MCF54417CMJ250 [NXP]

MCF5441x ColdFire Microprocessor Data Sheet;
MCF54417CMJ250
型号: MCF54417CMJ250
厂家: NXP    NXP
描述:

MCF5441x ColdFire Microprocessor Data Sheet

文件: 总61页 (文件大小:1257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MCF54418  
Rev. 8, 06/2012  
MCF5441x  
MAPBGA–256  
MAPBGA–196  
12 mm x 12 mm  
17mm x 17mm  
MCF5441x ColdFire  
Microprocessor Data Sheet  
Version 4 ColdFire Core with EMAC and  
MMU  
Enhanced Secure Digital host controller for  
SD, SDHC, SDIO, MMC, and MMCplus  
cards  
Up to 385 Dhrystone 2.1 MIPS @ 250 MHz  
8 KB instruction cache and 8 KB data cache  
64 KB internal SRAM dual-ported to  
processor local bus and other crossbar switch  
masters  
Two ISO7816 smart card interfaces  
Two FlexCAN modules  
2
Six I C bus interfaces with DMA support in  
master mode  
System boot from NOR, NAND, SPI flash,  
EEPROM, or FRAM  
Crossbar switch technology (XBS) for  
concurrent access to peripherals or RAM  
from multiple bus masters  
Two synchronous serial interfaces  
Four 32-bit timers with DMA support  
Four programmable interrupt timers  
8-channel, 16-bit motor control PWM timer  
Dual 12-bit ADCs with shared input channels  
and multiple conversion trigger sources  
Dual 12-bit DACs with DMA support  
1-wire module with DMA support  
NAND flash controller  
64-channel DMA controller  
SDRAM controller supporting full-speed  
operation from a single x8 DDR2 component  
up to 250 MHz  
32-bit FlexBus external memory interface for  
RAM, ROM, MRAM, and programmable  
logic  
Real-time clock with 32-kHz oscillator, 2 KB  
standby SRAM, and battery backup supply  
input  
USB 2.0 host controller  
Up to four DMA-supported serial peripheral  
interfaces (DSPI)  
Up to ten UARTs with single-wire mode  
support  
Up to five external IRQ interrupts and 2  
external DMA request/acknowledge pairs  
Up to 16 processor local bus Rapid GPIO pins  
Up to 87 standard GPIO pins  
USB 2.0 host/device/On-the-Go controller  
8-bit single data rate ULPI port usable by the  
dedicated USB host module or the USB  
host/device/OTG module  
Dual 10/100 Ethernet MACs with hardware  
CRC checking/generation, IEEE 1588-2002  
support, and optional Ethernet switch  
CPU direct-attached hardware accelerator for  
DES, 3DES, AES, MD5, SHA-1, and  
SHA-256 algorithms  
Random number generator  
This document contains information on a new product. Specifications and information herein  
are subject to change without notice.  
© Freescale Semiconductor, Inc., 2011-2012. All rights reserved.  
Table of Contents  
1
2
MCF5441x family comparison . . . . . . . . . . . . . . . . . . . . . . . . .4  
4.15.2 eSDHC electrical DC characteristics . . . . . . . . 38  
4.16 SIM timing specifications. . . . . . . . . . . . . . . . . . . . . . . 38  
4.16.1 General timing requirements . . . . . . . . . . . . . . 39  
4.16.2 Reset sequence . . . . . . . . . . . . . . . . . . . . . . . . 39  
4.16.3 Power-down sequence. . . . . . . . . . . . . . . . . . . 40  
4.17 SSI timing specifications . . . . . . . . . . . . . . . . . . . . . . . 41  
4.18 12-bit ADC specifications . . . . . . . . . . . . . . . . . . . . . . 43  
4.19 12-bit DAC timing specifications . . . . . . . . . . . . . . . . . 44  
4.20 mcPWM timing specifications . . . . . . . . . . . . . . . . . . . 45  
4.21 I2C timing specifications . . . . . . . . . . . . . . . . . . . . . . . 45  
4.22 Ethernet assembly timing specifications . . . . . . . . . . . 46  
4.22.1 Receive signal timing specifications. . . . . . . . . 47  
4.22.2 Transmit signal timing specifications . . . . . . . . 47  
4.22.3 Asynchronous input signal timing  
1.1 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Hardware design considerations . . . . . . . . . . . . . . . . . . . . . . .5  
2.1 Power filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
2.2 Supply voltage sequencing . . . . . . . . . . . . . . . . . . . . . . .7  
2.2.1 Power-up sequence. . . . . . . . . . . . . . . . . . . . . . .8  
2.2.2 Power-down sequence . . . . . . . . . . . . . . . . . . . .8  
2.3 Power consumption specifications . . . . . . . . . . . . . . . . .8  
Pin assignments and reset states. . . . . . . . . . . . . . . . . . . . . . .9  
3.1 Signal multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
3.2 Pinout—196 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.3 Pinout—256 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . .20  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . .21  
4.2 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .22  
4.3 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.4 Static latch-up (LU) . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.5 DC electrical specifications. . . . . . . . . . . . . . . . . . . . . .23  
4.6 Output pad loading and slew rate . . . . . . . . . . . . . . . . .25  
4.7 DDR pad drive strengths. . . . . . . . . . . . . . . . . . . . . . . .26  
4.8 Oscillator and PLL electrical characteristics . . . . . . . . .26  
4.9 Reset timing specifications . . . . . . . . . . . . . . . . . . . . . .28  
4.10 FlexBus timing specifications . . . . . . . . . . . . . . . . . . . .28  
4.11 NAND flash controller (NFC) timing specifications . . . .30  
4.12 DDR SDRAM controller timing specifications . . . . . . . .33  
4.13 USB transceiver timing specifications. . . . . . . . . . . . . .35  
4.14 ULPI timing specifications. . . . . . . . . . . . . . . . . . . . . . .35  
4.15 eSDHC timing specifications. . . . . . . . . . . . . . . . . . . . .36  
4.15.1 eSDHC timing specifications . . . . . . . . . . . . . . .37  
3
4
specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
4.22.4 MDIO serial management timing  
specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
4.23 32-bit timer module timing specifications. . . . . . . . . . . 49  
4.24 DSPI timing specifications. . . . . . . . . . . . . . . . . . . . . . 49  
4.25 SBF timing specifications . . . . . . . . . . . . . . . . . . . . . . 52  
4.26 1-Wire timing specifications. . . . . . . . . . . . . . . . . . . . . 53  
4.27 General purpose I/O timing specifications. . . . . . . . . . 53  
4.28 Rapid general purpose I/O timing specifications . . . . . 53  
4.29 JTAG and boundary scan timing specifications. . . . . . 54  
4.30 Debug AC timing specifications. . . . . . . . . . . . . . . . . . 56  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Product documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
5
6
7
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
2
Freescale Semiconductor  
MCF5441x  
PLL  
Oscillator  
JTAG  
PLL  
Version 4 ColdFire Core  
8 KB  
Instruction  
Cache  
2 Ethernet  
Controllers  
EMAC  
BDM  
CAU  
8 KB  
Data  
Cache  
Hardware  
Divide  
eDMA  
USB Host  
L2 Switch  
64 KB  
SRAM  
Serial Boot  
Facility  
NAND Flash  
Controller  
MMU  
RGPIO  
USB OTG  
eSDHC  
Crossbar Switch (XBS)  
Peripheral Bus Controller 0  
Peripheral Bus Controller 1  
DDR2  
Controller  
FlexBus  
1 Wire  
mcPWM  
Smart Card  
ADC  
RNG  
2 DACs  
RTC & kHz  
Oscillator  
EPORT  
2 DSPIs  
GPIO  
4 I2Cs  
2 SSIs  
2 FlexCANs  
2 I2Cs  
4 PITs  
2 DSPIs  
6 UARTs  
4 DMA  
Timers  
Note: Each of the crossbar switch masters, the FlexBus  
and SDRAM controller have access to peripheral  
bus controller 0, which is not shown.  
3 INTCs  
4 UARTs  
ADC  
BDM  
CAU  
– Analog-to-digital converter  
– Background debug module  
– Cryptography acceleration unit  
– Digital-to-analog  
INTC  
JTAG  
Interrupt controller  
– Joint Test Action Group interface  
mcPWM – Motor control pulse width modulator  
PIT  
PLL  
RGPIO  
RNG  
RTC  
SSI  
DAC  
– Programmable interrupt timers  
– Phase locked loop module  
– Rapid GPIO  
– Random number generator  
– Real time clock  
DSPI  
eDMA  
eSDHC  
EMAC  
EPORT  
GPIO  
I2C  
– DMA serial peripheral interface  
– Enhanced direct memory access module  
– Enhanced Secure Digital host controller  
– Enhanced multiply-accumulate unit  
– Edge port module  
– General purpose input/output module  
– Inter-Integrated Circuit  
– Synchronous serial interface  
USB OTG – Universal Serial Bus On-the-Go controller  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
3
MCF5441x family comparison  
1
MCF5441x family comparison  
Table 1. MCF5441x family configurations  
Module  
MCF54410 MCF54415 MCF54416 MCF54417 MCF54418  
Version 4 ColdFire core with EMAC (enhanced  
multiply-accumulate unit) and MMU (memory  
management unit)  
Cryptography acceleration unit (CAU)  
Core (system) and SDRAM clock  
up to 250 MHz  
up to 125 MHz  
Peripheral clock  
(Core clock 2)  
External bus (FlexBus) clock  
Performance (Dhrystone 2.1 MIPS)  
Static RAM (SRAM)  
up to 100 MHz  
up to 385  
64 KB  
Independent data/instruction cache  
USB 2.0 Host controller  
8 KB each  
USB 2.0 Host/Device/On-the-Go controller  
UTMI+ Low Pin Interface (ULPI) for external  
high-speed USB PHY  
10/100 Mbps Ethernet controller with IEEE 1588  
support  
1
2
2
2
2
Level 2 IEEE 1588-compliant 3-port Ethernet  
switch  
Enhanced Secure Digital host controller (eSDHC)  
Smart card/Subscriber Identity Module (SIM)  
UARTs  
6
2 ports  
2 ports  
2 ports  
2 ports  
10  
10  
10  
10  
DSPI  
3
4
4
4
4
CAN 2.0B controllers  
I2C  
1
2
2
2
2
4
6
6
6
6
Synchronous serial interface (SSI)  
12-bit ADC  
1
2
2
2
2
4
12-bit DAC  
2
2
2
2
32-bit DMA timers  
4
4
4
4
Periodic interrupt timers (PIT)  
Motor control PWM timer (mcPWM)  
64-channel DMA controller  
4
4
4
4
4
8 channel  
8 channel  
8 channel  
8 channel  
Real-time clock with 2 KB standby RAM and  
battery back-up input  
DDR2 SDRAM controller  
FlexBus external memory controller  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
4
Freescale Semiconductor  
Hardware design considerations  
Table 1. MCF5441x family configurations (continued)  
Module MCF54410 MCF54415 MCF54416 MCF54417 MCF54418  
NAND flash controller  
1-Wire® interface  
Serial boot facility  
Watchdog timer  
Interrupt controllers (INTC)  
Edge port module (EPORT)  
Rapid GPIO pins  
3
3
5 IRQs  
16  
3
5 IRQs  
16  
3
5 IRQs  
16  
3
5 IRQs  
16  
3 IRQs  
9
48  
General-purpose I/O (GPIO) pins  
JTAG - IEEE® 1149.1 Test Access Port  
Package  
87  
87  
87  
87  
196  
MAPBGA  
256  
MAPBGA  
1.1  
Ordering information  
Table 2. Orderable part numbers  
Freescale Part  
Number  
Description Package  
Speed  
Temperature  
MCF54410CMF250  
MCF54415CMJ250  
MCF54416CMJ250  
MCF54417CMJ250  
MCF54418CMJ250  
MCF54410 Microprocessor 196 MAPBGA  
MCF54415 Microprocessor  
MCF54416 Microprocessor  
256 MAPBGA  
MCF54417 Microprocessor  
250 MHz  
–40 to +85C  
MCF54418 Microprocessor  
2
Hardware design considerations  
2.1  
Power filtering  
To further enhance noise isolation, an external filter is strongly recommended for the analog V pins (VDDA_PLL and  
DD  
VDDA_DAC_ADC). The filter shown in Figure 1 should be connected between the board 3.3 V (nominal) supply and the  
analog pins. The resistor and capacitors should be placed as close to the dedicated analog V pin as possible. The 10 resistor  
DD  
in the given filter is required.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
5
Hardware design considerations  
10   
EVDD Pin  
VDD_OSC_A_PLL  
VSS_OSC  
0.1 µF  
1 µF  
100 MHz  
GND  
Figure 1. Oscillator/PLL/DAC power filter  
Figure 2 shows an example for isolating the ADC power supply from the I/O supply (EVDD) and ground. Note that in this  
power supply the 10 resistor is replaced by a 0 resistor. This will reduce the IR drop into the ADC, limiting additional gain  
error.  
0   
Board 3.3 V  
supply  
VDDA_ADC  
10 µF  
0.1 µF  
GND  
Figure 2. ADC power filter  
Figure 3 shows an example for bypassing the internal core digital power supply for the MPU. This bypass should be applied to  
as many IVDD signals as routing allows. Each one should be placed as close to the ball as possible.  
Board 1.2 V  
supply  
IVDD  
1 µF  
0.1 µF  
GND  
Figure 3. IVDD power filter  
Figure 4 shows an example for bypassing the external pad ring digital power supply for the MPU. This bypass should be applied  
to as many EVDD signals as routing allows. Each one should be placed as close to the ball as possible.  
Board 3.3 V  
supply  
EVDD  
1 µF  
0.1 µF  
GND  
Figure 4. EVDD power filter  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
6
Freescale Semiconductor  
Hardware design considerations  
Figure 5 shows an example for bypassing the FlexBus power supply for the MPU. This bypass should be applied to as many  
FB_VDD signals as routing allows. Each one should be placed as close to the ball as possible.  
Board 1.8–3.3 V  
supply  
FB_VDD  
1 µF  
0.1 µF  
GND  
Figure 5. FB_VDD power filter  
2.2  
Supply voltage sequencing  
Figure 6 shows requirements in the sequencing of the I/O V (EV ), FlexBus V (FBV ), SDRAM V (SDV ), PLL  
DD  
DD  
DD  
DD  
DD  
DD  
V
(VDD_OSC_A_PLL), and internal logic/core V (IV ).  
DD  
DD DD  
EVDD/FBVDD (3.3V)  
3.3V  
2.5V  
Supplies stable  
SDVDD (2.5V — DDR)  
1.8V  
1.5V  
SDVDD/FBVDD (1.8V — DDR2)  
IVDD, VDD_OSC_A_PLL  
0
Time  
Notes:  
1
Input voltage must not be greater than the supply voltage (EVDD, FBVDD, SDVDD, IVDD, or PVDD) by more  
than 0.5V at any time, including during power-up.  
2
Use 25 V/millisecond or slower rise time for all supplies.  
Figure 6. Supply voltage sequencing and separation cautions  
The relationships between FBV , SDV and EV are non-critical during power-up and power-down sequences. FBV  
DD  
DD  
DD  
DD  
(1.8 – 3.3V), SDV (2.5V or 1.8V) and EV are specified relative to IV .  
DD  
DD  
DD  
NOTE  
All I/O VDD pins must be powered on when the device is functioning, except when in  
standby mode.  
In standby mode, all I/O VDD pins, except VSTBY_RTC (battery), can be switched off.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
7
Hardware design considerations  
2.2.1  
Power-up sequence  
If EV /FBV /SDV are powered up with the IV at 0 V, the sense circuits in the I/O pads cause all pad output drivers  
DD  
DD  
DD  
DD  
connected to the EV /FBV /SDV to be in a high impedance state. There is no limit on how long after  
DD  
DD  
DD  
EV /FBV /SDV powers up before IV must power up. IV should not lead the EV , FBV , or SDV by more  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
than 0.4 V during power ramp-up, or there will be high current in the internal ESD protection diodes. The rise times on the  
power supplies should be slower than 25 V/millisecond to avoid turning on the internal ESD protection clamp diodes.  
2.2.2  
Power-down sequence  
If IV /PV are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state.  
DD  
DD  
There is no limit on how long after IV and PV power down before EV , FBV , or SDV must power down. IV  
DD  
DD  
DD  
DD  
DD  
DD  
should not lag EV , FBV , or SDV going low by more than 0.4 V during power down or there will be undesired high  
DD  
DD  
DD  
current in the ESD protection diodes. There are no requirements for the fall times of the power supplies.  
The recommended power down sequence is as follows:  
1. Drop IV /PV to 0 V.  
DD  
DD  
2. Drop EV /FBV /SDV supplies.  
DD  
DD  
DD  
2.3  
Power consumption specifications  
Table 3. Estimated power consumption specifications  
Characteristic  
Symbol  
Typical  
Unit  
Core operating supply current (nominal 1.2 V)1  
IVDD  
Run mode  
Wait mode  
127  
33  
mA  
Doze mode  
Stop00 mode  
Stop01 mode  
Stop02 mode  
Stop03 mode  
32  
9.3  
9.2  
3.6  
3.4  
FlexBus operating supply current  
Run mode (application dependent)  
Wait mode  
FBVDD  
SDVDD  
80  
49  
42  
40  
28  
mA  
mA  
Doze mode  
Stop00 mode  
Stop01, Stop02, Stop03 mode  
SDRAM operating supply current (DDR2 at 1.8 V)  
Isys(DQ) [8, 2DQS]  
3
Isys(WR) [8, 2DQS]  
Isys(RD) [8, 2DQS]  
15  
15  
SDRAM input reference current  
SDVREF  
SDVTT  
Isys(REF)  
SDRAM termination current  
Isys(termRD)  
1.3  
41  
75  
Total SDIDD MPU side2  
Oscillator/PLL operating supply current (nominal 3.3 V)  
Run, Wait, Doze, Stop00, Stop01 mode  
Stop02 mode  
VDD_OSC_A_PLL  
10  
6
mA  
Stop03 mode  
1
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
8
Freescale Semiconductor  
Pin assignments and reset states  
Table 3. Estimated power consumption specifications (continued)  
Characteristic  
Symbol  
Typical  
Unit  
External I/O pad operating supply current (nominal 3.3 V)  
EVDD  
3
mA  
mA  
mA  
USB operating supply current (nominal 3.3 V)  
VDD_USBO,  
VDD_USBH  
30  
ADC operating supply current (nominal 3.3 V)  
Speed mode 00  
VDDA_ADC  
14  
22  
Speed mode 01  
DAC operating supply current (nominal 3.3 V)  
VDDA_DAC_ADC  
VSTBY_RTC  
11  
mA  
RTC standby supply current  
ISTBY  
17  
A  
1
2
Current measured at maximum system clock frequency, all modules active, and default drive  
strength with matching load.  
DDR2 interface power is estimated from the Micron DDR2 data sheet. The numbers given in this  
table do not include the actual power consumption of the memory itself. The current drawn by the  
memory needs to be added to the values in this table and may be several hundred mA.  
3
EVDD values depend on the application, with the restrictions that any single pin cannot exceed  
25 mA and that the total power does not exceed the thermal characteristics.  
3
Pin assignments and reset states  
3.1  
Signal multiplexing  
The following table lists all the MCF5441x pins grouped by function. The Dir column is the direction for the primary function  
of the pin only. Refer to the following sections for package diagrams. For a more detailed discussion of the MCF5441x signals,  
consult the MCF5441x Reference Manual (MCF54418RM).  
NOTE  
In this table and throughout this document a single signal within a group is designated  
without square brackets (i.e., FB_AD23), while designations for multiple signals within a  
group use brackets (i.e., FB_AD[23:21]) and is meant to include all signals within the two  
bracketed numbers when these numbers are separated by a colon.  
NOTE  
The primary functionality of a pin is not necessarily its default functionality. Most pins that  
are muxed with GPIO default to their GPIO functionality. See the following table for a list  
of the exceptions.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
9
Pin assignments and reset states  
Table 4. Special-case default signal functionality  
Pin  
Default signal  
FB_CLK, FB_OE, FB_R/W,  
FB_BE/BWE[1:0],  
FB_CS[5:4]  
FB_CLK, FB_OE, FB_R/W,  
FB_BE/BWE[1:0], FB_CS[5:4]  
FB_ALE  
FB_BE/BWE3  
FB_BE/BWE2  
FB_CS1  
FB_ALE or FB_TS  
(depending on RCON[3])  
Boot from NFC, NF_ALE.  
Otherwise, FB_BE/BWE3.  
Boot from NFC, NF_CLE.  
Otherwise, FB_BE/BWE2.  
Boot from NFC, NFC_CE.  
Otherwise, GPIO.  
FB_CS0  
Boot from FlexBus, FB_CS0.  
Otherwise, GPIO.  
FB_TA  
Boot from NFC, NFC_R/B.  
Otherwise, FB_TA.  
ALLPST, PST[3:0],  
DDATA[3:0]  
ALLPST, PST[3:0], DDATA[3:0]  
NOTE  
While most modules and functionalities between the 196 and 256 MAPBGA package are  
the same, the following modules have been removed from 196 MAPBGA for pin space:  
UART2, UART6, UART9, PWM, SSI1, SIM1, USB HOST, IRQ6, IRQ3, IRQ2,  
FLEXCAN1, I2C1, ADC, DAC.  
Other modifications to the 196 MAPBGA package are:  
SDRAMC One address line, SD_A14, is removed.  
SDHC Number of data lines for eSDHC have been reduced to 4 instead of 8.  
MAC Only MAC0_RMII mode is implemented.  
Table 5. MCF5441x Signal information and muxing  
Signal name  
GPIO  
Alternate 1  
Alternate 2  
Reset  
RESET  
U
I
EVDD  
EVDD  
ssr  
K14  
P12  
K15  
L16  
RSTOUT  
O
msr  
Clock  
4
I
EXTAL/  
EVDD  
ae  
G14  
G16  
RMII_REF_CLK  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
10  
Freescale Semiconductor  
Pin assignments and reset states  
Table 5. MCF5441x Signal information and muxing (continued)  
Signal name  
GPIO  
Alternate 1  
Alternate 2  
XTAL  
O
I
EVDD  
EVDD  
ae  
msr  
fsr  
H14  
H16  
K5, L5  
Mode selection  
BOOTMOD[1:0]  
G5,H5  
FlexBus  
FB_AD[31:24]/  
NFC_IO[15:8]5  
I/O  
I/O  
I/O  
FBVDD  
FBVDD  
FBVDD  
A10, A9,  
B9, C8, A9,  
B9, C9, A8, B8, D8, A8,  
B8, C8, A7 D7, B7  
FB_AD[23:16]/  
NFC_IO[7:0]5  
fsr  
B7, C7, C6, C7, A7, D6,  
B6, A6, A5, A6, B6, D5,  
B5, A4  
C6, A5  
6
FB_AD[15:10]  
fsr  
C5, A3, B4, B5, A4, A3,  
C4, B3, A2 D4, B4, C5  
FB_AD[9:8]  
FB_AD[7:0]  
U7  
I/O  
I/O  
FBVDD  
FBVDD  
fsr  
fsr  
B2, C3  
C4, B3  
D4, B1, C2, C3, E4, D3,  
D3, C1, D2, E3, A2, B2,  
E3, D1  
C2, F3  
FB_ALE  
PA7  
PA6  
FB_TS  
O
FBVDD  
FBVDD  
fsr  
fsr  
E2  
D2  
FB_OE/  
NFC_RE  
FB_TBST/  
NFC_RE  
O
H1  
F1  
FB_R/W/  
NFC_WE  
PA5  
O
FBVDD  
fsr  
H2  
G2  
FB_TA  
PA4  
PA3  
NFC_R/B  
U8  
O
O
FBVDD  
FBVDD  
fsr  
fsr  
H3  
F3  
H3  
C1  
FB_BE/BWE3  
FB_CS3  
FB_A1/  
NFC_ALE9  
FB_BE/BWE2  
PA2  
FB_CS2  
FB_A0/  
O
FBVDD  
fsr  
E1  
E2  
NFC_CLE10  
FB_BE/BWE[1:0]  
FB_CLK  
PA[1:0]  
PB7  
FB_TSIZ[1:0]  
O
O
O
O
O
O
FBVDD  
FBVDD  
FBVDD  
FBVDD  
FBVDD  
FBVDD  
fsr  
fsr  
fsr  
fsr  
fsr  
fsr  
F2, F1  
G1  
D1, F4  
G1  
DACK1  
DREQ1  
FB_CS5  
PB6  
F2  
FB_CS4  
PB5  
B1  
FB_CS1  
PB4  
NFC_CE  
G3  
E1  
FB_CS0  
PB3  
G2  
G3  
I2C 0  
I2C0_SCL  
I2C0_SDA  
PB2  
PB1  
UART8_TXD  
UART8_RXD  
CAN0_TX  
CAN0_RX  
I/O  
I/O  
EVDD  
EVDD  
ssr  
ssr  
H12  
G12  
G15  
G14  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
11  
Pin assignments and reset states  
Table 5. MCF5441x Signal information and muxing (continued)  
Signal name  
GPIO  
Alternate 1  
Alternate 2  
FlexCAN 1  
CAN1_TX  
CAN1_RX  
PB0  
PC7  
UART9_TXD  
UART9_RXD  
I2C1_SCL  
I2C1_SDA  
I/O  
I/O  
EVDD  
EVDD  
ssr  
ssr  
D14  
D15  
SDRAM controller  
SD_A14  
O
O
SDVDD st_dec  
ap  
P6  
SD_A[13:0]  
SDVDD st_dec P3, M1, M3, R4, R1, R3,  
ap  
L2, L1, N4, N4, P3, T4,  
M2, P2, L3, R2, T2, N3,  
L4, N1, N2, P5, P4, N5,  
K1, N3  
P2, T3  
SD_BA[2:0]  
SD_CAS  
O
O
O
SDVDD st_dec M6, J4, P4 P7, N6, R5  
ap  
SDVDD st_dec  
ap  
K4  
N8  
SD_CKE  
SDVDD st_dec  
ap  
N6  
R7  
SD_CLK  
SD_CLK  
SD_CS  
O
O
O
SDVDD st_ck  
SDVDD st_ck  
P6  
P7  
M5  
T5  
T6  
N7  
SDVDD st_dec  
ap  
SD_D[7:0]  
I/O  
SDVDD st_odt P11, M10,  
T12, R11,  
T11, R10,  
N9, T10,  
P9, R9  
N10, M9,  
P10, M8,  
N8, M7  
SD_DM  
SD_DQS  
SD_DQS  
SD_ODT  
O
I/O  
I/O  
O
SDVDD st_odt  
SDVDD st_dqs  
SDVDD st_dqs  
N7  
P8  
P9  
P5  
T7  
T8  
T9  
P8  
SDVDD st_dec  
ap  
SD_RAS  
SD_WE  
O
O
SDVDD st_dec  
ap  
M4  
N5  
R6  
R8  
SDVDD st_dec  
ap  
SD_VREF  
SD_VTT  
SDVDD st_vref  
SDVDD st_vtt  
N9  
L8  
P10  
N10  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
12  
Freescale Semiconductor  
Pin assignments and reset states  
Table 5. MCF5441x Signal information and muxing (continued)  
Signal name  
GPIO  
Alternate 1  
Alternate 2  
External interrupts port  
IRQ7  
IRQ6  
IRQ4  
IRQ3  
IRQ2  
IRQ1  
PC6  
PC5  
PC4  
PC3  
PC2  
PC1  
I
I
I
I
I
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
ssr  
ssr  
ssr  
ssr  
ssr  
ssr  
G10  
F12  
N1  
USB_CLKIN11  
DREQ0  
DSPI0_PCS3  
DSPI0_PCS2  
E11  
F14  
M1  
USBH_VBUS_EN  
USBH_VBUS_OC  
12  
M2  
E13  
F13  
USB On-the-Go  
USBO_DM  
USBO_DP  
I/O  
I/O  
VDD_  
USB0  
ae  
ae  
B13  
A13  
A14  
B14  
VDD_  
USB0  
USB host  
USBH_DM  
USBH_DP  
I/O  
I/O  
VDD_  
USBH  
ae  
ae  
A15  
B15  
VDD_  
USBH  
ADC  
ADC_IN7/  
DAC1_OUT  
I
VDDA_  
DAC_  
ADC  
ae  
K3  
ADC_IN[6:4]  
I
I
VDDA_  
ADC  
ae  
ae  
H2, J3, G4  
K4  
ADC_IN3/  
DAC0_OUT  
VDDA_  
DAC_  
ADC  
ADC_IN[2:0]  
I
VDDA_  
ADC  
ae  
J2, J1, H1  
Real time clock  
4
I
RTC_EXTAL  
RTC_XTAL  
VSTBY  
VSTBY  
ae  
ae  
B14  
C14  
B16  
C16  
O
DSPI0/SBF13  
DSPI0_PCS1/  
SBF_CS  
PC0  
I/O  
EVDD  
msr  
K3  
L1  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
13  
Pin assignments and reset states  
Table 5. MCF5441x Signal information and muxing (continued)  
Signal name  
GPIO  
Alternate 1  
Alternate 2  
DSPI0_PCS0/SS  
PD7  
PD6  
I2C3_SDA  
I2C3_SCL  
SDHC_DAT3  
SDHC_CLK  
I/O  
I/O  
EVDD  
EVDD  
msr  
msr  
J1  
J3  
K2  
L2  
DSPI0_SCK/  
SBF_CK  
DSPI0_SIN/  
SBF_DI  
PD5  
PD4  
UART3_RXD  
UART3_TXD  
SDHC_CMD  
SDHC_DAT0  
U14  
I
EVDD  
EVDD  
msr  
msr  
K2  
J2  
L3  
K1  
DSPI0_SOUT/  
SBF_DO  
O
One wire  
OW_DAT  
RGPIO0/PD3  
RGPIO1/PD2  
DACK0  
T3OUT  
I/O  
I
EVDD  
EVDD  
ssr  
M11  
G13  
N11  
G13  
DMA timers  
T3IN/PWM_EXTA3  
USBO_VBUS_EN/  
ULPI_DIR15  
msr  
T2IN/PWM_EXTA2  
T1IN/PWM_EXTA1  
T0IN/PWM_EXTA0  
RGPIO2/PD1  
RGPIO3/PD0  
RGPIO4/PE7  
T2OUT  
T1OUT  
T0OUT  
SDHC_DAT2  
SDHC_DAT1  
I
I
I
EVDD  
EVDD  
EVDD  
msr  
msr  
msr  
J12  
H13  
J13  
H14  
H13  
H15  
17  
USBO_VBUS_OC/  
ULPI_NXT16  
UART 2  
UART2_CTS  
UART2_RTS  
UART2_RXD  
UART2_TXD  
RGPIO14/PE6  
RGPIO15/PE5  
PE4  
UART6_TXD  
UART6_RXD  
PWM_A3  
SSI1_BCLK  
SSI1_FS  
I
O
I
EVDD  
EVDD  
EVDD  
EVDD  
msr  
msr  
msr  
msr  
M4  
M3  
P1  
N2  
SSI1_RXD  
SSI1_TXD  
18  
PE3  
PWM_B3  
I/O  
UART 1  
UART1_CTS  
UART1_RTS  
UART1_RXD  
UART1_TXD  
RGPIO7/PE2  
RGPIO8/PE1  
PE0  
UART5_TXD  
UART5_RXD  
I2C5_SDA  
DSPI3_SCK  
DSPI3_PCS0  
DSPI3_SIN  
I
O
I
EVDD  
EVDD  
EVDD  
EVDD  
msr  
msr  
msr  
msr  
D12  
D11  
B10  
C10  
C10  
D10  
C9  
18  
PF7  
I2C5_SCL  
DSPI3_SOUT  
I/O  
D9  
UART 0  
UART0_CTS  
UART0_RTS  
UART0_RXD  
UART0_TXD  
RGPIO5/PF6  
RGPIO6/PF5  
PF4  
UART4_TXD  
UART4_RXD  
I2C4_SDA  
DSPI2_SCK  
DSPI2_PCS0  
DSPI2_SIN  
I
O
I
EVDD  
EVDD  
EVDD  
EVDD  
msr  
msr  
msr  
msr  
E12  
C12  
C11  
B11  
E13  
B11  
B10  
D11  
18  
PF3  
I2C4_SCL  
DSPI2_SOUT  
I/O  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
14  
Freescale Semiconductor  
Pin assignments and reset states  
Table 5. MCF5441x Signal information and muxing (continued)  
Signal name  
GPIO  
Alternate 1  
Alternate 2  
Enhanced secure digital host controller  
SDHC_DAT3  
SDHC_DAT2  
SDHC_DAT1  
SDHC_DAT0  
SDHC_CMD  
SDHC_CLK  
PF2  
PF1  
PF0  
PG7  
PG6  
PG5  
PWM_A1  
PWM_B1  
PWM_A2  
PWM_B2  
PWM_B0  
PWM_A0  
DSPI1_PCS0  
DSPI1_PCS2  
DSPI1_PCS1  
DSPI1_SOUT  
DSPI1_SIN  
I/O EVDD  
I/O EVDD  
I/O EVDD  
I/O EVDD  
I/O EVDD  
msr  
msr  
msr  
msr  
msr  
msr  
B13  
E14  
D12  
B12  
C11  
A10  
DSPI1_SCK  
O
EVDD  
Smart card interface 0  
SIM0_DATA  
SIM0_VEN  
SIM0_RST  
SIM0_PD  
RGPIO13/PG4  
RGPIO12/PG3  
RGPIO11/PG2  
RGPIO10/PG1  
RGPIO9/PG0  
PWM_FAULT2  
SDHC_DAT7  
I/O EVDD  
msr  
msr  
msr  
msr  
msr  
E12  
D13  
C15  
C14  
A11  
PWM_FAULT0  
PWM_FORCE  
PWM_SYNC  
PWM_FAULT1  
O
O
I
EVDD  
EVDD  
EVDD  
EVDD  
SDHC_DAT6  
SDHC_DAT5  
SDHC_DAT4  
SIM0_CLK  
O
Synchronous serial interface 019  
SSI0_RXD  
SSI0_TXD  
SSI0_FS  
PH7  
PH6  
PH5  
PH4  
PH3  
I2C2_SDA  
SIM1_VEN  
SIM1_DATA  
SIM1_RST  
SIM1_CLK  
SIM1_PD  
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
msr  
msr  
msr  
msr  
msr  
B12  
A11  
C13  
A12  
D13  
C12  
C13  
E15  
A12  
A13  
I2C2_SCL  
UART7_TXD  
SSI_CLKIN  
UART7_RXD  
O
I/O  
O
SSI0_MCLK  
SSI0_BCLK  
I/O  
Ethernet subsystem  
MII0_MDC  
MII0_MDIO  
MII0_RXDV  
MII0_RXD[1:0]  
MII0_RXER  
MII0_TXD[1:0]  
MII0_TXEN  
MII0_COL  
PI1  
PI0  
RMII0_MDC20  
D21  
O
EVDD  
fsr  
fsr  
fsr  
fsr  
fsr  
fsr  
fsr  
fsr  
fsr  
fsr  
fsr  
N14  
M14  
M13  
P13, N13  
M12  
L12, L11  
N12  
P16  
N16  
RMII0_MDIO20  
RMII0_CRS_DV20  
RMII0_RXD[1:0]20  
RMII0_RXER20  
RMII0_TXD[1:0]20  
RMII0_TXEN20  
RMII1_MDC  
I/O EVDD  
PJ7  
I
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
P14  
PJ[6:5]  
PJ4  
R15, T15  
N14  
I
PJ[3:2]  
PJ1  
O
O
I
R13, P13  
P12  
PJ0  
ULPI_STP  
ULPI_DATA4  
ULPI_DATA5  
ULPI_DATA[1:0]  
R12  
MII0_TXER  
MII0_CRS  
PK7  
RMII1_MDIO  
O
I
R14  
PK6  
RMII1_CRS_DV  
RMII1_RXD[1:0]  
P11  
MII0_RXD[3:2]  
PK[5:4]  
I
P15, N13  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
15  
Pin assignments and reset states  
Table 5. MCF5441x Signal information and muxing (continued)  
Signal name  
GPIO  
Alternate 1  
Alternate 2  
MII0_RXCLK  
MII0_TXD[3:2]  
MII0_TXCLK  
PK3  
PK[2:1]  
PK0  
RMII1_RXER  
RMII1_TXD[1:0]  
RMII1_TXEN  
ULPI_DATA6  
ULPI_DATA[3:2]  
ULPI_DATA7  
I
O
I
EVDD  
EVDD  
EVDD  
fsr  
fsr  
fsr  
M14  
T13, N12  
T14  
D21  
BDM/JTAG  
ALLPST22  
DDATA[3:2]  
DDATA[1:0]  
PST[3:0]  
PH2  
O
O
O
O
EVDD  
EVDD  
EVDD  
EVDD  
fsr  
fsr  
fsr  
fsr  
K12  
PH[1:0]  
PI[7:6]  
PI[5:2]  
L15, M13  
M15, L14  
J13, J16,  
J15, J14  
JTAG_EN  
PSTCLK  
DSI  
D
U
I
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
msr  
fsr  
N11  
L14  
L10  
L13  
K13  
L9  
N15  
M16  
L13  
K14  
K16  
K13  
TCLK23  
TDI23  
I
msr  
msr  
msr  
msr  
DSO  
TDO23  
TMS23  
TRST23  
U
O
I
BKPT  
DSCLK  
U
I
Test  
(this signal must be grounded)  
TEST  
IVDD  
EVDD  
Power supplies  
D
I
EVDD  
ssr  
K10  
R16  
D9, D10,  
E9,E10,F9,  
F10, F12  
E9–E11,  
F9–F11  
F4–F7, G6, H8, J7–J10,  
G7, H6, H7, K6–K11, L6  
J5, J6  
FB_VDD  
SD_VDD  
D5–D7,  
E4–E7  
E5–E7, F5,  
F6, G5  
K7–K9,  
L5–L7  
M7–M12  
VDD_OSC_A_PLL  
VSS_OSC_A_PLL  
VDD_USBO  
vddint  
vddint  
vdde  
vdde  
F14  
F13  
F11  
F15  
F16  
G12  
H12  
H4  
VDD_USBH  
VDDA_ADC  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
16  
Freescale Semiconductor  
Pin assignments and reset states  
Table 5. MCF5441x Signal information and muxing (continued)  
Signal name  
GPIO  
Alternate 1  
Alternate 2  
VSSA_ADC  
VDDA_DAC_ADC  
VSSA_DAC_ADC  
VSTBY24  
vssint  
vddint  
vssint  
vddint  
H5  
J4  
J5  
E14  
E16  
VSS  
A1, A14,  
D8, D14,  
E8, F8, G4,  
G8, G9,  
A1, A16,  
D16, E8,  
F7, F8,  
G6–G11,  
H6, H7,  
G11, H4,  
H8–11,  
H9–H11,  
J6, J11,  
J12, K12,  
J7–11, J14,  
K5, K6,  
K11, P1, L4, L7–L12,  
P14  
M5, M6, T1,  
T16  
1
All pins available with GPIO contain a configurable pull-up/down. This column indicates the pull devices that are enabled  
automatically at reset. Pull-ups are generally only enabled on pins with their primary function, except as noted.  
2
3
Refers to pin’s primary function.  
For details on the available slew rates of the various pad types see section “Output Pad Loading and Slew Rate” of the MCF5441x  
Data Sheet or section “Slew Rate Control Registers (SRCR_x)” in chapter “Pin-Multiplexing and Control” of the MCF5441x Reference  
Manual.  
4
5
Enabled as input only in oscillator bypass mode (internal crystal oscillator is disabled).  
These pins are time-division multiplexed between the FlexBus and NFC. An arbitration mechanism determines which module drives  
these pins at any point in time.  
6
7
8
9
An internal pulldown circuit is enabled during system reset for FB_AD[10].  
An internal pullup circuit is enabled when the system is in reset state.  
Configurable pull that is enabled and pulled up after reset.  
When configured for FB_A1, this pin is time-division multiplexed between the FlexBus and NFC. An arbitration mechanism  
determines which module drives the pin at any point in time. When not configured as FB_A1, NFC_ALE cannot be used.  
10 When configured for FB_A0, this pin is time-division multiplexed between the FlexBus and NFC. An arbitration mechanism  
determines which module drives the pin at any point in time. When not configured as FB_A0, NFC_CLE cannot be used.  
11 Since USB_CLKIN is a clock signal, it must be dedicated to the USB system. Do not implement this pin as dual-use.  
12 When Alternate 2 is selected, then internal pullup/pulldown control will come from the MISCCR[3] register of CIM.  
13 When booting from serial boot flash, the SBF function is enabled automatically. After the SBF function completes its reset sequence,  
the signals are returned to GPIO functionality.  
14 Automatic pull-up when SBF controls the pin during reset only. Configurable pull when UART, DSPI, or SDHC control the pin.  
15 If ULPI is enabled, ULPI_DIR is available as the Alternate 2 function. If ULPI is disabled, USBO_VBUS_EN is available.  
16 If ULPI is enabled, ULPI_NXT is available as the Alternate 2 function. If ULPI is disabled, USBO_VBUS_OC is available.  
17 When Alternate 2 is selected, then internal pullup/pulldown control will come from the MISCCR[2] register of CIM.  
18 UARTx_TXD pad can act as RXD(input) pad when UART One Wire mode is enabled.  
19 The SIM1 signals are available with 256 MAPBGA but are not available with 196 MAPBGA.  
20 These RMII functions are selected by the mode chosen by the MAC-NET, not by the pin-multiplexing and control (GPIO) module.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
17  
Pin assignments and reset states  
21 Configurable pull that is enabled and pulled down after reset.  
22 The ALLPST signal is available only on the 196 MAPBGA package and allows limited debug trace functionality compared to the 256  
MAPBGA package.  
23 If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning these  
pins.  
24 VSTBY is for optional standby lithium battery. If not used, connect to EVDD.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
18  
Freescale Semiconductor  
Pin assignments and reset states  
3.2  
Pinout—196 MAPBGA  
The pinout for the MCF54410 package is shown below.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
FB_  
AD10  
FB_  
AD14  
FB_  
AD16  
FB_  
AD18  
FB_  
AD19  
FB_  
AD24  
FB_  
AD27  
FB_  
AD30  
FB_  
AD31  
SSI0_  
TXD  
SSI0_  
MCLK  
USB_  
DPLS  
A
B
C
D
E
F
GND  
GND  
A
B
C
D
E
F
FB_  
AD6  
FB_  
AD9  
FB_  
AD11  
FB_  
AD13  
FB_  
AD17  
FB_  
AD20  
FB_  
AD23  
FB_  
AD26  
FB_  
AD29  
U1_  
RXD  
U0_  
TXD  
SSI0_  
RXD  
USB_  
DMNS  
RTC_  
EXTAL  
FB_  
AD3  
FB_  
AD5  
FB_  
AD8  
FB_  
AD12  
FB_  
AD15  
FB_  
AD21  
FB_  
AD22  
FB_  
AD25  
FB_  
AD28  
U1_  
TXD  
U0_  
RXD  
U0RTS_  
B
SSI0_  
FS  
RTC_  
XTAL  
FB_  
AD2  
FB_  
AD4  
FB_  
AD7  
U1RTS_ U1CTS_  
SSI0_  
BCLK  
FB_  
AD0  
FBVDD FBVDD FBVDD  
GND  
GND  
GND  
GND  
GND  
GND  
CVDD  
CVDD  
CVDD  
GND  
CVDD  
CVDD  
CVDD  
IRQ7_B  
GND  
GND  
B
B
FB_BE2  
_B  
FB_  
AD1  
U0CTS_  
B
FB_ALE  
FBVDD FBVDD FBVDD FBVDD  
IRQ4_B  
IRQ1_B VSTBY  
VSS_OS VDD_OS  
C_A_PL C_A_PL  
FB_BE0 FB_BE1 FB_BE3  
VDD_  
USBO  
EVDD  
GND  
GND  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
GND  
EVDD  
EVDD  
EVDD  
GND  
CVDD  
_B  
_B  
_B  
L
L
FB_CS0 FB_CS1  
_B  
BOOT  
MOD1  
I2C0_  
SDA  
G
H
J
FB_CLK  
GND  
GND  
GND  
GND  
T3IN  
EXTAL  
G
H
J
_B  
FB_OE_ FB_RW_ FB_TA_  
BOOT  
MOD0  
I2C0_  
SCL  
GND  
T1IN  
T0IN  
TMS  
XTAL  
GND  
B
B
B
DSPI0_ DSPI0_ DSPI0_  
SD_BA1 EVDD  
GND  
GND  
T2IN  
PCS0  
SOUT  
SCK  
DSPI0_ DSPI0_ SD_CAS  
SIN PCS1 _B  
RSTIN_  
B
K
L
SD_A1  
GND  
SDVDD SDVDD SDVDD  
TEST  
TDI  
ALLPST  
K
L
RM110_ RM110_  
TXD0  
SD_A9 SD_A10 SD_A5  
SD_A4 SDVDD SDVDD SDVDD SD_VTT TRST_B  
TDO  
TCLK  
TXD1  
SD_RAS SD_CS_  
RMII0_  
RXER CRS_DV MDIO  
RMII0_  
RMII0_  
SD_A7  
SD_A2  
M
N
P
SD_A12  
SD_A3  
SD_A11  
SD_A0  
SD_BA2 SD_D0  
SD_D2  
SD_D4  
SD_D6  
SD_D5  
OWIO  
M
N
P
_B  
B
SD_WE_  
B
SD_VRE  
F
JTAG_E RMII0_  
RMII0_  
RXD0  
RMII0_  
MDC  
SD_A8  
SD_CKE SD_DQM SD_D1  
SD_CLK_  
N
TXEN  
SD_DQS  
_B  
RSTOUT RMII0_  
_B  
GND  
SD_A6 SD_A13 SD_BA0 SD_ODT SD_CLK  
SD_DQS  
SD_D3  
SD_D7  
GND  
B
RXD1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Figure 7. MCF54410 Pinout (196 MAPBGA)  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
19  
Pin assignments and reset states  
3.3  
Pinout—256 MAPBGA  
The pinout for the MCF54415, MCF54416, MCF54417, and MCF54418 packages are shown below.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
FB_  
AD3  
FB_  
FB_  
FB_  
FB_  
FB_  
FB_  
FB_  
SDHC_ SIM0_  
SSI0_  
MCLK  
SSI0_ USBO_ USBH_  
BCLK DM DM  
A
B
C
D
VSS  
VSS  
A
B
C
D
AD13  
AD14  
AD16  
AD20  
AD22  
AD26  
AD29  
CLK  
CLK  
FB_  
CS4  
UART0_  
RTS  
FB_  
AD2  
FB_  
AD8  
FB_  
AD11  
FB_  
AD15  
FB_  
AD19  
FB_  
AD24  
FB_  
AD28  
FB_  
AD31  
UART0_  
RXD  
SDHC_ SDHC_ USBO_ USBH_ RTC_  
DAT0  
DAT3  
DP  
DP  
EXTAL  
UART1_  
CTS  
FB_BE/  
BWE3  
FB_  
AD1  
FB_  
AD7  
FB_  
AD9  
FB_  
AD10  
FB_  
AD17  
FB_  
AD23  
FB_  
AD30  
UART1_  
RXD  
SDHC_ SSI0_  
CMD RXD  
SSI0_  
TXD  
SIM0_  
PD  
SIM0_  
RST  
RTC_  
XTAL  
UART1_  
RTS  
FB_BE/  
BWE1  
FB_  
ALE  
FB_  
AD5  
FB_  
AD12  
FB_  
AD18  
FB_  
AD21  
FB_  
AD25  
FB_  
AD27  
UART1_  
TXD  
UART0_ SDHC_ SIM0_ CAN1_ CAN1_  
TXD  
VSS  
DAT1  
VEN  
TX  
RX  
FB_  
BE/BW  
E2  
FB_  
CS1  
UART0  
_CTS  
VSTBY_  
RTC  
FB_  
AD4  
FB_  
AD6  
FB_  
VDD  
FB_  
VDD  
FB_  
VDD  
SIM0_  
XMT  
SDHC_ SSI0_  
IVDD  
IVDD  
IVDD  
E
VSS  
E
DAT2  
FS  
VDD_  
VSS_  
FB_  
OE  
FB_  
CS5  
FB_BE/  
BWE0  
FB_  
AD0  
FB_  
FB_  
IVDD  
VSS  
IVDD  
VSS  
IVDD  
VSS  
OSC_A OSC_A  
F
G
H
J
VSS  
VSS  
VSS  
VSS  
IRQ7  
IRQ1  
T3IN  
IRQ4  
F
G
H
J
VDD  
VDD  
_PLL  
_PLL  
FB_  
R/W  
FB_  
CS0  
FB_  
CLK  
ADC_  
IN4  
FB_  
VDD  
VDD_  
USBO  
I2C0_  
SDA  
I2C0_  
SCL  
EXTAL  
VSS  
VSS  
FB_  
TA  
ADC_  
IN0  
ADC_  
IN6  
AVDD_ AVSS_  
ADC ADC  
VDD_  
USBH  
T1IN  
T2IN  
PST0  
TDO  
T0IN  
PST1  
XTAL  
PST2  
TMS  
VSS  
EVDD  
EVDD  
EVDD  
VSS  
VSS  
VSS  
VSS  
VDDA_ VSSA_  
DAC_  
ADC  
ADC_  
IN1  
ADC_  
IN2  
ADC_  
IN5  
DAC_  
ADC  
PST3  
TRST  
TDI  
VSS  
EVDD  
EVDD  
VSS  
EVDD  
EVDD  
VSS  
EVDD  
EVDD  
VSS  
VSS  
VSS  
VSS  
VSS  
DSPI0_ DSPI0_ ADC_  
SOUT  
ADC_  
IN3  
BOOT  
MOD1  
K
L
EVDD  
EVDD  
VSS  
EVDD  
VSS  
RESET  
K
L
PCS0  
IN7  
RST  
OUT  
DSPI0_ DSPI0_ DSPI0_  
PCS1  
BOOT  
MOD0  
DDATA0 DDATA3  
MII0_  
VSS  
SCK  
SIN  
UART2_ UART2_  
RTS CTS  
SD_  
VDD  
SD_  
VDD  
SD_  
VDD  
SD_  
VDD  
SD_  
VDD  
SD_  
VDD  
DDATA2  
DDATA1 TCLK  
M
N
P
R
T
IRQ3  
IRQ2  
VSS  
M
N
P
R
T
RXCLK  
SD_  
CAS  
UART2_  
TXD  
OW_  
IO  
MII0_  
TXD2  
MII0_  
RXD2  
MII0_  
RXER  
JTAG_  
EN  
MII0_  
MDIO  
SD_A5 SD_A10 SD_A2 SD_BA1  
SD_D3 SD_VTT  
IRQ6  
SD_CS  
UART2_  
RXD  
SD_  
ODT  
SD_  
SD_D1  
MII0_  
CRS  
MII0_  
TXEN  
MII0_  
TXD0  
MII0_  
RXDV  
MII0_  
RXD3  
MII0_  
MDC  
SD_A1 SD_A9 SD_A3 SD_A4 SD_A14 SD_BA2  
VREF  
SD_  
RAS  
SD_  
CKE  
MII0_  
COL  
MII0_  
TXD1  
MII0_  
TXER  
MII0_  
RXD1  
SD_A12 SD_A7 SD_A11 SD_A13 SD_BA0  
SD_D0 SD_D4 SD_D6  
SD_  
TEST  
SD_WE  
SD_  
CLK  
SD_  
CLK  
SD_  
DM  
SD_  
DQS  
MII0_  
TXD3  
MII0_  
MII0_  
TXCLK RXD0  
SD_A6 SD_A0 SD_A8  
SD_D2 SD_D5 SD_D7  
VSS  
VSS  
DQS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Figure 8. MCF54415, MCF54416, MCF54417, and MCF54418 Pinout (256 MAPBGA)  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
20  
Freescale Semiconductor  
Electrical characteristics  
4
Electrical characteristics  
This document contains electrical specification tables and reference timing diagrams for the MCF5441x microprocessor. This  
section contains detailed information on AC/DC electrical characteristics and AC timing specifications.  
NOTE  
The specifications for this device in any other document are superseded by the  
specifications in this document.  
4.1  
Absolute maximum ratings  
1, 2  
Table 6. Absolute maximum ratings  
Rating  
Symbol  
Pin name  
EVDD  
Value  
Units  
External I/O pad supply voltage  
Internal logic supply voltage  
FlexBus I/O pad supply voltage  
SDRAM I/O pad supply voltage  
PLL supply voltage  
EVDD  
IVDD  
–0.3 to +4.0  
–0.5 to +2.0  
–0.3 to +4.0  
–0.3 to +4.0  
–0.3 to +4.0  
–0.3 to +4.0  
–0.3 to +4.0  
–0.3 to +4.0  
–0.3 to +4.0  
–0.3 to +4.0  
–0.3 to +3.6  
25  
V
V
IVDD  
FB_VDD  
FBVDD  
SDVDD  
PVDD  
V
SD_VDD  
V
VDD_OSC_A_PLL  
VDD_USBO  
VDD_USBH  
VDDA_ADC  
VDDA_DAC_ADC  
VSTBY_RTC  
V
USB OTG supply voltage  
USB host supply voltage  
ADC supply voltage  
USBVDD  
USBVDD  
AVDD  
V
V
V
DAC and ADC supply voltage  
RTC standby supply voltage  
Digital input voltage3  
V
RTCVSTBY  
VIN  
V
V
Instantaneous maximum current  
IDD  
mA  
Single pin limit (applies to all pins) 3, 4, 5  
Operating temperature range (packaged)  
TA  
(TL – TH)  
–40 to +85  
C  
C  
Storage temperature range  
Tstg  
–55 to +150  
1
2
Functional operating conditions are given in Table 11. Absolute maximum ratings are stress ratings only, and  
functional operation at the maximum is not guaranteed. Continued operation at these levels may affect device  
reliability or cause permanent damage to the device.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, it  
is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated  
voltages to this high-impedance circuit. Immunity to static and electrical fields is enhanced if unused inputs are tied  
to an appropriate logic voltage level (e.g., VSS or EVDD).  
3
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values for positive and negative clamp voltages, and then use the larger of the two values.  
4
5
All functional non-supply pins are internally clamped to VSS and EVDD  
.
Power supply must maintain regulation within operating EVDD, FBVDD, and SDVDD range during instantaneous and  
operating maximum current conditions. If positive injection current (Vin > EVDD, FBVDD, or SDVDD) is greater than  
IDD, the injection current may flow out of EVDD, FBVDD, or SDVDD and could result in external power supply going  
out of regulation. Ensure the external EVDD, FBVDD, or SDVDD load shunts current greater than maximum injection  
current. This is the greatest risk when the MPU is not consuming power (for example, no clock).  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
21  
Electrical characteristics  
4.2  
Thermal characteristics  
Table 7. Thermal characteristics  
196  
MAPBGA  
256  
MAPBGA  
Characteristic  
Symbol  
Unit  
Junction to ambient, natural convection1  
Junction to ambient (@200 ft/min)1, 3  
Single layer  
board (1s)2  
JA  
JA  
58  
35  
48  
32  
32  
29  
Four layer board  
(2s2p)2,3  
C/W  
Single layer  
board (1s)  
JMA  
JMA  
Four layer board  
(2s2p)  
C/W  
Junction to board4  
Junction to case5  
JB  
JC  
jt  
Tj  
22  
14  
3
22  
12  
2
C/W  
C/W  
C/W  
oC  
Junction to top of package, natural convection1, 6  
Maximum operating junction temperature  
105  
105  
1
JA and jt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection.  
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting  
site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board,  
and board thermal resistance.  
2
3
4
Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board  
temperature is measured on the top surface of the board near the package.  
5
6
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL  
SPEC-883 Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization  
parameter is written in conformance with Psi-JT.  
The average chip-junction temperature (T ) in C can be obtained from:  
J
TJ = TA + PD  JMA  
Eqn. 1  
Where:  
TA  
= Ambient Temperature, C  
QJMA  
PD  
= Package Thermal Resistance, Junction-to-Ambient, C/W  
= PINT + PI/O  
PINT  
PI/O  
= IDD IVDD, Watts - Chip Internal Power  
= Power Dissipation on Input and Output Pins — User Determined  
For most applications P < P  
and can be ignored. An approximate relationship between P and T (if P is neglected) is:  
D J I/O  
I/O  
INT  
K
--------------------------------  
PD  
=
Eqn. 2  
TJ + 273C  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
22  
Freescale Semiconductor  
Electrical characteristics  
Solving equations 1 and 2 for K gives:  
K = PD  TA 273C+ QJMA P2D  
Eqn. 3  
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 1 and Equation 2 iteratively  
A
D
J
for any value of T .  
A
4.3  
ESD protection  
1, 2  
Table 8. ESD protection characteristics  
Characteristics  
Symbol  
Value  
Units  
ESD Target for Human Body Model  
HBM  
2000  
V
1
2
All ESD testing is in conformity with JESD22 Stress Test Qualification.  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets  
the device specification requirements. Complete DC parametric and functional testing is  
performed per applicable specification at room temperature followed by hot temperature,  
unless specified otherwise in the device specifications provided in this document.  
4.4  
Static latch-up (LU)  
Two complementary static tests are required on six parts to assess the latch-up performance:  
A supply over voltage is applied to each power supply pin.  
A current injection is applied to each input, output, and configurable I/O pin.  
These tests are compliant with the EIA/JESD 78 IC latch-up standard.  
Table 9. Latch-up results  
No.  
Symbol  
LU  
Parameter  
Static latch-up class  
Conditions  
Class  
1
CC  
TA = 125 °C conforming to JESD 78  
II level A  
4.5  
DC electrical specifications  
Table 10. Power supply specifications  
Characteristic  
Symbol Pin Name  
Min  
Max  
Units  
IVDD  
Internal logic supply voltage, nominal 1.2 V  
IVDD  
1.14  
1.32  
V
V
FB_VDD  
FlexBus supply voltage  
Nominal 1.8–3.3 V  
FBVDD  
1.71  
3.63  
SD_VDD  
SDRAM supply voltage  
DDR2 @ 1.8 V  
SDVDD  
V
1.71  
1.98  
SD_VREF  
SDRAM input reference voltage  
SDVREF  
0.49 x SDVDD  
0.51 x SDVDD  
V
V
V
SD_VTT  
SDRAM termination supply voltage  
SDVTT  
SDVREF – 0.04 SDVREF + 0.04  
3.135 3.63  
VDD_OSC_  
A_PLL  
PLL analog operation voltage range, nominal 3.3 V  
PVDD  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
23  
Electrical characteristics  
Table 10. Power supply specifications (continued)  
Characteristic  
Symbol Pin Name  
Min  
Max  
Units  
EVDD  
External I/O pad supply voltage, nominal 3.3 V  
USB supply voltage, nominal 3.3 V  
EVDD  
3.135  
3.135  
3.63  
3.63  
V
V
VDD_USBO  
VDD_USBH  
USBVDD  
VDDA_ADC  
ADC supply voltage  
DAC supply voltage  
AVDD  
3.135  
3.135  
3.63  
3.63  
V
V
VDDA_DAC_  
ADC  
VSTBY_RTC  
RTC standby supply voltage  
RTCVSTBY  
1.6  
EVDD – 0.2V  
V
Table 11. I/O electrical specifications  
Characteristic  
Symbol  
Min  
Max  
Units  
CMOS input high voltage  
CMOS input low voltage  
CMOS output high voltage  
EVIH  
EVIL  
0.65 EVDD  
VSS – 0.3  
EVDD + 0.3  
0.35 EVDD  
V
V
V
EVOH  
0.8 EVDD  
IOH = –2.0 mA  
CMOS output low voltage  
IOL = 2.0 mA  
EVOL  
0.2 EVDD  
V
SDRAM input high voltage  
DDR2 @ 1.8V  
SDVIH  
SDVIL  
V
V
V
SDVREF + 0.125  
0.3  
SDVDD + 0.3  
SDVREF 0.125  
SDRAM input low voltage  
DDR2 @ 1.8V  
SDRAM output high voltage  
DDR2@ 1.8V IOH = –13.4 mA  
SDVOH  
SDVDD 0.9  
SDRAM output low voltage  
DDR2@ 1.8V IOH = 13.4 mA  
SDVOL  
V
SDVDD 0.1  
FlexBus input high voltage  
@ 1.8V–3.3V  
FBVIH  
FBVIL  
0.51 FBVDD  
VSS – 0.3  
FBVDD + 0.3  
0.42 FBVDD  
V
V
V
FlexBus input low voltage  
@ 1.8V–3.3V  
FlexBus output high voltage  
@ 1.8V–3.3V  
FBVOH  
0.8 FBVDD  
IOH = –5.0 mA for all modes  
FlexBus output low voltage  
@ 1.8V–3.3V  
FBVOL  
0.2 FBVDD  
V
IOL = 5.0 mA for all modes  
Input Leakage Current  
Iin  
–2.5  
2.5  
A  
Vin = VDD or VSS, Input-only pins  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
24  
Freescale Semiconductor  
Electrical characteristics  
Table 11. I/O electrical specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Units  
Weak internal pull-up/pull-down device current1  
IAPU  
IAPU  
Cin  
10  
25  
315  
150  
A  
A  
pF  
Selectable weak internal pull-up/pull-down device current1  
Input capacitance 2  
All input-only pins  
All input/output (three-state) pins  
7
7
Output loading for CMOS pads (EVDD and FBVDD domains)  
CL  
CL  
pF  
pF  
Low drive  
High drive  
50  
200  
Output loading for SDRAMC pads (SDVDD domain)  
Low drive  
High drive  
5
50  
1
Refer to the signals section for pins having weak internal pull-up devices.  
This parameter is characterized before qualification rather than 100% tested.  
2
4.6  
Output pad loading and slew rate  
The output pins on the MCF5441x devices have programmable slew rates. Table 12 lists the rise/fall time for pins based on the  
type of pad used for the signal, the value programmed into the appropriate field of the slew rate control registers, and capacitive  
loading. Refer to Table 5 for a list of the external signals to pad connections.  
NOTE  
To allow the I/O interfaces to run at their maximum frequency, set their respective slew rate  
select values to 11.  
Table 12. Output pad slew rates  
Slew rate select  
field value  
Drive load  
(pF)  
Rise/fall time  
(ns)  
Pad type1  
ssr  
50  
200  
50  
2.2  
6
11  
10  
01  
00  
22  
200  
50  
28  
42  
200  
50  
50  
210  
220  
200  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
25  
Electrical characteristics  
Table 12. Output pad slew rates (continued)  
Slew rate select  
field value  
Drive load  
(pF)  
Rise/fall time  
(ns)  
Pad type1  
msr  
50  
200  
50  
1.2  
6
11  
10  
01  
00  
11  
10  
01  
00  
9
200  
50  
14  
17  
23  
110  
120  
1.1  
2.6  
2.4  
5
200  
50  
200  
50  
fsr  
200  
50  
200  
50  
5
200  
50  
8
16  
21  
200  
1
The ae pads are used for USB communication and are governed by usb.org  
specifications. They are not included in this table.  
4.7  
DDR pad drive strengths  
The DDR pins on the MCF5441x devices have programmable drive strengths. Table 13 lists the drive strengths for pins based  
on the value programmed into the appropriate field of the drive strength control register. Refer to Table 5 for a list of the external  
signals to pad connections.  
NOTE  
For a single device drive, this setting should be 00 to enable Half Strength mode. High  
strength is intended for multiple device drives (DIMM).  
Table 13. DDR pad drive strengths  
Drive strength select  
Pad type  
Drive strength  
field value  
st  
00  
01  
10  
11  
Half strength 1.8V DDR2  
Full strength 1.8V DDR2  
Reserved  
Reserved  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
26  
Freescale Semiconductor  
Electrical characteristics  
4.8  
Oscillator and PLL electrical characteristics  
Reference Figure 9 for crystal circuits.  
Table 14. PLL electrical characteristics  
Symbol  
Num  
Characteristic  
Min  
Max  
Unit  
1
PLL Reference Frequency Range1  
Crystal reference  
External reference  
fref_crystal  
fref_ext  
141  
141  
501  
501  
MHz  
MHz  
2
Core frequency  
fsys  
fsys/2  
120  
60  
250  
100  
MHz  
MHz  
FB_CLK frequency2 (MISCCR2[FBHALF] = 0)  
3
4
5
6
VCO frequency  
fvco  
fDCC  
tcst  
240  
300  
500  
500  
10  
MHz  
MHz  
ms  
DCC frequency3  
Crystal start-up time4, 5  
EXTAL input high voltage  
External and limp modes  
VIHEXT  
EVIH  
EVDD  
V
7
EXTAL input low voltage  
External and limp modes  
VILEXT  
tlpll  
0
EVIL  
50  
V
ms  
%
8
9
PLL lock time 4, 6  
Duty cycle of reference 4  
tdc  
–45%  
+45%  
10  
Crystal capacitive load  
CL  
From crystal  
spec  
pF  
11  
12  
13  
Feedback resistor  
RF  
RS  
10  
0
200  
M  
Series resistor  
Discrete load capacitance for XTAL  
CL_XTAL  
2 CL –  
pF  
CS_XTAL  
CPCB_XTAL  
7
14  
15  
Discrete load capacitance for EXTAL  
CL_EXTAL  
2 CL –  
CS_EXTAL  
CPCB_EXTAL  
pF  
7
FB_CLK period jitter, 4, 5, 7, 8, Measured at fSYS Max  
Peak-to-peak jitter (clock edge to clock edge)  
Long term jitter  
Cjitter  
10  
0.1  
% fsys/3  
% fsys/3  
1
These reference value ranges are for after a PLL predivider (PREDIV), which can be programmed to 1, 2, 4, 8, or 16.  
The PREDIV value can be set while booting from serial flash. In parallel reset configuration, the PREDIV value is set to  
one. In this mode, if the input frequency results in an out of range reference frequency, boot the processor in limp  
mode, set the proper PREDIV and multiplier settings, and switch to PLL mode.  
All internal registers retain data at 0 Hz.  
2
3
Required only for DDR2 memory.  
4
5
6
7
8
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Proper PC board layout procedures must be followed to achieve specifications.  
This specification is the PLL lock time only and does not include oscillator start-up time.  
CPCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys  
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal.  
.
Noise injected into the PLL circuitry via PLL VDD, EVDD, and VSS and variation in crystal oscillator frequency increase  
the Cjitter percentage for a given interval.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
27  
Electrical characteristics  
XOSC  
EXTAL  
XTAL  
RS  
RF  
C
CL  
L
Figure 9. Typical crystal circuit  
4.9  
Reset timing specifications  
Table 15 lists specifications for the reset timing parameters shown in Figure 10.  
Table 15. Reset and configuration override timing  
Num  
Characteristic  
Min  
Max  
Unit  
R11 RESET valid to FB_CLK (setup)  
9
1.5  
5
10  
1
ns  
R2 FB_CLK to RESET invalid (hold)  
ns  
FB_CLK cycles  
ns  
R3 RESET valid time2  
R4 FB_CLK to RSTOUT valid  
0
R5 RSTOUT valid to Configuration Override inputs valid  
R6 Configuration Override inputs valid to RSTOUT invalid (setup)  
R7 Configuration Override inputs invalid after RSTOUT invalid (hold)  
R8 RSTOUT invalid to Configuration Override inputs High Impedance  
R9 Minimum RSTOUT pulse width  
ns  
20  
0
FB_CLK cycles  
ns  
512  
FB_CLK cycles  
FB_CLK cycles  
1
2
RESET and configuration override data lines are synchronized internally. Setup and hold times must be met only if  
recognition on a particular clock is required.  
During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously  
to the system. Thus, RESET must be held a minimum of 100 ns.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
28  
Freescale Semiconductor  
Electrical characteristics  
FB_CLK  
RESET  
R1  
R2  
R3  
R4  
R4  
R9  
R6  
RSTOUT  
R8  
R7  
R5  
BOOTMOD[1:0]  
Figure 10. RESET and configuration override timing  
4.10 FlexBus timing specifications  
All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a  
reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider  
of that frequency.  
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the FlexBus output clock  
(FB_CLK). All other timing relationships can be derived from these values.  
All FlexBus signals use pad type pad_fsr. The following timing specifications assume a pad slew rate setting of 11 and a load  
1
of 50 pF.  
Table 16. FlexBus timing specifications  
Num  
Characteristic  
Frequency of operation  
Min  
Max  
Unit  
Notes  
16  
62.5  
MHz  
ns  
FB1 Clock period  
FB2 Output valid  
FB3 Output hold  
FB4 Input setup  
FB5 Input hold  
1
1
2
2
6.0  
ns  
0.5  
5.5  
0
ns  
ns  
ns  
1
2
Specification is valid for all FB_AD[31:0], FB_R/W, FB_ALE, FB_TS, FB_CSn, FB_OE, FB_BE/BWEn,  
and FB_TSIZ[1:0].  
Specification is valid for all FB_AD[31:0] and FB_TA.  
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting  
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to  
increase edge rise and fall times, thus reducing EMI.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
29  
Electrical characteristics  
S0  
S1  
S2  
S3  
FB_CLK  
FB1  
FB3  
ADDR[Y:0]  
FB_AD[Y:0]  
FB2  
FB5  
ADDR[31:X]  
FB_AD[31:X]  
DATA  
FB4  
FB_R/W  
FB_ALE  
FB_TS  
FB_CSn, FB_OE,  
FB_BE/BWEn  
FB4  
FB5  
FB_TA  
TSIZ[1:0]  
FB_TSIZ[1:0]  
Note:  
1
FB2 and FB3 output specifications are valid for all FB_AD[31:0], FB_R/W, FB_ALE, FB_TS,  
FB_CSn, FB_OE, FB_BE/BWEn, and FB_TSIZ[1:0].  
2
FB4 and FB5 input specifications are valid for all FB_AD[31:0] and FB_TA.  
Figure 11. FlexBus read timing  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
30  
Freescale Semiconductor  
Electrical characteristics  
S0  
S1  
S2  
S3  
FB_CLK  
FB1  
FB3  
ADDR[Y:0]  
FB_AD[Y:0]  
FB2  
ADDR[31:X]  
FB_AD[31:X]  
FB_R/W  
DATA  
FB_ALE  
FB_TS  
FB_CSn, FB_BE/BWEn  
FB_OE  
FB4  
FB5  
FB_TA  
TSIZ[1:0]  
FB_TSIZ[1:0]  
Note:  
1
FB2 and FB3 output specifications are valid for all FB_AD[31:0], FB_R/W, FB_ALE, FB_TS,  
FB_CSn, FB_OE, FB_BE/BWEn, and FB_TSIZ[1:0].  
2
FB4 and FB5 input specifications are valid for all FB_AD[31:0] and FB_TA.  
Figure 12. FlexBus write timing  
4.11 NAND flash controller (NFC) timing specifications  
The NAND flash controller (NFC) implements the interface to standard NAND flash memory devices. This section describes  
the timing parameters of the NFC.  
All NFC signals use pad type pad_fsr. The following timing specifications assume a pad slew rate setting of 11 and a load of  
1
50 pF.  
Table 17. NFC timing specifications  
Num  
Characteristic  
Frequency of operation  
NF1 Clock period  
Symbol  
Min  
Max  
Unit  
25  
401  
MHz  
ns  
tNFC  
tCLS  
tCLH  
tCS  
NF2 NFC_CLE setup time  
NF3 NFC_CLE hold time  
NF4 NFC_CE setup time  
NF5 NFC_CE hold time  
NF6 NFC_WE pulse width  
1.5 tNFC  
tNFC  
ns  
ns  
1.5 tNFC  
tNFC  
ns  
tCH  
ns  
tWP  
0.5 tNFC – 0.5  
ns  
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting  
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to  
increase edge rise and fall times, thus reducing EMI.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
31  
Electrical characteristics  
Num  
Table 17. NFC timing specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
NF7 NFC_ALE setup time  
NF8 NFC_ALE hold time  
NF9 Data setup time  
tALS  
tALH  
tDS  
1.5 tNFC  
tNFC  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5 tNFC – 4  
0.5 tNFC – 10  
tNFC  
NF10 Data hold time  
tDH  
NF11 Write cycle time  
tWC  
tWH  
tRR  
NF12 NFC_WE high hold time  
NF13 Ready to NFC_RE low  
NF14 NFC_RE pulse width  
NF15 Read cycle time  
0.5 tNFC – 1  
4.5 tNFC  
0.5 tNFC – 0.5  
tNFC  
tRP  
tRC  
NF16 NFC_RE high hold time  
NF17 Data in setup time  
tREH  
tDSU  
0.5 tNFC – 1  
6
1
50 MHz maximum frequency can only be used if the part is in EDO (enhanced data out) mode.  
NFC_CLE  
NF2  
NF4  
NF3  
NF5  
NFC_CE  
NF6  
NFC_WE  
NFC_ALE  
NF7  
NF8  
NF9  
Command  
NF10  
NFC_IO[7:0]  
Figure 13. Command latch cycle timing  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
32  
Freescale Semiconductor  
Electrical characteristics  
NFC_CLE  
NFC_CE  
NF2  
NF4  
NF5  
NF11  
NF6  
NF12  
NFC_WE  
NFC_ALE  
NF7  
NF8  
NF10  
NF9  
NFC_IO[7:0]  
Address  
Figure 14. Address latch cycle timing  
NF3  
NF5  
NFC_CLE  
NFC_CE  
NF11  
NF6  
NF12  
NFC_WE  
NFC_ALE  
NF7  
NF9  
NF10  
Data to NF  
NFC_IO[15:0]  
Figure 15. Write data latch timing  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
33  
Electrical characteristics  
NF5  
NFC_CE  
NF15  
NF14  
NF17  
NF16  
NFC_RE  
NF10  
NFC_IO[15:0]  
NFC_R/B  
Data from NF  
NF13  
Figure 16. Read data latch timing  
4.12 DDR SDRAM controller timing specifications  
The following timing numbers must be followed to properly latch or drive data onto the SDRAM memory bus. All timing  
numbers are relative to the DQS byte lanes.  
Table 18. SDRAM timing specifications  
Num  
Characteristic  
Frequency of operation  
Symbol  
Min  
Max  
Unit  
Notes  
100  
4.0  
250  
10.0  
MHz  
ns  
DD1 Clock period  
tSDCK  
tSDCKH  
tSDCKL  
tCMV  
1
DD2 Pulse width high  
DD3 Pulse width low  
0.45  
0.45  
0.55  
tSDCK  
tSDCK  
ns  
0.55  
3
2
DD4 Address, SD_CKE, SD_CAS, SD_RAS,  
SD_WE, SD_CS[1:0] — output valid  
0.5 tSDCK + 1  
DD5 Address, SD_CKE, SD_CAS, SD_RAS,  
SD_WE, SD_CS[1:0] — output hold  
tCMH  
0.5 tSDCK – 1  
ns  
DD6 Write command to first DQS latching transition  
tDQSS  
tQS  
WL + 0.2 tSDCK  
ns  
ns  
3
4
DD7 Data and data mask output setup (DQDQS)  
0.4  
relative to DQS (DDR write mode)  
5
DD8 Data and data mask output hold (DQSDQ)  
tQH  
0.4  
ns  
relative to DQS (DDR write mode)  
6
7
DD9 Input data skew relative to DQS (input setup)  
DD10 Input data hold relative to DQS.  
tIS  
tIH  
0.5  
ns  
ns  
0.375 tSDCK  
1
2
Pulse width high plus pulse width low cannot exceed min and max clock period.  
Command output valid should be 1/2 the memory bus clock (tSDCK) plus some minor adjustments for process, temperature,  
and voltage variations.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
34  
Freescale Semiconductor  
Electrical characteristics  
3
This specification relates to the required input setup time of DDR memories. The microprocessor’s output setup should be  
larger than the input setup of the DDR memories. If it is not larger, then the input setup on the memory is in violation.  
SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]  
4
5
6
The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are  
valid for each subsequent DQS edge.  
This specification relates to the required hold time of DDR memories.  
SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]  
Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line  
becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other  
factors).  
7
Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes  
invalid.  
DD1  
DD2  
SD_CLK  
SD_CLK  
DD3  
DD5  
SD_CSn,SD_WE,  
SD_RAS, SD_CAS  
CMD  
ROW  
DD4  
DD6  
SD_A[13:0]  
COL  
DD7  
SD_DM  
SD_DQS  
SD_D[7:0]  
DD8  
DD7  
WD1 WD2 WD3 WD4  
DD8  
Figure 17. DDR write timing  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
35  
Electrical characteristics  
DD1  
DD2  
SD_CLK  
SD_CLK  
DD3  
DD5  
CL=2  
SD_CSn,SD_WE,  
SD_RAS, SD_CAS  
CMD  
ROW  
DD4  
CL=2.5  
SD_A[13:0]  
COL  
DD9  
DQS Read  
Postamble  
DQS Read  
Preamble  
SD_DQS  
DD10  
SD_D[7:0]  
RD1 RD2 RD3 RD4  
DQS Read  
Preamble  
DQS Read  
Postamble  
SD_DQS  
SD_D[7:0]  
RD1 RD2 RD3 RD4  
Figure 18. DDR read timing  
4.13 USB transceiver timing specifications  
The MCF5441x device is compliant with industry standard USB 2.0 specification.  
4.14 ULPI timing specifications  
The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing  
requirements for the ULPI pins are given in Table 19. These timings apply to synchronous mode only. All timings are measured  
with respect to the clock as seen at the USB_CLKIN pin on the MCF5441x. The ULPI PHY is the source of the 60MHz clock.  
NOTE  
The USB controller requires a 60-MHz clock, even if using the on-chip FS/LS transceiver  
instead of the ULPI interface. In this case, the 60-MHz clock can be generated by the PLL  
or input on the USB_CLKIN pin.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
36  
Freescale Semiconductor  
Electrical characteristics  
All ULPI signals use pad type pad_fsr. The following timing specifications assume a pad slew rate setting of 11 and a load of  
1
50 pF.  
Table 19. ULPI interface timing  
Num  
Characteristic  
Min  
Nominal  
Max  
Units  
USB_CLKIN operating frequency  
USB_CLKIN duty cycle  
60  
50  
9.5  
MHz  
%
U1  
U2  
U3  
U4  
U5  
USB_CLKIN clock period  
16.67  
ns  
Input setup (control and data)  
Input hold (control and data)  
Output valid (control and data)  
Output hold (control and data)  
5.0  
1.0  
ns  
ns  
ns  
1.0  
ns  
U1  
USB_CLKIN  
U2  
U3  
ULPI_DIR / ULPI_NXT  
(Control Input)  
U2  
U3  
ULPI_DATA[7:0]  
(Data Input)  
U4  
U5  
ULPI_STP  
(Control Output)  
U5  
U4  
ULPI_DATA[7:0]  
(Data Output)  
Figure 19. ULPI timing diagram  
4.15 eSDHC timing specifications  
This section describes the electrical information of the eSDHC.  
All eSDHC signals use pad type pad_msr. The following timing specifications assume a pad slew rate setting of 11 and a load  
2
of 50 pF.  
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting  
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to  
increase edge rise and fall times, thus reducing EMI.  
2.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting  
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to  
increase edge rise and fall times, thus reducing EMI.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
37  
Electrical characteristics  
4.15.1 eSDHC timing specifications  
Figure 20 depicts the timing of eSDHC, and Table 20 lists the eSDHC timing characteristics.  
Table 20. eSDHC interface timing specifications  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
1
SD1 Clock frequency (low speed)  
Clock frequency (SD/SDIO full speed)  
Clock frequency (MMC full speed)  
Clock frequency (identification mode)  
SD2 Clock low time  
fPP  
0
0
400  
40  
20  
400  
3
kHz  
MHz  
MHz  
kHz  
ns  
2
fPP  
3
fPP  
0
4
fOD  
100  
7
tWL  
tWH  
tTLH  
tTHL  
SD3 Clock high time  
7
ns  
SD4 Clock rise time  
ns  
SD5 Clock fall time  
3
ns  
eSDHC Output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SD6 eSDHC output delay (output valid) tOD  
eSDHC Input / card outputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
–5  
5
ns  
SD7 eSDHC input setup time  
SD8 eSDHC input hold time  
tISU  
tIH  
5
0
ns  
ns  
1
2
3
4
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.  
In normal data transfer mode for SD/SDIO card, clock frequency can be any value from 0 to 25 MHz.  
In normal data transfer mode for MMC card, clock frequency can be any value from 0 to 20 MHz.  
In card identification mode, card clock must be 100 kHz– 400 kHz, voltage ranges from 2.7 to 3.6 V.  
SD2  
SD1  
SD4  
SD5  
SDHC_CLK  
SD3  
SD6  
Output from eSDHC to card  
SDHC_CMD  
SDHC_DAT[3:0]  
SD7  
SD8  
Input from card to eSDHC  
SDHC_CMD  
SDHC_DAT[3:0]  
Figure 20. eSDHC timing  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
38  
Freescale Semiconductor  
Electrical characteristics  
4.15.2 eSDHC electrical DC characteristics  
Table 21 lists the eSDHC electrical DC characteristics.  
Table 21. MMC/SD interface electrical specifications  
Design  
value  
Num  
Parameter  
Min  
Max  
Unit  
Condition/remark  
Bus signal line load  
7
8
Pull-up resistance  
Open drain resistance  
47  
10  
100  
NA  
k  
k  
Internal PU  
NA  
NA  
For MMC cards only  
For MMC cards only  
IOH = –100 µA  
IOL = 2 mA  
Open drain signal level  
9
Output high voltage  
Output low voltage  
VDD – 0.2  
V
V
10  
0.3  
Bus signal levels  
11  
12  
Output high voltage  
0.75 x VDD  
V
V
IOH = –100 µA @VDD min  
IOL = 100 µA @VDD min  
Output low voltage  
0.125 x VDD  
13  
14  
Input high voltage  
Input low voltage  
0.625 x VDD  
VDD + 3  
V
V
V
SS – 0.3  
0.25 x VDD  
4.16 SIM timing specifications  
Each SIM card interface consist of a total of 12 pins (two separate ports of six pins each. Mostly one port with 5 pins is used).  
The interface is meant to be used with synchronous SIM cards. This means that the SIM module provides a clock for the SIM  
card to use. The frequency of this clock is normally 372 times the data rate on the TX/RX pins, however SIM module can work  
with CLK equal to 16 times the data rate on TX/RX pins.  
There is no timing relationship between the clock and the data. The clock that the SIM module provides to the SIM card is used  
by the SIM card to recover the clock from the data, like a standard UART. All six (or five when a bidirectional TXRX is used)  
of the pins for each half of the SIM module are asynchronous to each other. There are no required timing relationships between  
the signals in normal mode. However, there are some in reset and power down sequences.  
All SIM signals use pad type pad_msr. SIM timing is fairly relaxed compared to other interfaces and can be met at 50 pF loading  
1
with any slew rate setting other than 00.  
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting  
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to  
increase edge rise and fall times, thus reducing EMI.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
39  
Electrical characteristics  
4.16.1 General timing requirements  
Figure 21 shows the timing of the SIM module, and Table 22 lists the timing parameters.  
1/Sfreq  
SIM_CLK  
Sfall  
Srise  
Figure 21. SIM clock timing diagram  
Table 22. SIM timing specification—High Drive strength  
Num  
Description  
Symbol  
Min  
Max  
Unit  
1
SIM clock frequency (SIM_CLK)1  
Sfreq  
0.01  
5 (Some new cards  
may reach 10)  
MHz  
2
3
4
SIM_CLK rise time 2  
Srise  
Sfall  
20  
20  
25  
ns  
ns  
ns  
SIM_CLK fall time 3  
SIM input transition time (RX, SIM_PD)  
Strans  
1
2
3
50% duty cycle clock  
With C = 50pF  
With C = 50pF  
4.16.2 Reset sequence  
4.16.2.1 Cards with internal reset  
The reset sequence for this kind of SIM card is as follows (see Figure 22):  
After powerup, the clock signal is enabled on SIM_CLK (time T0)  
After 200 clock cycles, RX must be high.  
The card must send a response on RX acknowledging the reset between 400 and 40,000 clock cycles after T0.  
SIM_VEN  
SIM_CLK  
Response  
SIM_RX  
1
2
1
2
< 200 clock cycles  
T0  
400 clock cycles <  
< 40,000 clock cycles  
Figure 22. Internal-reset card reset sequence  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
40  
Freescale Semiconductor  
Electrical characteristics  
4.16.2.2 Cards with active-low reset  
The sequence of reset for this kind of card is as follows (see Figure 23):  
1. After powerup, the clock signal is enabled on SIM_CLK (time T0)  
2. After 200 clock cycles, RX must be high.  
3. SIM_RST must remain low for at least 40,000 clock cycles after T0 (no response is to be received on RX during those  
40,000 clock cycles)  
4. SIM_RST is set high (time T1)  
5. SIM_RST must remain high for at least 40,000 clock cycles after T1 and a response must be received on RX between  
400 and 40,000 clock cycles after T1.  
SIM_VEN  
SIM_RST  
SIM_CLK  
Response  
SIM_RX  
2
1
3
3
T0  
T1  
< 200 clock cycles  
1
2
3
400 clock cycles <  
< 40,000 clock cycles  
400,000 clock cycles <  
Figure 23. Active-low-reset card reset sequence  
4.16.3 Power-down sequence  
Power down sequence for SIM interface is as follows:  
1. SIM_PD port detects the removal of the SIM card  
2. SIM_RST goes low  
3. SIM_CLK goes low  
4. SIM_TX goes low  
5. SIM_VEN goes low  
Each of these steps is completed in one CKIL period (usually 32 kHz). Power-down may be started in response to a  
card-removal detection or launched by the processor. Figure 24 and Table 23 show the usual timing requirements for this  
sequence, with Fckil = CKIL frequency value.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
41  
Electrical characteristics  
Num  
Table 23. Timing requirements for power-down sequence  
Description  
Symbol  
Min  
Max  
Unit  
1
2
3
4
SIM reset to SIM clock stop  
Srst2clk  
Srst2dat  
Srst2ven  
Spd2rst  
0.9 fCKIL  
1.8 fCKIL  
2.7 fCKIL  
0.9 fCKIL  
0.8  
1.2  
1.8  
25  
µs  
µs  
µs  
ns  
SIM reset to SIM TX data low  
SIM reset to SIM voltage enable low  
SIM presence detect to SIM reset low  
Spd2rst  
SIM_PD  
SIM_RST  
Srst2clk  
SIM_CLK  
SIM__TX  
Srst2dat  
Srst2ven  
SIM_VEN  
Figure 24. SmartCard interface power-down AC timing  
4.17 SSI timing specifications  
This section provides the AC timings for the SSI in master (clocks driven) and slave modes (clocks input). All timings are given  
for non-inverted serial clock polarity (SSI_TCR[TSCKP] = 0, SSI_RCR[RSCKP] = 0) and a non-inverted frame sync  
(SSI_TCR[TFSI] = 0, SSI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings  
remain valid by inverting the clock signal (SSI_BCLK) and/or the frame sync (SSI_FS) shown in the figures below.  
All SSI signals use pad type pad_msr. The following timing specifications assume a pad slew rate setting of 11 and a load of 50  
pF. When the SSI_MCLK output is not used, the maximum SSI bit clock (SSI_BCLK) frequency is such that timing can also  
1
be met at slew rate settings 10 and 01.  
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting  
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to  
increase edge rise and fall times, thus reducing EMI.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
42  
Freescale Semiconductor  
Electrical characteristics  
1
Table 24. SSI timing — master modes  
Num  
Description  
Symbol  
Min  
Max  
Units  
Notes  
2
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
SSI_MCLK cycle time  
tMCLK  
15.15  
45%  
80  
55%  
ns  
tMCLK  
ns  
SSI_MCLK pulse width high / low  
SSI_BCLK cycle time  
3
tBCLK  
SSI_BCLK pulse width  
45%  
55%  
15  
tBCLK  
ns  
SSI_BCLK to SSI_FS output valid  
SSI_BCLK to SSI_FS output invalid  
SSI_BCLK to SSI_TXD valid  
0
ns  
15  
ns  
SSI_BCLK to SSI_TXD invalid / high impedance  
SSI_RXD / SSI_FS input setup before SSI_BCLK  
0
ns  
15  
ns  
S10 SSI_RXD / SSI_FS input hold after SSI_BCLK  
0
ns  
1
2
3
All timings specified with a capacitive load of 25pF.  
SSI_MCLK can be generated from SSI_CLKIN or a divided version of the internal system clock (fsys).  
SSI_BCLK can be derived from SSI_CLKIN or a divided version of the internal system clock (fsys).  
1
Table 25. SSI timing — slave modes  
Num  
Description  
Symbol  
Min  
Max  
Units  
Notes  
S11 SSI_BCLK cycle time  
tBCLK  
80  
45%  
10  
2
55%  
ns  
tBCLK  
ns  
S12 SSI_BCLK pulse width high / low  
S13 SSI_FS input setup before SSI_BCLK  
S14 SSI_FS input hold after SSI_BCLK  
S15 SSI_BCLK to SSI_TXD / SSI_FS output valid  
ns  
15  
ns  
S16 SSI_BCLK to SSI_TXD / SSI_FS output invalid / high  
impedance  
0
ns  
S17 SSI_RXD setup before SSI_BCLK  
S18 SSI_RXD hold after SSI_BCLK  
15  
2
ns  
ns  
1
All timings specified with a capacitive load of 25pF.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
43  
Electrical characteristics  
S1  
S2  
S2  
SSI_MCLK  
(Output)  
S3  
SSI_BCLK  
(Output)  
S4  
S4  
S5  
S6  
SSI_FS  
(Output)  
S9  
S10  
SSI_FS  
(Input)  
S7  
S8  
S7  
S8  
SSI_TXD  
SSI_RXD  
S9  
S10  
Figure 25. SSI timing — master modes  
S11  
SSI_BCLK  
(Input)  
S12  
S12  
S15  
S16  
SSI_FS  
(Output)  
S13  
S14  
SSI_FS  
(Input)  
S15  
S16  
S16  
S15  
SSI_TXD  
SSI_RXD  
S17  
S18  
Figure 26. SSI timing — slave modes  
4.18 12-bit ADC specifications  
1
Table 26. ADC parameters  
Characteristic  
Frequency of operation  
Name  
Min  
Typical  
Max  
Unit  
200kHz  
8.33  
3
12MHz  
500  
ADC clock period  
tADC  
VREFL  
VREFH  
INL  
ns  
V
Low reference voltage  
VSS  
VREFH  
AVDD  
High reference voltage  
VREFL  
V
Integral non-linearity (10% to 90% input signal range)2  
lsb  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
44  
Freescale Semiconductor  
Electrical characteristics  
1
Table 26. ADC parameters (continued)  
Characteristic  
Name  
Min  
Typical  
Max  
Unit  
Differential non-linearity (10% to 90% input signal  
range)3  
DNL  
0.6  
lsb  
Monotonicity  
Guaranteed  
Conversion time  
0
6
1
tADC cycles  
Sample time  
tADC cycles  
ADC power-up time4  
Recovery from auto standby  
Input impedance  
tADPU  
tREC  
13  
6
tADC cycles5  
tADC cycles  
XIN  
2k  
100  
20  
12  
0.2  
57  
55  
60  
9
3
mA  
nA  
Input injection current6, per pin  
IADI  
VREFH current  
IVREFH  
VOFFSET0  
Offset voltage internal reference (at the y intercept)  
LSB  
LSB  
%
Offset voltage internal reference (at the 50% FSR point) VOFFSET50  
Gain error (transfer path)  
Spurious free dynamic range  
Signal-to-noise plus distortion  
Signal-to-noise ratio  
EGAIN  
SFDR  
SINAD  
SNR  
dB  
dB  
dB  
Effective number of bits  
ENOB  
Bits  
1
All ADC parameter measurements are preliminary pending full characterization.  
These measurements were made at VDD = 3.3 V, VREFH = 3.3 V, and VREFL = ground.  
INL measured from VIN = 0.1VREFH to VIN = 0.9VREFH  
INL measured from VIN = 0.1VREFH to VIN = 0.9VREFH  
Includes power-up of ADC and VREF  
2
3
4
5
6
ADC clock cycles  
The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the  
ADC  
4.19 12-bit DAC timing specifications  
Table 27 shows electrical specifications of DAC.  
1
Table 27. DAC parameters  
Characteristic  
Name  
Min  
Typical  
Max  
Unit  
Range of digital input words: 497 to 3599 (0x1F1–0xE0F)  
Monotonicity  
LSB  
806  
uV  
Guaranteed  
Conversion time (high-speed)  
Conversion time (low-speed)  
Conversion rate (high-speed)  
Conversion rate (low-speed)  
Output swing  
1
2
us  
us  
1M  
conv/sec  
conv/sec  
V
500K  
AVSS + 0.04  
AVDD – 0.04  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
45  
Electrical characteristics  
1
Table 27. DAC parameters (continued)  
Characteristic  
Name  
Min  
Typical  
Max  
Unit  
Integral non-linearity (497 to 3599)  
Differential non-linearity (497 to 3599)  
Gain error (497 to 3599)  
INL  
DNL  
EGAIN  
ENOB  
tDAPU  
RL  
9
8.0  
0.5  
lsb  
lsb  
%
0.26  
Effective number of bits  
bits  
us  
DAC power-up time  
3K  
11  
Output load resistance  
Ohm  
pF  
Output load capacitance  
CL  
400  
60  
Power supply ripple rejection  
PSRR  
dB  
1
All measurements were made at VDD = 3.3V, VREFH = 3.3V, and VREFL = ground  
4.20 mcPWM timing specifications  
Table 28. mcPWM timing  
Num  
Characteristic  
Min  
Max  
Unit  
G1 FB_CLK high to output valid  
G2 FB_CLK high to output invalid  
G3 Input valid to FB_CLK high  
G4 FB_CLK high to input invalid  
1
7
ns  
ns  
ns  
ns  
3
1
2
4.21 I C timing specifications  
2
Table 29 lists specifications for the I C input timing parameters shown in Figure 27.  
2
Table 29. I C input timing specifications between SCL and SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
2
8
1
1/fSYS  
1/fSYS  
ms  
Clock low period  
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
0
1
ns  
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
4
ms  
1/fSYS  
ns  
Data setup time  
0
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2
1/fSYS  
1/fSYS  
2
2
Table 30 lists specifications for the I C output timing parameters shown in Figure 27.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
46  
Freescale Semiconductor  
Electrical characteristics  
Table 30. I C output timing specifications between SCL and SDA  
2
Num  
Characteristic  
Min  
Max  
Units  
I11  
I21  
I32  
I41  
I53  
I61  
I71  
I81  
I91  
Start condition hold time  
Clock low period  
6
3
1/fSYS  
1/fSYS  
µs  
10  
7
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
1/fSYS  
ns  
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
10  
2
1/fSYS  
1/fSYS  
1/fSYS  
1/fSYS  
Data setup time  
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
20  
10  
1
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum  
frequency (IFDR = 0x20) results in minimum output timings as shown in Table 30. The I2C interface is  
designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual  
position is affected by the prescale and division values programmed into the IFDR. However, the numbers  
given in Table 30 are minimum values.  
2
3
Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive  
low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and  
pull-up resistor values.  
Specified at a nominal 50-pF load.  
I5  
I6  
I2  
I2C_SCL  
I2C_SDA  
I7  
I8  
I1  
I9  
I4  
I3  
2
Figure 27. I C input/output timings  
4.22 Ethernet assembly timing specifications  
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing  
specs/constraints for the physical interface.  
All Ethernet signals use pad type pad_fsr. The following timing specifications assume a pad slew rate setting of 11 and a load  
1
of 50 pF.  
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting  
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to  
increase edge rise and fall times, thus reducing EMI.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
47  
Electrical characteristics  
4.22.1 Receive signal timing specifications  
The following timing specs meet the requirements for MII and RMII interfaces for a range of transceiver devices.  
Table 31. Receive signal timing  
MII mode  
RMII mode  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
E1  
E2  
E3  
E4  
RXCLK frequency  
5
25  
4
50  
MHz  
ns  
RXD[n:0], RXDV, RXER to RXCLK setup1  
RXCLK to RXD[n:0], RXDV, RXER hold1  
RXCLK pulse width high  
5
2
ns  
35%  
35%  
65%  
65%  
35%  
35%  
65%  
65%  
RXCLK period  
RXCLK period  
RXCLK pulse width low  
1
In MII mode, n = 3; In RMII mode, n = 1  
E4  
E3  
E2  
RXCLK (MII) / EXTAL (RMII)  
E1  
RXD[n:0]  
RXDV,  
Valid Data  
RXER  
Figure 28. MII/RMII receive signal timing diagram  
4.22.2 Transmit signal timing specifications  
Table 32. Transmit signal timing  
MII mode  
RMII mode  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
E5  
E6  
E7  
E8  
TXCLK frequency  
4
25  
5
50  
MHz  
ns  
TXCLK to TXD[n:0], TXEN, TXER invalid1  
TXCLK to TXD[n:0], TXEN, TXER valid1  
TXCLK pulse width high  
25  
14  
ns  
35%  
35%  
65%  
65%  
35%  
35%  
65%  
65%  
tTXCLK  
tTXCLK  
TXCLK pulse width low  
1
In MII mode, n = 3; In RMII mode, n = 1  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
48  
Freescale Semiconductor  
Electrical characteristics  
E8  
TXCLK (MII) / EXTAL (RMII)  
E7  
E5  
E6  
TXD[n:0]  
TXEN,  
TXER  
Valid Data  
Figure 29. MII/RMII transmit signal timing diagram  
4.22.3 Asynchronous input signal timing specifications  
Table 33. MII/RMII transmit signal timing  
Num  
Characteristic  
CRS, COL minimum pulse width  
Min  
Max  
Unit  
E9  
1.5  
TXCLK period  
CRS, COL  
E9  
Figure 30. MII/RMII async inputs timing diagram  
4.22.4 MDIO serial management timing specifications  
Table 34. MDIO serial management channel signal timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
E10  
E11  
E12  
E13  
E14  
E15  
MDC cycle time  
MDC pulse width  
tMDC  
400  
40  
25  
10  
0
60  
375  
ns  
% tMDC  
ns  
MDC to MDIO output valid  
MDC to MDIO output invalid  
MDIO input to MDC setup  
MDIO input to MDC hold  
ns  
ns  
ns  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
49  
Electrical characteristics  
E10  
E11  
MDC (Output)  
E11  
E12  
E13  
Valid Data  
MDIO (Output)  
MDIO (Input)  
E14  
E15  
Valid Data  
Figure 31. MDIO serial management channel timing diagram  
4.23 32-bit timer module timing specifications  
Table 35 lists timer module AC timings.  
Table 35. Timer module AC timing specifications  
Name  
Characteristic  
DTnIN cycle time (n = 0:3)  
DTnIN pulse width (n = 0:3)  
Min  
Max  
Unit  
T1  
T2  
3
1
1/fSYS/2  
1/fSYS/2  
4.24 DSPI timing specifications  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the  
transfer attributes are programmable. Table 36 provides DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the MCF54418 Reference Manual for information on the modified transfer formats used for communicating  
with slower peripheral devices.  
All DSPI signals use pad type pad_msr. The following timing specifications assume a pad slew rate setting of 11 and a load of  
1
50 pF.  
1
Table 36. DSPI module AC timing specifications  
Name  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
Master Mode  
DSPI_SCK frequency  
DSPI_SCK cycle time  
fSCK  
tSCK  
50  
MHz  
ns  
2
3
4
5
DS1  
DS2  
DS3  
DS4  
DS5  
20  
DSPI_SCK duty cycle  
(tsck 2) – 2.0 (tsck 2) + 2.0  
ns  
DSPI_PCSn to DSPI_SCK delay  
DSPI_SCK to DSPI_PCSn delay  
DSPI_SCK to DSPI_SOUT valid  
tCSC  
tASC  
(tsck 2) – 2.0  
(tsck 2) – 3.0  
5
ns  
ns  
ns  
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting  
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to  
increase edge rise and fall times, thus reducing EMI.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
50  
Freescale Semiconductor  
Electrical characteristics  
1
Table 36. DSPI module AC timing specifications (continued)  
Name  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
–5  
6
ns  
ns  
ns  
0
Slave Mode  
DSPI_SCK frequency  
DSPI_SCK cycle time  
fSCK  
tSCK  
fSYS 8  
MHz  
ns  
DS9  
8 fSYS  
DS10 DSPI_SCK duty cycle  
(tsck 2) – 2.0 (tsck 2) + 2.0  
ns  
DS11 DSPI_SCK to DSPI_SOUT valid  
DS12 DSPI_SCK to DSPI_SOUT invalid  
DS13 DSPI_SIN to DSPI_SCK input setup  
DS14 DSPI_SCK to DSPI_SIN input hold  
DS15 DSPI_SS active to DSPI_SOUT driven  
DS16 DSPI_SS inactive to DSPI_SOUT not driven  
0
12  
10  
10  
ns  
ns  
2
ns  
7
ns  
ns  
ns  
1
Timings shown are for DMCR[MTFE] = 0 (classic SPI) and DCTARn[CPHA] = 0. Data is sampled on the DSPI_SIN pin  
on the odd-numbered DSPI_SCK edges and driven on the DSPI_SOUT pin on even-numbered DSPI edges.  
2
3
When in master mode, the baud rate is programmable in DCTARn[DBR], DCTARn[PBR], and DCTARn[BR].  
This specification assumes a 50/50 duty cycle setting. The duty cycle is programmable in DCTARn[DBR],  
DCTARn[CPHA], and DCTARn[PBR].  
4
5
The DSPI_PCSn to DSPI_SCK delay is programmable in DCTARn[PCSSCK] and DCTARn[CSSCK].  
The DSPI_SCK to DSPI_PCSn delay is programmable in DCTARn[PASC] and DCTARn[ASC].  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
51  
Electrical characteristics  
DS3  
DS4  
DSPI_PCSn  
DS1  
DS2  
DSPI_SCK  
(DCTARn[CPOL] = 0)  
DS2  
DSPI_SCK  
(DCTARn[CPOL] = 1)  
DS7  
DS8  
DSPI_SIN  
Last Data  
First Data  
Data  
Data  
DS5  
DS6  
DSPI_SOUT  
First Data  
Last Data  
Figure 32. DSPI Classic SPI timing — master Mode  
DSPI_SS  
DS9  
DSPI_SCK  
DS10  
(DCTARn[CPOL] = 0)  
DS10  
DSPI_SCK  
(DCTARn[CPOL] = 1)  
DS15  
DS11  
DS12  
Data  
DS16  
First Data  
DSPI_SOUT  
DSPI_SIN  
Last Data  
DS13  
DS14  
Data  
Last Data  
First Data  
Figure 33. DSPI Classic SPI timing — slave mode  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
52  
Freescale Semiconductor  
Electrical characteristics  
4.25 SBF timing specifications  
The Serial boot facility (SBF) provides a means to read configuration information and system boot code from a broad array of  
SPI-compatible EEPROMs, flashes, FRAMs, nVSRAMs, etc. Table 37 provides the AC timing specifications for the SBF.  
All SBF signals use pad type pad_msr. The following timing specifications assume a pad slew rate setting of 11 and a load of  
1
50 pF.  
Table 37. SBF AC timing specifications  
Name  
Characteristic  
SBF_CK frequency  
Symbol  
Min  
Max  
Unit  
Notes  
fSBFCK  
tSBFCK  
62.5  
5
MHz  
ns  
1
SB1  
SB2  
SB3  
SB4  
SB5  
SB6  
SB7  
SB8  
SBF_CK cycle time  
16.67  
SBF_CK high/low time  
30%  
tSBFCK  
ns  
SBF_CS to SBF_CK delay  
SBF_CK to SBF_CS delay  
SBF_CK to SBF_DO valid  
SBF_CK to SBF_DO invalid  
SBF_DI to SBF_SCK input setup  
SBF_CK to SBF_DI input hold  
tSBFCK – 2.0  
tSBFCK – 2.0  
ns  
–5  
10  
0
ns  
ns  
ns  
ns  
1
At reset, the SBF_CK cycle time is tREF 60. The first byte of data read from the serial memory contains a divider value  
that is used to set the SBF_CK cycle time for the duration of the serial boot process.  
SBF_CS  
SB3  
SB1  
SB4  
SB2  
SB2  
SBF_CK  
SBF_DI  
SB7 SB8  
First Data  
Last Data  
SB6  
Data  
Data  
SB5  
First Data  
SBF_DO  
Last Data  
Figure 34. SBF timing  
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting  
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to  
increase edge rise and fall times, thus reducing EMI.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
53  
Electrical characteristics  
4.26 1-Wire timing specifications  
Specifications for the 1-Wire interface are provided by Maxim Integrated Products, Inc. Please refer to data sheet information  
for the appropriate device at www.maxim-ic.com.  
4.27 General purpose I/O timing specifications  
1
Table 38. GPIO timing  
Num  
Characteristic  
Min  
Max  
Unit  
G1 FB_CLK high to GPIO output valid  
G2 FB_CLK high to GPIO output invalid  
G3 GPIO input valid to FB_CLK high  
G4 FB_CLK high to GPIO input invalid  
1
9
ns  
ns  
ns  
ns  
9
1.5  
1
These general purpose specifications apply to the following signals: IRQn, all UART signals, all timer  
signals, FlexCAN signals, DACKn and DREQn, and all signals configured as GPIO.  
FB_CLK  
G2  
G1  
GPIO Outputs  
GPIO Inputs  
G3  
G4  
Figure 35. GPIO timing  
4.28 Rapid general purpose I/O timing specifications  
RGPIO signals use a mix of pad types: pad_fsr, pad_msr, and pad_ssr. The following timing specifications assume a pad slew  
rate setting of 11 and a load of 50 pF.  
Table 39. RGPIO timing  
Num  
Characteristic  
Min  
Max  
Unit  
RG1 PST_CLK high to RGPIO output valid  
RG2 PST_CLK high to RGPIO output Invalid  
RG3 RGPIO input valid to PST_CLK high  
RG4 PST_CLK high to RGPIO input invalid  
0.5  
6
6
ns  
ns  
ns  
ns  
1.5  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
54  
Freescale Semiconductor  
Electrical characteristics  
PST_CLK  
RG2  
RG1  
RGPIO Outputs  
RG3  
RG4  
RGPIO Inputs  
Figure 36. RGPIO timing  
4.29 JTAG and boundary scan timing specifications  
All JTAG signals use pad type pad_msr except for TCLK which use pad type pad_fsr. The following timing specifications  
1
assume a pad slew rate setting of 11 and a load of 50 pF.  
Table 40. JTAG and boundary scan timing  
Num  
Characteristics1  
TCLK frequency of operation  
Min  
Max  
Unit  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
DC  
40  
20  
4
25  
3
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCLK cycle period  
TCLK clock pulse width  
TCLK rise and fall times  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
13  
13  
12  
0
20  
4
J10 TMS, TDI input data hold time after TCLK rise  
J11 TCLK low to TDO data valid  
10  
32  
8
J12 TCLK low to TDO high-Z  
J13 TRST assert time  
J14 TRST setup time (negation) to TCLK high  
1
JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.  
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting  
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to  
increase edge rise and fall times, thus reducing EMI.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
55  
Electrical characteristics  
J2  
J3  
J3  
VIH  
TCLK  
(input)  
VIL  
J4  
J4  
Figure 37. Test clock input timing  
TCLK  
VIL  
VIH  
J5  
J6  
Data Inputs  
Input Data Valid  
J7  
J8  
Data Outputs  
Output Data Valid  
Data Outputs  
Data Outputs  
J7  
Output Data Valid  
Figure 38. Boundary scan (JTAG) timing  
TCLK  
VIL  
VIH  
J9  
Input Data Valid  
J10  
TDI  
TMS  
J11  
TDO  
Output Data Valid  
J12  
J11  
TDO  
TDO  
Output Data Valid  
Figure 39. Test access port timing  
TCLK  
TRST  
J14  
J13  
Figure 40. TRST timing  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
56  
Freescale Semiconductor  
Electrical characteristics  
4.30 Debug AC timing specifications  
Table 41 lists specifications for the debug AC timing parameters shown in Figure 41 and Table 42.  
All debug signals use pad type pad_msr except for PSTCLK which use pad type pad_fsr. The following timing specifications  
1
assume a pad slew rate setting of 11 and a load of 50 pF.  
Table 41. Debug AC timing specification  
Num  
Characteristic  
Min  
Max  
Units  
D0  
D1  
D2  
D3  
D41  
D5  
D6  
PSTCLK cycle time  
0.5  
0.5  
1
0.5  
3.0  
1/fSYS  
ns  
PSTCLK rising to PSTDDATA valid  
PSTCLK rising to PSTDDATA invalid  
DSI-to-DSCLK setup  
ns  
PSTCLK  
PSTCLK  
PSTCLK  
PSTCLK  
DSCLK-to-DSO hold  
4
DSCLK cycle time  
5
BKPT assertion time  
1
1
DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative  
to the rising edge of PSTCLK.  
D0  
PSTCLK  
D2  
D1  
PSTDDATA[7:0]  
Figure 41. Real-time trace AC timing  
D5  
DSCLK  
DSI  
D3  
Current  
D4  
Next  
DSO  
Past  
Current  
Figure 42. BDM serial port AC timing  
1.These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting  
(11). When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to  
increase edge rise and fall times, thus reducing EMI.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
57  
Package information  
5
Package information  
The latest package outline drawings are available on the product summary pages on http://www.freescale.com/coldfire.  
Table 42 lists the case outline numbers per device. Use these numbers in the web page’s keyword search engine to find the latest  
package outline drawings.  
Table 42. Package information  
Device  
Package type  
Case outline numbers  
MCF54410  
MCF54415  
MCF54416  
MCF54417  
MCF54418  
196 MAPBGA  
98ASA00321D  
256 MAPBGA  
98ARH98219A  
6
Product documentation  
Documentation is available from a local Freescale distributor, a Freescale sales office, the Freescale Literature Distribution  
Center, or through the Freescale world-wide web address at http://www.freescale.com/coldfire.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
58  
Freescale Semiconductor  
Revision history  
7
Revision history  
Table 43 summarizes revisions to this document.  
Table 43. Revision history  
Rev. No.  
Date  
Summary of changes  
In Section 2.2, “Supply voltage sequencing” added the following note:  
2
10 Jun 2009  
NOTE  
All I/O VDD pins must be powered on when the device is functioning,  
except when in standby mode.  
In standby mode, all I/O VDD pins, except VSTBY_RTC (battery), can  
be switched off.  
Added Section 3.2, “Pinout—169 MAPBGA” and Section 3.3, “Pinout—256 MAPBGA” and updated Table 5 with  
pin locations.  
In Section 4.1, “Absolute maximum ratings”:  
• Added USB OTG, USB host, ADC, DAC/ADC, and RTC standby supply voltages  
In Section 4.5, “DC electrical specifications”:  
• Added RTC standby supply voltage  
• Split out Power Supplies and I/O Characteristics to two separate tables  
In Section 4.10, “FlexBus timing specifications”:  
• Changed maximum frequency to 100MHz and updated specs throughout the table  
• Changed FB2 maximum from 5 to 6  
• Added notes to Figure 11 and Figure 12  
In Section 4.12, “DDR SDRAM controller timing specifications”:  
• Changed minimum frequency from 50 to 100  
• Changed maximum DD1 from 20 to 10  
• Changed DD5 from 2 to 0.5 x tSDCK – 1  
• Changed DD6 from 1.2 x tSDCK to WL + 0.2 x tSDCK  
• Changed DD7 from 1.5 to 0.7  
• Changed DD8 from 1.0 to 0.7  
• Changed DD9 from 1.0 to 0.5  
• Changed DD10 from 0.25 x tSDCK + 0.5 to 0.375 x tSDCK  
In Section 4.17, “SSI timing specifications”:  
• Changed S7, S9, S15, and S17 from 10 to 15  
In Section 4.22.2, “Transmit signal timing specifications”:  
• Changed E5 for MII from 5 to 4  
In Section 4.20, “mcPWM timing specifications”:  
• Changed G2 from 2 to 1  
In Section 4.24, “DSPI timing specifications”:  
• Changed DS3 from (2 x 1/fsys) – 2.0 to (tsck ³ 2) – 2.0  
• Changed DS4 from (2 x 1/fsys) – 3.0 to (tsck ³ 2) – 3.0  
• Changed DS7 from 7 to 6  
• Changed DS11 from 4 to 12  
In Section 4.25, “SBF timing specifications”:  
• Changed SB5 maximum from 5 to 3  
• Changed SB6 minimum from –5 to 5  
In Section 4.26, “1-Wire timing specifications”:  
• Added link to 1-wire specs  
In Section 4.27, “General purpose I/O timing specifications”:  
• Changed G2 from 1.5 to 1  
In Section 4.28, “Rapid general purpose I/O timing specifications”:  
• Changed RG1 from 3 to 6  
• Changed RG2 from 1.5 to 0.5  
• Changed RG3 from 3 to 6  
In Section 4.29, “JTAG and boundary scan timing specifications”:  
• Changed J9-12 and J14 from TBD  
In Section 4.30, “Debug AC timing specifications”:  
• Changed D2 from 1.5 to 0.5  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
Freescale Semiconductor  
59  
Revision history  
Table 43. Revision history (continued)  
Summary of changes  
Rev. No.  
Date  
3
31 July 2009 Changed 169MAPBGA package to 196MAPBGA throughout.  
MCF54410 device now supports a single SSI module and one Ethernet controller with IEEE 1588  
support  
4
17 Aug 2009 Updated MCF5441x Signal Information and Muxing table with 196MAPBGA pin locations  
Changed SD_Dn pin locations on 256 MAPBGA package  
Added note to Section 4.6, “Output pad loading and slew rate”  
5
6
29 Jan 2010 Added orderable part numbers  
Swapped locations of RTC_EXTAL and RTC_XTAL pins in Table 5, Figure 7, and Figure 8  
Corrected instances of MCF5445x to MCF5441x  
Added thermal characteristic s to Table 7  
Added case outline numbers to Table 42  
Changed PLL supply voltage from “–0.5 to +2.0” to “–0.3 to +4.0” in Table 6  
Miscellaneous corrections based on information from shared review comments by team members  
7
8
October 2011 • Updated the pinouts in Table 5, “MCF5441x Signal information and muxing”.  
• Updated the Figure 7, “MCF54410 Pinout (196 MAPBGA)”.  
• Removed the symbol ADC_IN7/DAC1_OUT from Table 9, “Latch-up results”.  
• Updated Table 11, “I/O electrical specifications”.  
• Updated Table 13, “DDR pad drive strengths”.  
June 2012  
• In Table 7, added the thermal characteristics for the 196 MAPBGA package.  
• In Table 42, updated the case outline number for the 196 MAPBGA package from “98ARH98217”  
to “98ASA00321D”.  
MCF5441x ColdFire Microprocessor Data Sheet, Rev. 8  
60  
Freescale Semiconductor  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2011-2012. All rights reserved.  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MCF54418  
Rev. 8  
06/2012  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY