MCF52223CAF66 [NXP]

MCF5222X 32-bit MCU, ColdFire V2 core, 256KB Flash, 66MHz, QFP 100;
MCF52223CAF66
型号: MCF52223CAF66
厂家: NXP    NXP
描述:

MCF5222X 32-bit MCU, ColdFire V2 core, 256KB Flash, 66MHz, QFP 100

时钟 微控制器 外围集成电路
文件: 总55页 (文件大小:1107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MCF52223  
Rev. 3, 3/2011  
MCF52223  
LQFP–64  
MCF52223 ColdFire  
Microcontroller  
Supports MCF52223 and  
10 mm x 10 mm  
MAPBGA–81  
10 mm x 10 mm  
LQFP–100  
14 mm x 14 mm  
MCF52221  
The MCF52223 microcontroller family is a member of the  
• Clock module with 8 MHz on-chip relaxation oscillator  
and integrated phase-locked loop (PLL)  
®
ColdFire family of reduced instruction set computing  
(RISC) microprocessors.  
• Test access/debug port (JTAG, BDM)  
This document provides an overview of the 32-bit MCF52223  
microcontroller, focusing on its highly integrated and diverse  
feature set.  
This 32-bit device is based on the Version 2 ColdFire core  
operating at a frequency up to 80 MHz, offering high  
performance and low power consumption. On-chip memories  
connected tightly to the processor core include up to  
256 Kbytes of flash memory and 32 Kbytes of static random  
access memory (SRAM). On-chip modules include:  
• V2 ColdFire core delivering 76 MIPS (Dhrystone 2.1) at  
80 MHz running from internal flash memory with Multiply  
Accumulate (MAC) Unit and hardware divider  
• Universal Serial Bus On-The-Go (USBOTG)  
• USB Transceiver  
• Three universal asynchronous/synchronous  
receiver/transmitters (UARTs)  
• Inter-integrated circuit (I2C™) bus interface module  
• Queued serial peripheral interface (QSPI) module  
• Eight-channel 12-bit fast analog-to-digital converter  
(ADC)  
• Four-channel direct memory access (DMA) controller  
• Four 32-bit input capture/output compare timers with  
DMA support (DTIM)  
• Four-channel general-purpose timer (GPT) capable of  
input capture/output compare, pulse width modulation  
(PWM), and pulse accumulation  
• Eight-channel/Four-channel, 8-bit/16-bit pulse width  
modulation timer  
• Two 16-bit periodic interrupt timers (PITs)  
• Real-time clock (RTC) module  
• Programmable software watchdog timer  
• Interrupt controller capable of handling 57 sources  
Freescale reserves the right to change the detail specifications as may be required to permit  
improvements in the design of its products.  
© Freescale Semiconductor, Inc., 2011. All rights reserved.  
Table of Contents  
1
Family Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
2.3 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . 30  
2.4 Flash Memory Characteristics. . . . . . . . . . . . . . . . . . . 31  
2.5 EzPort Electrical Specifications. . . . . . . . . . . . . . . . . . 32  
2.6 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2.7 DC Electrical Specifications. . . . . . . . . . . . . . . . . . . . . 33  
2.8 Clock Source Electrical Specifications . . . . . . . . . . . . 34  
2.9 General Purpose I/O Timing . . . . . . . . . . . . . . . . . . . . 35  
2.10 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
2.11 I2C Input/Output Timing Specifications . . . . . . . . . . . . 36  
2.12 Analog-to-Digital Converter (ADC) Parameters. . . . . . 37  
2.13 Equivalent Circuit for ADC Inputs . . . . . . . . . . . . . . . . 38  
2.14 DMA Timers Timing Specifications . . . . . . . . . . . . . . . 39  
2.15 QSPI Electrical Specifications . . . . . . . . . . . . . . . . . . . 39  
2.16 JTAG and Boundary Scan Timing . . . . . . . . . . . . . . . . 40  
2.17 Debug AC Timing Specifications . . . . . . . . . . . . . . . . . 42  
Mechanical Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.1 64-pin LQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.2 81 MAPBGA Package . . . . . . . . . . . . . . . . . . . . . . . . . 50  
3.3 100-pin LQFP Package . . . . . . . . . . . . . . . . . . . . . . . . 52  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
1.1 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
1.3 Reset Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
1.4 PLL and Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . .21  
1.5 Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
1.6 External Interrupt Signals . . . . . . . . . . . . . . . . . . . . . . .22  
1.7 Queued Serial Peripheral Interface (QSPI). . . . . . . . . .22  
1.8 USB On-the-Go. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
1.9 I2C I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
1.10 UART Module Signals. . . . . . . . . . . . . . . . . . . . . . . . . .23  
1.11 DMA Timer Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
1.12 ADC Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
1.13 General Purpose Timer Signals . . . . . . . . . . . . . . . . . .24  
1.14 Pulse Width Modulator Signals. . . . . . . . . . . . . . . . . . .24  
1.15 Debug Support Signals. . . . . . . . . . . . . . . . . . . . . . . . .24  
1.16 EzPort Signal Descriptions . . . . . . . . . . . . . . . . . . . . . .25  
1.17 Power and Ground Pins . . . . . . . . . . . . . . . . . . . . . . . .26  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
2.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
2.2 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . .28  
3
4
2
MCF52223 ColdFire Microcontroller, Rev. 3  
2
Freescale Semiconductor  
Family Configurations  
1
Family Configurations  
Table 1. MCF52223 Family Configurations  
Module  
52221  
52223  
ColdFire Version 2 Core with MAC (Multiply-Accumulate Unit)  
System Clock  
66, 80 MHz  
up to 76  
Performance (Dhrystone 2.1 MIPS)  
Flash / Static RAM (SRAM)  
Interrupt Controller (INTC)  
128/16 Kbytes  
256/32 Kbytes  
Fast Analog-to-Digital Converter (ADC)  
USB On-The-Go (USB OTG)  
Four-channel Direct-Memory Access (DMA)  
Software Watchdog Timer (WDT)  
2
4
3
2
4
3
Programmable Interrupt Timer  
Four-Channel General Purpose Timer  
32-bit DMA Timers  
QSPI  
UART(s)  
I2C  
Eight/Four-channel 8/16-bit PWM Timer  
General Purpose I/O Module (GPIO)  
Chip Configuration and Reset Controller Module  
Background Debug Mode (BDM)  
JTAG - IEEE 1149.1 Test Access Port1  
Package  
64 LQFP  
81 MAPBGA  
100 LQFP  
81 MAPBGA  
100 LQFP  
1
The full debug/trace interface is available only on the 100-pin packages. A reduced debug interface is  
bonded on smaller packages.  
MCF52223 ColdFire Microcontroller, Rev. 3  
3
Freescale Semiconductor  
Family Configurations  
1.1  
Block Diagram  
Figure 1 shows a top-level block diagram of the device. Package options for this family are described later in this document.  
EzPCK  
EzPCS  
EzPD  
EzPQ  
EzPort  
Arbiter  
GPTn  
QSPI_DIN,  
QSPI_DOUT  
Interrupt  
Controller  
QSPI_CLK,  
QSPI_CSn  
UTXDn  
UART  
0
UART  
1
UART  
2
URXDn  
I2C  
4 CH DMA  
QSPI  
URTSn  
UCTSn  
DTINn/DTOUTn  
DTIM  
0
DTIM  
1
DTIM  
2
DTIM  
3
SWT  
To/From PADI  
MUX  
PWMn  
JTAG_EN  
V2 ColdFire CPU  
OEP MAC  
IFP  
PMM  
CIM  
JTAG  
TAP  
32 Kbytes  
SRAM  
256 Kbytes  
Flash  
(32K16)4  
RSTI  
PORTS  
(GPIO)  
AN[7:0]  
ADC  
RSTO  
(4K16)4  
VRH VRL  
VSTBY  
Edge  
Port  
PLL OCO  
CLKGEN  
USB OTG  
PIT0  
PIT1  
GPT  
PWM  
EXTAL XTAL CLKOUT  
CLKMOD0 CLKMOD1  
To/From Interrupt Controller  
Figure 1. Block Diagram  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
4
 
Family Configurations  
1.2  
Features  
1.2.1  
Feature Overview  
The MCF52223 family includes the following features:  
Version 2 ColdFire variable-length RISC processor core  
— Static operation  
— 32-bit address and data paths on-chip  
— Up to 80 MHz processor core frequency  
— Sixteen general-purpose, 32-bit data and address registers  
— Implements ColdFire ISA_A with extensions to support the user stack pointer register and four new instructions  
for improved bit processing (ISA_A+)  
— Multiply-Accumulate (MAC) unit with 32-bit accumulator to support 1616 32 or 3232 32 operations  
— Illegal instruction decode that allows for 68-Kbyte emulation support  
System debug support  
— Real-time trace for determining dynamic execution path  
— Background debug mode (BDM) for in-circuit debugging (DEBUG_B+)  
— Real-time debug support, with six hardware breakpoints (4 PC, 1 address and 1 data) configurable into a 1- or  
2-level trigger  
On-chip memories  
— 32-Kbyte dual-ported SRAM on CPU internal bus, supporting core and DMA access with standby power supply  
support  
— 256 Kbytes of interleaved flash memory supporting 2-1-1-1 accesses  
Power management  
— Fully static operation with processor sleep and whole chip stop modes  
— Rapid response to interrupts from the low-power sleep mode (wake-up feature)  
— Clock enable/disable for each peripheral when not used  
— Software controlled disable of external clock output for low-power consumption  
Universal Serial Bus On-The-Go (USB OTG) dual-mode host and device controller  
— Full-speed / low-speed host controller  
— USB 1.1 and 2.0 compliant full-speed / low speed device controller  
— 16 bidirectional end points  
— DMA or FIFO data stream interfaces  
— Low power consumption  
— OTG protocol logic  
Three universal asynchronous/synchronous receiver transmitters (UARTs)  
— 16-bit divider for clock generation  
— Interrupt control logic with maskable interrupts  
— DMA support  
— Data formats can be 5, 6, 7 or 8 bits with even, odd, or no parity  
— Up to two stop bits in 1/16 increments  
— Error-detection capabilities  
— Modem support includes request-to-send (RTS) and clear-to-send (CTS) lines for two UARTs  
— Transmit and receive FIFO buffers  
I2C module  
MCF52223 ColdFire Microcontroller, Rev. 3  
5
Freescale Semiconductor  
Family Configurations  
— Interchip bus interface for EEPROMs, LCD controllers, A/D converters, and keypads  
— Fully compatible with industry-standard I2C bus  
— Master and slave modes support multiple masters  
— Automatic interrupt generation with programmable level  
Queued serial peripheral interface (QSPI)  
— Full-duplex, three-wire synchronous transfers  
— Up to four chip selects available  
— Master mode operation only  
— Programmable bit rates up to half the CPU clock frequency  
— Up to 16 pre-programmed transfers  
Fast analog-to-digital converter (ADC)  
— Eight analog input channels  
— 12-bit resolution  
— Minimum 1.125 s conversion time  
— Simultaneous sampling of two channels for motor control applications  
— Single-scan or continuous operation  
— Optional interrupts on conversion complete, zero crossing (sign change), or under/over low/high limit  
— Unused analog channels can be used as digital I/O  
Four 32-bit timers with DMA support  
— 12.5 ns resolution at 80 MHz  
— Programmable sources for clock input, including an external clock option  
— Programmable prescaler  
— Input capture capability with programmable trigger edge on input pin  
— Output compare with programmable mode for the output pin  
— Free run and restart modes  
— Maskable interrupts on input capture or output compare  
— DMA trigger capability on input capture or output compare  
Four-channel general purpose timer  
— 16-bit architecture  
— Programmable prescaler  
— Output pulse-widths variable from microseconds to seconds  
— Single 16-bit input pulse accumulator  
— Toggle-on-overflow feature for pulse-width modulator (PWM) generation  
— One dual-mode pulse accumulation channel  
Pulse-width modulation timer  
— Operates as eight channels with 8-bit resolution or four channels with 16-bit resolution  
— Programmable period and duty cycle  
— Programmable enable/disable for each channel  
— Software selectable polarity for each channel  
— Period and duty cycle are double buffered. Change takes effect when the end of the current period is reached  
(PWM counter reaches zero) or when the channel is disabled.  
— Programmable center or left aligned outputs on individual channels  
— Four clock sources (A, B, SA, and SB) provide for a wide range of frequencies  
— Emergency shutdown  
Two periodic interrupt timers (PITs)  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
6
Family Configurations  
— 16-bit counter  
— Selectable as free running or count down  
Real-Time Clock (RTC)  
— Maintains system time-of-day clock  
— Provides stopwatch and alarm interrupt functions  
Software watchdog timer  
— 32-bit counter  
— Low-power mode support  
Clock generation features  
— Crystal, on-chip trimmed relaxation oscillator, or external oscillator reference options  
— Trimmed relaxation oscillator  
— Pre-divider capable of dividing the clock source frequency into the PLL reference frequency range  
— System can be clocked from PLL or directly from crystal oscillator or relaxation oscillator  
— Low power modes supported  
n
— 2 (0 n 15) low-power divider for extremely low frequency operation  
Interrupt controller  
— Uniquely programmable vectors for all interrupt sources  
— Fully programmable level and priority for all peripheral interrupt sources  
— Seven external interrupt signals with fixed level and priority  
— Unique vector number for each interrupt source  
— Ability to mask any individual interrupt source or all interrupt sources (global mask-all)  
— Support for hardware and software interrupt acknowledge (IACK) cycles  
— Combinatorial path to provide wake-up from low-power modes  
DMA controller  
— Four fully programmable channels  
— Dual-address transfer support with 8-, 16-, and 32-bit data capability, along with support for 16-byte (432-bit)  
burst transfers  
— Source/destination address pointers that can increment or remain constant  
— 24-bit byte transfer counter per channel  
— Auto-alignment transfers supported for efficient block movement  
— Bursting and cycle-steal support  
— Software-programmable DMA requests for the UARTs (3) and 32-bit timers (4)  
Reset  
— Separate reset in and reset out signals  
— Seven sources of reset:  
Power-on reset (POR)  
External  
Software  
Watchdog  
Loss of clock  
Loss of lock  
Low-voltage detection (LVD)  
— Status flag indication of source of last reset  
Chip configuration module (CCM)  
— System configuration during reset  
MCF52223 ColdFire Microcontroller, Rev. 3  
7
Freescale Semiconductor  
Family Configurations  
— Selects one of six clock modes  
— Configures output pad drive strength  
— Unique part identification number and part revision number  
General purpose I/O interface  
— Up to 56 bits of general purpose I/O  
— Bit manipulation supported via set/clear functions  
— Programmable drive strengths  
— Unused peripheral pins may be used as extra GPIO  
JTAG support for system level board testing  
1.2.2  
V2 Core Overview  
The version 2 ColdFire processor core is comprised of two separate pipelines decoupled by an instruction buffer. The two-stage  
instruction fetch pipeline (IFP) is responsible for instruction-address generation and instruction fetch. The instruction buffer is  
a first-in-first-out (FIFO) buffer that holds prefetched instructions awaiting execution in the operand execution pipeline (OEP).  
The OEP includes two pipeline stages. The first stage decodes instructions and selects operands (DSOC); the second stage  
(AGEX) performs instruction execution and calculates operand effective addresses, if needed.  
The V2 core implements the ColdFire instruction set architecture revision A+ with support for a separate user stack pointer  
register and four new instructions to assist in bit processing. Additionally, the core includes the multiply-accumulate (MAC)  
unit for improved signal processing capabilities. The MAC implements a three-stage arithmetic pipeline, optimized for 16x16  
bit operations, with support for one 32-bit accumulator. Supported operands include 16- and 32-bit signed and unsigned  
integers, signed fractional operands, and a complete set of instructions to process these data types. The MAC provides support  
for execution of DSP operations within the context of a single processor at a minimal hardware cost.  
1.2.3  
Integrated Debug Module  
The ColdFire processor core debug interface is provided to support system debugging with low-cost debug and emulator  
development tools. Through a standard debug interface, access to debug information and real-time tracing capability is provided  
on 100-lead packages. This allows the processor and system to be debugged at full speed without the need for costly in-circuit  
emulators.  
The on-chip breakpoint resources include a total of nine programmable 32-bit registers: an address and an address mask register,  
a data and a data mask register, four PC registers, and one PC mask register. These registers can be accessed through the  
dedicated debug serial communication channel or from the processor’s supervisor mode programming model. The breakpoint  
registers can be configured to generate triggers by combining the address, data, and PC conditions in a variety of single- or  
dual-level definitions. The trigger event can be programmed to generate a processor halt or initiate a debug interrupt exception.  
This device implements revision B+ of the ColdFire Debug Architecture.  
The processor’s interrupt servicing options during emulator mode allow real-time critical interrupt service routines to be  
serviced while processing a debug interrupt event. This ensures the system continues to operate even during debugging.  
To support program trace, the V2 debug module provides processor status (PST[3:0]) and debug data (DDATA[3:0]) ports.  
These buses and the PSTCLK output provide execution status, captured operand data, and branch target addresses defining  
processor activity at the CPU’s clock rate. The device includes a new debug signal, ALLPST. This signal is the logical AND of  
the processor status (PST[3:0]) signals and is useful for detecting when the processor is in a halted state (PST[3:0] = 1111).  
The full debug/trace interface is available only on the 100-pin packages. However, every product features the dedicated debug  
serial communication channel (DSI, DSO, DSCLK) and the ALLPST signal.  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
8
Family Configurations  
1.2.4  
JTAG  
The processor supports circuit board test strategies based on the Test Technology Committee of IEEE and the Joint Test Action  
Group (JTAG). The test logic includes a test access port (TAP) consisting of a 16-state controller, an instruction register, and  
three test registers (a 1-bit bypass register, a 112-bit boundary-scan register, and a 32-bit ID register). The boundary scan register  
links the device’s pins into one shift register. Test logic, implemented using static logic design, is independent of the device  
system logic.  
The device implementation can:  
Perform boundary-scan operations to test circuit board electrical continuity  
Sample system pins during operation and transparently shift out the result in the boundary scan register  
Bypass the device for a given circuit board test by effectively reducing the boundary-scan register to a single bit  
Disable the output drive to pins during circuit-board testing  
Drive output pins to stable levels  
1.2.5  
On-Chip Memories  
1.2.5.1  
SRAM  
The dual-ported SRAM module provides a general-purpose 32-Kbyte memory block that the ColdFire core can access in a  
single cycle. The location of the memory block can be set to any 32-Kbyte boundary within the 4-Gbyte address space. This  
memory is ideal for storing critical code or data structures and for use as the system stack. Because the SRAM module is  
physically connected to the processor's high-speed local bus, it can quickly service core-initiated accesses or  
memory-referencing commands from the debug module.  
The SRAM module is also accessible by the DMA. The dual-ported nature of the SRAM makes it ideal for implementing  
applications with double-buffer schemes, where the processor and a DMA device operate in alternate regions of the SRAM to  
maximize system performance.  
1.2.5.2  
Flash Memory  
The ColdFire flash module (CFM) is a non-volatile memory (NVM) module that connects to the processor’s high-speed local  
bus. The CFM is constructed with four banks of 32-Kbyte16-bit flash memory arrays to generate 256 Kbytes of 32-bit flash  
memory. These electrically erasable and programmable arrays serve as non-volatile program and data memory. The flash  
memory is ideal for program and data storage for single-chip applications, allowing for field reprogramming without requiring  
an external high voltage source. The CFM interfaces to the ColdFire core through an optimized read-only memory controller  
that supports interleaved accesses from the 2-cycle flash memory arrays. A backdoor mapping of the flash memory is used for  
all program, erase, and verify operations, as well as providing a read datapath for the DMA. Flash memory may also be  
programmed via the EzPort, which is a serial flash memory programming interface that allows the flash memory to be read,  
erased and programmed by an external controller in a format compatible with most SPI bus flash memory chips.  
1.2.6  
Power Management  
The device incorporates several low-power modes of operation entered under program control and exited by several external  
trigger events. An integrated power-on reset (POR) circuit monitors the input supply and forces an MCU reset as the supply  
voltage rises. The low voltage detector (LVD) monitors the supply voltage and is configurable to force a reset or interrupt  
condition if it falls below the LVD trip point. The RAM standby switch provides power to RAM when the supply voltage to the  
chip falls below the standby battery voltage.  
MCF52223 ColdFire Microcontroller, Rev. 3  
9
Freescale Semiconductor  
Family Configurations  
1.2.7  
USB On-The-Go Controller  
The device includes a Universal Serial Bus On-The-Go (USB OTG) dual-mode controller. USB is a popular standard for  
connecting peripherals and portable consumer electronic devices such as digital cameras and handheld computers to host PCs.  
The OTG supplement to the USB specification extends USB to peer-to-peer application, enabling devices to connect directly  
to each other without the need for a PC. The dual-mode controller on the device can act as a USB OTG host and as a USB  
device. It also supports full-speed and low-speed modes.  
1.2.8  
UARTs  
The device has three full-duplex UARTs that function independently. The three UARTs can be clocked by the system bus clock,  
eliminating the need for an external clock source. On smaller packages, the third UART is multiplexed with other digital I/O  
functions.  
1.2.9  
I2C Bus  
The I2C bus is an industry-standard, two-wire, bidirectional serial bus that provides a simple, efficient method of data exchange  
and minimizes the interconnection between devices. This bus is suitable for applications requiring occasional communications  
over a short distance between many devices.  
1.2.10 QSPI  
The queued serial peripheral interface (QSPI) provides a synchronous serial peripheral interface with queued transfer capability.  
It allows up to 16 transfers to be queued at once, minimizing the need for CPU intervention between transfers.  
1.2.11 Fast ADC  
The fast ADC consists of an eight-channel input select multiplexer and two independent sample and hold (S/H) circuits feeding  
separate 12-bit ADCs. The two separate converters store their results in accessible buffers for further processing.  
The ADC can be configured to perform a single scan and halt, a scan when triggered, or a programmed scan sequence repeatedly  
until manually stopped.  
The ADC can be configured for sequential or simultaneous conversion. When configured for sequential conversions, up to eight  
channels can be sampled and stored in any order specified by the channel list register. Both ADCs may be required during a  
scan, depending on the inputs to be sampled.  
During a simultaneous conversion, both S/H circuits are used to capture two different channels at the same time. This  
configuration requires that a single channel may not be sampled by both S/H circuits simultaneously.  
Optional interrupts can be generated at the end of the scan sequence if a channel is out of range (measures below the low  
threshold limit or above the high threshold limit set in the limit registers) or at several different zero crossing conditions.  
1.2.12 DMA Timers (DTIM0–DTIM3)  
There are four independent, DMA transfer capable 32-bit timers (DTIM0, DTIM1, DTIM2, and DTIM3) on the device. Each  
module incorporates a 32-bit timer with a separate register set for configuration and control. The timers can be configured to  
operate from the system clock or from an external clock source using one of the DTINn signals. If the system clock is selected,  
it can be divided by 16 or 1. The input clock is further divided by a user-programmable 8-bit prescaler that clocks the actual  
timer counter register (TCRn). Each of these timers can be configured for input capture or reference (output) compare mode.  
Timer events may optionally cause interrupt requests or DMA transfers.  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
10  
Family Configurations  
1.2.13 General Purpose Timer (GPT)  
The general purpose timer (GPT) is a four-channel timer module consisting of a 16-bit programmable counter driven by a  
seven-stage programmable prescaler. Each of the four channels can be configured for input capture or output compare.  
Additionally, channel three, can be configured as a pulse accumulator.  
A timer overflow function allows software to extend the timing capability of the system beyond the 16-bit range of the counter.  
The input capture and output compare functions allow simultaneous input waveform measurements and output waveform  
generation. The input capture function can capture the time of a selected transition edge. The output compare function can  
generate output waveforms and timer software delays. The 16-bit pulse accumulator can operate as a simple event counter or a  
gated time accumulator.  
1.2.14 Periodic Interrupt Timers (PIT0 and PIT1)  
The two periodic interrupt timers (PIT0 and PIT1) are 16-bit timers that provide interrupts at regular intervals with minimal  
processor intervention. Each timer can count down from the value written in its PIT modulus register or it can be a free-running  
down-counter.  
1.2.15 Real-Time Clock (RTC)  
The Real-Time Clock (RTC) module maintains the system (time-of-day) clock and provides stopwatch, alarm, and interrupt  
functions. It includes full clock features: seconds, minutes, hours, days and supports a host of time-of-day interrupt functions  
along with an alarm interrupt.  
1.2.16 Pulse-Width Modulation (PWM) Timers  
The device has an 8-channel, 8-bit PWM timer. Each channel has a programmable period and duty cycle as well as a dedicated  
counter. Each of the modulators can create independent continuous waveforms with software-selectable duty rates from 0% to  
100%. The PWM outputs have programmable polarity, and can be programmed as left aligned outputs or center aligned outputs.  
For higher period and duty cycle resolution, each pair of adjacent channels ([7:6], [5:4], [3:2], and [1:0]) can be concatenated  
to form a single 16-bit channel. The module can, therefore, be configured to support 8/0, 6/1, 4/2, 2/3, or 0/4 8-/16-bit channels.  
1.2.17 Software Watchdog Timer  
The watchdog timer is a 32-bit timer that facilitates recovery from runaway code. The watchdog counter is a free-running  
down-counter that generates a reset on underflow. To prevent a reset, software must periodically restart the countdown.  
1.2.18 Phase-Locked Loop (PLL)  
The clock module contains a crystal oscillator, 8 MHz on-chip relaxation oscillator (OCO), phase-locked loop (PLL), reduced  
frequency divider (RFD), low-power divider status/control registers, and control logic. To improve noise immunity, the PLL,  
crystal oscillator, and relaxation oscillator have their own power supply inputs: VDDPLL and VSSPLL. All other circuits are  
powered by the normal supply pins, VDD and VSS.  
1.2.19 Interrupt Controller (INTC)  
The device has a single interrupt controller that supports up to 63 interrupt sources. There are 56 programmable sources, 49 of  
which are assigned to unique peripheral interrupt requests. The remaining seven sources are unassigned and may be used for  
software interrupt requests.  
MCF52223 ColdFire Microcontroller, Rev. 3  
11  
Freescale Semiconductor  
Family Configurations  
1.2.20 DMA Controller  
The direct memory access (DMA) controller provides an efficient way to move blocks of data with minimal processor  
intervention. It has four channels that allow byte, word, longword, or 16-byte burst line transfers. These transfers are triggered  
by software explicitly setting a DCRn[START] bit or by the occurrence of certain UART or DMA timer events.  
1.2.21 Reset  
The reset controller determines the source of reset, asserts the appropriate reset signals to the system, and keeps track of what  
caused the last reset. There are seven sources of reset:  
External reset input  
Power-on reset (POR)  
Watchdog timer  
Phase locked-loop (PLL) loss of lock  
PLL loss of clock  
Software  
Low-voltage detector (LVD)  
Control of the LVD and its associated reset and interrupt are managed by the reset controller. Other registers provide status flags  
indicating the last source of reset and a control bit for software assertion of the RSTO pin.  
1.2.22 GPIO  
Nearly all pins on the device have general purpose I/O capability and are grouped into 8-bit ports. Some ports do not use all  
eight bits. Each port has registers that configure, monitor, and control the port pin.  
1.2.23 Part Numbers and Packaging  
This product is RoHS-compliant. Refer to the product page at freescale.com or contact your sales office for up-to-date RoHS  
information.  
Table 3. Orderable Part Number Summary  
Freescale Part  
Number  
Speed Flash/SRAM  
Temp range  
Description  
Package  
(MHz)  
(Kbytes)  
(C)  
MCF52221CAE66  
MCF52221CVM66  
MCF52221CAF66  
MCF52221CVM80  
MCF52221CAF80  
MCF52223CVM66  
MCF52223CAF66  
MCF52223CVM80  
MCF52223CAF80  
MCF52221 Microcontroller  
MCF52221 Microcontroller  
MCF52221 Microcontroller  
MCF52221 Microcontroller  
MCF52221 Microcontroller  
MCF52223 Microcontroller  
MCF52223 Microcontroller  
MCF52223 Microcontroller  
MCF52223 Microcontroller  
66  
66  
66  
80  
80  
66  
66  
80  
80  
128/16  
128/16  
128/16  
128/16  
128/16  
128/16  
128/16  
128/16  
128/16  
64 LQFP  
81 MAPBGA  
100 LQFP  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
-40 to +85  
81 MAPBGA  
100 LQFP  
81 MAPBGA  
100 LQFP  
81 MAPBGA  
100 LQFP  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
12  
Family Configurations  
Figure 5 shows the pinout configuration for the 100 LQFP.  
V
V
V
V
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
DD  
SS  
DD  
DDPLL  
V
EXTAL  
XTAL  
V
SS  
URTS1  
TEST  
SSPLL  
UCTS0  
URXD0  
UTXD0  
URTS0  
SCL  
PST3  
PST2  
V
V
DD  
SS  
9
PST1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
SDA  
QSPI_CS3  
QSPI_CS2  
PST0  
PSTCLK  
GPT3  
100 LQFP  
V
V
USB  
DD  
DD  
V
USB_DM  
USB_DP  
SS  
QSPI-DIN  
QSPI_DOUT  
QSPI_CLK  
QSPI_CS1  
QSPI_CS0  
RCON  
V
USB  
SS  
GPT2  
V
DD  
V
V
SS  
STBY  
V
DD  
AN4  
AN5  
AN6  
AN7  
V
DD  
V
SS  
V
SS  
Figure 2. 100 LQFP Pin Assignments  
MCF52223 ColdFire Microcontroller, Rev. 3  
13  
Freescale Semiconductor  
Family Configurations  
Figure 4 shows the pinout configuration for the 81 MAPBGA.  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
VSS  
UTXD1  
RSTI  
IRQ5  
IRQ3  
ALLPST  
TDO  
TMS  
VDDPLL  
VSSPLL  
GPT3  
PWM5  
VSTBY  
AN5  
VSS  
URTS1  
UCTS0  
URXD0  
SCL  
URXD1  
TEST  
RSTO  
UCTS1  
URTS0  
VDD  
IRQ6  
IRQ7  
VSS  
IRQ2  
IRQ4  
TRST  
IRQ1  
VSS  
TDI  
TCLK  
PWM7  
VDD  
EXTAL  
XTAL  
GPT2  
GPT1  
AN4  
UTXD0  
SDA  
VDD  
VDD  
VDD  
VDD  
QSPI_CS3  
QSPI_CS2  
QSPI_DIN  
RCON  
DTIN3  
VSS  
VDD  
VSS  
GPT0  
AN3  
G
H
J
QSPI_DOUT QSPI_CLK  
DTIN1  
DTIN0  
PWM3  
CLKMOD0  
CLKMOD1  
PWM1  
AN2  
AN1  
AN0  
AN6  
QSPI_CS0  
VSS  
QSPI_CS1  
JTAG_EN  
VSSA  
VDDA  
AN7  
DTIN2  
VRL  
VRH  
VSSA  
Figure 3. 81 MAPBGA Pin Assignments  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
14  
Family Configurations  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
VSS  
URTS1  
UCTS0  
URXD0  
SCL  
UTXD1  
RSTI  
IRQ5  
IRQ3  
ALLPST  
TDO  
TMS  
VSS  
URXD1  
TEST  
RSTO  
UCTS1  
URTS0  
VDD  
IRQ6  
IRQ7  
VSS  
IRQ2  
IRQ4  
TRST  
IRQ1  
VSS  
TDI  
TCLK  
GPT3  
VDD  
VDDPLL  
VSSPLL  
VDDUSB  
GPT2  
VSTBY  
AN5  
EXTAL  
XTAL  
UTXD0  
SDA  
VDD  
USB_DM  
USB_DP  
AN4  
VDD  
VDD  
VDD  
QSPI_CS3  
QSPI_CS2  
QSPI_DIN  
RCON  
DTIN3  
VSS  
VDD  
VSS  
VSSUSB  
AN3  
G
H
J
QSPI_DOUT QSPI_CLK  
DTIN1  
DTIN0  
GPT1  
CLKMOD0  
CLKMOD1  
GPT0  
AN2  
AN1  
AN0  
AN6  
QSPI_CS0  
VSS  
QSPI_CS1  
JTAG_EN  
VSSA  
VDDA  
AN7  
DTIN2  
VRL  
VRH  
VSSA  
Figure 4. 81 MAPBGA Pin Assignments  
MCF52223 ColdFire Microcontroller, Rev. 3  
15  
Freescale Semiconductor  
Table 13 shows the pin functions by primary and alternate purpose, and illustrates which packages contain each pin.  
Table 4. Pin Functions by Primary and Alternate Purpose  
Drive  
Pin  
Group  
Primary  
Function  
Secondary  
Function  
Tertiary  
Function  
Quaternary  
Function  
Slew Rate / Pull-up /  
Pin on  
Pin on 81  
MAPBGA  
Pin on 64  
LQFP  
Strength /  
Control1 Pull-down2 100 LQFP  
Control1  
ADC  
AN7  
AN6  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Low  
Low  
FAST  
FAST  
FAST  
FAST  
FAST  
FAST  
FAST  
FAST  
N/A  
51  
H9  
G9  
G8  
F9  
33  
34  
35  
36  
28  
27  
26  
25  
32  
29  
31  
30  
47  
46  
48  
45  
55  
8
52  
AN5  
Low  
53  
AN4  
Low  
54  
AN3  
Low  
46  
G7  
G6  
H6  
J6  
AN2  
Low  
45  
AN1  
Low  
44  
AN0  
Low  
43  
SYNCA3  
SYNCB3  
VDDA  
VSSA  
VRH  
N/A  
N/A  
N/A  
N/A  
N/A  
50  
H8  
H7, J9  
J8  
N/A  
N/A  
47  
N/A  
N/A  
49  
VRL  
N/A  
N/A  
48  
J7  
Clock  
Generation  
EXTAL  
XTAL  
N/A  
N/A  
73  
B9  
C9  
B8  
C8  
A6  
N/A  
N/A  
72  
VDDPLL  
VSSPLL  
ALLPST  
DDATA[3:0]  
PST[3:0]  
SCL  
N/A  
N/A  
74  
N/A  
N/A  
71  
Debug Data  
High  
High  
High  
PDSR[0]  
PDSR[0]  
FAST  
FAST  
FAST  
PSRR[0]  
PSRR[0]  
86  
84,83,78,77  
70,69,66,65  
10  
GPIO  
GPIO  
GPIO  
GPIO  
I2C  
USB_DMI  
USB_DPI  
UTXD2  
URXD2  
pull-up4  
pull-up4  
E1  
E2  
SDA  
11  
9
Table 4. Pin Functions by Primary and Alternate Purpose (continued)  
Drive  
Pin  
Group  
Primary  
Function  
Secondary  
Function  
Tertiary  
Quaternary  
Function  
Slew Rate / Pull-up /  
Pin on  
Pin on 81  
MAPBGA  
Pin on 64  
LQFP  
Strength /  
Function  
Control1 Pull-down2 100 LQFP  
Control1  
Interrupts  
IRQ7  
IRQ6  
IRQ5  
IRQ4  
IRQ3  
IRQ2  
IRQ1  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Low  
Low  
Low  
Low  
Low  
Low  
High  
FAST  
FAST  
FAST  
FAST  
FAST  
FAST  
FAST  
95  
94  
91  
90  
89  
88  
87  
C4  
B4  
A4  
C5  
A5  
B5  
C6  
58  
57  
56  
SYNCA  
USB_ALT_CL  
K
pull-up4  
JTAG/BDM  
JTAG_EN  
N/A  
N/A  
pull-down  
pull-up5  
26  
64  
J2  
17  
44  
TCLK/  
CLKOUT  
High  
FAST  
C7  
PSTCLK  
TDI/DSI  
N/A  
High  
N/A  
N/A  
FAST  
N/A  
pull-up5  
79  
80  
76  
B7  
A7  
A8  
50  
51  
49  
TDO/DSO  
TMS  
pull-up5  
/BKPT  
TRST  
N/A  
N/A  
pull-up5  
85  
B6  
54  
/DSCLK  
Mode  
CLKMOD0  
CLKMOD1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
pull-down6  
pull-down6  
pull-up  
40  
39  
21  
G5  
H5  
G3  
24  
16  
Selection6  
RCON/  
EZPCS  
Table 4. Pin Functions by Primary and Alternate Purpose (continued)  
Drive  
Pin  
Group  
Primary  
Function  
Secondary  
Function  
Tertiary  
Quaternary  
Function  
Slew Rate / Pull-up /  
Pin on  
Pin on 81  
MAPBGA  
Pin on 64  
LQFP  
Strength /  
Function  
Control1 Pull-down2 100 LQFP  
Control1  
QSPI  
QSPI_DIN/  
EZPD  
URXD1  
UTXD1  
URTS1  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
PDSR[2]  
PDSR[1]  
PDSR[3]  
PDSR[7]  
PDSR[6]  
PSRR[2]  
PSRR[1]  
PSRR[3]  
16  
17  
18  
12  
13  
F3  
G1  
G2  
F1  
F2  
12  
13  
14  
QSPI_DOUT/  
EZPQ  
QSPI_CLK/  
EZPCK  
SCL  
SYNCA  
pull-up8  
QSPI_CS3  
PSRR[7] pull-up/pull-  
down7  
QSPI_CS2  
PSRR[6] pull-up/pull-  
down7  
QSPI_CS1  
QSPI_CS0  
RSTI  
UCTS1  
GPIO  
GPIO  
PDSR[5]  
PDSR[4]  
N/A  
PSRR[5]  
PSRR[4]  
N/A  
pull-up8  
pull-up9  
19  
20  
96  
97  
5
H2  
H1  
A3  
B3  
C2  
15  
59  
60  
3
SDA  
Reset9  
RSTO  
high  
FAST  
N/A  
Test  
TEST  
N/A  
pull-down  
pull-up10  
pull-up10  
pull-up10  
pull-up10  
Timers, 16-bit  
GPT3  
PWM7  
PWM5  
PWM3  
PWM1  
PWM6  
PWM4  
PWM2  
PWM0  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
PDSR[23] PSRR[23]  
PDSR[22] PSRR[22]  
PDSR[21] PSRR[21]  
PDSR[20] PSRR[20]  
PDSR[19] PSRR[19]  
PDSR[18] PSRR[18]  
PDSR[17] PSRR[17]  
PDSR[16] PSRR[16]  
PDSR[11] PSRR[11]  
PDSR[10] PSRR[10]  
63  
58  
33  
38  
32  
31  
37  
36  
6
19  
18  
23  
22  
4
GPT2  
E8  
J4  
GPT1  
GPT0  
J5  
Timers, 32-bit  
DTIN3  
DTIN2  
DTIN1  
DTIN0  
UCTS0  
URTS0  
URXD0  
UTXD0  
DTOUT3  
DTOUT2  
DTOUT1  
DTOUT0  
H3  
J3  
G4  
H4  
C1  
D3  
D1  
D2  
UART 0  
9
7
PDSR[9]  
PDSR[8]  
PSRR[9]  
PSRR[8]  
7
5
8
6
Table 4. Pin Functions by Primary and Alternate Purpose (continued)  
Drive  
Pin  
Group  
Primary  
Function  
Secondary  
Function  
Tertiary  
Quaternary  
Function  
Slew Rate / Pull-up /  
Pin on  
Pin on 81  
MAPBGA  
Pin on 64  
LQFP  
Strength /  
Function  
Control1 Pull-down2 100 LQFP  
Control1  
UART 1  
UCTS1  
URTS1  
URXD1  
UTXD1  
UCTS2  
URTS2  
URXD2  
UTXD2  
VSTBY  
VDDUSB  
VSSUSB  
USB_DM  
USB_DP  
VDD  
SYNCA  
SYNCB  
URXD2  
UTXD2  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
PDSR[15] PSRR[15]  
PDSR[14] PSRR[14]  
PDSR[13] PSRR[13]  
PDSR[12] PSRR[12]  
PDSR[27] PSRR[27]  
PDSR[26] PSRR[26]  
PDSR[25] PSRR[25]  
PDSR[24] PSRR[24]  
98  
4
C3  
B1  
B2  
A2  
61  
2
100  
99  
27  
30  
28  
29  
55  
62  
59  
61  
60  
63  
62  
37  
43  
40  
42  
41  
UART 2  
VSTBY  
USB  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
F8  
D8  
F7  
D9  
E9  
VDD  
VSS  
1,2,14,22,  
23,34,41,  
57,68,81,93  
D5,E3–E7, 1,10,20,39,5  
F5  
2
VSS  
N/A  
N/A  
3,15,24,25,3 A1,A9,D4,D 11,21,38,  
5,42,56,  
6,F4,F6,J1  
53,64  
67,75,82,92  
1
The PDSR and PSSR registers are described in the General Purpose I/O chapter. All programmable signals default to 2 mA drive and FAST slew rate in  
normal (single-chip) mode.  
All signals have a pull-up in GPIO mode.  
These signals are multiplexed on other pins.  
2
3
4
5
6
7
For primary and GPIO functions only.  
Only when JTAG mode is enabled.  
CLKMOD0 and CLKMOD1 have internal pull-down resistors; however, the use of external resistors is very strongly recommended.  
When these pins are configured for USB signals, they should use the USB transceiver’s internal pull-up/pull-down resistors (see the description of the  
OTG_CTRL register). If these pins are not configured for USB signals, each pin should be pulled down externally using a 10 kresistor.  
For secondary and GPIO functions only.  
RSTI has an internal pull-up resistor; however, the use of an external resistor is very strongly recommended.  
8
9
10 For GPIO function. Primary Function has pull-up control within the GPT module.  
Family Configurations  
1.3  
Reset Signals  
Table 5 describes signals used to reset the chip or as a reset indication.  
Table 5. Reset Signals  
Signal Name  
Abbreviation  
Function  
I/O  
Reset In  
RSTI  
Primary reset input to the device. Asserting RSTI for at least 8 CPU  
clock cycles immediately resets the CPU and peripherals.  
I
Reset Out  
RSTO  
Driven low for 1024 CPU clocks after the reset source has deasserted.  
O
1.4  
PLL and Clock Signals  
Table 6 describes signals used to support the on-chip clock generation circuitry.  
Table 6. PLL and Clock Signals  
Signal Name  
Abbreviation  
Function  
I/O  
External Clock In  
EXTAL  
Crystal oscillator or external clock input except when the on-chip  
relaxation oscillator is used.  
I
Crystal  
XTAL  
Crystal oscillator output except when CLKMOD0=0, then sampled as  
part of the clock mode selection mechanism.  
O
O
Clock Out  
CLKOUT  
This output signal reflects the internal system clock.  
1.5  
Mode Selection  
Table 7 describes signals used in mode selection; Table 8 describes the particular clocking modes.  
Table 7. Mode Selection Signals  
Signal Name  
Abbreviation  
Function  
I/O  
Clock Mode Selection CLKMOD[1:0] Selects the clock boot mode.  
I
Reset Configuration  
Test  
RCON  
TEST  
The Serial Flash Programming mode is entered by asserting the  
RCON pin (with the TEST pin negated) as the chip comes out of  
reset. During this mode, the EzPort has access to the flash memory  
which can be programmed from an external device.  
Reserved for factory testing only and in normal modes of operation  
should be connected to VSS to prevent unintentional activation of  
test functions.  
I
Table 8. Clocking Modes  
Configure the clock mode.  
CLKMOD[1:0]  
XTAL  
00  
00  
01  
10  
10  
11  
0
1
PLL disabled, clock driven by external oscillator  
PLL disabled, clock driven by on-chip oscillator  
PLL disabled, clock driven by crystal  
N/A  
0
PLL in normal mode, clock driven by external oscillator1  
Reserved2  
1
N/A  
PLL in normal mode, clock driven by crystal1  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
21  
 
 
 
 
Family Configurations  
1
The PLL pre-divider (CCHR+1) reset value is 6 and the PLL input reference range is 2–10 MHz,  
so in order to boot with the PLL enabled, the external clock or crystal frequency needs to be  
greater than 12 MHz. MCF5222x devices cannot boot with PLL enabled from an external clock  
or crystal oscillator with frequency less than 12 MHz. This constraint does not apply to booting  
with PLL disabled.  
2
Cannot boot from the Internal 8 MHz Relaxation oscillator with the PLL enabled. Refer Note1.  
Thus this mode has been removed from the table.  
1.6  
External Interrupt Signals  
Table 9 describes the external interrupt signals.  
Table 9. External Interrupt Signals  
Signal Name  
Abbreviation  
Function  
I/O  
External Interrupts  
IRQ[7:1]  
External interrupt sources.  
I
1.7  
Queued Serial Peripheral Interface (QSPI)  
Table 10 describes the QSPI signals.  
Table 10. Queued Serial Peripheral Interface (QSPI) Signals  
Abbreviation Function  
Signal Name  
I/O  
QSPI Synchronous  
Serial Output  
QSPI_DOUT Provides the serial data from the QSPI and can be programmed to be  
driven on the rising or falling edge of QSPI_CLK.  
O
QSPI Synchronous  
Serial Data Input  
QSPI_DIN Provides the serial data to the QSPI and can be programmed to be  
sampled on the rising or falling edge of QSPI_CLK.  
I
QSPI Serial Clock  
QSPI_CLK Provides the serial clock from the QSPI. The polarity and phase of  
QSPI_CLK are programmable.  
O
O
SynchronousPeripheral QSPI_CS[3:0] QSPI peripheral chip select; can be programmed to be active high or  
Chip Selects  
low.  
1.8  
USB On-the-Go  
This device is compliant with industry standard USB 2.0 specification.  
2
1.9  
I C I/O Signals  
2
Table 11 describes the I C serial interface module signals.  
2
Table 11. I C I/O Signals  
Function  
Signal Name  
Abbreviation  
I/O  
Serial Clock  
SCLn  
Open-drain clock signal for the for the I2C interface. When the bus is  
In master mode, this clock is driven by the I2C module; when the bus  
is in slave mode, this clock becomes the clock input.  
I/O  
Serial Data  
SDAn  
Open-drain signal that serves as the data input/output for the I2C  
interface.  
I/O  
MCF52223 ColdFire Microcontroller, Rev. 3  
22  
Freescale Semiconductor  
 
 
 
Family Configurations  
1.10 UART Module Signals  
Table 12 describes the UART module signals.  
Table 12. UART Module Signals  
Function  
Signal Name  
Abbreviation  
I/O  
Transmit Serial Data  
Output  
UTXDn  
Transmitter serial data outputs for the UART modules. The output is  
held high (mark condition) when the transmitter is disabled, idle, or in  
the local loopback mode. Data is shifted out, LSB first, on this pin at  
the falling edge of the serial clock source.  
O
Receive Serial Data  
Input  
URXDn  
Receiver serial data inputs for the UART modules. Data is received on  
this pin LSB first. When the UART clock is stopped for power-down  
mode, any transition on this pin restarts the clock.  
I
Clear-to-Send  
UCTSn  
URTSn  
Indication to the UART modules that they can begin data  
transmission.  
I
Request-to-Send  
Automatic request-to-send outputs from the UART modules. This  
signal can also be configured to be asserted and negated as a  
function of the RxFIFO level.  
O
1.11 DMA Timer Signals  
Table 13 describes the signals of the four DMA timer modules.  
Table 13. DMA Timer Signals  
Function  
Signal Name  
Abbreviation  
I/O  
DMA Timer Input  
DTIN  
Event input to the DMA timer modules.  
I
DMA Timer Output  
DTOUT  
Programmable output from the DMA timer modules.  
O
1.12 ADC Signals  
Table 14 describes the signals of the Analog-to-Digital Converter.  
Table 14. ADC Signals  
Signal Name  
Abbreviation  
Function  
I/O  
Analog Inputs  
AN[7:0]  
VRH  
Inputs to the analog-to-digital converter.  
Reference voltage high and low inputs.  
I
I
Analog Reference  
VRL  
I
Analog Supply  
VDDA  
VSSA  
Isolate the ADC circuitry from power supply noise.  
I
ADC Sync Inputs  
SYNCA /  
SYNCB  
These signals can initiate an analog-to-digital conversion  
process.  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
23  
 
 
 
Family Configurations  
1.13 General Purpose Timer Signals  
Table 15 describes the general purpose timer signals.  
Table 15. GPT Signals  
Signal Name  
Abbreviation  
Function  
Inputs to or outputs from the general purpose timer module.  
I/O  
I/O  
General Purpose Timer  
Input/Output  
GPT[3:0]  
1.14 Pulse Width Modulator Signals  
Table 16 describes the PWM signals.  
Table 16. PWM Signals  
Signal Name  
Abbreviation  
Function  
I/O  
PWM Output Channels  
PWM[7:0] Pulse width modulated output for PWM channels.  
O
1.15 Debug Support Signals  
These signals are used as the interface to the on-chip JTAG controller and the BDM logic.  
Table 17. Debug Support Signals  
Signal Name  
Abbreviation  
Function  
I/O  
JTAG Enable  
Test Reset  
JTAG_EN  
TRST  
Select between debug module and JTAG signals at reset.  
I
I
This active-low signal is used to initialize the JTAG logic  
asynchronously.  
Test Clock  
TCLK  
TMS  
Used to synchronize the JTAG logic.  
I
I
Test Mode Select  
Used to sequence the JTAG state machine. TMS is sampled on the  
rising edge of TCLK.  
Test Data Input  
TDI  
Serial input for test instructions and data. TDI is sampled on the rising  
edge of TCLK.  
I
Test Data Output  
TDO  
Serial output for test instructions and data. TDO is tri-stateable and is  
actively driven in the shift-IR and shift-DR controller states. TDO  
changes on the falling edge of TCLK.  
O
Development Serial  
Clock  
DSCLK  
BKPT  
Development Serial Clock - Internally synchronized input. (The logic  
level on DSCLK is validated if it has the same value on two  
consecutive rising bus clock edges.) Clocks the serial communication  
port to the debug module during packet transfers. Maximum frequency  
is PSTCLK/5. At the synchronized rising edge of DSCLK, the data  
input on DSI is sampled and DSO changes state.  
I
I
Breakpoint  
Breakpoint - Input used to request a manual breakpoint. Assertion of  
BKPT puts the processor into a halted state after the current  
instruction completes. Halt status is reflected on processor  
status/debug data signals (PST[3:0] and PSTDDATA[7:0]) as the  
value 0xF. If CSR[BKD] is set (disabling normal BKPT functionality),  
asserting BKPT generates a debug interrupt exception in the  
processor.  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
24  
 
 
Family Configurations  
Signal Name  
Table 17. Debug Support Signals (continued)  
Abbreviation  
Function  
I/O  
Development Serial  
Input  
DSI  
Development Serial Input - Internally synchronized input that provides  
data input for the serial communication port to the debug module, after  
the DSCLK has been seen as high (logic 1).  
I
Development Serial  
Output  
DSO  
Development Serial Output - Provides serial output communication for  
debug module responses. DSO is registered internally. The output is  
delayed from the validation of DSCLK high.  
O
O
O
Debug Data  
DDATA[3:0] Display captured processor data and breakpoint status. The CLKOUT  
signal can be used by the development system to know when to  
sample DDATA[3:0].  
Processor Status Clock  
PSTCLK  
Processor Status Clock - Delayed version of the processor clock. Its  
rising edge appears in the center of valid PST and DDATA output.  
PSTCLK indicates when the development system should sample PST  
and DDATA values.  
If real-time trace is not used, setting CSR[PCD] keeps PSTCLK, and  
PST and DDATA outputs from toggling without disabling triggers.  
Non-quiescent operation can be reenabled by clearing CSR[PCD],  
although the external development systems must resynchronize with  
the PST and DDATA outputs.  
PSTCLK starts clocking only when the first non-zero PST value (0xC,  
0xD, or 0xF) occurs during system reset exception processing.  
Processor Status  
Outputs  
PST[3:0]  
ALLPST  
Indicate core status. Debug mode timing is synchronous with the  
processor clock; status is unrelated to the current bus transfer. The  
CLKOUT signal can be used by the development system to know  
when to sample PST[3:0].  
O
O
All Processor Status  
Outputs  
Logical AND of PST[3:0]. The CLKOUT signal can be used by the  
development system to know when to sample ALLPST.  
1.16 EzPort Signal Descriptions  
Table 18 contains a list of EzPort external signals.  
Table 18. EzPort Signal Descriptions  
Abbreviation Function  
EZPCK Shift clock for EzPort transfers.  
Signal Name  
I/O  
EzPort Clock  
I
I
EzPort Chip Select  
EZPCS  
EZPD  
EZPQ  
Chip select for signalling the start and end of  
serial transfers.  
EzPort Serial Data In  
EzPort Serial Data Out  
EZPD is sampled on the rising edge of  
EZPCK.  
I
EZPQ transitions on the falling edge of  
EZPCK.  
O
MCF52223 ColdFire Microcontroller, Rev. 3  
25  
Freescale Semiconductor  
 
Family Configurations  
1.17 Power and Ground Pins  
The pins described in Table 19 provide system power and ground to the chip. Multiple pins are provided for adequate current  
capability. All power supply pins must have adequate bypass capacitance for high-frequency noise suppression.  
Table 19. Power and Ground Pins  
Signal Name  
Abbreviation  
Function  
PLL Analog Supply  
VDDPLL,  
VSSPLL  
Dedicated power supply signals to isolate the sensitive PLL analog  
circuitry from the normal levels of noise present on the digital power  
supply.  
USB Power Supply  
USB Ground Supply  
Positive Supply  
Ground  
VDDUSB  
This pin supplies power to the USB Module.  
V
SSUSB  
VDD  
This pin is the negative (ground) supply pin for the USB Module.  
These pins supply positive power to the core logic.  
This pin is the negative supply (ground) to the chip.  
VSS  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
26  
 
Electrical Characteristics  
2
Electrical Characteristics  
This section contains electrical specification tables and reference timing diagrams for the microcontroller unit, including  
detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.  
NOTE  
The parameters specified in this data sheet supersede any values found in the module  
specifications.  
2.1  
Maximum Ratings  
1, 2  
Table 20. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
VDDPLL  
VSTBY  
VDDUSB  
VIN  
–0.3 to 4.0  
–0.3 to 4.0  
–0.3 to 4.0  
–0.3 to 4.0  
–0.3 to 4.0  
0 to 3.3  
V
V
Clock synthesizer supply voltage  
RAM standby supply voltage  
USB standby supply voltage  
Digital input voltage 3  
V
V
V
EXTAL pin voltage  
VEXTAL  
VXTAL  
IDD  
V
XTAL pin voltage  
0 to 3.3  
V
Instantaneous maximum current  
25  
mA  
Single pin limit (applies to all pins)4, 5  
Operating temperature range (packaged)  
TA  
(TL - TH)  
–40 to 856  
C  
C  
Storage temperature range  
Tstg  
–65 to 150  
1
2
Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings  
are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond  
those listed may affect device reliability or cause permanent damage to the device.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher  
than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if  
unused inputs are tied to an appropriate logic voltage level (VSS or VDD).  
3
Input must be current limited to the IDD value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then  
use the larger of the two values.  
4
5
All functional non-supply pins are internally clamped to VSS and VDD  
.
The power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (Vin > VDD) is greater than IDD, the  
injection current may flow out of VDD and could result in the external power supply going out of  
regulation. Ensure that the external VDD load shunts current greater than maximum injection current.  
This is the greatest risk when the MCU is not consuming power (e.g., no clock).  
6
Depending on the packaging; see the orderable part number summary.  
MCF52223 ColdFire Microcontroller, Rev. 3  
27  
Freescale Semiconductor  
Electrical Characteristics  
2.2  
Current Consumption  
Table 21, Table 22, and Figure 5 show the typical current consumption in low-power modes.  
Table 21. Current Consumption in Low-Power Mode, Code From Flash Memory  
1,2,3  
Mode  
8 MHz (Typ)  
16 MHz (Typ)  
0.070  
2.9  
64 MHz (Typ)  
80 MHz (Typ)  
Units  
Stop mode 3 (Stop 11)4  
Stop mode 2 (Stop 10)4  
Stop mode 1 (Stop 01)4,5  
Stop mode 0 (Stop 00)5  
Wait / Doze  
mA  
3.6  
3.6  
3.9  
3.9  
6
6
6.7  
6.7  
13  
23  
38  
44  
Run  
TBD  
TBD  
TBD  
TBD  
1
All values are measured with a 3.30V power supply. Tests performed at room temperature.  
2
3
4
5
Refer to the Power Management chapter in the MCF52223 Reference Manual for more information on  
low-power modes.  
CLKOUT, PST/DDATA signals, and all peripheral clocks except UART0 and CFM off before entering  
low-power mode. CLKOUT is disabled.  
See the description of the Low-Power Control Register (LPCR) in the MCF52223 Reference Manual for  
more information on stop modes 0–3.  
Results are identical to STOP 00 for typical values because they only differ by CLKOUT power  
consumption. CLKOUT is already disabled in this instance prior to entering low-power mode.  
1,2,3  
Table 22. Current Consumption in Low-Power Mode, Code From SRAM  
Mode  
8 MHz (Typ)  
16 MHz (Typ)  
0.010  
2.7  
64 MHz (Typ)  
80 MHz (Typ)  
Units  
Stop mode 3 (Stop 11)4  
Stop mode 2 (Stop 10)4  
Stop mode 1 (Stop 01)4,5  
Stop mode 0 (Stop 00)5  
Wait / Doze  
mA  
3.4  
3.4  
6
3.7  
3.7  
8
5.8  
5.8  
22  
6.5  
6.5  
27  
Run  
7
11  
33  
41  
1
2
All values are measured with a 3.30V power supply. Tests performed at room temperature.  
Refer to the Power Management chapter in the MCF52223 Reference Manual for more information on  
low-power modes.  
CLKOUT, PST/DDATA signals, and all peripheral clocks except UART0 off before entering low-power  
mode. CLKOUT is disabled. Code executed from SRAM with flash memory shut off by writing 0x0 to the  
FLASHBAR register.  
See the description of the Low-Power Control Register (LPCR) in the MCF52223 Reference Manual for  
more information on stop modes 0–3.  
3
4
5
Results are identical to STOP 00 for typical values because they only differ by CLKOUT power  
consumption. CLKOUT is already disabled in this instance prior to entering low-power mode.  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
28  
 
 
 
 
Electrical Characteristics  
Figure 5. Plot of Current Consumption in Low-Power Modes  
Table 23. Typical Active Current Consumption Specifications  
Typical1  
Active  
(SRAM)  
Typical1  
Active  
(Flash)  
Peak2  
Active  
(Flash)  
Characteristic  
Symbol  
Unit  
8 MHz core & I/O  
IDD  
8
11  
19  
44  
52  
18  
33  
82  
98  
mA  
16 MHz core & I/O  
64 MHz core & I/O  
80 MHz core & I/O  
RAM standby supply current  
11  
35  
43  
ISTBY  
A  
mA  
mA  
Normal operation: VDD > VSTBY - 0.3 V  
Transient condition: VSTBY - 0.3 V > VDD > VSS + 0.5 V  
Standby operation: VDD < VSS + 0.5 V  
0.4  
TBD  
16  
Analog supply current  
• Normal operation  
• Standby mode  
IDDA  
2(see note 3)  
13  
TBD  
0
• Powered down  
USB supply current  
PLL supply current  
IDDUSB  
IDDPLL  
2
6(see note 4) mA  
1
2
3
4
Tested at room temperature with CPU polling a status register. All clocks were off except the UART and CFM (when  
running from flash memory).  
Peak current measured with all modules active, CPU polling a status register, and default drive strength with matching  
load.  
Tested using Auto Power Down (APD), which powers down the ADC between conversions; ADC running at 4 MHz in  
Once Parallel mode with a sample rate of 3 kHz.  
Tested with the PLL MFD set to 7 (max value). Setting the MFD to a lower value results in lower current consumption.  
MCF52223 ColdFire Microcontroller, Rev. 3  
29  
Freescale Semiconductor  
 
Electrical Characteristics  
2.3  
Thermal Characteristics  
Table 24 lists thermal resistance values.  
Table 24. Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
100 LQFP Junction to ambient, natural convection  
Junction to ambient, natural convection  
Junction to ambient, (@200 ft/min)  
Junction to ambient, (@200 ft/min)  
Junction to board  
Single layer board (1s)  
JA  
JA  
JMA  
JMA  
JB  
JC  
jt  
531,2  
391,3  
421,3  
331,3  
254  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
oC  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
Junction to case  
95  
Junction to top of package  
Natural convection  
26  
Maximum operating junction temperature  
81 MAPBGA Junction to ambient, natural convection  
Junction to ambient, natural convection  
Junction to ambient, (@200 ft/min)  
Junction to ambient, (@200 ft/min)  
Junction to board  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
Tj  
105  
611,2  
352,3  
502,3  
312,3  
204  
JA  
JA  
JMA  
JMA  
JB  
JC  
jt  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
oC  
Junction to case  
125  
Junction to top of package  
Natural convection  
26  
Maximum operating junction temperature  
Tj  
105  
621,2  
431,3  
501,3  
361,3  
264  
64 LQFP  
Junction to ambient, natural convection  
Junction to ambient, natural convection  
Junction to ambient (@200 ft/min)  
Junction to ambient (@200 ft/min)  
Junction to board  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
JA  
JA  
JMA  
JMA  
JB  
JC  
jt  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
oC  
Junction to case  
95  
Junction to top of package  
Natural convection  
26  
Maximum operating junction temperature  
Tj  
105  
1
JA and jt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale  
recommends the use of JA and power dissipation specifications in the system design to prevent device junction  
temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures  
can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature  
specification can be verified by physical measurement in the customer’s system using the jt parameter, the device power  
dissipation, and the method described in EIA/JESD Standard 51-2.  
2
3
4
Per JEDEC JESD51-2 with the single-layer board (JESD51-3) horizontal.  
Per JEDEC JESD51-6 with the board JESD51-7) horizontal.  
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board  
temperature is measured on the top surface of the board near the package.  
5
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
30  
 
Electrical Characteristics  
6
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written  
in conformance with Psi-JT.  
The average chip-junction temperature (TJ) in C can be obtained from:  
(1)  
TJ = TA + PD  JMA  
Where:  
TA  
= ambient temperature, C  
JA  
PD  
= package thermal resistance, junction-to-ambient, C/W  
= PINT PI/O  
PINT  
PI/O  
= chip internal power, IDD VDD, watts  
= power dissipation on input and output pins — user determined, watts  
For most applications PI/O PINT and can be ignored. An approximate relationship between PD and TJ (if PI/O is neglected) is:  
PD = K  TJ + 273C  
(2)  
Solving equations 1 and 2 for K gives:  
K = PD (TA + 273 C) + JMA PD  
2
(3)  
where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring PD (at equilibrium)  
for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving equations (1) and (2) iteratively for  
any value of TA.  
2.4  
Flash Memory Characteristics  
The flash memory characteristics are shown in Table 25 and Table 26.  
Table 25. SGFM Flash Program and Erase Characteristics  
(VDD = 3.0 to 3.6 V)  
Parameter  
System clock (read only)  
System clock (program/erase)2  
Symbol  
Min  
Typ  
Max  
Unit  
fsys(R)  
0
66.67 or 801  
66.67 or 801  
MHz  
MHz  
fsys(P/E)  
0.15  
1
2
Depending on packaging; see the orderable part number summary.  
Refer to the flash memory section for more information  
Table 26. SGFM Flash Module Life Characteristics  
(VDD = 3.0 to 3.6 V)  
Parameter  
Symbol  
Value  
Unit  
Maximum number of guaranteed program/erase cycles1 before failure  
P/E  
10,0002  
10  
Cycles  
Years  
Data retention at average operating temperature of 85C  
Retention  
1
A program/erase cycle is defined as switching the bits from 1 0 1.  
Reprogramming of a flash memory array block prior to erase is not required.  
2
MCF52223 ColdFire Microcontroller, Rev. 3  
31  
Freescale Semiconductor  
 
 
 
Electrical Characteristics  
2.5  
EzPort Electrical Specifications  
Table 27. EzPort Electrical Specifications  
Name  
Characteristic  
Min  
Max  
Unit  
EP1  
EP1a  
EP2  
EP3  
EP4  
EP5  
EP6  
EP7  
EP8  
EP9  
EPCK frequency of operation (all commands except READ)  
EPCK frequency of operation (READ command)  
EPCS_b negation to next EPCS_b assertion  
EPCS_B input valid to EPCK high (setup)  
EPCK high to EPCS_B input invalid (hold)  
EPD input valid to EPCK high (setup)  
fsys / 2  
MHz  
MHz  
ns  
f
sys / 8  
2 × Tcyc  
5
5
ns  
ns  
2
ns  
EPCK high to EPD input invalid (hold)  
5
ns  
EPCK low to EPQ output valid (out setup)  
EPCK low to EPQ output invalid (out hold)  
EPCS_B negation to EPQ tri-state  
0
12  
ns  
ns  
12  
ns  
2.6  
ESD Protection  
1, 2  
Table 28. ESD Protection Characteristics  
Characteristics  
Symbol  
Value  
Units  
ESD target for Human Body Model  
ESD target for Machine Model  
HBM circuit description  
HBM  
MM  
2000  
200  
1500  
100  
0
V
V
Rseries  
C
Rseries  
C
pF  
MM circuit description  
200  
pF  
Number of pulses per pin (HBM)  
• Positive pulses  
• Negative pulses  
1
1
Number of pulses per pin (MM)  
• Positive pulses  
• Negative pulses  
3
3
Interval of pulses  
1
sec  
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for  
Automotive Grade Integrated Circuits.  
2
A device is defined as a failure if after exposure to ESD pulses the device no longer  
meets the device specification requirements. Complete DC parametric and functional  
testing is performed per applicable device specification at room temperature followed by  
hot temperature, unless specified otherwise in the device specification.  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
32  
Electrical Characteristics  
2.7  
DC Electrical Specifications  
1
Table 29. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Max  
Unit  
Supply voltage  
VDD  
VSTBY  
VIH  
3.0  
1.8  
3.6  
3.6  
V
V
Standby voltage  
Input high voltage  
0.7 VDD  
VSS – 0.3  
0.06 VDD  
2.15  
4.0  
V
Input low voltage  
VIL  
0.35 VDD  
V
Input hysteresis2  
VHYS  
VLVD  
VLVDHYS  
Iin  
mV  
V
Low-voltage detect trip voltage (VDD falling)  
Low-voltage detect hysteresis (VDD rising)  
Input leakage current  
2.3  
60  
120  
mV  
A  
–1.0  
1.0  
Vin = VDD or VSS, digital pins  
Output high voltage (all input/output and all output pins)  
IOH = –2.0 mA  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
VDD – 0.5  
0.5  
V
V
V
V
V
V
Output low voltage (all input/output and all output pins)  
IOL = 2.0mA  
Output high voltage (high drive)  
IOH = -5 mA  
VDD – 0.5  
Output low voltage (high drive)  
IOL = 5 mA  
0.5  
Output high voltage (low drive)  
IOH = -2 mA  
VDD - 0.5  
Output low voltage (low drive)  
IOL = 2 mA  
0.5  
–130  
Weak internal pull Up device current, tested at VIL Max.3  
IAPU  
Cin  
–10  
A  
Input Capacitance 4  
pF  
• All input-only pins  
• All input/output (three-state) pins  
7
7
1
Refer to Table 30 for additional PLL specifications.  
2
Only for pins: IRQ1, IRQ2. IRQ3, IRQ4, IRQ5, IRQ6. IRQ7, RSTIN_B, RCON_B, PCS0, SCK, I2C_SDA, I2C_SCL,  
TCLK, TRST_B  
3
4
Refer to Table 13 for pins having internal pull-up devices.  
This parameter is characterized before qualification rather than 100% tested.  
MCF52223 ColdFire Microcontroller, Rev. 3  
33  
Freescale Semiconductor  
Electrical Characteristics  
2.8  
Clock Source Electrical Specifications  
Table 30. Oscillator and PLL Electrical Specifications  
(VDD and VDDPLL = 2.7 to 3.6 V, VSS = VSSPLL = 0 V)  
Characteristic  
Symbol  
Min  
Max  
Unit  
Clock Source Frequency Range of EXTAL Frequency Range  
MHz  
• Crystal  
fcrystal  
fext  
1
0
25.02  
66.67 or 80  
• External1  
PLL reference frequency range  
fref_pll  
fsys  
2
10.0  
MHz  
MHz  
System frequency 3  
• External clock mode  
• On-chip PLL frequency  
0
66.67 or 804  
66.67 or 804  
f
ref / 32  
Loss of reference frequency 5, 7  
Self clocked mode frequency 6  
Crystal start-up time 7, 8  
fLOR  
fSCM  
tcst  
100  
1
1000  
5
kHz  
MHz  
ms  
10  
EXTAL input high voltage  
• External reference  
VIHEXT  
V
2.0  
3.02  
EXTAL input low voltage  
• External reference  
VILEXT  
V
VSS  
0.8  
500  
60  
PLL lock time4,9  
tlpll  
tdc  
s  
Duty cycle of reference 4  
Frequency un-LOCK range  
Frequency LOCK range  
40  
% fref  
% fref  
% fref  
fUL  
–1.5  
–0.75  
1.5  
fLCK  
Cjitter  
0.75  
CLKOUT period jitter 4, 5, 10 ,11, measured at fSYS Max  
• Peak-to-peak (clock edge to clock edge)  
• Long term (averaged over 2 ms interval)  
10  
.01  
% fsys  
MHz  
On-chip oscillator frequency  
foco  
7.84  
8.16  
1
2
3
4
5
6
In external clock mode, it is possible to run the chip directly from an external clock source without enabling the PLL.  
This value has been updated.  
All internal registers retain data at 0 Hz.  
Depending on packaging; see the orderable part number summary.  
Loss of Reference Frequency is the reference frequency detected internally, which transitions the PLL into self clocked mode.  
Self clocked mode frequency is the frequency at which the PLL operates when the reference frequency falls below fLOR with  
default MFD/RFD settings.  
7
8
9
This parameter is characterized before qualification rather than 100% tested.  
Proper PC board layout procedures must be followed to achieve specifications.  
This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the  
synthesizer control register (SYNCR).  
10 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency increase the Cjitter percentage  
for a given interval.  
11 Based on slow system clock of 40 MHz measured at fsys max.  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
34  
 
 
 
Electrical Characteristics  
2.9  
General Purpose I/O Timing  
GPIO can be configured for certain pins of the QSPI, DDR Control, timer, UART, Interrupt and USB interfaces. When in GPIO  
mode, the timing specification for these pins is given in Table 31 and Figure 6.  
The GPIO timing is met under the following load test conditions:  
50 pF / 50 for high drive  
25 pF / 25 for low drive  
Table 31. GPIO Timing  
NUM  
Characteristic  
Symbol  
Min  
Max  
Unit  
G1  
G2  
G3  
G4  
CLKOUT High to GPIO Output Valid  
CLKOUT High to GPIO Output Invalid  
GPIO Input Valid to CLKOUT High  
CLKOUT High to GPIO Input Invalid  
tCHPOV  
tCHPOI  
tPVCH  
tCHPI  
1.5  
9
10  
ns  
ns  
ns  
ns  
1.5  
CLKOUT  
G2  
G1  
GPIO Outputs  
G3  
G4  
GPIO Inputs  
Figure 6. GPIO Timing  
2.10 Reset Timing  
Table 32. Reset and Configuration Override Timing  
(VDD = 3.0 to 3.6 V, VSS = 0 V, TA = TL to TH)1  
NUM  
Characteristic  
Symbol  
Min  
Max  
Unit  
R1 RSTI input valid to CLKOUT High  
R2 CLKOUT High to RSTI Input invalid  
R3 RSTI input valid time 2  
tRVCH  
tCHRI  
9
1.5  
5
10  
ns  
ns  
tRIVT  
tCYC  
ns  
R4 CLKOUT High to RSTO Valid  
tCHROV  
1
2
All AC timing is shown with respect to 50% VDD levels unless otherwise noted.  
During low power STOP, the synchronizers for the RSTI input are bypassed and RSTI is asserted asynchronously to the  
system. Thus, RSTI must be held a minimum of 100 ns.  
MCF52223 ColdFire Microcontroller, Rev. 3  
35  
Freescale Semiconductor  
 
 
Electrical Characteristics  
CLKOUT  
RSTI  
1R1  
R2  
R3  
R4  
R4  
RSTO  
Figure 7. RSTI and Configuration Override Timing  
2
2.11 I C Input/Output Timing Specifications  
2
Table 33 lists specifications for the I C input timing parameters shown in Figure 8.  
2
Table 33. I C Input Timing Specifications between I2C_SCL and I2C_SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
11  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
2 tCYC  
8 tCYC  
1
ns  
ns  
ms  
ns  
ms  
ns  
ns  
ns  
ns  
Clock low period  
SCL/SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
0
1
SCL/SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
4 tCYC  
0
Data setup time  
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2 tCYC  
2 tCYC  
2
Table 34 lists specifications for the I C output timing parameters shown in Figure 8.  
2
Table 34. I C Output Timing Specifications between I2C_SCL and I2C_SDA  
Num  
Characteristic  
Min  
Max  
Units  
111 Start condition hold time  
6 tCYC  
10 tCYC  
ns  
ns  
s  
I21  
I32  
Clock low period  
I2C_SCL/I2C_SDA rise time  
(VIL = 0.5 V to VIH = 2.4 V)  
I41  
I53  
Data hold time  
7 tCYC  
3
ns  
ns  
I2C_SCL/I2C_SDA fall time  
(VIH = 2.4 V to VIL = 0.5 V)  
I61  
I71  
I81  
Clock high time  
Data setup time  
10 tCYC  
2 tCYC  
ns  
ns  
ns  
Start condition setup time (for repeated start  
condition only)  
20 tCYC  
I91  
Stop condition setup time  
10 tCYC  
ns  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
36  
 
 
Electrical Characteristics  
1
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the  
maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 34. The I2C  
interface is designed to scale the actual data transition time to move it to the middle of the SCL low  
period. The actual position is affected by the prescale and division values programmed into the IFDR;  
however, the numbers given in Table 34 are minimum values.  
2
3
Because SCL and SDA are open-collector-type outputs, which the processor can only actively drive  
low, the time SCL or SDA take to reach a high level depends on external signal capacitance and pull-up  
resistor values.  
Specified at a nominal 50-pF load.  
Figure 8 shows timing for the values in Table 33 and Table 34.  
I2  
I6  
I5  
SCL  
SDA  
I3  
I1  
I4  
I8  
I9  
I7  
2
Figure 8. I C Input/Output Timings  
2.12 Analog-to-Digital Converter (ADC) Parameters  
Table 35 lists specifications for the analog-to-digital converter.  
1
Table 35. ADC Parameters  
Name  
Characteristic  
Low reference voltage  
Min  
Typical  
Max  
Unit  
VREFL  
VREFH  
VDDA  
VADIN  
RES  
INL  
VSS  
VREFL  
3.0  
VREFH  
VDDA  
3.6  
V
V
High reference voltage  
ADC analog supply voltage  
Input voltages  
3.3  
V
VREFL  
12  
VREFH  
12  
V
Resolution  
Bits  
LSB3  
LSB  
LSB  
Integral non-linearity (full input signal range)2  
Integral non-linearity (10% to 90% input signal range)4  
Differential non-linearity  
Monotonicity  
2.5  
2.5  
3  
INL  
3  
DNL  
–1 < DNL < 1  
<1  
GUARANTEED  
fADIC  
RAD  
ADC internal clock  
0.1  
VREFL  
5.0  
VREFH  
13  
MHz  
V
Conversion range  
tADPU  
tREC  
tADC  
tADS  
CADI  
ADC power-up time5  
6
tAIC cycles6  
tAIC cycles  
tAIC cycles  
tAIC cycles  
pF  
Recovery from auto standby  
Conversion time  
0
1
6
Sample time  
1
Input capacitance  
See Figure 9  
MCF52223 ColdFire Microcontroller, Rev. 3  
37  
Freescale Semiconductor  
 
 
Electrical Characteristics  
1
Table 35. ADC Parameters (continued)  
Name  
Characteristic  
Min  
Typical  
Max  
Unit  
XIN  
IADI  
Input impedance  
.99  
9.1  
See Figure 9  
3
W
mA  
mA  
mV  
Input injection current7, per pin  
0
IVREFH VREFH current  
VOFFSET Offset voltage internal reference  
8  
15  
1.01  
9
EGAIN  
Gain error (transfer path)  
1
VOFFSET Offset voltage external reference  
3  
mV  
dB  
SNR  
THD  
Signal-to-noise ratio  
62 to 66  
75  
Total harmonic distortion  
Spurious free dynamic range  
dB  
SFDR  
67 to 70.3  
61 to 63.9  
10.6  
dB  
SINAD Signal-to-noise plus distortion  
ENOB Effective number of bits  
dB  
Bits  
1
2
3
4
5
6
7
All measurements are made at VDD = 3.3V, VREFH = 3.3V, and VREFL = ground  
INL measured from VIN = VREFL to VIN = VREFH  
LSB = Least Significant Bit  
INL measured from VIN = 0.1VREFH to VIN = 0.9VREFH  
Includes power-up of ADC and VREF  
ADC clock cycles  
Current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the ADC  
2.13 Equivalent Circuit for ADC Inputs  
Figure 9 shows the ADC input circuit during sample and hold. S1 and S2 are always open/closed at the same time that S3 is  
closed/open. When S1/S2 are closed & S3 is open, one input of the sample and hold circuit moves to (VREFH-VREFL)/2, while  
the other charges to the analog input voltage. When the switches are flipped, the charge on C1 and C2 are averaged via S3, with  
the result that a single-ended analog input is switched to a differential voltage centered about (VREFH-VREFL)/2. The switches  
switch on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). There are additional  
capacitances associated with the analog input pad, routing, etc., but these do not filter into the S/H output voltage, as S1 provides  
isolation during the charge-sharing phase. One aspect of this circuit is that there is an on-going input current, which is a function  
of the analog input voltage, VREF and the ADC clock frequency.  
125W ESD Resistor  
8pF noise damping capacitor  
3
4
Analog Input  
S1  
C1  
C2  
S/H  
S3  
(VREFH- VREFL)/ 2  
S2  
2
1
C1 = C2 = 1pF  
1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8pF  
2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04pF  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
38  
Electrical Characteristics  
3. Equivalent resistance for the channel select mux; 100 s  
4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only  
connected to it at sampling time; 1.4pF  
1
5. Equivalent input impedance, when the input is selected =  
(ADC Clock Rate) (1.410-12  
)
Figure 9. Equivalent Circuit for A/D Loading  
2.14 DMA Timers Timing Specifications  
Table 36 lists timer module AC timings.  
Table 36. Timer Module AC Timing Specifications  
Name  
Characteristic1  
Min  
Max  
Unit  
T1  
T2  
DTIN0 / DTIN1 / DTIN2 / DTIN3 cycle time  
DTIN0 / DTIN1 / DTIN2 / DTIN3 pulse width  
3 tCYC  
1 tCYC  
ns  
ns  
1
All timing references to CLKOUT are given to its rising edge.  
2.15 QSPI Electrical Specifications  
Table 37 lists QSPI timings.  
Table 37. QSPI Modules AC Timing Specifications  
Characteristic  
Name  
Min  
Max  
Unit  
QS1  
QS2  
QS3  
QS4  
QS5  
QSPI_CS[3:0] to QSPI_CLK  
1
2
510  
10  
tCYC  
ns  
QSPI_CLK high to QSPI_DOUT valid  
QSPI_CLK high to QSPI_DOUT invalid (Output hold)  
QSPI_DIN to QSPI_CLK (Input setup)  
QSPI_DIN to QSPI_CLK (Input hold)  
ns  
9
ns  
9
ns  
The values in Table 37 correspond to Figure 10.  
MCF52223 ColdFire Microcontroller, Rev. 3  
39  
Freescale Semiconductor  
 
 
Electrical Characteristics  
QS1  
QSPI_CS[3:0]  
QSPI_CLK  
QS2  
QSPI_DOUT  
QSPI_DIN  
QS3  
QS4  
QS5  
Figure 10. QSPI Timing  
2.16 JTAG and Boundary Scan Timing  
Table 38. JTAG and Boundary Scan Timing  
Num  
Characteristics1  
TCLK frequency of operation  
Symbol  
Min  
Max  
Unit  
J1  
fJCYC  
tJCYC  
DC  
1/4  
3
fsys/2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
J2  
TCLK cycle period  
4 tCYC  
J3  
TCLK clock pulse width  
tJCW  
26  
0
J4  
TCLK rise and fall times  
tJCRF  
J5  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI Input data hold time after TCLK rise  
TCLK low to TDO data valid  
tBSDST  
tBSDHT  
tBSDV  
4
33  
33  
26  
8
J6  
26  
0
J7  
J8  
tBSDZ  
0
J9  
tTAPBST  
tTAPBHT  
tTDODV  
tTDODZ  
tTRSTAT  
tTRSTST  
4
J10  
J11  
J12  
J13  
J14  
10  
0
TCLK low to TDO high Z  
0
TRST assert time  
100  
10  
TRST setup time (negation) to TCLK high  
1
JTAG_EN is expected to be a static signal. Hence, it is not associated with any timing.  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
40  
Electrical Characteristics  
J2  
J3  
J3  
VIH  
TCLK  
(input)  
VIL  
J4  
J4  
Figure 11. Test Clock Input Timing  
TCLK  
VIL  
VIH  
J5  
J6  
Data Inputs  
Input Data Valid  
J7  
J8  
Data Outputs  
Output Data Valid  
Data Outputs  
Data Outputs  
J7  
Output Data Valid  
Figure 12. Boundary Scan (JTAG) Timing  
TCLK  
VIL  
VIH  
J9  
Input Data Valid  
J10  
TDI  
TMS  
J11  
TDO  
Output Data Valid  
J12  
J11  
TDO  
TDO  
Output Data Valid  
Figure 13. Test Access Port Timing  
TCLK  
TRST  
14  
13  
Figure 14. TRST Timing  
MCF52223 ColdFire Microcontroller, Rev. 3  
41  
Freescale Semiconductor  
Electrical Characteristics  
2.17 Debug AC Timing Specifications  
Table 39 lists specifications for the debug AC timing parameters shown in Figure 16.  
Table 39. Debug AC Timing Specification  
66/80 MHz  
Min Max  
Num  
Characteristic  
Units  
D1  
D2  
D3  
D41  
D5  
D6  
D7  
D8  
PST, DDATA to CLKOUT setup  
4
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLKOUT to PST, DDATA hold  
DSI-to-DSCLK setup  
1 tCYC  
4 tCYC  
5 tCYC  
4
DSCLK-to-DSO hold  
DSCLK cycle time  
BKPT input data setup time to CLKOUT rise  
BKPT input data hold time to CLKOUT rise  
CLKOUT high to BKPT high Z  
1.5  
0.0  
10.0  
1
DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to  
the rising edge of CLKOUT.  
Figure 15 shows real-time trace timing for the values in Table 39.  
CLKOUT  
D1  
D2  
PST[3:0]  
DDATA[3:0]  
Figure 15. Real-Time Trace AC Timing  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
42  
 
 
Mechanical Outline Drawings  
Figure 16 shows BDM serial port AC timing for the values in Table 39.  
CLKOUT  
D5  
DSCLK  
D3  
DSI  
Current  
Past  
Next  
D4  
DSO  
Current  
Figure 16. BDM Serial Port AC Timing  
3
Mechanical Outline Drawings  
This section describes the physical properties of the device and its derivatives.  
MCF52223 ColdFire Microcontroller, Rev. 3  
43  
Freescale Semiconductor  
 
Mechanical Outline Drawings  
3.1  
64-pin LQFP Package  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
44  
Mechanical Outline Drawings  
MCF52223 ColdFire Microcontroller, Rev. 3  
45  
Freescale Semiconductor  
Mechanical Outline Drawings  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
46  
Mechanical Outline Drawings  
MCF52223 ColdFire Microcontroller, Rev. 3  
47  
Freescale Semiconductor  
Mechanical Outline Drawings  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
48  
Mechanical Outline Drawings  
MCF52223 ColdFire Microcontroller, Rev. 3  
49  
Freescale Semiconductor  
Mechanical Outline Drawings  
3.2  
81 MAPBGA Package  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
50  
Mechanical Outline Drawings  
MCF52223 ColdFire Microcontroller, Rev. 3  
51  
Freescale Semiconductor  
Mechanical Outline Drawings  
3.3  
100-pin LQFP Package  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
52  
Mechanical Outline Drawings  
MCF52223 ColdFire Microcontroller, Rev. 3  
53  
Freescale Semiconductor  
Revision History  
4
Revision History  
Table 40. Revision History  
Description  
Revision  
2
• Formatting, layout, spelling, and grammar corrections.  
• Removed the “Preliminary” label.  
• Added missing current consumption data (Section 2.2).  
• Added revision history.  
• Corrected signal names in block diagram to match those in the signal description table.  
• Added an entry for standby voltage (VSTBY) to the “DC electrical specifications” table.  
• Deleted the PSTCLK cycle time row in the “Debug AC timing specifications” table.  
• Changed the frequency above the “Min” and “Max” column headings in the “Debug AC timing  
specifications” table (was 166 MHz, is 66/80 MHz).  
• Added the following signals to the “Pin functions by primary and alternate purpose” table (alternates to  
IRQ1-6, respectively): USB_ALT_CLK, USB_SESSVLD, USB_SESSEND, USB_PULLUP,  
USB_VBUSVLD, and USB_ID.  
• Changed the minimum value for SNR, THD, SFDR, and SINAD in the “ADC parameters” table (was  
TBD, is “—”).  
• Added values for IOH and IOL to the “DC electrical specifications” table.  
• Added load test condition information to the “General Purpose I/O Timing” section.  
• Synchronized the “Pin Functions by Primary and Alternate Purpose” table in this document and the  
reference manual.  
• Added a specification for VDDUSB to the “Absolute maximum ratings” table.  
• Added specifications for VLVD and VLVDHYS to the “DC electrical specifications” table.  
• Deleted entries for the nonexistent 64 QFN package from the “Thermal Resistances” table.  
3
4
• Updated Table 7 to reflect orderable part numbers.  
• Updated Clock generation features  
• Updated Table: Clocking Modes and added appropriate footnote  
• In Table: CLock Source Electrical Specifications, updated the following values:  
• fcrystal, fext, fref_pll, EXTAL input high voltage (External reference)  
MCF52223 ColdFire Microcontroller, Rev. 3  
Freescale Semiconductor  
54  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2011. All rights reserved.  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MCF52223  
Rev. 3  
3/2011  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY