MCIMX280CVM4B [NXP]

i.MX28 32-bit MPU, ARM926EJ-S core, 454MHz, MAPBGA 289;
MCIMX280CVM4B
型号: MCIMX280CVM4B
厂家: NXP    NXP
描述:

i.MX28 32-bit MPU, ARM926EJ-S core, 454MHz, MAPBGA 289

时钟 外围集成电路
文件: 总74页 (文件大小:820K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: IMX28CEC  
Rev. 3, 07/2012  
Freescale Semiconductor  
Data Sheet: Technical Data  
i.MX28  
i.MX28 Applications  
Processors for Consumer  
Products  
Package Information  
Plastic package  
Case MAPBGA-289, 14 x 14 mm, 0.8 mm pitch  
Silicon Version 1.2  
Ordering Information  
See Table 1 on page 3 for ordering information.  
Contents  
1 Introduction  
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1. Device Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.2. Ordering Information and Functional Part Differences  
3
The i.MX28 is a low-power, high-performance  
applications processor optimized for the general  
embedded industrial and consumer markets. The core of  
the i.MX28 is Freescale's fast, power-efficient  
implementation of the ARM926EJ-S™ core, with  
speeds of up to 454 MHz.  
1.3. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.1. Special Signal Considerations . . . . . . . . . . . . . . . 11  
3. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1. i.MX28 Device-Level Conditions . . . . . . . . . . . . . . 11  
3.2. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . 18  
3.3. I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.4. I/O AC Timing and Parameters . . . . . . . . . . . . . . 23  
3.5. Module Timing and Electrical Parameters . . . . . . 27  
4. Package Information and Contact Assignments . . . . . . 59  
4.1. Case MAPBGA-289, 14 x 14 mm, 0.8 mm Pitch . 59  
4.2. Ground, Power, Sense, and Reference Contact  
Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
4.3. Signal Contact Assignments . . . . . . . . . . . . . . . . 61  
4.4. i.MX280 Ball Map . . . . . . . . . . . . . . . . . . . . . . . . . 63  
4.5. i.MX283 Ball Map . . . . . . . . . . . . . . . . . . . . . . . . . 65  
4.6. i.MX286 Ball Map . . . . . . . . . . . . . . . . . . . . . . . . . 67  
4.7. i.MX287 Ball Map . . . . . . . . . . . . . . . . . . . . . . . . . 69  
5. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
The device is suitable for a wide range of applications,  
including the following:  
Human-machine interface (HMI) panels:  
industrial, home  
Industrial drive, PLC, I/O control display, factory  
robotics display, graphical remote controls  
Handheld scanners and printers  
Patient-monitoring, portable medical devices  
Smart energy meters, energy gateways  
Media phones, media gateways  
The integrated power management unit (PMU) on the  
i.MX28 is composed of a triple output DC-DC switching  
converter and multiple linear regulators. These provide  
power sequencing for the device and its I/O peripherals  
© 2012 Freescale Semiconductor, Inc. All rights reserved.  
 
Introduction  
such as memories and SD cards, as well as provide battery charging capability for Li-Ion batteries.  
The i.MX28 processor includes an additional 128-Kbyte on-chip SRAM to make the device ideal for  
eliminating external RAM in applications with small footprint RTOS.  
The i.MX28 supports connections to various types of external memories, such as mobile DDR, DDR2 and  
LV-DDR2, SLC and MLC NAND Flash.  
The i.MX28 can be connected to a variety of external devices such as high-speed USB2.0 OTG, CAN,  
10/100 Ethernet, and SD/SDIO/MMC.  
1.1  
Device Features  
The following lists the features of the i.MX28:  
ARM926EJ-S CPU running at 454 MHz:  
— 16-Kbyte instruction cache and 32-Kbyte data cache  
— ARM embedded trace macrocell (CoreSight™ ETM9™)  
— Parallel JTAG interface  
128 KBytes of integrated low-power on-chip SRAM  
128 KBytes of integrated mask-programmable on-chip ROM  
1280 bits of on-chip one-time-programmable (OCOTP) ROM  
16-bit mobile DDR (mDDR) (1.8 V), DDR2 (1.8 V) and LV-DDR2 (1.5 V), up to 205 MHz DDR  
clock frequency with voltage overdrive  
Support for up to eight NAND Flash memory devices with up to 20-bit BCH ECC  
Four synchronous serial ports (SSP) for SDIO/MMC/MS/SPI: SSP0, SSP1, SSP2, and SSP3. SSP0  
and SSP1 can support three modes,1-bit, 4-bit, and 8-bit, whereas SSP2 and SSP3 can support only  
1-bit and 4-bit modes.  
10/100-Mbps Ethernet MAC compatible with IEEE Std 802.3™:  
— Single 10/100 Ethernet with GMII/RMII or Dual 10/100 Ethernet with RMII interface  
— Supporting IEEE Std 1588™-compatible hardware timestamp  
— Supporting 50-MHz/25-MHz clock output for external Ethernet PHY  
Two 2.0B protocol-compatible Controller Area Network (CAN) interfaces  
One USB2.0 OTG device/host controller and PHY  
One USB2.0 host controller and PHY  
LCD controller, up to 24-bit RGB (DOTCK) modes and 24-bit system-mode  
Pixel-processing pipeline (PXP) supports full path from color-space conversion, scaling,  
alpha-blending to rotation without intermediate memory access.  
SPDIF transmitter  
Dual serial audio interface (SAIF) to support full-duplex transmit and receive operations; each  
SAIF supports three stereo pairs  
Five application Universal Asynchronous Receiver-Transmitters (UARTs), up to 3.25 Mbps with  
hardware flow control  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
2
Freescale Semiconductor  
 
Introduction  
One debug UART operating at up to 115 Kb/s using programmed I/O  
2
Two I C master/slave interfaces, up to 400 kbps  
Four 32-bit timers and a rotary decoder  
Eight Pulse Width Modulators (PWMs)  
Real-time clock (RTC)  
GPIO with interrupt capability  
Power Management Unit (PMU) supports a triple output DC-DC switching converter, multiple  
linear regulators, battery charger, and detector.  
16-channel Low-Resolution A/D Converter (LRADC). There are 16 physical channels but they can  
only be mapped to 8 virtual channels at a time.  
Single channel High Speed A/D Converter (HSADC), up to 2 Msps data rate  
4/5-wire touchscreen controller  
Up to 8X8 keypad matrix with button-detect circuit  
Security features:  
— Read-only unique ID for Digital Rights Management (DRM) algorithms  
— Secure boot using 128-bit AES hardware decryption  
— SHA-1 and SHA256 hashing hardware  
— High assurance boot (HAB4)  
Offered in 289-pin Ball Grid Array (BGA)  
1.2  
Ordering Information and Functional Part Differences  
Table 1 provides the ordering information for the i.MX28.  
Table 1. Ordering Information  
Part Number  
Projected Temperature Range (°C)  
Package  
MCIMX280DVM4B  
MCIMX280CVM4B  
MCIMX283DVM4B  
MCIMX283CVM4B  
MCIMX286DVM4B  
MCIMX286CVM4B  
MCIMX287CVM4B  
–20 to +70  
–40 to +85  
–20 to +70  
–40 to +85  
–20 to +70  
–40 to +85  
–40 to +85  
14 x 14 mm, 0.8mm pitch, MAPBGA-289  
14 x 14 mm, 0.8mm pitch, MAPBGA-289  
14 x 14 mm, 0.8 mm pitch, MAPBGA-289  
14 x 14 mm, 0.8 mm pitch, MAPBGA-289  
14 x 14 mm, 0.8 mm pitch, MAPBGA-289  
14 x 14 mm, 0.8 mm pitch, MAPBGA-289  
14 x 14 mm, 0.8 mm pitch, MAPBGA-289  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
3
 
Introduction  
Table 2 provides the functional differences between the i.MX280, i.MX283, i.MX286, and i.MX287.  
Table 2. i.MX28 Functional Differences  
Function  
i.MX280  
i.MX283  
i.MX286  
i.MX287  
Application UART  
Debug UART  
CAN  
x5  
x1  
x1  
x1  
x8  
x8  
x4  
Yes  
x4  
x5  
x5  
x1  
x5  
x1  
x1  
x2  
x2  
Ethernet  
x1  
x1  
x2  
High-speed ADC  
L2 Switch  
x1  
x1  
x1  
Yes  
Yes  
x8  
LCD Interface  
Yes  
Yes  
x8  
1
LRADC  
x8  
PWM  
x8  
x8  
x8  
S/PDIF Tx  
Yes  
x4  
Yes  
x4  
2
SD/SDIO/MMC  
x4  
Sec ur ity  
SPI  
Yes  
Yes  
x4  
Yes  
x4  
x4  
Yes  
Touch Screen  
USB 2.0  
Yes  
Yes  
OTG HS with  
HS PHY x1  
OTG HS with HS PHY x1  
OTG HS with HS PHY x1 OTG HS with HS PHY x1  
HS Host with  
HS PHY x1  
HS Host with HS PHY x1  
HS Host with HS PHY x1 HS Host with HS PHY x1  
1
There are 16 physical channels but they can only be mapped to 8 virtual channels at a time.  
2
For SD/SDIO/MMC, four synchronous serial ports (SSP) are available: SSP0, SSP1, SSP2, and SSP3. SSP0 and SSP1 can  
support three modes,1-bit, 4-bit, and 8-bit, whereas SSP2 and SSP3 can support only 1-bit and 4-bit modes.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
4
Freescale Semiconductor  
 
Introduction  
1.3  
Block Diagram  
Figure 1 shows the simplified interface block diagram.  
Figure 1. i.MX28 Simplified Interface Block Diagram  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
5
 
Features  
2 Features  
Table 3 shows the device functions.  
Table 3. i.MX28 Functions  
Function  
BGA289  
External Memory Interface (EMI)  
Yes  
(1.5 V LV-DDR2, 1.8 V DDR2, 1.8 V LP-DDR1)  
General-Purpose Media Interface (GPMI):  
• NAND data width  
8-bit  
• Number of external NANDs supported  
4 dedicated / 8 with muxing  
Pulse Width Modulator (PWM)  
5 dedicated / 8 with muxing  
4 dedicated / 5 with muxing  
Application UART (AUART): Interfaces supported  
Synchronous Serial Port (SSP): Supported through dedicated pins 3 dedicated / 4 with muxing  
2
I C  
1 dedicated / 2 with muxing  
SPDIF  
1
SAIF  
2
FlexCAN  
2
LCD interface  
24 bits  
High-speed ADC  
LRADC (touchscreen, keypad...)  
Ethernet MAC and switch  
Universal Serial Bus (USB)  
Yes  
Yes  
Up to 2 MACs with switch  
2
i.MX28 Applications Processors for Consumer Products, Rev. 3  
6
Freescale Semiconductor  
 
Features  
Table 4 describes the digital and analog modules of the device.  
Table 4. i.MX28 Digital and Analog Modules  
Subsystem Brief Description  
AHB to APBH System control The AHB to APBH bridge with DMA includes the AHB-to-APB PIO bridge for  
Block  
Mnemonic  
Block Name  
APBHDMA  
Bridge with  
DMA  
memory-mapped I/O to the APB devices, as well a central DMA facility for  
devices on this bus. The bridge provides a peripheral attachment bus running  
on the AHB’s HCLK. (The ‘H’ in APBH denotes that the APBH is synchronous  
to HCLK, as compared to APBX, which runs on the crystal-derived XCLK.)  
The DMA controller transfers read and write data to and from each peripheral  
on APBH bridge.  
APBXDMA  
AHB to APBX System control The AHB-to-APBX bridge includes the AHB-to-APB PIO bridge for  
Bridge with  
DMA  
memory-mapped I/O to the APB devices, as well a central DMA facility for  
devices on this bus. The AHB-to-APBX bridge provides a peripheral  
attachment bus running on the AHB’s XCLK. (The ‘X’ in APBX denotes that  
the APBX runs on a crystal-derived clock, as compared to APBH, which is  
synchronous to HCLK.) The DMA controller transfers read and write data to  
and from each peripheral on APBX bridge.  
®
ARM9 or  
ARM926  
ARM926EJ-S ARM  
CPU  
The ARM926 Platform consists of the ARM926EJ-S™ core and the ETM  
real-time debug modules. It contains the 16-Kbyte L1 instruction cache,  
32-Kbyte L1 data cache, 128-Kbyte ROM and 128-Kbyte RAM.  
AUART(5)  
Application  
UART  
Connectivity  
peripherals  
Each of the UART modules supports the following serial data  
transmit/receive protocols and configurations:  
interface  
• 7- or 8-bit data words, one or two stop bits, programmable parity (even,  
odd, or none)  
• Programmable baud rates up to 3.25 MHz. This is a higher maximum  
baud rate than the 1.875 MHz specified by the TIA/EIA-232-F standard  
and previous Freescale UART modules. 16-byte FIFO on Tx and 16-byte  
FIFO on Rx supporting auto-baud detection  
BCH  
Bit-correcting Connectivity  
The Bose, Ray-Chaudhuri, Hocquenghem (BCH) Encoder and Decoder  
module is capable of correcting from 2 to 20 single bit errors within a block of  
data no larger than about 900 bytes (512 bytes is typical) in applications such  
as protecting data and resources stored on modern NAND Flash devices.  
ECC  
peripherals  
accelerator  
BSI  
Boundary  
Scan Interface peripherals  
Connectivity  
The boundary scan interface is provided to enable board level testing.  
There are five pins on the device which is used to implement the IEEE Std  
1149.1™ boundary scan protocol.  
CLKCTRL  
Clock control Clocks  
module  
The clock control module, or CLKCTRL, generates the clock domains for all  
components in the i.MX28 system. The crystal clock or PLL clock are the two  
fundamental sources used to produce most of the clock domains. For lower  
performance and reduced power consumption, the crystal clock is selected.  
The PLL is selected for higher performance requirements but requires  
increased power consumption. In most cases, when the PLL is used as the  
source, a Phase Fractional Divider (PFD) can be programmed to reduce the  
PLL clock frequency by up to a factor of 2.  
DCP  
Data  
co-processor  
Security  
This module provides support for general encryption and hashing functions  
typically used for security functions. Because its basic job is moving data  
from memory to memory, it also incorporates a memory-copy (memcopy)  
function for both debugging and as a more efficient method of copying data  
between memory blocks than the DMA-based approach.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
7
 
Features  
Table 4. i.MX28 Digital and Analog Modules (continued)  
Block  
Mnemonic  
Block Name  
Subsystem  
Brief Description  
DFLPT  
Default  
first-levelpage  
table  
System control The DFLPT provides a unique method of implementing the ARM MMU  
first-level page table (L1PT) using a hardware-based approach.  
DIGCTL  
DUART  
EMI  
Digital control System control The digital control module includes sections for controlling the SRAM, the  
and on-chip  
RAM  
performance monitors, high-entropy pseudo-random number seed,  
free-running microseconds counter, and other chip control functions.  
Debug UART Connectivity  
peripherals  
The Debug UART performs the following data conversions:  
• Serial-to-parallel conversion on data received from a peripheral device  
• Parallel-to-serial conversion on data transmitted to the peripheral device  
External  
memory  
interface  
Connectivity  
peripherals  
The i.MX28 supports off-chip DRAM storage through the EMI controller,  
which is connected to the four internal AHB/AXI busses. The EMI supports  
multiple external memory types, including:  
• 1.8-V Mobile DDR1 (LP-DDR1)  
• Standard 1.8-V DDR2  
• Low Voltage 1.5-V DDR2 (LV-DDR2)  
ENET  
Ethernet MAC Connectivity  
Ethernet MAC controller connected to the uDMA (unified DMA). Supports  
10/100 Mbps with TCP/UDP/IP Acceleration and IEEE 1588 Functions; also  
supports RMII or MII connectivity.  
Controller  
peripherals  
FlexCAN(2)  
Controller  
area network peripherals  
module  
Connectivity  
The Controller Area Network (CAN) protocol is a message based protocol  
used for serial data. It was designed specifically for automotive but is also  
used in industrial control and medical applications. The serial data bus runs  
at 1 Mbps.  
GPMI  
General-pur- Connectivity  
The General-Purpose Media Interface (GPMI) controller is a flexible NAND  
Flash controller with 8-bit data width, up to 50-MBps I/O speed and individual  
chip select and DMA channels for up to 8 NAND devices. It also provides a  
interface to 20-bit BCH for ECC.  
pose media  
interface  
peripherals  
HSADC  
High-speed  
ADC  
Connectivity  
peripherals  
The high-speed ADC block is designed to sample an analog input with 12-bit  
resolution and a sample rate of up to 2 Msps. The output of the HSADC block  
can be moved to the external memory through APBH-DMA. A typical user  
case of the HSADC is to work with the PWM block to drive an external linear  
image scanner sensor.  
2
2
2
I C(2)  
I C module  
Connectivity  
peripherals  
The I C is a standard two-wire serial interface used to connect the chip with  
2
2
peripherals or host controllers. The I C operates up to 400 kbps in either I C  
2
2
master or I C slave mode. Each I C has a dedicated DMA channel and can  
also controlled by CPU in PIO or PIO queue modes. It supports both 7-bit and  
10-bit device address in master mode, and has programmable 7-bit address  
in slave mode.  
ICOLL  
Interrupt  
Collector  
System control The ARM9 CPU core has two interrupt input lines, IRQ and FIQ. The interrupt  
collector (ICOLL) can steer any of 128 interrupt sources to either the FIQ or  
IRQ line of the ARM9 CPU.  
L2 Switch  
3-Port L2  
Switch  
Network Control Programmable 3-Port Ethernet Switch with QOS  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
8
Freescale Semiconductor  
Features  
Table 4. i.MX28 Digital and Analog Modules (continued)  
Block Name Subsystem Brief Description  
Block  
Mnemonic  
LCDIF  
LCD Interface Multimedia  
peripherals  
The LCDIF provides display data for external LCD panels from simple  
text-only displays to WVGA, 16/18/24 bpp color TFT panels. The LCDIF  
supports all of these different interfaces by providing fully programmable  
functionality and sharing register space, FIFOs, and ALU resources at the  
same time. The LCDIF supports RGB (DOTCLK) modes as well as system  
mode including both VSYNC and WSYNC modes.  
LRADC  
Lowresolution Connectivity  
ADC module peripherals  
The sixteen-channel 12-bit low-resolution ADC (LRADC) block is used for  
voltage measurement. Channels 0 – 6 measure the voltage on the seven  
application-dependent LRADC pins. The auxiliary channels can be used for  
a variety of uses, including a resistor-divider-based wired remote control,  
external temperature sensing, touch-screen, and other measurement  
functions.  
OCOTP  
Controller  
On-chip OTP Security  
controller  
The on-chip one-time-programmable (OCOTP) ROM serves the functions of  
hardware and software capability bits, Freescale operations and unique-ID,  
the customer-programmable cryptography key, and storage of various ROM  
configuration bits.  
PINCTRL  
PMU  
Pin control  
and GPIO  
System control Used for general purpose input/output to external ICs. Each GPIO bank  
peripherals  
supports 32 bits of I/O.  
Power  
Power  
The i.MX28 integrates a comprehensive power supply subsystem, including  
the following features:  
management management  
Unit (DC-DC) system  
• One integrated DC-DC converter that supports Li-Ion battery.  
• Four linear regulators directly power the supply rails from 5-V.  
• Linear battery charger for Li-Ion cells.  
• Battery voltage and brownout detection monitoring for VDDD, VDDA,  
VDDIO, VDD4P2 and 5-V supplies.  
• Integrated current limiter from 5-V power source.  
• Reset controller.  
• System monitors for temperature and speed.  
• Generates USB-Host 5-V from Li-Ion battery (using PWM).  
• Support for on-the-fly transitioning between 5-V and battery power.  
• VDD4P2, a nominal 4.2-V supply, is available when the i.MX28 is  
connected to a 5-V source and allows the DCDC to run from a 5-V source  
with a depleted battery.  
• The 4.2-V regulated output also allows for programmable current limits:  
Battery Charge current + DCDC input current < the 5-V current limit  
DCDC input current (which ultimately provides current to the on-chip  
and off-chip loads) as the priority and battery charge current is  
automatically reduced if the 5-V current limit is reached  
PWM(8)  
Pulse width  
modulation  
Connectivity  
peripherals  
There are eight PWM output controllers that can be used in place of GPIO  
pins. Applications include HSADC driving signals and LED & backlight  
brightness control. Independent output control of each phase allows 0, 1, or  
high-impedance to be independently selected for the active and inactive  
phases. Individual outputs can be run in lock step with guaranteed  
non-overlapping portions for differential drive applications.  
PXP  
Pixel Pipeline Multimedia  
The pixel pipeline (PXP) is used to perform alpha blending of graphic or video  
buffers with graphics data before sending to an LCD display. The PXP also  
supports image rotation for hand-held devices that require both portrait and  
landscape image support.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
9
Features  
Table 4. i.MX28 Digital and Analog Modules (continued)  
Block  
Mnemonic  
Block Name  
Subsystem  
Clocks  
Brief Description  
RTC  
Real-time  
clock, alarm,  
watchdog  
The real-time clock (RTC) and alarm share a one-second pulse time domain.  
The watchdog reset and millisecond counter run on a one-millisecond time  
domain. The RTC, alarm, and persistent bits reside in a special power  
domain (crystal domain) that remains powered up even when the rest of the  
chip is in its powered-down state.  
SAIF(2)  
Serial audio  
interface  
Connectivity  
peripherals  
SAIF provides a half-duplex serial port for communication with a variety of  
serial devices, including industry-standard codecs and DSPs. It supports a  
continuous range of sample rates from 8 kHz–192 kHz using a  
high-resolution fractional divider driven by the PLL. Samples are transferred  
to/from the FIFO through the APBX DMA interface, a FIFO service interrupt,  
or software polling.  
SPDIF  
SSP(4)  
SPDIF  
Connectivity  
peripherals  
The Sony-Philips Digital Interface Format (SPDIF) transmitter module  
transmits data according to the SPDIF digital audio interface standard  
(IEC-60958).  
Synchronous Connectivity  
serial port  
The synchronous serial port is a flexible interface for inter-IC and removable  
media control and communication. The SSP supports master operation of  
SPI, Texas Instruments SSI; 1-bit, 4-bit, and 8-bit SD/SDIO/MMC and 1-bit  
and 4-bit MS modes.  
peripherals  
The SPI mode has enhancements to support 1-bit legacy MMC cards. SPI  
master dual (2-bit) and quad (4-bit) mode reads are also supported. The SSP  
also supports slave operation for the SPI and SSI modes. The SSP has a  
dedicated DMA channel in the bridge and can also be controlled directly by  
the CPU through PIO registers. Each of the four SSP modules is  
independent of the other and can have separate SSPCLK frequencies.  
TIMROT  
Timers and  
Rotary  
Decoder  
Timer  
peripherals  
This module implements four timers and a rotary decoder. The timers and  
decoder can take their inputs from any of the pins defined for PWM, rotary  
encoders, or certain divisions from the 32-kHz clock input. Thus, the PWM  
pins can be inputs or outputs, depending on the application.  
USBOTG  
USBHOST  
High-speed  
USB  
on-the-go  
Connectivity  
peripherals  
The USB module provides high-performance USB On-The-Go (OTG) and  
host functionality (up to 480 Mbps), compliant with the USB 2.0 specification  
and the OTG supplement. The module has DMA capabilities for handling  
data transfer between internal buffers and system memory.  
When the OTG controller works in device mode, it can only work in FS or HS  
mode. Two USB2.0 PHYs are also integrated (one for the OTG port, another  
for the host port.)  
USBPHY  
Integrated  
USB PHY  
Connectivity  
peripherals  
The integrated USB 2.0 PHY macrocells are capable of connecting to USB  
host/device systems at the USB low-speed (LS) rate of 1.5 Mbps, full-speed  
(FS) rate of 12 Mbps or at the USB 2.0 high-speed (HS) rate of 480 Mbps.  
The integrated PHYs provide a standard UTM interface. The USB_DP and  
USB_DN pins connect directly to a USB connector.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
10  
Freescale Semiconductor  
Electrical Characteristics  
2.1  
Special Signal Considerations  
Special signal considerations are listed in Table 5. The package contact assignment is found in Section 4,  
“Package Information and Contact Assignments.” Signal descriptions are provided in the reference  
manual.  
Table 5. Signal Considerations  
Signal  
Descriptions  
PSWITCH  
The pin is used for chip power on or recovery. VDDIO can be applied to PSWITCH through a 10 kΩ  
resistor. This is necessary in order to enter the chip’s firmware recovery. The on-chip circuitry  
prevents the actual voltage on the pin from exceeding acceptable levels.  
VDDXTAL  
BATTERY  
This pin is an output of i.MX28. Should be coupled to ground with a 0.1 uF capacitor. User should  
not supply external power to this pin.  
This pin should be connected to the battery with minimal resistance. It provides charging current to  
the battery.  
See the “Power Supply” section of the reference manual for details.  
DCDC_BATTERY  
This pin is an input of i.MX28 that provides supply to the DCDC converter. It should be connected  
to the battery with minimal resistance. See the “Power Supply” section of the reference manual for  
details.  
XTALI  
XTALO  
These analog pins are connected to an external 24 MHz crystal circuit. This crystal provides the  
clock source for on-chip PLLs.  
RTC_XTALO  
RTC_XTALI  
These analog pins are connected to an external 32.768/32.0 kHz crystal circuit. This crystal  
provides clock source to the on-chip real-time counter circuits.  
RESETN  
This pin resets the chip if it is low. This pin is pulled up to VDDIO33 with an internal 10 kΩ resistor.  
No external pull up resistors are needed.  
DEBUG  
This pin is used for JTAG interface.  
DEBUG=0: JTAG interface works for boundary scan.  
DEBUG=1: JTAG interface works for ARM debugging.  
TESTMODE  
For Freescale factory use only. Must be externally connected to GND for normal operation.  
3 Electrical Characteristics  
This section provides the device-level and module-level electrical characteristics for the i.MX28.  
3.1  
i.MX28 Device-Level Conditions  
This section provides the device-level electrical characteristics for the IC.  
3.1.1  
DC Absolute Maximum Ratings  
Table 6 provides the DC absolute maximum operating conditions.  
CAUTION  
Stresses beyond those listed under Table 6 may cause permanent  
damage to the device.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
11  
 
Electrical Characteristics  
Exposure to absolute-maximum-rated conditions for extended periods  
may affect device reliability.  
Table 6 gives stress ratings only—functional operation of the device is  
not implied beyond the conditions indicated in Table 8.  
Table 6. DC Absolute Maximum Ratings  
Parameter  
Symbol  
BATT, V  
Min.  
Max.  
Unit  
Battery Pin  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
4.242  
7.00  
V
V
V
V
V
V
V
V
V
V
V
DD4P2V  
5-Volt Source Pin - transient, t<30ms, duty cycle <0.05%  
5 Volt Source Pin - static  
V
V
DD5V  
DD5V  
6.00  
Analog Supply Voltage  
V
2.10  
DDA  
DDD  
DDIO  
Digital Core Supply Voltage  
Non-EMI Digital I/O Supply  
V
1.575  
V
3.63  
EMI Digital I/O Supply  
V
3.63  
DDIO.EMI  
1
DC-DC Converter  
DCDC_BATT  
BATT  
Input Voltage on Any Digital I/O Pin Relative to Ground  
VDDIO+0.3  
3.63  
2
Input Voltage on USB_DP and USB_DN Pins Relative to Ground  
Analog I/O absolute maximum ratings (exceptions: XTALI, XTALO,  
RTC_XTALI, RTC_XTALO)  
VDDIO+0.3  
Storage Temperature  
–40  
125  
°C  
1
Application should include a Schottky diode between BATT and VDD4P2.  
2
USB_DN and USB_DP can tolerate 5V for up to 24 hours. Note that while 5V is applied to USB_DN or USB_DP, LRADC  
readings can be corrupted.  
Table 7 shows the electrostatic discharge immunity.  
Table 7. Electrostatic Discharge Immunity  
289-Pin BGA Package  
Tested Level  
1
Human Body Model (HBM)  
2 kV  
1
Charge Device Model (CDM)  
500 V  
1
HBM and CDM pass ESD testing per AEC-Q100.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
12  
Freescale Semiconductor  
 
 
 
Electrical Characteristics  
3.1.2  
DC Operating Conditions  
Table 8 provides the DC recommended operating conditions.  
Table 8. Recommended Power Supply Operating Conditions  
Parameter  
Analog Core Supply Voltage  
Symbol  
Min  
Typ  
Max  
Unit  
V
1.62  
1.35  
2.10  
1.55  
V
V
DDA  
Digital Core Supply Voltage  
Specification dependent on frequency.  
V
DDD  
1, 2  
Digital Supply Voltages:  
• VDDIO33/VDDIO33_EMI  
• VDDIO18  
V
/V  
/V  
V
V
DDIO33 DDIO33_EMI DDI  
O18  
3.0  
1.7  
3.6  
1.9  
EMI Digital I/O Supply Voltage:  
• DDR2/mDDR  
LVDDR2  
V
/V  
DDIO.EMI DDIO_EMIQ  
1.7  
1.425  
1.8  
1.5  
1.9  
1.625  
3
Battery / DCDC Input Voltage—BATT, DCDC_BATT  
BATT  
DCDC_BATT  
3.10  
4.242  
V
V
VDD5V Supply Voltage  
4.75  
5.00  
5.25  
4
Offstate Current:  
• 32-kHz RTC off, BATT = 4.2 V  
• 32-kHz RTC on, BATT = 4.2 V  
21  
23  
47  
51  
µA  
µA  
1
For optimum USB jitter performance, V  
= 1.35 V or greater.  
DDD  
2
3
V
supply minimum voltage includes 75 mV guardband.  
DDD  
Tested with only the i.MX28 processor loading the MX28 PMU output rails during start up. With external loadings (for example,  
one DDR2 device and SD Card/NAND Flash), MX28 PMU was tested at BATT/DCDC_BATT > 3.30 V.  
4
When the real-time clock is enabled, the chip consumes additional current in the OFF state to keep the crystal oscillator and  
the real-time clock running.  
Table 9 provides the DC operating temperature conditions.  
Table 9. Operating Temperature Conditions  
1, 2, 3  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Commercial Ambient Operating Temperature Range  
Commercial Junction Temperature Range  
Industrial Ambient Operating Temperature Range  
Industrial Junction Temperature Range  
T
–20  
–20  
–40  
–40  
70  
85  
°C  
°C  
°C  
°C  
A
T
J
T
85  
A
T
105  
J
1
In most portable systems designs, battery and display specifications limits the operating range to well within these  
specifications. Most battery manufacturers recommend enabling battery charge only when the ambient temperature is  
between 0°C and 40°C. To ensure that battery charging does not occur outside the recommended temperature range, the  
system ambient temperature may be monitored by connecting a thermistor to the LRADC0 or LRADC6 pin on the i.MX28.  
2
For applications powered by external 5V only, the Maximum Ambient Operating Temperature specified in Table 9 may not be  
achieved. Application developers need to do the worst-case power consumption estimation, and then calculate the Total  
On-chip Power Dissipation based on the equations specified in note 3 below.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
13  
 
 
Electrical Characteristics  
3
Maximum Ambient Operating Temperature may be limited due to on-chip power dissipation. T  
T - (Θ x P ) where:  
J JA D  
A (MAX)  
T = Maximum Junction Temperature  
J
Θ
D
= Package Thermal Resistance. See Section 3.2, “Thermal Characteristics.”  
P = Total On-chip Power Dissipation =PVDD4P2 + PBatteryCharger + PDCDC + PLinearRegulators + PInternal. Depending  
JA  
on the application, some of these power dissipation terms may not apply.  
PVDD4P2 = VDD4P2 On-Chip Power Dissipation = (VDD5V - VDD4P2) x IDD4P2  
PBatteryCharger = Battery Charger On-Chip Power Dissipation = (VDD5V - BATT) x ICHARGE  
PDCDC = DC-DC Converter On-Chip Power Dissipation = (BATT x DCDC Input Current) x (1 - efficiency)  
PLinearRegulators = Linear Regulator On-Chip Power Dissipation = (VDD5V - VDDIO) x (IDDIO + IDDA + IDDD + IDD1P5) +  
(VDDIO - VDDA) x (IDDA + IDDD) + (VDDA - VDDD) x IDDD + (VDDA - VDD1P5) x IDD1P5  
PInternal = Internal Digital On-Chip Power Dissipation = ~VDDD x IDDD  
Table 10 provides the recommended analog operating conditions.  
Table 10. Recommended Analog Operating Conditions  
Parameter  
Min  
Typ  
Max  
Unit  
Low Resolution ADC Input Impedance (CH0 - CH5)  
>1  
MΩ  
Table 11 shows the PSWITCH input characteristics. See the reference schematics for the recommended  
PSWITCH button circuitry.  
Table 11. PSWITCH Input Characteristics  
Parameter  
PSWITCH LOW LEVEL  
HW_PWR_STS_PSWITCH  
Min  
Max  
Unit  
0x00  
0x01  
0x11  
0.00  
0.65  
0.30  
1.50  
2.45  
V
V
V
1
PSWITCH MID LEVEL & STARTUP  
2
PSWITCH HIGH LEVEL  
(1.1 * VDDXTAL) +  
0.58  
1
2
A MID LEVEL PSWITCH state can be generated by connecting the VDDXTAL output of the SoC to PSWITCH through a  
switch.  
PSWITCH acts like a high impedance input (>300 kΩ) when the voltage applied to it is less than 1.5V. However, above 1.5V  
it becomes lower impedance. To simplify design, it is recommended that a 10 kΩ resistor to VDDIO be applied to PSWITCH  
to set the HIGH LEVEL state (the PSWITCH input can tolerate voltages greater than 2.45 V as long as there is a 10 kΩ resistor  
in series to limit the current).  
Table 12 shows a test case example for Run IDD.  
,
Table 12. Run IDD Test Case1 2  
Power Rail  
Conditions  
Min  
Typ  
Max  
Unit  
VDDD  
1.57 V  
3.62 V  
2.12 V  
1.92 V  
1.92 V  
150  
31  
188  
34  
mA  
mA  
mA  
mA  
μA  
VDDIO33  
VDDA  
1.11  
1.01  
0.61  
1.17  
1.08  
2.97  
VDDIO_EMI  
VDDIO18  
1
2
CPUCLK = 300 MHz, AHBCLK = 150 MHz  
Continuous read / write to the cache memory  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
14  
Freescale Semiconductor  
 
 
 
Electrical Characteristics  
Table 13 illustrates the power supply characteristics.  
Table 13. Power Supply Characteristics  
Parameter  
Min  
Typ  
Max  
Unit  
Linear Regulators  
1
Output Voltage Accuracy (V  
, V  
, V  
, V  
)
–3  
+3  
%
DDIO DDA DDM  
DDD  
2, 3  
V
V
V
V
Maximum Output Current (V  
= 3.30 V, V = 4.75 V)  
DD5V  
270  
160  
225  
200  
mA  
mA  
mA  
mA  
DDIO  
DDM  
DDA  
DDD  
DDIO  
DDM  
2
Maximum Output Current (V  
Maximum Output Current (V  
= 1.5 V)  
2, 3  
= 1.8 V)  
= 1.2 V)  
DDA  
2, 3  
Maximum Output Current (V  
DDD  
DCDC Converters  
Output Voltage Accuracy (DCDC_VDDIO, DCDC_VDDA,  
DCDC_VDDD)  
–3  
+3  
%
1
4, 5  
DCDC_VDDD Maximum Output Current (V  
= 1.55 V)  
250  
200  
250  
mA  
mA  
mA  
DDD  
4, 5  
DCDC_VDDA Maximum Output Current (V  
= 1.8 V)  
= 3.15 V, 3.3 V < BATT  
DDA  
DCDC_VDDIO Maximum Output Current (V  
DDIO  
4, 5, 6  
< 4.242 V)  
VDD4P2 Regulated Output  
1
VDD4P2 Output Voltage Accuracy (TARGET=4.2V)  
–3  
+3  
%
VDD4P2 Output Current Limit Accuracy (VDD5V = 4.75 V,  
ILIMIT=480 mA)  
480  
500  
520  
mA  
7
VDD4P2 Output Current Limit Accuracy (VDD5V=4.75 V,  
ILIMIT=100 mA)  
100  
120  
140  
mA  
7
Battery Charger  
Final Charge Voltage Accuracy (TARGET=4.2 V)  
-2  
+1  
%
1
No load.  
2
3
Maximum output current measured when output voltage droops 100 mV from the programmed target voltage with no load  
present.  
Because the internal linear regulators are cascaded, it is not possible to simultaneously operate the V  
, V  
, V  
, and  
DDM  
DDIO DDA  
V
linear regulators at the maximum specified load current. For example, the V  
linear regulator provides current to both  
DDD  
DDIO  
the V  
3.3 V supply rail as well as the V  
and V  
linear regulator inputs. Likewise, the V  
linear regulator provides  
DDA  
DDIO  
DDM  
DDA  
current to both the 1.8 V supply rail as well as the V  
following two conditions are met:  
linear regulator input. The application designer should ensure the  
DDD  
(V  
(V  
Load Current + V  
Load Current + V  
Load Current) < V  
Load Current) < V  
Maximum Output Current  
Maximum Output Current  
DDIO  
DDIO  
DDA  
DDM  
DDA  
DDA  
Load Current + V  
DDD  
4
5
DCDC Double FETs Enabled, Inductor Value = 15 μH.  
The DCDC Converter is a triple output buck converter. The maximum output current capability of each output of the converter  
is dependent on the loads on the other two outputs. For a given output, it may be possible to achieve a maximum output current  
higher than that specified by ensuring the load on the other outputs is well below the maximum.  
6
7
Assumes simultaneous load of IDDD = 250 mA@ 1.55 V and IDDA = 200 mA@1.8 V.  
Untuned.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
15  
 
 
 
 
 
 
 
Electrical Characteristics  
3.1.2.1  
Recommended Operating Conditions for Specific Clock Targets  
Table 14 through Table 17 provide the recommended operating conditions for specific clock targets.  
Table 14. Recommended Operating States—289-Pin BGA Package  
HW_  
CLKCTRL  
HW_  
DIGCTRL  
CPUCLK  
/ clk_p  
HW_  
CLKCTRL  
AHBCLK  
/ clk_h  
HW_  
CLKCTRL  
EMICLK  
/ clk_emi  
HW_  
HW_  
VDDD  
Brown-out  
(V)  
CLKCTRL CLKCTRL  
VDDD  
(V)  
Supported  
DRAM  
FRAC_  
CPUFRC  
/ PFD  
ARMCACH Frequency CPU_DIV_CP  
Frequency HBUS_DI Frequency  
EMI_  
FRAC_  
E1  
(MHz)  
U
(MHz)  
V
(MHz)  
DIV_EMI EMIFRAC  
1.300  
1.350  
1.350  
1.450  
1.550  
1.200  
1.250  
1.250  
1.350  
1.450  
00  
64  
5
27  
33  
24  
22  
19  
64  
1
130.91  
2
2
2
2
2
33  
33  
33  
27  
21  
DDR2  
mDDR  
00  
00  
00  
00  
261.81  
360  
1
1
1
1
130.91  
120.00  
130.91  
151.57  
2
3
3
3
130.91  
130.91  
160.00  
205.71  
DDR2  
mDDR  
DDR2  
mDDR  
392.72  
454.73  
DDR2  
mDDR  
DDR2  
mDDR  
1
All timing control bit fields in HW_DIGCTRL_ARMCACHE should be set to the same value.  
Table 15. Recommended Operating Conditions—CPU Clock (clk_p)  
HW_DIGCTRL  
ARMCACHE  
HW_CLKCTRL  
FRAC_CPUFRC / PFD Frequency max (MHz)  
CPUCLK / clk_p  
VDDD (V)  
VDDD  
(V)  
Brown-out  
1
1.350  
1.450  
1.550  
1.250  
1.350  
1.450  
00  
00  
00  
18 - 35  
18 - 35  
18 - 35  
360  
392.72  
454.73  
1
All timing control bit fields in HW_DIGCTRL_ARMCACHE should be set to the same value.  
Table 16. Recommended Operating Conditions—AHB Clock (clk_h)  
HW_DIGCTRL  
ARMCACHE  
HW_CLKCTRL  
FRAC_CPUFRC / PFD Frequency max (MHz)  
AHBCLK / clk_h  
VDDD (V)  
VDDD  
(V)  
Brown-out  
1
1.350  
1.450  
1.550  
1.250  
1.350  
1.45  
00  
00  
00  
18 - 35  
18 - 35  
18 - 35  
160  
196  
206  
1
All timing control bit fields in HW_DIGCTRL_ARMCACHE should be set to the same value.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
16  
Freescale Semiconductor  
 
 
 
Electrical Characteristics  
Table 17. Frequency vs. Voltage for EMICLK—289-Pin BGA Package  
EMICLK Fmax (MHz)  
VDDD (V)  
VDDD  
(V)  
Brownout  
DDR2  
mDDR  
1.550  
1.450  
1.350  
1.450  
1.350  
1.250  
205.71  
196.36  
196.36  
205.71  
196.36  
196.36  
3.1.3  
Fusebox Supply Current Parameters  
Table 18 lists the fusebox supply current parameters.  
Table 18. Fusebox Supply Current Parameters  
Parameter Symbol Min  
Typ  
Max  
Unit  
1
eFuse Program Current  
I
21.39  
25.05  
33.54  
mA  
program  
Current to program one eFuse bit  
efuse_vddq=2.5V  
2
eFuse Read Current  
I
4.07  
mA  
read  
Current to read an 8-bit eFuse word  
vdd_fusebox = 3.3 V  
1
The current I  
The current I  
is during program time.  
program  
2
is present for approximately 10 ns of the read access to the 8-bit word.  
read  
3.1.4  
Interface Frequency Limits  
Table 19 provides information for interface frequency limits.  
Table 19. Interface Frequency Limits  
Parameter  
Min.  
Typ.  
Max.  
Unit  
JTAG: TCK Frequency of Operation  
OSC24M_XTAL Oscillator  
10  
MHz  
MHz  
kHz  
24.000  
OSC32K_XTAL Oscillator  
32.768/32.0  
3.1.5  
Power Modes  
Table 20 describes the core, clock, and module settings for the different power modes of the processor.  
Table 20. Power Mode Settings  
Core/Clock/Module  
ARM Core  
Offstate  
Standby  
Run  
Off  
Off  
Off  
Off  
Off  
On  
On  
On  
On  
USB0 PLL (System PLL)  
OSC24M  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
17  
 
 
 
Electrical Characteristics  
Table 20. Power Mode Settings (continued)  
Core/Clock/Module  
Offstate  
Standby  
Run  
OSC32K  
DCDC  
On  
Off  
On  
Off  
On  
On  
On  
On  
RTC  
On  
On  
Other Modules  
On/Off  
On/Off  
3.1.6  
Supply Power-Up/Power-Down Requirements  
There is no special power-up sequence. After applying 5 V or battery in any order, the rest of the power  
supplies are internally generated and automatically come up in a safe way.  
There is no special power-down sequence. 5 V or the battery can be removed at any time.  
3.1.7  
Reset Timing  
Because the i.MX28 is a PMU and an SoC, power-on reset is generated internally and there is no timing  
requirement on external pins.  
The i.MX28 can be reset by asserting the external pin RESETN for at least 100 mS and later deasserting  
RESETN.  
If the reset occurs while the device is only powered by the battery, then the reset kills all of the power  
supplies and the system reboots on the assertion of PSWITCH. If auto-restart is set up ahead of time, the  
system reboots immediately.  
If the chip is powered by 5 V, then the reset serves to reset the digital sections of the chip. If the DCDC is  
operating at the time of the reset, then power switches back to the default linear regulators powered by 5 V.  
RESETN  
At least 100ms  
Figure 2. RESETN Timing  
3.2  
Thermal Characteristics  
The thermal resistance characteristics for the device are given in Table 21. These values are measured  
under the following conditions:  
Two layer Substrate  
Substrate solder mask thickness: 0.025 mm  
Substrate metal thicknesses: 0.016 mm  
Substrate core thickness: 0.160 mm  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
18  
Freescale Semiconductor  
 
Electrical Characteristics  
Core via I.D: 0.068 mm, Core via plating 0.016 mm  
Flag: trace style with ground balls under the die connected to the flag  
Die Attach: 0.033 mm non-conductive die attach, k = 0.3 W/m K  
Mold Compound: generic mold compound, k = 0.9 W/m K  
Table 21. Thermal Resistance Data  
Rating  
Value  
62  
Unit  
°C/W  
1
Junction to ambient natural convection  
Single layer board  
(1s)  
R
R
θ
θ
JA  
1
Junction to ambient natural convection  
Four layer board (2s2p)  
36  
53  
33  
°C/W  
°C/W  
°C/W  
JA  
1
Junction to ambient (@200 ft/min)  
Single layer board  
(1s)  
R
JMA  
JMA  
θ
θ
1
Junction to ambient (@200 ft/min)  
Four layer board  
(2s2p)  
R
2
Junction to boards  
R
24  
15  
3
°C/W  
°C/W  
°C/W  
JB  
θ
3
Junction to case (top)  
R
JCtop  
θ
4
Junction to package top  
Natural Convection  
Ψ
JT  
1
Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-2 and JESD51-6. Thermal test board meets  
JEDEC specification for this package.  
2
3
4
Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification  
for the specified package.  
Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is  
used for the case temperature. Reported value includes the thermal resistance of the interface layer.  
Thermal characterization parameter indicating the temperature difference between the package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written  
as Psi-JT.  
3.3  
I/O DC Parameters  
This section includes the DC parameters of the following I/O types:  
DDR I/O: Mobile DDR (LPDDR1), standard 1.8 V DDR2, and low-voltage 1.5 V DDR2  
(LVDDR2)  
General purpose I/O (GPIO)  
3.3.1  
DDR I/O DC Parameters  
Table 22 shows the EMI digital pin DC characteristics.  
NOTE  
The current values and the I-V curves of the I/O DC characteristics are  
estimated based on an overly conservative device model. They are updated  
upon the measurement results of the first silicon.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
19  
 
Electrical Characteristics  
Parameter  
Table 22. EMI Digital Pin DC Characteristics  
Symbol  
Min.  
Max.  
Unit  
Input voltage high (dc)  
Input voltage low (dc)  
Output voltage high (dc)  
Output voltage low (dc)  
VIH  
VIL  
VREF + 0.125  
VDDIO_EMI + 0.3  
V
0.3  
VREF – 0.125  
V
VOH  
0.8 * VDDIO_EMI  
V
VOL  
-
0.2 * VDDIO_EMI  
V
1
Output source current (dc)  
LVDDR2 Mode  
IOH —Low  
IOH—Medium  
IOH—High  
-6.2  
-7.2  
-9.7  
5.7  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
2
Output sink current (dc)  
LVDDR2 Mode  
IOL —Low  
IOL—Medium  
IOL—High  
IOH—Low  
IOH—High  
IOL—Low  
7.3  
10.0  
-5.7  
-7.5  
5.4  
Output source current (dc)  
mDDR, DDR2 Mode  
Output sink current (dc)  
mDDR, DDR2 Mode  
IOL—High  
8.8  
1
IOH is the output current at which the VOH specification is met.  
IOL is the output current at which the VOL specification is met.  
2
Table 23 shows the ON impedance of EMI drivers for different drive strengths.  
1
Table 23. ON Impedance of EMI Drivers for Different Drive Strengths  
Mode  
Drive  
Min. (Ω)  
Typ. (Ω)  
Max. (Ω)  
1.5  
LVDDR2  
Low  
Medium  
High  
26  
17  
15  
36  
17  
16  
38  
25  
20  
53  
27  
19  
58  
36  
27  
78  
42  
28  
1.8  
Low  
DDR2/mDDR  
Medium  
High  
1
ON impedance of the EMI drivers are guaranteed by design and are not tested during production.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
20  
Freescale Semiconductor  
 
 
Electrical Characteristics  
Table 24 shows the external devices supported by the EMI.  
Table 24. External Devices Supported by the EMI  
1, 2  
DRAM Device  
Max Load  
Pad Voltage  
DDR2  
mDDR  
15 pF  
15 pF  
15 pF  
1.8 V  
1.8 V  
1.5 V  
LVDDR2  
1
2
Max load includes capacitive load due to PCB traces, pad capacitance and driver self-loading.  
Setting is for worst case. Freescale’s EMI interface uses less powerful drivers than those typically used in mDDR devices. A  
possible transmission-line effect on the PC board must be suppressed by minimizing the trace length combined with  
Freescale’s slower edge-rate drivers. The i.MX28 provides up to 16 mA programmable drive strength. However, the 16-mA  
mode is an experimental mode. With the 16-mA mode, the EMI function may be impaired by Simultaneous Switching Output  
(SSO) noise. In general, the stronger the driver mode, the noisier the on-chip power supply. Freescale recommends not using  
a stronger driver mode than is required. Because on-chip power and ground noise is proportional to the inductance of its return  
path, users should make their best effort to reduce inductance between the EMI power and ground balls and the PC board  
power and ground planes.  
3.3.2  
GPIO I/O DC Parameters  
Max load includes capacitive load due to PCB traces, pad capacitance and driver self-loading. For the  
internal pull up setting of each pad, see the “Pin Control and GPIO” section of the reference manual.  
Table 25 shows the digital pin DC characteristics for GPIO in 3.3-V mode. Measurements are valid for  
eight pins loaded using the 4mA driver, four pins loaded using the 8mA driver, and two pins loaded using  
either the 12mA or 16mA driver.  
Table 25. Digital Pin DC Characteristics for GPIO in 3.3-V Mode  
Parameter  
Symbol  
Min  
Max  
Unit  
Input voltage high (dc)  
Input voltage low (dc)  
Output voltage high (dc)  
Output voltage low (dc)  
VIH  
VIL  
2
VDDIO  
0.8  
V
V
VOH  
0.8 × VDDIO  
V
VOL  
0.4  
V
1
Output source current (dc)  
IOH – Low  
IOH – Medium  
IOH – High  
IOL – Low  
IOL – Medium  
IOL – High  
IOH – Low  
IOH – High  
IOL – Low  
IOL – High  
-5.0  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
gpio  
-9.5  
-11.4  
3.8  
Output sink current (dc)  
gpio  
7.7  
9.0  
Output source current (dc)  
gpio_clk  
-9.2  
-15.2  
7.6  
Output sink current (dc)  
gpio_clk  
12.0  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
21  
 
 
Electrical Characteristics  
Table 25. Digital Pin DC Characteristics for GPIO in 3.3-V Mode (continued)  
Parameter  
Symbol  
Min  
Max  
Unit  
2
10-K pull-up resistance  
47-K pull-up resistance  
Rpu10k  
Rpu47k  
8
12  
56  
kΩ  
kΩ  
39  
1
The conditions of the current measurements for all different drives are as follows:  
IOL: at 0.4 V  
IOH: at VDDIO * 0.8 V  
Maximum corner for 3.3 V mode: 3.6 V, -40°C, fast process.  
Minimum corner for 3.3 V mode: 3.0 V, 105°C, slow process.  
8 gpio pins (LCD_D0-D7) and 2 gpio_clk pins (LCD_DOTCLK and LCD_WR_RWN) simultaneously loaded.  
2
See the i.MX28 reference manual for detailed pull-up configuration of each I/O.  
Table 26 shows the digital pin DC characteristics for GPIO in 1.8 V mode.  
Table 26. Digital Pin DC Characteristics for GPIO in 1.8 V Mode  
Symbol  
Min  
Max  
Unit  
Input voltage high (DC)  
Input voltage low (DC)  
Output voltage high (DC)  
Output voltage low (DC)  
VIH  
VIL  
0.7 × VDDIO18  
VDDIO18  
V
0.3 × VDDIO18  
V
VOH  
0.8 * VDDIO18  
V
VOL  
0.2 × VDDIO18  
V
1
Output source current  
IOH – low  
IOH – medium  
IOH – high  
IOL – low  
IOL – medium  
IOL – high  
IOH – low  
IOH – high  
-2.2  
-3.5  
-4.0  
3.3  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
(DC)  
gpio  
Output sink current (DC)  
gpio  
7.0  
7.5  
Output source current  
(DC)  
-4.2  
-6.0  
gpio_clk  
Output sink current (DC)  
gpio_clk  
IOL – low  
IOL – high  
Rpu10k  
6.8  
11.5  
8
12  
56  
mA  
mA  
kΩ  
2
10-K pull-up resistance  
47-K pull-up resistance  
Rpu47k  
39  
kΩ  
1
2
The condition of the current measurements for all different drives are as follows:  
Maximum corner for 1.8 V mode: 1.9 V, -40°C, Fast process.  
Minimum corner for 1.8 V mode: 1.7 V, 105°C, Slow process.  
1 gpio pin (GPMI_D0) and 1 gpio_clk pin (GPMI_WRN) simultaneously loaded.  
See the i.MX28 reference manual for detailed pull-up configuration of each I/O.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
22  
Freescale Semiconductor  
 
 
Electrical Characteristics  
3.4  
I/O AC Timing and Parameters  
Figure 3 and Figure 4 show the Driver Used for AC Simulation Testpoint and the Output Pad Transition  
Waveform.  
Driver Used for AC simulation  
Testpoint  
Figure 3. Driver Used for AC Simulation Testpoint  
Output Pad Transition Waveform  
VDDIO  
80%  
20%  
Figure 4. Output Pad Transition Waveform  
Table 27 shows the base GPIO AC timing and parameters.  
Table 27. Base GPIO  
Min  
Parameters  
Symbol  
Test Voltage Test Capacitance  
MaxRise/Fall  
Unit  
Notes  
Rise/Fall  
Duty cycle  
Fduty  
tpr  
%
Output pad transition  
times (maximum drive)  
1.7~1.9V  
1.7~1.9V  
1.7~1.9V  
3.0~3.6V  
3.0~3.6V  
3.0~3.6V  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
0.82 0.91 1.93 1.97  
1.18 1.22 2.69 2.71  
2.11 2.03 4.62 4.44  
1.04 1.08 2.46 2.18  
ns  
1.42  
1.5  
3.29  
3
2.46 2.61 5.34 5.12  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
23  
 
 
 
Electrical Characteristics  
Table 27. Base GPIO (continued)  
Min  
Rise/Fall  
Parameters  
Symbol  
Test Voltage Test Capacitance  
MaxRise/Fall  
Unit  
Notes  
Output pad transition  
times (medium drive)  
tpr  
tpr  
tps  
tps  
tps  
tih  
1.7~1.9V  
1.7~1.9V  
1.7~1.9V  
3.0~3.6V  
3.0~3.6V  
3.0~3.6V  
1.7~1.9V  
1.7~1.9V  
1.7~1.9V  
3.0~3.6V  
3.0~3.6V  
3.0~3.6V  
1.7~1.9V  
1.7~1.9V  
1.7~1.9V  
3.0~3.6V  
3.0~3.6V  
3.0~3.6V  
1.7~1.9V  
1.7~1.9V  
1.7~1.9V  
3.0~3.6V  
3.0~3.6V  
3.0~3.6V  
1.7~1.9V  
1.7~1.9V  
1.7~1.9V  
3.0~3.6V  
3.0~3.6V  
3.0~3.6V  
1.7 V–1.9 V  
3.0 V–3.6 V  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
1.02 1.08 2.34 2.38  
1.51 1.5 3.34 3.28  
2.91 2.62 6.24 5.67  
ns  
1.26 1.29  
2.9  
4
2.6  
1.8  
3.3  
1.88  
3.67  
3.46 6.91 6.64  
Output pad transition  
times (low drive)  
1.62 1.68 3.65 3.68  
2.55 2.45 5.59 5.37  
5.42 4.62 11.46 10.01  
1.95 2.12 4.43 4.25  
2.96 3.21 6.36 6.25  
5.89 6.39 12.02 12.18  
1.39 1.25 0.53 0.52  
0.97 0.93 0.38 0.38  
0.54 0.56 0.22 0.23  
2.08 2.00 0.73 0.83  
1.52 1.44 0.55 0.60  
0.88 0.83 0.34 0.35  
1.12 1.06 0.44 0.43  
0.75 0.76 0.31 0.31  
0.39 0.44 0.16 0.18  
1.71 1.67 0.62 0.69  
1.20 1.15 0.45 0.49  
0.65 0.62 0.26 0.27  
1.17 1.13 0.47 0.46  
0.75 0.78 0.30 0.32  
0.35 0.41 0.15 0.17  
1.11 1.02 0.41 0.42  
0.73 0.67 0.28 0.29  
0.37 0.34 0.15 0.15  
ns  
Output pad slew rate  
(maximum drive)  
V/ns  
V/ns  
V/ns  
mV  
Output pad slew rate  
(medium drive)  
Output pad slew rate  
(low drive)  
Input pad average  
hysteresis  
100  
100  
75  
50  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
24  
Freescale Semiconductor  
Electrical Characteristics  
Table 28 shows the F-type GPIO AC timing and parameters.  
Table 28. F-type GPIO  
Parameters  
Symbol Test Voltage Test Capacitance Min Rise/Fall Max Rise/Fall  
Unit  
Notes  
Duty cycle  
Fduty  
tpr  
%
Output pad transition  
times (maximum  
drive)  
1.7~1.9V  
1.7~1.9V  
1.7~1.9V  
3.0~3.6V  
3.0~3.6V  
3.0~3.6V  
1.7~1.9V  
1.7~1.9V  
1.7~1.9V  
3.0~3.6V  
3.0~3.6V  
3.0~3.6V  
1.7~1.9V  
1.7~1.9V  
1.7~1.9V  
3.0~3.6V  
3.0~3.6V  
3.0~3.6V  
1.7~1.9V  
1.7~1.9V  
1.7~1.9V  
3.0~3.6V  
3.0~3.6V  
3.0~3.6V  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
0.58 0.61  
0.89 0.88  
1.83 1.59  
0.71 0.68  
1.02 1.04  
1.98 2.09  
0.76 0.76  
1.23 1.13  
2.66 2.18  
1.29  
1.94  
3.88  
1.47  
2.11  
3.97  
1.68  
2.63  
5.61  
1.84  
2.76  
5.59  
2.88  
4.84  
1.33  
1.88  
3.39  
1.34  
1.99  
3.96  
1.61  
2.38  
4.6  
ns  
Output pad transition  
times (medium drive)  
tpr  
tpr  
tps  
tps  
ns  
ns  
ns  
ns  
0.9  
0.88  
1.4  
1.7  
1.36  
2.67  
5.67  
2.72  
4.23  
8.8  
2.85 3.02  
1.32 1.26  
2.27 1.98  
Output pad transition  
times (low drive)  
5.23 4.13 10.95  
1.46 1.55  
2.46 2.62  
3.05  
4.92  
3
5.02  
5.56 5.96 10.78 11.22  
Output pad slew rate  
(maximum drive)  
1.97 1.87  
1.28 1.30  
0.62 0.72  
3.04 3.18  
2.12 2.08  
1.09 1.03  
0.79  
0.53  
0.26  
1.22  
0.85  
0.45  
0.77  
0.54  
0.30  
1.34  
0.90  
0.45  
Output pad slew rate  
(medium drive)  
1.7~1.9V  
1.7~1.9V  
10 pF  
20 pF  
1.50 1.50  
0.93 1.01  
0.61  
0.39  
0.63  
0.43  
1.7~1.9V  
3.0~3.6V  
3.0~3.6V  
3.0~3.6V  
50 pF  
10 pF  
20 pF  
50 pF  
0.43 0.52  
2.40 2.45  
1.59 1.54  
0.76 0.72  
0.18  
0.98  
0.65  
0.32  
0.22  
1.06  
0.67  
0.32  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
25  
 
Electrical Characteristics  
Table 28. F-type GPIO (continued)  
Symbol Test Voltage Test Capacitance Min Rise/Fall Max Rise/Fall  
Parameters  
Unit  
Notes  
Output pad slew rate  
(low drive)  
tps  
1.7~1.9V  
1.7~1.9V  
10 pF  
20 pF  
1.44 1.51  
0.84 0.96  
0.59  
0.35  
0.63  
0.40  
ns  
1.7~1.9V  
3.0~3.6V  
50 pF  
10 pF  
20 pF  
50 pF  
0.36 0.46  
1.48 1.39  
0.88 0.82  
0.39 0.36  
100  
0.16  
0.59  
0.37  
0.17  
0.19  
0.60  
0.36  
0.16  
3.0~3.6V  
3.0~3.6V  
Input pad average  
hysteresis  
tih  
1.7 V–1.9 V  
3.0 V–3.6 V  
75  
50  
mV  
100  
Table 29 shows the CLK-type GPIO AC timing and parameters.  
Table 29. CLK-Type GPIO  
Parameters  
Symbol Test Voltage Test Capacitance  
Min Rise/Fall  
Max Rise/Fall  
units Notes  
Duty cycle  
Fduty  
tpr  
%
Output pad transition  
times (maximum  
drive)  
1.7~1.9V  
1.7~1.9V  
1.7~1.9V  
3.0~3.6V  
3.0~3.6V  
3.0~3.6V  
1.7~1.9V  
1.7~1.9V  
1.7~1.9V  
3.0~3.6V  
3.0~3.6V  
3.0~3.6V  
1.7~1.9V  
1.7~1.9V  
1.7~1.9V  
3.0~3.6V  
3.0~3.6V  
3.0~3.6V  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
0.48  
0.72  
1.41  
0.61  
0.85  
1.56  
0.76  
1.22  
2.66  
0.9  
0.52  
0.74  
1.28  
0.57  
0.85  
1.63  
0.76  
1.14  
2.2  
1.08  
1.56  
3.04  
1.25  
1.73  
3.13  
1.67  
2.64  
5.61  
1.83  
2.77  
5.59  
0.94  
0.65  
0.34  
1.44  
1.04  
0.58  
1.12  
1.56  
2.7  
ns  
1.12  
1.63  
3.08  
1.62  
2.41  
4.62  
1.72  
2.69  
5.72  
0.91  
0.65  
0.38  
1.61  
1.10  
0.58  
Output pad transition  
times (medium drive)  
tpr  
ns  
0.89  
1.41  
3.03  
2.19  
1.54  
0.89  
3.79  
2.54  
1.33  
1.37  
2.85  
2.38  
1.58  
0.81  
3.54  
2.54  
1.38  
Output pad slew rate  
(maximum drive)  
tps  
ns  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
26  
Freescale Semiconductor  
 
Electrical Characteristics  
Table 29. CLK-Type GPIO (continued)  
Symbol Test Voltage Test Capacitance Min Rise/Fall  
Parameters  
Max Rise/Fall  
units Notes  
Output pad slew rate  
(medium drive)  
tps  
1.7~1.9V  
1.7~1.9V  
1.7~1.9V  
3.0~3.6V  
3.0~3.6V  
3.0~3.6V  
1.7 V–1.9 V  
3.0 V–3.6 V  
10 pF  
20 pF  
50 pF  
10 pF  
20 pF  
50 pF  
1.50  
0.93  
0.43  
2.40  
1.58  
0.76  
1.50  
1.00  
0.52  
2.43  
1.53  
0.71  
0.61  
0.39  
0.18  
0.98  
0.65  
0.32  
0.63  
0.42  
0.22  
1.05  
0.67  
0.31  
ns  
Input pad average  
hysteresis  
tih  
100  
100  
75  
50  
mV  
3.5  
Module Timing and Electrical Parameters  
ADC Electrical Specifications  
3.5.1  
This section describes the electrical specifications, including DC and AC information, of Low-Resolution  
ADC (LRADC) and High-Speed ADC (HSADC).  
3.5.1.1  
LRADC Electrical Specifications  
Table 30 shows the electrical specifications for the LRADC.  
Table 30. LRADC Electrical Specifications  
Conditions Min.  
Parameter  
Typ.  
Max.  
Unit  
AC Electrical Specification  
No pin/pad capacitance included  
Input capacitance (C )  
0.5  
12  
pF  
bits  
kHz  
p
Resolution  
1
Maximum sampling rate  
(fs)  
428  
2
Power-up time  
1
sample  
cycles  
DC Electrical Specification  
DC input voltage  
0
1.85  
V
3
Current consumption  
VDDA  
10  
μA  
Touchscreen Interface  
Expected plate resistance  
200  
50000  
Ω
1
2
There is no sample and hold circuit in LRADC, so it is only for DC input voltage or ones with very small slope.  
This comprises only the required initial dummy conversion cycle, NOT including the Analog part power-up time.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
27  
 
Electrical Characteristics  
3
This value only includes the ADC and the driver switches, but it does not take into account the current consumption in the  
touchscreen plate. For example, if the plate resistance is 200 ohm, the total current consumption is about 11 mA.  
3.5.1.2  
HSADC Electrical Specification  
Table 31 shows the electrical specifications for the HSADC  
Table 31. HSADC Electrical Specification  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
AC Electrical Specification  
Input sampling  
No pin/pad capacitance included  
0.5  
pF  
capacitance (C )  
s
Resolution  
12  
bits  
Maximum sampling rate  
(fs)  
2
MHz  
Power-up time  
1
sample  
cycles  
DC Electrical Specification  
DC input voltage  
0.5  
10  
VDDA-0.5  
V
Current Consumption  
VDDA  
μA  
DNL  
INL  
fin = 1 kHz  
fin = 1kHz  
0.5  
0.5  
1.2  
1.2  
LSB  
LSB  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
28  
Freescale Semiconductor  
 
Electrical Characteristics  
3.5.2  
DPLL Electrical Specifications  
This section includes descriptions of the USB PLL electrical specifications and Ethernet PLL electrical  
specifications.  
3.5.2.1  
USB PLL Electrical Specifications  
The i.MX28 integrates a high-frequency USB PLL that provides the 480-MHz clock for the USB and other  
system blocks.  
Table 32 lists the USB PLL output electrical specifications.  
Table 32. USB PLL Specifications  
Parameter  
PLL lock time  
Test Conditions  
Min  
Typ  
Max  
Unit  
10  
µs  
3.5.2.2  
Ethernet PLL Electrical Specifications  
i.MX28 provides a 50-MHz/25-MHz output clock, called the Ethernet PLL output.  
Table 33 lists the Ethernet PLL output electrical specifications.  
Table 33. Ethernet PLL Specifications  
Parameter  
Output Duty Cycle  
Test Conditions  
Min  
Typ  
Max  
Unit  
45  
50  
25  
55  
10  
%
µs  
PLL lock time  
Cycle to cycle jitter  
ps  
1
Clock output frequency tolerance  
+/-20  
ppm  
1
This Ethernet output clock tolerance specification is the contribution from the PLL only and assumes a perfect 24 MHz  
clock/crystal source with 0 ppm deviation. The 24 MHz crystal frequency tolerance/deviation should be added to this number  
for the total Ethernet clock output frequency tolerance.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
29  
 
 
Electrical Characteristics  
3.5.3  
EMI AC Timing  
This section includes descriptions of the electrical specifications of EMI module which interfaces  
external DDR2 and Mobile-DDR1 (LP-DDR1) memory devices.  
3.5.3.1  
EMI Command and Address AC Timing  
Figure 5 and Table 34 specify the timing related to the address and command pins that interfaces DDR2  
and Mobile-DDR1 memory devices.  
DDR2  
DDR3  
EMI_CLKN  
EMI_CLK  
DDR1  
EMI_CE0N  
EMI_RASN  
EMI_CASN  
EMI_WEN  
DDR4  
DDR5  
DDR4  
DDR5  
DDR5  
DDR4  
EMI_ADDR  
bank  
row  
bank  
column  
Figure 5. EMI Command/Address AC Timing  
Table 34. EMI Command/Address AC Timing  
ID  
Description  
CK cycle time  
Symbol  
Min.  
Max.  
Unit  
DDR1  
tCK  
tCH  
4.86  
ns  
ns  
0.5 tCK  
–0.5  
0.5 tCK  
+ 0.5  
DDR2  
DDR3  
CK high level width  
CK low level width  
tCL  
0.5 tCK  
–0.5  
0.5 tCK  
+ 0.5  
ns  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
30  
Freescale Semiconductor  
 
 
Electrical Characteristics  
Table 34. EMI Command/Address AC Timing (continued)  
ID  
Description  
Symbol  
Min.  
Max.  
Unit  
tIS  
0.5 tCK – 1  
0.5 tCK  
+ 0.5  
ns  
DDR4  
Address and control output setup time  
tIH  
0.5 tCK – 1  
0.5 tCK  
+ 0.5  
ns  
DDR5  
Address and control output hold time  
3.5.3.2  
DDR Output AC Timing  
Figure 6 and Table 35 show the DDR output AC timing defined for all DDR types: LPDDR1, standard  
DDR2 (1.8 V), and LVDDR2 (1.5 V)  
EMI_CLKN  
EMI_CLK  
DDR10  
DDR11  
DDR12  
EMI_DQSN  
EMI_DQS  
DDR13  
DDR14  
EMI_DQ & EMI_DQM  
d0 d1 d2 d3  
DDR15  
DDR16  
Figure 6. DDR Output AC Timing  
Table 35. DDR Output AC Timing  
ID  
Description  
Symbol  
Min  
Max  
Unit  
DDR10  
DDR11  
Positive DQS latching edge to associated CK edge  
DQS falling edge from CK rising edge—hold time  
tDQSS  
tDSH  
–0.5  
0.5  
ns  
ns  
0.5 tCK  
–0.5  
0.5 tCK  
+ 0.5  
DDR12  
DDR13  
DDR14  
DQS falling edge to CK rising edge—setup time  
DQS output high pulse width  
tDSS  
0.5 tCK  
–0.5  
0.5 tCK  
+ 0.5  
ns  
ns  
ns  
tDQSH  
tDQSL  
0.5 tCK  
–0.5  
0.5 tCK  
+ 0.5  
DQS output low pulse width  
0.5 tCK  
–0.5  
0.5 tCK  
+ 0.5  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
31  
 
 
Electrical Characteristics  
Table 35. DDR Output AC Timing (continued)  
Description Symbol  
tDS  
ID  
Min  
Max  
Unit  
DDR15  
DDR16  
DQ & DQM output setup time relative to DQS  
DQ & DQM output hold time relative to DQS  
1/4 tCK  
–0.8  
1/4 tCK  
–0.5  
ns  
ns  
tDH  
1/4 tCK  
–0.8  
1/4 tCK  
–0.5  
3.5.3.3  
DDR2 Input AC Timing  
Figure 7 and Table 36 show input AC timing for standard DDR2 and LVDDR2.  
EMI_CLKN  
EMI_CLK  
DDR20  
EMI_DQSN  
EMI_DQS  
DDR22  
DDR21  
EMI_DQ  
d0 d1 d2 d3  
Figure 7. DDR2 Input AC Timing  
Table 36. DDR2 Input AC Timing  
ID  
Description  
Symbol  
Min  
–0.5  
Max  
Unit  
DDR20  
DDR21  
Positive DQS latching edge to associated CK edge  
tDQSCK  
tDQSQ  
0.5  
ns  
ns  
0.25 tCK  
–0.85  
0.25 tCK  
–0.5  
DQS to DQ input skew  
DDR22  
DQS to DQ input hold time  
tQH  
0.25 tCK  
+0.75  
0.25 tCK  
+ 1  
ns  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
32  
Freescale Semiconductor  
 
 
Electrical Characteristics  
3.5.3.4  
LPDDR1 Input AC Timing  
Figure 8 and Table 37 show input AC timing for LPDDR1.  
EMI_CLKN  
EMI_CLK  
DDR20  
EMI_DQSN  
EMI_DQS  
DDR22  
DDR21  
EMI_DQ  
d0 d1 d2 d3  
Figure 8. LPDDR1 Input AC Timing  
Table 37. DDR2 Input AC Timing  
ID  
Description  
Symbol  
Min  
Max  
Unit  
DDR20  
DDR21  
Positive DQS latching edge to associated CK edge  
DQS to DQ input skew  
tDQSCK  
tDQSQ  
2
6
ns  
ns  
0.25 tCK  
–0.85  
0.25 tCK  
–0.5  
DDR22  
DQS to DQ input hold time  
tQH  
0.25 tCK  
+0.75  
0.25 tCK  
+ 1  
ns  
3.5.4  
Ethernet MAC Controller (ENET) Timing  
The ENET is designed to support both 10- and 100-Mbps Ethernet networks compliant with IEEE 802.3.  
An external transceiver interface and transceiver function are required to complete the interface to the  
media. The ENET supports 10/100-Mbps MII (18 pins altogether), 10/100-Mbps RMII (10 pins, including  
serial management interface), for connection to an external Ethernet transceiver. All signals are compatible  
with transceivers operating at a voltage of 3.3 V.  
The following subsections describe the timing for MII and RMII modes.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
33  
 
 
Electrical Characteristics  
3.5.4.1  
ENET MII Mode Timing  
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal  
timings.  
3.5.4.1.1  
MII Receive Signal Timing (ENET0_RXD[3:0], ENET0_RX_DV, ENET0_RX_ER,  
and ENET0_RX_CLK)  
The receiver functions correctly up to an ENET0_RX_CLK maximum frequency of 25 MHz + 1%. There  
is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the  
ENET0_RX_CLK frequency.  
Figure 9 shows MII receive signal timings. Table 38 describes the timing parameters (M1–M4) shown in  
the figure.  
M3  
ENET0_RX_CLK (input)  
M4  
ENET0_RXD[3:0] (inputs)  
ENET0_RX_DV  
ENET0_RX_ER  
M1  
M2  
Figure 9. MII Receive Signal Timing Diagram  
Table 38. MII Receive Signal Timing  
1
ID  
Characteristic  
Min.  
Max.  
Unit  
M1  
M2  
M3  
M4  
ENET0_RXD[3:0], ENET0_RX_DV, ENET0_RX_ER to  
ENET0_RX_CLK setup  
5
ns  
ENET0_RX_CLK to ENET0_RXD[3:0], ENET0_RX_DV,  
ENET0_RX_ER hold  
5
ns  
ENET0_RX_CLK pulse width high  
35%  
35%  
65%  
65%  
ENET0_RX_CLK  
period  
ENET0_RX_CLK pulse width low  
ENET0_RX_CLK  
period  
1
ENET0_RX_DV, ENET0_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.  
3.5.4.1.2  
MII Transmit Signal Timing (ENET0_TXD[3:0], ENET0_TX_EN, ENET0_TX_ER,  
and ENET0_TX_CLK)  
The transmitter functions correctly up to an ENET0_TX_CLK maximum frequency of 25 MHz + 1%.  
There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed  
twice the ENET0_TX_CLK frequency.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
34  
Freescale Semiconductor  
 
 
Electrical Characteristics  
Figure 10 shows MII transmit signal timings. Table 39 describes the timing parameters (M5–M8) shown  
in the figure.  
M7  
ENET0_TX_CLK (input)  
M5  
M8  
ENET0_TXD[3:0] (outputs)  
ENET0_TX_EN  
ENET0_TX_ER  
M6  
Figure 10. MII Transmit Signal Timing Diagram  
Table 39. MII Transmit Signal Timing  
1
ID  
Characteristic  
Min.  
Max.  
Unit  
M5  
M6  
M7  
M8  
ENET0_TX_CLK to ENET0_TXD[3:0], ENET0_TX_EN,  
ENET0_TX_ER invalid  
5
ns  
ENET0_TX_CLK to ENET0_TXD[3:0], ENET0_TX_EN,  
ENET0_TX_ER valid  
20  
ns  
ENET0_TX_CLK pulse width high  
35%  
35%  
65%  
65%  
ENET0_TX_CLK  
period  
ENET0_TX_CLK pulse width low  
ENET0_TX_CLK  
period  
1
ENET0_TX_EN, ENET0_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.  
3.5.4.1.3  
MII Asynchronous Inputs Signal Timing (ENET0_CRS and ENET0_COL)  
Figure 11 shows MII asynchronous input timings. Table 40 describes the timing parameter (M9) shown in  
the figure.  
ENET0_CRS, ENET0_COL  
M9  
Figure 11. MII Async Inputs Timing Diagram  
Table 40. MII Asynchronous Inputs Signal Timing  
ID  
Characteristic  
Min.  
Max.  
Unit  
1
M9  
ENET0_CRS to ENET0_COL minimum pulse width  
1.5  
ENET0_TX_CLK period  
1
ENET0_COL has the same timing in 10-Mbit 7-wire interface mode.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
35  
 
 
 
 
Electrical Characteristics  
3.5.4.1.4  
MII Serial Management Channel Timing (ENET0_MDIO and ENET0_MDC)  
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3  
MII specification. However the ENET can function correctly with a maximum MDC frequency of  
15 MHz.  
Figure 12 shows MII asynchronous input timings. Table 41 describes the timing parameters (M10–M15)  
shown in the figure.  
M14  
M15  
ENET0_MDC (output)  
M10  
ENET0_MDIO (output)  
M11  
ENET0_MDIO (input)  
M12  
M13  
Figure 12. MII Serial Management Channel Timing Diagram  
Table 41. MII Serial Management Channel Timing  
ID  
M10  
Characteristic  
Min.  
Max.  
Unit  
ENET0_MDC falling edge to ENET0_MDIO output invalid (min.  
propagation delay)  
0
ns  
M11  
ENET0_MDC falling edge to ENET0_MDIO output valid (max.  
propagation delay)  
5
ns  
M12  
M13  
M14  
M15  
ENET0_MDIO (input) to ENET0_MDC rising edge setup  
ENET0_MDIO (input) to ENET0_MDC rising edge hold  
ENET0_MDC pulse width high  
18  
0
ns  
ns  
40%  
40%  
60%  
60%  
ENET0_MDC period  
ENET0_MDC period  
ENET0_MDC pulse width low  
3.5.4.2  
RMII Mode Timing  
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz 50 ppm continuous reference  
clock. ENET0_RX_DV is used as the CRS_DV in RMII. Other signals under RMII mode include  
ENET0_TX_EN, ENET0_TXD[1:0], ENET0_RXD[1:0] and ENET0_RX_ER.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
36  
Freescale Semiconductor  
 
 
Electrical Characteristics  
Figure 13 shows RMII mode timings. Table 42 describes the timing parameters (M16–M21) shown in the  
figure.  
M16  
M17  
ENET_CLK (input)  
M18  
ENET0_TXD[1:0] (output)  
ENET0_TX_EN  
M19  
CRS_DV (input)  
ENET0_RXD[1:0]  
ENET0_RX_ER  
M20  
M21  
Figure 13. RMII Mode Signal Timing Diagram  
Table 42. RMII Signal Timing  
ID  
M16  
Characteristic  
Min.  
Max.  
Unit  
ENET_CLK pulse width high  
ENET_CLK pulse width low  
35%  
35%  
3
65%  
65%  
ENET_CLK period  
M17  
M18  
M19  
M20  
ENET_CLK period  
ENET_CLK to ENET0_TXD[1:0], ENET0_TX_EN invalid  
ENET_CLK to ENET0_TXD[1:0], ENET0_TX_EN valid  
ns  
ns  
ns  
12  
ENET0_RXD[1:0], CRS_DV(ENET0_RX_DV), ENET0_RX_ER to  
ENET_CLK setup  
2
M21  
ENET_CLK to ENET0_RXD[1:0], ENET0_RX_DV, ENET0_RX_ER hold  
2
ns  
3.5.5  
Coresight ETM9 AC Interface Timing  
The following timing specifications are given as a guide for a TPA that supports TRACECLK  
(ETM_TCLK) frequencies up to 80 MHz. TRACECLK is the ETM_TCLK signal which can be made  
functional by using some IOMUX configurations. See the reference manual for detailed information.  
3.5.5.1  
TRACECLK Timing  
This section describes TRACECLK timings.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
37  
 
 
 
 
Electrical Characteristics  
Figure 14 shows TRACECLK signal timings. Table 43 describes the timing parameters shown in the  
figure.  
Figure 14. TRACECLK Signal Timing Diagram  
Table 43. TRACECLK Signal Timing  
1
ID  
Characteristic  
Clock and data raise time  
Min.  
Max.  
Unit  
Tr  
Tf  
3
3
ns  
ns  
ns  
ns  
ns  
Clock and data fall time  
High pulse wide  
Low pulse wide  
Clock period  
Twh  
Twl  
Tcyc  
2
2
12.5  
3.5.5.2  
Trace Data Signal Timing  
Figure 15 shows the setup and hold requirements of the trace data pins with respect to TRACECLK.  
Table 44 describes the timing parameters shown in the figure.  
Figure 15. Trace Data Signal Timing Diagram  
Table 44. Trace Data Signal Timing  
1
ID  
Characteristic  
Min.  
Max.  
Unit  
Ts  
Th  
Data setup  
Data hold  
2
2
ns  
ns  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
38  
Freescale Semiconductor  
 
 
 
 
 
Electrical Characteristics  
3.5.6  
FlexCAN AC Timing  
Table 45 and Table 46 show voltage requirements for the FlexCAN transceiver Tx and Rx pins.  
Table 45. Tx Pin Characteristics  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
1
High-level output voltage  
Low-level output voltage  
VOH  
VOL  
2
Vcc + 0.3  
V
V
0.8  
1
Vcc = +3.3 V 5%  
Table 46. Rx Pin Characteristics  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
1
1
High-level input voltage  
Low-level input voltage  
VIH  
VIL  
0.8 × Vcc  
Vcc  
V
V
0.4  
1
Vcc = +3.3 V 5%  
Figure 16 through Figure 19 show the FlexCAN timing, including timing of the standby and shutdown  
signals.  
TXD  
t
V
/2  
V
/2  
CC  
CC  
t
OFFTXD  
ONTXD  
0.9V  
V
DIFF  
0.5V  
t
t
OFFRXD  
ONRXD  
RXD  
V
/2  
V
/2  
CC  
CC  
Figure 16. FlexCAN Timing Diagram  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
39  
 
 
 
 
Electrical Characteristics  
V
x 0.75  
CC  
RS  
Bus Externally  
Driven  
1.1V  
V
DIFF  
t
SBRXDL  
t
DRXDL  
RXD  
V
/2  
V
/2  
CC  
CC  
Figure 17. Timing Diagram for FlexCAN Standby Signal  
V
/2  
V
/2  
CC  
SHDN  
CC  
t
t
ONSHDN  
OFFSHDN  
V
DIFF  
Bus Externally  
Driven  
0.5V  
V
/2  
RXD  
CC  
Figure 18. Timing Diagram for FlexCAN Shutdown Signal  
SHDN  
RS  
V
/2  
CC  
t
SHDNSB  
0.75 x V  
CC  
Figure 19. Timing Diagram for FlexCAN Shutdown-to-Standby Signal  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
40  
Freescale Semiconductor  
Electrical Characteristics  
3.5.7  
General-Purpose Media Interface (GPMI) Timing  
The i.MX28 GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to  
50MB/s I/O speed and individual chip select.  
It supports normal timing mode, using two Flash clock cycles for one access of RE and WE. AC timings  
are provided as multiplications of the clock cycle and fixed delay. Figure 20, Figure 21, Figure 22 and  
Figure 23 depict the relative timing between GPMI signals at the module level for different operations  
under normal mode. Table 47 describes the timing parameters (NF1–NF17) that are shown in the figures.  
CLE  
NF2  
NF1  
NF3  
NF4  
CEn  
NF5  
WE  
NF6  
NF7  
ALE  
NF8  
NF9  
Command  
IO[7:0]  
Figure 20. Command Latch Cycle Timing Diagram  
CLE  
CEn  
NF1  
NF4  
NF3  
NF10  
NF11  
NF5  
NF8  
WE  
NF7  
NF9  
NF6  
ALE  
IO[7:0]  
Address  
Figure 21. Address Latch Cycle Timing Diagram  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
41  
 
 
Electrical Characteristics  
CLE  
NF1  
NF3  
CEn  
NF10  
NF11  
NF5  
NF8  
WE  
NF7  
NF6  
ALE  
NF9  
IO[7:0]  
Data to NF  
Figure 22. Write Data Latch Cycle Timing Diagram  
CLE  
CEn  
NF14  
NF15  
NF13  
RE  
RB  
NF17  
NF16  
NF12  
IO[7:0]  
Data from NF  
Figure 23. Read Data Latch Cycle Timing Diagram  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
42  
Freescale Semiconductor  
Electrical Characteristics  
1
Table 47. NFC Timing Parameters  
Example Timing for  
Timing  
GPMI Clock ≈ 100MHz  
T = GPMI Clock Cycle  
Symbol  
ID  
Parameter  
Unit  
T = 10ns  
Min.  
Max.  
Min.  
Max.  
NF1  
NF2  
CLE setup time  
tCLS  
tCLH  
tCS  
(AS+1)*T  
(DH+1)*T  
(AS+1)*T  
(DH+1)*T  
10  
20  
10  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLE hold time  
NF3  
CEn setup time  
CE hold time  
NF4  
tCH  
NF5  
WE pulse width  
ALE setup time  
ALE hold time  
tWP  
tALS  
tALH  
tDS  
DS*T  
10  
NF6  
(AS+1)*T  
(DH+1)*T  
DS*T  
10  
20  
10  
10  
NF7  
NF8  
Data setup time  
Data hold time  
Write cycle time  
WE hold time  
NF9  
tDH  
DH*T  
NF10  
NF11  
NF12  
NF13  
NF14  
NF15  
NF16  
NF17  
tWC  
tWH  
tRR  
(DS+DH)*T  
DH*T  
20  
10  
Ready to RE low  
RE pulse width  
READ cycle time  
RE high hold time  
Data setup on read  
Data hold on read  
(AS+1)*T  
10  
10  
20  
10  
10  
10  
tRP  
DS*T  
tRC  
(DS+DH)*T  
tREH  
tDSR  
tDHR  
DH*T  
N/A  
N/A  
1
The Flash clock maximum frequency is 100 MHz.  
2)GPMI’s output timing could be controlled by module’s internal register, say  
HW_GPMI_TIMING0_ADDRESS_SETUP,HW_GPMI_TIMING0_DATA_SETUP,HW_GPMI_TIMING0_DATA_HOLD, this AC  
timing depends on these registers’ setting. In the above table we use AS/DS/DH representing these settings each.  
3)AS minimum value could be 0, while DS/DH minimum value is 1.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
43  
Electrical Characteristics  
3.5.8  
LCD AC Output Electrical Specifications  
Figure 24 depicts the AC output timing for the LCD module. Table 48 lists the LCD module timing  
parameters.  
T
PAD_LCD_DOTCK  
Falling edge capture  
tSF  
tSR  
tHF  
tHR  
PAD_LCD_DOTCK  
Rising edge capture  
tDW  
PAD_LCD_D[17:0],  
PAD_LCD_VSYNC, etc  
DATA/CTRL  
Notes:  
T = LCD interface clock period  
I/O Drive Strength = 4mA  
I/O Voltage = 3.3V  
Cck = Capacitance load on DOTCK pad  
Cd = Capacitance load on DATA/CTRL pad  
Figure 24. LCD AC Output Timing Diagram  
Table 48. LCD AC Output Timing Parameters  
ID  
Parameter  
Description  
tSF  
tHF  
tSR  
tHR  
tDW  
Data setup for falling edge  
Data hold for falling edge  
Data setup for rising edge  
Data hold for rising edge  
Data valid window  
DOTCK = T/2 – 1.97ns + 0.15*Cck – 0.19*Cd  
DOTCK = T/2 + 0.29ns + 0.09*Cd – 0.10*Cck  
DOTCK = T/2 – 2.09ns + 0.18*Cck – 0.19*Cd  
DOTCK = T/2 + 0.40ns + 0.09*Cd – 0.10*Cck  
tDW = T – 1.45ns  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
44  
Freescale Semiconductor  
 
 
Electrical Characteristics  
3.5.9  
Inter IC (I2C) Timing  
2
2
2
The I C module is designed to support up to 400-Kbps I C connection compliant with I C bus protocol.  
The following section describes I C SDA and SCL signal timings.  
2
2
2
Figure 25 shows the timing of the I C module. Table 49 describes the I C module timing parameters  
(IC1–IC11) shown in the figure.  
IC11  
IC9  
IC10  
I2C_SDA  
I2C_SCL  
IC7  
IC4  
IC2  
IC3  
IC8  
IC10  
IC6  
IC11  
STOP  
START  
START  
START  
IC5  
IC1  
2
Figure 25. I C Module Timing Diagram  
2
Table 49. I C Module Timing Parameters: 1.8 V 3.6 V  
Standard Mode  
Parameter  
Fast Mode  
Min. Max.  
ID  
Unit  
Min.  
Max.  
IC1  
IC2  
I2C_SCL cycle time  
10  
4.0  
4.0  
2.5  
0.6  
0.6  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
μs  
ns  
ns  
pF  
Hold time (repeated) START condition  
Set-up time for STOP condition  
IC3  
1
2
1
2
IC4  
Data hold time  
0
3.45  
0
0.9  
IC5  
HIGH Period of I2C_SCL clock  
4.0  
4.7  
4.7  
250  
4.7  
0.6  
1.3  
0.6  
IC6  
LOW Period of the I2C_SCL clock  
Set-up time for a repeated START condition  
Data set-up time  
IC7  
3
IC8  
100  
1.3  
IC9  
Bus free time between a STOP and START condition  
Rise time of both I2C_SDA and I2C_SCL signals  
Fall time of both I2C_SDA and I2C_SCL signals  
4
4
IC10  
IC11  
IC12  
1000 20+0.1C  
300  
300  
400  
b
b
300  
400  
20+0.1C  
Capacitive load for each bus line (C )  
b
1
A device must internally provide a hold time of at least 300 ns for the I2C_SDA signal in order to bridge the undefined region  
of the falling edge of I2C_SCL.  
2
3
The maximum IC4 has to be met only if the device does not stretch the LOW period (ID no IC5) of the I2C_SCL signal.  
2
A fast-mode I2C bus device can be used in a standard-mode I C bus system, but the requirement of Set-up time (ID No IC7)  
of 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the I2C_SCL signal.  
If such a device does stretch the LOW period of the I2C_SCL signal, it must output the next data bit to the I2C_SDA line  
2
max_rise_time (ID No IC9) + data_setup_time (ID No IC7) = 1000 + 250 = 1250 ns (according to the standard-mode I C bus  
specification) before the I2C_SCL line is released.  
4
C = total capacitance of one bus line in pF.  
b
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
45  
 
 
 
 
 
Electrical Characteristics  
3.5.10 JTAG Interface Timing  
Figure 26 through Figure 29 show respectively the test clock input, boundary scan, test access port, and  
TRST timings for the SJC. Table 50 describes the SJC timing parameters (SJ1–SJ13) indicated in the  
figures.  
SJ1  
SJ2  
VM  
SJ2  
VM  
TCK  
(Input)  
VIH  
VIL  
SJ3  
SJ3  
Figure 26. Test Clock Input Timing Diagram  
TCK  
(Input)  
VIH  
VIL  
SJ5  
SJ4  
Input Data Valid  
Data  
Inputs  
SJ6  
Data  
Outputs  
Output Data Valid  
SJ7  
Data  
Outputs  
SJ6  
Data  
Outputs  
Output Data Valid  
Figure 27. Boundary Scan (JTAG) Timing Diagram  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
46  
Freescale Semiconductor  
 
Electrical Characteristics  
TCK  
(Input)  
VIH  
VIL  
SJ8  
SJ9  
TDI  
TMS  
Input Data Valid  
(Input)  
SJ10  
SJ11  
SJ10  
TDO  
(Output)  
Output Data Valid  
TDO  
(Output)  
TDO  
(Output)  
Output Data Valid  
Figure 28. Test Access Port Timing Diagram  
TCK  
(Input)  
SJ13  
TRST  
(Input)  
SJ12  
Figure 29. TRST Timing Diagram  
Table 50. SJC Timing Parameters  
All Frequencies  
ID  
Parameter  
Unit  
Min.  
Max.  
SJ1  
SJ2  
SJ3  
SJ4  
SJ5  
SJ6  
SJ7  
SJ8  
SJ9  
TCK cycle time  
100  
40  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
TCK clock pulse width measured at VM  
TCK rise and fall times  
Boundary scan input data set-up time  
Boundary scan input data hold time  
TCK low to output data valid  
10  
50  
50  
50  
TCK low to output high impedance  
TMS, TDI data set-up time  
10  
50  
TMS, TDI data hold time  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
47  
Electrical Characteristics  
Table 50. SJC Timing Parameters (continued)  
All Frequencies  
ID  
Parameter  
Unit  
Min.  
Max.  
SJ10 TCK low to TDO data valid  
SJ11 TCK low to TDO high impedance  
SJ12 TRST assert time  
44  
44  
ns  
ns  
ns  
ns  
100  
40  
SJ13 TRST set-up time to TCK low  
VM – mid point voltage  
1
3.5.11 Pulse Width Modulator (PWM) Timing  
Figure 30 depicts the timing of the PWM, and Table 51 lists the PWM timing characteristics.  
The PWM can be programmed to select one of two clock signals as its source frequency: xtal clock or  
hsadc clock. The selected clock signal is passed through a prescaler before being input to the counter. The  
output is available at the pulse width modulator output (PWMO) external pin.  
PWM also supports MATT mode. In this mode, it can be programmed to select one of two clock signals  
as its source frequency, 24-MHz or 32-kHz crystal clock. For a 32-kHz source clock input, the PWM  
outputs the 32-kHz clock directly to PAD.  
1
2a  
3b  
PWM Source Clock  
2b  
4b  
3a  
4a  
PWM Output  
Figure 30. PWM Timing  
Table 51. PWM Output Timing Parameter: Xtal clock  
Ref No.  
Parameter  
Minimum  
Maximum  
Unit  
1
1
System CLK frequency  
Clock high time  
Clock low time  
0
21  
24MHz  
MHz  
ns  
2a  
2b  
21  
ns  
3a  
Clock fall time  
0.3  
ns  
3b  
Clock rise time  
0.3  
ns  
4a  
Output delay time  
Output setup time  
15.08  
ns  
4b  
15.77  
ns  
1
CL of PWMO = 30 pF  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
48  
Freescale Semiconductor  
 
 
Electrical Characteristics  
1
2a  
3b  
PWM Source Clock  
2b  
4b  
3a  
4a  
PWM Output  
Figure 31. PWM Timing  
Table 52. PWM Output Timing Parameter: HSADC clock  
Ref No.  
Parameter  
Minimum  
Maximum  
Unit  
1
1
System CLK frequency  
Clock high time  
Clock low time  
0
6.813  
24.432  
32  
MHz  
ns  
2a  
2b  
ns  
3a  
Clock fall time  
0.3  
0.3  
14.93  
ns  
3b  
Clock rise time  
ns  
4a  
Output delay time  
Output setup time  
ns  
4b  
15.71  
ns  
1
CL of PWMO = 30 pF  
2a  
3b  
2b  
3a  
PWM Source Clock  
4b  
4a  
PWM Output  
Figure 32. PWM Timing  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
49  
Electrical Characteristics  
Table 53. PWM Output Timing Parameter: MATT Mode 24 MHz Crystal Clock  
Ref No.  
Parameter  
Minimum  
Maximum  
Unit  
1
1
System CLK frequency  
Clock high time  
Clock low time  
24  
20.99  
21.01  
24  
MHz  
ns  
2a  
2b  
ns  
3a  
Clock fall time  
0.3  
0.3  
15.23  
ns  
3b  
Clock rise time  
ns  
4a  
Output delay time  
Output setup time  
ns  
4b  
15.92  
ns  
1
CL of PWMO = 30 pF  
3.5.12 Serial Audio Interface (SAIF) AC Timing  
The following subsections describe SAIF timing in two cases:  
Transmitter  
Receiver  
3.5.12.1 SAIF Transmitter Timing  
Figure 33 shows the timing for SAIF transmitter with internal clock, and Table 54 describes the timing  
parameters (SS1–SS13).  
SS1  
SS5  
SS4  
SS3  
SS2  
BITCLK  
SS6  
SS7  
LRCLK  
SS11  
SS8  
SS9  
SS10  
SS12  
SS13  
SDATA0-2  
Figure 33. SAIF Transmitter Timing Diagram  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
50  
Freescale Semiconductor  
 
Electrical Characteristics  
Table 54. SAIF Transmitter Timing  
Parameter  
ID  
Min.  
Max.  
Unit  
SS1  
SS2  
BITCLK period  
81.4  
36.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BITCLK high period  
BITCLK rise time  
SS3  
6.0  
SS4  
BITCLK low period  
BITCLK fall time  
36.0  
SS5  
6.0  
SS6  
BITCLK high to LRCLK high  
BITCLK high to LRCLK low  
LRCLK rise time  
15.0  
15.0  
6.0  
SS7  
SS8  
SS9  
LRCLK fall time  
6.0  
SS10  
SS11  
SS12  
SS13  
BITCLK high to SDATA valid from high impedance  
BITCLK high to SDATA high/low  
15.0  
15.0  
15.0  
6.0  
BITCLK high to SDATA high impedance  
SDATA rise/fall time  
3.5.12.2 SAIF Receiver Timing  
Figure 34 shows the timing for the SAIF receiver with internal clock. Table 55 describes the timing  
parameters (SS1–SS17) shown in the figure.  
SS1  
SS3  
SS5  
SS4  
SS2  
BITCLK  
SS14  
SS15  
LRCLK  
SS16  
SS17  
SDATA0-2  
Figure 34. SAIF Receiver Timing Diagram  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
51  
 
Electrical Characteristics  
Table 55. SAIF Receiver Timing with Internal Clock  
ID  
Parameter  
Min.  
Max.  
Unit  
SS1  
SS2  
BITCLK period  
81.4  
36.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BITCLK high period  
BITCLK rise time  
BITCLK low period  
BITCLK fall time  
SS3  
6.0  
SS4  
36.0  
SS5  
6.0  
15.0  
15.0  
SS14  
SS15  
SS16  
SS17  
BITCLK high to LRCLK high  
BITCLK high to LRCLK low  
SDATA setup time before BITCLK high  
SDATA hold time after BITCLK high  
10.0  
0.0  
3.5.13 SPDIF AC Timing  
SPDIF data is sent using bi-phase marking code. When encoding, the SPDIF data signal is modulated by  
a clock that is twice the bit rate of the data signal.  
The following Table 56 shows SPDIF timing parameters, including the timing of the modulating Tx clock  
(spdif_clk) in SPDIF transmitter as shown in the Figure 35.  
Table 56. SPDIF Timing  
Timing Parameter Range  
Characteristics  
Symbol  
Unit  
Min  
Max  
SPDIFOUT output (Load = 30pf)  
• Skew  
Transition Rising  
Transition Falling  
ns  
1.5  
13.6  
18.0  
Modulating Tx clock (spdif_clk) period  
spdif_clk high period  
spclkp  
spclkph  
spclkpl  
81.4  
65.1  
65.1  
ns  
ns  
ns  
spdif_clk low period  
spclkp  
spclkpl  
spclkph  
spdif_clk  
(Input)  
Figure 35. spdif_clk Timing  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
52  
Freescale Semiconductor  
 
 
Electrical Characteristics  
3.5.14 Synchronous Serial Port (SSP) AC Timing  
This section describes the electrical information of the SSP, which includes SD/MMC4.3 (Single Data  
Rate) timing, MMC4.4 (Dual Date Rate) timing, MS (Memory Stick) timing, and SPI timing.  
3.5.14.1 SD/MMC4.3 (Single Data Rate) AC Timing  
Figure 36 depicts the timing of SD/MMC4.3, and Table 57 lists the SD/MMC4.3 timing characteristics.  
SD4  
SD2  
SD1  
SD5  
SCK  
SD3  
CMD  
DAT0  
DAT1  
SD6  
output from SSP to card  
......  
DAT7  
SD7  
SD8  
CMD  
DAT0  
DAT1  
......  
input from card to SSP  
DAT7  
Figure 36. SD/MMC4.3 Timing  
Table 57. SD/MMC4.3 Interface Timing Specification  
ID  
Card Input Clock  
Parameter  
Symbols  
Min  
Max  
Unit  
1
SD1  
Clock Frequency (Low Speed)  
f
f
0
0
400  
kHz  
PP  
2
Clock Frequency (SD/SDIO Full Speed/High  
Speed)  
25/50  
MHz  
PP  
3
Clock Frequency (MMC Full Speed/High Speed)  
Clock Frequency (Identification Mode)  
Clock Low Time  
f
0
100  
7
20/52  
400  
MHz  
kHz  
ns  
PP  
f
OD  
SD2  
SD3  
SD4  
SD5  
t
WL  
Clock High Time  
t
7
ns  
WH  
TLH  
THL  
Clock Rise Time  
t
t
3
ns  
Clock Fall Time  
3
ns  
SSP Output / Card Inputs CMD, DAT (Reference to CLK)  
SD6 SSP Output Delay  
SSP Input / Card Outputs CMD, DAT (Reference to CLK)  
t
-5  
5
ns  
OD  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
53  
 
 
Electrical Characteristics  
Table 57. SD/MMC4.3 Interface Timing Specification (continued)  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
SD7  
SD8  
SSP Input Setup Time  
SSP Input Hold Time  
t
2.5  
2.5  
ns  
ns  
ISU  
4
t
IH  
1
2
In low speed mode, the card clock must be lower than 400 kHz, and the voltage ranges from 2.7 to 3.6 V.  
In normal speed mode for the SD/SDIO card, clock frequency can be any value between 0 ~ 25 MHz. In high speed mode,  
clock frequency can be any value between 0 ~ 50 MHz.  
3
4
In normal speed mode for MMC card, clock frequency can be any value between 0 ~ 20 MHz. In high speed mode, clock  
frequency can be any value between 0 ~ 52MHz.  
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2ns.  
3.5.14.2 MMC4.4 (Dual Data Rate) AC Timing  
Figure 37 depicts the timing of MMC4.4, and Table 58 lists the MMC4.4 timing characteristics. Be aware  
that only DATA0–DATA7 are sampled on both edges of the clock (not applicable to CMD).  
SD1  
SCK  
SD2  
SD2  
DAT0  
DAT1  
output from SSP to card  
input from card to SSP  
......  
......  
......  
DAT7  
SD3  
SD4  
DAT0  
DAT1  
......  
DAT7  
Figure 37. MMC4.4 Timing  
Table 58. MMC4.4 Interface Timing Specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1 Clock Frequency (MMC Full Speed/High Speed)  
SSP Output / Card Inputs CMD, DAT (Reference to CLK)  
SD2 SSP Output Delay  
SSP Input / Card Outputs CMD, DAT (Reference to CLK)  
f
0
52  
5
MHz  
ns  
PP  
t
–5  
OD  
SD3  
SD4  
SSP Input Setup Time  
SSP Input Hold Time  
t
2.5  
2.5  
ns  
ns  
ISU  
t
IH  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
54  
Freescale Semiconductor  
 
 
Electrical Characteristics  
3.5.14.3 MS (Memory Stick) AC Timing  
The SSP module, which also has the function of a memory stick host controller, is compatible with the  
Sony Memory Stick version 1.x and Memory Stick PRO.  
Figure 38, Figure 39 and Table 40 show the timing of the Memory Stick. Table 59 and Table 60 list the  
Memory Stick timing characteristics.  
MS1  
80%  
50%  
20%  
80%  
50%  
20%  
80%  
50%  
20%  
SCK  
MS2  
MS3  
MS5  
MS4  
Figure 38. MS Clock Time Waveforms  
MS1  
SCK  
BS(CMD)  
MS6  
MS8  
MS7  
MS9  
DATA  
(Output)  
MS10  
DATA  
(Input)  
Figure 39. MS Serial Transfer Mode Timing Diagram  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
55  
 
 
Electrical Characteristics  
MS1  
SCK  
BS(CMD)  
MS11  
MS13  
MS12  
MS14  
DATA  
(Output)  
MS15  
DATA  
(Input)  
Figure 40. MS Parallel Transfer Mode Timing Diagram  
Table 59. MS Serial Transfer Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
Unit  
MS1  
MS2  
MS3  
MS4  
MS5  
MS6  
MS7  
MS8  
MS9  
MS10  
SCK Cycle Time  
SCK High Pulse Time  
SCK Low Pulse Time  
SCK Rise Time  
tCLKc  
tCLKwh  
tCLKwl  
tCLKr  
tCLKf  
tBSsu  
tBSh  
50  
15  
15  
5
10  
10  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK Fall Time  
BS Setup Time  
BS Hold Time  
5
DATA Setup Time  
DATA Hold Time  
DATA Input Delay Time  
tDsu  
5
tDh  
5
tDd  
Table 60. MS Parallel Transfer Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
Unit  
MS1  
MS2  
MS3  
MS4  
SCK Cycle Time  
SCK High Pulse Time  
SCK Low Pulse Time  
SCK Rise Time  
tCLKc  
tCLKwh  
tCLKwl  
tCLKr  
25  
5
10  
ns  
ns  
ns  
ns  
5
i.MX28 Applications Processors for Consumer Products, Rev. 3  
56  
Freescale Semiconductor  
Electrical Characteristics  
Table 60. MS Parallel Transfer Timing Parameters (continued)  
ID  
Parameter  
Symbol  
Min  
Max  
Unit  
MS5  
MS11  
MS12  
MS13  
MS14  
MS15  
SCK Fall Time  
BS Setup Time  
tCLKf  
tBSsu  
tBSh  
tDsu  
tDh  
8
10  
15  
ns  
ns  
ns  
ns  
ns  
ns  
BS Hold Time  
1
DATA Setup Time  
DATA Hold Time  
DATA Input Delay Time  
8
1
tDd  
3.5.14.4 SPI AC Timing  
Figure 41 depicts the master mode and slave mode timings of the SPI, and Table 61 lists the timing  
parameters.  
SSn  
CS1  
CS5  
CS3  
CS2  
CS6  
CS4  
SCK  
CS3  
CS2  
CS9  
CS7  
CS10  
MISO  
CS8  
MOSI  
Figure 41. SPI Interface Timing Diagram  
Table 61. SPI Interface Timing Parameters  
Parameter Symbol  
ID  
Min.  
Max.  
Unit  
CS1  
CS2  
CS3  
CS4  
CS5  
CS6  
CS7  
CS8  
CS9  
CS10  
SCK cycle time  
t
50  
25  
25  
25  
25  
5
7.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
clk  
SCK high or low time  
SCK rise or fall  
t
SW  
RISE/FALL  
t
SSn pulse width  
t
CSLH  
SSn lead time (CS setup time)  
SSn lag time (CS hold time)  
MOSI setup time  
t
t
SCS  
HCS  
t
t
t
t
Smosi  
Hmosi  
Smiso  
Hmiso  
MOSI hold time  
5
MISO setup time  
5
MISO hold time  
5
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
57  
 
 
Electrical Characteristics  
3.5.15 UART (UARTAPP and DebugUART) AC Timing  
This section describes the UART module AC timing which is applicable to both UARTAPP and  
DebugUART.  
3.5.15.1 UART Transmit Timing  
Figure 39 shows the UART transmit timing, showing only eight data bits and one stop bit. Table 62  
describes the timing parameter (UA1) shown in the figure.  
Possible  
UA1  
UA1  
Parity  
Bit  
Next  
Start  
Bit  
Start  
Bit  
TXD  
(output)  
STOP  
BIT  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA1  
UA1  
Figure 42. UART Transmit Timing Diagram  
Table 62. UART Transmit Timing Parameters  
ID  
Parameter  
Symbol  
Min.  
Max.  
+ T  
ref_clk  
Unit  
1
2
UA1  
Transmit Bit Time  
t
1/F  
– T  
1/F  
Tbit  
baud_rate  
ref_clk  
baud_rate  
1
2
F
: Baud rate frequency. The maximum baud rate the UARTAPP can support is 3.25 Mbps. The maximum baud rate of  
baud_rate  
DebugUART is 115.2 kbps.  
T
: The period of UART reference clock ref_clk (which is APBX clock = 24 MHz).  
ref_clk  
3.5.15.2 UART Receive Timing  
Figure 43 shows the UART receive timing, showing only eight data bits and one stop bit. Table 63  
describes the timing parameter (UA2) shown in the figure.  
Possible  
UA2  
Parity  
Bit  
UA2  
Next  
Start  
Bit  
Start  
Bit  
RXD  
(input)  
STOP  
BIT  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA2  
UA2  
Figure 43. UART Receive Timing Diagram  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
58  
Freescale Semiconductor  
 
 
Package Information and Contact Assignments  
Table 63. UART Receive Timing Parameters  
ID  
Parameter  
Symbol  
Min.  
Max.  
Unit  
1
2
UA2  
Receive bit time  
t
1/F  
– 1/(16 1/F  
)
+ 1/(16  
)
baud_rate  
Rbit  
baud_rate  
× F  
baud_rate  
× F  
baud_rate  
1
2
The UART receiver can tolerate 1/(16 × F  
) tolerance in each bit. But accumulation tolerance in one frame must not  
baud_rate  
exceed 3/(16 × F  
).  
baud_rate  
F
: Baud rate frequency. The maximum baud rate the UARTAPP can support is 3.25 Mbps. The maximum baud rate of  
baud_rate  
DebugUART is 115 kbps.  
4 Package Information and Contact Assignments  
4.1  
Case MAPBGA-289, 14 x 14 mm, 0.8 mm Pitch  
The following notes apply to Figure 44:  
All dimensions are in millimeters.  
Dimensioning and tolerancing per ASME Y14.5M-1994.  
Maximum solder bump diameter measured parallel to datum A.  
Datum A, the seating plane, is determined by the spherical crowns of the solder bumps.  
Parallelism measurement excludes any effect of mark on top surface of package.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
59  
Package Information and Contact Assignments  
Figure 44 shows the i.MX28 production package.  
Figure 44. zzxzi.MX28 Production Package  
4.2  
Ground, Power, Sense, and Reference Contact Assignments  
Table 64 shows power and ground contact assignments for the MAPBGA package.  
Table 64. MAPBGA Power and Ground Contact Assignments  
Contact Name  
VDDA1  
Contact Assignment  
C13  
VDDD  
G12,G11,F10,F11,K12,F12,G10  
G8,F9,F8,G9  
VDDIO18  
VDDIO33  
VDDIO33_EMI  
VDDIO_EMI  
H8,J8,N3,G3,E6,J9,J10,A7,E16  
N17  
P11,R13,N13,N15,G17,M12,M10,G13,M11,L13,G15  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
60  
Freescale Semiconductor  
 
 
Package Information and Contact Assignments  
Table 64. MAPBGA Power and Ground Contact Assignments (continued)  
Contact Name Contact Assignment  
VDDIO_EMIQ  
K15,J13,R15  
C12  
VDDXTAL  
VSS  
E15,L11,A1,K10,K11,J11,M14,H11,U1,H9,H12,H3,K9,C16,L10,H16,J12,H10,B7,E5,J15,A9,N4  
VSSA1  
B13  
VSSA2  
B11  
VSSIO_EMI  
F16,R10,H14,M16,F14,L12,P16,U17,T14,P14,R12  
4.3  
Signal Contact Assignments  
Table 65 lists the i.MX287 MAPBGA package signal contact assignments.  
Table 65. i.MX287 MAPBGA Contact Assignments  
Contact  
Assignment  
Contact  
Assignment  
Contact  
Assignment  
Signal Name  
Signal Name  
Signal Name  
AUART0_CTS  
AUART0_RTS  
AUART0_RX  
AUART0_TX  
AUART1_CTS  
AUART1_RTS  
AUART1_RX  
AUART1_TX  
AUART2_CTS  
AUART2_RTS  
AUART2_RX  
AUART2_TX  
AUART3_CTS  
AUART3_RTS  
AUART3_RX  
AUART3_TX  
BATTERY  
J6  
J7  
EMI_DQS1N  
EMI_ODT0  
J16  
LCD_D17  
R3  
R17  
T17  
R16  
R14  
K13  
T15  
J4  
LCD_D18  
U4  
T4  
G5  
H5  
K5  
EMI_ODT1  
LCD_D19  
EMI_RASN  
LCD_D20  
R4  
U5  
T5  
EMI_VREF0  
EMI_VREF1  
EMI_WEN  
LCD_D21  
J5  
LCD_D22  
L4  
LCD_D23  
R5  
N1  
N5  
M1  
P4  
M6  
M4  
L1  
K4  
ENET0_COL  
EN ET0_CRS  
ENET0_MDC  
ENET0_MDIO  
ENET0_RXD0  
ENET0_RXD1  
EN ET0_RXD2  
ENET0_RXD3  
LCD_DOTCLK  
LCD_ENABLE  
LCD_HSYNC  
LCD_RD_E  
LCD_RESET  
LCD_RS  
H6  
H7  
F6  
J3  
G4  
H4  
F5  
H1  
L6  
H2  
K6  
J1  
LCD_VSYNC  
M5  
L5  
J2  
LCD_WR_RWN K1  
ENET0_RX_CLK F3  
ENET0_RX_EN E4  
LRADC0  
LRADC1  
LRADC2  
LRADC3  
LRADC4  
LRADC5  
C15  
A15  
B15  
A17  
B17  
A16  
C9  
DCDC_BATT  
DCDC_GND  
DCDC_LN1  
ENET0_TXD0  
ENET0_TXD1  
ENET0_TXD2  
ENET0_TXD3  
F1  
F2  
G1  
G2  
C8  
D9  
D13  
D15  
DCDC_LP  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
61  
 
Package Information and Contact Assignments  
Table 65. i.MX287 MAPBGA Contact Assignments (continued)  
Contact  
Assignment  
Contact  
Assignment  
Contact  
Assignment  
Signal Name  
Signal Name  
Signal Name  
DCDC_VDDA  
DCDC_VDDD  
DCDC_VDDIO  
DEBUG  
B16  
ENET0_TX_CLK E3  
ENET0_TX_EN F4  
LRADC6  
C14  
D17  
C17  
B9  
PSWITCH  
A11  
K7  
ENET_CLK  
GPMI_ALE  
GPMI_CE0N  
GPMI_CE1N  
GPMI_CE2N  
GPMI_CE3N  
GPMI_CLE  
GPMI_D00  
GPMI_D01  
GPMI_D02  
GPMI_D03  
GPMI_D04  
GPMI_D05  
GPMI_D06  
GPMI_D07  
GPMI_RDN  
GPMI_RDY0  
GPMI_RDY1  
GPMI_RDY2  
GPMI_RDY3  
E2  
PWM0  
P6  
N7  
N9  
M7  
M9  
P7  
U8  
T8  
R8  
U7  
T7  
R7  
U6  
T6  
R6  
N6  
N8  
M8  
L8  
PWM1  
L7  
EMI_A00  
EMI_A01  
EMI_A02  
EMI_A03  
EMI_A04  
EMI_A05  
EMI_A06  
EMI_A07  
EMI_A08  
EMI_A09  
EMI_A10  
EMI_A11  
EMI_A12  
EMI_A13  
EMI_A14  
EMI_BA0  
EMI_BA1  
EMI_BA2  
EMI_CASN  
EMI_CE0N  
EMI_CE1N  
EMI_CKE  
EMI_CLK  
EMI_CLKN  
EMI_D00  
EMI_D01  
EMI_D02  
EMI_D03  
U15  
U12  
U14  
T11  
U10  
R11  
R9  
PWM2  
K8  
PWM3  
E9  
PWM4  
E10  
A14  
D11  
C11  
F7  
RESETN  
RTC_XTALI  
RTC_XTALO  
SAIF0_BITCLK  
SAIF0_LRCLK  
SAIF0_MCLK  
SAIF0_SDATA0  
SAIF1_SDATA0  
SPDIF  
N11  
U9  
G6  
G7  
E7  
P10  
U13  
T10  
U11  
T9  
E8  
D7  
A4  
SSP0_CMD  
SSP0_DATA0  
SSP0_DATA1  
SSP0_DATA2  
SSP0_DATA3  
SSP0_DATA4  
SSP0_DATA5  
SSP0_DATA6  
SSP0_DATA7  
B6  
N10  
T16  
T12  
N12  
U16  
P12  
P9  
C6  
D6  
A5  
B5  
GPMI_RESETN L9  
C5  
D5  
B4  
GPMI_WRN  
HSADC0  
P8  
B14  
C7  
T13  
L17  
L16  
N16  
M13  
P15  
N14  
I2C0_SCL  
I2C0_SDA  
JTAG_RTCK  
JTAG_TCK  
JTAG_TDI  
JTAG_TDO  
JTAG_TMS  
SSP0_DETECT D10  
D8  
SSP0_SCK  
SSP1_CMD  
SSP1_DATA0  
SSP1_DATA3  
SSP1_SCK  
SSP2_MISO  
A6  
C1  
D1  
E1  
B1  
B3  
E14  
E11  
E12  
E13  
D12  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
62  
Freescale Semiconductor  
Package Information and Contact Assignments  
Table 65. i.MX287 MAPBGA Contact Assignments (continued)  
Contact  
Assignment  
Contact  
Assignment  
Contact  
Assignment  
Signal Name  
Signal Name  
Signal Name  
EMI_D04  
EMI_D05  
EMI_D06  
EMI_D07  
EMI_D08  
EMI_D09  
EMI_D10  
EMI_D11  
EMI_D12  
EMI_D13  
EMI_D14  
EMI_D15  
P13  
JTAG_TRST  
LCD_CS  
D14  
SSP2_MOSI  
SSP2_SCK  
SSP2_SS0  
SSP2_SS1  
SSP2_SS2  
SSP3_MISO  
SSP3_MOSI  
SSP3_SCK  
SSP3_SS0  
TESTMODE  
USB0DM  
C3  
P17  
L14  
M17  
G16  
H15  
G14  
J14  
P5  
K2  
K3  
L2  
A3  
LCD_D00  
LCD_D01  
LCD_D02  
LCD_D03  
LCD_D04  
LCD_D05  
LCD_D06  
LCD_D07  
LCD_D08  
LCD_D09  
LCD_D10  
C4  
D3  
D4  
B2  
L3  
M2  
M3  
N2  
P1  
P2  
P3  
R1  
C2  
A2  
H13  
H17  
F13  
F17  
D2  
C10  
A10  
B10  
B8  
USB0DP  
EMI_DDR_OPE K14  
N
USB1DM  
EMI_DDR_OPE L15  
N_FB  
LCD_D11  
R2  
USB1DP  
A8  
EMI_DQM0  
EMI_DQM1  
EMI_DQS0  
EMI_DQS0N  
EMI_DQS1  
M15  
F15  
K17  
K16  
J17  
LCD_D12  
LCD_D13  
LCD_D14  
LCD_D15  
LCD_D16  
T1  
T2  
U2  
U3  
T3  
VDD1P5  
VDD4P2  
VDD5V  
XTALI  
D16  
A13  
E17  
A12  
B12  
XTALO  
4.4  
i.MX280 Ball Map  
Table 66 shows the i.MX280 MAPBGA ball map.  
Table 66. 289-Pin i.MX280 MAPBGA Ball Map  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
63  
 
 
Package Information and Contact Assignments  
Table 66. 289-Pin i.MX280 MAPBGA Ball Map (continued)  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
64  
Freescale Semiconductor  
Package Information and Contact Assignments  
Table 66. 289-Pin i.MX280 MAPBGA Ball Map (continued)  
4.5  
i.MX283 Ball Map  
Table 67 shows the i.MX283 MAPBGA ball map.  
Table 67. 289-Pin i.MX283 MAPBGA Ball Map  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
65  
 
 
Package Information and Contact Assignments  
Table 67. 289-Pin i.MX283 MAPBGA Ball Map (continued)  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
66  
Freescale Semiconductor  
Package Information and Contact Assignments  
Table 67. 289-Pin i.MX283 MAPBGA Ball Map (continued)  
4.6  
i.MX286 Ball Map  
Table 68 shows the i.MX286 MAPBGA ball map.  
Table 68. 289-Pin i.MX286 MAPBGA Ball Map  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
67  
 
Package Information and Contact Assignments  
Table 68. 289-Pin i.MX286 MAPBGA Ball Map (continued)  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
68  
Freescale Semiconductor  
Package Information and Contact Assignments  
Table 68. 289-Pin i.MX286 MAPBGA Ball Map (continued)  
4.7  
i.MX287 Ball Map  
Table 69 shows the i.MX287 MAPBGA Ball Map.  
Table 69. 289-Pin i.MX287 MAPBGA Ball Map  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
69  
 
Package Information and Contact Assignments  
Table 69. 289-Pin i.MX287 MAPBGA Ball Map (continued)  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
70  
Freescale Semiconductor  
Package Information and Contact Assignments  
Table 69. 289-Pin i.MX287 MAPBGA Ball Map (continued)  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
71  
Revision History  
5 Revision History  
Table 70 summarizes revisions to this document.  
Table 70. Document Revision History  
Substantive Change(s)  
Rev.  
Number  
Date  
,
Rev. 3 07/2012 • Removed the Power Consumption table, and added Table 12, "Run IDD Test Case ," on page 14.  
• Updated Table 23, "ON Impedance of EMI Drivers for Different Drive Strengths," on page 20.  
Rev. 2 03/2012 • In Section 1.1, “Device Features:”  
—Updated synchronous serial ports (SSP) support for the i.MX28  
—Updated Ethernet support for the i.MX28  
—Updated Low-Resolution A/D Converter (LRADC) support for the i.MX28  
• Updated Table 2, "i.MX28 Functional Differences," on page 4.  
• In Table 6, "DC Absolute Maximum Ratings," on page 12, removed the PSWITCH parameter as this  
paramater is explained in detail in Table 11.  
• In Table 8, "Recommended Power Supply Operating Conditions," on page 13:  
—Updated two parameters: “VDD5V Supply Voltage” and “Offstate Current”  
—Updated the third footnote  
• In Table 9, "Operating Temperature Conditions," on page 13, added a new footnote in the “Parameter”  
column.  
• In Table 13, "Power Supply Characteristics," on page 15, updated the “VDD4P2 Output Current Limit  
Accuracy” parameter.  
• In Section 3.1.2.1, “Recommended Operating Conditions for Specific Clock Targets:”  
—Removed the “System Clocks” table  
—Updated two TBD values in the first row of Table 14  
—Removed the first row in Table 15  
—Removed the first row in Table 16  
• In Table 20, "Power Mode Settings," on page 17, changed the second column name from “Deep Sleep”  
to “Offstate.”  
• Updated Table 22, "EMI Digital Pin DC Characteristics," on page 20.  
• In Table 30, "LRADC Electrical Specifications," on page 27, updated the “DC Electrical Specification”  
section.  
• In Table 31, "HSADC Electrical Specification," on page 28, updated the “DC Electrical Specification”  
section.  
• In Section 3.5.5, “Coresight ETM9 AC Interface Timing,” updated the first paragraph.  
• In Section 3.5.5.1, “TRACECLK Timing,” corrected the title of Table 43.  
• In Section 3.5.5.2, “Trace Data Signal Timing,” corrected the titles of Figure 15 and Table 44.  
Rev. 1 04/2011 • Updated Section 1.1, “Device Features.”  
• Added Section 3.2, “Thermal Characteristics.”  
• In Table 1, "Ordering Information," on page 3, added two rows.  
• Updated Table 2, "i.MX28 Functional Differences," on page 4.  
• Updated Table 4, "i.MX28 Digital and Analog Modules," on page 7.  
• In Table 8, "Recommended Power Supply Operating Conditions," on page 13, updated BATT row.  
• Updated Table 9, "Operating Temperature Conditions," on page 13.  
• Replaced the term “DC Characteristics” with “Power Consumption” in the title and introduction of the  
Power Consumption table. Also changed Dissipation to Consumption in first row.  
• Updated Table 25, "Digital Pin DC Characteristics for GPIO in 3.3-V Mode," on page 21.  
• Updated Table 26, "Digital Pin DC Characteristics for GPIO in 1.8 V Mode," on page 22.  
• Updated and added a footnote to Table 33, "Ethernet PLL Specifications," on page 29.  
• Updated DDR1 row of Table 34, "EMI Command/Address AC Timing," on page 30.  
• Added Section 4.4, “i.MX280 Ball Map.”  
• In Section 4.5, “i.MX283 Ball Map,updated Figure 67.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
72  
Freescale Semiconductor  
 
Revision History  
Table 70. Document Revision History (continued)  
Substantive Change(s)  
Rev.  
Number  
Date  
Rev. 0 09/2010 Initial release.  
i.MX28 Applications Processors for Consumer Products, Rev. 3  
Freescale Semiconductor  
73  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or  
+1-480-768-2130  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Europe, Middle East, and Africa:  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064  
Japan  
0120 191014 or  
+81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
Semiconductor was negligent regarding the design or manufacture of the part.  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,  
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their  
respective owners. ARM is the registered trademark of ARM Limited. ARM9 is a  
trademark of ARM Limited.  
© 2012 Freescale Semiconductor, Inc. All rights reserved.  
Document Number: IMX28CEC  
Rev. 3  
07/2012  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY