MCIMX6G3CVK05AB [NXP]

i.MX 6UltraLite;
MCIMX6G3CVK05AB
型号: MCIMX6G3CVK05AB
厂家: NXP    NXP
描述:

i.MX 6UltraLite

文件: 总132页 (文件大小:2175K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: IMX6ULIEC  
Rev. 2.2, 05/2017  
NXP Semiconductors  
Data Sheet: Technical Data  
MCIMX6G1CVM05AA  
MCIMX6G1CVM05AB  
MCIMX6G2CVM05AB  
MCIMX6G3CVM05AB  
MCIMX6G2CVK05AB  
MCIMX6G3CVK05AB  
MCIMX6G2CVM05AA  
MCIMX6G3CVM05AA  
MCIMX6G2CVK05AA  
MCIMX6G3CVK05AA  
i.MX 6UltraLite  
Applications Processors  
for Industrial Products  
Package Information  
Plastic Package  
BGA 14 x 14 mm, 0.8 mm pitch  
BGA 9 x 9 mm, 0.5 mm pitch  
Ordering Information  
See Table 1 on page 3  
1. i.MX 6UltraLite introduction . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 3  
1.2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2. Architectural overview . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3. Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.1. Special signal considerations . . . . . . . . . . . . . . . 17  
3.2. Recommended connections for unused analog  
1 i.MX 6UltraLite introduction  
The i.MX 6UltraLite is a high performance, ultra  
efficient processor family featuring NXP’s advanced  
®
implementation of the single ARM Cortex -A7 core,  
which operates at speeds up to 528 MHz. The i.MX  
6UltraLite includes an integrated power management  
module that reduces the complexity of the external  
power supply and simplifies the power sequencing. Each  
processor in this family provides various memory  
interfaces, including LPDDR2, DDR3, DDR3L, Raw  
and Managed NAND flash, NOR flash, eMMC, Quad  
SPI, and a wide range of other interfaces for connecting  
peripherals, such as WLAN, Bluetooth™, GPS,  
displays, and camera sensors.  
interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.1. Chip-Level conditions . . . . . . . . . . . . . . . . . . . . . 20  
4.2. Power supplies requirements and restrictions . . . 28  
4.3. Integrated LDO voltage regulator parameters . . . 29  
4.4. PLL’s electrical characteristics . . . . . . . . . . . . . . . 31  
4.5. On-Chip oscillators . . . . . . . . . . . . . . . . . . . . . . . 32  
4.6. I/O DC parameters . . . . . . . . . . . . . . . . . . . . . . . 33  
4.7. I/O AC parameters . . . . . . . . . . . . . . . . . . . . . . . . 37  
4.8. Output buffer impedance parameters . . . . . . . . . 40  
4.9. System modules timing . . . . . . . . . . . . . . . . . . . . 43  
4.10. Multi-Mode DDR Controller (MMDC) . . . . . . . . . . 53  
4.11. General-Purpose Media Interface (GPMI) timing 54  
4.12. External peripheral interface parameters . . . . . . 62  
4.13. A/D converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
5. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 95  
5.1. Boot mode configuration pins . . . . . . . . . . . . . . . 95  
5.2. Boot device interface allocation . . . . . . . . . . . . . . 96  
6. Package information and contact assignments . . . . . . 103  
6.1. 14x14 mm package information . . . . . . . . . . . . 103  
6.2. 9x9 mm package information . . . . . . . . . . . . . . 116  
6.3. GPIO reset behaviors during reset . . . . . . . . . . 129  
The i.MX 6UltraLite is specifically useful for  
applications such as:  
Electronics Point-of-Sale device  
Telematics  
© 2016-2017 NXP B.V.  
i.MX 6UltraLite introduction  
IoT Gateway  
Access control panels  
Human Machine Interfaces (HMI)  
Smart appliances  
1
The features of the i.MX 6UltraLite processor include :  
Single-core ARM Cortex-A7—The single core A7 provides a cost-effective and power-efficient  
solution.  
Multilevel memory system—The multilevel memory system of each device is based on the L1  
instruction and data caches, L2 cache, and internal and external memory. The device supports  
many types of external memory devices, including DDR3, low voltage DDR3, LPDDR2, NOR  
Flash, NAND Flash (MLC and SLC), OneNAND™, Quad SPI, and managed NAND, including  
eMMC up to rev 4.4/4.41/4.5.  
Smart speed technology—Power management implemented throughout the IC that enables  
multimedia features and peripherals to consume minimum power in both active and various low  
power modes.  
Dynamic voltage and frequency scaling—The processor improves the power efficiency by scaling  
the voltage and frequency to optimize performance.  
Multimedia powerhouse—Multimedia performance is enhanced by a multilevel cache system,  
NEON™ MPE (Media Processor Engine) co-processor, a programmable smart DMA (SDMA)  
controller, an asynchronous audio sample rate converter, and a Pixel processing pipeline (PXP) to  
support 2D image processing, including color-space conversion, scaling, alpha-blending, and  
rotation.  
Ethernet interfaces—10/100 Mbps Ethernet controllers.  
Human-machine interface—Support one digital parallel display interface.  
Interface flexibility—Each processor supports connections to a variety of interfaces: High-speed  
USB on-the-go with PHY, multiple expansion card port (high-speed MMC/SDIO host and other),  
12-bit ADC module, CAN port, smart card interface compatible with EMV Standard v4.3, and a  
2
2
variety of other popular interfaces (such as UART, I C, and I S serial audio).  
Advanced security—The processor deliver hardware-enabled security features that enable secure  
e-commerce, digital rights management (DRM), information encryption, secure boot, and secure  
software downloads. The security features are discussed in detail in the i.MX 6UltraLite Security  
Reference Manual (IMX6ULSRM).  
Integrated power management—The processor integrates linear regulators and internally generate  
voltage levels for different domains. This significantly simplifies system power management  
structure.  
For a comprehensive list of the i.MX 6UltraLite features, see Section 1.2, “Features".  
1. The actual feature set depends on the part numbers as described in the Table 1 and Table 2.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
2
NXP Semiconductors  
i.MX 6UltraLite introduction  
1.1  
Ordering information  
Table 1 provides examples of orderable part numbers covered by this data sheet.  
Table 1. Ordering Information  
Junction  
Temperature Tj  
(C)  
Part Number  
Feature  
Package  
MCIMX6G1CVM05AA  
MCIMX6G1CVM05AB  
MCIMX6G2CVM05AA  
MCIMX6G2CVM05AB  
MCIMX6G3CVM05AA  
MCIMX6G3CVM05AB  
MCIMX6G2CVK05AA  
MCIMX6G2CVK05AB  
MCIMX6G3CVK05AA  
MCIMX6G3CVK05AB  
Single Core, 528 MHz 14 x 14 mm, 0.8 pitch, BGA  
Single Core, 528 MHz 14 x 14 mm, 0.8 pitch, BGA  
Single Core, 528 MHz 14 x 14 mm, 0.8 pitch, BGA  
Single Core, 528 MHz 14 x 14 mm, 0.8 pitch, BGA  
Single Core, 528 MHz 14 x 14 mm, 0.8 pitch, BGA  
Single Core, 528 MHz 14 x 14 mm, 0.8 pitch, BGA  
Single Core, 528 MHz 9 x 9 mm, 0.5 pitch, BGA  
Single Core, 528 MHz 9 x 9 mm, 0.5 pitch, BGA  
Single Core, 528 MHz 9 x 9 mm, 0.5 pitch, BGA  
Single Core, 528 MHz 9 x 9 mm, 0.5 pitch, BGA  
-40 to +105  
-40 to +105  
-40 to +105  
-40 to +105  
-40 to +105  
-40 to +105  
-40 to +105  
-40 to +105  
-40 to +105  
-40 to +105  
Figure 1 describes the part number nomenclature so that characteristics of a specific part number can be  
identified (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The  
primary characteristic which describes which data sheet applies to a specific part is the temperature grade  
(junction) field.  
The i.MX 6UltraLite Applications Processors for Industrial Products Data Sheet (IMX6ULIEC)  
covers parts listed with a “C (Industrial temp)”  
Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field  
and matching it to the proper data sheet. If there are any questions, visit the web page nxp.com/imx6series  
or contact an NXP representative for details.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
3
i.MX 6UltraLite introduction  
+
A
MC  
IMX6  
X
@
VV  
$$  
%
Silicon Rev  
A
Rev. 1.0 (Maskset ID:  
0N52P)  
A
Qualification Level  
MC  
Prototype Samples  
Mass Production  
Special  
PC  
MC  
SC  
Rev. 1.1 (Maskset ID:  
1N52P)  
Rev. 1.2 (Maskset ID  
2N52P)  
B
Fuse Option  
%
Reserved  
A
i.MX 6 Family  
X
ARM Cortex-A7 Frequency  
528 MHz  
$$  
05  
07  
i.MX 6UltraLite  
G
696 MHz  
ROHS  
VM  
Package Type  
Part Differentiator  
@
Pac Enha Stand eFuse L2  
USB Ethernet  
with (10/100M)  
PHY  
C
A
N
U
A
R
T
I2 SPI I2S Timer ADC CSI  
L
C
D
MAPBGA 14x14 0.8 mm  
kage nced ard  
Secur Secur  
bit  
Cache  
C
/PWM  
MAPBGA 9x9 0.5 mm  
VK  
ity  
Y
Y
Y
Y
-
ity  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Commercial  
Industrial  
Commercial  
Industrial  
Automotive  
Commercial  
Industrial  
Commercial  
Industrial  
2048 128 KB  
2048 128 KB  
2048 128 KB  
2048 128 KB  
1536 128 KB  
1536 128 KB  
1536 128 KB  
1536 128 KB  
1536 128 KB  
1024 128 KB  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
1
8
8
8
8
8
8
8
8
8
8
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
4/8  
4/8  
4/8  
4/8  
4/8  
4/8  
4/8  
4/8  
4/8  
4/8  
2
2
2
2
2
2
2
2
2
1
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
VM  
VK  
3
2
Junction Temperature (Tj)  
+
D
C
A
VM  
VK  
-
Commercial: 0 to + 95 °C  
Industrial: -40 to +105 °C  
Auto: -40 to + 125 °C  
-
-
Automotive  
Industrial  
VM  
VM  
-
-
Y
-
1024 128 KB  
2
1
1
1
1
0
8
4
4
2
4
2
3
1
4/8  
2/4  
1
1
-
-
-
-
1
0
Commercial  
512  
0 KB  
Figure 1. Part Number Nomenclature—i.MX 6UltraLite  
Table 2 shows the detailed information about peripherals.  
1,2,3  
Table 2. Detailed Peripherals Information  
Peripheral Name  
Ethernet  
Instance G0 G1  
G2  
G3  
ENET1  
ENET2  
OTG1  
OTG2  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
NA  
Y
NA  
Y
USB with PHY  
CAN  
NA  
NA  
NA  
NA  
NA  
Y
Y
FLEXCAN1  
FLEXCAN2  
CSI  
Y
NA  
NA  
NA  
Y
CSI  
LCD  
QSPI  
LCDIF  
QSPI  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
4
i.MX 6UltraLite introduction  
1,2,3  
Table 2. Detailed Peripherals Information (continued)  
Instance G0 G1  
uSDHC1  
Peripheral Name  
G2  
G3  
SDIO  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
uSDHC2  
UART1  
UART2  
UART3  
UART4  
UART5  
UART6  
UART7  
UART8  
SIM1  
Y
UART  
Y
Y
Y
Y
NA  
NA  
NA  
NA  
NA  
NA  
Y
ISO7816-3  
I2C  
SIM2  
I2C1  
I2C2  
Y
I2C3  
NA  
NA  
Y
I2C4  
SPI  
ECSPI1  
ECSPI2  
ECSPI3  
ECSPI4  
SAI1  
Y
NA  
NA  
Y
I2S/SAI  
SAI2  
NA  
NA  
SAI3  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
5
i.MX 6UltraLite introduction  
1,2,3  
Table 2. Detailed Peripherals Information (continued)  
Peripheral Name  
Instance G0 G1  
G2  
G3  
Timer/PWM  
EPIT1  
EPIT2  
GPT1  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
NA  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
NA  
Y
GPT2  
NA  
Y
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
PWM8  
ADC1  
ADC2  
Y
Y
Y
NA  
NA  
NA  
NA  
Y
ADC  
NA  
1
For detailed pin mux information, please refer to “Chapter 4 External Signals and Pin Multiplexing” of i.MX 6UltraLite  
Reference Manual (IMX6ULRM).  
2
Y stands for yes, NA stands for not available.  
3
G0 and G3 are not offered in automotive grade.  
1.2  
Features  
The i.MX 6UltraLite processors are based on ARM Cortex-A7 MPCore™ Platform, which has the  
following features:  
Supports single ARM Cortex-A7 MPCore (with TrustZone) with:  
— 32 KBytes L1 Instruction Cache  
— 32 KBytes L1 Data Cache  
— Private Timer  
— Cortex-A7 NEON Media Processing Engine (MPE) Co-processor  
General Interrupt Controller (GIC) with 128 interrupts support  
Global Timer  
Snoop Control Unit (SCU)  
128 KB unified I/D L2 cache  
Single Master AXI bus interface output of L2 cache  
Frequency of the core (including Neon and L1 cache), as per Table 11, "Operating Ranges," on  
page 23.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
6
NXP Semiconductors  
i.MX 6UltraLite introduction  
The SoC-level memory system consists of the following additional components:  
— Boot ROM, including HAB (96 KB)  
— Internal multimedia/shared, fast access RAM (OCRAM, 128 KB)  
— Secure/non-secure RAM (32 KB)  
External memory interfaces: The i.MX 6UltraLite processors support handheld DRAM, NOR, and  
NAND Flash memory standards.  
— 16-bit LP-DDR2-800, 16-bit DDR3-800 and LV-DDR3-800  
— 8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size,  
BA-NAND, PBA-NAND, LBA-NAND, OneNAND™ and others. BCH ECC up to 40 bits.  
— 16/8-bit NOR Flash. All EIMv2 pins are muxed on other interfaces.  
Each i.MX 6UltraLite processor enables the following interfaces to external devices (some of them are  
muxed and not available simultaneously):  
Displays:  
— One parallel display port supports max 85 MHz display clock and up to WXGA (1366 x 768)  
at 60 Hz  
— Support 24-bit, 18-bit, 16-bit, and 8-bit parallel display  
1
Camera sensors :  
— One parallel camera port, up to 24 bit and 148.5 MHz pixel clock  
— Support 24-bit, 16-bit, 10-bit, and 8-bit input  
— Support BT.656 interface  
Expansion cards:  
— Two MMC/SD/SDIO card ports all supporting:  
– 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104  
mode (104 MB/s max)  
– 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR  
and DDR modes (104 MB/s max)  
– 4-bit or 8-bit transfer mode specifications for eMMC chips up to 200 MHz in HS200 mode  
(200 MB/s max)  
USB:  
— Two high speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB Phy  
Miscellaneous IPs and interfaces:  
— Three SAI supporting up to three I2S  
— Sony Philips Digital Interconnect Format (SPDIF), Rx and Tx  
— Eight UARTs, up to 5.0 Mbps each:  
– Providing RS232 interface  
– Supporting 9-bit RS485 multidrop mode  
– Support RTS/CTS for hardware flow control  
— Four enhanced CSPI (eCSPI)  
1. G2 and G3 only  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
7
i.MX 6UltraLite introduction  
2
— Four I C  
— Two 10/100M Ethernet Controller (IEEE1588 compliant)  
— Eight Pulse Width Modulators (PWM)  
— System JTAG Controller (SJC)  
— GPIO with interrupt capabilities  
— 8x8 Key Pad Port (KPP)  
— One Quad SPI  
— Two Flexible Controller Area Network (FlexCAN)  
— Three Watchdog timers (WDOG)  
— Two 12-bit Analog to Digital Converters (ADC) with up to 10 input channels in total  
— Touch Screen Controller (TSC)  
The i.MX 6UltraLite processors integrate advanced power management unit and controllers:  
Provide PMU, including LDO supplies, for on-chip resources  
Use Temperature Sensor for monitoring the die temperature  
Use Voltage Sensor for monitoring the die voltage  
Support DVFS techniques for low power modes  
Use SW State Retention and Power Gating for ARM and NEON  
Support various levels of system power modes  
Use flexible clock gating control scheme  
Two smart card interfaces compatible with EVM Standard 4.3  
The i.MX 6UltraLite processors use dedicated hardware accelerators to meet the targeted multimedia  
performance. The use of hardware accelerators is a key factor in obtaining high performance at low power  
consumption, while having the CPU core relatively free for performing other tasks.  
The i.MX 6UltraLite processors incorporate the following hardware accelerators:  
1
PXP—Pixel Processing Pipeline for imagine resize, rotation, overlay and CSC . Off loading key  
pixel processing operations are required to support the LCD display applications.  
ASRC—Asynchronous Sample Rate Converter  
Security functions are enabled and accelerated by the following hardware:  
ARM TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.)  
SJC—System JTAG Controller. Protecting JTAG from debug port attacks by regulating or  
blocking the access to the system debug features.  
CAAM—Cryptographic Acceleration and Assurance Module, containing cryptographic and hash  
engines, 32 KB secure RAM, and True and Pseudo Random Number Generator (NIST certified).  
SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock.  
CSU—Central Security Unit. CSU is configured during boot and by eFUSEs and determine the  
security level operation mode as well as the TZ policy.  
1. G2 and G3 only  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
8
i.MX 6UltraLite introduction  
A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements:  
SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization.  
NOTE  
The actual feature set depends on the part numbers as described in Table 1  
and Table 2. Functions such as display and camera interfaces, connectivity  
interfaces, and security features are not offered on all derivatives.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
9
Architectural overview  
2 Architectural overview  
The following subsections provide an architectural overview of the i.MX 6UltraLite processor system.  
2.1  
Block diagram  
Figure 2 shows the functional modules in the i.MX 6UltraLite processor system.  
/3ꢇ''5ꢅꢀ  
ꢆꢀ''5ꢄ  
%DWWHU\ꢀ&WUOꢀ  
'HYLFH  
-7$*  
ꢁ,(((ꢈꢊꢋ ꢌꢂꢃ  
&U\VWDOꢀꢍꢀ  
&ORFNꢀ6RXUFH  
6HQVRUV  
([WHUQDOꢀ0HPRU\  
$50ꢀ&RUWH[ꢀ$ ꢃ  
03&RUHꢀ3ODWIRUP  
'HEXJ  
&ORFNꢀ5HVHW  
00&ꢆ6'  
H00&ꢆH6'  
1$1'ꢀ)/$6+  
00'&  
'$3  
3//ꢀꢁꢂꢃ  
&RUWH[ꢇ$ꢏꢀ&RUH  
(,0  
*30,ꢀꢍꢀ%&+  
463,  
73,8  
&7,V  
6-&  
&&0  
*3&  
65&  
,ꢐ ꢄꢅ.%ꢀ  
1(21  
'ꢐ ꢄꢅ.%ꢀ  
(70  
00&ꢆ6'  
6';&  
125ꢀ)/$6+  
ꢁ3DUDOOHOꢃ  
6&8ꢀꢍꢀ7LPHU  
;7$/ꢀ26&  
ꢄꢅ.ꢀ26&  
/ꢅ&DFKHꢀꢈꢅꢎ.%  
7LPHUꢂ&RQWURO  
6HFXULW\  
:'2*ꢄꢃ  
&$$0ꢀ  
ꢁꢄꢅ.%ꢀ5$0 ꢃ  
7RXFKꢀ3DQHOꢀ  
&RQWURO  
ꢁꢅꢃ  
*37  
,QWHUQDOꢀ0HPRU\  
125ꢀ)/$6+  
ꢁ4XDGꢀ63,ꢃ  
&68  
2&5$0ꢀꢈꢅꢎ.%  
$3ꢀ3HULSKHUDOV  
(3,7ꢀꢁꢅꢃ  
)XVHꢀ%R[  
X6'+&ꢀꢁꢅꢃ  
520ꢀꢋꢂ.%  
7HPSꢀ0RQLWRU  
6196ꢀ  
,ꢅ&ꢀꢁꢊꢃ  
3:0ꢀꢁꢎꢃ  
2&273  
,208;&  
76&  
ꢁ657& ꢃ  
.H\SDG  
6PDUWꢀ'0$  
6KDUHGꢀ3HULSKHUDOV  
6'0$  
$65&ꢀ  
/&'ꢀ3DQHO  
046ꢀ  
ꢈꢉꢆꢈꢉꢉ0ꢀ  
(WKHUQHW[ꢅ  
H&63,ꢀꢁꢊꢃ  
63',)ꢀ7[5[  
6$,ꢀꢁꢄꢃ  
'LVSOD\ꢀ,QWHUIDFH  
.33  
,PDJHꢀ3URFVVLQJ  
/&',)  
3L[HOꢀ3URFHVVLQJꢀ3LSHOLQHꢀ  
ꢁ3;3ꢃ  
*3,2  
(WKHUQHWꢁꢅꢃ  
&$1ꢀꢁꢅꢃ  
86%ꢀ27*ꢀꢁꢅꢃ  
&RQWUROOHUꢀ$UHD  
1HWZRUN  
8$57ꢎꢃ  
&026ꢀ6HQVRU  
&DPHUDꢀ,QWHUIDFH  
3RZHUꢀ0DQDJHPHQW  
6,0Yꢀꢁꢅꢃ  
&6,  
/'2V  
(096,0ꢀꢁꢅꢃ  
86%ꢀ27*  
ꢁGHYꢆKRVWꢃ  
:/$1  
0RGHPꢀ,&  
'LJLWDOꢀ$XGLR  
&$1ꢀ[ꢅ  
.
1
Figure 2. i.MX 6UltraLite System Block Diagram  
1. Some modules shown in this block diagram are not offered on all derivatives. See Table 2 for exceptions.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
10  
NXP Semiconductors  
Modules list  
3 Modules list  
The i.MX 6UltraLite processors contain a variety of digital and analog modules. Table 3 describes these  
1
modules in alphabetical order.  
Table 3. i.MX 6UltraLite Modules List  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
ADC1  
ADC2  
Analog to Digital  
Converter  
The ADC is a 12-bit general purpose analog to digital  
converter.  
ARM  
ARM Platform  
ARM  
The ARM Core Platform includes 1x Cortex-A7 core. It  
also includes associated sub-blocks, such as the Level  
2 Cache Controller, SCU (Snoop Control Unit), GIC  
(General Interrupt Controller), private timers, watchdog,  
and CoreSight debug modules.  
ASRC  
Asynchronous Sample  
Rate Converter  
Multimedia  
Peripherals  
The Asynchronous Sample Rate Converter (ASRC)  
converts the sampling rate of a signal associated to an  
input clock into a signal associated to a different output  
clock. The ASRC supports concurrent sample rate  
conversion of up to 10 channels of about -120dB  
THD+N. The sample rate conversion of each channel is  
associated to a pair of incoming and outgoing sampling  
rates. The ASRC supports up to three sampling rate  
pairs.  
BCH  
Binary-BCH ECC  
Processor  
System Control  
Peripherals  
The BCH module provides up to 40-bit ECC for NAND  
Flash controller (GPMI)  
CAAM  
Cryptographic  
accelerator and  
assurance module  
Security  
CAAM is a cryptographic accelerator and assurance  
module. CAAM implements several encryption and  
hashing functions, a run-time integrity checker, and a  
Pseudo Random Number Generator (PRNG). The  
pseudo random number generator is certified by  
Cryptographic Algorithm Validation Program (CAVP) of  
National Institute of Standards and Technology (NIST).  
Its DRBG validation number is 94 and its SHS validation  
number is 1455.  
CAAM also implements a Secure Memory mechanism.  
In i.MX 6UltraLite processors, the security memory  
provided is 32 KB.  
CCM  
GPC  
SRC  
Clock Control Module, Clocks, Resets, and These modules are responsible for clock and reset  
General Power  
Controller, System Reset  
Controller  
Power Control  
distribution in the system, and also for the system  
power management.  
CSI  
Parallel CSI  
Multimedia  
Peripherals  
The CSI IP provides parallel CSI standard camera  
interface port. The CSI parallel data ports are up to 24  
bits. It is designed to support 24-bit RGB888/YUV444,  
CCIR656 video interface, 8-bit YCbCr, YUV or RGB,  
and 8-bit/10-bit/16-bit Bayer data input.  
CSU  
Central Security Unit  
Security  
The Central Security Unit (CSU) is responsible for  
setting comprehensive security policy within the i.MX  
6UltraLite platform.  
1. Note that some modules listed in this table are not offered on all derivatives. See Table 2 for exceptions.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
11  
Modules list  
Table 3. i.MX 6UltraLite Modules List (continued)  
Block Mnemonic  
Block Name  
Debug Access Port  
Subsystem  
Brief Description  
DAP  
System Control  
Peripherals  
The DAP provides real-time access for the debugger  
without halting the core to:  
• System memory and peripheral registers  
• All debug configuration registers  
The DAP also provides debugger access to JTAG scan  
chains. The DAP module is internal to the Cortex-A7  
Core Platform.  
eCSPI1  
eCSPI2  
eCSPI3  
eCSPI4  
Configurable SPI  
Connectivity  
Peripherals  
Full-duplex enhanced Synchronous Serial Interface,  
with data rate up to 52 Mbit/s. It is configurable to  
support Master/Slave modes, four chip selects to  
support multiple peripherals.  
EIM  
NOR-Flash /PSRAM  
interface  
Connectivity  
Peripherals  
The EIM NOR-FLASH / PSRAM provides:  
• Support 16-bit PSRAM memories (sync and async  
operating modes), at slow frequency  
• Support 16-bit NOR-Flash memories, at slow  
frequency  
• Multiple chip selects  
EMV SIM1  
EMV SIM2  
Europay, Master and Visa  
Subscriber Identification  
Module  
Connectivity  
peripherals  
EMV SIM is designed to facilitate communication to  
Smart Cards compatible to the EMV version 4.3  
standard (Book 1) and Smart Cards compatible with  
ISO/IEC 7816-3 standard.  
ENET1  
ENET2  
Ethernet Controller  
Connectivity  
Peripherals  
The Ethernet Media Access Controller (MAC) is  
designed to support 10/100 Mbit/s Ethernet/IEEE 802.3  
networks. An external transceiver interface and  
transceiver function are required to complete the  
interface to the media. The module has dedicated  
hardware to support the IEEE 1588 standard. See the  
ENET chapter of the reference manual for details.  
EPIT1  
EPIT2  
Enhanced Periodic  
Interrupt Timer  
Timer Peripherals Each EPIT is a 32-bit “set and forget” timer that starts  
counting after the EPIT is enabled by software. It is  
capable of providing precise interrupts at regular  
intervals with minimal processor intervention. It has a  
12-bit prescaler for division of input clock frequency to  
get the required time setting for the interrupts to occur,  
and counter value can be programmed on the fly.  
FLEXCAN1  
FLEXCAN2  
Flexible Controller Area  
Network  
Connectivity  
Peripherals  
The CAN protocol was primarily, but not only, designed  
to be used as a vehicle serial data bus, meeting the  
specific requirements of this field: real-time processing,  
reliable operation in the Electromagnetic interference  
(EMI) environment of a vehicle, cost-effectiveness and  
required bandwidth. The FlexCAN module is a full  
implementation of the CAN protocol specification,  
Version 2.0 B, which supports both standard and  
extended message frames.  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
General Purpose I/O  
Modules  
System Control  
Peripherals  
Used for general purpose input/output to external ICs.  
Each GPIO module supports up to 32 bits of I/O.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
12  
Modules list  
Table 3. i.MX 6UltraLite Modules List (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
GPMI  
General Purpose  
Memory Interface  
Connectivity  
Peripherals  
The GPMI module supports up to 8x NAND devices and  
40-bit ECC for NAND Flash Controller (GPMI2). GPMI  
supports separate DMA channels for each NAND  
device.  
GPT1  
GPT2  
General Purpose Timer  
Timer peripherals Each GPT is a 32-bit “free-running” or “set and forget”  
mode timer with programmable prescaler and compare  
and capture register. A timer counter value can be  
captured using an external event and can be configured  
to trigger a capture event on either the leading or trailing  
edges of an input pulse. When the timer is configured to  
operate in “set and forget” mode, it is capable of  
providing precise interrupts at regular intervals with  
minimal processor intervention. The counter has output  
compare logic to provide the status and interrupt at  
comparison. This timer can be configured to run either  
on an external clock or on an internal clock.  
LCDIF  
MQS  
LCD interface  
Connectivity  
peripherals  
The LCDIF is a general purpose display controller used  
to drive a wide range of display devices varying in size  
and capability. The LCDIF is designed to support dumb  
(synchronous 24-bit Parallel RGB interface) and smart  
(asynchronous parallel MPU interface) LCD devices.  
Medium Quality Sound  
Pulse Width Modulation  
Multimedia  
Peripherals  
MQS is used to generate 2-channel medium quality  
PWM-like audio via two standard digital GPIO pins.  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
PWM8  
Connectivity  
peripherals  
The pulse-width modulator (PWM) has a 16-bit counter  
and is optimized to generate sound from stored sample  
audio images and it can also generate tones. It uses  
16-bit resolution and a 4x16 data FIFO to generate  
sound.  
PXP  
Pixel Processing Pipeline Display peripherals A high-performance pixel processor capable of 1  
pixel/clock performance for combined operations, such  
as color-space conversion, alpha blending,  
gamma-mapping, and rotation. The PXP is enhanced  
with features specifically for gray scale applications. In  
addition, the PXP supports traditional pixel/frame  
processing paths for still-image and video processing  
applications, allowing it to interface with the integrated  
EPD.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
13  
Modules list  
Table 3. i.MX 6UltraLite Modules List (continued)  
Block Mnemonic  
Block Name  
Quad SPI  
Subsystem  
Brief Description  
QSPI  
Connectivity  
peripherals  
Quad SPI module act as an interface to external serial  
flash devices. This module contains the following  
features:  
• Flexible sequence engine to support various flash  
vendor devices  
• Single pad/Dual pad/Quad pad mode of operation  
• Single Data Rate/Double Data Rate mode of  
operation  
• Parallel Flash mode  
• DMA support  
• Memory mapped read access to connected flash  
devices  
• Multi-master access with priority and flexible and  
configurable buffer for each master  
SAI1  
SAI2  
SAI3  
The SAI module provides a synchronous audio  
interface (SAI) that supports full duplex serial interfaces  
with frame synchronization, such as I2S, AC97, TDM,  
and codec/DSP interfaces.  
SDMA  
Smart Direct Memory  
Access  
System Control  
Peripherals  
The SDMA is multi-channel flexible DMA engine. It  
helps in maximizing system performance by off-loading  
the various cores in dynamic data routing. It has the  
following features:  
• Powered by a 16-bit instruction-set micro-RISC  
engine  
• Multi-channel DMA supporting up to 32 time-division  
multiplexed DMA channels  
• 48 events with total flexibility to trigger any  
combination of channels  
• Memory accesses including linear, FIFO, and 2D  
addressing  
• Shared peripherals between ARM and SDMA  
• Very fast context-switching with 2-level priority based  
preemptive multi-tasking  
• DMA units with auto-flush and prefetch capability  
• Flexible address management for DMA transfers  
(increment, decrement, and no address changes on  
source and destination address)  
• DMA ports can handle unit-directional and  
bi-directional flows (copy mode)  
• Support of byte-swapping  
• Library of Scripts and API is available  
2x SIMv2  
Smart Card  
Connectivity  
peripherals  
Smart card interface compliant with ISO7816.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
14  
Modules list  
Table 3. i.MX 6UltraLite Modules List (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
SJC  
System JTAG Controller  
System Control  
Peripherals  
The SJC provides JTAG interface, which complies with  
JTAG TAP standards, to internal logic. The i.MX  
6UltraLite processors use JTAG port for production,  
testing, and system debugging. In addition, the SJC  
provides BSR (Boundary Scan Register) standard  
support, which complies with IEEE1149.1 and  
IEEE1149.6 standards.  
The JTAG port must be accessible during platform initial  
laboratory bring-up, for manufacturing tests and  
troubleshooting, as well as for software debugging by  
authorized entities. The i.MX 6UltraLite SJC  
incorporates three security modes for protecting  
against unauthorized accesses. Modes are selected  
through eFUSE configuration.  
SNVS  
SPDIF  
Secure Non-Volatile  
Storage  
Security  
Secure Non-Volatile Storage, including Secure Real  
Time Clock, Security State Machine, Master Key  
Control, and Violation/Tamper Detection and reporting.  
Sony Philips Digital  
Interconnect Format  
Multimedia  
Peripherals  
A standard audio file transfer format, developed jointly  
by the Sony and Phillips corporations. Has Transmitter  
and Receiver functionality.  
System Counter  
The system counter module is a programmable system  
counter which provides a shared time base to the  
Cortex A series cores as part of ARM’s generic timer  
architecture. It is intended for use in application where  
the counter is always powered on and supports  
multiple, unrelated clocks.  
TSC  
Touch Screen  
Touch Controller  
Security  
With touch controller to support 4-wire and 5-wire  
resistive touch panel.  
TZASC  
Trust-Zone Address  
Space Controller  
The TZASC (TZC-380 by ARM) provides security  
address region control functions required for intended  
application. It is used on the path to the DRAM  
controller.  
UART1  
UART2  
UART3  
UART4  
UART5  
UART6  
UART7  
UART8  
UART Interface  
Connectivity  
Peripherals  
Each of the UART modules support the following serial  
data transmit/receive protocols and configurations:  
• 7- or 8-bit data words, 1 or 2 stop bits, programmable  
parity (even, odd or none)  
• Programmable baud rates up to 5 Mbps.  
• 32-byte FIFO on Tx and 32 half-word FIFO on Rx  
supporting auto-baud  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
15  
Modules list  
Table 3. i.MX 6UltraLite Modules List (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
uSDHC1  
uSDHC2  
SD/MMC and SDXC  
Enhanced Multi-Media  
Card / Secure Digital Host  
Controller  
Connectivity  
Peripherals  
i.MX 6UltraLite specific SoC characteristics:  
All four MMC/SD/SDIO controller IPs are identical and  
are based on the uSDHC IP. They are:  
• Fully compliant with MMC command/response sets  
and Physical Layer as defined in the Multimedia  
Card System Specification, v4.5/4.2/4.3/4.4/4.41/  
including high-capacity (size > 2 GB) cards HC  
MMC.  
• Fully compliant with SD command/response sets  
and Physical Layer as defined in the SD Memory  
Card Specifications, v3.0 including high-capacity  
SDXC cards up to 2 TB.  
• Fully compliant with SDIO command/response sets  
and interrupt/read-wait mode as defined in the SDIO  
Card Specification, Part E1, v3.0  
Two ports support:  
• 1-bit or 4-bit transfer mode specifications for SD and  
SDIO cards up to UHS-I SDR104 mode (104 MB/s  
max)  
• 1-bit, 4-bit, or 8-bit transfer mode specifications for  
MMC cards up to 52 MHz in both SDR and DDR  
modes (104 MB/s max)  
• 4-bit or 8-bit transfer mode specifications for eMMC  
chips up to 200 MHz in HS200 mode (200 MB/s max)  
USB  
Universal Serial Bus 2.0  
Connectivity  
Peripherals  
USBO2 (USB OTG1 and USB OTG2) contains:  
• Two high-speed OTG 2.0 modules with integrated  
HS USB PHYs  
• Support eight Transmit (TX) and eight Receive (Rx)  
endpoints, including endpoint 0  
WDOG1  
WDOG3  
Watch Dog  
Timer Peripherals The Watch Dog Timer supports two comparison points  
during each counting period. Each of the comparison  
points is configurable to evoke an interrupt to the ARM  
core, and a second point evokes an external event on  
the WDOG line.  
WDOG2  
(TZ)  
Watch Dog (TrustZone)  
Timer Peripherals The TrustZone Watchdog (TZ WDOG) timer module  
protects against TrustZone starvation by providing a  
method of escaping normal mode and forcing a switch  
to the TZ mode. TZ starvation is a situation where the  
normal OS prevents switching to the TZ mode. Such  
situation is undesirable as it can compromise the  
system’s security. Once the TZ WDOG module is  
activated, it must be serviced by TZ software on a  
periodic basis. If servicing does not take place, the timer  
times out. Upon a time-out, the TZ WDOG asserts a TZ  
mapped interrupt that forces switching to the TZ mode.  
If it is still not served, the TZ WDOG asserts a security  
violation signal to the CSU. The TZ WDOG module  
cannot be programmed or deactivated by a normal  
mode SW.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
16  
Modules list  
3.1  
Special signal considerations  
Table 4 lists special signal considerations for the i.MX 6UltraLite processors. The signal names are listed  
in alphabetical order.  
The package contact assignments can be found in Section 6, “Package information and contact  
assignments".” Signal descriptions are provided in the i.MX 6UltraLite Reference Manual  
(IMX6ULRM).  
Table 4. Special Signal Considerations  
Signal Name  
Remarks  
CCM_CLK1_P/  
CCM_CLK1_N  
One general purpose differential high speed clock Input/output is provided.  
It can be used:  
To feed external reference clock to the PLLs and further to the modules inside SoC.  
To output internal SoC clock to be used outside the SoC as either reference clock or as a  
functional clock for peripherals.  
See the i.MX 6UltraLite Reference Manual (IMX6ULRM) for details on the respective clock trees.  
Alternatively one may use single ended signal to drive CLK1_P input. In this case corresponding  
CLK1_N input should be tied to the constant voltage level equal 1/2 of the input signal swing.  
Termination should be provided in case of high frequency signals.  
After initialization, the CLK1 input/output can be disabled (if not used). If unused either or both of  
the CLK1_N/P pairs may remain unconnected.  
RTC_XTALI/RTC_XTALO If the user wishes to configure RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz  
crystal, (100 kESR, 10 pF load) should be connected between RTC_XTALI and RTC_XTALO.  
Keep in mind the capacitors implemented on either side of the crystal are about twice the crystal  
load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to  
account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but  
relatively weak. Care must be taken to limit parasitic leakage from RTC_XTALI and RTC_XTALO  
to either power or ground (>100 M). This will debias the amplifier and cause a reduction of startup  
margin. Typically RTC_XTALI and RTC_XTALO should bias to approximately 0.5 V.  
If it is desired to feed an external low frequency clock into RTC_XTALI, the RTC_XTALO pin must  
remain unconnected or driven with a complimentary signal. The logic level of this forcing clock  
should not exceed VDD_SNVS_CAP level and the frequency should be <100 kHz under typical  
conditions.  
In case when high accuracy real time clock are not required system may use internal low frequency  
ring oscillator. It is recommended to connect RTC_XTALI to GND and keep RTC_XTALO  
unconnected.  
XTALI/XTALO  
A 24.0 MHz crystal should be connected between XTALI and XTALO.  
The crystal must be rated for a maximum drive level of 250 W. An ESR (equivalent series  
resistance) of typical 80 is recommended. NXP BSP (board support package) software requires  
24 MHz on XTALI/XTALO.  
The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this  
case, XTALO must be directly driven by the external oscillator and XTALI mounted with 18 pF  
capacitor. Please refer to the EVK board reference design for details. The logic level of this forcing  
clock cannot exceed NVCC_PLL level.  
If this clock is used as a reference for USB, then there are strict frequency tolerance and jitter  
requirements. See OSC24M chapter and relevant interface specifications chapters for details.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
17  
Modules list  
Table 4. Special Signal Considerations (continued)  
Remarks  
Signal Name  
DRAM_VREF  
When using DDR_VREF with DDR I/O, the nominal reference voltage must be half of the  
NVCC_DRAM supply. The user can tie DDR_VREF to a precision external resistor divider. Use a  
1 k0.5% resistor to GND and a 1 k0.5% resistor to NVCC_DRAM. Shunt each resistor with a  
closely-mounted 0.1 µF capacitor.  
To reduce supply current, a pair of 1.5 k0.1% resistors can be used. Using resistors with  
recommended tolerances ensures the ± 2% DDR_VREF tolerance (per the DDR3 specification) is  
maintained when two DDR3 ICs plus the i.MX 6UltraLite are drawing current on the resistor divider.  
ZQPAD  
DRAM calibration resistor 240 1% used as reference during DRAM output buffer driver  
calibration should be connected between this pad and GND.  
GPANAIO  
This signal is reserved for NXP manufacturing use only. This output must remain unconnected.  
JTAG_nnnn  
The JTAG interface is summarized in Table 5. Use of external resistors is unnecessary. However,  
if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is  
followed. For example, do not use an external pull down on an input that has on-chip pull-up.  
JTAG_TDO is configured with a keeper circuit such that the non-connected condition is eliminated  
if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and  
should be avoided.  
JTAG_MOD is referenced as SJC_MOD in the i.MX 6UltraLite reference manual. Both names refer  
to the same signal. JTAG_MOD must be externally connected to GND for normal operation.  
Termination to GND through an external pull-down resistor (such as 1 k) is allowed. JTAG_MOD  
set to hi configures the JTAG interface to mode compliant with IEEE1149.1 standard. JTAG_MOD  
set to low configures the JTAG interface for common SW debug adding all the system TAPs to the  
chain.  
NC  
These signals are No Connect (NC) and should be floated by the user.  
POR_B  
This cold reset negative logic input resets all modules and logic in the IC.  
May be used in addition to internally generated power on reset signal (logical AND, both internal  
and external signals are considered active low).  
ONOFF  
ONOFF can be configured in debounce, off to on time, and max time-out configurations. The  
debounce and off to on time configurations supports 0, 50, 100 and 500 ms. Debounce is used to  
generate the power off interrupt. While in the ON state, if ONOFF button is pressed longer than the  
debounce time, the power off interrupt is generated. Off to on time supports the time it takes to  
request power on after a configured button press time has been reached. While in the OFF state,  
if ONOFF button is pressed longer than the off to on time, the state will transition from OFF to ON.  
Max time-out configuration supports 5, 10, 15 seconds and disable. Max time-out configuration  
supports the time it takes to request power down after ONOFF button has been pressed for the  
defined time.  
TEST_MODE  
TEST_MODE is for NXP factory use. The user must tie this pin directly to GND.  
Table 5. JTAG Controller Interface Summary  
JTAG  
I/O Type  
On-chip Termination  
JTAG_TCK  
JTAG_TMS  
JTAG_TDI  
JTAG_TDO  
Input  
Input  
47 kpull-up  
47 kpull-up  
47 kpull-up  
Keeper  
Input  
3-state output  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
18  
Modules list  
Table 5. JTAG Controller Interface Summary (continued)  
JTAG  
I/O Type  
On-chip Termination  
JTAG_TRSTB  
JTAG_MOD  
Input  
Input  
47 kpull-up  
100 kpull-up  
3.2  
Recommended connections for unused analog interfaces  
Table 6 shows the recommended connections for unused analog interfaces.  
Table 6. Recommended Connections for Unused Analog Interfaces  
Recommendations  
if Unused  
Module  
Pad Name  
CCM  
USB  
CCM_CLK1_N, CCM_CLK1_P  
Float  
Float  
USB_OTG1_CHD_B, USB_OTG1_DN, USB_OTG1_DP, USB_OTG1_VBUS,  
USB_OTG2_CHD_B, USB_OTG2_DN, USB_OTG2_DP, USB_OTG2_VBUS  
ADC  
ADC_VREFH  
Tie to  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
VDDA_ADC_3P3  
must be powered  
even if the ADC is  
not used.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
19  
Electrical characteristics  
4 Electrical characteristics  
This section provides the device and module-level electrical characteristics for the i.MX 6UltraLite  
processors.  
4.1  
Chip-Level conditions  
This section provides the device-level electrical characteristics for the IC. See Table 7 for a quick reference  
to the individual tables and sections.  
Table 7. i.MX 6UltraLite Chip-Level Conditions  
For these characteristics  
Topic appears  
Absolute maximum ratings  
Thermal resistance  
on page 20  
on page 21  
on page 23  
on page 24  
on page 25  
on page 27  
on page 28  
Operating ranges  
External clock sources  
Maximum supply currents  
Low power mode supply currents  
USB PHY current consumption  
4.1.1  
Absolute maximum ratings  
CAUTION  
Stress beyond those listed under Table 8 may cause permanent damage to the device. These are stress  
ratings only. Functional operation of the device at these or any other conditions beyond those indicated  
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated  
conditions for extended periods may affect device reliability.  
Table 8 shows the absolute maximum operating ratings.  
Table 8. Absolute Maximum Ratings  
Parameter Description  
Symbol  
Min  
Max  
Unit  
Core Supplies Input Voltage  
(LDO Enabled)  
VDD_SOC_IN  
-0.3  
1.6  
V
Core Supplies Input Voltage  
(LDO Bypass)  
VDD_SOC_IN  
VDD_HIGH_IN  
-0.3  
1.4  
V
VDD_HIGH_IN Supply voltage  
-0.3  
-0.3  
3.6  
1.4  
V
V
Core Supplies Output Voltage (LDO  
Enabled)  
VDD_ARM_CAP  
VDD_SOC_CAP  
VDD_HIGH_CAP LDO Output Supply  
Voltage  
VDD_HIGH_CAP  
-0.3  
2.6  
V
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
20  
Electrical characteristics  
Table 8. Absolute Maximum Ratings (continued)  
Supply Input Voltage to Secure  
VDD_SNVS_IN  
-0.3  
3.6  
Non-Volatile Storage and Real Time Clock  
USB VBUS Supply  
USB_OTG_VBUS  
NVCC_DRAM  
5.5  
V
V
V
V
(see note1)  
IO Supply for DDR Interface  
Supply for DDR pre-drivers  
IO Supply for GPIO Type Pins  
-0.4  
-0.3  
-0.5  
1.975  
NVCC_DRAM_2P5  
2.85  
3.7  
NVCC_CSI  
NVCC_ENET  
NVCC_GPIO  
NVCC_LCD  
NVCC_NAND  
NVCC_SD1  
Supply for ADC 3P3V  
VDDA_ADC_3P3  
Vin/Vout  
3.7  
V
V
Input/Output Voltage range (Non-DDR  
Pins)  
-0.5  
OVDD + 0.3 (see  
note1)  
Input/Output Voltage range (DDR Pins)  
Vin/Vout  
-0.5  
OVDD + 0.4 (see  
V
note1, 2)  
ESD damage Immunity:  
Vesd  
Human Body Model (HBM)  
Charge Device Model (CDM)  
2000  
500  
V
Storage Temperature range  
TSTORAGE  
-40  
150  
o C  
1
The absolute maximum voltage includes an allowance for 400 mV of overshoot on the IO pins. Per JEDEC standards, the  
allowed signal overshoot must be derated if NVCC_DRAM exceeds 1.575 V.  
2
OVDD is the I/O supply voltage.  
4.1.2  
Thermal resistance  
4.1.2.1  
14x14 MM (VM) package thermal resistance  
Table 9 displays the 14x14 MM (VM) package thermal resistance data.  
1
Table 9. 14x14 MM (VM) Thermal Resistance Data  
Rating  
Test Conditions  
Single-layer board (1s)  
Symbol  
Value  
Unit  
Notes  
2,3  
Junction to Ambient  
Natural convection  
RJA  
58.4  
oC/W  
2,3,4  
2,4  
2,4  
5
Junction to Ambient  
Natural convection  
Four-layer board (2s2p)  
RJA  
RJMA  
RJMA  
RJB  
37.6  
48.6  
32.9  
21.8  
oC/W  
oC/W  
oC/W  
oC/W  
Junction to Ambient (@200 Single layer board (1s)  
ft/min)  
Junction to Ambient (@200 Four layer board (2s2p)  
ft/min)  
Junction to Board  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
21  
Electrical characteristics  
Rating  
1
Table 9. 14x14 MM (VM) Thermal Resistance Data  
Test Conditions  
Symbol  
Value  
Unit  
Notes  
6
Junction to Case  
RJC  
JT  
JB  
19.3  
2.3  
oC/W  
oC/W  
oC/W  
7
8
Junction to Package Top  
Natural Convection  
Junction to Package Bottom Natural Convection  
12.0  
1
As per JEDEC JESD51-2 the intent of (thermal resistance) measurement is solely for a thermal performance comparison of  
one package to another in a standardized environment. This methodology is not meant to and will not predict the performance  
of a package in an application-specific environment.  
2
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
3
4
5
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
6
7
8
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
Thermal characterization parameter indicating the temperature difference between package bottom center and the junction  
temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written  
as Psi-JB  
4.1.2.2  
9x9 MM (VK) package thermal resistance  
Table 10 displays the 9x9 MM (VK) thermal resistance data.  
Table 10. 9x9 MM (VK) Thermal Resistance Data  
Rating  
Test Conditions  
Single-layer board (1s)  
Symbol  
Value  
Unit  
Notes  
1,2  
Junction to Ambient  
Natural Convection  
RJA  
65.6  
oC/W  
2,2,3  
2,3  
Junction to Ambient  
Natural Convection  
Four-layer board (2s2p)  
RJA  
RJMA  
RJMA  
36.2  
51.2  
31.8  
oC/W  
oC/W  
oC/W  
Junction to Ambient (@200 Single layer board (1s)  
ft/min)  
2,3  
Junction to Ambient (@200 Four layer board (2s2p)  
ft/min)  
4
5
6
7
Junction to Board  
RJB  
RJC  
17.1  
14.5  
0.6  
oC/W  
oC/W  
oC/W  
oC/W  
Junction to Case  
Junction to Package Top  
Natural Convection  
JT  
Junction to Package Bottom Natural Convection  
JB_CSB  
11.1  
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
22  
NXP Semiconductors  
Electrical characteristics  
3
4
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistances between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
5
6
7
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
Thermal resistance between the die and the central solder balls on the bottom of the package based on simulation.  
4.1.3  
Operating ranges  
Table 11 provides the operating ranges of the i.MX 6UltraLite processors. For details on the chip's power  
structure, see the “Power Management Unit (PMU)” chapter of the i.MX 6UltraLite Reference Manual  
(IMX6ULRM).  
Table 11. Operating Ranges  
Parameter  
Description  
Operating  
Conditions  
Symbol  
Min  
Typ Max1 Unit  
Comment  
Run Mode: LDO  
Enabled  
VDD_SOC_IN  
1.275  
1.5  
V
V
VDD_SOC_IN must be 125 mV  
higher than the LDO Output Set  
Point (VDD_ARM_CAP and  
VDD_SOC_CAP) for correct  
supply voltage regulation.  
VDD_ARM_CAP  
A7 core at 528  
MHz  
1.15  
1.00  
1.3  
1.3  
1.3  
Output voltage must be set to the  
following rules:  
• VDD_ARM_CAP <=  
VDD_SOC_CAP  
• VDD_SOC_CAP -  
VDD_ARM_CAP < 330 mV  
A7 core at 396  
MHz  
A7 core at 198 0.925  
MHz  
VDD_SOC_CAP  
VDD_SOC_IN  
1.15  
1.15  
1.3  
1.3  
V
V
Run Mode: LDO  
Bypassed  
A7 core  
operation at 528  
MHz or below  
A7 core operation above 528 MHz  
is not supported when LDO is  
bypassed.  
SUSPEND (DSM)  
Mode  
VDD_SOC_IN  
VDD_HIGH_IN2  
VDD_SNVS_IN3  
0.90  
2.80  
2.40  
1.3  
3.6  
3.6  
V
V
V
Refer to Table 15 Low Power Mode  
Current and Power Consumption  
on page 15  
VDD_HIGH  
internal Regulator  
Must match the range of voltages  
that the rechargeable backup  
battery supports.  
Backup battery  
supply range  
Can be combined with  
VDDHIGH_IN, if the system does  
not require keeping real time and  
other data on OFF state.  
USB supply  
voltages  
USB_OTG1_VBUS  
USB_OTG2_VBUS  
4.40  
4.40  
5.5  
5.5  
V
V
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
23  
Electrical characteristics  
Table 11. Operating Ranges (continued)  
DDR I/O supply  
GPIO supplies  
NVCC_DRAM  
LPDDR2  
DDR3L  
DDR3  
1.14  
1.2  
1.3  
V
V
V
V
V
1.28 1.35 1.45  
1.43  
2.25  
1.65  
1.5 1.575  
NVCC_DRAM2P5  
NVCC_CSI  
2.5  
2.75  
3.6  
1.8,  
2.8,  
3.3  
All digital I/O supplies  
(NVCC_xxxx) must be powered  
(unless otherwise specified in this  
data sheet) under normal  
conditions whether the associated  
I/O pins are in use or not.  
NVCC_ENET  
NVCC_GPIO  
NVCC_UART  
NVCC_LCD  
NVCC_NAND  
NVCC_SD1  
A/D converter  
VDDA_ADC_3P3  
3.0  
3.15  
3.6  
V
VDDA_ADC_3P3 must be  
powered when chip is in RUN  
mode, IDLE mode, or SUSPEND  
mode.  
VDDA_ADC_3P3 should not be  
powered when chip is in SNVS  
mode.  
Temperature Operating Ranges  
Industrial -40 105  
Junction  
temperature  
Tj  
oC See the application note, i.MX  
6UltraLite Product Lifetime Usage  
Estimates for information on  
product lifetime (power-on years)  
for this processor.  
1
Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set  
point = (Vmin + the supply tolerance). This result in an optimized power/speed ratio.  
2
3
In setting VDD_HIGH_IN voltage, refer to the Errata ERR010690 (SNVS_LP Registers Reset Issue).  
In setting VDD_SNVS_IN voltage with regards to Charging Currents and RTC, refer to the i.MX 6UltraLite Hardware  
Development Guide (IMX6ULHDG).  
Table 12 shows on-chip LDO regulators that can supply on-chip loads.  
1
Table 12. On-Chip LDOs and their On-Chip Loads  
Voltage Source  
Load  
Comment  
VDD_HIGH_CAP  
NVCC_DRAM_2P5  
Board-level connection to VDD_HIGH_CAP  
1
On-chip LDOs are designed to supply i.MX6UltraLite loads and must not be used to supply external loads.  
4.1.4  
External clock sources  
Each i.MX 6UltraLite processor has two external input system clocks: a low frequency (RTC_XTALI) and  
a high frequency (XTALI).  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
24  
NXP Semiconductors  
Electrical characteristics  
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit,  
power-down real time clock operation, and slow system and watch-dog counters. The clock input can be  
connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is  
an internal ring oscillator, which can be used instead of the RTC_XTALI if accuracy is not important.  
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other  
peripherals. The system clock input can be connected to either external oscillator or a crystal using internal  
oscillator amplifier.  
Table 13 shows the interface frequency requirements.  
Table 13. External Input Clock Frequency  
Parameter Description  
Symbol  
Min  
Typ  
Max  
Unit  
RTC_XTALI Oscillator1,2  
XTALI Oscillator2,4  
fckil  
fxtal  
32.7683/32.0  
24  
kHz  
MHz  
1
External oscillator or a crystal with internal oscillator amplifier.  
2
The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware  
Development Guide for i.MX 6UltraLite Applications Processors (IMX6ULHDG).  
3
4
Recommended nominal frequency 32.768 kHz.  
External oscillator or a fundamental frequency crystal with internal oscillator amplifier.  
The typical values shown in Table 13 are required for use with NXP BSPs to ensure precise time keeping  
and USB operation. For RTC_XTALI operation, two clock sources are available.  
On-chip 40 kHz ring oscillator—this clock source has the following characteristics:  
— Approximately 25 µA more Idd than crystal oscillator  
— Approximately ±50% tolerance  
— No external component required  
— Starts up quicker than 32 kHz crystal oscillator  
External crystal oscillator with on-chip support circuit:  
— At power up, ring oscillator is utilized. After crystal oscillator is stable, the clock circuit  
switches over to the crystal oscillator automatically.  
— Higher accuracy than ring oscillator  
— If no external crystal is present, then the ring oscillator is utilized  
The decision of choosing a clock source should be taken based on real-time clock use and precision  
time-out.  
4.1.5  
Maximum supply currents  
The data shown in Table 14 represent a use case designed specifically to show the maximum current  
consumption possible. All cores are running at the defined maximum frequency and are limited to L1  
cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited  
practical use case, if at all, and be limited to an extremely low duty cycle unless the intention was to  
specifically show the worst case power consumption.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
25  
Electrical characteristics  
See the i.MX 6UltraLite Power Consumption Measurement Application Note (AN5170) for more details  
on typical power consumption under various use case definitions.  
Table 14. Maximum Supply Currents  
Power Line  
Conditions  
Max Current  
Unit  
VDD_SOC_IN  
528 MHz ARM clock  
based on Dhrystone  
test  
500  
mA  
VDD_HIGH_IN  
VDD_SNVS_IN  
1251  
5002  
503  
mA  
A  
USB_OTG1_VBUS  
USB_OTG2_VBUS  
mA  
VDDA_ADC_3P3  
100 Ohm maximum  
35  
mA  
loading for touch panel  
Primary Interface (IO) Supplies  
NVCC_DRAM  
NVCC_DRAM_2P5  
NVCC_GPIO  
NVCC_UART  
NVCC_ENET  
NVCC_LCD  
(See4)  
mA  
50  
N=16  
N=16  
N=16  
N=29  
N=17  
N=6  
N=12  
MISC  
Use maximum IO Equation5  
Use maximum IO equation5  
Use maximum IO equation5  
Use maximum IO equation5  
Use maximum IO equation5  
Use maximum IO equation5  
Use maximum IO equation5  
NVCC_NAND  
NVCC_SD1  
NVCC_CSI  
DRAM_VREF  
1
mA  
1
The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the  
VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_DRAM_2P5 supplies).  
2
The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as  
BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1  
mA, if available. VDD_SNVS_CAP charge time will increase if less than 1 mA is available.  
3
4
This is the maximum current per active USB physical interface.  
The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power  
calculators are typically available from the memory vendors. They take in account factors, such as signal termination. See  
the i.MX 6UltraLite Power Consumption Measurement Application Note (AN5170) or examples of DRAM power consumption  
during specific use case scenarios.  
5
General equation for estimated, maximum power consumption of an IO power supply:  
Imax = N x C x V x (0.5 x F)  
Where:  
N—Number of IO pins supplied by the power line  
C—Equivalent external capacitive load  
V—IO voltage  
(0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)  
In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
26  
NXP Semiconductors  
Electrical characteristics  
4.1.6  
Low power mode supply currents  
Table 15 shows the current core consumption (not including I/O) of i.MX 6UltraLite processors in selected  
low power modes.  
Table 15. Low Power Mode Current and Power Consumption  
Mode  
Test Conditions  
Supply  
Typical1  
Units  
SYSTEM IDLE:  
LDO Enabled  
• LDO_ARM and LDO_SOC are set to 1.15 V  
• LDO_2P5 set to 2.5 V, LDO_1P1 set to 1.1 V  
• CPU in WFI, CPU clock gated  
• DDR is in self refresh  
VDD_SOC_IN (1.275 V)  
VDD_HIGH_IN (3.0 V)  
VDD_SNVS_IN (3.0 V)  
Total  
7.7  
mA  
10.5  
0.06  
41.5  
• 24 MHz XTAL is ON  
mW  
mA  
• 528 PLL is active, other PLLS are power down  
• High-speed peripheral clock gated, but remain  
powered  
SYSTEM IDLE:  
LDO Bypassed  
• LDO_ARM and LDO_SOC are set to bypass  
mode  
• LDO_2P5 set to 2.5 V, LDO_1P1 set to 1.1 V  
• CPU in WFI, CPU clock gated  
• DDR is in self refresh  
VDD_SOC_IN (1.15 V)  
VDD_HIGH_IN (3.0 V)  
VDD_SNVS_IN (3.0 V)  
Total  
7.5  
9.5  
0.06  
37.3  
mW  
mA  
• 24 MHz XTAL is ON  
• 528 PLL is active, other PLLs are power down  
• High-speed peripheral clock gated, but remain  
powered  
LOW POWER IDLE: • LDO_SOC is set to 1.15 V, LDO_ARM is in PG  
VDD_SOC_IN (1.275 V)  
VDD_HIGH_IN (3.0 V)  
VDD_SNVS_IN (3.0 V)  
Total  
3.2  
1.5  
LDO Enabled  
mode  
• LDO_2P5 and LDO_1P1 are set to weak mode  
• CPU in power gate mode  
• DDR is in self refresh  
• All PLLs are power down  
• 24 MHz XTAL is off, 24 MHz RCOSC used as  
clock source  
0.05  
8.7  
mW  
mA  
• High-speed peripheral are powered off  
LOW POWER IDLE: • LDO_SOC is in bypass mode, LDO_ARM is in PG VDD_SOC_IN (1.15 V)  
2.8  
0.4  
LDO Bypassed  
mode  
VDD_HIGH_IN (3.0 V)  
VDD_SNVS_IN (3.0 V)  
Total  
• LDO-2P5 and LDO_1P1 are set to weak mode  
• CPU in power gate mode  
• DDR is in self refresh  
• All PLLs are power down  
• 24 MHz XTAL is off, 24 MHz RCOSC used as  
clock source  
0.05  
4.57  
mW  
mA  
• High-speed peripheral are powered off  
SUSPEND  
(DSM)  
• LDO_SOC is in bypass mode, LDO_ARM is in PG  
mode  
• LDO_2P5 and LDO_1P1 are shut off  
• CPU in power gate mode  
• DDR is in self refresh  
• All PLLs are power down  
VDD_SOC_IN (0.9 V)  
VDD_HIGH_IN (3.0 V)  
VDD_SNVS_IN (3.0 V)  
Total  
0.44  
0.03  
0.03  
0.58  
mW  
• 24 MHz XTAL is off, 24 MHz RCOSC is off  
• All clocks are shut off, except 32 kHz RTC  
• High-speed peripheral are powered off  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
27  
Electrical characteristics  
Table 15. Low Power Mode Current and Power Consumption (continued)  
SNVS (RTC)  
• All SOC digital logic, analog module are shut off  
• 32 kHz RTC is alive  
Tamper detection circuit remains active  
VDD_SOC_IN (0 V)  
VDD_HIGH_IN (0 V)  
VDD_SNVS_IN (3.0 V)  
Total  
0
mA  
0
0.02  
0.06  
mW  
1
Typical process material in fab  
4.1.7  
USB PHY current consumption  
Power down mode  
4.1.7.1  
In power down mode, everything is powered down, including the USB VBUS valid detectors in typical  
condition. Table 16 shows the USB interface current consumption in power down mode.  
Table 16. USB PHY Current Consumption in Power Down Mode  
VDD_USB_CAP (3.0 V)  
VDD_HIGH_CAP (2.5 V)  
NVCC_PLL (1.1 V)  
Current  
5.1 A  
1.7 A  
< 0.5 A  
NOTE  
The currents on the VDD_HIGH_CAP and VDD_USB_CAP were  
identified to be the voltage divider circuits in the USB-specific level  
shifters.  
4.2  
Power supplies requirements and restrictions  
The system design must comply with power-up sequence, power-down sequence, and steady state  
guidelines as described in this section to guarantee the reliable operation of the device. Any deviation  
from these sequences may result in the following situations:  
Excessive current during power-up phase  
Prevention of the device from booting  
Irreversible damage to the processor (worst-case scenario)  
4.2.1  
Power-Up sequence  
The below restrictions must be followed:  
VDD_SNVS_IN supply must be turned on before any other power supply or be connected  
(shorted) with VDD_HIGH_IN supply.  
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other  
supply is switched on.  
VDD_HIGH_IN should be turned on before VDD_SOC_IN.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
28  
NXP Semiconductors  
Electrical characteristics  
NOTE  
The POR_B input (if used) must be immediately asserted at power-up and  
remain asserted until after the last power rail reaches its working voltage. In  
the absence of an external reset feeding the POR_B input, the internal POR  
module takes control. See the i.MX 6UltraLite Reference Manual  
(IMX6ULRM) for further details and to ensure that all necessary  
requirements are being met.  
NOTE  
Need to ensure that there is no back voltage (leakage) from any supply on  
the board towards the 3.3 V supply (for example, from the external  
components that use both the 1.8 V and 3.3 V supplies).  
NOTE  
USB_OTG1_VBUS and USB_OTG2_VBUS are not part of the power  
supply sequence and may be powered at any time.  
4.2.2  
Power-Down sequence  
The following restrictions must be followed:  
VDD_SNVS_IN supply must be turned off after any other power supply or be connected (shorted)  
with VDD_HIGH_IN supply.  
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is removed after any other supply  
is switched off.  
CAUTION  
For power sequence control on VDD_HIGH_IN and VDD_SOC_IN, refer to the ERR010690 (SNVS_LP  
Registers Reset Issue).  
4.2.3  
Power supplies usage  
All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF.  
This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O  
power supply of each pin, see “Power Rail” columns in pin list tables of Section 6, “Package information  
and contact assignments".”  
4.3  
Integrated LDO voltage regulator parameters  
Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins  
named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use  
only and should not be used to power any external circuitry. See the i.MX 6UltraLite Reference Manual  
(IMX6ULRM) for details on the power tree scheme.  
NOTE  
The *_CAP signals should not be powered externally. These signals are  
intended for internal LDO operation only.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
29  
Electrical characteristics  
4.3.1  
Digital regulators (LDO_ARM, LDO_SOC)  
There are two digital LDO regulators (“Digital”, because of the logic loads that they drive, not because of  
their construction). The advantages of the regulators are to reduce the input supply variation because of  
their input supply ripple rejection and their on-die trimming. This translates into more stable voltage for  
the on-chip logics.  
These regulators have two basic modes:  
Power Gate. The regulation FET is switched fully off limiting the current draw from the supply.  
The analog part of the regulator is powered down here limiting the power consumption.  
Analog regulation mode. The regulation FET is controlled such that the output voltage of the  
regulator equals the programmed target voltage. The target voltage is fully programmable in 25 mV  
steps.  
For additional information, see the i.MX 6UltraLite Reference Manual (IMX6ULRM).  
4.3.2  
Regulators for analog modules  
LDO_1P1  
4.3.2.1  
The LDO_1P1 regulator implements a programmable linear-regulator function from VDD_HIGH_IN (see  
Table 11 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0  
V to 1.2 V with the nominal default setting as 1.1 V. The LDO_1P1 supplies the USB Phy, and PLLs. A  
programmable brown-out detector is included in the regulator that can be used by the system to determine  
when the load capability of the regulator is being exceeded to take the necessary steps. Current-limiting  
can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can  
also be enabled for systems requiring this feature.  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX 6UltraLite Applications Processors (IMX6ULHDG).  
For additional information, see the i.MX 6UltraLite Reference Manual (IMX6ULRM).  
4.3.2.2  
LDO_2P5  
The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see  
Table 11 for minimum and maximum input requirements). Typical Programming Operating Range is  
2.25 V to 2.75 V with the nominal default setting as 2.5 V. LDO_2P5 supplies the DDR IOs, USB Phy,  
E-fuse module, and PLLs. A programmable brown-out detector is included in the regulator that can be  
used by the system to determine when the load capability of the regulator is being exceeded, to take the  
necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up,  
if needed. Active-pull-down can also be enabled for systems requiring this feature. An alternate self-biased  
low-precision weak-regulator is included that can be enabled for applications needing to keep the output  
voltage alive during low-power modes where the main regulator driver and its associated global bandgap  
reference module are disabled. The output of the weak-regulator is not programmable and is a function of  
the input supply as well as the load current. Typically, with a 3 V input supply the weak-regulator output  
is 2.525 V and its output impedance is approximately 40 .  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
30  
NXP Semiconductors  
Electrical characteristics  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX 6UltraLite Applications Processors (IMX6ULHDG).  
For additional information, see the i.MX 6UltraLite Reference Manual (IMX6ULRM).  
4.3.2.3  
LDO_USB  
The LDO_USB module implements a programmable linear-regulator function from the USB VUSB  
voltages (4.4 V–5.5 V) to produce a nominal 3.0 V output voltage. A programmable brown-out detector  
is included in the regulator that can be used by the system to determine when the load capability of the  
regulator is being exceeded, to take the necessary steps. This regulator has a built in power-mux that allows  
the user to select to run the regulator from either USB VBUS supply, when both are present. If only one  
of the USB VBUS voltages is present, then, the regulator automatically selects this supply. Current limit  
is also included to help the system meet in-rush current targets.  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX 6UltraLite Applications Processors (IMX6ULHDG).  
For additional information, see the i.MX 6UltraLite Reference Manual (IMX6ULRM).  
4.4  
PLL’s electrical characteristics  
4.4.1  
Audio/Video PLL’s electrical parameters  
Table 17. Audio/Video PLL’s Electrical Parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
650 MHz ~1.3 GHz  
24 MHz  
<11250 reference cycles  
4.4.2  
528 MHz PLL  
Table 18. 528 MHz PLL’s Electrical Parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
528 MHz PLL output  
24 MHz  
<11250 reference cycles  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
31  
Electrical characteristics  
4.4.3  
4.4.4  
4.4.5  
Ethernet PLL  
Table 19. Ethernet PLL’s Electrical Parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
500 MHz  
24 MHz  
<11250 reference cycles  
480 MHz PLL  
Table 20. 480 MHz PLL’s Electrical Parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
480 MHz PLL output  
24 MHz  
<383 reference cycles  
ARM PLL  
Table 21. ARM PLL’s Electrical Parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
648 MHz ~ 1296 MHz  
24 MHz  
<2250 reference cycles  
4.5  
On-Chip oscillators  
OSC24M  
4.5.1  
This block implements an amplifier that when combined with a suitable quartz crystal and external load  
capacitors implement an oscillator. The oscillator is powered from NVCC_PLL.  
The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight  
forward biased-inverter implementation is used.  
4.5.2  
OSC32K  
This block implements an amplifier that when combined with a suitable quartz crystal and external load  
capacitors implement a low power oscillator. It also implements a power mux such that it can be powered  
from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
32  
NXP Semiconductors  
Electrical characteristics  
power from VDD_HIGH_IN when that supply is available and transitions to the backup battery when  
VDD_HIGH_IN is lost.  
In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 K  
will automatically switch to a crude internal ring oscillator. The frequency range of this block is  
approximately 10–45 kHz. It highly depends on the process, voltage, and temperature.  
The OSC32k runs from VDD_SNVS_CAP supply, which comes from the  
VDD_HIGH_IN/VDD_SNVS_IN. The target battery is a ~3 V coin cell. Proper choice of coin cell type  
is necessary for chosen VDD_HIGH_IN range. Appropriate series resistor (Rs) must be used when  
connecting the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell. For  
example, for Panasonic ML621:  
Average Discharge Voltage is 2.5 V  
Maximum Charge Current is 0.6 mA  
For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k.  
Table 22. OSC32K Main Characteristics  
Min  
Typ  
Max Comments  
Fosc  
32.768 KHz  
This frequency is nominal and determined mainly by the crystal selected.  
32.0 K would work as well.  
Current consumption  
4 A  
The 4 A is the consumption of the oscillator alone (OSC32k). Total supply  
consumption will depend on what the digital portion of the RTC consumes.  
The ring oscillator consumes 1 A when ring oscillator is inactive, 20 A  
when the ring oscillator is running. Another 1.5 A is drawn from vdd_rtc in  
the power_detect block. So, the total current is 6.5 A on vdd_rtc when the  
ring oscillator is not running.  
Bias resistor  
14 M  
This integrated bias resistor sets the amplifier into a high gain state. Any  
leakage through the ESD network, external board leakage, or even a  
scope probe that is significant relative to this value will debias the amp. The  
debiasing will result in low gain, and will impact the circuit's ability to start  
up and maintain oscillations.  
Crystal Properties  
Cload  
ESR  
10 pF  
Usually crystals can be purchased tuned for different Cloads. This Cload  
value is typically 1/2 of the capacitances realized on the PCB on either side  
of the quartz. A higher Cload will decrease oscillation margin, but  
increases current oscillating through the crystal.  
50 k  
100 kEquivalent series resistance of the crystal. Choosing a crystal with a higher  
value will decrease the oscillating margin.  
4.6  
I/O DC parameters  
This section includes the DC parameters of the following I/O types:  
XTALI and RTC_XTALI (Clock Inputs) DC Parameters  
General Purpose I/O (GPIO)  
Double Data Rate I/O (DDR) for LPDDR2 and DDR3 modes  
LVDS I/O DC Parameters  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
33  
Electrical characteristics  
NOTE  
The term ‘OVDD’ in this section refers to the associated supply rail of an  
input or output.  
Figure 3. Circuit for Parameters Voh and Vol for I/O Cells  
4.6.1  
XTALI and RTC_XTALI (clock inputs) DC parameters  
Table 23 shows the DC parameters for the clock inputs.  
1
Table 23. XTALI and RTC_XTALI DC Parameters  
Symbol Test Conditions Min  
Parameter  
Max  
Unit  
XTALI high-level DC input voltage  
XTALI low-level DC input voltage  
Vih  
Vil  
0.8 x NVCC_PLL  
NVCC_PLL  
V
V
V
V
0
0.8  
0
0.2  
1.1  
0.2  
RTC_XTALI high-level DC input voltage  
RTC_XTALI low-level DC input voltage  
Vih  
Vil  
1
The DC parameters are for external clock input only.  
4.6.2  
Single voltage General Purpose I/O (GPIO) DC parameters  
Table 24 shows DC parameters for GPIO pads. The parameters in Table 24 are guaranteed per the  
operating ranges in Table 11, unless otherwise noted.  
Table 24. Single Voltage GPIO DC Parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
High-level output voltage1  
VOH  
Ioh= -0.1mA (ipp_dse=001,010) OVDD-0.15  
Ioh= -1mA  
V
(ipp_dse=011,100,101,110,111)  
Low-level output voltage1  
VOL  
Iol= 0.1mA (ipp_dse=001,010)  
Iol= 1mA  
0.15  
V
(ipp_dse=011,100,101,110,111)  
High-Level input voltage1,2  
Low-Level input voltage1,2  
VIH  
VIL  
0.7*OVDD  
0
OVDD  
V
V
0.3*OVDD  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
34  
Electrical characteristics  
Table 24. Single Voltage GPIO DC Parameters (continued)  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
Input Hysteresis (OVDD= 1.8V)  
Input Hysteresis (OVDD=3.3V)  
Schmitt trigger VT+2,3  
VHYS_LowVDD  
VHYS_HighVDD  
VTH+  
OVDD=1.8V  
250  
mV  
mV  
mV  
OVDD=3.3V  
250  
0.5*OVDD  
Schmitt trigger VT-2,3  
VTH-  
-1  
0.5*OVDD mV  
Pull-up resistor (22_kPU)  
Pull-up resistor (22_kPU)  
Pull-up resistor (47_kPU)  
Pull-up resistor (47_kPU)  
Pull-up resistor (100_kPU)  
Pull-up resistor (100_kPU)  
Pull-down resistor (100_kPD)  
Pull-down resistor (100_kPD)  
Input current (no PU/PD)  
RPU_22K  
RPU_22K  
RPU_47K  
RPU_47K  
RPU_100K  
RPU_100K  
RPD_100K  
RPD_100K  
IIN  
Vin=0V  
212  
1
A  
A  
A  
A  
A  
A  
A  
A  
A  
k  
Vin=OVDD  
Vin=0V  
100  
1
Vin=OVDD  
Vin=0V  
48  
1
Vin=OVDD  
Vin=OVDD  
Vin=0V  
48  
1
VI = 0, VI = OVDD  
VI =0.3*OVDD, VI = 0.7* OVDD  
1
Keeper Circuit Resistance  
R_Keeper  
105  
175  
1
Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V,  
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must  
be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other  
methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device.  
2
3
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC  
level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.  
Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.  
4.6.3  
DDR I/O DC parameters  
The DDR I/O pads support LPDDR2 and DDR3/DDR3L operational modes. For details on supported  
DDR memory configurations, see Section 4.10, “Multi-Mode DDR Controller (MMDC)".  
MMDC operation with the standards stated above is contingent upon the board DDR design adherence to  
the DDR design and layout requirements stated in the Hardware Development Guide for the i.MX  
6UltraLite Applications Processor (IMX6ULHDG).  
4.6.3.1  
LPDDR2 mode I/O DC parameters  
1
Table 25. LPDDR2 I/O DC Electrical Parameters  
Parameters  
Symbol  
Test Conditions  
Min  
Max  
Unit  
High-level output voltage  
Low-level output voltage  
Input Reference Voltage  
VOH  
VOL  
Vref  
Ioh= -0.1mA  
Iol= 0.1mA  
0.9*OVDD  
V
V
V
0.1*OVDD  
0.51*OVDD  
0.49*OVDD  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
35  
Electrical characteristics  
Parameters  
1
Table 25. LPDDR2 I/O DC Electrical Parameters (continued)  
Symbol  
Test Conditions  
Min  
Max  
Unit  
DC High-Level input voltage  
Vih_DC  
Vil_DC  
Vih_diff  
Vil_diff  
Mmpupd  
Rres  
Vref+0.13  
OVSS  
0.26  
OVDD  
Vref-0.13  
Note2  
-0.26  
15  
V
V
DC Low-Level input voltage  
Differential Input Logic High  
%
Differential Input Logic Low  
Note2  
-15  
Pull-up/Pull-down Impedance Mismatch  
240 unit calibration resolution  
Keeper Circuit Resistance  
10  
Rkeep  
Iin  
110  
175  
k  
A  
Input current (no pull-up/down)  
VI = 0, VI = OVDD  
-2.5  
2.5  
1
2
Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.  
The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as  
the limitations for overshoot and undershoot.  
4.6.3.2  
DDR3/DDR3L mode I/O DC parameters  
The parameters in Table 27 are guaranteed per the operating ranges in Table 11, unless otherwise noted.  
Table 27. DDR3/DDR3L I/O DC Electrical Characteristics  
Parameters  
Symbol  
Test Conditions  
Min  
Max  
Unit  
High-level output voltage  
VOH  
Ioh= -0.1mA  
0.8*OVDD1  
V
Voh (for ipp_dse=001)  
Low-level output voltage  
High-level output voltage  
Low-level output voltage  
VOL  
VOH  
VOL  
Iol= 0.1mA  
Vol (for ipp_dse=001)  
0.2*OVDD  
0.8*OVDD  
0.2*OVDD  
V
V
V
Ioh= -1mA  
Voh (for all except ipp_dse=001)  
Iol= 1mA  
Vol (for all except ipp_dse=001)  
Input Reference Voltage  
DC High-Level input voltage  
DC Low-Level input voltage  
Differential Input Logic High  
Differential Input Logic Low  
Termination Voltage  
Vref  
Vih_DC  
Vil_DC  
Vih_diff  
Vil_diff  
Vtt  
0.49*ovdd  
Vref2+0.1  
OVSS  
0.2  
0.51*ovdd  
OVDD  
Vref-0.1  
V
V
V
V
-0.2  
V
Vtt tracking OVDD/2  
0.49*OVDD  
-10  
0.51*OVDD  
10  
V
Pull-up/Pull-down Impedance Mismatch Mmpupd  
%
240 unit calibration resolution  
Keeper Circuit Resistance  
Rres  
Rkeep  
Iin  
10  
105  
165  
k  
A  
Input current (no pull-up/down)  
VI = 0,VI = OVDD  
-2.9  
2.9  
1
OVDD – I/O power supply (1.425 V–1.575 V for DDR3 and 1.283 V–1.45 V for DDR3L)  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
36  
Electrical characteristics  
2
Vref – DDR3/DDR3L external reference voltage  
4.6.4  
LVDS I/O DC parameters  
The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A,  
“Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.  
Table 28 shows the Low Voltage Differential Signaling (LVDS) I/O DC parameters.  
Table 28. LVDS I/O DC Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Differential Voltage  
Output High Voltage  
Output Low Voltage  
Offset Voltage  
VOD  
VOH  
VOL  
VOS  
Rload-100 Diff  
IOH = 0 mA  
IOL = 0 mA  
250  
1.25  
0.9  
350  
1.375  
1.025  
1.2  
450  
1.6  
mV  
V
1.25  
1.375  
V
1.125  
V
4.7  
I/O AC parameters  
This section includes the AC parameters of the following I/O types:  
General Purpose I/O (GPIO)  
Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes  
The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and  
Figure 5.  
From Output  
Under Test  
Test Point  
CL  
CL includes package, probe and fixture capacitance  
Figure 4. Load Circuit for Output  
OVDD  
0 V  
80%  
20%  
80%  
20%  
tr  
Output (at pad)  
tf  
Figure 5. Output Transition Time Waveform  
4.7.1  
General Purpose I/O AC parameters  
The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 29 and Table 30,  
respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the  
IOMUXC control registers.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
37  
Electrical characteristics  
Parameter  
Table 29. General Purpose I/O AC Parameters 1.8 V Mode  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Pad Transition Times, rise/fall  
(Max Drive, ipp_dse=111)  
tr, tf  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
2.72/2.79  
1.51/1.54  
Output Pad Transition Times, rise/fall  
(High Drive, ipp_dse=101)  
tr, tf  
tr, tf  
tr, tf  
trm  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
3.20/3.36  
1.96/2.07  
ns  
Output Pad Transition Times, rise/fall  
(Medium Drive, ipp_dse=100)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
3.64/3.88  
2.27/2.53  
Output Pad Transition Times, rise/fall  
(Low Drive. ipp_dse=011)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
4.32/4.50  
3.16/3.17  
Input Transition Times1  
25  
ns  
1
Hysteresis mode is recommended for inputs with transition times greater than 25 ns.  
Table 30. General Purpose I/O AC Parameters 3.3 V Mode  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Pad Transition Times, rise/fall  
(Max Drive, ipp_dse=101)  
tr, tf  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
1.70/1.79  
1.06/1.15  
Output Pad Transition Times, rise/fall  
(High Drive, ipp_dse=011)  
tr, tf  
tr, tf  
tr, tf  
trm  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
2.35/2.43  
1.74/1.77  
ns  
Output Pad Transition Times, rise/fall  
(Medium Drive, ipp_dse=010)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
3.13/3.29  
2.46/2.60  
Output Pad Transition Times, rise/fall  
(Low Drive. ipp_dse=001)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
5.14/5.57  
4.77/5.15  
ns  
ns  
Input Transition Times1  
25  
1
Hysteresis mode is recommended for inputs with transition times greater than 25 ns.  
4.7.2  
DDR I/O AC parameters  
The Multi-mode DDR Controller (MMDC) is compatible with JEDEC-compliant SDRAMs. For details  
on supported DDR memory configurations, see Section 4.10, “Multi-Mode DDR Controller (MMDC)".  
MMDC operation with the standards stated above is contingent upon the board DDR design adherence to  
the DDR design and layout requirements stated in the Hardware Development Guide for the i.MX  
6UltraLite Applications Processor (IMX6ULHDG).  
Table 31 shows the AC parameters for DDR I/O operating in LPDDR2 mode.  
1
Table 31. DDR I/O LPDDR2 Mode AC Parameters  
Parameter  
AC input logic high  
Symbol  
Test Condition  
Min  
Max  
Unit  
Vih(ac)  
Vil(ac)  
Vref + 0.22  
OVDD  
Vref - 0.22  
V
V
V
AC input logic low  
0
AC differential input high voltage2  
Vidh(ac)  
0.44  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
38  
Electrical characteristics  
1
Table 31. DDR I/O LPDDR2 Mode AC Parameters (continued)  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Unit  
AC differential input low voltage  
Input AC differential cross point voltage3  
Over/undershoot peak  
Vidl(ac)  
Vix(ac)  
Vpeak  
Varea  
Relative to Vref  
-0.12  
0.44  
0.12  
0.35  
0.3  
V
V
V
Over/undershoot area (above OVDD  
or below OVSS)  
400 MHz  
V-ns  
tsr  
50 to Vref.  
5 pF load.  
Drive impedance = 40   
± 30%  
1.5  
1
3.5  
2.5  
0.1  
V/ns  
Single output slew rate, measured between  
Vol (ac) and Voh (ac)  
50 to Vref.  
5pF load.Drive  
impedance = 60 ±  
30%  
Skew between pad rise/fall asymmetry + skew  
caused by SSN  
tSKD  
clk = 400 MHz  
ns  
1
Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.  
2
3
Vid(ac) specifies the input differential voltage | Vtr - Vcp | required for switching, where Vtr is the “true” input signal and Vcp  
is the “complementary” input signal. The Minimum value is equal to Vih(ac) - Vil(ac).  
The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac)  
indicates the voltage at which differential input signal must cross.  
Table 32 shows the AC parameters for DDR I/O operating in DDR3/DDR3L mode.  
1
Table 32. DDR I/O DDR3/DDR3L Mode AC Parameters  
Parameter  
AC input logic high  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Vih(ac)  
Vil(ac)  
Vid(ac)  
Vix(ac)  
Vpeak  
Varea  
Vref + 0.175  
OVDD  
Vref - 0.175  
V
V
AC input logic low  
0
0.35  
AC differential input voltage2  
Input AC differential cross point voltage3  
Over/undershoot peak  
Relative to Vref  
V
Vref - 0.15  
Vref + 0.15  
0.4  
V
V
Over/undershoot area (above OVDD  
or below OVSS)  
400 MHz  
0.5  
V-ns  
Single output slew rate, measured between Vol  
(ac) and Voh (ac)  
tsr  
Driver impedance = 34   
2.5  
5
V/ns  
ns  
Skew between pad rise/fall asymmetry + skew  
caused by SSN  
tSKD  
clk = 400 MHz  
0.1  
1
2
Note that the JEDEC JESD79_3D specification supersedes any specification in this document.  
Vid(ac) specifies the input differential voltage | Vtr-Vcp | required for switching, where Vtr is the “true” input signal and Vcp is  
the “complementary” input signal. The Minimum value is equal to Vih(ac) - Vil(ac).  
3
The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac)  
indicates the voltage at which differential input signal must cross.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
39  
Electrical characteristics  
4.8  
Output buffer impedance parameters  
This section defines the I/O impedance parameters of the i.MX 6UltraLite processors for the following  
I/O types:  
Single Voltage General Purpose I/O (GPIO)  
Double Data Rate I/O (DDR) for LPDDR2, and DDR3/DDR3L modes  
NOTE  
GPIO and DDR I/O output driver impedance is measured with “long”  
transmission line of impedance Ztl attached to I/O pad and incident wave  
launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that  
defines specific voltage of incident wave relative to OVDD. Output driver  
impedance is calculated from this voltage divider (see Figure 6).  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
40  
NXP Semiconductors  
Electrical characteristics  
OVDD  
PMOS (Rpu)  
Ztl , L = 20 inches  
ipp_do  
pad  
predriver  
Cload = 1p  
NMOS (Rpd)  
OVSS  
U,(V)  
VDD  
(do)  
Vin  
t,(ns)  
0
U,(V)  
Vout (pad)  
OVDD  
Vref2  
Vref1  
Vref  
t,(ns)  
0
Vovdd - Vref1  
Vref1  
Rpu =  
Rpd =  
Ztl  
Ztl  
Vref2  
Vovdd - Vref2  
Figure 6. Impedance Matching Load for Measurement  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
41  
Electrical characteristics  
4.8.1  
Single voltage GPIO output buffer impedance  
Table 33 shows the GPIO output buffer impedance (OVDD 1.8 V).  
Table 33. GPIO Output Buffer Average Impedance (OVDD 1.8 V)  
Parameter  
Symbol  
Drive Strength (DSE)  
Typ Value  
Unit  
001  
010  
011  
100  
101  
110  
111  
260  
130  
88  
65  
52  
Output Driver  
Impedance  
Rdrv  
43  
37  
Table 34 shows the GPIO output buffer impedance (OVDD 3.3 V).  
Table 34. GPIO Output Buffer Average Impedance (OVDD 3.3 V)  
Parameter  
Symbol  
Drive Strength (DSE)  
Typ Value  
Unit  
001  
010  
011  
100  
101  
110  
111  
157  
78  
53  
39  
32  
26  
23  
Output Driver  
Impedance  
Rdrv  
4.8.2  
DDR I/O output buffer impedance  
Table 35 shows DDR I/O output buffer impedance of i.MX 6UltraLite processors.  
Table 35. DDR I/O Output Buffer Impedance  
Typical  
Test Conditions DSE  
Parameter  
Symbol  
Unit  
NVCC_DRAM=1.5 V  
(DDR3)  
NVCC_DRAM=1.2 V  
(LPDDR2)  
(Drive Strength)  
DDR_SEL=11  
DDR_SEL=10  
000  
001  
010  
011  
100  
101  
110  
111  
Hi-Z  
240  
120  
80  
60  
48  
Hi-Z  
240  
120  
80  
60  
48  
Output Driver  
Impedance  
Rdrv  
40  
34  
40  
34  
Note:  
1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.  
2. Calibration is done against 240 external reference resistor.  
3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.  
4. It is recommended to use a strong driver strength (<= 48 ) for all DDR pads and all DDR type (DDR3/DDR3L/LPDDR2).  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
42  
NXP Semiconductors  
Electrical characteristics  
4.9  
System modules timing  
This section contains the timing and electrical parameters for the modules in each i.MX 6UltraLite  
processor.  
4.9.1  
Reset timings parameters  
Figure 7 shows the reset timing and Table 36 lists the timing parameters.  
POR_B  
(Input)  
CC1  
Figure 7. Reset Timing Diagram  
Table 36. Reset Timing Parameters  
ID  
Parameter  
Min Max  
Unit  
CC1  
Duration of POR_B to be qualified as valid.  
1
RTC_XTALI cycle  
4.9.2  
WDOG reset timing parameters  
Figure 8 shows the WDOG reset timing and Table 37 lists the timing parameters.  
WDOGn_B  
(Output)  
CC3  
Figure 8. WDOGn_B Timing Diagram  
Table 37. WDOGn_B Timing Parameters  
ID  
Parameter  
Duration of WDOGn_B Assertion  
Min  
Max  
Unit  
CC3  
1
RTC_XTALI cycle  
NOTE  
RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or  
approximately 30 s.  
NOTE  
WDOG1_B output signals (for each one of the Watchdog modules) do not  
have dedicated pins, but are muxed out through the IOMUX. See the IOMUX  
manual for detailed information.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
43  
Electrical characteristics  
4.9.3  
External Interface Module (EIM)  
The following subsections provide information on the EIM. Maximum operating frequency for EIM data  
transfer is 104 MHz. Timing parameters in this section that are given as a function of register settings or  
clock periods are valid for the entire range of allowed frequencies (0–104 MHz).  
4.9.3.1  
EIM interface pads allocation  
EIM supports 16-bit and 8-bit devices operating in address/data separate or multiplexed modes. Table 38  
provides EIM interface pads allocation in different modes.  
1
Table 38. EIM Internal Module Multiplexing  
Multiplexed  
Non Multiplexed Address/Data Mode  
8 Bit  
Address/Data  
mode  
Setup  
16 Bit  
MUM = 0,  
16 Bit  
MUM = 0,  
DSZ = 100  
MUM = 0,  
DSZ = 101  
MUM = 0,  
DSZ = 110  
MUM = 0,  
DSZ = 111  
MUM = 0,  
MUM = 1,  
DSZ = 001  
DSZ = 001  
DSZ = 010  
EIM_ADDR  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_ADDR  
[26:16]  
EIM_ADDR  
[26:16]  
EIM_ADDR  
[26:16]  
EIM_ADDR  
[26:16]  
EIM_ADDR  
[26:16]  
EIM_ADDR  
[26:16]  
EIM_ADDR  
[26:16]  
EIM_ADDR  
[26:16]  
EIM_DATA  
[07:00],  
EIM_DATA  
[07:00]  
Reserved  
Reserved  
EIM_DATA  
[07:00]  
Reserved  
EIM_AD  
[07:00]  
EIM_EB0_B  
EIM_DATA  
[15:08],  
EIM_DATA  
[15:08]  
Reserved  
Reserved  
EIM_DATA  
[15:08]  
Reserved  
EIM_AD  
[15:08]  
EIM_EB1_B  
1
For more information on configuration ports mentioned in this table, see the i.MX 6UltraLite Reference Manual (IMX6ULRM).  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
44  
NXP Semiconductors  
Electrical characteristics  
4.9.3.2  
General EIM timing-synchronous mode  
Figure 9, Figure 10, and Table 39 specify the timings related to the EIM module. All EIM output control  
signals may be asserted and deasserted by an internal clock synchronized to the EIM_BCLK rising edge  
according to corresponding assertion/negation control fields.  
,
WE2  
...  
WE3  
EIM_BCLK  
WE1  
WE4  
WE6  
WE5  
WE7  
WE9  
EIM_ADDRxx  
EIM_CSx_B  
WE8  
WE10  
WE12  
EIM_WE_B  
EIM_OE_B  
EIM_EBx_B  
WE11  
WE13  
WE15  
WE17  
WE14  
WE16  
EIM_LBA_B  
Output Data  
Figure 9. EIM Outputs Timing Diagram  
EIM_BCLK  
WE18  
Input Data  
WE19  
WE20  
EIM_WAIT_B  
WE21  
Figure 10. EIM Inputs Timing Diagram  
4.9.3.3  
Examples of EIM synchronous accesses  
Table 39. EIM Bus Timing Parameters  
ID  
Parameter  
Min1  
Max1  
Unit  
WE1  
WE2  
WE3  
WE4  
EIM_BCLK Cycle time2  
t x (k + 1)  
0.4 x t x (k + 1)  
ns  
ns  
ns  
ns  
EIM_BCLK Low Level Width  
EIM_BCLK High Level Width  
Clock rise to address valid  
0.4 x t x (k + 1)  
-0.5 x t x (k + 1) - 1.25  
-0.5 x t x (k + 1) + 2.25  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
45  
Electrical characteristics  
Table 39. EIM Bus Timing Parameters (continued)  
ID  
Parameter  
Clock rise to address invalid  
Min1  
Max1  
Unit  
WE5  
WE6  
-0.5 x t x (k + 1) - 1.25  
-0.5 x t x (k + 1) - 1.25  
-0.5 x t x (k + 1) - 1.25  
-0.5 x t x (k + 1) - 1.25  
-0.5 x t x (k + 1) - 1.25  
-0.5 x t x (k + 1) - 1.25  
-0.5 x t x (k + 1) - 1.25  
-0.5 x t x (k + 1) - 1.25  
-0.5 x t x (k + 1) - 1.25  
-0.5 x t x (k + 1) - 1.25  
-0.5 x t x (k + 1) - 1.25  
-0.5 x t x (k + 1) - 1.25  
-0.5 x t x (k + 1) - 1.25  
2.3  
-0.5 x t x (k + 1) + 2.25  
-0.5 x t x (k + 1) + 2.25  
-0.5 x t x (k + 1) + 2.25  
-0.5 x t x (k + 1) + 2.25  
-0.5 x t x (k + 1) + 2.25  
-0.5 x t x (k + 1) + 2.25  
-0.5 x t x (k + 1) + 2.25  
-0.5 x t x (k + 1) + 2.25  
-0.5 x t x (k + 1) + 2.25  
-0.5 x t x (k + 1) + 2.25  
-0.5 x t x (k + 1) + 2.25  
-0.5 x t x (k + 1) + 2.25  
-0.5 x t x (k + 1) + 2.25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock rise to EIM_CSx_B valid  
Clock rise to EIM_CSx_B invalid  
Clock rise to EIM_WE_B Valid  
Clock rise to EIM_WE_B Invalid  
Clock rise to EIM_OE_B Valid  
Clock rise to EIM_OE_B Invalid  
Clock rise to EIM_EBx_B Valid  
Clock rise to EIM_EBx_B Invalid  
Clock rise to EIM_LBA_B Valid  
Clock rise to EIM_LBA_B Invalid  
Clock rise to Output Data Valid  
Clock rise to Output Data Invalid  
Input Data setup time to Clock rise  
Input Data hold time from Clock rise  
EIM_WAIT_B setup time to Clock rise  
WE7  
WE8  
WE9  
WE10  
WE11  
WE12  
WE13  
WE14  
WE15  
WE16  
WE17  
WE18  
WE19  
WE20  
WE21  
2
2
EIM_WAIT_B hold time from Clock  
rise  
2
1
2
k represents register setting BCD value.  
t is clock period (1/Freq.) For 104 MHz, t = 9.165 ns.  
Figure 11 to Figure 14 provide few examples of basic EIM accesses to external memory devices with the  
timing parameters mentioned previously for specific control parameters settings.  
EIM_BCLK  
WE4  
WE6  
WE5  
WE7  
EIM_ADDRxx  
Address v1  
Last Valid Address  
EIM_CSx_B  
EIM_WE_B  
EIM_LBA_B  
WE14  
WE10  
WE12  
WE15  
WE18  
WE11  
WE13  
EIM_OE_B  
EIM_EBx_B  
EIM_DATAxx  
D(v1)  
WE19  
Figure 11. Synchronous Memory Read Access, WSC=1  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
46  
Electrical characteristics  
EIM_BCLK  
WE5  
WE4  
EIM_ADDRxx  
Last Valid Address  
Address V1  
WE7  
WE6  
WE8  
EIM_CSx_B  
EIM_WE_B  
EIM_LBA_B  
EIM_OE_B  
WE9  
WE14  
WE15  
WE13  
WE12  
WE16  
EIM_EBx_B  
WE17  
EIM_DATAxx  
D(V1)  
Figure 12. Synchronous Memory, Write Access, WSC=1, WBEA=0 and WADVN=0  
EIM_BCLK  
WE16  
WE17  
WE5  
WE4  
EIM_ADDRxx/  
EIM_ADxx  
Write Data  
Last Valid Address  
Address V1  
WE6  
WE7  
WE9  
EIM_CSx_B  
EIM_WE_B  
WE8  
WE14  
WE15  
EIM_LBA_B  
EIM_OE_B  
WE10  
WE11  
EIM_EBx_B  
Figure 13. Muxed Address/Data (A/D) Mode, Synchronous Write Access, WSC=6, ADVA=0, ADVN=1, and  
ADH=1  
NOTE  
In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the  
data bus.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
47  
Electrical characteristics  
EIM_BCLK  
WE4  
Valid Address  
WE6  
WE5  
Address V1  
WE19  
WE18  
EIM_ADDRxx/  
EIM_ADxx  
Last  
Data  
EIM_CSx_B  
EIM_WE_B  
WE7  
WE15  
WE10  
WE14  
WE12  
EIM_LBA_B  
EIM_OE_B  
WE11  
WE13  
EIM_EBx_B  
Figure 14. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, OEA=0  
4.9.3.4  
General EIM timing-asynchronous mode  
Figure 15 through Figure 19, and Table 40 help to determine timing parameters relative to the chip select  
(CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing  
parameters mentioned above.  
Asynchronous read & write access length in cycles may vary from what is shown in Figure 15 through  
Figure 18 as RWSC, OEN and CSN is configured differently. See the i.MX 6UltraLite Reference Manual  
(IMX6ULRM) for the EIM programming model.  
end of  
access  
start of  
access  
INT_CLK  
MAXCSO  
EIM_CSx_B  
EIM_ADDRxx/  
EIM_ADxx  
WE31  
WE32  
Next Address  
Last Valid Address  
Address V1  
EIM_WE_B  
EIM_LBA_B  
WE39  
WE40  
WE36  
WE38  
WE35  
WE37  
EIM_OE_B  
EIM_EBx_B  
WE44  
MAXCO  
EIM_DATAxx[7:0]  
D(V1)  
WE43  
MAXDI  
Figure 15. Asynchronous Memory Read Access (RWSC = 5)  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
48  
Electrical characteristics  
end of  
access  
start of  
access  
INT_CLK  
MAXCSO  
EIM_CSx_B  
MAXDI  
WE31  
EIM_ADDRxx/  
EIM_ADxx  
D(V1)  
Addr. V1  
WE32A  
WE44  
EIM_WE_B  
EIM_LBA_B  
WE40A  
WE39  
WE35A  
WE37  
WE36  
WE38  
EIM_OE_B  
EIM_EBx_B  
MAXCO  
Figure 16. Asynchronous A/D Muxed Read Access (RWSC = 5)  
EIM_CSx_B  
EIM_ADDRxx  
EIM_WE_B  
EIM_LBA_B  
EIM_OE_B  
WE31  
Last Valid Address  
WE33  
WE32  
WE34  
WE40  
Next Address  
Address V1  
WE39  
WE45  
WE41  
WE46  
EIM_EBx_B  
WE42  
EIM_DATAxx  
D(V1)  
Figure 17. Asynchronous Memory Write Access  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
49  
Electrical characteristics  
EIM_CSx_B  
WE41  
WE31  
EIM_ADDRxx/  
D(V1)  
Addr. V1  
WE32A  
WE42  
EIM_DATAxx  
EIM_WE_B  
WE33  
WE39  
WE34  
WE40A  
EIM_LBA_B  
EIM_OE_B  
WE46  
WE45  
EIM_EBx_B  
Figure 18. Asynchronous A/D Muxed Write Access  
EIM_CSx_B  
WE31  
WE32  
EIM_ADDRxx  
Next Address  
Last Valid Address  
Address V1  
EIM_WE_B  
EIM_LBA_B  
EIM_OE_B  
WE39  
WE35  
WE37  
WE40  
WE36  
WE38  
EIM_EBx_B  
WE44  
D(V1)  
EIM_DATAxx[7:0]  
EIM_DTACK_B  
WE43  
WE48  
WE47  
Figure 19. DTACK Mode Read Access (DAP=0)  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
50  
Electrical characteristics  
EIM_CSx_B  
WE31  
WE32  
WE34  
WE40  
EIM_ADDRxx  
EIM_WE_B  
Next Address  
Last Valid Address  
Address V1  
WE33  
WE39  
EIM_LBA_B  
EIM_OE_B  
EIM_EBx_B  
WE45  
WE41  
WE46  
WE42  
EIM_DATAxx  
D(V1)  
WE48  
EIM_DTACK_B  
WE47  
Figure 20. DTACK Mode Write Access (DAP=0)  
1,2  
Table 40. EIM Asynchronous Timing Parameters Table Relative Chip to Select  
Determination by  
Ref No.  
Parameter  
Synchronous measured  
parameters  
Min  
Max  
Unit  
WE31  
WE32  
EIM_CSx_B valid to  
Address Valid  
WE4 - WE6 - CSA x t  
WE7 - WE5 - CSN x t  
-3.5 - CSA x t  
-3.5 - CSN x t  
3.5 - CSA x t  
3.5 - CSN x t  
ns  
ns  
ns  
Address Invalid to  
EIM_CSx_B Invalid  
WE32A(mu EIM_CSx_B valid to  
xed A/D Address Invalid  
t + WE4 - WE7 + (ADVN +  
ADVA + 1 - CSA) x t  
t - 3.5 + (ADVN + ADVA  
+ 1 - CSA) x t  
t + 3.5 + (ADVN +  
ADVA + 1 - CSA) x t  
WE33  
WE34  
EIM_CSx_B Valid to WE8 - WE6 + (WEA - WCSA) x -3.5 + (WEA - WCSA) x t 3.5 + (WEA - WCSA) x t ns  
EIM_WE_B Valid  
t
EIM_WE_B Invalid WE7 - WE9 + (WEN - WCSN) x -3.5 + (WEN - WCSN) x t 3.5 + (WEN - WCSN) x t ns  
to EIM_CSx_B  
Invalid  
t
WE35  
EIM_CSx_B Valid to WE10 - WE6 + (OEA - RCSA) x -3.5 + (OEA - RCSA) x t 3.5 + (OEA - RCSA) x t  
EIM_OE_B Valid  
ns  
ns  
t
WE35A  
(muxed  
A/D)  
EIM_CSx_B Valid to WE10 - WE6 + (OEA + RADVN -3.5 + (OEA + RADVN + 3.5 + (OEA + RADVN +  
EIM_OE_B Valid  
+ RADVA + ADH + 1 - RCSA) x  
t
RADVA + ADH + 1 -  
RCSA) x t  
RADVA + ADH + 1 -  
RCSA) x t  
WE36  
EIM_OE_B Invalid  
to EIM_CSx_B  
Invalid  
WE7 - WE11 + (OEN - RCSN) x -3.5 + (OEN - RCSN) x t 3.5 + (OEN - RCSN) x t ns  
t
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
51  
Electrical characteristics  
Table 40. EIM Asynchronous Timing Parameters Table Relative Chip to Select  
1,2  
Determination by  
Synchronous measured  
parameters  
Ref No.  
Parameter  
Min  
Max  
Unit  
WE37  
EIM_CSx_B Valid to WE12 - WE6 + (RBEA - RCSA) -3.5 + (RBEA - RCSA) x t 3.5 + (RBEA - RCSA) x  
ns  
EIM_EBx_B Valid  
(Read access)  
x t  
t
WE38  
EIM_EBx_B Invalid WE7 - WE13 + (RBEN - RCSN) -3.5 + (RBEN - RCSN) x t 3.5 + (RBEN- RCSN) x t ns  
to EIM_CSx_B  
Invalid (Read  
access)  
x t  
WE39  
WE40  
EIM_CSx_B Valid to WE14 - WE6 + (ADVA - CSA) x -3.5 + (ADVA - CSA) x t 3.5 + (ADVA - CSA) x t  
ns  
ns  
EIM_LBA_B Valid  
t
EIM_LBA_B Invalid  
to EIM_CSx_B  
Invalid (ADVL is  
asserted)  
WE7 - WE15 - CSN x t  
-3.5 - CSN x t  
3.5 - CSN x t  
WE40A  
(muxed  
A/D)  
EIM_CSx_B Valid to WE14 - WE6 + (ADVN + ADVA -3.5 + (ADVN + ADVA + 3.5 + (ADVN + ADVA +  
ns  
EIM_LBA_B Invalid  
+ 1 - CSA) x t  
1 - CSA) x t  
1 - CSA) x t  
WE41  
EIM_CSx_B Valid to  
Output Data Valid  
WE16 - WE6 - WCSA x t  
-3.5 - WCSA x t  
3.5 - WCSA x t  
ns  
ns  
WE41A  
(muxed  
A/D)  
EIM_CSx_B Valid to  
Output Data Valid  
WE16 - WE6 + (WADVN +  
WADVA + ADH + 1 - WCSA) x t  
-3.5 + (WADVN +  
WADVA + ADH + 1 -  
WCSA) x t  
3.5 + (WADVN +  
WADVA + ADH + 1 -  
WCSA) x t  
WE42  
Output Data Invalid  
to EIM_CSx_B  
Invalid  
WE17 - WE7 - CSN x t  
-3.5 - CSN x t  
3.5 - CSN x t  
ns  
ns  
MAXCO Output maximum  
delay from internal  
driving  
10  
10  
EIM_ADDRxx/contr  
ol flip-flops to chip  
outputs  
MAXCSO Output maximum  
delay from internal  
chip selects driving  
flip-flops to  
10  
5
10  
5
ns  
ns  
EIM_CSx_B out  
MAXDI  
EIM_DATAxx  
maximum delay  
from chip input data  
to its internal flip-flop  
WE43  
WE44  
Input Data Valid to  
EIM_CSx_B Invalid  
MAXCO - MAXCSO + MAXDI  
0
MAXCO - MAXCSO +  
MAXDI  
ns  
ns  
EIM_CSx_B Invalid  
to Input Data Invalid  
0
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
52  
Electrical characteristics  
1,2  
Table 40. EIM Asynchronous Timing Parameters Table Relative Chip to Select  
Determination by  
Synchronous measured  
parameters  
Ref No.  
Parameter  
Min  
Max  
Unit  
WE45  
EIM_CSx_B Valid to  
EIM_EBx_B Valid  
(Write access)  
WE12 - WE6 + (WBEA -  
WCSA) x t  
-3.5 + (WBEA - WCSA) x 3.5 + (WBEA - WCSA)  
x t  
ns  
t
WE46  
EIM_EBx_B Invalid  
to EIM_CSx_B  
Invalid (Write  
access)  
WE7 - WE13 + (WBEN -  
WCSN) x t  
-3.5 + (WBEN - WCSN) x 3.5 + (WBEN - WCSN)  
ns  
t
x t  
10  
MAXDTI MAXIMUM delay  
from  
10  
EIM_DTACK_B to  
its internal flip-flop +  
2 cycles for  
synchronization  
WE47  
WE48  
EIM_DTACK_B  
Active to  
EIM_CSx_B Invalid  
MAXCO - MAXCSO + MAXDTI MAXCO - MAXCSO +  
MAXDTI  
ns  
ns  
EIM_CSx_B Invalid  
to EIM_DTACK_B  
Invalid  
0
0
1
2
For more information on configuration parameters mentioned in this table, see the i.MX 6UltraLite Reference Manual  
(IMX6ULRM).  
In this table, CSA means WCSA when write operation or RCSA when read operation  
— t means clock period from axi_clk frequency.  
—CSA means register setting for WCSA when in write operations or RCSA when in read operations.  
—CSN means register setting for WCSN when in write operations or RCSN when in read operations.  
—ADVN means register setting for WADVN when in write operations or RADVN when in read operations.  
—ADVA means register setting for WADVA when in write operations or RADVA when in read operations.  
4.10 Multi-Mode DDR Controller (MMDC)  
The Multi-Mode DDR Controller is a dedicated interface to DDR3/DDR3L/LPDDR2 SDRAM.  
4.10.1 MMDC compatibility with JEDEC-compliant SDRAMs  
The i.MX 6UltraLite MMDC supports the following memory types:  
LPDDR2 SDRAM compliant with JESD209-2B LPDDR2 JEDEC standard release June, 2009  
DDR3/DDR3L SDRAM compliant with JESD79-3D DDR3 JEDEC standard release April, 2008  
MMDC operation with the standards stated above is contingent upon the board DDR design adherence to  
the DDR design and layout requirements stated in the Hardware Development Guide for the i.MX  
6UltraLite Applications Processor (IMX6ULHDG).  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
53  
Electrical characteristics  
4.10.2 MMDC supported DDR3/DDR3L/LPDDR2 configurations  
Table 41 shows the MMDC supported DDR3/DDR3L/LPDDR2 configurations.  
Table 41. i.MX 6UltraLite Supported DDR3/DDR3L/LPDDR2 Configurations  
Parameter  
DDR3  
DDR3L  
LDDDR2  
Clock frequency  
Bus width  
400 MHz  
16-bit  
Single  
2
400 MHz  
16-bit  
Single  
2
400 MHz  
16-bit  
Single  
2
Channel  
Chip selects  
4.11 General-Purpose Media Interface (GPMI) timing  
The i.MX 6UltraLite GPMI controller is a flexible interface NAND Flash controller with 8-bit data width,  
up to 200 MB/s I/O speed and individual chip select.  
It supports Asynchronous timing mode, Source Synchronous timing mode and Samsung Toggle timing  
mode separately described in the following subsections.  
4.11.1 Asynchronous mode AC timing (ONFI 1.0 compatible)  
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The  
maximum I/O speed of GPMI in asynchronous mode is about 50 MB/s. Figure 21 through Figure 24  
depicts the relative timing between GPMI signals at the module level for different operations under  
asynchronous mode. Table 42 describes the timing parameters (NF1–NF17) that are shown in the figures.  
E&Ϯ  
E&ϭ  
.!.$?#,%  
E&ϯ  
E&ϰ  
.!.$?#%ꢀ?"  
.!.$?7%?"  
E&ϱ  
.!.$?!,%  
E&ϲ  
E&ϳ  
E&ϴ  
E&ϵ  
ꢀŽŵŵĂŶĚꢁ  
.!.$?$!4!XX  
Figure 21. Command Latch Cycle Timing Diagram  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
54  
NXP Semiconductors  
Electrical characteristics  
E&ϭ  
.!.$?#,%  
.!.$?#%ꢀ?"  
.!.$?7%?"  
E&ϯ  
E&ϭϬꢁ  
E&ϱ  
E&ϭϭ  
.!.$?!,%  
E&ϳ  
E&ϲ  
E&ϴ  
E&ϵ  
EꢂEꢃͺꢃꢂdꢂdždž  
ꢂĚĚƌĞƐƐꢁ  
Figure 22. Address Latch Cycle Timing Diagram  
E&ϭ  
.!.$?#,%  
.!.$?#%ꢀ?"  
.!.$?7%?"  
E&ϯ  
E&ϭϬꢁ  
E&ϱ  
E&ϭϭ  
E&ϲ  
E&ϳ  
.!.$?!,%  
E&ϴ  
ꢃĂƚĂꢁꢁƚŽꢁꢁE&ꢁ  
E&ϵ  
.!.$?$!4!XX  
Figure 23. Write Data Latch Cycle Timing Diagram  
.!.$?#,%  
.!.$?#%ꢀ?"  
E&ϭϰꢁ  
E&ϭϱ  
E&ϭϯ  
.!.$?2%?"  
.!.$?2%!$9?"  
E&ϭϮ  
E&ϭϲ  
E&ϭϳ  
ꢃĂƚĂꢁĨƌŽŵꢁE&ꢁ  
.!.$?$!4!XX  
Figure 24. Read Data Latch Cycle Timing Diagram (Non-EDO Mode)  
.!.$?#,%  
.!.$?#%ꢀ?"  
E&ϭϰꢁ  
E&ϭϯ  
E&ϭϱ  
.!.$?2%?"  
.!.$?2%!$9?"  
E&ϭϮ  
E&ϭϳ  
E&ϭϲ  
EꢂEꢃͺꢃꢂdꢂdždž  
ꢃĂƚĂꢁĨƌŽŵꢁE&  
Figure 25. Read Data Latch Cycle Timing Diagram (EDO Mode)  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
55  
Electrical characteristics  
1
Table 42. Asynchronous Mode Timing Parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min.  
Max.  
2,3  
NF1  
NF2  
NF3  
NF4  
NF5  
NF6  
NF7  
NF8  
NF9  
NAND_CLE setup time  
NAND_CLE hold time  
NAND_CE0_B setup time  
NAND_CE0_B hold time  
NAND_WE_B pulse width  
NAND_ALE setup time  
NAND_ALE hold time  
Data setup time  
tCLS  
tCLH  
tCS  
(AS + DS) T - 0.12 [see  
DH T - 0.72 [see 2]  
(AS + DS + 1) T [see 3,2  
(DH+1) T - 1 [see 2]  
DS T [see 2]  
]
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
]
tCH  
tWP  
tALS  
tALH  
tDS  
(AS + DS) T - 0.49 [see 3,2  
(DH T - 0.42 [see 2]  
DS T - 0.26 [see 2]  
DH T - 1.37 [see 2]  
(DS + DH) T [see 2]  
DH T [see 2]  
]
Data hold time  
tDH  
NF10 Write cycle time  
tWC  
tWH  
tRR4  
tRP  
NF11 NAND_WE_B hold time  
NF12 Ready to NAND_RE_B low  
NF13 NAND_RE_B pulse width  
NF14 READ cycle time  
(AS + 2) T [see 3,2  
]
DS T [see 2]  
(DS + DH) T [see 2]  
DH T [see 2]  
tRC  
NF15 NAND_RE_B high hold time  
NF16 Data setup on read  
NF17 Data hold on read  
tREH  
tDSR  
tDHR  
(DS T -0.67)/18.38 [see 5,6  
]
0.82/11.83 [see 5,6  
]
1
GPMI’s Async Mode output timing can be controlled by the module’s internal registers  
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.  
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.  
2
3
4
5
6
AS minimum value can be 0, while DS/DH minimum value is 1.  
T = GPMI clock period -0.075ns (half of maximum p-p jitter).  
NF12 is guaranteed by the design.  
Non-EDO mode.  
EDO mode, GPMI clock 100 MHz  
(AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).  
In EDO mode (Figure 24), NF16/NF17 is different from the definition in non-EDO mode (Figure 23).  
They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical values for them  
are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will  
sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The  
delay value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX  
6UltraLite Reference Manual). The typical value of this control register is 0x8 at 50 MT/s EDO mode. But  
if the board delay is big enough and cannot be ignored, the delay value should be made larger to  
compensate the board delay.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
56  
NXP Semiconductors  
Electrical characteristics  
4.11.2 Source synchronous mode AC timing (ONFI 2.x compatible)  
Figure 26 to Figure 28 show the write and read timing of Source Synchronous Mode.  
1)ꢀꢈ  
1)ꢀꢁ  
.!.$?#%?"  
1)ꢂꢆ  
1$1'B&/(  
1)ꢂꢄ  
1)ꢂꢃ  
1)ꢂꢇ  
1$1'B$/(  
1)ꢂꢃ 1)ꢂꢄ  
1$1'B:(ꢉ5(B%  
1)ꢂꢂ  
1$1'B&/.  
1$1'B'46  
1$1'B'46  
2XWSXWꢊHQDEOH  
1)ꢂꢅ  
1)ꢂꢅ  
1)ꢂꢀ  
1)ꢂꢀ  
&0'  
$''  
1$1'B'$7$>ꢋꢌꢅ@  
1$1'B'$7$>ꢋꢌꢅ@  
2XWSXWꢊHQDEOH  
Figure 26. Source Synchronous Mode Command and Address Timing Diagram  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
57  
Electrical characteristics  
1)ꢀꢈ  
1)ꢀꢁ  
.!.$?#%ꢀ?"  
.!.$?#,%  
1)ꢂꢆ  
1)ꢂꢆ  
1)ꢂꢇ  
1)ꢂꢇ  
1)ꢂꢃ  
1)ꢂꢃ  
1)ꢂꢄ  
1)ꢂꢄ  
.!.$?!,%  
1$1'B:(ꢉ5(B%  
1)ꢂꢂ  
.!.$?#,+  
.!.$?$13  
1)ꢂꢋ  
1)ꢂꢋ  
.!.$?$13  
2XWSXWꢊHQDEOH  
1)ꢂꢈ  
1)ꢂꢈ  
.!.$?$1;ꢁꢂꢀ=  
1)ꢂꢁ  
1)ꢂꢁ  
.!.$?$1;ꢁꢂꢀ=  
2XWSXWꢊHQDEOH  
Figure 27. Source Synchronous Mode Data Write Timing Diagram  
1)ꢀꢁ  
1)ꢀꢈ  
.!.$?#%?"  
.!.$?#,%  
1)ꢂꢇ  
1)ꢂꢇ  
1)ꢂꢆ  
1)ꢂꢆ  
1)ꢂꢄ  
1)ꢂꢄ  
1)ꢂꢃ  
1)ꢂꢃ  
1$1'B$/(  
1)ꢂꢃ  
.!.$?7%ꢃ2%  
1)ꢂꢃ  
1)ꢂꢂ  
1)ꢂꢄ  
.!.$?#,+  
.!.$?$13  
.!.$?$13  
/UTPUT ENABLE  
.!.$?$!4!;ꢁꢂꢀ=  
.!.$?$!4!;ꢁꢂꢀ=  
/UTPUT ENABLE  
Figure 28. Source Synchronous Mode Data Read Timing Diagram  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
58  
NXP Semiconductors  
Electrical characteristics  
.!.$?$13  
E&ϯϬꢁ  
.!.$?$!4!;ꢁꢂꢀ=  
ꢃϬꢁ  
ꢃϭꢁ  
ꢃϮꢁ  
ꢃϯꢁ  
E&ϯϬ  
E&ϯϭ  
E&ϯϭ  
Figure 29. NAND_DQS/NAND_DQ Read Valid Window  
1
Table 43. Source Synchronous Mode Timing Parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min.  
Max.  
2
NF18 NAND_CE0_B access time  
NF19 NAND_CE0_B hold time  
tCE  
tCH  
CE_DELAY T - 0.79 [see ]  
0.5 tCK - 0.63 [see 2]  
0.5 tCK - 0.05  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
NF20 Command/address NAND_DATAxx setup time  
NF21 Command/address NAND_DATAxx hold time  
NF22 Clock period  
tCAS  
tCAH  
tCK  
0.5 tCK - 1.23  
NF23 Preamble delay  
tPRE  
tPOST  
tCALS  
tCALH  
tDQSS  
PRE_DELAY T - 0.29 [see 2]  
POST_DELAY T - 0.78 [see 2]  
0.5 tCK - 0.86  
NF24 Postamble delay  
NF25 NAND_CLE and NAND_ALE setup time  
NF26 NAND_CLE and NAND_ALE hold time  
NF27 NAND_CLK to first NAND_DQS latching transition  
NF28 Data write setup  
0.5 tCK - 0.37  
T - 0.41 [see 2]  
0.25 tCK - 0.35  
NF29 Data write hold  
0.25 tCK - 0.85  
NF30 NAND_DQS/NAND_DQ read setup skew  
NF31 NAND_DQS/NAND_DQ read hold skew  
2.06  
1.95  
1
GPMI’s source synchronous mode output timing can be controlled by the module’s internal registers  
GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing  
depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.  
2
T = tCK(GPMI clock period) -0.075ns (half of maximum p-p jitter).  
For DDR Source sync mode, Figure 29 shows the timing diagram of NAND_DQS/NAND_DATAxx read  
valid window. The typical value of tDQSQ is 0.85ns (max) and 1ns (max) for tQHS at 200MB/s. GPMI  
will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal, which  
can be provided by an internal DPLL. The delay value can be controlled by GPMI register  
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6UltraLite  
Reference Manual). Generally, the typical delay value of this register is equal to 0x7 which means 1/4  
clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value  
should be made larger to compensate the board delay.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
59  
Electrical characteristics  
4.11.3 Samsung toggle mode AC timing  
4.11.3.1 Command and address timing  
NOTE  
Samsung Toggle Mode command and address timing is the same as ONFI  
1.0 compatible Async mode AC timing. See Section 4.11.1, “Asynchronous  
mode AC timing (ONFI 1.0 compatible)",” for details.  
4.11.3.2 Read and write timing  
DEV?CLK  
.!.$?#%X?"  
.!.$?#,%  
.!.$?!,%  
.!.$?7%?"  
.!.$?2%?"  
.!.$?$13  
.&ꢇꢉ  
.&ꢇꢈ  
ꢀꢅꢆ T#+  
ꢀꢅꢆ T#+  
.!.$?$!4!;ꢁꢂꢀ=  
Figure 30. Samsung Toggle Mode Data Write Timing  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
60  
Electrical characteristics  
DEV?CLK  
.!.$?#%X?"  
.& ꢄꢊ  
.!.$?#,%  
.!.$?!,%  
ꢄ T #+  
.&ꢇꢉ  
.!.$?7%?"  
.!.$?2%?"  
ꢄ T #+  
.& ꢇꢈ  
ꢄ T #+  
ꢄ T #+  
ꢄ T #+  
.!.$?$13  
.!.$?$!4!;ꢁꢂꢀ=  
Figure 31. Samsung Toggle Mode Data Read Timing  
1
Table 44. Samsung Toggle Mode Timing Parameters  
Timing  
T = GPMI Clock Cycle  
Min.  
ID  
Parameter  
Symbol  
Unit  
Max.  
2,3  
NF1 NAND_CLE setup time  
NF2 NAND_CLE hold time  
tCLS  
tCLH  
tCS  
(AS + DS) T - 0.12 [see  
DH T - 0.72 [see 2]  
(AS + DS) T - 0.58 [see 3,2  
DH T - 1 [see 2]  
]
ns  
ns  
ns  
ns  
NF3 NAND_CE0_B setup time  
NF4 NAND_CE0_B hold time  
NF5 NAND_WE_B pulse width  
NF6 NAND_ALE setup time  
NF7 NAND_ALE hold time  
]
tCH  
tWP  
tALS  
tALH  
tCAS  
tCAH  
tCE  
DS T [see 2]  
(AS + DS) T - 0.49 [see 3,2  
DH T - 0.42 [see 2]  
DS T - 0.26 [see 2]  
]
NF8 Command/address NAND_DATAxx setup time  
NF9 Command/address NAND_DATAxx hold time  
NF18 NAND_CEx_B access time  
NF22 Clock period  
DH T - 1.37 [see 2]  
4,2  
CE_DELAY T [see  
]
tCK  
5,2  
NF23 Preamble delay  
tPRE  
PRE_DELAY T [see  
]
NF24 Postamble delay  
tPOST POST_DELAY T +0.43 [see 2]  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
61  
Electrical characteristics  
1
Table 44. Samsung Toggle Mode Timing Parameters (continued)  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min.  
Max.  
NF28 Data write setup  
NF29 Data write hold  
tDS6  
tDH6  
0.25 tCK - 0.32  
ns  
ns  
0.25 tCK - 0.79  
NF30 NAND_DQS/NAND_DQ read setup skew  
NF31 NAND_DQS/NAND_DQ read hold skew  
tDQSQ7  
tQHS7  
3.18  
3.27  
1
The GPMI toggle mode output timing can be controlled by the module’s internal registers  
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.  
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.  
2
3
4
AS minimum value can be 0, while DS/DH minimum value is 1.  
T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).  
CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started  
with enough time of ALE/CLE assertion to low level.  
5
6
7
PRE_DELAY+1) (AS+DS)  
Shown in Figure 30.  
Shown in Figure 31.  
For DDR Toggle mode, Figure 29 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid  
window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will  
sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which is  
provided by an internal DPLL. The delay value of this register can be controlled by GPMI register  
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6UltraLite  
Reference Manual). Generally, the typical delay value is equal to 0x7 which means 1/4 clock cycle delay  
expected. But if the board delay is big enough and cannot be ignored, the delay value should be made larger  
to compensate the board delay.  
4.12 External peripheral interface parameters  
The following subsections provide information on external peripheral interfaces.  
4.12.1 CMOS Sensor Interface (CSI) timing parameters  
4.12.1.0.1 Gated clock mode timing  
Figure 32 and Figure 33 shows the gated clock mode timings for CSI, and Table 45 describes the timing  
parameters (P1–P7) shown in the figures. A frame starts with a rising/falling edge on CSI_VSYNC  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
62  
NXP Semiconductors  
Electrical characteristics  
(VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock,  
CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted.  
CSI_VSYNC  
P1  
CSI_HSYNC  
P7  
P2  
P5 P6  
CSI_PIXCLK  
P3 P4  
CSI_DATA[23:00]  
Figure 32. CSI Gated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge  
CSI_VSYNC  
P1  
CSI_HSYNC  
P7  
P2  
P6 P5  
CSI_PIXCLK  
P3 P4  
CSI_DATA[23:00]  
Figure 33. CSI Gated Clock Mode—Sensor Data at Rising Edge, Latch Data at Falling Edge  
Table 45. CSI Gated Clock Mode Timing Parameters  
ID  
Parameter  
Symbol  
Min.  
Max.  
Units  
P1  
P2  
P3  
CSI_VSYNC to CSI_HSYNC time  
CSI_HSYNC setup time  
CSI DATA setup time  
tV2H  
tHsu  
tDsu  
33.5  
1
ns  
ns  
ns  
1
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
63  
Electrical characteristics  
Table 45. CSI Gated Clock Mode Timing Parameters (continued)  
ID  
Parameter  
CSI DATA hold time  
CSI pixel clock high time  
Symbol  
Min.  
Max.  
Units  
P4  
P5  
P6  
P7  
tDh  
1
ns  
ns  
tCLKh  
tCLKl  
fCLK  
3.75  
3.75  
CSI pixel clock low time  
CSI pixel clock frequency  
ns  
133  
MHz  
4.12.1.0.2 Ungated clock mode timing  
Figure 34 shows the ungated clock mode timings of CSI, and Table 46 describes the timing parameters  
(P1–P6) that are shown in the figure. In ungated mode the CSI_VSYNC and CSI_PIXCLK signals are  
used, and the CSI_HSYNC signal is ignored.  
CSI_VSYNC  
P1  
P6  
P4 P5  
CSI_PIXCLK  
P2 P3  
CSI_DATA[23:00]  
Figure 34. CSI Ungated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge  
Table 46. CSI Ungated Clock Mode Timing Parameters  
ID  
Parameter  
Symbol  
Min.  
Max.  
Units  
P1  
P2  
P3  
P4  
P5  
P6  
CSI_VSYNC to pixel clock time  
CSI DATA setup time  
tVSYNC  
tDsu  
33.5  
1
ns  
ns  
CSI DATA hold time  
tDh  
1
ns  
CSI pixel clock high time  
CSI pixel clock low time  
CSI pixel clock frequency  
tCLKh  
tCLKl  
fCLK  
3.75  
3.75  
ns  
ns  
133  
MHz  
The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as  
dumb or smart as follows:  
Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync  
(HSYNC)) and output-only Bayer and statistics data.  
Smart sensors support CCIR656 video decoder formats and perform additional processing of the  
image (for example, image compression, image pre-filtering, and various data output formats).  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
64  
NXP Semiconductors  
Electrical characteristics  
The following subsections describe the CSI timing in gated and ungated clock modes.  
4.12.2 ECSPI timing parameters  
This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing  
parameters for master and slave modes.  
4.12.2.1 ECSPI master mode timing  
Figure 35 depicts the timing of ECSPI in master mode. Table 47 lists the ECSPI master mode timing  
characteristics.  
ECSPIx_RDY_B  
ECSPIx_SS_B  
CS10  
CS5  
CS2  
CS6  
CS3  
CS1  
CS4  
ECSPIx_SCLK  
ECSPIx_MOSI  
ECSPIx_MISO  
CS2  
CS3  
CS7  
CS9  
CS8  
Figure 35. ECSPI Master Mode Timing Diagram  
Table 47. ECSPI Master Mode Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max Unit  
CS1 ECSPIx_SCLK Cycle Time–Read  
ECSPIx_SCLK Cycle Time–Write  
tclk  
43  
15  
ns  
ns  
CS2 ECSPIx_SCLK High or Low Time–Read  
ECSPIx_SCLK High or Low Time–Write  
tSW  
21.5  
7
CS3 ECSPIx_SCLK Rise or Fall1  
tRISE/FALL  
tCSLH  
tSCS  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS4 ECSPIx_SS_B pulse width  
Half ECSPIx_SCLK period  
CS5 ECSPIx_SS_B Lead Time (CS setup time)  
CS6 ECSPIx_SS_B Lag Time (CS hold time)  
CS7 ECSPIx_MOSI Propagation Delay (CLOAD = 20 pF)  
CS8 ECSPIx_MISO Setup Time  
Half ECSPIx_SCLK period - 4  
tHCS  
Half ECSPIx_SCLK period - 2  
tPDmosi  
tSmiso  
tHmiso  
tSDRY  
-1  
14  
0
CS9 ECSPIx_MISO Hold Time  
CS10 RDY to ECSPIx_SS_B Time2  
5
1
See specific I/O AC parameters Section 4.7, “I/O AC parameters".”  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
65  
Electrical characteristics  
2
SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.  
4.12.2.2 ECSPI slave mode timing  
Figure 36 depicts the timing of ECSPI in slave mode. Table 48 lists the ECSPI slave mode timing  
characteristics.  
ECSPIx_SS_B  
CS5  
CS6  
CS2  
CS1  
CS4  
ECSPIx_SCLK  
ECSPIx_MISO  
CS2  
CS9  
CS8  
CS7  
ECSPIx_MOSI  
Figure 36. ECSPI Slave Mode Timing Diagram  
Table 48. ECSPI Slave Mode Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max Unit  
CS1 ECSPIx_SCLK Cycle Time–Read  
ECSPI_SCLK Cycle Time–Write  
tclk  
15  
43  
ns  
ns  
CS2 ECSPIx_SCLK High or Low Time–Read  
ECSPIx_SCLK High or Low Time–Write  
tSW  
7
21.5  
CS4 ECSPIx_SS_B pulse width  
tCSLH  
tSCS  
Half ECSPIx_SCLK period  
19  
ns  
ns  
ns  
ns  
ns  
ns  
CS5 ECSPIx_SS_B Lead Time (CS setup time)  
CS6 ECSPIx_SS_B Lag Time (CS hold time)  
CS7 ECSPIx_MOSI Setup Time  
5
5
4
4
4
tHCS  
tSmosi  
tHmosi  
tPDmiso  
CS8 ECSPIx_MOSI Hold Time  
CS9 ECSPIx_MISO Propagation Delay (CLOAD = 20 pF)  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
66  
Electrical characteristics  
4.12.3 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC  
timing  
This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single  
Data Rate) timing, eMMC4.4/4.41/4.5 (Dual Date Rate) timing and SDR104/50(SD3.0) timing.  
4.12.3.1 SD/eMMC4.3 (single data rate) AC timing  
Figure 37 depicts the timing of SD/eMMC4.3, and Table 49 lists the SD/eMMC4.3 timing characteristics.  
SD4  
SD2  
SD1  
SD5  
SDx_CLK  
SD3  
SD6  
Output from uSDHC to card  
SDx_DATA[7:0]  
SD7  
SD8  
Input from card to uSDHC  
SDx_DATA[7:0]  
Figure 37. SD/eMMC4.3 Timing  
Table 49. SD/eMMC4.3 Interface Timing Specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
1
SD1 Clock Frequency (Low Speed)  
fPP  
0
0
400  
25/50  
20/52  
400  
kHz  
MHz  
MHz  
kHz  
ns  
2
Clock Frequency (SD/SDIO Full Speed/High Speed)  
Clock Frequency (MMC Full Speed/High Speed)  
Clock Frequency (Identification Mode)  
fPP  
3
fPP  
0
fOD  
tWL  
100  
7
SD2 Clock Low Time  
SD3 Clock High Time  
SD4 Clock Rise Time  
SD5 Clock Fall Time  
tWH  
tTLH  
tTHL  
7
ns  
3
ns  
3
ns  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD6 uSDHC Output Delay tOD -6.6  
3.6  
ns  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
67  
Electrical characteristics  
Table 49. SD/eMMC4.3 Interface Timing Specification (continued)  
Parameter Symbols Min  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
ID  
Max  
Unit  
SD7 uSDHC Input Setup Time  
SD8 uSDHC Input Hold Time4  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
1
2
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.  
In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 025 MHz. In high-speed mode,  
clock frequency can be any value between 050 MHz.  
3
4
In normal (full) speed mode for MMC card, clock frequency can be any value between 020 MHz. In high-speed mode, clock  
frequency can be any value between 052 MHz.  
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.  
4.12.3.2 eMMC4.4/4.41 (dual data rate) AC timing  
Figure 38 depicts the timing of eMMC4.4/4.41. Table 50 lists the eMMC4.4/4.41 timing characteristics.  
Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).  
SD1  
SDx_CLK  
SD2  
SD2  
Output from eSDHCv3 to card  
SDx_DATA[7:0]  
......  
......  
SD3  
SD4  
Input from card to eSDHCv3  
SDx_DATA[7:0]  
Figure 38. eMMC4.4/4.41 Timing  
Table 50. eMMC4.4/4.41 Interface Timing Specification  
ID  
Parameter  
Symbols  
Card Input Clock  
Min  
Max  
Unit  
SD1 Clock Frequency (eMMC4.4/4.41 DDR)  
SD1 Clock Frequency (SD3.0 DDR)  
fPP  
fPP  
0
0
52  
50  
MHz  
MHz  
uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD2 uSDHC Output Delay tOD 2.5 7.1  
uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
ns  
SD3 uSDHC Input Setup Time  
SD4 uSDHC Input Hold Time  
tISU  
tIH  
1.7  
1.5  
ns  
ns  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
68  
Electrical characteristics  
4.12.3.3 SDR50/SDR104 AC timing  
Figure 39 depicts the timing of SDR50/SDR104, and Table 51 lists the SDR50/SDR104 timing  
characteristics.  
6'ꢀ  
6'ꢂ  
6'ꢆ  
6'ꢋ  
6&.  
ꢇꢍELWꢊRXWSXWꢊIURPꢊX6'+&ꢊWRꢊFDUG  
ꢇꢍELWꢊLQSXWꢊIURPꢊFDUGꢊWRꢊX6'+&  
6'ꢇꢉ6'ꢃ  
6'ꢄ  
6'ꢁ  
Figure 39. SDR50/SDR104 Timing  
Table 51. SDR50/SDR104 Interface Timing Specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1 Clock Frequency Period  
SD2 Clock Low Time  
tCLK  
tCL  
5.0  
ns  
ns  
ns  
0.46 x tCLK  
0.46 x tCLK  
0.54 x tCLK  
0.54 x tCLK  
SD3 Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
SD4 uSDHC Output Delay tOD –3  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)  
uSDHC Output Delay tOD –1.6 0.74  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
1
ns  
ns  
SD5  
uSDHC Input Setup Time  
uSDHC Input Hold Time  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
SD6  
SD7  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1  
Card Output Data Window tODW 0.5 x tCLK  
ns  
SD8  
1Data window in SDR104 mode is variable.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
69  
Electrical characteristics  
4.12.3.4 HS200 mode timing  
Figure 40 depicts the timing of HS200 mode, and Table 52 lists the HS200 timing characteristics.  
6'ꢈ  
6'ꢅ  
6'ꢄ  
6&.  
6'ꢊꢆ6'ꢑ  
ꢎꢇELWꢀRXWSXWꢀIURPꢀX6'+&ꢀWRꢀH00&  
ꢎꢇELWꢀLQSXWꢀIURPꢀH00&ꢀWRꢀX6'+&  
6'ꢎ  
Figure 40. HS200 Mode Timing  
Table 52. HS200 Interface Timing Specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1 Clock Frequency Period  
SD2 Clock Low Time  
tCLK  
tCL  
5.0  
ns  
ns  
ns  
0.46 x tCLK  
0.46 x tCLK  
0.54 x tCLK  
0.54 x tCLK  
SD3 Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)  
uSDHC Output Delay tOD –1.6 0.74  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1  
Card Output Data Window tODW 0.5 x tCLK  
ns  
ns  
SD5  
SD8  
1HS200 is for 8 bits while SDR104 is for 4 bits.  
4.12.3.5 Bus operation condition for 3.3 V and 1.8 V signaling  
Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50  
mode is 1.8 V. The DC parameters for the NVCC_SD1 supply are identical to those shown in Table 24,  
"Single Voltage GPIO DC Parameters," on page 34.  
4.12.4 Ethernet Controller (ENET) AC electrical specifications  
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive  
at timing specs/constraints for the physical interface.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
70  
NXP Semiconductors  
Electrical characteristics  
4.12.4.1 ENET MII mode timing  
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal  
timings.  
4.12.4.1.1 MII receive signal timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN,  
ENET_RX_ER, and ENET_RX_CLK)  
The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There  
is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the  
ENET_RX_CLK frequency.  
Figure 41 shows MII receive signal timings. Table 53 describes the timing parameters (M1–M4) shown in  
the figure.  
M3  
ENET_RX_CLK (input)  
M4  
ENET_RX_DATA3,2,1,0  
(inputs)  
ENET_RX_EN  
ENET_RX_ER  
M1  
M2  
Figure 41. MII Receive Signal Timing Diagram  
Table 53. MII Receive Signal Timing  
ID  
Characteristic1  
Min.  
Max.  
Unit  
M1  
M2  
ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to  
ENET_RX_CLK setup  
5
ns  
ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN,  
ENET_RX_ER hold  
5
ns  
M3  
M4  
ENET_RX_CLK pulse width high  
ENET_RX_CLK pulse width low  
35%  
35%  
65%  
65%  
ENET_RX_CLK period  
ENET_RX_CLK period  
1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.  
4.12.4.1.2 MII transmit signal timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER, and ENET_TX_CLK)  
The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%.  
There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed  
twice the ENET_TX_CLK frequency.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
71  
Electrical characteristics  
Figure 42 shows MII transmit signal timings. Table 54 describes the timing parameters (M5–M8) shown  
in the figure.  
M7  
ENET_TX_CLK (input)  
M5  
M8  
ENET_TX_DATA3,2,1,0  
(outputs)  
ENET_TX_EN  
ENET_TX_ER  
M6  
Figure 42. MII Transmit Signal Timing Diagram  
Table 54. MII Transmit Signal Timing  
ID  
Characteristic1  
Min.  
Max.  
Unit  
M5  
M6  
ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER invalid  
5
ns  
ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER valid  
20  
ns  
M7  
M8  
ENET_TX_CLK pulse width high  
ENET_TX_CLK pulse width low  
35%  
35%  
65%  
65%  
ENET_TX_CLK period  
ENET_TX_CLK period  
1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.  
4.12.4.1.3 MII asynchronous inputs signal timing (ENET_CRS and ENET_COL)  
Figure 43 shows MII asynchronous input timings. Table 55 describes the timing parameter (M9) shown in  
the figure.  
ENET_CRS, ENET_COL  
M9  
Figure 43. MII Async Inputs Timing Diagram  
Table 55. MII Asynchronous Inputs Signal Timing  
ID  
M91  
Characteristic  
Min.  
Max.  
Unit  
ENET_CRS to ENET_COL minimum pulse width  
1.5  
ENET_TX_CLK period  
1 ENET_COL has the same timing in 10-Mbit 7-wire interface mode.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
72  
Electrical characteristics  
4.12.4.1.4 MII serial management channel timing (ENET_MDIO and ENET_MDC)  
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3  
MII specification. However the ENET can function correctly with a maximum MDC frequency of  
15 MHz.  
Figure 44 shows MII asynchronous input timings. Table 56 describes the timing parameters (M10–M15)  
shown in the figure.  
M14  
M15  
ENET_MDC (output)  
M10  
ENET_MDIO (output)  
M11  
ENET_MDIO (input)  
M12  
M13  
Figure 44. MII Serial Management Channel Timing Diagram  
Table 56. MII Serial Management Channel Timing  
ID  
M10  
Characteristic  
Min.  
Max.  
Unit  
ENET_MDC falling edge to ENET_MDIO output invalid (min.  
propagation delay)  
0
ns  
M11  
ENET_MDC falling edge to ENET_MDIO output valid (max.  
propagation delay)  
5
ns  
M12  
M13  
M14  
M15  
ENET_MDIO (input) to ENET_MDC rising edge setup  
ENET_MDIO (input) to ENET_MDC rising edge hold  
ENET_MDC pulse width high  
18  
0
ns  
ns  
40%  
40%  
60%  
60%  
ENET_MDC period  
ENET_MDC period  
ENET_MDC pulse width low  
4.12.4.2 RMII mode timing  
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference  
clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include  
ENET_TX_EN, ENET_TX_DATA[1:0], ENET_RX_DATA[1:0] and ENET_RX_ER.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
73  
Electrical characteristics  
Figure 45 shows RMII mode timings. Table 57 describes the timing parameters (M16–M21) shown in the  
figure.  
M16  
M17  
ENET_CLK (input)  
M18  
ENET_TX_DATA (output)  
ENET_TX_EN  
M19  
ENET_RX_EN (input)  
ENET_RX_DATA[1:0]  
ENET_RX_ER  
M20  
M21  
Figure 45. RMII Mode Signal Timing Diagram  
Table 57. RMII Signal Timing  
ID  
M16  
Characteristic  
Min.  
Max.  
Unit  
ENET_CLK pulse width high  
ENET_CLK pulse width low  
35%  
35%  
4
65%  
65%  
ENET_CLK period  
M17  
M18  
M19  
M20  
ENET_CLK period  
ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid  
ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid  
ns  
ns  
ns  
13  
ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER  
to ENET_CLK setup  
2
M21  
ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER  
hold  
2
ns  
4.12.5 Flexible Controller Area Network (FLEXCAN) AC electrical  
specifications  
The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing  
the CAN protocol according to the CAN 2.0B protocol specification. The processor has two CAN modules  
available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See  
the IOMUXC chapter of the i.MX 6UltraLite Reference Manual (IMX6ULRM) to see which pins expose  
Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX, respectively.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
74  
NXP Semiconductors  
Electrical characteristics  
4.12.6 I2C module timing parameters  
2
2
This section describes the timing parameters of the I C module. Figure 46 depicts the timing of I C  
2
module, and Table 58 lists the I C module timing characteristics.  
IC11  
IC9  
IC10  
I2Cx_SDA  
I2Cx_SCL  
IC7  
IC4  
IC2  
IC3  
IC8  
IC10  
IC6  
IC11  
STOP  
START  
START  
START  
IC5  
IC1  
2
Figure 46. I C Bus Timing  
2
Table 58. I C Module Timing Parameters  
Standard Mode  
Fast Mode  
ID  
Parameter  
Unit  
Min  
Max  
Min  
Max  
IC1  
IC2  
IC3  
I2Cx_SCL cycle time  
10  
4.0  
4.0  
01  
2.5  
0.6  
0.6  
01  
µs  
µs  
µs  
Hold time (repeated) START condition  
Set-up time for STOP condition  
IC4  
Data hold time  
3.452  
0.92 µs  
IC5  
IC6  
IC7  
IC8  
IC9  
IC10  
IC11  
IC12  
HIGH Period of I2Cx_SCL Clock  
LOW Period of the I2Cx_SCL Clock  
Set-up time for a repeated START condition  
Data set-up time  
4.0  
4.7  
4.7  
250  
4.7  
0.6  
1.3  
0.6  
1003  
1.3  
µs  
µs  
µs  
ns  
µs  
Bus free time between a STOP and START condition  
Rise time of both I2Cx_SDA and I2Cx_SCL signals  
Fall time of both I2Cx_SDA and I2Cx_SCL signals  
Capacitive load for each bus line (Cb)  
4
1000  
300  
400  
20 + 0.1Cb 300 ns  
4
20 + 0.1Cb 300 ns  
400 pF  
1
A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal to bridge the undefined region of the falling  
edge of I2Cx_SCL.  
2
3
The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal.  
A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7)  
of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal.  
If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line  
max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification)  
before the I2Cx_SCL line is released.  
4
Cb = total capacitance of one bus line in pF.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
75  
Electrical characteristics  
4.12.7 Pulse Width Modulator (PWM) timing parameters  
This section describes the electrical information of the PWM. The PWM can be programmed to select one  
of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before  
being input to the counter. The output is available at the pulse-width modulator output (PWMO) external  
pin.  
Figure 47 depicts the timing of the PWM, and Table 59 lists the PWM timing parameters.  
0ꢄ  
0ꢇ  
07-N?/54  
Figure 47. PWM Timing  
Table 59. PWM Output Timing Parameters  
ID  
Parameter  
Min  
Max  
Unit  
PWM Module Clock Frequency  
PWM output pulse width high  
PWM output pulse width low  
0
ipg_clk  
MHz  
ns  
P1  
P2  
15  
15  
ns  
4.12.8 LCD Controller (LCDIF) parameters  
Figure 48 shows the LCDIF timing and Table 60 lists the timing parameters.  
/ꢀ  
/ꢂ  
/ꢆ  
/&'QB&/.  
ꢎIDOOLQJꢊHGJHꢊFDSWXUHꢏ  
/&'QB&/.  
ꢎULVLQJꢊHGJHꢊFDSWXUHꢏ  
/&'QB'$7$>ꢂꢆꢌꢅꢅ@  
/&'Qꢊ&RQWUROꢊ6LJQDOV  
/ꢇ  
/ꢃ  
/ꢄ  
/ꢋ  
Figure 48. LCD Timing  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
76  
Electrical characteristics  
Table 60. LCD Timing Parameters  
Parameter  
ID  
Symbol  
Min  
Max  
Unit  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
LCD pixel clock frequency  
tCLK(LCD)  
tCLKH(LCD)  
tCLKL(LCD)  
td(CLKH-DV)  
td(CLKL-DV)  
3
150  
1
MHz  
ns  
LCD pixel clock high (falling edge capture)  
LCD pixel clock low (rising edge capture)  
3
ns  
LCD pixel clock high to data valid (falling edge capture)  
LCD pixel clock low to data valid (rising edge capture)  
-1  
-1  
-1  
-1  
ns  
1
ns  
LCD pixel clock high to control signal valid (falling edge capture) td(CLKH-CTRLV)  
LCD pixel clock low to control signal valid (rising edge capture) td(CLKL-CTRLV)  
1
ns  
1
ns  
4.12.8.1 LCDIF signal mapping  
Table 61 lists the details about the mapping signals.  
Table 61. LCD Signal Parameters  
8-bit DOTCLK LCD 16-bit DOTCLK LCD 18-bit DOTCLK LCD 24-bit DOTCLK LCD 8-bit DVI LCD  
Pin name  
IF  
IF  
IF  
IF  
IF  
LCD_RS  
CCIR_CLK  
LCD_VSYNC*  
(Two options)  
LCD_VSYNC  
LCD_VSYNC  
LCD_VSYNC  
LCD_VSYNC  
LCD_HSYNC  
LCD_DOTCLK  
LCD_ENABLE  
LCD_D23  
LCD_HSYNC  
LCD_HSYNC  
LCD_HSYNC  
LCD_HSYNC  
LCD_DOTCLK  
LCD_DOTCLK  
LCD_DOTCLK  
LCD_DOTCLK  
LCD_ENABLE  
LCD_ENABLE  
LCD_ENABLE  
LCD_ENABLE  
R[7]  
LCD_D22  
R[6]  
LCD_D21  
R[5]  
LCD_D20  
R[4]  
LCD_D19  
R[3]  
LCD_D18  
R[2]  
LCD_D17  
R[5]  
R[4]  
R[3]  
R[1]  
LCD_D16  
R[0]  
LCD_D15 /  
VSYNC*  
R[4]  
G[7]  
LCD_D14 /  
HSYNC**  
R[3]  
R[2]  
R[1]  
G[6]  
G[5]  
LCD_D13 /  
LCD_DOTCLK  
**  
R21]  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
77  
Electrical characteristics  
Table 61. LCD Signal Parameters (continued)  
LCD_D12 /  
ENABLE**  
R[1]  
R[0]  
G[4]  
LCD_D11  
LCD_D10  
LCD_D9  
LCD_D8  
LCD_D8  
LCD_D7  
LCD_D6  
LCD_D5  
LCD_D4  
LCD_D3  
LCD_D2  
LCD_D1  
LCD_D0  
LCD_RESET  
R[0]  
G[5]  
G[5]  
G[4]  
G[3]  
G[2]  
G[4]  
G[3]  
G[1]  
G[3]  
G[2]  
G[0]  
G[3]  
G[2]  
G[0]  
R[2]  
R[1]  
R[0]  
G[2]  
G[1]  
G[0]  
B[1]  
G[2]  
G[1]  
B[7]  
Y/C[7]  
Y/C[6]  
Y/C[5]  
Y/C[4]  
Y/C[3]  
Y/C[2]  
Y/C[1]  
Y/C[0]  
G[1]  
G[0]  
B[6]  
G[0]  
B[5]  
B[5]  
B[4]  
B[4]  
B[4]  
B[3]  
B[3]  
B[3]  
B[2]  
B[2]  
B[2]  
B[1]  
B[1]  
B[1]  
B[0]  
B[0]  
B[0]  
B[0]  
LCD_RESET  
LCD_RESET  
LCD_RESET  
LCD_RESET  
LCD_BUSY /  
LCD_VSYNC  
LCD_BUSY (or  
optional  
LCD_BUSY (or  
optional LCD_VSYNC)  
LCD_BUSY (or  
optional  
LCD_BUSY (or  
optional  
LCD_VSYNC)  
LCD_VSYNC)  
LCD_VSYNC)  
4.12.9 QUAD SPI (QSPI) timing parameters  
Measurement conditions are with 35 pF load on SCK and SIO pins and input slew rate of 1 V/ns.  
4.12.9.1 SDR mode  
463,[B6&/.  
7,6  
7,+  
7,6  
7,+  
463,[B'$7$>ꢅꢌꢆ@  
Figure 49. QuadSPI Input/Read Timing (SDR mode with internal sampling)  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
78  
Electrical characteristics  
Table 62. QuadSPI Input Timing (SDR mode with internal sampling)  
Value  
Symbol  
Parameter  
Unit  
Min  
8.67  
Max  
TIS  
TIH  
Setup time for incoming data  
ns  
ns  
Hold time requirement for incoming data  
0
463,[B6&/.  
463,[B'$7$>ꢉꢒꢄ@  
463,[B'46  
7,6  
7,+  
7,6  
7,+  
Figure 50. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling)  
Table 63. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TIS  
TIH  
Setup time for incoming data  
2
1
ns  
ns  
Hold time requirement for incoming data  
NOTE  
For internal sampling, the timing values assumes using sample point 0,  
that is QuadSPIx_SMPR[SDRSMP] = 0.  
For loopback DQS sampling, the data strobe is output to the DQS pad  
together with the serial clock. The data strobe is looped back from DQS  
pad and used to sample input data.  
463,[B6&/.  
463,[B&6  
7&6+  
7&66  
7&.  
7'92  
7'92  
463,[B6,2  
7'+2  
7'+2  
Figure 51. QuadSPI Output/Write Timing (SDR mode)  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
79  
Electrical characteristics  
Table 64. QuadSPI Output/Write Timing (SDR mode)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TDVO  
TDHO  
TCK  
Output data valid time  
Output data hold time  
SCK clock period  
0
2
ns  
ns  
ns  
10  
3
TCSS  
TCSH  
Chip select output setup time  
Chip select output hold time  
SCK cycle(s)  
SCK cycle(s)  
3
NOTE  
and T are configured by the QuadSPIx_FLSHCR register, the default  
T
css  
csh  
value of 3 are shown on the timing. Please refer to the i.MX 6UltraLite  
Reference Manual (IMX6ULRM) for more details.  
4.12.9.2 DDR mode  
463,[B6&/.  
7,6  
7,+  
7,6  
7,+  
463,[B'$7$>ꢉꢒꢄ@  
Figure 52. QuadSPI Input/Read Timing (DDR mode with internal sampling)  
Table 65. QuadSPI Input/Read Timing (DDR mode with internal sampling)  
Value  
Symbol  
Parameter  
Unit  
Min  
8.67  
Max  
TIS  
TIH  
Setup time for incoming data  
ns  
ns  
Hold time requirement for incoming data  
0
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
80  
Electrical characteristics  
463,[B6&/.  
463,[B'$7$>ꢉꢒꢄ@  
463,[B'46  
7,6  
7,+  
7,6  
7,+  
Figure 53. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling)  
Table 66. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TIS  
TIH  
Setup time for incoming data  
2
1
ns  
ns  
Hold time requirement for incoming data  
NOTE  
For internal sampling, the timing values assumes using sample point 0,  
that is QuadSPIx_SMPR[SDRSMP] = 0.  
For loopback DQS sampling, the data strobe is output to the DQS pad  
together with the serial clock. The data strobe is looped back from DQS  
pad and used to sample input data.  
463,[B6&/.  
463,[B&6  
7&66  
7&.  
7&6+  
7'92  
7'92  
463,[B6,2  
7'+2  
7'+2  
Figure 54. QuadSPI Output/Write Timing (DDR mode)  
Table 67. QuadSPI Output/Write Timing (DDR mode)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TDVO  
TDHO  
TCK  
Output data valid time  
Output data hold time  
SCK clock period  
0.25 x TSCLK + 2 ns  
ns  
ns  
ns  
0.25 x TSCLK  
20  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
81  
Electrical characteristics  
Table 67. QuadSPI Output/Write Timing (DDR mode)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
TCSS  
TCSH  
Chip select output setup time  
Chip select output hold time  
3
3
SCK cycle(s)  
SCK cycle(s)  
NOTE  
T
and T are configured by the QuadSPIx_FLSHCR register, the default  
csh  
css  
value of 3 are shown on the timing. Please refer to the i.MX 6UltraLite  
Reference Manual (IMX6ULRM) for more details.  
4.12.10 SAI/I2S switching specifications  
This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes.  
All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP]  
= 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock  
and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal  
(SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.  
Table 68. Master Mode SAI Timing  
Num  
Characteristic  
SAI_MCLK cycle time  
Min  
2 x tsys  
Max  
Unit  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
ns  
SAI_MCLK pulse width high/low  
SAI_BCLK cycle time  
40%  
4 x tsys  
40%  
60%  
MCLK period  
ns  
SAI_BCLK pulse width high/low  
SAI_BCLK to SAI_FS output valid  
SAI_BCLK to SAI_FS output invalid  
SAI_BCLK to SAI_TXD valid  
60%  
15  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
0
15  
SAI_BCLK to SAI_TXD invalid  
0
SAI_RXD/SAI_FS input setup before SAI_BCLK  
SAI_RXD/SAI_FS input hold after SAI_BCLK  
15  
0
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
82  
Electrical characteristics  
Figure 55. SAI Timing — Master Modes  
Table 69. Master Mode SAI Timing  
Num  
Characteristic  
SAI_BCLK cycle time (input)  
Min  
4 x tsys  
Max  
Unit  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
ns  
SAI_BCLK pulse width high/low (input)  
SAI_FS input setup before SAI_BCLK  
SAI_FA input hold after SAI_BCLK  
SAI_BCLK to SAI_TXD/SAI_FS output valid  
SAI_BCLK to SAI_TXD/SAI_FS output invalid  
SAI_RXD setup before SAI_BCLK  
40%  
10  
2
60%  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
0
20  
10  
2
SAI_RXD hold after SAI_BCLK  
Figure 56. SAI Timing — Slave Modes  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
83  
Electrical characteristics  
4.12.11 SCAN JTAG Controller (SJC) timing parameters  
Figure 57 depicts the SJC test clock input timing. Figure 58 depicts the SJC boundary scan timing.  
Figure 59 depicts the SJC test access port. Signal parameters are listed in Table 70.  
SJ1  
SJ2  
SJ2  
JTAG_TCK  
(Input)  
VM  
VM  
VIH  
VIL  
SJ3  
SJ3  
Figure 57. Test Clock Input Timing Diagram  
JTAG_TCK  
(Input)  
VIH  
SJ5  
VIL  
SJ4  
Input Data Valid  
Data  
Inputs  
SJ6  
Data  
Outputs  
Output Data Valid  
SJ7  
SJ6  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
Figure 58. Boundary Scan (JTAG) Timing Diagram  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
84  
Electrical characteristics  
JTAG_TCK  
(Input)  
VIH  
SJ9  
VIL  
SJ8  
Input Data Valid  
JTAG_TDI  
JTAG_TMS  
(Input)  
SJ10  
SJ11  
SJ10  
JTAG_TDO  
(Output)  
Output Data Valid  
JTAG_TDO  
(Output)  
JTAG_TDO  
(Output)  
Output Data Valid  
Figure 59. Test Access Port Timing Diagram  
JTAG_TCK  
(Input)  
SJ13  
JTAG_TRST_B  
(Input)  
SJ12  
Figure 60. JTAG_TRST_B Timing Diagram  
Table 70. JTAG Timing  
All Frequencies  
Min Max  
ID  
Parameter1,2  
Unit  
1
SJ0  
SJ1  
SJ2  
SJ3  
SJ4  
SJ5  
SJ6  
SJ7  
SJ8  
JTAG_TCK frequency of operation 1/(3•TDC  
)
0.001  
45  
22.5  
22  
3
MHz  
ns  
JTAG_TCK cycle time in crystal mode  
2
JTAG_TCK clock pulse width measured at VM  
JTAG_TCK rise and fall times  
ns  
ns  
Boundary scan input data set-up time  
Boundary scan input data hold time  
JTAG_TCK low to output data valid  
JTAG_TCK low to output high impedance  
JTAG_TMS, JTAG_TDI data set-up time  
5
40  
40  
ns  
24  
ns  
ns  
ns  
5
ns  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
85  
Electrical characteristics  
Table 70. JTAG Timing (continued)  
Parameter1,2  
All Frequencies  
ID  
Unit  
Min  
Max  
SJ9  
JTAG_TMS, JTAG_TDI data hold time  
JTAG_TCK low to JTAG_TDO data valid  
JTAG_TCK low to JTAG_TDO high impedance  
JTAG_TRST_B assert time  
25  
44  
44  
ns  
ns  
ns  
ns  
ns  
SJ10  
SJ11  
SJ12  
SJ13  
100  
40  
JTAG_TRST_B set-up time to JTAG_TCK low  
1
2
T
= target frequency of SJC  
DC  
VM = mid-point voltage  
4.12.12 SPDIF timing parameters  
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When  
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.  
Table 71 and Figure 61 and Figure 62 show SPDIF timing parameters for the Sony/Philips Digital  
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for  
SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.  
Table 71. SPDIF Timing Parameters  
Timing Parameter Range  
Characteristics  
Symbol  
Unit  
Min  
Max  
SPDIF_IN Skew: asynchronous inputs, no specs apply  
0.7  
ns  
ns  
SPDIF_OUT output (Load = 50pf)  
1.5  
24.2  
31.3  
• Skew  
• Transition rising  
• Transition falling  
SPDIF_OUT1 output (Load = 30pf)  
ns  
• Skew  
• Transition rising  
• Transition falling  
1.5  
13.6  
18.0  
Modulating Rx clock (SPDIF_SR_CLK) period  
SPDIF_SR_CLK high period  
srckp  
srckph  
srckpl  
stclkp  
stclkph  
stclkpl  
40.0  
16.0  
16.0  
40.0  
16.0  
16.0  
ns  
ns  
ns  
ns  
ns  
ns  
SPDIF_SR_CLK low period  
Modulating Tx clock (SPDIF_ST_CLK) period  
SPDIF_ST_CLK high period  
SPDIF_ST_CLK low period  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
86  
Electrical characteristics  
srckp  
srckpl  
VM  
srckph  
VM  
SPDIF_SR_CLK  
(Output)  
Figure 61. SPDIF_SR_CLK Timing Diagram  
stclkp  
stclkpl  
VM  
stclkph  
VM  
SPDIF_ST_CLK  
(Input)  
Figure 62. SPDIF_ST_CLK Timing Diagram  
4.12.13 UART I/O configuration and timing parameters  
4.12.13.1 UART RS-232 serial mode timing  
The following sections describe the electrical information of the UART module in the RS-232 mode.  
4.12.13.1.1 UART transmitter  
Figure 63 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit  
format. Table 72 lists the UART RS-232 serial mode transmits timing characteristics.  
Possible  
UA1  
UA1  
Parity  
Bit  
Next  
Start  
Bit  
Start  
Bit  
UARTx_TX_DATA  
(output)  
STOP  
BIT  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA1  
UA1  
Figure 63. UART RS-232 Serial Mode Transmit Timing Diagram  
Table 72. RS-232 Serial Mode Transmit Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
1/Fbaud_rate + Tref_clk  
Unit  
2
UA1 Transmit Bit Time  
tTbit  
1/Fbaud_rate1 - Tref_clk  
1
2
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
87  
Electrical characteristics  
4.12.13.1.2 UART receiver  
Figure 64 depicts the RS-232 serial mode receives timing with 8 data bit/1 stop bit format. Table 73 lists  
serial mode receive timing characteristics.  
Possible  
Parity  
UA2  
UA2  
Bit 3  
Bit  
Next  
Start  
Bit  
Start  
Bit  
STOP  
BIT  
UARTx_RX_DATA  
(output)  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA2  
UA2  
Figure 64. UART RS-232 Serial Mode Receive Timing Diagram  
Table 73. RS-232 Serial Mode Receive Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
Unit  
UA2  
Receive Bit Time1  
tRbit  
1/Fbaud_rate2 - 1/(16  
1/Fbaud_rate  
+
x Fbaud_rate  
)
1/(16 x Fbaud_rate)  
1
2
The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not  
exceed 3/(16 x Fbaud_rate).  
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
4.12.13.1.3 UART IrDA mode timing  
The following subsections give the UART transmit and receive timings in IrDA mode.  
UART IrDA mode transmitter  
Figure 65 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 74 lists  
the transmit timing characteristics.  
UA4  
UA3  
UA3  
UA3  
UA3  
UARTx_TX_D  
ATA  
Start  
Bit  
STOP  
BIT  
Bit 0  
Bit 1  
Possible  
Parity  
Bit  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Figure 65. UART IrDA Mode Transmit Timing Diagram  
Table 74. IrDA Mode Transmit Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
1/Fbaud_rate + Tref_clk  
Unit  
1
UA3  
Transmit Bit Time in IrDA mode  
Transmit IR Pulse Duration  
tTIRbit  
1/Fbaud_rate  
-
2
Tref_clk  
UA4  
tTIRpulse (3/16) x (1/Fbaud_rate  
- Tref_clk  
)
(3/16) x (1/Fbaud_rate  
)
+ Tref_clk  
1
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
88  
NXP Semiconductors  
Electrical characteristics  
2
Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).  
UART IrDA mode receiver  
Figure 66 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 75 lists  
the receive timing characteristics.  
UA6  
UA5  
UA5  
UA5  
UA5  
UARTx_RX_  
DATA  
Start  
Bit  
STOP  
BIT  
Bit 0  
Bit 1  
Possible  
Parity  
Bit  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Figure 66. UART IrDA Mode Receive Timing Diagram  
Table 75. IrDA Mode Receive Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
Unit  
UA5  
Receive Bit Time1 in IrDA mode  
tRIRbit  
1/Fbaud_rate2 - 1/(16 1/Fbaud_rate + 1/(16 x  
x Fbaud_rate  
)
Fbaud_rate  
)
UA6  
Receive IR Pulse Duration  
tRIRpulse  
1.41 s  
(5/16) x (1/Fbaud_rate  
)
1
2
The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not  
exceed 3/(16 x Fbaud_rate).  
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
4.12.14 USB PHY parameters  
This section describes the USB-OTG PHY parameters.  
The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision  
2.0 OTG with the following amendments.  
USB ENGINEERING CHANGE NOTICE  
— Title: 5V Short Circuit Withstand Requirement Change  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000  
USB ENGINEERING CHANGE NOTICE  
— Title: Pull-up/Pull-down resistors  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
USB ENGINEERING CHANGE NOTICE  
— Title: Suspend Current Limit Changes  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
USB ENGINEERING CHANGE NOTICE  
— Title: USB 2.0 Phase Locked SOFs  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
89  
Electrical characteristics  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification  
— Revision 2.0 plus errata and ecn June 4, 2010  
Battery Charging Specification (available from USB-IF)  
— Revision 1.2, December 7, 2010  
— Portable device only  
4.13 A/D converter  
4.13.1 12-bit ADC electrical characteristics  
4.13.1.1 12-bit ADC operating conditions  
Table 76. 12-bit ADC Operating Conditions  
Typ1  
Characteristic  
Supply voltage  
Conditions  
Absolute  
Symb  
Min  
Max  
Unit  
Comment  
VDDAD  
3.0  
-
3.6  
V
Delta to VDD  
VDDAD -100  
0
100  
mV  
(VDD-VDDAD)2  
Ground voltage  
Delta to VSS  
VSSAD  
-100  
0
100  
mV  
(VSS-VSSAD)  
Ref Voltage High  
Ref Voltage Low  
Input Voltage  
VREFH  
VREFL  
VADIN  
CADIN  
RADIN  
1.13  
VSSAD  
VREFL  
VDDAD  
VSSAD  
VDDAD  
V
VSSAD  
V
VREFH  
V
Input Capacitance  
Input Resistance  
8/10/12 bit modes  
ADLPC=0, ADHSC=1  
ADLPC=0, ADHSC=0  
ADLPC=1, ADHSC=0  
1.5  
2
pF  
5
7
kohms  
kohms  
kohms  
kohms  
12.5  
25  
15  
30  
1
Analog Source  
Resistance  
12 bit mode fADCK  
40MHz ADLSMP=0,  
=
RAS  
Tsamp=150  
ns  
ADSTS=10, ADHSC=1  
RAS depends on Sample Time Setting (ADLSMP, ADSTS) and ADC Power Mode (ADHSC, ADLPC). See charts for Minimum  
Sample Time vs RAS  
ADC Conversion Clock ADLPC=0, ADHSC=1  
fADCK  
4
4
4
40  
30  
20  
MHz  
MHz  
MHz  
Frequency  
12 bit mode  
ADLPC=0, ADHSC=0  
12 bit mode  
ADLPC=1, ADHSC=0  
12 bit mode  
1
Typical values assume VDDAD = 3.0 V, Temp = 25°C, fADCK=20 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
90  
NXP Semiconductors  
Electrical characteristics  
2
DC potential differences  
Figure 67. 12-bit ADC Input Impedance Equivalency Diagram  
4.13.1.1.1  
12-bit ADC characteristics  
Table 77. 12-bit ADC Characteristics (V  
= V  
, V  
= V  
)
REFH  
DDAD  
REFL  
SSAD  
Characteristic  
[L:] Supply Current  
Conditions1  
Symb  
IDDAD  
Min  
Typ2  
Max  
Unit  
Comment  
ADLSMP=0  
ADLPC=1,  
ADHSC=0  
250  
350  
400  
0.01  
µA  
ADSTS=10 ADCO=1  
ADLPC=0,  
ADHSC=0  
ADLPC=0,  
ADHSC=1  
[L:] Supply Current  
Stop, Reset, Module IDDAD  
Off  
0.8  
µA  
ADC Asynchronous ADHSC=0  
fADACK  
10  
20  
MHz  
tADACK = 1/fADACK  
Clock Source  
ADHSC=1  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
91  
Electrical characteristics  
Table 77. 12-bit ADC Characteristics (V  
= V  
, V  
= V  
) (continued)  
SSAD  
REFH  
Min  
DDAD  
Typ2  
REFL  
Characteristic  
Conditions1  
Symb  
Max  
Unit  
cycles  
Comment  
Sample Cycles  
ADLSMP=0,  
Csamp  
2
4
6
8
ADSTS=00  
ADLSMP=0,  
ADSTS=01  
ADLSMP=0,  
ADSTS=10  
ADLSMP=0,  
ADSTS=11  
ADLSMP=1,  
ADSTS=00  
12  
ADLSMP=1,  
ADSTS=01  
16  
20  
24  
28  
30  
32  
34  
38  
42  
46  
50  
ADLSMP=1,  
ADSTS=10  
ADLSMP=1,  
ADSTS=11  
Conversion Cycles  
ADLSMP=0  
ADSTS=00  
Cconv  
cycles  
ADLSMP=0  
ADSTS=01  
ADLSMP=0  
ADSTS=10  
ADLSMP=0  
ADSTS=11  
ADLSMP=1  
ADSTS=00  
ADLSMP=1  
ADSTS=01  
ADLSMP=1  
ADSTS=10  
ADLSMP=1,  
ADSTS=11  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
92  
Electrical characteristics  
) (continued)  
Table 77. 12-bit ADC Characteristics (V  
= V  
, V  
= V  
REFL SSAD  
REFH  
DDAD  
Typ2  
Characteristic  
Conditions1  
Symb  
Tconv  
Min  
Max  
Unit  
Comment  
Conversion Time  
ADLSMP=0  
0.7  
µs  
Fadc=40 MHz  
ADSTS=00  
ADLSMP=0  
ADSTS=01  
0.75  
0.8  
ADLSMP=0  
ADSTS=10  
ADLSMP=0  
ADSTS=11  
0.85  
0.95  
1.05  
1.15  
1.25  
ADLSMP=1  
ADSTS=00  
ADLSMP=1  
ADSTS=01  
ADLSMP=1  
ADSTS=10  
ADLSMP=1,  
ADSTS=11  
[P:][C:] Total  
Unadjusted Error  
12 bit mode  
10 bit mode  
8 bit mode  
TUE  
4.5  
2
LSB  
1 LSB =  
(VREFH  
VREFL)/2  
N
-
1.5  
[P:][C:] Differential  
Non-Linearity  
12 bit mode  
10bit mode  
8 bit mode  
12 bit mode  
10bit mode  
8 bit mode  
12 bit mode  
10bit mode  
8 bit mode  
12 bit mode  
10bit mode  
8 bit mode  
DNL  
INL  
1
LSB  
LSB  
LSB  
LSB  
0.5  
0.2  
[P:][C:] Integral  
Non-Linearity  
2.6  
0.8  
0.3  
Zero-Scale Error  
Full-Scale Error  
EZS  
-0.3  
-0.15  
-0.15  
-2.5  
-0.6  
-0.3  
10.7  
EFS  
[L:] Effective Number 12 bit mode  
of Bits  
ENOB  
SINAD  
10.1  
Bits  
dB  
[L:] Signal to Noise  
plus Distortion  
See ENOB  
SINAD = 6.02 x ENOB + 1.76  
1
All accuracy numbers assume the ADC is calibrated with VREFH=VDDAD  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
93  
Electrical characteristics  
2
Typical values assume VDDAD = 3.0 V, Temp = 25°C, Fadck=20 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
NOTE  
The ADC electrical spec would be met with the calibration enabled  
configuration.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
94  
NXP Semiconductors  
Boot mode configuration  
5 Boot mode configuration  
This section provides information on boot mode configuration pins allocation and boot devices interfaces  
allocation.  
5.1  
Boot mode configuration pins  
Table 78 provides boot options, functionality, fuse values, and associated pins. Several input pins are also  
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.  
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an  
unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX  
6UltraLite Fuse Map document and the System Boot chapter in i.MX 6UltraLite Reference Manual  
(IMX6ULRM).  
Table 78. Fuses and Associated Pins Used for Boot  
Pin  
Direction at reset  
eFuse name  
Details  
BOOT_MODE0  
BOOT_MODE1  
Input with 100 K pull-down N/A  
Input with 100 K pull-down N/A  
Boot mode selection  
Boot mode selection  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
95  
Boot mode configuration  
Table 78. Fuses and Associated Pins Used for Boot (continued)  
Pin  
Direction at reset  
eFuse name  
Details  
LCD_DATA00  
LCD_DATA01  
LCD_DATA02  
LCD_DATA03  
LCD_DATA04  
LCD_DATA05  
LCD_DATA06  
LCD_DATA07  
LCD_DATA08  
LCD_DATA09  
LCD_DATA10  
LCD_DATA11  
LCD_DATA12  
LCD_DATA13  
LCD_DATA14  
LCD_DATA15  
LCD_DATA16  
LCD_DATA17  
LCD_DATA18  
LCD_DATA19  
LCD_DATA20  
LCD_DATA21  
LCD_DATA22  
LCD_DATA23  
Input with 100 K pull-down BT_CFG1[0]  
Input with 100 K pull-down BT_CFG1[1]  
Input with 100 K pull-down BT_CFG1[2]  
Input with 100 K pull-down BT_CFG1[3]  
Input with 100 K pull-down BT_CFG1[4]  
Input with 100 K pull-down BT_CFG1[5]  
Input with 100 K pull-down BT_CFG1[6]  
Input with 100 K pull-down BT_CFG1[7]  
Input with 100 K pull-down BT_CFG2[0]  
Input with 100 K pull-down BT_CFG2[1]  
Input with 100 K pull-down BT_CFG2[2]  
Input with 100 K pull-down BT_CFG2[3]  
Input with 100 K pull-down BT_CFG2[4]  
Input with 100 K pull-down BT_CFG2[5]  
Input with 100 K pull-down BT_CFG2[6]  
Input with 100 K pull-down BT_CFG2[7]  
Input with 100 K pull-down BT_CFG4[0]  
Input with 100 K pull-down BT_CFG4[1]  
Input with 100 K pull-down BT_CFG4[2]  
Input with 100 K pull-down BT_CFG4[3]  
Input with 100 K pull-down BT_CFG4[4]  
Input with 100 K pull-down BT_CFG4[5]  
Input with 100 K pull-down BT_CFG4[6]  
Input with 100 K pull-down BT_CFG4[7]  
Boot Options, Pin value overrides  
fuse settings for BT_FUSE_SEL =  
‘0’. Signal Configuration as Fuse  
Override Input at Power Up.  
These are special I/O lines that  
control the boot up configuration  
during product development. In  
production, the boot configuration  
can be controlled by fuses.  
5.2  
Boot device interface allocation  
The following tables list the interfaces that can be used by the boot process in accordance with the  
specific boot mode configuration. The tables also describe the interface’s specific modes and IOMUXC  
allocation, which are configured during boot when appropriate.  
Table 79. QSPI Boot trough QSPI  
Mux  
Mode  
Quad  
Mode  
+ Port A + Port A + Port + Port B + Port B  
DQS CS1 DQS CS1  
Ball Name  
Signal Name  
Common  
B
NAND_WP_B  
NAND_DQS  
qspi.A_SCLK  
qspi.A_SS0_B  
Alt2  
Alt2  
Yes  
Yes  
Yes  
Yes  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
96  
Boot mode configuration  
Table 79. QSPI Boot trough QSPI (continued)  
NAND_READY_B qspi.A_DATA[0]  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Alt2  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NAND_CE0_B  
NAND_CE1_B  
NAND_CLE  
qspi.A_DATA[1]  
qspi.A_DATA[2]  
qspi.A_DATA[3]  
qspi.B_DATA[3]  
qspi.B_DATA[2]  
qspi.B_DATA[1]  
qspi.B_DATA[0]  
qspi.B_SS0_B  
qspi.B_SCLK  
qspi.A_SS1_B  
qspi.A_DQS  
NAND_DATA05  
NAND_DATA04  
NAND_DATA03  
NAND_DATA02  
NAND_WE_B  
NAND_RE_B  
NAND_DATA07  
NAND_ALE  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NAND_DATA00  
NAND_DATA01  
qspi.B_SS1_B  
qspi.B_DQS  
Yes  
Yes  
Table 80. SPI Boot through ECSPI1  
Mux  
Mode  
BOOT_CFG4 BOOT_CFG4 BOOT_CFG4 BOOT_CFG4  
Ball Name  
Signal Name  
Common  
[5:4]=00b  
[5:4]=01b  
[5:4]=10b  
[5:4]=11b  
CSI_DATA07  
CSI_DATA06  
CSI_DATA04  
CSI_DATA05  
LCD_DATA05  
LCD_DATA06  
LCD_DATA07  
ecspi1.MISO  
ecspi1.MOSI  
ecspi1.SCLK  
ecspi1.SS0  
ecspi1.SS1  
ecspi1.SS2  
ecspi1.SS3  
Alt 3  
Alt 3  
Alt 3  
Alt 3  
Alt 8  
Alt 8  
Alt 8  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Table 81. SPI Boot through ECSPI2  
BOOT_CFG BOOT_CFG4 BOOT_CFG4 BOOT_CFG4  
Ball Name  
Signal Name  
Mux Mode Common  
4[5:4]=00b  
[5:4]=01b  
[5:4]=10b  
[5:4]=11b  
CSI_DATA03  
CSI_DATA02  
CSI_DATA00  
CSI_DATA01  
LCD_HSYNC  
ecspi2.MISO  
ecspi2.MOSI  
ecspi2.SCLK  
ecspi2.SS0  
ecspi2.SS1  
Alt 3  
Alt 3  
Alt 3  
Alt 3  
Alt 8  
Yes  
Yes  
Yes  
Yes  
Yes  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
97  
Boot mode configuration  
Table 81. SPI Boot through ECSPI2 (continued)  
LCD_VSYNC  
LCD_RESET  
ecspi2.SS2  
Alt 8  
Alt 8  
Yes  
ecspi2.SS3  
Yes  
Table 82. SPI Boot through ECSPI3  
Mux  
Mode  
BOOT_CFG4 BOOT_CFG4[ BOOT_CFG4[ BOOT_CFG4  
Ball Name  
Signal Name  
Common  
[5:4]=00b  
5:4]=01b  
5:4]=10b  
[5:4]=11b  
UART2_RTS_B  
UART2_CTS_B  
ecspi3.MISO  
ecspi3.MOSI  
Alt 8  
Alt 8  
Alt 8  
Alt 8  
Alt 8  
Alt 8  
Alt 8  
Yes  
Yes  
Yes  
UART2_RX_DATA ecspi3.SCLK  
UART2_TX_DATA  
NAND_ALE  
ecspi3.SS0  
ecspi3.SS1  
ecspi3.SS2  
ecspi3.SS3  
Yes  
Yes  
NAND_RE_B  
NAND_WE_B  
Yes  
Yes  
Table 83. SPI Boot through ECSPI4  
Mux  
Mode  
BOOT_CFG4 BOOT_CFG4 BOOT_CFG4[ BOOT_CFG  
Ball Name  
Signal Name  
Common  
[5:4]=00b  
[5:4]=01b  
5:4]=10b  
4[5:4]=11b  
ENET2_TX_CLK  
ENET2_TX_EN  
ecspi4.MISO  
ecspi4.MOSI  
Alt 3  
Alt 3  
Alt 3  
Alt 3  
Alt 8  
Alt 8  
Alt 8  
Yes  
Yes  
Yes  
ENET2_TX_DATA1 ecspi4.SCLK  
ENET2_RX_ER  
NAND_DATA01  
NAND_DATA02  
NAND_DATA03  
ecspi4.SS0  
ecspi4.SS1  
ecspi4.SS2  
ecspi4.SS3  
Yes  
Yes  
Yes  
Yes  
Table 84. NAND Boot through GPMI  
BOOT_CFG1[3:2]= BOOT_CFG1[3:2]=  
Ball Name  
Signal Name  
Mux Mode Common  
01b  
10b  
NAND_CLE  
NAND_ALE  
rawnand.CLE  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Yes  
Yes  
Yes  
Yes  
Yes  
rawnand.ALE  
rawnand.WP_B  
rawnand.READY_B  
rawnand.CE0_B  
rawnand.CE1_B  
rawnand.RE_B  
rawnand.WE_B  
NAND_WP_B  
NAND_READY_B  
NAND_CE0_B  
NAND_CE1_B  
NAND_RE_B  
NAND_WE_B  
Yes  
Yes  
Yes  
Yes  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
98  
Boot mode configuration  
Table 84. NAND Boot through GPMI (continued)  
BOOT_CFG1[3:2]= BOOT_CFG1[3:2]=  
Ball Name  
Signal Name  
Mux Mode Common  
01b  
10b  
NAND_DATA00  
NAND_DATA01  
NAND_DATA02  
NAND_DATA03  
NAND_DATA04  
NAND_DATA05  
NAND_DATA06  
NAND_DATA07  
NAND_DQS  
rawnand.DATA00  
rawnand.DATA01  
rawnand.DATA02  
rawnand.DATA03  
rawnand.DATA04  
rawnand.DATA05  
rawnand.DATA06  
rawnand.DATA07  
rawnand.DQS  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 2  
Alt 2  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
CSI_MCLK  
rawnand.CE2_B  
rawnand.CE3_B  
Yes  
Yes  
CSI_PIXCLK  
Table 85. SD/MMC Boot through USDHC1  
Mux  
SDMMC  
MFG  
mode  
BOOT_CFG1[1]=1  
(SD Power Cycle)  
Ball Name  
Signal Name  
Common  
4-bit  
8-bit  
Mode  
UART1_RTS_B  
SD1_CLK  
usdhc1.CD_B  
usdhc1.CLK  
Alt 2  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 0  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 5  
Alt 4  
Yes  
Yes  
Yes  
Yes  
SD1_CMD  
usdhc1.CMD  
SD1_DATA0  
SD1_DATA1  
SD1_DATA2  
SD1_DATA3  
NAND_READY_B  
NAND_CE0_B  
NAND_CE1_B  
NAND_CLE  
usdhc1.DATA0  
usdhc1.DATA1  
usdhc1.DATA2  
usdhc1.DATA3  
usdhc1.DATA4  
usdhc1.DATA5  
usdhc1.DATA6  
usdhc1.DATA7  
usdhc1.RESET_B  
usdhc1.VSELECT  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
GPIO1_IO09  
GPIO1_IO05  
Yes  
Yes  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
99  
Boot mode configuration  
Ball Name  
Table 86. SD/MMC Boot through USDHC2  
Commo  
BOOT_CFG1[1]=1  
(SD Power Cycle)  
Signal Name  
Mux Mode  
4-bit  
8-bit  
n
NAND_RE_B  
NAND_WE_B  
usdhc2.CLK  
usdhc2.CMD  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 1  
Alt 5  
Alt 4  
Yes  
Yes  
Yes  
NAND_DATA00  
NAND_DATA01  
NAND_DATA02  
NAND_DATA03  
NAND_DATA04  
NAND_DATA05  
NAND_DATA06  
NAND_DATA07  
usdhc2.DATA0  
usdhc2.DATA1  
usdhc2.DATA2  
usdhc2.DATA3  
usdhc2.DATA4  
usdhc2.DATA5  
usdhc2.DATA6  
usdhc2.DATA7  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
NAND_ALE  
GPIO1_IO08  
usdhc2.RESET_B  
usdhc2.VSELECT  
Yes  
Yes  
Table 87. NOR/OneNAND Boot through EIM  
ADL16  
Non-Mux  
Ball Name  
Signal Name  
Mux Mode  
Common  
AD16 Mux  
CSI_DATA00  
CSI_DATA01  
CSI_DATA02  
CSI_DATA03  
CSI_DATA04  
CSI_DATA05  
CSI_DATA06  
CSI_DATA07  
NAND_DATA00  
NAND_DATA01  
NAND_DATA02  
NAND_DATA03  
NAND_DATA04  
NAND_DATA05  
NAND_DATA06  
NAND_DATA07  
NAND_CLE  
weim.AD[0]  
weim.AD[1]  
weim.AD[2]  
weim.AD[3]  
weim.AD[4]  
weim.AD[5]  
weim.AD[6]  
weim.AD[7]  
weim.AD[8]  
weim.AD[9]  
weim.AD[10]  
weim.AD[11]  
weim.AD[12]  
weim.AD[13]  
weim.AD[14]  
weim.AD[15]  
weim.ADDR[16]  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
100  
Boot mode configuration  
Table 87. NOR/OneNAND Boot through EIM (continued)  
ADL16  
Non-Mux  
Ball Name  
Signal Name  
Mux Mode  
Common  
AD16 Mux  
NAND_ALE  
NAND_CE1_B  
SD1_CMD  
weim.ADDR[17]  
weim.ADDR[18]  
weim.ADDR[19]  
weim.ADDR[20]  
weim.ADDR[21]  
weim.ADDR[22]  
weim.ADDR[23]  
weim.ADDR[24]  
weim.ADDR[25]  
weim.ADDR[26]  
weim.CS0_B  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Alt 4  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
SD1_CLK  
SD1_DATA0  
SD1_DATA1  
SD1_DATA2  
SD1_DATA3  
ENET2_RXER  
ENET2_CRS_DV  
CSI_MCLK  
Yes  
LCD_DATA08  
LCD_DATA09  
LCD_DATA10  
LCD_DATA11  
LCD_DATA12  
LCD_DATA13  
LCD_DATA14  
LCD_DATA15  
LCD_DATA16  
LCD_DATA17  
LCD_DATA18  
LCD_DATA19  
LCD_DATA20  
LCD_DATA21  
LCD_DATA22  
LCD_DATA23  
NAND_RE_B  
NAND_WE_B  
CSI_HSYNC  
CSI_PIXCLK  
CSI_VSYNC  
weim.DATA[0]  
weim.DATA[1]  
weim.DATA[2]  
weim.DATA[3]  
weim.DATA[4]  
weim.DATA[5]  
weim.DATA[6]  
weim.DATA[7]  
weim.DATA[8]  
weim.DATA[9]  
weim.DATA[10]  
weim.DATA[11]  
weim.DATA[12]  
weim.DATA[13]  
weim.DATA[14]  
weim.DATA[15]  
weim.EB_B[0]  
weim.EB_B[1]  
weim.LBA_B  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
weim.OE  
weim.RW  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
101  
Boot mode configuration  
Ball Name  
Table 88. Serial Download through UART1  
Signal Name  
Mux Mode  
Common  
UART1_TX_DATA  
UART1_RX_DATA  
uart1.TX_DATA  
uart1.RX_DATA  
Alt 0  
Alt 0  
Yes  
Yes  
Table 89. Serial Download through UART2  
Ball Name  
Signal Name  
Mux Mode  
Common  
UART2_TX_DATA  
UART2_RX_DATA  
uart2.TX_DATA  
uart2.RX_DATA  
Alt 0  
Alt 0  
Yes  
Yes  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
102  
Package information and contact assignments  
6 Package information and contact assignments  
This section includes the contact assignment information and mechanical package drawing.  
6.1  
14x14 mm package information  
14x14 mm, 0.8 mm pitch, ball matrix  
6.1.1  
Figure 68 shows the top, bottom, and side views of the 14x14 mm BGA package.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
103  
Package information and contact assignments  
Figure 68. 14x14 mm BGA, Case x Package Top, Bottom, and Side Views  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
104  
Package information and contact assignments  
6.1.2  
14x14 mm supplies contact assignments and functional contact  
assignments  
Table 90 shows the device connection list for ground, sense, and reference contact signals.  
Table 90. 14x14 mm Supplies Contact Assignment  
Supply Rail Name  
Ball(s) Position(s)  
Remark  
ADC_VREFH  
DRAM_VREF  
GPANAIO  
M13  
P4  
R13  
NGND_KEL0  
NVCC_CSI  
M12  
F4  
NVCC_DRAM  
NVCC_DRAM_2P5  
NVCC_ENET  
NVCC_GPIO  
NVCC_LCD  
G6, H6, J6, K6, L6, M6  
N6  
F13  
J13  
E13  
NVCC_NAND  
NVCC_PLL  
E7  
P13  
NVCC_SD1  
C4  
NVCC_UART  
VDD_ARM_CAP  
VDD_HIGH_CAP  
VDD_HIGH_IN  
VDD_SNVS_CAP  
VDD_SNVS_IN  
VDD_SOC_CAP  
VDD_SOC_IN  
VDD_USB_CAP  
VDDA_ADC_3P3  
VSS  
H13  
G9, G10, G11, H11  
R14, R15  
N13  
N12  
P12  
G8, H8, J8, J11, K8, K11, L8, L9, L10, L11  
H9, H10, J9, J10, K9, K10  
R12  
L13  
A1, A17, C3, C7, C11, C15, E8, E11, F6, F7, F8, F9, F10,F11, F12, G3, G5, G7,  
G12, G15, H7, H12, J5, J7, J12, K7, K12, L3, L7, L12, M7, M8, M9, M10, M11,  
N3, N5, R3, R5, R7, R11, R16, R17, T14, U1, U14, U17  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
105  
Package information and contact assignments  
Table 91 shows an alpha-sorted list of functional contact assignments for the 14x14 mm package.  
Table 91. 14x14 mm Functional Contact Assignments  
Out of Reset Condition  
14x14  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
BOOT_MODE0  
T10  
U10  
VDD_SNVS_IN  
VDD_SNVS_IN  
GPIO  
GPIO  
ALT5  
ALT5  
BOOT_MODE0  
BOOT_MODE1  
Input  
Input  
100 k  
pull-down  
BOOT_MODE1  
100 k  
pull-down  
CCM_CLK1_N  
CCM_CLK1_P  
CCM_PMIC_STBY_REQ  
CSI_DATA00  
CSI_DATA01  
CSI_DATA02  
CSI_DATA03  
CSI_DATA04  
CSI_DATA05  
CSI_DATA06  
CSI_DATA07  
CSI_HSYNC  
P16  
P17  
U9  
E4  
E3  
E2  
E1  
D4  
D3  
D2  
D1  
F3  
VDD_HIGH_CAP  
VDD_HIGH_CAP  
VDD_SNVS_IN  
NVCC_CSI  
LVDS  
LVDS  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
DDR  
CCM_CLK1_N  
CCM_CLK1_P  
ALT0 CCM_PMIC_STBY_REQ Output  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
CSI_DATA00  
CSI_DATA01  
CSI_DATA02  
CSI_DATA03  
CSI_DATA04  
CSI_DATA05  
CSI_DATA06  
CSI_DATA07  
CSI_HSYNC  
CSI_MCLK  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
CSI_MCLK  
F5  
NVCC_CSI  
CSI_PIXCLK  
CSI_VSYNC  
E5  
F2  
NVCC_CSI  
CSI_PIXCLK  
CSI_VSYNC  
DRAM_ADDR00  
NVCC_CSI  
DRAM_ADDR00  
L5  
NVCC_DRAM  
100 k  
pull-up  
DRAM_ADDR01  
DRAM_ADDR02  
DRAM_ADDR03  
DRAM_ADDR04  
DRAM_ADDR05  
DRAM_ADDR06  
H2  
K1  
M2  
K4  
L1  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
DRAM_ADDR01  
DRAM_ADDR02  
DRAM_ADDR03  
DRAM_ADDR04  
DRAM_ADDR05  
DRAM_ADDR06  
Output  
Output  
Output  
Output  
Output  
Output  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
G2  
100 k  
pull-up  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
106  
Package information and contact assignments  
Table 91. 14x14 mm Functional Contact Assignments (continued)  
DRAM_ADDR07  
DRAM_ADDR08  
DRAM_ADDR09  
DRAM_ADDR10  
DRAM_ADDR11  
DRAM_ADDR12  
DRAM_ADDR13  
DRAM_ADDR14  
DRAM_ADDR15  
DRAM_CAS_B  
DRAM_CS0_B  
DRAM_CS1_B  
DRAM_DATA00  
DRAM_DATA01  
DRAM_DATA02  
DRAM_DATA03  
DRAM_DATA04  
DRAM_DATA05  
DRAM_DATA06  
DRAM_DATA07  
DRAM_DATA08  
H4  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
DRAM_ADDR07  
DRAM_ADDR08  
DRAM_ADDR09  
DRAM_ADDR10  
DRAM_ADDR11  
DRAM_ADDR12  
DRAM_ADDR13  
DRAM_ADDR14  
DRAM_ADDR15  
DRAM_CAS_B  
DRAM_CS0_B  
DRAM_CS1_B  
DRAM_DATA00  
DRAM_DATA01  
DRAM_DATA02  
DRAM_DATA03  
DRAM_DATA04  
DRAM_DATA05  
DRAM_DATA06  
DRAM_DATA07  
DRAM_DATA08  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
100 k  
pull-up  
J4  
100 k  
pull-up  
L2  
100 k  
pull-up  
M4  
K3  
L4  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
H3  
G1  
K5  
J2  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
N2  
H5  
T4  
U6  
T6  
U7  
U8  
T8  
T5  
U4  
U2  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
107  
Package information and contact assignments  
Table 91. 14x14 mm Functional Contact Assignments (continued)  
DRAM_DATA09  
DRAM_DATA10  
DRAM_DATA11  
DRAM_DATA12  
DRAM_DATA13  
DRAM_DATA14  
DRAM_DATA15  
DRAM_DQM0  
U3  
U5  
R4  
P5  
P3  
R2  
R1  
T7  
T3  
N1  
F1  
M5  
G4  
M1  
H1  
K2  
M3  
J3  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
DRAM_DATA09  
DRAM_DATA10  
DRAM_DATA11  
DRAM_DATA12  
DRAM_DATA13  
DRAM_DATA14  
DRAM_DATA15  
DRAM_DQM0  
Input  
Input  
100 k  
pull-up  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
100 k  
pull-up  
DRAM_DQM1  
DRAM_DQM1  
100 k  
pull-up  
DRAM_ODT0  
DRAM_ODT0  
100 k  
pull-down  
DRAM_ODT1  
DRAM_ODT1  
100 k  
pull-down  
DRAM_RAS_B  
DRAM_RESET  
DRAM_SDBA0  
DRAM_SDBA1  
DRAM_SDBA2  
DRAM_SDCKE0  
DRAM_SDCKE1  
DRAM_SDCLK0_N  
DRAM_SDCLK0_P  
DRAM_SDQS0_N  
DRAM_RAS_B  
DRAM_RESET  
DRAM_SDBA0  
DRAM_SDBA1  
DRAM_SDBA2  
DRAM_SDCKE0  
DRAM_SDCKE1  
DRAM_SDCLK0_N  
DRAM_SDCLK0_P  
DRAM_SDQS0_N  
100 k  
pull-up  
100 k  
pull-down  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-down  
100 k  
pull-down  
P2  
P1  
P7  
DDRCLK ALT0  
DDRCLK ALT0  
DDRCLK ALT0  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-down  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
108  
Package information and contact assignments  
Table 91. 14x14 mm Functional Contact Assignments (continued)  
DRAM_SDQS0_P  
DRAM_SDQS1_N  
DRAM_SDQS1_P  
DRAM_SDWE_B  
P6  
T2  
T1  
J1  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDRCLK ALT0  
DDRCLK ALT0  
DDRCLK ALT0  
DRAM_SDQS0_P  
DRAM_SDQS1_N  
DRAM_SDQS1_P  
DRAM_SDWE_B  
Input  
100 k  
pull-down  
Input  
100 k  
pull-down  
Input  
100 k  
pull-down  
DDR  
ALT0  
Output  
100 k  
pull-up  
DRAM_ZQPAD  
ENET1_RX_DATA0  
ENET1_RX_DATA1  
ENET1_RX_EN  
ENET1_RX_ER  
ENET1_TX_CLK  
ENET1_TX_DATA0  
ENET1_TX_DATA1  
ENET1_TX_EN  
ENET2_RX_DATA0  
ENET2_RX_DATA1  
ENET2_RX_EN  
ENET2_RX_ER  
ENET2_TX_CLK  
ENET2_TX_DATA0  
ENET2_TX_DATA1  
ENET2_TX_EN  
GPIO1_IO00  
N4  
NVCC_DRAM  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
DRAM_ZQPAD  
ENET1_RX_DATA0  
ENET1_RX_DATA1  
ENET1_RX_EN  
ENET1_RX_ER  
ENET1_TX_CLK  
ENET1_TX_DATA0  
ENET1_TX_DATA1  
ENET1_TX_EN  
ENET2_RX_DATA0  
ENET2_RX_DATA1  
ENET2_RX_EN  
ENET2_RX_ER  
ENET2_TX_CLK  
ENET2_TX_DATA0  
ENET2_TX_DATA1  
ENET2_TX_EN  
GPIO1_IO00  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
F16  
E17  
E16  
D15  
F14  
E15  
E14  
F15  
C17  
C16  
B17  
D16  
D17  
A15  
A16  
B15  
K13  
L15  
L14  
L17  
M16  
M17  
K17  
L16  
N17  
M15  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO1_IO01  
GPIO1_IO01  
GPIO1_IO02  
GPIO1_IO02  
GPIO1_IO03  
GPIO1_IO03  
GPIO1_IO04  
GPIO1_IO04  
GPIO1_IO05  
GPIO1_IO05  
GPIO1_IO06  
GPIO1_IO06  
GPIO1_IO07  
GPIO1_IO07  
GPIO1_IO08  
GPIO1_IO08  
GPIO1_IO09  
GPIO1_IO09  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
109  
Package information and contact assignments  
Table 91. 14x14 mm Functional Contact Assignments (continued)  
JTAG_MOD  
JTAG_TCK  
JTAG_TDI  
P15  
M14  
N16  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
JTAG_MOD  
JTAG_TCK  
JTAG_TDI  
Input  
Input  
Input  
100 k  
pull-up  
47 k  
pull-up  
47 k  
pull-up  
JTAG_TDO  
JTAG_TMS  
N15  
P14  
NVCC_GPIO  
NVCC_GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
JTAG_TDO  
JTAG_TMS  
Output  
Input  
Keeper  
47 k  
pull-up  
JTAG_TRST_B  
N14  
NVCC_GPIO  
GPIO  
ALT5  
JTAG_TRST_B  
Input  
47 k  
pull-up  
LCD_CLK  
A8  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
LCD_CLK  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
LCD_DATA00  
LCD_DATA01  
LCD_DATA02  
LCD_DATA03  
LCD_DATA04  
LCD_DATA05  
LCD_DATA06  
LCD_DATA07  
LCD_DATA08  
LCD_DATA09  
LCD_DATA10  
LCD_DATA11  
LCD_DATA12  
LCD_DATA13  
LCD_DATA14  
LCD_DATA15  
LCD_DATA16  
LCD_DATA17  
LCD_DATA18  
LCD_DATA19  
LCD_DATA20  
LCD_DATA21  
LCD_DATA22  
LCD_DATA23  
B9  
LCD_DATA00  
LCD_DATA01  
LCD_DATA02  
LCD_DATA03  
LCD_DATA04  
LCD_DATA05  
LCD_DATA06  
LCD_DATA07  
LCD_DATA08  
LCD_DATA09  
LCD_DATA10  
LCD_DATA11  
LCD_DATA12  
LCD_DATA13  
LCD_DATA14  
LCD_DATA15  
LCD_DATA16  
LCD_DATA17  
LCD_DATA18  
LCD_DATA19  
LCD_DATA20  
LCD_DATA21  
LCD_DATA22  
LCD_DATA23  
A9  
E10  
D10  
C10  
B10  
A10  
D11  
B11  
A11  
E12  
D12  
C12  
B12  
A12  
D13  
C13  
B13  
A13  
D14  
C14  
B14  
A14  
B16  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
110  
Package information and contact assignments  
Table 91. 14x14 mm Functional Contact Assignments (continued)  
LCD_ENABLE  
LCD_HSYNC  
LCD_RESET  
LCD_VSYNC  
NAND_ALE  
B8  
D9  
E9  
C9  
B4  
C5  
B5  
A4  
D7  
B7  
A7  
D6  
C6  
B6  
A6  
A5  
E6  
D8  
A3  
C8  
D5  
R8  
NVCC_LCD  
NVCC_LCD  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
LCD_ENABLE  
LCD_HSYNC  
LCD_RESET  
LCD_VSYNC  
VDDSOC  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
NVCC_LCD  
NVCC_LCD  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
VDD_SNVS_IN  
NAND_CE0_B  
NAND_CE1_B  
NAND_CLE  
NAND_CE0_B  
NAND_CE1_B  
NAND_CLE  
NAND_DATA00  
NAND_DATA01  
NAND_DATA02  
NAND_DATA03  
NAND_DATA04  
NAND_DATA05  
NAND_DATA06  
NAND_DATA07  
NAND_DQS  
NAND_DATA00  
NAND_DATA01  
NAND_DATA02  
NAND_DATA03  
NAND_DATA04  
NAND_DATA05  
NAND_DATA06  
NAND_DATA07  
NAND_DQS  
NAND_RE_B  
NAND_READY_B  
NAND_WE_B  
NAND_WP_B  
ONOFF  
NAND_RE_B  
NAND_READY_B  
NAND_WE_B  
NAND_WP_B  
ONOFF  
100 k  
pull-up  
POR_B  
P8  
VDD_SNVS_IN  
GPIO  
ALT0  
POR_B  
Input  
100 k  
pull-up  
RTC_XTALI  
T11  
U11  
C1  
C2  
B3  
B2  
B1  
A2  
T9  
VDD_SNVS_CAP ANALOG  
VDD_SNVS_CAP ANALOG  
RTC_XTALI  
RTC_XTALO  
SD1_CLK  
RTC_XTALO  
SD1_CLK  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
VDD_SNVS_IN  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
SD1_CMD  
SD1_CMD  
SD1_DATA0  
SD1_DATA1  
SD1_DATA2  
SD1_DATA3  
SNVS_PMIC_ON_REQ  
SD1_DATA0  
SD1_DATA1  
SD1_DATA2  
SD1_DATA3  
SNVS_PMIC_ON_REQ  
100 k  
pull-up  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
111  
Package information and contact assignments  
Table 91. 14x14 mm Functional Contact Assignments (continued)  
SNVS_TAMPER0  
SNVS_TAMPER1  
SNVS_TAMPER2  
SNVS_TAMPER3  
SNVS_TAMPER4  
SNVS_TAMPER5  
SNVS_TAMPER6  
SNVS_TAMPER7  
SNVS_TAMPER8  
SNVS_TAMPER9  
R10  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO5_IO00/SNVS_TAM Input  
PER01  
Keeper1  
Keeper1  
Keeper1  
Keeper1  
Keeper1  
Keeper1  
Keeper1  
Keeper1  
Keeper1  
Keeper1  
R9  
GPIO5_IO01/SNVS_TAM Input  
PER11  
P11  
P10  
P9  
GPIO5_IO02/SNVS_TAM Input  
PER21  
GPIO5_IO03/SNVS_TAM Input  
PER31  
GPIO5_IO04/SNVS_TAM Input  
PER41  
N8  
GPIO5_IO05/SNVS_TAM Input  
PER51  
N11  
N10  
N9  
GPIO5_IO06/SNVS_TAM Input  
PER61  
GPIO5_IO07/SNVS_TAM Input  
PER71  
GPIO5_IO08/SNVS_TAM Input  
PER81  
R6  
GPIO5_IO09/SNVS_TAM Input  
PER91  
TEST_MODE  
N7  
VDD_SNVS_IN  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
OPEN DRAIN  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT0  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
TEST_MODE  
UART1_CTS_B  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
UART1_CTS_B  
K15  
J14  
K16  
K14  
J15  
H14  
J16  
J17  
H15  
G14  
H16  
H17  
G16  
G17  
G13  
F17  
U16  
UART1_RTS_B  
UART1_RTS_B  
UART1_RX_DATA  
UART1_TX_DATA  
UART2_CTS_B  
UART1_RX_DATA  
UART1_TX_DATA  
UART2_CTS_B  
UART2_RTS_B  
UART2_RTS_B  
UART2_RX_DATA  
UART2_TX_DATA  
UART3_CTS_B  
UART2_RX_DATA  
UART2_TX_DATA  
UART3_CTS_B  
UART3_RTS_B  
UART3_RTS_B  
UART3_RX_DATA  
UART3_TX_DATA  
UART4_RX_DATA  
UART4_TX_DATA  
UART5_RX_DATA  
UART5_TX_DATA  
USB_OTG1_CHD_B  
UART3_RX_DATA  
UART3_TX_DATA  
UART4_RX_DATA  
UART4_TX_DATA  
UART5_RX_DATA  
UART5_TX_DATA  
USB_OTG1_CHD_B  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
112  
Package information and contact assignments  
Table 91. 14x14 mm Functional Contact Assignments (continued)  
USB_OTG1_DN  
USB_OTG1_DP  
USB_OTG1_VBUS  
T15  
U15  
T12  
VDD_USB_CAP ANALOG  
VDD_USB_CAP ANALOG  
USB_OTG1_DN  
USB_OTG1_DP  
USB_OTG1_VBUS  
USB_VBUS  
VBUS  
POWER  
USB_OTG2_DN  
USB_OTG2_DP  
USB_OTG2_VBUS  
T13  
U13  
U12  
VDD_USB_CAP ANALOG  
VDD_USB_CAP ANALOG  
USB_OTG2_DN  
USB_OTG2_DP  
USB_OTG2_VBUS  
USB_VBUS  
VBUS  
POWER  
XTALI  
T16  
T17  
NVCC_PLL  
NVCC_PLL  
ANALOG  
ANALOG  
XTALI  
XTALO  
XTALO  
1
SNVS_TAMPER0 to SNVS_TAMPER9 can be configured as GPIO or tamper detection pin, it is depending on the fuse setting  
TAMPER_PIN_DISABLE[1:0].  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
113  
Package information and contact assignments  
6.1.3  
14x14 mm, 0.8 mm pitch, ball map  
Table 92 shows the 14x14 mm, 0.8 mm pitch ball map for the i.MX 6UltraLite.  
Table 92. 14x14 mm, 0.8 mm Pitch, Ball Map  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
114  
NXP Semiconductors  
Package information and contact assignments  
Table 92. 14x14 mm, 0.8 mm Pitch, Ball Map (continued)  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
115  
Package information and contact assignments  
Table 92. 14x14 mm, 0.8 mm Pitch, Ball Map (continued)  
6.2  
9x9 mm package information  
6.2.1  
9x9 mm, 0.5 mm pitch, ball matrix  
Figure 69 shows the top, bottom, and side views of the 9x9 mm BGA package.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
116  
NXP Semiconductors  
Package information and contact assignments  
Figure 69. 9X9 mm BGA, Case x Package Top, Bottom, and Side Views  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
117  
Package information and contact assignments  
6.2.2  
9x9 mm supplies contact assignments and functional contact  
assignments  
Table 93 shows the device connection list for ground, sense, and reference contact signals.  
Table 93. 9x9 mm Supplies Contact Assignment  
Supply Rail Name  
Ball(s) Position(s)  
Remark  
ADC_VREFH  
DRAM_VREF  
GPANAIO  
N13  
T1  
T11  
NGND_KEL0  
NVCC_CSI  
M10  
E5  
NVCC_DRAM  
NVCC_DRAM_2P5  
NVCC_ENET  
NVCC_GPIO  
NVCC_LCD  
G5, L5, M5, N6  
K6  
G13  
M13  
E13  
NVCC_NAND  
NVCC_PLL  
E11  
T13  
NVCC_SD1  
E7  
NVCC_UART  
VDD_ARM_CAP  
VDD_HIGH_CAP  
VDD_HIGH_IN  
VDD_SNVS_CAP  
VDD_SNVS_IN  
VDD_SOC_CAP  
VDD_SOC_IN  
VDD_USB_CAP  
VDDA_ADC_3P3  
VSS  
L13  
G9, G10, G11, H9, H10, H11  
U11  
U15  
N12  
P12  
G7, G8, H7, H8, J7, J8, K7, K8, L7, L8  
J9, J10, J11, K9, K10, K11, L9, L10, L11  
N11  
T17  
A2, A7, A12, A17, B1, C15, F1, F3, F8, F10, F17, H6, H12, J3, J15, K12, M1, M3,  
M8, M17, R3, R9, R12, R15, U1, U6, U13, U17  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
118  
Package information and contact assignments  
Table 94 shows an alpha-sorted list of functional contact assignments for the 9x9 mm package.  
Table 94. 9x9 mm Functional Contact Assignments  
Out of Reset Condition  
9x9  
Ball  
Power  
Group  
Ball  
Type  
Ball Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
BOOT_MODE0  
T8  
U8  
VDD_SNVS_IN  
VDD_SNVS_IN  
GPIO  
GPIO  
ALT5  
ALT5  
BOOT_MODE0  
BOOT_MODE1  
Input  
Input  
100 k  
pull-down  
BOOT_MODE1  
100 k  
pull-down  
CCM_CLK1_N  
CCM_CLK1_P  
CCM_PMIC_STBY_REQ  
CSI_DATA00  
CSI_DATA01  
CSI_DATA02  
CSI_DATA03  
CSI_DATA04  
CSI_DATA05  
CSI_DATA06  
CSI_DATA07  
CSI_HSYNC  
U16  
T16  
U7  
C3  
D4  
B2  
D1  
C4  
B3  
A3  
C2  
D2  
C1  
D5  
D3  
G1  
VDD_HIGH_CAP  
VDD_HIGH_CAP  
VDD_SNVS_IN  
NVCC_CSI  
LVDS  
LVDS  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
DDR  
CCM_CLK1_N  
CCM_CLK1_P  
ALT0 CCM_PMIC_STBY_REQ Output  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
CSI_DATA00  
CSI_DATA01  
CSI_DATA02  
CSI_DATA03  
CSI_DATA04  
CSI_DATA05  
CSI_DATA06  
CSI_DATA07  
CSI_HSYNC  
CSI_MCLK  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
CSI_MCLK  
NVCC_CSI  
CSI_PIXCLK  
CSI_VSYNC  
NVCC_CSI  
CSI_PIXCLK  
CSI_VSYNC  
DRAM_ADDR00  
NVCC_CSI  
DRAM_ADDR00  
NVCC_DRAM  
100 k  
pull-up  
DRAM_ADDR01  
DRAM_ADDR02  
DRAM_ADDR03  
DRAM_ADDR04  
DRAM_ADDR05  
DRAM_ADDR06  
G2  
H1  
J2  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
DRAM_ADDR01  
DRAM_ADDR02  
DRAM_ADDR03  
DRAM_ADDR04  
DRAM_ADDR05  
DRAM_ADDR06  
Output  
Output  
Output  
Output  
Output  
Output  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
M4  
H2  
E4  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
119  
Package information and contact assignments  
Table 94. 9x9 mm Functional Contact Assignments (continued)  
DRAM_ADDR07  
DRAM_ADDR08  
DRAM_ADDR09  
DRAM_ADDR10  
DRAM_ADDR11  
DRAM_ADDR12  
DRAM_ADDR13  
DRAM_ADDR14  
DRAM_ADDR15  
DRAM_CAS_B  
DRAM_CS0_B  
DRAM_CS1_B  
DRAM_DATA00  
DRAM_DATA01  
DRAM_DATA02  
DRAM_DATA03  
DRAM_DATA04  
DRAM_DATA05  
DRAM_DATA06  
DRAM_DATA07  
DRAM_DATA08  
J4  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
DRAM_ADDR07  
DRAM_ADDR08  
DRAM_ADDR09  
DRAM_ADDR10  
DRAM_ADDR11  
DRAM_ADDR12  
DRAM_ADDR13  
DRAM_ADDR14  
DRAM_ADDR15  
DRAM_CAS_B  
DRAM_CS0_B  
DRAM_CS1_B  
DRAM_DATA00  
DRAM_DATA01  
DRAM_DATA02  
DRAM_DATA03  
DRAM_DATA04  
DRAM_DATA05  
DRAM_DATA06  
DRAM_DATA07  
DRAM_DATA08  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
100 k  
pull-up  
J5  
100 k  
pull-up  
J1  
100 k  
pull-up  
M2  
K5  
L3  
H4  
E3  
E2  
G4  
L1  
H5  
T3  
N5  
T4  
T5  
U5  
T6  
R4  
U3  
P1  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
120  
Package information and contact assignments  
Table 94. 9x9 mm Functional Contact Assignments (continued)  
DRAM_DATA09  
DRAM_DATA10  
DRAM_DATA11  
DRAM_DATA12  
DRAM_DATA13  
DRAM_DATA14  
DRAM_DATA15  
DRAM_DQM0  
U2  
P3  
R2  
P4  
N2  
N1  
P2  
U4  
R1  
K2  
E1  
L4  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
DRAM_DATA09  
DRAM_DATA10  
DRAM_DATA11  
DRAM_DATA12  
DRAM_DATA13  
DRAM_DATA14  
DRAM_DATA15  
DRAM_DQM0  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-up  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
100 k  
pull-up  
DRAM_DQM1  
DRAM_DQM1  
100 k  
pull-up  
DRAM_ODT0  
DRAM_ODT0  
100 k  
pull-down  
DRAM_ODT1  
DRAM_ODT1  
100 k  
pull-down  
DRAM_RAS_B  
DRAM_RESET  
DRAM_SDBA0  
DRAM_SDBA1  
DRAM_SDBA2  
DRAM_SDCKE0  
DRAM_SDCKE1  
DRAM_SDCLK0_N  
DRAM_SDCLK0_P  
DRAM_SDQS0_N  
DRAM_RAS_B  
DRAM_RESET  
DRAM_SDBA0  
DRAM_SDBA1  
DRAM_SDBA2  
DRAM_SDCKE0  
DRAM_SDCKE1  
DRAM_SDCLK0_N  
DRAM_SDCLK0_P  
DRAM_SDQS0_N  
100 k  
pull-up  
F2  
H3  
F5  
G3  
L2  
100 k  
pull-down  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-up  
100 k  
pull-down  
K1  
K4  
K3  
R5  
100 k  
pull-down  
DDRCLK ALT0  
DDRCLK ALT0  
DDRCLK ALT0  
100 k  
pull-up  
Input  
100 k  
pull-up  
Input  
100 k  
pull-down  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
121  
Package information and contact assignments  
Table 94. 9x9 mm Functional Contact Assignments (continued)  
DRAM_SDQS0_P  
DRAM_SDQS1_N  
DRAM_SDQS1_P  
DRAM_SDWE_B  
P5  
N4  
N3  
F4  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDRCLK ALT0  
DDRCLK ALT0  
DDRCLK ALT0  
DRAM_SDQS0_P  
DRAM_SDQS1_P  
DRAM_SDQS1_N  
DRAM_SDWE_B  
Input  
Input  
100 k  
pull-down  
100 k  
pull-down  
Input  
100 k  
pull-down  
DDR  
ALT0  
Output  
100 k  
pull-up  
DRAM_ZQPAD  
ENET1_RX_DATA0  
ENET1_RX_DATA1  
ENET1_RX_EN  
ENET1_RX_ER  
ENET1_TX_CLK  
ENET1_TX_DATA0  
ENET1_TX_DATA1  
ENET1_TX_EN  
ENET2_RX_DATA0  
ENET2_RX_DATA1  
ENET2_RX_EN  
ENET2_RX_ER  
ENET2_TX_CLK  
ENET2_TX_DATA0  
ENET2_TX_DATA1  
ENET2_TX_EN  
GPIO1_IO00  
T2  
NVCC_DRAM  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
DRAM_ZQPAD  
ENET1_RX_DATA0  
ENET1_RX_DATA1  
ENET1_RX_EN  
ENET1_RX_ER  
ENET1_TX_CLK  
ENET1_TX_DATA0  
ENET1_TX_DATA1  
ENET1_TX_EN  
ENET2_RX_DATA0  
ENET2_RX_DATA1  
ENET2_RX_EN  
ENET2_RX_ER  
ENET2_TX_CLK  
ENET2_TX_DATA0  
ENET2_TX_DATA1  
ENET2_TX_EN  
GPIO1_IO00  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
G17  
F16  
G16  
G14  
G15  
E16  
F13  
F15  
E17  
D17  
D16  
H13  
H14  
E14  
F14  
E15  
M14  
M15  
M16  
N16  
N17  
P15  
N15  
N14  
P14  
P16  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO1_IO01  
GPIO1_IO01  
GPIO1_IO02  
GPIO1_IO02  
GPIO1_IO03  
GPIO1_IO03  
GPIO1_IO04  
GPIO1_IO04  
GPIO1_IO05  
GPIO1_IO05  
GPIO1_IO06  
GPIO1_IO06  
GPIO1_IO07  
GPIO1_IO07  
GPIO1_IO08  
GPIO1_IO08  
GPIO1_IO09  
GPIO1_IO09  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
122  
Package information and contact assignments  
Table 94. 9x9 mm Functional Contact Assignments (continued)  
JTAG_MOD  
JTAG_TCK  
JTAG_TDI  
R13  
R17  
P17  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
JTAG_MOD  
JTAG_TCK  
JTAG_TDI  
Input  
Input  
Input  
100 k  
pull-up  
47 k  
pull-up  
47 k  
pull-up  
JTAG_TDO  
JTAG_TMS  
R16  
R14  
NVCC_GPIO  
NVCC_GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
JTAG_TDO  
JTAG_TMS  
Output  
Input  
Keeper  
47 k  
pull-up  
JTAG_TRST_B  
P13  
NVCC_GPIO  
GPIO  
ALT5  
JTAG_TRST_B  
Input  
47 k  
pull-up  
LCD_CLK  
C11  
D11  
B12  
D10  
B11  
A11  
D12  
D13  
C12  
B13  
A13  
D14  
C13  
C14  
A14  
B14  
A16  
A15  
D15  
B15  
E12  
B17  
C16  
B16  
C17  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
LCD_CLK  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
LCD_DATA00  
LCD_DATA01  
LCD_DATA02  
LCD_DATA03  
LCD_DATA04  
LCD_DATA05  
LCD_DATA06  
LCD_DATA07  
LCD_DATA08  
LCD_DATA09  
LCD_DATA10  
LCD_DATA11  
LCD_DATA12  
LCD_DATA13  
LCD_DATA14  
LCD_DATA15  
LCD_DATA16  
LCD_DATA17  
LCD_DATA18  
LCD_DATA19  
LCD_DATA20  
LCD_DATA21  
LCD_DATA22  
LCD_DATA23  
LCD_DATA00  
LCD_DATA01  
LCD_DATA02  
LCD_DATA03  
LCD_DATA04  
LCD_DATA05  
LCD_DATA06  
LCD_DATA07  
LCD_DATA08  
LCD_DATA09  
LCD_DATA10  
LCD_DATA11  
LCD_DATA12  
LCD_DATA13  
LCD_DATA14  
LCD_DATA15  
LCD_DATA16  
LCD_DATA17  
LCD_DATA18  
LCD_DATA19  
LCD_DATA20  
LCD_DATA21  
LCD_DATA22  
LCD_DATA23  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
123  
Package information and contact assignments  
Table 94. 9x9 mm Functional Contact Assignments (continued)  
LCD_ENABLE  
LCD_HSYNC  
LCD_RESET  
LCD_VSYNC  
NAND_ALE  
A10  
B10  
E10  
C10  
D8  
E8  
NVCC_LCD  
NVCC_LCD  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
LCD_ENABLE  
LCD_HSYNC  
LCD_RESET  
LCD_VSYNC  
VDDSOC  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
NVCC_LCD  
NVCC_LCD  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
VDD_SNVS_IN  
NAND_CE0_B  
NAND_CE1_B  
NAND_CLE  
NAND_CE0_B  
NAND_CE1_B  
NAND_CLE  
B6  
B7  
NAND_DATA00  
NAND_DATA01  
NAND_DATA02  
NAND_DATA03  
NAND_DATA04  
NAND_DATA05  
NAND_DATA06  
NAND_DATA07  
NAND_DQS  
D7  
A9  
NAND_DATA00  
NAND_DATA01  
NAND_DATA02  
NAND_DATA03  
NAND_DATA04  
NAND_DATA05  
NAND_DATA06  
NAND_DATA07  
NAND_DQS  
C9  
C7  
C8  
A6  
B9  
B8  
E6  
NAND_RE_B  
NAND_READY_B  
NAND_WE_B  
NAND_WP_B  
ONOFF  
D9  
E9  
NAND_RE_B  
NAND_READY_B  
NAND_WE_B  
NAND_WP_B  
ONOFF  
A8  
D6  
R6  
100 k  
pull-up  
POR_B  
R10  
VDD_SNVS_IN  
GPIO  
ALT0  
POR_B  
Input  
100 k  
pull-up  
RTC_XTALI  
T12  
U12  
C5  
C6  
A5  
VDD_SNVS_CAP ANALOG  
VDD_SNVS_CAP ANALOG  
RTC_XTALI  
RTC_XTALO  
SD1_CLK  
RTC_XTALO  
SD1_CLK  
NVCC_SD  
NVCC_SD  
NVCC_SD  
NVCC_SD  
NVCC_SD  
NVCC_SD  
VDD_SNVS_IN  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
SD1_CMD  
SD1_CMD  
SD1_DATA0  
SD1_DATA1  
SD1_DATA2  
SD1_DATA3  
SNVS_PMIC_ON_REQ  
SD1_DATA0  
A4  
SD1_DATA1  
B5  
SD1_DATA2  
B4  
SD1_DATA3  
T7  
SNVS_PMIC_ON_REQ  
100 k  
pull-up  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
124  
Package information and contact assignments  
Table 94. 9x9 mm Functional Contact Assignments (continued)  
SNVS_TAMPER0  
SNVS_TAMPER1  
SNVS_TAMPER2  
SNVS_TAMPER3  
SNVS_TAMPER4  
SNVS_TAMPER5  
SNVS_TAMPER6  
SNVS_TAMPER7  
SNVS_TAMPER8  
SNVS_TAMPER9  
R8  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO5_IO00/SNVS_TAM Input  
PER01  
Keeper/n  
on-conne  
cted1,2  
P6  
GPIO5_IO01/SNVS_TAM Input  
PER11  
Keeper/n  
on-conne  
cted1,2  
N10  
P10  
P7  
GPIO5_IO02/SNVS_TAM Input  
PER21  
Keeper/n  
on-conne  
cted1,2  
GPIO5_IO03/SNVS_TAM Input  
PER31  
Keeper/n  
on-conne  
cted1,2  
GPIO5_IO04/SNVS_TAM Input  
PER41  
Keeper/n  
on-conne  
cted1,2  
P8  
GPIO5_IO05/SNVS_TAM Input  
PER51  
Keeper/n  
on-conne  
cted1,2  
R7  
N9  
N8  
P9  
GPIO5_IO06/SNVS_TAM Input  
PER61  
Keeper/n  
on-conne  
cted1,2  
GPIO5_IO07/SNVS_TAM Input  
PER71  
Keeper/n  
on-conne  
cted1,2  
GPIO5_IO08/SNVS_TAM Input  
PER81  
Keeper/n  
on-conne  
cted1,2  
GPIO5_IO09/SNVS_TAM Input  
PER91  
Keeper/n  
on-conne  
cted1,2  
TEST_MODE  
N7  
L14  
K14  
L17  
L15  
J17  
J14  
K16  
L16  
H16  
H15  
K15  
VDD_SNVS_IN  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT0  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
TEST_MODE  
UART1_CTS_B  
UART1_RTS_B  
UART1_RX_DATA  
UART1_TX_DATA  
UART2_CTS_B  
UART2_RTS_B  
UART2_RX_DATA  
UART2_TX_DATA  
UART3_CTS_B  
UART3_RTS_B  
UART3_RX_DATA  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
UART1_CTS_B  
UART1_RTS_B  
UART1_RX_DATA  
UART1_TX_DATA  
UART2_CTS_B  
UART2_RTS_B  
UART2_RX_DATA  
UART2_TX_DATA  
UART3_CTS_B  
UART3_RTS_B  
UART3_RX_DATA  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
125  
Package information and contact assignments  
Table 94. 9x9 mm Functional Contact Assignments (continued)  
UART3_TX_DATA  
UART4_RX_DATA  
UART4_TX_DATA  
UART5_RX_DATA  
UART5_TX_DATA  
USB_OTG1_CHD_B  
USB_OTG1_DN  
K17  
H17  
J16  
J13  
K13  
T15  
R11  
P11  
T9  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
OPEN DRAIN  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
UART3_TX_DATA  
UART4_RX_DATA  
UART4_TX_DATA  
UART5_RX_DATA  
UART5_TX_DATA  
USB_OTG1_CHD_B  
USB_OTG1_DN  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
VDD_USB_CAP ANALOG  
VDD_USB_CAP ANALOG  
USB_OTG1_DP  
USB_OTG1_DP  
USB_OTG1_VBUS  
USB_VBUS  
VBUS  
USB_OTG1_VBUS  
POWER  
USB_OTG2_DN  
USB_OTG2_DP  
USB_OTG2_VBUS  
T10  
U10  
U9  
VDD_USB_CAP ANALOG  
VDD_USB_CAP ANALOG  
USB_OTG2_DN  
USB_OTG2_DP  
USB_OTG2_VBUS  
USB_VBUS  
VBUS  
POWER  
XTALI  
T14  
U14  
NVCC_PLL  
NVCC_PLL  
ANALOG  
ANALOG  
XTALI  
XTALO  
XTALO  
1
SNVS_TAMPER0 to SNVS_TAMPER9 can be configured as GPIO or tamper detection pin, it is depending on the fuse setting  
TAMPER_PIN_DISABLE[1:0]. When the pad is configured as GPIO, the value is keeper out of reset.  
2
SNVS_TAMPER0 to SNVS_TAMPER9 is input unconnected in the following conditions.  
—SNVS low power mode when configured as GPIO  
Tamper functions are not used when configured as TAMPER detection pins  
It is required to connect external 1M Ohm pull-up or pull-down resistors to the pad to avoid the undesired leakage under two  
conditions above.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
126  
NXP Semiconductors  
Package information and contact assignments  
6.2.3  
9x9 mm, 0.5 mm pitch, ball map  
Table 95 shows the 9x9 mm, 0.5 mm pitch ball map for the i.MX 6UltraLite.  
Table 95. 9x9 mm, 0.5 mm Pitch, Ball Map  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
127  
Package information and contact assignments  
Table 95. 9x9 mm, 0.5 mm Pitch, Ball Map (continued)  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
128  
Table 95. 9x9 mm, 0.5 mm Pitch, Ball Map (continued)  
6.3  
GPIO reset behaviors during reset  
Table 96 shows the GPIO behaviors during reset.  
1
Table 96. GPIO Behaviors during Reset  
Ball Name  
Mux Mode  
Function  
Input/Output  
Value  
GPIO01_IO03  
UART3_TX_DATA  
LCD_DATA00  
LCD_DATA01  
LCD_DATA02  
LCD_DATA03  
LCD_DATA04  
LCD_DATA05  
LCD_DATA06  
LCD_DATA07  
LCD_DATA08  
LCD_DATA09  
ALT7  
ALT7  
ALT6  
ALT6  
ALT6  
ALT6  
ALT6  
ALT6  
ALT6  
ALT6  
ALT6  
ALT6  
Reserved  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kpull-down  
0
SJC_JTAG_ACT  
SRC_BT_CFG[0]  
SRC_BT_CFG[1]  
SRC_BT_CFG[2]  
SRC_BT_CFG[3]  
SRC_BT_CFG[4]  
SRC_BT_CFG[5]  
SRC_BT_CFG[6]  
SRC_BT_CFG[7]  
SRC_BT_CFG[8]  
SRC_BT_CFG[9]  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
Package information and contact assignments  
Table 96. GPIO Behaviors during Reset (continued)  
1
Ball Name  
Mux Mode  
Function  
Input/Output  
Value  
LCD_DATA10  
LCD_DATA11  
LCD_DATA12  
LCD_DATA13  
LCD_DATA14  
LCD_DATA15  
LCD_DATA16  
LCD_DATA17  
LCD_DATA18  
LCD_DATA19  
LCD_DATA20  
LCD_DATA21  
LCD_DATA22  
LCD_DATA23  
ALT6  
ALT6  
ALT6  
ALT6  
ALT6  
ALT6  
ALT6  
ALT6  
ALT6  
ALT6  
ALT6  
ALT6  
ALT6  
ALT6  
SRC_BT_CFG[10]  
SRC_BT_CFG[11]  
SRC_BT_CFG[12]  
SRC_BT_CFG[13]  
SRC_BT_CFG[14]  
SRC_BT_CFG[15]  
SRC_BT_CFG[16]  
SRC_BT_CFG[17]  
SRC_BT_CFG[18]  
SRC_BT_CFG[19]  
SRC_BT_CFG[20]  
SRC_BT_CFG[21]  
SRC_BT_CFG[22]  
SRC_BT_CFG[23]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
100 kpull-down  
1
Others are same as value in the column “Out of Reset Condition” of Table 91 and Table 94.  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
130  
Revision history  
7 Revision history  
Table 97 provides a revision history for this data sheet.  
Table 97. i.MX 6UltraLite Data Sheet Document Revision History  
Substantive Change(s)  
Rev.  
Number  
Date  
0
01/2016 • Initial release  
0.1  
02/2016 • Updated Figure 1, "Part Number Nomenclature—i.MX 6UltraLite"  
• Updated Table 1, "Ordering Information"  
• Updated Table 3, "i.MX 6UltraLite Modules List"  
1
04/2016 • Updated Table 3 i.MX 6UltraLite Module list for BCH descriptions  
• Updated Table 4 Special Signal Considerations  
• Added a note for Table 9 14x14 MM Package Thermal Resistance  
• Updated Table 15 Low Power Mode Current and Power Consumption  
• Added a note for Table 23 XTALI and RTC_XTALI DC Parameters  
• Updated Table 38 EIM Internal Module Multiplexing  
• Updated Table 51 SDR50/SDR104 Interface Timing Specification  
• Updated Table 91 14x14 mm Functional Contact Assignments and footnote  
• Updated Section 4.1.1, “Absolute maximum ratings"  
• Updated Section 4.6.3, “DDR I/O DC parameters"  
• Added Section 4.12.8, “LCD Controller (LCDIF) parameters"  
• Updated Section 4.12.9, “QUAD SPI (QSPI) timing parameters"  
2
02/2017 • Updated Table 8, "Absolute Maximum Ratings"  
• Added a footnote in the Table 11, "Operating Ranges"  
• Updated Section 4.2.1, “Power-Up sequence" and Section 4.2.2, “Power-Down sequence"  
• Removed Section 4.9.4 DDR SDRAM Specific Parameters (DDR3 and LPDDR2)  
• Updated Figure 18, "Asynchronous A/D Muxed Write Access"  
• Added a new Section 4.10, “Multi-Mode DDR Controller (MMDC)"  
• Added a new Section 4.12.8.1, “LCDIF signal mapping"  
• Updated Table 51, "SDR50/SDR104 Interface Timing Specification"  
• Updated Figure 40, "HS200 Mode Timing"  
• Updated Table 52, "HS200 Interface Timing Specification"  
2.1  
2.2  
03/2017 • Updated the silicon revision definition in the Figure 1, "Part Number Nomenclature—i.MX 6UltraLite"  
• Added Rev.1.2 part numbers in the Table 1, "Ordering Information"  
05/2017 • Changed terminology from “floating” to “not connected”  
• Added a footnote regarding maximum voltage allowance in the Table 8, "Absolute Maximum Ratings"  
• Replaced the MMDC compatible information with a cross reference in the Section 4.6.3, “DDR I/O DC  
parameters" and Section 4.7.2, “DDR I/O AC parameters"  
• Changed SD3 min to 1.7 ns in the Table 50, "eMMC4.4/4.41 Interface Timing Specification"  
i.MX 6UltraLite Applications Processors for Industrial Products, Rev. 2.2, 05/2017  
NXP Semiconductors  
131  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright licenses  
granted hereunder to design or fabricate any integrated circuits based on the  
information in this document. NXP reserves the right to make changes without further  
notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its  
products for any particular purpose, nor does NXP assume any liability arising out of  
the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation consequential or incidental damages. “Typical”  
parameters that may be provided in NXP data sheets and/or specifications can and do  
vary in different applications, and actual performance may vary over time. All operating  
parameters, including “typicals” must be validated for each customer application by  
customer‚ customer’s technical experts. NXP does not convey any license under its  
patent rights nor the rights of others. NXP sells products pursuant to standard terms  
and conditions of sale, which can be found at the following address:  
nxp.com/SalesTermsandConditions.  
NXP, the NXP logo, Freescale, the Freescale logo, and the Energy Efficient Solutions  
logo are trademarks of NXP B.V. All other product or service names are the property  
of their respective owners. ARM, the ARM Powered logo, and Cortex are trademarks  
of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. The USB-IF Logo is a  
registered trademark of USB Implementers Forum, Inc. All rights reserved.  
© 2016-2017 NXP B.V.  
Document Number: IMX6ULIEC  
Rev. 2.2  
05/2017  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY