MCF5445X [NXP]

MCF5445x ColdFire® Microprocessor Data Sheet;
MCF5445X
型号: MCF5445X
厂家: NXP    NXP
描述:

MCF5445x ColdFire® Microprocessor Data Sheet

文件: 总49页 (文件大小:541K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet: Technical Data  
Document Number: MCF54455  
Rev. 9, 04/2021  
MCF54455  
MAPBGA–256  
17mm x 17mm  
TEPBGA–360  
23mm x 23mm  
MCF5445x ColdFire®  
Microprocessor Data Sheet  
Features  
®
Version 4 ColdFire Core with MMU and EMAC  
• Up to 410 Dhrystone 2.1 MIPS @ 266 MHz  
• 16-KBytes instruction cache and 16-KBytes data cache  
• 32-KBytes internal SRAM  
• Support for booting from SPI-compatible flash, EEPROM,  
and FRAM devices  
• Crossbar switch technology (XBS) for concurrent access to  
peripherals or RAM from multiple bus masters  
• 16-channel DMA controller  
• 16-bit 133-MHz DDR/mobile-DDR/DDR2 controller  
• USB 2.0 On-the-Go controller with ULPI support  
• 32-bit PCI controller @ 66MHz  
ATA/ATAPI controller  
• 2 10/100 Ethernet MACs  
• Coprocessor for acceleration of the DES, 3DES, AES,  
MD5, and SHA-1 algorithms  
• Random number generator  
• Synchronous serial interface (SSI)  
• 4 periodic interrupt timers (PIT)  
• 4 32-bit timers with DMA support  
• DMA-supported serial peripheral interface (DSPI)  
• 3 UARTs  
2
• I C bus interface  
NXP reserves the right to change the production detail specifications as may be required to  
permit improvements in the design of its products.  
Table of Contents  
1
2
3
MCF5445x Family Comparison . . . . . . . . . . . . . . . . . . . . . . . .4  
5.9.1 Overshoot and Undershoot . . . . . . . . . . . . . . . 28  
5.10 ULPI Timing Specifications . . . . . . . . . . . . . . . . . . . . . 29  
5.11 SSI Timing Specifications . . . . . . . . . . . . . . . . . . . . . . 30  
5.12 I2C Timing Specifications. . . . . . . . . . . . . . . . . . . . . . . 32  
5.13 Fast Ethernet Timing Specifications . . . . . . . . . . . . . . 33  
5.13.1 Receive Signal Timing Specifications . . . . . . . 33  
5.13.2 Transmit Signal Timing Specifications . . . . . . . 34  
5.13.3 Asynchronous Input Signal Timing  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Hardware Design Considerations. . . . . . . . . . . . . . . . . . . . . . .5  
3.1 Analog Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3.2 Oscillator Power Filtering . . . . . . . . . . . . . . . . . . . . . . . .6  
3.3 Supply Voltage Sequencing . . . . . . . . . . . . . . . . . . . . . .6  
3.3.1 Power-Up Sequence . . . . . . . . . . . . . . . . . . . . . .7  
3.3.2 Power-Down Sequence. . . . . . . . . . . . . . . . . . . .7  
Pin Assignments and Reset States. . . . . . . . . . . . . . . . . . . . . .7  
4.1 Signal Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
4.2 Pinout—256 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.3 Pinout—360 TEPBGA. . . . . . . . . . . . . . . . . . . . . . . . . .16  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . .17  
5.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .18  
5.3 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5.4 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . .19  
5.5 ClockTiming Specifications . . . . . . . . . . . . . . . . . . . . . .20  
5.6 Reset Timing Specifications . . . . . . . . . . . . . . . . . . . . .22  
5.7 FlexBus Timing Specifications . . . . . . . . . . . . . . . . . . .23  
5.8 SDRAM AC Timing Characteristics. . . . . . . . . . . . . . . .25  
5.9 PCI Bus Timing Specifications . . . . . . . . . . . . . . . . . . .27  
4
5
Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.13.4 MII Serial Management Timing Specifications . 35  
5.14 32-Bit Timer Module Timing Specifications . . . . . . . . . 35  
5.15 ATA Interface Timing Specifications. . . . . . . . . . . . . . . 36  
5.16 DSPI Timing Specifications . . . . . . . . . . . . . . . . . . . . . 36  
5.17 SBF Timing Specifications. . . . . . . . . . . . . . . . . . . . . . 38  
5.18 General Purpose I/O Timing Specifications. . . . . . . . . 39  
5.19 JTAG and Boundary Scan Timing . . . . . . . . . . . . . . . . 40  
5.20 Debug AC Timing Specifications . . . . . . . . . . . . . . . . . 42  
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
6
7
8
9
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
2
NXP Semiconductors  
MCF54455  
JTAG  
Oscillator  
PLL  
Version 4 ColdFire Core  
16K  
Instruction  
Cache  
16K  
Data  
Cache  
EMAC  
BDM  
MMU  
2 FECs  
USB OTG  
Hardware  
Divide  
CAU  
32K  
SRAM  
eDMA  
PCI  
Serial Boot  
Crossbar Switch (XBS)  
Peripheral Bridge  
I2C  
SDRAM  
Controller  
ATA  
FlexBus  
DSPI  
SSI  
RTC  
RNG  
GPIO  
EPORT  
4 PITs  
Watchdog  
2 INTCs  
4 DMA  
Timers  
3 UARTs  
LEGEND  
ATA  
BDM  
CAU  
DSPI  
eDMA  
EMAC  
EPORT  
FEC  
Advanced Technology Attachment Controller  
– Background debug module  
– Cryptography acceleration unit  
– DMA serial peripheral interface  
– Enhanced direct memory access  
– Enchance multiply-accumulate unit  
– Edge port module  
– Fast Ethernet controller  
– General Purpose Input/Output  
– Inter-Intergrated Circuit  
INTC  
JTAG  
MMU  
PCI  
Interrupt controller  
– Joint Test Action Group interface  
– Memory management unit  
– Peripheral Component Interconnect  
– Programmable interrupt timers  
– Phase locked loop module  
– Random Number Generator  
– Real time clock  
PIT  
PLL  
RNG  
RTC  
SSI  
GPIO  
I2C  
– Synchronous Serial Interface  
USB OTG – Universal Serial Bus On-the-Go controller  
Figure 1. MCF54455 Block Diagram  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
3
MCF5445x Family Comparison  
1
MCF5445x Family Comparison  
The following table compares the various device derivatives available within the MCF5445x family.  
Table 1. MCF5445x Family Configurations  
Module  
MCF54450 MCF54451 MCF54452 MCF54453 MCF54454 MCF54455  
ColdFire Version 4 Core with EMAC  
(Enhanced Multiply-Accumulate Unit)  
Core (System) Clock  
up to 240 MHz  
up to 120 MHz  
up to 266 MHz  
up to 133 MHz  
Peripheral Bus Clock  
(Core clock 2)  
External Bus Clock  
(Core clock 4)  
up to 60 MHz  
up to 370  
up to 66 MHz  
up to 410  
Performance (Dhrystone/2.1 MIPS)  
Independent Data/Instruction Cache  
Static RAM (SRAM)  
16 Kbytes each  
32 Kbytes  
PCI Controller  
Cryptography Acceleration Unit (CAU)  
ATA Controller  
DDR SDRAM Controller  
FlexBus External Interface  
USB 2.0 On-the-Go  
UTMI+ Low Pin Interface (ULPI)  
Synchronous Serial Interface (SSI)  
Fast Ethernet Controller (FEC)  
UARTs  
1
3
1
3
2
3
2
3
2
3
2
3
I2C  
DSPI  
Real Time Clock  
32-bit DMA Timers  
4
4
4
4
4
4
Watchdog Timer (WDT)  
Periodic Interrupt Timers (PIT)  
Edge Port Module (EPORT)  
Interrupt Controllers (INTC)  
16-channel Direct Memory Access (DMA)  
General Purpose I/O (GPIO)  
JTAG - IEEE® 1149.1 Test Access Port  
Package  
4
4
4
4
4
4
2
2
2
2
2
2
256 MAPBGA  
360 TEPBGA  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
4
NXP Semiconductors  
Ordering Information  
2
Ordering Information  
Table 2. Orderable Part Numbers  
Part Number  
Description  
Package  
Speed  
Temperature  
MCF54450CVM180  
MCF54450VM240  
MCF54451CVM180  
MCF54451VM240  
MCF54452CVP200  
MCF54452VP266  
MCF54453CVP200  
MCF54453VP266  
MCF54454CVP200  
MCF54454VP266  
MCF54455CVP200  
MCF54455VP266  
180 MHz  
240 MHz  
180 MHz  
240 MHz  
200 MHz  
266 MHz  
200 MHz  
266 MHz  
200 MHz  
266 MHz  
200 MHz  
266 MHz  
–40to +85C  
0to +70C  
–40to +85C  
0to +70C  
–40to +85C  
0to +70C  
–40to +85C  
0to +70C  
–40to +85C  
0to +70C  
–40to +85C  
0to +70C  
MCF54450 Microprocessor  
256 MAPBGA  
MCF54451 Microprocessor  
MCF54452 Microprocessor  
MCF54453 Microprocessor  
MCF54454 Microprocessor  
MCF54455 Microprocessor  
360 TEPBGA  
3
Hardware Design Considerations  
3.1  
Analog Power Filtering  
To further enhance noise isolation, an external filter is strongly recommended for the analog V pins (VDD_A_PLL,  
DD  
VDD_RTC). The filter shown in Figure 2 should be connected between the board IV and the analog pins. The resistor and  
DD  
capacitors should be placed as close to the dedicated analog V pin as possible. The 10-resistor in the given filter is required.  
DD  
Do not implement the filter circuit using only capacitors. The analog power pins draw very little current. Concerns regarding  
voltage loss across the 10-ohm resistor are not valid.  
10   
Board IVDD  
Analog VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 2. System Analog V Power Filter  
DD  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
5
Hardware Design Considerations  
3.2  
Oscillator Power Filtering  
Figure 3 shows an example for isolating the oscillator power supply from the I/O supply (EVDD) and ground.  
10   
VDD_OSC  
VSS_OSC  
EVDD Pin  
1 µF  
0.1 µF  
100 MHz  
GND  
Figure 3. Oscillator Power Filter  
3.3  
Supply Voltage Sequencing  
Figure 4 shows situations in sequencing the I/O V (EV ), SDRAM V (SDV ), PLL V (PV ), and internal  
DD  
DD  
DD  
DD  
DD  
DD  
logic/core V (IV ).  
DD  
DD  
EVDD (3.3V)  
3.3V  
Supplies Stable  
2.5V  
SDVDD (2.5V — DDR)  
1.8V  
1.5V  
SDVDD (1.8V — DDR2)  
IVDD, PVDD  
0
Time  
Notes:  
1
Input voltage must not be greater than the supply voltage (EVDD, SDVDD, IVDD, or PVDD) by more than 0.5V  
at any time, including during power-up.  
2
Use 50 V/millisecond or slower rise time for all supplies.  
Figure 4. Supply Voltage Sequencing and Separation Cautions  
The relationship between SDV and EV is non-critical during power-up and power-down sequences. SDV (2.5V or  
DD  
DD  
DD  
1.8V) and EV are specified relative to IV  
.
DD  
DD  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
6
NXP Semiconductors  
Pin Assignments and Reset States  
3.3.1  
Power-Up Sequence  
If EV /SDV are powered up with the IV at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected  
DD  
DD  
DD  
to the EV /SDV to be in a high impedance state. There is no limit on how long after EV /SDV powers up before IV  
DD  
DD  
DD  
DD  
DD  
must power up. The rise times on the power supplies should be slower than 50 V/millisecond to avoid turning on the internal  
ESD protection clamp diodes.  
3.3.2  
Power-Down Sequence  
If IV /PV are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state.  
DD  
DD  
There is no limit on how long after IV and PV power down before EV or SDV must power down. There are no  
DD  
DD  
DD  
DD  
requirements for the fall times of the power supplies.  
4
Pin Assignments and Reset States  
4.1  
Signal Multiplexing  
The following table lists all the MCF5445x pins grouped by function. The Dir column is the direction for the primary function  
of the pin only. Refer to Section 4, “Pin Assignments and Reset States,” for package diagrams. For a more detailed discussion  
of the MCF5445x signals, consult the MCF54455 Reference Manual (MCF54455RM).  
NOTE  
In this table and throughout this document, a single signal within a group is designated  
without square brackets (i.e., FB_AD23), while designations for multiple signals within a  
group use brackets (i.e., FB_AD[23:21]) and is meant to include all signals within the two  
bracketed numbers when these numbers are separated by a colon.  
NOTE  
The primary functionality of a pin is not necessarily its default functionality. Most pins that  
are muxed with GPIO default to their GPIO functionality. See Table 3 for a list of the  
exceptions.  
Table 3. Special-Case Default Signal Functionality  
Pin  
256 MAPBGA  
360 TEPBGA  
FB_AD[31:0]  
FB_AD[31:0] except when serial boot selects 0-bit  
boot port size.  
FB_BE/BWE[3:0]  
FB_CS[3:1]  
FB_OE  
FB_BE/BWE[3:0]  
FB_CS[3:1]  
FB_OE  
FB_R/W  
FB_R/W  
FB_TA  
FB_TA  
FB_TS  
FB_TS  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
7
Pin Assignments and Reset States  
Table 3. Special-Case Default Signal Functionality (continued)  
Pin  
256 MAPBGA  
360 TEPBGA  
PCI_GNT[3:0]  
PCI_REQ[3:0]  
IRQ1  
GPIO  
GPIO  
GPIO  
PCI_GNT[3:0]  
PCI_REQ[3:0]  
PCI_INTA and  
configured as an agent.  
ATA_RESET  
GPIO  
ATA reset  
Table 4. MCF5445x Signal Information and Muxing  
MCF54452  
MCF54453  
MCF54454  
MCF54450  
MCF54451  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
256 MAPBGA MCF54455  
360 TEPBGA  
Reset  
I
EVDD  
EVDD  
L4  
Y18  
B17  
RESET  
U
O
M15  
RSTOUT  
Clock  
I
EVDD  
EVDD  
M16  
L16  
A16  
A17  
EXTAL/PCI_CLK  
XTAL  
U3  
O
Mode Selection  
I
EVDD  
M5, M7  
AB17, AB21  
BOOTMOD[1:0]  
FlexBus  
FB_AD[31:24]  
FB_AD[23:16]  
PFBADH[7:0]4  
FB_D[31:24]  
FB_D[23:16]  
I/O  
I/O  
EVDD  
EVDD  
A14, A13, D12,  
C12, B12, A12,  
D11, C11  
J2, K4, J1, K1–3,  
L1, L4  
PFBADMH[7:0]4  
B11, A11, D10,  
C10, B10,A10, D9,  
C9  
L2, L3, M1–4, N1–  
2
PFBADML[7:0]4  
PFBADL[7:0]4  
FB_D[15:8]  
FB_D[7:0]  
I/O  
I/O  
EVDD B9,A9, D8, C8, B8, P1–2, R1–3, P4,  
A8, D7, C7 T1–2  
FB_AD[15:8]  
FB_AD[7:0]  
EVDD B7,A7, D6, C6, B6, T3–4, U1–3, V1–2,  
A6, D5, C5  
W1  
O
O
O
O
O
O
O
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
B5, A5  
Y1, W2  
FB_BE/BWE[3:2]  
FB_BE/BWE[1:0]  
FB_CLK  
PBE[3:2]  
PBE[1:0]  
FB_TSIZ[1:0]  
U
B4, A4  
B13  
W3, Y2  
J3  
W5, AA4, AB3  
Y4  
C2, D4, C3  
C4  
FB_CS[3:1]  
FB_CS0  
PCS[3:1]  
A2  
AA1  
FB_OE  
PFBCTL3  
PFBCTL2  
PFBCTL1  
B2  
AA3  
FB_R/W  
B1  
AB2  
FB_TA  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
8
NXP Semiconductors  
Pin Assignments and Reset States  
Table 4. MCF5445x Signal Information and Muxing (continued)  
MCF54452  
MCF54453  
MCF54454  
MCF54450  
MCF54451  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
256 MAPBGA MCF54455  
360 TEPBGA  
O
EVDD  
EVDD  
A3  
Y3  
FB_TS  
PFBCTL0  
FB_ALE  
FB_TBST  
PCI Controller5  
I/O  
C11, D11, A10,  
B10, J4, G2, G3,  
F1, D12, C12, B12,  
A11, B11, B9, D9,  
D10, A8, B8, A5,  
B5, A4, A3, B3, D4,  
D3, E3–E1, F3, C2,  
D2, C1  
PCI_AD[31:0]  
FB_A[31:0]  
I/O  
EVDD  
K14–13, J15–13,  
H13–15, G15–13,  
F14–13, E15–13,  
D16, B16, C15,  
B15, C14, D15,  
C16, D14  
FB_A[23:0]  
I/O  
O
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
G4, E4, D1, B1  
PCI_CBE[3:0]  
PCI_DEVSEL  
PCI_FRAME  
PCI_GNT3  
F2  
B2  
I/O  
O
B7  
PPCI7  
PPCI[6:5]  
PPCI4  
ATA_DMACK  
O
C8, C9  
A9  
PCI_GNT[2:1]  
O
PCI_GNT0/  
PCI_EXTREQ  
I
I/O  
I/O  
I/O  
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
D5  
C3  
PCI_IDSEL  
PCI_IRDY  
C4  
PCI_PAR  
B4  
PCI_PERR  
PCI_REQ3  
PCI_REQ[2:1]  
C7  
PPCI3  
PPCI[2:1]  
PPCI0  
ATA_INTRQ  
I
D7, C5  
A2  
I
PCI_REQ0/  
PCI_EXTGNT  
O
EVDD  
EVDD  
EVDD  
EVDD  
B6  
A6  
PCI_RST  
PCI_SERR  
PCI_STOP  
PCI_TRDY  
I/O  
I/O  
I/O  
A7  
C10  
SDRAM Controller  
O
SDVDD R1, P1, N2, P2,  
R2, T2, M4, N3,  
P3, R3, T3, T4, R4,  
N4  
V22, U20–22,  
T19–22, R20–22,  
N19, P20–21  
SD_A[13:0]  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
9
Pin Assignments and Reset States  
Table 4. MCF5445x Signal Information and Muxing (continued)  
MCF54452  
MCF54453  
MCF54454  
MCF54450  
MCF54451  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
256 MAPBGA MCF54455  
360 TEPBGA  
O
O
O
O
O
O
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
P4, T5  
T6  
P22, P19  
L19  
SD_BA[1:0]  
SD_CAS  
N5  
N22  
SD_CKE  
T9  
L22  
SD_CLK  
T8  
M22  
SD_CLK  
P6, R6  
L20, M20  
L21, K22, K21,  
SD_CS[1:0]  
SD_D[31:16]  
I/O SDVDD N6, T7, N7, P7, R7,  
R8, P8, N8, N9, K20, J20, J19, J21,  
T10, R10, P10, J22, H20, G22,  
N10, T11, R11, P11 G21, G20, G19,  
F22, F21, F20  
O
O
O
I
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
P9, N12  
R9, N11  
P5  
H21, E21  
H22, E22  
N21  
SD_DM[3:2]  
SD_DQS[3:2]  
SD_RAS  
M8  
M21  
SD_VREF  
SD_WE  
O
R5  
N20  
External Interrupts Port6  
I
I
I
I
EVDD  
EVDD  
EVDD  
EVDD  
L1  
L2  
ABB13  
ABB13  
AB14  
C6  
IRQ7  
IRQ4  
IRQ3  
IRQ1  
PIRQ7  
PIRQ4  
PIRQ3  
PIRQ1  
SSI_CLKIN  
L3  
F15  
PCI_INTA  
FEC0  
O
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
F3  
F2  
E1  
F1  
G1  
G2  
AB8  
Y7  
FEC0_MDC  
FEC0_MDIO  
FEC0_COL  
PFECI2C3  
PFECI2C2  
PFEC0H4  
PFEC0H0  
PFEC0H3  
PFEC0H2  
I/O  
I
I
I
I
AB7  
AA7  
AA8  
Y8  
ULPI_DATA7  
ULPI_DATA6  
ULPI_DATA1  
FEC0_CRS  
FEC0_RXCLK  
FEC0_RXDV  
FEC0_RMII_  
CRS_DV  
I
I
I
I
EVDD  
EVDD  
EVDD  
EVDD  
G3, G4  
H1  
AB9, Y9  
W9  
FEC0_RXD[3:2]  
FEC0_RXD1  
FEC0_RXD0  
FEC0_RXER  
PFEC0L[3:2]  
PFEC0L1  
PFEC0H1  
PFEC0L0  
ULPI_DATA[5:4]  
FEC0_RMII_RXD1  
FEC0_RMII_RXD0  
FEC0_RMII_RXER  
H2  
AB10  
AA10  
H3  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
10  
NXP Semiconductors  
Pin Assignments and Reset States  
Table 4. MCF5445x Signal Information and Muxing (continued)  
MCF54452  
MCF54453  
MCF54454  
MCF54450  
MCF54451  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
256 MAPBGA MCF54455  
360 TEPBGA  
I
EVDD  
H4  
Y10  
FEC0_TXCLK  
PFEC0H7  
FEC0_RMII_  
REF_CLK  
O
O
O
O
O
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
J1, J2  
J3  
W10, AB11  
AA11  
FEC0_TXD[3:2]  
FEC0_TXD1  
FEC0_TXD0  
FEC0_TXEN  
FEC0_TXER  
PFEC0L[7:6]  
PFEC0L5  
PFEC0H5  
PFEC0H6  
PFEC0L4  
ULPI_DATA[3:2]  
FEC0_RMII_TXD1  
FEC0_RMII_TXD0  
FEC0_RMII_TXEN  
J4  
Y11  
K1  
W11  
K2  
AB12  
ULPI_DATA0  
FEC1  
O
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
W20  
Y22  
FEC1_MDC  
FEC1_MDIO  
FEC1_COL  
PFECI2C5  
PFECI2C4  
PFEC1H4  
PFEC1H0  
PFEC1H3  
PFEC1H2  
ATA_DIOR  
ATA_DIOW  
ATA_DATA7  
ATA_DATA6  
ATA_DATA5  
ATA_DATA15  
I/O  
I
I
I
I
AB18  
AA18  
W14  
AB15  
FEC1_CRS  
FEC1_RXCLK  
FEC1_RXDV  
FEC1_RMII_  
CRS_DV  
I
I
I
I
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
AA15, Y15  
AA17  
FEC1_RXD[3:2]  
FEC1_RXD1  
FEC1_RXD0  
FEC1_RXER  
FEC1_TXCLK  
PFEC1L[3:2]  
PFEC1L1  
PFEC1H1  
PFEC1L0  
PFEC1H7  
ATA_DATA[4:3]  
ATA_DATA14  
ATA_DATA13  
ATA_DATA12  
ATA_DATA11  
FEC1_RMII_RXD1  
FEC1_RMII_RXD0  
FEC1_RMII_RXER  
Y17  
W17  
AB19  
FEC1_RMII_  
REF_CLK  
O
O
O
O
O
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
Y19, W18  
AA19  
FEC1_TXD[3:2]  
FEC1_TXD1  
FEC1_TXD0  
FEC1_TXEN  
FEC1_TXER  
PFEC1L[7:6]  
PFEC1L5  
PFEC1H5  
PFEC1H6  
PFEC1L4  
ATA_DATA[2:1]  
ATA_DATA10  
ATA_DATA9  
ATA_DATA8  
ATA_DATA0  
FEC1_RMII_TXD1  
FEC1_RMII_TXD0  
FEC1_RMII_TXEN  
Y20  
AA21  
AA22  
USB On-the-Go  
O
O
O
I
USB  
VDD  
F16  
E16  
E5  
A14  
A15  
AA2  
V4  
USB_DM  
USB_DP  
USB  
VDD  
USB_PULLUP  
USB  
VDD  
USB_VBUS_EN  
USB_VBUS_OC  
PUSB1  
PUSB0  
ULPI_NXT  
ULPI_STP  
UD7  
USB  
VDD  
B3  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
11  
Pin Assignments and Reset States  
Table 4. MCF5445x Signal Information and Muxing (continued)  
MCF54452  
MCF54453  
MCF54454  
MCF54450  
MCF54451  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
256 MAPBGA MCF54455  
360 TEPBGA  
ATA  
O
O
O
O
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
Y13  
W21, W22  
V19–21  
W13  
ATA_BUFFER_EN  
ATA_CS[1:0]  
ATA_DA[2:0]  
ATA_RESET  
ATA_DMARQ  
ATA_IORDY  
PATAH5  
PATAH[4:3]  
PATAH[2:0]  
PATAL2  
AA14  
PATAL1  
I
Y14  
PATAL0  
Real Time Clock  
I
EVDD  
EVDD  
J16  
A13  
A12  
EXTAL32K  
XTAL32K  
O
H16  
SSI  
O
I/O  
I/O  
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
T13  
R13  
P12  
T12  
R12  
D20  
E19  
E20  
D21  
D22  
SSI_MCLK  
SSI_BCLK  
SSI_FS  
PSSI4  
PSSI3  
PSSI2  
PSSI1  
PSSI0  
U1CTS  
U1RTS  
U1RXD  
U1TXD  
SSI_RXD  
SSI_TXD  
UD  
UD  
O
I2C  
I/O  
I/O  
EVDD  
EVDD  
K3  
K4  
AA12  
Y12  
I2C_SCL  
I2C_SDA  
PFECI2C1  
PFECI2C0  
U2TXD  
U2RXD  
U
U
DMA  
EVDD  
EVDD  
EVDD  
EVDD  
M14  
P16  
N15  
N16  
C17  
C18  
A18  
B18  
O
I
DACK1  
DREQ1  
DACK0  
DREQ0  
PDMA3  
PDMA2  
PDMA1  
PDMA0  
ULPI_DIR  
U
DSPI_PCS3  
USB_CLKIN  
O
I
U
DSPI  
O
O
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
N14  
L13  
P14  
R16  
R15  
D18  
A19  
B20  
D17  
A20  
DSPI_PCS5/PCSS  
DSPI_PCS2  
PDSPI6  
PDSPI5  
PDSPI4  
PDSPI3  
PDSPI2  
U
O
DSPI_PCS1  
SBF_CS  
I/O  
I/O  
DSPI_PCS0/SS  
DSPI_SCK  
SBF_CK  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
12  
NXP Semiconductors  
Pin Assignments and Reset States  
Table 4. MCF5445x Signal Information and Muxing (continued)  
MCF54452  
MCF54453  
MCF54454  
MCF54450  
MCF54451  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
256 MAPBGA MCF54455  
360 TEPBGA  
8
I
EVDD  
EVDD  
P15  
N13  
B19  
C20  
DSPI_SIN  
PDSPI1  
PDSPI0  
SBF_DI  
O
DSPI_SOUT  
SBF_DO  
UARTs  
I
O
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
V3  
U4  
U1CTS  
U1RTS  
U1RXD  
U1TXD  
U0CTS  
U0RTS  
U0RXD  
U0TXD  
PUART7  
PUART6  
PUART5  
PUART4  
PUART3  
PUART2  
PUART1  
PUART0  
P3  
O
I
N3  
M3  
M2  
N1  
M1  
Y16  
AA16  
AB16  
W15  
O
I
O
Note: The UART1 and UART 2 signals are multiplexed on the DMA timers and I2C pins.  
DMA Timers  
I
I
I
I
EVDD  
EVDD  
EVDD  
EVDD  
C13  
D13  
B14  
A15  
H2  
H1  
H3  
G1  
DT3IN  
DT2IN  
DT1IN  
DT0IN  
PTIMER3  
PTIMER2  
PTIMER1  
PTIMER0  
DT3OUT  
DT2OUT  
DT1OUT  
DT0OUT  
U2RXD  
U2TXD  
U2CTS  
U2RTS  
BDM/JTAG9  
O
EVDD E2, D1, F4, E3, D2,  
C1, E4, D3  
AA6, AB6, AB5,  
W6, Y6, AA5, AB4,  
Y5  
PSTDDATA[7:0]  
I
I
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
M11  
P13  
T15  
T14  
R14  
M13  
C21  
C22  
C19  
A21  
B21  
B22  
JTAG_EN  
PSTCLK  
DSI  
D
U
TCLK  
TDI  
I
O
I
DSO  
TDO  
TMS  
TRST  
U
BKPT  
I
DSCLK  
U
Test  
I
EVDD  
EVDD  
M6  
AB20  
D15  
TEST  
D
O
K16  
PLLTEST  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
13  
Pin Assignments and Reset States  
Table 4. MCF5445x Signal Information and Muxing (continued)  
MCF54452  
MCF54453  
MCF54454  
MCF54450  
MCF54451  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
256 MAPBGA MCF54455  
360 TEPBGA  
Power Supplies  
E6–12, F5, F12  
D6, D8, D14, F4,  
H4, N4, R4, W4,  
W7, W8, W12,  
W16, W19  
IVDD  
G5, G12, H5, H12,  
J5, J12, K5, K12, G11, G14, G16, J7,  
D13, D19, G8,  
EVDD  
L5–6, L12  
J16, L7, L16, N16,  
P7, R16, T8, T12,  
T14, T16  
L7–11, M9, M10  
F19, H19, K19,  
M19, R19, U19  
SD_VDD  
L14  
K15  
B16  
C14  
VDD_OSC  
VDD_A_PLL  
VDD_RTC  
VSS  
M12  
C13  
A1, A16, F6–11,  
A1, A22, B14, G7,  
G6–11, H6–11, J6– G9–10, G12–13,  
11, K6–11, T1, T16 G15, H7, H16, J9–  
14, K7, K9–14,  
K16, L9–14, M7,  
M9–M14, M16, N7,  
N9–14, P9–14,  
P16, R7, T7, T9–  
11, T13, T15, AB1,  
AB22  
L15  
C16  
VSS_OSC  
1
2
3
4
5
Pull-ups are generally only enabled on pins with their primary function, except as noted.  
Refers to pin’s primary function.  
Enabled only in oscillator bypass mode (internal crystal oscillator is disabled).  
Serial boot must select 0-bit boot port size to enable the GPIO mode on these pins.  
When the PCI is enabled, all PCI bus pins come up configured as such. This includes the PCI_GNT and PCI_REQ lines, which have  
GPIO. The IRQ1/PCI_INTA signal is a special case. It comes up as PCI_INTA when booting as a PCI agent and as GPIO when  
booting as a PCI host.  
For the 360 TEPBGA, booting with PCI disabled results in all dedicated PCI pins being safe-stated. The PCI_GNT and PCI_REQ  
lines and IRQ1/PCI_INTA come up as GPIO.  
6
GPIO functionality is determined by the edge port module. The pin multiplexing and control module is only responsible for assigning  
the alternate functions.  
7
8
9
Depends on programmed polarity of the USB_VBUS_OC signal.  
Pull-up when the serial boot facility (SBF) controls the pin  
If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The pin multiplexing and control module is not  
responsible for assigning these pins.  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
14  
NXP Semiconductors  
Pin Assignments and Reset States  
4.2  
Pinout—256 MAPBGA  
The pinout for the MCF54450 and MCF54451 packages are shown below.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
FB_BE/ FB_BE/ FB_AD FB_AD FB_AD FB_AD FB_AD FB_AD  
BWE0 BWE2 10 14 18 22  
FB_AD  
26  
FB_AD FB_AD  
30 31  
A
B
VSS  
FB_OE FB_TS  
USB_  
T0IN  
VSS  
A
B
2
6
FB_BE/ FB_BE/ FB_AD FB_AD FB_AD FB_AD FB_AD FB_AD  
BWE1 BWE3 11 15 19 23  
FB_AD  
27  
FB_A  
4
FB_A  
6
FB_TA FB_R/W VBUS_  
OC  
FB_CLK T1IN  
3
7
PST  
DDATA2  
FB_AD FB_AD FB_AD FB_AD FB_AD FB_AD FB_AD  
FB_AD  
28  
FB_A  
FB_A  
5
FB_A  
1
C
D
FB_CS3 FB_CS1 FB_CS0  
T3IN  
3
C
D
0
4
8
12  
16  
20  
24  
PST  
PST  
PST  
FB_AD FB_AD FB_AD FB_AD FB_AD FB_AD FB_AD  
FB_AD  
29  
FB_A  
FB_A  
2
FB_A  
7
FB_CS2  
T2IN  
0
DDATA6 DDATA3 DDATA0  
1
5
9
13  
17  
21  
25  
USB_  
VBUS_  
EN  
FEC0_  
COL  
PST  
PST  
PST  
FB_A  
8
FB_A  
9
FB_A  
10  
USB_  
DP  
E
IVDD  
IVDD  
IVDD  
IVDD  
IVDD  
IVDD  
IVDD  
E
DDATA7 DDATA4 DDATA1  
FEC0_ FEC0_ FEC0_  
PST  
FB_A  
11  
FB_A  
12  
USB_  
DM  
F
G
H
J
IVDD  
EVDD  
EVDD  
EVDD  
EVDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
IVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
IRQ_1  
F
G
H
J
CRS  
MDIO  
MDC DDATA5  
FEC0_ FEC0_ FEC0_ FEC0_  
RXCLK RXDV RXD3 RXD2  
FB_A  
13  
FB_A  
14  
FB_A  
15  
NC  
FEC0_ FEC0_ FEC0_ FEC0_  
RXD1 RXD0 RXER TXCLK  
FB_A  
18  
FB_A  
17  
FB_A  
16  
XTAL  
32K  
FEC0_ FEC0_ FEC0_ FEC0_  
FB_A  
19  
FB_A  
20  
FB_A  
21  
EXTAL  
32K  
TXD3  
TXD2  
TXD1  
TXD0  
FEC0_ FEC0_  
I2C_  
SCL  
I2C_  
SDA  
FB_A  
22  
FB_A  
23  
VDD_A  
_PLL  
PLL  
TEST  
K
L
K
L
TXEN  
IRQ_7  
TXER  
IRQ_4  
DSPI_  
PCS2  
VDD_  
OSC  
VSS_  
OSC  
IRQ_3 RESET EVDD  
BOOT  
EVDD SDVDD SDVDD SDVDD SDVDD SDVDD  
XTAL  
BOOT  
MOD0  
SD_  
VREF  
JTAG_  
EN  
VDD_  
RTC  
RST  
OUT  
M
U0TXD U0RTS U0CTS SD_A7  
U0RXD SD_A11 SD_A6 SD_A0  
SD_A12 SD_A10 SD_A5 SD_BA1  
TEST  
SDVDD SDVDD  
TRST DACK1  
EXTAL  
M
N
P
R
T
MOD1  
SD_  
CKE  
SD_  
DQS2  
DSPI_  
SOUT  
DSPI_  
PCS5  
N
P
SD_D31 SD_D29 SD_D24 SD_D23 SD_D19  
SD_DM2  
DACK0 DREQ0  
SD_  
RAS  
SD_  
CS1  
SD_  
DM3  
DSPI_  
PCS1  
DSPI_  
DREQ1  
SIN  
SD_D28 SD_D25  
SD_D27 SD_D26  
SD_D20 SD_D16 SSI_FS  
SD_D21 SD_D17 SSI_TXD  
SD_D22 SD_D18 SSI_RXD  
TCLK  
SD_  
CS0  
SD_  
DQS3  
SSI_  
BCLK  
DSPI_  
SCK  
DSPI_  
PCS0  
R
T
SD_A13 SD_A9 SD_A4 SD_A1 SD_WE  
TMS  
SD_  
CAS  
SD_  
SD_D30  
SD_  
CLK  
SSI_  
MCLK  
VSS  
SD_A8 SD_A3 SD_A2 SD_BA0  
TDO  
TDI  
VSS  
CLK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Figure 5. MCF54450 and MCF54451 Pinout (256 MAPBGA)  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
15  
Pin Assignments and Reset States  
4.3  
Pinout—360 TEPBGA  
The pinout for the MCF54452, MCF54453, MCF54454, and MCF54455 packages are shown below.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
PCI_  
REQ0  
PCI_  
AD10  
PCI_  
AD11  
PCI_  
AD13  
PCI_  
SERR  
PCI_  
STOP  
PCI_  
AD15  
PCI_  
GNT0  
PCI_  
AD29  
PCI_  
AD20  
XTAL  
32K  
EXTAL  
32K  
USB_  
DM  
USB_  
DP  
DSPI_  
PCS2  
DSPI_  
SCK  
A
B
C
D
E
F
GND  
EXTAL  
XTAL  
DACK0  
TDO  
GND  
A
B
C
D
E
F
PCI_  
CBE0  
PCI_  
FRAME  
PCI_  
AD9  
PCI_  
PERR  
PCI_  
AD12  
PCI_  
RST  
PCI_  
GNT3  
PCI_  
AD14  
PCI_  
AD18  
PCI_  
AD28  
PCI_  
AD19  
PCI_  
AD21  
VDD_  
OSC  
RST  
OUT  
DSPI_  
SIN  
DSPI_  
PCS1  
NC  
GND  
NC  
NC  
DREQ0  
TMS  
TRST  
TCLK  
PCI_  
AD0  
PCI_  
AD2  
PCI_  
IRDY  
PCI_  
PAR  
PCI_  
REQ1  
PCI_  
REQ3  
PCI_  
GNT2  
PCI_  
GNT1  
PCI_  
TRDY  
PCI_  
AD31  
PCI_  
AD22  
VDD_  
RTC  
VDD_  
A_PLL  
VSS_  
OSC  
DSPI_  
SOUT  
JTAG_  
EN  
IRQ1  
IVDD  
DACK1 DREQ1  
TDI  
PCI_  
CBE1  
PCI_  
AD1  
PCI_  
AD7  
PCI_  
AD8  
PCI_  
IDSEL  
PCI_  
REQ2  
PCI_  
AD17  
PCI_  
AD16  
PCI_  
AD30  
PCI_  
AD23  
PLL  
TEST  
DSPI_  
PCS0  
DSPI_  
PCS5  
SSI_  
MCLK  
SSI_  
RXD  
SSI_  
TXD  
IVDD  
EVDD  
IVDD  
NC  
EVDD  
PCI_  
AD4  
PCI_  
AD5  
PCI_  
AD6  
PCI_  
CBE2  
SSI_  
BCLK  
SD_  
DM2  
SD_  
DQS2  
SSI_FS  
PCI_  
AD24  
PCI_DE  
VSEL  
PCI_  
AD3  
IVDD  
SDVDD SD_D16 SD_D17 SD_D18  
SD_D19 SD_D20 SD_D21 SD_D22  
PCI_  
AD26  
PCI_  
AD25  
PCI_  
CBE3  
G
H
J
T0IN  
T2IN  
GND  
GND  
EVDD  
GND  
EVDD  
GND  
GND  
EVDD  
GND  
GND  
EVDD  
GND  
GND  
EVDD  
GND  
GND  
EVDD  
GND  
EVDD  
GND  
G
H
J
SD_  
DM3  
SD_  
DQS3  
T3IN  
T1IN  
IVDD  
SDVDD SD_D23  
FB_AD FB_AD  
29 31  
PCI_  
AD27  
FB_CLK  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
EVDD  
GND  
SD_D26 SD_D27 SD_D25 SD_D24  
SDVDD SD_D28 SD_D29 SD_D30  
FB_AD FB_AD FB_AD FB_AD  
28 27 26 30  
K
L
K
L
FB_AD FB_AD FB_AD FB_AD  
25 23 22 24  
SD_  
CAS  
SD_  
CS1  
SD_  
CLK  
EVDD  
GND  
SD_D31  
FB_AD FB_AD FB_AD FB_AD  
SD_  
CS0  
SD_  
VREF  
SD_  
CLK  
M
N
P
R
T
SDVDD  
M
N
P
R
T
21  
20  
19  
18  
FB_AD FB_AD  
17 16  
SD_  
RAS  
SD_  
CKE  
U1TXD  
IVDD  
EVDD  
GND  
SD_A2 SD_WE  
FB_AD FB_AD  
15 14  
FB_AD  
10  
SD_  
BA0  
SD_  
BA1  
U1RXD  
SD_A1 SD_A0  
FB_AD FB_AD FB_AD  
13 12 11  
IVDD  
EVDD  
EVDD  
SDVDD SD_A5 SD_A4 SD_A3  
SD_A9 SD_A8 SD_A7 SD_A6  
SDVDD SD_A12 SD_A11 SD_A10  
FB_AD FB_AD FB_AD FB_AD  
EVDD  
GND  
GND  
GND  
EVDD  
GND  
EVDD  
GND  
9
8
7
6
FB_AD FB_AD FB_AD  
U
U1RTS  
USB_  
U
5
4
3
FB_AD FB_AD  
ATA_  
DA2  
ATA_  
DA1  
ATA_  
DA0  
V
W
Y
U1CTS VBUS_  
OC  
SD_A13  
V
W
Y
2
1
FB_AD FB_BE/ FB_BE/  
BWE2 BWE1  
PST  
DDATA4  
FEC0_  
RXD1  
FEC0_  
TXD3  
FEC0_  
TXEN  
ATA_  
RESET RXCLK  
FEC1_  
FEC1_  
RXER  
FEC1_  
TXD2  
FEC1_  
MDC  
ATA_  
CS1  
ATA_  
CS0  
IVDD  
FB_CS3  
PST  
IVDD  
IVDD  
IVDD  
U0TXD  
IVDD  
IVDD  
0
ATA_BU  
ATA_  
FB_BE/ FB_BE/  
PST  
FEC0_  
FEC0_  
RXDV  
FEC0_  
RXD2  
FEC0_  
TXCLK  
FEC0_  
TXD0  
I2C_  
SDA  
FEC1_  
RXD2  
FEC1_  
RXD0  
FEC1_  
TXD3  
FEC1_  
TXD0  
FEC1_  
MDIO  
FB_TS FB_CS0  
FFER_  
IORDY  
EN  
U0CTS  
RESET  
NC  
BWE3  
BWE0  
DDATA0 DDATA3 MDIO  
USB_  
PST  
PST  
FEC0_  
CRS  
FEC0_  
RXCLK  
FEC0_  
RXER  
FEC0_  
TXD1  
I2C_  
SCL  
ATA_  
IRQ4  
FEC1_  
DMARQ RXD3  
FEC1_  
RXD1  
FEC1_  
CRS  
FEC1_  
TXD1  
FEC1_  
TXEN  
FEC1_  
TXER  
AA  
AB  
FB_OE VBUS_ FB_R/W FB_CS2  
EN  
NC  
U0RTS  
NC  
AA  
AB  
DDATA2 DDATA7  
PST  
PST  
PST  
FEC0_  
COL  
FEC0_  
MDC  
FEC0_  
RXD3  
FEC0_  
RXD0  
FEC0_  
TXD2  
FEC0_  
TXER  
FEC1_  
IRQ3  
BOOT  
MOD1  
FEC1_  
COL  
FEC1_  
TXCLK  
BOOT  
MOD0  
GND  
FB_TA FB_CS1  
IRQ7  
U0RXD  
TEST  
GND  
DDATA1 DDATA5 DDATA6  
RXDV  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
Figure 6. MCF54452, MCF54453, MCF54454, and MCF54455 Pinout (360 TEPBGA)  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
16  
NXP Semiconductors  
Electrical Characteristics  
5
Electrical Characteristics  
This document contains electrical specification tables and reference timing diagrams for the MCF54455 microprocessor. This  
section contains detailed information on DC/AC electrical characteristics and AC timing specifications.  
The electrical specifications are preliminary and from previous designs or design simulations. These specifications may not be  
fully tested or guaranteed at this early stage of the product life cycle. However, for production silicon, these specifications will  
be met. Finalized specifications will be published after complete characterization and device qualifications have been  
completed.  
NOTE  
The parameters specified in this MCU document supersede any values found in the module  
specifications.  
5.1  
Absolute Maximum Ratings  
1, 2  
Table 5. Absolute Maximum Ratings  
Rating  
Symbol  
Pin Name  
Value  
Units  
External I/O pad supply voltage  
Internal oscillator supply voltage  
Real-time clock supply voltage  
Internal logic supply voltage  
SDRAM I/O pad supply voltage  
PLL supply voltage  
EVDD  
OSCVDD  
RTCVDD  
IVDD  
EVDD  
VDD_OSC  
VDD_RTC  
IVDD  
-0.3 to +4.0  
-0.3 to +4.0  
-0.5 to +2.0  
-0.5 to +2.0  
-0.3 to +4.0  
-0.5 to +2.0  
-0.3 to +3.6  
25  
V
V
V
V
SDVDD  
PVDD  
VIN  
SD_VDD  
VDD_A_PLL  
V
V
Digital input voltage3  
V
Instantaneous maximum current  
IDD  
mA  
Single pin limit (applies to all pins) 3, 4, 5  
Operating temperature range (packaged)  
TA  
(TL - TH)  
-40 to +85  
C  
C  
Storage temperature range  
Tstg  
-55 to +150  
1
2
Functional operating conditions are given in Table 8. Absolute maximum ratings are stress ratings only, and functional  
operation at the maximum is not guaranteed. Continued operation at these levels may affect device reliability or cause  
permanent damage to the device.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields. However, it is  
advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level  
(e.g., VSS or EVDD).  
3
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values for positive and negative clamp voltages, and then use the larger of the two values.  
4
5
All functional non-supply pins are internally clamped to VSS and EVDD  
.
Power supply must maintain regulation within operating EVDD range during instantaneous and operating maximum  
current conditions. If positive injection current (Vin > EVDD) is greater than IDD, the injection current may flow out of EVDD  
and could result in external power supply going out of regulation. Ensure the external EVDD load shunts current greater  
than maximum injection current. This is the greatest risk when the MPU is not consuming power (ex; no clock). The power  
supply must maintain regulation within operating EVDD range during instantaneous and operating maximum current  
conditions.  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
17  
Electrical Characteristics  
5.2  
Thermal Characteristics  
Table 6. Thermal Characteristics  
256  
MAPBGA  
360  
TEPBGA  
Characteristic  
Symbol  
Unit  
Junction to ambient, natural convection  
Junction to ambient (@200 ft/min)  
Four layer board  
(2s2p)  
JA  
291,2  
241,2  
C/W  
Four layer board  
(2s2p)  
JMA  
251,2  
211,2  
C/W  
Junction to board  
JB  
JC  
jt  
Tj  
183  
104  
21,5  
105  
153  
114  
21,5  
105  
C/W  
C/W  
C/W  
oC  
Junction to case  
Junction to top of package  
Maximum operating junction temperature  
1
JMA and jt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection.  
NXP recommends the use of JmA and power dissipation specifications in the system design to prevent device  
junction temperatures from exceeding the rated specification. System designers should be aware that device  
junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance  
to the device junction temperature specification can be verified by physical measurement in the customer’s  
system using the jt parameter, the device power dissipation, and the method described in EIA/JESD Standard  
51-2.  
2
3
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8.  
Board temperature is measured on the top surface of the board near the package.  
4
5
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL  
SPEC-883 Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization  
parameter is written in conformance with Psi-JT.  
The average chip-junction temperature (T ) in C can be obtained from:  
J
TJ = TA + PD  JMA  
Eqn. 1  
Where:  
TA  
= Ambient Temperature, C  
QJMA  
PD  
= Package Thermal Resistance, Junction-to-Ambient, C/W  
= PINT + PI/O  
PINT  
PI/O  
= IDD IVDD, Watts - Chip Internal Power  
= Power Dissipation on Input and Output Pins — User Determined  
For most applications P < P  
and can be ignored. An approximate relationship between P and T (if P is neglected) is:  
D J I/O  
I/O  
INT  
K
--------------------------------  
PD  
=
Eqn. 2  
TJ + 273C  
Solving equations 1 and 2 for K gives:  
K = PD  TA 273C+ QJMA P2D  
Eqn. 3  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
18  
NXP Semiconductors  
Electrical Characteristics  
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 1 and Equation 2 iteratively  
A
D
J
for any value of T .  
A
5.3  
ESD Protection  
1, 2  
Table 7. ESD Protection Characteristics  
Characteristics  
Symbol  
Value  
Units  
ESD Target for Human Body Model  
HBM  
2000  
V
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for  
Automotive Grade Integrated Circuits.  
2
A device is defined as a failure if after exposure to ESD pulses the device no longer meets  
the device specification requirements. Complete DC parametric and functional testing is  
performed per applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
5.4  
DC Electrical Specifications  
Table 8. DC Electrical Specifications  
Characteristic  
Internal logic supply voltage1  
Symbol  
Min  
Max  
Units  
IVDD  
PVDD  
EVDD  
OSCVDD  
RTCVDD  
SDVDD  
SDVDD  
SDVDD  
SDVREF  
VIH  
1.35  
1.35  
3.0  
1.65  
1.65  
3.6  
V
V
PLL analog operation voltage range 1  
External I/O pad supply voltage  
Internal oscillator supply voltage  
Real-time clock supply voltage  
SDRAM I/O pad supply voltage — DDR mode  
SDRAM I/O pad supply voltage — DDR2 mode  
SDRAM I/O pad supply voltage — Mobile DDR mode  
SDRAM input reference voltage  
Input High Voltage  
V
3.0  
3.6  
V
1.35  
2.25  
1.7  
1.65  
2.75  
1.9  
V
V
V
1.7  
1.9  
V
0.49 x SDVDD 0.51 x SDVDD  
V
0.7 x EVDD  
VSS – 0.3  
0.06 x EVDD  
–2.5  
3.65  
0.35 x EVDD  
V
Input Low Voltage  
VIL  
V
Input Hysteresis  
VHYS  
mV  
A  
Input Leakage Current2  
Iin  
2.5  
Vin = VDD or VSS, Input-only pins  
Input Leakage Current3  
Iin  
–5  
–10.0  
5
10.0  
A  
A  
V
Vin = VDD or VSS, Input-only pins  
High Impedance (Off-State) Leakage Current4  
Vin = VDD or VSS, All input/output and output pins  
IOZ  
Output High Voltage (All input/output and all output pins)  
VOH  
VOL  
0.85 EVDD  
__  
__  
IOH = –5.0 mA  
Output Low Voltage (All input/output and all output pins)  
0.15 EVDD  
V
IOL = 5.0mA  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
19  
Electrical Characteristics  
Table 8. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Max  
Units  
Weak Internal Pull Up Device Current, tested at VIL Max.5  
IAPU  
Cin  
–10  
–130  
A  
Input Capacitance 6  
pF  
All input-only pins  
All input/output (three-state) pins  
7
7
Load Capacitance  
Low drive strength  
High drive strength  
pF  
CL  
IIC  
25  
50  
DC Injection Current 3, 7, 8, 9  
mA  
VNEGCLAMP =VSS– 0.3 V, VPOSCLAMP = VDD + 0.3  
Single Pin Limit  
Total MCU Limit, Includes sum of all stressed pins  
-1.0  
-10  
1.0  
10  
1
IVDD and PVDD should be at the same voltage. PVDD should have a filtered input. Please see the PLL section of this  
specification for an example circuit. There are three PVDD inputs, one for each PLL. A filter circuit should used on each  
PVDD input.  
2
3
4
Valid for all parts, EXCEPT the MCF54452YVR200.  
Valid just the MCF54452YVR200 part number.  
Worst-case tristate leakage current with only one I/O pin high. Since all I/Os share power when high, the leakage current  
is distributed among them. With all I/Os high, this spec reduces to ±2 A min/max.  
Refer to the MCF54455 Reference Manual signals description chapter for pins having weak internal pull-up devices.  
5
6
7
8
This parameter is characterized before qualification rather than 100% tested.  
All functional non-supply pins are internally clamped to VSS and their respective VDD  
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.  
9
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum  
current conditions. If positive injection current (Vin > VDD) is greater than IDD, the injection current may flow out of VDD  
and could result in external power supply going out of regulation. Ensure the external VDD load shunts current greater  
than the maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, at power-up,  
the system clock is not present during the power-up sequence until the PLL has attained lock.  
5.5  
ClockTiming Specifications  
The clock module configures the device for one of several clocking methods. Clocking modes include internal phase-locked  
loop (PLL) clocking with an external clock reference or an external crystal reference supported by an internal crystal amplifier.  
The PLL can also be disabled, and an external oscillator can directly clock the device.  
The specifications in Table 9 are for the CLKIN input pin (EXTAL input driven by an external clock reference). The duty cycle  
specification is based on an acceptable tolerance for the PLL, which yields 50% duty-cycle internal clocks to all on-chip  
peripherals. The MCF5445x devices use the input clock signal as its synchronous bus clock for PCI. A poor duty cycle on the  
input clock, may affect the overall timing margin to external devices. If negative edge logic is used to interface to PCI, providing  
a 50% duty-cycle input clock aids in simplifying overall system design.  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
20  
NXP Semiconductors  
Electrical Characteristics  
Unit  
Table 9. Input Clock Timing Requirements  
Item  
Specification  
Min  
Max  
C1  
Cycle time  
15  
25  
-
40  
66.66  
2
ns  
MHz  
ns  
1 / C1 Frequency  
C2  
C3  
C4  
Rise time (20% of vdd to 80% of vdd)  
Fall time (80% of vdd to 20% of vdd)  
Duty cycle (at 50% of vdd)  
-
2
ns  
40  
60  
%
C1  
Input Clock (CLKIN)  
C4  
C4  
C2  
C3  
Figure 7. Input Clock Timing Diagram  
Table 10. PLL Electrical Characteristics  
Min.  
Value  
Max.  
Unit  
Num  
Characteristic  
Symbol  
Value  
1
PLL Reference Frequency Range  
Crystal reference  
fref_crystal  
fref_ext  
16  
16  
40  
66.66  
MHz  
MHz  
External reference  
2
Core/System Frequency  
fsys  
tsys  
fvco  
tcst  
512 Hz1  
266.67 MHz  
1/fsys  
ns  
Core/System Clock Period  
VCO Frequency (fvco = fref PFDR)  
Crystal Start-up Time2, 3  
19  
3
300  
540  
MHz  
ms  
10  
4
EXTAL Input High Voltage  
Crystal Mode4  
VIHEXT  
VIHEXT  
VXTAL + 0.4  
EVDD/2 + 0.4  
V
V
All other modes (External, Limp)  
5
6
EXTAL Input Low Voltage  
Crystal Mode4  
All other modes (External, Limp)  
VILEXT  
VILEXT  
VXTAL - 0.4  
EVDD/2 - 0.4  
V
V
EXTAL Input Rise & Fall Time (20% to 80% EVDD  
(External, Limp)  
)
1
2
ns  
7
8
PLL Lock Time 3, 5  
tlpll  
tdc  
IXTAL  
CS_XTAL  
40  
1
50000  
60  
CLKIN  
%
Duty Cycle of reference 3 (External, Limp)  
9
XTAL Current  
3
mA  
pF  
10  
Total on-chip stray capacitance on XTAL  
1.5  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
21  
Electrical Characteristics  
Table 10. PLL Electrical Characteristics (continued)  
Min.  
Max.  
Value  
Num  
Characteristic  
Symbol  
Unit  
Value  
11  
12  
13  
Total on-chip stray capacitance on EXTAL  
Crystal capacitive load  
CS_EXTAL  
CL  
1.5  
pF  
See crystal spec  
Discrete load capacitance for XTAL  
Discrete load capacitance for EXTAL  
CL_XTAL  
CL_EXTAL  
2 (CL -  
CS_XTAL -  
pF  
CS_EXTAL  
-
6
CS_PCB  
)
14  
15  
17  
Frequency un-LOCK Range  
Frequency LOCK Range  
fUL  
-4.0  
-2.0  
4.0  
% fsys  
% fsys  
fLCK  
Cjitter  
2.0  
CLKOUT Period Jitter, 3, 4, 7 Measured at fSYS Max  
Peak-to-peak Jitter (Clock edge to clock edge)  
10  
% FB_CLK  
1
2
The minimum system frequency is the minimum input clock divided by the maximum low-power divider (16 MHz 32,768).  
When the PLL is enabled, the minimum system frequency (fsys) is 150 MHz.  
This parameter is guaranteed by characterization before qualification rather than 100% tested. Applies to external clock  
reference only.  
Proper PC board layout procedures must be followed to achieve specifications.  
This parameter is guaranteed by design rather than 100% tested.  
This specification is the PLL lock time only and does not include oscillator start-up time.  
CS_PCB is the measured PCB stray capacitance on EXTAL and XTAL.  
3
4
5
6
7
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the PLL circuitry via PLL VDD, EVDD, and VSS and variation in crystal oscillator frequency increase the Cjitter  
percentage for a given interval.  
5.6  
Reset Timing Specifications  
Table 11 lists specifications for the reset timing parameters shown in Figure 8.  
Table 11. Reset and Configuration Override Timing  
Num  
Characteristic  
Min  
Max  
Unit  
R11 RESET valid to CLKIN (setup)  
9
1.5  
5
10  
1
ns  
R2 CLKIN to RESET invalid (hold)  
ns  
CLKIN cycles  
ns  
R3 RESET valid time2  
R4 CLKIN to RSTOUT valid  
0
R5 RSTOUT valid to Configuration Override inputs valid  
R6 Configuration Override inputs valid to RSTOUT invalid (setup)  
R7 Configuration Override inputs invalid after RSTOUT invalid (hold)  
R8 RSTOUT invalid to Configuration Override inputs High Impedance  
ns  
20  
0
CLKIN cycles  
ns  
CLKIN cycles  
1
2
RESET and Configuration Override data lines are synchronized internally. Setup and hold times must be met only if  
recognition on a particular clock is required.  
During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously  
to the system. Thus, RESET must be held a minimum of 100 ns.  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
22  
NXP Semiconductors  
Electrical Characteristics  
CLKIN  
R1  
R2  
R3  
RESET  
R4  
R4  
RSTOUT  
R8  
R7  
R5  
R6  
Configuration Overrides*:  
(BOOTMOD[1:0],  
Override pins])  
Figure 8. RESET and Configuration Override Timing  
5.7  
FlexBus Timing Specifications  
A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up  
to a maximum bus frequency of 66MHz. It can be directly connected to asynchronous or synchronous devices such as external  
boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For  
asynchronous devices, a simple chip-select based interface can be used.  
All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a  
reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider  
of that frequency.  
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock  
(FB_CLK). All other timing relationships can be derived from these values.  
Table 12. FlexBus AC Timing Specifications  
Num  
Characteristic  
Frequency of Operation  
Min  
Max  
Unit  
Notes  
25  
15  
66.66  
40  
MHz  
ns  
FB1 Clock Period  
FB2 Output Valid  
FB3 Output Hold  
FB4 Input Setup  
FB5 Input Hold  
1
7.0  
ns  
1.0  
3.0  
0
ns  
1
2
ns  
ns  
2
1
2
Specification is valid for all FB_AD[31:0], FB_BS[3:0], FB_CS[3:0], FB_OE, FB_R/W, FB_TBST,  
FB_TSIZ[1:0], and FB_TS.  
Specification is valid for all FB_AD[31:0] and FB_TA.  
NOTE  
The processor drives the data lines during the first clock cycle of the transfer  
with the full 32-bit address. This may be ignored by standard connected  
devices using non-multiplexed address and data buses. However, some  
applications may find this feature beneficial.  
The address and data busses are muxed between the FlexBus and PCI  
controller. At the end of the read and write bus cycles the address signals are  
indeterminate.  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
23  
Electrical Characteristics  
S0  
S1  
S2  
S3  
FB_CLK  
FB1  
FB3  
ADDR[Y:0]  
FB_AD[Y:0]  
Mux’d Bus  
FB2  
FB5  
ADDR[31:X]  
FB_AD[31:X]  
DATA  
FB4  
ADDR[31:0]  
FB_A[31:0]  
Non-Mux’d Bus  
FB_D[31:X]  
ADDR[31:X]  
DATA  
FB_R/W  
FB_ALE  
FB_CSn, FB_OE,  
FB_BE/BWEn  
FB4  
FB5  
FB_TA  
TSIZ[1:0]  
FB_TSIZ[1:0]  
Figure 9. FlexBus Read Timing  
S0  
S1  
S2  
S3  
FB_CLK  
FB1  
FB3  
ADDR[Y:0]  
FB_AD[Y:0]  
Mux’d Bus  
FB2  
FB_AD[31:X]  
ADDR[31:X]  
DATA  
ADDR[31:0]  
FB_A[31:0]  
FB_D[31:X]  
FB_R/W  
Non-Mux’d Bus  
ADDR[31:X]  
DATA  
FB_ALE  
FB_CSn, FB_BE/BWEn  
FB_OE  
FB4  
FB5  
FB_TA  
TSIZ[1:0]  
FB_TSIZ[1:0]  
Figure 10. Flexbus Write Timing  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
24  
NXP Semiconductors  
Electrical Characteristics  
5.8  
SDRAM AC Timing Characteristics  
The following timing numbers must be followed to properly latch or drive data onto the SDRAM memory bus. All timing  
numbers are relative to the four DQS byte lanes.  
Table 13. SDRAM Timing Specifications  
Num  
Characteristic  
Frequency of Operation  
Symbol  
Min  
Max  
Unit  
Notes  
1
60  
7.5  
133.33  
16.67  
0.55  
MHz  
ns  
DD1 Clock Period  
tSDCK  
tSDCKH  
tSDCKL  
tCMV  
2
DD2 Pulse Width High  
DD3 Pulse Width Low  
0.45  
0.45  
tSDCK  
tSDCK  
ns  
0.55  
3
3
DD4 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
SD_CS[1:0] — Output Valid  
(0.5 x tSDCK  
)
)
+ 1.0ns  
DD5 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
SD_CS[1:0] — Output Hold  
tCMH  
tDQSS  
tQS  
2.0  
ns  
ns  
ns  
ns  
DD6 Write Command to first DQS Latching Transition  
(1.0 x tSDCK  
)
(1.0 x tSDCK  
+ 0.6ns  
- 0.6ns  
4
5
DD7 Data and Data Mask Output Setup (DQ-->DQS)  
Relative to DQS (DDR Write Mode)  
1.0  
1.0  
6
DD8 Data and Data Mask Output Hold (DQS-->DQ)  
Relative to DQS (DDR Write Mode)  
tQH  
7
8
DD9 Input Data Skew Relative to DQS (Input Setup)  
DD10 Input Data Hold Relative to DQS.  
tIS  
tIH  
1.0  
ns  
ns  
(0.25 x tSDCK  
)
+ 0.5ns  
1
2
3
The SDRAM interface operates at the same frequency as the internal system bus.  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
Command output valid should be 1/2 the memory bus clock (tSDCK) plus some minor adjustments for process, temperature, and  
voltage variations.  
4
This specification relates to the required input setup time of DDR memories. The microprocessor’s output setup should be larger  
than the input setup of the DDR memories. If it is not larger, then the input setup on the memory is in violation.  
SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]  
5
6
The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid  
for each subsequent DQS edge.  
This specification relates to the required hold time of DDR memories.  
SD_D[31:24] is relative to SD_DQS[3]; SD_D[23:16] is relative to SD_DQS[2]  
7
8
Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line becomes  
valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).  
Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes  
invalid.  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
25  
Electrical Characteristics  
DD1  
DD2  
SD_CLK  
SD_CLK  
DD3  
DD5  
SD_CSn,SD_WE,  
SD_RAS, SD_CAS  
CMD  
ROW  
DD4  
DD6  
SD_A[13:0]  
COL  
DD7  
SD_DM3/SD_DM2  
SD_DQS3/SD_DQS2  
DD8  
DD7  
WD1 WD2 WD3 WD4  
DD8  
SD_D[31:24]/SD_D[23:16]  
Figure 11. DDR Write Timing  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
26  
NXP Semiconductors  
Electrical Characteristics  
DD1  
DD2  
SD_CLK  
SD_CLK  
DD3  
DD5  
CL=2  
SD_CSn,SD_WE,  
SD_RAS, SD_CAS  
CMD  
ROW  
DD4  
CL=2.5  
SD_A[13:0]  
COL  
DD9  
DQS Read  
Postamble  
DQS Read  
Preamble  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
DD10  
WD1 WD2 WD3 WD4  
DQS Read DQS Read  
Preamble Postamble  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
WD1 WD2 WD3 WD4  
Figure 12. DDR Read Timing  
5.9  
PCI Bus Timing Specifications  
The PCI bus on the device is PCI 2.2 compliant. The following timing numbers are mostly from the PCI 2.2 spec. Refer to the  
PCI 2.2 spec for a more detailed timing analysis.  
1 2  
,
Table 14. PCI Timing Specifications  
33 MHz3  
66 MHz3  
Num  
Characteristic  
Min  
Max  
Min  
Max  
Unit  
Frequency of Operation  
Clock Period  
30  
33.33 33.33 66.66  
MHz  
ns  
P1  
P2  
P3  
P4  
P5  
15  
3.0  
5.0  
0
30  
Bused PCI signals — input setup  
PCI_GNT[3:0]/PCI_REQ[3:0] — input setup  
All PCI signals — input hold  
7.0  
10.0  
0
ns  
ns  
ns  
Bused PCI signals — output valid  
11.0  
6.0  
ns  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
27  
Electrical Characteristics  
1 2  
,
Table 14. PCI Timing Specifications (continued)  
33 MHz3  
66 MHz3  
Num  
Characteristic  
Min  
Max  
Min  
Max  
Unit  
P6  
P7  
PCI_REQ[3:0]/PCI_GNT[3:0] — output valid  
All PCI signals — output hold  
12.0  
6.0  
ns  
ns  
2.0  
1.0  
1
2
The PCI bus operates at the CLKIN frequency. All timings are relative to the input clock, CLKIN.  
All PCI signals are bused signals except for PCI_GNT[3:0] and PCI_REQ[3:0]. These signals are defined as point-to-point  
signals by the PCI Specification.  
3
The 66-MHz parameters are only guaranteed when the 66-MHz PCI pad slew rates are selected. Likewise, the 33-MHz  
parameters are only guaranteed when the 33-MHz PCI pad slew rates are selected.  
P1  
CLKIN  
P5  
P7  
P6  
Output  
Output Valid  
Valid/Hold  
P2  
P3  
P4  
Input  
Setup/Hold  
Input Valid  
Figure 13. PCI Timing  
5.9.1  
Overshoot and Undershoot  
Figure 14 shows the specification limits for overshoot and undershoot for PCI I/O. To guarantee long term reliability, the  
specification limits shown must be followed. Good transmission line design practices should be observed to guarantee the  
specification limits.  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
28  
NXP Semiconductors  
Electrical Characteristics  
VDD + 0.9V  
VDD + 0.5V  
VDD  
GND  
GND - 0.5V  
GND - 1.0V  
Not to exceed 17%  
of PCI Cycle  
Figure 14. Overshoot and Undershoot Limits  
5.10 ULPI Timing Specifications  
The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin Interface. Control and data timing  
requirements for the ULPI pins are given in Table 15. These timings apply to synchronous mode only. All timings are measured  
with respect to the clock as seen at the USB_CLKIN pin on the MCF5445x. The ULPI PHY is the source of the 60MHz clock.  
NOTE  
The USB controller requires a 60-MHz clock, even if using the on-chip FS/LS transceiver  
instead of the ULPI interface. In this case, the 60-MHz clock can be generated by the PLL  
or input on the USB_CLKIN pin.  
Table 15. ULPI Interface Timing  
Num  
Characteristic  
Min  
Nominal  
Max  
Units  
USB_CLKIN operating frequency  
USB_CLKIN duty cycle  
60  
50  
9.5  
MHz  
%
U1  
U2  
U3  
U4  
U5  
USB_CLKIN clock period  
16.67  
ns  
Input Setup (control and data)  
Input Hold (control and data)  
Output Valid (control and data)  
Output Hold (control and data)  
5.0  
1.0  
ns  
ns  
ns  
1.0  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
29  
Electrical Characteristics  
U1  
USB_CLKIN  
U2  
U3  
ULPI_DIR / ULPI_NXT  
(Control Input)  
U2  
U3  
ULPI_DATA[7:0]  
(Data Input)  
U4  
U5  
ULPI_STP  
(Control Output)  
U5  
U4  
ULPI_DATA[7:0]  
(Data Output)  
Figure 15. ULPI Timing Diagram  
5.11 SSI Timing Specifications  
This section provides the AC timings for the SSI in master (clocks driven) and slave modes (clocks input). All timings are given  
for non-inverted serial clock polarity (SSI_TCR[TSCKP] = 0, SSI_RCR[RSCKP] = 0) and a non-inverted frame sync  
(SSI_TCR[TFSI] = 0, SSI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings  
remain valid by inverting the clock signal (SSI_BCLK) and/or the frame sync (SSI_FS) shown in the figures below.  
1
Table 16. SSI Timing — Master Modes  
Num  
Description  
Symbol  
Min  
Max  
Units  
Notes  
2
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
SSI_MCLK cycle time  
tMCLK 2 tSYS  
55%  
ns  
tMCLK  
ns  
SSI_MCLK pulse width high / low  
SSI_BCLK cycle time  
45%  
3
tBCLK 8 tSYS  
SSI_BCLK pulse width  
45%  
0
55%  
15  
tBCLK  
ns  
SSI_BCLK to SSI_FS output valid  
SSI_BCLK to SSI_FS output invalid  
SSI_BCLK to SSI_TXD valid  
ns  
-2  
15  
ns  
SSI_BCLK to SSI_TXD invalid / high impedence  
SSI_RXD / SSI_FS input setup before SSI_BCLK  
ns  
10  
0
ns  
S10 SSI_RXD / SSI_FS input hold after SSI_BCLK  
ns  
1
2
3
All timings specified with a capactive load of 25pF.  
SSI_MCLK can be generated from SSI_CLKIN or a divided version of the internal system clock (fsys).  
SSI_BCLK can be derived from SSI_CLKIN or a divided version of the internal system clock (fsys).  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
30  
NXP Semiconductors  
Electrical Characteristics  
1
Table 17. SSI Timing — Slave Modes  
Num  
Description Symbol  
Min  
Max  
Units  
Notes  
S11 SSI_BCLK cycle time  
tBCLK 8 tSYS  
55%  
ns  
tBCLK  
ns  
S12 SSI_BCLK pulse width high / low  
S13 SSI_FS input setup before SSI_BCLK  
S14 SSI_FS input hold after SSI_BCLK  
S15 SSI_BCLK to SSI_TXD / SSI_FS output valid  
45%  
10  
2
ns  
0
15  
ns  
S16 SSI_BCLK to SSI_TXD / SSI_FS output invalid / high  
impedence  
ns  
S17 SSI_RXD setup before SSI_BCLK  
S18 SSI_RXD hold after SSI_BCLK  
10  
2
ns  
ns  
1
All timings specified with a capactive load of 25pF.  
S1  
S2  
S2  
SSI_MCLK  
(Output)  
S3  
SSI_BCLK  
(Output)  
S4  
S4  
S5  
S6  
SSI_FS  
(Output)  
S9  
S10  
SSI_FS  
(Input)  
S7  
S8  
S7  
S8  
SSI_TXD  
SSI_RXD  
S9  
S10  
Figure 16. SSI Timing — Master Modes  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
31  
Electrical Characteristics  
S11  
SSI_BCLK  
(Input)  
S12  
S12  
S15  
S16  
SSI_FS  
(Output)  
S13  
S14  
SSI_FS  
(Input)  
S15  
S16  
S16  
S15  
SSI_TXD  
SSI_RXD  
S17  
S18  
Figure 17. SSI Timing — Slave Modes  
2
5.12 I C Timing Specifications  
2
Table 18 lists specifications for the I C input timing parameters shown in Figure 18.  
2
Table 18. I C Input Timing Specifications between SCL and SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
I9  
2
8
1
tSYS  
tSYS  
ms  
Clock low period  
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
0
1
ns  
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
4
ms  
tSYS  
ns  
Data setup time  
0
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2
tSYS  
tSYS  
2
2
Table 19 lists specifications for the I C output timing parameters shown in Figure 18.  
2
Table 19. I C Output Timing Specifications between SCL and SDA  
Num  
Characteristic  
Min  
Max  
Units  
I11  
I21  
I32  
I41  
I53  
Start condition hold time  
Clock low period  
6
10  
7
3
tSYS  
tSYS  
µs  
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
tSYS  
ns  
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
32  
NXP Semiconductors  
Electrical Characteristics  
Table 19. I C Output Timing Specifications between SCL and SDA (continued)  
2
Num  
Characteristic  
Min  
Max  
Units  
I61  
I71  
I81  
I91  
Clock high time  
Data setup time  
10  
2
tSYS  
tSYS  
tSYS  
tSYS  
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
20  
10  
1
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum  
frequency (IFDR = 0x20) results in minimum output timings as shown in Table 19. The I2C interface is  
designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual  
position is affected by the prescale and division values programmed into the IFDR. However, the numbers  
given in Table 19 are minimum values.  
2
3
Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive  
low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and  
pull-up resistor values.  
Specified at a nominal 50-pF load.  
I5  
I6  
I2  
I2C_SCL  
I2C_SDA  
I7  
I8  
I1  
I9  
I4  
I3  
2
Figure 18. I C Input/Output Timings  
5.13 Fast Ethernet Timing Specifications  
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing  
specs/constraints for the physical interface.  
5.13.1 Receive Signal Timing Specifications  
The following timing specs meet the requirements for MII and 7-Wire style interfaces for a range of transceiver devices.  
Table 20. Receive Signal Timing  
MII Mode  
RMII Mode  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
E1  
E2  
E3  
E4  
RXCLK frequency  
5
25  
4
50  
MHz  
ns  
RXD[n:0], RXDV, RXER to RXCLK setup1  
RXCLK to RXD[n:0], RXDV, RXER hold1  
RXCLK pulse width high  
5
2
ns  
35%  
35%  
65%  
65%  
35%  
35%  
65%  
65%  
RXCLK period  
RXCLK period  
RXCLK pulse width low  
1
In MII mode, n = 3; In RMII mode, n = 1  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
33  
Electrical Characteristics  
E4  
E1  
E3  
E2  
RXCLK (Input)  
RXD[n:0]  
RXDV,  
Valid Data  
RXER  
Figure 19. MII Receive Signal Timing Diagram  
5.13.2 Transmit Signal Timing Specifications  
Table 21. Transmit Signal Timing  
MII Mode  
RMII Mode  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
E5  
E6  
E7  
E8  
TXCLK frequency  
5
25  
5
50  
MHz  
ns  
TXCLK to TXD[n:0], TXEN, TXER invalid1  
TXCLK to TXD[n:0], TXEN, TXER valid1  
TXCLK pulse width high  
25  
14  
ns  
35%  
35%  
65%  
65%  
35%  
35%  
65%  
65%  
tTXCLK  
tTXCLK  
TXCLK pulse width low  
1
In MII mode, n = 3; In RMII mode, n = 1  
E8  
TXCLK (Input)  
E7  
E5  
E6  
TXD[n:0]  
TXEN,  
TXER  
Valid Data  
Figure 20. MII Transmit Signal Timing Diagram  
5.13.3 Asynchronous Input Signal Timing Specifications  
Table 22. MII Transmit Signal Timing  
Num  
Characteristic  
CRS, COL minimum pulse width  
Min  
Max  
Unit  
E9  
1.5  
TXCLK period  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
34  
NXP Semiconductors  
Electrical Characteristics  
CRS, COL  
E9  
Figure 21. MII Async Inputs Timing Diagram  
5.13.4 MII Serial Management Timing Specifications  
Table 23. MII Serial Management Channel Signal Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
E10  
E11  
E12  
E13  
E14  
E15  
MDC cycle time  
MDC pulse width  
tMDC  
400  
40  
25  
10  
0
60  
375  
ns  
% tMDC  
ns  
MDC to MDIO output valid  
MDC to MDIO output invalid  
MDIO input to MDC setup  
MDIO input to MDC hold  
ns  
ns  
ns  
E10  
E11  
MDC (Output)  
MDIO (Output)  
MDIO (Input)  
E11  
E12  
E13  
Valid Data  
E14  
E15  
Valid Data  
Figure 22. MII Serial Management Channel TIming Diagram  
5.14 32-Bit Timer Module Timing Specifications  
Table 24 lists timer module AC timings.  
Table 24. Timer Module AC Timing Specifications  
Name  
Characteristic  
DTnIN cycle time (n = 0:3)  
DTnIN pulse width (n = 0:3)  
Min  
Max  
Unit  
tsys/2  
tsys/2  
T1  
T2  
3
1
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
35  
Electrical Characteristics  
5.15 ATA Interface Timing Specifications  
The ATA controller is compatible with the ATA/ATAPI-6 industry standard. Refer to the ATA/ATAPI-6 Specficiation and the  
ATA controller chapter of the MCF54455 Reference Manual for timing diagrams of the various modes of operation.  
The timings of the various ATA data transfer modes are determined by a set of timing equations described in the ATA section  
of the MCF54455 Reference Manual. These timing equations must be fulfilled for the ATA host to meet timing. Table 25  
provides implementation specific timing parameters necessary to complete the timing equations.  
1,2  
Table 25. ATA Interface Timing Specifications  
Name  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
Setup time — ATA_IORDY to SYSCLK falling  
Hold time — ATA_IORDY from SYSCLK falling  
Setup time — ATA_DATA[15:0] to SYSCLK rising  
Propagation delay — SYSCLK rising to all outputs  
Output skew  
tSUI  
tHI  
4.0  
3.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSU  
3
3
4
4
tCO  
7.0  
1.5  
tSKEW1  
tI_DS  
tI_DH  
Setup time — ATA_DATA[15:0] valid to ATA_IORDY  
Hold time — ATA_IORDY to ATA_DATA[15:0] invalid  
2.0  
3.5  
1
2
3
4
These parameters are guaranteed by design and not testable.  
All timings specified with a capacitive load of 40pF.  
Applies to ATA_CS[1:0], ATA_DA[2:0], ATA_DIOR, ATA_DIOW, ATA_DMACK, ATA_DATA[15:0]  
Applies to Ultra DMA data-in burst only  
5.16 DSPI Timing Specifications  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the  
transfer attributes are programmable. Table 26 provides DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the MCF54455 Reference Manual for information on the modified transfer formats used for communicating  
with slower peripheral devices.  
1
Table 26. DSPI Module AC Timing Specifications  
Name  
Characteristic  
DSPI_SCK Cycle Time  
DSPI_SCK Duty Cycle  
Symbol  
Min  
Max  
Unit  
Notes  
2
DS1  
DS2  
tSCK  
4 x tSYS  
ns  
ns  
3
(tsck 2) - 2.0 (tsck 2) + 2.0  
Master Mode  
4
5
DS3  
DS4  
DS5  
DS6  
DS7  
DS8  
DSPI_PCSn to DSPI_SCK delay  
tCSC  
tASC  
(2 tSYS) - 1.5  
5
ns  
ns  
ns  
ns  
ns  
ns  
DSPI_SCK to DSPI_PCSn delay  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
(2 tSYS) - 3.0  
-5  
9
0
Slave Mode  
DS9 DSPI_SCK to DSPI_SOUT valid  
10  
ns  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
36  
NXP Semiconductors  
Electrical Characteristics  
Table 26. DSPI Module AC Timing Specifications (continued)  
1
Name  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
DS10 DSPI_SCK to DSPI_SOUT invalid  
DS11 DSPI_SIN to DSPI_SCK input setup  
DS12 DSPI_SCK to DSPI_SIN input hold  
DS13 DSPI_SS active to DSPI_SOUT driven  
DS14 DSPI_SS inactive to DSPI_SOUT not driven  
0
2
10  
10  
ns  
ns  
ns  
ns  
ns  
7
1
Timings shown are for DMCR[MTFE] = 0 (classic SPI) and DCTARn[CPHA] = 0. Data is sampled on the DSPI_SIN pin  
on the odd-numbered DSPI_SCK edges and driven on the DSPI_SOUT pin on even-numbered DSPI edges.  
2
3
When in master mode, the baud rate is programmable in DCTARn[DBR], DCTARn[PBR], and DCTARn[BR].  
This specification assumes a 50/50 duty cycle setting. The duty cycle is programmable in DCTARn[DBR],  
DCTARn[CPHA], and DCTARn[PBR].  
4
5
The DSPI_PCSn to DSPI_SCK delay is programmable in DCTARn[PCSSCK] and DCTARn[CSSCK].  
The DSPI_SCK to DSPI_PCSn delay is programmable in DCTARn[PASC] and DCTARn[ASC].  
DS3  
DS4  
DSPI_PCSn  
DS1  
DS2  
DSPI_SCK  
(DCTARn[CPOL] = 0)  
DS2  
DSPI_SCK  
(DCTARn[CPOL] = 1)  
DS7  
DS8  
DSPI_SIN  
Last Data  
First Data  
Data  
Data  
DS6  
DS5  
DSPI_SOUT  
First Data  
Last Data  
Figure 23. DSPI Classic SPI Timing — Master Mode  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
37  
Electrical Characteristics  
DSPI_SS  
DS1  
DSPI_SCK  
DS2  
(DCTARn[CPOL] = 0)  
DS2  
DSPI_SCK  
(DCTARn[CPOL] = 1)  
DS13  
DS9  
DS10  
Data  
DS14  
First Data  
DSPI_SOUT  
DSPI_SIN  
Last Data  
DS11  
DS12  
Data  
Last Data  
First Data  
Figure 24. DSPI Classic SPI Timing — Slave Mode  
5.17 SBF Timing Specifications  
The Serial Boot Facility (SBF) provides a means to read configuration information and system boot code from a broad array of  
SPI-compatible EEPROMs, flashes, FRAMs, nVSRAMs, etc. Table 27 provides the AC timing specifications for the SBF.  
Table 27. SBF AC Timing Specifications  
Name  
Characteristic  
SBF_CK Cycle Time  
Symbol  
Min  
Max  
Unit  
Notes  
1
SB1  
SB2  
SB3  
SB4  
SB5  
SB6  
SB7  
SB8  
tSBFCK  
40  
ns  
tSBFCK  
ns  
SBF_CK High/Low Time  
30%  
SBF_CS to SBF_CK delay  
SBF_CK to SBF_CS delay  
SBF_CK to SBF_DO valid  
SBF_CK to SBF_DO invalid  
SBF_DI to SBF_SCK input setup  
SBF_CK to SBF_DI input hold  
tSBFCK - 2.0  
tSBFCK - 2.0  
ns  
-5  
5
ns  
ns  
10  
0
ns  
ns  
1
At reset, the SBF_CK cycle time is tREF 67. The first byte of data read from the serial memory contains a divider value  
that is used to set the SBF_CK cycle time for the duration of the serial boot process.  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
38  
NXP Semiconductors  
Electrical Characteristics  
SBF_CS  
SB3  
SB1  
SB2  
SB4  
SB2  
SBF_CK  
SBF_DI  
SB7 SB8  
First Data  
Last Data  
SB5  
Data  
Data  
SB6  
First Data  
SBF_DO  
Last Data  
Figure 25. SBF Timing  
5.18 General Purpose I/O Timing Specifications  
1
Table 28. GPIO Timing  
Num  
Characteristic  
Min  
Max  
Unit  
G1 FB_CLK High to GPIO Output Valid  
G2 FB_CLK High to GPIO Output Invalid  
G3 GPIO Input Valid to FB_CLK High  
G4 FB_CLK High to GPIO Input Invalid  
1.5  
9
9
ns  
ns  
ns  
ns  
1.5  
1
These general purpose specifications apply to the following signals: IRQn, all UART signals, all timer  
signals, DACKn and DREQn, and all signals configured as GPIO.  
FB_CLK  
G2  
G1  
GPIO Outputs  
GPIO Inputs  
G3  
G4  
Figure 26. GPIO Timing  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
39  
Electrical Characteristics  
5.19 JTAG and Boundary Scan Timing  
Table 29. JTAG and Boundary Scan Timing  
Num  
Characteristics1  
TCLK Frequency of Operation  
Min  
Max  
Unit  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
DC  
50  
20  
5
20  
30  
3
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCLK Cycle Period  
TCLK Clock Pulse Width  
TCLK Rise and Fall Times  
Boundary Scan Input Data Setup Time to TCLK Rise  
Boundary Scan Input Data Hold Time after TCLK Rise  
TCLK Low to Boundary Scan Output Data Valid  
TCLK Low to Boundary Scan Output High Z  
TMS, TDI Input Data Setup Time to TCLK Rise  
33  
33  
11  
11  
20  
4
J10 TMS, TDI Input Data Hold Time after TCLK Rise  
J11 TCLK Low to TDO Data Valid  
10  
50  
10  
J12 TCLK Low to TDO High Z  
J13 TRST Assert Time  
J14 TRST Setup Time (Negation) to TCLK High  
1
JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.  
J2  
J3  
J3  
VIH  
TCLK  
(input)  
VIL  
J4  
J4  
Figure 27. Test Clock Input Timing  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
40  
NXP Semiconductors  
Electrical Characteristics  
TCLK  
VIL  
VIH  
J5  
Input Data Valid  
J6  
Data Inputs  
J7  
J8  
Data Outputs  
Output Data Valid  
Data Outputs  
Data Outputs  
J7  
Output Data Valid  
Figure 28. Boundary Scan (JTAG) Timing  
TCLK  
VIL  
VIH  
J9  
Input Data Valid  
J10  
TDI  
TMS  
J11  
TDO  
Output Data Valid  
J12  
J11  
TDO  
TDO  
Output Data Valid  
Figure 29. Test Access Port Timing  
TCLK  
TRST  
J14  
J13  
Figure 30. TRST Timing  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
41  
Electrical Characteristics  
5.20 Debug AC Timing Specifications  
Table 30 lists specifications for the debug AC timing parameters shown in Figure 31 and Table 32.  
Table 30. Debug AC Timing Specification  
Num  
Characteristic  
PSTCLK cycle time  
Min  
Max  
Units  
D0  
D1  
D2  
D3  
D41  
D5  
D6  
1
1.5  
1
1
3.0  
tSYS  
ns  
PSTCLK rising to PSTDDATA valid  
PSTCLK rising to PSTDDATA invalid  
DSI-to-DSCLK setup  
ns  
PSTCLK  
PSTCLK  
PSTCLK  
PSTCLK  
DSCLK-to-DSO hold  
4
DSCLK cycle time  
5
BKPT assertion time  
1
1
DSCLK and DSI are synchronized internally. D4 is measured from the synchronized  
DSCLK input relative to the rising edge of PSTCLK.  
D0  
PSTCLK  
D2  
D1  
PSTDDATA[7:0]  
Figure 31. Real-Time Trace AC Timing  
D5  
DSCLK  
DSI  
D3  
Current  
D4  
Next  
DSO  
Past  
Current  
Figure 32. BDM Serial Port AC Timing  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
42  
NXP Semiconductors  
Power Consumption  
6
Power Consumption  
All power consumption data is lab data measured on an M54455EVB running the NXP Linux BSP.  
1
Table 31. MCF4455 Application Power Consumption  
Core  
Freq.  
MP3  
Playback  
TFTP  
Download  
USB HS  
File Copy  
Idle  
Units  
IVDD  
EVDD  
215.6  
27.6  
288.8  
33.6  
274.4  
32.6  
263.7  
32.4  
mA  
mW  
mA  
266 MHz  
200 MHz  
SDVDD  
142.9  
158.2  
161.1  
158.0  
Total Power  
672  
829  
809  
787  
IVDD  
EVDD  
163.8  
29.9  
228.0  
34.7  
213.8  
34.3  
207.9  
33.8  
SDVDD  
142.2  
158.5  
160.0  
153.4  
Total Power  
601  
742  
722  
699  
mW  
1
All voltage rails at nominal values: IVDD = 1.5 V, EVDD = 3.3 V, and SDVDD = 1.8 V.  
850  
266 MHz  
200 MHz  
800  
750  
700  
650  
600  
550  
500  
Idle  
MP3 Playback  
TFTP Download USB HS File Copy  
Figure 33. Power Consumption in Various Applications  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
43  
Power Consumption  
All current consumption data is lab data measured on a single device using an evaluation board. Table 32 shows the typical  
power consumption in low-power modes. These current measurements are taken after executing a STOP instruction.  
1,2  
Table 32. Current Consumption in Low-Power Modes  
System Frequency  
Mode  
Voltage Supply  
166 (Typ)3 200 (Typ)3 233 (Typ)3 266 (Typ)3 266 (Peak)4  
IVDD (mA)  
Power (mW)  
IVDD (mA)  
93.4  
140.1  
28.0  
42.0  
17.1  
25.7  
17.9  
26.8  
5.7  
110.9  
166.3  
32.7  
49.1  
19.8  
29.7  
19.8  
29.6  
5.7  
128.2  
192.4  
37.5  
56.2  
22.5  
33.7  
22.4  
33.6  
5.7  
145.4  
218.1  
41.1  
61.7  
25.2  
37.8  
25.1  
37.6  
5.7  
202.1  
303.2  
100.2  
150.3  
25.2  
37.8  
25.1  
37.6  
5.7  
RUN  
WAIT/DOZE  
STOP 0  
Power (mW)  
IVDD (mA)  
Power (mW)  
IVDD (mA)  
STOP 1  
Power (mW)  
IVDD (mA)  
STOP 2  
Power (mW)  
IVDD (mA)  
8.6  
8.6  
8.6  
8.6  
8.6  
1.8  
1.8  
1.8  
1.8  
1.8  
STOP 3  
Power (mW)  
2.6  
2.6  
2.6  
2.6  
2.6  
1
2
3
4
All values are measured on an M54455EVB with 1.5V IVDD power supply. Tests performed at room  
temperature.  
Refer to the Power Management chapter in the MCF54455 Reference Manual for more information  
on low-power modes.  
All peripheral clocks are off except UART0, INTC0, IACK, edge port, reset controller, CCM, PLL, and  
FlexBus prior to entering low-power mode.  
All peripheral clocks on prior to entering low-power mode.  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
44  
NXP Semiconductors  
Package Information  
325.0  
300.0  
275.0  
250.0  
225.0  
200.0  
175.0  
150.0  
125.0  
100.0  
75.0  
Run  
Wait/Doze  
Stop 0  
Stop 1  
Stop 2  
Stop 3  
50.0  
25.0  
0.0  
166  
200  
System Frequency (MHz)  
Figure 34. IV Power Consumption in Low-Power Modes  
233  
266  
266 (peak)  
DD  
7
Package Information  
The latest package outline drawings are available on the product summary pages on http://www.nxp.com/coldfire. Table 33 lists  
the case outline numbers per device. Use these numbers in the web page’s keyword search engine to find the latest package  
outline drawings.  
Table 33. Package Information  
Device  
Package Type  
Case Outline Numbers  
MCF54450  
MCF54451  
MCF54452  
MCF54453  
MCF54454  
MCF54455  
256 MAPBGA  
98ARH98219A  
360 H PWR  
TEPBGA  
98ASA01712D  
8
Product Documentation  
Documentation is available from a local NXP distributor, an NXP sales office, the NXP Literature Distribution Center, or  
through the NXP world-wide web address at http://www.nxp.com/coldfire.  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
NXP Semiconductors  
45  
Revision History  
9
Revision History  
Table 34 summarizes revisions to this document.  
Table 34. Revision History  
Summary of Changes  
Rev. No.  
Date  
0
1
Sept 17, 2007 Initial public release.  
Feb 15, 2008 Corrected VSS pin locations in MCF5445x signal information and muxing table for the 360 TEPBGA  
package: changed “...M9, M16, M17...” to “...M9–M14, M16...”  
Updated FlexBus read and write timing diagrams and added two notes before them.  
Change FB_A[23:0] to FB_A[31:0] in FlexBus read and write timing diagrams.  
Added power consumption section.  
2
May 1, 2008 In Family Configurations table, added PCI as feature on 256-pin devices. On these devices the  
PCI_AD bus is limited to 24-bits.  
In Absolute Maximum Ratings table, changed RTCVDD specification from “-0.3 to +4.0” to “-0.5 to  
+2.0”.  
In DC Electrical Specifications table:  
• Changed RTCVDD specification from 3.0–3.6 to 1.35–1.65.  
• Changed High Impedance (Off-State) Leakage Current (IOZ) specification from ±1 to ±10A, and  
added footnote to this spec: “Worst-case tristate leakage current with only one I/O pin high. Since  
all I/Os share power when high, the leakage current is distributed among them. With all I/Os high,  
this spec reduces to ±2 A min/max.“  
3
4
5
Dec 1, 2008 Changed “360PBGA” heading to “360 TEPBGA” in Table 6.  
Changed the following specs in Table 13:  
• Minimum frequency of operation from — to 60MHz.  
• Maximum clock period from — to 16.67 ns.  
Apr 12, 2009 Rescinded previous errata, the 256-pin devices do not contain the PCI bus controller:  
• In Table 4, in PCI_ADn signal section, added a separate row for each package, with PCI_ADn  
signals shown as — for 256-pin devices.  
• In Figure 5, changed the PCI_ADn pins to their alternative function, FB_An.  
Apr 27, 2009 In Table 2 changed MCF54450VM180 to MCF54450CVM180 and changed it’s temperature entry  
from “0to +70C” to “–40to +85C”.  
6
7
Oct 15, 2009 In Table 8 changed Input Leakage Current (Iin) from ±1.0 to ±2.5A.  
Oct 18, 2011 In Table 2, added MCF54452YVR200 part number, with temperature range from –40to +105C.  
In Table 8, added Input Leakage Current (Iin) values for MCF54452YVR200 part number.  
8
9
Jan 18, 2012 In Table 4, added pin N7 in the VSS pin list for the 360 TEPBGA.  
April 13, 2021 • Updated instances of “Freescale” to “NXP” throughout the document.  
• Updated links referring to freescale.com to nxp.com.  
• In Table 2, updated the part numbers for MCF54452, MCF54453, MCF54454, and MCF54455  
families.  
• In Table 33, updated package type from “360 TEPBGA” to “360 H PWR TEPBGA”.  
• In Table 33, updated the case outline number from “98ARE10605D” to “98ASA01712D”.  
MCF5445x ColdFire® Microprocessor Data Sheet, Rev. 9, 04/2021  
46  
NXP Semiconductors  
How To Reach Us  
Home Page:  
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However,  
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the consequences of use of such information. NXP  
Semiconductors takes no responsibility for the content in this document if provided by an information source outside  
of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special  
or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related  
to the removal or replacement of any products or rework charges) whether or not such damages are based on tort  
(including negligence), warranty, breach of contract or any other legal theory.  
nxp.com  
Web Support:  
nxp.com/support  
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate  
and cumulative liability towards customer for the products described herein shall be limited in accordance with the  
Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this  
document, including without limitation specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the publication hereof.  
Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.  
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to  
reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also  
extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications.  
NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow  
up appropriately.  
Customer shall select products with security features that best meet rules, regulations, and standards of the intended  
application and make the ultimate design decisions regarding its products and is solely responsible for compliance  
with all legal, regulatory, and security related requirements concerning its products, regardless of any information or  
support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable  
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of  
NXP products.  
Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use  
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of  
an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property  
or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors  
product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in  
accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion  
and/or use of non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in automotive applications to automotive  
specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b) whenever customer uses the product for  
automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk,  
and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting  
from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard  
warranty and NXP Semiconductors’ product specifications.  
Applications — Applications that are described herein for any of these products are for illustrative purposes only.  
NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use  
without further testing or modification.  
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors  
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product  
Table continues on the next page...  
design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit  
for the customer’s applications and products planned, as well as for the planned application and use of customer’s  
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks  
associated with their applications and products.  
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on  
any weakness or default in the customer’s applications or products, or the application or use by customer’s third party  
customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using  
NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or  
use by customer’s third party customer(s). NXP does not accept any liability in this respect.  
Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of  
IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation  
of the device at these or any other conditions above those given in the Recommended operating conditions section (if  
present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting  
values will permanently and irreversibly affect the quality and reliability of the device.  
Terms and conditions of commerical sale — NXP Semiconductors products are sold subject to the general terms  
and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a  
valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the  
respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general  
terms and conditions with regard to the purchase of NXP Semiconductors products by customer.  
Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V  
may appear when operating this product, depending on settings and application. Customers incorporating or otherwise  
using these products in applications where such high voltages may appear during operation, assembly, test etc. of such  
application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting  
from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60  
950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages.  
Export control — This document as well as the item(s) described herein may be subject to export control regulations.  
Export might require a prior authorization from competent authorities.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE,  
GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE  
PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX,  
SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior,  
ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC,  
Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa,  
Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink,  
EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names  
are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,  
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,  
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision,  
Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The  
related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.  
Oracle and Java are registered trademarks of Oracle and/or its affiliates. M, M Mobileye and other Mobileye trademarks  
or logos appearing herein are trademarks of Mobileye Vision Technologies Ltd. in the United States, the EU and/or  
other jurisdictions.  
©
NXP B.V. 2007-2021.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: April, 2021  
Document identifier: MCF54455  

相关型号:

MCF5470

MCF547x Integrated Microprocessor Electrical Characteristics
FREESCALE

MCF5470EC

MCF547x ColdFire Microprocessor
FREESCALE

MCF5470ZP200

32-BIT, 200MHz, RISC PROCESSOR, PBGA388, 27 X 27 MM, 1 MM PITCH, PLASTIC, MS-034AAL-1, BGA-388
MOTOROLA

MCF5471

MCF547x Integrated Microprocessor Electrical Characteristics
FREESCALE

MCF5471EC

MCF547x ColdFire Microprocessor
FREESCALE

MCF5471VF200

Microprocessor
MOTOROLA

MCF5471ZP200

32-BIT, 200MHz, RISC PROCESSOR, PBGA388, 27 X 27 MM, 1 MM PITCH, PLASTIC, MS-034AAL-1, BGA-388
MOTOROLA

MCF5472

MCF547x Integrated Microprocessor Electrical Characteristics
FREESCALE

MCF5472EC

MCF547x ColdFire Microprocessor
FREESCALE

MCF5472VF200

Microprocessor
MOTOROLA

MCF5472VR200

32-BIT, 200MHz, RISC PROCESSOR, PBGA388, 27 X 27 MM, MS-034AAL-1, PBGA-388
ROCHESTER

MCF5472ZP200

32-BIT, 200 MHz, RISC PROCESSOR, PBGA388, 27 X 27 MM, 1 MM PITCH, PLASTIC, MS-034AAL-1, BGA-388
MOTOROLA