2.7  
5.5  
V
Output high voltage — Low Drive (PTxDSn = 0)  
5 V, ILoad = –4 mA  
VDD – 1.5  
VDD – 1.5  
VDD – 0.8  
VDD – 0.8  
3 V, ILoad = –2 mA  
5 V, ILoad = –2 mA  
3 V, ILoad = –1 mA  
2
P
VOH  
V
Output high voltage — High Drive (PTxDSn = 1)  
5 V, ILoad = –15 mA  
V
DD – 1.5  
3 V, ILoad = –8 mA  
5 V, ILoad = –8 mA  
3 V, ILoad = –4 mA  
VDD – 1.5  
VDD – 0.8  
VDD – 0.8  
Output low voltage — Low Drive (PTxDSn = 0)  
5 V, ILoad = 4mA  
1.5  
1.5  
0.8  
0.8  
3 V, ILoad = 2 mA  
5 V, ILoad = 2 mA  
3 V, ILoad = 1 mA  
3
P
VOL  
V
Output low voltage — High Drive (PTxDSn = 1)  
5 V, ILoad = 15 mA  
1.5  
1.5  
0.8  
0.8  
3 V, ILoad = 8 mA  
5 V, ILoad = 8 mA  
3 V, ILoad = 4 mA  
4
5
6
P Output high current — Max total IOH for all ports  
5V IOHT  
3V  
100  
60  
mA  
mA  
P Output low current — Max total IOL for all ports  
P Input high voltage; all digital inputs  
5V IOLT  
3V  
100  
60  
VIH  
V
3.25  
2.10  
VDD = 5V  
VDD = 3V  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
18  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 10. DC Characteristics (continued)  
Num C  
Parameter  
Symbol  
Min  
Typ1  
Max  
Unit  
7
P Input low voltage; all digital inputs  
VIL  
V
1.75  
1.05  
VDD = 5V  
VDD = 3V  
8
9
P Input hysteresis; all digital inputs  
Vhys  
|IIn|  
0.06 x VDD  
mV  
A  
A  
k  
k  
P Input leakage current; input only pins3  
20  
20  
0.1  
0.1  
45  
1
1
10 P High Impedance (off-state) leakage current3  
11 P Internal pullup resistors4  
|IOZ|  
RPU  
RPD  
65  
65  
12 P Internal pulldown resistors5  
45  
13  
Internal pullup resistor to USBDP (to VUSB33)  
k  
Idle RPUPD  
900  
1425  
1300  
2400  
1575  
3090  
Transmit  
14 C Input Capacitance; all non-supply pins  
15 D RAM retention voltage6  
16 P POR rearm voltage  
CIn  
0.6  
1.4  
8
pF  
V
VRAM  
VPOR  
tPOR  
1.0  
2.0  
0.9  
10  
V
17 D POR rearm time  
s  
V
Low-voltage detection threshold —  
high range  
VLVD1  
18  
19  
20  
P
P
C
P
P
VDD falling  
VDD rising  
3.9  
4.0  
4.0  
4.1  
4.1  
4.2  
Low-voltage detection threshold —  
low range  
VLVD0  
VLVW3  
VLVW2  
VLVW1  
VLVW0  
Vhys  
V
V
VDD falling  
VDD rising  
2.48  
2.54  
2.56  
2.62  
2.64  
2.70  
Low-voltage warning threshold —  
high range 1  
VDD falling  
VDD rising  
4.5  
4.6  
4.6  
4.7  
4.7  
4.8  
Low-voltage warning threshold —  
high range 0  
V
VDD falling  
4.2  
4.3  
4.3  
4.4  
4.4  
4.5  
21  
22  
VDD rising  
Low-voltage warning threshold  
low range 1  
V
VDD falling  
VDD rising  
2.84  
2.90  
2.92  
2.98  
3.00  
3.06  
Low-voltage warning threshold —  
low range 0  
V
23  
24  
C
T
VDD falling  
2.66  
2.72  
2.74  
2.80  
2.82  
2.88  
VDD rising  
Low-voltage inhibit reset/recover hysteresis  
mV  
5 V  
3 V  
100  
60  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
19  
Preliminary Electrical Characteristics  
1
Typical values are based on characterization data at 25C unless otherwise stated.  
2
3
4
5
6
Operating voltage with USB enabled can be found in Section 2.14, “USB Electricals.”  
Measured with VIn = VDD or VSS  
Measured with VIn = VSS  
Measured with VIn = VDD  
This is the voltage below which the contents of RAM are not guaranteed to be maintained.  
.
.
.
Typical VOL vs. IOL AT VDD = 5V  
Typical VOL vs. IOL AT VDD = 3V  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
IOL (mA)  
IOL (mA)  
Figure 5. Typical Low-side Drive (sink) characteristics – High Drive (PTxDSn = 1)  
Typical VOL vs. IOL AT VDD = 5V  
Typical VOL vs. IOL AT VDD = 3V  
0.90  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
Hot (105°C)  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
Room(25°C)  
Cold (-40°C)  
0
1
2
3
0
1
2
3
4
5
IOL (mA)  
IOL (mA)  
Figure 6. Typical Low-side Drive (sink) characteristics – Low Drive (PTxDSn = 0)  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
20  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Typical VDD - VOH vs. IOH AT VDD = 5V  
Typical VDD - VOH vs. IOH AT VDD=3V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
0
-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15  
0
-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13  
IOH (mA)  
IOH (mA)  
Figure 7. Typical High-side Drive (source) characteristics – High Drive (PTxDSn = 1)  
Typical VDD - VOH vs. IOH AT VDD=3V  
Typical VDD - VOH vs. IOH AT VDD = 5V  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
Hot (105°C)  
Room (25°C)  
Cold (-40°C)  
0
-1  
-2  
-3  
-4  
-5  
0
-1  
-2  
-3  
IOH (mA)  
IOH (mA)  
Figure 8. Typical High-side Drive (source) characteristics – Low Drive (PTxDSn = 0)  
2.6  
Supply Current Characteristics  
Table 11. Supply Current Characteristics  
Num  
C
Parameter  
Symbol  
VDD (V)  
Typical1  
4.0  
Max2  
Unit  
1
C
Run supply current3 measured at (CPU clock =  
2 MHz, fBus = 1 MHz)  
5
3
7
7
mA  
4.0  
2
3
P
C
Run supply current3 measured at (CPU clock =  
16 MHz, fBus = 8 MHz)  
5
3
5
3
19  
18.7  
45  
30  
30  
70  
70  
RIDD  
mA  
mA  
Run supply current3 measured at (CPU clock =  
48 MHz, fBus = 24 MHz)  
44  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
21  
Preliminary Electrical Characteristics  
Table 11. Supply Current Characteristics  
Num  
C
Parameter  
Symbol  
VDD (V)  
Typical1  
2.03  
2
Max2  
Unit  
4
C
Wait mode supply current3 measured at (CPU  
clock = 2 MHz, fBus = 1 MHz)  
5
3
3
3
mA  
5
6
7
C
C
C
Wait mode supply current3 measured at (CPU  
clock = 16 MHz, fBus = 8 MHz)  
5
3
5
3
7.73  
7.7  
12  
12  
30  
30  
WIDD  
mA  
mA  
Wait mode supply current3 measured at (CPU  
clock = 48 MHz, fBus = 24 MHz)  
22  
21.9  
Stop2 mode supply current  
–40 C  
25 C  
105C  
3
3
35  
5
3
1.35  
1.25  
A  
S2IDD  
S3IDD  
S4IDD  
3
3
35  
–40 C  
25 C  
105 C  
A  
A  
8
P
Stop3 mode supply current  
–40 C  
25 C  
105 C  
3
3
35  
5
3
1.41  
1.35  
–40 C  
25 C  
105 C  
3
3
35  
A  
A  
A  
9
C
Stop4 mode supply current  
–40 C  
25 C  
105 C  
5
3
106  
96  
200  
200  
–40 C  
25 C  
105 C  
10  
11  
P
P
RTC adder to stop2 or stop34, 25C  
5
3
5
3
300  
300  
5
nA  
nA  
A  
A  
S23IDDRTC  
S23IDDOSC  
Adder to stop3 for oscillator enabled5  
(ERCLKEN =1 and EREFSTEN = 1)  
5
1
2
3
4
5
Typicals are measured at 25C.  
Values given here are preliminary estimates prior to completing characterization.  
All modules’ clocks are switched on, code runs from flash, in FEI mode, and there are no DC loads on port pins.  
Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode.  
Values given under the following conditions: low range operation (RANGE = 0), low power mode (HGO = 0)  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
22  
Freescale Semiconductor  
 
Preliminary Electrical Characteristics  
2.7  
Analog Comparator (ACMP) Electricals  
Table 12. Analog Comparator Electrical Specifications  
Num  
C
Rating  
Symbol  
VDD  
Min  
Typical  
Max  
Unit  
1
Supply voltage  
2.7  
5.5  
V
IDDAC  
2
3
4
5
Supply current (active)  
20  
35  
VDD  
40  
A  
V
Analog input voltage  
VAIN  
VAIO  
VH  
VSS – 0.3  
Analog input offset voltage  
Analog Comparator hysteresis  
20  
6.0  
mV  
mV  
3.0  
--  
20.0  
IALKG  
tAINIT  
6
7
Analog input leakage current  
--  
1.0  
1.0  
A  
s  
Analog Comparator initialization delay  
Bandgap Voltage Reference  
Factory trimmed at VDD = 3.0 V, Temp = 25C  
8
VBG  
1.19  
1.20  
1.21  
V
2.8  
ADC Characteristics  
Table 13. 5 Volt 12-bit ADC Operating Conditions  
Characteristic  
Conditions  
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
Supply voltage  
Absolute  
Delta to VDD (VDD-VDDA  
VDDA  
VDDA  
VSSA  
VREFH  
VREFL  
VADIN  
CADIN  
2.7  
–100  
–100  
2.7  
0
5.5  
+100  
+100  
VDDA  
VSSA  
VREFH  
5.5  
V
mV  
mV  
V
2
)
2
Ground voltage Delta to VSS (VSS-VSSA  
Ref Voltage High  
)
0
VDDA  
VSSA  
Ref Voltage Low  
VSSA  
VREFL  
V
Input Voltage  
V
Input  
4.5  
pF  
Capacitance  
Input Resistance  
RADIN  
RAS  
3
5
k  
k  
Analog Source  
Resistance  
12 bit mode  
External to MCU  
fADCK > 4MHz  
2
5
fADCK < 4MHz  
10 bit mode  
ADCK > 4MHz  
fADCK < 4MHz  
f
5
10  
8 bit mode (all valid fADCK  
)
10  
8.0  
4.0  
ADC Conversion High Speed (ADLPC=0)  
fADCK  
0.4  
0.4  
MHz  
Clock Freq.  
Low Power (ADLPC=1)  
1
2
Typical values assume VDDA = 5.0V, Temp = 25C, fADCK=1.0MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
DC potential difference.  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
23  
 
Preliminary Electrical Characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
+
V
ADIN  
CAS  
V
+
AS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 9. ADC Input Impedance Equivalency Diagram  
Table 14. 5 Volt 12-bit ADC Characteristics (V  
= V  
, V  
= V  
)
SSA  
REFH  
DDA  
REFL  
Max  
Characteristic  
Conditions  
C
Symb  
Min  
Typ1  
Unit  
Comment  
Supply Current  
ADLPC=1  
ADLSMP=1  
ADCO=1  
T
IDDAD  
133  
218  
A  
Supply Current  
ADLPC=1  
ADLSMP=0  
ADCO=1  
T
T
P
IDDAD  
IDDAD  
IDDAD  
1
A  
A  
Supply Current  
ADLPC=0  
ADLSMP=1  
ADCO=1  
327  
Supply Current  
ADLPC=0  
ADLSMP=0  
ADCO=1  
0.582  
mA  
Supply Current Stop, Reset, Module Off  
IDDAD  
2
0.011  
3.3  
2
1
5
A  
ADC  
High Speed (ADLPC=0)  
Low Power (ADLPC=1)  
T
fADACK  
MHz  
tADACK  
=
Asynchronous  
Clock Source  
1/fADACK  
1.25  
3.3  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
24  
Freescale Semiconductor  
 
Preliminary Electrical Characteristics  
Table 14. 5 Volt 12-bit ADC Characteristics (V  
= V  
, V  
= V  
) (continued)  
Unit Comment  
REFH  
DDA  
REFL  
SSA  
Characteristic  
Conditions  
C
Symb  
Min  
Typ1  
Max  
Conversion Time Short Sample (ADLSMP=0)  
T
tADC  
20  
40  
ADCK See Table 9 for  
cycles conversion time  
variances  
(Including  
Long Sample (ADLSMP=1)  
sample time)  
Sample Time  
Short Sample (ADLSMP=0)  
Long Sample (ADLSMP=1)  
T
tADS  
3.5  
23.5  
3.0  
1  
ADCK  
cycles  
Total Unadjusted 12 bit mode  
Error  
T
P
T
T
P
T
T
T
T
T
P
T
T
T
T
D
ETUE  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
Includes  
quantization  
10 bit mode  
2.5  
1.0  
8 bit mode  
0.5  
1.75  
0.5  
0.3  
1.5  
0.5  
0.3  
1.5  
0.5  
0.5  
1  
Differential  
Non-Linearity  
12 bit mode  
10 bit mode3  
8 bit mode3  
12 bit mode  
10 bit mode  
8 bit mode  
DNL  
INL  
EZS  
EFS  
EQ  
1.0  
0.5  
Integral  
Non-Linearity  
1.0  
0.5  
Zero-Scale Error 12 bit mode  
10 bit mode  
VADIN = VSSAD  
1.5  
0.5  
8 bit mode  
Full-Scale Error 12 bit mode  
10 bit mode  
VADIN = VDDAD  
0.5  
0.5  
1  
8 bit mode  
0.5  
Quantization  
Error  
12 bit mode  
10 bit mode  
8 bit mode  
12 bit mode  
10 bit mode  
8 bit mode  
25oC  
-1 to 0  
0.5  
0.5  
Input Leakage  
Error  
D
EIL  
1  
Pad leakage4 *  
RAS  
0.2  
0.1  
1.396  
2.5  
1  
Temp Sensor  
Voltage  
D
D
VTEMP25  
m
V
Temp Sensor  
Slope  
-40oC - 25oC  
25oC - 125oC  
3.266  
3.638  
mV/oC  
1
Typical values assume VDDA = 5.0V, Temp = 25C, fADCK=1.0MHz unless otherwise stated. Typical values are for reference only  
and are not tested in production.  
1 LSB = (VREFH - VREFL)/2N  
2
3
4
Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes  
Based on input pad leakage current. Refer to pad electricals.  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
25  
 
 
Preliminary Electrical Characteristics  
2.9  
External Oscillator (XOSC) Characteristics  
Table 15. Oscillator Electrical Specifications (Temperature Range = –40 to 105C Ambient)  
Num  
C
Rating  
Symbol  
Min  
Typ1  
Max  
Unit  
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)  
• Low range (RANGE = 0)  
flo  
32  
1
1
1
1
38.4  
5
16  
16  
8
kHz  
MHz  
MHz  
MHz  
MHz  
• High range (RANGE = 1) FEE or FBE mode 2  
• High range (RANGE = 1) PEE or PBE mode 3  
• High range (RANGE = 1, HGO = 1) BLPE mode  
• High range (RANGE = 1, HGO = 0) BLPE mode  
fhi-fll  
1
fhi-pll  
fhi-hgo  
fhi-lp  
C1  
C2  
See crystal or resonator  
manufacturer’s recommendation.  
2
3
Load capacitors  
Feedback resistor  
• Low range (32 kHz to 38.4 kHz)  
• High range (1 MHz to 16 MHz)  
RF  
10  
1
M  
M  
Series resistor  
• Low range, low gain (RANGE = 0, HGO = 0)  
• Low range, high gain (RANGE = 0, HGO = 1)  
8 MHz  
4 MHz  
MHz  
0
100  
0
RS  
4
k  
• High range, low gain (RANGE = 1, HGO = 0)  
• High range, high gain (RANGE = 1, HGO = 1)  
8 MHz  
4 MHz  
MHz  
0
0
0
0
10  
20  
Crystal start-up time 4  
t
CSTL-LP  
200  
400  
5
• Low range, low gain (RANGE = 0, HGO = 0)  
• Low range, high gain (RANGE = 0, HGO = 1)  
• High range, low gain (RANGE = 1, HG0 = 0)5  
• High range, high gain (RANGE = 1, HG0 = 1)5  
t
5
6
T
T
CSTL-HGO  
ms  
t
CSTH-LP  
15  
t
CSTH-HGO  
Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)  
• FEE or FBE mode 2  
0.03125  
5
16  
40  
MHz  
MHz  
MHz  
fextal  
• PEE or PBE mode 3  
1
0
• BLPE mode  
1
2
Data in Typical column was characterized at 5.0 V, 25C or is typical recommended value.  
When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz  
to 39.0625 kHz.  
3
4
5
When MCG is configured for PEE or PBE mode, input clock source must be divisible using RDIV to within the range of 1 MHz  
to 2 MHz.  
This parameter is characterized and not tested on each device. Proper PC board-layout procedures must be followed to achieve  
specifications.  
4 MHz crystal  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
26  
Freescale Semiconductor  
 
 
Preliminary Electrical Characteristics  
2.10 MCG Specifications  
Table 16. MCG Frequency Specifications (Temperature Range = –40 to 125C Ambient)  
Num C  
Rating  
Symbol  
Min  
Typical1  
Max  
Unit  
Internal reference frequency - factory trimmed at VDD  
= 5 V and temperature = 25 C  
1
P
fint_ft  
32.768  
kHz  
2
3
P Average internal reference frequency – untrimmed  
fint_ut  
tirefst  
31.25  
60  
39.0625  
100  
20  
kHz  
T Internal reference startup time  
s  
P
Low range (DRS=00)  
Mid range (DRS=01)  
High range (DRS=10)  
Low range (DRS=00)  
Mid range (DRS=01)  
High range (DRS=10)  
16  
DCO output frequency  
4
5
P range - untrimmed 2  
fdco_ut  
32  
40  
MHz  
MHz  
P
48  
60  
DCO output frequency2  
P
P Reference =32768Hz  
19.92  
39.85  
59.77  
fdco_DMX32  
and DMX32 = 1  
P
Resolution of trimmed DCO output frequency at fixed  
voltage and temperature (using FTRIM)  
6
7
8
9
D
D
D
D
fdco_res_t  
fdco_res_t  
fdco_t  
0.1  
0.2  
0.2  
0.4  
2  
%fdco  
%fdco  
%fdco  
%fdco  
Resolution of trimmed DCO output frequency at fixed  
voltage and temperature (not using FTRIM)  
Total deviation of trimmed DCO output frequency over  
voltage and temperature  
0.5  
–1.0  
Total deviation of trimmed DCO output frequency over  
fixed voltage and temperature range of 0 – 70 C  
10 D FLL acquisition time 3  
11 D PLL acquisition time 4  
fdco_t  
0.5  
1  
tfll_acquire  
tpll_acquire  
1
1
ms  
ms  
Long term Jitter of DCO output clock (averaged over  
2ms interval) 5  
12  
D
CJitter  
0.02  
0.2  
%fdco  
13 D VCO operating frequency  
fvco  
fpll_jitter_625ns  
Dlock  
7.0  
0.5665  
55.0  
MHz  
%fpll  
%
14 D Jitter of PLL output clock measured over 625 ns6  
15 D Lock entry frequency tolerance 7  
16 D Lock exit frequency tolerance 8  
1.49  
4.47  
2.98  
5.97  
Dunl  
%
tfll_acquire+  
1075(1/fint_t  
17 D Lock time — FLL  
18 D Lock time — PLL  
tfll_lock  
tpll_lock  
floc_low  
s
s
)
tpll_acquire+  
1075(1/fpll_r  
ef)  
Loss of external clock minimum frequency – RANGE  
19 D = 0  
(3/5) x fint  
kHz  
1
2
3
Data in Typical column was characterized at 5.0 V, 25C or is typical recommended value  
The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.  
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or  
changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the  
reference, this specification assumes it is already running.  
4
This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled  
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes  
it is already running.  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
27  
Preliminary Electrical Characteristics  
5
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBUS  
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for  
a given interval.  
.
6
625 ns represents 5 time quanta for CAN applications, under worst case conditions of 8 MHz CAN bus clock, 1 Mbps CAN  
bus speed, and 8 time quanta per bit for bit time settings. 5 time quanta is the minimum time between a synchronization edge  
and the sample point of a bit using 8 time quanta per bit.  
7
8
Below Dlock minimum, the MCG is guaranteed to enter lock. Above Dlock maximum, the MCG will not enter lock. But if the  
MCG is already in lock, then the MCG may stay in lock.  
Below Dunl minimum, the MCG will not exit lock if already in lock. Above Dunl maximum, the MCG is guaranteed to exit lock.  
2.11 AC Characteristics  
This section describes ac timing characteristics for each peripheral system.  
2.11.1 Control Timing  
Table 17. Control Timing  
Num  
C
Parameter  
Symbol  
fBus  
Min  
dc  
Typ1  
Max  
24  
Unit  
MHz  
s  
1
2
Bus frequency (tcyc = 1/fBus  
)
Internal low-power oscillator period  
External reset pulse width2  
tLPO  
700  
1300  
textrst  
100  
ns  
(tcyc = 1/fSelf_reset  
)
4
trstdrv  
tMSSU  
tMSH  
66 x tcyc  
500  
Reset low drive  
ns  
ns  
ns  
5
Active background debug mode latch setup time  
Active background debug mode latch hold time  
6
100  
IRQ pulse width  
Asynchronous path2  
Synchronous path3  
tILIH, IHIL  
t
100  
1.5 x tcyc  
ns  
ns  
7
8
KBIPx pulse width  
Asynchronous path2  
Synchronous path3  
tILIH, IHIL  
t
100  
1.5 x tcyc  
Port rise and fall time (load = 50 pF)4  
Slew rate control disabled (PTxSE = 0) High drive  
Slew rate control enabled (PTxSE = 1) High drive  
Slew rate control disabled (PTxSE = 0) Low drive  
Slew rate control enabled (PTxSE = 1) Low drive  
11  
35  
40  
75  
tRise, tFall  
9
ns  
1
2
Typical values are based on characterization data at VDD = 5.0V, 25C unless otherwise stated.  
This is the shortest pulse guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override  
reset requests from internal sources.  
3
4
This is the minimum pulse width guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not  
be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.  
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40C to 105C.  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
28  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
textrst  
RESET PIN  
Figure 10. Reset Timing  
tIHIL  
IRQ/KBIPx  
IRQ/KBIPx  
tILIH  
Figure 11. IRQ/KBIPx Timing  
2.11.2 Timer/PWM (TPM) Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the  
optional external source to the timer counter. These synchronizers operate from the current bus rate clock.  
Table 18. TPM Input Timing  
NUM  
C
D
Function  
External clock frequency  
External clock period  
Symbol  
fTPMext  
tTPMext  
tclkh  
Min  
dc  
Max  
fBus/4  
Unit  
1
2
3
4
5
MHz  
tcyc  
tcyc  
tcyc  
tcyc  
4
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
D
tclkl  
D
tICPW  
tTPMext  
tclkh  
TPMxCLK  
tclkl  
Figure 12. Timer External Clock  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
29  
Preliminary Electrical Characteristics  
tICPW  
TPMxCHn  
TPMxCHn  
tICPW  
Figure 13. Timer Input Capture Pulse  
2.11.3 MSCAN  
Table 19. MSCAN Wake-up Pulse Characteristics  
Num  
C
D
D
Parameter  
Symbol  
tWUP  
Min  
Typ1  
Max  
2
Unit  
s  
1
2
MSCAN Wake-up dominant pulse filtered  
MSCAN Wake-up dominant pulse pass  
tWUP  
5
5
s  
1
Typical values are based on characterization data at VDD = 5.0V, 25C unless otherwise stated.  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
30  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
2.12 SPI Characteristics  
Table 20 and Figure 14 through Figure 17 describe the timing requirements for the SPI system.  
Table 20. SPI Timing  
No.  
C
Function  
Operating frequency  
Symbol  
Min  
Max  
Unit  
D
Master  
Slave  
fop  
fBus/2048  
0
fBus/2  
fBus/4  
Hz  
SPSCK period  
Master  
Slave  
1
2
3
4
5
6
D
D
D
D
D
D
tSPSCK  
tLead  
tLag  
2
4
2048  
tcyc  
tcyc  
Enable lead time  
Master  
Slave  
12  
1
tSPSCK  
tcyc  
Enable lag time  
Master  
Slave  
12  
1
tSPSCK  
tcyc  
Clock (SPSCK) high or low time  
Master  
Slave  
tWSPSCK  
tcyc 30  
tcyc – 30  
1024 tcyc  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU  
15  
15  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tHI  
0
25  
ns  
ns  
Slave access time  
1
tcyc  
7
8
D
D
ta  
Slave MISO disable time  
1
tcyc  
tdis  
Data valid (after SPSCK edge)  
9
D
D
D
D
Master  
Slave  
tv  
25  
25  
ns  
ns  
Data hold time (outputs)  
Master  
Slave  
10  
11  
12  
tHO  
0
0
ns  
ns  
Rise time  
Input  
Output  
tRI  
tRO  
tcyc – 25  
25  
ns  
ns  
Fall time  
Input  
Output  
tFI  
tFO  
tcyc – 25  
25  
ns  
ns  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
31  
 
 
 
 
 
 
 
 
 
 
 
 
 
Preliminary Electrical Characteristics  
SS1  
(OUTPUT)  
1
2
11  
12  
3
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
2
BIT 6 . . . 1  
MSB IN  
LSB IN  
9
9
10  
MOSI  
(OUTPUT)  
MSB OUT2  
BIT 6 . . . 1  
LSB OUT  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 14. SPI Master Timing (CPHA = 0)  
SS(1)  
(OUTPUT)  
1
11  
2
3
12  
SPSCK  
(CPOL = 0)  
(OUTPUT)  
4
4
11  
12  
SPSCK  
(CPOL = 1)  
(OUTPUT)  
5
6
MISO  
(INPUT)  
(2)  
MSB IN  
BIT 6 . . . 1  
BIT 6 . . . 1  
LSB IN  
9
10  
MOSI  
(OUTPUT)  
(2)  
PORT DATA  
MASTER LSB OUT  
PORT DATA  
MASTER MSB OUT  
NOTES:  
1. SS output mode (DDS7 = 1, SSOE = 1).  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 15. SPI Master Timing (CPHA = 1)  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
32  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
SS  
(INPUT)  
11  
12  
3
1
12  
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
2
4
4
SPSCK  
(CPOL = 1)  
(INPUT)  
8
7
10  
9
10  
MISO  
(OUTPUT)  
SEE  
NOTE  
BIT 6 . . . 1  
SLAVE LSB OUT  
MSB OUT  
SLAVE  
6
5
MOSI  
(INPUT)  
BIT 6 . . . 1  
MSB IN  
LSB IN  
NOTE:  
1. Not defined but normally MSB of character just received  
Figure 16. SPI Slave Timing (CPHA = 0)  
SS  
(INPUT)  
1
3
12  
2
11  
SPSCK  
(CPOL = 0)  
(INPUT)  
4
4
11  
12  
SPSCK  
(CPOL = 1)  
(INPUT)  
9
10  
8
MISO  
(OUTPUT)  
SEE  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
SLAVE  
MSB OUT  
NOTE  
5
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE:  
1. Not defined but normally LSB of character just received  
Figure 17. SPI Slave Timing (CPHA = 1)  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
33  
Preliminary Electrical Characteristics  
2.13 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for the Flash memory.  
Program and erase operations do not require any special power sources other than the normal V supply.  
DD  
Table 21. Flash Characteristics  
Num  
C
Characteristic  
Symbol  
Vprog/erase  
VRead  
fFCLK  
Min  
2.7  
2.7  
150  
5
Typ1  
Max  
5.5  
Unit  
1
2
4
Supply voltage for program/erase  
Supply voltage for read operation  
V
5.5  
V
Internal FCLK frequency2  
200  
6.67  
kHz  
s  
tFcyc  
Internal FCLK period (1/FCLK)  
Byte program time (random location)(2)  
Byte program time (burst mode)(2)  
Page erase time3  
tprog  
tFcyc  
tFcyc  
tFcyc  
tFcyc  
5
9
4
6
tBurst  
tPage  
7
4000  
Mass erase time(2)  
8
tMass  
20,000  
Program/erase endurance4  
9
C
10,000  
100,000  
cycles  
years  
TL to TH = –40C to + 105C  
T = 25C  
Data retention5  
tD_ret  
10  
15  
100  
1
2
3
Typical values are based on characterization data at VDD = 5.0 V, 25C unless otherwise stated.  
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information  
supplied for calculating approximate time to program and erase.  
4
5
Typical endurance for Flash was evaluated for this product family on the 9S12Dx64. For additional information on  
how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, Typical  
Endurance for Nonvolatile Memory.  
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and  
de-rated to 25C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines  
typical data retention, please refer to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.  
2.14 USB Electricals  
The USB electricals for the USBOTG module conform to the standards documented by the Universal Serial Bus Implementers  
Forum. For the most up-to-date standards, visit http://www.usb.org.  
If the Freescale USBOTG implementation requires additional or deviant electrical characteristics, this space would be used to  
communicate that information.  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
34  
Freescale Semiconductor  
Preliminary Electrical Characteristics  
Table 22. Internal USB 3.3V Voltage Regulator Characteristics  
Symbol  
Unit  
Min  
Typ  
Max  
Vregin  
V
3.9  
5.5  
Regulator operating voltage  
Vreg output  
Vregout  
V
V
3
3
3.3  
3.3  
3.6  
3.6  
Vusb33in  
Vusb33 input with internal Vreg  
disabled  
IVRQ  
mA  
0.5  
VREG Quiescent Current  
2.15 EMC Performance  
Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board  
design and layout, circuit topology choices, location and characteristics of external components as well as MCU software  
operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such  
as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC  
performance.  
2.15.1 Radiated Emissions  
Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance  
with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a  
custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller  
are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the  
evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
35  
Mechanical Outline Drawings  
3
Mechanical Outline Drawings  
3.1  
80-pin LQFP  
Figure 18. 80-pin LQFP Diagram - I  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
36  
Freescale Semiconductor  
Mechanical Outline Drawings  
Figure 19. 80-pin LQFP Diagram - II  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
37  
Mechanical Outline Drawings  
Figure 20. 80-pin LQFP Diagram - III  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
38  
Freescale Semiconductor  
Mechanical Outline Drawings  
3.2  
64-pin LQFP  
Figure 21. 64-pin LQFP Diagram - I  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
39  
Mechanical Outline Drawings  
Figure 22. 64-pin LQFP Diagram - II  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
40  
Freescale Semiconductor  
Mechanical Outline Drawings  
Figure 23. 64-pin LQFP Diagram - III  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
41  
Mechanical Outline Drawings  
3.3  
64-pin QFP  
Figure 24. 64-pin QFP Diagram - I  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
42  
Freescale Semiconductor  
Mechanical Outline Drawings  
Figure 25. 64-pin QFP Diagram - II  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
43  
Mechanical Outline Drawings  
Figure 26. 64-pin QFP Diagram - III  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
44  
Freescale Semiconductor  
Mechanical Outline Drawings  
3.4  
44-pin LQFP  
Figure 27. 44-pin LQFP Diagram - I  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
45  
Mechanical Outline Drawings  
Figure 28. 44-pin LQFP Diagram - II  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
46  
Freescale Semiconductor  
Mechanical Outline Drawings  
Figure 29. 44-pin LQFP Diagram - III  
MCF51JM128 ColdFire Microcontroller, Rev. 4  
Freescale Semiconductor  
47  
Revision History  
4
Revision History  
This section lists major changes between versions of the MCF51JM128 Data Sheet document.  
Table 23. Changes Between Revisions  
Revision  
Description  
1
Updated features list  
Updated the figures Typical Low-side Drive (sink) characteristics – High Drive (PTxDSn = 1), Typical  
Low-side Drive (sink) characteristics – Low Drive (PTxDSn = 0), and Typical High-side Drive (source)  
characteristics – High Drive (PTxDSn = 1)  
Added the figure Typical High-side Drive (source) characteristics – Low Drive (PTxDSn = 0)  
Updated the table Supply Current Characteristics  
Updated the table Oscillator Electrical Specifications (Temperature Range = –40 to 105×C Ambient)  
Updated the table SPI Electrical Characteristic, DC Characteristics  
2
3
Updated the table Orderable Part Number Summary, DC Characteristics, and Supply Current  
Characteristics  
Updated the table Orderable Part Number Summary, MCG Characteristics, SPI Characteristics, and  
Supply Current Characteristics  
Changed VDDAD to VDDA, VSSAD to VSSA  
Updated the table Device comparison  
4
Added “RAM retention voltage” parameter in “DC Characteristics” table, alongwith a table note.  
Added “Temp sensor voltage” parameter in “5 Volt 12-bit ADC Characteristics (VREFH = VDDA, VREFL  
VSSA)” table.  
=
Added “ “Temp sensor slope” parameter in 5 Volt 12-bit ADC Characteristics (VREFH = VDDA, VREFL  
VSSA) table. Also, corrected unit of “Temp sensor voltage” parameter in 5 Volt 12-bit ADC  
Characteristics (VREFH = VDDA, VREFL = VSSA) table.  
=
MCF51JM128 ColdFire Microcontroller, Rev. 4  
48  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
Japan:  
Freescale Semiconductor Japan Ltd. Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc. The described product contains a PowerPC processor  
core. The PowerPC name is a trademark of IBM Corp. and used under license.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2008, 2009, 2010, 2011. All rights reserved.  
MCF51JM128  
Rev. 4  
05/2012  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY